1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/vmalloc.h> 28 #include <linux/string.h> 29 30 #include "send.h" 31 #include "backref.h" 32 #include "hash.h" 33 #include "locking.h" 34 #include "disk-io.h" 35 #include "btrfs_inode.h" 36 #include "transaction.h" 37 #include "compression.h" 38 39 static int g_verbose = 0; 40 41 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__) 42 43 /* 44 * A fs_path is a helper to dynamically build path names with unknown size. 45 * It reallocates the internal buffer on demand. 46 * It allows fast adding of path elements on the right side (normal path) and 47 * fast adding to the left side (reversed path). A reversed path can also be 48 * unreversed if needed. 49 */ 50 struct fs_path { 51 union { 52 struct { 53 char *start; 54 char *end; 55 56 char *buf; 57 unsigned short buf_len:15; 58 unsigned short reversed:1; 59 char inline_buf[]; 60 }; 61 /* 62 * Average path length does not exceed 200 bytes, we'll have 63 * better packing in the slab and higher chance to satisfy 64 * a allocation later during send. 65 */ 66 char pad[256]; 67 }; 68 }; 69 #define FS_PATH_INLINE_SIZE \ 70 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 71 72 73 /* reused for each extent */ 74 struct clone_root { 75 struct btrfs_root *root; 76 u64 ino; 77 u64 offset; 78 79 u64 found_refs; 80 }; 81 82 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 83 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 84 85 struct send_ctx { 86 struct file *send_filp; 87 loff_t send_off; 88 char *send_buf; 89 u32 send_size; 90 u32 send_max_size; 91 u64 total_send_size; 92 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 93 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 94 95 struct btrfs_root *send_root; 96 struct btrfs_root *parent_root; 97 struct clone_root *clone_roots; 98 int clone_roots_cnt; 99 100 /* current state of the compare_tree call */ 101 struct btrfs_path *left_path; 102 struct btrfs_path *right_path; 103 struct btrfs_key *cmp_key; 104 105 /* 106 * infos of the currently processed inode. In case of deleted inodes, 107 * these are the values from the deleted inode. 108 */ 109 u64 cur_ino; 110 u64 cur_inode_gen; 111 int cur_inode_new; 112 int cur_inode_new_gen; 113 int cur_inode_deleted; 114 u64 cur_inode_size; 115 u64 cur_inode_mode; 116 u64 cur_inode_rdev; 117 u64 cur_inode_last_extent; 118 119 u64 send_progress; 120 121 struct list_head new_refs; 122 struct list_head deleted_refs; 123 124 struct radix_tree_root name_cache; 125 struct list_head name_cache_list; 126 int name_cache_size; 127 128 struct file_ra_state ra; 129 130 char *read_buf; 131 132 /* 133 * We process inodes by their increasing order, so if before an 134 * incremental send we reverse the parent/child relationship of 135 * directories such that a directory with a lower inode number was 136 * the parent of a directory with a higher inode number, and the one 137 * becoming the new parent got renamed too, we can't rename/move the 138 * directory with lower inode number when we finish processing it - we 139 * must process the directory with higher inode number first, then 140 * rename/move it and then rename/move the directory with lower inode 141 * number. Example follows. 142 * 143 * Tree state when the first send was performed: 144 * 145 * . 146 * |-- a (ino 257) 147 * |-- b (ino 258) 148 * | 149 * | 150 * |-- c (ino 259) 151 * | |-- d (ino 260) 152 * | 153 * |-- c2 (ino 261) 154 * 155 * Tree state when the second (incremental) send is performed: 156 * 157 * . 158 * |-- a (ino 257) 159 * |-- b (ino 258) 160 * |-- c2 (ino 261) 161 * |-- d2 (ino 260) 162 * |-- cc (ino 259) 163 * 164 * The sequence of steps that lead to the second state was: 165 * 166 * mv /a/b/c/d /a/b/c2/d2 167 * mv /a/b/c /a/b/c2/d2/cc 168 * 169 * "c" has lower inode number, but we can't move it (2nd mv operation) 170 * before we move "d", which has higher inode number. 171 * 172 * So we just memorize which move/rename operations must be performed 173 * later when their respective parent is processed and moved/renamed. 174 */ 175 176 /* Indexed by parent directory inode number. */ 177 struct rb_root pending_dir_moves; 178 179 /* 180 * Reverse index, indexed by the inode number of a directory that 181 * is waiting for the move/rename of its immediate parent before its 182 * own move/rename can be performed. 183 */ 184 struct rb_root waiting_dir_moves; 185 186 /* 187 * A directory that is going to be rm'ed might have a child directory 188 * which is in the pending directory moves index above. In this case, 189 * the directory can only be removed after the move/rename of its child 190 * is performed. Example: 191 * 192 * Parent snapshot: 193 * 194 * . (ino 256) 195 * |-- a/ (ino 257) 196 * |-- b/ (ino 258) 197 * |-- c/ (ino 259) 198 * | |-- x/ (ino 260) 199 * | 200 * |-- y/ (ino 261) 201 * 202 * Send snapshot: 203 * 204 * . (ino 256) 205 * |-- a/ (ino 257) 206 * |-- b/ (ino 258) 207 * |-- YY/ (ino 261) 208 * |-- x/ (ino 260) 209 * 210 * Sequence of steps that lead to the send snapshot: 211 * rm -f /a/b/c/foo.txt 212 * mv /a/b/y /a/b/YY 213 * mv /a/b/c/x /a/b/YY 214 * rmdir /a/b/c 215 * 216 * When the child is processed, its move/rename is delayed until its 217 * parent is processed (as explained above), but all other operations 218 * like update utimes, chown, chgrp, etc, are performed and the paths 219 * that it uses for those operations must use the orphanized name of 220 * its parent (the directory we're going to rm later), so we need to 221 * memorize that name. 222 * 223 * Indexed by the inode number of the directory to be deleted. 224 */ 225 struct rb_root orphan_dirs; 226 }; 227 228 struct pending_dir_move { 229 struct rb_node node; 230 struct list_head list; 231 u64 parent_ino; 232 u64 ino; 233 u64 gen; 234 bool is_orphan; 235 struct list_head update_refs; 236 }; 237 238 struct waiting_dir_move { 239 struct rb_node node; 240 u64 ino; 241 /* 242 * There might be some directory that could not be removed because it 243 * was waiting for this directory inode to be moved first. Therefore 244 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 245 */ 246 u64 rmdir_ino; 247 bool orphanized; 248 }; 249 250 struct orphan_dir_info { 251 struct rb_node node; 252 u64 ino; 253 u64 gen; 254 }; 255 256 struct name_cache_entry { 257 struct list_head list; 258 /* 259 * radix_tree has only 32bit entries but we need to handle 64bit inums. 260 * We use the lower 32bit of the 64bit inum to store it in the tree. If 261 * more then one inum would fall into the same entry, we use radix_list 262 * to store the additional entries. radix_list is also used to store 263 * entries where two entries have the same inum but different 264 * generations. 265 */ 266 struct list_head radix_list; 267 u64 ino; 268 u64 gen; 269 u64 parent_ino; 270 u64 parent_gen; 271 int ret; 272 int need_later_update; 273 int name_len; 274 char name[]; 275 }; 276 277 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 278 279 static struct waiting_dir_move * 280 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 281 282 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 283 284 static int need_send_hole(struct send_ctx *sctx) 285 { 286 return (sctx->parent_root && !sctx->cur_inode_new && 287 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 288 S_ISREG(sctx->cur_inode_mode)); 289 } 290 291 static void fs_path_reset(struct fs_path *p) 292 { 293 if (p->reversed) { 294 p->start = p->buf + p->buf_len - 1; 295 p->end = p->start; 296 *p->start = 0; 297 } else { 298 p->start = p->buf; 299 p->end = p->start; 300 *p->start = 0; 301 } 302 } 303 304 static struct fs_path *fs_path_alloc(void) 305 { 306 struct fs_path *p; 307 308 p = kmalloc(sizeof(*p), GFP_KERNEL); 309 if (!p) 310 return NULL; 311 p->reversed = 0; 312 p->buf = p->inline_buf; 313 p->buf_len = FS_PATH_INLINE_SIZE; 314 fs_path_reset(p); 315 return p; 316 } 317 318 static struct fs_path *fs_path_alloc_reversed(void) 319 { 320 struct fs_path *p; 321 322 p = fs_path_alloc(); 323 if (!p) 324 return NULL; 325 p->reversed = 1; 326 fs_path_reset(p); 327 return p; 328 } 329 330 static void fs_path_free(struct fs_path *p) 331 { 332 if (!p) 333 return; 334 if (p->buf != p->inline_buf) 335 kfree(p->buf); 336 kfree(p); 337 } 338 339 static int fs_path_len(struct fs_path *p) 340 { 341 return p->end - p->start; 342 } 343 344 static int fs_path_ensure_buf(struct fs_path *p, int len) 345 { 346 char *tmp_buf; 347 int path_len; 348 int old_buf_len; 349 350 len++; 351 352 if (p->buf_len >= len) 353 return 0; 354 355 if (len > PATH_MAX) { 356 WARN_ON(1); 357 return -ENOMEM; 358 } 359 360 path_len = p->end - p->start; 361 old_buf_len = p->buf_len; 362 363 /* 364 * First time the inline_buf does not suffice 365 */ 366 if (p->buf == p->inline_buf) { 367 tmp_buf = kmalloc(len, GFP_KERNEL); 368 if (tmp_buf) 369 memcpy(tmp_buf, p->buf, old_buf_len); 370 } else { 371 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 372 } 373 if (!tmp_buf) 374 return -ENOMEM; 375 p->buf = tmp_buf; 376 /* 377 * The real size of the buffer is bigger, this will let the fast path 378 * happen most of the time 379 */ 380 p->buf_len = ksize(p->buf); 381 382 if (p->reversed) { 383 tmp_buf = p->buf + old_buf_len - path_len - 1; 384 p->end = p->buf + p->buf_len - 1; 385 p->start = p->end - path_len; 386 memmove(p->start, tmp_buf, path_len + 1); 387 } else { 388 p->start = p->buf; 389 p->end = p->start + path_len; 390 } 391 return 0; 392 } 393 394 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 395 char **prepared) 396 { 397 int ret; 398 int new_len; 399 400 new_len = p->end - p->start + name_len; 401 if (p->start != p->end) 402 new_len++; 403 ret = fs_path_ensure_buf(p, new_len); 404 if (ret < 0) 405 goto out; 406 407 if (p->reversed) { 408 if (p->start != p->end) 409 *--p->start = '/'; 410 p->start -= name_len; 411 *prepared = p->start; 412 } else { 413 if (p->start != p->end) 414 *p->end++ = '/'; 415 *prepared = p->end; 416 p->end += name_len; 417 *p->end = 0; 418 } 419 420 out: 421 return ret; 422 } 423 424 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 425 { 426 int ret; 427 char *prepared; 428 429 ret = fs_path_prepare_for_add(p, name_len, &prepared); 430 if (ret < 0) 431 goto out; 432 memcpy(prepared, name, name_len); 433 434 out: 435 return ret; 436 } 437 438 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 439 { 440 int ret; 441 char *prepared; 442 443 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 444 if (ret < 0) 445 goto out; 446 memcpy(prepared, p2->start, p2->end - p2->start); 447 448 out: 449 return ret; 450 } 451 452 static int fs_path_add_from_extent_buffer(struct fs_path *p, 453 struct extent_buffer *eb, 454 unsigned long off, int len) 455 { 456 int ret; 457 char *prepared; 458 459 ret = fs_path_prepare_for_add(p, len, &prepared); 460 if (ret < 0) 461 goto out; 462 463 read_extent_buffer(eb, prepared, off, len); 464 465 out: 466 return ret; 467 } 468 469 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 470 { 471 int ret; 472 473 p->reversed = from->reversed; 474 fs_path_reset(p); 475 476 ret = fs_path_add_path(p, from); 477 478 return ret; 479 } 480 481 482 static void fs_path_unreverse(struct fs_path *p) 483 { 484 char *tmp; 485 int len; 486 487 if (!p->reversed) 488 return; 489 490 tmp = p->start; 491 len = p->end - p->start; 492 p->start = p->buf; 493 p->end = p->start + len; 494 memmove(p->start, tmp, len + 1); 495 p->reversed = 0; 496 } 497 498 static struct btrfs_path *alloc_path_for_send(void) 499 { 500 struct btrfs_path *path; 501 502 path = btrfs_alloc_path(); 503 if (!path) 504 return NULL; 505 path->search_commit_root = 1; 506 path->skip_locking = 1; 507 path->need_commit_sem = 1; 508 return path; 509 } 510 511 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 512 { 513 int ret; 514 mm_segment_t old_fs; 515 u32 pos = 0; 516 517 old_fs = get_fs(); 518 set_fs(KERNEL_DS); 519 520 while (pos < len) { 521 ret = vfs_write(filp, (__force const char __user *)buf + pos, 522 len - pos, off); 523 /* TODO handle that correctly */ 524 /*if (ret == -ERESTARTSYS) { 525 continue; 526 }*/ 527 if (ret < 0) 528 goto out; 529 if (ret == 0) { 530 ret = -EIO; 531 goto out; 532 } 533 pos += ret; 534 } 535 536 ret = 0; 537 538 out: 539 set_fs(old_fs); 540 return ret; 541 } 542 543 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 544 { 545 struct btrfs_tlv_header *hdr; 546 int total_len = sizeof(*hdr) + len; 547 int left = sctx->send_max_size - sctx->send_size; 548 549 if (unlikely(left < total_len)) 550 return -EOVERFLOW; 551 552 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 553 hdr->tlv_type = cpu_to_le16(attr); 554 hdr->tlv_len = cpu_to_le16(len); 555 memcpy(hdr + 1, data, len); 556 sctx->send_size += total_len; 557 558 return 0; 559 } 560 561 #define TLV_PUT_DEFINE_INT(bits) \ 562 static int tlv_put_u##bits(struct send_ctx *sctx, \ 563 u##bits attr, u##bits value) \ 564 { \ 565 __le##bits __tmp = cpu_to_le##bits(value); \ 566 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 567 } 568 569 TLV_PUT_DEFINE_INT(64) 570 571 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 572 const char *str, int len) 573 { 574 if (len == -1) 575 len = strlen(str); 576 return tlv_put(sctx, attr, str, len); 577 } 578 579 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 580 const u8 *uuid) 581 { 582 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 583 } 584 585 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 586 struct extent_buffer *eb, 587 struct btrfs_timespec *ts) 588 { 589 struct btrfs_timespec bts; 590 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 591 return tlv_put(sctx, attr, &bts, sizeof(bts)); 592 } 593 594 595 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 596 do { \ 597 ret = tlv_put(sctx, attrtype, attrlen, data); \ 598 if (ret < 0) \ 599 goto tlv_put_failure; \ 600 } while (0) 601 602 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 603 do { \ 604 ret = tlv_put_u##bits(sctx, attrtype, value); \ 605 if (ret < 0) \ 606 goto tlv_put_failure; \ 607 } while (0) 608 609 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 610 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 611 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 612 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 613 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 614 do { \ 615 ret = tlv_put_string(sctx, attrtype, str, len); \ 616 if (ret < 0) \ 617 goto tlv_put_failure; \ 618 } while (0) 619 #define TLV_PUT_PATH(sctx, attrtype, p) \ 620 do { \ 621 ret = tlv_put_string(sctx, attrtype, p->start, \ 622 p->end - p->start); \ 623 if (ret < 0) \ 624 goto tlv_put_failure; \ 625 } while(0) 626 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 627 do { \ 628 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 629 if (ret < 0) \ 630 goto tlv_put_failure; \ 631 } while (0) 632 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 633 do { \ 634 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 635 if (ret < 0) \ 636 goto tlv_put_failure; \ 637 } while (0) 638 639 static int send_header(struct send_ctx *sctx) 640 { 641 struct btrfs_stream_header hdr; 642 643 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 644 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 645 646 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 647 &sctx->send_off); 648 } 649 650 /* 651 * For each command/item we want to send to userspace, we call this function. 652 */ 653 static int begin_cmd(struct send_ctx *sctx, int cmd) 654 { 655 struct btrfs_cmd_header *hdr; 656 657 if (WARN_ON(!sctx->send_buf)) 658 return -EINVAL; 659 660 BUG_ON(sctx->send_size); 661 662 sctx->send_size += sizeof(*hdr); 663 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 664 hdr->cmd = cpu_to_le16(cmd); 665 666 return 0; 667 } 668 669 static int send_cmd(struct send_ctx *sctx) 670 { 671 int ret; 672 struct btrfs_cmd_header *hdr; 673 u32 crc; 674 675 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 676 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 677 hdr->crc = 0; 678 679 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 680 hdr->crc = cpu_to_le32(crc); 681 682 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 683 &sctx->send_off); 684 685 sctx->total_send_size += sctx->send_size; 686 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 687 sctx->send_size = 0; 688 689 return ret; 690 } 691 692 /* 693 * Sends a move instruction to user space 694 */ 695 static int send_rename(struct send_ctx *sctx, 696 struct fs_path *from, struct fs_path *to) 697 { 698 int ret; 699 700 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start); 701 702 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 703 if (ret < 0) 704 goto out; 705 706 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 707 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 708 709 ret = send_cmd(sctx); 710 711 tlv_put_failure: 712 out: 713 return ret; 714 } 715 716 /* 717 * Sends a link instruction to user space 718 */ 719 static int send_link(struct send_ctx *sctx, 720 struct fs_path *path, struct fs_path *lnk) 721 { 722 int ret; 723 724 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start); 725 726 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 727 if (ret < 0) 728 goto out; 729 730 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 731 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 732 733 ret = send_cmd(sctx); 734 735 tlv_put_failure: 736 out: 737 return ret; 738 } 739 740 /* 741 * Sends an unlink instruction to user space 742 */ 743 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 744 { 745 int ret; 746 747 verbose_printk("btrfs: send_unlink %s\n", path->start); 748 749 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 750 if (ret < 0) 751 goto out; 752 753 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 754 755 ret = send_cmd(sctx); 756 757 tlv_put_failure: 758 out: 759 return ret; 760 } 761 762 /* 763 * Sends a rmdir instruction to user space 764 */ 765 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 766 { 767 int ret; 768 769 verbose_printk("btrfs: send_rmdir %s\n", path->start); 770 771 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 772 if (ret < 0) 773 goto out; 774 775 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 776 777 ret = send_cmd(sctx); 778 779 tlv_put_failure: 780 out: 781 return ret; 782 } 783 784 /* 785 * Helper function to retrieve some fields from an inode item. 786 */ 787 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 788 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 789 u64 *gid, u64 *rdev) 790 { 791 int ret; 792 struct btrfs_inode_item *ii; 793 struct btrfs_key key; 794 795 key.objectid = ino; 796 key.type = BTRFS_INODE_ITEM_KEY; 797 key.offset = 0; 798 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 799 if (ret) { 800 if (ret > 0) 801 ret = -ENOENT; 802 return ret; 803 } 804 805 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 806 struct btrfs_inode_item); 807 if (size) 808 *size = btrfs_inode_size(path->nodes[0], ii); 809 if (gen) 810 *gen = btrfs_inode_generation(path->nodes[0], ii); 811 if (mode) 812 *mode = btrfs_inode_mode(path->nodes[0], ii); 813 if (uid) 814 *uid = btrfs_inode_uid(path->nodes[0], ii); 815 if (gid) 816 *gid = btrfs_inode_gid(path->nodes[0], ii); 817 if (rdev) 818 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 819 820 return ret; 821 } 822 823 static int get_inode_info(struct btrfs_root *root, 824 u64 ino, u64 *size, u64 *gen, 825 u64 *mode, u64 *uid, u64 *gid, 826 u64 *rdev) 827 { 828 struct btrfs_path *path; 829 int ret; 830 831 path = alloc_path_for_send(); 832 if (!path) 833 return -ENOMEM; 834 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 835 rdev); 836 btrfs_free_path(path); 837 return ret; 838 } 839 840 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 841 struct fs_path *p, 842 void *ctx); 843 844 /* 845 * Helper function to iterate the entries in ONE btrfs_inode_ref or 846 * btrfs_inode_extref. 847 * The iterate callback may return a non zero value to stop iteration. This can 848 * be a negative value for error codes or 1 to simply stop it. 849 * 850 * path must point to the INODE_REF or INODE_EXTREF when called. 