xref: /openbmc/linux/fs/btrfs/send.c (revision 6726d552)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "ctree.h"
21 #include "backref.h"
22 #include "locking.h"
23 #include "disk-io.h"
24 #include "btrfs_inode.h"
25 #include "transaction.h"
26 #include "compression.h"
27 #include "xattr.h"
28 #include "print-tree.h"
29 
30 /*
31  * Maximum number of references an extent can have in order for us to attempt to
32  * issue clone operations instead of write operations. This currently exists to
33  * avoid hitting limitations of the backreference walking code (taking a lot of
34  * time and using too much memory for extents with large number of references).
35  */
36 #define SEND_MAX_EXTENT_REFS	64
37 
38 /*
39  * A fs_path is a helper to dynamically build path names with unknown size.
40  * It reallocates the internal buffer on demand.
41  * It allows fast adding of path elements on the right side (normal path) and
42  * fast adding to the left side (reversed path). A reversed path can also be
43  * unreversed if needed.
44  */
45 struct fs_path {
46 	union {
47 		struct {
48 			char *start;
49 			char *end;
50 
51 			char *buf;
52 			unsigned short buf_len:15;
53 			unsigned short reversed:1;
54 			char inline_buf[];
55 		};
56 		/*
57 		 * Average path length does not exceed 200 bytes, we'll have
58 		 * better packing in the slab and higher chance to satisfy
59 		 * a allocation later during send.
60 		 */
61 		char pad[256];
62 	};
63 };
64 #define FS_PATH_INLINE_SIZE \
65 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66 
67 
68 /* reused for each extent */
69 struct clone_root {
70 	struct btrfs_root *root;
71 	u64 ino;
72 	u64 offset;
73 
74 	u64 found_refs;
75 };
76 
77 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
78 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79 
80 struct send_ctx {
81 	struct file *send_filp;
82 	loff_t send_off;
83 	char *send_buf;
84 	u32 send_size;
85 	u32 send_max_size;
86 	/*
87 	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
88 	 * command (since protocol v2, data must be the last attribute).
89 	 */
90 	bool put_data;
91 	struct page **send_buf_pages;
92 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 	/* Protocol version compatibility requested */
94 	u32 proto;
95 
96 	struct btrfs_root *send_root;
97 	struct btrfs_root *parent_root;
98 	struct clone_root *clone_roots;
99 	int clone_roots_cnt;
100 
101 	/* current state of the compare_tree call */
102 	struct btrfs_path *left_path;
103 	struct btrfs_path *right_path;
104 	struct btrfs_key *cmp_key;
105 
106 	/*
107 	 * Keep track of the generation of the last transaction that was used
108 	 * for relocating a block group. This is periodically checked in order
109 	 * to detect if a relocation happened since the last check, so that we
110 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
111 	 * stale disk_bytenr values of file extent items.
112 	 */
113 	u64 last_reloc_trans;
114 
115 	/*
116 	 * infos of the currently processed inode. In case of deleted inodes,
117 	 * these are the values from the deleted inode.
118 	 */
119 	u64 cur_ino;
120 	u64 cur_inode_gen;
121 	u64 cur_inode_size;
122 	u64 cur_inode_mode;
123 	u64 cur_inode_rdev;
124 	u64 cur_inode_last_extent;
125 	u64 cur_inode_next_write_offset;
126 	bool cur_inode_new;
127 	bool cur_inode_new_gen;
128 	bool cur_inode_deleted;
129 	bool ignore_cur_inode;
130 
131 	u64 send_progress;
132 
133 	struct list_head new_refs;
134 	struct list_head deleted_refs;
135 
136 	struct radix_tree_root name_cache;
137 	struct list_head name_cache_list;
138 	int name_cache_size;
139 
140 	/*
141 	 * The inode we are currently processing. It's not NULL only when we
142 	 * need to issue write commands for data extents from this inode.
143 	 */
144 	struct inode *cur_inode;
145 	struct file_ra_state ra;
146 	u64 page_cache_clear_start;
147 	bool clean_page_cache;
148 
149 	/*
150 	 * We process inodes by their increasing order, so if before an
151 	 * incremental send we reverse the parent/child relationship of
152 	 * directories such that a directory with a lower inode number was
153 	 * the parent of a directory with a higher inode number, and the one
154 	 * becoming the new parent got renamed too, we can't rename/move the
155 	 * directory with lower inode number when we finish processing it - we
156 	 * must process the directory with higher inode number first, then
157 	 * rename/move it and then rename/move the directory with lower inode
158 	 * number. Example follows.
159 	 *
160 	 * Tree state when the first send was performed:
161 	 *
162 	 * .
163 	 * |-- a                   (ino 257)
164 	 *     |-- b               (ino 258)
165 	 *         |
166 	 *         |
167 	 *         |-- c           (ino 259)
168 	 *         |   |-- d       (ino 260)
169 	 *         |
170 	 *         |-- c2          (ino 261)
171 	 *
172 	 * Tree state when the second (incremental) send is performed:
173 	 *
174 	 * .
175 	 * |-- a                   (ino 257)
176 	 *     |-- b               (ino 258)
177 	 *         |-- c2          (ino 261)
178 	 *             |-- d2      (ino 260)
179 	 *                 |-- cc  (ino 259)
180 	 *
181 	 * The sequence of steps that lead to the second state was:
182 	 *
183 	 * mv /a/b/c/d /a/b/c2/d2
184 	 * mv /a/b/c /a/b/c2/d2/cc
185 	 *
186 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
187 	 * before we move "d", which has higher inode number.
188 	 *
189 	 * So we just memorize which move/rename operations must be performed
190 	 * later when their respective parent is processed and moved/renamed.
191 	 */
192 
193 	/* Indexed by parent directory inode number. */
194 	struct rb_root pending_dir_moves;
195 
196 	/*
197 	 * Reverse index, indexed by the inode number of a directory that
198 	 * is waiting for the move/rename of its immediate parent before its
199 	 * own move/rename can be performed.
200 	 */
201 	struct rb_root waiting_dir_moves;
202 
203 	/*
204 	 * A directory that is going to be rm'ed might have a child directory
205 	 * which is in the pending directory moves index above. In this case,
206 	 * the directory can only be removed after the move/rename of its child
207 	 * is performed. Example:
208 	 *
209 	 * Parent snapshot:
210 	 *
211 	 * .                        (ino 256)
212 	 * |-- a/                   (ino 257)
213 	 *     |-- b/               (ino 258)
214 	 *         |-- c/           (ino 259)
215 	 *         |   |-- x/       (ino 260)
216 	 *         |
217 	 *         |-- y/           (ino 261)
218 	 *
219 	 * Send snapshot:
220 	 *
221 	 * .                        (ino 256)
222 	 * |-- a/                   (ino 257)
223 	 *     |-- b/               (ino 258)
224 	 *         |-- YY/          (ino 261)
225 	 *              |-- x/      (ino 260)
226 	 *
227 	 * Sequence of steps that lead to the send snapshot:
228 	 * rm -f /a/b/c/foo.txt
229 	 * mv /a/b/y /a/b/YY
230 	 * mv /a/b/c/x /a/b/YY
231 	 * rmdir /a/b/c
232 	 *
233 	 * When the child is processed, its move/rename is delayed until its
234 	 * parent is processed (as explained above), but all other operations
235 	 * like update utimes, chown, chgrp, etc, are performed and the paths
236 	 * that it uses for those operations must use the orphanized name of
237 	 * its parent (the directory we're going to rm later), so we need to
238 	 * memorize that name.
239 	 *
240 	 * Indexed by the inode number of the directory to be deleted.
241 	 */
242 	struct rb_root orphan_dirs;
243 
244 	struct rb_root rbtree_new_refs;
245 	struct rb_root rbtree_deleted_refs;
246 };
247 
248 struct pending_dir_move {
249 	struct rb_node node;
250 	struct list_head list;
251 	u64 parent_ino;
252 	u64 ino;
253 	u64 gen;
254 	struct list_head update_refs;
255 };
256 
257 struct waiting_dir_move {
258 	struct rb_node node;
259 	u64 ino;
260 	/*
261 	 * There might be some directory that could not be removed because it
262 	 * was waiting for this directory inode to be moved first. Therefore
263 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
264 	 */
265 	u64 rmdir_ino;
266 	u64 rmdir_gen;
267 	bool orphanized;
268 };
269 
270 struct orphan_dir_info {
271 	struct rb_node node;
272 	u64 ino;
273 	u64 gen;
274 	u64 last_dir_index_offset;
275 };
276 
277 struct name_cache_entry {
278 	struct list_head list;
279 	/*
280 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
281 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
282 	 * more then one inum would fall into the same entry, we use radix_list
283 	 * to store the additional entries. radix_list is also used to store
284 	 * entries where two entries have the same inum but different
285 	 * generations.
286 	 */
287 	struct list_head radix_list;
288 	u64 ino;
289 	u64 gen;
290 	u64 parent_ino;
291 	u64 parent_gen;
292 	int ret;
293 	int need_later_update;
294 	int name_len;
295 	char name[];
296 };
297 
298 #define ADVANCE							1
299 #define ADVANCE_ONLY_NEXT					-1
300 
301 enum btrfs_compare_tree_result {
302 	BTRFS_COMPARE_TREE_NEW,
303 	BTRFS_COMPARE_TREE_DELETED,
304 	BTRFS_COMPARE_TREE_CHANGED,
305 	BTRFS_COMPARE_TREE_SAME,
306 };
307 
308 __cold
309 static void inconsistent_snapshot_error(struct send_ctx *sctx,
310 					enum btrfs_compare_tree_result result,
311 					const char *what)
312 {
313 	const char *result_string;
314 
315 	switch (result) {
316 	case BTRFS_COMPARE_TREE_NEW:
317 		result_string = "new";
318 		break;
319 	case BTRFS_COMPARE_TREE_DELETED:
320 		result_string = "deleted";
321 		break;
322 	case BTRFS_COMPARE_TREE_CHANGED:
323 		result_string = "updated";
324 		break;
325 	case BTRFS_COMPARE_TREE_SAME:
326 		ASSERT(0);
327 		result_string = "unchanged";
328 		break;
329 	default:
330 		ASSERT(0);
331 		result_string = "unexpected";
332 	}
333 
334 	btrfs_err(sctx->send_root->fs_info,
335 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
336 		  result_string, what, sctx->cmp_key->objectid,
337 		  sctx->send_root->root_key.objectid,
338 		  (sctx->parent_root ?
339 		   sctx->parent_root->root_key.objectid : 0));
340 }
341 
342 __maybe_unused
343 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
344 {
345 	switch (sctx->proto) {
346 	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
347 	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
348 	default: return false;
349 	}
350 }
351 
352 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
353 
354 static struct waiting_dir_move *
355 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
356 
357 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
358 
359 static int need_send_hole(struct send_ctx *sctx)
360 {
361 	return (sctx->parent_root && !sctx->cur_inode_new &&
362 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
363 		S_ISREG(sctx->cur_inode_mode));
364 }
365 
366 static void fs_path_reset(struct fs_path *p)
367 {
368 	if (p->reversed) {
369 		p->start = p->buf + p->buf_len - 1;
370 		p->end = p->start;
371 		*p->start = 0;
372 	} else {
373 		p->start = p->buf;
374 		p->end = p->start;
375 		*p->start = 0;
376 	}
377 }
378 
379 static struct fs_path *fs_path_alloc(void)
380 {
381 	struct fs_path *p;
382 
383 	p = kmalloc(sizeof(*p), GFP_KERNEL);
384 	if (!p)
385 		return NULL;
386 	p->reversed = 0;
387 	p->buf = p->inline_buf;
388 	p->buf_len = FS_PATH_INLINE_SIZE;
389 	fs_path_reset(p);
390 	return p;
391 }
392 
393 static struct fs_path *fs_path_alloc_reversed(void)
394 {
395 	struct fs_path *p;
396 
397 	p = fs_path_alloc();
398 	if (!p)
399 		return NULL;
400 	p->reversed = 1;
401 	fs_path_reset(p);
402 	return p;
403 }
404 
405 static void fs_path_free(struct fs_path *p)
406 {
407 	if (!p)
408 		return;
409 	if (p->buf != p->inline_buf)
410 		kfree(p->buf);
411 	kfree(p);
412 }
413 
414 static int fs_path_len(struct fs_path *p)
415 {
416 	return p->end - p->start;
417 }
418 
419 static int fs_path_ensure_buf(struct fs_path *p, int len)
420 {
421 	char *tmp_buf;
422 	int path_len;
423 	int old_buf_len;
424 
425 	len++;
426 
427 	if (p->buf_len >= len)
428 		return 0;
429 
430 	if (len > PATH_MAX) {
431 		WARN_ON(1);
432 		return -ENOMEM;
433 	}
434 
435 	path_len = p->end - p->start;
436 	old_buf_len = p->buf_len;
437 
438 	/*
439 	 * First time the inline_buf does not suffice
440 	 */
441 	if (p->buf == p->inline_buf) {
442 		tmp_buf = kmalloc(len, GFP_KERNEL);
443 		if (tmp_buf)
444 			memcpy(tmp_buf, p->buf, old_buf_len);
445 	} else {
446 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
447 	}
448 	if (!tmp_buf)
449 		return -ENOMEM;
450 	p->buf = tmp_buf;
451 	/*
452 	 * The real size of the buffer is bigger, this will let the fast path
453 	 * happen most of the time
454 	 */
455 	p->buf_len = ksize(p->buf);
456 
457 	if (p->reversed) {
458 		tmp_buf = p->buf + old_buf_len - path_len - 1;
459 		p->end = p->buf + p->buf_len - 1;
460 		p->start = p->end - path_len;
461 		memmove(p->start, tmp_buf, path_len + 1);
462 	} else {
463 		p->start = p->buf;
464 		p->end = p->start + path_len;
465 	}
466 	return 0;
467 }
468 
469 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
470 				   char **prepared)
471 {
472 	int ret;
473 	int new_len;
474 
475 	new_len = p->end - p->start + name_len;
476 	if (p->start != p->end)
477 		new_len++;
478 	ret = fs_path_ensure_buf(p, new_len);
479 	if (ret < 0)
480 		goto out;
481 
482 	if (p->reversed) {
483 		if (p->start != p->end)
484 			*--p->start = '/';
485 		p->start -= name_len;
486 		*prepared = p->start;
487 	} else {
488 		if (p->start != p->end)
489 			*p->end++ = '/';
490 		*prepared = p->end;
491 		p->end += name_len;
492 		*p->end = 0;
493 	}
494 
495 out:
496 	return ret;
497 }
498 
499 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
500 {
501 	int ret;
502 	char *prepared;
503 
504 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
505 	if (ret < 0)
506 		goto out;
507 	memcpy(prepared, name, name_len);
508 
509 out:
510 	return ret;
511 }
512 
513 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
514 {
515 	int ret;
516 	char *prepared;
517 
518 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
519 	if (ret < 0)
520 		goto out;
521 	memcpy(prepared, p2->start, p2->end - p2->start);
522 
523 out:
524 	return ret;
525 }
526 
527 static int fs_path_add_from_extent_buffer(struct fs_path *p,
528 					  struct extent_buffer *eb,
529 					  unsigned long off, int len)
530 {
531 	int ret;
532 	char *prepared;
533 
534 	ret = fs_path_prepare_for_add(p, len, &prepared);
535 	if (ret < 0)
536 		goto out;
537 
538 	read_extent_buffer(eb, prepared, off, len);
539 
540 out:
541 	return ret;
542 }
543 
544 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
545 {
546 	p->reversed = from->reversed;
547 	fs_path_reset(p);
548 
549 	return fs_path_add_path(p, from);
550 }
551 
552 static void fs_path_unreverse(struct fs_path *p)
553 {
554 	char *tmp;
555 	int len;
556 
557 	if (!p->reversed)
558 		return;
559 
560 	tmp = p->start;
561 	len = p->end - p->start;
562 	p->start = p->buf;
563 	p->end = p->start + len;
564 	memmove(p->start, tmp, len + 1);
565 	p->reversed = 0;
566 }
567 
568 static struct btrfs_path *alloc_path_for_send(void)
569 {
570 	struct btrfs_path *path;
571 
572 	path = btrfs_alloc_path();
573 	if (!path)
574 		return NULL;
575 	path->search_commit_root = 1;
576 	path->skip_locking = 1;
577 	path->need_commit_sem = 1;
578 	return path;
579 }
580 
581 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
582 {
583 	int ret;
584 	u32 pos = 0;
585 
586 	while (pos < len) {
587 		ret = kernel_write(filp, buf + pos, len - pos, off);
588 		if (ret < 0)
589 			return ret;
590 		if (ret == 0)
591 			return -EIO;
592 		pos += ret;
593 	}
594 
595 	return 0;
596 }
597 
598 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
599 {
600 	struct btrfs_tlv_header *hdr;
601 	int total_len = sizeof(*hdr) + len;
602 	int left = sctx->send_max_size - sctx->send_size;
603 
604 	if (WARN_ON_ONCE(sctx->put_data))
605 		return -EINVAL;
606 
607 	if (unlikely(left < total_len))
608 		return -EOVERFLOW;
609 
610 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
611 	put_unaligned_le16(attr, &hdr->tlv_type);
612 	put_unaligned_le16(len, &hdr->tlv_len);
613 	memcpy(hdr + 1, data, len);
614 	sctx->send_size += total_len;
615 
616 	return 0;
617 }
618 
619 #define TLV_PUT_DEFINE_INT(bits) \
620 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
621 			u##bits attr, u##bits value)			\
622 	{								\
623 		__le##bits __tmp = cpu_to_le##bits(value);		\
624 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
625 	}
626 
627 TLV_PUT_DEFINE_INT(32)
628 TLV_PUT_DEFINE_INT(64)
629 
630 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
631 			  const char *str, int len)
632 {
633 	if (len == -1)
634 		len = strlen(str);
635 	return tlv_put(sctx, attr, str, len);
636 }
637 
638 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
639 			const u8 *uuid)
640 {
641 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
642 }
643 
644 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
645 				  struct extent_buffer *eb,
646 				  struct btrfs_timespec *ts)
647 {
648 	struct btrfs_timespec bts;
649 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
650 	return tlv_put(sctx, attr, &bts, sizeof(bts));
651 }
652 
653 
654 #define TLV_PUT(sctx, attrtype, data, attrlen) \
655 	do { \
656 		ret = tlv_put(sctx, attrtype, data, attrlen); \
657 		if (ret < 0) \
658 			goto tlv_put_failure; \
659 	} while (0)
660 
661 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
662 	do { \
663 		ret = tlv_put_u##bits(sctx, attrtype, value); \
664 		if (ret < 0) \
665 			goto tlv_put_failure; \
666 	} while (0)
667 
668 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
669 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
670 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
671 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
672 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
673 	do { \
674 		ret = tlv_put_string(sctx, attrtype, str, len); \
675 		if (ret < 0) \
676 			goto tlv_put_failure; \
677 	} while (0)
678 #define TLV_PUT_PATH(sctx, attrtype, p) \
679 	do { \
680 		ret = tlv_put_string(sctx, attrtype, p->start, \
681 			p->end - p->start); \
682 		if (ret < 0) \
683 			goto tlv_put_failure; \
684 	} while(0)
685 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
686 	do { \
687 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
688 		if (ret < 0) \
689 			goto tlv_put_failure; \
690 	} while (0)
691 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
692 	do { \
693 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
694 		if (ret < 0) \
695 			goto tlv_put_failure; \
696 	} while (0)
697 
698 static int send_header(struct send_ctx *sctx)
699 {
700 	struct btrfs_stream_header hdr;
701 
702 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
703 	hdr.version = cpu_to_le32(sctx->proto);
704 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
705 					&sctx->send_off);
706 }
707 
708 /*
709  * For each command/item we want to send to userspace, we call this function.
710  */
711 static int begin_cmd(struct send_ctx *sctx, int cmd)
712 {
713 	struct btrfs_cmd_header *hdr;
714 
715 	if (WARN_ON(!sctx->send_buf))
716 		return -EINVAL;
717 
718 	BUG_ON(sctx->send_size);
719 
720 	sctx->send_size += sizeof(*hdr);
721 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
722 	put_unaligned_le16(cmd, &hdr->cmd);
723 
724 	return 0;
725 }
726 
727 static int send_cmd(struct send_ctx *sctx)
728 {
729 	int ret;
730 	struct btrfs_cmd_header *hdr;
731 	u32 crc;
732 
733 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
734 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
735 	put_unaligned_le32(0, &hdr->crc);
736 
737 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
738 	put_unaligned_le32(crc, &hdr->crc);
739 
740 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
741 					&sctx->send_off);
742 
743 	sctx->send_size = 0;
744 	sctx->put_data = false;
745 
746 	return ret;
747 }
748 
749 /*
750  * Sends a move instruction to user space
751  */
752 static int send_rename(struct send_ctx *sctx,
753 		     struct fs_path *from, struct fs_path *to)
754 {
755 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
756 	int ret;
757 
758 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
759 
760 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
761 	if (ret < 0)
762 		goto out;
763 
764 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
765 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
766 
767 	ret = send_cmd(sctx);
768 
769 tlv_put_failure:
770 out:
771 	return ret;
772 }
773 
774 /*
775  * Sends a link instruction to user space
776  */
777 static int send_link(struct send_ctx *sctx,
778 		     struct fs_path *path, struct fs_path *lnk)
779 {
780 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
781 	int ret;
782 
783 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
784 
785 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
786 	if (ret < 0)
787 		goto out;
788 
789 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
790 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
791 
792 	ret = send_cmd(sctx);
793 
794 tlv_put_failure:
795 out:
796 	return ret;
797 }
798 
799 /*
800  * Sends an unlink instruction to user space
801  */
802 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
803 {
804 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
805 	int ret;
806 
807 	btrfs_debug(fs_info, "send_unlink %s", path->start);
808 
809 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
810 	if (ret < 0)
811 		goto out;
812 
813 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
814 
815 	ret = send_cmd(sctx);
816 
817 tlv_put_failure:
818 out:
819 	return ret;
820 }
821 
822 /*
823  * Sends a rmdir instruction to user space
824  */
825 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
826 {
827 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
828 	int ret;
829 
830 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
831 
832 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
833 	if (ret < 0)
834 		goto out;
835 
836 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
837 
838 	ret = send_cmd(sctx);
839 
840 tlv_put_failure:
841 out:
842 	return ret;
843 }
844 
845 /*
846  * Helper function to retrieve some fields from an inode item.
847  */
848 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
849 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
850 			  u64 *gid, u64 *rdev, u64 *fileattr)
851 {
852 	int ret;
853 	struct btrfs_inode_item *ii;
854 	struct btrfs_key key;
855 
856 	key.objectid = ino;
857 	key.type = BTRFS_INODE_ITEM_KEY;
858 	key.offset = 0;
859 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
860 	if (ret) {
861 		if (ret > 0)
862 			ret = -ENOENT;
863 		return ret;
864 	}
865 
866 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
867 			struct btrfs_inode_item);
868 	if (size)
869 		*size = btrfs_inode_size(path->nodes[0], ii);
870 	if (gen)
871 		*gen = btrfs_inode_generation(path->nodes[0], ii);
872 	if (mode)
873 		*mode = btrfs_inode_mode(path->nodes[0], ii);
874 	if (uid)
875 		*uid = btrfs_inode_uid(path->nodes[0], ii);
876 	if (gid)
877 		*gid = btrfs_inode_gid(path->nodes[0], ii);
878 	if (rdev)
879 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
880 	/*
881 	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
882 	 * otherwise logically split to 32/32 parts.
883 	 */
884 	if (fileattr)
885 		*fileattr = btrfs_inode_flags(path->nodes[0], ii);
886 
887 	return ret;
888 }
889 
890 static int get_inode_info(struct btrfs_root *root,
891 			  u64 ino, u64 *size, u64 *gen,
892 			  u64 *mode, u64 *uid, u64 *gid,
893 			  u64 *rdev, u64 *fileattr)
894 {
895 	struct btrfs_path *path;
896 	int ret;
897 
898 	path = alloc_path_for_send();
899 	if (!path)
900 		return -ENOMEM;
901 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
902 			       rdev, fileattr);
903 	btrfs_free_path(path);
904 	return ret;
905 }
906 
907 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
908 				   struct fs_path *p,
909 				   void *ctx);
910 
911 /*
912  * Helper function to iterate the entries in ONE btrfs_inode_ref or
913  * btrfs_inode_extref.
914  * The iterate callback may return a non zero value to stop iteration. This can
915  * be a negative value for error codes or 1 to simply stop it.
916  *
917  * path must point to the INODE_REF or INODE_EXTREF when called.
918  */
919 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
920 			     struct btrfs_key *found_key, int resolve,
921 			     iterate_inode_ref_t iterate, void *ctx)
922 {
923 	struct extent_buffer *eb = path->nodes[0];
924 	struct btrfs_inode_ref *iref;
925 	struct btrfs_inode_extref *extref;
926 	struct btrfs_path *tmp_path;
927 	struct fs_path *p;
928 	u32 cur = 0;
929 	u32 total;
930 	int slot = path->slots[0];
931 	u32 name_len;
932 	char *start;
933 	int ret = 0;
934 	int num = 0;
935 	int index;
936 	u64 dir;
937 	unsigned long name_off;
938 	unsigned long elem_size;
939 	unsigned long ptr;
940 
941 	p = fs_path_alloc_reversed();
942 	if (!p)
943 		return -ENOMEM;
944 
945 	tmp_path = alloc_path_for_send();
946 	if (!tmp_path) {
947 		fs_path_free(p);
948 		return -ENOMEM;
949 	}
950 
951 
952 	if (found_key->type == BTRFS_INODE_REF_KEY) {
953 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
954 						    struct btrfs_inode_ref);
955 		total = btrfs_item_size(eb, slot);
956 		elem_size = sizeof(*iref);
957 	} else {
958 		ptr = btrfs_item_ptr_offset(eb, slot);
959 		total = btrfs_item_size(eb, slot);
960 		elem_size = sizeof(*extref);
961 	}
962 
963 	while (cur < total) {
964 		fs_path_reset(p);
965 
966 		if (found_key->type == BTRFS_INODE_REF_KEY) {
967 			iref = (struct btrfs_inode_ref *)(ptr + cur);
968 			name_len = btrfs_inode_ref_name_len(eb, iref);
969 			name_off = (unsigned long)(iref + 1);
970 			index = btrfs_inode_ref_index(eb, iref);
971 			dir = found_key->offset;
972 		} else {
973 			extref = (struct btrfs_inode_extref *)(ptr + cur);
974 			name_len = btrfs_inode_extref_name_len(eb, extref);
975 			name_off = (unsigned long)&extref->name;
976 			index = btrfs_inode_extref_index(eb, extref);
977 			dir = btrfs_inode_extref_parent(eb, extref);
978 		}
979 
980 		if (resolve) {
981 			start = btrfs_ref_to_path(root, tmp_path, name_len,
982 						  name_off, eb, dir,
983 						  p->buf, p->buf_len);
984 			if (IS_ERR(start)) {
985 				ret = PTR_ERR(start);
986 				goto out;
987 			}
988 			if (start < p->buf) {
989 				/* overflow , try again with larger buffer */
990 				ret = fs_path_ensure_buf(p,
991 						p->buf_len + p->buf - start);
992 				if (ret < 0)
993 					goto out;
994 				start = btrfs_ref_to_path(root, tmp_path,
995 							  name_len, name_off,
996 							  eb, dir,
997 							  p->buf, p->buf_len);
998 				if (IS_ERR(start)) {
999 					ret = PTR_ERR(start);
1000 					goto out;
1001 				}
1002 				BUG_ON(start < p->buf);
1003 			}
1004 			p->start = start;
1005 		} else {
1006 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1007 							     name_len);
1008 			if (ret < 0)
1009 				goto out;
1010 		}
1011 
1012 		cur += elem_size + name_len;
1013 		ret = iterate(num, dir, index, p, ctx);
1014 		if (ret)
1015 			goto out;
1016 		num++;
1017 	}
1018 
1019 out:
1020 	btrfs_free_path(tmp_path);
1021 	fs_path_free(p);
1022 	return ret;
1023 }
1024 
1025 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1026 				  const char *name, int name_len,
1027 				  const char *data, int data_len,
1028 				  void *ctx);
1029 
1030 /*
1031  * Helper function to iterate the entries in ONE btrfs_dir_item.
1032  * The iterate callback may return a non zero value to stop iteration. This can
1033  * be a negative value for error codes or 1 to simply stop it.
1034  *
1035  * path must point to the dir item when called.
1036  */
1037 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1038 			    iterate_dir_item_t iterate, void *ctx)
1039 {
1040 	int ret = 0;
1041 	struct extent_buffer *eb;
1042 	struct btrfs_dir_item *di;
1043 	struct btrfs_key di_key;
1044 	char *buf = NULL;
1045 	int buf_len;
1046 	u32 name_len;
1047 	u32 data_len;
1048 	u32 cur;
1049 	u32 len;
1050 	u32 total;
1051 	int slot;
1052 	int num;
1053 
1054 	/*
1055 	 * Start with a small buffer (1 page). If later we end up needing more
1056 	 * space, which can happen for xattrs on a fs with a leaf size greater
1057 	 * then the page size, attempt to increase the buffer. Typically xattr
1058 	 * values are small.
1059 	 */
1060 	buf_len = PATH_MAX;
1061 	buf = kmalloc(buf_len, GFP_KERNEL);
1062 	if (!buf) {
1063 		ret = -ENOMEM;
1064 		goto out;
1065 	}
1066 
1067 	eb = path->nodes[0];
1068 	slot = path->slots[0];
1069 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1070 	cur = 0;
1071 	len = 0;
1072 	total = btrfs_item_size(eb, slot);
1073 
1074 	num = 0;
1075 	while (cur < total) {
1076 		name_len = btrfs_dir_name_len(eb, di);
1077 		data_len = btrfs_dir_data_len(eb, di);
1078 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1079 
1080 		if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) {
1081 			if (name_len > XATTR_NAME_MAX) {
1082 				ret = -ENAMETOOLONG;
1083 				goto out;
1084 			}
1085 			if (name_len + data_len >
1086 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1087 				ret = -E2BIG;
1088 				goto out;
1089 			}
1090 		} else {
1091 			/*
1092 			 * Path too long
1093 			 */
1094 			if (name_len + data_len > PATH_MAX) {
1095 				ret = -ENAMETOOLONG;
1096 				goto out;
1097 			}
1098 		}
1099 
1100 		if (name_len + data_len > buf_len) {
1101 			buf_len = name_len + data_len;
1102 			if (is_vmalloc_addr(buf)) {
1103 				vfree(buf);
1104 				buf = NULL;
1105 			} else {
1106 				char *tmp = krealloc(buf, buf_len,
1107 						GFP_KERNEL | __GFP_NOWARN);
1108 
1109 				if (!tmp)
1110 					kfree(buf);
1111 				buf = tmp;
1112 			}
1113 			if (!buf) {
1114 				buf = kvmalloc(buf_len, GFP_KERNEL);
1115 				if (!buf) {
1116 					ret = -ENOMEM;
1117 					goto out;
1118 				}
1119 			}
1120 		}
1121 
1122 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1123 				name_len + data_len);
1124 
1125 		len = sizeof(*di) + name_len + data_len;
1126 		di = (struct btrfs_dir_item *)((char *)di + len);
1127 		cur += len;
1128 
1129 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1130 			      data_len, ctx);
1131 		if (ret < 0)
1132 			goto out;
1133 		if (ret) {
1134 			ret = 0;
1135 			goto out;
1136 		}
1137 
1138 		num++;
1139 	}
1140 
1141 out:
1142 	kvfree(buf);
1143 	return ret;
1144 }
1145 
1146 static int __copy_first_ref(int num, u64 dir, int index,
1147 			    struct fs_path *p, void *ctx)
1148 {
1149 	int ret;
1150 	struct fs_path *pt = ctx;
1151 
1152 	ret = fs_path_copy(pt, p);
1153 	if (ret < 0)
1154 		return ret;
1155 
1156 	/* we want the first only */
1157 	return 1;
1158 }
1159 
1160 /*
1161  * Retrieve the first path of an inode. If an inode has more then one
1162  * ref/hardlink, this is ignored.
