1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 #include <linux/fsverity.h> 19 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "xattr.h" 29 #include "print-tree.h" 30 #include "accessors.h" 31 #include "dir-item.h" 32 #include "file-item.h" 33 #include "ioctl.h" 34 #include "verity.h" 35 #include "lru_cache.h" 36 37 /* 38 * Maximum number of references an extent can have in order for us to attempt to 39 * issue clone operations instead of write operations. This currently exists to 40 * avoid hitting limitations of the backreference walking code (taking a lot of 41 * time and using too much memory for extents with large number of references). 42 */ 43 #define SEND_MAX_EXTENT_REFS 1024 44 45 /* 46 * A fs_path is a helper to dynamically build path names with unknown size. 47 * It reallocates the internal buffer on demand. 48 * It allows fast adding of path elements on the right side (normal path) and 49 * fast adding to the left side (reversed path). A reversed path can also be 50 * unreversed if needed. 51 */ 52 struct fs_path { 53 union { 54 struct { 55 char *start; 56 char *end; 57 58 char *buf; 59 unsigned short buf_len:15; 60 unsigned short reversed:1; 61 char inline_buf[]; 62 }; 63 /* 64 * Average path length does not exceed 200 bytes, we'll have 65 * better packing in the slab and higher chance to satisfy 66 * a allocation later during send. 67 */ 68 char pad[256]; 69 }; 70 }; 71 #define FS_PATH_INLINE_SIZE \ 72 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 73 74 75 /* reused for each extent */ 76 struct clone_root { 77 struct btrfs_root *root; 78 u64 ino; 79 u64 offset; 80 u64 num_bytes; 81 bool found_ref; 82 }; 83 84 #define SEND_MAX_NAME_CACHE_SIZE 256 85 86 /* 87 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 88 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 89 * can be satisfied from the kmalloc-192 slab, without wasting any space. 90 * The most common case is to have a single root for cloning, which corresponds 91 * to the send root. Having the user specify more than 16 clone roots is not 92 * common, and in such rare cases we simply don't use caching if the number of 93 * cloning roots that lead down to a leaf is more than 17. 94 */ 95 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 96 97 /* 98 * Max number of entries in the cache. 99 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 100 * maple tree's internal nodes, is 24K. 101 */ 102 #define SEND_MAX_BACKREF_CACHE_SIZE 128 103 104 /* 105 * A backref cache entry maps a leaf to a list of IDs of roots from which the 106 * leaf is accessible and we can use for clone operations. 107 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 108 * x86_64). 109 */ 110 struct backref_cache_entry { 111 struct btrfs_lru_cache_entry entry; 112 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 113 /* Number of valid elements in the root_ids array. */ 114 int num_roots; 115 }; 116 117 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 118 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 119 120 /* 121 * Max number of entries in the cache that stores directories that were already 122 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 123 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 124 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 125 */ 126 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 127 128 /* 129 * Max number of entries in the cache that stores directories that were already 130 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 131 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 132 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 133 */ 134 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 135 136 struct send_ctx { 137 struct file *send_filp; 138 loff_t send_off; 139 char *send_buf; 140 u32 send_size; 141 u32 send_max_size; 142 /* 143 * Whether BTRFS_SEND_A_DATA attribute was already added to current 144 * command (since protocol v2, data must be the last attribute). 145 */ 146 bool put_data; 147 struct page **send_buf_pages; 148 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 149 /* Protocol version compatibility requested */ 150 u32 proto; 151 152 struct btrfs_root *send_root; 153 struct btrfs_root *parent_root; 154 struct clone_root *clone_roots; 155 int clone_roots_cnt; 156 157 /* current state of the compare_tree call */ 158 struct btrfs_path *left_path; 159 struct btrfs_path *right_path; 160 struct btrfs_key *cmp_key; 161 162 /* 163 * Keep track of the generation of the last transaction that was used 164 * for relocating a block group. This is periodically checked in order 165 * to detect if a relocation happened since the last check, so that we 166 * don't operate on stale extent buffers for nodes (level >= 1) or on 167 * stale disk_bytenr values of file extent items. 168 */ 169 u64 last_reloc_trans; 170 171 /* 172 * infos of the currently processed inode. In case of deleted inodes, 173 * these are the values from the deleted inode. 174 */ 175 u64 cur_ino; 176 u64 cur_inode_gen; 177 u64 cur_inode_size; 178 u64 cur_inode_mode; 179 u64 cur_inode_rdev; 180 u64 cur_inode_last_extent; 181 u64 cur_inode_next_write_offset; 182 bool cur_inode_new; 183 bool cur_inode_new_gen; 184 bool cur_inode_deleted; 185 bool ignore_cur_inode; 186 bool cur_inode_needs_verity; 187 void *verity_descriptor; 188 189 u64 send_progress; 190 191 struct list_head new_refs; 192 struct list_head deleted_refs; 193 194 struct btrfs_lru_cache name_cache; 195 196 /* 197 * The inode we are currently processing. It's not NULL only when we 198 * need to issue write commands for data extents from this inode. 199 */ 200 struct inode *cur_inode; 201 struct file_ra_state ra; 202 u64 page_cache_clear_start; 203 bool clean_page_cache; 204 205 /* 206 * We process inodes by their increasing order, so if before an 207 * incremental send we reverse the parent/child relationship of 208 * directories such that a directory with a lower inode number was 209 * the parent of a directory with a higher inode number, and the one 210 * becoming the new parent got renamed too, we can't rename/move the 211 * directory with lower inode number when we finish processing it - we 212 * must process the directory with higher inode number first, then 213 * rename/move it and then rename/move the directory with lower inode 214 * number. Example follows. 215 * 216 * Tree state when the first send was performed: 217 * 218 * . 219 * |-- a (ino 257) 220 * |-- b (ino 258) 221 * | 222 * | 223 * |-- c (ino 259) 224 * | |-- d (ino 260) 225 * | 226 * |-- c2 (ino 261) 227 * 228 * Tree state when the second (incremental) send is performed: 229 * 230 * . 231 * |-- a (ino 257) 232 * |-- b (ino 258) 233 * |-- c2 (ino 261) 234 * |-- d2 (ino 260) 235 * |-- cc (ino 259) 236 * 237 * The sequence of steps that lead to the second state was: 238 * 239 * mv /a/b/c/d /a/b/c2/d2 240 * mv /a/b/c /a/b/c2/d2/cc 241 * 242 * "c" has lower inode number, but we can't move it (2nd mv operation) 243 * before we move "d", which has higher inode number. 244 * 245 * So we just memorize which move/rename operations must be performed 246 * later when their respective parent is processed and moved/renamed. 247 */ 248 249 /* Indexed by parent directory inode number. */ 250 struct rb_root pending_dir_moves; 251 252 /* 253 * Reverse index, indexed by the inode number of a directory that 254 * is waiting for the move/rename of its immediate parent before its 255 * own move/rename can be performed. 256 */ 257 struct rb_root waiting_dir_moves; 258 259 /* 260 * A directory that is going to be rm'ed might have a child directory 261 * which is in the pending directory moves index above. In this case, 262 * the directory can only be removed after the move/rename of its child 263 * is performed. Example: 264 * 265 * Parent snapshot: 266 * 267 * . (ino 256) 268 * |-- a/ (ino 257) 269 * |-- b/ (ino 258) 270 * |-- c/ (ino 259) 271 * | |-- x/ (ino 260) 272 * | 273 * |-- y/ (ino 261) 274 * 275 * Send snapshot: 276 * 277 * . (ino 256) 278 * |-- a/ (ino 257) 279 * |-- b/ (ino 258) 280 * |-- YY/ (ino 261) 281 * |-- x/ (ino 260) 282 * 283 * Sequence of steps that lead to the send snapshot: 284 * rm -f /a/b/c/foo.txt 285 * mv /a/b/y /a/b/YY 286 * mv /a/b/c/x /a/b/YY 287 * rmdir /a/b/c 288 * 289 * When the child is processed, its move/rename is delayed until its 290 * parent is processed (as explained above), but all other operations 291 * like update utimes, chown, chgrp, etc, are performed and the paths 292 * that it uses for those operations must use the orphanized name of 293 * its parent (the directory we're going to rm later), so we need to 294 * memorize that name. 295 * 296 * Indexed by the inode number of the directory to be deleted. 297 */ 298 struct rb_root orphan_dirs; 299 300 struct rb_root rbtree_new_refs; 301 struct rb_root rbtree_deleted_refs; 302 303 struct btrfs_lru_cache backref_cache; 304 u64 backref_cache_last_reloc_trans; 305 306 struct btrfs_lru_cache dir_created_cache; 307 struct btrfs_lru_cache dir_utimes_cache; 308 }; 309 310 struct pending_dir_move { 311 struct rb_node node; 312 struct list_head list; 313 u64 parent_ino; 314 u64 ino; 315 u64 gen; 316 struct list_head update_refs; 317 }; 318 319 struct waiting_dir_move { 320 struct rb_node node; 321 u64 ino; 322 /* 323 * There might be some directory that could not be removed because it 324 * was waiting for this directory inode to be moved first. Therefore 325 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 326 */ 327 u64 rmdir_ino; 328 u64 rmdir_gen; 329 bool orphanized; 330 }; 331 332 struct orphan_dir_info { 333 struct rb_node node; 334 u64 ino; 335 u64 gen; 336 u64 last_dir_index_offset; 337 u64 dir_high_seq_ino; 338 }; 339 340 struct name_cache_entry { 341 /* 342 * The key in the entry is an inode number, and the generation matches 343 * the inode's generation. 344 */ 345 struct btrfs_lru_cache_entry entry; 346 u64 parent_ino; 347 u64 parent_gen; 348 int ret; 349 int need_later_update; 350 int name_len; 351 char name[]; 352 }; 353 354 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 355 static_assert(offsetof(struct name_cache_entry, entry) == 0); 356 357 #define ADVANCE 1 358 #define ADVANCE_ONLY_NEXT -1 359 360 enum btrfs_compare_tree_result { 361 BTRFS_COMPARE_TREE_NEW, 362 BTRFS_COMPARE_TREE_DELETED, 363 BTRFS_COMPARE_TREE_CHANGED, 364 BTRFS_COMPARE_TREE_SAME, 365 }; 366 367 __cold 368 static void inconsistent_snapshot_error(struct send_ctx *sctx, 369 enum btrfs_compare_tree_result result, 370 const char *what) 371 { 372 const char *result_string; 373 374 switch (result) { 375 case BTRFS_COMPARE_TREE_NEW: 376 result_string = "new"; 377 break; 378 case BTRFS_COMPARE_TREE_DELETED: 379 result_string = "deleted"; 380 break; 381 case BTRFS_COMPARE_TREE_CHANGED: 382 result_string = "updated"; 383 break; 384 case BTRFS_COMPARE_TREE_SAME: 385 ASSERT(0); 386 result_string = "unchanged"; 387 break; 388 default: 389 ASSERT(0); 390 result_string = "unexpected"; 391 } 392 393 btrfs_err(sctx->send_root->fs_info, 394 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 395 result_string, what, sctx->cmp_key->objectid, 396 sctx->send_root->root_key.objectid, 397 (sctx->parent_root ? 398 sctx->parent_root->root_key.objectid : 0)); 399 } 400 401 __maybe_unused 402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 403 { 404 switch (sctx->proto) { 405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 408 default: return false; 409 } 410 } 411 412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 413 414 static struct waiting_dir_move * 415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 416 417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 418 419 static int need_send_hole(struct send_ctx *sctx) 420 { 421 return (sctx->parent_root && !sctx->cur_inode_new && 422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 423 S_ISREG(sctx->cur_inode_mode)); 424 } 425 426 static void fs_path_reset(struct fs_path *p) 427 { 428 if (p->reversed) { 429 p->start = p->buf + p->buf_len - 1; 430 p->end = p->start; 431 *p->start = 0; 432 } else { 433 p->start = p->buf; 434 p->end = p->start; 435 *p->start = 0; 436 } 437 } 438 439 static struct fs_path *fs_path_alloc(void) 440 { 441 struct fs_path *p; 442 443 p = kmalloc(sizeof(*p), GFP_KERNEL); 444 if (!p) 445 return NULL; 446 p->reversed = 0; 447 p->buf = p->inline_buf; 448 p->buf_len = FS_PATH_INLINE_SIZE; 449 fs_path_reset(p); 450 return p; 451 } 452 453 static struct fs_path *fs_path_alloc_reversed(void) 454 { 455 struct fs_path *p; 456 457 p = fs_path_alloc(); 458 if (!p) 459 return NULL; 460 p->reversed = 1; 461 fs_path_reset(p); 462 return p; 463 } 464 465 static void fs_path_free(struct fs_path *p) 466 { 467 if (!p) 468 return; 469 if (p->buf != p->inline_buf) 470 kfree(p->buf); 471 kfree(p); 472 } 473 474 static int fs_path_len(struct fs_path *p) 475 { 476 return p->end - p->start; 477 } 478 479 static int fs_path_ensure_buf(struct fs_path *p, int len) 480 { 481 char *tmp_buf; 482 int path_len; 483 int old_buf_len; 484 485 len++; 486 487 if (p->buf_len >= len) 488 return 0; 489 490 if (len > PATH_MAX) { 491 WARN_ON(1); 492 return -ENOMEM; 493 } 494 495 path_len = p->end - p->start; 496 old_buf_len = p->buf_len; 497 498 /* 499 * Allocate to the next largest kmalloc bucket size, to let 500 * the fast path happen most of the time. 501 */ 502 len = kmalloc_size_roundup(len); 503 /* 504 * First time the inline_buf does not suffice 505 */ 