xref: /openbmc/linux/fs/btrfs/send.c (revision 6a613ac6)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 
55 			char *buf;
56 			unsigned short buf_len:15;
57 			unsigned short reversed:1;
58 			char inline_buf[];
59 		};
60 		/*
61 		 * Average path length does not exceed 200 bytes, we'll have
62 		 * better packing in the slab and higher chance to satisfy
63 		 * a allocation later during send.
64 		 */
65 		char pad[256];
66 	};
67 };
68 #define FS_PATH_INLINE_SIZE \
69 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 
71 
72 /* reused for each extent */
73 struct clone_root {
74 	struct btrfs_root *root;
75 	u64 ino;
76 	u64 offset;
77 
78 	u64 found_refs;
79 };
80 
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 
84 struct send_ctx {
85 	struct file *send_filp;
86 	loff_t send_off;
87 	char *send_buf;
88 	u32 send_size;
89 	u32 send_max_size;
90 	u64 total_send_size;
91 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 
94 	struct btrfs_root *send_root;
95 	struct btrfs_root *parent_root;
96 	struct clone_root *clone_roots;
97 	int clone_roots_cnt;
98 
99 	/* current state of the compare_tree call */
100 	struct btrfs_path *left_path;
101 	struct btrfs_path *right_path;
102 	struct btrfs_key *cmp_key;
103 
104 	/*
105 	 * infos of the currently processed inode. In case of deleted inodes,
106 	 * these are the values from the deleted inode.
107 	 */
108 	u64 cur_ino;
109 	u64 cur_inode_gen;
110 	int cur_inode_new;
111 	int cur_inode_new_gen;
112 	int cur_inode_deleted;
113 	u64 cur_inode_size;
114 	u64 cur_inode_mode;
115 	u64 cur_inode_rdev;
116 	u64 cur_inode_last_extent;
117 
118 	u64 send_progress;
119 
120 	struct list_head new_refs;
121 	struct list_head deleted_refs;
122 
123 	struct radix_tree_root name_cache;
124 	struct list_head name_cache_list;
125 	int name_cache_size;
126 
127 	struct file_ra_state ra;
128 
129 	char *read_buf;
130 
131 	/*
132 	 * We process inodes by their increasing order, so if before an
133 	 * incremental send we reverse the parent/child relationship of
134 	 * directories such that a directory with a lower inode number was
135 	 * the parent of a directory with a higher inode number, and the one
136 	 * becoming the new parent got renamed too, we can't rename/move the
137 	 * directory with lower inode number when we finish processing it - we
138 	 * must process the directory with higher inode number first, then
139 	 * rename/move it and then rename/move the directory with lower inode
140 	 * number. Example follows.
141 	 *
142 	 * Tree state when the first send was performed:
143 	 *
144 	 * .
145 	 * |-- a                   (ino 257)
146 	 *     |-- b               (ino 258)
147 	 *         |
148 	 *         |
149 	 *         |-- c           (ino 259)
150 	 *         |   |-- d       (ino 260)
151 	 *         |
152 	 *         |-- c2          (ino 261)
153 	 *
154 	 * Tree state when the second (incremental) send is performed:
155 	 *
156 	 * .
157 	 * |-- a                   (ino 257)
158 	 *     |-- b               (ino 258)
159 	 *         |-- c2          (ino 261)
160 	 *             |-- d2      (ino 260)
161 	 *                 |-- cc  (ino 259)
162 	 *
163 	 * The sequence of steps that lead to the second state was:
164 	 *
165 	 * mv /a/b/c/d /a/b/c2/d2
166 	 * mv /a/b/c /a/b/c2/d2/cc
167 	 *
168 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 	 * before we move "d", which has higher inode number.
170 	 *
171 	 * So we just memorize which move/rename operations must be performed
172 	 * later when their respective parent is processed and moved/renamed.
173 	 */
174 
175 	/* Indexed by parent directory inode number. */
176 	struct rb_root pending_dir_moves;
177 
178 	/*
179 	 * Reverse index, indexed by the inode number of a directory that
180 	 * is waiting for the move/rename of its immediate parent before its
181 	 * own move/rename can be performed.
182 	 */
183 	struct rb_root waiting_dir_moves;
184 
185 	/*
186 	 * A directory that is going to be rm'ed might have a child directory
187 	 * which is in the pending directory moves index above. In this case,
188 	 * the directory can only be removed after the move/rename of its child
189 	 * is performed. Example:
190 	 *
191 	 * Parent snapshot:
192 	 *
193 	 * .                        (ino 256)
194 	 * |-- a/                   (ino 257)
195 	 *     |-- b/               (ino 258)
196 	 *         |-- c/           (ino 259)
197 	 *         |   |-- x/       (ino 260)
198 	 *         |
199 	 *         |-- y/           (ino 261)
200 	 *
201 	 * Send snapshot:
202 	 *
203 	 * .                        (ino 256)
204 	 * |-- a/                   (ino 257)
205 	 *     |-- b/               (ino 258)
206 	 *         |-- YY/          (ino 261)
207 	 *              |-- x/      (ino 260)
208 	 *
209 	 * Sequence of steps that lead to the send snapshot:
210 	 * rm -f /a/b/c/foo.txt
211 	 * mv /a/b/y /a/b/YY
212 	 * mv /a/b/c/x /a/b/YY
213 	 * rmdir /a/b/c
214 	 *
215 	 * When the child is processed, its move/rename is delayed until its
216 	 * parent is processed (as explained above), but all other operations
217 	 * like update utimes, chown, chgrp, etc, are performed and the paths
218 	 * that it uses for those operations must use the orphanized name of
219 	 * its parent (the directory we're going to rm later), so we need to
220 	 * memorize that name.
221 	 *
222 	 * Indexed by the inode number of the directory to be deleted.
223 	 */
224 	struct rb_root orphan_dirs;
225 };
226 
227 struct pending_dir_move {
228 	struct rb_node node;
229 	struct list_head list;
230 	u64 parent_ino;
231 	u64 ino;
232 	u64 gen;
233 	bool is_orphan;
234 	struct list_head update_refs;
235 };
236 
237 struct waiting_dir_move {
238 	struct rb_node node;
239 	u64 ino;
240 	/*
241 	 * There might be some directory that could not be removed because it
242 	 * was waiting for this directory inode to be moved first. Therefore
243 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 	 */
245 	u64 rmdir_ino;
246 	bool orphanized;
247 };
248 
249 struct orphan_dir_info {
250 	struct rb_node node;
251 	u64 ino;
252 	u64 gen;
253 };
254 
255 struct name_cache_entry {
256 	struct list_head list;
257 	/*
258 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 	 * more then one inum would fall into the same entry, we use radix_list
261 	 * to store the additional entries. radix_list is also used to store
262 	 * entries where two entries have the same inum but different
263 	 * generations.
264 	 */
265 	struct list_head radix_list;
266 	u64 ino;
267 	u64 gen;
268 	u64 parent_ino;
269 	u64 parent_gen;
270 	int ret;
271 	int need_later_update;
272 	int name_len;
273 	char name[];
274 };
275 
276 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
277 
278 static struct waiting_dir_move *
279 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
280 
281 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
282 
283 static int need_send_hole(struct send_ctx *sctx)
284 {
285 	return (sctx->parent_root && !sctx->cur_inode_new &&
286 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287 		S_ISREG(sctx->cur_inode_mode));
288 }
289 
290 static void fs_path_reset(struct fs_path *p)
291 {
292 	if (p->reversed) {
293 		p->start = p->buf + p->buf_len - 1;
294 		p->end = p->start;
295 		*p->start = 0;
296 	} else {
297 		p->start = p->buf;
298 		p->end = p->start;
299 		*p->start = 0;
300 	}
301 }
302 
303 static struct fs_path *fs_path_alloc(void)
304 {
305 	struct fs_path *p;
306 
307 	p = kmalloc(sizeof(*p), GFP_NOFS);
308 	if (!p)
309 		return NULL;
310 	p->reversed = 0;
311 	p->buf = p->inline_buf;
312 	p->buf_len = FS_PATH_INLINE_SIZE;
313 	fs_path_reset(p);
314 	return p;
315 }
316 
317 static struct fs_path *fs_path_alloc_reversed(void)
318 {
319 	struct fs_path *p;
320 
321 	p = fs_path_alloc();
322 	if (!p)
323 		return NULL;
324 	p->reversed = 1;
325 	fs_path_reset(p);
326 	return p;
327 }
328 
329 static void fs_path_free(struct fs_path *p)
330 {
331 	if (!p)
332 		return;
333 	if (p->buf != p->inline_buf)
334 		kfree(p->buf);
335 	kfree(p);
336 }
337 
338 static int fs_path_len(struct fs_path *p)
339 {
340 	return p->end - p->start;
341 }
342 
343 static int fs_path_ensure_buf(struct fs_path *p, int len)
344 {
345 	char *tmp_buf;
346 	int path_len;
347 	int old_buf_len;
348 
349 	len++;
350 
351 	if (p->buf_len >= len)
352 		return 0;
353 
354 	if (len > PATH_MAX) {
355 		WARN_ON(1);
356 		return -ENOMEM;
357 	}
358 
359 	path_len = p->end - p->start;
360 	old_buf_len = p->buf_len;
361 
362 	/*
363 	 * First time the inline_buf does not suffice
364 	 */
365 	if (p->buf == p->inline_buf) {
366 		tmp_buf = kmalloc(len, GFP_NOFS);
367 		if (tmp_buf)
368 			memcpy(tmp_buf, p->buf, old_buf_len);
369 	} else {
370 		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
371 	}
372 	if (!tmp_buf)
373 		return -ENOMEM;
374 	p->buf = tmp_buf;
375 	/*
376 	 * The real size of the buffer is bigger, this will let the fast path
377 	 * happen most of the time
378 	 */
379 	p->buf_len = ksize(p->buf);
380 
381 	if (p->reversed) {
382 		tmp_buf = p->buf + old_buf_len - path_len - 1;
383 		p->end = p->buf + p->buf_len - 1;
384 		p->start = p->end - path_len;
385 		memmove(p->start, tmp_buf, path_len + 1);
386 	} else {
387 		p->start = p->buf;
388 		p->end = p->start + path_len;
389 	}
390 	return 0;
391 }
392 
393 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
394 				   char **prepared)
395 {
396 	int ret;
397 	int new_len;
398 
399 	new_len = p->end - p->start + name_len;
400 	if (p->start != p->end)
401 		new_len++;
402 	ret = fs_path_ensure_buf(p, new_len);
403 	if (ret < 0)
404 		goto out;
405 
406 	if (p->reversed) {
407 		if (p->start != p->end)
408 			*--p->start = '/';
409 		p->start -= name_len;
410 		*prepared = p->start;
411 	} else {
412 		if (p->start != p->end)
413 			*p->end++ = '/';
414 		*prepared = p->end;
415 		p->end += name_len;
416 		*p->end = 0;
417 	}
418 
419 out:
420 	return ret;
421 }
422 
423 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
424 {
425 	int ret;
426 	char *prepared;
427 
428 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
429 	if (ret < 0)
430 		goto out;
431 	memcpy(prepared, name, name_len);
432 
433 out:
434 	return ret;
435 }
436 
437 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
438 {
439 	int ret;
440 	char *prepared;
441 
442 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
443 	if (ret < 0)
444 		goto out;
445 	memcpy(prepared, p2->start, p2->end - p2->start);
446 
447 out:
448 	return ret;
449 }
450 
451 static int fs_path_add_from_extent_buffer(struct fs_path *p,
452 					  struct extent_buffer *eb,
453 					  unsigned long off, int len)
454 {
455 	int ret;
456 	char *prepared;
457 
458 	ret = fs_path_prepare_for_add(p, len, &prepared);
459 	if (ret < 0)
460 		goto out;
461 
462 	read_extent_buffer(eb, prepared, off, len);
463 
464 out:
465 	return ret;
466 }
467 
468 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
469 {
470 	int ret;
471 
472 	p->reversed = from->reversed;
473 	fs_path_reset(p);
474 
475 	ret = fs_path_add_path(p, from);
476 
477 	return ret;
478 }
479 
480 
481 static void fs_path_unreverse(struct fs_path *p)
482 {
483 	char *tmp;
484 	int len;
485 
486 	if (!p->reversed)
487 		return;
488 
489 	tmp = p->start;
490 	len = p->end - p->start;
491 	p->start = p->buf;
492 	p->end = p->start + len;
493 	memmove(p->start, tmp, len + 1);
494 	p->reversed = 0;
495 }
496 
497 static struct btrfs_path *alloc_path_for_send(void)
498 {
499 	struct btrfs_path *path;
500 
501 	path = btrfs_alloc_path();
502 	if (!path)
503 		return NULL;
504 	path->search_commit_root = 1;
505 	path->skip_locking = 1;
506 	path->need_commit_sem = 1;
507 	return path;
508 }
509 
510 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
511 {
512 	int ret;
513 	mm_segment_t old_fs;
514 	u32 pos = 0;
515 
516 	old_fs = get_fs();
517 	set_fs(KERNEL_DS);
518 
519 	while (pos < len) {
520 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
521 				len - pos, off);
522 		/* TODO handle that correctly */
523 		/*if (ret == -ERESTARTSYS) {
524 			continue;
525 		}*/
526 		if (ret < 0)
527 			goto out;
528 		if (ret == 0) {
529 			ret = -EIO;
530 			goto out;
531 		}
532 		pos += ret;
533 	}
534 
535 	ret = 0;
536 
537 out:
538 	set_fs(old_fs);
539 	return ret;
540 }
541 
542 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
543 {
544 	struct btrfs_tlv_header *hdr;
545 	int total_len = sizeof(*hdr) + len;
546 	int left = sctx->send_max_size - sctx->send_size;
547 
548 	if (unlikely(left < total_len))
549 		return -EOVERFLOW;
550 
551 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552 	hdr->tlv_type = cpu_to_le16(attr);
553 	hdr->tlv_len = cpu_to_le16(len);
554 	memcpy(hdr + 1, data, len);
555 	sctx->send_size += total_len;
556 
557 	return 0;
558 }
559 
560 #define TLV_PUT_DEFINE_INT(bits) \
561 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
562 			u##bits attr, u##bits value)			\
563 	{								\
564 		__le##bits __tmp = cpu_to_le##bits(value);		\
565 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
566 	}
567 
568 TLV_PUT_DEFINE_INT(64)
569 
570 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571 			  const char *str, int len)
572 {
573 	if (len == -1)
574 		len = strlen(str);
575 	return tlv_put(sctx, attr, str, len);
576 }
577 
578 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
579 			const u8 *uuid)
580 {
581 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
582 }
583 
584 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585 				  struct extent_buffer *eb,
586 				  struct btrfs_timespec *ts)
587 {
588 	struct btrfs_timespec bts;
589 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590 	return tlv_put(sctx, attr, &bts, sizeof(bts));
591 }
592 
593 
594 #define TLV_PUT(sctx, attrtype, attrlen, data) \
595 	do { \
596 		ret = tlv_put(sctx, attrtype, attrlen, data); \
597 		if (ret < 0) \
598 			goto tlv_put_failure; \
599 	} while (0)
600 
601 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
602 	do { \
603 		ret = tlv_put_u##bits(sctx, attrtype, value); \
604 		if (ret < 0) \
605 			goto tlv_put_failure; \
606 	} while (0)
607 
608 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
613 	do { \
614 		ret = tlv_put_string(sctx, attrtype, str, len); \
615 		if (ret < 0) \
616 			goto tlv_put_failure; \
617 	} while (0)
618 #define TLV_PUT_PATH(sctx, attrtype, p) \
619 	do { \
620 		ret = tlv_put_string(sctx, attrtype, p->start, \
621 			p->end - p->start); \
622 		if (ret < 0) \
623 			goto tlv_put_failure; \
624 	} while(0)
625 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
626 	do { \
627 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
628 		if (ret < 0) \
629 			goto tlv_put_failure; \
630 	} while (0)
631 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
632 	do { \
633 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
634 		if (ret < 0) \
635 			goto tlv_put_failure; \
636 	} while (0)
637 
638 static int send_header(struct send_ctx *sctx)
639 {
640 	struct btrfs_stream_header hdr;
641 
642 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
644 
645 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
646 					&sctx->send_off);
647 }
648 
649 /*
650  * For each command/item we want to send to userspace, we call this function.
651  */
652 static int begin_cmd(struct send_ctx *sctx, int cmd)
653 {
654 	struct btrfs_cmd_header *hdr;
655 
656 	if (WARN_ON(!sctx->send_buf))
657 		return -EINVAL;
658 
659 	BUG_ON(sctx->send_size);
660 
661 	sctx->send_size += sizeof(*hdr);
662 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 	hdr->cmd = cpu_to_le16(cmd);
664 
665 	return 0;
666 }
667 
668 static int send_cmd(struct send_ctx *sctx)
669 {
670 	int ret;
671 	struct btrfs_cmd_header *hdr;
672 	u32 crc;
673 
674 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
676 	hdr->crc = 0;
677 
678 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
679 	hdr->crc = cpu_to_le32(crc);
680 
681 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
682 					&sctx->send_off);
683 
684 	sctx->total_send_size += sctx->send_size;
685 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
686 	sctx->send_size = 0;
687 
688 	return ret;
689 }
690 
691 /*
692  * Sends a move instruction to user space
693  */
694 static int send_rename(struct send_ctx *sctx,
695 		     struct fs_path *from, struct fs_path *to)
696 {
697 	int ret;
698 
699 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
700 
701 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
702 	if (ret < 0)
703 		goto out;
704 
705 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
707 
708 	ret = send_cmd(sctx);
709 
710 tlv_put_failure:
711 out:
712 	return ret;
713 }
714 
715 /*
716  * Sends a link instruction to user space
717  */
718 static int send_link(struct send_ctx *sctx,
719 		     struct fs_path *path, struct fs_path *lnk)
720 {
721 	int ret;
722 
723 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
724 
725 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
726 	if (ret < 0)
727 		goto out;
728 
729 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
731 
732 	ret = send_cmd(sctx);
733 
734 tlv_put_failure:
735 out:
736 	return ret;
737 }
738 
739 /*
740  * Sends an unlink instruction to user space
741  */
742 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
743 {
744 	int ret;
745 
746 verbose_printk("btrfs: send_unlink %s\n", path->start);
747 
748 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
749 	if (ret < 0)
750 		goto out;
751 
752 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
753 
754 	ret = send_cmd(sctx);
755 
756 tlv_put_failure:
757 out:
758 	return ret;
759 }
760 
761 /*
762  * Sends a rmdir instruction to user space
763  */
764 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
765 {
766 	int ret;
767 
768 verbose_printk("btrfs: send_rmdir %s\n", path->start);
769 
770 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
771 	if (ret < 0)
772 		goto out;
773 
774 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775 
776 	ret = send_cmd(sctx);
777 
778 tlv_put_failure:
779 out:
780 	return ret;
781 }
782 
783 /*
784  * Helper function to retrieve some fields from an inode item.
785  */
786 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
788 			  u64 *gid, u64 *rdev)
789 {
790 	int ret;
791 	struct btrfs_inode_item *ii;
792 	struct btrfs_key key;
793 
794 	key.objectid = ino;
795 	key.type = BTRFS_INODE_ITEM_KEY;
796 	key.offset = 0;
797 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
798 	if (ret) {
799 		if (ret > 0)
800 			ret = -ENOENT;
801 		return ret;
802 	}
803 
804 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805 			struct btrfs_inode_item);
806 	if (size)
807 		*size = btrfs_inode_size(path->nodes[0], ii);
808 	if (gen)
809 		*gen = btrfs_inode_generation(path->nodes[0], ii);
810 	if (mode)
811 		*mode = btrfs_inode_mode(path->nodes[0], ii);
812 	if (uid)
813 		*uid = btrfs_inode_uid(path->nodes[0], ii);
814 	if (gid)
815 		*gid = btrfs_inode_gid(path->nodes[0], ii);
816 	if (rdev)
817 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
818 
819 	return ret;
820 }
821 
822 static int get_inode_info(struct btrfs_root *root,
823 			  u64 ino, u64 *size, u64 *gen,
824 			  u64 *mode, u64 *uid, u64 *gid,
825 			  u64 *rdev)
826 {
827 	struct btrfs_path *path;
828 	int ret;
829 
830 	path = alloc_path_for_send();
831 	if (!path)
832 		return -ENOMEM;
833 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
834 			       rdev);
835 	btrfs_free_path(path);
836 	return ret;
837 }
838 
839 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
840 				   struct fs_path *p,
841 				   void *ctx);
842 
843 /*
844  * Helper function to iterate the entries in ONE btrfs_inode_ref or
845  * btrfs_inode_extref.
846  * The iterate callback may return a non zero value to stop iteration. This can
847  * be a negative value for error codes or 1 to simply stop it.
848  *
849  * path must point to the INODE_REF or INODE_EXTREF when called.