851 */ 852 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 853 struct btrfs_key *found_key, int resolve, 854 iterate_inode_ref_t iterate, void *ctx) 855 { 856 struct extent_buffer *eb = path->nodes[0]; 857 struct btrfs_item *item; 858 struct btrfs_inode_ref *iref; 859 struct btrfs_inode_extref *extref; 860 struct btrfs_path *tmp_path; 861 struct fs_path *p; 862 u32 cur = 0; 863 u32 total; 864 int slot = path->slots[0]; 865 u32 name_len; 866 char *start; 867 int ret = 0; 868 int num = 0; 869 int index; 870 u64 dir; 871 unsigned long name_off; 872 unsigned long elem_size; 873 unsigned long ptr; 874 875 p = fs_path_alloc_reversed(); 876 if (!p) 877 return -ENOMEM; 878 879 tmp_path = alloc_path_for_send(); 880 if (!tmp_path) { 881 fs_path_free(p); 882 return -ENOMEM; 883 } 884 885 886 if (found_key->type == BTRFS_INODE_REF_KEY) { 887 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 888 struct btrfs_inode_ref); 889 item = btrfs_item_nr(slot); 890 total = btrfs_item_size(eb, item); 891 elem_size = sizeof(*iref); 892 } else { 893 ptr = btrfs_item_ptr_offset(eb, slot); 894 total = btrfs_item_size_nr(eb, slot); 895 elem_size = sizeof(*extref); 896 } 897 898 while (cur < total) { 899 fs_path_reset(p); 900 901 if (found_key->type == BTRFS_INODE_REF_KEY) { 902 iref = (struct btrfs_inode_ref *)(ptr + cur); 903 name_len = btrfs_inode_ref_name_len(eb, iref); 904 name_off = (unsigned long)(iref + 1); 905 index = btrfs_inode_ref_index(eb, iref); 906 dir = found_key->offset; 907 } else { 908 extref = (struct btrfs_inode_extref *)(ptr + cur); 909 name_len = btrfs_inode_extref_name_len(eb, extref); 910 name_off = (unsigned long)&extref->name; 911 index = btrfs_inode_extref_index(eb, extref); 912 dir = btrfs_inode_extref_parent(eb, extref); 913 } 914 915 if (resolve) { 916 start = btrfs_ref_to_path(root, tmp_path, name_len, 917 name_off, eb, dir, 918 p->buf, p->buf_len); 919 if (IS_ERR(start)) { 920 ret = PTR_ERR(start); 921 goto out; 922 } 923 if (start < p->buf) { 924 /* overflow , try again with larger buffer */ 925 ret = fs_path_ensure_buf(p, 926 p->buf_len + p->buf - start); 927 if (ret < 0) 928 goto out; 929 start = btrfs_ref_to_path(root, tmp_path, 930 name_len, name_off, 931 eb, dir, 932 p->buf, p->buf_len); 933 if (IS_ERR(start)) { 934 ret = PTR_ERR(start); 935 goto out; 936 } 937 BUG_ON(start < p->buf); 938 } 939 p->start = start; 940 } else { 941 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 942 name_len); 943 if (ret < 0) 944 goto out; 945 } 946 947 cur += elem_size + name_len; 948 ret = iterate(num, dir, index, p, ctx); 949 if (ret) 950 goto out; 951 num++; 952 } 953 954 out: 955 btrfs_free_path(tmp_path); 956 fs_path_free(p); 957 return ret; 958 } 959 960 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 961 const char *name, int name_len, 962 const char *data, int data_len, 963 u8 type, void *ctx); 964 965 /* 966 * Helper function to iterate the entries in ONE btrfs_dir_item. 967 * The iterate callback may return a non zero value to stop iteration. This can 968 * be a negative value for error codes or 1 to simply stop it. 969 * 970 * path must point to the dir item when called. 971 */ 972 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 973 struct btrfs_key *found_key, 974 iterate_dir_item_t iterate, void *ctx) 975 { 976 int ret = 0; 977 struct extent_buffer *eb; 978 struct btrfs_item *item; 979 struct btrfs_dir_item *di; 980 struct btrfs_key di_key; 981 char *buf = NULL; 982 int buf_len; 983 u32 name_len; 984 u32 data_len; 985 u32 cur; 986 u32 len; 987 u32 total; 988 int slot; 989 int num; 990 u8 type; 991 992 /* 993 * Start with a small buffer (1 page). If later we end up needing more 994 * space, which can happen for xattrs on a fs with a leaf size greater 995 * then the page size, attempt to increase the buffer. Typically xattr 996 * values are small. 997 */ 998 buf_len = PATH_MAX; 999 buf = kmalloc(buf_len, GFP_KERNEL); 1000 if (!buf) { 1001 ret = -ENOMEM; 1002 goto out; 1003 } 1004 1005 eb = path->nodes[0]; 1006 slot = path->slots[0]; 1007 item = btrfs_item_nr(slot); 1008 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1009 cur = 0; 1010 len = 0; 1011 total = btrfs_item_size(eb, item); 1012 1013 num = 0; 1014 while (cur < total) { 1015 name_len = btrfs_dir_name_len(eb, di); 1016 data_len = btrfs_dir_data_len(eb, di); 1017 type = btrfs_dir_type(eb, di); 1018 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1019 1020 if (type == BTRFS_FT_XATTR) { 1021 if (name_len > XATTR_NAME_MAX) { 1022 ret = -ENAMETOOLONG; 1023 goto out; 1024 } 1025 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) { 1026 ret = -E2BIG; 1027 goto out; 1028 } 1029 } else { 1030 /* 1031 * Path too long 1032 */ 1033 if (name_len + data_len > PATH_MAX) { 1034 ret = -ENAMETOOLONG; 1035 goto out; 1036 } 1037 } 1038 1039 if (name_len + data_len > buf_len) { 1040 buf_len = name_len + data_len; 1041 if (is_vmalloc_addr(buf)) { 1042 vfree(buf); 1043 buf = NULL; 1044 } else { 1045 char *tmp = krealloc(buf, buf_len, 1046 GFP_KERNEL | __GFP_NOWARN); 1047 1048 if (!tmp) 1049 kfree(buf); 1050 buf = tmp; 1051 } 1052 if (!buf) { 1053 buf = vmalloc(buf_len); 1054 if (!buf) { 1055 ret = -ENOMEM; 1056 goto out; 1057 } 1058 } 1059 } 1060 1061 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1062 name_len + data_len); 1063 1064 len = sizeof(*di) + name_len + data_len; 1065 di = (struct btrfs_dir_item *)((char *)di + len); 1066 cur += len; 1067 1068 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1069 data_len, type, ctx); 1070 if (ret < 0) 1071 goto out; 1072 if (ret) { 1073 ret = 0; 1074 goto out; 1075 } 1076 1077 num++; 1078 } 1079 1080 out: 1081 kvfree(buf); 1082 return ret; 1083 } 1084 1085 static int __copy_first_ref(int num, u64 dir, int index, 1086 struct fs_path *p, void *ctx) 1087 { 1088 int ret; 1089 struct fs_path *pt = ctx; 1090 1091 ret = fs_path_copy(pt, p); 1092 if (ret < 0) 1093 return ret; 1094 1095 /* we want the first only */ 1096 return 1; 1097 } 1098 1099 /* 1100 * Retrieve the first path of an inode. If an inode has more then one 1101 * ref/hardlink, this is ignored. 1102 */ 1103 static int get_inode_path(struct btrfs_root *root, 1104 u64 ino, struct fs_path *path) 1105 { 1106 int ret; 1107 struct btrfs_key key, found_key; 1108 struct btrfs_path *p; 1109 1110 p = alloc_path_for_send(); 1111 if (!p) 1112 return -ENOMEM; 1113 1114 fs_path_reset(path); 1115 1116 key.objectid = ino; 1117 key.type = BTRFS_INODE_REF_KEY; 1118 key.offset = 0; 1119 1120 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1121 if (ret < 0) 1122 goto out; 1123 if (ret) { 1124 ret = 1; 1125 goto out; 1126 } 1127 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1128 if (found_key.objectid != ino || 1129 (found_key.type != BTRFS_INODE_REF_KEY && 1130 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1131 ret = -ENOENT; 1132 goto out; 1133 } 1134 1135 ret = iterate_inode_ref(root, p, &found_key, 1, 1136 __copy_first_ref, path); 1137 if (ret < 0) 1138 goto out; 1139 ret = 0; 1140 1141 out: 1142 btrfs_free_path(p); 1143 return ret; 1144 } 1145 1146 struct backref_ctx { 1147 struct send_ctx *sctx; 1148 1149 struct btrfs_path *path; 1150 /* number of total found references */ 1151 u64 found; 1152 1153 /* 1154 * used for clones found in send_root. clones found behind cur_objectid 1155 * and cur_offset are not considered as allowed clones. 1156 */ 1157 u64 cur_objectid; 1158 u64 cur_offset; 1159 1160 /* may be truncated in case it's the last extent in a file */ 1161 u64 extent_len; 1162 1163 /* data offset in the file extent item */ 1164 u64 data_offset; 1165 1166 /* Just to check for bugs in backref resolving */ 1167 int found_itself; 1168 }; 1169 1170 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1171 { 1172 u64 root = (u64)(uintptr_t)key; 1173 struct clone_root *cr = (struct clone_root *)elt; 1174 1175 if (root < cr->root->objectid) 1176 return -1; 1177 if (root > cr->root->objectid) 1178 return 1; 1179 return 0; 1180 } 1181 1182 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1183 { 1184 struct clone_root *cr1 = (struct clone_root *)e1; 1185 struct clone_root *cr2 = (struct clone_root *)e2; 1186 1187 if (cr1->root->objectid < cr2->root->objectid) 1188 return -1; 1189 if (cr1->root->objectid > cr2->root->objectid) 1190 return 1; 1191 return 0; 1192 } 1193 1194 /* 1195 * Called for every backref that is found for the current extent. 1196 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1197 */ 1198 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1199 { 1200 struct backref_ctx *bctx = ctx_; 1201 struct clone_root *found; 1202 int ret; 1203 u64 i_size; 1204 1205 /* First check if the root is in the list of accepted clone sources */ 1206 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1207 bctx->sctx->clone_roots_cnt, 1208 sizeof(struct clone_root), 1209 __clone_root_cmp_bsearch); 1210 if (!found) 1211 return 0; 1212 1213 if (found->root == bctx->sctx->send_root && 1214 ino == bctx->cur_objectid && 1215 offset == bctx->cur_offset) { 1216 bctx->found_itself = 1; 1217 } 1218 1219 /* 1220 * There are inodes that have extents that lie behind its i_size. Don't 1221 * accept clones from these extents. 1222 */ 1223 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1224 NULL, NULL, NULL); 1225 btrfs_release_path(bctx->path); 1226 if (ret < 0) 1227 return ret; 1228 1229 if (offset + bctx->data_offset + bctx->extent_len > i_size) 1230 return 0; 1231 1232 /* 1233 * Make sure we don't consider clones from send_root that are 1234 * behind the current inode/offset. 1235 */ 1236 if (found->root == bctx->sctx->send_root) { 1237 /* 1238 * TODO for the moment we don't accept clones from the inode 1239 * that is currently send. We may change this when 1240 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1241 * file. 1242 */ 1243 if (ino >= bctx->cur_objectid) 1244 return 0; 1245 #if 0 1246 if (ino > bctx->cur_objectid) 1247 return 0; 1248 if (offset + bctx->extent_len > bctx->cur_offset) 1249 return 0; 1250 #endif 1251 } 1252 1253 bctx->found++; 1254 found->found_refs++; 1255 if (ino < found->ino) { 1256 found->ino = ino; 1257 found->offset = offset; 1258 } else if (found->ino == ino) { 1259 /* 1260 * same extent found more then once in the same file. 1261 */ 1262 if (found->offset > offset + bctx->extent_len) 1263 found->offset = offset; 1264 } 1265 1266 return 0; 1267 } 1268 1269 /* 1270 * Given an inode, offset and extent item, it finds a good clone for a clone 1271 * instruction. Returns -ENOENT when none could be found. The function makes 1272 * sure that the returned clone is usable at the point where sending is at the 1273 * moment. This means, that no clones are accepted which lie behind the current 1274 * inode+offset. 1275 * 1276 * path must point to the extent item when called. 1277 */ 1278 static int find_extent_clone(struct send_ctx *sctx, 1279 struct btrfs_path *path, 1280 u64 ino, u64 data_offset, 1281 u64 ino_size, 1282 struct clone_root **found) 1283 { 1284 int ret; 1285 int extent_type; 1286 u64 logical; 1287 u64 disk_byte; 1288 u64 num_bytes; 1289 u64 extent_item_pos; 1290 u64 flags = 0; 1291 struct btrfs_file_extent_item *fi; 1292 struct extent_buffer *eb = path->nodes[0]; 1293 struct backref_ctx *backref_ctx = NULL; 1294 struct clone_root *cur_clone_root; 1295 struct btrfs_key found_key; 1296 struct btrfs_path *tmp_path; 1297 int compressed; 1298 u32 i; 1299 1300 tmp_path = alloc_path_for_send(); 1301 if (!tmp_path) 1302 return -ENOMEM; 1303 1304 /* We only use this path under the commit sem */ 1305 tmp_path->need_commit_sem = 0; 1306 1307 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1308 if (!backref_ctx) { 1309 ret = -ENOMEM; 1310 goto out; 1311 } 1312 1313 backref_ctx->path = tmp_path; 1314 1315 if (data_offset >= ino_size) { 1316 /* 1317 * There may be extents that lie behind the file's size. 1318 * I at least had this in combination with snapshotting while 1319 * writing large files. 1320 */ 1321 ret = 0; 1322 goto out; 1323 } 1324 1325 fi = btrfs_item_ptr(eb, path->slots[0], 1326 struct btrfs_file_extent_item); 1327 extent_type = btrfs_file_extent_type(eb, fi); 1328 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1329 ret = -ENOENT; 1330 goto out; 1331 } 1332 compressed = btrfs_file_extent_compression(eb, fi); 1333 1334 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1335 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1336 if (disk_byte == 0) { 1337 ret = -ENOENT; 1338 goto out; 1339 } 1340 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1341 1342 down_read(&sctx->send_root->fs_info->commit_root_sem); 1343 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path, 1344 &found_key, &flags); 1345 up_read(&sctx->send_root->fs_info->commit_root_sem); 1346 btrfs_release_path(tmp_path); 1347 1348 if (ret < 0) 1349 goto out; 1350 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1351 ret = -EIO; 1352 goto out; 1353 } 1354 1355 /* 1356 * Setup the clone roots. 1357 */ 1358 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1359 cur_clone_root = sctx->clone_roots + i; 1360 cur_clone_root->ino = (u64)-1; 1361 cur_clone_root->offset = 0; 1362 cur_clone_root->found_refs = 0; 1363 } 1364 1365 backref_ctx->sctx = sctx; 1366 backref_ctx->found = 0; 1367 backref_ctx->cur_objectid = ino; 1368 backref_ctx->cur_offset = data_offset; 1369 backref_ctx->found_itself = 0; 1370 backref_ctx->extent_len = num_bytes; 1371 /* 1372 * For non-compressed extents iterate_extent_inodes() gives us extent 1373 * offsets that already take into account the data offset, but not for 1374 * compressed extents, since the offset is logical and not relative to 1375 * the physical extent locations. We must take this into account to 1376 * avoid sending clone offsets that go beyond the source file's size, 1377 * which would result in the clone ioctl failing with -EINVAL on the 1378 * receiving end. 1379 */ 1380 if (compressed == BTRFS_COMPRESS_NONE) 1381 backref_ctx->data_offset = 0; 1382 else 1383 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1384 1385 /* 1386 * The last extent of a file may be too large due to page alignment. 1387 * We need to adjust extent_len in this case so that the checks in 1388 * __iterate_backrefs work. 1389 */ 1390 if (data_offset + num_bytes >= ino_size) 1391 backref_ctx->extent_len = ino_size - data_offset; 1392 1393 /* 1394 * Now collect all backrefs. 1395 */ 1396 if (compressed == BTRFS_COMPRESS_NONE) 1397 extent_item_pos = logical - found_key.objectid; 1398 else 1399 extent_item_pos = 0; 1400 ret = iterate_extent_inodes(sctx->send_root->fs_info, 1401 found_key.objectid, extent_item_pos, 1, 1402 __iterate_backrefs, backref_ctx); 1403 1404 if (ret < 0) 1405 goto out; 1406 1407 if (!backref_ctx->found_itself) { 1408 /* found a bug in backref code? */ 1409 ret = -EIO; 1410 btrfs_err(sctx->send_root->fs_info, "did not find backref in " 1411 "send_root. inode=%llu, offset=%llu, " 1412 "disk_byte=%llu found extent=%llu", 1413 ino, data_offset, disk_byte, found_key.objectid); 1414 goto out; 1415 } 1416 1417 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, " 1418 "ino=%llu, " 1419 "num_bytes=%llu, logical=%llu\n", 1420 data_offset, ino, num_bytes, logical); 1421 1422 if (!backref_ctx->found) 1423 verbose_printk("btrfs: no clones found\n"); 1424 1425 cur_clone_root = NULL; 1426 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1427 if (sctx->clone_roots[i].found_refs) { 1428 if (!cur_clone_root) 1429 cur_clone_root = sctx->clone_roots + i; 1430 else if (sctx->clone_roots[i].root == sctx->send_root) 1431 /* prefer clones from send_root over others */ 1432 cur_clone_root = sctx->clone_roots + i; 1433 } 1434 1435 } 1436 1437 if (cur_clone_root) { 1438 *found = cur_clone_root; 1439 ret = 0; 1440 } else { 1441 ret = -ENOENT; 1442 } 1443 1444 out: 1445 btrfs_free_path(tmp_path); 1446 kfree(backref_ctx); 1447 return ret; 1448 } 1449 1450 static int read_symlink(struct btrfs_root *root, 1451 u64 ino, 1452 struct fs_path *dest) 1453 { 1454 int ret; 1455 struct btrfs_path *path; 1456 struct btrfs_key key; 1457 struct btrfs_file_extent_item *ei; 1458 u8 type; 1459 u8 compression; 1460 unsigned long off; 1461 int len; 1462 1463 path = alloc_path_for_send(); 1464 if (!path) 1465 return -ENOMEM; 1466 1467 key.objectid = ino; 1468 key.type = BTRFS_EXTENT_DATA_KEY; 1469 key.offset = 0; 1470 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1471 if (ret < 0) 1472 goto out; 1473 if (ret) { 1474 /* 1475 * An empty symlink inode. Can happen in rare error paths when 1476 * creating a symlink (transaction committed before the inode 1477 * eviction handler removed the symlink inode items and a crash 1478 * happened in between or the subvol was snapshoted in between). 1479 * Print an informative message to dmesg/syslog so that the user 1480 * can delete the symlink. 1481 */ 1482 btrfs_err(root->fs_info, 1483 "Found empty symlink inode %llu at root %llu", 1484 ino, root->root_key.objectid); 1485 ret = -EIO; 1486 goto out; 1487 } 1488 1489 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1490 struct btrfs_file_extent_item); 1491 type = btrfs_file_extent_type(path->nodes[0], ei); 1492 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1493 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1494 BUG_ON(compression); 1495 1496 off = btrfs_file_extent_inline_start(ei); 1497 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1498 1499 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1500 1501 out: 1502 btrfs_free_path(path); 1503 return ret; 1504 } 1505 1506 /* 1507 * Helper function to generate a file name that is unique in the root of 1508 * send_root and parent_root. This is used to generate names for orphan inodes. 1509 */ 1510 static int gen_unique_name(struct send_ctx *sctx, 1511 u64 ino, u64 gen, 1512 struct fs_path *dest) 1513 { 1514 int ret = 0; 1515 struct btrfs_path *path; 1516 struct btrfs_dir_item *di; 1517 char tmp[64]; 1518 int len; 1519 u64 idx = 0; 1520 1521 path = alloc_path_for_send(); 1522 if (!path) 1523 return -ENOMEM; 1524 1525 while (1) { 1526 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1527 ino, gen, idx); 1528 ASSERT(len < sizeof(tmp)); 1529 1530 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1531 path, BTRFS_FIRST_FREE_OBJECTID, 1532 tmp, strlen(tmp), 0); 1533 btrfs_release_path(path); 1534 if (IS_ERR(di)) { 1535 ret = PTR_ERR(di); 1536 goto out; 1537 } 1538 if (di) { 1539 /* not unique, try again */ 1540 idx++; 1541 continue; 1542 } 1543 1544 if (!sctx->parent_root) { 1545 /* unique */ 1546 ret = 0; 1547 break; 1548 } 1549 1550 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1551 path, BTRFS_FIRST_FREE_OBJECTID, 1552 tmp, strlen(tmp), 0); 1553 btrfs_release_path(path); 1554 if (IS_ERR(di)) { 1555 ret = PTR_ERR(di); 1556 goto out; 1557 } 1558 if (di) { 1559 /* not unique, try again */ 1560 idx++; 1561 continue; 1562 } 1563 /* unique */ 1564 break; 1565 } 1566 1567 ret = fs_path_add(dest, tmp, strlen(tmp)); 1568 1569 out: 1570 btrfs_free_path(path); 1571 return ret; 1572 } 1573 1574 enum inode_state { 1575 inode_state_no_change, 1576 inode_state_will_create, 1577 inode_state_did_create, 1578 inode_state_will_delete, 1579 inode_state_did_delete, 1580 }; 1581 1582 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1583 { 1584 int ret; 1585 int left_ret; 1586 int right_ret; 1587 u64 left_gen; 1588 u64 right_gen; 1589 1590 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1591 NULL, NULL); 1592 if (ret < 0 && ret != -ENOENT) 1593 goto out; 1594 left_ret = ret; 1595 1596 if (!sctx->parent_root) { 1597 right_ret = -ENOENT; 1598 } else { 1599 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1600 NULL, NULL, NULL, NULL); 1601 if (ret < 0 && ret != -ENOENT) 1602 goto out; 1603 right_ret = ret; 1604 } 1605 1606 if (!left_ret && !right_ret) { 1607 if (left_gen == gen && right_gen == gen) { 1608 ret = inode_state_no_change; 1609 } else if (left_gen == gen) { 1610 if (ino < sctx->send_progress) 1611 ret = inode_state_did_create; 1612 else 1613 ret = inode_state_will_create; 1614 } else if (right_gen == gen) { 1615 if (ino < sctx->send_progress) 1616 ret = inode_state_did_delete; 1617 else 1618 ret = inode_state_will_delete; 1619 } else { 1620 ret = -ENOENT; 1621 } 1622 } else if (!left_ret) { 1623 if (left_gen == gen) { 1624 if (ino < sctx->send_progress) 1625 ret = inode_state_did_create; 1626 else 1627 ret = inode_state_will_create; 1628 } else { 1629 ret = -ENOENT; 1630 } 1631 } else if (!right_ret) { 1632 if (right_gen == gen) { 1633 if (ino < sctx->send_progress) 1634 ret = inode_state_did_delete; 1635 else 1636 ret = inode_state_will_delete; 1637 } else { 1638 ret = -ENOENT; 1639 } 1640 } else { 1641 ret = -ENOENT; 1642 } 1643 1644 out: 1645 return ret; 1646 } 1647 1648 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1649 { 1650 int ret; 1651 1652 ret = get_cur_inode_state(sctx, ino, gen); 1653 if (ret < 0) 1654 goto out; 1655 1656 if (ret == inode_state_no_change || 1657 ret == inode_state_did_create || 1658 ret == inode_state_will_delete) 1659 ret = 1; 1660 else 1661 ret = 0; 1662 1663 out: 1664 return ret; 1665 } 1666 1667 /* 1668 * Helper function to lookup a dir item in a dir. 1669 */ 1670 static int lookup_dir_item_inode(struct btrfs_root *root, 1671 u64 dir, const char *name, int name_len, 1672 u64 *found_inode, 1673 u8 *found_type) 1674 { 1675 int ret = 0; 1676 struct btrfs_dir_item *di; 1677 struct btrfs_key key; 1678 struct btrfs_path *path; 1679 1680 path = alloc_path_for_send(); 1681 if (!path) 1682 return -ENOMEM; 1683 1684 di = btrfs_lookup_dir_item(NULL, root, path, 1685 dir, name, name_len, 0); 1686 if (!di) { 1687 ret = -ENOENT; 1688 goto out; 1689 } 1690 if (IS_ERR(di)) { 1691 ret = PTR_ERR(di); 1692 goto out; 1693 } 1694 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1695 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1696 ret = -ENOENT; 1697 goto out; 1698 } 1699 *found_inode = key.objectid; 1700 *found_type = btrfs_dir_type(path->nodes[0], di); 1701 1702 out: 1703 btrfs_free_path(path); 1704 return ret; 1705 } 1706 1707 /* 1708 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1709 * generation of the parent dir and the name of the dir entry. 