1163  */
1164 static int get_inode_path(struct btrfs_root *root,
1165 			  u64 ino, struct fs_path *path)
1166 {
1167 	int ret;
1168 	struct btrfs_key key, found_key;
1169 	struct btrfs_path *p;
1170 
1171 	p = alloc_path_for_send();
1172 	if (!p)
1173 		return -ENOMEM;
1174 
1175 	fs_path_reset(path);
1176 
1177 	key.objectid = ino;
1178 	key.type = BTRFS_INODE_REF_KEY;
1179 	key.offset = 0;
1180 
1181 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1182 	if (ret < 0)
1183 		goto out;
1184 	if (ret) {
1185 		ret = 1;
1186 		goto out;
1187 	}
1188 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1189 	if (found_key.objectid != ino ||
1190 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1191 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1192 		ret = -ENOENT;
1193 		goto out;
1194 	}
1195 
1196 	ret = iterate_inode_ref(root, p, &found_key, 1,
1197 				__copy_first_ref, path);
1198 	if (ret < 0)
1199 		goto out;
1200 	ret = 0;
1201 
1202 out:
1203 	btrfs_free_path(p);
1204 	return ret;
1205 }
1206 
1207 struct backref_ctx {
1208 	struct send_ctx *sctx;
1209 
1210 	/* number of total found references */
1211 	u64 found;
1212 
1213 	/*
1214 	 * used for clones found in send_root. clones found behind cur_objectid
1215 	 * and cur_offset are not considered as allowed clones.
1216 	 */
1217 	u64 cur_objectid;
1218 	u64 cur_offset;
1219 
1220 	/* may be truncated in case it's the last extent in a file */
1221 	u64 extent_len;
1222 
1223 	/* Just to check for bugs in backref resolving */
1224 	int found_itself;
1225 };
1226 
1227 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1228 {
1229 	u64 root = (u64)(uintptr_t)key;
1230 	const struct clone_root *cr = elt;
1231 
1232 	if (root < cr->root->root_key.objectid)
1233 		return -1;
1234 	if (root > cr->root->root_key.objectid)
1235 		return 1;
1236 	return 0;
1237 }
1238 
1239 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1240 {
1241 	const struct clone_root *cr1 = e1;
1242 	const struct clone_root *cr2 = e2;
1243 
1244 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1245 		return -1;
1246 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1247 		return 1;
1248 	return 0;
1249 }
1250 
1251 /*
1252  * Called for every backref that is found for the current extent.
1253  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1254  */
1255 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1256 {
1257 	struct backref_ctx *bctx = ctx_;
1258 	struct clone_root *found;
1259 
1260 	/* First check if the root is in the list of accepted clone sources */
1261 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1262 			bctx->sctx->clone_roots_cnt,
1263 			sizeof(struct clone_root),
1264 			__clone_root_cmp_bsearch);
1265 	if (!found)
1266 		return 0;
1267 
1268 	if (found->root == bctx->sctx->send_root &&
1269 	    ino == bctx->cur_objectid &&
1270 	    offset == bctx->cur_offset) {
1271 		bctx->found_itself = 1;
1272 	}
1273 
1274 	/*
1275 	 * Make sure we don't consider clones from send_root that are
1276 	 * behind the current inode/offset.
1277 	 */
1278 	if (found->root == bctx->sctx->send_root) {
1279 		/*
1280 		 * If the source inode was not yet processed we can't issue a
1281 		 * clone operation, as the source extent does not exist yet at
1282 		 * the destination of the stream.
1283 		 */
1284 		if (ino > bctx->cur_objectid)
1285 			return 0;
1286 		/*
1287 		 * We clone from the inode currently being sent as long as the
1288 		 * source extent is already processed, otherwise we could try
1289 		 * to clone from an extent that does not exist yet at the
1290 		 * destination of the stream.
1291 		 */
1292 		if (ino == bctx->cur_objectid &&
1293 		    offset + bctx->extent_len >
1294 		    bctx->sctx->cur_inode_next_write_offset)
1295 			return 0;
1296 	}
1297 
1298 	bctx->found++;
1299 	found->found_refs++;
1300 	if (ino < found->ino) {
1301 		found->ino = ino;
1302 		found->offset = offset;
1303 	} else if (found->ino == ino) {
1304 		/*
1305 		 * same extent found more then once in the same file.
1306 		 */
1307 		if (found->offset > offset + bctx->extent_len)
1308 			found->offset = offset;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 /*
1315  * Given an inode, offset and extent item, it finds a good clone for a clone
1316  * instruction. Returns -ENOENT when none could be found. The function makes
1317  * sure that the returned clone is usable at the point where sending is at the
1318  * moment. This means, that no clones are accepted which lie behind the current
1319  * inode+offset.
1320  *
1321  * path must point to the extent item when called.
1322  */
1323 static int find_extent_clone(struct send_ctx *sctx,
1324 			     struct btrfs_path *path,
1325 			     u64 ino, u64 data_offset,
1326 			     u64 ino_size,
1327 			     struct clone_root **found)
1328 {
1329 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1330 	int ret;
1331 	int extent_type;
1332 	u64 logical;
1333 	u64 disk_byte;
1334 	u64 num_bytes;
1335 	u64 extent_item_pos;
1336 	u64 flags = 0;
1337 	struct btrfs_file_extent_item *fi;
1338 	struct extent_buffer *eb = path->nodes[0];
1339 	struct backref_ctx backref_ctx = {0};
1340 	struct clone_root *cur_clone_root;
1341 	struct btrfs_key found_key;
1342 	struct btrfs_path *tmp_path;
1343 	struct btrfs_extent_item *ei;
1344 	int compressed;
1345 	u32 i;
1346 
1347 	tmp_path = alloc_path_for_send();
1348 	if (!tmp_path)
1349 		return -ENOMEM;
1350 
1351 	/* We only use this path under the commit sem */
1352 	tmp_path->need_commit_sem = 0;
1353 
1354 	if (data_offset >= ino_size) {
1355 		/*
1356 		 * There may be extents that lie behind the file's size.
1357 		 * I at least had this in combination with snapshotting while
1358 		 * writing large files.
1359 		 */
1360 		ret = 0;
1361 		goto out;
1362 	}
1363 
1364 	fi = btrfs_item_ptr(eb, path->slots[0],
1365 			struct btrfs_file_extent_item);
1366 	extent_type = btrfs_file_extent_type(eb, fi);
1367 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1368 		ret = -ENOENT;
1369 		goto out;
1370 	}
1371 	compressed = btrfs_file_extent_compression(eb, fi);
1372 
1373 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1374 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1375 	if (disk_byte == 0) {
1376 		ret = -ENOENT;
1377 		goto out;
1378 	}
1379 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1380 
1381 	down_read(&fs_info->commit_root_sem);
1382 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1383 				  &found_key, &flags);
1384 	up_read(&fs_info->commit_root_sem);
1385 
1386 	if (ret < 0)
1387 		goto out;
1388 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1389 		ret = -EIO;
1390 		goto out;
1391 	}
1392 
1393 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1394 			    struct btrfs_extent_item);
1395 	/*
1396 	 * Backreference walking (iterate_extent_inodes() below) is currently
1397 	 * too expensive when an extent has a large number of references, both
1398 	 * in time spent and used memory. So for now just fallback to write
1399 	 * operations instead of clone operations when an extent has more than
1400 	 * a certain amount of references.
1401 	 */
1402 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1403 		ret = -ENOENT;
1404 		goto out;
1405 	}
1406 	btrfs_release_path(tmp_path);
1407 
1408 	/*
1409 	 * Setup the clone roots.
1410 	 */
1411 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1412 		cur_clone_root = sctx->clone_roots + i;
1413 		cur_clone_root->ino = (u64)-1;
1414 		cur_clone_root->offset = 0;
1415 		cur_clone_root->found_refs = 0;
1416 	}
1417 
1418 	backref_ctx.sctx = sctx;
1419 	backref_ctx.found = 0;
1420 	backref_ctx.cur_objectid = ino;
1421 	backref_ctx.cur_offset = data_offset;
1422 	backref_ctx.found_itself = 0;
1423 	backref_ctx.extent_len = num_bytes;
1424 
1425 	/*
1426 	 * The last extent of a file may be too large due to page alignment.
1427 	 * We need to adjust extent_len in this case so that the checks in
1428 	 * __iterate_backrefs work.
1429 	 */
1430 	if (data_offset + num_bytes >= ino_size)
1431 		backref_ctx.extent_len = ino_size - data_offset;
1432 
1433 	/*
1434 	 * Now collect all backrefs.
1435 	 */
1436 	if (compressed == BTRFS_COMPRESS_NONE)
1437 		extent_item_pos = logical - found_key.objectid;
1438 	else
1439 		extent_item_pos = 0;
1440 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1441 				    extent_item_pos, 1, __iterate_backrefs,
1442 				    &backref_ctx, false);
1443 
1444 	if (ret < 0)
1445 		goto out;
1446 
1447 	down_read(&fs_info->commit_root_sem);
1448 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1449 		/*
1450 		 * A transaction commit for a transaction in which block group
1451 		 * relocation was done just happened.
1452 		 * The disk_bytenr of the file extent item we processed is
1453 		 * possibly stale, referring to the extent's location before
1454 		 * relocation. So act as if we haven't found any clone sources
1455 		 * and fallback to write commands, which will read the correct
1456 		 * data from the new extent location. Otherwise we will fail
1457 		 * below because we haven't found our own back reference or we
1458 		 * could be getting incorrect sources in case the old extent
1459 		 * was already reallocated after the relocation.
1460 		 */
1461 		up_read(&fs_info->commit_root_sem);
1462 		ret = -ENOENT;
1463 		goto out;
1464 	}
1465 	up_read(&fs_info->commit_root_sem);
1466 
1467 	if (!backref_ctx.found_itself) {
1468 		/* found a bug in backref code? */
1469 		ret = -EIO;
1470 		btrfs_err(fs_info,
1471 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1472 			  ino, data_offset, disk_byte, found_key.objectid);
1473 		goto out;
1474 	}
1475 
1476 	btrfs_debug(fs_info,
1477 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1478 		    data_offset, ino, num_bytes, logical);
1479 
1480 	if (!backref_ctx.found)
1481 		btrfs_debug(fs_info, "no clones found");
1482 
1483 	cur_clone_root = NULL;
1484 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1485 		if (sctx->clone_roots[i].found_refs) {
1486 			if (!cur_clone_root)
1487 				cur_clone_root = sctx->clone_roots + i;
1488 			else if (sctx->clone_roots[i].root == sctx->send_root)
1489 				/* prefer clones from send_root over others */
1490 				cur_clone_root = sctx->clone_roots + i;
1491 		}
1492 
1493 	}
1494 
1495 	if (cur_clone_root) {
1496 		*found = cur_clone_root;
1497 		ret = 0;
1498 	} else {
1499 		ret = -ENOENT;
1500 	}
1501 
1502 out:
1503 	btrfs_free_path(tmp_path);
1504 	return ret;
1505 }
1506 
1507 static int read_symlink(struct btrfs_root *root,
1508 			u64 ino,
1509 			struct fs_path *dest)
1510 {
1511 	int ret;
1512 	struct btrfs_path *path;
1513 	struct btrfs_key key;
1514 	struct btrfs_file_extent_item *ei;
1515 	u8 type;
1516 	u8 compression;
1517 	unsigned long off;
1518 	int len;
1519 
1520 	path = alloc_path_for_send();
1521 	if (!path)
1522 		return -ENOMEM;
1523 
1524 	key.objectid = ino;
1525 	key.type = BTRFS_EXTENT_DATA_KEY;
1526 	key.offset = 0;
1527 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1528 	if (ret < 0)
1529 		goto out;
1530 	if (ret) {
1531 		/*
1532 		 * An empty symlink inode. Can happen in rare error paths when
1533 		 * creating a symlink (transaction committed before the inode
1534 		 * eviction handler removed the symlink inode items and a crash
1535 		 * happened in between or the subvol was snapshoted in between).
1536 		 * Print an informative message to dmesg/syslog so that the user
1537 		 * can delete the symlink.
1538 		 */
1539 		btrfs_err(root->fs_info,
1540 			  "Found empty symlink inode %llu at root %llu",
1541 			  ino, root->root_key.objectid);
1542 		ret = -EIO;
1543 		goto out;
1544 	}
1545 
1546 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1547 			struct btrfs_file_extent_item);
1548 	type = btrfs_file_extent_type(path->nodes[0], ei);
1549 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1550 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1551 	BUG_ON(compression);
1552 
1553 	off = btrfs_file_extent_inline_start(ei);
1554 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1555 
1556 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1557 
1558 out:
1559 	btrfs_free_path(path);
1560 	return ret;
1561 }
1562 
1563 /*
1564  * Helper function to generate a file name that is unique in the root of
1565  * send_root and parent_root. This is used to generate names for orphan inodes.
1566  */
1567 static int gen_unique_name(struct send_ctx *sctx,
1568 			   u64 ino, u64 gen,
1569 			   struct fs_path *dest)
1570 {
1571 	int ret = 0;
1572 	struct btrfs_path *path;
1573 	struct btrfs_dir_item *di;
1574 	char tmp[64];
1575 	int len;
1576 	u64 idx = 0;
1577 
1578 	path = alloc_path_for_send();
1579 	if (!path)
1580 		return -ENOMEM;
1581 
1582 	while (1) {
1583 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1584 				ino, gen, idx);
1585 		ASSERT(len < sizeof(tmp));
1586 
1587 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1588 				path, BTRFS_FIRST_FREE_OBJECTID,
1589 				tmp, strlen(tmp), 0);
1590 		btrfs_release_path(path);
1591 		if (IS_ERR(di)) {
1592 			ret = PTR_ERR(di);
1593 			goto out;
1594 		}
1595 		if (di) {
1596 			/* not unique, try again */
1597 			idx++;
1598 			continue;
1599 		}
1600 
1601 		if (!sctx->parent_root) {
1602 			/* unique */
1603 			ret = 0;
1604 			break;
1605 		}
1606 
1607 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1608 				path, BTRFS_FIRST_FREE_OBJECTID,
1609 				tmp, strlen(tmp), 0);
1610 		btrfs_release_path(path);
1611 		if (IS_ERR(di)) {
1612 			ret = PTR_ERR(di);
1613 			goto out;
1614 		}
1615 		if (di) {
1616 			/* not unique, try again */
1617 			idx++;
1618 			continue;
1619 		}
1620 		/* unique */
1621 		break;
1622 	}
1623 
1624 	ret = fs_path_add(dest, tmp, strlen(tmp));
1625 
1626 out:
1627 	btrfs_free_path(path);
1628 	return ret;
1629 }
1630 
1631 enum inode_state {
1632 	inode_state_no_change,
1633 	inode_state_will_create,
1634 	inode_state_did_create,
1635 	inode_state_will_delete,
1636 	inode_state_did_delete,
1637 };
1638 
1639 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1640 {
1641 	int ret;
1642 	int left_ret;
1643 	int right_ret;
1644 	u64 left_gen;
1645 	u64 right_gen;
1646 
1647 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1648 			NULL, NULL, NULL);
1649 	if (ret < 0 && ret != -ENOENT)
1650 		goto out;
1651 	left_ret = ret;
1652 
1653 	if (!sctx->parent_root) {
1654 		right_ret = -ENOENT;
1655 	} else {
1656 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1657 				NULL, NULL, NULL, NULL, NULL);
1658 		if (ret < 0 && ret != -ENOENT)
1659 			goto out;
1660 		right_ret = ret;
1661 	}
1662 
1663 	if (!left_ret && !right_ret) {
1664 		if (left_gen == gen && right_gen == gen) {
1665 			ret = inode_state_no_change;
1666 		} else if (left_gen == gen) {
1667 			if (ino < sctx->send_progress)
1668 				ret = inode_state_did_create;
1669 			else
1670 				ret = inode_state_will_create;
1671 		} else if (right_gen == gen) {
1672 			if (ino < sctx->send_progress)
1673 				ret = inode_state_did_delete;
1674 			else
1675 				ret = inode_state_will_delete;
1676 		} else  {
1677 			ret = -ENOENT;
1678 		}
1679 	} else if (!left_ret) {
1680 		if (left_gen == gen) {
1681 			if (ino < sctx->send_progress)
1682 				ret = inode_state_did_create;
1683 			else
1684 				ret = inode_state_will_create;
1685 		} else {
1686 			ret = -ENOENT;
1687 		}
1688 	} else if (!right_ret) {
1689 		if (right_gen == gen) {
1690 			if (ino < sctx->send_progress)
1691 				ret = inode_state_did_delete;
1692 			else
1693 				ret = inode_state_will_delete;
1694 		} else {
1695 			ret = -ENOENT;
1696 		}
1697 	} else {
1698 		ret = -ENOENT;
1699 	}
1700 
1701 out:
1702 	return ret;
1703 }
1704 
1705 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1706 {
1707 	int ret;
1708 
1709 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1710 		return 1;
1711 
1712 	ret = get_cur_inode_state(sctx, ino, gen);
1713 	if (ret < 0)
1714 		goto out;
1715 
1716 	if (ret == inode_state_no_change ||
1717 	    ret == inode_state_did_create ||
1718 	    ret == inode_state_will_delete)
1719 		ret = 1;
1720 	else
1721 		ret = 0;
1722 
1723 out:
1724 	return ret;
1725 }
1726 
1727 /*
1728  * Helper function to lookup a dir item in a dir.
1729  */
1730 static int lookup_dir_item_inode(struct btrfs_root *root,
1731 				 u64 dir, const char *name, int name_len,
1732 				 u64 *found_inode)
1733 {
1734 	int ret = 0;
1735 	struct btrfs_dir_item *di;
1736 	struct btrfs_key key;
1737 	struct btrfs_path *path;
1738 
1739 	path = alloc_path_for_send();
1740 	if (!path)
1741 		return -ENOMEM;
1742 
1743 	di = btrfs_lookup_dir_item(NULL, root, path,
1744 			dir, name, name_len, 0);
1745 	if (IS_ERR_OR_NULL(di)) {
1746 		ret = di ? PTR_ERR(di) : -ENOENT;
1747 		goto out;
1748 	}
1749 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1750 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1751 		ret = -ENOENT;
1752 		goto out;
1753 	}
1754 	*found_inode = key.objectid;
1755 
1756 out:
1757 	btrfs_free_path(path);
1758 	return ret;
1759 }
1760 
1761 /*
1762  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1763  * generation of the parent dir and the name of the dir entry.
1764  */
1765 static int get_first_ref(struct btrfs_root *root, u64 ino,
1766 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1767 {
1768 	int ret;
1769 	struct btrfs_key key;
1770 	struct btrfs_key found_key;
1771 	struct btrfs_path *path;
1772 	int len;
1773 	u64 parent_dir;
1774 
1775 	path = alloc_path_for_send();
1776 	if (!path)
1777 		return -ENOMEM;
1778 
1779 	key.objectid = ino;
1780 	key.type = BTRFS_INODE_REF_KEY;
1781 	key.offset = 0;
1782 
1783 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1784 	if (ret < 0)
1785 		goto out;
1786 	if (!ret)
1787 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1788 				path->slots[0]);
1789 	if (ret || found_key.objectid != ino ||
1790 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1791 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1792 		ret = -ENOENT;
1793 		goto out;
1794 	}
1795 
1796 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1797 		struct btrfs_inode_ref *iref;
1798 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1799 				      struct btrfs_inode_ref);
1800 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1801 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1802 						     (unsigned long)(iref + 1),
1803 						     len);
1804 		parent_dir = found_key.offset;
1805 	} else {
1806 		struct btrfs_inode_extref *extref;
1807 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1808 					struct btrfs_inode_extref);
1809 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1810 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1811 					(unsigned long)&extref->name, len);
1812 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1813 	}
1814 	if (ret < 0)
1815 		goto out;
1816 	btrfs_release_path(path);
1817 
1818 	if (dir_gen) {
1819 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1820 				     NULL, NULL, NULL, NULL);
1821 		if (ret < 0)
1822 			goto out;
1823 	}
1824 
1825 	*dir = parent_dir;
1826 
1827 out:
1828 	btrfs_free_path(path);
1829 	return ret;
1830 }
1831 
1832 static int is_first_ref(struct btrfs_root *root,
1833 			u64 ino, u64 dir,
1834 			const char *name, int name_len)
1835 {
1836 	int ret;
1837 	struct fs_path *tmp_name;
1838 	u64 tmp_dir;
1839 
1840 	tmp_name = fs_path_alloc();
1841 	if (!tmp_name)
1842 		return -ENOMEM;
1843 
1844 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1845 	if (ret < 0)
1846 		goto out;
1847 
1848 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1849 		ret = 0;
1850 		goto out;
1851 	}
1852 
1853 	ret = !memcmp(tmp_name->start, name, name_len);
1854 
1855 out:
1856 	fs_path_free(tmp_name);
1857 	return ret;
1858 }
1859 
1860 /*
1861  * Used by process_recorded_refs to determine if a new ref would overwrite an
1862  * already existing ref. In case it detects an overwrite, it returns the
1863  * inode/gen in who_ino/who_gen.
1864  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1865  * to make sure later references to the overwritten inode are possible.
1866  * Orphanizing is however only required for the first ref of an inode.
1867  * process_recorded_refs does an additional is_first_ref check to see if
1868  * orphanizing is really required.
1869  */
1870 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1871 			      const char *name, int name_len,
1872 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1873 {
1874 	int ret = 0;
1875 	u64 gen;
1876 	u64 other_inode = 0;
1877 
1878 	if (!sctx->parent_root)
1879 		goto out;
1880 
1881 	ret = is_inode_existent(sctx, dir, dir_gen);
1882 	if (ret <= 0)
1883 		goto out;
1884 
1885 	/*
1886 	 * If we have a parent root we need to verify that the parent dir was
1887 	 * not deleted and then re-created, if it was then we have no overwrite
1888 	 * and we can just unlink this entry.
1889 	 */
1890 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1891 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1892 				     NULL, NULL, NULL, NULL);
1893 		if (ret < 0 && ret != -ENOENT)
1894 			goto out;
1895 		if (ret) {
1896 			ret = 0;
1897 			goto out;
1898 		}
1899 		if (gen != dir_gen)
1900 			goto out;
1901 	}
1902 
1903 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1904 				    &other_inode);
1905 	if (ret < 0 && ret != -ENOENT)
1906 		goto out;
1907 	if (ret) {
1908 		ret = 0;
1909 		goto out;
1910 	}
1911 
1912 	/*
1913 	 * Check if the overwritten ref was already processed. If yes, the ref
1914 	 * was already unlinked/moved, so we can safely assume that we will not
1915 	 * overwrite anything at this point in time.
1916 	 */
1917 	if (other_inode > sctx->send_progress ||
1918 	    is_waiting_for_move(sctx, other_inode)) {
1919 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1920 				who_gen, who_mode, NULL, NULL, NULL, NULL);
1921 		if (ret < 0)
1922 			goto out;
1923 
1924 		ret = 1;
1925 		*who_ino = other_inode;
1926 	} else {
1927 		ret = 0;
1928 	}
1929 
1930 out:
1931 	return ret;
1932 }
1933 
1934 /*
1935  * Checks if the ref was overwritten by an already processed inode. This is
1936  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1937  * thus the orphan name needs be used.
1938  * process_recorded_refs also uses it to avoid unlinking of refs that were
1939  * overwritten.
1940  */
1941 static int did_overwrite_ref(struct send_ctx *sctx,
1942 			    u64 dir, u64 dir_gen,
1943 			    u64 ino, u64 ino_gen,
1944 			    const char *name, int name_len)
1945 {
1946 	int ret = 0;
1947 	u64 gen;
1948 	u64 ow_inode;
1949 
1950 	if (!sctx->parent_root)
1951 		goto out;
1952 
1953 	ret = is_inode_existent(sctx, dir, dir_gen);
1954 	if (ret <= 0)
1955 		goto out;
1956 
1957 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1958 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1959 				     NULL, NULL, NULL, NULL);
1960 		if (ret < 0 && ret != -ENOENT)
1961 			goto out;
1962 		if (ret) {
1963 			ret = 0;
1964 			goto out;
1965 		}
1966 		if (gen != dir_gen)
1967 			goto out;
1968 	}
1969 
1970 	/* check if the ref was overwritten by another ref */
1971 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1972 				    &ow_inode);
1973 	if (ret < 0 && ret != -ENOENT)
1974 		goto out;
1975 	if (ret) {
1976 		/* was never and will never be overwritten */
1977 		ret = 0;
1978 		goto out;
1979 	}
1980 
1981 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1982 			NULL, NULL, NULL);
1983 	if (ret < 0)
1984 		goto out;
1985 
1986 	if (ow_inode == ino && gen == ino_gen) {
1987 		ret = 0;
1988 		goto out;
1989 	}
1990 
1991 	/*
1992 	 * We know that it is or will be overwritten. Check this now.
1993 	 * The current inode being processed might have been the one that caused
1994 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1995 	 * the current inode being processed.
1996 	 */
1997 	if ((ow_inode < sctx->send_progress) ||
1998 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1999 	     gen == sctx->cur_inode_gen))
2000 		ret = 1;
2001 	else
2002 		ret = 0;
2003 
2004 out:
2005 	return ret;
2006 }
2007 
2008 /*
2009  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2010  * that got overwritten. This is used by process_recorded_refs to determine
2011  * if it has to use the path as returned by get_cur_path or the orphan name.
2012  */
2013 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2014 {
2015 	int ret = 0;
2016 	struct fs_path *name = NULL;
2017 	u64 dir;
2018 	u64 dir_gen;
2019 
2020 	if (!sctx->parent_root)
2021 		goto out;
2022 
2023 	name = fs_path_alloc();
2024 	if (!name)
2025 		return -ENOMEM;
2026 
2027 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2028 	if (ret < 0)
2029 		goto out;
2030 
2031 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2032 			name->start, fs_path_len(name));
2033 
2034 out:
2035 	fs_path_free(name);
2036 	return ret;
2037 }
2038 
2039 /*
2040  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2041  * so we need to do some special handling in case we have clashes. This function
2042  * takes care of this with the help of name_cache_entry::radix_list.
2043  * In case of error, nce is kfreed.
2044  */
2045 static int name_cache_insert(struct send_ctx *sctx,
2046 			     struct name_cache_entry *nce)
2047 {
2048 	int ret = 0;
2049 	struct list_head *nce_head;
2050 
2051 	nce_head = radix_tree_lookup(&sctx->name_cache,
2052 			(unsigned long)nce->ino);
2053 	if (!nce_head) {
2054 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2055 		if (!nce_head) {
2056 			kfree(nce);
2057 			return -ENOMEM;
2058 		}
2059 		INIT_LIST_HEAD(nce_head);
2060 
2061 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2062 		if (ret < 0) {
2063 			kfree(nce_head);
2064 			kfree(nce);
2065 			return ret;
2066 		}
2067 	}
2068 	list_add_tail(&nce->radix_list, nce_head);
2069 	list_add_tail(&nce->list, &sctx->name_cache_list);
2070 	sctx->name_cache_size++;
2071 
2072 	return ret;
2073 }
2074 
2075 static void name_cache_delete(struct send_ctx *sctx,
2076 			      struct name_cache_entry *nce)
2077 {
2078 	struct list_head *nce_head;
2079 
2080 	nce_head = radix_tree_lookup(&sctx->name_cache,
2081 			(unsigned long)nce->ino);
2082 	if (!nce_head) {
2083 		btrfs_err(sctx->send_root->fs_info,
2084 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2085 			nce->ino, sctx->name_cache_size);
2086 	}
2087 
2088 	list_del(&nce->radix_list);
2089 	list_del(&nce->list);
2090 	sctx->name_cache_size--;
2091 
2092 	/*
2093 	 * We may not get to the final release of nce_head if the lookup fails
2094 	 */
2095 	if (nce_head && list_empty(nce_head)) {
2096 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2097 		kfree(nce_head);
2098 	}
2099 }
2100 
2101 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2102 						    u64 ino, u64 gen)
2103 {
2104 	struct list_head *nce_head;
2105 	struct name_cache_entry *cur;
2106 
2107 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2108 	if (!nce_head)
2109 		return NULL;
2110 
2111 	list_for_each_entry(cur, nce_head, radix_list) {
2112 		if (cur->ino == ino && cur->gen == gen)
2113 			return cur;
2114 	}
2115 	return NULL;
2116 }
2117 
2118 /*
2119  * Remove some entries from the beginning of name_cache_list.
2120  */
2121 static void name_cache_clean_unused(struct send_ctx *sctx)
2122 {
2123 	struct name_cache_entry *nce;
2124 
2125 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2126 		return;
2127 
2128 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2129 		nce = list_entry(sctx->name_cache_list.next,
2130 				struct name_cache_entry, list);
2131 		name_cache_delete(sctx, nce);
2132 		kfree(nce);
2133 	}
2134 }
2135 
2136 static void name_cache_free(struct send_ctx *sctx)
2137 {
2138 	struct name_cache_entry *nce;
2139 
2140 	while (!list_empty(&sctx->name_cache_list)) {
2141 		nce = list_entry(sctx->name_cache_list.next,
2142 				struct name_cache_entry, list);
2143 		name_cache_delete(sctx, nce);
2144 		kfree(nce);
2145 	}
2146 }
2147 
2148 /*
2149  * Used by get_cur_path for each ref up to the root.