506 if (p->buf == p->inline_buf) { 507 tmp_buf = kmalloc(len, GFP_KERNEL); 508 if (tmp_buf) 509 memcpy(tmp_buf, p->buf, old_buf_len); 510 } else { 511 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 512 } 513 if (!tmp_buf) 514 return -ENOMEM; 515 p->buf = tmp_buf; 516 p->buf_len = len; 517 518 if (p->reversed) { 519 tmp_buf = p->buf + old_buf_len - path_len - 1; 520 p->end = p->buf + p->buf_len - 1; 521 p->start = p->end - path_len; 522 memmove(p->start, tmp_buf, path_len + 1); 523 } else { 524 p->start = p->buf; 525 p->end = p->start + path_len; 526 } 527 return 0; 528 } 529 530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 531 char **prepared) 532 { 533 int ret; 534 int new_len; 535 536 new_len = p->end - p->start + name_len; 537 if (p->start != p->end) 538 new_len++; 539 ret = fs_path_ensure_buf(p, new_len); 540 if (ret < 0) 541 goto out; 542 543 if (p->reversed) { 544 if (p->start != p->end) 545 *--p->start = '/'; 546 p->start -= name_len; 547 *prepared = p->start; 548 } else { 549 if (p->start != p->end) 550 *p->end++ = '/'; 551 *prepared = p->end; 552 p->end += name_len; 553 *p->end = 0; 554 } 555 556 out: 557 return ret; 558 } 559 560 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 561 { 562 int ret; 563 char *prepared; 564 565 ret = fs_path_prepare_for_add(p, name_len, &prepared); 566 if (ret < 0) 567 goto out; 568 memcpy(prepared, name, name_len); 569 570 out: 571 return ret; 572 } 573 574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 575 { 576 int ret; 577 char *prepared; 578 579 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 580 if (ret < 0) 581 goto out; 582 memcpy(prepared, p2->start, p2->end - p2->start); 583 584 out: 585 return ret; 586 } 587 588 static int fs_path_add_from_extent_buffer(struct fs_path *p, 589 struct extent_buffer *eb, 590 unsigned long off, int len) 591 { 592 int ret; 593 char *prepared; 594 595 ret = fs_path_prepare_for_add(p, len, &prepared); 596 if (ret < 0) 597 goto out; 598 599 read_extent_buffer(eb, prepared, off, len); 600 601 out: 602 return ret; 603 } 604 605 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 606 { 607 p->reversed = from->reversed; 608 fs_path_reset(p); 609 610 return fs_path_add_path(p, from); 611 } 612 613 static void fs_path_unreverse(struct fs_path *p) 614 { 615 char *tmp; 616 int len; 617 618 if (!p->reversed) 619 return; 620 621 tmp = p->start; 622 len = p->end - p->start; 623 p->start = p->buf; 624 p->end = p->start + len; 625 memmove(p->start, tmp, len + 1); 626 p->reversed = 0; 627 } 628 629 static struct btrfs_path *alloc_path_for_send(void) 630 { 631 struct btrfs_path *path; 632 633 path = btrfs_alloc_path(); 634 if (!path) 635 return NULL; 636 path->search_commit_root = 1; 637 path->skip_locking = 1; 638 path->need_commit_sem = 1; 639 return path; 640 } 641 642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 643 { 644 int ret; 645 u32 pos = 0; 646 647 while (pos < len) { 648 ret = kernel_write(filp, buf + pos, len - pos, off); 649 if (ret < 0) 650 return ret; 651 if (ret == 0) 652 return -EIO; 653 pos += ret; 654 } 655 656 return 0; 657 } 658 659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 660 { 661 struct btrfs_tlv_header *hdr; 662 int total_len = sizeof(*hdr) + len; 663 int left = sctx->send_max_size - sctx->send_size; 664 665 if (WARN_ON_ONCE(sctx->put_data)) 666 return -EINVAL; 667 668 if (unlikely(left < total_len)) 669 return -EOVERFLOW; 670 671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 672 put_unaligned_le16(attr, &hdr->tlv_type); 673 put_unaligned_le16(len, &hdr->tlv_len); 674 memcpy(hdr + 1, data, len); 675 sctx->send_size += total_len; 676 677 return 0; 678 } 679 680 #define TLV_PUT_DEFINE_INT(bits) \ 681 static int tlv_put_u##bits(struct send_ctx *sctx, \ 682 u##bits attr, u##bits value) \ 683 { \ 684 __le##bits __tmp = cpu_to_le##bits(value); \ 685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 686 } 687 688 TLV_PUT_DEFINE_INT(8) 689 TLV_PUT_DEFINE_INT(32) 690 TLV_PUT_DEFINE_INT(64) 691 692 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 693 const char *str, int len) 694 { 695 if (len == -1) 696 len = strlen(str); 697 return tlv_put(sctx, attr, str, len); 698 } 699 700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 701 const u8 *uuid) 702 { 703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 704 } 705 706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 707 struct extent_buffer *eb, 708 struct btrfs_timespec *ts) 709 { 710 struct btrfs_timespec bts; 711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 712 return tlv_put(sctx, attr, &bts, sizeof(bts)); 713 } 714 715 716 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 717 do { \ 718 ret = tlv_put(sctx, attrtype, data, attrlen); \ 719 if (ret < 0) \ 720 goto tlv_put_failure; \ 721 } while (0) 722 723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 724 do { \ 725 ret = tlv_put_u##bits(sctx, attrtype, value); \ 726 if (ret < 0) \ 727 goto tlv_put_failure; \ 728 } while (0) 729 730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 735 do { \ 736 ret = tlv_put_string(sctx, attrtype, str, len); \ 737 if (ret < 0) \ 738 goto tlv_put_failure; \ 739 } while (0) 740 #define TLV_PUT_PATH(sctx, attrtype, p) \ 741 do { \ 742 ret = tlv_put_string(sctx, attrtype, p->start, \ 743 p->end - p->start); \ 744 if (ret < 0) \ 745 goto tlv_put_failure; \ 746 } while(0) 747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 748 do { \ 749 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 750 if (ret < 0) \ 751 goto tlv_put_failure; \ 752 } while (0) 753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 754 do { \ 755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 756 if (ret < 0) \ 757 goto tlv_put_failure; \ 758 } while (0) 759 760 static int send_header(struct send_ctx *sctx) 761 { 762 struct btrfs_stream_header hdr; 763 764 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 765 hdr.version = cpu_to_le32(sctx->proto); 766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 767 &sctx->send_off); 768 } 769 770 /* 771 * For each command/item we want to send to userspace, we call this function. 772 */ 773 static int begin_cmd(struct send_ctx *sctx, int cmd) 774 { 775 struct btrfs_cmd_header *hdr; 776 777 if (WARN_ON(!sctx->send_buf)) 778 return -EINVAL; 779 780 BUG_ON(sctx->send_size); 781 782 sctx->send_size += sizeof(*hdr); 783 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 784 put_unaligned_le16(cmd, &hdr->cmd); 785 786 return 0; 787 } 788 789 static int send_cmd(struct send_ctx *sctx) 790 { 791 int ret; 792 struct btrfs_cmd_header *hdr; 793 u32 crc; 794 795 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 796 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 797 put_unaligned_le32(0, &hdr->crc); 798 799 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 800 put_unaligned_le32(crc, &hdr->crc); 801 802 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 803 &sctx->send_off); 804 805 sctx->send_size = 0; 806 sctx->put_data = false; 807 808 return ret; 809 } 810 811 /* 812 * Sends a move instruction to user space 813 */ 814 static int send_rename(struct send_ctx *sctx, 815 struct fs_path *from, struct fs_path *to) 816 { 817 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 818 int ret; 819 820 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 821 822 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 823 if (ret < 0) 824 goto out; 825 826 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 827 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 828 829 ret = send_cmd(sctx); 830 831 tlv_put_failure: 832 out: 833 return ret; 834 } 835 836 /* 837 * Sends a link instruction to user space 838 */ 839 static int send_link(struct send_ctx *sctx, 840 struct fs_path *path, struct fs_path *lnk) 841 { 842 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 843 int ret; 844 845 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 846 847 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 848 if (ret < 0) 849 goto out; 850 851 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 852 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 853 854 ret = send_cmd(sctx); 855 856 tlv_put_failure: 857 out: 858 return ret; 859 } 860 861 /* 862 * Sends an unlink instruction to user space 863 */ 864 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 865 { 866 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 867 int ret; 868 869 btrfs_debug(fs_info, "send_unlink %s", path->start); 870 871 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 872 if (ret < 0) 873 goto out; 874 875 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 876 877 ret = send_cmd(sctx); 878 879 tlv_put_failure: 880 out: 881 return ret; 882 } 883 884 /* 885 * Sends a rmdir instruction to user space 886 */ 887 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 888 { 889 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 890 int ret; 891 892 btrfs_debug(fs_info, "send_rmdir %s", path->start); 893 894 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 895 if (ret < 0) 896 goto out; 897 898 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 899 900 ret = send_cmd(sctx); 901 902 tlv_put_failure: 903 out: 904 return ret; 905 } 906 907 struct btrfs_inode_info { 908 u64 size; 909 u64 gen; 910 u64 mode; 911 u64 uid; 912 u64 gid; 913 u64 rdev; 914 u64 fileattr; 915 u64 nlink; 916 }; 917 918 /* 919 * Helper function to retrieve some fields from an inode item. 920 */ 921 static int get_inode_info(struct btrfs_root *root, u64 ino, 922 struct btrfs_inode_info *info) 923 { 924 int ret; 925 struct btrfs_path *path; 926 struct btrfs_inode_item *ii; 927 struct btrfs_key key; 928 929 path = alloc_path_for_send(); 930 if (!path) 931 return -ENOMEM; 932 933 key.objectid = ino; 934 key.type = BTRFS_INODE_ITEM_KEY; 935 key.offset = 0; 936 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 937 if (ret) { 938 if (ret > 0) 939 ret = -ENOENT; 940 goto out; 941 } 942 943 if (!info) 944 goto out; 945 946 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 947 struct btrfs_inode_item); 948 info->size = btrfs_inode_size(path->nodes[0], ii); 949 info->gen = btrfs_inode_generation(path->nodes[0], ii); 950 info->mode = btrfs_inode_mode(path->nodes[0], ii); 951 info->uid = btrfs_inode_uid(path->nodes[0], ii); 952 info->gid = btrfs_inode_gid(path->nodes[0], ii); 953 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 954 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 955 /* 956 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 957 * otherwise logically split to 32/32 parts. 958 */ 959 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 960 961 out: 962 btrfs_free_path(path); 963 return ret; 964 } 965 966 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 967 { 968 int ret; 969 struct btrfs_inode_info info = { 0 }; 970 971 ASSERT(gen); 972 973 ret = get_inode_info(root, ino, &info); 974 *gen = info.gen; 975 return ret; 976 } 977 978 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 979 struct fs_path *p, 980 void *ctx); 981 982 /* 983 * Helper function to iterate the entries in ONE btrfs_inode_ref or 984 * btrfs_inode_extref. 985 * The iterate callback may return a non zero value to stop iteration. This can 986 * be a negative value for error codes or 1 to simply stop it. 987 * 988 * path must point to the INODE_REF or INODE_EXTREF when called. 989 */ 990 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 991 struct btrfs_key *found_key, int resolve, 992 iterate_inode_ref_t iterate, void *ctx) 993 { 994 struct extent_buffer *eb = path->nodes[0]; 995 struct btrfs_inode_ref *iref; 996 struct btrfs_inode_extref *extref; 997 struct btrfs_path *tmp_path; 998 struct fs_path *p; 999 u32 cur = 0; 1000 u32 total; 1001 int slot = path->slots[0]; 1002 u32 name_len; 1003 char *start; 1004 int ret = 0; 1005 int num = 0; 1006 int index; 1007 u64 dir; 1008 unsigned long name_off; 1009 unsigned long elem_size; 1010 unsigned long ptr; 1011 1012 p = fs_path_alloc_reversed(); 1013 if (!p) 1014 return -ENOMEM; 1015 1016 tmp_path = alloc_path_for_send(); 1017 if (!tmp_path) { 1018 fs_path_free(p); 1019 return -ENOMEM; 1020 } 1021 1022 1023 if (found_key->type == BTRFS_INODE_REF_KEY) { 1024 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1025 struct btrfs_inode_ref); 1026 total = btrfs_item_size(eb, slot); 1027 elem_size = sizeof(*iref); 1028 } else { 1029 ptr = btrfs_item_ptr_offset(eb, slot); 1030 total = btrfs_item_size(eb, slot); 1031 elem_size = sizeof(*extref); 1032 } 1033 1034 while (cur < total) { 1035 fs_path_reset(p); 1036 1037 if (found_key->type == BTRFS_INODE_REF_KEY) { 1038 iref = (struct btrfs_inode_ref *)(ptr + cur); 1039 name_len = btrfs_inode_ref_name_len(eb, iref); 1040 name_off = (unsigned long)(iref + 1); 1041 index = btrfs_inode_ref_index(eb, iref); 1042 dir = found_key->offset; 1043 } else { 1044 extref = (struct btrfs_inode_extref *)(ptr + cur); 1045 name_len = btrfs_inode_extref_name_len(eb, extref); 1046 name_off = (unsigned long)&extref->name; 1047 index = btrfs_inode_extref_index(eb, extref); 1048 dir = btrfs_inode_extref_parent(eb, extref); 1049 } 1050 1051 if (resolve) { 1052 start = btrfs_ref_to_path(root, tmp_path, name_len, 1053 name_off, eb, dir, 1054 p->buf, p->buf_len); 1055 if (IS_ERR(start)) { 1056 ret = PTR_ERR(start); 1057 goto out; 1058 } 1059 if (start < p->buf) { 1060 /* overflow , try again with larger buffer */ 1061 ret = fs_path_ensure_buf(p, 1062 p->buf_len + p->buf - start); 1063 if (ret < 0) 1064 goto out; 1065 start = btrfs_ref_to_path(root, tmp_path, 1066 name_len, name_off, 1067 eb, dir, 1068 p->buf, p->buf_len); 1069 if (IS_ERR(start)) { 1070 ret = PTR_ERR(start); 1071 goto out; 1072 } 1073 if (unlikely(start < p->buf)) { 1074 btrfs_err(root->fs_info, 1075 "send: path ref buffer underflow for key (%llu %u %llu)", 1076 found_key->objectid, 1077 found_key->type, 1078 found_key->offset); 1079 ret = -EINVAL; 1080 goto out; 1081 } 1082 } 1083 p->start = start; 1084 } else { 1085 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1086 name_len); 1087 if (ret < 0) 1088 goto out; 1089 } 1090 1091 cur += elem_size + name_len; 1092 ret = iterate(num, dir, index, p, ctx); 1093 if (ret) 1094 goto out; 1095 num++; 1096 } 1097 1098 out: 1099 btrfs_free_path(tmp_path); 1100 fs_path_free(p); 1101 return ret; 1102 } 1103 1104 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1105 const char *name, int name_len, 1106 const char *data, int data_len, 1107 void *ctx); 1108 1109 /* 1110 * Helper function to iterate the entries in ONE btrfs_dir_item. 1111 * The iterate callback may return a non zero value to stop iteration. This can 1112 * be a negative value for error codes or 1 to simply stop it. 1113 * 1114 * path must point to the dir item when called. 