850  */
851 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
852 			     struct btrfs_key *found_key, int resolve,
853 			     iterate_inode_ref_t iterate, void *ctx)
854 {
855 	struct extent_buffer *eb = path->nodes[0];
856 	struct btrfs_item *item;
857 	struct btrfs_inode_ref *iref;
858 	struct btrfs_inode_extref *extref;
859 	struct btrfs_path *tmp_path;
860 	struct fs_path *p;
861 	u32 cur = 0;
862 	u32 total;
863 	int slot = path->slots[0];
864 	u32 name_len;
865 	char *start;
866 	int ret = 0;
867 	int num = 0;
868 	int index;
869 	u64 dir;
870 	unsigned long name_off;
871 	unsigned long elem_size;
872 	unsigned long ptr;
873 
874 	p = fs_path_alloc_reversed();
875 	if (!p)
876 		return -ENOMEM;
877 
878 	tmp_path = alloc_path_for_send();
879 	if (!tmp_path) {
880 		fs_path_free(p);
881 		return -ENOMEM;
882 	}
883 
884 
885 	if (found_key->type == BTRFS_INODE_REF_KEY) {
886 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887 						    struct btrfs_inode_ref);
888 		item = btrfs_item_nr(slot);
889 		total = btrfs_item_size(eb, item);
890 		elem_size = sizeof(*iref);
891 	} else {
892 		ptr = btrfs_item_ptr_offset(eb, slot);
893 		total = btrfs_item_size_nr(eb, slot);
894 		elem_size = sizeof(*extref);
895 	}
896 
897 	while (cur < total) {
898 		fs_path_reset(p);
899 
900 		if (found_key->type == BTRFS_INODE_REF_KEY) {
901 			iref = (struct btrfs_inode_ref *)(ptr + cur);
902 			name_len = btrfs_inode_ref_name_len(eb, iref);
903 			name_off = (unsigned long)(iref + 1);
904 			index = btrfs_inode_ref_index(eb, iref);
905 			dir = found_key->offset;
906 		} else {
907 			extref = (struct btrfs_inode_extref *)(ptr + cur);
908 			name_len = btrfs_inode_extref_name_len(eb, extref);
909 			name_off = (unsigned long)&extref->name;
910 			index = btrfs_inode_extref_index(eb, extref);
911 			dir = btrfs_inode_extref_parent(eb, extref);
912 		}
913 
914 		if (resolve) {
915 			start = btrfs_ref_to_path(root, tmp_path, name_len,
916 						  name_off, eb, dir,
917 						  p->buf, p->buf_len);
918 			if (IS_ERR(start)) {
919 				ret = PTR_ERR(start);
920 				goto out;
921 			}
922 			if (start < p->buf) {
923 				/* overflow , try again with larger buffer */
924 				ret = fs_path_ensure_buf(p,
925 						p->buf_len + p->buf - start);
926 				if (ret < 0)
927 					goto out;
928 				start = btrfs_ref_to_path(root, tmp_path,
929 							  name_len, name_off,
930 							  eb, dir,
931 							  p->buf, p->buf_len);
932 				if (IS_ERR(start)) {
933 					ret = PTR_ERR(start);
934 					goto out;
935 				}
936 				BUG_ON(start < p->buf);
937 			}
938 			p->start = start;
939 		} else {
940 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
941 							     name_len);
942 			if (ret < 0)
943 				goto out;
944 		}
945 
946 		cur += elem_size + name_len;
947 		ret = iterate(num, dir, index, p, ctx);
948 		if (ret)
949 			goto out;
950 		num++;
951 	}
952 
953 out:
954 	btrfs_free_path(tmp_path);
955 	fs_path_free(p);
956 	return ret;
957 }
958 
959 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960 				  const char *name, int name_len,
961 				  const char *data, int data_len,
962 				  u8 type, void *ctx);
963 
964 /*
965  * Helper function to iterate the entries in ONE btrfs_dir_item.
966  * The iterate callback may return a non zero value to stop iteration. This can
967  * be a negative value for error codes or 1 to simply stop it.
968  *
969  * path must point to the dir item when called.
970  */
971 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
972 			    struct btrfs_key *found_key,
973 			    iterate_dir_item_t iterate, void *ctx)
974 {
975 	int ret = 0;
976 	struct extent_buffer *eb;
977 	struct btrfs_item *item;
978 	struct btrfs_dir_item *di;
979 	struct btrfs_key di_key;
980 	char *buf = NULL;
981 	int buf_len;
982 	u32 name_len;
983 	u32 data_len;
984 	u32 cur;
985 	u32 len;
986 	u32 total;
987 	int slot;
988 	int num;
989 	u8 type;
990 
991 	/*
992 	 * Start with a small buffer (1 page). If later we end up needing more
993 	 * space, which can happen for xattrs on a fs with a leaf size greater
994 	 * then the page size, attempt to increase the buffer. Typically xattr
995 	 * values are small.
996 	 */
997 	buf_len = PATH_MAX;
998 	buf = kmalloc(buf_len, GFP_NOFS);
999 	if (!buf) {
1000 		ret = -ENOMEM;
1001 		goto out;
1002 	}
1003 
1004 	eb = path->nodes[0];
1005 	slot = path->slots[0];
1006 	item = btrfs_item_nr(slot);
1007 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1008 	cur = 0;
1009 	len = 0;
1010 	total = btrfs_item_size(eb, item);
1011 
1012 	num = 0;
1013 	while (cur < total) {
1014 		name_len = btrfs_dir_name_len(eb, di);
1015 		data_len = btrfs_dir_data_len(eb, di);
1016 		type = btrfs_dir_type(eb, di);
1017 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1018 
1019 		if (type == BTRFS_FT_XATTR) {
1020 			if (name_len > XATTR_NAME_MAX) {
1021 				ret = -ENAMETOOLONG;
1022 				goto out;
1023 			}
1024 			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1025 				ret = -E2BIG;
1026 				goto out;
1027 			}
1028 		} else {
1029 			/*
1030 			 * Path too long
1031 			 */
1032 			if (name_len + data_len > PATH_MAX) {
1033 				ret = -ENAMETOOLONG;
1034 				goto out;
1035 			}
1036 		}
1037 
1038 		if (name_len + data_len > buf_len) {
1039 			buf_len = name_len + data_len;
1040 			if (is_vmalloc_addr(buf)) {
1041 				vfree(buf);
1042 				buf = NULL;
1043 			} else {
1044 				char *tmp = krealloc(buf, buf_len,
1045 						     GFP_NOFS | __GFP_NOWARN);
1046 
1047 				if (!tmp)
1048 					kfree(buf);
1049 				buf = tmp;
1050 			}
1051 			if (!buf) {
1052 				buf = vmalloc(buf_len);
1053 				if (!buf) {
1054 					ret = -ENOMEM;
1055 					goto out;
1056 				}
1057 			}
1058 		}
1059 
1060 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061 				name_len + data_len);
1062 
1063 		len = sizeof(*di) + name_len + data_len;
1064 		di = (struct btrfs_dir_item *)((char *)di + len);
1065 		cur += len;
1066 
1067 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068 				data_len, type, ctx);
1069 		if (ret < 0)
1070 			goto out;
1071 		if (ret) {
1072 			ret = 0;
1073 			goto out;
1074 		}
1075 
1076 		num++;
1077 	}
1078 
1079 out:
1080 	kvfree(buf);
1081 	return ret;
1082 }
1083 
1084 static int __copy_first_ref(int num, u64 dir, int index,
1085 			    struct fs_path *p, void *ctx)
1086 {
1087 	int ret;
1088 	struct fs_path *pt = ctx;
1089 
1090 	ret = fs_path_copy(pt, p);
1091 	if (ret < 0)
1092 		return ret;
1093 
1094 	/* we want the first only */
1095 	return 1;
1096 }
1097 
1098 /*
1099  * Retrieve the first path of an inode. If an inode has more then one
1100  * ref/hardlink, this is ignored.
1101  */
1102 static int get_inode_path(struct btrfs_root *root,
1103 			  u64 ino, struct fs_path *path)
1104 {
1105 	int ret;
1106 	struct btrfs_key key, found_key;
1107 	struct btrfs_path *p;
1108 
1109 	p = alloc_path_for_send();
1110 	if (!p)
1111 		return -ENOMEM;
1112 
1113 	fs_path_reset(path);
1114 
1115 	key.objectid = ino;
1116 	key.type = BTRFS_INODE_REF_KEY;
1117 	key.offset = 0;
1118 
1119 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1120 	if (ret < 0)
1121 		goto out;
1122 	if (ret) {
1123 		ret = 1;
1124 		goto out;
1125 	}
1126 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127 	if (found_key.objectid != ino ||
1128 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1129 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1130 		ret = -ENOENT;
1131 		goto out;
1132 	}
1133 
1134 	ret = iterate_inode_ref(root, p, &found_key, 1,
1135 				__copy_first_ref, path);
1136 	if (ret < 0)
1137 		goto out;
1138 	ret = 0;
1139 
1140 out:
1141 	btrfs_free_path(p);
1142 	return ret;
1143 }
1144 
1145 struct backref_ctx {
1146 	struct send_ctx *sctx;
1147 
1148 	struct btrfs_path *path;
1149 	/* number of total found references */
1150 	u64 found;
1151 
1152 	/*
1153 	 * used for clones found in send_root. clones found behind cur_objectid
1154 	 * and cur_offset are not considered as allowed clones.
1155 	 */
1156 	u64 cur_objectid;
1157 	u64 cur_offset;
1158 
1159 	/* may be truncated in case it's the last extent in a file */
1160 	u64 extent_len;
1161 
1162 	/* data offset in the file extent item */
1163 	u64 data_offset;
1164 
1165 	/* Just to check for bugs in backref resolving */
1166 	int found_itself;
1167 };
1168 
1169 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1170 {
1171 	u64 root = (u64)(uintptr_t)key;
1172 	struct clone_root *cr = (struct clone_root *)elt;
1173 
1174 	if (root < cr->root->objectid)
1175 		return -1;
1176 	if (root > cr->root->objectid)
1177 		return 1;
1178 	return 0;
1179 }
1180 
1181 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1182 {
1183 	struct clone_root *cr1 = (struct clone_root *)e1;
1184 	struct clone_root *cr2 = (struct clone_root *)e2;
1185 
1186 	if (cr1->root->objectid < cr2->root->objectid)
1187 		return -1;
1188 	if (cr1->root->objectid > cr2->root->objectid)
1189 		return 1;
1190 	return 0;
1191 }
1192 
1193 /*
1194  * Called for every backref that is found for the current extent.
1195  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1196  */
1197 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1198 {
1199 	struct backref_ctx *bctx = ctx_;
1200 	struct clone_root *found;
1201 	int ret;
1202 	u64 i_size;
1203 
1204 	/* First check if the root is in the list of accepted clone sources */
1205 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1206 			bctx->sctx->clone_roots_cnt,
1207 			sizeof(struct clone_root),
1208 			__clone_root_cmp_bsearch);
1209 	if (!found)
1210 		return 0;
1211 
1212 	if (found->root == bctx->sctx->send_root &&
1213 	    ino == bctx->cur_objectid &&
1214 	    offset == bctx->cur_offset) {
1215 		bctx->found_itself = 1;
1216 	}
1217 
1218 	/*
1219 	 * There are inodes that have extents that lie behind its i_size. Don't
1220 	 * accept clones from these extents.
1221 	 */
1222 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1223 			       NULL, NULL, NULL);
1224 	btrfs_release_path(bctx->path);
1225 	if (ret < 0)
1226 		return ret;
1227 
1228 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1229 		return 0;
1230 
1231 	/*
1232 	 * Make sure we don't consider clones from send_root that are
1233 	 * behind the current inode/offset.
1234 	 */
1235 	if (found->root == bctx->sctx->send_root) {
1236 		/*
1237 		 * TODO for the moment we don't accept clones from the inode
1238 		 * that is currently send. We may change this when
1239 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1240 		 * file.
1241 		 */
1242 		if (ino >= bctx->cur_objectid)
1243 			return 0;
1244 #if 0
1245 		if (ino > bctx->cur_objectid)
1246 			return 0;
1247 		if (offset + bctx->extent_len > bctx->cur_offset)
1248 			return 0;
1249 #endif
1250 	}
1251 
1252 	bctx->found++;
1253 	found->found_refs++;
1254 	if (ino < found->ino) {
1255 		found->ino = ino;
1256 		found->offset = offset;
1257 	} else if (found->ino == ino) {
1258 		/*
1259 		 * same extent found more then once in the same file.
1260 		 */
1261 		if (found->offset > offset + bctx->extent_len)
1262 			found->offset = offset;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 /*
1269  * Given an inode, offset and extent item, it finds a good clone for a clone
1270  * instruction. Returns -ENOENT when none could be found. The function makes
1271  * sure that the returned clone is usable at the point where sending is at the
1272  * moment. This means, that no clones are accepted which lie behind the current
1273  * inode+offset.
1274  *
1275  * path must point to the extent item when called.
1276  */
1277 static int find_extent_clone(struct send_ctx *sctx,
1278 			     struct btrfs_path *path,
1279 			     u64 ino, u64 data_offset,
1280 			     u64 ino_size,
1281 			     struct clone_root **found)
1282 {
1283 	int ret;
1284 	int extent_type;
1285 	u64 logical;
1286 	u64 disk_byte;
1287 	u64 num_bytes;
1288 	u64 extent_item_pos;
1289 	u64 flags = 0;
1290 	struct btrfs_file_extent_item *fi;
1291 	struct extent_buffer *eb = path->nodes[0];
1292 	struct backref_ctx *backref_ctx = NULL;
1293 	struct clone_root *cur_clone_root;
1294 	struct btrfs_key found_key;
1295 	struct btrfs_path *tmp_path;
1296 	int compressed;
1297 	u32 i;
1298 
1299 	tmp_path = alloc_path_for_send();
1300 	if (!tmp_path)
1301 		return -ENOMEM;
1302 
1303 	/* We only use this path under the commit sem */
1304 	tmp_path->need_commit_sem = 0;
1305 
1306 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1307 	if (!backref_ctx) {
1308 		ret = -ENOMEM;
1309 		goto out;
1310 	}
1311 
1312 	backref_ctx->path = tmp_path;
1313 
1314 	if (data_offset >= ino_size) {
1315 		/*
1316 		 * There may be extents that lie behind the file's size.
1317 		 * I at least had this in combination with snapshotting while
1318 		 * writing large files.
1319 		 */
1320 		ret = 0;
1321 		goto out;
1322 	}
1323 
1324 	fi = btrfs_item_ptr(eb, path->slots[0],
1325 			struct btrfs_file_extent_item);
1326 	extent_type = btrfs_file_extent_type(eb, fi);
1327 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1328 		ret = -ENOENT;
1329 		goto out;
1330 	}
1331 	compressed = btrfs_file_extent_compression(eb, fi);
1332 
1333 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1334 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335 	if (disk_byte == 0) {
1336 		ret = -ENOENT;
1337 		goto out;
1338 	}
1339 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1340 
1341 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1342 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343 				  &found_key, &flags);
1344 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1345 	btrfs_release_path(tmp_path);
1346 
1347 	if (ret < 0)
1348 		goto out;
1349 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1350 		ret = -EIO;
1351 		goto out;
1352 	}
1353 
1354 	/*
1355 	 * Setup the clone roots.
1356 	 */
1357 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358 		cur_clone_root = sctx->clone_roots + i;
1359 		cur_clone_root->ino = (u64)-1;
1360 		cur_clone_root->offset = 0;
1361 		cur_clone_root->found_refs = 0;
1362 	}
1363 
1364 	backref_ctx->sctx = sctx;
1365 	backref_ctx->found = 0;
1366 	backref_ctx->cur_objectid = ino;
1367 	backref_ctx->cur_offset = data_offset;
1368 	backref_ctx->found_itself = 0;
1369 	backref_ctx->extent_len = num_bytes;
1370 	/*
1371 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 	 * offsets that already take into account the data offset, but not for
1373 	 * compressed extents, since the offset is logical and not relative to
1374 	 * the physical extent locations. We must take this into account to
1375 	 * avoid sending clone offsets that go beyond the source file's size,
1376 	 * which would result in the clone ioctl failing with -EINVAL on the
1377 	 * receiving end.
1378 	 */
1379 	if (compressed == BTRFS_COMPRESS_NONE)
1380 		backref_ctx->data_offset = 0;
1381 	else
1382 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1383 
1384 	/*
1385 	 * The last extent of a file may be too large due to page alignment.
1386 	 * We need to adjust extent_len in this case so that the checks in
1387 	 * __iterate_backrefs work.
1388 	 */
1389 	if (data_offset + num_bytes >= ino_size)
1390 		backref_ctx->extent_len = ino_size - data_offset;
1391 
1392 	/*
1393 	 * Now collect all backrefs.
1394 	 */
1395 	if (compressed == BTRFS_COMPRESS_NONE)
1396 		extent_item_pos = logical - found_key.objectid;
1397 	else
1398 		extent_item_pos = 0;
1399 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400 					found_key.objectid, extent_item_pos, 1,
1401 					__iterate_backrefs, backref_ctx);
1402 
1403 	if (ret < 0)
1404 		goto out;
1405 
1406 	if (!backref_ctx->found_itself) {
1407 		/* found a bug in backref code? */
1408 		ret = -EIO;
1409 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1410 				"send_root. inode=%llu, offset=%llu, "
1411 				"disk_byte=%llu found extent=%llu",
1412 				ino, data_offset, disk_byte, found_key.objectid);
1413 		goto out;
1414 	}
1415 
1416 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1417 		"ino=%llu, "
1418 		"num_bytes=%llu, logical=%llu\n",
1419 		data_offset, ino, num_bytes, logical);
1420 
1421 	if (!backref_ctx->found)
1422 		verbose_printk("btrfs:    no clones found\n");
1423 
1424 	cur_clone_root = NULL;
1425 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426 		if (sctx->clone_roots[i].found_refs) {
1427 			if (!cur_clone_root)
1428 				cur_clone_root = sctx->clone_roots + i;
1429 			else if (sctx->clone_roots[i].root == sctx->send_root)
1430 				/* prefer clones from send_root over others */
1431 				cur_clone_root = sctx->clone_roots + i;
1432 		}
1433 
1434 	}
1435 
1436 	if (cur_clone_root) {
1437 		*found = cur_clone_root;
1438 		ret = 0;
1439 	} else {
1440 		ret = -ENOENT;
1441 	}
1442 
1443 out:
1444 	btrfs_free_path(tmp_path);
1445 	kfree(backref_ctx);
1446 	return ret;
1447 }
1448 
1449 static int read_symlink(struct btrfs_root *root,
1450 			u64 ino,
1451 			struct fs_path *dest)
1452 {
1453 	int ret;
1454 	struct btrfs_path *path;
1455 	struct btrfs_key key;
1456 	struct btrfs_file_extent_item *ei;
1457 	u8 type;
1458 	u8 compression;
1459 	unsigned long off;
1460 	int len;
1461 
1462 	path = alloc_path_for_send();
1463 	if (!path)
1464 		return -ENOMEM;
1465 
1466 	key.objectid = ino;
1467 	key.type = BTRFS_EXTENT_DATA_KEY;
1468 	key.offset = 0;
1469 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1470 	if (ret < 0)
1471 		goto out;
1472 	BUG_ON(ret);
1473 
1474 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1475 			struct btrfs_file_extent_item);
1476 	type = btrfs_file_extent_type(path->nodes[0], ei);
1477 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1478 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1479 	BUG_ON(compression);
1480 
1481 	off = btrfs_file_extent_inline_start(ei);
1482 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1483 
1484 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1485 
1486 out:
1487 	btrfs_free_path(path);
1488 	return ret;
1489 }
1490 
1491 /*
1492  * Helper function to generate a file name that is unique in the root of
1493  * send_root and parent_root. This is used to generate names for orphan inodes.
1494  */
1495 static int gen_unique_name(struct send_ctx *sctx,
1496 			   u64 ino, u64 gen,
1497 			   struct fs_path *dest)
1498 {
1499 	int ret = 0;
1500 	struct btrfs_path *path;
1501 	struct btrfs_dir_item *di;
1502 	char tmp[64];
1503 	int len;
1504 	u64 idx = 0;
1505 
1506 	path = alloc_path_for_send();
1507 	if (!path)
1508 		return -ENOMEM;
1509 
1510 	while (1) {
1511 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1512 				ino, gen, idx);
1513 		ASSERT(len < sizeof(tmp));
1514 
1515 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1516 				path, BTRFS_FIRST_FREE_OBJECTID,
1517 				tmp, strlen(tmp), 0);
1518 		btrfs_release_path(path);
1519 		if (IS_ERR(di)) {
1520 			ret = PTR_ERR(di);
1521 			goto out;
1522 		}
1523 		if (di) {
1524 			/* not unique, try again */
1525 			idx++;
1526 			continue;
1527 		}
1528 
1529 		if (!sctx->parent_root) {
1530 			/* unique */
1531 			ret = 0;
1532 			break;
1533 		}
1534 
1535 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1536 				path, BTRFS_FIRST_FREE_OBJECTID,
1537 				tmp, strlen(tmp), 0);
1538 		btrfs_release_path(path);
1539 		if (IS_ERR(di)) {
1540 			ret = PTR_ERR(di);
1541 			goto out;
1542 		}
1543 		if (di) {
1544 			/* not unique, try again */
1545 			idx++;
1546 			continue;
1547 		}
1548 		/* unique */
1549 		break;
1550 	}
1551 
1552 	ret = fs_path_add(dest, tmp, strlen(tmp));
1553 
1554 out:
1555 	btrfs_free_path(path);
1556 	return ret;
1557 }
1558 
1559 enum inode_state {
1560 	inode_state_no_change,
1561 	inode_state_will_create,
1562 	inode_state_did_create,
1563 	inode_state_will_delete,
1564 	inode_state_did_delete,
1565 };
1566 
1567 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1568 {
1569 	int ret;
1570 	int left_ret;
1571 	int right_ret;
1572 	u64 left_gen;
1573 	u64 right_gen;
1574 
1575 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1576 			NULL, NULL);
1577 	if (ret < 0 && ret != -ENOENT)
1578 		goto out;
1579 	left_ret = ret;
1580 
1581 	if (!sctx->parent_root) {
1582 		right_ret = -ENOENT;
1583 	} else {
1584 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1585 				NULL, NULL, NULL, NULL);
1586 		if (ret < 0 && ret != -ENOENT)
1587 			goto out;
1588 		right_ret = ret;
1589 	}
1590 
1591 	if (!left_ret && !right_ret) {
1592 		if (left_gen == gen && right_gen == gen) {
1593 			ret = inode_state_no_change;
1594 		} else if (left_gen == gen) {
1595 			if (ino < sctx->send_progress)
1596 				ret = inode_state_did_create;
1597 			else
1598 				ret = inode_state_will_create;
1599 		} else if (right_gen == gen) {
1600 			if (ino < sctx->send_progress)
1601 				ret = inode_state_did_delete;
1602 			else
1603 				ret = inode_state_will_delete;
1604 		} else  {
1605 			ret = -ENOENT;
1606 		}
1607 	} else if (!left_ret) {
1608 		if (left_gen == gen) {
1609 			if (ino < sctx->send_progress)
1610 				ret = inode_state_did_create;
1611 			else
1612 				ret = inode_state_will_create;
1613 		} else {
1614 			ret = -ENOENT;
1615 		}
1616 	} else if (!right_ret) {
1617 		if (right_gen == gen) {
1618 			if (ino < sctx->send_progress)
1619 				ret = inode_state_did_delete;
1620 			else
1621 				ret = inode_state_will_delete;
1622 		} else {
1623 			ret = -ENOENT;
1624 		}
1625 	} else {
1626 		ret = -ENOENT;
1627 	}
1628 
1629 out:
1630 	return ret;
1631 }
1632 
1633 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1634 {
1635 	int ret;
1636 
1637 	ret = get_cur_inode_state(sctx, ino, gen);
1638 	if (ret < 0)
1639 		goto out;
1640 
1641 	if (ret == inode_state_no_change ||
1642 	    ret == inode_state_did_create ||
1643 	    ret == inode_state_will_delete)
1644 		ret = 1;
1645 	else
1646 		ret = 0;
1647 
1648 out:
1649 	return ret;
1650 }
1651 
1652 /*
1653  * Helper function to lookup a dir item in a dir.