2150  * Returns 0 if it succeeded.
2151  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2152  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2153  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2154  * Returns <0 in case of error.
2155  */
2156 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2157 				     u64 ino, u64 gen,
2158 				     u64 *parent_ino,
2159 				     u64 *parent_gen,
2160 				     struct fs_path *dest)
2161 {
2162 	int ret;
2163 	int nce_ret;
2164 	struct name_cache_entry *nce = NULL;
2165 
2166 	/*
2167 	 * First check if we already did a call to this function with the same
2168 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2169 	 * return the cached result.
2170 	 */
2171 	nce = name_cache_search(sctx, ino, gen);
2172 	if (nce) {
2173 		if (ino < sctx->send_progress && nce->need_later_update) {
2174 			name_cache_delete(sctx, nce);
2175 			kfree(nce);
2176 			nce = NULL;
2177 		} else {
2178 			/*
2179 			 * Removes the entry from the list and adds it back to
2180 			 * the end.  This marks the entry as recently used so
2181 			 * that name_cache_clean_unused does not remove it.
2182 			 */
2183 			list_move_tail(&nce->list, &sctx->name_cache_list);
2184 
2185 			*parent_ino = nce->parent_ino;
2186 			*parent_gen = nce->parent_gen;
2187 			ret = fs_path_add(dest, nce->name, nce->name_len);
2188 			if (ret < 0)
2189 				goto out;
2190 			ret = nce->ret;
2191 			goto out;
2192 		}
2193 	}
2194 
2195 	/*
2196 	 * If the inode is not existent yet, add the orphan name and return 1.
2197 	 * This should only happen for the parent dir that we determine in
2198 	 * record_new_ref_if_needed().
2199 	 */
2200 	ret = is_inode_existent(sctx, ino, gen);
2201 	if (ret < 0)
2202 		goto out;
2203 
2204 	if (!ret) {
2205 		ret = gen_unique_name(sctx, ino, gen, dest);
2206 		if (ret < 0)
2207 			goto out;
2208 		ret = 1;
2209 		goto out_cache;
2210 	}
2211 
2212 	/*
2213 	 * Depending on whether the inode was already processed or not, use
2214 	 * send_root or parent_root for ref lookup.
2215 	 */
2216 	if (ino < sctx->send_progress)
2217 		ret = get_first_ref(sctx->send_root, ino,
2218 				    parent_ino, parent_gen, dest);
2219 	else
2220 		ret = get_first_ref(sctx->parent_root, ino,
2221 				    parent_ino, parent_gen, dest);
2222 	if (ret < 0)
2223 		goto out;
2224 
2225 	/*
2226 	 * Check if the ref was overwritten by an inode's ref that was processed
2227 	 * earlier. If yes, treat as orphan and return 1.
2228 	 */
2229 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2230 			dest->start, dest->end - dest->start);
2231 	if (ret < 0)
2232 		goto out;
2233 	if (ret) {
2234 		fs_path_reset(dest);
2235 		ret = gen_unique_name(sctx, ino, gen, dest);
2236 		if (ret < 0)
2237 			goto out;
2238 		ret = 1;
2239 	}
2240 
2241 out_cache:
2242 	/*
2243 	 * Store the result of the lookup in the name cache.
2244 	 */
2245 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2246 	if (!nce) {
2247 		ret = -ENOMEM;
2248 		goto out;
2249 	}
2250 
2251 	nce->ino = ino;
2252 	nce->gen = gen;
2253 	nce->parent_ino = *parent_ino;
2254 	nce->parent_gen = *parent_gen;
2255 	nce->name_len = fs_path_len(dest);
2256 	nce->ret = ret;
2257 	strcpy(nce->name, dest->start);
2258 
2259 	if (ino < sctx->send_progress)
2260 		nce->need_later_update = 0;
2261 	else
2262 		nce->need_later_update = 1;
2263 
2264 	nce_ret = name_cache_insert(sctx, nce);
2265 	if (nce_ret < 0)
2266 		ret = nce_ret;
2267 	name_cache_clean_unused(sctx);
2268 
2269 out:
2270 	return ret;
2271 }
2272 
2273 /*
2274  * Magic happens here. This function returns the first ref to an inode as it
2275  * would look like while receiving the stream at this point in time.
2276  * We walk the path up to the root. For every inode in between, we check if it
2277  * was already processed/sent. If yes, we continue with the parent as found
2278  * in send_root. If not, we continue with the parent as found in parent_root.
2279  * If we encounter an inode that was deleted at this point in time, we use the
2280  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2281  * that were not created yet and overwritten inodes/refs.
2282  *
2283  * When do we have orphan inodes:
2284  * 1. When an inode is freshly created and thus no valid refs are available yet
2285  * 2. When a directory lost all it's refs (deleted) but still has dir items
2286  *    inside which were not processed yet (pending for move/delete). If anyone
2287  *    tried to get the path to the dir items, it would get a path inside that
2288  *    orphan directory.
2289  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2290  *    of an unprocessed inode. If in that case the first ref would be
2291  *    overwritten, the overwritten inode gets "orphanized". Later when we
2292  *    process this overwritten inode, it is restored at a new place by moving
2293  *    the orphan inode.
2294  *
2295  * sctx->send_progress tells this function at which point in time receiving
2296  * would be.
2297  */
2298 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2299 			struct fs_path *dest)
2300 {
2301 	int ret = 0;
2302 	struct fs_path *name = NULL;
2303 	u64 parent_inode = 0;
2304 	u64 parent_gen = 0;
2305 	int stop = 0;
2306 
2307 	name = fs_path_alloc();
2308 	if (!name) {
2309 		ret = -ENOMEM;
2310 		goto out;
2311 	}
2312 
2313 	dest->reversed = 1;
2314 	fs_path_reset(dest);
2315 
2316 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2317 		struct waiting_dir_move *wdm;
2318 
2319 		fs_path_reset(name);
2320 
2321 		if (is_waiting_for_rm(sctx, ino, gen)) {
2322 			ret = gen_unique_name(sctx, ino, gen, name);
2323 			if (ret < 0)
2324 				goto out;
2325 			ret = fs_path_add_path(dest, name);
2326 			break;
2327 		}
2328 
2329 		wdm = get_waiting_dir_move(sctx, ino);
2330 		if (wdm && wdm->orphanized) {
2331 			ret = gen_unique_name(sctx, ino, gen, name);
2332 			stop = 1;
2333 		} else if (wdm) {
2334 			ret = get_first_ref(sctx->parent_root, ino,
2335 					    &parent_inode, &parent_gen, name);
2336 		} else {
2337 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2338 							&parent_inode,
2339 							&parent_gen, name);
2340 			if (ret)
2341 				stop = 1;
2342 		}
2343 
2344 		if (ret < 0)
2345 			goto out;
2346 
2347 		ret = fs_path_add_path(dest, name);
2348 		if (ret < 0)
2349 			goto out;
2350 
2351 		ino = parent_inode;
2352 		gen = parent_gen;
2353 	}
2354 
2355 out:
2356 	fs_path_free(name);
2357 	if (!ret)
2358 		fs_path_unreverse(dest);
2359 	return ret;
2360 }
2361 
2362 /*
2363  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2364  */
2365 static int send_subvol_begin(struct send_ctx *sctx)
2366 {
2367 	int ret;
2368 	struct btrfs_root *send_root = sctx->send_root;
2369 	struct btrfs_root *parent_root = sctx->parent_root;
2370 	struct btrfs_path *path;
2371 	struct btrfs_key key;
2372 	struct btrfs_root_ref *ref;
2373 	struct extent_buffer *leaf;
2374 	char *name = NULL;
2375 	int namelen;
2376 
2377 	path = btrfs_alloc_path();
2378 	if (!path)
2379 		return -ENOMEM;
2380 
2381 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2382 	if (!name) {
2383 		btrfs_free_path(path);
2384 		return -ENOMEM;
2385 	}
2386 
2387 	key.objectid = send_root->root_key.objectid;
2388 	key.type = BTRFS_ROOT_BACKREF_KEY;
2389 	key.offset = 0;
2390 
2391 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2392 				&key, path, 1, 0);
2393 	if (ret < 0)
2394 		goto out;
2395 	if (ret) {
2396 		ret = -ENOENT;
2397 		goto out;
2398 	}
2399 
2400 	leaf = path->nodes[0];
2401 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2402 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2403 	    key.objectid != send_root->root_key.objectid) {
2404 		ret = -ENOENT;
2405 		goto out;
2406 	}
2407 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2408 	namelen = btrfs_root_ref_name_len(leaf, ref);
2409 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2410 	btrfs_release_path(path);
2411 
2412 	if (parent_root) {
2413 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2414 		if (ret < 0)
2415 			goto out;
2416 	} else {
2417 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2418 		if (ret < 0)
2419 			goto out;
2420 	}
2421 
2422 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2423 
2424 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2425 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2426 			    sctx->send_root->root_item.received_uuid);
2427 	else
2428 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2429 			    sctx->send_root->root_item.uuid);
2430 
2431 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2432 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2433 	if (parent_root) {
2434 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2435 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2436 				     parent_root->root_item.received_uuid);
2437 		else
2438 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2439 				     parent_root->root_item.uuid);
2440 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2441 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2442 	}
2443 
2444 	ret = send_cmd(sctx);
2445 
2446 tlv_put_failure:
2447 out:
2448 	btrfs_free_path(path);
2449 	kfree(name);
2450 	return ret;
2451 }
2452 
2453 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2454 {
2455 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2456 	int ret = 0;
2457 	struct fs_path *p;
2458 
2459 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2460 
2461 	p = fs_path_alloc();
2462 	if (!p)
2463 		return -ENOMEM;
2464 
2465 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2466 	if (ret < 0)
2467 		goto out;
2468 
2469 	ret = get_cur_path(sctx, ino, gen, p);
2470 	if (ret < 0)
2471 		goto out;
2472 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2473 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2474 
2475 	ret = send_cmd(sctx);
2476 
2477 tlv_put_failure:
2478 out:
2479 	fs_path_free(p);
2480 	return ret;
2481 }
2482 
2483 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2484 {
2485 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2486 	int ret = 0;
2487 	struct fs_path *p;
2488 
2489 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2490 
2491 	p = fs_path_alloc();
2492 	if (!p)
2493 		return -ENOMEM;
2494 
2495 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2496 	if (ret < 0)
2497 		goto out;
2498 
2499 	ret = get_cur_path(sctx, ino, gen, p);
2500 	if (ret < 0)
2501 		goto out;
2502 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2503 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2504 
2505 	ret = send_cmd(sctx);
2506 
2507 tlv_put_failure:
2508 out:
2509 	fs_path_free(p);
2510 	return ret;
2511 }
2512 
2513 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2514 {
2515 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2516 	int ret = 0;
2517 	struct fs_path *p;
2518 
2519 	if (sctx->proto < 2)
2520 		return 0;
2521 
2522 	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2523 
2524 	p = fs_path_alloc();
2525 	if (!p)
2526 		return -ENOMEM;
2527 
2528 	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2529 	if (ret < 0)
2530 		goto out;
2531 
2532 	ret = get_cur_path(sctx, ino, gen, p);
2533 	if (ret < 0)
2534 		goto out;
2535 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2536 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2537 
2538 	ret = send_cmd(sctx);
2539 
2540 tlv_put_failure:
2541 out:
2542 	fs_path_free(p);
2543 	return ret;
2544 }
2545 
2546 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2547 {
2548 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2549 	int ret = 0;
2550 	struct fs_path *p;
2551 
2552 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2553 		    ino, uid, gid);
2554 
2555 	p = fs_path_alloc();
2556 	if (!p)
2557 		return -ENOMEM;
2558 
2559 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2560 	if (ret < 0)
2561 		goto out;
2562 
2563 	ret = get_cur_path(sctx, ino, gen, p);
2564 	if (ret < 0)
2565 		goto out;
2566 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2567 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2568 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2569 
2570 	ret = send_cmd(sctx);
2571 
2572 tlv_put_failure:
2573 out:
2574 	fs_path_free(p);
2575 	return ret;
2576 }
2577 
2578 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2579 {
2580 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2581 	int ret = 0;
2582 	struct fs_path *p = NULL;
2583 	struct btrfs_inode_item *ii;
2584 	struct btrfs_path *path = NULL;
2585 	struct extent_buffer *eb;
2586 	struct btrfs_key key;
2587 	int slot;
2588 
2589 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2590 
2591 	p = fs_path_alloc();
2592 	if (!p)
2593 		return -ENOMEM;
2594 
2595 	path = alloc_path_for_send();
2596 	if (!path) {
2597 		ret = -ENOMEM;
2598 		goto out;
2599 	}
2600 
2601 	key.objectid = ino;
2602 	key.type = BTRFS_INODE_ITEM_KEY;
2603 	key.offset = 0;
2604 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2605 	if (ret > 0)
2606 		ret = -ENOENT;
2607 	if (ret < 0)
2608 		goto out;
2609 
2610 	eb = path->nodes[0];
2611 	slot = path->slots[0];
2612 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2613 
2614 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2615 	if (ret < 0)
2616 		goto out;
2617 
2618 	ret = get_cur_path(sctx, ino, gen, p);
2619 	if (ret < 0)
2620 		goto out;
2621 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2622 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2623 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2624 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2625 	if (sctx->proto >= 2)
2626 		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2627 
2628 	ret = send_cmd(sctx);
2629 
2630 tlv_put_failure:
2631 out:
2632 	fs_path_free(p);
2633 	btrfs_free_path(path);
2634 	return ret;
2635 }
2636 
2637 /*
2638  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2639  * a valid path yet because we did not process the refs yet. So, the inode
2640  * is created as orphan.
2641  */
2642 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2643 {
2644 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2645 	int ret = 0;
2646 	struct fs_path *p;
2647 	int cmd;
2648 	u64 gen;
2649 	u64 mode;
2650 	u64 rdev;
2651 
2652 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2653 
2654 	p = fs_path_alloc();
2655 	if (!p)
2656 		return -ENOMEM;
2657 
2658 	if (ino != sctx->cur_ino) {
2659 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2660 				     NULL, NULL, &rdev, NULL);
2661 		if (ret < 0)
2662 			goto out;
2663 	} else {
2664 		gen = sctx->cur_inode_gen;
2665 		mode = sctx->cur_inode_mode;
2666 		rdev = sctx->cur_inode_rdev;
2667 	}
2668 
2669 	if (S_ISREG(mode)) {
2670 		cmd = BTRFS_SEND_C_MKFILE;
2671 	} else if (S_ISDIR(mode)) {
2672 		cmd = BTRFS_SEND_C_MKDIR;
2673 	} else if (S_ISLNK(mode)) {
2674 		cmd = BTRFS_SEND_C_SYMLINK;
2675 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2676 		cmd = BTRFS_SEND_C_MKNOD;
2677 	} else if (S_ISFIFO(mode)) {
2678 		cmd = BTRFS_SEND_C_MKFIFO;
2679 	} else if (S_ISSOCK(mode)) {
2680 		cmd = BTRFS_SEND_C_MKSOCK;
2681 	} else {
2682 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2683 				(int)(mode & S_IFMT));
2684 		ret = -EOPNOTSUPP;
2685 		goto out;
2686 	}
2687 
2688 	ret = begin_cmd(sctx, cmd);
2689 	if (ret < 0)
2690 		goto out;
2691 
2692 	ret = gen_unique_name(sctx, ino, gen, p);
2693 	if (ret < 0)
2694 		goto out;
2695 
2696 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2697 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2698 
2699 	if (S_ISLNK(mode)) {
2700 		fs_path_reset(p);
2701 		ret = read_symlink(sctx->send_root, ino, p);
2702 		if (ret < 0)
2703 			goto out;
2704 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2705 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2706 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2707 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2708 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2709 	}
2710 
2711 	ret = send_cmd(sctx);
2712 	if (ret < 0)
2713 		goto out;
2714 
2715 
2716 tlv_put_failure:
2717 out:
2718 	fs_path_free(p);
2719 	return ret;
2720 }
2721 
2722 /*
2723  * We need some special handling for inodes that get processed before the parent
2724  * directory got created. See process_recorded_refs for details.
2725  * This function does the check if we already created the dir out of order.
2726  */
2727 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2728 {
2729 	int ret = 0;
2730 	int iter_ret = 0;
2731 	struct btrfs_path *path = NULL;
2732 	struct btrfs_key key;
2733 	struct btrfs_key found_key;
2734 	struct btrfs_key di_key;
2735 	struct btrfs_dir_item *di;
2736 
2737 	path = alloc_path_for_send();
2738 	if (!path)
2739 		return -ENOMEM;
2740 
2741 	key.objectid = dir;
2742 	key.type = BTRFS_DIR_INDEX_KEY;
2743 	key.offset = 0;
2744 
2745 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2746 		struct extent_buffer *eb = path->nodes[0];
2747 
2748 		if (found_key.objectid != key.objectid ||
2749 		    found_key.type != key.type) {
2750 			ret = 0;
2751 			break;
2752 		}
2753 
2754 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2755 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2756 
2757 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2758 		    di_key.objectid < sctx->send_progress) {
2759 			ret = 1;
2760 			break;
2761 		}
2762 	}
2763 	/* Catch error found during iteration */
2764 	if (iter_ret < 0)
2765 		ret = iter_ret;
2766 
2767 	btrfs_free_path(path);
2768 	return ret;
2769 }
2770 
2771 /*
2772  * Only creates the inode if it is:
2773  * 1. Not a directory
2774  * 2. Or a directory which was not created already due to out of order
2775  *    directories. See did_create_dir and process_recorded_refs for details.
2776  */
2777 static int send_create_inode_if_needed(struct send_ctx *sctx)
2778 {
2779 	int ret;
2780 
2781 	if (S_ISDIR(sctx->cur_inode_mode)) {
2782 		ret = did_create_dir(sctx, sctx->cur_ino);
2783 		if (ret < 0)
2784 			return ret;
2785 		else if (ret > 0)
2786 			return 0;
2787 	}
2788 
2789 	return send_create_inode(sctx, sctx->cur_ino);
2790 }
2791 
2792 struct recorded_ref {
2793 	struct list_head list;
2794 	char *name;
2795 	struct fs_path *full_path;
2796 	u64 dir;
2797 	u64 dir_gen;
2798 	int name_len;
2799 	struct rb_node node;
2800 	struct rb_root *root;
2801 };
2802 
2803 static struct recorded_ref *recorded_ref_alloc(void)
2804 {
2805 	struct recorded_ref *ref;
2806 
2807 	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
2808 	if (!ref)
2809 		return NULL;
2810 	RB_CLEAR_NODE(&ref->node);
2811 	INIT_LIST_HEAD(&ref->list);
2812 	return ref;
2813 }
2814 
2815 static void recorded_ref_free(struct recorded_ref *ref)
2816 {
2817 	if (!ref)
2818 		return;
2819 	if (!RB_EMPTY_NODE(&ref->node))
2820 		rb_erase(&ref->node, ref->root);
2821 	list_del(&ref->list);
2822 	fs_path_free(ref->full_path);
2823 	kfree(ref);
2824 }
2825 
2826 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2827 {
2828 	ref->full_path = path;
2829 	ref->name = (char *)kbasename(ref->full_path->start);
2830 	ref->name_len = ref->full_path->end - ref->name;
2831 }
2832 
2833 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2834 {
2835 	struct recorded_ref *new;
2836 
2837 	new = recorded_ref_alloc();
2838 	if (!new)
2839 		return -ENOMEM;
2840 
2841 	new->dir = ref->dir;
2842 	new->dir_gen = ref->dir_gen;
2843 	list_add_tail(&new->list, list);
2844 	return 0;
2845 }
2846 
2847 static void __free_recorded_refs(struct list_head *head)
2848 {
2849 	struct recorded_ref *cur;
2850 
2851 	while (!list_empty(head)) {
2852 		cur = list_entry(head->next, struct recorded_ref, list);
2853 		recorded_ref_free(cur);
2854 	}
2855 }
2856 
2857 static void free_recorded_refs(struct send_ctx *sctx)
2858 {
2859 	__free_recorded_refs(&sctx->new_refs);
2860 	__free_recorded_refs(&sctx->deleted_refs);
2861 }
2862 
2863 /*
2864  * Renames/moves a file/dir to its orphan name. Used when the first
2865  * ref of an unprocessed inode gets overwritten and for all non empty
2866  * directories.
2867  */
2868 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2869 			  struct fs_path *path)
2870 {
2871 	int ret;
2872 	struct fs_path *orphan;
2873 
2874 	orphan = fs_path_alloc();
2875 	if (!orphan)
2876 		return -ENOMEM;
2877 
2878 	ret = gen_unique_name(sctx, ino, gen, orphan);
2879 	if (ret < 0)
2880 		goto out;
2881 
2882 	ret = send_rename(sctx, path, orphan);
2883 
2884 out:
2885 	fs_path_free(orphan);
2886 	return ret;
2887 }
2888 
2889 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2890 						   u64 dir_ino, u64 dir_gen)
2891 {
2892 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2893 	struct rb_node *parent = NULL;
2894 	struct orphan_dir_info *entry, *odi;
2895 
2896 	while (*p) {
2897 		parent = *p;
2898 		entry = rb_entry(parent, struct orphan_dir_info, node);
2899 		if (dir_ino < entry->ino)
2900 			p = &(*p)->rb_left;
2901 		else if (dir_ino > entry->ino)
2902 			p = &(*p)->rb_right;
2903 		else if (dir_gen < entry->gen)
2904 			p = &(*p)->rb_left;
2905 		else if (dir_gen > entry->gen)
2906 			p = &(*p)->rb_right;
2907 		else
2908 			return entry;
2909 	}
2910 
2911 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2912 	if (!odi)
2913 		return ERR_PTR(-ENOMEM);
2914 	odi->ino = dir_ino;
2915 	odi->gen = dir_gen;
2916 	odi->last_dir_index_offset = 0;
2917 
2918 	rb_link_node(&odi->node, parent, p);
2919 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2920 	return odi;
2921 }
2922 
2923 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2924 						   u64 dir_ino, u64 gen)
2925 {
2926 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2927 	struct orphan_dir_info *entry;
2928 
2929 	while (n) {
2930 		entry = rb_entry(n, struct orphan_dir_info, node);
2931 		if (dir_ino < entry->ino)
2932 			n = n->rb_left;
2933 		else if (dir_ino > entry->ino)
2934 			n = n->rb_right;
2935 		else if (gen < entry->gen)
2936 			n = n->rb_left;
2937 		else if (gen > entry->gen)
2938 			n = n->rb_right;
2939 		else
2940 			return entry;
2941 	}
2942 	return NULL;
2943 }
2944 
2945 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2946 {
2947 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2948 
2949 	return odi != NULL;
2950 }
2951 
2952 static void free_orphan_dir_info(struct send_ctx *sctx,
2953 				 struct orphan_dir_info *odi)
2954 {
2955 	if (!odi)
2956 		return;
2957 	rb_erase(&odi->node, &sctx->orphan_dirs);
2958 	kfree(odi);
2959 }
2960 
2961 /*
2962  * Returns 1 if a directory can be removed at this point in time.
2963  * We check this by iterating all dir items and checking if the inode behind
2964  * the dir item was already processed.
2965  */
2966 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2967 		     u64 send_progress)
2968 {
2969 	int ret = 0;
2970 	int iter_ret = 0;
2971 	struct btrfs_root *root = sctx->parent_root;
2972 	struct btrfs_path *path;
2973 	struct btrfs_key key;
2974 	struct btrfs_key found_key;
2975 	struct btrfs_key loc;
2976 	struct btrfs_dir_item *di;
2977 	struct orphan_dir_info *odi = NULL;
2978 
2979 	/*
2980 	 * Don't try to rmdir the top/root subvolume dir.
2981 	 */
2982 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2983 		return 0;
2984 
2985 	path = alloc_path_for_send();
2986 	if (!path)
2987 		return -ENOMEM;
2988 
2989 	key.objectid = dir;
2990 	key.type = BTRFS_DIR_INDEX_KEY;
2991 	key.offset = 0;
2992 
2993 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
2994 	if (odi)
2995 		key.offset = odi->last_dir_index_offset;
2996 
2997 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
2998 		struct waiting_dir_move *dm;
2999 
3000 		if (found_key.objectid != key.objectid ||
3001 		    found_key.type != key.type)
3002 			break;
3003 
3004 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3005 				struct btrfs_dir_item);
3006 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3007 
3008 		dm = get_waiting_dir_move(sctx, loc.objectid);
3009 		if (dm) {
3010 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
3011 			if (IS_ERR(odi)) {
3012 				ret = PTR_ERR(odi);
3013 				goto out;
3014 			}
3015 			odi->gen = dir_gen;
3016 			odi->last_dir_index_offset = found_key.offset;
3017 			dm->rmdir_ino = dir;
3018 			dm->rmdir_gen = dir_gen;
3019 			ret = 0;
3020 			goto out;
3021 		}
3022 
3023 		if (loc.objectid > send_progress) {
3024 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
3025 			if (IS_ERR(odi)) {
3026 				ret = PTR_ERR(odi);
3027 				goto out;
3028 			}
3029 			odi->gen = dir_gen;
3030 			odi->last_dir_index_offset = found_key.offset;
3031 			ret = 0;
3032 			goto out;
3033 		}
3034 	}
3035 	if (iter_ret < 0) {
3036 		ret = iter_ret;
3037 		goto out;
3038 	}
3039 	free_orphan_dir_info(sctx, odi);
3040 
3041 	ret = 1;
3042 
3043 out:
3044 	btrfs_free_path(path);
3045 	return ret;
3046 }
3047 
3048 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3049 {
3050 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3051 
3052 	return entry != NULL;
3053 }
3054 
3055 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3056 {
3057 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3058 	struct rb_node *parent = NULL;
3059 	struct waiting_dir_move *entry, *dm;
3060 
3061 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3062 	if (!dm)
3063 		return -ENOMEM;
3064 	dm->ino = ino;
3065 	dm->rmdir_ino = 0;
3066 	dm->rmdir_gen = 0;
3067 	dm->orphanized = orphanized;
3068 
3069 	while (*p) {
3070 		parent = *p;
3071 		entry = rb_entry(parent, struct waiting_dir_move, node);
3072 		if (ino < entry->ino) {
3073 			p = &(*p)->rb_left;
3074 		} else if (ino > entry->ino) {
3075 			p = &(*p)->rb_right;
3076 		} else {
3077 			kfree(dm);
3078 			return -EEXIST;
3079 		}
3080 	}
3081 
3082 	rb_link_node(&dm->node, parent, p);
3083 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3084 	return 0;
3085 }
3086 
3087 static struct waiting_dir_move *
3088 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3089 {
3090 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3091 	struct waiting_dir_move *entry;
3092 
3093 	while (n) {
3094 		entry = rb_entry(n, struct waiting_dir_move, node);
3095 		if (ino < entry->ino)
3096 			n = n->rb_left;
3097 		else if (ino > entry->ino)
3098 			n = n->rb_right;
3099 		else
3100 			return entry;
3101 	}
3102 	return NULL;
3103 }
3104 
3105 static void free_waiting_dir_move(struct send_ctx *sctx,
3106 				  struct waiting_dir_move *dm)
3107 {
3108 	if (!dm)
3109 		return;
3110 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3111 	kfree(dm);
3112 }
3113 
3114 static int add_pending_dir_move(struct send_ctx *sctx,
3115 				u64 ino,
3116 				u64 ino_gen,
3117 				u64 parent_ino,
3118 				struct list_head *new_refs,
3119 				struct list_head *deleted_refs,
3120 				const bool is_orphan)
3121 {
3122 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3123 	struct rb_node *parent = NULL;
3124 	struct pending_dir_move *entry = NULL, *pm;
3125 	struct recorded_ref *cur;
3126 	int exists = 0;
3127 	int ret;
3128 
3129 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3130 	if (!pm)
3131 		return -ENOMEM;
3132 	pm->parent_ino = parent_ino;
3133 	pm->ino = ino;
3134 	pm->gen = ino_gen;
3135 	INIT_LIST_HEAD(&pm->list);
3136 	INIT_LIST_HEAD(&pm->update_refs);
3137 	RB_CLEAR_NODE(&pm->node);
3138 
3139 	while (*p) {
3140 		parent = *p;
3141 		entry = rb_entry(parent, struct pending_dir_move, node);
3142 		if (parent_ino < entry->parent_ino) {
3143 			p = &(*p)->rb_left;
3144 		} else if (parent_ino > entry->parent_ino) {
3145 			p = &(*p)->rb_right;
3146 		} else {
3147 			exists = 1;
3148 			break;
3149 		}
3150 	}
3151 
3152 	list_for_each_entry(cur, deleted_refs, list) {
3153 		ret = dup_ref(cur, &pm->update_refs);
3154 		if (ret < 0)
3155 			goto out;
3156 	}
3157 	list_for_each_entry(cur, new_refs, list) {
3158 		ret = dup_ref(cur, &pm->update_refs);
3159 		if (ret < 0)
3160 			goto out;
3161 	}
3162 
3163 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3164 	if (ret)
3165 		goto out;
3166 
3167 	if (exists) {
3168 		list_add_tail(&pm->list, &entry->list);
3169 	} else {
3170 		rb_link_node(&pm->node, parent, p);
3171 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3172 	}
3173 	ret = 0;
3174 out:
3175 	if (ret) {
3176 		__free_recorded_refs(&pm->update_refs);
3177 		kfree(pm);
3178 	}
3179 	return ret;
3180 }
3181 
3182 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3183 						      u64 parent_ino)
3184 {
3185 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3186 	struct pending_dir_move *entry;
3187 
3188 	while (n) {
3189 		entry = rb_entry(n, struct pending_dir_move, node);
3190 		if (parent_ino < entry->parent_ino)
3191 			n = n->rb_left;
3192 		else if (parent_ino > entry->parent_ino)
3193 			n = n->rb_right;
3194 		else
3195 			return entry;
3196 	}
3197 	return NULL;
3198 }
3199 
3200 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3201 		     u64 ino, u64 gen, u64 *ancestor_ino)
3202 {
3203 	int ret = 0;
3204 	u64 parent_inode = 0;
3205 	u64 parent_gen = 0;
3206 	u64 start_ino = ino;
3207 
3208 	*ancestor_ino = 0;
3209 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3210 		fs_path_reset(name);
3211 
3212 		if (is_waiting_for_rm(sctx, ino, gen))
3213 			break;
3214 		if (is_waiting_for_move(sctx, ino)) {
3215 			if (*ancestor_ino == 0)
3216 				*ancestor_ino = ino;
3217 			ret = get_first_ref(sctx->parent_root, ino,
3218 					    &parent_inode, &parent_gen, name);
3219 		} else {
3220 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3221 							&parent_inode,
3222 							&parent_gen, name);
3223 			if (ret > 0) {
3224 				ret = 0;
3225 				break;
3226 			}
3227 		}
3228 		if (ret < 0)
3229 			break;
3230 		if (parent_inode == start_ino) {
3231 			ret = 1;
3232 			if (*ancestor_ino == 0)
3233 				*ancestor_ino = ino;
3234 			break;
3235 		}
3236 		ino = parent_inode;
3237 		gen = parent_gen;
3238 	}
3239 	return ret;
3240 }
3241 
3242 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3243 {
3244 	struct fs_path *from_path = NULL;
3245 	struct fs_path *to_path = NULL;
3246 	struct fs_path *name = NULL;
3247 	u64 orig_progress = sctx->send_progress;
3248 	struct recorded_ref *cur;
3249 	u64 parent_ino, parent_gen;
3250 	struct waiting_dir_move *dm = NULL;
3251 	u64 rmdir_ino = 0;
3252 	u64 rmdir_gen;
3253 	u64 ancestor;
3254 	bool is_orphan;
3255 	int ret;
3256 
3257 	name = fs_path_alloc();
3258 	from_path = fs_path_alloc();
3259 	if (!name || !from_path) {
3260 		ret = -ENOMEM;
3261 		goto out;
3262 	}
3263 
3264 	dm = get_waiting_dir_move(sctx, pm->ino);
3265 	ASSERT(dm);
3266 	rmdir_ino = dm->rmdir_ino;
3267 	rmdir_gen = dm->rmdir_gen;
3268 	is_orphan = dm->orphanized;
3269 	free_waiting_dir_move(sctx, dm);
3270 
3271 	if (is_orphan) {
3272 		ret = gen_unique_name(sctx, pm->ino,
3273 				      pm->gen, from_path);
3274 	} else {
3275 		ret = get_first_ref(sctx->parent_root, pm->ino,
3276 				    &parent_ino, &parent_gen, name);
3277 		if (ret < 0)
3278 			goto out;
3279 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3280 				   from_path);
3281 		if (ret < 0)
3282 			goto out;
3283 		ret = fs_path_add_path(from_path, name);
3284 	}
3285 	if (ret < 0)
3286 		goto out;
3287 
3288 	sctx->send_progress = sctx->cur_ino + 1;
3289 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3290 	if (ret < 0)
3291 		goto out;
3292 	if (ret) {
3293 		LIST_HEAD(deleted_refs);
3294 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3295 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3296 					   &pm->update_refs, &deleted_refs,
3297 					   is_orphan);
3298 		if (ret < 0)
3299 			goto out;
3300 		if (rmdir_ino) {
3301 			dm = get_waiting_dir_move(sctx, pm->ino);
3302 			ASSERT(dm);
3303 			dm->rmdir_ino = rmdir_ino;
3304 			dm->rmdir_gen = rmdir_gen;
3305 		}
3306 		goto out;
3307 	}
3308 	fs_path_reset(name);
3309 	to_path = name;
3310 	name = NULL;
3311 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3312 	if (ret < 0)
3313 		goto out;
3314 
3315 	ret = send_rename(sctx, from_path, to_path);
3316 	if (ret < 0)
3317 		goto out;
3318 
3319 	if (rmdir_ino) {
3320 		struct orphan_dir_info *odi;
3321 		u64 gen;
3322 
3323 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3324 		if (!odi) {
3325 			/* already deleted */
3326 			goto finish;
3327 		}
3328 		gen = odi->gen;
3329 
3330 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3331 		if (ret < 0)
3332 			goto out;
3333 		if (!ret)
3334 			goto finish;
3335 
3336 		name = fs_path_alloc();
3337 		if (!name) {
3338 			ret = -ENOMEM;
3339 			goto out;
3340 		}
3341 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3342 		if (ret < 0)
3343 			goto out;
3344 		ret = send_rmdir(sctx, name);
3345 		if (ret < 0)
3346 			goto out;
3347 	}
3348 
3349 finish:
3350 	ret = send_utimes(sctx, pm->ino, pm->gen);
3351 	if (ret < 0)
3352 		goto out;
3353 
3354 	/*
3355 	 * After rename/move, need to update the utimes of both new parent(s)
3356 	 * and old parent(s).