1115 */ 1116 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1117 iterate_dir_item_t iterate, void *ctx) 1118 { 1119 int ret = 0; 1120 struct extent_buffer *eb; 1121 struct btrfs_dir_item *di; 1122 struct btrfs_key di_key; 1123 char *buf = NULL; 1124 int buf_len; 1125 u32 name_len; 1126 u32 data_len; 1127 u32 cur; 1128 u32 len; 1129 u32 total; 1130 int slot; 1131 int num; 1132 1133 /* 1134 * Start with a small buffer (1 page). If later we end up needing more 1135 * space, which can happen for xattrs on a fs with a leaf size greater 1136 * then the page size, attempt to increase the buffer. Typically xattr 1137 * values are small. 1138 */ 1139 buf_len = PATH_MAX; 1140 buf = kmalloc(buf_len, GFP_KERNEL); 1141 if (!buf) { 1142 ret = -ENOMEM; 1143 goto out; 1144 } 1145 1146 eb = path->nodes[0]; 1147 slot = path->slots[0]; 1148 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1149 cur = 0; 1150 len = 0; 1151 total = btrfs_item_size(eb, slot); 1152 1153 num = 0; 1154 while (cur < total) { 1155 name_len = btrfs_dir_name_len(eb, di); 1156 data_len = btrfs_dir_data_len(eb, di); 1157 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1158 1159 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1160 if (name_len > XATTR_NAME_MAX) { 1161 ret = -ENAMETOOLONG; 1162 goto out; 1163 } 1164 if (name_len + data_len > 1165 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1166 ret = -E2BIG; 1167 goto out; 1168 } 1169 } else { 1170 /* 1171 * Path too long 1172 */ 1173 if (name_len + data_len > PATH_MAX) { 1174 ret = -ENAMETOOLONG; 1175 goto out; 1176 } 1177 } 1178 1179 if (name_len + data_len > buf_len) { 1180 buf_len = name_len + data_len; 1181 if (is_vmalloc_addr(buf)) { 1182 vfree(buf); 1183 buf = NULL; 1184 } else { 1185 char *tmp = krealloc(buf, buf_len, 1186 GFP_KERNEL | __GFP_NOWARN); 1187 1188 if (!tmp) 1189 kfree(buf); 1190 buf = tmp; 1191 } 1192 if (!buf) { 1193 buf = kvmalloc(buf_len, GFP_KERNEL); 1194 if (!buf) { 1195 ret = -ENOMEM; 1196 goto out; 1197 } 1198 } 1199 } 1200 1201 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1202 name_len + data_len); 1203 1204 len = sizeof(*di) + name_len + data_len; 1205 di = (struct btrfs_dir_item *)((char *)di + len); 1206 cur += len; 1207 1208 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1209 data_len, ctx); 1210 if (ret < 0) 1211 goto out; 1212 if (ret) { 1213 ret = 0; 1214 goto out; 1215 } 1216 1217 num++; 1218 } 1219 1220 out: 1221 kvfree(buf); 1222 return ret; 1223 } 1224 1225 static int __copy_first_ref(int num, u64 dir, int index, 1226 struct fs_path *p, void *ctx) 1227 { 1228 int ret; 1229 struct fs_path *pt = ctx; 1230 1231 ret = fs_path_copy(pt, p); 1232 if (ret < 0) 1233 return ret; 1234 1235 /* we want the first only */ 1236 return 1; 1237 } 1238 1239 /* 1240 * Retrieve the first path of an inode. If an inode has more then one 1241 * ref/hardlink, this is ignored. 1242 */ 1243 static int get_inode_path(struct btrfs_root *root, 1244 u64 ino, struct fs_path *path) 1245 { 1246 int ret; 1247 struct btrfs_key key, found_key; 1248 struct btrfs_path *p; 1249 1250 p = alloc_path_for_send(); 1251 if (!p) 1252 return -ENOMEM; 1253 1254 fs_path_reset(path); 1255 1256 key.objectid = ino; 1257 key.type = BTRFS_INODE_REF_KEY; 1258 key.offset = 0; 1259 1260 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1261 if (ret < 0) 1262 goto out; 1263 if (ret) { 1264 ret = 1; 1265 goto out; 1266 } 1267 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1268 if (found_key.objectid != ino || 1269 (found_key.type != BTRFS_INODE_REF_KEY && 1270 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1271 ret = -ENOENT; 1272 goto out; 1273 } 1274 1275 ret = iterate_inode_ref(root, p, &found_key, 1, 1276 __copy_first_ref, path); 1277 if (ret < 0) 1278 goto out; 1279 ret = 0; 1280 1281 out: 1282 btrfs_free_path(p); 1283 return ret; 1284 } 1285 1286 struct backref_ctx { 1287 struct send_ctx *sctx; 1288 1289 /* number of total found references */ 1290 u64 found; 1291 1292 /* 1293 * used for clones found in send_root. clones found behind cur_objectid 1294 * and cur_offset are not considered as allowed clones. 1295 */ 1296 u64 cur_objectid; 1297 u64 cur_offset; 1298 1299 /* may be truncated in case it's the last extent in a file */ 1300 u64 extent_len; 1301 1302 /* The bytenr the file extent item we are processing refers to. */ 1303 u64 bytenr; 1304 /* The owner (root id) of the data backref for the current extent. */ 1305 u64 backref_owner; 1306 /* The offset of the data backref for the current extent. */ 1307 u64 backref_offset; 1308 }; 1309 1310 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1311 { 1312 u64 root = (u64)(uintptr_t)key; 1313 const struct clone_root *cr = elt; 1314 1315 if (root < cr->root->root_key.objectid) 1316 return -1; 1317 if (root > cr->root->root_key.objectid) 1318 return 1; 1319 return 0; 1320 } 1321 1322 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1323 { 1324 const struct clone_root *cr1 = e1; 1325 const struct clone_root *cr2 = e2; 1326 1327 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1328 return -1; 1329 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1330 return 1; 1331 return 0; 1332 } 1333 1334 /* 1335 * Called for every backref that is found for the current extent. 1336 * Results are collected in sctx->clone_roots->ino/offset. 1337 */ 1338 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1339 void *ctx_) 1340 { 1341 struct backref_ctx *bctx = ctx_; 1342 struct clone_root *clone_root; 1343 1344 /* First check if the root is in the list of accepted clone sources */ 1345 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1346 bctx->sctx->clone_roots_cnt, 1347 sizeof(struct clone_root), 1348 __clone_root_cmp_bsearch); 1349 if (!clone_root) 1350 return 0; 1351 1352 /* This is our own reference, bail out as we can't clone from it. */ 1353 if (clone_root->root == bctx->sctx->send_root && 1354 ino == bctx->cur_objectid && 1355 offset == bctx->cur_offset) 1356 return 0; 1357 1358 /* 1359 * Make sure we don't consider clones from send_root that are 1360 * behind the current inode/offset. 1361 */ 1362 if (clone_root->root == bctx->sctx->send_root) { 1363 /* 1364 * If the source inode was not yet processed we can't issue a 1365 * clone operation, as the source extent does not exist yet at 1366 * the destination of the stream. 1367 */ 1368 if (ino > bctx->cur_objectid) 1369 return 0; 1370 /* 1371 * We clone from the inode currently being sent as long as the 1372 * source extent is already processed, otherwise we could try 1373 * to clone from an extent that does not exist yet at the 1374 * destination of the stream. 1375 */ 1376 if (ino == bctx->cur_objectid && 1377 offset + bctx->extent_len > 1378 bctx->sctx->cur_inode_next_write_offset) 1379 return 0; 1380 } 1381 1382 bctx->found++; 1383 clone_root->found_ref = true; 1384 1385 /* 1386 * If the given backref refers to a file extent item with a larger 1387 * number of bytes than what we found before, use the new one so that 1388 * we clone more optimally and end up doing less writes and getting 1389 * less exclusive, non-shared extents at the destination. 1390 */ 1391 if (num_bytes > clone_root->num_bytes) { 1392 clone_root->ino = ino; 1393 clone_root->offset = offset; 1394 clone_root->num_bytes = num_bytes; 1395 1396 /* 1397 * Found a perfect candidate, so there's no need to continue 1398 * backref walking. 1399 */ 1400 if (num_bytes >= bctx->extent_len) 1401 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1402 } 1403 1404 return 0; 1405 } 1406 1407 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1408 const u64 **root_ids_ret, int *root_count_ret) 1409 { 1410 struct backref_ctx *bctx = ctx; 1411 struct send_ctx *sctx = bctx->sctx; 1412 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1413 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits; 1414 struct btrfs_lru_cache_entry *raw_entry; 1415 struct backref_cache_entry *entry; 1416 1417 if (btrfs_lru_cache_size(&sctx->backref_cache) == 0) 1418 return false; 1419 1420 /* 1421 * If relocation happened since we first filled the cache, then we must 1422 * empty the cache and can not use it, because even though we operate on 1423 * read-only roots, their leaves and nodes may have been reallocated and 1424 * now be used for different nodes/leaves of the same tree or some other 1425 * tree. 1426 * 1427 * We are called from iterate_extent_inodes() while either holding a 1428 * transaction handle or holding fs_info->commit_root_sem, so no need 1429 * to take any lock here. 1430 */ 1431 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1432 btrfs_lru_cache_clear(&sctx->backref_cache); 1433 return false; 1434 } 1435 1436 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1437 if (!raw_entry) 1438 return false; 1439 1440 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1441 *root_ids_ret = entry->root_ids; 1442 *root_count_ret = entry->num_roots; 1443 1444 return true; 1445 } 1446 1447 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1448 void *ctx) 1449 { 1450 struct backref_ctx *bctx = ctx; 1451 struct send_ctx *sctx = bctx->sctx; 1452 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1453 struct backref_cache_entry *new_entry; 1454 struct ulist_iterator uiter; 1455 struct ulist_node *node; 1456 int ret; 1457 1458 /* 1459 * We're called while holding a transaction handle or while holding 1460 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1461 * NOFS allocation. 1462 */ 1463 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1464 /* No worries, cache is optional. */ 1465 if (!new_entry) 1466 return; 1467 1468 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits; 1469 new_entry->entry.gen = 0; 1470 new_entry->num_roots = 0; 1471 ULIST_ITER_INIT(&uiter); 1472 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1473 const u64 root_id = node->val; 1474 struct clone_root *root; 1475 1476 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1477 sctx->clone_roots_cnt, sizeof(struct clone_root), 1478 __clone_root_cmp_bsearch); 1479 if (!root) 1480 continue; 1481 1482 /* Too many roots, just exit, no worries as caching is optional. */ 1483 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1484 kfree(new_entry); 1485 return; 1486 } 1487 1488 new_entry->root_ids[new_entry->num_roots] = root_id; 1489 new_entry->num_roots++; 1490 } 1491 1492 /* 1493 * We may have not added any roots to the new cache entry, which means 1494 * none of the roots is part of the list of roots from which we are 1495 * allowed to clone. Cache the new entry as it's still useful to avoid 1496 * backref walking to determine which roots have a path to the leaf. 1497 * 1498 * Also use GFP_NOFS because we're called while holding a transaction 1499 * handle or while holding fs_info->commit_root_sem. 1500 */ 1501 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1502 GFP_NOFS); 1503 ASSERT(ret == 0 || ret == -ENOMEM); 1504 if (ret) { 1505 /* Caching is optional, no worries. */ 1506 kfree(new_entry); 1507 return; 1508 } 1509 1510 /* 1511 * We are called from iterate_extent_inodes() while either holding a 1512 * transaction handle or holding fs_info->commit_root_sem, so no need 1513 * to take any lock here. 1514 */ 1515 if (btrfs_lru_cache_size(&sctx->backref_cache) == 1) 1516 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1517 } 1518 1519 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1520 const struct extent_buffer *leaf, void *ctx) 1521 { 1522 const u64 refs = btrfs_extent_refs(leaf, ei); 1523 const struct backref_ctx *bctx = ctx; 1524 const struct send_ctx *sctx = bctx->sctx; 1525 1526 if (bytenr == bctx->bytenr) { 1527 const u64 flags = btrfs_extent_flags(leaf, ei); 1528 1529 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1530 return -EUCLEAN; 1531 1532 /* 1533 * If we have only one reference and only the send root as a 1534 * clone source - meaning no clone roots were given in the 1535 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1536 * it's our reference and there's no point in doing backref 1537 * walking which is expensive, so exit early. 