1654  */
1655 static int lookup_dir_item_inode(struct btrfs_root *root,
1656 				 u64 dir, const char *name, int name_len,
1657 				 u64 *found_inode,
1658 				 u8 *found_type)
1659 {
1660 	int ret = 0;
1661 	struct btrfs_dir_item *di;
1662 	struct btrfs_key key;
1663 	struct btrfs_path *path;
1664 
1665 	path = alloc_path_for_send();
1666 	if (!path)
1667 		return -ENOMEM;
1668 
1669 	di = btrfs_lookup_dir_item(NULL, root, path,
1670 			dir, name, name_len, 0);
1671 	if (!di) {
1672 		ret = -ENOENT;
1673 		goto out;
1674 	}
1675 	if (IS_ERR(di)) {
1676 		ret = PTR_ERR(di);
1677 		goto out;
1678 	}
1679 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1680 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1681 		ret = -ENOENT;
1682 		goto out;
1683 	}
1684 	*found_inode = key.objectid;
1685 	*found_type = btrfs_dir_type(path->nodes[0], di);
1686 
1687 out:
1688 	btrfs_free_path(path);
1689 	return ret;
1690 }
1691 
1692 /*
1693  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1694  * generation of the parent dir and the name of the dir entry.
1695  */
1696 static int get_first_ref(struct btrfs_root *root, u64 ino,
1697 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1698 {
1699 	int ret;
1700 	struct btrfs_key key;
1701 	struct btrfs_key found_key;
1702 	struct btrfs_path *path;
1703 	int len;
1704 	u64 parent_dir;
1705 
1706 	path = alloc_path_for_send();
1707 	if (!path)
1708 		return -ENOMEM;
1709 
1710 	key.objectid = ino;
1711 	key.type = BTRFS_INODE_REF_KEY;
1712 	key.offset = 0;
1713 
1714 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1715 	if (ret < 0)
1716 		goto out;
1717 	if (!ret)
1718 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1719 				path->slots[0]);
1720 	if (ret || found_key.objectid != ino ||
1721 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1722 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1723 		ret = -ENOENT;
1724 		goto out;
1725 	}
1726 
1727 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1728 		struct btrfs_inode_ref *iref;
1729 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1730 				      struct btrfs_inode_ref);
1731 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1732 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1733 						     (unsigned long)(iref + 1),
1734 						     len);
1735 		parent_dir = found_key.offset;
1736 	} else {
1737 		struct btrfs_inode_extref *extref;
1738 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1739 					struct btrfs_inode_extref);
1740 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1741 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1742 					(unsigned long)&extref->name, len);
1743 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1744 	}
1745 	if (ret < 0)
1746 		goto out;
1747 	btrfs_release_path(path);
1748 
1749 	if (dir_gen) {
1750 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1751 				     NULL, NULL, NULL);
1752 		if (ret < 0)
1753 			goto out;
1754 	}
1755 
1756 	*dir = parent_dir;
1757 
1758 out:
1759 	btrfs_free_path(path);
1760 	return ret;
1761 }
1762 
1763 static int is_first_ref(struct btrfs_root *root,
1764 			u64 ino, u64 dir,
1765 			const char *name, int name_len)
1766 {
1767 	int ret;
1768 	struct fs_path *tmp_name;
1769 	u64 tmp_dir;
1770 
1771 	tmp_name = fs_path_alloc();
1772 	if (!tmp_name)
1773 		return -ENOMEM;
1774 
1775 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1776 	if (ret < 0)
1777 		goto out;
1778 
1779 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1780 		ret = 0;
1781 		goto out;
1782 	}
1783 
1784 	ret = !memcmp(tmp_name->start, name, name_len);
1785 
1786 out:
1787 	fs_path_free(tmp_name);
1788 	return ret;
1789 }
1790 
1791 /*
1792  * Used by process_recorded_refs to determine if a new ref would overwrite an
1793  * already existing ref. In case it detects an overwrite, it returns the
1794  * inode/gen in who_ino/who_gen.
1795  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1796  * to make sure later references to the overwritten inode are possible.
1797  * Orphanizing is however only required for the first ref of an inode.
1798  * process_recorded_refs does an additional is_first_ref check to see if
1799  * orphanizing is really required.
1800  */
1801 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1802 			      const char *name, int name_len,
1803 			      u64 *who_ino, u64 *who_gen)
1804 {
1805 	int ret = 0;
1806 	u64 gen;
1807 	u64 other_inode = 0;
1808 	u8 other_type = 0;
1809 
1810 	if (!sctx->parent_root)
1811 		goto out;
1812 
1813 	ret = is_inode_existent(sctx, dir, dir_gen);
1814 	if (ret <= 0)
1815 		goto out;
1816 
1817 	/*
1818 	 * If we have a parent root we need to verify that the parent dir was
1819 	 * not delted and then re-created, if it was then we have no overwrite
1820 	 * and we can just unlink this entry.
1821 	 */
1822 	if (sctx->parent_root) {
1823 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1824 				     NULL, NULL, NULL);
1825 		if (ret < 0 && ret != -ENOENT)
1826 			goto out;
1827 		if (ret) {
1828 			ret = 0;
1829 			goto out;
1830 		}
1831 		if (gen != dir_gen)
1832 			goto out;
1833 	}
1834 
1835 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1836 			&other_inode, &other_type);
1837 	if (ret < 0 && ret != -ENOENT)
1838 		goto out;
1839 	if (ret) {
1840 		ret = 0;
1841 		goto out;
1842 	}
1843 
1844 	/*
1845 	 * Check if the overwritten ref was already processed. If yes, the ref
1846 	 * was already unlinked/moved, so we can safely assume that we will not
1847 	 * overwrite anything at this point in time.
1848 	 */
1849 	if (other_inode > sctx->send_progress) {
1850 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1851 				who_gen, NULL, NULL, NULL, NULL);
1852 		if (ret < 0)
1853 			goto out;
1854 
1855 		ret = 1;
1856 		*who_ino = other_inode;
1857 	} else {
1858 		ret = 0;
1859 	}
1860 
1861 out:
1862 	return ret;
1863 }
1864 
1865 /*
1866  * Checks if the ref was overwritten by an already processed inode. This is
1867  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1868  * thus the orphan name needs be used.
1869  * process_recorded_refs also uses it to avoid unlinking of refs that were
1870  * overwritten.
1871  */
1872 static int did_overwrite_ref(struct send_ctx *sctx,
1873 			    u64 dir, u64 dir_gen,
1874 			    u64 ino, u64 ino_gen,
1875 			    const char *name, int name_len)
1876 {
1877 	int ret = 0;
1878 	u64 gen;
1879 	u64 ow_inode;
1880 	u8 other_type;
1881 
1882 	if (!sctx->parent_root)
1883 		goto out;
1884 
1885 	ret = is_inode_existent(sctx, dir, dir_gen);
1886 	if (ret <= 0)
1887 		goto out;
1888 
1889 	/* check if the ref was overwritten by another ref */
1890 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1891 			&ow_inode, &other_type);
1892 	if (ret < 0 && ret != -ENOENT)
1893 		goto out;
1894 	if (ret) {
1895 		/* was never and will never be overwritten */
1896 		ret = 0;
1897 		goto out;
1898 	}
1899 
1900 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1901 			NULL, NULL);
1902 	if (ret < 0)
1903 		goto out;
1904 
1905 	if (ow_inode == ino && gen == ino_gen) {
1906 		ret = 0;
1907 		goto out;
1908 	}
1909 
1910 	/*
1911 	 * We know that it is or will be overwritten. Check this now.
1912 	 * The current inode being processed might have been the one that caused
1913 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1914 	 * the current inode being processed.
1915 	 */
1916 	if ((ow_inode < sctx->send_progress) ||
1917 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1918 	     gen == sctx->cur_inode_gen))
1919 		ret = 1;
1920 	else
1921 		ret = 0;
1922 
1923 out:
1924 	return ret;
1925 }
1926 
1927 /*
1928  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1929  * that got overwritten. This is used by process_recorded_refs to determine
1930  * if it has to use the path as returned by get_cur_path or the orphan name.
1931  */
1932 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1933 {
1934 	int ret = 0;
1935 	struct fs_path *name = NULL;
1936 	u64 dir;
1937 	u64 dir_gen;
1938 
1939 	if (!sctx->parent_root)
1940 		goto out;
1941 
1942 	name = fs_path_alloc();
1943 	if (!name)
1944 		return -ENOMEM;
1945 
1946 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1947 	if (ret < 0)
1948 		goto out;
1949 
1950 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1951 			name->start, fs_path_len(name));
1952 
1953 out:
1954 	fs_path_free(name);
1955 	return ret;
1956 }
1957 
1958 /*
1959  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1960  * so we need to do some special handling in case we have clashes. This function
1961  * takes care of this with the help of name_cache_entry::radix_list.
1962  * In case of error, nce is kfreed.
1963  */
1964 static int name_cache_insert(struct send_ctx *sctx,
1965 			     struct name_cache_entry *nce)
1966 {
1967 	int ret = 0;
1968 	struct list_head *nce_head;
1969 
1970 	nce_head = radix_tree_lookup(&sctx->name_cache,
1971 			(unsigned long)nce->ino);
1972 	if (!nce_head) {
1973 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1974 		if (!nce_head) {
1975 			kfree(nce);
1976 			return -ENOMEM;
1977 		}
1978 		INIT_LIST_HEAD(nce_head);
1979 
1980 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1981 		if (ret < 0) {
1982 			kfree(nce_head);
1983 			kfree(nce);
1984 			return ret;
1985 		}
1986 	}
1987 	list_add_tail(&nce->radix_list, nce_head);
1988 	list_add_tail(&nce->list, &sctx->name_cache_list);
1989 	sctx->name_cache_size++;
1990 
1991 	return ret;
1992 }
1993 
1994 static void name_cache_delete(struct send_ctx *sctx,
1995 			      struct name_cache_entry *nce)
1996 {
1997 	struct list_head *nce_head;
1998 
1999 	nce_head = radix_tree_lookup(&sctx->name_cache,
2000 			(unsigned long)nce->ino);
2001 	if (!nce_head) {
2002 		btrfs_err(sctx->send_root->fs_info,
2003 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2004 			nce->ino, sctx->name_cache_size);
2005 	}
2006 
2007 	list_del(&nce->radix_list);
2008 	list_del(&nce->list);
2009 	sctx->name_cache_size--;
2010 
2011 	/*
2012 	 * We may not get to the final release of nce_head if the lookup fails
2013 	 */
2014 	if (nce_head && list_empty(nce_head)) {
2015 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2016 		kfree(nce_head);
2017 	}
2018 }
2019 
2020 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2021 						    u64 ino, u64 gen)
2022 {
2023 	struct list_head *nce_head;
2024 	struct name_cache_entry *cur;
2025 
2026 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2027 	if (!nce_head)
2028 		return NULL;
2029 
2030 	list_for_each_entry(cur, nce_head, radix_list) {
2031 		if (cur->ino == ino && cur->gen == gen)
2032 			return cur;
2033 	}
2034 	return NULL;
2035 }
2036 
2037 /*
2038  * Removes the entry from the list and adds it back to the end. This marks the
2039  * entry as recently used so that name_cache_clean_unused does not remove it.
2040  */
2041 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2042 {
2043 	list_del(&nce->list);
2044 	list_add_tail(&nce->list, &sctx->name_cache_list);
2045 }
2046 
2047 /*
2048  * Remove some entries from the beginning of name_cache_list.
2049  */
2050 static void name_cache_clean_unused(struct send_ctx *sctx)
2051 {
2052 	struct name_cache_entry *nce;
2053 
2054 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2055 		return;
2056 
2057 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2058 		nce = list_entry(sctx->name_cache_list.next,
2059 				struct name_cache_entry, list);
2060 		name_cache_delete(sctx, nce);
2061 		kfree(nce);
2062 	}
2063 }
2064 
2065 static void name_cache_free(struct send_ctx *sctx)
2066 {
2067 	struct name_cache_entry *nce;
2068 
2069 	while (!list_empty(&sctx->name_cache_list)) {
2070 		nce = list_entry(sctx->name_cache_list.next,
2071 				struct name_cache_entry, list);
2072 		name_cache_delete(sctx, nce);
2073 		kfree(nce);
2074 	}
2075 }
2076 
2077 /*
2078  * Used by get_cur_path for each ref up to the root.
2079  * Returns 0 if it succeeded.
2080  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2081  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2082  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2083  * Returns <0 in case of error.
2084  */
2085 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2086 				     u64 ino, u64 gen,
2087 				     u64 *parent_ino,
2088 				     u64 *parent_gen,
2089 				     struct fs_path *dest)
2090 {
2091 	int ret;
2092 	int nce_ret;
2093 	struct name_cache_entry *nce = NULL;
2094 
2095 	/*
2096 	 * First check if we already did a call to this function with the same
2097 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2098 	 * return the cached result.
2099 	 */
2100 	nce = name_cache_search(sctx, ino, gen);
2101 	if (nce) {
2102 		if (ino < sctx->send_progress && nce->need_later_update) {
2103 			name_cache_delete(sctx, nce);
2104 			kfree(nce);
2105 			nce = NULL;
2106 		} else {
2107 			name_cache_used(sctx, nce);
2108 			*parent_ino = nce->parent_ino;
2109 			*parent_gen = nce->parent_gen;
2110 			ret = fs_path_add(dest, nce->name, nce->name_len);
2111 			if (ret < 0)
2112 				goto out;
2113 			ret = nce->ret;
2114 			goto out;
2115 		}
2116 	}
2117 
2118 	/*
2119 	 * If the inode is not existent yet, add the orphan name and return 1.
2120 	 * This should only happen for the parent dir that we determine in
2121 	 * __record_new_ref
2122 	 */
2123 	ret = is_inode_existent(sctx, ino, gen);
2124 	if (ret < 0)
2125 		goto out;
2126 
2127 	if (!ret) {
2128 		ret = gen_unique_name(sctx, ino, gen, dest);
2129 		if (ret < 0)
2130 			goto out;
2131 		ret = 1;
2132 		goto out_cache;
2133 	}
2134 
2135 	/*
2136 	 * Depending on whether the inode was already processed or not, use
2137 	 * send_root or parent_root for ref lookup.
2138 	 */
2139 	if (ino < sctx->send_progress)
2140 		ret = get_first_ref(sctx->send_root, ino,
2141 				    parent_ino, parent_gen, dest);
2142 	else
2143 		ret = get_first_ref(sctx->parent_root, ino,
2144 				    parent_ino, parent_gen, dest);
2145 	if (ret < 0)
2146 		goto out;
2147 
2148 	/*
2149 	 * Check if the ref was overwritten by an inode's ref that was processed
2150 	 * earlier. If yes, treat as orphan and return 1.
2151 	 */
2152 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2153 			dest->start, dest->end - dest->start);
2154 	if (ret < 0)
2155 		goto out;
2156 	if (ret) {
2157 		fs_path_reset(dest);
2158 		ret = gen_unique_name(sctx, ino, gen, dest);
2159 		if (ret < 0)
2160 			goto out;
2161 		ret = 1;
2162 	}
2163 
2164 out_cache:
2165 	/*
2166 	 * Store the result of the lookup in the name cache.
2167 	 */
2168 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2169 	if (!nce) {
2170 		ret = -ENOMEM;
2171 		goto out;
2172 	}
2173 
2174 	nce->ino = ino;
2175 	nce->gen = gen;
2176 	nce->parent_ino = *parent_ino;
2177 	nce->parent_gen = *parent_gen;
2178 	nce->name_len = fs_path_len(dest);
2179 	nce->ret = ret;
2180 	strcpy(nce->name, dest->start);
2181 
2182 	if (ino < sctx->send_progress)
2183 		nce->need_later_update = 0;
2184 	else
2185 		nce->need_later_update = 1;
2186 
2187 	nce_ret = name_cache_insert(sctx, nce);
2188 	if (nce_ret < 0)
2189 		ret = nce_ret;
2190 	name_cache_clean_unused(sctx);
2191 
2192 out:
2193 	return ret;
2194 }
2195 
2196 /*
2197  * Magic happens here. This function returns the first ref to an inode as it
2198  * would look like while receiving the stream at this point in time.
2199  * We walk the path up to the root. For every inode in between, we check if it
2200  * was already processed/sent. If yes, we continue with the parent as found
2201  * in send_root. If not, we continue with the parent as found in parent_root.
2202  * If we encounter an inode that was deleted at this point in time, we use the
2203  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2204  * that were not created yet and overwritten inodes/refs.
2205  *
2206  * When do we have have orphan inodes:
2207  * 1. When an inode is freshly created and thus no valid refs are available yet
2208  * 2. When a directory lost all it's refs (deleted) but still has dir items
2209  *    inside which were not processed yet (pending for move/delete). If anyone
2210  *    tried to get the path to the dir items, it would get a path inside that
2211  *    orphan directory.
2212  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2213  *    of an unprocessed inode. If in that case the first ref would be
2214  *    overwritten, the overwritten inode gets "orphanized". Later when we
2215  *    process this overwritten inode, it is restored at a new place by moving
2216  *    the orphan inode.
2217  *
2218  * sctx->send_progress tells this function at which point in time receiving
2219  * would be.
2220  */
2221 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2222 			struct fs_path *dest)
2223 {
2224 	int ret = 0;
2225 	struct fs_path *name = NULL;
2226 	u64 parent_inode = 0;
2227 	u64 parent_gen = 0;
2228 	int stop = 0;
2229 
2230 	name = fs_path_alloc();
2231 	if (!name) {
2232 		ret = -ENOMEM;
2233 		goto out;
2234 	}
2235 
2236 	dest->reversed = 1;
2237 	fs_path_reset(dest);
2238 
2239 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2240 		struct waiting_dir_move *wdm;
2241 
2242 		fs_path_reset(name);
2243 
2244 		if (is_waiting_for_rm(sctx, ino)) {
2245 			ret = gen_unique_name(sctx, ino, gen, name);
2246 			if (ret < 0)
2247 				goto out;
2248 			ret = fs_path_add_path(dest, name);
2249 			break;
2250 		}
2251 
2252 		wdm = get_waiting_dir_move(sctx, ino);
2253 		if (wdm && wdm->orphanized) {
2254 			ret = gen_unique_name(sctx, ino, gen, name);
2255 			stop = 1;
2256 		} else if (wdm) {
2257 			ret = get_first_ref(sctx->parent_root, ino,
2258 					    &parent_inode, &parent_gen, name);
2259 		} else {
2260 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2261 							&parent_inode,
2262 							&parent_gen, name);
2263 			if (ret)
2264 				stop = 1;
2265 		}
2266 
2267 		if (ret < 0)
2268 			goto out;
2269 
2270 		ret = fs_path_add_path(dest, name);
2271 		if (ret < 0)
2272 			goto out;
2273 
2274 		ino = parent_inode;
2275 		gen = parent_gen;
2276 	}
2277 
2278 out:
2279 	fs_path_free(name);
2280 	if (!ret)
2281 		fs_path_unreverse(dest);
2282 	return ret;
2283 }
2284 
2285 /*
2286  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2287  */
2288 static int send_subvol_begin(struct send_ctx *sctx)
2289 {
2290 	int ret;
2291 	struct btrfs_root *send_root = sctx->send_root;
2292 	struct btrfs_root *parent_root = sctx->parent_root;
2293 	struct btrfs_path *path;
2294 	struct btrfs_key key;
2295 	struct btrfs_root_ref *ref;
2296 	struct extent_buffer *leaf;
2297 	char *name = NULL;
2298 	int namelen;
2299 
2300 	path = btrfs_alloc_path();
2301 	if (!path)
2302 		return -ENOMEM;
2303 
2304 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2305 	if (!name) {
2306 		btrfs_free_path(path);
2307 		return -ENOMEM;
2308 	}
2309 
2310 	key.objectid = send_root->objectid;
2311 	key.type = BTRFS_ROOT_BACKREF_KEY;
2312 	key.offset = 0;
2313 
2314 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2315 				&key, path, 1, 0);
2316 	if (ret < 0)
2317 		goto out;
2318 	if (ret) {
2319 		ret = -ENOENT;
2320 		goto out;
2321 	}
2322 
2323 	leaf = path->nodes[0];
2324 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2325 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2326 	    key.objectid != send_root->objectid) {
2327 		ret = -ENOENT;
2328 		goto out;
2329 	}
2330 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2331 	namelen = btrfs_root_ref_name_len(leaf, ref);
2332 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2333 	btrfs_release_path(path);
2334 
2335 	if (parent_root) {
2336 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2337 		if (ret < 0)
2338 			goto out;
2339 	} else {
2340 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2341 		if (ret < 0)
2342 			goto out;
2343 	}
2344 
2345 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2346 
2347 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2348 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2349 			    sctx->send_root->root_item.received_uuid);
2350 	else
2351 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2352 			    sctx->send_root->root_item.uuid);
2353 
2354 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2355 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2356 	if (parent_root) {
2357 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2358 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2359 				     parent_root->root_item.received_uuid);
2360 		else
2361 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2362 				     parent_root->root_item.uuid);
2363 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2364 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2365 	}
2366 
2367 	ret = send_cmd(sctx);
2368 
2369 tlv_put_failure:
2370 out:
2371 	btrfs_free_path(path);
2372 	kfree(name);
2373 	return ret;
2374 }
2375 
2376 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2377 {
2378 	int ret = 0;
2379 	struct fs_path *p;
2380 
2381 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2382 
2383 	p = fs_path_alloc();
2384 	if (!p)
2385 		return -ENOMEM;
2386 
2387 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2388 	if (ret < 0)
2389 		goto out;
2390 
2391 	ret = get_cur_path(sctx, ino, gen, p);
2392 	if (ret < 0)
2393 		goto out;
2394 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2395 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2396 
2397 	ret = send_cmd(sctx);
2398 
2399 tlv_put_failure:
2400 out:
2401 	fs_path_free(p);
2402 	return ret;
2403 }
2404 
2405 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2406 {
2407 	int ret = 0;
2408 	struct fs_path *p;
2409 
2410 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2411 
2412 	p = fs_path_alloc();
2413 	if (!p)
2414 		return -ENOMEM;
2415 
2416 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2417 	if (ret < 0)
2418 		goto out;
2419 
2420 	ret = get_cur_path(sctx, ino, gen, p);
2421 	if (ret < 0)
2422 		goto out;
2423 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2424 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2425 
2426 	ret = send_cmd(sctx);
2427 
2428 tlv_put_failure:
2429 out:
2430 	fs_path_free(p);
2431 	return ret;
2432 }
2433 
2434 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2435 {
2436 	int ret = 0;
2437 	struct fs_path *p;
2438 
2439 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2440 
2441 	p = fs_path_alloc();
2442 	if (!p)
2443 		return -ENOMEM;
2444 
2445 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2446 	if (ret < 0)
2447 		goto out;
2448 
2449 	ret = get_cur_path(sctx, ino, gen, p);
2450 	if (ret < 0)
2451 		goto out;
2452 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2453 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2454 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2455 
2456 	ret = send_cmd(sctx);
2457 
2458 tlv_put_failure:
2459 out:
2460 	fs_path_free(p);
2461 	return ret;
2462 }
2463 
2464 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2465 {
2466 	int ret = 0;
2467 	struct fs_path *p = NULL;
2468 	struct btrfs_inode_item *ii;
2469 	struct btrfs_path *path = NULL;
2470 	struct extent_buffer *eb;
2471 	struct btrfs_key key;
2472 	int slot;
2473 
2474 verbose_printk("btrfs: send_utimes %llu\n", ino);
2475 
2476 	p = fs_path_alloc();
2477 	if (!p)
2478 		return -ENOMEM;
2479 
2480 	path = alloc_path_for_send();
2481 	if (!path) {
2482 		ret = -ENOMEM;
2483 		goto out;
2484 	}
2485 
2486 	key.objectid = ino;
2487 	key.type = BTRFS_INODE_ITEM_KEY;
2488 	key.offset = 0;
2489 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2490 	if (ret < 0)
2491 		goto out;
2492 
2493 	eb = path->nodes[0];
2494 	slot = path->slots[0];
2495 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2496 
2497 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2498 	if (ret < 0)
2499 		goto out;
2500 
2501 	ret = get_cur_path(sctx, ino, gen, p);
2502 	if (ret < 0)
2503 		goto out;
2504 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2505 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2506 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2507 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2508 	/* TODO Add otime support when the otime patches get into upstream */
2509 
2510 	ret = send_cmd(sctx);
2511 
2512 tlv_put_failure:
2513 out:
2514 	fs_path_free(p);
2515 	btrfs_free_path(path);
2516 	return ret;
2517 }
2518 
2519 /*
2520  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2521  * a valid path yet because we did not process the refs yet. So, the inode
2522  * is created as orphan.