1710 */ 1711 static int get_first_ref(struct btrfs_root *root, u64 ino, 1712 u64 *dir, u64 *dir_gen, struct fs_path *name) 1713 { 1714 int ret; 1715 struct btrfs_key key; 1716 struct btrfs_key found_key; 1717 struct btrfs_path *path; 1718 int len; 1719 u64 parent_dir; 1720 1721 path = alloc_path_for_send(); 1722 if (!path) 1723 return -ENOMEM; 1724 1725 key.objectid = ino; 1726 key.type = BTRFS_INODE_REF_KEY; 1727 key.offset = 0; 1728 1729 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1730 if (ret < 0) 1731 goto out; 1732 if (!ret) 1733 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1734 path->slots[0]); 1735 if (ret || found_key.objectid != ino || 1736 (found_key.type != BTRFS_INODE_REF_KEY && 1737 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1738 ret = -ENOENT; 1739 goto out; 1740 } 1741 1742 if (found_key.type == BTRFS_INODE_REF_KEY) { 1743 struct btrfs_inode_ref *iref; 1744 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1745 struct btrfs_inode_ref); 1746 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1747 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1748 (unsigned long)(iref + 1), 1749 len); 1750 parent_dir = found_key.offset; 1751 } else { 1752 struct btrfs_inode_extref *extref; 1753 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1754 struct btrfs_inode_extref); 1755 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1756 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1757 (unsigned long)&extref->name, len); 1758 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1759 } 1760 if (ret < 0) 1761 goto out; 1762 btrfs_release_path(path); 1763 1764 if (dir_gen) { 1765 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1766 NULL, NULL, NULL); 1767 if (ret < 0) 1768 goto out; 1769 } 1770 1771 *dir = parent_dir; 1772 1773 out: 1774 btrfs_free_path(path); 1775 return ret; 1776 } 1777 1778 static int is_first_ref(struct btrfs_root *root, 1779 u64 ino, u64 dir, 1780 const char *name, int name_len) 1781 { 1782 int ret; 1783 struct fs_path *tmp_name; 1784 u64 tmp_dir; 1785 1786 tmp_name = fs_path_alloc(); 1787 if (!tmp_name) 1788 return -ENOMEM; 1789 1790 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1791 if (ret < 0) 1792 goto out; 1793 1794 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1795 ret = 0; 1796 goto out; 1797 } 1798 1799 ret = !memcmp(tmp_name->start, name, name_len); 1800 1801 out: 1802 fs_path_free(tmp_name); 1803 return ret; 1804 } 1805 1806 /* 1807 * Used by process_recorded_refs to determine if a new ref would overwrite an 1808 * already existing ref. In case it detects an overwrite, it returns the 1809 * inode/gen in who_ino/who_gen. 1810 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1811 * to make sure later references to the overwritten inode are possible. 1812 * Orphanizing is however only required for the first ref of an inode. 1813 * process_recorded_refs does an additional is_first_ref check to see if 1814 * orphanizing is really required. 1815 */ 1816 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1817 const char *name, int name_len, 1818 u64 *who_ino, u64 *who_gen) 1819 { 1820 int ret = 0; 1821 u64 gen; 1822 u64 other_inode = 0; 1823 u8 other_type = 0; 1824 1825 if (!sctx->parent_root) 1826 goto out; 1827 1828 ret = is_inode_existent(sctx, dir, dir_gen); 1829 if (ret <= 0) 1830 goto out; 1831 1832 /* 1833 * If we have a parent root we need to verify that the parent dir was 1834 * not deleted and then re-created, if it was then we have no overwrite 1835 * and we can just unlink this entry. 1836 */ 1837 if (sctx->parent_root) { 1838 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1839 NULL, NULL, NULL); 1840 if (ret < 0 && ret != -ENOENT) 1841 goto out; 1842 if (ret) { 1843 ret = 0; 1844 goto out; 1845 } 1846 if (gen != dir_gen) 1847 goto out; 1848 } 1849 1850 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1851 &other_inode, &other_type); 1852 if (ret < 0 && ret != -ENOENT) 1853 goto out; 1854 if (ret) { 1855 ret = 0; 1856 goto out; 1857 } 1858 1859 /* 1860 * Check if the overwritten ref was already processed. If yes, the ref 1861 * was already unlinked/moved, so we can safely assume that we will not 1862 * overwrite anything at this point in time. 1863 */ 1864 if (other_inode > sctx->send_progress) { 1865 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1866 who_gen, NULL, NULL, NULL, NULL); 1867 if (ret < 0) 1868 goto out; 1869 1870 ret = 1; 1871 *who_ino = other_inode; 1872 } else { 1873 ret = 0; 1874 } 1875 1876 out: 1877 return ret; 1878 } 1879 1880 /* 1881 * Checks if the ref was overwritten by an already processed inode. This is 1882 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1883 * thus the orphan name needs be used. 1884 * process_recorded_refs also uses it to avoid unlinking of refs that were 1885 * overwritten. 1886 */ 1887 static int did_overwrite_ref(struct send_ctx *sctx, 1888 u64 dir, u64 dir_gen, 1889 u64 ino, u64 ino_gen, 1890 const char *name, int name_len) 1891 { 1892 int ret = 0; 1893 u64 gen; 1894 u64 ow_inode; 1895 u8 other_type; 1896 1897 if (!sctx->parent_root) 1898 goto out; 1899 1900 ret = is_inode_existent(sctx, dir, dir_gen); 1901 if (ret <= 0) 1902 goto out; 1903 1904 /* check if the ref was overwritten by another ref */ 1905 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1906 &ow_inode, &other_type); 1907 if (ret < 0 && ret != -ENOENT) 1908 goto out; 1909 if (ret) { 1910 /* was never and will never be overwritten */ 1911 ret = 0; 1912 goto out; 1913 } 1914 1915 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1916 NULL, NULL); 1917 if (ret < 0) 1918 goto out; 1919 1920 if (ow_inode == ino && gen == ino_gen) { 1921 ret = 0; 1922 goto out; 1923 } 1924 1925 /* 1926 * We know that it is or will be overwritten. Check this now. 1927 * The current inode being processed might have been the one that caused 1928 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1929 * the current inode being processed. 1930 */ 1931 if ((ow_inode < sctx->send_progress) || 1932 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1933 gen == sctx->cur_inode_gen)) 1934 ret = 1; 1935 else 1936 ret = 0; 1937 1938 out: 1939 return ret; 1940 } 1941 1942 /* 1943 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1944 * that got overwritten. This is used by process_recorded_refs to determine 1945 * if it has to use the path as returned by get_cur_path or the orphan name. 1946 */ 1947 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1948 { 1949 int ret = 0; 1950 struct fs_path *name = NULL; 1951 u64 dir; 1952 u64 dir_gen; 1953 1954 if (!sctx->parent_root) 1955 goto out; 1956 1957 name = fs_path_alloc(); 1958 if (!name) 1959 return -ENOMEM; 1960 1961 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1962 if (ret < 0) 1963 goto out; 1964 1965 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1966 name->start, fs_path_len(name)); 1967 1968 out: 1969 fs_path_free(name); 1970 return ret; 1971 } 1972 1973 /* 1974 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1975 * so we need to do some special handling in case we have clashes. This function 1976 * takes care of this with the help of name_cache_entry::radix_list. 1977 * In case of error, nce is kfreed. 1978 */ 1979 static int name_cache_insert(struct send_ctx *sctx, 1980 struct name_cache_entry *nce) 1981 { 1982 int ret = 0; 1983 struct list_head *nce_head; 1984 1985 nce_head = radix_tree_lookup(&sctx->name_cache, 1986 (unsigned long)nce->ino); 1987 if (!nce_head) { 1988 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 1989 if (!nce_head) { 1990 kfree(nce); 1991 return -ENOMEM; 1992 } 1993 INIT_LIST_HEAD(nce_head); 1994 1995 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 1996 if (ret < 0) { 1997 kfree(nce_head); 1998 kfree(nce); 1999 return ret; 2000 } 2001 } 2002 list_add_tail(&nce->radix_list, nce_head); 2003 list_add_tail(&nce->list, &sctx->name_cache_list); 2004 sctx->name_cache_size++; 2005 2006 return ret; 2007 } 2008 2009 static void name_cache_delete(struct send_ctx *sctx, 2010 struct name_cache_entry *nce) 2011 { 2012 struct list_head *nce_head; 2013 2014 nce_head = radix_tree_lookup(&sctx->name_cache, 2015 (unsigned long)nce->ino); 2016 if (!nce_head) { 2017 btrfs_err(sctx->send_root->fs_info, 2018 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2019 nce->ino, sctx->name_cache_size); 2020 } 2021 2022 list_del(&nce->radix_list); 2023 list_del(&nce->list); 2024 sctx->name_cache_size--; 2025 2026 /* 2027 * We may not get to the final release of nce_head if the lookup fails 2028 */ 2029 if (nce_head && list_empty(nce_head)) { 2030 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2031 kfree(nce_head); 2032 } 2033 } 2034 2035 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2036 u64 ino, u64 gen) 2037 { 2038 struct list_head *nce_head; 2039 struct name_cache_entry *cur; 2040 2041 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2042 if (!nce_head) 2043 return NULL; 2044 2045 list_for_each_entry(cur, nce_head, radix_list) { 2046 if (cur->ino == ino && cur->gen == gen) 2047 return cur; 2048 } 2049 return NULL; 2050 } 2051 2052 /* 2053 * Removes the entry from the list and adds it back to the end. This marks the 2054 * entry as recently used so that name_cache_clean_unused does not remove it. 2055 */ 2056 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2057 { 2058 list_del(&nce->list); 2059 list_add_tail(&nce->list, &sctx->name_cache_list); 2060 } 2061 2062 /* 2063 * Remove some entries from the beginning of name_cache_list. 2064 */ 2065 static void name_cache_clean_unused(struct send_ctx *sctx) 2066 { 2067 struct name_cache_entry *nce; 2068 2069 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2070 return; 2071 2072 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2073 nce = list_entry(sctx->name_cache_list.next, 2074 struct name_cache_entry, list); 2075 name_cache_delete(sctx, nce); 2076 kfree(nce); 2077 } 2078 } 2079 2080 static void name_cache_free(struct send_ctx *sctx) 2081 { 2082 struct name_cache_entry *nce; 2083 2084 while (!list_empty(&sctx->name_cache_list)) { 2085 nce = list_entry(sctx->name_cache_list.next, 2086 struct name_cache_entry, list); 2087 name_cache_delete(sctx, nce); 2088 kfree(nce); 2089 } 2090 } 2091 2092 /* 2093 * Used by get_cur_path for each ref up to the root. 2094 * Returns 0 if it succeeded. 2095 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2096 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2097 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2098 * Returns <0 in case of error. 2099 */ 2100 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2101 u64 ino, u64 gen, 2102 u64 *parent_ino, 2103 u64 *parent_gen, 2104 struct fs_path *dest) 2105 { 2106 int ret; 2107 int nce_ret; 2108 struct name_cache_entry *nce = NULL; 2109 2110 /* 2111 * First check if we already did a call to this function with the same 2112 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2113 * return the cached result. 2114 */ 2115 nce = name_cache_search(sctx, ino, gen); 2116 if (nce) { 2117 if (ino < sctx->send_progress && nce->need_later_update) { 2118 name_cache_delete(sctx, nce); 2119 kfree(nce); 2120 nce = NULL; 2121 } else { 2122 name_cache_used(sctx, nce); 2123 *parent_ino = nce->parent_ino; 2124 *parent_gen = nce->parent_gen; 2125 ret = fs_path_add(dest, nce->name, nce->name_len); 2126 if (ret < 0) 2127 goto out; 2128 ret = nce->ret; 2129 goto out; 2130 } 2131 } 2132 2133 /* 2134 * If the inode is not existent yet, add the orphan name and return 1. 2135 * This should only happen for the parent dir that we determine in 2136 * __record_new_ref 2137 */ 2138 ret = is_inode_existent(sctx, ino, gen); 2139 if (ret < 0) 2140 goto out; 2141 2142 if (!ret) { 2143 ret = gen_unique_name(sctx, ino, gen, dest); 2144 if (ret < 0) 2145 goto out; 2146 ret = 1; 2147 goto out_cache; 2148 } 2149 2150 /* 2151 * Depending on whether the inode was already processed or not, use 2152 * send_root or parent_root for ref lookup. 2153 */ 2154 if (ino < sctx->send_progress) 2155 ret = get_first_ref(sctx->send_root, ino, 2156 parent_ino, parent_gen, dest); 2157 else 2158 ret = get_first_ref(sctx->parent_root, ino, 2159 parent_ino, parent_gen, dest); 2160 if (ret < 0) 2161 goto out; 2162 2163 /* 2164 * Check if the ref was overwritten by an inode's ref that was processed 2165 * earlier. If yes, treat as orphan and return 1. 2166 */ 2167 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2168 dest->start, dest->end - dest->start); 2169 if (ret < 0) 2170 goto out; 2171 if (ret) { 2172 fs_path_reset(dest); 2173 ret = gen_unique_name(sctx, ino, gen, dest); 2174 if (ret < 0) 2175 goto out; 2176 ret = 1; 2177 } 2178 2179 out_cache: 2180 /* 2181 * Store the result of the lookup in the name cache. 2182 */ 2183 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2184 if (!nce) { 2185 ret = -ENOMEM; 2186 goto out; 2187 } 2188 2189 nce->ino = ino; 2190 nce->gen = gen; 2191 nce->parent_ino = *parent_ino; 2192 nce->parent_gen = *parent_gen; 2193 nce->name_len = fs_path_len(dest); 2194 nce->ret = ret; 2195 strcpy(nce->name, dest->start); 2196 2197 if (ino < sctx->send_progress) 2198 nce->need_later_update = 0; 2199 else 2200 nce->need_later_update = 1; 2201 2202 nce_ret = name_cache_insert(sctx, nce); 2203 if (nce_ret < 0) 2204 ret = nce_ret; 2205 name_cache_clean_unused(sctx); 2206 2207 out: 2208 return ret; 2209 } 2210 2211 /* 2212 * Magic happens here. This function returns the first ref to an inode as it 2213 * would look like while receiving the stream at this point in time. 2214 * We walk the path up to the root. For every inode in between, we check if it 2215 * was already processed/sent. If yes, we continue with the parent as found 2216 * in send_root. If not, we continue with the parent as found in parent_root. 2217 * If we encounter an inode that was deleted at this point in time, we use the 2218 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2219 * that were not created yet and overwritten inodes/refs. 2220 * 2221 * When do we have have orphan inodes: 2222 * 1. When an inode is freshly created and thus no valid refs are available yet 2223 * 2. When a directory lost all it's refs (deleted) but still has dir items 2224 * inside which were not processed yet (pending for move/delete). If anyone 2225 * tried to get the path to the dir items, it would get a path inside that 2226 * orphan directory. 2227 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2228 * of an unprocessed inode. If in that case the first ref would be 2229 * overwritten, the overwritten inode gets "orphanized". Later when we 2230 * process this overwritten inode, it is restored at a new place by moving 2231 * the orphan inode. 2232 * 2233 * sctx->send_progress tells this function at which point in time receiving 2234 * would be. 2235 */ 2236 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2237 struct fs_path *dest) 2238 { 2239 int ret = 0; 2240 struct fs_path *name = NULL; 2241 u64 parent_inode = 0; 2242 u64 parent_gen = 0; 2243 int stop = 0; 2244 2245 name = fs_path_alloc(); 2246 if (!name) { 2247 ret = -ENOMEM; 2248 goto out; 2249 } 2250 2251 dest->reversed = 1; 2252 fs_path_reset(dest); 2253 2254 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2255 struct waiting_dir_move *wdm; 2256 2257 fs_path_reset(name); 2258 2259 if (is_waiting_for_rm(sctx, ino)) { 2260 ret = gen_unique_name(sctx, ino, gen, name); 2261 if (ret < 0) 2262 goto out; 2263 ret = fs_path_add_path(dest, name); 2264 break; 2265 } 2266 2267 wdm = get_waiting_dir_move(sctx, ino); 2268 if (wdm && wdm->orphanized) { 2269 ret = gen_unique_name(sctx, ino, gen, name); 2270 stop = 1; 2271 } else if (wdm) { 2272 ret = get_first_ref(sctx->parent_root, ino, 2273 &parent_inode, &parent_gen, name); 2274 } else { 2275 ret = __get_cur_name_and_parent(sctx, ino, gen, 2276 &parent_inode, 2277 &parent_gen, name); 2278 if (ret) 2279 stop = 1; 2280 } 2281 2282 if (ret < 0) 2283 goto out; 2284 2285 ret = fs_path_add_path(dest, name); 2286 if (ret < 0) 2287 goto out; 2288 2289 ino = parent_inode; 2290 gen = parent_gen; 2291 } 2292 2293 out: 2294 fs_path_free(name); 2295 if (!ret) 2296 fs_path_unreverse(dest); 2297 return ret; 2298 } 2299 2300 /* 2301 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2302 */ 2303 static int send_subvol_begin(struct send_ctx *sctx) 2304 { 2305 int ret; 2306 struct btrfs_root *send_root = sctx->send_root; 2307 struct btrfs_root *parent_root = sctx->parent_root; 2308 struct btrfs_path *path; 2309 struct btrfs_key key; 2310 struct btrfs_root_ref *ref; 2311 struct extent_buffer *leaf; 2312 char *name = NULL; 2313 int namelen; 2314 2315 path = btrfs_alloc_path(); 2316 if (!path) 2317 return -ENOMEM; 2318 2319 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2320 if (!name) { 2321 btrfs_free_path(path); 2322 return -ENOMEM; 2323 } 2324 2325 key.objectid = send_root->objectid; 2326 key.type = BTRFS_ROOT_BACKREF_KEY; 2327 key.offset = 0; 2328 2329 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2330 &key, path, 1, 0); 2331 if (ret < 0) 2332 goto out; 2333 if (ret) { 2334 ret = -ENOENT; 2335 goto out; 2336 } 2337 2338 leaf = path->nodes[0]; 2339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2340 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2341 key.objectid != send_root->objectid) { 2342 ret = -ENOENT; 2343 goto out; 2344 } 2345 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2346 namelen = btrfs_root_ref_name_len(leaf, ref); 2347 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2348 btrfs_release_path(path); 2349 2350 if (parent_root) { 2351 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2352 if (ret < 0) 2353 goto out; 2354 } else { 2355 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2356 if (ret < 0) 2357 goto out; 2358 } 2359 2360 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2361 2362 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2363 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2364 sctx->send_root->root_item.received_uuid); 2365 else 2366 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2367 sctx->send_root->root_item.uuid); 2368 2369 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2370 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2371 if (parent_root) { 2372 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2373 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2374 parent_root->root_item.received_uuid); 2375 else 2376 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2377 parent_root->root_item.uuid); 2378 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2379 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2380 } 2381 2382 ret = send_cmd(sctx); 2383 2384 tlv_put_failure: 2385 out: 2386 btrfs_free_path(path); 2387 kfree(name); 2388 return ret; 2389 } 2390 2391 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2392 { 2393 int ret = 0; 2394 struct fs_path *p; 2395 2396 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size); 2397 2398 p = fs_path_alloc(); 2399 if (!p) 2400 return -ENOMEM; 2401 2402 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2403 if (ret < 0) 2404 goto out; 2405 2406 ret = get_cur_path(sctx, ino, gen, p); 2407 if (ret < 0) 2408 goto out; 2409 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2410 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2411 