3357 	 */
3358 	list_for_each_entry(cur, &pm->update_refs, list) {
3359 		/*
3360 		 * The parent inode might have been deleted in the send snapshot
3361 		 */
3362 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3363 				     NULL, NULL, NULL, NULL, NULL, NULL);
3364 		if (ret == -ENOENT) {
3365 			ret = 0;
3366 			continue;
3367 		}
3368 		if (ret < 0)
3369 			goto out;
3370 
3371 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3372 		if (ret < 0)
3373 			goto out;
3374 	}
3375 
3376 out:
3377 	fs_path_free(name);
3378 	fs_path_free(from_path);
3379 	fs_path_free(to_path);
3380 	sctx->send_progress = orig_progress;
3381 
3382 	return ret;
3383 }
3384 
3385 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3386 {
3387 	if (!list_empty(&m->list))
3388 		list_del(&m->list);
3389 	if (!RB_EMPTY_NODE(&m->node))
3390 		rb_erase(&m->node, &sctx->pending_dir_moves);
3391 	__free_recorded_refs(&m->update_refs);
3392 	kfree(m);
3393 }
3394 
3395 static void tail_append_pending_moves(struct send_ctx *sctx,
3396 				      struct pending_dir_move *moves,
3397 				      struct list_head *stack)
3398 {
3399 	if (list_empty(&moves->list)) {
3400 		list_add_tail(&moves->list, stack);
3401 	} else {
3402 		LIST_HEAD(list);
3403 		list_splice_init(&moves->list, &list);
3404 		list_add_tail(&moves->list, stack);
3405 		list_splice_tail(&list, stack);
3406 	}
3407 	if (!RB_EMPTY_NODE(&moves->node)) {
3408 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3409 		RB_CLEAR_NODE(&moves->node);
3410 	}
3411 }
3412 
3413 static int apply_children_dir_moves(struct send_ctx *sctx)
3414 {
3415 	struct pending_dir_move *pm;
3416 	struct list_head stack;
3417 	u64 parent_ino = sctx->cur_ino;
3418 	int ret = 0;
3419 
3420 	pm = get_pending_dir_moves(sctx, parent_ino);
3421 	if (!pm)
3422 		return 0;
3423 
3424 	INIT_LIST_HEAD(&stack);
3425 	tail_append_pending_moves(sctx, pm, &stack);
3426 
3427 	while (!list_empty(&stack)) {
3428 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3429 		parent_ino = pm->ino;
3430 		ret = apply_dir_move(sctx, pm);
3431 		free_pending_move(sctx, pm);
3432 		if (ret)
3433 			goto out;
3434 		pm = get_pending_dir_moves(sctx, parent_ino);
3435 		if (pm)
3436 			tail_append_pending_moves(sctx, pm, &stack);
3437 	}
3438 	return 0;
3439 
3440 out:
3441 	while (!list_empty(&stack)) {
3442 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3443 		free_pending_move(sctx, pm);
3444 	}
3445 	return ret;
3446 }
3447 
3448 /*
3449  * We might need to delay a directory rename even when no ancestor directory
3450  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3451  * renamed. This happens when we rename a directory to the old name (the name
3452  * in the parent root) of some other unrelated directory that got its rename
3453  * delayed due to some ancestor with higher number that got renamed.
3454  *
3455  * Example:
3456  *
3457  * Parent snapshot:
3458  * .                                       (ino 256)
3459  * |---- a/                                (ino 257)
3460  * |     |---- file                        (ino 260)
3461  * |
3462  * |---- b/                                (ino 258)
3463  * |---- c/                                (ino 259)
3464  *
3465  * Send snapshot:
3466  * .                                       (ino 256)
3467  * |---- a/                                (ino 258)
3468  * |---- x/                                (ino 259)
3469  *       |---- y/                          (ino 257)
3470  *             |----- file                 (ino 260)
3471  *
3472  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3473  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3474  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3475  * must issue is:
3476  *
3477  * 1 - rename 259 from 'c' to 'x'
3478  * 2 - rename 257 from 'a' to 'x/y'
3479  * 3 - rename 258 from 'b' to 'a'
3480  *
3481  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3482  * be done right away and < 0 on error.
3483  */
3484 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3485 				  struct recorded_ref *parent_ref,
3486 				  const bool is_orphan)
3487 {
3488 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3489 	struct btrfs_path *path;
3490 	struct btrfs_key key;
3491 	struct btrfs_key di_key;
3492 	struct btrfs_dir_item *di;
3493 	u64 left_gen;
3494 	u64 right_gen;
3495 	int ret = 0;
3496 	struct waiting_dir_move *wdm;
3497 
3498 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3499 		return 0;
3500 
3501 	path = alloc_path_for_send();
3502 	if (!path)
3503 		return -ENOMEM;
3504 
3505 	key.objectid = parent_ref->dir;
3506 	key.type = BTRFS_DIR_ITEM_KEY;
3507 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3508 
3509 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3510 	if (ret < 0) {
3511 		goto out;
3512 	} else if (ret > 0) {
3513 		ret = 0;
3514 		goto out;
3515 	}
3516 
3517 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3518 				       parent_ref->name_len);
3519 	if (!di) {
3520 		ret = 0;
3521 		goto out;
3522 	}
3523 	/*
3524 	 * di_key.objectid has the number of the inode that has a dentry in the
3525 	 * parent directory with the same name that sctx->cur_ino is being
3526 	 * renamed to. We need to check if that inode is in the send root as
3527 	 * well and if it is currently marked as an inode with a pending rename,
3528 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3529 	 * that it happens after that other inode is renamed.
3530 	 */
3531 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3532 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3533 		ret = 0;
3534 		goto out;
3535 	}
3536 
3537 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3538 			     &left_gen, NULL, NULL, NULL, NULL, NULL);
3539 	if (ret < 0)
3540 		goto out;
3541 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3542 			     &right_gen, NULL, NULL, NULL, NULL, NULL);
3543 	if (ret < 0) {
3544 		if (ret == -ENOENT)
3545 			ret = 0;
3546 		goto out;
3547 	}
3548 
3549 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3550 	if (right_gen != left_gen) {
3551 		ret = 0;
3552 		goto out;
3553 	}
3554 
3555 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3556 	if (wdm && !wdm->orphanized) {
3557 		ret = add_pending_dir_move(sctx,
3558 					   sctx->cur_ino,
3559 					   sctx->cur_inode_gen,
3560 					   di_key.objectid,
3561 					   &sctx->new_refs,
3562 					   &sctx->deleted_refs,
3563 					   is_orphan);
3564 		if (!ret)
3565 			ret = 1;
3566 	}
3567 out:
3568 	btrfs_free_path(path);
3569 	return ret;
3570 }
3571 
3572 /*
3573  * Check if inode ino2, or any of its ancestors, is inode ino1.
3574  * Return 1 if true, 0 if false and < 0 on error.
3575  */
3576 static int check_ino_in_path(struct btrfs_root *root,
3577 			     const u64 ino1,
3578 			     const u64 ino1_gen,
3579 			     const u64 ino2,
3580 			     const u64 ino2_gen,
3581 			     struct fs_path *fs_path)
3582 {
3583 	u64 ino = ino2;
3584 
3585 	if (ino1 == ino2)
3586 		return ino1_gen == ino2_gen;
3587 
3588 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3589 		u64 parent;
3590 		u64 parent_gen;
3591 		int ret;
3592 
3593 		fs_path_reset(fs_path);
3594 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3595 		if (ret < 0)
3596 			return ret;
3597 		if (parent == ino1)
3598 			return parent_gen == ino1_gen;
3599 		ino = parent;
3600 	}
3601 	return 0;
3602 }
3603 
3604 /*
3605  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3606  * possible path (in case ino2 is not a directory and has multiple hard links).
3607  * Return 1 if true, 0 if false and < 0 on error.
3608  */
3609 static int is_ancestor(struct btrfs_root *root,
3610 		       const u64 ino1,
3611 		       const u64 ino1_gen,
3612 		       const u64 ino2,
3613 		       struct fs_path *fs_path)
3614 {
3615 	bool free_fs_path = false;
3616 	int ret = 0;
3617 	int iter_ret = 0;
3618 	struct btrfs_path *path = NULL;
3619 	struct btrfs_key key;
3620 
3621 	if (!fs_path) {
3622 		fs_path = fs_path_alloc();
3623 		if (!fs_path)
3624 			return -ENOMEM;
3625 		free_fs_path = true;
3626 	}
3627 
3628 	path = alloc_path_for_send();
3629 	if (!path) {
3630 		ret = -ENOMEM;
3631 		goto out;
3632 	}
3633 
3634 	key.objectid = ino2;
3635 	key.type = BTRFS_INODE_REF_KEY;
3636 	key.offset = 0;
3637 
3638 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3639 		struct extent_buffer *leaf = path->nodes[0];
3640 		int slot = path->slots[0];
3641 		u32 cur_offset = 0;
3642 		u32 item_size;
3643 
3644 		if (key.objectid != ino2)
3645 			break;
3646 		if (key.type != BTRFS_INODE_REF_KEY &&
3647 		    key.type != BTRFS_INODE_EXTREF_KEY)
3648 			break;
3649 
3650 		item_size = btrfs_item_size(leaf, slot);
3651 		while (cur_offset < item_size) {
3652 			u64 parent;
3653 			u64 parent_gen;
3654 
3655 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3656 				unsigned long ptr;
3657 				struct btrfs_inode_extref *extref;
3658 
3659 				ptr = btrfs_item_ptr_offset(leaf, slot);
3660 				extref = (struct btrfs_inode_extref *)
3661 					(ptr + cur_offset);
3662 				parent = btrfs_inode_extref_parent(leaf,
3663 								   extref);
3664 				cur_offset += sizeof(*extref);
3665 				cur_offset += btrfs_inode_extref_name_len(leaf,
3666 								  extref);
3667 			} else {
3668 				parent = key.offset;
3669 				cur_offset = item_size;
3670 			}
3671 
3672 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3673 					     NULL, NULL, NULL, NULL, NULL);
3674 			if (ret < 0)
3675 				goto out;
3676 			ret = check_ino_in_path(root, ino1, ino1_gen,
3677 						parent, parent_gen, fs_path);
3678 			if (ret)
3679 				goto out;
3680 		}
3681 	}
3682 	ret = 0;
3683 	if (iter_ret < 0)
3684 		ret = iter_ret;
3685 
3686 out:
3687 	btrfs_free_path(path);
3688 	if (free_fs_path)
3689 		fs_path_free(fs_path);
3690 	return ret;
3691 }
3692 
3693 static int wait_for_parent_move(struct send_ctx *sctx,
3694 				struct recorded_ref *parent_ref,
3695 				const bool is_orphan)
3696 {
3697 	int ret = 0;
3698 	u64 ino = parent_ref->dir;
3699 	u64 ino_gen = parent_ref->dir_gen;
3700 	u64 parent_ino_before, parent_ino_after;
3701 	struct fs_path *path_before = NULL;
3702 	struct fs_path *path_after = NULL;
3703 	int len1, len2;
3704 
3705 	path_after = fs_path_alloc();
3706 	path_before = fs_path_alloc();
3707 	if (!path_after || !path_before) {
3708 		ret = -ENOMEM;
3709 		goto out;
3710 	}
3711 
3712 	/*
3713 	 * Our current directory inode may not yet be renamed/moved because some
3714 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3715 	 * such ancestor exists and make sure our own rename/move happens after
3716 	 * that ancestor is processed to avoid path build infinite loops (done
3717 	 * at get_cur_path()).
3718 	 */
3719 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3720 		u64 parent_ino_after_gen;
3721 
3722 		if (is_waiting_for_move(sctx, ino)) {
3723 			/*
3724 			 * If the current inode is an ancestor of ino in the
3725 			 * parent root, we need to delay the rename of the
3726 			 * current inode, otherwise don't delayed the rename
3727 			 * because we can end up with a circular dependency
3728 			 * of renames, resulting in some directories never
3729 			 * getting the respective rename operations issued in
3730 			 * the send stream or getting into infinite path build
3731 			 * loops.
3732 			 */
3733 			ret = is_ancestor(sctx->parent_root,
3734 					  sctx->cur_ino, sctx->cur_inode_gen,
3735 					  ino, path_before);
3736 			if (ret)
3737 				break;
3738 		}
3739 
3740 		fs_path_reset(path_before);
3741 		fs_path_reset(path_after);
3742 
3743 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3744 				    &parent_ino_after_gen, path_after);
3745 		if (ret < 0)
3746 			goto out;
3747 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3748 				    NULL, path_before);
3749 		if (ret < 0 && ret != -ENOENT) {
3750 			goto out;
3751 		} else if (ret == -ENOENT) {
3752 			ret = 0;
3753 			break;
3754 		}
3755 
3756 		len1 = fs_path_len(path_before);
3757 		len2 = fs_path_len(path_after);
3758 		if (ino > sctx->cur_ino &&
3759 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3760 		     memcmp(path_before->start, path_after->start, len1))) {
3761 			u64 parent_ino_gen;
3762 
3763 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3764 					     &parent_ino_gen, NULL, NULL, NULL,
3765 					     NULL, NULL);
3766 			if (ret < 0)
3767 				goto out;
3768 			if (ino_gen == parent_ino_gen) {
3769 				ret = 1;
3770 				break;
3771 			}
3772 		}
3773 		ino = parent_ino_after;
3774 		ino_gen = parent_ino_after_gen;
3775 	}
3776 
3777 out:
3778 	fs_path_free(path_before);
3779 	fs_path_free(path_after);
3780 
3781 	if (ret == 1) {
3782 		ret = add_pending_dir_move(sctx,
3783 					   sctx->cur_ino,
3784 					   sctx->cur_inode_gen,
3785 					   ino,
3786 					   &sctx->new_refs,
3787 					   &sctx->deleted_refs,
3788 					   is_orphan);
3789 		if (!ret)
3790 			ret = 1;
3791 	}
3792 
3793 	return ret;
3794 }
3795 
3796 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3797 {
3798 	int ret;
3799 	struct fs_path *new_path;
3800 
3801 	/*
3802 	 * Our reference's name member points to its full_path member string, so
3803 	 * we use here a new path.
3804 	 */
3805 	new_path = fs_path_alloc();
3806 	if (!new_path)
3807 		return -ENOMEM;
3808 
3809 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3810 	if (ret < 0) {
3811 		fs_path_free(new_path);
3812 		return ret;
3813 	}
3814 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3815 	if (ret < 0) {
3816 		fs_path_free(new_path);
3817 		return ret;
3818 	}
3819 
3820 	fs_path_free(ref->full_path);
3821 	set_ref_path(ref, new_path);
3822 
3823 	return 0;
3824 }
3825 
3826 /*
3827  * When processing the new references for an inode we may orphanize an existing
3828  * directory inode because its old name conflicts with one of the new references
3829  * of the current inode. Later, when processing another new reference of our
3830  * inode, we might need to orphanize another inode, but the path we have in the
3831  * reference reflects the pre-orphanization name of the directory we previously
3832  * orphanized. For example:
3833  *
3834  * parent snapshot looks like:
3835  *
3836  * .                                     (ino 256)
3837  * |----- f1                             (ino 257)
3838  * |----- f2                             (ino 258)
3839  * |----- d1/                            (ino 259)
3840  *        |----- d2/                     (ino 260)
3841  *
3842  * send snapshot looks like:
3843  *
3844  * .                                     (ino 256)
3845  * |----- d1                             (ino 258)
3846  * |----- f2/                            (ino 259)
3847  *        |----- f2_link/                (ino 260)
3848  *        |       |----- f1              (ino 257)
3849  *        |
3850  *        |----- d2                      (ino 258)
3851  *
3852  * When processing inode 257 we compute the name for inode 259 as "d1", and we
3853  * cache it in the name cache. Later when we start processing inode 258, when
3854  * collecting all its new references we set a full path of "d1/d2" for its new
3855  * reference with name "d2". When we start processing the new references we
3856  * start by processing the new reference with name "d1", and this results in
3857  * orphanizing inode 259, since its old reference causes a conflict. Then we
3858  * move on the next new reference, with name "d2", and we find out we must
3859  * orphanize inode 260, as its old reference conflicts with ours - but for the
3860  * orphanization we use a source path corresponding to the path we stored in the
3861  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3862  * receiver fail since the path component "d1/" no longer exists, it was renamed
3863  * to "o259-6-0/" when processing the previous new reference. So in this case we
3864  * must recompute the path in the new reference and use it for the new
3865  * orphanization operation.
3866  */
3867 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3868 {
3869 	char *name;
3870 	int ret;
3871 
3872 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3873 	if (!name)
3874 		return -ENOMEM;
3875 
3876 	fs_path_reset(ref->full_path);
3877 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3878 	if (ret < 0)
3879 		goto out;
3880 
3881 	ret = fs_path_add(ref->full_path, name, ref->name_len);
3882 	if (ret < 0)
3883 		goto out;
3884 
3885 	/* Update the reference's base name pointer. */
3886 	set_ref_path(ref, ref->full_path);
3887 out:
3888 	kfree(name);
3889 	return ret;
3890 }
3891 
3892 /*
3893  * This does all the move/link/unlink/rmdir magic.
3894  */
3895 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3896 {
3897 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3898 	int ret = 0;
3899 	struct recorded_ref *cur;
3900 	struct recorded_ref *cur2;
3901 	struct list_head check_dirs;
3902 	struct fs_path *valid_path = NULL;
3903 	u64 ow_inode = 0;
3904 	u64 ow_gen;
3905 	u64 ow_mode;
3906 	int did_overwrite = 0;
3907 	int is_orphan = 0;
3908 	u64 last_dir_ino_rm = 0;
3909 	bool can_rename = true;
3910 	bool orphanized_dir = false;
3911 	bool orphanized_ancestor = false;
3912 
3913 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3914 
3915 	/*
3916 	 * This should never happen as the root dir always has the same ref
3917 	 * which is always '..'
3918 	 */
3919 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3920 	INIT_LIST_HEAD(&check_dirs);
3921 
3922 	valid_path = fs_path_alloc();
3923 	if (!valid_path) {
3924 		ret = -ENOMEM;
3925 		goto out;
3926 	}
3927 
3928 	/*
3929 	 * First, check if the first ref of the current inode was overwritten
3930 	 * before. If yes, we know that the current inode was already orphanized
3931 	 * and thus use the orphan name. If not, we can use get_cur_path to
3932 	 * get the path of the first ref as it would like while receiving at
3933 	 * this point in time.
3934 	 * New inodes are always orphan at the beginning, so force to use the
3935 	 * orphan name in this case.
3936 	 * The first ref is stored in valid_path and will be updated if it
3937 	 * gets moved around.
3938 	 */
3939 	if (!sctx->cur_inode_new) {
3940 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3941 				sctx->cur_inode_gen);
3942 		if (ret < 0)
3943 			goto out;
3944 		if (ret)
3945 			did_overwrite = 1;
3946 	}
3947 	if (sctx->cur_inode_new || did_overwrite) {
3948 		ret = gen_unique_name(sctx, sctx->cur_ino,
3949 				sctx->cur_inode_gen, valid_path);
3950 		if (ret < 0)
3951 			goto out;
3952 		is_orphan = 1;
3953 	} else {
3954 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3955 				valid_path);
3956 		if (ret < 0)
3957 			goto out;
3958 	}
3959 
3960 	/*
3961 	 * Before doing any rename and link operations, do a first pass on the
3962 	 * new references to orphanize any unprocessed inodes that may have a
3963 	 * reference that conflicts with one of the new references of the current
3964 	 * inode. This needs to happen first because a new reference may conflict
3965 	 * with the old reference of a parent directory, so we must make sure
3966 	 * that the path used for link and rename commands don't use an
3967 	 * orphanized name when an ancestor was not yet orphanized.
3968 	 *
3969 	 * Example:
3970 	 *
3971 	 * Parent snapshot:
3972 	 *
3973 	 * .                                                      (ino 256)
3974 	 * |----- testdir/                                        (ino 259)
3975 	 * |          |----- a                                    (ino 257)
3976 	 * |
3977 	 * |----- b                                               (ino 258)
3978 	 *
3979 	 * Send snapshot:
3980 	 *
3981 	 * .                                                      (ino 256)
3982 	 * |----- testdir_2/                                      (ino 259)
3983 	 * |          |----- a                                    (ino 260)
3984 	 * |
3985 	 * |----- testdir                                         (ino 257)
3986 	 * |----- b                                               (ino 257)
3987 	 * |----- b2                                              (ino 258)
3988 	 *
3989 	 * Processing the new reference for inode 257 with name "b" may happen
3990 	 * before processing the new reference with name "testdir". If so, we
3991 	 * must make sure that by the time we send a link command to create the
3992 	 * hard link "b", inode 259 was already orphanized, since the generated
3993 	 * path in "valid_path" already contains the orphanized name for 259.
3994 	 * We are processing inode 257, so only later when processing 259 we do
3995 	 * the rename operation to change its temporary (orphanized) name to
3996 	 * "testdir_2".
3997 	 */
3998 	list_for_each_entry(cur, &sctx->new_refs, list) {
3999 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4000 		if (ret < 0)
4001 			goto out;
4002 		if (ret == inode_state_will_create)
4003 			continue;
4004 
4005 		/*
4006 		 * Check if this new ref would overwrite the first ref of another
4007 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4008 		 * If we find an overwritten ref that is not the first ref,
4009 		 * simply unlink it.
4010 		 */
4011 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4012 				cur->name, cur->name_len,
4013 				&ow_inode, &ow_gen, &ow_mode);
4014 		if (ret < 0)
4015 			goto out;
4016 		if (ret) {
4017 			ret = is_first_ref(sctx->parent_root,
4018 					   ow_inode, cur->dir, cur->name,
4019 					   cur->name_len);
4020 			if (ret < 0)
4021 				goto out;
4022 			if (ret) {
4023 				struct name_cache_entry *nce;
4024 				struct waiting_dir_move *wdm;
4025 
4026 				if (orphanized_dir) {
4027 					ret = refresh_ref_path(sctx, cur);
4028 					if (ret < 0)
4029 						goto out;
4030 				}
4031 
4032 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4033 						cur->full_path);
4034 				if (ret < 0)
4035 					goto out;
4036 				if (S_ISDIR(ow_mode))
4037 					orphanized_dir = true;
4038 
4039 				/*
4040 				 * If ow_inode has its rename operation delayed
4041 				 * make sure that its orphanized name is used in
4042 				 * the source path when performing its rename
4043 				 * operation.
4044 				 */
4045 				if (is_waiting_for_move(sctx, ow_inode)) {
4046 					wdm = get_waiting_dir_move(sctx,
4047 								   ow_inode);
4048 					ASSERT(wdm);
4049 					wdm->orphanized = true;
4050 				}
4051 
4052 				/*
4053 				 * Make sure we clear our orphanized inode's
4054 				 * name from the name cache. This is because the
4055 				 * inode ow_inode might be an ancestor of some
4056 				 * other inode that will be orphanized as well
4057 				 * later and has an inode number greater than
4058 				 * sctx->send_progress. We need to prevent
4059 				 * future name lookups from using the old name
4060 				 * and get instead the orphan name.
4061 				 */
4062 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4063 				if (nce) {
4064 					name_cache_delete(sctx, nce);
4065 					kfree(nce);
4066 				}
4067 
4068 				/*
4069 				 * ow_inode might currently be an ancestor of
4070 				 * cur_ino, therefore compute valid_path (the
4071 				 * current path of cur_ino) again because it
4072 				 * might contain the pre-orphanization name of
4073 				 * ow_inode, which is no longer valid.
4074 				 */
4075 				ret = is_ancestor(sctx->parent_root,
4076 						  ow_inode, ow_gen,
4077 						  sctx->cur_ino, NULL);
4078 				if (ret > 0) {
4079 					orphanized_ancestor = true;
4080 					fs_path_reset(valid_path);
4081 					ret = get_cur_path(sctx, sctx->cur_ino,
4082 							   sctx->cur_inode_gen,
4083 							   valid_path);
4084 				}
4085 				if (ret < 0)
4086 					goto out;
4087 			} else {
4088 				/*
4089 				 * If we previously orphanized a directory that
4090 				 * collided with a new reference that we already
4091 				 * processed, recompute the current path because
4092 				 * that directory may be part of the path.
4093 				 */
4094 				if (orphanized_dir) {
4095 					ret = refresh_ref_path(sctx, cur);
4096 					if (ret < 0)
4097 						goto out;
4098 				}
4099 				ret = send_unlink(sctx, cur->full_path);
4100 				if (ret < 0)
4101 					goto out;
4102 			}
4103 		}
4104 
4105 	}
4106 
4107 	list_for_each_entry(cur, &sctx->new_refs, list) {
4108 		/*
4109 		 * We may have refs where the parent directory does not exist
4110 		 * yet. This happens if the parent directories inum is higher
4111 		 * than the current inum. To handle this case, we create the
4112 		 * parent directory out of order. But we need to check if this
4113 		 * did already happen before due to other refs in the same dir.
4114 		 */
4115 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4116 		if (ret < 0)
4117 			goto out;
4118 		if (ret == inode_state_will_create) {
4119 			ret = 0;
4120 			/*
4121 			 * First check if any of the current inodes refs did
4122 			 * already create the dir.
4123 			 */
4124 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4125 				if (cur == cur2)
4126 					break;
4127 				if (cur2->dir == cur->dir) {
4128 					ret = 1;
4129 					break;
4130 				}
4131 			}
4132 
4133 			/*
4134 			 * If that did not happen, check if a previous inode
4135 			 * did already create the dir.
4136 			 */
4137 			if (!ret)
4138 				ret = did_create_dir(sctx, cur->dir);
4139 			if (ret < 0)
4140 				goto out;
4141 			if (!ret) {
4142 				ret = send_create_inode(sctx, cur->dir);
4143 				if (ret < 0)
4144 					goto out;
4145 			}
4146 		}
4147 
4148 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4149 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4150 			if (ret < 0)
4151 				goto out;
4152 			if (ret == 1) {
4153 				can_rename = false;
4154 				*pending_move = 1;
4155 			}
4156 		}
4157 
4158 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4159 		    can_rename) {
4160 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4161 			if (ret < 0)
4162 				goto out;
4163 			if (ret == 1) {
4164 				can_rename = false;
4165 				*pending_move = 1;
4166 			}
4167 		}
4168 
4169 		/*
4170 		 * link/move the ref to the new place. If we have an orphan
4171 		 * inode, move it and update valid_path. If not, link or move
4172 		 * it depending on the inode mode.
4173 		 */
4174 		if (is_orphan && can_rename) {
4175 			ret = send_rename(sctx, valid_path, cur->full_path);
4176 			if (ret < 0)
4177 				goto out;
4178 			is_orphan = 0;
4179 			ret = fs_path_copy(valid_path, cur->full_path);
4180 			if (ret < 0)
4181 				goto out;
4182 		} else if (can_rename) {
4183 			if (S_ISDIR(sctx->cur_inode_mode)) {
4184 				/*
4185 				 * Dirs can't be linked, so move it. For moved
4186 				 * dirs, we always have one new and one deleted
4187 				 * ref. The deleted ref is ignored later.