2523  */
2524 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2525 {
2526 	int ret = 0;
2527 	struct fs_path *p;
2528 	int cmd;
2529 	u64 gen;
2530 	u64 mode;
2531 	u64 rdev;
2532 
2533 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2534 
2535 	p = fs_path_alloc();
2536 	if (!p)
2537 		return -ENOMEM;
2538 
2539 	if (ino != sctx->cur_ino) {
2540 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2541 				     NULL, NULL, &rdev);
2542 		if (ret < 0)
2543 			goto out;
2544 	} else {
2545 		gen = sctx->cur_inode_gen;
2546 		mode = sctx->cur_inode_mode;
2547 		rdev = sctx->cur_inode_rdev;
2548 	}
2549 
2550 	if (S_ISREG(mode)) {
2551 		cmd = BTRFS_SEND_C_MKFILE;
2552 	} else if (S_ISDIR(mode)) {
2553 		cmd = BTRFS_SEND_C_MKDIR;
2554 	} else if (S_ISLNK(mode)) {
2555 		cmd = BTRFS_SEND_C_SYMLINK;
2556 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2557 		cmd = BTRFS_SEND_C_MKNOD;
2558 	} else if (S_ISFIFO(mode)) {
2559 		cmd = BTRFS_SEND_C_MKFIFO;
2560 	} else if (S_ISSOCK(mode)) {
2561 		cmd = BTRFS_SEND_C_MKSOCK;
2562 	} else {
2563 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2564 				(int)(mode & S_IFMT));
2565 		ret = -ENOTSUPP;
2566 		goto out;
2567 	}
2568 
2569 	ret = begin_cmd(sctx, cmd);
2570 	if (ret < 0)
2571 		goto out;
2572 
2573 	ret = gen_unique_name(sctx, ino, gen, p);
2574 	if (ret < 0)
2575 		goto out;
2576 
2577 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2578 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2579 
2580 	if (S_ISLNK(mode)) {
2581 		fs_path_reset(p);
2582 		ret = read_symlink(sctx->send_root, ino, p);
2583 		if (ret < 0)
2584 			goto out;
2585 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2586 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2587 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2588 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2589 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2590 	}
2591 
2592 	ret = send_cmd(sctx);
2593 	if (ret < 0)
2594 		goto out;
2595 
2596 
2597 tlv_put_failure:
2598 out:
2599 	fs_path_free(p);
2600 	return ret;
2601 }
2602 
2603 /*
2604  * We need some special handling for inodes that get processed before the parent
2605  * directory got created. See process_recorded_refs for details.
2606  * This function does the check if we already created the dir out of order.
2607  */
2608 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2609 {
2610 	int ret = 0;
2611 	struct btrfs_path *path = NULL;
2612 	struct btrfs_key key;
2613 	struct btrfs_key found_key;
2614 	struct btrfs_key di_key;
2615 	struct extent_buffer *eb;
2616 	struct btrfs_dir_item *di;
2617 	int slot;
2618 
2619 	path = alloc_path_for_send();
2620 	if (!path) {
2621 		ret = -ENOMEM;
2622 		goto out;
2623 	}
2624 
2625 	key.objectid = dir;
2626 	key.type = BTRFS_DIR_INDEX_KEY;
2627 	key.offset = 0;
2628 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2629 	if (ret < 0)
2630 		goto out;
2631 
2632 	while (1) {
2633 		eb = path->nodes[0];
2634 		slot = path->slots[0];
2635 		if (slot >= btrfs_header_nritems(eb)) {
2636 			ret = btrfs_next_leaf(sctx->send_root, path);
2637 			if (ret < 0) {
2638 				goto out;
2639 			} else if (ret > 0) {
2640 				ret = 0;
2641 				break;
2642 			}
2643 			continue;
2644 		}
2645 
2646 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2647 		if (found_key.objectid != key.objectid ||
2648 		    found_key.type != key.type) {
2649 			ret = 0;
2650 			goto out;
2651 		}
2652 
2653 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2654 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2655 
2656 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2657 		    di_key.objectid < sctx->send_progress) {
2658 			ret = 1;
2659 			goto out;
2660 		}
2661 
2662 		path->slots[0]++;
2663 	}
2664 
2665 out:
2666 	btrfs_free_path(path);
2667 	return ret;
2668 }
2669 
2670 /*
2671  * Only creates the inode if it is:
2672  * 1. Not a directory
2673  * 2. Or a directory which was not created already due to out of order
2674  *    directories. See did_create_dir and process_recorded_refs for details.
2675  */
2676 static int send_create_inode_if_needed(struct send_ctx *sctx)
2677 {
2678 	int ret;
2679 
2680 	if (S_ISDIR(sctx->cur_inode_mode)) {
2681 		ret = did_create_dir(sctx, sctx->cur_ino);
2682 		if (ret < 0)
2683 			goto out;
2684 		if (ret) {
2685 			ret = 0;
2686 			goto out;
2687 		}
2688 	}
2689 
2690 	ret = send_create_inode(sctx, sctx->cur_ino);
2691 	if (ret < 0)
2692 		goto out;
2693 
2694 out:
2695 	return ret;
2696 }
2697 
2698 struct recorded_ref {
2699 	struct list_head list;
2700 	char *dir_path;
2701 	char *name;
2702 	struct fs_path *full_path;
2703 	u64 dir;
2704 	u64 dir_gen;
2705 	int dir_path_len;
2706 	int name_len;
2707 };
2708 
2709 /*
2710  * We need to process new refs before deleted refs, but compare_tree gives us
2711  * everything mixed. So we first record all refs and later process them.
2712  * This function is a helper to record one ref.
2713  */
2714 static int __record_ref(struct list_head *head, u64 dir,
2715 		      u64 dir_gen, struct fs_path *path)
2716 {
2717 	struct recorded_ref *ref;
2718 
2719 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2720 	if (!ref)
2721 		return -ENOMEM;
2722 
2723 	ref->dir = dir;
2724 	ref->dir_gen = dir_gen;
2725 	ref->full_path = path;
2726 
2727 	ref->name = (char *)kbasename(ref->full_path->start);
2728 	ref->name_len = ref->full_path->end - ref->name;
2729 	ref->dir_path = ref->full_path->start;
2730 	if (ref->name == ref->full_path->start)
2731 		ref->dir_path_len = 0;
2732 	else
2733 		ref->dir_path_len = ref->full_path->end -
2734 				ref->full_path->start - 1 - ref->name_len;
2735 
2736 	list_add_tail(&ref->list, head);
2737 	return 0;
2738 }
2739 
2740 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2741 {
2742 	struct recorded_ref *new;
2743 
2744 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2745 	if (!new)
2746 		return -ENOMEM;
2747 
2748 	new->dir = ref->dir;
2749 	new->dir_gen = ref->dir_gen;
2750 	new->full_path = NULL;
2751 	INIT_LIST_HEAD(&new->list);
2752 	list_add_tail(&new->list, list);
2753 	return 0;
2754 }
2755 
2756 static void __free_recorded_refs(struct list_head *head)
2757 {
2758 	struct recorded_ref *cur;
2759 
2760 	while (!list_empty(head)) {
2761 		cur = list_entry(head->next, struct recorded_ref, list);
2762 		fs_path_free(cur->full_path);
2763 		list_del(&cur->list);
2764 		kfree(cur);
2765 	}
2766 }
2767 
2768 static void free_recorded_refs(struct send_ctx *sctx)
2769 {
2770 	__free_recorded_refs(&sctx->new_refs);
2771 	__free_recorded_refs(&sctx->deleted_refs);
2772 }
2773 
2774 /*
2775  * Renames/moves a file/dir to its orphan name. Used when the first
2776  * ref of an unprocessed inode gets overwritten and for all non empty
2777  * directories.
2778  */
2779 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2780 			  struct fs_path *path)
2781 {
2782 	int ret;
2783 	struct fs_path *orphan;
2784 
2785 	orphan = fs_path_alloc();
2786 	if (!orphan)
2787 		return -ENOMEM;
2788 
2789 	ret = gen_unique_name(sctx, ino, gen, orphan);
2790 	if (ret < 0)
2791 		goto out;
2792 
2793 	ret = send_rename(sctx, path, orphan);
2794 
2795 out:
2796 	fs_path_free(orphan);
2797 	return ret;
2798 }
2799 
2800 static struct orphan_dir_info *
2801 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2802 {
2803 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2804 	struct rb_node *parent = NULL;
2805 	struct orphan_dir_info *entry, *odi;
2806 
2807 	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2808 	if (!odi)
2809 		return ERR_PTR(-ENOMEM);
2810 	odi->ino = dir_ino;
2811 	odi->gen = 0;
2812 
2813 	while (*p) {
2814 		parent = *p;
2815 		entry = rb_entry(parent, struct orphan_dir_info, node);
2816 		if (dir_ino < entry->ino) {
2817 			p = &(*p)->rb_left;
2818 		} else if (dir_ino > entry->ino) {
2819 			p = &(*p)->rb_right;
2820 		} else {
2821 			kfree(odi);
2822 			return entry;
2823 		}
2824 	}
2825 
2826 	rb_link_node(&odi->node, parent, p);
2827 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2828 	return odi;
2829 }
2830 
2831 static struct orphan_dir_info *
2832 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2833 {
2834 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2835 	struct orphan_dir_info *entry;
2836 
2837 	while (n) {
2838 		entry = rb_entry(n, struct orphan_dir_info, node);
2839 		if (dir_ino < entry->ino)
2840 			n = n->rb_left;
2841 		else if (dir_ino > entry->ino)
2842 			n = n->rb_right;
2843 		else
2844 			return entry;
2845 	}
2846 	return NULL;
2847 }
2848 
2849 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2850 {
2851 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2852 
2853 	return odi != NULL;
2854 }
2855 
2856 static void free_orphan_dir_info(struct send_ctx *sctx,
2857 				 struct orphan_dir_info *odi)
2858 {
2859 	if (!odi)
2860 		return;
2861 	rb_erase(&odi->node, &sctx->orphan_dirs);
2862 	kfree(odi);
2863 }
2864 
2865 /*
2866  * Returns 1 if a directory can be removed at this point in time.
2867  * We check this by iterating all dir items and checking if the inode behind
2868  * the dir item was already processed.
2869  */
2870 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2871 		     u64 send_progress)
2872 {
2873 	int ret = 0;
2874 	struct btrfs_root *root = sctx->parent_root;
2875 	struct btrfs_path *path;
2876 	struct btrfs_key key;
2877 	struct btrfs_key found_key;
2878 	struct btrfs_key loc;
2879 	struct btrfs_dir_item *di;
2880 
2881 	/*
2882 	 * Don't try to rmdir the top/root subvolume dir.
2883 	 */
2884 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2885 		return 0;
2886 
2887 	path = alloc_path_for_send();
2888 	if (!path)
2889 		return -ENOMEM;
2890 
2891 	key.objectid = dir;
2892 	key.type = BTRFS_DIR_INDEX_KEY;
2893 	key.offset = 0;
2894 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2895 	if (ret < 0)
2896 		goto out;
2897 
2898 	while (1) {
2899 		struct waiting_dir_move *dm;
2900 
2901 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2902 			ret = btrfs_next_leaf(root, path);
2903 			if (ret < 0)
2904 				goto out;
2905 			else if (ret > 0)
2906 				break;
2907 			continue;
2908 		}
2909 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2910 				      path->slots[0]);
2911 		if (found_key.objectid != key.objectid ||
2912 		    found_key.type != key.type)
2913 			break;
2914 
2915 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2916 				struct btrfs_dir_item);
2917 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2918 
2919 		dm = get_waiting_dir_move(sctx, loc.objectid);
2920 		if (dm) {
2921 			struct orphan_dir_info *odi;
2922 
2923 			odi = add_orphan_dir_info(sctx, dir);
2924 			if (IS_ERR(odi)) {
2925 				ret = PTR_ERR(odi);
2926 				goto out;
2927 			}
2928 			odi->gen = dir_gen;
2929 			dm->rmdir_ino = dir;
2930 			ret = 0;
2931 			goto out;
2932 		}
2933 
2934 		if (loc.objectid > send_progress) {
2935 			ret = 0;
2936 			goto out;
2937 		}
2938 
2939 		path->slots[0]++;
2940 	}
2941 
2942 	ret = 1;
2943 
2944 out:
2945 	btrfs_free_path(path);
2946 	return ret;
2947 }
2948 
2949 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2950 {
2951 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2952 
2953 	return entry != NULL;
2954 }
2955 
2956 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2957 {
2958 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2959 	struct rb_node *parent = NULL;
2960 	struct waiting_dir_move *entry, *dm;
2961 
2962 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2963 	if (!dm)
2964 		return -ENOMEM;
2965 	dm->ino = ino;
2966 	dm->rmdir_ino = 0;
2967 	dm->orphanized = orphanized;
2968 
2969 	while (*p) {
2970 		parent = *p;
2971 		entry = rb_entry(parent, struct waiting_dir_move, node);
2972 		if (ino < entry->ino) {
2973 			p = &(*p)->rb_left;
2974 		} else if (ino > entry->ino) {
2975 			p = &(*p)->rb_right;
2976 		} else {
2977 			kfree(dm);
2978 			return -EEXIST;
2979 		}
2980 	}
2981 
2982 	rb_link_node(&dm->node, parent, p);
2983 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2984 	return 0;
2985 }
2986 
2987 static struct waiting_dir_move *
2988 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2989 {
2990 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2991 	struct waiting_dir_move *entry;
2992 
2993 	while (n) {
2994 		entry = rb_entry(n, struct waiting_dir_move, node);
2995 		if (ino < entry->ino)
2996 			n = n->rb_left;
2997 		else if (ino > entry->ino)
2998 			n = n->rb_right;
2999 		else
3000 			return entry;
3001 	}
3002 	return NULL;
3003 }
3004 
3005 static void free_waiting_dir_move(struct send_ctx *sctx,
3006 				  struct waiting_dir_move *dm)
3007 {
3008 	if (!dm)
3009 		return;
3010 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3011 	kfree(dm);
3012 }
3013 
3014 static int add_pending_dir_move(struct send_ctx *sctx,
3015 				u64 ino,
3016 				u64 ino_gen,
3017 				u64 parent_ino,
3018 				struct list_head *new_refs,
3019 				struct list_head *deleted_refs,
3020 				const bool is_orphan)
3021 {
3022 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3023 	struct rb_node *parent = NULL;
3024 	struct pending_dir_move *entry = NULL, *pm;
3025 	struct recorded_ref *cur;
3026 	int exists = 0;
3027 	int ret;
3028 
3029 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
3030 	if (!pm)
3031 		return -ENOMEM;
3032 	pm->parent_ino = parent_ino;
3033 	pm->ino = ino;
3034 	pm->gen = ino_gen;
3035 	pm->is_orphan = is_orphan;
3036 	INIT_LIST_HEAD(&pm->list);
3037 	INIT_LIST_HEAD(&pm->update_refs);
3038 	RB_CLEAR_NODE(&pm->node);
3039 
3040 	while (*p) {
3041 		parent = *p;
3042 		entry = rb_entry(parent, struct pending_dir_move, node);
3043 		if (parent_ino < entry->parent_ino) {
3044 			p = &(*p)->rb_left;
3045 		} else if (parent_ino > entry->parent_ino) {
3046 			p = &(*p)->rb_right;
3047 		} else {
3048 			exists = 1;
3049 			break;
3050 		}
3051 	}
3052 
3053 	list_for_each_entry(cur, deleted_refs, list) {
3054 		ret = dup_ref(cur, &pm->update_refs);
3055 		if (ret < 0)
3056 			goto out;
3057 	}
3058 	list_for_each_entry(cur, new_refs, list) {
3059 		ret = dup_ref(cur, &pm->update_refs);
3060 		if (ret < 0)
3061 			goto out;
3062 	}
3063 
3064 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3065 	if (ret)
3066 		goto out;
3067 
3068 	if (exists) {
3069 		list_add_tail(&pm->list, &entry->list);
3070 	} else {
3071 		rb_link_node(&pm->node, parent, p);
3072 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3073 	}
3074 	ret = 0;
3075 out:
3076 	if (ret) {
3077 		__free_recorded_refs(&pm->update_refs);
3078 		kfree(pm);
3079 	}
3080 	return ret;
3081 }
3082 
3083 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3084 						      u64 parent_ino)
3085 {
3086 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3087 	struct pending_dir_move *entry;
3088 
3089 	while (n) {
3090 		entry = rb_entry(n, struct pending_dir_move, node);
3091 		if (parent_ino < entry->parent_ino)
3092 			n = n->rb_left;
3093 		else if (parent_ino > entry->parent_ino)
3094 			n = n->rb_right;
3095 		else
3096 			return entry;
3097 	}
3098 	return NULL;
3099 }
3100 
3101 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3102 {
3103 	struct fs_path *from_path = NULL;
3104 	struct fs_path *to_path = NULL;
3105 	struct fs_path *name = NULL;
3106 	u64 orig_progress = sctx->send_progress;
3107 	struct recorded_ref *cur;
3108 	u64 parent_ino, parent_gen;
3109 	struct waiting_dir_move *dm = NULL;
3110 	u64 rmdir_ino = 0;
3111 	int ret;
3112 
3113 	name = fs_path_alloc();
3114 	from_path = fs_path_alloc();
3115 	if (!name || !from_path) {
3116 		ret = -ENOMEM;
3117 		goto out;
3118 	}
3119 
3120 	dm = get_waiting_dir_move(sctx, pm->ino);
3121 	ASSERT(dm);
3122 	rmdir_ino = dm->rmdir_ino;
3123 	free_waiting_dir_move(sctx, dm);
3124 
3125 	if (pm->is_orphan) {
3126 		ret = gen_unique_name(sctx, pm->ino,
3127 				      pm->gen, from_path);
3128 	} else {
3129 		ret = get_first_ref(sctx->parent_root, pm->ino,
3130 				    &parent_ino, &parent_gen, name);
3131 		if (ret < 0)
3132 			goto out;
3133 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3134 				   from_path);
3135 		if (ret < 0)
3136 			goto out;
3137 		ret = fs_path_add_path(from_path, name);
3138 	}
3139 	if (ret < 0)
3140 		goto out;
3141 
3142 	sctx->send_progress = sctx->cur_ino + 1;
3143 	fs_path_reset(name);
3144 	to_path = name;
3145 	name = NULL;
3146 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3147 	if (ret < 0)
3148 		goto out;
3149 
3150 	ret = send_rename(sctx, from_path, to_path);
3151 	if (ret < 0)
3152 		goto out;
3153 
3154 	if (rmdir_ino) {
3155 		struct orphan_dir_info *odi;
3156 
3157 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3158 		if (!odi) {
3159 			/* already deleted */
3160 			goto finish;
3161 		}
3162 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3163 		if (ret < 0)
3164 			goto out;
3165 		if (!ret)
3166 			goto finish;
3167 
3168 		name = fs_path_alloc();
3169 		if (!name) {
3170 			ret = -ENOMEM;
3171 			goto out;
3172 		}
3173 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3174 		if (ret < 0)
3175 			goto out;
3176 		ret = send_rmdir(sctx, name);
3177 		if (ret < 0)
3178 			goto out;
3179 		free_orphan_dir_info(sctx, odi);
3180 	}
3181 
3182 finish:
3183 	ret = send_utimes(sctx, pm->ino, pm->gen);
3184 	if (ret < 0)
3185 		goto out;
3186 
3187 	/*
3188 	 * After rename/move, need to update the utimes of both new parent(s)
3189 	 * and old parent(s).