2412 ret = send_cmd(sctx); 2413 2414 tlv_put_failure: 2415 out: 2416 fs_path_free(p); 2417 return ret; 2418 } 2419 2420 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2421 { 2422 int ret = 0; 2423 struct fs_path *p; 2424 2425 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode); 2426 2427 p = fs_path_alloc(); 2428 if (!p) 2429 return -ENOMEM; 2430 2431 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2432 if (ret < 0) 2433 goto out; 2434 2435 ret = get_cur_path(sctx, ino, gen, p); 2436 if (ret < 0) 2437 goto out; 2438 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2439 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2440 2441 ret = send_cmd(sctx); 2442 2443 tlv_put_failure: 2444 out: 2445 fs_path_free(p); 2446 return ret; 2447 } 2448 2449 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2450 { 2451 int ret = 0; 2452 struct fs_path *p; 2453 2454 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid); 2455 2456 p = fs_path_alloc(); 2457 if (!p) 2458 return -ENOMEM; 2459 2460 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2461 if (ret < 0) 2462 goto out; 2463 2464 ret = get_cur_path(sctx, ino, gen, p); 2465 if (ret < 0) 2466 goto out; 2467 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2468 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2469 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2470 2471 ret = send_cmd(sctx); 2472 2473 tlv_put_failure: 2474 out: 2475 fs_path_free(p); 2476 return ret; 2477 } 2478 2479 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2480 { 2481 int ret = 0; 2482 struct fs_path *p = NULL; 2483 struct btrfs_inode_item *ii; 2484 struct btrfs_path *path = NULL; 2485 struct extent_buffer *eb; 2486 struct btrfs_key key; 2487 int slot; 2488 2489 verbose_printk("btrfs: send_utimes %llu\n", ino); 2490 2491 p = fs_path_alloc(); 2492 if (!p) 2493 return -ENOMEM; 2494 2495 path = alloc_path_for_send(); 2496 if (!path) { 2497 ret = -ENOMEM; 2498 goto out; 2499 } 2500 2501 key.objectid = ino; 2502 key.type = BTRFS_INODE_ITEM_KEY; 2503 key.offset = 0; 2504 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2505 if (ret < 0) 2506 goto out; 2507 2508 eb = path->nodes[0]; 2509 slot = path->slots[0]; 2510 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2511 2512 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2513 if (ret < 0) 2514 goto out; 2515 2516 ret = get_cur_path(sctx, ino, gen, p); 2517 if (ret < 0) 2518 goto out; 2519 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2520 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2521 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2522 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2523 /* TODO Add otime support when the otime patches get into upstream */ 2524 2525 ret = send_cmd(sctx); 2526 2527 tlv_put_failure: 2528 out: 2529 fs_path_free(p); 2530 btrfs_free_path(path); 2531 return ret; 2532 } 2533 2534 /* 2535 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2536 * a valid path yet because we did not process the refs yet. So, the inode 2537 * is created as orphan. 2538 */ 2539 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2540 { 2541 int ret = 0; 2542 struct fs_path *p; 2543 int cmd; 2544 u64 gen; 2545 u64 mode; 2546 u64 rdev; 2547 2548 verbose_printk("btrfs: send_create_inode %llu\n", ino); 2549 2550 p = fs_path_alloc(); 2551 if (!p) 2552 return -ENOMEM; 2553 2554 if (ino != sctx->cur_ino) { 2555 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2556 NULL, NULL, &rdev); 2557 if (ret < 0) 2558 goto out; 2559 } else { 2560 gen = sctx->cur_inode_gen; 2561 mode = sctx->cur_inode_mode; 2562 rdev = sctx->cur_inode_rdev; 2563 } 2564 2565 if (S_ISREG(mode)) { 2566 cmd = BTRFS_SEND_C_MKFILE; 2567 } else if (S_ISDIR(mode)) { 2568 cmd = BTRFS_SEND_C_MKDIR; 2569 } else if (S_ISLNK(mode)) { 2570 cmd = BTRFS_SEND_C_SYMLINK; 2571 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2572 cmd = BTRFS_SEND_C_MKNOD; 2573 } else if (S_ISFIFO(mode)) { 2574 cmd = BTRFS_SEND_C_MKFIFO; 2575 } else if (S_ISSOCK(mode)) { 2576 cmd = BTRFS_SEND_C_MKSOCK; 2577 } else { 2578 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2579 (int)(mode & S_IFMT)); 2580 ret = -ENOTSUPP; 2581 goto out; 2582 } 2583 2584 ret = begin_cmd(sctx, cmd); 2585 if (ret < 0) 2586 goto out; 2587 2588 ret = gen_unique_name(sctx, ino, gen, p); 2589 if (ret < 0) 2590 goto out; 2591 2592 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2593 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2594 2595 if (S_ISLNK(mode)) { 2596 fs_path_reset(p); 2597 ret = read_symlink(sctx->send_root, ino, p); 2598 if (ret < 0) 2599 goto out; 2600 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2601 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2602 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2603 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2604 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2605 } 2606 2607 ret = send_cmd(sctx); 2608 if (ret < 0) 2609 goto out; 2610 2611 2612 tlv_put_failure: 2613 out: 2614 fs_path_free(p); 2615 return ret; 2616 } 2617 2618 /* 2619 * We need some special handling for inodes that get processed before the parent 2620 * directory got created. See process_recorded_refs for details. 2621 * This function does the check if we already created the dir out of order. 2622 */ 2623 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2624 { 2625 int ret = 0; 2626 struct btrfs_path *path = NULL; 2627 struct btrfs_key key; 2628 struct btrfs_key found_key; 2629 struct btrfs_key di_key; 2630 struct extent_buffer *eb; 2631 struct btrfs_dir_item *di; 2632 int slot; 2633 2634 path = alloc_path_for_send(); 2635 if (!path) { 2636 ret = -ENOMEM; 2637 goto out; 2638 } 2639 2640 key.objectid = dir; 2641 key.type = BTRFS_DIR_INDEX_KEY; 2642 key.offset = 0; 2643 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2644 if (ret < 0) 2645 goto out; 2646 2647 while (1) { 2648 eb = path->nodes[0]; 2649 slot = path->slots[0]; 2650 if (slot >= btrfs_header_nritems(eb)) { 2651 ret = btrfs_next_leaf(sctx->send_root, path); 2652 if (ret < 0) { 2653 goto out; 2654 } else if (ret > 0) { 2655 ret = 0; 2656 break; 2657 } 2658 continue; 2659 } 2660 2661 btrfs_item_key_to_cpu(eb, &found_key, slot); 2662 if (found_key.objectid != key.objectid || 2663 found_key.type != key.type) { 2664 ret = 0; 2665 goto out; 2666 } 2667 2668 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2669 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2670 2671 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2672 di_key.objectid < sctx->send_progress) { 2673 ret = 1; 2674 goto out; 2675 } 2676 2677 path->slots[0]++; 2678 } 2679 2680 out: 2681 btrfs_free_path(path); 2682 return ret; 2683 } 2684 2685 /* 2686 * Only creates the inode if it is: 2687 * 1. Not a directory 2688 * 2. Or a directory which was not created already due to out of order 2689 * directories. See did_create_dir and process_recorded_refs for details. 2690 */ 2691 static int send_create_inode_if_needed(struct send_ctx *sctx) 2692 { 2693 int ret; 2694 2695 if (S_ISDIR(sctx->cur_inode_mode)) { 2696 ret = did_create_dir(sctx, sctx->cur_ino); 2697 if (ret < 0) 2698 goto out; 2699 if (ret) { 2700 ret = 0; 2701 goto out; 2702 } 2703 } 2704 2705 ret = send_create_inode(sctx, sctx->cur_ino); 2706 if (ret < 0) 2707 goto out; 2708 2709 out: 2710 return ret; 2711 } 2712 2713 struct recorded_ref { 2714 struct list_head list; 2715 char *dir_path; 2716 char *name; 2717 struct fs_path *full_path; 2718 u64 dir; 2719 u64 dir_gen; 2720 int dir_path_len; 2721 int name_len; 2722 }; 2723 2724 /* 2725 * We need to process new refs before deleted refs, but compare_tree gives us 2726 * everything mixed. So we first record all refs and later process them. 2727 * This function is a helper to record one ref. 2728 */ 2729 static int __record_ref(struct list_head *head, u64 dir, 2730 u64 dir_gen, struct fs_path *path) 2731 { 2732 struct recorded_ref *ref; 2733 2734 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2735 if (!ref) 2736 return -ENOMEM; 2737 2738 ref->dir = dir; 2739 ref->dir_gen = dir_gen; 2740 ref->full_path = path; 2741 2742 ref->name = (char *)kbasename(ref->full_path->start); 2743 ref->name_len = ref->full_path->end - ref->name; 2744 ref->dir_path = ref->full_path->start; 2745 if (ref->name == ref->full_path->start) 2746 ref->dir_path_len = 0; 2747 else 2748 ref->dir_path_len = ref->full_path->end - 2749 ref->full_path->start - 1 - ref->name_len; 2750 2751 list_add_tail(&ref->list, head); 2752 return 0; 2753 } 2754 2755 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2756 { 2757 struct recorded_ref *new; 2758 2759 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2760 if (!new) 2761 return -ENOMEM; 2762 2763 new->dir = ref->dir; 2764 new->dir_gen = ref->dir_gen; 2765 new->full_path = NULL; 2766 INIT_LIST_HEAD(&new->list); 2767 list_add_tail(&new->list, list); 2768 return 0; 2769 } 2770 2771 static void __free_recorded_refs(struct list_head *head) 2772 { 2773 struct recorded_ref *cur; 2774 2775 while (!list_empty(head)) { 2776 cur = list_entry(head->next, struct recorded_ref, list); 2777 fs_path_free(cur->full_path); 2778 list_del(&cur->list); 2779 kfree(cur); 2780 } 2781 } 2782 2783 static void free_recorded_refs(struct send_ctx *sctx) 2784 { 2785 __free_recorded_refs(&sctx->new_refs); 2786 __free_recorded_refs(&sctx->deleted_refs); 2787 } 2788 2789 /* 2790 * Renames/moves a file/dir to its orphan name. Used when the first 2791 * ref of an unprocessed inode gets overwritten and for all non empty 2792 * directories. 2793 */ 2794 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2795 struct fs_path *path) 2796 { 2797 int ret; 2798 struct fs_path *orphan; 2799 2800 orphan = fs_path_alloc(); 2801 if (!orphan) 2802 return -ENOMEM; 2803 2804 ret = gen_unique_name(sctx, ino, gen, orphan); 2805 if (ret < 0) 2806 goto out; 2807 2808 ret = send_rename(sctx, path, orphan); 2809 2810 out: 2811 fs_path_free(orphan); 2812 return ret; 2813 } 2814 2815 static struct orphan_dir_info * 2816 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2817 { 2818 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2819 struct rb_node *parent = NULL; 2820 struct orphan_dir_info *entry, *odi; 2821 2822 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2823 if (!odi) 2824 return ERR_PTR(-ENOMEM); 2825 odi->ino = dir_ino; 2826 odi->gen = 0; 2827 2828 while (*p) { 2829 parent = *p; 2830 entry = rb_entry(parent, struct orphan_dir_info, node); 2831 if (dir_ino < entry->ino) { 2832 p = &(*p)->rb_left; 2833 } else if (dir_ino > entry->ino) { 2834 p = &(*p)->rb_right; 2835 } else { 2836 kfree(odi); 2837 return entry; 2838 } 2839 } 2840 2841 rb_link_node(&odi->node, parent, p); 2842 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2843 return odi; 2844 } 2845 2846 static struct orphan_dir_info * 2847 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2848 { 2849 struct rb_node *n = sctx->orphan_dirs.rb_node; 2850 struct orphan_dir_info *entry; 2851 2852 while (n) { 2853 entry = rb_entry(n, struct orphan_dir_info, node); 2854 if (dir_ino < entry->ino) 2855 n = n->rb_left; 2856 else if (dir_ino > entry->ino) 2857 n = n->rb_right; 2858 else 2859 return entry; 2860 } 2861 return NULL; 2862 } 2863 2864 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2865 { 2866 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2867 2868 return odi != NULL; 2869 } 2870 2871 static void free_orphan_dir_info(struct send_ctx *sctx, 2872 struct orphan_dir_info *odi) 2873 { 2874 if (!odi) 2875 return; 2876 rb_erase(&odi->node, &sctx->orphan_dirs); 2877 kfree(odi); 2878 } 2879 2880 /* 2881 * Returns 1 if a directory can be removed at this point in time. 2882 * We check this by iterating all dir items and checking if the inode behind 2883 * the dir item was already processed. 2884 */ 2885 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2886 u64 send_progress) 2887 { 2888 int ret = 0; 2889 struct btrfs_root *root = sctx->parent_root; 2890 struct btrfs_path *path; 2891 struct btrfs_key key; 2892 struct btrfs_key found_key; 2893 struct btrfs_key loc; 2894 struct btrfs_dir_item *di; 2895 2896 /* 2897 * Don't try to rmdir the top/root subvolume dir. 2898 */ 2899 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2900 return 0; 2901 2902 path = alloc_path_for_send(); 2903 if (!path) 2904 return -ENOMEM; 2905 2906 key.objectid = dir; 2907 key.type = BTRFS_DIR_INDEX_KEY; 2908 key.offset = 0; 2909 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2910 if (ret < 0) 2911 goto out; 2912 2913 while (1) { 2914 struct waiting_dir_move *dm; 2915 2916 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2917 ret = btrfs_next_leaf(root, path); 2918 if (ret < 0) 2919 goto out; 2920 else if (ret > 0) 2921 break; 2922 continue; 2923 } 2924 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2925 path->slots[0]); 2926 if (found_key.objectid != key.objectid || 2927 found_key.type != key.type) 2928 break; 2929 2930 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2931 struct btrfs_dir_item); 2932 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2933 2934 dm = get_waiting_dir_move(sctx, loc.objectid); 2935 if (dm) { 2936 struct orphan_dir_info *odi; 2937 2938 odi = add_orphan_dir_info(sctx, dir); 2939 if (IS_ERR(odi)) { 2940 ret = PTR_ERR(odi); 2941 goto out; 2942 } 2943 odi->gen = dir_gen; 2944 dm->rmdir_ino = dir; 2945 ret = 0; 2946 goto out; 2947 } 2948 2949 if (loc.objectid > send_progress) { 2950 ret = 0; 2951 goto out; 2952 } 2953 2954 path->slots[0]++; 2955 } 2956 2957 ret = 1; 2958 2959 out: 2960 btrfs_free_path(path); 2961 return ret; 2962 } 2963 2964 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 2965 { 2966 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 2967 2968 return entry != NULL; 2969 } 2970 2971 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 2972 { 2973 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 2974 struct rb_node *parent = NULL; 2975 struct waiting_dir_move *entry, *dm; 2976 2977 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 2978 if (!dm) 2979 return -ENOMEM; 2980 dm->ino = ino; 2981 dm->rmdir_ino = 0; 2982 dm->orphanized = orphanized; 2983 2984 while (*p) { 2985 parent = *p; 2986 entry = rb_entry(parent, struct waiting_dir_move, node); 2987 if (ino < entry->ino) { 2988 p = &(*p)->rb_left; 2989 } else if (ino > entry->ino) { 2990 p = &(*p)->rb_right; 2991 } else { 2992 kfree(dm); 2993 return -EEXIST; 2994 } 2995 } 2996 2997 rb_link_node(&dm->node, parent, p); 2998 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 2999 return 0; 3000 } 3001 3002 static struct waiting_dir_move * 3003 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3004 { 3005 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3006 struct waiting_dir_move *entry; 3007 3008 while (n) { 3009 entry = rb_entry(n, struct waiting_dir_move, node); 3010 if (ino < entry->ino) 3011 n = n->rb_left; 3012 else if (ino > entry->ino) 3013 n = n->rb_right; 3014 else 3015 return entry; 3016 } 3017 return NULL; 3018 } 3019 3020 static void free_waiting_dir_move(struct send_ctx *sctx, 3021 struct waiting_dir_move *dm) 3022 { 3023 if (!dm) 3024 return; 3025 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3026 kfree(dm); 3027 } 3028 3029 static int add_pending_dir_move(struct send_ctx *sctx, 3030 u64 ino, 3031 u64 ino_gen, 3032 u64 parent_ino, 3033 struct list_head *new_refs, 3034 struct list_head *deleted_refs, 3035 const bool is_orphan) 3036 { 3037 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3038 struct rb_node *parent = NULL; 3039 struct pending_dir_move *entry = NULL, *pm; 3040 struct recorded_ref *cur; 3041 int exists = 0; 3042 int ret; 3043 3044 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3045 if (!pm) 3046 return -ENOMEM; 3047 pm->parent_ino = parent_ino; 3048 pm->ino = ino; 3049 pm->gen = ino_gen; 3050 pm->is_orphan = is_orphan; 3051 INIT_LIST_HEAD(&pm->list); 3052 INIT_LIST_HEAD(&pm->update_refs); 3053 RB_CLEAR_NODE(&pm->node); 3054 3055 while (*p) { 3056 parent = *p; 3057 entry = rb_entry(parent, struct pending_dir_move, node); 3058 if (parent_ino < entry->parent_ino) { 3059 p = &(*p)->rb_left; 3060 } else if (parent_ino > entry->parent_ino) { 3061 p = &(*p)->rb_right; 3062 } else { 3063 exists = 1; 3064 break; 3065 } 3066 } 3067 3068 list_for_each_entry(cur, deleted_refs, list) { 3069 ret = dup_ref(cur, &pm->update_refs); 3070 if (ret < 0) 3071 goto out; 3072 } 3073 list_for_each_entry(cur, new_refs, list) { 3074 ret = dup_ref(cur, &pm->update_refs); 3075 if (ret < 0) 3076 goto out; 3077 } 3078 3079 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3080 if (ret) 3081 goto out; 3082 3083 if (exists) { 3084 list_add_tail(&pm->list, &entry->list); 3085 } else { 3086 rb_link_node(&pm->node, parent, p); 3087 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3088 } 3089 ret = 0; 3090 out: 3091 if (ret) { 3092 __free_recorded_refs(&pm->update_refs); 3093 kfree(pm); 3094 } 3095 return ret; 3096 } 3097 3098 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3099 u64 parent_ino) 3100 { 3101 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3102 struct pending_dir_move *entry; 3103 3104 while (n) { 3105 entry = rb_entry(n, struct pending_dir_move, node); 3106 if (parent_ino < entry->parent_ino) 3107 n = n->rb_left; 3108 else if (parent_ino > entry->parent_ino) 3109 n = n->rb_right; 3110 else 3111 return entry; 3112 } 3113 return NULL; 3114 } 3115 3116 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3117 { 3118 struct fs_path *from_path = NULL; 3119 struct fs_path *to_path = NULL; 3120 struct fs_path *name = NULL; 3121 u64 orig_progress = sctx->send_progress; 3122 struct recorded_ref *cur; 3123 u64 parent_ino, parent_gen; 3124 struct waiting_dir_move *dm = NULL; 3125 u64 rmdir_ino = 0; 3126 int ret; 3127 3128 name = fs_path_alloc(); 3129 from_path = fs_path_alloc(); 3130 if (!name || !from_path) { 3131 ret = -ENOMEM; 3132 goto out; 3133 } 3134 3135 dm = get_waiting_dir_move(sctx, pm->ino); 3136 ASSERT(dm); 3137 rmdir_ino = dm->rmdir_ino; 3138 free_waiting_dir_move(sctx, dm); 3139 3140 if (pm->is_orphan) { 3141 ret = gen_unique_name(sctx, pm->ino, 3142 pm->gen, from_path); 3143 } else { 3144 ret = get_first_ref(sctx->parent_root, pm->ino, 3145 &parent_ino, &parent_gen, name); 3146 if (ret < 0) 3147 goto out; 3148 ret = get_cur_path(sctx, parent_ino, parent_gen, 3149 from_path); 3150 if (ret < 0) 3151 goto out; 3152 ret = fs_path_add_path(from_path, name); 3153 } 3154 if (ret < 0) 3155 goto out; 3156 3157 sctx->send_progress = sctx->cur_ino + 1; 3158 fs_path_reset(name); 3159 to_path = name; 3160 name = NULL; 3161 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3162 if (ret < 0) 3163 goto out; 3164 3165 ret = send_rename(sctx, from_path, to_path); 3166 if (ret < 0) 3167 goto out; 3168 3169 if (rmdir_ino) { 3170 struct orphan_dir_info *odi; 3171 3172 odi = get_orphan_dir_info(sctx, rmdir_ino); 3173 if (!odi) { 3174 /* already deleted */ 3175 goto finish; 3176 } 3177 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1); 3178 if (ret < 0) 3179 goto out; 3180 if (!ret) 3181 goto finish; 3182 3183 name = fs_path_alloc(); 3184 if (!name) { 3185 ret = -ENOMEM; 3186 goto out; 3187 } 3188 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3189 if (ret < 0) 3190 goto out; 3191 ret = send_rmdir(sctx, name); 3192 if (ret < 0) 3193 goto out; 3194 free_orphan_dir_info(sctx, odi); 3195 } 3196 3197 finish: 3198 ret = send_utimes(sctx, pm->ino, pm->gen); 3199 if (ret < 0) 3200 goto out; 3201 3202 /* 3203 * After rename/move, need to update the utimes of both new parent(s) 3204 * and old parent(s). 