4188 				 */
4189 				ret = send_rename(sctx, valid_path,
4190 						  cur->full_path);
4191 				if (!ret)
4192 					ret = fs_path_copy(valid_path,
4193 							   cur->full_path);
4194 				if (ret < 0)
4195 					goto out;
4196 			} else {
4197 				/*
4198 				 * We might have previously orphanized an inode
4199 				 * which is an ancestor of our current inode,
4200 				 * so our reference's full path, which was
4201 				 * computed before any such orphanizations, must
4202 				 * be updated.
4203 				 */
4204 				if (orphanized_dir) {
4205 					ret = update_ref_path(sctx, cur);
4206 					if (ret < 0)
4207 						goto out;
4208 				}
4209 				ret = send_link(sctx, cur->full_path,
4210 						valid_path);
4211 				if (ret < 0)
4212 					goto out;
4213 			}
4214 		}
4215 		ret = dup_ref(cur, &check_dirs);
4216 		if (ret < 0)
4217 			goto out;
4218 	}
4219 
4220 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4221 		/*
4222 		 * Check if we can already rmdir the directory. If not,
4223 		 * orphanize it. For every dir item inside that gets deleted
4224 		 * later, we do this check again and rmdir it then if possible.
4225 		 * See the use of check_dirs for more details.
4226 		 */
4227 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4228 				sctx->cur_ino);
4229 		if (ret < 0)
4230 			goto out;
4231 		if (ret) {
4232 			ret = send_rmdir(sctx, valid_path);
4233 			if (ret < 0)
4234 				goto out;
4235 		} else if (!is_orphan) {
4236 			ret = orphanize_inode(sctx, sctx->cur_ino,
4237 					sctx->cur_inode_gen, valid_path);
4238 			if (ret < 0)
4239 				goto out;
4240 			is_orphan = 1;
4241 		}
4242 
4243 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4244 			ret = dup_ref(cur, &check_dirs);
4245 			if (ret < 0)
4246 				goto out;
4247 		}
4248 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4249 		   !list_empty(&sctx->deleted_refs)) {
4250 		/*
4251 		 * We have a moved dir. Add the old parent to check_dirs
4252 		 */
4253 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4254 				list);
4255 		ret = dup_ref(cur, &check_dirs);
4256 		if (ret < 0)
4257 			goto out;
4258 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4259 		/*
4260 		 * We have a non dir inode. Go through all deleted refs and
4261 		 * unlink them if they were not already overwritten by other
4262 		 * inodes.
4263 		 */
4264 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4265 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4266 					sctx->cur_ino, sctx->cur_inode_gen,
4267 					cur->name, cur->name_len);
4268 			if (ret < 0)
4269 				goto out;
4270 			if (!ret) {
4271 				/*
4272 				 * If we orphanized any ancestor before, we need
4273 				 * to recompute the full path for deleted names,
4274 				 * since any such path was computed before we
4275 				 * processed any references and orphanized any
4276 				 * ancestor inode.
4277 				 */
4278 				if (orphanized_ancestor) {
4279 					ret = update_ref_path(sctx, cur);
4280 					if (ret < 0)
4281 						goto out;
4282 				}
4283 				ret = send_unlink(sctx, cur->full_path);
4284 				if (ret < 0)
4285 					goto out;
4286 			}
4287 			ret = dup_ref(cur, &check_dirs);
4288 			if (ret < 0)
4289 				goto out;
4290 		}
4291 		/*
4292 		 * If the inode is still orphan, unlink the orphan. This may
4293 		 * happen when a previous inode did overwrite the first ref
4294 		 * of this inode and no new refs were added for the current
4295 		 * inode. Unlinking does not mean that the inode is deleted in
4296 		 * all cases. There may still be links to this inode in other
4297 		 * places.
4298 		 */
4299 		if (is_orphan) {
4300 			ret = send_unlink(sctx, valid_path);
4301 			if (ret < 0)
4302 				goto out;
4303 		}
4304 	}
4305 
4306 	/*
4307 	 * We did collect all parent dirs where cur_inode was once located. We
4308 	 * now go through all these dirs and check if they are pending for
4309 	 * deletion and if it's finally possible to perform the rmdir now.
4310 	 * We also update the inode stats of the parent dirs here.
4311 	 */
4312 	list_for_each_entry(cur, &check_dirs, list) {
4313 		/*
4314 		 * In case we had refs into dirs that were not processed yet,
4315 		 * we don't need to do the utime and rmdir logic for these dirs.
4316 		 * The dir will be processed later.
4317 		 */
4318 		if (cur->dir > sctx->cur_ino)
4319 			continue;
4320 
4321 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4322 		if (ret < 0)
4323 			goto out;
4324 
4325 		if (ret == inode_state_did_create ||
4326 		    ret == inode_state_no_change) {
4327 			/* TODO delayed utimes */
4328 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4329 			if (ret < 0)
4330 				goto out;
4331 		} else if (ret == inode_state_did_delete &&
4332 			   cur->dir != last_dir_ino_rm) {
4333 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4334 					sctx->cur_ino);
4335 			if (ret < 0)
4336 				goto out;
4337 			if (ret) {
4338 				ret = get_cur_path(sctx, cur->dir,
4339 						   cur->dir_gen, valid_path);
4340 				if (ret < 0)
4341 					goto out;
4342 				ret = send_rmdir(sctx, valid_path);
4343 				if (ret < 0)
4344 					goto out;
4345 				last_dir_ino_rm = cur->dir;
4346 			}
4347 		}
4348 	}
4349 
4350 	ret = 0;
4351 
4352 out:
4353 	__free_recorded_refs(&check_dirs);
4354 	free_recorded_refs(sctx);
4355 	fs_path_free(valid_path);
4356 	return ret;
4357 }
4358 
4359 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4360 {
4361 	const struct recorded_ref *data = k;
4362 	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4363 	int result;
4364 
4365 	if (data->dir > ref->dir)
4366 		return 1;
4367 	if (data->dir < ref->dir)
4368 		return -1;
4369 	if (data->dir_gen > ref->dir_gen)
4370 		return 1;
4371 	if (data->dir_gen < ref->dir_gen)
4372 		return -1;
4373 	if (data->name_len > ref->name_len)
4374 		return 1;
4375 	if (data->name_len < ref->name_len)
4376 		return -1;
4377 	result = strcmp(data->name, ref->name);
4378 	if (result > 0)
4379 		return 1;
4380 	if (result < 0)
4381 		return -1;
4382 	return 0;
4383 }
4384 
4385 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4386 {
4387 	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4388 
4389 	return rbtree_ref_comp(entry, parent) < 0;
4390 }
4391 
4392 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4393 			      struct fs_path *name, u64 dir, u64 dir_gen,
4394 			      struct send_ctx *sctx)
4395 {
4396 	int ret = 0;
4397 	struct fs_path *path = NULL;
4398 	struct recorded_ref *ref = NULL;
4399 
4400 	path = fs_path_alloc();
4401 	if (!path) {
4402 		ret = -ENOMEM;
4403 		goto out;
4404 	}
4405 
4406 	ref = recorded_ref_alloc();
4407 	if (!ref) {
4408 		ret = -ENOMEM;
4409 		goto out;
4410 	}
4411 
4412 	ret = get_cur_path(sctx, dir, dir_gen, path);
4413 	if (ret < 0)
4414 		goto out;
4415 	ret = fs_path_add_path(path, name);
4416 	if (ret < 0)
4417 		goto out;
4418 
4419 	ref->dir = dir;
4420 	ref->dir_gen = dir_gen;
4421 	set_ref_path(ref, path);
4422 	list_add_tail(&ref->list, refs);
4423 	rb_add(&ref->node, root, rbtree_ref_less);
4424 	ref->root = root;
4425 out:
4426 	if (ret) {
4427 		if (path && (!ref || !ref->full_path))
4428 			fs_path_free(path);
4429 		recorded_ref_free(ref);
4430 	}
4431 	return ret;
4432 }
4433 
4434 static int record_new_ref_if_needed(int num, u64 dir, int index,
4435 				    struct fs_path *name, void *ctx)
4436 {
4437 	int ret = 0;
4438 	struct send_ctx *sctx = ctx;
4439 	struct rb_node *node = NULL;
4440 	struct recorded_ref data;
4441 	struct recorded_ref *ref;
4442 	u64 dir_gen;
4443 
4444 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4445 			     NULL, NULL, NULL, NULL);
4446 	if (ret < 0)
4447 		goto out;
4448 
4449 	data.dir = dir;
4450 	data.dir_gen = dir_gen;
4451 	set_ref_path(&data, name);
4452 	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4453 	if (node) {
4454 		ref = rb_entry(node, struct recorded_ref, node);
4455 		recorded_ref_free(ref);
4456 	} else {
4457 		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4458 					 &sctx->new_refs, name, dir, dir_gen,
4459 					 sctx);
4460 	}
4461 out:
4462 	return ret;
4463 }
4464 
4465 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4466 					struct fs_path *name, void *ctx)
4467 {
4468 	int ret = 0;
4469 	struct send_ctx *sctx = ctx;
4470 	struct rb_node *node = NULL;
4471 	struct recorded_ref data;
4472 	struct recorded_ref *ref;
4473 	u64 dir_gen;
4474 
4475 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4476 			     NULL, NULL, NULL, NULL);
4477 	if (ret < 0)
4478 		goto out;
4479 
4480 	data.dir = dir;
4481 	data.dir_gen = dir_gen;
4482 	set_ref_path(&data, name);
4483 	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4484 	if (node) {
4485 		ref = rb_entry(node, struct recorded_ref, node);
4486 		recorded_ref_free(ref);
4487 	} else {
4488 		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4489 					 &sctx->deleted_refs, name, dir,
4490 					 dir_gen, sctx);
4491 	}
4492 out:
4493 	return ret;
4494 }
4495 
4496 static int record_new_ref(struct send_ctx *sctx)
4497 {
4498 	int ret;
4499 
4500 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4501 				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4502 	if (ret < 0)
4503 		goto out;
4504 	ret = 0;
4505 
4506 out:
4507 	return ret;
4508 }
4509 
4510 static int record_deleted_ref(struct send_ctx *sctx)
4511 {
4512 	int ret;
4513 
4514 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4515 				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4516 				sctx);
4517 	if (ret < 0)
4518 		goto out;
4519 	ret = 0;
4520 
4521 out:
4522 	return ret;
4523 }
4524 
4525 static int record_changed_ref(struct send_ctx *sctx)
4526 {
4527 	int ret = 0;
4528 
4529 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4530 			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4531 	if (ret < 0)
4532 		goto out;
4533 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4534 			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4535 	if (ret < 0)
4536 		goto out;
4537 	ret = 0;
4538 
4539 out:
4540 	return ret;
4541 }
4542 
4543 /*
4544  * Record and process all refs at once. Needed when an inode changes the
4545  * generation number, which means that it was deleted and recreated.
4546  */
4547 static int process_all_refs(struct send_ctx *sctx,
4548 			    enum btrfs_compare_tree_result cmd)
4549 {
4550 	int ret = 0;
4551 	int iter_ret = 0;
4552 	struct btrfs_root *root;
4553 	struct btrfs_path *path;
4554 	struct btrfs_key key;
4555 	struct btrfs_key found_key;
4556 	iterate_inode_ref_t cb;
4557 	int pending_move = 0;
4558 
4559 	path = alloc_path_for_send();
4560 	if (!path)
4561 		return -ENOMEM;
4562 
4563 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4564 		root = sctx->send_root;
4565 		cb = record_new_ref_if_needed;
4566 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4567 		root = sctx->parent_root;
4568 		cb = record_deleted_ref_if_needed;
4569 	} else {
4570 		btrfs_err(sctx->send_root->fs_info,
4571 				"Wrong command %d in process_all_refs", cmd);
4572 		ret = -EINVAL;
4573 		goto out;
4574 	}
4575 
4576 	key.objectid = sctx->cmp_key->objectid;
4577 	key.type = BTRFS_INODE_REF_KEY;
4578 	key.offset = 0;
4579 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4580 		if (found_key.objectid != key.objectid ||
4581 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4582 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4583 			break;
4584 
4585 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4586 		if (ret < 0)
4587 			goto out;
4588 	}
4589 	/* Catch error found during iteration */
4590 	if (iter_ret < 0) {
4591 		ret = iter_ret;
4592 		goto out;
4593 	}
4594 	btrfs_release_path(path);
4595 
4596 	/*
4597 	 * We don't actually care about pending_move as we are simply
4598 	 * re-creating this inode and will be rename'ing it into place once we
4599 	 * rename the parent directory.
4600 	 */
4601 	ret = process_recorded_refs(sctx, &pending_move);
4602 out:
4603 	btrfs_free_path(path);
4604 	return ret;
4605 }
4606 
4607 static int send_set_xattr(struct send_ctx *sctx,
4608 			  struct fs_path *path,
4609 			  const char *name, int name_len,
4610 			  const char *data, int data_len)
4611 {
4612 	int ret = 0;
4613 
4614 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4615 	if (ret < 0)
4616 		goto out;
4617 
4618 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4619 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4620 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4621 
4622 	ret = send_cmd(sctx);
4623 
4624 tlv_put_failure:
4625 out:
4626 	return ret;
4627 }
4628 
4629 static int send_remove_xattr(struct send_ctx *sctx,
4630 			  struct fs_path *path,
4631 			  const char *name, int name_len)
4632 {
4633 	int ret = 0;
4634 
4635 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4636 	if (ret < 0)
4637 		goto out;
4638 
4639 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4640 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4641 
4642 	ret = send_cmd(sctx);
4643 
4644 tlv_put_failure:
4645 out:
4646 	return ret;
4647 }
4648 
4649 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4650 			       const char *name, int name_len, const char *data,
4651 			       int data_len, void *ctx)
4652 {
4653 	int ret;
4654 	struct send_ctx *sctx = ctx;
4655 	struct fs_path *p;
4656 	struct posix_acl_xattr_header dummy_acl;
4657 
4658 	/* Capabilities are emitted by finish_inode_if_needed */
4659 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4660 		return 0;
4661 
4662 	p = fs_path_alloc();
4663 	if (!p)
4664 		return -ENOMEM;
4665 
4666 	/*
4667 	 * This hack is needed because empty acls are stored as zero byte
4668 	 * data in xattrs. Problem with that is, that receiving these zero byte
4669 	 * acls will fail later. To fix this, we send a dummy acl list that
4670 	 * only contains the version number and no entries.
4671 	 */
4672 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4673 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4674 		if (data_len == 0) {
4675 			dummy_acl.a_version =
4676 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4677 			data = (char *)&dummy_acl;
4678 			data_len = sizeof(dummy_acl);
4679 		}
4680 	}
4681 
4682 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4683 	if (ret < 0)
4684 		goto out;
4685 
4686 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4687 
4688 out:
4689 	fs_path_free(p);
4690 	return ret;
4691 }
4692 
4693 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4694 				   const char *name, int name_len,
4695 				   const char *data, int data_len, void *ctx)
4696 {
4697 	int ret;
4698 	struct send_ctx *sctx = ctx;
4699 	struct fs_path *p;
4700 
4701 	p = fs_path_alloc();
4702 	if (!p)
4703 		return -ENOMEM;
4704 
4705 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4706 	if (ret < 0)
4707 		goto out;
4708 
4709 	ret = send_remove_xattr(sctx, p, name, name_len);
4710 
4711 out:
4712 	fs_path_free(p);
4713 	return ret;
4714 }
4715 
4716 static int process_new_xattr(struct send_ctx *sctx)
4717 {
4718 	int ret = 0;
4719 
4720 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4721 			       __process_new_xattr, sctx);
4722 
4723 	return ret;
4724 }
4725 
4726 static int process_deleted_xattr(struct send_ctx *sctx)
4727 {
4728 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4729 				__process_deleted_xattr, sctx);
4730 }
4731 
4732 struct find_xattr_ctx {
4733 	const char *name;
4734 	int name_len;
4735 	int found_idx;
4736 	char *found_data;
4737 	int found_data_len;
4738 };
4739 
4740 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4741 			int name_len, const char *data, int data_len, void *vctx)
4742 {
4743 	struct find_xattr_ctx *ctx = vctx;
4744 
4745 	if (name_len == ctx->name_len &&
4746 	    strncmp(name, ctx->name, name_len) == 0) {
4747 		ctx->found_idx = num;
4748 		ctx->found_data_len = data_len;
4749 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4750 		if (!ctx->found_data)
4751 			return -ENOMEM;
4752 		return 1;
4753 	}
4754 	return 0;
4755 }
4756 
4757 static int find_xattr(struct btrfs_root *root,
4758 		      struct btrfs_path *path,
4759 		      struct btrfs_key *key,
4760 		      const char *name, int name_len,
4761 		      char **data, int *data_len)
4762 {
4763 	int ret;
4764 	struct find_xattr_ctx ctx;
4765 
4766 	ctx.name = name;
4767 	ctx.name_len = name_len;
4768 	ctx.found_idx = -1;
4769 	ctx.found_data = NULL;
4770 	ctx.found_data_len = 0;
4771 
4772 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4773 	if (ret < 0)
4774 		return ret;
4775 
4776 	if (ctx.found_idx == -1)
4777 		return -ENOENT;
4778 	if (data) {
4779 		*data = ctx.found_data;
4780 		*data_len = ctx.found_data_len;
4781 	} else {
4782 		kfree(ctx.found_data);
4783 	}
4784 	return ctx.found_idx;
4785 }
4786 
4787 
4788 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4789 				       const char *name, int name_len,
4790 				       const char *data, int data_len,
4791 				       void *ctx)
4792 {
4793 	int ret;
4794 	struct send_ctx *sctx = ctx;
4795 	char *found_data = NULL;
4796 	int found_data_len  = 0;
4797 
4798 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4799 			 sctx->cmp_key, name, name_len, &found_data,
4800 			 &found_data_len);
4801 	if (ret == -ENOENT) {
4802 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4803 					  data_len, ctx);
4804 	} else if (ret >= 0) {
4805 		if (data_len != found_data_len ||
4806 		    memcmp(data, found_data, data_len)) {
4807 			ret = __process_new_xattr(num, di_key, name, name_len,
4808 						  data, data_len, ctx);
4809 		} else {
4810 			ret = 0;
4811 		}
4812 	}
4813 
4814 	kfree(found_data);
4815 	return ret;
4816 }
4817 
4818 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4819 					   const char *name, int name_len,
4820 					   const char *data, int data_len,
4821 					   void *ctx)
4822 {
4823 	int ret;
4824 	struct send_ctx *sctx = ctx;
4825 
4826 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4827 			 name, name_len, NULL, NULL);
4828 	if (ret == -ENOENT)
4829 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4830 					      data_len, ctx);
4831 	else if (ret >= 0)
4832 		ret = 0;
4833 
4834 	return ret;
4835 }
4836 
4837 static int process_changed_xattr(struct send_ctx *sctx)
4838 {
4839 	int ret = 0;
4840 
4841 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4842 			__process_changed_new_xattr, sctx);
4843 	if (ret < 0)
4844 		goto out;
4845 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4846 			__process_changed_deleted_xattr, sctx);
4847 
4848 out:
4849 	return ret;
4850 }
4851 
4852 static int process_all_new_xattrs(struct send_ctx *sctx)
4853 {
4854 	int ret = 0;
4855 	int iter_ret = 0;
4856 	struct btrfs_root *root;
4857 	struct btrfs_path *path;
4858 	struct btrfs_key key;
4859 	struct btrfs_key found_key;
4860 
4861 	path = alloc_path_for_send();
4862 	if (!path)
4863 		return -ENOMEM;
4864 
4865 	root = sctx->send_root;
4866 
4867 	key.objectid = sctx->cmp_key->objectid;
4868 	key.type = BTRFS_XATTR_ITEM_KEY;
4869 	key.offset = 0;
4870 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4871 		if (found_key.objectid != key.objectid ||
4872 		    found_key.type != key.type) {
4873 			ret = 0;
4874 			break;
4875 		}
4876 
4877 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4878 		if (ret < 0)
4879 			break;
4880 	}
4881 	/* Catch error found during iteration */
4882 	if (iter_ret < 0)
4883 		ret = iter_ret;
4884 
4885 	btrfs_free_path(path);
4886 	return ret;
4887 }
4888 
4889 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4890 {
4891 	return sctx->send_max_size - SZ_16K;
4892 }
4893 
4894 static int put_data_header(struct send_ctx *sctx, u32 len)
4895 {
4896 	if (WARN_ON_ONCE(sctx->put_data))
4897 		return -EINVAL;
4898 	sctx->put_data = true;
4899 	if (sctx->proto >= 2) {
4900 		/*
4901 		 * Since v2, the data attribute header doesn't include a length,
4902 		 * it is implicitly to the end of the command.
4903 		 */
4904 		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
4905 			return -EOVERFLOW;
4906 		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
4907 		sctx->send_size += sizeof(__le16);
4908 	} else {
4909 		struct btrfs_tlv_header *hdr;
4910 
4911 		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4912 			return -EOVERFLOW;
4913 		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4914 		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4915 		put_unaligned_le16(len, &hdr->tlv_len);
4916 		sctx->send_size += sizeof(*hdr);
4917 	}
4918 	return 0;
4919 }
4920 
4921 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4922 {
4923 	struct btrfs_root *root = sctx->send_root;
4924 	struct btrfs_fs_info *fs_info = root->fs_info;
4925 	struct page *page;
4926 	pgoff_t index = offset >> PAGE_SHIFT;
4927 	pgoff_t last_index;
4928 	unsigned pg_offset = offset_in_page(offset);
4929 	int ret;
4930 
4931 	ret = put_data_header(sctx, len);
4932 	if (ret)
4933 		return ret;
4934 
4935 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4936 
4937 	while (index <= last_index) {
4938 		unsigned cur_len = min_t(unsigned, len,
4939 					 PAGE_SIZE - pg_offset);
4940 
4941 		page = find_lock_page(sctx->cur_inode->i_mapping, index);
4942 		if (!page) {
4943 			page_cache_sync_readahead(sctx->cur_inode->i_mapping,
4944 						  &sctx->ra, NULL, index,
4945 						  last_index + 1 - index);
4946 
4947 			page = find_or_create_page(sctx->cur_inode->i_mapping,
4948 						   index, GFP_KERNEL);
4949 			if (!page) {
4950 				ret = -ENOMEM;
4951 				break;
4952 			}
4953 		}
4954 
4955 		if (PageReadahead(page))
4956 			page_cache_async_readahead(sctx->cur_inode->i_mapping,
4957 						   &sctx->ra, NULL, page_folio(page),
4958 						   index, last_index + 1 - index);
4959 
4960 		if (!PageUptodate(page)) {
4961 			btrfs_read_folio(NULL, page_folio(page));
4962 			lock_page(page);
4963 			if (!PageUptodate(page)) {
4964 				unlock_page(page);
4965 				btrfs_err(fs_info,
4966 			"send: IO error at offset %llu for inode %llu root %llu",
4967 					page_offset(page), sctx->cur_ino,
4968 					sctx->send_root->root_key.objectid);
4969 				put_page(page);
4970 				ret = -EIO;
4971 				break;
4972 			}
4973 		}
4974 
4975 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
4976 				 pg_offset, cur_len);
4977 		unlock_page(page);
4978 		put_page(page);
4979 		index++;
4980 		pg_offset = 0;
4981 		len -= cur_len;
4982 		sctx->send_size += cur_len;
4983 	}
4984 
4985 	return ret;
4986 }
4987 
4988 /*
4989  * Read some bytes from the current inode/file and send a write command to
4990  * user space.
4991  */
4992 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4993 {
4994 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4995 	int ret = 0;
4996 	struct fs_path *p;
4997 
4998 	p = fs_path_alloc();
4999 	if (!p)
5000 		return -ENOMEM;
5001 
5002 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5003 
5004 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5005 	if (ret < 0)
5006 		goto out;
5007 
5008 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5009 	if (ret < 0)
5010 		goto out;
5011 
5012 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5013 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5014 	ret = put_file_data(sctx, offset, len);
5015 	if (ret < 0)
5016 		goto out;
5017 
5018 	ret = send_cmd(sctx);
5019 
5020 tlv_put_failure:
5021 out:
5022 	fs_path_free(p);
5023 	return ret;
5024 }
5025 
5026 /*
5027  * Send a clone command to user space.
5028  */
5029 static int send_clone(struct send_ctx *sctx,
5030 		      u64 offset, u32 len,
5031 		      struct clone_root *clone_root)
5032 {
5033 	int ret = 0;
5034 	struct fs_path *p;
5035 	u64 gen;
5036 
5037 	btrfs_debug(sctx->send_root->fs_info,
5038 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5039 		    offset, len, clone_root->root->root_key.objectid,
5040 		    clone_root->ino, clone_root->offset);
5041 
5042 	p = fs_path_alloc();
5043 	if (!p)
5044 		return -ENOMEM;
5045 
5046 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5047 	if (ret < 0)
5048 		goto out;
5049 
5050 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5051 	if (ret < 0)
5052 		goto out;
5053 
5054 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5055 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5056 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5057 
5058 	if (clone_root->root == sctx->send_root) {
5059 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5060 				&gen, NULL, NULL, NULL, NULL, NULL);
5061 		if (ret < 0)
5062 			goto out;
5063 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5064 	} else {
5065 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5066 	}
5067 	if (ret < 0)
5068 		goto out;
5069 
5070 	/*
5071 	 * If the parent we're using has a received_uuid set then use that as
5072 	 * our clone source as that is what we will look for when doing a
5073 	 * receive.
5074 	 *
5075 	 * This covers the case that we create a snapshot off of a received
5076 	 * subvolume and then use that as the parent and try to receive on a
5077 	 * different host.
5078 	 */
5079 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5080 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5081 			     clone_root->root->root_item.received_uuid);
5082 	else
5083 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5084 			     clone_root->root->root_item.uuid);
5085 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5086 		    btrfs_root_ctransid(&clone_root->root->root_item));
5087 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5088 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5089 			clone_root->offset);
5090 
5091 	ret = send_cmd(sctx);
5092 
5093 tlv_put_failure:
5094 out:
5095 	fs_path_free(p);
5096 	return ret;
5097 }
5098 
5099 /*
5100  * Send an update extent command to user space.
5101  */
5102 static int send_update_extent(struct send_ctx *sctx,
5103 			      u64 offset, u32 len)
5104 {
5105 	int ret = 0;
5106 	struct fs_path *p;
5107 
5108 	p = fs_path_alloc();
5109 	if (!p)
5110 		return -ENOMEM;
5111 
5112 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5113 	if (ret < 0)
5114 		goto out;
5115 
5116 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5117 	if (ret < 0)
5118 		goto out;
5119 
5120 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5121 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5122 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5123 
5124 	ret = send_cmd(sctx);
5125 
5126 tlv_put_failure:
5127 out:
5128 	fs_path_free(p);
5129 	return ret;
5130 }
5131 
5132 static int send_hole(struct send_ctx *sctx, u64 end)
5133 {
5134 	struct fs_path *p = NULL;
5135 	u64 read_size = max_send_read_size(sctx);
5136 	u64 offset = sctx->cur_inode_last_extent;
5137 	int ret = 0;
5138 
5139 	/*
5140 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5141 	 * fallocate (for extent preallocation and hole punching), sending a
5142 	 * write of zeroes starting at EOF or beyond would later require issuing
5143 	 * a truncate operation which would undo the write and achieve nothing.
5144 	 */
5145 	if (offset >= sctx->cur_inode_size)
5146 		return 0;
5147 
5148 	/*
5149 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5150 	 * after the i_size.
5151 	 */
5152 	end = min_t(u64, end, sctx->cur_inode_size);
5153 
5154 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5155 		return send_update_extent(sctx, offset, end - offset);
5156 
5157 	p = fs_path_alloc();
5158 	if (!p)
5159 		return -ENOMEM;
5160 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5161 	if (ret < 0)
5162 		goto tlv_put_failure;
5163 	while (offset < end) {
5164 		u64 len = min(end - offset, read_size);
5165 
5166 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5167 		if (ret < 0)
5168 			break;
5169 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5170 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5171 		ret = put_data_header(sctx, len);
5172 		if (ret < 0)
5173 			break;
5174 		memset(sctx->send_buf + sctx->send_size, 0, len);
5175 		sctx->send_size += len;
5176 		ret = send_cmd(sctx);
5177 		if (ret < 0)
5178 			break;
5179 		offset += len;
5180 	}
5181 	sctx->cur_inode_next_write_offset = offset;
5182 tlv_put_failure:
5183 	fs_path_free(p);
5184 	return ret;
5185 }
5186 
5187 static int send_encoded_inline_extent(struct send_ctx *sctx,
5188 				      struct btrfs_path *path, u64 offset,
5189 				      u64 len)
5190 {
5191 	struct btrfs_root *root = sctx->send_root;
5192 	struct btrfs_fs_info *fs_info = root->fs_info;
5193 	struct inode *inode;
5194 	struct fs_path *fspath;
5195 	struct extent_buffer *leaf = path->nodes[0];
5196 	struct btrfs_key key;
5197 	struct btrfs_file_extent_item *ei;
5198 	u64 ram_bytes;
5199 	size_t inline_size;
5200 	int ret;
5201 
5202 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5203 	if (IS_ERR(inode))
5204 		return PTR_ERR(inode);
5205 
5206 	fspath = fs_path_alloc();
5207 	if (!fspath) {
5208 		ret = -ENOMEM;
5209 		goto out;
5210 	}
5211 
5212 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5213 	if (ret < 0)
5214 		goto out;
5215 
5216 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5217 	if (ret < 0)
5218 		goto out;
5219 
5220 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5221 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5222 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5223 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5224 
5225 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5226 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5227 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5228 		    min(key.offset + ram_bytes - offset, len));
5229 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5230 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5231 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5232 				btrfs_file_extent_compression(leaf, ei));
5233 	if (ret < 0)
5234 		goto out;
5235 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5236 
5237 	ret = put_data_header(sctx, inline_size);
5238 	if (ret < 0)
5239 		goto out;
5240 	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5241 			   btrfs_file_extent_inline_start(ei), inline_size);
5242 	sctx->send_size += inline_size;
5243 
5244 	ret = send_cmd(sctx);
5245 
5246 tlv_put_failure:
5247 out:
5248 	fs_path_free(fspath);
5249 	iput(inode);
5250 	return ret;
5251 }
5252 
5253 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5254 			       u64 offset, u64 len)
5255 {
5256 	struct btrfs_root *root = sctx->send_root;
5257 	struct btrfs_fs_info *fs_info = root->fs_info;
5258 	struct inode *inode;
5259 	struct fs_path *fspath;
5260 	struct extent_buffer *leaf = path->nodes[0];
5261 	struct btrfs_key key;
5262 	struct btrfs_file_extent_item *ei;
5263 	u64 disk_bytenr, disk_num_bytes;
5264 	u32 data_offset;
5265 	struct btrfs_cmd_header *hdr;
5266 	u32 crc;
5267 	int ret;
5268 
5269 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5270 	if (IS_ERR(inode))
5271 		return PTR_ERR(inode);
5272 
5273 	fspath = fs_path_alloc();
5274 	if (!fspath) {
5275 		ret = -ENOMEM;
5276 		goto out;
5277 	}
5278 
5279 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5280 	if (ret < 0)
5281 		goto out;
5282 
5283 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5284 	if (ret < 0)
5285 		goto out;
5286 
5287 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5288 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5289 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5290 	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5291 
5292 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5293 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5294 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5295 		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5296 			len));
5297 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5298 		    btrfs_file_extent_ram_bytes(leaf, ei));
5299 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5300 		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5301 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5302 				btrfs_file_extent_compression(leaf, ei));
5303 	if (ret < 0)
5304 		goto out;
5305 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5306 	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5307 
5308 	ret = put_data_header(sctx, disk_num_bytes);
5309 	if (ret < 0)
5310 		goto out;
5311 
5312 	/*
5313 	 * We want to do I/O directly into the send buffer, so get the next page
5314 	 * boundary in the send buffer. This means that there may be a gap
5315 	 * between the beginning of the command and the file data.