3190 	 */
3191 	list_for_each_entry(cur, &pm->update_refs, list) {
3192 		if (cur->dir == rmdir_ino)
3193 			continue;
3194 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3195 		if (ret < 0)
3196 			goto out;
3197 	}
3198 
3199 out:
3200 	fs_path_free(name);
3201 	fs_path_free(from_path);
3202 	fs_path_free(to_path);
3203 	sctx->send_progress = orig_progress;
3204 
3205 	return ret;
3206 }
3207 
3208 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3209 {
3210 	if (!list_empty(&m->list))
3211 		list_del(&m->list);
3212 	if (!RB_EMPTY_NODE(&m->node))
3213 		rb_erase(&m->node, &sctx->pending_dir_moves);
3214 	__free_recorded_refs(&m->update_refs);
3215 	kfree(m);
3216 }
3217 
3218 static void tail_append_pending_moves(struct pending_dir_move *moves,
3219 				      struct list_head *stack)
3220 {
3221 	if (list_empty(&moves->list)) {
3222 		list_add_tail(&moves->list, stack);
3223 	} else {
3224 		LIST_HEAD(list);
3225 		list_splice_init(&moves->list, &list);
3226 		list_add_tail(&moves->list, stack);
3227 		list_splice_tail(&list, stack);
3228 	}
3229 }
3230 
3231 static int apply_children_dir_moves(struct send_ctx *sctx)
3232 {
3233 	struct pending_dir_move *pm;
3234 	struct list_head stack;
3235 	u64 parent_ino = sctx->cur_ino;
3236 	int ret = 0;
3237 
3238 	pm = get_pending_dir_moves(sctx, parent_ino);
3239 	if (!pm)
3240 		return 0;
3241 
3242 	INIT_LIST_HEAD(&stack);
3243 	tail_append_pending_moves(pm, &stack);
3244 
3245 	while (!list_empty(&stack)) {
3246 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3247 		parent_ino = pm->ino;
3248 		ret = apply_dir_move(sctx, pm);
3249 		free_pending_move(sctx, pm);
3250 		if (ret)
3251 			goto out;
3252 		pm = get_pending_dir_moves(sctx, parent_ino);
3253 		if (pm)
3254 			tail_append_pending_moves(pm, &stack);
3255 	}
3256 	return 0;
3257 
3258 out:
3259 	while (!list_empty(&stack)) {
3260 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3261 		free_pending_move(sctx, pm);
3262 	}
3263 	return ret;
3264 }
3265 
3266 /*
3267  * We might need to delay a directory rename even when no ancestor directory
3268  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3269  * renamed. This happens when we rename a directory to the old name (the name
3270  * in the parent root) of some other unrelated directory that got its rename
3271  * delayed due to some ancestor with higher number that got renamed.
3272  *
3273  * Example:
3274  *
3275  * Parent snapshot:
3276  * .                                       (ino 256)
3277  * |---- a/                                (ino 257)
3278  * |     |---- file                        (ino 260)
3279  * |
3280  * |---- b/                                (ino 258)
3281  * |---- c/                                (ino 259)
3282  *
3283  * Send snapshot:
3284  * .                                       (ino 256)
3285  * |---- a/                                (ino 258)
3286  * |---- x/                                (ino 259)
3287  *       |---- y/                          (ino 257)
3288  *             |----- file                 (ino 260)
3289  *
3290  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3291  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3292  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3293  * must issue is:
3294  *
3295  * 1 - rename 259 from 'c' to 'x'
3296  * 2 - rename 257 from 'a' to 'x/y'
3297  * 3 - rename 258 from 'b' to 'a'
3298  *
3299  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3300  * be done right away and < 0 on error.
3301  */
3302 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3303 				  struct recorded_ref *parent_ref,
3304 				  const bool is_orphan)
3305 {
3306 	struct btrfs_path *path;
3307 	struct btrfs_key key;
3308 	struct btrfs_key di_key;
3309 	struct btrfs_dir_item *di;
3310 	u64 left_gen;
3311 	u64 right_gen;
3312 	int ret = 0;
3313 
3314 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3315 		return 0;
3316 
3317 	path = alloc_path_for_send();
3318 	if (!path)
3319 		return -ENOMEM;
3320 
3321 	key.objectid = parent_ref->dir;
3322 	key.type = BTRFS_DIR_ITEM_KEY;
3323 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3324 
3325 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3326 	if (ret < 0) {
3327 		goto out;
3328 	} else if (ret > 0) {
3329 		ret = 0;
3330 		goto out;
3331 	}
3332 
3333 	di = btrfs_match_dir_item_name(sctx->parent_root, path,
3334 				       parent_ref->name, parent_ref->name_len);
3335 	if (!di) {
3336 		ret = 0;
3337 		goto out;
3338 	}
3339 	/*
3340 	 * di_key.objectid has the number of the inode that has a dentry in the
3341 	 * parent directory with the same name that sctx->cur_ino is being
3342 	 * renamed to. We need to check if that inode is in the send root as
3343 	 * well and if it is currently marked as an inode with a pending rename,
3344 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3345 	 * that it happens after that other inode is renamed.
3346 	 */
3347 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3348 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3349 		ret = 0;
3350 		goto out;
3351 	}
3352 
3353 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3354 			     &left_gen, NULL, NULL, NULL, NULL);
3355 	if (ret < 0)
3356 		goto out;
3357 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3358 			     &right_gen, NULL, NULL, NULL, NULL);
3359 	if (ret < 0) {
3360 		if (ret == -ENOENT)
3361 			ret = 0;
3362 		goto out;
3363 	}
3364 
3365 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3366 	if (right_gen != left_gen) {
3367 		ret = 0;
3368 		goto out;
3369 	}
3370 
3371 	if (is_waiting_for_move(sctx, di_key.objectid)) {
3372 		ret = add_pending_dir_move(sctx,
3373 					   sctx->cur_ino,
3374 					   sctx->cur_inode_gen,
3375 					   di_key.objectid,
3376 					   &sctx->new_refs,
3377 					   &sctx->deleted_refs,
3378 					   is_orphan);
3379 		if (!ret)
3380 			ret = 1;
3381 	}
3382 out:
3383 	btrfs_free_path(path);
3384 	return ret;
3385 }
3386 
3387 /*
3388  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3389  * Return 1 if true, 0 if false and < 0 on error.
3390  */
3391 static int is_ancestor(struct btrfs_root *root,
3392 		       const u64 ino1,
3393 		       const u64 ino1_gen,
3394 		       const u64 ino2,
3395 		       struct fs_path *fs_path)
3396 {
3397 	u64 ino = ino2;
3398 
3399 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3400 		int ret;
3401 		u64 parent;
3402 		u64 parent_gen;
3403 
3404 		fs_path_reset(fs_path);
3405 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3406 		if (ret < 0) {
3407 			if (ret == -ENOENT && ino == ino2)
3408 				ret = 0;
3409 			return ret;
3410 		}
3411 		if (parent == ino1)
3412 			return parent_gen == ino1_gen ? 1 : 0;
3413 		ino = parent;
3414 	}
3415 	return 0;
3416 }
3417 
3418 static int wait_for_parent_move(struct send_ctx *sctx,
3419 				struct recorded_ref *parent_ref,
3420 				const bool is_orphan)
3421 {
3422 	int ret = 0;
3423 	u64 ino = parent_ref->dir;
3424 	u64 parent_ino_before, parent_ino_after;
3425 	struct fs_path *path_before = NULL;
3426 	struct fs_path *path_after = NULL;
3427 	int len1, len2;
3428 
3429 	path_after = fs_path_alloc();
3430 	path_before = fs_path_alloc();
3431 	if (!path_after || !path_before) {
3432 		ret = -ENOMEM;
3433 		goto out;
3434 	}
3435 
3436 	/*
3437 	 * Our current directory inode may not yet be renamed/moved because some
3438 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3439 	 * such ancestor exists and make sure our own rename/move happens after
3440 	 * that ancestor is processed to avoid path build infinite loops (done
3441 	 * at get_cur_path()).
3442 	 */
3443 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3444 		if (is_waiting_for_move(sctx, ino)) {
3445 			/*
3446 			 * If the current inode is an ancestor of ino in the
3447 			 * parent root, we need to delay the rename of the
3448 			 * current inode, otherwise don't delayed the rename
3449 			 * because we can end up with a circular dependency
3450 			 * of renames, resulting in some directories never
3451 			 * getting the respective rename operations issued in
3452 			 * the send stream or getting into infinite path build
3453 			 * loops.
3454 			 */
3455 			ret = is_ancestor(sctx->parent_root,
3456 					  sctx->cur_ino, sctx->cur_inode_gen,
3457 					  ino, path_before);
3458 			break;
3459 		}
3460 
3461 		fs_path_reset(path_before);
3462 		fs_path_reset(path_after);
3463 
3464 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3465 				    NULL, path_after);
3466 		if (ret < 0)
3467 			goto out;
3468 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3469 				    NULL, path_before);
3470 		if (ret < 0 && ret != -ENOENT) {
3471 			goto out;
3472 		} else if (ret == -ENOENT) {
3473 			ret = 0;
3474 			break;
3475 		}
3476 
3477 		len1 = fs_path_len(path_before);
3478 		len2 = fs_path_len(path_after);
3479 		if (ino > sctx->cur_ino &&
3480 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3481 		     memcmp(path_before->start, path_after->start, len1))) {
3482 			ret = 1;
3483 			break;
3484 		}
3485 		ino = parent_ino_after;
3486 	}
3487 
3488 out:
3489 	fs_path_free(path_before);
3490 	fs_path_free(path_after);
3491 
3492 	if (ret == 1) {
3493 		ret = add_pending_dir_move(sctx,
3494 					   sctx->cur_ino,
3495 					   sctx->cur_inode_gen,
3496 					   ino,
3497 					   &sctx->new_refs,
3498 					   &sctx->deleted_refs,
3499 					   is_orphan);
3500 		if (!ret)
3501 			ret = 1;
3502 	}
3503 
3504 	return ret;
3505 }
3506 
3507 /*
3508  * This does all the move/link/unlink/rmdir magic.
3509  */
3510 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3511 {
3512 	int ret = 0;
3513 	struct recorded_ref *cur;
3514 	struct recorded_ref *cur2;
3515 	struct list_head check_dirs;
3516 	struct fs_path *valid_path = NULL;
3517 	u64 ow_inode = 0;
3518 	u64 ow_gen;
3519 	int did_overwrite = 0;
3520 	int is_orphan = 0;
3521 	u64 last_dir_ino_rm = 0;
3522 	bool can_rename = true;
3523 
3524 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3525 
3526 	/*
3527 	 * This should never happen as the root dir always has the same ref
3528 	 * which is always '..'
3529 	 */
3530 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3531 	INIT_LIST_HEAD(&check_dirs);
3532 
3533 	valid_path = fs_path_alloc();
3534 	if (!valid_path) {
3535 		ret = -ENOMEM;
3536 		goto out;
3537 	}
3538 
3539 	/*
3540 	 * First, check if the first ref of the current inode was overwritten
3541 	 * before. If yes, we know that the current inode was already orphanized
3542 	 * and thus use the orphan name. If not, we can use get_cur_path to
3543 	 * get the path of the first ref as it would like while receiving at
3544 	 * this point in time.
3545 	 * New inodes are always orphan at the beginning, so force to use the
3546 	 * orphan name in this case.
3547 	 * The first ref is stored in valid_path and will be updated if it
3548 	 * gets moved around.
3549 	 */
3550 	if (!sctx->cur_inode_new) {
3551 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3552 				sctx->cur_inode_gen);
3553 		if (ret < 0)
3554 			goto out;
3555 		if (ret)
3556 			did_overwrite = 1;
3557 	}
3558 	if (sctx->cur_inode_new || did_overwrite) {
3559 		ret = gen_unique_name(sctx, sctx->cur_ino,
3560 				sctx->cur_inode_gen, valid_path);
3561 		if (ret < 0)
3562 			goto out;
3563 		is_orphan = 1;
3564 	} else {
3565 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3566 				valid_path);
3567 		if (ret < 0)
3568 			goto out;
3569 	}
3570 
3571 	list_for_each_entry(cur, &sctx->new_refs, list) {
3572 		/*
3573 		 * We may have refs where the parent directory does not exist
3574 		 * yet. This happens if the parent directories inum is higher
3575 		 * the the current inum. To handle this case, we create the
3576 		 * parent directory out of order. But we need to check if this
3577 		 * did already happen before due to other refs in the same dir.
3578 		 */
3579 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3580 		if (ret < 0)
3581 			goto out;
3582 		if (ret == inode_state_will_create) {
3583 			ret = 0;
3584 			/*
3585 			 * First check if any of the current inodes refs did
3586 			 * already create the dir.
3587 			 */
3588 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3589 				if (cur == cur2)
3590 					break;
3591 				if (cur2->dir == cur->dir) {
3592 					ret = 1;
3593 					break;
3594 				}
3595 			}
3596 
3597 			/*
3598 			 * If that did not happen, check if a previous inode
3599 			 * did already create the dir.
3600 			 */
3601 			if (!ret)
3602 				ret = did_create_dir(sctx, cur->dir);
3603 			if (ret < 0)
3604 				goto out;
3605 			if (!ret) {
3606 				ret = send_create_inode(sctx, cur->dir);
3607 				if (ret < 0)
3608 					goto out;
3609 			}
3610 		}
3611 
3612 		/*
3613 		 * Check if this new ref would overwrite the first ref of
3614 		 * another unprocessed inode. If yes, orphanize the
3615 		 * overwritten inode. If we find an overwritten ref that is
3616 		 * not the first ref, simply unlink it.
3617 		 */
3618 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3619 				cur->name, cur->name_len,
3620 				&ow_inode, &ow_gen);
3621 		if (ret < 0)
3622 			goto out;
3623 		if (ret) {
3624 			ret = is_first_ref(sctx->parent_root,
3625 					   ow_inode, cur->dir, cur->name,
3626 					   cur->name_len);
3627 			if (ret < 0)
3628 				goto out;
3629 			if (ret) {
3630 				struct name_cache_entry *nce;
3631 
3632 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3633 						cur->full_path);
3634 				if (ret < 0)
3635 					goto out;
3636 				/*
3637 				 * Make sure we clear our orphanized inode's
3638 				 * name from the name cache. This is because the
3639 				 * inode ow_inode might be an ancestor of some
3640 				 * other inode that will be orphanized as well
3641 				 * later and has an inode number greater than
3642 				 * sctx->send_progress. We need to prevent
3643 				 * future name lookups from using the old name
3644 				 * and get instead the orphan name.
3645 				 */
3646 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3647 				if (nce) {
3648 					name_cache_delete(sctx, nce);
3649 					kfree(nce);
3650 				}
3651 			} else {
3652 				ret = send_unlink(sctx, cur->full_path);
3653 				if (ret < 0)
3654 					goto out;
3655 			}
3656 		}
3657 
3658 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3659 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3660 			if (ret < 0)
3661 				goto out;
3662 			if (ret == 1) {
3663 				can_rename = false;
3664 				*pending_move = 1;
3665 			}
3666 		}
3667 
3668 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3669 		    can_rename) {
3670 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3671 			if (ret < 0)
3672 				goto out;
3673 			if (ret == 1) {
3674 				can_rename = false;
3675 				*pending_move = 1;
3676 			}
3677 		}
3678 
3679 		/*
3680 		 * link/move the ref to the new place. If we have an orphan
3681 		 * inode, move it and update valid_path. If not, link or move
3682 		 * it depending on the inode mode.
3683 		 */
3684 		if (is_orphan && can_rename) {
3685 			ret = send_rename(sctx, valid_path, cur->full_path);
3686 			if (ret < 0)
3687 				goto out;
3688 			is_orphan = 0;
3689 			ret = fs_path_copy(valid_path, cur->full_path);
3690 			if (ret < 0)
3691 				goto out;
3692 		} else if (can_rename) {
3693 			if (S_ISDIR(sctx->cur_inode_mode)) {
3694 				/*
3695 				 * Dirs can't be linked, so move it. For moved
3696 				 * dirs, we always have one new and one deleted
3697 				 * ref. The deleted ref is ignored later.
3698 				 */
3699 				ret = send_rename(sctx, valid_path,
3700 						  cur->full_path);
3701 				if (!ret)
3702 					ret = fs_path_copy(valid_path,
3703 							   cur->full_path);
3704 				if (ret < 0)
3705 					goto out;
3706 			} else {
3707 				ret = send_link(sctx, cur->full_path,
3708 						valid_path);
3709 				if (ret < 0)
3710 					goto out;
3711 			}
3712 		}
3713 		ret = dup_ref(cur, &check_dirs);
3714 		if (ret < 0)
3715 			goto out;
3716 	}
3717 
3718 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3719 		/*
3720 		 * Check if we can already rmdir the directory. If not,
3721 		 * orphanize it. For every dir item inside that gets deleted
3722 		 * later, we do this check again and rmdir it then if possible.
3723 		 * See the use of check_dirs for more details.
3724 		 */
3725 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3726 				sctx->cur_ino);
3727 		if (ret < 0)
3728 			goto out;
3729 		if (ret) {
3730 			ret = send_rmdir(sctx, valid_path);
3731 			if (ret < 0)
3732 				goto out;
3733 		} else if (!is_orphan) {
3734 			ret = orphanize_inode(sctx, sctx->cur_ino,
3735 					sctx->cur_inode_gen, valid_path);
3736 			if (ret < 0)
3737 				goto out;
3738 			is_orphan = 1;
3739 		}
3740 
3741 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3742 			ret = dup_ref(cur, &check_dirs);
3743 			if (ret < 0)
3744 				goto out;
3745 		}
3746 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3747 		   !list_empty(&sctx->deleted_refs)) {
3748 		/*
3749 		 * We have a moved dir. Add the old parent to check_dirs
3750 		 */
3751 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3752 				list);
3753 		ret = dup_ref(cur, &check_dirs);
3754 		if (ret < 0)
3755 			goto out;
3756 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3757 		/*
3758 		 * We have a non dir inode. Go through all deleted refs and
3759 		 * unlink them if they were not already overwritten by other
3760 		 * inodes.
3761 		 */
3762 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3763 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3764 					sctx->cur_ino, sctx->cur_inode_gen,
3765 					cur->name, cur->name_len);
3766 			if (ret < 0)
3767 				goto out;
3768 			if (!ret) {
3769 				ret = send_unlink(sctx, cur->full_path);
3770 				if (ret < 0)
3771 					goto out;
3772 			}
3773 			ret = dup_ref(cur, &check_dirs);
3774 			if (ret < 0)
3775 				goto out;
3776 		}
3777 		/*
3778 		 * If the inode is still orphan, unlink the orphan. This may
3779 		 * happen when a previous inode did overwrite the first ref
3780 		 * of this inode and no new refs were added for the current
3781 		 * inode. Unlinking does not mean that the inode is deleted in
3782 		 * all cases. There may still be links to this inode in other
3783 		 * places.
3784 		 */
3785 		if (is_orphan) {
3786 			ret = send_unlink(sctx, valid_path);
3787 			if (ret < 0)
3788 				goto out;
3789 		}
3790 	}
3791 
3792 	/*
3793 	 * We did collect all parent dirs where cur_inode was once located. We
3794 	 * now go through all these dirs and check if they are pending for
3795 	 * deletion and if it's finally possible to perform the rmdir now.
3796 	 * We also update the inode stats of the parent dirs here.
3797 	 */
3798 	list_for_each_entry(cur, &check_dirs, list) {
3799 		/*
3800 		 * In case we had refs into dirs that were not processed yet,
3801 		 * we don't need to do the utime and rmdir logic for these dirs.
3802 		 * The dir will be processed later.
3803 		 */
3804 		if (cur->dir > sctx->cur_ino)
3805 			continue;
3806 
3807 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3808 		if (ret < 0)
3809 			goto out;
3810 
3811 		if (ret == inode_state_did_create ||
3812 		    ret == inode_state_no_change) {
3813 			/* TODO delayed utimes */
3814 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3815 			if (ret < 0)
3816 				goto out;
3817 		} else if (ret == inode_state_did_delete &&
3818 			   cur->dir != last_dir_ino_rm) {
3819 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3820 					sctx->cur_ino);
3821 			if (ret < 0)
3822 				goto out;
3823 			if (ret) {
3824 				ret = get_cur_path(sctx, cur->dir,
3825 						   cur->dir_gen, valid_path);
3826 				if (ret < 0)
3827 					goto out;
3828 				ret = send_rmdir(sctx, valid_path);
3829 				if (ret < 0)
3830 					goto out;
3831 				last_dir_ino_rm = cur->dir;
3832 			}
3833 		}
3834 	}
3835 
3836 	ret = 0;
3837 
3838 out:
3839 	__free_recorded_refs(&check_dirs);
3840 	free_recorded_refs(sctx);
3841 	fs_path_free(valid_path);
3842 	return ret;
3843 }
3844 
3845 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3846 		      struct fs_path *name, void *ctx, struct list_head *refs)
3847 {
3848 	int ret = 0;
3849 	struct send_ctx *sctx = ctx;
3850 	struct fs_path *p;
3851 	u64 gen;
3852 
3853 	p = fs_path_alloc();
3854 	if (!p)
3855 		return -ENOMEM;
3856 
3857 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3858 			NULL, NULL);
3859 	if (ret < 0)
3860 		goto out;
3861 
3862 	ret = get_cur_path(sctx, dir, gen, p);
3863 	if (ret < 0)
3864 		goto out;
3865 	ret = fs_path_add_path(p, name);
3866 	if (ret < 0)
3867 		goto out;
3868 
3869 	ret = __record_ref(refs, dir, gen, p);
3870 
3871 out:
3872 	if (ret)
3873 		fs_path_free(p);
3874 	return ret;
3875 }
3876 
3877 static int __record_new_ref(int num, u64 dir, int index,
3878 			    struct fs_path *name,
3879 			    void *ctx)
3880 {
3881 	struct send_ctx *sctx = ctx;
3882 	return record_ref(sctx->send_root, num, dir, index, name,
3883 			  ctx, &sctx->new_refs);
3884 }
3885 
3886 
3887 static int __record_deleted_ref(int num, u64 dir, int index,
3888 				struct fs_path *name,
3889 				void *ctx)
3890 {
3891 	struct send_ctx *sctx = ctx;
3892 	return record_ref(sctx->parent_root, num, dir, index, name,
3893 			  ctx, &sctx->deleted_refs);
3894 }
3895 
3896 static int record_new_ref(struct send_ctx *sctx)
3897 {
3898 	int ret;
3899 
3900 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3901 				sctx->cmp_key, 0, __record_new_ref, sctx);
3902 	if (ret < 0)
3903 		goto out;
3904 	ret = 0;
3905 
3906 out:
3907 	return ret;
3908 }
3909 
3910 static int record_deleted_ref(struct send_ctx *sctx)
3911 {
3912 	int ret;
3913 
3914 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3915 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3916 	if (ret < 0)
3917 		goto out;
3918 	ret = 0;
3919 
3920 out:
3921 	return ret;
3922 }
3923 
3924 struct find_ref_ctx {
3925 	u64 dir;
3926 	u64 dir_gen;
3927 	struct btrfs_root *root;
3928 	struct fs_path *name;
3929 	int found_idx;
3930 };
3931 
3932 static int __find_iref(int num, u64 dir, int index,
3933 		       struct fs_path *name,
3934 		       void *ctx_)
3935 {
3936 	struct find_ref_ctx *ctx = ctx_;
3937 	u64 dir_gen;
3938 	int ret;
3939 
3940 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3941 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3942 		/*
3943 		 * To avoid doing extra lookups we'll only do this if everything
3944 		 * else matches.