3205 */ 3206 list_for_each_entry(cur, &pm->update_refs, list) { 3207 if (cur->dir == rmdir_ino) 3208 continue; 3209 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3210 if (ret < 0) 3211 goto out; 3212 } 3213 3214 out: 3215 fs_path_free(name); 3216 fs_path_free(from_path); 3217 fs_path_free(to_path); 3218 sctx->send_progress = orig_progress; 3219 3220 return ret; 3221 } 3222 3223 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3224 { 3225 if (!list_empty(&m->list)) 3226 list_del(&m->list); 3227 if (!RB_EMPTY_NODE(&m->node)) 3228 rb_erase(&m->node, &sctx->pending_dir_moves); 3229 __free_recorded_refs(&m->update_refs); 3230 kfree(m); 3231 } 3232 3233 static void tail_append_pending_moves(struct pending_dir_move *moves, 3234 struct list_head *stack) 3235 { 3236 if (list_empty(&moves->list)) { 3237 list_add_tail(&moves->list, stack); 3238 } else { 3239 LIST_HEAD(list); 3240 list_splice_init(&moves->list, &list); 3241 list_add_tail(&moves->list, stack); 3242 list_splice_tail(&list, stack); 3243 } 3244 } 3245 3246 static int apply_children_dir_moves(struct send_ctx *sctx) 3247 { 3248 struct pending_dir_move *pm; 3249 struct list_head stack; 3250 u64 parent_ino = sctx->cur_ino; 3251 int ret = 0; 3252 3253 pm = get_pending_dir_moves(sctx, parent_ino); 3254 if (!pm) 3255 return 0; 3256 3257 INIT_LIST_HEAD(&stack); 3258 tail_append_pending_moves(pm, &stack); 3259 3260 while (!list_empty(&stack)) { 3261 pm = list_first_entry(&stack, struct pending_dir_move, list); 3262 parent_ino = pm->ino; 3263 ret = apply_dir_move(sctx, pm); 3264 free_pending_move(sctx, pm); 3265 if (ret) 3266 goto out; 3267 pm = get_pending_dir_moves(sctx, parent_ino); 3268 if (pm) 3269 tail_append_pending_moves(pm, &stack); 3270 } 3271 return 0; 3272 3273 out: 3274 while (!list_empty(&stack)) { 3275 pm = list_first_entry(&stack, struct pending_dir_move, list); 3276 free_pending_move(sctx, pm); 3277 } 3278 return ret; 3279 } 3280 3281 /* 3282 * We might need to delay a directory rename even when no ancestor directory 3283 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3284 * renamed. This happens when we rename a directory to the old name (the name 3285 * in the parent root) of some other unrelated directory that got its rename 3286 * delayed due to some ancestor with higher number that got renamed. 3287 * 3288 * Example: 3289 * 3290 * Parent snapshot: 3291 * . (ino 256) 3292 * |---- a/ (ino 257) 3293 * | |---- file (ino 260) 3294 * | 3295 * |---- b/ (ino 258) 3296 * |---- c/ (ino 259) 3297 * 3298 * Send snapshot: 3299 * . (ino 256) 3300 * |---- a/ (ino 258) 3301 * |---- x/ (ino 259) 3302 * |---- y/ (ino 257) 3303 * |----- file (ino 260) 3304 * 3305 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3306 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3307 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3308 * must issue is: 3309 * 3310 * 1 - rename 259 from 'c' to 'x' 3311 * 2 - rename 257 from 'a' to 'x/y' 3312 * 3 - rename 258 from 'b' to 'a' 3313 * 3314 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3315 * be done right away and < 0 on error. 3316 */ 3317 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3318 struct recorded_ref *parent_ref, 3319 const bool is_orphan) 3320 { 3321 struct btrfs_path *path; 3322 struct btrfs_key key; 3323 struct btrfs_key di_key; 3324 struct btrfs_dir_item *di; 3325 u64 left_gen; 3326 u64 right_gen; 3327 int ret = 0; 3328 3329 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3330 return 0; 3331 3332 path = alloc_path_for_send(); 3333 if (!path) 3334 return -ENOMEM; 3335 3336 key.objectid = parent_ref->dir; 3337 key.type = BTRFS_DIR_ITEM_KEY; 3338 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3339 3340 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3341 if (ret < 0) { 3342 goto out; 3343 } else if (ret > 0) { 3344 ret = 0; 3345 goto out; 3346 } 3347 3348 di = btrfs_match_dir_item_name(sctx->parent_root, path, 3349 parent_ref->name, parent_ref->name_len); 3350 if (!di) { 3351 ret = 0; 3352 goto out; 3353 } 3354 /* 3355 * di_key.objectid has the number of the inode that has a dentry in the 3356 * parent directory with the same name that sctx->cur_ino is being 3357 * renamed to. We need to check if that inode is in the send root as 3358 * well and if it is currently marked as an inode with a pending rename, 3359 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3360 * that it happens after that other inode is renamed. 3361 */ 3362 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3363 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3364 ret = 0; 3365 goto out; 3366 } 3367 3368 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3369 &left_gen, NULL, NULL, NULL, NULL); 3370 if (ret < 0) 3371 goto out; 3372 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3373 &right_gen, NULL, NULL, NULL, NULL); 3374 if (ret < 0) { 3375 if (ret == -ENOENT) 3376 ret = 0; 3377 goto out; 3378 } 3379 3380 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3381 if (right_gen != left_gen) { 3382 ret = 0; 3383 goto out; 3384 } 3385 3386 if (is_waiting_for_move(sctx, di_key.objectid)) { 3387 ret = add_pending_dir_move(sctx, 3388 sctx->cur_ino, 3389 sctx->cur_inode_gen, 3390 di_key.objectid, 3391 &sctx->new_refs, 3392 &sctx->deleted_refs, 3393 is_orphan); 3394 if (!ret) 3395 ret = 1; 3396 } 3397 out: 3398 btrfs_free_path(path); 3399 return ret; 3400 } 3401 3402 /* 3403 * Check if ino ino1 is an ancestor of inode ino2 in the given root. 3404 * Return 1 if true, 0 if false and < 0 on error. 3405 */ 3406 static int is_ancestor(struct btrfs_root *root, 3407 const u64 ino1, 3408 const u64 ino1_gen, 3409 const u64 ino2, 3410 struct fs_path *fs_path) 3411 { 3412 u64 ino = ino2; 3413 3414 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3415 int ret; 3416 u64 parent; 3417 u64 parent_gen; 3418 3419 fs_path_reset(fs_path); 3420 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3421 if (ret < 0) { 3422 if (ret == -ENOENT && ino == ino2) 3423 ret = 0; 3424 return ret; 3425 } 3426 if (parent == ino1) 3427 return parent_gen == ino1_gen ? 1 : 0; 3428 ino = parent; 3429 } 3430 return 0; 3431 } 3432 3433 static int wait_for_parent_move(struct send_ctx *sctx, 3434 struct recorded_ref *parent_ref, 3435 const bool is_orphan) 3436 { 3437 int ret = 0; 3438 u64 ino = parent_ref->dir; 3439 u64 parent_ino_before, parent_ino_after; 3440 struct fs_path *path_before = NULL; 3441 struct fs_path *path_after = NULL; 3442 int len1, len2; 3443 3444 path_after = fs_path_alloc(); 3445 path_before = fs_path_alloc(); 3446 if (!path_after || !path_before) { 3447 ret = -ENOMEM; 3448 goto out; 3449 } 3450 3451 /* 3452 * Our current directory inode may not yet be renamed/moved because some 3453 * ancestor (immediate or not) has to be renamed/moved first. So find if 3454 * such ancestor exists and make sure our own rename/move happens after 3455 * that ancestor is processed to avoid path build infinite loops (done 3456 * at get_cur_path()). 3457 */ 3458 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3459 if (is_waiting_for_move(sctx, ino)) { 3460 /* 3461 * If the current inode is an ancestor of ino in the 3462 * parent root, we need to delay the rename of the 3463 * current inode, otherwise don't delayed the rename 3464 * because we can end up with a circular dependency 3465 * of renames, resulting in some directories never 3466 * getting the respective rename operations issued in 3467 * the send stream or getting into infinite path build 3468 * loops. 3469 */ 3470 ret = is_ancestor(sctx->parent_root, 3471 sctx->cur_ino, sctx->cur_inode_gen, 3472 ino, path_before); 3473 break; 3474 } 3475 3476 fs_path_reset(path_before); 3477 fs_path_reset(path_after); 3478 3479 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3480 NULL, path_after); 3481 if (ret < 0) 3482 goto out; 3483 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3484 NULL, path_before); 3485 if (ret < 0 && ret != -ENOENT) { 3486 goto out; 3487 } else if (ret == -ENOENT) { 3488 ret = 0; 3489 break; 3490 } 3491 3492 len1 = fs_path_len(path_before); 3493 len2 = fs_path_len(path_after); 3494 if (ino > sctx->cur_ino && 3495 (parent_ino_before != parent_ino_after || len1 != len2 || 3496 memcmp(path_before->start, path_after->start, len1))) { 3497 ret = 1; 3498 break; 3499 } 3500 ino = parent_ino_after; 3501 } 3502 3503 out: 3504 fs_path_free(path_before); 3505 fs_path_free(path_after); 3506 3507 if (ret == 1) { 3508 ret = add_pending_dir_move(sctx, 3509 sctx->cur_ino, 3510 sctx->cur_inode_gen, 3511 ino, 3512 &sctx->new_refs, 3513 &sctx->deleted_refs, 3514 is_orphan); 3515 if (!ret) 3516 ret = 1; 3517 } 3518 3519 return ret; 3520 } 3521 3522 /* 3523 * This does all the move/link/unlink/rmdir magic. 3524 */ 3525 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3526 { 3527 int ret = 0; 3528 struct recorded_ref *cur; 3529 struct recorded_ref *cur2; 3530 struct list_head check_dirs; 3531 struct fs_path *valid_path = NULL; 3532 u64 ow_inode = 0; 3533 u64 ow_gen; 3534 int did_overwrite = 0; 3535 int is_orphan = 0; 3536 u64 last_dir_ino_rm = 0; 3537 bool can_rename = true; 3538 3539 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino); 3540 3541 /* 3542 * This should never happen as the root dir always has the same ref 3543 * which is always '..' 3544 */ 3545 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3546 INIT_LIST_HEAD(&check_dirs); 3547 3548 valid_path = fs_path_alloc(); 3549 if (!valid_path) { 3550 ret = -ENOMEM; 3551 goto out; 3552 } 3553 3554 /* 3555 * First, check if the first ref of the current inode was overwritten 3556 * before. If yes, we know that the current inode was already orphanized 3557 * and thus use the orphan name. If not, we can use get_cur_path to 3558 * get the path of the first ref as it would like while receiving at 3559 * this point in time. 3560 * New inodes are always orphan at the beginning, so force to use the 3561 * orphan name in this case. 3562 * The first ref is stored in valid_path and will be updated if it 3563 * gets moved around. 3564 */ 3565 if (!sctx->cur_inode_new) { 3566 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3567 sctx->cur_inode_gen); 3568 if (ret < 0) 3569 goto out; 3570 if (ret) 3571 did_overwrite = 1; 3572 } 3573 if (sctx->cur_inode_new || did_overwrite) { 3574 ret = gen_unique_name(sctx, sctx->cur_ino, 3575 sctx->cur_inode_gen, valid_path); 3576 if (ret < 0) 3577 goto out; 3578 is_orphan = 1; 3579 } else { 3580 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3581 valid_path); 3582 if (ret < 0) 3583 goto out; 3584 } 3585 3586 list_for_each_entry(cur, &sctx->new_refs, list) { 3587 /* 3588 * We may have refs where the parent directory does not exist 3589 * yet. This happens if the parent directories inum is higher 3590 * the the current inum. To handle this case, we create the 3591 * parent directory out of order. But we need to check if this 3592 * did already happen before due to other refs in the same dir. 3593 */ 3594 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3595 if (ret < 0) 3596 goto out; 3597 if (ret == inode_state_will_create) { 3598 ret = 0; 3599 /* 3600 * First check if any of the current inodes refs did 3601 * already create the dir. 3602 */ 3603 list_for_each_entry(cur2, &sctx->new_refs, list) { 3604 if (cur == cur2) 3605 break; 3606 if (cur2->dir == cur->dir) { 3607 ret = 1; 3608 break; 3609 } 3610 } 3611 3612 /* 3613 * If that did not happen, check if a previous inode 3614 * did already create the dir. 3615 */ 3616 if (!ret) 3617 ret = did_create_dir(sctx, cur->dir); 3618 if (ret < 0) 3619 goto out; 3620 if (!ret) { 3621 ret = send_create_inode(sctx, cur->dir); 3622 if (ret < 0) 3623 goto out; 3624 } 3625 } 3626 3627 /* 3628 * Check if this new ref would overwrite the first ref of 3629 * another unprocessed inode. If yes, orphanize the 3630 * overwritten inode. If we find an overwritten ref that is 3631 * not the first ref, simply unlink it. 3632 */ 3633 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3634 cur->name, cur->name_len, 3635 &ow_inode, &ow_gen); 3636 if (ret < 0) 3637 goto out; 3638 if (ret) { 3639 ret = is_first_ref(sctx->parent_root, 3640 ow_inode, cur->dir, cur->name, 3641 cur->name_len); 3642 if (ret < 0) 3643 goto out; 3644 if (ret) { 3645 struct name_cache_entry *nce; 3646 3647 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3648 cur->full_path); 3649 if (ret < 0) 3650 goto out; 3651 /* 3652 * Make sure we clear our orphanized inode's 3653 * name from the name cache. This is because the 3654 * inode ow_inode might be an ancestor of some 3655 * other inode that will be orphanized as well 3656 * later and has an inode number greater than 3657 * sctx->send_progress. We need to prevent 3658 * future name lookups from using the old name 3659 * and get instead the orphan name. 3660 */ 3661 nce = name_cache_search(sctx, ow_inode, ow_gen); 3662 if (nce) { 3663 name_cache_delete(sctx, nce); 3664 kfree(nce); 3665 } 3666 } else { 3667 ret = send_unlink(sctx, cur->full_path); 3668 if (ret < 0) 3669 goto out; 3670 } 3671 } 3672 3673 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3674 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3675 if (ret < 0) 3676 goto out; 3677 if (ret == 1) { 3678 can_rename = false; 3679 *pending_move = 1; 3680 } 3681 } 3682 3683 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 3684 can_rename) { 3685 ret = wait_for_parent_move(sctx, cur, is_orphan); 3686 if (ret < 0) 3687 goto out; 3688 if (ret == 1) { 3689 can_rename = false; 3690 *pending_move = 1; 3691 } 3692 } 3693 3694 /* 3695 * link/move the ref to the new place. If we have an orphan 3696 * inode, move it and update valid_path. If not, link or move 3697 * it depending on the inode mode. 3698 */ 3699 if (is_orphan && can_rename) { 3700 ret = send_rename(sctx, valid_path, cur->full_path); 3701 if (ret < 0) 3702 goto out; 3703 is_orphan = 0; 3704 ret = fs_path_copy(valid_path, cur->full_path); 3705 if (ret < 0) 3706 goto out; 3707 } else if (can_rename) { 3708 if (S_ISDIR(sctx->cur_inode_mode)) { 3709 /* 3710 * Dirs can't be linked, so move it. For moved 3711 * dirs, we always have one new and one deleted 3712 * ref. The deleted ref is ignored later. 3713 */ 3714 ret = send_rename(sctx, valid_path, 3715 cur->full_path); 3716 if (!ret) 3717 ret = fs_path_copy(valid_path, 3718 cur->full_path); 3719 if (ret < 0) 3720 goto out; 3721 } else { 3722 ret = send_link(sctx, cur->full_path, 3723 valid_path); 3724 if (ret < 0) 3725 goto out; 3726 } 3727 } 3728 ret = dup_ref(cur, &check_dirs); 3729 if (ret < 0) 3730 goto out; 3731 } 3732 3733 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 3734 /* 3735 * Check if we can already rmdir the directory. If not, 3736 * orphanize it. For every dir item inside that gets deleted 3737 * later, we do this check again and rmdir it then if possible. 3738 * See the use of check_dirs for more details. 3739 */ 3740 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3741 sctx->cur_ino); 3742 if (ret < 0) 3743 goto out; 3744 if (ret) { 3745 ret = send_rmdir(sctx, valid_path); 3746 if (ret < 0) 3747 goto out; 3748 } else if (!is_orphan) { 3749 ret = orphanize_inode(sctx, sctx->cur_ino, 3750 sctx->cur_inode_gen, valid_path); 3751 if (ret < 0) 3752 goto out; 3753 is_orphan = 1; 3754 } 3755 3756 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3757 ret = dup_ref(cur, &check_dirs); 3758 if (ret < 0) 3759 goto out; 3760 } 3761 } else if (S_ISDIR(sctx->cur_inode_mode) && 3762 !list_empty(&sctx->deleted_refs)) { 3763 /* 3764 * We have a moved dir. Add the old parent to check_dirs 3765 */ 3766 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 3767 list); 3768 ret = dup_ref(cur, &check_dirs); 3769 if (ret < 0) 3770 goto out; 3771 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 3772 /* 3773 * We have a non dir inode. Go through all deleted refs and 3774 * unlink them if they were not already overwritten by other 3775 * inodes. 3776 */ 3777 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3778 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3779 sctx->cur_ino, sctx->cur_inode_gen, 3780 cur->name, cur->name_len); 3781 if (ret < 0) 3782 goto out; 3783 if (!ret) { 3784 ret = send_unlink(sctx, cur->full_path); 3785 if (ret < 0) 3786 goto out; 3787 } 3788 ret = dup_ref(cur, &check_dirs); 3789 if (ret < 0) 3790 goto out; 3791 } 3792 /* 3793 * If the inode is still orphan, unlink the orphan. This may 3794 * happen when a previous inode did overwrite the first ref 3795 * of this inode and no new refs were added for the current 3796 * inode. Unlinking does not mean that the inode is deleted in 3797 * all cases. There may still be links to this inode in other 3798 * places. 3799 */ 3800 if (is_orphan) { 3801 ret = send_unlink(sctx, valid_path); 3802 if (ret < 0) 3803 goto out; 3804 } 3805 } 3806 3807 /* 3808 * We did collect all parent dirs where cur_inode was once located. We 3809 * now go through all these dirs and check if they are pending for 3810 * deletion and if it's finally possible to perform the rmdir now. 3811 * We also update the inode stats of the parent dirs here. 3812 */ 3813 list_for_each_entry(cur, &check_dirs, list) { 3814 /* 3815 * In case we had refs into dirs that were not processed yet, 3816 * we don't need to do the utime and rmdir logic for these dirs. 3817 * The dir will be processed later. 3818 */ 3819 if (cur->dir > sctx->cur_ino) 3820 continue; 3821 3822 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3823 if (ret < 0) 3824 goto out; 3825 3826 if (ret == inode_state_did_create || 3827 ret == inode_state_no_change) { 3828 /* TODO delayed utimes */ 3829 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3830 if (ret < 0) 3831 goto out; 3832 } else if (ret == inode_state_did_delete && 3833 cur->dir != last_dir_ino_rm) { 3834 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 3835 sctx->cur_ino); 3836 if (ret < 0) 3837 goto out; 3838 if (ret) { 3839 ret = get_cur_path(sctx, cur->dir, 3840 cur->dir_gen, valid_path); 3841 if (ret < 0) 3842 goto out; 3843 ret = send_rmdir(sctx, valid_path); 3844 if (ret < 0) 3845 goto out; 3846 last_dir_ino_rm = cur->dir; 3847 } 3848 } 3849 } 3850 3851 ret = 0; 3852 3853 out: 3854 __free_recorded_refs(&check_dirs); 3855 free_recorded_refs(sctx); 3856 fs_path_free(valid_path); 3857 return ret; 3858 } 3859 3860 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index, 3861 struct fs_path *name, void *ctx, struct list_head *refs) 3862 { 3863 int ret = 0; 3864 struct send_ctx *sctx = ctx; 3865 struct fs_path *p; 3866 u64 gen; 3867 3868 p = fs_path_alloc(); 3869 if (!p) 3870 return -ENOMEM; 3871 3872 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 3873 NULL, NULL); 3874 if (ret < 0) 3875 goto out; 3876 3877 ret = get_cur_path(sctx, dir, gen, p); 3878 if (ret < 0) 3879 goto out; 3880 ret = fs_path_add_path(p, name); 3881 if (ret < 0) 3882 goto out; 3883 3884 ret = __record_ref(refs, dir, gen, p); 3885 3886 out: 3887 if (ret) 3888 fs_path_free(p); 3889 return ret; 3890 } 3891 3892 static int __record_new_ref(int num, u64 dir, int index, 3893 struct fs_path *name, 3894 void *ctx) 3895 { 3896 struct send_ctx *sctx = ctx; 3897 return record_ref(sctx->send_root, num, dir, index, name, 3898 ctx, &sctx->new_refs); 3899 } 3900 3901 3902 static int __record_deleted_ref(int num, u64 dir, int index, 3903 struct fs_path *name, 3904 void *ctx) 3905 { 3906 struct send_ctx *sctx = ctx; 3907 return record_ref(sctx->parent_root, num, dir, index, name, 3908 ctx, &sctx->deleted_refs); 3909 } 3910 3911 static int record_new_ref(struct send_ctx *sctx) 3912 { 3913 int ret; 3914 3915 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3916 sctx->cmp_key, 0, __record_new_ref, sctx); 3917 if (ret < 0) 3918 goto out; 3919 ret = 0; 3920 3921 out: 3922 return ret; 3923 } 3924 3925 static int record_deleted_ref(struct send_ctx *sctx) 3926 { 3927 int ret; 3928 3929 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3930 sctx->cmp_key, 0, __record_deleted_ref, sctx); 3931 if (ret < 0) 3932 goto out; 3933 ret = 0; 3934 3935 out: 3936 return ret; 3937 } 3938 3939 struct find_ref_ctx { 3940 u64 dir; 3941 u64 dir_gen; 3942 struct btrfs_root *root; 3943 struct fs_path *name; 3944 int found_idx; 3945 }; 3946 3947 static int __find_iref(int num, u64 dir, int index, 3948 struct fs_path *name, 3949 void *ctx_) 3950 { 3951 struct find_ref_ctx *ctx = ctx_; 3952 u64 dir_gen; 3953 int ret; 3954 3955 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 3956 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 3957 /* 3958 * To avoid doing extra lookups we'll only do this if everything 3959 * else matches. 