5316 	 */
5317 	data_offset = ALIGN(sctx->send_size, PAGE_SIZE);
5318 	if (data_offset > sctx->send_max_size ||
5319 	    sctx->send_max_size - data_offset < disk_num_bytes) {
5320 		ret = -EOVERFLOW;
5321 		goto out;
5322 	}
5323 
5324 	/*
5325 	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5326 	 * reading into send_buf.
5327 	 */
5328 	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5329 						    disk_bytenr, disk_num_bytes,
5330 						    sctx->send_buf_pages +
5331 						    (data_offset >> PAGE_SHIFT));
5332 	if (ret)
5333 		goto out;
5334 
5335 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5336 	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5337 	hdr->crc = 0;
5338 	crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5339 	crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5340 	hdr->crc = cpu_to_le32(crc);
5341 
5342 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5343 			&sctx->send_off);
5344 	if (!ret) {
5345 		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5346 				disk_num_bytes, &sctx->send_off);
5347 	}
5348 	sctx->send_size = 0;
5349 	sctx->put_data = false;
5350 
5351 tlv_put_failure:
5352 out:
5353 	fs_path_free(fspath);
5354 	iput(inode);
5355 	return ret;
5356 }
5357 
5358 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5359 			    const u64 offset, const u64 len)
5360 {
5361 	const u64 end = offset + len;
5362 	struct extent_buffer *leaf = path->nodes[0];
5363 	struct btrfs_file_extent_item *ei;
5364 	u64 read_size = max_send_read_size(sctx);
5365 	u64 sent = 0;
5366 
5367 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5368 		return send_update_extent(sctx, offset, len);
5369 
5370 	ei = btrfs_item_ptr(leaf, path->slots[0],
5371 			    struct btrfs_file_extent_item);
5372 	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5373 	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5374 		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5375 				  BTRFS_FILE_EXTENT_INLINE);
5376 
5377 		/*
5378 		 * Send the compressed extent unless the compressed data is
5379 		 * larger than the decompressed data. This can happen if we're
5380 		 * not sending the entire extent, either because it has been
5381 		 * partially overwritten/truncated or because this is a part of
5382 		 * the extent that we couldn't clone in clone_range().
5383 		 */
5384 		if (is_inline &&
5385 		    btrfs_file_extent_inline_item_len(leaf,
5386 						      path->slots[0]) <= len) {
5387 			return send_encoded_inline_extent(sctx, path, offset,
5388 							  len);
5389 		} else if (!is_inline &&
5390 			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5391 			return send_encoded_extent(sctx, path, offset, len);
5392 		}
5393 	}
5394 
5395 	if (sctx->cur_inode == NULL) {
5396 		struct btrfs_root *root = sctx->send_root;
5397 
5398 		sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5399 		if (IS_ERR(sctx->cur_inode)) {
5400 			int err = PTR_ERR(sctx->cur_inode);
5401 
5402 			sctx->cur_inode = NULL;
5403 			return err;
5404 		}
5405 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5406 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5407 
5408 		/*
5409 		 * It's very likely there are no pages from this inode in the page
5410 		 * cache, so after reading extents and sending their data, we clean
5411 		 * the page cache to avoid trashing the page cache (adding pressure
5412 		 * to the page cache and forcing eviction of other data more useful
5413 		 * for applications).
5414 		 *
5415 		 * We decide if we should clean the page cache simply by checking
5416 		 * if the inode's mapping nrpages is 0 when we first open it, and
5417 		 * not by using something like filemap_range_has_page() before
5418 		 * reading an extent because when we ask the readahead code to
5419 		 * read a given file range, it may (and almost always does) read
5420 		 * pages from beyond that range (see the documentation for
5421 		 * page_cache_sync_readahead()), so it would not be reliable,
5422 		 * because after reading the first extent future calls to
5423 		 * filemap_range_has_page() would return true because the readahead
5424 		 * on the previous extent resulted in reading pages of the current
5425 		 * extent as well.
5426 		 */
5427 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5428 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5429 	}
5430 
5431 	while (sent < len) {
5432 		u64 size = min(len - sent, read_size);
5433 		int ret;
5434 
5435 		ret = send_write(sctx, offset + sent, size);
5436 		if (ret < 0)
5437 			return ret;
5438 		sent += size;
5439 	}
5440 
5441 	if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) {
5442 		/*
5443 		 * Always operate only on ranges that are a multiple of the page
5444 		 * size. This is not only to prevent zeroing parts of a page in
5445 		 * the case of subpage sector size, but also to guarantee we evict
5446 		 * pages, as passing a range that is smaller than page size does
5447 		 * not evict the respective page (only zeroes part of its content).
5448 		 *
5449 		 * Always start from the end offset of the last range cleared.
5450 		 * This is because the readahead code may (and very often does)
5451 		 * reads pages beyond the range we request for readahead. So if
5452 		 * we have an extent layout like this:
5453 		 *
5454 		 *            [ extent A ] [ extent B ] [ extent C ]
5455 		 *
5456 		 * When we ask page_cache_sync_readahead() to read extent A, it
5457 		 * may also trigger reads for pages of extent B. If we are doing
5458 		 * an incremental send and extent B has not changed between the
5459 		 * parent and send snapshots, some or all of its pages may end
5460 		 * up being read and placed in the page cache. So when truncating
5461 		 * the page cache we always start from the end offset of the
5462 		 * previously processed extent up to the end of the current
5463 		 * extent.
5464 		 */
5465 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5466 					   sctx->page_cache_clear_start,
5467 					   end - 1);
5468 		sctx->page_cache_clear_start = end;
5469 	}
5470 
5471 	return 0;
5472 }
5473 
5474 /*
5475  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5476  * found, call send_set_xattr function to emit it.
5477  *
5478  * Return 0 if there isn't a capability, or when the capability was emitted
5479  * successfully, or < 0 if an error occurred.
5480  */
5481 static int send_capabilities(struct send_ctx *sctx)
5482 {
5483 	struct fs_path *fspath = NULL;
5484 	struct btrfs_path *path;
5485 	struct btrfs_dir_item *di;
5486 	struct extent_buffer *leaf;
5487 	unsigned long data_ptr;
5488 	char *buf = NULL;
5489 	int buf_len;
5490 	int ret = 0;
5491 
5492 	path = alloc_path_for_send();
5493 	if (!path)
5494 		return -ENOMEM;
5495 
5496 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5497 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5498 	if (!di) {
5499 		/* There is no xattr for this inode */
5500 		goto out;
5501 	} else if (IS_ERR(di)) {
5502 		ret = PTR_ERR(di);
5503 		goto out;
5504 	}
5505 
5506 	leaf = path->nodes[0];
5507 	buf_len = btrfs_dir_data_len(leaf, di);
5508 
5509 	fspath = fs_path_alloc();
5510 	buf = kmalloc(buf_len, GFP_KERNEL);
5511 	if (!fspath || !buf) {
5512 		ret = -ENOMEM;
5513 		goto out;
5514 	}
5515 
5516 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5517 	if (ret < 0)
5518 		goto out;
5519 
5520 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5521 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5522 
5523 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5524 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5525 out:
5526 	kfree(buf);
5527 	fs_path_free(fspath);
5528 	btrfs_free_path(path);
5529 	return ret;
5530 }
5531 
5532 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5533 		       struct clone_root *clone_root, const u64 disk_byte,
5534 		       u64 data_offset, u64 offset, u64 len)
5535 {
5536 	struct btrfs_path *path;
5537 	struct btrfs_key key;
5538 	int ret;
5539 	u64 clone_src_i_size = 0;
5540 
5541 	/*
5542 	 * Prevent cloning from a zero offset with a length matching the sector
5543 	 * size because in some scenarios this will make the receiver fail.
5544 	 *
5545 	 * For example, if in the source filesystem the extent at offset 0
5546 	 * has a length of sectorsize and it was written using direct IO, then
5547 	 * it can never be an inline extent (even if compression is enabled).
5548 	 * Then this extent can be cloned in the original filesystem to a non
5549 	 * zero file offset, but it may not be possible to clone in the
5550 	 * destination filesystem because it can be inlined due to compression
5551 	 * on the destination filesystem (as the receiver's write operations are
5552 	 * always done using buffered IO). The same happens when the original
5553 	 * filesystem does not have compression enabled but the destination
5554 	 * filesystem has.
5555 	 */
5556 	if (clone_root->offset == 0 &&
5557 	    len == sctx->send_root->fs_info->sectorsize)
5558 		return send_extent_data(sctx, dst_path, offset, len);
5559 
5560 	path = alloc_path_for_send();
5561 	if (!path)
5562 		return -ENOMEM;
5563 
5564 	/*
5565 	 * There are inodes that have extents that lie behind its i_size. Don't
5566 	 * accept clones from these extents.
5567 	 */
5568 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5569 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL,
5570 			       NULL);
5571 	btrfs_release_path(path);
5572 	if (ret < 0)
5573 		goto out;
5574 
5575 	/*
5576 	 * We can't send a clone operation for the entire range if we find
5577 	 * extent items in the respective range in the source file that
5578 	 * refer to different extents or if we find holes.
5579 	 * So check for that and do a mix of clone and regular write/copy
5580 	 * operations if needed.
5581 	 *
5582 	 * Example:
5583 	 *
5584 	 * mkfs.btrfs -f /dev/sda
5585 	 * mount /dev/sda /mnt
5586 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5587 	 * cp --reflink=always /mnt/foo /mnt/bar
5588 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5589 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5590 	 *
5591 	 * If when we send the snapshot and we are processing file bar (which
5592 	 * has a higher inode number than foo) we blindly send a clone operation
5593 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5594 	 * a file bar that matches the content of file foo - iow, doesn't match
5595 	 * the content from bar in the original filesystem.
5596 	 */
5597 	key.objectid = clone_root->ino;
5598 	key.type = BTRFS_EXTENT_DATA_KEY;
5599 	key.offset = clone_root->offset;
5600 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5601 	if (ret < 0)
5602 		goto out;
5603 	if (ret > 0 && path->slots[0] > 0) {
5604 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5605 		if (key.objectid == clone_root->ino &&
5606 		    key.type == BTRFS_EXTENT_DATA_KEY)
5607 			path->slots[0]--;
5608 	}
5609 
5610 	while (true) {
5611 		struct extent_buffer *leaf = path->nodes[0];
5612 		int slot = path->slots[0];
5613 		struct btrfs_file_extent_item *ei;
5614 		u8 type;
5615 		u64 ext_len;
5616 		u64 clone_len;
5617 		u64 clone_data_offset;
5618 
5619 		if (slot >= btrfs_header_nritems(leaf)) {
5620 			ret = btrfs_next_leaf(clone_root->root, path);
5621 			if (ret < 0)
5622 				goto out;
5623 			else if (ret > 0)
5624 				break;
5625 			continue;
5626 		}
5627 
5628 		btrfs_item_key_to_cpu(leaf, &key, slot);
5629 
5630 		/*
5631 		 * We might have an implicit trailing hole (NO_HOLES feature
5632 		 * enabled). We deal with it after leaving this loop.
5633 		 */
5634 		if (key.objectid != clone_root->ino ||
5635 		    key.type != BTRFS_EXTENT_DATA_KEY)
5636 			break;
5637 
5638 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5639 		type = btrfs_file_extent_type(leaf, ei);
5640 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5641 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5642 			ext_len = PAGE_ALIGN(ext_len);
5643 		} else {
5644 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5645 		}
5646 
5647 		if (key.offset + ext_len <= clone_root->offset)
5648 			goto next;
5649 
5650 		if (key.offset > clone_root->offset) {
5651 			/* Implicit hole, NO_HOLES feature enabled. */
5652 			u64 hole_len = key.offset - clone_root->offset;
5653 
5654 			if (hole_len > len)
5655 				hole_len = len;
5656 			ret = send_extent_data(sctx, dst_path, offset,
5657 					       hole_len);
5658 			if (ret < 0)
5659 				goto out;
5660 
5661 			len -= hole_len;
5662 			if (len == 0)
5663 				break;
5664 			offset += hole_len;
5665 			clone_root->offset += hole_len;
5666 			data_offset += hole_len;
5667 		}
5668 
5669 		if (key.offset >= clone_root->offset + len)
5670 			break;
5671 
5672 		if (key.offset >= clone_src_i_size)
5673 			break;
5674 
5675 		if (key.offset + ext_len > clone_src_i_size)
5676 			ext_len = clone_src_i_size - key.offset;
5677 
5678 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5679 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5680 			clone_root->offset = key.offset;
5681 			if (clone_data_offset < data_offset &&
5682 				clone_data_offset + ext_len > data_offset) {
5683 				u64 extent_offset;
5684 
5685 				extent_offset = data_offset - clone_data_offset;
5686 				ext_len -= extent_offset;
5687 				clone_data_offset += extent_offset;
5688 				clone_root->offset += extent_offset;
5689 			}
5690 		}
5691 
5692 		clone_len = min_t(u64, ext_len, len);
5693 
5694 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5695 		    clone_data_offset == data_offset) {
5696 			const u64 src_end = clone_root->offset + clone_len;
5697 			const u64 sectorsize = SZ_64K;
5698 
5699 			/*
5700 			 * We can't clone the last block, when its size is not
5701 			 * sector size aligned, into the middle of a file. If we
5702 			 * do so, the receiver will get a failure (-EINVAL) when
5703 			 * trying to clone or will silently corrupt the data in
5704 			 * the destination file if it's on a kernel without the
5705 			 * fix introduced by commit ac765f83f1397646
5706 			 * ("Btrfs: fix data corruption due to cloning of eof
5707 			 * block).
5708 			 *
5709 			 * So issue a clone of the aligned down range plus a
5710 			 * regular write for the eof block, if we hit that case.
5711 			 *
5712 			 * Also, we use the maximum possible sector size, 64K,
5713 			 * because we don't know what's the sector size of the
5714 			 * filesystem that receives the stream, so we have to
5715 			 * assume the largest possible sector size.
5716 			 */
5717 			if (src_end == clone_src_i_size &&
5718 			    !IS_ALIGNED(src_end, sectorsize) &&
5719 			    offset + clone_len < sctx->cur_inode_size) {
5720 				u64 slen;
5721 
5722 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5723 						  sectorsize);
5724 				if (slen > 0) {
5725 					ret = send_clone(sctx, offset, slen,
5726 							 clone_root);
5727 					if (ret < 0)
5728 						goto out;
5729 				}
5730 				ret = send_extent_data(sctx, dst_path,
5731 						       offset + slen,
5732 						       clone_len - slen);
5733 			} else {
5734 				ret = send_clone(sctx, offset, clone_len,
5735 						 clone_root);
5736 			}
5737 		} else {
5738 			ret = send_extent_data(sctx, dst_path, offset,
5739 					       clone_len);
5740 		}
5741 
5742 		if (ret < 0)
5743 			goto out;
5744 
5745 		len -= clone_len;
5746 		if (len == 0)
5747 			break;
5748 		offset += clone_len;
5749 		clone_root->offset += clone_len;
5750 
5751 		/*
5752 		 * If we are cloning from the file we are currently processing,
5753 		 * and using the send root as the clone root, we must stop once
5754 		 * the current clone offset reaches the current eof of the file
5755 		 * at the receiver, otherwise we would issue an invalid clone
5756 		 * operation (source range going beyond eof) and cause the
5757 		 * receiver to fail. So if we reach the current eof, bail out
5758 		 * and fallback to a regular write.
5759 		 */
5760 		if (clone_root->root == sctx->send_root &&
5761 		    clone_root->ino == sctx->cur_ino &&
5762 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
5763 			break;
5764 
5765 		data_offset += clone_len;
5766 next:
5767 		path->slots[0]++;
5768 	}
5769 
5770 	if (len > 0)
5771 		ret = send_extent_data(sctx, dst_path, offset, len);
5772 	else
5773 		ret = 0;
5774 out:
5775 	btrfs_free_path(path);
5776 	return ret;
5777 }
5778 
5779 static int send_write_or_clone(struct send_ctx *sctx,
5780 			       struct btrfs_path *path,
5781 			       struct btrfs_key *key,
5782 			       struct clone_root *clone_root)
5783 {
5784 	int ret = 0;
5785 	u64 offset = key->offset;
5786 	u64 end;
5787 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5788 
5789 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5790 	if (offset >= end)
5791 		return 0;
5792 
5793 	if (clone_root && IS_ALIGNED(end, bs)) {
5794 		struct btrfs_file_extent_item *ei;
5795 		u64 disk_byte;
5796 		u64 data_offset;
5797 
5798 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5799 				    struct btrfs_file_extent_item);
5800 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5801 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5802 		ret = clone_range(sctx, path, clone_root, disk_byte,
5803 				  data_offset, offset, end - offset);
5804 	} else {
5805 		ret = send_extent_data(sctx, path, offset, end - offset);
5806 	}
5807 	sctx->cur_inode_next_write_offset = end;
5808 	return ret;
5809 }
5810 
5811 static int is_extent_unchanged(struct send_ctx *sctx,
5812 			       struct btrfs_path *left_path,
5813 			       struct btrfs_key *ekey)
5814 {
5815 	int ret = 0;
5816 	struct btrfs_key key;
5817 	struct btrfs_path *path = NULL;
5818 	struct extent_buffer *eb;
5819 	int slot;
5820 	struct btrfs_key found_key;
5821 	struct btrfs_file_extent_item *ei;
5822 	u64 left_disknr;
5823 	u64 right_disknr;
5824 	u64 left_offset;
5825 	u64 right_offset;
5826 	u64 left_offset_fixed;
5827 	u64 left_len;
5828 	u64 right_len;
5829 	u64 left_gen;
5830 	u64 right_gen;
5831 	u8 left_type;
5832 	u8 right_type;
5833 
5834 	path = alloc_path_for_send();
5835 	if (!path)
5836 		return -ENOMEM;
5837 
5838 	eb = left_path->nodes[0];
5839 	slot = left_path->slots[0];
5840 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5841 	left_type = btrfs_file_extent_type(eb, ei);
5842 
5843 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5844 		ret = 0;
5845 		goto out;
5846 	}
5847 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5848 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5849 	left_offset = btrfs_file_extent_offset(eb, ei);
5850 	left_gen = btrfs_file_extent_generation(eb, ei);
5851 
5852 	/*
5853 	 * Following comments will refer to these graphics. L is the left
5854 	 * extents which we are checking at the moment. 1-8 are the right
5855 	 * extents that we iterate.
5856 	 *
5857 	 *       |-----L-----|
5858 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5859 	 *
5860 	 *       |-----L-----|
5861 	 * |--1--|-2b-|...(same as above)
5862 	 *
5863 	 * Alternative situation. Happens on files where extents got split.
5864 	 *       |-----L-----|
5865 	 * |-----------7-----------|-6-|
5866 	 *
5867 	 * Alternative situation. Happens on files which got larger.
5868 	 *       |-----L-----|
5869 	 * |-8-|
5870 	 * Nothing follows after 8.
5871 	 */
5872 
5873 	key.objectid = ekey->objectid;
5874 	key.type = BTRFS_EXTENT_DATA_KEY;
5875 	key.offset = ekey->offset;
5876 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5877 	if (ret < 0)
5878 		goto out;
5879 	if (ret) {
5880 		ret = 0;
5881 		goto out;
5882 	}
5883 
5884 	/*
5885 	 * Handle special case where the right side has no extents at all.
5886 	 */
5887 	eb = path->nodes[0];
5888 	slot = path->slots[0];
5889 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5890 	if (found_key.objectid != key.objectid ||
5891 	    found_key.type != key.type) {
5892 		/* If we're a hole then just pretend nothing changed */
5893 		ret = (left_disknr) ? 0 : 1;
5894 		goto out;
5895 	}
5896 
5897 	/*
5898 	 * We're now on 2a, 2b or 7.
5899 	 */
5900 	key = found_key;
5901 	while (key.offset < ekey->offset + left_len) {
5902 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5903 		right_type = btrfs_file_extent_type(eb, ei);
5904 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5905 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5906 			ret = 0;
5907 			goto out;
5908 		}
5909 
5910 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5911 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5912 			right_len = PAGE_ALIGN(right_len);
5913 		} else {
5914 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5915 		}
5916 
5917 		/*
5918 		 * Are we at extent 8? If yes, we know the extent is changed.
5919 		 * This may only happen on the first iteration.
5920 		 */
5921 		if (found_key.offset + right_len <= ekey->offset) {
5922 			/* If we're a hole just pretend nothing changed */
5923 			ret = (left_disknr) ? 0 : 1;
5924 			goto out;
5925 		}
5926 
5927 		/*
5928 		 * We just wanted to see if when we have an inline extent, what
5929 		 * follows it is a regular extent (wanted to check the above
5930 		 * condition for inline extents too). This should normally not
5931 		 * happen but it's possible for example when we have an inline
5932 		 * compressed extent representing data with a size matching
5933 		 * the page size (currently the same as sector size).
5934 		 */
5935 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5936 			ret = 0;
5937 			goto out;
5938 		}
5939 
5940 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5941 		right_offset = btrfs_file_extent_offset(eb, ei);
5942 		right_gen = btrfs_file_extent_generation(eb, ei);
5943 
5944 		left_offset_fixed = left_offset;
5945 		if (key.offset < ekey->offset) {
5946 			/* Fix the right offset for 2a and 7. */
5947 			right_offset += ekey->offset - key.offset;
5948 		} else {
5949 			/* Fix the left offset for all behind 2a and 2b */
5950 			left_offset_fixed += key.offset - ekey->offset;
5951 		}
5952 
5953 		/*
5954 		 * Check if we have the same extent.
5955 		 */
5956 		if (left_disknr != right_disknr ||
5957 		    left_offset_fixed != right_offset ||
5958 		    left_gen != right_gen) {
5959 			ret = 0;
5960 			goto out;
5961 		}
5962 
5963 		/*
5964 		 * Go to the next extent.
5965 		 */
5966 		ret = btrfs_next_item(sctx->parent_root, path);
5967 		if (ret < 0)
5968 			goto out;
5969 		if (!ret) {
5970 			eb = path->nodes[0];
5971 			slot = path->slots[0];
5972 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5973 		}
5974 		if (ret || found_key.objectid != key.objectid ||
5975 		    found_key.type != key.type) {
5976 			key.offset += right_len;
5977 			break;
5978 		}
5979 		if (found_key.offset != key.offset + right_len) {
5980 			ret = 0;
5981 			goto out;
5982 		}
5983 		key = found_key;
5984 	}
5985 
5986 	/*
5987 	 * We're now behind the left extent (treat as unchanged) or at the end
5988 	 * of the right side (treat as changed).
5989 	 */
5990 	if (key.offset >= ekey->offset + left_len)
5991 		ret = 1;
5992 	else
5993 		ret = 0;
5994 
5995 
5996 out:
5997 	btrfs_free_path(path);
5998 	return ret;
5999 }
6000 
6001 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6002 {
6003 	struct btrfs_path *path;
6004 	struct btrfs_root *root = sctx->send_root;
6005 	struct btrfs_key key;
6006 	int ret;
6007 
6008 	path = alloc_path_for_send();
6009 	if (!path)
6010 		return -ENOMEM;
6011 
6012 	sctx->cur_inode_last_extent = 0;
6013 
6014 	key.objectid = sctx->cur_ino;
6015 	key.type = BTRFS_EXTENT_DATA_KEY;
6016 	key.offset = offset;
6017 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6018 	if (ret < 0)
6019 		goto out;
6020 	ret = 0;
6021 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6022 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6023 		goto out;
6024 
6025 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6026 out:
6027 	btrfs_free_path(path);
6028 	return ret;
6029 }
6030 
6031 static int range_is_hole_in_parent(struct send_ctx *sctx,
6032 				   const u64 start,
6033 				   const u64 end)
6034 {
6035 	struct btrfs_path *path;
6036 	struct btrfs_key key;
6037 	struct btrfs_root *root = sctx->parent_root;
6038 	u64 search_start = start;
6039 	int ret;
6040 
6041 	path = alloc_path_for_send();
6042 	if (!path)
6043 		return -ENOMEM;
6044 
6045 	key.objectid = sctx->cur_ino;
6046 	key.type = BTRFS_EXTENT_DATA_KEY;
6047 	key.offset = search_start;
6048 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6049 	if (ret < 0)
6050 		goto out;
6051 	if (ret > 0 && path->slots[0] > 0)
6052 		path->slots[0]--;
6053 
6054 	while (search_start < end) {
6055 		struct extent_buffer *leaf = path->nodes[0];
6056 		int slot = path->slots[0];
6057 		struct btrfs_file_extent_item *fi;
6058 		u64 extent_end;
6059 
6060 		if (slot >= btrfs_header_nritems(leaf)) {
6061 			ret = btrfs_next_leaf(root, path);
6062 			if (ret < 0)
6063 				goto out;
6064 			else if (ret > 0)
6065 				break;
6066 			continue;
6067 		}
6068 
6069 		btrfs_item_key_to_cpu(leaf, &key, slot);
6070 		if (key.objectid < sctx->cur_ino ||
6071 		    key.type < BTRFS_EXTENT_DATA_KEY)
6072 			goto next;
6073 		if (key.objectid > sctx->cur_ino ||
6074 		    key.type > BTRFS_EXTENT_DATA_KEY ||
6075 		    key.offset >= end)
6076 			break;
6077 
6078 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6079 		extent_end = btrfs_file_extent_end(path);
6080 		if (extent_end <= start)
6081 			goto next;
6082 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6083 			search_start = extent_end;
6084 			goto next;
6085 		}
6086 		ret = 0;
6087 		goto out;
6088 next:
6089 		path->slots[0]++;
6090 	}
6091 	ret = 1;
6092 out:
6093 	btrfs_free_path(path);
6094 	return ret;
6095 }
6096 
6097 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6098 			   struct btrfs_key *key)
6099 {
6100 	int ret = 0;
6101 
6102 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6103 		return 0;
6104 
6105 	if (sctx->cur_inode_last_extent == (u64)-1) {
6106 		ret = get_last_extent(sctx, key->offset - 1);
6107 		if (ret)
6108 			return ret;
6109 	}
6110 
6111 	if (path->slots[0] == 0 &&
6112 	    sctx->cur_inode_last_extent < key->offset) {
6113 		/*
6114 		 * We might have skipped entire leafs that contained only
6115 		 * file extent items for our current inode. These leafs have
6116 		 * a generation number smaller (older) than the one in the
6117 		 * current leaf and the leaf our last extent came from, and
6118 		 * are located between these 2 leafs.
6119 		 */
6120 		ret = get_last_extent(sctx, key->offset - 1);
6121 		if (ret)
6122 			return ret;
6123 	}
6124 
6125 	if (sctx->cur_inode_last_extent < key->offset) {
6126 		ret = range_is_hole_in_parent(sctx,
6127 					      sctx->cur_inode_last_extent,
6128 					      key->offset);
6129 		if (ret < 0)
6130 			return ret;
6131 		else if (ret == 0)
6132 			ret = send_hole(sctx, key->offset);
6133 		else
6134 			ret = 0;
6135 	}
6136 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6137 	return ret;
6138 }
6139 
6140 static int process_extent(struct send_ctx *sctx,
6141 			  struct btrfs_path *path,
6142 			  struct btrfs_key *key)
6143 {
6144 	struct clone_root *found_clone = NULL;
6145 	int ret = 0;
6146 
6147 	if (S_ISLNK(sctx->cur_inode_mode))
6148 		return 0;
6149 
6150 	if (sctx->parent_root && !sctx->cur_inode_new) {
6151 		ret = is_extent_unchanged(sctx, path, key);
6152 		if (ret < 0)
6153 			goto out;
6154 		if (ret) {
6155 			ret = 0;
6156 			goto out_hole;
6157 		}
6158 	} else {
6159 		struct btrfs_file_extent_item *ei;
6160 		u8 type;
6161 
6162 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6163 				    struct btrfs_file_extent_item);
6164 		type = btrfs_file_extent_type(path->nodes[0], ei);
6165 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6166 		    type == BTRFS_FILE_EXTENT_REG) {
6167 			/*
6168 			 * The send spec does not have a prealloc command yet,
6169 			 * so just leave a hole for prealloc'ed extents until
6170 			 * we have enough commands queued up to justify rev'ing
6171 			 * the send spec.