3945 		 */
3946 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3947 				     NULL, NULL, NULL);
3948 		if (ret)
3949 			return ret;
3950 		if (dir_gen != ctx->dir_gen)
3951 			return 0;
3952 		ctx->found_idx = num;
3953 		return 1;
3954 	}
3955 	return 0;
3956 }
3957 
3958 static int find_iref(struct btrfs_root *root,
3959 		     struct btrfs_path *path,
3960 		     struct btrfs_key *key,
3961 		     u64 dir, u64 dir_gen, struct fs_path *name)
3962 {
3963 	int ret;
3964 	struct find_ref_ctx ctx;
3965 
3966 	ctx.dir = dir;
3967 	ctx.name = name;
3968 	ctx.dir_gen = dir_gen;
3969 	ctx.found_idx = -1;
3970 	ctx.root = root;
3971 
3972 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3973 	if (ret < 0)
3974 		return ret;
3975 
3976 	if (ctx.found_idx == -1)
3977 		return -ENOENT;
3978 
3979 	return ctx.found_idx;
3980 }
3981 
3982 static int __record_changed_new_ref(int num, u64 dir, int index,
3983 				    struct fs_path *name,
3984 				    void *ctx)
3985 {
3986 	u64 dir_gen;
3987 	int ret;
3988 	struct send_ctx *sctx = ctx;
3989 
3990 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3991 			     NULL, NULL, NULL);
3992 	if (ret)
3993 		return ret;
3994 
3995 	ret = find_iref(sctx->parent_root, sctx->right_path,
3996 			sctx->cmp_key, dir, dir_gen, name);
3997 	if (ret == -ENOENT)
3998 		ret = __record_new_ref(num, dir, index, name, sctx);
3999 	else if (ret > 0)
4000 		ret = 0;
4001 
4002 	return ret;
4003 }
4004 
4005 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4006 					struct fs_path *name,
4007 					void *ctx)
4008 {
4009 	u64 dir_gen;
4010 	int ret;
4011 	struct send_ctx *sctx = ctx;
4012 
4013 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4014 			     NULL, NULL, NULL);
4015 	if (ret)
4016 		return ret;
4017 
4018 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4019 			dir, dir_gen, name);
4020 	if (ret == -ENOENT)
4021 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4022 	else if (ret > 0)
4023 		ret = 0;
4024 
4025 	return ret;
4026 }
4027 
4028 static int record_changed_ref(struct send_ctx *sctx)
4029 {
4030 	int ret = 0;
4031 
4032 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4033 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4034 	if (ret < 0)
4035 		goto out;
4036 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4037 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4038 	if (ret < 0)
4039 		goto out;
4040 	ret = 0;
4041 
4042 out:
4043 	return ret;
4044 }
4045 
4046 /*
4047  * Record and process all refs at once. Needed when an inode changes the
4048  * generation number, which means that it was deleted and recreated.
4049  */
4050 static int process_all_refs(struct send_ctx *sctx,
4051 			    enum btrfs_compare_tree_result cmd)
4052 {
4053 	int ret;
4054 	struct btrfs_root *root;
4055 	struct btrfs_path *path;
4056 	struct btrfs_key key;
4057 	struct btrfs_key found_key;
4058 	struct extent_buffer *eb;
4059 	int slot;
4060 	iterate_inode_ref_t cb;
4061 	int pending_move = 0;
4062 
4063 	path = alloc_path_for_send();
4064 	if (!path)
4065 		return -ENOMEM;
4066 
4067 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4068 		root = sctx->send_root;
4069 		cb = __record_new_ref;
4070 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4071 		root = sctx->parent_root;
4072 		cb = __record_deleted_ref;
4073 	} else {
4074 		btrfs_err(sctx->send_root->fs_info,
4075 				"Wrong command %d in process_all_refs", cmd);
4076 		ret = -EINVAL;
4077 		goto out;
4078 	}
4079 
4080 	key.objectid = sctx->cmp_key->objectid;
4081 	key.type = BTRFS_INODE_REF_KEY;
4082 	key.offset = 0;
4083 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4084 	if (ret < 0)
4085 		goto out;
4086 
4087 	while (1) {
4088 		eb = path->nodes[0];
4089 		slot = path->slots[0];
4090 		if (slot >= btrfs_header_nritems(eb)) {
4091 			ret = btrfs_next_leaf(root, path);
4092 			if (ret < 0)
4093 				goto out;
4094 			else if (ret > 0)
4095 				break;
4096 			continue;
4097 		}
4098 
4099 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4100 
4101 		if (found_key.objectid != key.objectid ||
4102 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4103 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4104 			break;
4105 
4106 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4107 		if (ret < 0)
4108 			goto out;
4109 
4110 		path->slots[0]++;
4111 	}
4112 	btrfs_release_path(path);
4113 
4114 	ret = process_recorded_refs(sctx, &pending_move);
4115 	/* Only applicable to an incremental send. */
4116 	ASSERT(pending_move == 0);
4117 
4118 out:
4119 	btrfs_free_path(path);
4120 	return ret;
4121 }
4122 
4123 static int send_set_xattr(struct send_ctx *sctx,
4124 			  struct fs_path *path,
4125 			  const char *name, int name_len,
4126 			  const char *data, int data_len)
4127 {
4128 	int ret = 0;
4129 
4130 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4131 	if (ret < 0)
4132 		goto out;
4133 
4134 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4135 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4136 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4137 
4138 	ret = send_cmd(sctx);
4139 
4140 tlv_put_failure:
4141 out:
4142 	return ret;
4143 }
4144 
4145 static int send_remove_xattr(struct send_ctx *sctx,
4146 			  struct fs_path *path,
4147 			  const char *name, int name_len)
4148 {
4149 	int ret = 0;
4150 
4151 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4152 	if (ret < 0)
4153 		goto out;
4154 
4155 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4156 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4157 
4158 	ret = send_cmd(sctx);
4159 
4160 tlv_put_failure:
4161 out:
4162 	return ret;
4163 }
4164 
4165 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4166 			       const char *name, int name_len,
4167 			       const char *data, int data_len,
4168 			       u8 type, void *ctx)
4169 {
4170 	int ret;
4171 	struct send_ctx *sctx = ctx;
4172 	struct fs_path *p;
4173 	posix_acl_xattr_header dummy_acl;
4174 
4175 	p = fs_path_alloc();
4176 	if (!p)
4177 		return -ENOMEM;
4178 
4179 	/*
4180 	 * This hack is needed because empty acl's are stored as zero byte
4181 	 * data in xattrs. Problem with that is, that receiving these zero byte
4182 	 * acl's will fail later. To fix this, we send a dummy acl list that
4183 	 * only contains the version number and no entries.
4184 	 */
4185 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4186 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4187 		if (data_len == 0) {
4188 			dummy_acl.a_version =
4189 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4190 			data = (char *)&dummy_acl;
4191 			data_len = sizeof(dummy_acl);
4192 		}
4193 	}
4194 
4195 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4196 	if (ret < 0)
4197 		goto out;
4198 
4199 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4200 
4201 out:
4202 	fs_path_free(p);
4203 	return ret;
4204 }
4205 
4206 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4207 				   const char *name, int name_len,
4208 				   const char *data, int data_len,
4209 				   u8 type, void *ctx)
4210 {
4211 	int ret;
4212 	struct send_ctx *sctx = ctx;
4213 	struct fs_path *p;
4214 
4215 	p = fs_path_alloc();
4216 	if (!p)
4217 		return -ENOMEM;
4218 
4219 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4220 	if (ret < 0)
4221 		goto out;
4222 
4223 	ret = send_remove_xattr(sctx, p, name, name_len);
4224 
4225 out:
4226 	fs_path_free(p);
4227 	return ret;
4228 }
4229 
4230 static int process_new_xattr(struct send_ctx *sctx)
4231 {
4232 	int ret = 0;
4233 
4234 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4235 			       sctx->cmp_key, __process_new_xattr, sctx);
4236 
4237 	return ret;
4238 }
4239 
4240 static int process_deleted_xattr(struct send_ctx *sctx)
4241 {
4242 	int ret;
4243 
4244 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4245 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4246 
4247 	return ret;
4248 }
4249 
4250 struct find_xattr_ctx {
4251 	const char *name;
4252 	int name_len;
4253 	int found_idx;
4254 	char *found_data;
4255 	int found_data_len;
4256 };
4257 
4258 static int __find_xattr(int num, struct btrfs_key *di_key,
4259 			const char *name, int name_len,
4260 			const char *data, int data_len,
4261 			u8 type, void *vctx)
4262 {
4263 	struct find_xattr_ctx *ctx = vctx;
4264 
4265 	if (name_len == ctx->name_len &&
4266 	    strncmp(name, ctx->name, name_len) == 0) {
4267 		ctx->found_idx = num;
4268 		ctx->found_data_len = data_len;
4269 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4270 		if (!ctx->found_data)
4271 			return -ENOMEM;
4272 		return 1;
4273 	}
4274 	return 0;
4275 }
4276 
4277 static int find_xattr(struct btrfs_root *root,
4278 		      struct btrfs_path *path,
4279 		      struct btrfs_key *key,
4280 		      const char *name, int name_len,
4281 		      char **data, int *data_len)
4282 {
4283 	int ret;
4284 	struct find_xattr_ctx ctx;
4285 
4286 	ctx.name = name;
4287 	ctx.name_len = name_len;
4288 	ctx.found_idx = -1;
4289 	ctx.found_data = NULL;
4290 	ctx.found_data_len = 0;
4291 
4292 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4293 	if (ret < 0)
4294 		return ret;
4295 
4296 	if (ctx.found_idx == -1)
4297 		return -ENOENT;
4298 	if (data) {
4299 		*data = ctx.found_data;
4300 		*data_len = ctx.found_data_len;
4301 	} else {
4302 		kfree(ctx.found_data);
4303 	}
4304 	return ctx.found_idx;
4305 }
4306 
4307 
4308 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4309 				       const char *name, int name_len,
4310 				       const char *data, int data_len,
4311 				       u8 type, void *ctx)
4312 {
4313 	int ret;
4314 	struct send_ctx *sctx = ctx;
4315 	char *found_data = NULL;
4316 	int found_data_len  = 0;
4317 
4318 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4319 			 sctx->cmp_key, name, name_len, &found_data,
4320 			 &found_data_len);
4321 	if (ret == -ENOENT) {
4322 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4323 				data_len, type, ctx);
4324 	} else if (ret >= 0) {
4325 		if (data_len != found_data_len ||
4326 		    memcmp(data, found_data, data_len)) {
4327 			ret = __process_new_xattr(num, di_key, name, name_len,
4328 					data, data_len, type, ctx);
4329 		} else {
4330 			ret = 0;
4331 		}
4332 	}
4333 
4334 	kfree(found_data);
4335 	return ret;
4336 }
4337 
4338 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4339 					   const char *name, int name_len,
4340 					   const char *data, int data_len,
4341 					   u8 type, void *ctx)
4342 {
4343 	int ret;
4344 	struct send_ctx *sctx = ctx;
4345 
4346 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4347 			 name, name_len, NULL, NULL);
4348 	if (ret == -ENOENT)
4349 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4350 				data_len, type, ctx);
4351 	else if (ret >= 0)
4352 		ret = 0;
4353 
4354 	return ret;
4355 }
4356 
4357 static int process_changed_xattr(struct send_ctx *sctx)
4358 {
4359 	int ret = 0;
4360 
4361 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4362 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4363 	if (ret < 0)
4364 		goto out;
4365 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4366 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4367 
4368 out:
4369 	return ret;
4370 }
4371 
4372 static int process_all_new_xattrs(struct send_ctx *sctx)
4373 {
4374 	int ret;
4375 	struct btrfs_root *root;
4376 	struct btrfs_path *path;
4377 	struct btrfs_key key;
4378 	struct btrfs_key found_key;
4379 	struct extent_buffer *eb;
4380 	int slot;
4381 
4382 	path = alloc_path_for_send();
4383 	if (!path)
4384 		return -ENOMEM;
4385 
4386 	root = sctx->send_root;
4387 
4388 	key.objectid = sctx->cmp_key->objectid;
4389 	key.type = BTRFS_XATTR_ITEM_KEY;
4390 	key.offset = 0;
4391 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4392 	if (ret < 0)
4393 		goto out;
4394 
4395 	while (1) {
4396 		eb = path->nodes[0];
4397 		slot = path->slots[0];
4398 		if (slot >= btrfs_header_nritems(eb)) {
4399 			ret = btrfs_next_leaf(root, path);
4400 			if (ret < 0) {
4401 				goto out;
4402 			} else if (ret > 0) {
4403 				ret = 0;
4404 				break;
4405 			}
4406 			continue;
4407 		}
4408 
4409 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4410 		if (found_key.objectid != key.objectid ||
4411 		    found_key.type != key.type) {
4412 			ret = 0;
4413 			goto out;
4414 		}
4415 
4416 		ret = iterate_dir_item(root, path, &found_key,
4417 				       __process_new_xattr, sctx);
4418 		if (ret < 0)
4419 			goto out;
4420 
4421 		path->slots[0]++;
4422 	}
4423 
4424 out:
4425 	btrfs_free_path(path);
4426 	return ret;
4427 }
4428 
4429 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4430 {
4431 	struct btrfs_root *root = sctx->send_root;
4432 	struct btrfs_fs_info *fs_info = root->fs_info;
4433 	struct inode *inode;
4434 	struct page *page;
4435 	char *addr;
4436 	struct btrfs_key key;
4437 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4438 	pgoff_t last_index;
4439 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4440 	ssize_t ret = 0;
4441 
4442 	key.objectid = sctx->cur_ino;
4443 	key.type = BTRFS_INODE_ITEM_KEY;
4444 	key.offset = 0;
4445 
4446 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4447 	if (IS_ERR(inode))
4448 		return PTR_ERR(inode);
4449 
4450 	if (offset + len > i_size_read(inode)) {
4451 		if (offset > i_size_read(inode))
4452 			len = 0;
4453 		else
4454 			len = offset - i_size_read(inode);
4455 	}
4456 	if (len == 0)
4457 		goto out;
4458 
4459 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4460 
4461 	/* initial readahead */
4462 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4463 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4464 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4465 		       last_index - index + 1);
4466 
4467 	while (index <= last_index) {
4468 		unsigned cur_len = min_t(unsigned, len,
4469 					 PAGE_CACHE_SIZE - pg_offset);
4470 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4471 		if (!page) {
4472 			ret = -ENOMEM;
4473 			break;
4474 		}
4475 
4476 		if (!PageUptodate(page)) {
4477 			btrfs_readpage(NULL, page);
4478 			lock_page(page);
4479 			if (!PageUptodate(page)) {
4480 				unlock_page(page);
4481 				page_cache_release(page);
4482 				ret = -EIO;
4483 				break;
4484 			}
4485 		}
4486 
4487 		addr = kmap(page);
4488 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4489 		kunmap(page);
4490 		unlock_page(page);
4491 		page_cache_release(page);
4492 		index++;
4493 		pg_offset = 0;
4494 		len -= cur_len;
4495 		ret += cur_len;
4496 	}
4497 out:
4498 	iput(inode);
4499 	return ret;
4500 }
4501 
4502 /*
4503  * Read some bytes from the current inode/file and send a write command to
4504  * user space.
4505  */
4506 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4507 {
4508 	int ret = 0;
4509 	struct fs_path *p;
4510 	ssize_t num_read = 0;
4511 
4512 	p = fs_path_alloc();
4513 	if (!p)
4514 		return -ENOMEM;
4515 
4516 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4517 
4518 	num_read = fill_read_buf(sctx, offset, len);
4519 	if (num_read <= 0) {
4520 		if (num_read < 0)
4521 			ret = num_read;
4522 		goto out;
4523 	}
4524 
4525 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4526 	if (ret < 0)
4527 		goto out;
4528 
4529 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4530 	if (ret < 0)
4531 		goto out;
4532 
4533 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4534 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4535 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4536 
4537 	ret = send_cmd(sctx);
4538 
4539 tlv_put_failure:
4540 out:
4541 	fs_path_free(p);
4542 	if (ret < 0)
4543 		return ret;
4544 	return num_read;
4545 }
4546 
4547 /*
4548  * Send a clone command to user space.
4549  */
4550 static int send_clone(struct send_ctx *sctx,
4551 		      u64 offset, u32 len,
4552 		      struct clone_root *clone_root)
4553 {
4554 	int ret = 0;
4555 	struct fs_path *p;
4556 	u64 gen;
4557 
4558 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4559 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4560 		clone_root->root->objectid, clone_root->ino,
4561 		clone_root->offset);
4562 
4563 	p = fs_path_alloc();
4564 	if (!p)
4565 		return -ENOMEM;
4566 
4567 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4568 	if (ret < 0)
4569 		goto out;
4570 
4571 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4572 	if (ret < 0)
4573 		goto out;
4574 
4575 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4576 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4577 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4578 
4579 	if (clone_root->root == sctx->send_root) {
4580 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4581 				&gen, NULL, NULL, NULL, NULL);
4582 		if (ret < 0)
4583 			goto out;
4584 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4585 	} else {
4586 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4587 	}
4588 	if (ret < 0)
4589 		goto out;
4590 
4591 	/*
4592 	 * If the parent we're using has a received_uuid set then use that as
4593 	 * our clone source as that is what we will look for when doing a
4594 	 * receive.
4595 	 *
4596 	 * This covers the case that we create a snapshot off of a received
4597 	 * subvolume and then use that as the parent and try to receive on a
4598 	 * different host.
4599 	 */
4600 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4601 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4602 			     clone_root->root->root_item.received_uuid);
4603 	else
4604 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4605 			     clone_root->root->root_item.uuid);
4606 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4607 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4608 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4609 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4610 			clone_root->offset);
4611 
4612 	ret = send_cmd(sctx);
4613 
4614 tlv_put_failure:
4615 out:
4616 	fs_path_free(p);
4617 	return ret;
4618 }
4619 
4620 /*
4621  * Send an update extent command to user space.
4622  */
4623 static int send_update_extent(struct send_ctx *sctx,
4624 			      u64 offset, u32 len)
4625 {
4626 	int ret = 0;
4627 	struct fs_path *p;
4628 
4629 	p = fs_path_alloc();
4630 	if (!p)
4631 		return -ENOMEM;
4632 
4633 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4634 	if (ret < 0)
4635 		goto out;
4636 
4637 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4638 	if (ret < 0)
4639 		goto out;
4640 
4641 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4642 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4643 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4644 
4645 	ret = send_cmd(sctx);
4646 
4647 tlv_put_failure:
4648 out:
4649 	fs_path_free(p);
4650 	return ret;
4651 }
4652 
4653 static int send_hole(struct send_ctx *sctx, u64 end)
4654 {
4655 	struct fs_path *p = NULL;
4656 	u64 offset = sctx->cur_inode_last_extent;
4657 	u64 len;
4658 	int ret = 0;
4659 
4660 	p = fs_path_alloc();
4661 	if (!p)
4662 		return -ENOMEM;
4663 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4664 	if (ret < 0)
4665 		goto tlv_put_failure;
4666 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4667 	while (offset < end) {
4668 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4669 
4670 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4671 		if (ret < 0)
4672 			break;
4673 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4674 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4675 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4676 		ret = send_cmd(sctx);
4677 		if (ret < 0)
4678 			break;
4679 		offset += len;
4680 	}
4681 tlv_put_failure:
4682 	fs_path_free(p);
4683 	return ret;
4684 }
4685 
4686 static int send_extent_data(struct send_ctx *sctx,
4687 			    const u64 offset,
4688 			    const u64 len)
4689 {
4690 	u64 sent = 0;
4691 
4692 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4693 		return send_update_extent(sctx, offset, len);
4694 
4695 	while (sent < len) {
4696 		u64 size = len - sent;
4697 		int ret;
4698 
4699 		if (size > BTRFS_SEND_READ_SIZE)
4700 			size = BTRFS_SEND_READ_SIZE;
4701 		ret = send_write(sctx, offset + sent, size);
4702 		if (ret < 0)
4703 			return ret;
4704 		if (!ret)
4705 			break;
4706 		sent += ret;
4707 	}
4708 	return 0;
4709 }
4710 
4711 static int clone_range(struct send_ctx *sctx,
4712 		       struct clone_root *clone_root,
4713 		       const u64 disk_byte,
4714 		       u64 data_offset,
4715 		       u64 offset,
4716 		       u64 len)
4717 {
4718 	struct btrfs_path *path;
4719 	struct btrfs_key key;
4720 	int ret;
4721 
4722 	path = alloc_path_for_send();
4723 	if (!path)
4724 		return -ENOMEM;
4725 
4726 	/*
4727 	 * We can't send a clone operation for the entire range if we find
4728 	 * extent items in the respective range in the source file that
4729 	 * refer to different extents or if we find holes.
4730 	 * So check for that and do a mix of clone and regular write/copy
4731 	 * operations if needed.
4732 	 *
4733 	 * Example:
4734 	 *
4735 	 * mkfs.btrfs -f /dev/sda
4736 	 * mount /dev/sda /mnt
4737 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4738 	 * cp --reflink=always /mnt/foo /mnt/bar
4739 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4740 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
4741 	 *
4742 	 * If when we send the snapshot and we are processing file bar (which
4743 	 * has a higher inode number than foo) we blindly send a clone operation
4744 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4745 	 * a file bar that matches the content of file foo - iow, doesn't match
4746 	 * the content from bar in the original filesystem.
4747 	 */
4748 	key.objectid = clone_root->ino;
4749 	key.type = BTRFS_EXTENT_DATA_KEY;
4750 	key.offset = clone_root->offset;
4751 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4752 	if (ret < 0)
4753 		goto out;
4754 	if (ret > 0 && path->slots[0] > 0) {
4755 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4756 		if (key.objectid == clone_root->ino &&
4757 		    key.type == BTRFS_EXTENT_DATA_KEY)
4758 			path->slots[0]--;
4759 	}
4760 
4761 	while (true) {
4762 		struct extent_buffer *leaf = path->nodes[0];
4763 		int slot = path->slots[0];
4764 		struct btrfs_file_extent_item *ei;
4765 		u8 type;
4766 		u64 ext_len;
4767 		u64 clone_len;
4768 
4769 		if (slot >= btrfs_header_nritems(leaf)) {
4770 			ret = btrfs_next_leaf(clone_root->root, path);
4771 			if (ret < 0)
4772 				goto out;
4773 			else if (ret > 0)
4774 				break;
4775 			continue;
4776 		}
4777 
4778 		btrfs_item_key_to_cpu(leaf, &key, slot);
4779 
4780 		/*
4781 		 * We might have an implicit trailing hole (NO_HOLES feature
4782 		 * enabled). We deal with it after leaving this loop.