1538 */ 1539 if (refs == 1 && sctx->clone_roots_cnt == 1) 1540 return -ENOENT; 1541 } 1542 1543 /* 1544 * Backreference walking (iterate_extent_inodes() below) is currently 1545 * too expensive when an extent has a large number of references, both 1546 * in time spent and used memory. So for now just fallback to write 1547 * operations instead of clone operations when an extent has more than 1548 * a certain amount of references. 1549 */ 1550 if (refs > SEND_MAX_EXTENT_REFS) 1551 return -ENOENT; 1552 1553 return 0; 1554 } 1555 1556 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1557 { 1558 const struct backref_ctx *bctx = ctx; 1559 1560 if (ino == bctx->cur_objectid && 1561 root == bctx->backref_owner && 1562 offset == bctx->backref_offset) 1563 return true; 1564 1565 return false; 1566 } 1567 1568 /* 1569 * Given an inode, offset and extent item, it finds a good clone for a clone 1570 * instruction. Returns -ENOENT when none could be found. The function makes 1571 * sure that the returned clone is usable at the point where sending is at the 1572 * moment. This means, that no clones are accepted which lie behind the current 1573 * inode+offset. 1574 * 1575 * path must point to the extent item when called. 1576 */ 1577 static int find_extent_clone(struct send_ctx *sctx, 1578 struct btrfs_path *path, 1579 u64 ino, u64 data_offset, 1580 u64 ino_size, 1581 struct clone_root **found) 1582 { 1583 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1584 int ret; 1585 int extent_type; 1586 u64 logical; 1587 u64 disk_byte; 1588 u64 num_bytes; 1589 struct btrfs_file_extent_item *fi; 1590 struct extent_buffer *eb = path->nodes[0]; 1591 struct backref_ctx backref_ctx = { 0 }; 1592 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1593 struct clone_root *cur_clone_root; 1594 int compressed; 1595 u32 i; 1596 1597 /* 1598 * With fallocate we can get prealloc extents beyond the inode's i_size, 1599 * so we don't do anything here because clone operations can not clone 1600 * to a range beyond i_size without increasing the i_size of the 1601 * destination inode. 1602 */ 1603 if (data_offset >= ino_size) 1604 return 0; 1605 1606 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1607 extent_type = btrfs_file_extent_type(eb, fi); 1608 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1609 return -ENOENT; 1610 1611 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1612 if (disk_byte == 0) 1613 return -ENOENT; 1614 1615 compressed = btrfs_file_extent_compression(eb, fi); 1616 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1617 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1618 1619 /* 1620 * Setup the clone roots. 1621 */ 1622 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1623 cur_clone_root = sctx->clone_roots + i; 1624 cur_clone_root->ino = (u64)-1; 1625 cur_clone_root->offset = 0; 1626 cur_clone_root->num_bytes = 0; 1627 cur_clone_root->found_ref = false; 1628 } 1629 1630 backref_ctx.sctx = sctx; 1631 backref_ctx.cur_objectid = ino; 1632 backref_ctx.cur_offset = data_offset; 1633 backref_ctx.bytenr = disk_byte; 1634 /* 1635 * Use the header owner and not the send root's id, because in case of a 1636 * snapshot we can have shared subtrees. 1637 */ 1638 backref_ctx.backref_owner = btrfs_header_owner(eb); 1639 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1640 1641 /* 1642 * The last extent of a file may be too large due to page alignment. 1643 * We need to adjust extent_len in this case so that the checks in 1644 * iterate_backrefs() work. 1645 */ 1646 if (data_offset + num_bytes >= ino_size) 1647 backref_ctx.extent_len = ino_size - data_offset; 1648 else 1649 backref_ctx.extent_len = num_bytes; 1650 1651 /* 1652 * Now collect all backrefs. 1653 */ 1654 backref_walk_ctx.bytenr = disk_byte; 1655 if (compressed == BTRFS_COMPRESS_NONE) 1656 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1657 backref_walk_ctx.fs_info = fs_info; 1658 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1659 backref_walk_ctx.cache_store = store_backref_cache; 1660 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1661 backref_walk_ctx.check_extent_item = check_extent_item; 1662 backref_walk_ctx.user_ctx = &backref_ctx; 1663 1664 /* 1665 * If have a single clone root, then it's the send root and we can tell 1666 * the backref walking code to skip our own backref and not resolve it, 1667 * since we can not use it for cloning - the source and destination 1668 * ranges can't overlap and in case the leaf is shared through a subtree 1669 * due to snapshots, we can't use those other roots since they are not 1670 * in the list of clone roots. 1671 */ 1672 if (sctx->clone_roots_cnt == 1) 1673 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1674 1675 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1676 &backref_ctx); 1677 if (ret < 0) 1678 return ret; 1679 1680 down_read(&fs_info->commit_root_sem); 1681 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1682 /* 1683 * A transaction commit for a transaction in which block group 1684 * relocation was done just happened. 1685 * The disk_bytenr of the file extent item we processed is 1686 * possibly stale, referring to the extent's location before 1687 * relocation. So act as if we haven't found any clone sources 1688 * and fallback to write commands, which will read the correct 1689 * data from the new extent location. Otherwise we will fail 1690 * below because we haven't found our own back reference or we 1691 * could be getting incorrect sources in case the old extent 1692 * was already reallocated after the relocation. 1693 */ 1694 up_read(&fs_info->commit_root_sem); 1695 return -ENOENT; 1696 } 1697 up_read(&fs_info->commit_root_sem); 1698 1699 btrfs_debug(fs_info, 1700 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1701 data_offset, ino, num_bytes, logical); 1702 1703 if (!backref_ctx.found) { 1704 btrfs_debug(fs_info, "no clones found"); 1705 return -ENOENT; 1706 } 1707 1708 cur_clone_root = NULL; 1709 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1710 struct clone_root *clone_root = &sctx->clone_roots[i]; 1711 1712 if (!clone_root->found_ref) 1713 continue; 1714 1715 /* 1716 * Choose the root from which we can clone more bytes, to 1717 * minimize write operations and therefore have more extent 1718 * sharing at the destination (the same as in the source). 1719 */ 1720 if (!cur_clone_root || 1721 clone_root->num_bytes > cur_clone_root->num_bytes) { 1722 cur_clone_root = clone_root; 1723 1724 /* 1725 * We found an optimal clone candidate (any inode from 1726 * any root is fine), so we're done. 1727 */ 1728 if (clone_root->num_bytes >= backref_ctx.extent_len) 1729 break; 1730 } 1731 } 1732 1733 if (cur_clone_root) { 1734 *found = cur_clone_root; 1735 ret = 0; 1736 } else { 1737 ret = -ENOENT; 1738 } 1739 1740 return ret; 1741 } 1742 1743 static int read_symlink(struct btrfs_root *root, 1744 u64 ino, 1745 struct fs_path *dest) 1746 { 1747 int ret; 1748 struct btrfs_path *path; 1749 struct btrfs_key key; 1750 struct btrfs_file_extent_item *ei; 1751 u8 type; 1752 u8 compression; 1753 unsigned long off; 1754 int len; 1755 1756 path = alloc_path_for_send(); 1757 if (!path) 1758 return -ENOMEM; 1759 1760 key.objectid = ino; 1761 key.type = BTRFS_EXTENT_DATA_KEY; 1762 key.offset = 0; 1763 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1764 if (ret < 0) 1765 goto out; 1766 if (ret) { 1767 /* 1768 * An empty symlink inode. Can happen in rare error paths when 1769 * creating a symlink (transaction committed before the inode 1770 * eviction handler removed the symlink inode items and a crash 1771 * happened in between or the subvol was snapshoted in between). 1772 * Print an informative message to dmesg/syslog so that the user 1773 * can delete the symlink. 1774 */ 1775 btrfs_err(root->fs_info, 1776 "Found empty symlink inode %llu at root %llu", 1777 ino, root->root_key.objectid); 1778 ret = -EIO; 1779 goto out; 1780 } 1781 1782 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1783 struct btrfs_file_extent_item); 1784 type = btrfs_file_extent_type(path->nodes[0], ei); 1785 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1786 ret = -EUCLEAN; 1787 btrfs_crit(root->fs_info, 1788 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1789 ino, btrfs_root_id(root), type); 1790 goto out; 1791 } 1792 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1793 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1794 ret = -EUCLEAN; 1795 btrfs_crit(root->fs_info, 1796 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1797 ino, btrfs_root_id(root), compression); 1798 goto out; 1799 } 1800 1801 off = btrfs_file_extent_inline_start(ei); 1802 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1803 1804 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1805 1806 out: 1807 btrfs_free_path(path); 1808 return ret; 1809 } 1810 1811 /* 1812 * Helper function to generate a file name that is unique in the root of 1813 * send_root and parent_root. This is used to generate names for orphan inodes. 1814 */ 1815 static int gen_unique_name(struct send_ctx *sctx, 1816 u64 ino, u64 gen, 1817 struct fs_path *dest) 1818 { 1819 int ret = 0; 1820 struct btrfs_path *path; 1821 struct btrfs_dir_item *di; 1822 char tmp[64]; 1823 int len; 1824 u64 idx = 0; 1825 1826 path = alloc_path_for_send(); 1827 if (!path) 1828 return -ENOMEM; 1829 1830 while (1) { 1831 struct fscrypt_str tmp_name; 1832 1833 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1834 ino, gen, idx); 1835 ASSERT(len < sizeof(tmp)); 1836 tmp_name.name = tmp; 1837 tmp_name.len = strlen(tmp); 1838 1839 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1840 path, BTRFS_FIRST_FREE_OBJECTID, 1841 &tmp_name, 0); 1842 btrfs_release_path(path); 1843 if (IS_ERR(di)) { 1844 ret = PTR_ERR(di); 1845 goto out; 1846 } 1847 if (di) { 1848 /* not unique, try again */ 1849 idx++; 1850 continue; 1851 } 1852 1853 if (!sctx->parent_root) { 1854 /* unique */ 1855 ret = 0; 1856 break; 1857 } 1858 1859 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1860 path, BTRFS_FIRST_FREE_OBJECTID, 1861 &tmp_name, 0); 1862 btrfs_release_path(path); 1863 if (IS_ERR(di)) { 1864 ret = PTR_ERR(di); 1865 goto out; 1866 } 1867 if (di) { 1868 /* not unique, try again */ 1869 idx++; 1870 continue; 1871 } 1872 /* unique */ 1873 break; 1874 } 1875 1876 ret = fs_path_add(dest, tmp, strlen(tmp)); 1877 1878 out: 1879 btrfs_free_path(path); 1880 return ret; 1881 } 1882 1883 enum inode_state { 1884 inode_state_no_change, 1885 inode_state_will_create, 1886 inode_state_did_create, 1887 inode_state_will_delete, 1888 inode_state_did_delete, 1889 }; 1890 1891 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1892 u64 *send_gen, u64 *parent_gen) 1893 { 1894 int ret; 1895 int left_ret; 1896 int right_ret; 1897 u64 left_gen; 1898 u64 right_gen = 0; 1899 struct btrfs_inode_info info; 1900 1901 ret = get_inode_info(sctx->send_root, ino, &info); 1902 if (ret < 0 && ret != -ENOENT) 1903 goto out; 1904 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1905 left_gen = info.gen; 1906 if (send_gen) 1907 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1908 1909 if (!sctx->parent_root) { 1910 right_ret = -ENOENT; 1911 } else { 1912 ret = get_inode_info(sctx->parent_root, ino, &info); 1913 if (ret < 0 && ret != -ENOENT) 1914 goto out; 1915 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1916 right_gen = info.gen; 1917 if (parent_gen) 1918 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1919 } 1920 1921 if (!left_ret && !right_ret) { 1922 if (left_gen == gen && right_gen == gen) { 1923 ret = inode_state_no_change; 1924 } else if (left_gen == gen) { 1925 if (ino < sctx->send_progress) 1926 ret = inode_state_did_create; 1927 else 1928 ret = inode_state_will_create; 1929 } else if (right_gen == gen) { 1930 if (ino < sctx->send_progress) 1931 ret = inode_state_did_delete; 1932 else 1933 ret = inode_state_will_delete; 1934 } else { 1935 ret = -ENOENT; 1936 } 1937 } else if (!left_ret) { 1938 if (left_gen == gen) { 1939 if (ino < sctx->send_progress) 1940 ret = inode_state_did_create; 1941 else 1942 ret = inode_state_will_create; 1943 } else { 1944 ret = -ENOENT; 1945 } 1946 } else if (!right_ret) { 1947 if (right_gen == gen) { 1948 if (ino < sctx->send_progress) 1949 ret = inode_state_did_delete; 1950 else 1951 ret = inode_state_will_delete; 1952 } else { 1953 ret = -ENOENT; 1954 } 1955 } else { 1956 ret = -ENOENT; 1957 } 1958 1959 out: 1960 return ret; 1961 } 1962 1963 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1964 u64 *send_gen, u64 *parent_gen) 1965 { 1966 int ret; 1967 1968 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1969 return 1; 1970 1971 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1972 if (ret < 0) 1973 goto out; 1974 1975 if (ret == inode_state_no_change || 1976 ret == inode_state_did_create || 1977 ret == inode_state_will_delete) 1978 ret = 1; 1979 else 1980 ret = 0; 1981 1982 out: 1983 return ret; 1984 } 1985 1986 /* 1987 * Helper function to lookup a dir item in a dir. 1988 */ 1989 static int lookup_dir_item_inode(struct btrfs_root *root, 1990 u64 dir, const char *name, int name_len, 1991 u64 *found_inode) 1992 { 1993 int ret = 0; 1994 struct btrfs_dir_item *di; 1995 struct btrfs_key key; 1996 struct btrfs_path *path; 1997 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 1998 1999 path = alloc_path_for_send(); 2000 if (!path) 2001 return -ENOMEM; 2002 2003 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 2004 if (IS_ERR_OR_NULL(di)) { 2005 ret = di ? PTR_ERR(di) : -ENOENT; 2006 goto out; 2007 } 2008 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 2009 if (key.type == BTRFS_ROOT_ITEM_KEY) { 2010 ret = -ENOENT; 2011 goto out; 2012 } 2013 *found_inode = key.objectid; 2014 2015 out: 2016 btrfs_free_path(path); 2017 return ret; 2018 } 2019 2020 /* 2021 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 2022 * generation of the parent dir and the name of the dir entry. 