6172 			 */
6173 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6174 				ret = 0;
6175 				goto out;
6176 			}
6177 
6178 			/* Have a hole, just skip it. */
6179 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6180 				ret = 0;
6181 				goto out;
6182 			}
6183 		}
6184 	}
6185 
6186 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6187 			sctx->cur_inode_size, &found_clone);
6188 	if (ret != -ENOENT && ret < 0)
6189 		goto out;
6190 
6191 	ret = send_write_or_clone(sctx, path, key, found_clone);
6192 	if (ret)
6193 		goto out;
6194 out_hole:
6195 	ret = maybe_send_hole(sctx, path, key);
6196 out:
6197 	return ret;
6198 }
6199 
6200 static int process_all_extents(struct send_ctx *sctx)
6201 {
6202 	int ret = 0;
6203 	int iter_ret = 0;
6204 	struct btrfs_root *root;
6205 	struct btrfs_path *path;
6206 	struct btrfs_key key;
6207 	struct btrfs_key found_key;
6208 
6209 	root = sctx->send_root;
6210 	path = alloc_path_for_send();
6211 	if (!path)
6212 		return -ENOMEM;
6213 
6214 	key.objectid = sctx->cmp_key->objectid;
6215 	key.type = BTRFS_EXTENT_DATA_KEY;
6216 	key.offset = 0;
6217 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6218 		if (found_key.objectid != key.objectid ||
6219 		    found_key.type != key.type) {
6220 			ret = 0;
6221 			break;
6222 		}
6223 
6224 		ret = process_extent(sctx, path, &found_key);
6225 		if (ret < 0)
6226 			break;
6227 	}
6228 	/* Catch error found during iteration */
6229 	if (iter_ret < 0)
6230 		ret = iter_ret;
6231 
6232 	btrfs_free_path(path);
6233 	return ret;
6234 }
6235 
6236 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6237 					   int *pending_move,
6238 					   int *refs_processed)
6239 {
6240 	int ret = 0;
6241 
6242 	if (sctx->cur_ino == 0)
6243 		goto out;
6244 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6245 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6246 		goto out;
6247 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6248 		goto out;
6249 
6250 	ret = process_recorded_refs(sctx, pending_move);
6251 	if (ret < 0)
6252 		goto out;
6253 
6254 	*refs_processed = 1;
6255 out:
6256 	return ret;
6257 }
6258 
6259 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6260 {
6261 	int ret = 0;
6262 	u64 left_mode;
6263 	u64 left_uid;
6264 	u64 left_gid;
6265 	u64 left_fileattr;
6266 	u64 right_mode;
6267 	u64 right_uid;
6268 	u64 right_gid;
6269 	u64 right_fileattr;
6270 	int need_chmod = 0;
6271 	int need_chown = 0;
6272 	bool need_fileattr = false;
6273 	int need_truncate = 1;
6274 	int pending_move = 0;
6275 	int refs_processed = 0;
6276 
6277 	if (sctx->ignore_cur_inode)
6278 		return 0;
6279 
6280 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6281 					      &refs_processed);
6282 	if (ret < 0)
6283 		goto out;
6284 
6285 	/*
6286 	 * We have processed the refs and thus need to advance send_progress.
6287 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6288 	 * inode into account.
6289 	 *
6290 	 * On the other hand, if our current inode is a directory and couldn't
6291 	 * be moved/renamed because its parent was renamed/moved too and it has
6292 	 * a higher inode number, we can only move/rename our current inode
6293 	 * after we moved/renamed its parent. Therefore in this case operate on
6294 	 * the old path (pre move/rename) of our current inode, and the
6295 	 * move/rename will be performed later.
6296 	 */
6297 	if (refs_processed && !pending_move)
6298 		sctx->send_progress = sctx->cur_ino + 1;
6299 
6300 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6301 		goto out;
6302 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6303 		goto out;
6304 
6305 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6306 			&left_mode, &left_uid, &left_gid, NULL, &left_fileattr);
6307 	if (ret < 0)
6308 		goto out;
6309 
6310 	if (!sctx->parent_root || sctx->cur_inode_new) {
6311 		need_chown = 1;
6312 		if (!S_ISLNK(sctx->cur_inode_mode))
6313 			need_chmod = 1;
6314 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6315 			need_truncate = 0;
6316 	} else {
6317 		u64 old_size;
6318 
6319 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6320 				&old_size, NULL, &right_mode, &right_uid,
6321 				&right_gid, NULL, &right_fileattr);
6322 		if (ret < 0)
6323 			goto out;
6324 
6325 		if (left_uid != right_uid || left_gid != right_gid)
6326 			need_chown = 1;
6327 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6328 			need_chmod = 1;
6329 		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6330 			need_fileattr = true;
6331 		if ((old_size == sctx->cur_inode_size) ||
6332 		    (sctx->cur_inode_size > old_size &&
6333 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6334 			need_truncate = 0;
6335 	}
6336 
6337 	if (S_ISREG(sctx->cur_inode_mode)) {
6338 		if (need_send_hole(sctx)) {
6339 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6340 			    sctx->cur_inode_last_extent <
6341 			    sctx->cur_inode_size) {
6342 				ret = get_last_extent(sctx, (u64)-1);
6343 				if (ret)
6344 					goto out;
6345 			}
6346 			if (sctx->cur_inode_last_extent <
6347 			    sctx->cur_inode_size) {
6348 				ret = send_hole(sctx, sctx->cur_inode_size);
6349 				if (ret)
6350 					goto out;
6351 			}
6352 		}
6353 		if (need_truncate) {
6354 			ret = send_truncate(sctx, sctx->cur_ino,
6355 					    sctx->cur_inode_gen,
6356 					    sctx->cur_inode_size);
6357 			if (ret < 0)
6358 				goto out;
6359 		}
6360 	}
6361 
6362 	if (need_chown) {
6363 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6364 				left_uid, left_gid);
6365 		if (ret < 0)
6366 			goto out;
6367 	}
6368 	if (need_chmod) {
6369 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6370 				left_mode);
6371 		if (ret < 0)
6372 			goto out;
6373 	}
6374 	if (need_fileattr) {
6375 		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6376 				    left_fileattr);
6377 		if (ret < 0)
6378 			goto out;
6379 	}
6380 
6381 	ret = send_capabilities(sctx);
6382 	if (ret < 0)
6383 		goto out;
6384 
6385 	/*
6386 	 * If other directory inodes depended on our current directory
6387 	 * inode's move/rename, now do their move/rename operations.
6388 	 */
6389 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6390 		ret = apply_children_dir_moves(sctx);
6391 		if (ret)
6392 			goto out;
6393 		/*
6394 		 * Need to send that every time, no matter if it actually
6395 		 * changed between the two trees as we have done changes to
6396 		 * the inode before. If our inode is a directory and it's
6397 		 * waiting to be moved/renamed, we will send its utimes when
6398 		 * it's moved/renamed, therefore we don't need to do it here.
6399 		 */
6400 		sctx->send_progress = sctx->cur_ino + 1;
6401 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6402 		if (ret < 0)
6403 			goto out;
6404 	}
6405 
6406 out:
6407 	return ret;
6408 }
6409 
6410 struct parent_paths_ctx {
6411 	struct list_head *refs;
6412 	struct send_ctx *sctx;
6413 };
6414 
6415 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6416 			     void *ctx)
6417 {
6418 	struct parent_paths_ctx *ppctx = ctx;
6419 
6420 	/*
6421 	 * Pass 0 as the generation for the directory, we don't care about it
6422 	 * here as we have no new references to add, we just want to delete all
6423 	 * references for an inode.
6424 	 */
6425 	return record_ref_in_tree(&ppctx->sctx->rbtree_deleted_refs, ppctx->refs,
6426 				  name, dir, 0, ppctx->sctx);
6427 }
6428 
6429 /*
6430  * Issue unlink operations for all paths of the current inode found in the
6431  * parent snapshot.
6432  */
6433 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6434 {
6435 	LIST_HEAD(deleted_refs);
6436 	struct btrfs_path *path;
6437 	struct btrfs_root *root = sctx->parent_root;
6438 	struct btrfs_key key;
6439 	struct btrfs_key found_key;
6440 	struct parent_paths_ctx ctx;
6441 	int iter_ret = 0;
6442 	int ret;
6443 
6444 	path = alloc_path_for_send();
6445 	if (!path)
6446 		return -ENOMEM;
6447 
6448 	key.objectid = sctx->cur_ino;
6449 	key.type = BTRFS_INODE_REF_KEY;
6450 	key.offset = 0;
6451 
6452 	ctx.refs = &deleted_refs;
6453 	ctx.sctx = sctx;
6454 
6455 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6456 		if (found_key.objectid != key.objectid)
6457 			break;
6458 		if (found_key.type != key.type &&
6459 		    found_key.type != BTRFS_INODE_EXTREF_KEY)
6460 			break;
6461 
6462 		ret = iterate_inode_ref(root, path, &found_key, 1,
6463 					record_parent_ref, &ctx);
6464 		if (ret < 0)
6465 			goto out;
6466 	}
6467 	/* Catch error found during iteration */
6468 	if (iter_ret < 0) {
6469 		ret = iter_ret;
6470 		goto out;
6471 	}
6472 
6473 	while (!list_empty(&deleted_refs)) {
6474 		struct recorded_ref *ref;
6475 
6476 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6477 		ret = send_unlink(sctx, ref->full_path);
6478 		if (ret < 0)
6479 			goto out;
6480 		recorded_ref_free(ref);
6481 	}
6482 	ret = 0;
6483 out:
6484 	btrfs_free_path(path);
6485 	if (ret)
6486 		__free_recorded_refs(&deleted_refs);
6487 	return ret;
6488 }
6489 
6490 static void close_current_inode(struct send_ctx *sctx)
6491 {
6492 	u64 i_size;
6493 
6494 	if (sctx->cur_inode == NULL)
6495 		return;
6496 
6497 	i_size = i_size_read(sctx->cur_inode);
6498 
6499 	/*
6500 	 * If we are doing an incremental send, we may have extents between the
6501 	 * last processed extent and the i_size that have not been processed
6502 	 * because they haven't changed but we may have read some of their pages
6503 	 * through readahead, see the comments at send_extent_data().
6504 	 */
6505 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6506 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6507 					   sctx->page_cache_clear_start,
6508 					   round_up(i_size, PAGE_SIZE) - 1);
6509 
6510 	iput(sctx->cur_inode);
6511 	sctx->cur_inode = NULL;
6512 }
6513 
6514 static int changed_inode(struct send_ctx *sctx,
6515 			 enum btrfs_compare_tree_result result)
6516 {
6517 	int ret = 0;
6518 	struct btrfs_key *key = sctx->cmp_key;
6519 	struct btrfs_inode_item *left_ii = NULL;
6520 	struct btrfs_inode_item *right_ii = NULL;
6521 	u64 left_gen = 0;
6522 	u64 right_gen = 0;
6523 
6524 	close_current_inode(sctx);
6525 
6526 	sctx->cur_ino = key->objectid;
6527 	sctx->cur_inode_new_gen = false;
6528 	sctx->cur_inode_last_extent = (u64)-1;
6529 	sctx->cur_inode_next_write_offset = 0;
6530 	sctx->ignore_cur_inode = false;
6531 
6532 	/*
6533 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6534 	 * functions that the current inode's refs are not updated yet. Later,
6535 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6536 	 */
6537 	sctx->send_progress = sctx->cur_ino;
6538 
6539 	if (result == BTRFS_COMPARE_TREE_NEW ||
6540 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6541 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6542 				sctx->left_path->slots[0],
6543 				struct btrfs_inode_item);
6544 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6545 				left_ii);
6546 	} else {
6547 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6548 				sctx->right_path->slots[0],
6549 				struct btrfs_inode_item);
6550 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6551 				right_ii);
6552 	}
6553 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6554 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6555 				sctx->right_path->slots[0],
6556 				struct btrfs_inode_item);
6557 
6558 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6559 				right_ii);
6560 
6561 		/*
6562 		 * The cur_ino = root dir case is special here. We can't treat
6563 		 * the inode as deleted+reused because it would generate a
6564 		 * stream that tries to delete/mkdir the root dir.
6565 		 */
6566 		if (left_gen != right_gen &&
6567 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6568 			sctx->cur_inode_new_gen = true;
6569 	}
6570 
6571 	/*
6572 	 * Normally we do not find inodes with a link count of zero (orphans)
6573 	 * because the most common case is to create a snapshot and use it
6574 	 * for a send operation. However other less common use cases involve
6575 	 * using a subvolume and send it after turning it to RO mode just
6576 	 * after deleting all hard links of a file while holding an open
6577 	 * file descriptor against it or turning a RO snapshot into RW mode,
6578 	 * keep an open file descriptor against a file, delete it and then
6579 	 * turn the snapshot back to RO mode before using it for a send
6580 	 * operation. So if we find such cases, ignore the inode and all its
6581 	 * items completely if it's a new inode, or if it's a changed inode
6582 	 * make sure all its previous paths (from the parent snapshot) are all
6583 	 * unlinked and all other the inode items are ignored.
6584 	 */
6585 	if (result == BTRFS_COMPARE_TREE_NEW ||
6586 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6587 		u32 nlinks;
6588 
6589 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6590 		if (nlinks == 0) {
6591 			sctx->ignore_cur_inode = true;
6592 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6593 				ret = btrfs_unlink_all_paths(sctx);
6594 			goto out;
6595 		}
6596 	}
6597 
6598 	if (result == BTRFS_COMPARE_TREE_NEW) {
6599 		sctx->cur_inode_gen = left_gen;
6600 		sctx->cur_inode_new = true;
6601 		sctx->cur_inode_deleted = false;
6602 		sctx->cur_inode_size = btrfs_inode_size(
6603 				sctx->left_path->nodes[0], left_ii);
6604 		sctx->cur_inode_mode = btrfs_inode_mode(
6605 				sctx->left_path->nodes[0], left_ii);
6606 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6607 				sctx->left_path->nodes[0], left_ii);
6608 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6609 			ret = send_create_inode_if_needed(sctx);
6610 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6611 		sctx->cur_inode_gen = right_gen;
6612 		sctx->cur_inode_new = false;
6613 		sctx->cur_inode_deleted = true;
6614 		sctx->cur_inode_size = btrfs_inode_size(
6615 				sctx->right_path->nodes[0], right_ii);
6616 		sctx->cur_inode_mode = btrfs_inode_mode(
6617 				sctx->right_path->nodes[0], right_ii);
6618 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6619 		/*
6620 		 * We need to do some special handling in case the inode was
6621 		 * reported as changed with a changed generation number. This
6622 		 * means that the original inode was deleted and new inode
6623 		 * reused the same inum. So we have to treat the old inode as
6624 		 * deleted and the new one as new.
6625 		 */
6626 		if (sctx->cur_inode_new_gen) {
6627 			/*
6628 			 * First, process the inode as if it was deleted.
6629 			 */
6630 			sctx->cur_inode_gen = right_gen;
6631 			sctx->cur_inode_new = false;
6632 			sctx->cur_inode_deleted = true;
6633 			sctx->cur_inode_size = btrfs_inode_size(
6634 					sctx->right_path->nodes[0], right_ii);
6635 			sctx->cur_inode_mode = btrfs_inode_mode(
6636 					sctx->right_path->nodes[0], right_ii);
6637 			ret = process_all_refs(sctx,
6638 					BTRFS_COMPARE_TREE_DELETED);
6639 			if (ret < 0)
6640 				goto out;
6641 
6642 			/*
6643 			 * Now process the inode as if it was new.
6644 			 */
6645 			sctx->cur_inode_gen = left_gen;
6646 			sctx->cur_inode_new = true;
6647 			sctx->cur_inode_deleted = false;
6648 			sctx->cur_inode_size = btrfs_inode_size(
6649 					sctx->left_path->nodes[0], left_ii);
6650 			sctx->cur_inode_mode = btrfs_inode_mode(
6651 					sctx->left_path->nodes[0], left_ii);
6652 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6653 					sctx->left_path->nodes[0], left_ii);
6654 			ret = send_create_inode_if_needed(sctx);
6655 			if (ret < 0)
6656 				goto out;
6657 
6658 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6659 			if (ret < 0)
6660 				goto out;
6661 			/*
6662 			 * Advance send_progress now as we did not get into
6663 			 * process_recorded_refs_if_needed in the new_gen case.
6664 			 */
6665 			sctx->send_progress = sctx->cur_ino + 1;
6666 
6667 			/*
6668 			 * Now process all extents and xattrs of the inode as if
6669 			 * they were all new.
6670 			 */
6671 			ret = process_all_extents(sctx);
6672 			if (ret < 0)
6673 				goto out;
6674 			ret = process_all_new_xattrs(sctx);
6675 			if (ret < 0)
6676 				goto out;
6677 		} else {
6678 			sctx->cur_inode_gen = left_gen;
6679 			sctx->cur_inode_new = false;
6680 			sctx->cur_inode_new_gen = false;
6681 			sctx->cur_inode_deleted = false;
6682 			sctx->cur_inode_size = btrfs_inode_size(
6683 					sctx->left_path->nodes[0], left_ii);
6684 			sctx->cur_inode_mode = btrfs_inode_mode(
6685 					sctx->left_path->nodes[0], left_ii);
6686 		}
6687 	}
6688 
6689 out:
6690 	return ret;
6691 }
6692 
6693 /*
6694  * We have to process new refs before deleted refs, but compare_trees gives us
6695  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6696  * first and later process them in process_recorded_refs.
6697  * For the cur_inode_new_gen case, we skip recording completely because
6698  * changed_inode did already initiate processing of refs. The reason for this is
6699  * that in this case, compare_tree actually compares the refs of 2 different
6700  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6701  * refs of the right tree as deleted and all refs of the left tree as new.
6702  */
6703 static int changed_ref(struct send_ctx *sctx,
6704 		       enum btrfs_compare_tree_result result)
6705 {
6706 	int ret = 0;
6707 
6708 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6709 		inconsistent_snapshot_error(sctx, result, "reference");
6710 		return -EIO;
6711 	}
6712 
6713 	if (!sctx->cur_inode_new_gen &&
6714 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6715 		if (result == BTRFS_COMPARE_TREE_NEW)
6716 			ret = record_new_ref(sctx);
6717 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6718 			ret = record_deleted_ref(sctx);
6719 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6720 			ret = record_changed_ref(sctx);
6721 	}
6722 
6723 	return ret;
6724 }
6725 
6726 /*
6727  * Process new/deleted/changed xattrs. We skip processing in the
6728  * cur_inode_new_gen case because changed_inode did already initiate processing
6729  * of xattrs. The reason is the same as in changed_ref
6730  */
6731 static int changed_xattr(struct send_ctx *sctx,
6732 			 enum btrfs_compare_tree_result result)
6733 {
6734 	int ret = 0;
6735 
6736 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6737 		inconsistent_snapshot_error(sctx, result, "xattr");
6738 		return -EIO;
6739 	}
6740 
6741 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6742 		if (result == BTRFS_COMPARE_TREE_NEW)
6743 			ret = process_new_xattr(sctx);
6744 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6745 			ret = process_deleted_xattr(sctx);
6746 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6747 			ret = process_changed_xattr(sctx);
6748 	}
6749 
6750 	return ret;
6751 }
6752 
6753 /*
6754  * Process new/deleted/changed extents. We skip processing in the
6755  * cur_inode_new_gen case because changed_inode did already initiate processing
6756  * of extents. The reason is the same as in changed_ref
6757  */
6758 static int changed_extent(struct send_ctx *sctx,
6759 			  enum btrfs_compare_tree_result result)
6760 {
6761 	int ret = 0;
6762 
6763 	/*
6764 	 * We have found an extent item that changed without the inode item
6765 	 * having changed. This can happen either after relocation (where the
6766 	 * disk_bytenr of an extent item is replaced at
6767 	 * relocation.c:replace_file_extents()) or after deduplication into a
6768 	 * file in both the parent and send snapshots (where an extent item can
6769 	 * get modified or replaced with a new one). Note that deduplication
6770 	 * updates the inode item, but it only changes the iversion (sequence
6771 	 * field in the inode item) of the inode, so if a file is deduplicated
6772 	 * the same amount of times in both the parent and send snapshots, its
6773 	 * iversion becomes the same in both snapshots, whence the inode item is
6774 	 * the same on both snapshots.
6775 	 */
6776 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6777 		return 0;
6778 
6779 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6780 		if (result != BTRFS_COMPARE_TREE_DELETED)
6781 			ret = process_extent(sctx, sctx->left_path,
6782 					sctx->cmp_key);
6783 	}
6784 
6785 	return ret;
6786 }
6787 
6788 static int dir_changed(struct send_ctx *sctx, u64 dir)
6789 {
6790 	u64 orig_gen, new_gen;
6791 	int ret;
6792 
6793 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6794 			     NULL, NULL, NULL);
6795 	if (ret)
6796 		return ret;
6797 
6798 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6799 			     NULL, NULL, NULL, NULL);
6800 	if (ret)
6801 		return ret;
6802 
6803 	return (orig_gen != new_gen) ? 1 : 0;
6804 }
6805 
6806 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6807 			struct btrfs_key *key)
6808 {
6809 	struct btrfs_inode_extref *extref;
6810 	struct extent_buffer *leaf;
6811 	u64 dirid = 0, last_dirid = 0;
6812 	unsigned long ptr;
6813 	u32 item_size;
6814 	u32 cur_offset = 0;
6815 	int ref_name_len;
6816 	int ret = 0;
6817 
6818 	/* Easy case, just check this one dirid */
6819 	if (key->type == BTRFS_INODE_REF_KEY) {
6820 		dirid = key->offset;
6821 
6822 		ret = dir_changed(sctx, dirid);
6823 		goto out;
6824 	}
6825 
6826 	leaf = path->nodes[0];
6827 	item_size = btrfs_item_size(leaf, path->slots[0]);
6828 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6829 	while (cur_offset < item_size) {
6830 		extref = (struct btrfs_inode_extref *)(ptr +
6831 						       cur_offset);
6832 		dirid = btrfs_inode_extref_parent(leaf, extref);
6833 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6834 		cur_offset += ref_name_len + sizeof(*extref);
6835 		if (dirid == last_dirid)
6836 			continue;
6837 		ret = dir_changed(sctx, dirid);
6838 		if (ret)
6839 			break;
6840 		last_dirid = dirid;
6841 	}
6842 out:
6843 	return ret;
6844 }
6845 
6846 /*
6847  * Updates compare related fields in sctx and simply forwards to the actual
6848  * changed_xxx functions.
6849  */
6850 static int changed_cb(struct btrfs_path *left_path,
6851 		      struct btrfs_path *right_path,
6852 		      struct btrfs_key *key,
6853 		      enum btrfs_compare_tree_result result,
6854 		      struct send_ctx *sctx)
6855 {
6856 	int ret = 0;
6857 
6858 	/*
6859 	 * We can not hold the commit root semaphore here. This is because in
6860 	 * the case of sending and receiving to the same filesystem, using a
6861 	 * pipe, could result in a deadlock:
6862 	 *
6863 	 * 1) The task running send blocks on the pipe because it's full;
6864 	 *
6865 	 * 2) The task running receive, which is the only consumer of the pipe,
6866 	 *    is waiting for a transaction commit (for example due to a space
6867 	 *    reservation when doing a write or triggering a transaction commit
6868 	 *    when creating a subvolume);
6869 	 *
6870 	 * 3) The transaction is waiting to write lock the commit root semaphore,
6871 	 *    but can not acquire it since it's being held at 1).
6872 	 *
6873 	 * Down this call chain we write to the pipe through kernel_write().
6874 	 * The same type of problem can also happen when sending to a file that
6875 	 * is stored in the same filesystem - when reserving space for a write
6876 	 * into the file, we can trigger a transaction commit.
6877 	 *
6878 	 * Our caller has supplied us with clones of leaves from the send and
6879 	 * parent roots, so we're safe here from a concurrent relocation and
6880 	 * further reallocation of metadata extents while we are here. Below we
6881 	 * also assert that the leaves are clones.
6882 	 */
6883 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
6884 
6885 	/*
6886 	 * We always have a send root, so left_path is never NULL. We will not
6887 	 * have a leaf when we have reached the end of the send root but have
6888 	 * not yet reached the end of the parent root.
6889 	 */
6890 	if (left_path->nodes[0])
6891 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6892 				&left_path->nodes[0]->bflags));
6893 	/*
6894 	 * When doing a full send we don't have a parent root, so right_path is
6895 	 * NULL. When doing an incremental send, we may have reached the end of
6896 	 * the parent root already, so we don't have a leaf at right_path.
6897 	 */
6898 	if (right_path && right_path->nodes[0])
6899 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6900 				&right_path->nodes[0]->bflags));
6901 
6902 	if (result == BTRFS_COMPARE_TREE_SAME) {
6903 		if (key->type == BTRFS_INODE_REF_KEY ||
6904 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6905 			ret = compare_refs(sctx, left_path, key);
6906 			if (!ret)
6907 				return 0;
6908 			if (ret < 0)
6909 				return ret;
6910 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6911 			return maybe_send_hole(sctx, left_path, key);
6912 		} else {
6913 			return 0;
6914 		}
6915 		result = BTRFS_COMPARE_TREE_CHANGED;
6916 		ret = 0;
6917 	}
6918 
6919 	sctx->left_path = left_path;
6920 	sctx->right_path = right_path;
6921 	sctx->cmp_key = key;
6922 
6923 	ret = finish_inode_if_needed(sctx, 0);
6924 	if (ret < 0)
6925 		goto out;
6926 
6927 	/* Ignore non-FS objects */
6928 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6929 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6930 		goto out;
6931 
6932 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6933 		ret = changed_inode(sctx, result);
6934 	} else if (!sctx->ignore_cur_inode) {
6935 		if (key->type == BTRFS_INODE_REF_KEY ||
6936 		    key->type == BTRFS_INODE_EXTREF_KEY)
6937 			ret = changed_ref(sctx, result);
6938 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6939 			ret = changed_xattr(sctx, result);
6940 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6941 			ret = changed_extent(sctx, result);
6942 	}
6943 
6944 out:
6945 	return ret;
6946 }
6947 
6948 static int search_key_again(const struct send_ctx *sctx,
6949 			    struct btrfs_root *root,
6950 			    struct btrfs_path *path,
6951 			    const struct btrfs_key *key)
6952 {
6953 	int ret;
6954 
6955 	if (!path->need_commit_sem)
6956 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
6957 
6958 	/*
6959 	 * Roots used for send operations are readonly and no one can add,
6960 	 * update or remove keys from them, so we should be able to find our
6961 	 * key again. The only exception is deduplication, which can operate on
6962 	 * readonly roots and add, update or remove keys to/from them - but at
6963 	 * the moment we don't allow it to run in parallel with send.
6964 	 */
6965 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6966 	ASSERT(ret <= 0);
6967 	if (ret > 0) {
6968 		btrfs_print_tree(path->nodes[path->lowest_level], false);
6969 		btrfs_err(root->fs_info,
6970 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
6971 			  key->objectid, key->type, key->offset,
6972 			  (root == sctx->parent_root ? "parent" : "send"),
6973 			  root->root_key.objectid, path->lowest_level,
6974 			  path->slots[path->lowest_level]);
6975 		return -EUCLEAN;
6976 	}
6977 
6978 	return ret;
6979 }
6980 
6981 static int full_send_tree(struct send_ctx *sctx)
6982 {
6983 	int ret;
6984 	struct btrfs_root *send_root = sctx->send_root;
6985 	struct btrfs_key key;
6986 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6987 	struct btrfs_path *path;
6988 
6989 	path = alloc_path_for_send();
6990 	if (!path)
6991 		return -ENOMEM;
6992 	path->reada = READA_FORWARD_ALWAYS;
6993 
6994 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6995 	key.type = BTRFS_INODE_ITEM_KEY;
6996 	key.offset = 0;
6997 
6998 	down_read(&fs_info->commit_root_sem);
6999 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7000 	up_read(&fs_info->commit_root_sem);
7001 
7002 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7003 	if (ret < 0)
7004 		goto out;
7005 	if (ret)
7006 		goto out_finish;
7007 
7008 	while (1) {
7009 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7010 
7011 		ret = changed_cb(path, NULL, &key,
7012 				 BTRFS_COMPARE_TREE_NEW, sctx);
7013 		if (ret < 0)
7014 			goto out;
7015 
7016 		down_read(&fs_info->commit_root_sem);
7017 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7018 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7019 			up_read(&fs_info->commit_root_sem);
7020 			/*
7021 			 * A transaction used for relocating a block group was
7022 			 * committed or is about to finish its commit. Release
7023 			 * our path (leaf) and restart the search, so that we
7024 			 * avoid operating on any file extent items that are
7025 			 * stale, with a disk_bytenr that reflects a pre
7026 			 * relocation value. This way we avoid as much as
7027 			 * possible to fallback to regular writes when checking
7028 			 * if we can clone file ranges.
7029 			 */
7030 			btrfs_release_path(path);
7031 			ret = search_key_again(sctx, send_root, path, &key);
7032 			if (ret < 0)
7033 				goto out;
7034 		} else {
7035 			up_read(&fs_info->commit_root_sem);
7036 		}
7037 
7038 		ret = btrfs_next_item(send_root, path);
7039 		if (ret < 0)
7040 			goto out;
7041 		if (ret) {
7042 			ret  = 0;
7043 			break;
7044 		}
7045 	}
7046 
7047 out_finish:
7048 	ret = finish_inode_if_needed(sctx, 1);
7049 
7050 out:
7051 	btrfs_free_path(path);
7052 	return ret;
7053 }
7054 
7055 static int replace_node_with_clone(struct btrfs_path *path, int level)
7056 {
7057 	struct extent_buffer *clone;
7058 
7059 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7060 	if (!clone)
7061 		return -ENOMEM;
7062 
7063 	free_extent_buffer(path->nodes[level]);
7064 	path->nodes[level] = clone;
7065 
7066 	return 0;
7067 }
7068 
7069 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7070 {
7071 	struct extent_buffer *eb;
7072 	struct extent_buffer *parent = path->nodes[*level];
7073 	int slot = path->slots[*level];
7074 	const int nritems = btrfs_header_nritems(parent);
7075 	u64 reada_max;
7076 	u64 reada_done = 0;
7077 
7078 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7079 
7080 	BUG_ON(*level == 0);
7081 	eb = btrfs_read_node_slot(parent, slot);
7082 	if (IS_ERR(eb))
7083 		return PTR_ERR(eb);
7084 
7085 	/*
7086 	 * Trigger readahead for the next leaves we will process, so that it is
7087 	 * very likely that when we need them they are already in memory and we
7088 	 * will not block on disk IO. For nodes we only do readahead for one,
7089 	 * since the time window between processing nodes is typically larger.
7090 	 */
7091 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7092 
7093 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7094 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7095 			btrfs_readahead_node_child(parent, slot);
7096 			reada_done += eb->fs_info->nodesize;
7097 		}
7098 	}
7099 
7100 	path->nodes[*level - 1] = eb;
7101 	path->slots[*level - 1] = 0;
7102 	(*level)--;
7103 
7104 	if (*level == 0)
7105 		return replace_node_with_clone(path, 0);
7106 
7107 	return 0;
7108 }
7109 
7110 static int tree_move_next_or_upnext(struct btrfs_path *path,
7111 				    int *level, int root_level)
7112 {
7113 	int ret = 0;
7114 	int nritems;
7115 	nritems = btrfs_header_nritems(path->nodes[*level]);
7116 
7117 	path->slots[*level]++;
7118 
7119 	while (path->slots[*level] >= nritems) {
7120 		if (*level == root_level) {
7121 			path->slots[*level] = nritems - 1;
7122 			return -1;
7123 		}
7124 
7125 		/* move upnext */
7126 		path->slots[*level] = 0;
7127 		free_extent_buffer(path->nodes[*level]);
7128 		path->nodes[*level] = NULL;
7129 		(*level)++;
7130 		path->slots[*level]++;
7131 
7132 		nritems = btrfs_header_nritems(path->nodes[*level]);
7133 		ret = 1;
7134 	}
7135 	return ret;
7136 }
7137 
7138 /*
7139  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7140  * or down.