4783 		 */
4784 		if (key.objectid != clone_root->ino ||
4785 		    key.type != BTRFS_EXTENT_DATA_KEY)
4786 			break;
4787 
4788 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4789 		type = btrfs_file_extent_type(leaf, ei);
4790 		if (type == BTRFS_FILE_EXTENT_INLINE) {
4791 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4792 			ext_len = PAGE_CACHE_ALIGN(ext_len);
4793 		} else {
4794 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4795 		}
4796 
4797 		if (key.offset + ext_len <= clone_root->offset)
4798 			goto next;
4799 
4800 		if (key.offset > clone_root->offset) {
4801 			/* Implicit hole, NO_HOLES feature enabled. */
4802 			u64 hole_len = key.offset - clone_root->offset;
4803 
4804 			if (hole_len > len)
4805 				hole_len = len;
4806 			ret = send_extent_data(sctx, offset, hole_len);
4807 			if (ret < 0)
4808 				goto out;
4809 
4810 			len -= hole_len;
4811 			if (len == 0)
4812 				break;
4813 			offset += hole_len;
4814 			clone_root->offset += hole_len;
4815 			data_offset += hole_len;
4816 		}
4817 
4818 		if (key.offset >= clone_root->offset + len)
4819 			break;
4820 
4821 		clone_len = min_t(u64, ext_len, len);
4822 
4823 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4824 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
4825 			ret = send_clone(sctx, offset, clone_len, clone_root);
4826 		else
4827 			ret = send_extent_data(sctx, offset, clone_len);
4828 
4829 		if (ret < 0)
4830 			goto out;
4831 
4832 		len -= clone_len;
4833 		if (len == 0)
4834 			break;
4835 		offset += clone_len;
4836 		clone_root->offset += clone_len;
4837 		data_offset += clone_len;
4838 next:
4839 		path->slots[0]++;
4840 	}
4841 
4842 	if (len > 0)
4843 		ret = send_extent_data(sctx, offset, len);
4844 	else
4845 		ret = 0;
4846 out:
4847 	btrfs_free_path(path);
4848 	return ret;
4849 }
4850 
4851 static int send_write_or_clone(struct send_ctx *sctx,
4852 			       struct btrfs_path *path,
4853 			       struct btrfs_key *key,
4854 			       struct clone_root *clone_root)
4855 {
4856 	int ret = 0;
4857 	struct btrfs_file_extent_item *ei;
4858 	u64 offset = key->offset;
4859 	u64 len;
4860 	u8 type;
4861 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4862 
4863 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4864 			struct btrfs_file_extent_item);
4865 	type = btrfs_file_extent_type(path->nodes[0], ei);
4866 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4867 		len = btrfs_file_extent_inline_len(path->nodes[0],
4868 						   path->slots[0], ei);
4869 		/*
4870 		 * it is possible the inline item won't cover the whole page,
4871 		 * but there may be items after this page.  Make
4872 		 * sure to send the whole thing
4873 		 */
4874 		len = PAGE_CACHE_ALIGN(len);
4875 	} else {
4876 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4877 	}
4878 
4879 	if (offset + len > sctx->cur_inode_size)
4880 		len = sctx->cur_inode_size - offset;
4881 	if (len == 0) {
4882 		ret = 0;
4883 		goto out;
4884 	}
4885 
4886 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4887 		u64 disk_byte;
4888 		u64 data_offset;
4889 
4890 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
4891 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
4892 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
4893 				  offset, len);
4894 	} else {
4895 		ret = send_extent_data(sctx, offset, len);
4896 	}
4897 out:
4898 	return ret;
4899 }
4900 
4901 static int is_extent_unchanged(struct send_ctx *sctx,
4902 			       struct btrfs_path *left_path,
4903 			       struct btrfs_key *ekey)
4904 {
4905 	int ret = 0;
4906 	struct btrfs_key key;
4907 	struct btrfs_path *path = NULL;
4908 	struct extent_buffer *eb;
4909 	int slot;
4910 	struct btrfs_key found_key;
4911 	struct btrfs_file_extent_item *ei;
4912 	u64 left_disknr;
4913 	u64 right_disknr;
4914 	u64 left_offset;
4915 	u64 right_offset;
4916 	u64 left_offset_fixed;
4917 	u64 left_len;
4918 	u64 right_len;
4919 	u64 left_gen;
4920 	u64 right_gen;
4921 	u8 left_type;
4922 	u8 right_type;
4923 
4924 	path = alloc_path_for_send();
4925 	if (!path)
4926 		return -ENOMEM;
4927 
4928 	eb = left_path->nodes[0];
4929 	slot = left_path->slots[0];
4930 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4931 	left_type = btrfs_file_extent_type(eb, ei);
4932 
4933 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4934 		ret = 0;
4935 		goto out;
4936 	}
4937 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4938 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4939 	left_offset = btrfs_file_extent_offset(eb, ei);
4940 	left_gen = btrfs_file_extent_generation(eb, ei);
4941 
4942 	/*
4943 	 * Following comments will refer to these graphics. L is the left
4944 	 * extents which we are checking at the moment. 1-8 are the right
4945 	 * extents that we iterate.
4946 	 *
4947 	 *       |-----L-----|
4948 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4949 	 *
4950 	 *       |-----L-----|
4951 	 * |--1--|-2b-|...(same as above)
4952 	 *
4953 	 * Alternative situation. Happens on files where extents got split.
4954 	 *       |-----L-----|
4955 	 * |-----------7-----------|-6-|
4956 	 *
4957 	 * Alternative situation. Happens on files which got larger.
4958 	 *       |-----L-----|
4959 	 * |-8-|
4960 	 * Nothing follows after 8.
4961 	 */
4962 
4963 	key.objectid = ekey->objectid;
4964 	key.type = BTRFS_EXTENT_DATA_KEY;
4965 	key.offset = ekey->offset;
4966 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4967 	if (ret < 0)
4968 		goto out;
4969 	if (ret) {
4970 		ret = 0;
4971 		goto out;
4972 	}
4973 
4974 	/*
4975 	 * Handle special case where the right side has no extents at all.
4976 	 */
4977 	eb = path->nodes[0];
4978 	slot = path->slots[0];
4979 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4980 	if (found_key.objectid != key.objectid ||
4981 	    found_key.type != key.type) {
4982 		/* If we're a hole then just pretend nothing changed */
4983 		ret = (left_disknr) ? 0 : 1;
4984 		goto out;
4985 	}
4986 
4987 	/*
4988 	 * We're now on 2a, 2b or 7.
4989 	 */
4990 	key = found_key;
4991 	while (key.offset < ekey->offset + left_len) {
4992 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4993 		right_type = btrfs_file_extent_type(eb, ei);
4994 		if (right_type != BTRFS_FILE_EXTENT_REG) {
4995 			ret = 0;
4996 			goto out;
4997 		}
4998 
4999 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5000 		right_len = btrfs_file_extent_num_bytes(eb, ei);
5001 		right_offset = btrfs_file_extent_offset(eb, ei);
5002 		right_gen = btrfs_file_extent_generation(eb, ei);
5003 
5004 		/*
5005 		 * Are we at extent 8? If yes, we know the extent is changed.
5006 		 * This may only happen on the first iteration.
5007 		 */
5008 		if (found_key.offset + right_len <= ekey->offset) {
5009 			/* If we're a hole just pretend nothing changed */
5010 			ret = (left_disknr) ? 0 : 1;
5011 			goto out;
5012 		}
5013 
5014 		left_offset_fixed = left_offset;
5015 		if (key.offset < ekey->offset) {
5016 			/* Fix the right offset for 2a and 7. */
5017 			right_offset += ekey->offset - key.offset;
5018 		} else {
5019 			/* Fix the left offset for all behind 2a and 2b */
5020 			left_offset_fixed += key.offset - ekey->offset;
5021 		}
5022 
5023 		/*
5024 		 * Check if we have the same extent.
5025 		 */
5026 		if (left_disknr != right_disknr ||
5027 		    left_offset_fixed != right_offset ||
5028 		    left_gen != right_gen) {
5029 			ret = 0;
5030 			goto out;
5031 		}
5032 
5033 		/*
5034 		 * Go to the next extent.
5035 		 */
5036 		ret = btrfs_next_item(sctx->parent_root, path);
5037 		if (ret < 0)
5038 			goto out;
5039 		if (!ret) {
5040 			eb = path->nodes[0];
5041 			slot = path->slots[0];
5042 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5043 		}
5044 		if (ret || found_key.objectid != key.objectid ||
5045 		    found_key.type != key.type) {
5046 			key.offset += right_len;
5047 			break;
5048 		}
5049 		if (found_key.offset != key.offset + right_len) {
5050 			ret = 0;
5051 			goto out;
5052 		}
5053 		key = found_key;
5054 	}
5055 
5056 	/*
5057 	 * We're now behind the left extent (treat as unchanged) or at the end
5058 	 * of the right side (treat as changed).
5059 	 */
5060 	if (key.offset >= ekey->offset + left_len)
5061 		ret = 1;
5062 	else
5063 		ret = 0;
5064 
5065 
5066 out:
5067 	btrfs_free_path(path);
5068 	return ret;
5069 }
5070 
5071 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5072 {
5073 	struct btrfs_path *path;
5074 	struct btrfs_root *root = sctx->send_root;
5075 	struct btrfs_file_extent_item *fi;
5076 	struct btrfs_key key;
5077 	u64 extent_end;
5078 	u8 type;
5079 	int ret;
5080 
5081 	path = alloc_path_for_send();
5082 	if (!path)
5083 		return -ENOMEM;
5084 
5085 	sctx->cur_inode_last_extent = 0;
5086 
5087 	key.objectid = sctx->cur_ino;
5088 	key.type = BTRFS_EXTENT_DATA_KEY;
5089 	key.offset = offset;
5090 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5091 	if (ret < 0)
5092 		goto out;
5093 	ret = 0;
5094 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5095 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5096 		goto out;
5097 
5098 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5099 			    struct btrfs_file_extent_item);
5100 	type = btrfs_file_extent_type(path->nodes[0], fi);
5101 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5102 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5103 							path->slots[0], fi);
5104 		extent_end = ALIGN(key.offset + size,
5105 				   sctx->send_root->sectorsize);
5106 	} else {
5107 		extent_end = key.offset +
5108 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5109 	}
5110 	sctx->cur_inode_last_extent = extent_end;
5111 out:
5112 	btrfs_free_path(path);
5113 	return ret;
5114 }
5115 
5116 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5117 			   struct btrfs_key *key)
5118 {
5119 	struct btrfs_file_extent_item *fi;
5120 	u64 extent_end;
5121 	u8 type;
5122 	int ret = 0;
5123 
5124 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5125 		return 0;
5126 
5127 	if (sctx->cur_inode_last_extent == (u64)-1) {
5128 		ret = get_last_extent(sctx, key->offset - 1);
5129 		if (ret)
5130 			return ret;
5131 	}
5132 
5133 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5134 			    struct btrfs_file_extent_item);
5135 	type = btrfs_file_extent_type(path->nodes[0], fi);
5136 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5137 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5138 							path->slots[0], fi);
5139 		extent_end = ALIGN(key->offset + size,
5140 				   sctx->send_root->sectorsize);
5141 	} else {
5142 		extent_end = key->offset +
5143 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5144 	}
5145 
5146 	if (path->slots[0] == 0 &&
5147 	    sctx->cur_inode_last_extent < key->offset) {
5148 		/*
5149 		 * We might have skipped entire leafs that contained only
5150 		 * file extent items for our current inode. These leafs have
5151 		 * a generation number smaller (older) than the one in the
5152 		 * current leaf and the leaf our last extent came from, and
5153 		 * are located between these 2 leafs.
5154 		 */
5155 		ret = get_last_extent(sctx, key->offset - 1);
5156 		if (ret)
5157 			return ret;
5158 	}
5159 
5160 	if (sctx->cur_inode_last_extent < key->offset)
5161 		ret = send_hole(sctx, key->offset);
5162 	sctx->cur_inode_last_extent = extent_end;
5163 	return ret;
5164 }
5165 
5166 static int process_extent(struct send_ctx *sctx,
5167 			  struct btrfs_path *path,
5168 			  struct btrfs_key *key)
5169 {
5170 	struct clone_root *found_clone = NULL;
5171 	int ret = 0;
5172 
5173 	if (S_ISLNK(sctx->cur_inode_mode))
5174 		return 0;
5175 
5176 	if (sctx->parent_root && !sctx->cur_inode_new) {
5177 		ret = is_extent_unchanged(sctx, path, key);
5178 		if (ret < 0)
5179 			goto out;
5180 		if (ret) {
5181 			ret = 0;
5182 			goto out_hole;
5183 		}
5184 	} else {
5185 		struct btrfs_file_extent_item *ei;
5186 		u8 type;
5187 
5188 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5189 				    struct btrfs_file_extent_item);
5190 		type = btrfs_file_extent_type(path->nodes[0], ei);
5191 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5192 		    type == BTRFS_FILE_EXTENT_REG) {
5193 			/*
5194 			 * The send spec does not have a prealloc command yet,
5195 			 * so just leave a hole for prealloc'ed extents until
5196 			 * we have enough commands queued up to justify rev'ing
5197 			 * the send spec.
5198 			 */
5199 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5200 				ret = 0;
5201 				goto out;
5202 			}
5203 
5204 			/* Have a hole, just skip it. */
5205 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5206 				ret = 0;
5207 				goto out;
5208 			}
5209 		}
5210 	}
5211 
5212 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5213 			sctx->cur_inode_size, &found_clone);
5214 	if (ret != -ENOENT && ret < 0)
5215 		goto out;
5216 
5217 	ret = send_write_or_clone(sctx, path, key, found_clone);
5218 	if (ret)
5219 		goto out;
5220 out_hole:
5221 	ret = maybe_send_hole(sctx, path, key);
5222 out:
5223 	return ret;
5224 }
5225 
5226 static int process_all_extents(struct send_ctx *sctx)
5227 {
5228 	int ret;
5229 	struct btrfs_root *root;
5230 	struct btrfs_path *path;
5231 	struct btrfs_key key;
5232 	struct btrfs_key found_key;
5233 	struct extent_buffer *eb;
5234 	int slot;
5235 
5236 	root = sctx->send_root;
5237 	path = alloc_path_for_send();
5238 	if (!path)
5239 		return -ENOMEM;
5240 
5241 	key.objectid = sctx->cmp_key->objectid;
5242 	key.type = BTRFS_EXTENT_DATA_KEY;
5243 	key.offset = 0;
5244 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5245 	if (ret < 0)
5246 		goto out;
5247 
5248 	while (1) {
5249 		eb = path->nodes[0];
5250 		slot = path->slots[0];
5251 
5252 		if (slot >= btrfs_header_nritems(eb)) {
5253 			ret = btrfs_next_leaf(root, path);
5254 			if (ret < 0) {
5255 				goto out;
5256 			} else if (ret > 0) {
5257 				ret = 0;
5258 				break;
5259 			}
5260 			continue;
5261 		}
5262 
5263 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5264 
5265 		if (found_key.objectid != key.objectid ||
5266 		    found_key.type != key.type) {
5267 			ret = 0;
5268 			goto out;
5269 		}
5270 
5271 		ret = process_extent(sctx, path, &found_key);
5272 		if (ret < 0)
5273 			goto out;
5274 
5275 		path->slots[0]++;
5276 	}
5277 
5278 out:
5279 	btrfs_free_path(path);
5280 	return ret;
5281 }
5282 
5283 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5284 					   int *pending_move,
5285 					   int *refs_processed)
5286 {
5287 	int ret = 0;
5288 
5289 	if (sctx->cur_ino == 0)
5290 		goto out;
5291 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5292 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5293 		goto out;
5294 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5295 		goto out;
5296 
5297 	ret = process_recorded_refs(sctx, pending_move);
5298 	if (ret < 0)
5299 		goto out;
5300 
5301 	*refs_processed = 1;
5302 out:
5303 	return ret;
5304 }
5305 
5306 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5307 {
5308 	int ret = 0;
5309 	u64 left_mode;
5310 	u64 left_uid;
5311 	u64 left_gid;
5312 	u64 right_mode;
5313 	u64 right_uid;
5314 	u64 right_gid;
5315 	int need_chmod = 0;
5316 	int need_chown = 0;
5317 	int pending_move = 0;
5318 	int refs_processed = 0;
5319 
5320 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5321 					      &refs_processed);
5322 	if (ret < 0)
5323 		goto out;
5324 
5325 	/*
5326 	 * We have processed the refs and thus need to advance send_progress.
5327 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5328 	 * inode into account.
5329 	 *
5330 	 * On the other hand, if our current inode is a directory and couldn't
5331 	 * be moved/renamed because its parent was renamed/moved too and it has
5332 	 * a higher inode number, we can only move/rename our current inode
5333 	 * after we moved/renamed its parent. Therefore in this case operate on
5334 	 * the old path (pre move/rename) of our current inode, and the
5335 	 * move/rename will be performed later.
5336 	 */
5337 	if (refs_processed && !pending_move)
5338 		sctx->send_progress = sctx->cur_ino + 1;
5339 
5340 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5341 		goto out;
5342 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5343 		goto out;
5344 
5345 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5346 			&left_mode, &left_uid, &left_gid, NULL);
5347 	if (ret < 0)
5348 		goto out;
5349 
5350 	if (!sctx->parent_root || sctx->cur_inode_new) {
5351 		need_chown = 1;
5352 		if (!S_ISLNK(sctx->cur_inode_mode))
5353 			need_chmod = 1;
5354 	} else {
5355 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5356 				NULL, NULL, &right_mode, &right_uid,
5357 				&right_gid, NULL);
5358 		if (ret < 0)
5359 			goto out;
5360 
5361 		if (left_uid != right_uid || left_gid != right_gid)
5362 			need_chown = 1;
5363 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5364 			need_chmod = 1;
5365 	}
5366 
5367 	if (S_ISREG(sctx->cur_inode_mode)) {
5368 		if (need_send_hole(sctx)) {
5369 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5370 			    sctx->cur_inode_last_extent <
5371 			    sctx->cur_inode_size) {
5372 				ret = get_last_extent(sctx, (u64)-1);
5373 				if (ret)
5374 					goto out;
5375 			}
5376 			if (sctx->cur_inode_last_extent <
5377 			    sctx->cur_inode_size) {
5378 				ret = send_hole(sctx, sctx->cur_inode_size);
5379 				if (ret)
5380 					goto out;
5381 			}
5382 		}
5383 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5384 				sctx->cur_inode_size);
5385 		if (ret < 0)
5386 			goto out;
5387 	}
5388 
5389 	if (need_chown) {
5390 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5391 				left_uid, left_gid);
5392 		if (ret < 0)
5393 			goto out;
5394 	}
5395 	if (need_chmod) {
5396 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5397 				left_mode);
5398 		if (ret < 0)
5399 			goto out;
5400 	}
5401 
5402 	/*
5403 	 * If other directory inodes depended on our current directory
5404 	 * inode's move/rename, now do their move/rename operations.
5405 	 */
5406 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5407 		ret = apply_children_dir_moves(sctx);
5408 		if (ret)
5409 			goto out;
5410 		/*
5411 		 * Need to send that every time, no matter if it actually
5412 		 * changed between the two trees as we have done changes to
5413 		 * the inode before. If our inode is a directory and it's
5414 		 * waiting to be moved/renamed, we will send its utimes when
5415 		 * it's moved/renamed, therefore we don't need to do it here.
5416 		 */
5417 		sctx->send_progress = sctx->cur_ino + 1;
5418 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5419 		if (ret < 0)
5420 			goto out;
5421 	}
5422 
5423 out:
5424 	return ret;
5425 }
5426 
5427 static int changed_inode(struct send_ctx *sctx,
5428 			 enum btrfs_compare_tree_result result)
5429 {
5430 	int ret = 0;
5431 	struct btrfs_key *key = sctx->cmp_key;
5432 	struct btrfs_inode_item *left_ii = NULL;
5433 	struct btrfs_inode_item *right_ii = NULL;
5434 	u64 left_gen = 0;
5435 	u64 right_gen = 0;
5436 
5437 	sctx->cur_ino = key->objectid;
5438 	sctx->cur_inode_new_gen = 0;
5439 	sctx->cur_inode_last_extent = (u64)-1;
5440 
5441 	/*
5442 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5443 	 * functions that the current inode's refs are not updated yet. Later,
5444 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5445 	 */
5446 	sctx->send_progress = sctx->cur_ino;
5447 
5448 	if (result == BTRFS_COMPARE_TREE_NEW ||
5449 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5450 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5451 				sctx->left_path->slots[0],
5452 				struct btrfs_inode_item);
5453 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5454 				left_ii);
5455 	} else {
5456 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5457 				sctx->right_path->slots[0],
5458 				struct btrfs_inode_item);
5459 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5460 				right_ii);
5461 	}
5462 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5463 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5464 				sctx->right_path->slots[0],
5465 				struct btrfs_inode_item);
5466 
5467 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5468 				right_ii);
5469 
5470 		/*
5471 		 * The cur_ino = root dir case is special here. We can't treat
5472 		 * the inode as deleted+reused because it would generate a
5473 		 * stream that tries to delete/mkdir the root dir.
5474 		 */
5475 		if (left_gen != right_gen &&
5476 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5477 			sctx->cur_inode_new_gen = 1;
5478 	}
5479 
5480 	if (result == BTRFS_COMPARE_TREE_NEW) {
5481 		sctx->cur_inode_gen = left_gen;
5482 		sctx->cur_inode_new = 1;
5483 		sctx->cur_inode_deleted = 0;
5484 		sctx->cur_inode_size = btrfs_inode_size(
5485 				sctx->left_path->nodes[0], left_ii);
5486 		sctx->cur_inode_mode = btrfs_inode_mode(
5487 				sctx->left_path->nodes[0], left_ii);
5488 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5489 				sctx->left_path->nodes[0], left_ii);
5490 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5491 			ret = send_create_inode_if_needed(sctx);
5492 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5493 		sctx->cur_inode_gen = right_gen;
5494 		sctx->cur_inode_new = 0;
5495 		sctx->cur_inode_deleted = 1;
5496 		sctx->cur_inode_size = btrfs_inode_size(
5497 				sctx->right_path->nodes[0], right_ii);
5498 		sctx->cur_inode_mode = btrfs_inode_mode(
5499 				sctx->right_path->nodes[0], right_ii);
5500 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5501 		/*
5502 		 * We need to do some special handling in case the inode was
5503 		 * reported as changed with a changed generation number. This
5504 		 * means that the original inode was deleted and new inode
5505 		 * reused the same inum. So we have to treat the old inode as
5506 		 * deleted and the new one as new.