2023 */ 2024 static int get_first_ref(struct btrfs_root *root, u64 ino, 2025 u64 *dir, u64 *dir_gen, struct fs_path *name) 2026 { 2027 int ret; 2028 struct btrfs_key key; 2029 struct btrfs_key found_key; 2030 struct btrfs_path *path; 2031 int len; 2032 u64 parent_dir; 2033 2034 path = alloc_path_for_send(); 2035 if (!path) 2036 return -ENOMEM; 2037 2038 key.objectid = ino; 2039 key.type = BTRFS_INODE_REF_KEY; 2040 key.offset = 0; 2041 2042 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2043 if (ret < 0) 2044 goto out; 2045 if (!ret) 2046 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2047 path->slots[0]); 2048 if (ret || found_key.objectid != ino || 2049 (found_key.type != BTRFS_INODE_REF_KEY && 2050 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 2051 ret = -ENOENT; 2052 goto out; 2053 } 2054 2055 if (found_key.type == BTRFS_INODE_REF_KEY) { 2056 struct btrfs_inode_ref *iref; 2057 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2058 struct btrfs_inode_ref); 2059 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 2060 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2061 (unsigned long)(iref + 1), 2062 len); 2063 parent_dir = found_key.offset; 2064 } else { 2065 struct btrfs_inode_extref *extref; 2066 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2067 struct btrfs_inode_extref); 2068 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2069 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2070 (unsigned long)&extref->name, len); 2071 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2072 } 2073 if (ret < 0) 2074 goto out; 2075 btrfs_release_path(path); 2076 2077 if (dir_gen) { 2078 ret = get_inode_gen(root, parent_dir, dir_gen); 2079 if (ret < 0) 2080 goto out; 2081 } 2082 2083 *dir = parent_dir; 2084 2085 out: 2086 btrfs_free_path(path); 2087 return ret; 2088 } 2089 2090 static int is_first_ref(struct btrfs_root *root, 2091 u64 ino, u64 dir, 2092 const char *name, int name_len) 2093 { 2094 int ret; 2095 struct fs_path *tmp_name; 2096 u64 tmp_dir; 2097 2098 tmp_name = fs_path_alloc(); 2099 if (!tmp_name) 2100 return -ENOMEM; 2101 2102 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2103 if (ret < 0) 2104 goto out; 2105 2106 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2107 ret = 0; 2108 goto out; 2109 } 2110 2111 ret = !memcmp(tmp_name->start, name, name_len); 2112 2113 out: 2114 fs_path_free(tmp_name); 2115 return ret; 2116 } 2117 2118 /* 2119 * Used by process_recorded_refs to determine if a new ref would overwrite an 2120 * already existing ref. In case it detects an overwrite, it returns the 2121 * inode/gen in who_ino/who_gen. 2122 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2123 * to make sure later references to the overwritten inode are possible. 2124 * Orphanizing is however only required for the first ref of an inode. 2125 * process_recorded_refs does an additional is_first_ref check to see if 2126 * orphanizing is really required. 2127 */ 2128 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2129 const char *name, int name_len, 2130 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2131 { 2132 int ret; 2133 u64 parent_root_dir_gen; 2134 u64 other_inode = 0; 2135 struct btrfs_inode_info info; 2136 2137 if (!sctx->parent_root) 2138 return 0; 2139 2140 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2141 if (ret <= 0) 2142 return 0; 2143 2144 /* 2145 * If we have a parent root we need to verify that the parent dir was 2146 * not deleted and then re-created, if it was then we have no overwrite 2147 * and we can just unlink this entry. 2148 * 2149 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2150 * parent root. 2151 */ 2152 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2153 parent_root_dir_gen != dir_gen) 2154 return 0; 2155 2156 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2157 &other_inode); 2158 if (ret == -ENOENT) 2159 return 0; 2160 else if (ret < 0) 2161 return ret; 2162 2163 /* 2164 * Check if the overwritten ref was already processed. If yes, the ref 2165 * was already unlinked/moved, so we can safely assume that we will not 2166 * overwrite anything at this point in time. 2167 */ 2168 if (other_inode > sctx->send_progress || 2169 is_waiting_for_move(sctx, other_inode)) { 2170 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2171 if (ret < 0) 2172 return ret; 2173 2174 *who_ino = other_inode; 2175 *who_gen = info.gen; 2176 *who_mode = info.mode; 2177 return 1; 2178 } 2179 2180 return 0; 2181 } 2182 2183 /* 2184 * Checks if the ref was overwritten by an already processed inode. This is 2185 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2186 * thus the orphan name needs be used. 2187 * process_recorded_refs also uses it to avoid unlinking of refs that were 2188 * overwritten. 2189 */ 2190 static int did_overwrite_ref(struct send_ctx *sctx, 2191 u64 dir, u64 dir_gen, 2192 u64 ino, u64 ino_gen, 2193 const char *name, int name_len) 2194 { 2195 int ret; 2196 u64 ow_inode; 2197 u64 ow_gen = 0; 2198 u64 send_root_dir_gen; 2199 2200 if (!sctx->parent_root) 2201 return 0; 2202 2203 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2204 if (ret <= 0) 2205 return ret; 2206 2207 /* 2208 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2209 * send root. 2210 */ 2211 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2212 return 0; 2213 2214 /* check if the ref was overwritten by another ref */ 2215 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2216 &ow_inode); 2217 if (ret == -ENOENT) { 2218 /* was never and will never be overwritten */ 2219 return 0; 2220 } else if (ret < 0) { 2221 return ret; 2222 } 2223 2224 if (ow_inode == ino) { 2225 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2226 if (ret < 0) 2227 return ret; 2228 2229 /* It's the same inode, so no overwrite happened. */ 2230 if (ow_gen == ino_gen) 2231 return 0; 2232 } 2233 2234 /* 2235 * We know that it is or will be overwritten. Check this now. 2236 * The current inode being processed might have been the one that caused 2237 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2238 * the current inode being processed. 2239 */ 2240 if (ow_inode < sctx->send_progress) 2241 return 1; 2242 2243 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2244 if (ow_gen == 0) { 2245 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2246 if (ret < 0) 2247 return ret; 2248 } 2249 if (ow_gen == sctx->cur_inode_gen) 2250 return 1; 2251 } 2252 2253 return 0; 2254 } 2255 2256 /* 2257 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2258 * that got overwritten. This is used by process_recorded_refs to determine 2259 * if it has to use the path as returned by get_cur_path or the orphan name. 2260 */ 2261 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2262 { 2263 int ret = 0; 2264 struct fs_path *name = NULL; 2265 u64 dir; 2266 u64 dir_gen; 2267 2268 if (!sctx->parent_root) 2269 goto out; 2270 2271 name = fs_path_alloc(); 2272 if (!name) 2273 return -ENOMEM; 2274 2275 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2276 if (ret < 0) 2277 goto out; 2278 2279 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2280 name->start, fs_path_len(name)); 2281 2282 out: 2283 fs_path_free(name); 2284 return ret; 2285 } 2286 2287 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2288 u64 ino, u64 gen) 2289 { 2290 struct btrfs_lru_cache_entry *entry; 2291 2292 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2293 if (!entry) 2294 return NULL; 2295 2296 return container_of(entry, struct name_cache_entry, entry); 2297 } 2298 2299 /* 2300 * Used by get_cur_path for each ref up to the root. 2301 * Returns 0 if it succeeded. 2302 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2303 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2304 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2305 * Returns <0 in case of error. 2306 */ 2307 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2308 u64 ino, u64 gen, 2309 u64 *parent_ino, 2310 u64 *parent_gen, 2311 struct fs_path *dest) 2312 { 2313 int ret; 2314 int nce_ret; 2315 struct name_cache_entry *nce; 2316 2317 /* 2318 * First check if we already did a call to this function with the same 2319 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2320 * return the cached result. 2321 */ 2322 nce = name_cache_search(sctx, ino, gen); 2323 if (nce) { 2324 if (ino < sctx->send_progress && nce->need_later_update) { 2325 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2326 nce = NULL; 2327 } else { 2328 *parent_ino = nce->parent_ino; 2329 *parent_gen = nce->parent_gen; 2330 ret = fs_path_add(dest, nce->name, nce->name_len); 2331 if (ret < 0) 2332 goto out; 2333 ret = nce->ret; 2334 goto out; 2335 } 2336 } 2337 2338 /* 2339 * If the inode is not existent yet, add the orphan name and return 1. 2340 * This should only happen for the parent dir that we determine in 2341 * record_new_ref_if_needed(). 2342 */ 2343 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2344 if (ret < 0) 2345 goto out; 2346 2347 if (!ret) { 2348 ret = gen_unique_name(sctx, ino, gen, dest); 2349 if (ret < 0) 2350 goto out; 2351 ret = 1; 2352 goto out_cache; 2353 } 2354 2355 /* 2356 * Depending on whether the inode was already processed or not, use 2357 * send_root or parent_root for ref lookup. 2358 */ 2359 if (ino < sctx->send_progress) 2360 ret = get_first_ref(sctx->send_root, ino, 2361 parent_ino, parent_gen, dest); 2362 else 2363 ret = get_first_ref(sctx->parent_root, ino, 2364 parent_ino, parent_gen, dest); 2365 if (ret < 0) 2366 goto out; 2367 2368 /* 2369 * Check if the ref was overwritten by an inode's ref that was processed 2370 * earlier. If yes, treat as orphan and return 1. 2371 */ 2372 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2373 dest->start, dest->end - dest->start); 2374 if (ret < 0) 2375 goto out; 2376 if (ret) { 2377 fs_path_reset(dest); 2378 ret = gen_unique_name(sctx, ino, gen, dest); 2379 if (ret < 0) 2380 goto out; 2381 ret = 1; 2382 } 2383 2384 out_cache: 2385 /* 2386 * Store the result of the lookup in the name cache. 2387 */ 2388 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2389 if (!nce) { 2390 ret = -ENOMEM; 2391 goto out; 2392 } 2393 2394 nce->entry.key = ino; 2395 nce->entry.gen = gen; 2396 nce->parent_ino = *parent_ino; 2397 nce->parent_gen = *parent_gen; 2398 nce->name_len = fs_path_len(dest); 2399 nce->ret = ret; 2400 strcpy(nce->name, dest->start); 2401 2402 if (ino < sctx->send_progress) 2403 nce->need_later_update = 0; 2404 else 2405 nce->need_later_update = 1; 2406 2407 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2408 if (nce_ret < 0) { 2409 kfree(nce); 2410 ret = nce_ret; 2411 } 2412 2413 out: 2414 return ret; 2415 } 2416 2417 /* 2418 * Magic happens here. This function returns the first ref to an inode as it 2419 * would look like while receiving the stream at this point in time. 2420 * We walk the path up to the root. For every inode in between, we check if it 2421 * was already processed/sent. If yes, we continue with the parent as found 2422 * in send_root. If not, we continue with the parent as found in parent_root. 2423 * If we encounter an inode that was deleted at this point in time, we use the 2424 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2425 * that were not created yet and overwritten inodes/refs. 2426 * 2427 * When do we have orphan inodes: 2428 * 1. When an inode is freshly created and thus no valid refs are available yet 2429 * 2. When a directory lost all it's refs (deleted) but still has dir items 2430 * inside which were not processed yet (pending for move/delete). If anyone 2431 * tried to get the path to the dir items, it would get a path inside that 2432 * orphan directory. 2433 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2434 * of an unprocessed inode. If in that case the first ref would be 2435 * overwritten, the overwritten inode gets "orphanized". Later when we 2436 * process this overwritten inode, it is restored at a new place by moving 2437 * the orphan inode. 