7141  */
7142 static int tree_advance(struct btrfs_path *path,
7143 			int *level, int root_level,
7144 			int allow_down,
7145 			struct btrfs_key *key,
7146 			u64 reada_min_gen)
7147 {
7148 	int ret;
7149 
7150 	if (*level == 0 || !allow_down) {
7151 		ret = tree_move_next_or_upnext(path, level, root_level);
7152 	} else {
7153 		ret = tree_move_down(path, level, reada_min_gen);
7154 	}
7155 
7156 	/*
7157 	 * Even if we have reached the end of a tree, ret is -1, update the key
7158 	 * anyway, so that in case we need to restart due to a block group
7159 	 * relocation, we can assert that the last key of the root node still
7160 	 * exists in the tree.
7161 	 */
7162 	if (*level == 0)
7163 		btrfs_item_key_to_cpu(path->nodes[*level], key,
7164 				      path->slots[*level]);
7165 	else
7166 		btrfs_node_key_to_cpu(path->nodes[*level], key,
7167 				      path->slots[*level]);
7168 
7169 	return ret;
7170 }
7171 
7172 static int tree_compare_item(struct btrfs_path *left_path,
7173 			     struct btrfs_path *right_path,
7174 			     char *tmp_buf)
7175 {
7176 	int cmp;
7177 	int len1, len2;
7178 	unsigned long off1, off2;
7179 
7180 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7181 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7182 	if (len1 != len2)
7183 		return 1;
7184 
7185 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7186 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7187 				right_path->slots[0]);
7188 
7189 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7190 
7191 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7192 	if (cmp)
7193 		return 1;
7194 	return 0;
7195 }
7196 
7197 /*
7198  * A transaction used for relocating a block group was committed or is about to
7199  * finish its commit. Release our paths and restart the search, so that we are
7200  * not using stale extent buffers:
7201  *
7202  * 1) For levels > 0, we are only holding references of extent buffers, without
7203  *    any locks on them, which does not prevent them from having been relocated
7204  *    and reallocated after the last time we released the commit root semaphore.
7205  *    The exception are the root nodes, for which we always have a clone, see
7206  *    the comment at btrfs_compare_trees();
7207  *
7208  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7209  *    we are safe from the concurrent relocation and reallocation. However they
7210  *    can have file extent items with a pre relocation disk_bytenr value, so we
7211  *    restart the start from the current commit roots and clone the new leaves so
7212  *    that we get the post relocation disk_bytenr values. Not doing so, could
7213  *    make us clone the wrong data in case there are new extents using the old
7214  *    disk_bytenr that happen to be shared.
7215  */
7216 static int restart_after_relocation(struct btrfs_path *left_path,
7217 				    struct btrfs_path *right_path,
7218 				    const struct btrfs_key *left_key,
7219 				    const struct btrfs_key *right_key,
7220 				    int left_level,
7221 				    int right_level,
7222 				    const struct send_ctx *sctx)
7223 {
7224 	int root_level;
7225 	int ret;
7226 
7227 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7228 
7229 	btrfs_release_path(left_path);
7230 	btrfs_release_path(right_path);
7231 
7232 	/*
7233 	 * Since keys can not be added or removed to/from our roots because they
7234 	 * are readonly and we do not allow deduplication to run in parallel
7235 	 * (which can add, remove or change keys), the layout of the trees should
7236 	 * not change.
7237 	 */
7238 	left_path->lowest_level = left_level;
7239 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7240 	if (ret < 0)
7241 		return ret;
7242 
7243 	right_path->lowest_level = right_level;
7244 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7245 	if (ret < 0)
7246 		return ret;
7247 
7248 	/*
7249 	 * If the lowest level nodes are leaves, clone them so that they can be
7250 	 * safely used by changed_cb() while not under the protection of the
7251 	 * commit root semaphore, even if relocation and reallocation happens in
7252 	 * parallel.
7253 	 */
7254 	if (left_level == 0) {
7255 		ret = replace_node_with_clone(left_path, 0);
7256 		if (ret < 0)
7257 			return ret;
7258 	}
7259 
7260 	if (right_level == 0) {
7261 		ret = replace_node_with_clone(right_path, 0);
7262 		if (ret < 0)
7263 			return ret;
7264 	}
7265 
7266 	/*
7267 	 * Now clone the root nodes (unless they happen to be the leaves we have
7268 	 * already cloned). This is to protect against concurrent snapshotting of
7269 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7270 	 */
7271 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7272 	if (root_level > 0) {
7273 		ret = replace_node_with_clone(left_path, root_level);
7274 		if (ret < 0)
7275 			return ret;
7276 	}
7277 
7278 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7279 	if (root_level > 0) {
7280 		ret = replace_node_with_clone(right_path, root_level);
7281 		if (ret < 0)
7282 			return ret;
7283 	}
7284 
7285 	return 0;
7286 }
7287 
7288 /*
7289  * This function compares two trees and calls the provided callback for
7290  * every changed/new/deleted item it finds.
7291  * If shared tree blocks are encountered, whole subtrees are skipped, making
7292  * the compare pretty fast on snapshotted subvolumes.
7293  *
7294  * This currently works on commit roots only. As commit roots are read only,
7295  * we don't do any locking. The commit roots are protected with transactions.
7296  * Transactions are ended and rejoined when a commit is tried in between.
7297  *
7298  * This function checks for modifications done to the trees while comparing.
7299  * If it detects a change, it aborts immediately.
7300  */
7301 static int btrfs_compare_trees(struct btrfs_root *left_root,
7302 			struct btrfs_root *right_root, struct send_ctx *sctx)
7303 {
7304 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7305 	int ret;
7306 	int cmp;
7307 	struct btrfs_path *left_path = NULL;
7308 	struct btrfs_path *right_path = NULL;
7309 	struct btrfs_key left_key;
7310 	struct btrfs_key right_key;
7311 	char *tmp_buf = NULL;
7312 	int left_root_level;
7313 	int right_root_level;
7314 	int left_level;
7315 	int right_level;
7316 	int left_end_reached = 0;
7317 	int right_end_reached = 0;
7318 	int advance_left = 0;
7319 	int advance_right = 0;
7320 	u64 left_blockptr;
7321 	u64 right_blockptr;
7322 	u64 left_gen;
7323 	u64 right_gen;
7324 	u64 reada_min_gen;
7325 
7326 	left_path = btrfs_alloc_path();
7327 	if (!left_path) {
7328 		ret = -ENOMEM;
7329 		goto out;
7330 	}
7331 	right_path = btrfs_alloc_path();
7332 	if (!right_path) {
7333 		ret = -ENOMEM;
7334 		goto out;
7335 	}
7336 
7337 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7338 	if (!tmp_buf) {
7339 		ret = -ENOMEM;
7340 		goto out;
7341 	}
7342 
7343 	left_path->search_commit_root = 1;
7344 	left_path->skip_locking = 1;
7345 	right_path->search_commit_root = 1;
7346 	right_path->skip_locking = 1;
7347 
7348 	/*
7349 	 * Strategy: Go to the first items of both trees. Then do
7350 	 *
7351 	 * If both trees are at level 0
7352 	 *   Compare keys of current items
7353 	 *     If left < right treat left item as new, advance left tree
7354 	 *       and repeat
7355 	 *     If left > right treat right item as deleted, advance right tree
7356 	 *       and repeat
7357 	 *     If left == right do deep compare of items, treat as changed if
7358 	 *       needed, advance both trees and repeat
7359 	 * If both trees are at the same level but not at level 0
7360 	 *   Compare keys of current nodes/leafs
7361 	 *     If left < right advance left tree and repeat
7362 	 *     If left > right advance right tree and repeat
7363 	 *     If left == right compare blockptrs of the next nodes/leafs
7364 	 *       If they match advance both trees but stay at the same level
7365 	 *         and repeat
7366 	 *       If they don't match advance both trees while allowing to go
7367 	 *         deeper and repeat
7368 	 * If tree levels are different
7369 	 *   Advance the tree that needs it and repeat
7370 	 *
7371 	 * Advancing a tree means:
7372 	 *   If we are at level 0, try to go to the next slot. If that's not
7373 	 *   possible, go one level up and repeat. Stop when we found a level
7374 	 *   where we could go to the next slot. We may at this point be on a
7375 	 *   node or a leaf.
7376 	 *
7377 	 *   If we are not at level 0 and not on shared tree blocks, go one
7378 	 *   level deeper.
7379 	 *
7380 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7381 	 *   the right if possible or go up and right.
7382 	 */
7383 
7384 	down_read(&fs_info->commit_root_sem);
7385 	left_level = btrfs_header_level(left_root->commit_root);
7386 	left_root_level = left_level;
7387 	/*
7388 	 * We clone the root node of the send and parent roots to prevent races
7389 	 * with snapshot creation of these roots. Snapshot creation COWs the
7390 	 * root node of a tree, so after the transaction is committed the old
7391 	 * extent can be reallocated while this send operation is still ongoing.
7392 	 * So we clone them, under the commit root semaphore, to be race free.
7393 	 */
7394 	left_path->nodes[left_level] =
7395 			btrfs_clone_extent_buffer(left_root->commit_root);
7396 	if (!left_path->nodes[left_level]) {
7397 		ret = -ENOMEM;
7398 		goto out_unlock;
7399 	}
7400 
7401 	right_level = btrfs_header_level(right_root->commit_root);
7402 	right_root_level = right_level;
7403 	right_path->nodes[right_level] =
7404 			btrfs_clone_extent_buffer(right_root->commit_root);
7405 	if (!right_path->nodes[right_level]) {
7406 		ret = -ENOMEM;
7407 		goto out_unlock;
7408 	}
7409 	/*
7410 	 * Our right root is the parent root, while the left root is the "send"
7411 	 * root. We know that all new nodes/leaves in the left root must have
7412 	 * a generation greater than the right root's generation, so we trigger
7413 	 * readahead for those nodes and leaves of the left root, as we know we
7414 	 * will need to read them at some point.
7415 	 */
7416 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7417 
7418 	if (left_level == 0)
7419 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7420 				&left_key, left_path->slots[left_level]);
7421 	else
7422 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7423 				&left_key, left_path->slots[left_level]);
7424 	if (right_level == 0)
7425 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7426 				&right_key, right_path->slots[right_level]);
7427 	else
7428 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7429 				&right_key, right_path->slots[right_level]);
7430 
7431 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7432 
7433 	while (1) {
7434 		if (need_resched() ||
7435 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7436 			up_read(&fs_info->commit_root_sem);
7437 			cond_resched();
7438 			down_read(&fs_info->commit_root_sem);
7439 		}
7440 
7441 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7442 			ret = restart_after_relocation(left_path, right_path,
7443 						       &left_key, &right_key,
7444 						       left_level, right_level,
7445 						       sctx);
7446 			if (ret < 0)
7447 				goto out_unlock;
7448 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7449 		}
7450 
7451 		if (advance_left && !left_end_reached) {
7452 			ret = tree_advance(left_path, &left_level,
7453 					left_root_level,
7454 					advance_left != ADVANCE_ONLY_NEXT,
7455 					&left_key, reada_min_gen);
7456 			if (ret == -1)
7457 				left_end_reached = ADVANCE;
7458 			else if (ret < 0)
7459 				goto out_unlock;
7460 			advance_left = 0;
7461 		}
7462 		if (advance_right && !right_end_reached) {
7463 			ret = tree_advance(right_path, &right_level,
7464 					right_root_level,
7465 					advance_right != ADVANCE_ONLY_NEXT,
7466 					&right_key, reada_min_gen);
7467 			if (ret == -1)
7468 				right_end_reached = ADVANCE;
7469 			else if (ret < 0)
7470 				goto out_unlock;
7471 			advance_right = 0;
7472 		}
7473 
7474 		if (left_end_reached && right_end_reached) {
7475 			ret = 0;
7476 			goto out_unlock;
7477 		} else if (left_end_reached) {
7478 			if (right_level == 0) {
7479 				up_read(&fs_info->commit_root_sem);
7480 				ret = changed_cb(left_path, right_path,
7481 						&right_key,
7482 						BTRFS_COMPARE_TREE_DELETED,
7483 						sctx);
7484 				if (ret < 0)
7485 					goto out;
7486 				down_read(&fs_info->commit_root_sem);
7487 			}
7488 			advance_right = ADVANCE;
7489 			continue;
7490 		} else if (right_end_reached) {
7491 			if (left_level == 0) {
7492 				up_read(&fs_info->commit_root_sem);
7493 				ret = changed_cb(left_path, right_path,
7494 						&left_key,
7495 						BTRFS_COMPARE_TREE_NEW,
7496 						sctx);
7497 				if (ret < 0)
7498 					goto out;
7499 				down_read(&fs_info->commit_root_sem);
7500 			}
7501 			advance_left = ADVANCE;
7502 			continue;
7503 		}
7504 
7505 		if (left_level == 0 && right_level == 0) {
7506 			up_read(&fs_info->commit_root_sem);
7507 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7508 			if (cmp < 0) {
7509 				ret = changed_cb(left_path, right_path,
7510 						&left_key,
7511 						BTRFS_COMPARE_TREE_NEW,
7512 						sctx);
7513 				advance_left = ADVANCE;
7514 			} else if (cmp > 0) {
7515 				ret = changed_cb(left_path, right_path,
7516 						&right_key,
7517 						BTRFS_COMPARE_TREE_DELETED,
7518 						sctx);
7519 				advance_right = ADVANCE;
7520 			} else {
7521 				enum btrfs_compare_tree_result result;
7522 
7523 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7524 				ret = tree_compare_item(left_path, right_path,
7525 							tmp_buf);
7526 				if (ret)
7527 					result = BTRFS_COMPARE_TREE_CHANGED;
7528 				else
7529 					result = BTRFS_COMPARE_TREE_SAME;
7530 				ret = changed_cb(left_path, right_path,
7531 						 &left_key, result, sctx);
7532 				advance_left = ADVANCE;
7533 				advance_right = ADVANCE;
7534 			}
7535 
7536 			if (ret < 0)
7537 				goto out;
7538 			down_read(&fs_info->commit_root_sem);
7539 		} else if (left_level == right_level) {
7540 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7541 			if (cmp < 0) {
7542 				advance_left = ADVANCE;
7543 			} else if (cmp > 0) {
7544 				advance_right = ADVANCE;
7545 			} else {
7546 				left_blockptr = btrfs_node_blockptr(
7547 						left_path->nodes[left_level],
7548 						left_path->slots[left_level]);
7549 				right_blockptr = btrfs_node_blockptr(
7550 						right_path->nodes[right_level],
7551 						right_path->slots[right_level]);
7552 				left_gen = btrfs_node_ptr_generation(
7553 						left_path->nodes[left_level],
7554 						left_path->slots[left_level]);
7555 				right_gen = btrfs_node_ptr_generation(
7556 						right_path->nodes[right_level],
7557 						right_path->slots[right_level]);
7558 				if (left_blockptr == right_blockptr &&
7559 				    left_gen == right_gen) {
7560 					/*
7561 					 * As we're on a shared block, don't
7562 					 * allow to go deeper.
7563 					 */
7564 					advance_left = ADVANCE_ONLY_NEXT;
7565 					advance_right = ADVANCE_ONLY_NEXT;
7566 				} else {
7567 					advance_left = ADVANCE;
7568 					advance_right = ADVANCE;
7569 				}
7570 			}
7571 		} else if (left_level < right_level) {
7572 			advance_right = ADVANCE;
7573 		} else {
7574 			advance_left = ADVANCE;
7575 		}
7576 	}
7577 
7578 out_unlock:
7579 	up_read(&fs_info->commit_root_sem);
7580 out:
7581 	btrfs_free_path(left_path);
7582 	btrfs_free_path(right_path);
7583 	kvfree(tmp_buf);
7584 	return ret;
7585 }
7586 
7587 static int send_subvol(struct send_ctx *sctx)
7588 {
7589 	int ret;
7590 
7591 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7592 		ret = send_header(sctx);
7593 		if (ret < 0)
7594 			goto out;
7595 	}
7596 
7597 	ret = send_subvol_begin(sctx);
7598 	if (ret < 0)
7599 		goto out;
7600 
7601 	if (sctx->parent_root) {
7602 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7603 		if (ret < 0)
7604 			goto out;
7605 		ret = finish_inode_if_needed(sctx, 1);
7606 		if (ret < 0)
7607 			goto out;
7608 	} else {
7609 		ret = full_send_tree(sctx);
7610 		if (ret < 0)
7611 			goto out;
7612 	}
7613 
7614 out:
7615 	free_recorded_refs(sctx);
7616 	return ret;
7617 }
7618 
7619 /*
7620  * If orphan cleanup did remove any orphans from a root, it means the tree
7621  * was modified and therefore the commit root is not the same as the current
7622  * root anymore. This is a problem, because send uses the commit root and
7623  * therefore can see inode items that don't exist in the current root anymore,
7624  * and for example make calls to btrfs_iget, which will do tree lookups based
7625  * on the current root and not on the commit root. Those lookups will fail,
7626  * returning a -ESTALE error, and making send fail with that error. So make
7627  * sure a send does not see any orphans we have just removed, and that it will
7628  * see the same inodes regardless of whether a transaction commit happened
7629  * before it started (meaning that the commit root will be the same as the
7630  * current root) or not.
7631  */
7632 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7633 {
7634 	int i;
7635 	struct btrfs_trans_handle *trans = NULL;
7636 
7637 again:
7638 	if (sctx->parent_root &&
7639 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7640 		goto commit_trans;
7641 
7642 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7643 		if (sctx->clone_roots[i].root->node !=
7644 		    sctx->clone_roots[i].root->commit_root)
7645 			goto commit_trans;
7646 
7647 	if (trans)
7648 		return btrfs_end_transaction(trans);
7649 
7650 	return 0;
7651 
7652 commit_trans:
7653 	/* Use any root, all fs roots will get their commit roots updated. */
7654 	if (!trans) {
7655 		trans = btrfs_join_transaction(sctx->send_root);
7656 		if (IS_ERR(trans))
7657 			return PTR_ERR(trans);
7658 		goto again;
7659 	}
7660 
7661 	return btrfs_commit_transaction(trans);
7662 }
7663 
7664 /*
7665  * Make sure any existing dellaloc is flushed for any root used by a send
7666  * operation so that we do not miss any data and we do not race with writeback
7667  * finishing and changing a tree while send is using the tree. This could
7668  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7669  * a send operation then uses the subvolume.
7670  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7671  */
7672 static int flush_delalloc_roots(struct send_ctx *sctx)
7673 {
7674 	struct btrfs_root *root = sctx->parent_root;
7675 	int ret;
7676 	int i;
7677 
7678 	if (root) {
7679 		ret = btrfs_start_delalloc_snapshot(root, false);
7680 		if (ret)
7681 			return ret;
7682 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7683 	}
7684 
7685 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7686 		root = sctx->clone_roots[i].root;
7687 		ret = btrfs_start_delalloc_snapshot(root, false);
7688 		if (ret)
7689 			return ret;
7690 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7691 	}
7692 
7693 	return 0;
7694 }
7695 
7696 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7697 {
7698 	spin_lock(&root->root_item_lock);
7699 	root->send_in_progress--;
7700 	/*
7701 	 * Not much left to do, we don't know why it's unbalanced and
7702 	 * can't blindly reset it to 0.
7703 	 */
7704 	if (root->send_in_progress < 0)
7705 		btrfs_err(root->fs_info,
7706 			  "send_in_progress unbalanced %d root %llu",
7707 			  root->send_in_progress, root->root_key.objectid);
7708 	spin_unlock(&root->root_item_lock);
7709 }
7710 
7711 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7712 {
7713 	btrfs_warn_rl(root->fs_info,
7714 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7715 		      root->root_key.objectid, root->dedupe_in_progress);
7716 }
7717 
7718 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
7719 {
7720 	int ret = 0;
7721 	struct btrfs_root *send_root = BTRFS_I(inode)->root;
7722 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7723 	struct btrfs_root *clone_root;
7724 	struct send_ctx *sctx = NULL;
7725 	u32 i;
7726 	u64 *clone_sources_tmp = NULL;
7727 	int clone_sources_to_rollback = 0;
7728 	size_t alloc_size;
7729 	int sort_clone_roots = 0;
7730 
7731 	if (!capable(CAP_SYS_ADMIN))
7732 		return -EPERM;
7733 
7734 	/*
7735 	 * The subvolume must remain read-only during send, protect against
7736 	 * making it RW. This also protects against deletion.
7737 	 */
7738 	spin_lock(&send_root->root_item_lock);
7739 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7740 		dedupe_in_progress_warn(send_root);
7741 		spin_unlock(&send_root->root_item_lock);
7742 		return -EAGAIN;
7743 	}
7744 	send_root->send_in_progress++;
7745 	spin_unlock(&send_root->root_item_lock);
7746 
7747 	/*
7748 	 * Userspace tools do the checks and warn the user if it's
7749 	 * not RO.
7750 	 */
7751 	if (!btrfs_root_readonly(send_root)) {
7752 		ret = -EPERM;
7753 		goto out;
7754 	}
7755 
7756 	/*
7757 	 * Check that we don't overflow at later allocations, we request
7758 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7759 	 * access_ok.
7760 	 */
7761 	if (arg->clone_sources_count >
7762 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7763 		ret = -EINVAL;
7764 		goto out;
7765 	}
7766 
7767 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7768 		ret = -EINVAL;
7769 		goto out;
7770 	}
7771 
7772 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7773 	if (!sctx) {
7774 		ret = -ENOMEM;
7775 		goto out;
7776 	}
7777 
7778 	INIT_LIST_HEAD(&sctx->new_refs);
7779 	INIT_LIST_HEAD(&sctx->deleted_refs);
7780 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7781 	INIT_LIST_HEAD(&sctx->name_cache_list);
7782 
7783 	sctx->flags = arg->flags;
7784 
7785 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
7786 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
7787 			ret = -EPROTO;
7788 			goto out;
7789 		}
7790 		/* Zero means "use the highest version" */
7791 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
7792 	} else {
7793 		sctx->proto = 1;
7794 	}
7795 	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
7796 		ret = -EINVAL;
7797 		goto out;
7798 	}
7799 
7800 	sctx->send_filp = fget(arg->send_fd);
7801 	if (!sctx->send_filp) {
7802 		ret = -EBADF;
7803 		goto out;
7804 	}
7805 
7806 	sctx->send_root = send_root;
7807 	/*
7808 	 * Unlikely but possible, if the subvolume is marked for deletion but
7809 	 * is slow to remove the directory entry, send can still be started
7810 	 */
7811 	if (btrfs_root_dead(sctx->send_root)) {
7812 		ret = -EPERM;
7813 		goto out;
7814 	}
7815 
7816 	sctx->clone_roots_cnt = arg->clone_sources_count;
7817 
7818 	if (sctx->proto >= 2) {
7819 		u32 send_buf_num_pages;
7820 
7821 		sctx->send_max_size = ALIGN(SZ_16K + BTRFS_MAX_COMPRESSED, PAGE_SIZE);
7822 		sctx->send_buf = vmalloc(sctx->send_max_size);
7823 		if (!sctx->send_buf) {
7824 			ret = -ENOMEM;
7825 			goto out;
7826 		}
7827 		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
7828 		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
7829 					       sizeof(*sctx->send_buf_pages),
7830 					       GFP_KERNEL);
7831 		if (!sctx->send_buf_pages) {
7832 			ret = -ENOMEM;
7833 			goto out;
7834 		}
7835 		for (i = 0; i < send_buf_num_pages; i++) {
7836 			sctx->send_buf_pages[i] =
7837 				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
7838 		}
7839 	} else {
7840 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
7841 		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7842 	}
7843 	if (!sctx->send_buf) {
7844 		ret = -ENOMEM;
7845 		goto out;
7846 	}
7847 
7848 	sctx->pending_dir_moves = RB_ROOT;
7849 	sctx->waiting_dir_moves = RB_ROOT;
7850 	sctx->orphan_dirs = RB_ROOT;
7851 	sctx->rbtree_new_refs = RB_ROOT;
7852 	sctx->rbtree_deleted_refs = RB_ROOT;
7853 
7854 	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7855 				     arg->clone_sources_count + 1,
7856 				     GFP_KERNEL);
7857 	if (!sctx->clone_roots) {
7858 		ret = -ENOMEM;
7859 		goto out;
7860 	}
7861 
7862 	alloc_size = array_size(sizeof(*arg->clone_sources),
7863 				arg->clone_sources_count);
7864 
7865 	if (arg->clone_sources_count) {
7866 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7867 		if (!clone_sources_tmp) {
7868 			ret = -ENOMEM;
7869 			goto out;
7870 		}
7871 
7872 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7873 				alloc_size);
7874 		if (ret) {
7875 			ret = -EFAULT;
7876 			goto out;
7877 		}
7878 
7879 		for (i = 0; i < arg->clone_sources_count; i++) {
7880 			clone_root = btrfs_get_fs_root(fs_info,
7881 						clone_sources_tmp[i], true);
7882 			if (IS_ERR(clone_root)) {
7883 				ret = PTR_ERR(clone_root);
7884 				goto out;
7885 			}
7886 			spin_lock(&clone_root->root_item_lock);
7887 			if (!btrfs_root_readonly(clone_root) ||
7888 			    btrfs_root_dead(clone_root)) {
7889 				spin_unlock(&clone_root->root_item_lock);
7890 				btrfs_put_root(clone_root);
7891 				ret = -EPERM;
7892 				goto out;
7893 			}
7894 			if (clone_root->dedupe_in_progress) {
7895 				dedupe_in_progress_warn(clone_root);
7896 				spin_unlock(&clone_root->root_item_lock);
7897 				btrfs_put_root(clone_root);
7898 				ret = -EAGAIN;
7899 				goto out;
7900 			}
7901 			clone_root->send_in_progress++;
7902 			spin_unlock(&clone_root->root_item_lock);
7903 
7904 			sctx->clone_roots[i].root = clone_root;
7905 			clone_sources_to_rollback = i + 1;
7906 		}
7907 		kvfree(clone_sources_tmp);
7908 		clone_sources_tmp = NULL;
7909 	}
7910 
7911 	if (arg->parent_root) {
7912 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7913 						      true);
7914 		if (IS_ERR(sctx->parent_root)) {
7915 			ret = PTR_ERR(sctx->parent_root);
7916 			goto out;
7917 		}
7918 
7919 		spin_lock(&sctx->parent_root->root_item_lock);
7920 		sctx->parent_root->send_in_progress++;
7921 		if (!btrfs_root_readonly(sctx->parent_root) ||
7922 				btrfs_root_dead(sctx->parent_root)) {
7923 			spin_unlock(&sctx->parent_root->root_item_lock);
7924 			ret = -EPERM;
7925 			goto out;
7926 		}
7927 		if (sctx->parent_root->dedupe_in_progress) {
7928 			dedupe_in_progress_warn(sctx->parent_root);
7929 			spin_unlock(&sctx->parent_root->root_item_lock);
7930 			ret = -EAGAIN;
7931 			goto out;
7932 		}
7933 		spin_unlock(&sctx->parent_root->root_item_lock);
7934 	}
7935 
7936 	/*
7937 	 * Clones from send_root are allowed, but only if the clone source
7938 	 * is behind the current send position. This is checked while searching
7939 	 * for possible clone sources.
7940 	 */
7941 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7942 		btrfs_grab_root(sctx->send_root);
7943 
7944 	/* We do a bsearch later */
7945 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7946 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7947 			NULL);
7948 	sort_clone_roots = 1;
7949 
7950 	ret = flush_delalloc_roots(sctx);
7951 	if (ret)
7952 		goto out;
7953 
7954 	ret = ensure_commit_roots_uptodate(sctx);
7955 	if (ret)
7956 		goto out;
7957 
7958 	ret = send_subvol(sctx);
7959 	if (ret < 0)
7960 		goto out;
7961 
7962 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7963 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7964 		if (ret < 0)
7965 			goto out;
7966 		ret = send_cmd(sctx);
7967 		if (ret < 0)
7968 			goto out;
7969 	}
7970 
7971 out:
7972 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7973 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7974 		struct rb_node *n;
7975 		struct pending_dir_move *pm;
7976 
7977 		n = rb_first(&sctx->pending_dir_moves);
7978 		pm = rb_entry(n, struct pending_dir_move, node);
7979 		while (!list_empty(&pm->list)) {
7980 			struct pending_dir_move *pm2;
7981 
7982 			pm2 = list_first_entry(&pm->list,
7983 					       struct pending_dir_move, list);
7984 			free_pending_move(sctx, pm2);
7985 		}
7986 		free_pending_move(sctx, pm);
7987 	}
7988 
7989 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7990 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7991 		struct rb_node *n;
7992 		struct waiting_dir_move *dm;
7993 
7994 		n = rb_first(&sctx->waiting_dir_moves);
7995 		dm = rb_entry(n, struct waiting_dir_move, node);
7996 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7997 		kfree(dm);
7998 	}
7999 
8000 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8001 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8002 		struct rb_node *n;
8003 		struct orphan_dir_info *odi;
8004 
8005 		n = rb_first(&sctx->orphan_dirs);
8006 		odi = rb_entry(n, struct orphan_dir_info, node);
8007 		free_orphan_dir_info(sctx, odi);
8008 	}
8009 
8010 	if (sort_clone_roots) {
8011 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8012 			btrfs_root_dec_send_in_progress(
8013 					sctx->clone_roots[i].root);
8014 			btrfs_put_root(sctx->clone_roots[i].root);
8015 		}
8016 	} else {
8017 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8018 			btrfs_root_dec_send_in_progress(
8019 					sctx->clone_roots[i].root);
8020 			btrfs_put_root(sctx->clone_roots[i].root);
8021 		}
8022 
8023 		btrfs_root_dec_send_in_progress(send_root);
8024 	}
8025 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8026 		btrfs_root_dec_send_in_progress(sctx->parent_root);
8027 		btrfs_put_root(sctx->parent_root);
8028 	}
8029 
8030 	kvfree(clone_sources_tmp);
8031 
8032 	if (sctx) {
8033 		if (sctx->send_filp)
8034 			fput(sctx->send_filp);
8035 
8036 		kvfree(sctx->clone_roots);
8037 		kfree(sctx->send_buf_pages);
8038 		kvfree(sctx->send_buf);
8039 
8040 		name_cache_free(sctx);
8041 
8042 		close_current_inode(sctx);
8043 
8044 		kfree(sctx);
8045 	}
8046 
8047 	return ret;
8048 }
8049