3960 */ 3961 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 3962 NULL, NULL, NULL); 3963 if (ret) 3964 return ret; 3965 if (dir_gen != ctx->dir_gen) 3966 return 0; 3967 ctx->found_idx = num; 3968 return 1; 3969 } 3970 return 0; 3971 } 3972 3973 static int find_iref(struct btrfs_root *root, 3974 struct btrfs_path *path, 3975 struct btrfs_key *key, 3976 u64 dir, u64 dir_gen, struct fs_path *name) 3977 { 3978 int ret; 3979 struct find_ref_ctx ctx; 3980 3981 ctx.dir = dir; 3982 ctx.name = name; 3983 ctx.dir_gen = dir_gen; 3984 ctx.found_idx = -1; 3985 ctx.root = root; 3986 3987 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 3988 if (ret < 0) 3989 return ret; 3990 3991 if (ctx.found_idx == -1) 3992 return -ENOENT; 3993 3994 return ctx.found_idx; 3995 } 3996 3997 static int __record_changed_new_ref(int num, u64 dir, int index, 3998 struct fs_path *name, 3999 void *ctx) 4000 { 4001 u64 dir_gen; 4002 int ret; 4003 struct send_ctx *sctx = ctx; 4004 4005 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4006 NULL, NULL, NULL); 4007 if (ret) 4008 return ret; 4009 4010 ret = find_iref(sctx->parent_root, sctx->right_path, 4011 sctx->cmp_key, dir, dir_gen, name); 4012 if (ret == -ENOENT) 4013 ret = __record_new_ref(num, dir, index, name, sctx); 4014 else if (ret > 0) 4015 ret = 0; 4016 4017 return ret; 4018 } 4019 4020 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4021 struct fs_path *name, 4022 void *ctx) 4023 { 4024 u64 dir_gen; 4025 int ret; 4026 struct send_ctx *sctx = ctx; 4027 4028 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4029 NULL, NULL, NULL); 4030 if (ret) 4031 return ret; 4032 4033 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4034 dir, dir_gen, name); 4035 if (ret == -ENOENT) 4036 ret = __record_deleted_ref(num, dir, index, name, sctx); 4037 else if (ret > 0) 4038 ret = 0; 4039 4040 return ret; 4041 } 4042 4043 static int record_changed_ref(struct send_ctx *sctx) 4044 { 4045 int ret = 0; 4046 4047 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4048 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4049 if (ret < 0) 4050 goto out; 4051 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4052 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4053 if (ret < 0) 4054 goto out; 4055 ret = 0; 4056 4057 out: 4058 return ret; 4059 } 4060 4061 /* 4062 * Record and process all refs at once. Needed when an inode changes the 4063 * generation number, which means that it was deleted and recreated. 4064 */ 4065 static int process_all_refs(struct send_ctx *sctx, 4066 enum btrfs_compare_tree_result cmd) 4067 { 4068 int ret; 4069 struct btrfs_root *root; 4070 struct btrfs_path *path; 4071 struct btrfs_key key; 4072 struct btrfs_key found_key; 4073 struct extent_buffer *eb; 4074 int slot; 4075 iterate_inode_ref_t cb; 4076 int pending_move = 0; 4077 4078 path = alloc_path_for_send(); 4079 if (!path) 4080 return -ENOMEM; 4081 4082 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4083 root = sctx->send_root; 4084 cb = __record_new_ref; 4085 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4086 root = sctx->parent_root; 4087 cb = __record_deleted_ref; 4088 } else { 4089 btrfs_err(sctx->send_root->fs_info, 4090 "Wrong command %d in process_all_refs", cmd); 4091 ret = -EINVAL; 4092 goto out; 4093 } 4094 4095 key.objectid = sctx->cmp_key->objectid; 4096 key.type = BTRFS_INODE_REF_KEY; 4097 key.offset = 0; 4098 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4099 if (ret < 0) 4100 goto out; 4101 4102 while (1) { 4103 eb = path->nodes[0]; 4104 slot = path->slots[0]; 4105 if (slot >= btrfs_header_nritems(eb)) { 4106 ret = btrfs_next_leaf(root, path); 4107 if (ret < 0) 4108 goto out; 4109 else if (ret > 0) 4110 break; 4111 continue; 4112 } 4113 4114 btrfs_item_key_to_cpu(eb, &found_key, slot); 4115 4116 if (found_key.objectid != key.objectid || 4117 (found_key.type != BTRFS_INODE_REF_KEY && 4118 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4119 break; 4120 4121 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4122 if (ret < 0) 4123 goto out; 4124 4125 path->slots[0]++; 4126 } 4127 btrfs_release_path(path); 4128 4129 ret = process_recorded_refs(sctx, &pending_move); 4130 /* Only applicable to an incremental send. */ 4131 ASSERT(pending_move == 0); 4132 4133 out: 4134 btrfs_free_path(path); 4135 return ret; 4136 } 4137 4138 static int send_set_xattr(struct send_ctx *sctx, 4139 struct fs_path *path, 4140 const char *name, int name_len, 4141 const char *data, int data_len) 4142 { 4143 int ret = 0; 4144 4145 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4146 if (ret < 0) 4147 goto out; 4148 4149 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4150 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4151 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4152 4153 ret = send_cmd(sctx); 4154 4155 tlv_put_failure: 4156 out: 4157 return ret; 4158 } 4159 4160 static int send_remove_xattr(struct send_ctx *sctx, 4161 struct fs_path *path, 4162 const char *name, int name_len) 4163 { 4164 int ret = 0; 4165 4166 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4167 if (ret < 0) 4168 goto out; 4169 4170 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4171 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4172 4173 ret = send_cmd(sctx); 4174 4175 tlv_put_failure: 4176 out: 4177 return ret; 4178 } 4179 4180 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4181 const char *name, int name_len, 4182 const char *data, int data_len, 4183 u8 type, void *ctx) 4184 { 4185 int ret; 4186 struct send_ctx *sctx = ctx; 4187 struct fs_path *p; 4188 posix_acl_xattr_header dummy_acl; 4189 4190 p = fs_path_alloc(); 4191 if (!p) 4192 return -ENOMEM; 4193 4194 /* 4195 * This hack is needed because empty acls are stored as zero byte 4196 * data in xattrs. Problem with that is, that receiving these zero byte 4197 * acls will fail later. To fix this, we send a dummy acl list that 4198 * only contains the version number and no entries. 4199 */ 4200 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4201 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4202 if (data_len == 0) { 4203 dummy_acl.a_version = 4204 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4205 data = (char *)&dummy_acl; 4206 data_len = sizeof(dummy_acl); 4207 } 4208 } 4209 4210 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4211 if (ret < 0) 4212 goto out; 4213 4214 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4215 4216 out: 4217 fs_path_free(p); 4218 return ret; 4219 } 4220 4221 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4222 const char *name, int name_len, 4223 const char *data, int data_len, 4224 u8 type, void *ctx) 4225 { 4226 int ret; 4227 struct send_ctx *sctx = ctx; 4228 struct fs_path *p; 4229 4230 p = fs_path_alloc(); 4231 if (!p) 4232 return -ENOMEM; 4233 4234 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4235 if (ret < 0) 4236 goto out; 4237 4238 ret = send_remove_xattr(sctx, p, name, name_len); 4239 4240 out: 4241 fs_path_free(p); 4242 return ret; 4243 } 4244 4245 static int process_new_xattr(struct send_ctx *sctx) 4246 { 4247 int ret = 0; 4248 4249 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4250 sctx->cmp_key, __process_new_xattr, sctx); 4251 4252 return ret; 4253 } 4254 4255 static int process_deleted_xattr(struct send_ctx *sctx) 4256 { 4257 int ret; 4258 4259 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4260 sctx->cmp_key, __process_deleted_xattr, sctx); 4261 4262 return ret; 4263 } 4264 4265 struct find_xattr_ctx { 4266 const char *name; 4267 int name_len; 4268 int found_idx; 4269 char *found_data; 4270 int found_data_len; 4271 }; 4272 4273 static int __find_xattr(int num, struct btrfs_key *di_key, 4274 const char *name, int name_len, 4275 const char *data, int data_len, 4276 u8 type, void *vctx) 4277 { 4278 struct find_xattr_ctx *ctx = vctx; 4279 4280 if (name_len == ctx->name_len && 4281 strncmp(name, ctx->name, name_len) == 0) { 4282 ctx->found_idx = num; 4283 ctx->found_data_len = data_len; 4284 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4285 if (!ctx->found_data) 4286 return -ENOMEM; 4287 return 1; 4288 } 4289 return 0; 4290 } 4291 4292 static int find_xattr(struct btrfs_root *root, 4293 struct btrfs_path *path, 4294 struct btrfs_key *key, 4295 const char *name, int name_len, 4296 char **data, int *data_len) 4297 { 4298 int ret; 4299 struct find_xattr_ctx ctx; 4300 4301 ctx.name = name; 4302 ctx.name_len = name_len; 4303 ctx.found_idx = -1; 4304 ctx.found_data = NULL; 4305 ctx.found_data_len = 0; 4306 4307 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 4308 if (ret < 0) 4309 return ret; 4310 4311 if (ctx.found_idx == -1) 4312 return -ENOENT; 4313 if (data) { 4314 *data = ctx.found_data; 4315 *data_len = ctx.found_data_len; 4316 } else { 4317 kfree(ctx.found_data); 4318 } 4319 return ctx.found_idx; 4320 } 4321 4322 4323 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4324 const char *name, int name_len, 4325 const char *data, int data_len, 4326 u8 type, void *ctx) 4327 { 4328 int ret; 4329 struct send_ctx *sctx = ctx; 4330 char *found_data = NULL; 4331 int found_data_len = 0; 4332 4333 ret = find_xattr(sctx->parent_root, sctx->right_path, 4334 sctx->cmp_key, name, name_len, &found_data, 4335 &found_data_len); 4336 if (ret == -ENOENT) { 4337 ret = __process_new_xattr(num, di_key, name, name_len, data, 4338 data_len, type, ctx); 4339 } else if (ret >= 0) { 4340 if (data_len != found_data_len || 4341 memcmp(data, found_data, data_len)) { 4342 ret = __process_new_xattr(num, di_key, name, name_len, 4343 data, data_len, type, ctx); 4344 } else { 4345 ret = 0; 4346 } 4347 } 4348 4349 kfree(found_data); 4350 return ret; 4351 } 4352 4353 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4354 const char *name, int name_len, 4355 const char *data, int data_len, 4356 u8 type, void *ctx) 4357 { 4358 int ret; 4359 struct send_ctx *sctx = ctx; 4360 4361 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4362 name, name_len, NULL, NULL); 4363 if (ret == -ENOENT) 4364 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4365 data_len, type, ctx); 4366 else if (ret >= 0) 4367 ret = 0; 4368 4369 return ret; 4370 } 4371 4372 static int process_changed_xattr(struct send_ctx *sctx) 4373 { 4374 int ret = 0; 4375 4376 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4377 sctx->cmp_key, __process_changed_new_xattr, sctx); 4378 if (ret < 0) 4379 goto out; 4380 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4381 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 4382 4383 out: 4384 return ret; 4385 } 4386 4387 static int process_all_new_xattrs(struct send_ctx *sctx) 4388 { 4389 int ret; 4390 struct btrfs_root *root; 4391 struct btrfs_path *path; 4392 struct btrfs_key key; 4393 struct btrfs_key found_key; 4394 struct extent_buffer *eb; 4395 int slot; 4396 4397 path = alloc_path_for_send(); 4398 if (!path) 4399 return -ENOMEM; 4400 4401 root = sctx->send_root; 4402 4403 key.objectid = sctx->cmp_key->objectid; 4404 key.type = BTRFS_XATTR_ITEM_KEY; 4405 key.offset = 0; 4406 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4407 if (ret < 0) 4408 goto out; 4409 4410 while (1) { 4411 eb = path->nodes[0]; 4412 slot = path->slots[0]; 4413 if (slot >= btrfs_header_nritems(eb)) { 4414 ret = btrfs_next_leaf(root, path); 4415 if (ret < 0) { 4416 goto out; 4417 } else if (ret > 0) { 4418 ret = 0; 4419 break; 4420 } 4421 continue; 4422 } 4423 4424 btrfs_item_key_to_cpu(eb, &found_key, slot); 4425 if (found_key.objectid != key.objectid || 4426 found_key.type != key.type) { 4427 ret = 0; 4428 goto out; 4429 } 4430 4431 ret = iterate_dir_item(root, path, &found_key, 4432 __process_new_xattr, sctx); 4433 if (ret < 0) 4434 goto out; 4435 4436 path->slots[0]++; 4437 } 4438 4439 out: 4440 btrfs_free_path(path); 4441 return ret; 4442 } 4443 4444 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4445 { 4446 struct btrfs_root *root = sctx->send_root; 4447 struct btrfs_fs_info *fs_info = root->fs_info; 4448 struct inode *inode; 4449 struct page *page; 4450 char *addr; 4451 struct btrfs_key key; 4452 pgoff_t index = offset >> PAGE_SHIFT; 4453 pgoff_t last_index; 4454 unsigned pg_offset = offset & ~PAGE_MASK; 4455 ssize_t ret = 0; 4456 4457 key.objectid = sctx->cur_ino; 4458 key.type = BTRFS_INODE_ITEM_KEY; 4459 key.offset = 0; 4460 4461 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4462 if (IS_ERR(inode)) 4463 return PTR_ERR(inode); 4464 4465 if (offset + len > i_size_read(inode)) { 4466 if (offset > i_size_read(inode)) 4467 len = 0; 4468 else 4469 len = offset - i_size_read(inode); 4470 } 4471 if (len == 0) 4472 goto out; 4473 4474 last_index = (offset + len - 1) >> PAGE_SHIFT; 4475 4476 /* initial readahead */ 4477 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4478 file_ra_state_init(&sctx->ra, inode->i_mapping); 4479 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index, 4480 last_index - index + 1); 4481 4482 while (index <= last_index) { 4483 unsigned cur_len = min_t(unsigned, len, 4484 PAGE_SIZE - pg_offset); 4485 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL); 4486 if (!page) { 4487 ret = -ENOMEM; 4488 break; 4489 } 4490 4491 if (!PageUptodate(page)) { 4492 btrfs_readpage(NULL, page); 4493 lock_page(page); 4494 if (!PageUptodate(page)) { 4495 unlock_page(page); 4496 put_page(page); 4497 ret = -EIO; 4498 break; 4499 } 4500 } 4501 4502 addr = kmap(page); 4503 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4504 kunmap(page); 4505 unlock_page(page); 4506 put_page(page); 4507 index++; 4508 pg_offset = 0; 4509 len -= cur_len; 4510 ret += cur_len; 4511 } 4512 out: 4513 iput(inode); 4514 return ret; 4515 } 4516 4517 /* 4518 * Read some bytes from the current inode/file and send a write command to 4519 * user space. 4520 */ 4521 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4522 { 4523 int ret = 0; 4524 struct fs_path *p; 4525 ssize_t num_read = 0; 4526 4527 p = fs_path_alloc(); 4528 if (!p) 4529 return -ENOMEM; 4530 4531 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len); 4532 4533 num_read = fill_read_buf(sctx, offset, len); 4534 if (num_read <= 0) { 4535 if (num_read < 0) 4536 ret = num_read; 4537 goto out; 4538 } 4539 4540 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4541 if (ret < 0) 4542 goto out; 4543 4544 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4545 if (ret < 0) 4546 goto out; 4547 4548 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4549 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4550 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4551 4552 ret = send_cmd(sctx); 4553 4554 tlv_put_failure: 4555 out: 4556 fs_path_free(p); 4557 if (ret < 0) 4558 return ret; 4559 return num_read; 4560 } 4561 4562 /* 4563 * Send a clone command to user space. 4564 */ 4565 static int send_clone(struct send_ctx *sctx, 4566 u64 offset, u32 len, 4567 struct clone_root *clone_root) 4568 { 4569 int ret = 0; 4570 struct fs_path *p; 4571 u64 gen; 4572 4573 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, " 4574 "clone_inode=%llu, clone_offset=%llu\n", offset, len, 4575 clone_root->root->objectid, clone_root->ino, 4576 clone_root->offset); 4577 4578 p = fs_path_alloc(); 4579 if (!p) 4580 return -ENOMEM; 4581 4582 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4583 if (ret < 0) 4584 goto out; 4585 4586 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4587 if (ret < 0) 4588 goto out; 4589 4590 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4591 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4592 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4593 4594 if (clone_root->root == sctx->send_root) { 4595 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4596 &gen, NULL, NULL, NULL, NULL); 4597 if (ret < 0) 4598 goto out; 4599 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4600 } else { 4601 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4602 } 4603 if (ret < 0) 4604 goto out; 4605 4606 /* 4607 * If the parent we're using has a received_uuid set then use that as 4608 * our clone source as that is what we will look for when doing a 4609 * receive. 4610 * 4611 * This covers the case that we create a snapshot off of a received 4612 * subvolume and then use that as the parent and try to receive on a 4613 * different host. 4614 */ 4615 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4616 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4617 clone_root->root->root_item.received_uuid); 4618 else 4619 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4620 clone_root->root->root_item.uuid); 4621 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4622 le64_to_cpu(clone_root->root->root_item.ctransid)); 4623 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4624 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4625 clone_root->offset); 4626 4627 ret = send_cmd(sctx); 4628 4629 tlv_put_failure: 4630 out: 4631 fs_path_free(p); 4632 return ret; 4633 } 4634 4635 /* 4636 * Send an update extent command to user space. 4637 */ 4638 static int send_update_extent(struct send_ctx *sctx, 4639 u64 offset, u32 len) 4640 { 4641 int ret = 0; 4642 struct fs_path *p; 4643 4644 p = fs_path_alloc(); 4645 if (!p) 4646 return -ENOMEM; 4647 4648 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4649 if (ret < 0) 4650 goto out; 4651 4652 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4653 if (ret < 0) 4654 goto out; 4655 4656 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4657 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4658 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4659 4660 ret = send_cmd(sctx); 4661 4662 tlv_put_failure: 4663 out: 4664 fs_path_free(p); 4665 return ret; 4666 } 4667 4668 static int send_hole(struct send_ctx *sctx, u64 end) 4669 { 4670 struct fs_path *p = NULL; 4671 u64 offset = sctx->cur_inode_last_extent; 4672 u64 len; 4673 int ret = 0; 4674 4675 p = fs_path_alloc(); 4676 if (!p) 4677 return -ENOMEM; 4678 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4679 if (ret < 0) 4680 goto tlv_put_failure; 4681 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 4682 while (offset < end) { 4683 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 4684 4685 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4686 if (ret < 0) 4687 break; 4688 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4689 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4690 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 4691 ret = send_cmd(sctx); 4692 if (ret < 0) 4693 break; 4694 offset += len; 4695 } 4696 tlv_put_failure: 4697 fs_path_free(p); 4698 return ret; 4699 } 4700 4701 static int send_extent_data(struct send_ctx *sctx, 4702 const u64 offset, 4703 const u64 len) 4704 { 4705 u64 sent = 0; 4706 4707 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 4708 return send_update_extent(sctx, offset, len); 4709 4710 while (sent < len) { 4711 u64 size = len - sent; 4712 int ret; 4713 4714 if (size > BTRFS_SEND_READ_SIZE) 4715 size = BTRFS_SEND_READ_SIZE; 4716 ret = send_write(sctx, offset + sent, size); 4717 if (ret < 0) 4718 return ret; 4719 if (!ret) 4720 break; 4721 sent += ret; 4722 } 4723 return 0; 4724 } 4725 4726 static int clone_range(struct send_ctx *sctx, 4727 struct clone_root *clone_root, 4728 const u64 disk_byte, 4729 u64 data_offset, 4730 u64 offset, 4731 u64 len) 4732 { 4733 struct btrfs_path *path; 4734 struct btrfs_key key; 4735 int ret; 4736 4737 path = alloc_path_for_send(); 4738 if (!path) 4739 return -ENOMEM; 4740 4741 /* 4742 * We can't send a clone operation for the entire range if we find 4743 * extent items in the respective range in the source file that 4744 * refer to different extents or if we find holes. 4745 * So check for that and do a mix of clone and regular write/copy 4746 * operations if needed. 4747 * 4748 * Example: 4749 * 4750 * mkfs.btrfs -f /dev/sda 4751 * mount /dev/sda /mnt 4752 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 4753 * cp --reflink=always /mnt/foo /mnt/bar 4754 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 4755 * btrfs subvolume snapshot -r /mnt /mnt/snap 4756 * 4757 * If when we send the snapshot and we are processing file bar (which 4758 * has a higher inode number than foo) we blindly send a clone operation 4759 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 4760 * a file bar that matches the content of file foo - iow, doesn't match 4761 * the content from bar in the original filesystem. 