2438 * 2439 * sctx->send_progress tells this function at which point in time receiving 2440 * would be. 2441 */ 2442 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2443 struct fs_path *dest) 2444 { 2445 int ret = 0; 2446 struct fs_path *name = NULL; 2447 u64 parent_inode = 0; 2448 u64 parent_gen = 0; 2449 int stop = 0; 2450 2451 name = fs_path_alloc(); 2452 if (!name) { 2453 ret = -ENOMEM; 2454 goto out; 2455 } 2456 2457 dest->reversed = 1; 2458 fs_path_reset(dest); 2459 2460 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2461 struct waiting_dir_move *wdm; 2462 2463 fs_path_reset(name); 2464 2465 if (is_waiting_for_rm(sctx, ino, gen)) { 2466 ret = gen_unique_name(sctx, ino, gen, name); 2467 if (ret < 0) 2468 goto out; 2469 ret = fs_path_add_path(dest, name); 2470 break; 2471 } 2472 2473 wdm = get_waiting_dir_move(sctx, ino); 2474 if (wdm && wdm->orphanized) { 2475 ret = gen_unique_name(sctx, ino, gen, name); 2476 stop = 1; 2477 } else if (wdm) { 2478 ret = get_first_ref(sctx->parent_root, ino, 2479 &parent_inode, &parent_gen, name); 2480 } else { 2481 ret = __get_cur_name_and_parent(sctx, ino, gen, 2482 &parent_inode, 2483 &parent_gen, name); 2484 if (ret) 2485 stop = 1; 2486 } 2487 2488 if (ret < 0) 2489 goto out; 2490 2491 ret = fs_path_add_path(dest, name); 2492 if (ret < 0) 2493 goto out; 2494 2495 ino = parent_inode; 2496 gen = parent_gen; 2497 } 2498 2499 out: 2500 fs_path_free(name); 2501 if (!ret) 2502 fs_path_unreverse(dest); 2503 return ret; 2504 } 2505 2506 /* 2507 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2508 */ 2509 static int send_subvol_begin(struct send_ctx *sctx) 2510 { 2511 int ret; 2512 struct btrfs_root *send_root = sctx->send_root; 2513 struct btrfs_root *parent_root = sctx->parent_root; 2514 struct btrfs_path *path; 2515 struct btrfs_key key; 2516 struct btrfs_root_ref *ref; 2517 struct extent_buffer *leaf; 2518 char *name = NULL; 2519 int namelen; 2520 2521 path = btrfs_alloc_path(); 2522 if (!path) 2523 return -ENOMEM; 2524 2525 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2526 if (!name) { 2527 btrfs_free_path(path); 2528 return -ENOMEM; 2529 } 2530 2531 key.objectid = send_root->root_key.objectid; 2532 key.type = BTRFS_ROOT_BACKREF_KEY; 2533 key.offset = 0; 2534 2535 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2536 &key, path, 1, 0); 2537 if (ret < 0) 2538 goto out; 2539 if (ret) { 2540 ret = -ENOENT; 2541 goto out; 2542 } 2543 2544 leaf = path->nodes[0]; 2545 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2546 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2547 key.objectid != send_root->root_key.objectid) { 2548 ret = -ENOENT; 2549 goto out; 2550 } 2551 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2552 namelen = btrfs_root_ref_name_len(leaf, ref); 2553 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2554 btrfs_release_path(path); 2555 2556 if (parent_root) { 2557 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2558 if (ret < 0) 2559 goto out; 2560 } else { 2561 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2562 if (ret < 0) 2563 goto out; 2564 } 2565 2566 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2567 2568 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2569 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2570 sctx->send_root->root_item.received_uuid); 2571 else 2572 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2573 sctx->send_root->root_item.uuid); 2574 2575 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2576 btrfs_root_ctransid(&sctx->send_root->root_item)); 2577 if (parent_root) { 2578 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2579 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2580 parent_root->root_item.received_uuid); 2581 else 2582 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2583 parent_root->root_item.uuid); 2584 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2585 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2586 } 2587 2588 ret = send_cmd(sctx); 2589 2590 tlv_put_failure: 2591 out: 2592 btrfs_free_path(path); 2593 kfree(name); 2594 return ret; 2595 } 2596 2597 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2598 { 2599 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2600 int ret = 0; 2601 struct fs_path *p; 2602 2603 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2604 2605 p = fs_path_alloc(); 2606 if (!p) 2607 return -ENOMEM; 2608 2609 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2610 if (ret < 0) 2611 goto out; 2612 2613 ret = get_cur_path(sctx, ino, gen, p); 2614 if (ret < 0) 2615 goto out; 2616 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2617 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2618 2619 ret = send_cmd(sctx); 2620 2621 tlv_put_failure: 2622 out: 2623 fs_path_free(p); 2624 return ret; 2625 } 2626 2627 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2628 { 2629 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2630 int ret = 0; 2631 struct fs_path *p; 2632 2633 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2634 2635 p = fs_path_alloc(); 2636 if (!p) 2637 return -ENOMEM; 2638 2639 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2640 if (ret < 0) 2641 goto out; 2642 2643 ret = get_cur_path(sctx, ino, gen, p); 2644 if (ret < 0) 2645 goto out; 2646 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2647 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2648 2649 ret = send_cmd(sctx); 2650 2651 tlv_put_failure: 2652 out: 2653 fs_path_free(p); 2654 return ret; 2655 } 2656 2657 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2658 { 2659 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2660 int ret = 0; 2661 struct fs_path *p; 2662 2663 if (sctx->proto < 2) 2664 return 0; 2665 2666 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2667 2668 p = fs_path_alloc(); 2669 if (!p) 2670 return -ENOMEM; 2671 2672 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2673 if (ret < 0) 2674 goto out; 2675 2676 ret = get_cur_path(sctx, ino, gen, p); 2677 if (ret < 0) 2678 goto out; 2679 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2680 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2681 2682 ret = send_cmd(sctx); 2683 2684 tlv_put_failure: 2685 out: 2686 fs_path_free(p); 2687 return ret; 2688 } 2689 2690 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2691 { 2692 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2693 int ret = 0; 2694 struct fs_path *p; 2695 2696 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2697 ino, uid, gid); 2698 2699 p = fs_path_alloc(); 2700 if (!p) 2701 return -ENOMEM; 2702 2703 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2704 if (ret < 0) 2705 goto out; 2706 2707 ret = get_cur_path(sctx, ino, gen, p); 2708 if (ret < 0) 2709 goto out; 2710 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2711 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2712 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2713 2714 ret = send_cmd(sctx); 2715 2716 tlv_put_failure: 2717 out: 2718 fs_path_free(p); 2719 return ret; 2720 } 2721 2722 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2723 { 2724 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2725 int ret = 0; 2726 struct fs_path *p = NULL; 2727 struct btrfs_inode_item *ii; 2728 struct btrfs_path *path = NULL; 2729 struct extent_buffer *eb; 2730 struct btrfs_key key; 2731 int slot; 2732 2733 btrfs_debug(fs_info, "send_utimes %llu", ino); 2734 2735 p = fs_path_alloc(); 2736 if (!p) 2737 return -ENOMEM; 2738 2739 path = alloc_path_for_send(); 2740 if (!path) { 2741 ret = -ENOMEM; 2742 goto out; 2743 } 2744 2745 key.objectid = ino; 2746 key.type = BTRFS_INODE_ITEM_KEY; 2747 key.offset = 0; 2748 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2749 if (ret > 0) 2750 ret = -ENOENT; 2751 if (ret < 0) 2752 goto out; 2753 2754 eb = path->nodes[0]; 2755 slot = path->slots[0]; 2756 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2757 2758 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2759 if (ret < 0) 2760 goto out; 2761 2762 ret = get_cur_path(sctx, ino, gen, p); 2763 if (ret < 0) 2764 goto out; 2765 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2766 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2767 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2768 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2769 if (sctx->proto >= 2) 2770 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2771 2772 ret = send_cmd(sctx); 2773 2774 tlv_put_failure: 2775 out: 2776 fs_path_free(p); 2777 btrfs_free_path(path); 2778 return ret; 2779 } 2780 2781 /* 2782 * If the cache is full, we can't remove entries from it and do a call to 2783 * send_utimes() for each respective inode, because we might be finishing 2784 * processing an inode that is a directory and it just got renamed, and existing 2785 * entries in the cache may refer to inodes that have the directory in their 2786 * full path - in which case we would generate outdated paths (pre-rename) 2787 * for the inodes that the cache entries point to. Instead of prunning the 2788 * cache when inserting, do it after we finish processing each inode at 2789 * finish_inode_if_needed(). 2790 */ 2791 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2792 { 2793 struct btrfs_lru_cache_entry *entry; 2794 int ret; 2795 2796 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2797 if (entry != NULL) 2798 return 0; 2799 2800 /* Caching is optional, don't fail if we can't allocate memory. */ 2801 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2802 if (!entry) 2803 return send_utimes(sctx, dir, gen); 2804 2805 entry->key = dir; 2806 entry->gen = gen; 2807 2808 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2809 ASSERT(ret != -EEXIST); 2810 if (ret) { 2811 kfree(entry); 2812 return send_utimes(sctx, dir, gen); 2813 } 2814 2815 return 0; 2816 } 2817 2818 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2819 { 2820 while (btrfs_lru_cache_size(&sctx->dir_utimes_cache) > 2821 SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2822 struct btrfs_lru_cache_entry *lru; 2823 int ret; 2824 2825 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2826 ASSERT(lru != NULL); 2827 2828 ret = send_utimes(sctx, lru->key, lru->gen); 2829 if (ret) 2830 return ret; 2831 2832 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2833 } 2834 2835 return 0; 2836 } 2837 2838 /* 2839 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2840 * a valid path yet because we did not process the refs yet. So, the inode 2841 * is created as orphan. 2842 */ 2843 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2844 { 2845 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2846 int ret = 0; 2847 struct fs_path *p; 2848 int cmd; 2849 struct btrfs_inode_info info; 2850 u64 gen; 2851 u64 mode; 2852 u64 rdev; 2853 2854 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2855 2856 p = fs_path_alloc(); 2857 if (!p) 2858 return -ENOMEM; 2859 2860 if (ino != sctx->cur_ino) { 2861 ret = get_inode_info(sctx->send_root, ino, &info); 2862 if (ret < 0) 2863 goto out; 2864 gen = info.gen; 2865 mode = info.mode; 2866 rdev = info.rdev; 2867 } else { 2868 gen = sctx->cur_inode_gen; 2869 mode = sctx->cur_inode_mode; 2870 rdev = sctx->cur_inode_rdev; 2871 } 2872 2873 if (S_ISREG(mode)) { 2874 cmd = BTRFS_SEND_C_MKFILE; 2875 } else if (S_ISDIR(mode)) { 2876 cmd = BTRFS_SEND_C_MKDIR; 2877 } else if (S_ISLNK(mode)) { 2878 cmd = BTRFS_SEND_C_SYMLINK; 2879 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2880 cmd = BTRFS_SEND_C_MKNOD; 2881 } else if (S_ISFIFO(mode)) { 2882 cmd = BTRFS_SEND_C_MKFIFO; 2883 } else if (S_ISSOCK(mode)) { 2884 cmd = BTRFS_SEND_C_MKSOCK; 2885 } else { 2886 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2887 (int)(mode & S_IFMT)); 2888 ret = -EOPNOTSUPP; 2889 goto out; 2890 } 2891 2892 ret = begin_cmd(sctx, cmd); 2893 if (ret < 0) 2894 goto out; 2895 2896 ret = gen_unique_name(sctx, ino, gen, p); 2897 if (ret < 0) 2898 goto out; 2899 2900 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2901 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2902 2903 if (S_ISLNK(mode)) { 2904 fs_path_reset(p); 2905 ret = read_symlink(sctx->send_root, ino, p); 2906 if (ret < 0) 2907 goto out; 2908 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2909 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2910 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2911 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2912 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2913 } 2914 2915 ret = send_cmd(sctx); 2916 if (ret < 0) 2917 goto out; 2918 2919 2920 tlv_put_failure: 2921 out: 2922 fs_path_free(p); 2923 return ret; 2924 } 2925 2926 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2927 { 2928 struct btrfs_lru_cache_entry *entry; 2929 int ret; 2930 2931 /* Caching is optional, ignore any failures. */ 2932 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2933 if (!entry) 2934 return; 2935 2936 entry->key = dir; 2937 entry->gen = 0; 2938 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2939 if (ret < 0) 2940 kfree(entry); 2941 } 2942 2943 /* 2944 * We need some special handling for inodes that get processed before the parent 2945 * directory got created. See process_recorded_refs for details. 2946 * This function does the check if we already created the dir out of order. 2947 */ 2948 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2949 { 2950 int ret = 0; 2951 int iter_ret = 0; 2952 struct btrfs_path *path = NULL; 2953 struct btrfs_key key; 2954 struct btrfs_key found_key; 2955 struct btrfs_key di_key; 2956 struct btrfs_dir_item *di; 2957 2958 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2959 return 1; 2960 2961 path = alloc_path_for_send(); 2962 if (!path) 2963 return -ENOMEM; 2964 2965 key.objectid = dir; 2966 key.type = BTRFS_DIR_INDEX_KEY; 2967 key.offset = 0; 2968 2969 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2970 struct extent_buffer *eb = path->nodes[0]; 2971 2972 if (found_key.objectid != key.objectid || 2973 found_key.type != key.type) { 2974 ret = 0; 2975 break; 2976 } 2977 2978 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2979 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2980 2981 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2982 di_key.objectid < sctx->send_progress) { 2983 ret = 1; 2984 cache_dir_created(sctx, dir); 2985 break; 2986 } 2987 } 2988 /* Catch error found during iteration */ 2989 if (iter_ret < 0) 2990 ret = iter_ret; 2991 2992 btrfs_free_path(path); 2993 return ret; 2994 } 2995 2996 /* 2997 * Only creates the inode if it is: 2998 * 1. Not a directory 2999 * 2. Or a directory which was not created already due to out of order 3000 * directories. See did_create_dir and process_recorded_refs for details. 