5507 		 */
5508 		if (sctx->cur_inode_new_gen) {
5509 			/*
5510 			 * First, process the inode as if it was deleted.
5511 			 */
5512 			sctx->cur_inode_gen = right_gen;
5513 			sctx->cur_inode_new = 0;
5514 			sctx->cur_inode_deleted = 1;
5515 			sctx->cur_inode_size = btrfs_inode_size(
5516 					sctx->right_path->nodes[0], right_ii);
5517 			sctx->cur_inode_mode = btrfs_inode_mode(
5518 					sctx->right_path->nodes[0], right_ii);
5519 			ret = process_all_refs(sctx,
5520 					BTRFS_COMPARE_TREE_DELETED);
5521 			if (ret < 0)
5522 				goto out;
5523 
5524 			/*
5525 			 * Now process the inode as if it was new.
5526 			 */
5527 			sctx->cur_inode_gen = left_gen;
5528 			sctx->cur_inode_new = 1;
5529 			sctx->cur_inode_deleted = 0;
5530 			sctx->cur_inode_size = btrfs_inode_size(
5531 					sctx->left_path->nodes[0], left_ii);
5532 			sctx->cur_inode_mode = btrfs_inode_mode(
5533 					sctx->left_path->nodes[0], left_ii);
5534 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5535 					sctx->left_path->nodes[0], left_ii);
5536 			ret = send_create_inode_if_needed(sctx);
5537 			if (ret < 0)
5538 				goto out;
5539 
5540 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5541 			if (ret < 0)
5542 				goto out;
5543 			/*
5544 			 * Advance send_progress now as we did not get into
5545 			 * process_recorded_refs_if_needed in the new_gen case.
5546 			 */
5547 			sctx->send_progress = sctx->cur_ino + 1;
5548 
5549 			/*
5550 			 * Now process all extents and xattrs of the inode as if
5551 			 * they were all new.
5552 			 */
5553 			ret = process_all_extents(sctx);
5554 			if (ret < 0)
5555 				goto out;
5556 			ret = process_all_new_xattrs(sctx);
5557 			if (ret < 0)
5558 				goto out;
5559 		} else {
5560 			sctx->cur_inode_gen = left_gen;
5561 			sctx->cur_inode_new = 0;
5562 			sctx->cur_inode_new_gen = 0;
5563 			sctx->cur_inode_deleted = 0;
5564 			sctx->cur_inode_size = btrfs_inode_size(
5565 					sctx->left_path->nodes[0], left_ii);
5566 			sctx->cur_inode_mode = btrfs_inode_mode(
5567 					sctx->left_path->nodes[0], left_ii);
5568 		}
5569 	}
5570 
5571 out:
5572 	return ret;
5573 }
5574 
5575 /*
5576  * We have to process new refs before deleted refs, but compare_trees gives us
5577  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5578  * first and later process them in process_recorded_refs.
5579  * For the cur_inode_new_gen case, we skip recording completely because
5580  * changed_inode did already initiate processing of refs. The reason for this is
5581  * that in this case, compare_tree actually compares the refs of 2 different
5582  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5583  * refs of the right tree as deleted and all refs of the left tree as new.
5584  */
5585 static int changed_ref(struct send_ctx *sctx,
5586 		       enum btrfs_compare_tree_result result)
5587 {
5588 	int ret = 0;
5589 
5590 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5591 
5592 	if (!sctx->cur_inode_new_gen &&
5593 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5594 		if (result == BTRFS_COMPARE_TREE_NEW)
5595 			ret = record_new_ref(sctx);
5596 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5597 			ret = record_deleted_ref(sctx);
5598 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5599 			ret = record_changed_ref(sctx);
5600 	}
5601 
5602 	return ret;
5603 }
5604 
5605 /*
5606  * Process new/deleted/changed xattrs. We skip processing in the
5607  * cur_inode_new_gen case because changed_inode did already initiate processing
5608  * of xattrs. The reason is the same as in changed_ref
5609  */
5610 static int changed_xattr(struct send_ctx *sctx,
5611 			 enum btrfs_compare_tree_result result)
5612 {
5613 	int ret = 0;
5614 
5615 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5616 
5617 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5618 		if (result == BTRFS_COMPARE_TREE_NEW)
5619 			ret = process_new_xattr(sctx);
5620 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5621 			ret = process_deleted_xattr(sctx);
5622 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5623 			ret = process_changed_xattr(sctx);
5624 	}
5625 
5626 	return ret;
5627 }
5628 
5629 /*
5630  * Process new/deleted/changed extents. We skip processing in the
5631  * cur_inode_new_gen case because changed_inode did already initiate processing
5632  * of extents. The reason is the same as in changed_ref
5633  */
5634 static int changed_extent(struct send_ctx *sctx,
5635 			  enum btrfs_compare_tree_result result)
5636 {
5637 	int ret = 0;
5638 
5639 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5640 
5641 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5642 		if (result != BTRFS_COMPARE_TREE_DELETED)
5643 			ret = process_extent(sctx, sctx->left_path,
5644 					sctx->cmp_key);
5645 	}
5646 
5647 	return ret;
5648 }
5649 
5650 static int dir_changed(struct send_ctx *sctx, u64 dir)
5651 {
5652 	u64 orig_gen, new_gen;
5653 	int ret;
5654 
5655 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5656 			     NULL, NULL);
5657 	if (ret)
5658 		return ret;
5659 
5660 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5661 			     NULL, NULL, NULL);
5662 	if (ret)
5663 		return ret;
5664 
5665 	return (orig_gen != new_gen) ? 1 : 0;
5666 }
5667 
5668 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5669 			struct btrfs_key *key)
5670 {
5671 	struct btrfs_inode_extref *extref;
5672 	struct extent_buffer *leaf;
5673 	u64 dirid = 0, last_dirid = 0;
5674 	unsigned long ptr;
5675 	u32 item_size;
5676 	u32 cur_offset = 0;
5677 	int ref_name_len;
5678 	int ret = 0;
5679 
5680 	/* Easy case, just check this one dirid */
5681 	if (key->type == BTRFS_INODE_REF_KEY) {
5682 		dirid = key->offset;
5683 
5684 		ret = dir_changed(sctx, dirid);
5685 		goto out;
5686 	}
5687 
5688 	leaf = path->nodes[0];
5689 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5690 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5691 	while (cur_offset < item_size) {
5692 		extref = (struct btrfs_inode_extref *)(ptr +
5693 						       cur_offset);
5694 		dirid = btrfs_inode_extref_parent(leaf, extref);
5695 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5696 		cur_offset += ref_name_len + sizeof(*extref);
5697 		if (dirid == last_dirid)
5698 			continue;
5699 		ret = dir_changed(sctx, dirid);
5700 		if (ret)
5701 			break;
5702 		last_dirid = dirid;
5703 	}
5704 out:
5705 	return ret;
5706 }
5707 
5708 /*
5709  * Updates compare related fields in sctx and simply forwards to the actual
5710  * changed_xxx functions.
5711  */
5712 static int changed_cb(struct btrfs_root *left_root,
5713 		      struct btrfs_root *right_root,
5714 		      struct btrfs_path *left_path,
5715 		      struct btrfs_path *right_path,
5716 		      struct btrfs_key *key,
5717 		      enum btrfs_compare_tree_result result,
5718 		      void *ctx)
5719 {
5720 	int ret = 0;
5721 	struct send_ctx *sctx = ctx;
5722 
5723 	if (result == BTRFS_COMPARE_TREE_SAME) {
5724 		if (key->type == BTRFS_INODE_REF_KEY ||
5725 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5726 			ret = compare_refs(sctx, left_path, key);
5727 			if (!ret)
5728 				return 0;
5729 			if (ret < 0)
5730 				return ret;
5731 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5732 			return maybe_send_hole(sctx, left_path, key);
5733 		} else {
5734 			return 0;
5735 		}
5736 		result = BTRFS_COMPARE_TREE_CHANGED;
5737 		ret = 0;
5738 	}
5739 
5740 	sctx->left_path = left_path;
5741 	sctx->right_path = right_path;
5742 	sctx->cmp_key = key;
5743 
5744 	ret = finish_inode_if_needed(sctx, 0);
5745 	if (ret < 0)
5746 		goto out;
5747 
5748 	/* Ignore non-FS objects */
5749 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5750 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5751 		goto out;
5752 
5753 	if (key->type == BTRFS_INODE_ITEM_KEY)
5754 		ret = changed_inode(sctx, result);
5755 	else if (key->type == BTRFS_INODE_REF_KEY ||
5756 		 key->type == BTRFS_INODE_EXTREF_KEY)
5757 		ret = changed_ref(sctx, result);
5758 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5759 		ret = changed_xattr(sctx, result);
5760 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5761 		ret = changed_extent(sctx, result);
5762 
5763 out:
5764 	return ret;
5765 }
5766 
5767 static int full_send_tree(struct send_ctx *sctx)
5768 {
5769 	int ret;
5770 	struct btrfs_root *send_root = sctx->send_root;
5771 	struct btrfs_key key;
5772 	struct btrfs_key found_key;
5773 	struct btrfs_path *path;
5774 	struct extent_buffer *eb;
5775 	int slot;
5776 
5777 	path = alloc_path_for_send();
5778 	if (!path)
5779 		return -ENOMEM;
5780 
5781 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5782 	key.type = BTRFS_INODE_ITEM_KEY;
5783 	key.offset = 0;
5784 
5785 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5786 	if (ret < 0)
5787 		goto out;
5788 	if (ret)
5789 		goto out_finish;
5790 
5791 	while (1) {
5792 		eb = path->nodes[0];
5793 		slot = path->slots[0];
5794 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5795 
5796 		ret = changed_cb(send_root, NULL, path, NULL,
5797 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5798 		if (ret < 0)
5799 			goto out;
5800 
5801 		key.objectid = found_key.objectid;
5802 		key.type = found_key.type;
5803 		key.offset = found_key.offset + 1;
5804 
5805 		ret = btrfs_next_item(send_root, path);
5806 		if (ret < 0)
5807 			goto out;
5808 		if (ret) {
5809 			ret  = 0;
5810 			break;
5811 		}
5812 	}
5813 
5814 out_finish:
5815 	ret = finish_inode_if_needed(sctx, 1);
5816 
5817 out:
5818 	btrfs_free_path(path);
5819 	return ret;
5820 }
5821 
5822 static int send_subvol(struct send_ctx *sctx)
5823 {
5824 	int ret;
5825 
5826 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5827 		ret = send_header(sctx);
5828 		if (ret < 0)
5829 			goto out;
5830 	}
5831 
5832 	ret = send_subvol_begin(sctx);
5833 	if (ret < 0)
5834 		goto out;
5835 
5836 	if (sctx->parent_root) {
5837 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5838 				changed_cb, sctx);
5839 		if (ret < 0)
5840 			goto out;
5841 		ret = finish_inode_if_needed(sctx, 1);
5842 		if (ret < 0)
5843 			goto out;
5844 	} else {
5845 		ret = full_send_tree(sctx);
5846 		if (ret < 0)
5847 			goto out;
5848 	}
5849 
5850 out:
5851 	free_recorded_refs(sctx);
5852 	return ret;
5853 }
5854 
5855 /*
5856  * If orphan cleanup did remove any orphans from a root, it means the tree
5857  * was modified and therefore the commit root is not the same as the current
5858  * root anymore. This is a problem, because send uses the commit root and
5859  * therefore can see inode items that don't exist in the current root anymore,
5860  * and for example make calls to btrfs_iget, which will do tree lookups based
5861  * on the current root and not on the commit root. Those lookups will fail,
5862  * returning a -ESTALE error, and making send fail with that error. So make
5863  * sure a send does not see any orphans we have just removed, and that it will
5864  * see the same inodes regardless of whether a transaction commit happened
5865  * before it started (meaning that the commit root will be the same as the
5866  * current root) or not.
5867  */
5868 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5869 {
5870 	int i;
5871 	struct btrfs_trans_handle *trans = NULL;
5872 
5873 again:
5874 	if (sctx->parent_root &&
5875 	    sctx->parent_root->node != sctx->parent_root->commit_root)
5876 		goto commit_trans;
5877 
5878 	for (i = 0; i < sctx->clone_roots_cnt; i++)
5879 		if (sctx->clone_roots[i].root->node !=
5880 		    sctx->clone_roots[i].root->commit_root)
5881 			goto commit_trans;
5882 
5883 	if (trans)
5884 		return btrfs_end_transaction(trans, sctx->send_root);
5885 
5886 	return 0;
5887 
5888 commit_trans:
5889 	/* Use any root, all fs roots will get their commit roots updated. */
5890 	if (!trans) {
5891 		trans = btrfs_join_transaction(sctx->send_root);
5892 		if (IS_ERR(trans))
5893 			return PTR_ERR(trans);
5894 		goto again;
5895 	}
5896 
5897 	return btrfs_commit_transaction(trans, sctx->send_root);
5898 }
5899 
5900 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5901 {
5902 	spin_lock(&root->root_item_lock);
5903 	root->send_in_progress--;
5904 	/*
5905 	 * Not much left to do, we don't know why it's unbalanced and
5906 	 * can't blindly reset it to 0.
5907 	 */
5908 	if (root->send_in_progress < 0)
5909 		btrfs_err(root->fs_info,
5910 			"send_in_progres unbalanced %d root %llu",
5911 			root->send_in_progress, root->root_key.objectid);
5912 	spin_unlock(&root->root_item_lock);
5913 }
5914 
5915 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5916 {
5917 	int ret = 0;
5918 	struct btrfs_root *send_root;
5919 	struct btrfs_root *clone_root;
5920 	struct btrfs_fs_info *fs_info;
5921 	struct btrfs_ioctl_send_args *arg = NULL;
5922 	struct btrfs_key key;
5923 	struct send_ctx *sctx = NULL;
5924 	u32 i;
5925 	u64 *clone_sources_tmp = NULL;
5926 	int clone_sources_to_rollback = 0;
5927 	int sort_clone_roots = 0;
5928 	int index;
5929 
5930 	if (!capable(CAP_SYS_ADMIN))
5931 		return -EPERM;
5932 
5933 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5934 	fs_info = send_root->fs_info;
5935 
5936 	/*
5937 	 * The subvolume must remain read-only during send, protect against
5938 	 * making it RW. This also protects against deletion.
5939 	 */
5940 	spin_lock(&send_root->root_item_lock);
5941 	send_root->send_in_progress++;
5942 	spin_unlock(&send_root->root_item_lock);
5943 
5944 	/*
5945 	 * This is done when we lookup the root, it should already be complete
5946 	 * by the time we get here.
5947 	 */
5948 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5949 
5950 	/*
5951 	 * Userspace tools do the checks and warn the user if it's
5952 	 * not RO.
5953 	 */
5954 	if (!btrfs_root_readonly(send_root)) {
5955 		ret = -EPERM;
5956 		goto out;
5957 	}
5958 
5959 	arg = memdup_user(arg_, sizeof(*arg));
5960 	if (IS_ERR(arg)) {
5961 		ret = PTR_ERR(arg);
5962 		arg = NULL;
5963 		goto out;
5964 	}
5965 
5966 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5967 			sizeof(*arg->clone_sources) *
5968 			arg->clone_sources_count)) {
5969 		ret = -EFAULT;
5970 		goto out;
5971 	}
5972 
5973 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5974 		ret = -EINVAL;
5975 		goto out;
5976 	}
5977 
5978 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5979 	if (!sctx) {
5980 		ret = -ENOMEM;
5981 		goto out;
5982 	}
5983 
5984 	INIT_LIST_HEAD(&sctx->new_refs);
5985 	INIT_LIST_HEAD(&sctx->deleted_refs);
5986 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5987 	INIT_LIST_HEAD(&sctx->name_cache_list);
5988 
5989 	sctx->flags = arg->flags;
5990 
5991 	sctx->send_filp = fget(arg->send_fd);
5992 	if (!sctx->send_filp) {
5993 		ret = -EBADF;
5994 		goto out;
5995 	}
5996 
5997 	sctx->send_root = send_root;
5998 	/*
5999 	 * Unlikely but possible, if the subvolume is marked for deletion but
6000 	 * is slow to remove the directory entry, send can still be started
6001 	 */
6002 	if (btrfs_root_dead(sctx->send_root)) {
6003 		ret = -EPERM;
6004 		goto out;
6005 	}
6006 
6007 	sctx->clone_roots_cnt = arg->clone_sources_count;
6008 
6009 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6010 	sctx->send_buf = vmalloc(sctx->send_max_size);
6011 	if (!sctx->send_buf) {
6012 		ret = -ENOMEM;
6013 		goto out;
6014 	}
6015 
6016 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6017 	if (!sctx->read_buf) {
6018 		ret = -ENOMEM;
6019 		goto out;
6020 	}
6021 
6022 	sctx->pending_dir_moves = RB_ROOT;
6023 	sctx->waiting_dir_moves = RB_ROOT;
6024 	sctx->orphan_dirs = RB_ROOT;
6025 
6026 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
6027 			(arg->clone_sources_count + 1));
6028 	if (!sctx->clone_roots) {
6029 		ret = -ENOMEM;
6030 		goto out;
6031 	}
6032 
6033 	if (arg->clone_sources_count) {
6034 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
6035 				sizeof(*arg->clone_sources));
6036 		if (!clone_sources_tmp) {
6037 			ret = -ENOMEM;
6038 			goto out;
6039 		}
6040 
6041 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6042 				arg->clone_sources_count *
6043 				sizeof(*arg->clone_sources));
6044 		if (ret) {
6045 			ret = -EFAULT;
6046 			goto out;
6047 		}
6048 
6049 		for (i = 0; i < arg->clone_sources_count; i++) {
6050 			key.objectid = clone_sources_tmp[i];
6051 			key.type = BTRFS_ROOT_ITEM_KEY;
6052 			key.offset = (u64)-1;
6053 
6054 			index = srcu_read_lock(&fs_info->subvol_srcu);
6055 
6056 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6057 			if (IS_ERR(clone_root)) {
6058 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6059 				ret = PTR_ERR(clone_root);
6060 				goto out;
6061 			}
6062 			spin_lock(&clone_root->root_item_lock);
6063 			if (!btrfs_root_readonly(clone_root) ||
6064 			    btrfs_root_dead(clone_root)) {
6065 				spin_unlock(&clone_root->root_item_lock);
6066 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6067 				ret = -EPERM;
6068 				goto out;
6069 			}
6070 			clone_root->send_in_progress++;
6071 			spin_unlock(&clone_root->root_item_lock);
6072 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6073 
6074 			sctx->clone_roots[i].root = clone_root;
6075 			clone_sources_to_rollback = i + 1;
6076 		}
6077 		vfree(clone_sources_tmp);
6078 		clone_sources_tmp = NULL;
6079 	}
6080 
6081 	if (arg->parent_root) {
6082 		key.objectid = arg->parent_root;
6083 		key.type = BTRFS_ROOT_ITEM_KEY;
6084 		key.offset = (u64)-1;
6085 
6086 		index = srcu_read_lock(&fs_info->subvol_srcu);
6087 
6088 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6089 		if (IS_ERR(sctx->parent_root)) {
6090 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6091 			ret = PTR_ERR(sctx->parent_root);
6092 			goto out;
6093 		}
6094 
6095 		spin_lock(&sctx->parent_root->root_item_lock);
6096 		sctx->parent_root->send_in_progress++;
6097 		if (!btrfs_root_readonly(sctx->parent_root) ||
6098 				btrfs_root_dead(sctx->parent_root)) {
6099 			spin_unlock(&sctx->parent_root->root_item_lock);
6100 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6101 			ret = -EPERM;
6102 			goto out;
6103 		}
6104 		spin_unlock(&sctx->parent_root->root_item_lock);
6105 
6106 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6107 	}
6108 
6109 	/*
6110 	 * Clones from send_root are allowed, but only if the clone source
6111 	 * is behind the current send position. This is checked while searching
6112 	 * for possible clone sources.
6113 	 */
6114 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6115 
6116 	/* We do a bsearch later */
6117 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6118 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6119 			NULL);
6120 	sort_clone_roots = 1;
6121 
6122 	ret = ensure_commit_roots_uptodate(sctx);
6123 	if (ret)
6124 		goto out;
6125 
6126 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6127 	ret = send_subvol(sctx);
6128 	current->journal_info = NULL;
6129 	if (ret < 0)
6130 		goto out;
6131 
6132 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6133 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6134 		if (ret < 0)
6135 			goto out;
6136 		ret = send_cmd(sctx);
6137 		if (ret < 0)
6138 			goto out;
6139 	}
6140 
6141 out:
6142 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6143 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6144 		struct rb_node *n;
6145 		struct pending_dir_move *pm;
6146 
6147 		n = rb_first(&sctx->pending_dir_moves);
6148 		pm = rb_entry(n, struct pending_dir_move, node);
6149 		while (!list_empty(&pm->list)) {
6150 			struct pending_dir_move *pm2;
6151 
6152 			pm2 = list_first_entry(&pm->list,
6153 					       struct pending_dir_move, list);
6154 			free_pending_move(sctx, pm2);
6155 		}
6156 		free_pending_move(sctx, pm);
6157 	}
6158 
6159 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6160 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6161 		struct rb_node *n;
6162 		struct waiting_dir_move *dm;
6163 
6164 		n = rb_first(&sctx->waiting_dir_moves);
6165 		dm = rb_entry(n, struct waiting_dir_move, node);
6166 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6167 		kfree(dm);
6168 	}
6169 
6170 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6171 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6172 		struct rb_node *n;
6173 		struct orphan_dir_info *odi;
6174 
6175 		n = rb_first(&sctx->orphan_dirs);
6176 		odi = rb_entry(n, struct orphan_dir_info, node);
6177 		free_orphan_dir_info(sctx, odi);
6178 	}
6179 
6180 	if (sort_clone_roots) {
6181 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6182 			btrfs_root_dec_send_in_progress(
6183 					sctx->clone_roots[i].root);
6184 	} else {
6185 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6186 			btrfs_root_dec_send_in_progress(
6187 					sctx->clone_roots[i].root);
6188 
6189 		btrfs_root_dec_send_in_progress(send_root);
6190 	}
6191 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6192 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6193 
6194 	kfree(arg);
6195 	vfree(clone_sources_tmp);
6196 
6197 	if (sctx) {
6198 		if (sctx->send_filp)
6199 			fput(sctx->send_filp);
6200 
6201 		vfree(sctx->clone_roots);
6202 		vfree(sctx->send_buf);
6203 		vfree(sctx->read_buf);
6204 
6205 		name_cache_free(sctx);
6206 
6207 		kfree(sctx);
6208 	}
6209 
6210 	return ret;
6211 }
6212