4762 */ 4763 key.objectid = clone_root->ino; 4764 key.type = BTRFS_EXTENT_DATA_KEY; 4765 key.offset = clone_root->offset; 4766 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 4767 if (ret < 0) 4768 goto out; 4769 if (ret > 0 && path->slots[0] > 0) { 4770 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 4771 if (key.objectid == clone_root->ino && 4772 key.type == BTRFS_EXTENT_DATA_KEY) 4773 path->slots[0]--; 4774 } 4775 4776 while (true) { 4777 struct extent_buffer *leaf = path->nodes[0]; 4778 int slot = path->slots[0]; 4779 struct btrfs_file_extent_item *ei; 4780 u8 type; 4781 u64 ext_len; 4782 u64 clone_len; 4783 4784 if (slot >= btrfs_header_nritems(leaf)) { 4785 ret = btrfs_next_leaf(clone_root->root, path); 4786 if (ret < 0) 4787 goto out; 4788 else if (ret > 0) 4789 break; 4790 continue; 4791 } 4792 4793 btrfs_item_key_to_cpu(leaf, &key, slot); 4794 4795 /* 4796 * We might have an implicit trailing hole (NO_HOLES feature 4797 * enabled). We deal with it after leaving this loop. 4798 */ 4799 if (key.objectid != clone_root->ino || 4800 key.type != BTRFS_EXTENT_DATA_KEY) 4801 break; 4802 4803 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4804 type = btrfs_file_extent_type(leaf, ei); 4805 if (type == BTRFS_FILE_EXTENT_INLINE) { 4806 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei); 4807 ext_len = PAGE_ALIGN(ext_len); 4808 } else { 4809 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 4810 } 4811 4812 if (key.offset + ext_len <= clone_root->offset) 4813 goto next; 4814 4815 if (key.offset > clone_root->offset) { 4816 /* Implicit hole, NO_HOLES feature enabled. */ 4817 u64 hole_len = key.offset - clone_root->offset; 4818 4819 if (hole_len > len) 4820 hole_len = len; 4821 ret = send_extent_data(sctx, offset, hole_len); 4822 if (ret < 0) 4823 goto out; 4824 4825 len -= hole_len; 4826 if (len == 0) 4827 break; 4828 offset += hole_len; 4829 clone_root->offset += hole_len; 4830 data_offset += hole_len; 4831 } 4832 4833 if (key.offset >= clone_root->offset + len) 4834 break; 4835 4836 clone_len = min_t(u64, ext_len, len); 4837 4838 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 4839 btrfs_file_extent_offset(leaf, ei) == data_offset) 4840 ret = send_clone(sctx, offset, clone_len, clone_root); 4841 else 4842 ret = send_extent_data(sctx, offset, clone_len); 4843 4844 if (ret < 0) 4845 goto out; 4846 4847 len -= clone_len; 4848 if (len == 0) 4849 break; 4850 offset += clone_len; 4851 clone_root->offset += clone_len; 4852 data_offset += clone_len; 4853 next: 4854 path->slots[0]++; 4855 } 4856 4857 if (len > 0) 4858 ret = send_extent_data(sctx, offset, len); 4859 else 4860 ret = 0; 4861 out: 4862 btrfs_free_path(path); 4863 return ret; 4864 } 4865 4866 static int send_write_or_clone(struct send_ctx *sctx, 4867 struct btrfs_path *path, 4868 struct btrfs_key *key, 4869 struct clone_root *clone_root) 4870 { 4871 int ret = 0; 4872 struct btrfs_file_extent_item *ei; 4873 u64 offset = key->offset; 4874 u64 len; 4875 u8 type; 4876 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 4877 4878 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4879 struct btrfs_file_extent_item); 4880 type = btrfs_file_extent_type(path->nodes[0], ei); 4881 if (type == BTRFS_FILE_EXTENT_INLINE) { 4882 len = btrfs_file_extent_inline_len(path->nodes[0], 4883 path->slots[0], ei); 4884 /* 4885 * it is possible the inline item won't cover the whole page, 4886 * but there may be items after this page. Make 4887 * sure to send the whole thing 4888 */ 4889 len = PAGE_ALIGN(len); 4890 } else { 4891 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 4892 } 4893 4894 if (offset + len > sctx->cur_inode_size) 4895 len = sctx->cur_inode_size - offset; 4896 if (len == 0) { 4897 ret = 0; 4898 goto out; 4899 } 4900 4901 if (clone_root && IS_ALIGNED(offset + len, bs)) { 4902 u64 disk_byte; 4903 u64 data_offset; 4904 4905 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 4906 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 4907 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 4908 offset, len); 4909 } else { 4910 ret = send_extent_data(sctx, offset, len); 4911 } 4912 out: 4913 return ret; 4914 } 4915 4916 static int is_extent_unchanged(struct send_ctx *sctx, 4917 struct btrfs_path *left_path, 4918 struct btrfs_key *ekey) 4919 { 4920 int ret = 0; 4921 struct btrfs_key key; 4922 struct btrfs_path *path = NULL; 4923 struct extent_buffer *eb; 4924 int slot; 4925 struct btrfs_key found_key; 4926 struct btrfs_file_extent_item *ei; 4927 u64 left_disknr; 4928 u64 right_disknr; 4929 u64 left_offset; 4930 u64 right_offset; 4931 u64 left_offset_fixed; 4932 u64 left_len; 4933 u64 right_len; 4934 u64 left_gen; 4935 u64 right_gen; 4936 u8 left_type; 4937 u8 right_type; 4938 4939 path = alloc_path_for_send(); 4940 if (!path) 4941 return -ENOMEM; 4942 4943 eb = left_path->nodes[0]; 4944 slot = left_path->slots[0]; 4945 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 4946 left_type = btrfs_file_extent_type(eb, ei); 4947 4948 if (left_type != BTRFS_FILE_EXTENT_REG) { 4949 ret = 0; 4950 goto out; 4951 } 4952 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 4953 left_len = btrfs_file_extent_num_bytes(eb, ei); 4954 left_offset = btrfs_file_extent_offset(eb, ei); 4955 left_gen = btrfs_file_extent_generation(eb, ei); 4956 4957 /* 4958 * Following comments will refer to these graphics. L is the left 4959 * extents which we are checking at the moment. 1-8 are the right 4960 * extents that we iterate. 4961 * 4962 * |-----L-----| 4963 * |-1-|-2a-|-3-|-4-|-5-|-6-| 4964 * 4965 * |-----L-----| 4966 * |--1--|-2b-|...(same as above) 4967 * 4968 * Alternative situation. Happens on files where extents got split. 4969 * |-----L-----| 4970 * |-----------7-----------|-6-| 4971 * 4972 * Alternative situation. Happens on files which got larger. 4973 * |-----L-----| 4974 * |-8-| 4975 * Nothing follows after 8. 4976 */ 4977 4978 key.objectid = ekey->objectid; 4979 key.type = BTRFS_EXTENT_DATA_KEY; 4980 key.offset = ekey->offset; 4981 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 4982 if (ret < 0) 4983 goto out; 4984 if (ret) { 4985 ret = 0; 4986 goto out; 4987 } 4988 4989 /* 4990 * Handle special case where the right side has no extents at all. 4991 */ 4992 eb = path->nodes[0]; 4993 slot = path->slots[0]; 4994 btrfs_item_key_to_cpu(eb, &found_key, slot); 4995 if (found_key.objectid != key.objectid || 4996 found_key.type != key.type) { 4997 /* If we're a hole then just pretend nothing changed */ 4998 ret = (left_disknr) ? 0 : 1; 4999 goto out; 5000 } 5001 5002 /* 5003 * We're now on 2a, 2b or 7. 5004 */ 5005 key = found_key; 5006 while (key.offset < ekey->offset + left_len) { 5007 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5008 right_type = btrfs_file_extent_type(eb, ei); 5009 if (right_type != BTRFS_FILE_EXTENT_REG) { 5010 ret = 0; 5011 goto out; 5012 } 5013 5014 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5015 right_len = btrfs_file_extent_num_bytes(eb, ei); 5016 right_offset = btrfs_file_extent_offset(eb, ei); 5017 right_gen = btrfs_file_extent_generation(eb, ei); 5018 5019 /* 5020 * Are we at extent 8? If yes, we know the extent is changed. 5021 * This may only happen on the first iteration. 5022 */ 5023 if (found_key.offset + right_len <= ekey->offset) { 5024 /* If we're a hole just pretend nothing changed */ 5025 ret = (left_disknr) ? 0 : 1; 5026 goto out; 5027 } 5028 5029 left_offset_fixed = left_offset; 5030 if (key.offset < ekey->offset) { 5031 /* Fix the right offset for 2a and 7. */ 5032 right_offset += ekey->offset - key.offset; 5033 } else { 5034 /* Fix the left offset for all behind 2a and 2b */ 5035 left_offset_fixed += key.offset - ekey->offset; 5036 } 5037 5038 /* 5039 * Check if we have the same extent. 5040 */ 5041 if (left_disknr != right_disknr || 5042 left_offset_fixed != right_offset || 5043 left_gen != right_gen) { 5044 ret = 0; 5045 goto out; 5046 } 5047 5048 /* 5049 * Go to the next extent. 5050 */ 5051 ret = btrfs_next_item(sctx->parent_root, path); 5052 if (ret < 0) 5053 goto out; 5054 if (!ret) { 5055 eb = path->nodes[0]; 5056 slot = path->slots[0]; 5057 btrfs_item_key_to_cpu(eb, &found_key, slot); 5058 } 5059 if (ret || found_key.objectid != key.objectid || 5060 found_key.type != key.type) { 5061 key.offset += right_len; 5062 break; 5063 } 5064 if (found_key.offset != key.offset + right_len) { 5065 ret = 0; 5066 goto out; 5067 } 5068 key = found_key; 5069 } 5070 5071 /* 5072 * We're now behind the left extent (treat as unchanged) or at the end 5073 * of the right side (treat as changed). 5074 */ 5075 if (key.offset >= ekey->offset + left_len) 5076 ret = 1; 5077 else 5078 ret = 0; 5079 5080 5081 out: 5082 btrfs_free_path(path); 5083 return ret; 5084 } 5085 5086 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5087 { 5088 struct btrfs_path *path; 5089 struct btrfs_root *root = sctx->send_root; 5090 struct btrfs_file_extent_item *fi; 5091 struct btrfs_key key; 5092 u64 extent_end; 5093 u8 type; 5094 int ret; 5095 5096 path = alloc_path_for_send(); 5097 if (!path) 5098 return -ENOMEM; 5099 5100 sctx->cur_inode_last_extent = 0; 5101 5102 key.objectid = sctx->cur_ino; 5103 key.type = BTRFS_EXTENT_DATA_KEY; 5104 key.offset = offset; 5105 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5106 if (ret < 0) 5107 goto out; 5108 ret = 0; 5109 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5110 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5111 goto out; 5112 5113 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5114 struct btrfs_file_extent_item); 5115 type = btrfs_file_extent_type(path->nodes[0], fi); 5116 if (type == BTRFS_FILE_EXTENT_INLINE) { 5117 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5118 path->slots[0], fi); 5119 extent_end = ALIGN(key.offset + size, 5120 sctx->send_root->sectorsize); 5121 } else { 5122 extent_end = key.offset + 5123 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5124 } 5125 sctx->cur_inode_last_extent = extent_end; 5126 out: 5127 btrfs_free_path(path); 5128 return ret; 5129 } 5130 5131 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5132 struct btrfs_key *key) 5133 { 5134 struct btrfs_file_extent_item *fi; 5135 u64 extent_end; 5136 u8 type; 5137 int ret = 0; 5138 5139 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5140 return 0; 5141 5142 if (sctx->cur_inode_last_extent == (u64)-1) { 5143 ret = get_last_extent(sctx, key->offset - 1); 5144 if (ret) 5145 return ret; 5146 } 5147 5148 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5149 struct btrfs_file_extent_item); 5150 type = btrfs_file_extent_type(path->nodes[0], fi); 5151 if (type == BTRFS_FILE_EXTENT_INLINE) { 5152 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5153 path->slots[0], fi); 5154 extent_end = ALIGN(key->offset + size, 5155 sctx->send_root->sectorsize); 5156 } else { 5157 extent_end = key->offset + 5158 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5159 } 5160 5161 if (path->slots[0] == 0 && 5162 sctx->cur_inode_last_extent < key->offset) { 5163 /* 5164 * We might have skipped entire leafs that contained only 5165 * file extent items for our current inode. These leafs have 5166 * a generation number smaller (older) than the one in the 5167 * current leaf and the leaf our last extent came from, and 5168 * are located between these 2 leafs. 5169 */ 5170 ret = get_last_extent(sctx, key->offset - 1); 5171 if (ret) 5172 return ret; 5173 } 5174 5175 if (sctx->cur_inode_last_extent < key->offset) 5176 ret = send_hole(sctx, key->offset); 5177 sctx->cur_inode_last_extent = extent_end; 5178 return ret; 5179 } 5180 5181 static int process_extent(struct send_ctx *sctx, 5182 struct btrfs_path *path, 5183 struct btrfs_key *key) 5184 { 5185 struct clone_root *found_clone = NULL; 5186 int ret = 0; 5187 5188 if (S_ISLNK(sctx->cur_inode_mode)) 5189 return 0; 5190 5191 if (sctx->parent_root && !sctx->cur_inode_new) { 5192 ret = is_extent_unchanged(sctx, path, key); 5193 if (ret < 0) 5194 goto out; 5195 if (ret) { 5196 ret = 0; 5197 goto out_hole; 5198 } 5199 } else { 5200 struct btrfs_file_extent_item *ei; 5201 u8 type; 5202 5203 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5204 struct btrfs_file_extent_item); 5205 type = btrfs_file_extent_type(path->nodes[0], ei); 5206 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5207 type == BTRFS_FILE_EXTENT_REG) { 5208 /* 5209 * The send spec does not have a prealloc command yet, 5210 * so just leave a hole for prealloc'ed extents until 5211 * we have enough commands queued up to justify rev'ing 5212 * the send spec. 5213 */ 5214 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5215 ret = 0; 5216 goto out; 5217 } 5218 5219 /* Have a hole, just skip it. */ 5220 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5221 ret = 0; 5222 goto out; 5223 } 5224 } 5225 } 5226 5227 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5228 sctx->cur_inode_size, &found_clone); 5229 if (ret != -ENOENT && ret < 0) 5230 goto out; 5231 5232 ret = send_write_or_clone(sctx, path, key, found_clone); 5233 if (ret) 5234 goto out; 5235 out_hole: 5236 ret = maybe_send_hole(sctx, path, key); 5237 out: 5238 return ret; 5239 } 5240 5241 static int process_all_extents(struct send_ctx *sctx) 5242 { 5243 int ret; 5244 struct btrfs_root *root; 5245 struct btrfs_path *path; 5246 struct btrfs_key key; 5247 struct btrfs_key found_key; 5248 struct extent_buffer *eb; 5249 int slot; 5250 5251 root = sctx->send_root; 5252 path = alloc_path_for_send(); 5253 if (!path) 5254 return -ENOMEM; 5255 5256 key.objectid = sctx->cmp_key->objectid; 5257 key.type = BTRFS_EXTENT_DATA_KEY; 5258 key.offset = 0; 5259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5260 if (ret < 0) 5261 goto out; 5262 5263 while (1) { 5264 eb = path->nodes[0]; 5265 slot = path->slots[0]; 5266 5267 if (slot >= btrfs_header_nritems(eb)) { 5268 ret = btrfs_next_leaf(root, path); 5269 if (ret < 0) { 5270 goto out; 5271 } else if (ret > 0) { 5272 ret = 0; 5273 break; 5274 } 5275 continue; 5276 } 5277 5278 btrfs_item_key_to_cpu(eb, &found_key, slot); 5279 5280 if (found_key.objectid != key.objectid || 5281 found_key.type != key.type) { 5282 ret = 0; 5283 goto out; 5284 } 5285 5286 ret = process_extent(sctx, path, &found_key); 5287 if (ret < 0) 5288 goto out; 5289 5290 path->slots[0]++; 5291 } 5292 5293 out: 5294 btrfs_free_path(path); 5295 return ret; 5296 } 5297 5298 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5299 int *pending_move, 5300 int *refs_processed) 5301 { 5302 int ret = 0; 5303 5304 if (sctx->cur_ino == 0) 5305 goto out; 5306 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5307 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5308 goto out; 5309 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5310 goto out; 5311 5312 ret = process_recorded_refs(sctx, pending_move); 5313 if (ret < 0) 5314 goto out; 5315 5316 *refs_processed = 1; 5317 out: 5318 return ret; 5319 } 5320 5321 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5322 { 5323 int ret = 0; 5324 u64 left_mode; 5325 u64 left_uid; 5326 u64 left_gid; 5327 u64 right_mode; 5328 u64 right_uid; 5329 u64 right_gid; 5330 int need_chmod = 0; 5331 int need_chown = 0; 5332 int pending_move = 0; 5333 int refs_processed = 0; 5334 5335 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5336 &refs_processed); 5337 if (ret < 0) 5338 goto out; 5339 5340 /* 5341 * We have processed the refs and thus need to advance send_progress. 5342 * Now, calls to get_cur_xxx will take the updated refs of the current 5343 * inode into account. 5344 * 5345 * On the other hand, if our current inode is a directory and couldn't 5346 * be moved/renamed because its parent was renamed/moved too and it has 5347 * a higher inode number, we can only move/rename our current inode 5348 * after we moved/renamed its parent. Therefore in this case operate on 5349 * the old path (pre move/rename) of our current inode, and the 5350 * move/rename will be performed later. 5351 */ 5352 if (refs_processed && !pending_move) 5353 sctx->send_progress = sctx->cur_ino + 1; 5354 5355 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5356 goto out; 5357 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5358 goto out; 5359 5360 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5361 &left_mode, &left_uid, &left_gid, NULL); 5362 if (ret < 0) 5363 goto out; 5364 5365 if (!sctx->parent_root || sctx->cur_inode_new) { 5366 need_chown = 1; 5367 if (!S_ISLNK(sctx->cur_inode_mode)) 5368 need_chmod = 1; 5369 } else { 5370 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5371 NULL, NULL, &right_mode, &right_uid, 5372 &right_gid, NULL); 5373 if (ret < 0) 5374 goto out; 5375 5376 if (left_uid != right_uid || left_gid != right_gid) 5377 need_chown = 1; 5378 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5379 need_chmod = 1; 5380 } 5381 5382 if (S_ISREG(sctx->cur_inode_mode)) { 5383 if (need_send_hole(sctx)) { 5384 if (sctx->cur_inode_last_extent == (u64)-1 || 5385 sctx->cur_inode_last_extent < 5386 sctx->cur_inode_size) { 5387 ret = get_last_extent(sctx, (u64)-1); 5388 if (ret) 5389 goto out; 5390 } 5391 if (sctx->cur_inode_last_extent < 5392 sctx->cur_inode_size) { 5393 ret = send_hole(sctx, sctx->cur_inode_size); 5394 if (ret) 5395 goto out; 5396 } 5397 } 5398 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5399 sctx->cur_inode_size); 5400 if (ret < 0) 5401 goto out; 5402 } 5403 5404 if (need_chown) { 5405 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5406 left_uid, left_gid); 5407 if (ret < 0) 5408 goto out; 5409 } 5410 if (need_chmod) { 5411 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5412 left_mode); 5413 if (ret < 0) 5414 goto out; 5415 } 5416 5417 /* 5418 * If other directory inodes depended on our current directory 5419 * inode's move/rename, now do their move/rename operations. 5420 */ 5421 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5422 ret = apply_children_dir_moves(sctx); 5423 if (ret) 5424 goto out; 5425 /* 5426 * Need to send that every time, no matter if it actually 5427 * changed between the two trees as we have done changes to 5428 * the inode before. If our inode is a directory and it's 5429 * waiting to be moved/renamed, we will send its utimes when 5430 * it's moved/renamed, therefore we don't need to do it here. 5431 */ 5432 sctx->send_progress = sctx->cur_ino + 1; 5433 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5434 if (ret < 0) 5435 goto out; 5436 } 5437 5438 out: 5439 return ret; 5440 } 5441 5442 static int changed_inode(struct send_ctx *sctx, 5443 enum btrfs_compare_tree_result result) 5444 { 5445 int ret = 0; 5446 struct btrfs_key *key = sctx->cmp_key; 5447 struct btrfs_inode_item *left_ii = NULL; 5448 struct btrfs_inode_item *right_ii = NULL; 5449 u64 left_gen = 0; 5450 u64 right_gen = 0; 5451 5452 sctx->cur_ino = key->objectid; 5453 sctx->cur_inode_new_gen = 0; 5454 sctx->cur_inode_last_extent = (u64)-1; 5455 5456 /* 5457 * Set send_progress to current inode. This will tell all get_cur_xxx 5458 * functions that the current inode's refs are not updated yet. Later, 5459 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5460 */ 5461 sctx->send_progress = sctx->cur_ino; 5462 5463 if (result == BTRFS_COMPARE_TREE_NEW || 5464 result == BTRFS_COMPARE_TREE_CHANGED) { 5465 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5466 sctx->left_path->slots[0], 5467 struct btrfs_inode_item); 5468 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5469 left_ii); 5470 } else { 5471 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5472 sctx->right_path->slots[0], 5473 struct btrfs_inode_item); 5474 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5475 right_ii); 5476 } 5477 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5478 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5479 sctx->right_path->slots[0], 5480 struct btrfs_inode_item); 5481 5482 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5483 right_ii); 5484 5485 /* 5486 * The cur_ino = root dir case is special here. We can't treat 5487 * the inode as deleted+reused because it would generate a 5488 * stream that tries to delete/mkdir the root dir. 5489 */ 5490 if (left_gen != right_gen && 5491 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5492 sctx->cur_inode_new_gen = 1; 5493 } 5494 5495 if (result == BTRFS_COMPARE_TREE_NEW) { 5496 sctx->cur_inode_gen = left_gen; 5497 sctx->cur_inode_new = 1; 5498 sctx->cur_inode_deleted = 0; 5499 sctx->cur_inode_size = btrfs_inode_size( 5500 sctx->left_path->nodes[0], left_ii); 5501 sctx->cur_inode_mode = btrfs_inode_mode( 5502 sctx->left_path->nodes[0], left_ii); 5503 sctx->cur_inode_rdev = btrfs_inode_rdev( 5504 sctx->left_path->nodes[0], left_ii); 5505 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5506 ret = send_create_inode_if_needed(sctx); 5507 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5508 sctx->cur_inode_gen = right_gen; 5509 sctx->cur_inode_new = 0; 5510 sctx->cur_inode_deleted = 1; 5511 sctx->cur_inode_size = btrfs_inode_size( 5512 sctx->right_path->nodes[0], right_ii); 5513 sctx->cur_inode_mode = btrfs_inode_mode( 5514 sctx->right_path->nodes[0], right_ii); 5515 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5516 /* 5517 * We need to do some special handling in case the inode was 5518 * reported as changed with a changed generation number. This 5519 * means that the original inode was deleted and new inode 5520 * reused the same inum. So we have to treat the old inode as 5521 * deleted and the new one as new. 5522 */ 5523 if (sctx->cur_inode_new_gen) { 5524 /* 5525 * First, process the inode as if it was deleted. 5526 */ 5527 sctx->cur_inode_gen = right_gen; 5528 sctx->cur_inode_new = 0; 5529 sctx->cur_inode_deleted = 1; 5530 sctx->cur_inode_size = btrfs_inode_size( 5531 sctx->right_path->nodes[0], right_ii); 5532 sctx->cur_inode_mode = btrfs_inode_mode( 5533 sctx->right_path->nodes[0], right_ii); 5534 ret = process_all_refs(sctx, 5535 BTRFS_COMPARE_TREE_DELETED); 5536 if (ret < 0) 5537 goto out; 5538 5539 /* 5540 * Now process the inode as if it was new. 5541 */ 5542 sctx->cur_inode_gen = left_gen; 5543 sctx->cur_inode_new = 1; 5544 sctx->cur_inode_deleted = 0; 5545 sctx->cur_inode_size = btrfs_inode_size( 5546 sctx->left_path->nodes[0], left_ii); 5547 sctx->cur_inode_mode = btrfs_inode_mode( 5548 sctx->left_path->nodes[0], left_ii); 5549 sctx->cur_inode_rdev = btrfs_inode_rdev( 5550 sctx->left_path->nodes[0], left_ii); 5551 ret = send_create_inode_if_needed(sctx); 5552 if (ret < 0) 5553 goto out; 5554 5555 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 5556 if (ret < 0) 5557 goto out; 5558 /* 5559 * Advance send_progress now as we did not get into 5560 * process_recorded_refs_if_needed in the new_gen case. 5561 */ 5562 sctx->send_progress = sctx->cur_ino + 1; 5563 5564 /* 5565 * Now process all extents and xattrs of the inode as if 5566 * they were all new. 5567 */ 5568 ret = process_all_extents(sctx); 5569 if (ret < 0) 5570 goto out; 5571 ret = process_all_new_xattrs(sctx); 5572 if (ret < 0) 5573 goto out; 5574 } else { 5575 sctx->cur_inode_gen = left_gen; 5576 sctx->cur_inode_new = 0; 5577 sctx->cur_inode_new_gen = 0; 5578 sctx->cur_inode_deleted = 0; 5579 sctx->cur_inode_size = btrfs_inode_size( 5580 sctx->left_path->nodes[0], left_ii); 5581 sctx->cur_inode_mode = btrfs_inode_mode( 5582 sctx->left_path->nodes[0], left_ii); 5583 } 5584 } 5585 5586 out: 5587 return ret; 5588 } 5589 5590 /* 5591 * We have to process new refs before deleted refs, but compare_trees gives us 5592 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 5593 * first and later process them in process_recorded_refs. 5594 * For the cur_inode_new_gen case, we skip recording completely because 5595 * changed_inode did already initiate processing of refs. The reason for this is 5596 * that in this case, compare_tree actually compares the refs of 2 different 5597 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 5598 * refs of the right tree as deleted and all refs of the left tree as new. 5599 */ 5600 static int changed_ref(struct send_ctx *sctx, 5601 enum btrfs_compare_tree_result result) 5602 { 5603 int ret = 0; 5604 5605 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5606 5607 if (!sctx->cur_inode_new_gen && 5608 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 5609 if (result == BTRFS_COMPARE_TREE_NEW) 5610 ret = record_new_ref(sctx); 5611 else if (result == BTRFS_COMPARE_TREE_DELETED) 5612 ret = record_deleted_ref(sctx); 5613 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5614 ret = record_changed_ref(sctx); 5615 } 5616 5617 return ret; 5618 } 5619 5620 /* 5621 * Process new/deleted/changed xattrs. We skip processing in the 5622 * cur_inode_new_gen case because changed_inode did already initiate processing 5623 * of xattrs. The reason is the same as in changed_ref 5624 */ 5625 static int changed_xattr(struct send_ctx *sctx, 5626 enum btrfs_compare_tree_result result) 5627 { 5628 int ret = 0; 5629 5630 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5631 5632 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5633 if (result == BTRFS_COMPARE_TREE_NEW) 5634 ret = process_new_xattr(sctx); 5635 else if (result == BTRFS_COMPARE_TREE_DELETED) 5636 ret = process_deleted_xattr(sctx); 5637 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5638 ret = process_changed_xattr(sctx); 5639 } 5640 5641 return ret; 5642 } 5643 5644 /* 5645 * Process new/deleted/changed extents. We skip processing in the 5646 * cur_inode_new_gen case because changed_inode did already initiate processing 5647 * of extents. The reason is the same as in changed_ref 5648 */ 5649 static int changed_extent(struct send_ctx *sctx, 5650 enum btrfs_compare_tree_result result) 5651 { 5652 int ret = 0; 5653 5654 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5655 5656 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5657 if (result != BTRFS_COMPARE_TREE_DELETED) 5658 ret = process_extent(sctx, sctx->left_path, 5659 sctx->cmp_key); 5660 } 5661 5662 return ret; 5663 } 5664 5665 static int dir_changed(struct send_ctx *sctx, u64 dir) 5666 { 5667 u64 orig_gen, new_gen; 5668 int ret; 5669 5670 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 5671 NULL, NULL); 5672 if (ret) 5673 return ret; 5674 5675 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 5676 NULL, NULL, NULL); 5677 if (ret) 5678 return ret; 5679 5680 return (orig_gen != new_gen) ? 1 : 0; 5681 } 5682 5683 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 5684 struct btrfs_key *key) 5685 { 5686 struct btrfs_inode_extref *extref; 5687 struct extent_buffer *leaf; 5688 u64 dirid = 0, last_dirid = 0; 5689 unsigned long ptr; 5690 u32 item_size; 5691 u32 cur_offset = 0; 5692 int ref_name_len; 5693 int ret = 0; 5694 5695 /* Easy case, just check this one dirid */ 5696 if (key->type == BTRFS_INODE_REF_KEY) { 5697 dirid = key->offset; 5698 5699 ret = dir_changed(sctx, dirid); 5700 goto out; 5701 } 5702 5703 leaf = path->nodes[0]; 5704 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 5705 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 5706 while (cur_offset < item_size) { 5707 extref = (struct btrfs_inode_extref *)(ptr + 5708 cur_offset); 5709 dirid = btrfs_inode_extref_parent(leaf, extref); 5710 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 5711 cur_offset += ref_name_len + sizeof(*extref); 5712 if (dirid == last_dirid) 5713 continue; 5714 ret = dir_changed(sctx, dirid); 5715 if (ret) 5716 break; 5717 last_dirid = dirid; 5718 } 5719 out: 5720 return ret; 5721 } 5722 5723 /* 5724 * Updates compare related fields in sctx and simply forwards to the actual 5725 * changed_xxx functions. 5726 */ 5727 static int changed_cb(struct btrfs_root *left_root, 5728 struct btrfs_root *right_root, 5729 struct btrfs_path *left_path, 5730 struct btrfs_path *right_path, 5731 struct btrfs_key *key, 5732 enum btrfs_compare_tree_result result, 5733 void *ctx) 5734 { 5735 int ret = 0; 5736 struct send_ctx *sctx = ctx; 5737 5738 if (result == BTRFS_COMPARE_TREE_SAME) { 5739 if (key->type == BTRFS_INODE_REF_KEY || 5740 key->type == BTRFS_INODE_EXTREF_KEY) { 5741 ret = compare_refs(sctx, left_path, key); 5742 if (!ret) 5743 return 0; 5744 if (ret < 0) 5745 return ret; 5746 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 5747 return maybe_send_hole(sctx, left_path, key); 5748 } else { 5749 return 0; 5750 } 5751 result = BTRFS_COMPARE_TREE_CHANGED; 5752 ret = 0; 5753 } 5754 5755 sctx->left_path = left_path; 5756 sctx->right_path = right_path; 5757 sctx->cmp_key = key; 5758 5759 ret = finish_inode_if_needed(sctx, 0); 5760 if (ret < 0) 5761 goto out; 5762 5763 /* Ignore non-FS objects */ 5764 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 5765 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 5766 goto out; 5767 5768 if (key->type == BTRFS_INODE_ITEM_KEY) 5769 ret = changed_inode(sctx, result); 5770 else if (key->type == BTRFS_INODE_REF_KEY || 5771 key->type == BTRFS_INODE_EXTREF_KEY) 5772 ret = changed_ref(sctx, result); 5773 else if (key->type == BTRFS_XATTR_ITEM_KEY) 5774 ret = changed_xattr(sctx, result); 5775 else if (key->type == BTRFS_EXTENT_DATA_KEY) 5776 ret = changed_extent(sctx, result); 5777 5778 out: 5779 return ret; 5780 } 5781 5782 static int full_send_tree(struct send_ctx *sctx) 5783 { 5784 int ret; 5785 struct btrfs_root *send_root = sctx->send_root; 5786 struct btrfs_key key; 5787 struct btrfs_key found_key; 5788 struct btrfs_path *path; 5789 struct extent_buffer *eb; 5790 int slot; 5791 5792 path = alloc_path_for_send(); 5793 if (!path) 5794 return -ENOMEM; 5795 5796 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 5797 key.type = BTRFS_INODE_ITEM_KEY; 5798 key.offset = 0; 5799 5800 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 5801 if (ret < 0) 5802 goto out; 5803 if (ret) 5804 goto out_finish; 5805 5806 while (1) { 5807 eb = path->nodes[0]; 5808 slot = path->slots[0]; 5809 btrfs_item_key_to_cpu(eb, &found_key, slot); 5810 5811 ret = changed_cb(send_root, NULL, path, NULL, 5812 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 5813 if (ret < 0) 5814 goto out; 5815 5816 key.objectid = found_key.objectid; 5817 key.type = found_key.type; 5818 key.offset = found_key.offset + 1; 5819 5820 ret = btrfs_next_item(send_root, path); 5821 if (ret < 0) 5822 goto out; 5823 if (ret) { 5824 ret = 0; 5825 break; 5826 } 5827 } 5828 5829 out_finish: 5830 ret = finish_inode_if_needed(sctx, 1); 5831 5832 out: 5833 btrfs_free_path(path); 5834 return ret; 5835 } 5836 5837 static int send_subvol(struct send_ctx *sctx) 5838 { 5839 int ret; 5840 5841 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 5842 ret = send_header(sctx); 5843 if (ret < 0) 5844 goto out; 5845 } 5846 5847 ret = send_subvol_begin(sctx); 5848 if (ret < 0) 5849 goto out; 5850 5851 if (sctx->parent_root) { 5852 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 5853 changed_cb, sctx); 5854 if (ret < 0) 5855 goto out; 5856 ret = finish_inode_if_needed(sctx, 1); 5857 if (ret < 0) 5858 goto out; 5859 } else { 5860 ret = full_send_tree(sctx); 5861 if (ret < 0) 5862 goto out; 5863 } 5864 5865 out: 5866 free_recorded_refs(sctx); 5867 return ret; 5868 } 5869 5870 /* 5871 * If orphan cleanup did remove any orphans from a root, it means the tree 5872 * was modified and therefore the commit root is not the same as the current 5873 * root anymore. This is a problem, because send uses the commit root and 5874 * therefore can see inode items that don't exist in the current root anymore, 5875 * and for example make calls to btrfs_iget, which will do tree lookups based 5876 * on the current root and not on the commit root. Those lookups will fail, 5877 * returning a -ESTALE error, and making send fail with that error. So make 5878 * sure a send does not see any orphans we have just removed, and that it will 5879 * see the same inodes regardless of whether a transaction commit happened 5880 * before it started (meaning that the commit root will be the same as the 5881 * current root) or not. 5882 */ 5883 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 5884 { 5885 int i; 5886 struct btrfs_trans_handle *trans = NULL; 5887 5888 again: 5889 if (sctx->parent_root && 5890 sctx->parent_root->node != sctx->parent_root->commit_root) 5891 goto commit_trans; 5892 5893 for (i = 0; i < sctx->clone_roots_cnt; i++) 5894 if (sctx->clone_roots[i].root->node != 5895 sctx->clone_roots[i].root->commit_root) 5896 goto commit_trans; 5897 5898 if (trans) 5899 return btrfs_end_transaction(trans, sctx->send_root); 5900 5901 return 0; 5902 5903 commit_trans: 5904 /* Use any root, all fs roots will get their commit roots updated. */ 5905 if (!trans) { 5906 trans = btrfs_join_transaction(sctx->send_root); 5907 if (IS_ERR(trans)) 5908 return PTR_ERR(trans); 5909 goto again; 5910 } 5911 5912 return btrfs_commit_transaction(trans, sctx->send_root); 5913 } 5914 5915 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 5916 { 5917 spin_lock(&root->root_item_lock); 5918 root->send_in_progress--; 5919 /* 5920 * Not much left to do, we don't know why it's unbalanced and 5921 * can't blindly reset it to 0. 5922 */ 5923 if (root->send_in_progress < 0) 5924 btrfs_err(root->fs_info, 5925 "send_in_progres unbalanced %d root %llu", 5926 root->send_in_progress, root->root_key.objectid); 5927 spin_unlock(&root->root_item_lock); 5928 } 5929 5930 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 5931 { 5932 int ret = 0; 5933 struct btrfs_root *send_root; 5934 struct btrfs_root *clone_root; 5935 struct btrfs_fs_info *fs_info; 5936 struct btrfs_ioctl_send_args *arg = NULL; 5937 struct btrfs_key key; 5938 struct send_ctx *sctx = NULL; 5939 u32 i; 5940 u64 *clone_sources_tmp = NULL; 5941 int clone_sources_to_rollback = 0; 5942 unsigned alloc_size; 5943 int sort_clone_roots = 0; 5944 int index; 5945 5946 if (!capable(CAP_SYS_ADMIN)) 5947 return -EPERM; 5948 5949 send_root = BTRFS_I(file_inode(mnt_file))->root; 5950 fs_info = send_root->fs_info; 5951 5952 /* 5953 * The subvolume must remain read-only during send, protect against 5954 * making it RW. This also protects against deletion. 5955 */ 5956 spin_lock(&send_root->root_item_lock); 5957 send_root->send_in_progress++; 5958 spin_unlock(&send_root->root_item_lock); 5959 5960 /* 5961 * This is done when we lookup the root, it should already be complete 5962 * by the time we get here. 5963 */ 5964 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 5965 5966 /* 5967 * Userspace tools do the checks and warn the user if it's 5968 * not RO. 5969 */ 5970 if (!btrfs_root_readonly(send_root)) { 5971 ret = -EPERM; 5972 goto out; 5973 } 5974 5975 arg = memdup_user(arg_, sizeof(*arg)); 5976 if (IS_ERR(arg)) { 5977 ret = PTR_ERR(arg); 5978 arg = NULL; 5979 goto out; 5980 } 5981 5982 if (arg->clone_sources_count > 5983 ULLONG_MAX / sizeof(*arg->clone_sources)) { 5984 ret = -EINVAL; 5985 goto out; 5986 } 5987 5988 if (!access_ok(VERIFY_READ, arg->clone_sources, 5989 sizeof(*arg->clone_sources) * 5990 arg->clone_sources_count)) { 5991 ret = -EFAULT; 5992 goto out; 5993 } 5994 5995 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 5996 ret = -EINVAL; 5997 goto out; 5998 } 5999 6000 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 6001 if (!sctx) { 6002 ret = -ENOMEM; 6003 goto out; 6004 } 6005 6006 INIT_LIST_HEAD(&sctx->new_refs); 6007 INIT_LIST_HEAD(&sctx->deleted_refs); 6008 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 6009 INIT_LIST_HEAD(&sctx->name_cache_list); 6010 6011 sctx->flags = arg->flags; 6012 6013 sctx->send_filp = fget(arg->send_fd); 6014 if (!sctx->send_filp) { 6015 ret = -EBADF; 6016 goto out; 6017 } 6018 6019 sctx->send_root = send_root; 6020 /* 6021 * Unlikely but possible, if the subvolume is marked for deletion but 6022 * is slow to remove the directory entry, send can still be started 6023 */ 6024 if (btrfs_root_dead(sctx->send_root)) { 6025 ret = -EPERM; 6026 goto out; 6027 } 6028 6029 sctx->clone_roots_cnt = arg->clone_sources_count; 6030 6031 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 6032 sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN); 6033 if (!sctx->send_buf) { 6034 sctx->send_buf = vmalloc(sctx->send_max_size); 6035 if (!sctx->send_buf) { 6036 ret = -ENOMEM; 6037 goto out; 6038 } 6039 } 6040 6041 sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN); 6042 if (!sctx->read_buf) { 6043 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 6044 if (!sctx->read_buf) { 6045 ret = -ENOMEM; 6046 goto out; 6047 } 6048 } 6049 6050 sctx->pending_dir_moves = RB_ROOT; 6051 sctx->waiting_dir_moves = RB_ROOT; 6052 sctx->orphan_dirs = RB_ROOT; 6053 6054 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 6055 6056 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN); 6057 if (!sctx->clone_roots) { 6058 sctx->clone_roots = vzalloc(alloc_size); 6059 if (!sctx->clone_roots) { 6060 ret = -ENOMEM; 6061 goto out; 6062 } 6063 } 6064 6065 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 6066 6067 if (arg->clone_sources_count) { 6068 clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN); 6069 if (!clone_sources_tmp) { 6070 clone_sources_tmp = vmalloc(alloc_size); 6071 if (!clone_sources_tmp) { 6072 ret = -ENOMEM; 6073 goto out; 6074 } 6075 } 6076 6077 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 6078 alloc_size); 6079 if (ret) { 6080 ret = -EFAULT; 6081 goto out; 6082 } 6083 6084 for (i = 0; i < arg->clone_sources_count; i++) { 6085 key.objectid = clone_sources_tmp[i]; 6086 key.type = BTRFS_ROOT_ITEM_KEY; 6087 key.offset = (u64)-1; 6088 6089 index = srcu_read_lock(&fs_info->subvol_srcu); 6090 6091 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 6092 if (IS_ERR(clone_root)) { 6093 srcu_read_unlock(&fs_info->subvol_srcu, index); 6094 ret = PTR_ERR(clone_root); 6095 goto out; 6096 } 6097 spin_lock(&clone_root->root_item_lock); 6098 if (!btrfs_root_readonly(clone_root) || 6099 btrfs_root_dead(clone_root)) { 6100 spin_unlock(&clone_root->root_item_lock); 6101 srcu_read_unlock(&fs_info->subvol_srcu, index); 6102 ret = -EPERM; 6103 goto out; 6104 } 6105 clone_root->send_in_progress++; 6106 spin_unlock(&clone_root->root_item_lock); 6107 srcu_read_unlock(&fs_info->subvol_srcu, index); 6108 6109 sctx->clone_roots[i].root = clone_root; 6110 clone_sources_to_rollback = i + 1; 6111 } 6112 kvfree(clone_sources_tmp); 6113 clone_sources_tmp = NULL; 6114 } 6115 6116 if (arg->parent_root) { 6117 key.objectid = arg->parent_root; 6118 key.type = BTRFS_ROOT_ITEM_KEY; 6119 key.offset = (u64)-1; 6120 6121 index = srcu_read_lock(&fs_info->subvol_srcu); 6122 6123 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 6124 if (IS_ERR(sctx->parent_root)) { 6125 srcu_read_unlock(&fs_info->subvol_srcu, index); 6126 ret = PTR_ERR(sctx->parent_root); 6127 goto out; 6128 } 6129 6130 spin_lock(&sctx->parent_root->root_item_lock); 6131 sctx->parent_root->send_in_progress++; 6132 if (!btrfs_root_readonly(sctx->parent_root) || 6133 btrfs_root_dead(sctx->parent_root)) { 6134 spin_unlock(&sctx->parent_root->root_item_lock); 6135 srcu_read_unlock(&fs_info->subvol_srcu, index); 6136 ret = -EPERM; 6137 goto out; 6138 } 6139 spin_unlock(&sctx->parent_root->root_item_lock); 6140 6141 srcu_read_unlock(&fs_info->subvol_srcu, index); 6142 } 6143 6144 /* 6145 * Clones from send_root are allowed, but only if the clone source 6146 * is behind the current send position. This is checked while searching 6147 * for possible clone sources. 6148 */ 6149 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 6150 6151 /* We do a bsearch later */ 6152 sort(sctx->clone_roots, sctx->clone_roots_cnt, 6153 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 6154 NULL); 6155 sort_clone_roots = 1; 6156 6157 ret = ensure_commit_roots_uptodate(sctx); 6158 if (ret) 6159 goto out; 6160 6161 current->journal_info = BTRFS_SEND_TRANS_STUB; 6162 ret = send_subvol(sctx); 6163 current->journal_info = NULL; 6164 if (ret < 0) 6165 goto out; 6166 6167 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 6168 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 6169 if (ret < 0) 6170 goto out; 6171 ret = send_cmd(sctx); 6172 if (ret < 0) 6173 goto out; 6174 } 6175 6176 out: 6177 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 6178 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 6179 struct rb_node *n; 6180 struct pending_dir_move *pm; 6181 6182 n = rb_first(&sctx->pending_dir_moves); 6183 pm = rb_entry(n, struct pending_dir_move, node); 6184 while (!list_empty(&pm->list)) { 6185 struct pending_dir_move *pm2; 6186 6187 pm2 = list_first_entry(&pm->list, 6188 struct pending_dir_move, list); 6189 free_pending_move(sctx, pm2); 6190 } 6191 free_pending_move(sctx, pm); 6192 } 6193 6194 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 6195 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 6196 struct rb_node *n; 6197 struct waiting_dir_move *dm; 6198 6199 n = rb_first(&sctx->waiting_dir_moves); 6200 dm = rb_entry(n, struct waiting_dir_move, node); 6201 rb_erase(&dm->node, &sctx->waiting_dir_moves); 6202 kfree(dm); 6203 } 6204 6205 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 6206 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 6207 struct rb_node *n; 6208 struct orphan_dir_info *odi; 6209 6210 n = rb_first(&sctx->orphan_dirs); 6211 odi = rb_entry(n, struct orphan_dir_info, node); 6212 free_orphan_dir_info(sctx, odi); 6213 } 6214 6215 if (sort_clone_roots) { 6216 for (i = 0; i < sctx->clone_roots_cnt; i++) 6217 btrfs_root_dec_send_in_progress( 6218 sctx->clone_roots[i].root); 6219 } else { 6220 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 6221 btrfs_root_dec_send_in_progress( 6222 sctx->clone_roots[i].root); 6223 6224 btrfs_root_dec_send_in_progress(send_root); 6225 } 6226 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 6227 btrfs_root_dec_send_in_progress(sctx->parent_root); 6228 6229 kfree(arg); 6230 kvfree(clone_sources_tmp); 6231 6232 if (sctx) { 6233 if (sctx->send_filp) 6234 fput(sctx->send_filp); 6235 6236 kvfree(sctx->clone_roots); 6237 kvfree(sctx->send_buf); 6238 kvfree(sctx->read_buf); 6239 6240 name_cache_free(sctx); 6241 6242 kfree(sctx); 6243 } 6244 6245 return ret; 6246 } 6247