3001 */ 3002 static int send_create_inode_if_needed(struct send_ctx *sctx) 3003 { 3004 int ret; 3005 3006 if (S_ISDIR(sctx->cur_inode_mode)) { 3007 ret = did_create_dir(sctx, sctx->cur_ino); 3008 if (ret < 0) 3009 return ret; 3010 else if (ret > 0) 3011 return 0; 3012 } 3013 3014 ret = send_create_inode(sctx, sctx->cur_ino); 3015 3016 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 3017 cache_dir_created(sctx, sctx->cur_ino); 3018 3019 return ret; 3020 } 3021 3022 struct recorded_ref { 3023 struct list_head list; 3024 char *name; 3025 struct fs_path *full_path; 3026 u64 dir; 3027 u64 dir_gen; 3028 int name_len; 3029 struct rb_node node; 3030 struct rb_root *root; 3031 }; 3032 3033 static struct recorded_ref *recorded_ref_alloc(void) 3034 { 3035 struct recorded_ref *ref; 3036 3037 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 3038 if (!ref) 3039 return NULL; 3040 RB_CLEAR_NODE(&ref->node); 3041 INIT_LIST_HEAD(&ref->list); 3042 return ref; 3043 } 3044 3045 static void recorded_ref_free(struct recorded_ref *ref) 3046 { 3047 if (!ref) 3048 return; 3049 if (!RB_EMPTY_NODE(&ref->node)) 3050 rb_erase(&ref->node, ref->root); 3051 list_del(&ref->list); 3052 fs_path_free(ref->full_path); 3053 kfree(ref); 3054 } 3055 3056 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3057 { 3058 ref->full_path = path; 3059 ref->name = (char *)kbasename(ref->full_path->start); 3060 ref->name_len = ref->full_path->end - ref->name; 3061 } 3062 3063 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3064 { 3065 struct recorded_ref *new; 3066 3067 new = recorded_ref_alloc(); 3068 if (!new) 3069 return -ENOMEM; 3070 3071 new->dir = ref->dir; 3072 new->dir_gen = ref->dir_gen; 3073 list_add_tail(&new->list, list); 3074 return 0; 3075 } 3076 3077 static void __free_recorded_refs(struct list_head *head) 3078 { 3079 struct recorded_ref *cur; 3080 3081 while (!list_empty(head)) { 3082 cur = list_entry(head->next, struct recorded_ref, list); 3083 recorded_ref_free(cur); 3084 } 3085 } 3086 3087 static void free_recorded_refs(struct send_ctx *sctx) 3088 { 3089 __free_recorded_refs(&sctx->new_refs); 3090 __free_recorded_refs(&sctx->deleted_refs); 3091 } 3092 3093 /* 3094 * Renames/moves a file/dir to its orphan name. Used when the first 3095 * ref of an unprocessed inode gets overwritten and for all non empty 3096 * directories. 3097 */ 3098 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3099 struct fs_path *path) 3100 { 3101 int ret; 3102 struct fs_path *orphan; 3103 3104 orphan = fs_path_alloc(); 3105 if (!orphan) 3106 return -ENOMEM; 3107 3108 ret = gen_unique_name(sctx, ino, gen, orphan); 3109 if (ret < 0) 3110 goto out; 3111 3112 ret = send_rename(sctx, path, orphan); 3113 3114 out: 3115 fs_path_free(orphan); 3116 return ret; 3117 } 3118 3119 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3120 u64 dir_ino, u64 dir_gen) 3121 { 3122 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3123 struct rb_node *parent = NULL; 3124 struct orphan_dir_info *entry, *odi; 3125 3126 while (*p) { 3127 parent = *p; 3128 entry = rb_entry(parent, struct orphan_dir_info, node); 3129 if (dir_ino < entry->ino) 3130 p = &(*p)->rb_left; 3131 else if (dir_ino > entry->ino) 3132 p = &(*p)->rb_right; 3133 else if (dir_gen < entry->gen) 3134 p = &(*p)->rb_left; 3135 else if (dir_gen > entry->gen) 3136 p = &(*p)->rb_right; 3137 else 3138 return entry; 3139 } 3140 3141 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3142 if (!odi) 3143 return ERR_PTR(-ENOMEM); 3144 odi->ino = dir_ino; 3145 odi->gen = dir_gen; 3146 odi->last_dir_index_offset = 0; 3147 odi->dir_high_seq_ino = 0; 3148 3149 rb_link_node(&odi->node, parent, p); 3150 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3151 return odi; 3152 } 3153 3154 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3155 u64 dir_ino, u64 gen) 3156 { 3157 struct rb_node *n = sctx->orphan_dirs.rb_node; 3158 struct orphan_dir_info *entry; 3159 3160 while (n) { 3161 entry = rb_entry(n, struct orphan_dir_info, node); 3162 if (dir_ino < entry->ino) 3163 n = n->rb_left; 3164 else if (dir_ino > entry->ino) 3165 n = n->rb_right; 3166 else if (gen < entry->gen) 3167 n = n->rb_left; 3168 else if (gen > entry->gen) 3169 n = n->rb_right; 3170 else 3171 return entry; 3172 } 3173 return NULL; 3174 } 3175 3176 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3177 { 3178 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3179 3180 return odi != NULL; 3181 } 3182 3183 static void free_orphan_dir_info(struct send_ctx *sctx, 3184 struct orphan_dir_info *odi) 3185 { 3186 if (!odi) 3187 return; 3188 rb_erase(&odi->node, &sctx->orphan_dirs); 3189 kfree(odi); 3190 } 3191 3192 /* 3193 * Returns 1 if a directory can be removed at this point in time. 3194 * We check this by iterating all dir items and checking if the inode behind 3195 * the dir item was already processed. 3196 */ 3197 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3198 { 3199 int ret = 0; 3200 int iter_ret = 0; 3201 struct btrfs_root *root = sctx->parent_root; 3202 struct btrfs_path *path; 3203 struct btrfs_key key; 3204 struct btrfs_key found_key; 3205 struct btrfs_key loc; 3206 struct btrfs_dir_item *di; 3207 struct orphan_dir_info *odi = NULL; 3208 u64 dir_high_seq_ino = 0; 3209 u64 last_dir_index_offset = 0; 3210 3211 /* 3212 * Don't try to rmdir the top/root subvolume dir. 3213 */ 3214 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3215 return 0; 3216 3217 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3218 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3219 return 0; 3220 3221 path = alloc_path_for_send(); 3222 if (!path) 3223 return -ENOMEM; 3224 3225 if (!odi) { 3226 /* 3227 * Find the inode number associated with the last dir index 3228 * entry. This is very likely the inode with the highest number 3229 * of all inodes that have an entry in the directory. We can 3230 * then use it to avoid future calls to can_rmdir(), when 3231 * processing inodes with a lower number, from having to search 3232 * the parent root b+tree for dir index keys. 3233 */ 3234 key.objectid = dir; 3235 key.type = BTRFS_DIR_INDEX_KEY; 3236 key.offset = (u64)-1; 3237 3238 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3239 if (ret < 0) { 3240 goto out; 3241 } else if (ret > 0) { 3242 /* Can't happen, the root is never empty. */ 3243 ASSERT(path->slots[0] > 0); 3244 if (WARN_ON(path->slots[0] == 0)) { 3245 ret = -EUCLEAN; 3246 goto out; 3247 } 3248 path->slots[0]--; 3249 } 3250 3251 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3252 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3253 /* No index keys, dir can be removed. */ 3254 ret = 1; 3255 goto out; 3256 } 3257 3258 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3259 struct btrfs_dir_item); 3260 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3261 dir_high_seq_ino = loc.objectid; 3262 if (sctx->cur_ino < dir_high_seq_ino) { 3263 ret = 0; 3264 goto out; 3265 } 3266 3267 btrfs_release_path(path); 3268 } 3269 3270 key.objectid = dir; 3271 key.type = BTRFS_DIR_INDEX_KEY; 3272 key.offset = (odi ? odi->last_dir_index_offset : 0); 3273 3274 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3275 struct waiting_dir_move *dm; 3276 3277 if (found_key.objectid != key.objectid || 3278 found_key.type != key.type) 3279 break; 3280 3281 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3282 struct btrfs_dir_item); 3283 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3284 3285 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3286 last_dir_index_offset = found_key.offset; 3287 3288 dm = get_waiting_dir_move(sctx, loc.objectid); 3289 if (dm) { 3290 dm->rmdir_ino = dir; 3291 dm->rmdir_gen = dir_gen; 3292 ret = 0; 3293 goto out; 3294 } 3295 3296 if (loc.objectid > sctx->cur_ino) { 3297 ret = 0; 3298 goto out; 3299 } 3300 } 3301 if (iter_ret < 0) { 3302 ret = iter_ret; 3303 goto out; 3304 } 3305 free_orphan_dir_info(sctx, odi); 3306 3307 ret = 1; 3308 3309 out: 3310 btrfs_free_path(path); 3311 3312 if (ret) 3313 return ret; 3314 3315 if (!odi) { 3316 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3317 if (IS_ERR(odi)) 3318 return PTR_ERR(odi); 3319 3320 odi->gen = dir_gen; 3321 } 3322 3323 odi->last_dir_index_offset = last_dir_index_offset; 3324 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3325 3326 return 0; 3327 } 3328 3329 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3330 { 3331 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3332 3333 return entry != NULL; 3334 } 3335 3336 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3337 { 3338 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3339 struct rb_node *parent = NULL; 3340 struct waiting_dir_move *entry, *dm; 3341 3342 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3343 if (!dm) 3344 return -ENOMEM; 3345 dm->ino = ino; 3346 dm->rmdir_ino = 0; 3347 dm->rmdir_gen = 0; 3348 dm->orphanized = orphanized; 3349 3350 while (*p) { 3351 parent = *p; 3352 entry = rb_entry(parent, struct waiting_dir_move, node); 3353 if (ino < entry->ino) { 3354 p = &(*p)->rb_left; 3355 } else if (ino > entry->ino) { 3356 p = &(*p)->rb_right; 3357 } else { 3358 kfree(dm); 3359 return -EEXIST; 3360 } 3361 } 3362 3363 rb_link_node(&dm->node, parent, p); 3364 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3365 return 0; 3366 } 3367 3368 static struct waiting_dir_move * 3369 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3370 { 3371 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3372 struct waiting_dir_move *entry; 3373 3374 while (n) { 3375 entry = rb_entry(n, struct waiting_dir_move, node); 3376 if (ino < entry->ino) 3377 n = n->rb_left; 3378 else if (ino > entry->ino) 3379 n = n->rb_right; 3380 else 3381 return entry; 3382 } 3383 return NULL; 3384 } 3385 3386 static void free_waiting_dir_move(struct send_ctx *sctx, 3387 struct waiting_dir_move *dm) 3388 { 3389 if (!dm) 3390 return; 3391 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3392 kfree(dm); 3393 } 3394 3395 static int add_pending_dir_move(struct send_ctx *sctx, 3396 u64 ino, 3397 u64 ino_gen, 3398 u64 parent_ino, 3399 struct list_head *new_refs, 3400 struct list_head *deleted_refs, 3401 const bool is_orphan) 3402 { 3403 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3404 struct rb_node *parent = NULL; 3405 struct pending_dir_move *entry = NULL, *pm; 3406 struct recorded_ref *cur; 3407 int exists = 0; 3408 int ret; 3409 3410 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3411 if (!pm) 3412 return -ENOMEM; 3413 pm->parent_ino = parent_ino; 3414 pm->ino = ino; 3415 pm->gen = ino_gen; 3416 INIT_LIST_HEAD(&pm->list); 3417 INIT_LIST_HEAD(&pm->update_refs); 3418 RB_CLEAR_NODE(&pm->node); 3419 3420 while (*p) { 3421 parent = *p; 3422 entry = rb_entry(parent, struct pending_dir_move, node); 3423 if (parent_ino < entry->parent_ino) { 3424 p = &(*p)->rb_left; 3425 } else if (parent_ino > entry->parent_ino) { 3426 p = &(*p)->rb_right; 3427 } else { 3428 exists = 1; 3429 break; 3430 } 3431 } 3432 3433 list_for_each_entry(cur, deleted_refs, list) { 3434 ret = dup_ref(cur, &pm->update_refs); 3435 if (ret < 0) 3436 goto out; 3437 } 3438 list_for_each_entry(cur, new_refs, list) { 3439 ret = dup_ref(cur, &pm->update_refs); 3440 if (ret < 0) 3441 goto out; 3442 } 3443 3444 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3445 if (ret) 3446 goto out; 3447 3448 if (exists) { 3449 list_add_tail(&pm->list, &entry->list); 3450 } else { 3451 rb_link_node(&pm->node, parent, p); 3452 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3453 } 3454 ret = 0; 3455 out: 3456 if (ret) { 3457 __free_recorded_refs(&pm->update_refs); 3458 kfree(pm); 3459 } 3460 return ret; 3461 } 3462 3463 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3464 u64 parent_ino) 3465 { 3466 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3467 struct pending_dir_move *entry; 3468 3469 while (n) { 3470 entry = rb_entry(n, struct pending_dir_move, node); 3471 if (parent_ino < entry->parent_ino) 3472 n = n->rb_left; 3473 else if (parent_ino > entry->parent_ino) 3474 n = n->rb_right; 3475 else 3476 return entry; 3477 } 3478 return NULL; 3479 } 3480 3481 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3482 u64 ino, u64 gen, u64 *ancestor_ino) 3483 { 3484 int ret = 0; 3485 u64 parent_inode = 0; 3486 u64 parent_gen = 0; 3487 u64 start_ino = ino; 3488 3489 *ancestor_ino = 0; 3490 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3491 fs_path_reset(name); 3492 3493 if (is_waiting_for_rm(sctx, ino, gen)) 3494 break; 3495 if (is_waiting_for_move(sctx, ino)) { 3496 if (*ancestor_ino == 0) 3497 *ancestor_ino = ino; 3498 ret = get_first_ref(sctx->parent_root, ino, 3499 &parent_inode, &parent_gen, name); 3500 } else { 3501 ret = __get_cur_name_and_parent(sctx, ino, gen, 3502 &parent_inode, 3503 &parent_gen, name); 3504 if (ret > 0) { 3505 ret = 0; 3506 break; 3507 } 3508 } 3509 if (ret < 0) 3510 break; 3511 if (parent_inode == start_ino) { 3512 ret = 1; 3513 if (*ancestor_ino == 0) 3514 *ancestor_ino = ino; 3515 break; 3516 } 3517 ino = parent_inode; 3518 gen = parent_gen; 3519 } 3520 return ret; 3521 } 3522 3523 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3524 { 3525 struct fs_path *from_path = NULL; 3526 struct fs_path *to_path = NULL; 3527 struct fs_path *name = NULL; 3528 u64 orig_progress = sctx->send_progress; 3529 struct recorded_ref *cur; 3530 u64 parent_ino, parent_gen; 3531 struct waiting_dir_move *dm = NULL; 3532 u64 rmdir_ino = 0; 3533 u64 rmdir_gen; 3534 u64 ancestor; 3535 bool is_orphan; 3536 int ret; 3537 3538 name = fs_path_alloc(); 3539 from_path = fs_path_alloc(); 3540 if (!name || !from_path) { 3541 ret = -ENOMEM; 3542 goto out; 3543 } 3544 3545 dm = get_waiting_dir_move(sctx, pm->ino); 3546 ASSERT(dm); 3547 rmdir_ino = dm->rmdir_ino; 3548 rmdir_gen = dm->rmdir_gen; 3549 is_orphan = dm->orphanized; 3550 free_waiting_dir_move(sctx, dm); 3551 3552 if (is_orphan) { 3553 ret = gen_unique_name(sctx, pm->ino, 3554 pm->gen, from_path); 3555 } else { 3556 ret = get_first_ref(sctx->parent_root, pm->ino, 3557 &parent_ino, &parent_gen, name); 3558 if (ret < 0) 3559 goto out; 3560 ret = get_cur_path(sctx, parent_ino, parent_gen, 3561 from_path); 3562 if (ret < 0) 3563 goto out; 3564 ret = fs_path_add_path(from_path, name); 3565 } 3566 if (ret < 0) 3567 goto out; 3568 3569 sctx->send_progress = sctx->cur_ino + 1; 3570 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3571 if (ret < 0) 3572 goto out; 3573 if (ret) { 3574 LIST_HEAD(deleted_refs); 3575 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3576 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3577 &pm->update_refs, &deleted_refs, 3578 is_orphan); 3579 if (ret < 0) 3580 goto out; 3581 if (rmdir_ino) { 3582 dm = get_waiting_dir_move(sctx, pm->ino); 3583 ASSERT(dm); 3584 dm->rmdir_ino = rmdir_ino; 3585 dm->rmdir_gen = rmdir_gen; 3586 } 3587 goto out; 3588 } 3589 fs_path_reset(name); 3590 to_path = name; 3591 name = NULL; 3592 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3593 if (ret < 0) 3594 goto out; 3595 3596 ret = send_rename(sctx, from_path, to_path); 3597 if (ret < 0) 3598 goto out; 3599 3600 if (rmdir_ino) { 3601 struct orphan_dir_info *odi; 3602 u64 gen; 3603 3604 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3605 if (!odi) { 3606 /* already deleted */ 3607 goto finish; 3608 } 3609 gen = odi->gen; 3610 3611 ret = can_rmdir(sctx, rmdir_ino, gen); 3612 if (ret < 0) 3613 goto out; 3614 if (!ret) 3615 goto finish; 3616 3617 name = fs_path_alloc(); 3618 if (!name) { 3619 ret = -ENOMEM; 3620 goto out; 3621 } 3622 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3623 if (ret < 0) 3624 goto out; 3625 ret = send_rmdir(sctx, name); 3626 if (ret < 0) 3627 goto out; 3628 } 3629 3630 finish: 3631 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3632 if (ret < 0) 3633 goto out; 3634 3635 /* 3636 * After rename/move, need to update the utimes of both new parent(s) 3637 * and old parent(s). 3638 */ 3639 list_for_each_entry(cur, &pm->update_refs, list) { 3640 /* 3641 * The parent inode might have been deleted in the send snapshot 3642 */ 3643 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3644 if (ret == -ENOENT) { 3645 ret = 0; 3646 continue; 3647 } 3648 if (ret < 0) 3649 goto out; 3650 3651 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3652 if (ret < 0) 3653 goto out; 3654 } 3655 3656 out: 3657 fs_path_free(name); 3658 fs_path_free(from_path); 3659 fs_path_free(to_path); 3660 sctx->send_progress = orig_progress; 3661 3662 return ret; 3663 } 3664 3665 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3666 { 3667 if (!list_empty(&m->list)) 3668 list_del(&m->list); 3669 if (!RB_EMPTY_NODE(&m->node)) 3670 rb_erase(&m->node, &sctx->pending_dir_moves); 3671 __free_recorded_refs(&m->update_refs); 3672 kfree(m); 3673 } 3674 3675 static void tail_append_pending_moves(struct send_ctx *sctx, 3676 struct pending_dir_move *moves, 3677 struct list_head *stack) 3678 { 3679 if (list_empty(&moves->list)) { 3680 list_add_tail(&moves->list, stack); 3681 } else { 3682 LIST_HEAD(list); 3683 list_splice_init(&moves->list, &list); 3684 list_add_tail(&moves->list, stack); 3685 list_splice_tail(&list, stack); 3686 } 3687 if (!RB_EMPTY_NODE(&moves->node)) { 3688 rb_erase(&moves->node, &sctx->pending_dir_moves); 3689 RB_CLEAR_NODE(&moves->node); 3690 } 3691 } 3692 3693 static int apply_children_dir_moves(struct send_ctx *sctx) 3694 { 3695 struct pending_dir_move *pm; 3696 LIST_HEAD(stack); 3697 u64 parent_ino = sctx->cur_ino; 3698 int ret = 0; 3699 3700 pm = get_pending_dir_moves(sctx, parent_ino); 3701 if (!pm) 3702 return 0; 3703 3704 tail_append_pending_moves(sctx, pm, &stack); 3705 3706 while (!list_empty(&stack)) { 3707 pm = list_first_entry(&stack, struct pending_dir_move, list); 3708 parent_ino = pm->ino; 3709 ret = apply_dir_move(sctx, pm); 3710 free_pending_move(sctx, pm); 3711 if (ret) 3712 goto out; 3713 pm = get_pending_dir_moves(sctx, parent_ino); 3714 if (pm) 3715 tail_append_pending_moves(sctx, pm, &stack); 3716 } 3717 return 0; 3718 3719 out: 3720 while (!list_empty(&stack)) { 3721 pm = list_first_entry(&stack, struct pending_dir_move, list); 3722 free_pending_move(sctx, pm); 3723 } 3724 return ret; 3725 } 3726 3727 /* 3728 * We might need to delay a directory rename even when no ancestor directory 3729 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3730 * renamed. This happens when we rename a directory to the old name (the name 3731 * in the parent root) of some other unrelated directory that got its rename 3732 * delayed due to some ancestor with higher number that got renamed. 3733 * 3734 * Example: 3735 * 3736 * Parent snapshot: 3737 * . (ino 256) 3738 * |---- a/ (ino 257) 3739 * | |---- file (ino 260) 3740 * | 3741 * |---- b/ (ino 258) 3742 * |---- c/ (ino 259) 3743 * 3744 * Send snapshot: 3745 * . (ino 256) 3746 * |---- a/ (ino 258) 3747 * |---- x/ (ino 259) 3748 * |---- y/ (ino 257) 3749 * |----- file (ino 260) 3750 * 3751 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3752 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3753 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3754 * must issue is: 3755 * 3756 * 1 - rename 259 from 'c' to 'x' 3757 * 2 - rename 257 from 'a' to 'x/y' 3758 * 3 - rename 258 from 'b' to 'a' 3759 * 3760 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3761 * be done right away and < 0 on error. 3762 */ 3763 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3764 struct recorded_ref *parent_ref, 3765 const bool is_orphan) 3766 { 3767 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3768 struct btrfs_path *path; 3769 struct btrfs_key key; 3770 struct btrfs_key di_key; 3771 struct btrfs_dir_item *di; 3772 u64 left_gen; 3773 u64 right_gen; 3774 int ret = 0; 3775 struct waiting_dir_move *wdm; 3776 3777 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3778 return 0; 3779 3780 path = alloc_path_for_send(); 3781 if (!path) 3782 return -ENOMEM; 3783 3784 key.objectid = parent_ref->dir; 3785 key.type = BTRFS_DIR_ITEM_KEY; 3786 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3787 3788 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3789 if (ret < 0) { 3790 goto out; 3791 } else if (ret > 0) { 3792 ret = 0; 3793 goto out; 3794 } 3795 3796 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3797 parent_ref->name_len); 3798 if (!di) { 3799 ret = 0; 3800 goto out; 3801 } 3802 /* 3803 * di_key.objectid has the number of the inode that has a dentry in the 3804 * parent directory with the same name that sctx->cur_ino is being 3805 * renamed to. We need to check if that inode is in the send root as 3806 * well and if it is currently marked as an inode with a pending rename, 3807 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3808 * that it happens after that other inode is renamed. 3809 */ 3810 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3811 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3812 ret = 0; 3813 goto out; 3814 } 3815 3816 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3817 if (ret < 0) 3818 goto out; 3819 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3820 if (ret < 0) { 3821 if (ret == -ENOENT) 3822 ret = 0; 3823 goto out; 3824 } 3825 3826 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3827 if (right_gen != left_gen) { 3828 ret = 0; 3829 goto out; 3830 } 3831 3832 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3833 if (wdm && !wdm->orphanized) { 3834 ret = add_pending_dir_move(sctx, 3835 sctx->cur_ino, 3836 sctx->cur_inode_gen, 3837 di_key.objectid, 3838 &sctx->new_refs, 3839 &sctx->deleted_refs, 3840 is_orphan); 3841 if (!ret) 3842 ret = 1; 3843 } 3844 out: 3845 btrfs_free_path(path); 3846 return ret; 3847 } 3848 3849 /* 3850 * Check if inode ino2, or any of its ancestors, is inode ino1. 3851 * Return 1 if true, 0 if false and < 0 on error. 3852 */ 3853 static int check_ino_in_path(struct btrfs_root *root, 3854 const u64 ino1, 3855 const u64 ino1_gen, 3856 const u64 ino2, 3857 const u64 ino2_gen, 3858 struct fs_path *fs_path) 3859 { 3860 u64 ino = ino2; 3861 3862 if (ino1 == ino2) 3863 return ino1_gen == ino2_gen; 3864 3865 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3866 u64 parent; 3867 u64 parent_gen; 3868 int ret; 3869 3870 fs_path_reset(fs_path); 3871 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3872 if (ret < 0) 3873 return ret; 3874 if (parent == ino1) 3875 return parent_gen == ino1_gen; 3876 ino = parent; 3877 } 3878 return 0; 3879 } 3880 3881 /* 3882 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3883 * possible path (in case ino2 is not a directory and has multiple hard links). 3884 * Return 1 if true, 0 if false and < 0 on error. 3885 */ 3886 static int is_ancestor(struct btrfs_root *root, 3887 const u64 ino1, 3888 const u64 ino1_gen, 3889 const u64 ino2, 3890 struct fs_path *fs_path) 3891 { 3892 bool free_fs_path = false; 3893 int ret = 0; 3894 int iter_ret = 0; 3895 struct btrfs_path *path = NULL; 3896 struct btrfs_key key; 3897 3898 if (!fs_path) { 3899 fs_path = fs_path_alloc(); 3900 if (!fs_path) 3901 return -ENOMEM; 3902 free_fs_path = true; 3903 } 3904 3905 path = alloc_path_for_send(); 3906 if (!path) { 3907 ret = -ENOMEM; 3908 goto out; 3909 } 3910 3911 key.objectid = ino2; 3912 key.type = BTRFS_INODE_REF_KEY; 3913 key.offset = 0; 3914 3915 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3916 struct extent_buffer *leaf = path->nodes[0]; 3917 int slot = path->slots[0]; 3918 u32 cur_offset = 0; 3919 u32 item_size; 3920 3921 if (key.objectid != ino2) 3922 break; 3923 if (key.type != BTRFS_INODE_REF_KEY && 3924 key.type != BTRFS_INODE_EXTREF_KEY) 3925 break; 3926 3927 item_size = btrfs_item_size(leaf, slot); 3928 while (cur_offset < item_size) { 3929 u64 parent; 3930 u64 parent_gen; 3931 3932 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3933 unsigned long ptr; 3934 struct btrfs_inode_extref *extref; 3935 3936 ptr = btrfs_item_ptr_offset(leaf, slot); 3937 extref = (struct btrfs_inode_extref *) 3938 (ptr + cur_offset); 3939 parent = btrfs_inode_extref_parent(leaf, 3940 extref); 3941 cur_offset += sizeof(*extref); 3942 cur_offset += btrfs_inode_extref_name_len(leaf, 3943 extref); 3944 } else { 3945 parent = key.offset; 3946 cur_offset = item_size; 3947 } 3948 3949 ret = get_inode_gen(root, parent, &parent_gen); 3950 if (ret < 0) 3951 goto out; 3952 ret = check_ino_in_path(root, ino1, ino1_gen, 3953 parent, parent_gen, fs_path); 3954 if (ret) 3955 goto out; 3956 } 3957 } 3958 ret = 0; 3959 if (iter_ret < 0) 3960 ret = iter_ret; 3961 3962 out: 3963 btrfs_free_path(path); 3964 if (free_fs_path) 3965 fs_path_free(fs_path); 3966 return ret; 3967 } 3968 3969 static int wait_for_parent_move(struct send_ctx *sctx, 3970 struct recorded_ref *parent_ref, 3971 const bool is_orphan) 3972 { 3973 int ret = 0; 3974 u64 ino = parent_ref->dir; 3975 u64 ino_gen = parent_ref->dir_gen; 3976 u64 parent_ino_before, parent_ino_after; 3977 struct fs_path *path_before = NULL; 3978 struct fs_path *path_after = NULL; 3979 int len1, len2; 3980 3981 path_after = fs_path_alloc(); 3982 path_before = fs_path_alloc(); 3983 if (!path_after || !path_before) { 3984 ret = -ENOMEM; 3985 goto out; 3986 } 3987 3988 /* 3989 * Our current directory inode may not yet be renamed/moved because some 3990 * ancestor (immediate or not) has to be renamed/moved first. So find if 3991 * such ancestor exists and make sure our own rename/move happens after 3992 * that ancestor is processed to avoid path build infinite loops (done 3993 * at get_cur_path()). 3994 */ 3995 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3996 u64 parent_ino_after_gen; 3997 3998 if (is_waiting_for_move(sctx, ino)) { 3999 /* 4000 * If the current inode is an ancestor of ino in the 4001 * parent root, we need to delay the rename of the 4002 * current inode, otherwise don't delayed the rename 4003 * because we can end up with a circular dependency 4004 * of renames, resulting in some directories never 4005 * getting the respective rename operations issued in 4006 * the send stream or getting into infinite path build 4007 * loops. 4008 */ 4009 ret = is_ancestor(sctx->parent_root, 4010 sctx->cur_ino, sctx->cur_inode_gen, 4011 ino, path_before); 4012 if (ret) 4013 break; 4014 } 4015 4016 fs_path_reset(path_before); 4017 fs_path_reset(path_after); 4018 4019 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 4020 &parent_ino_after_gen, path_after); 4021 if (ret < 0) 4022 goto out; 4023 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 4024 NULL, path_before); 4025 if (ret < 0 && ret != -ENOENT) { 4026 goto out; 4027 } else if (ret == -ENOENT) { 4028 ret = 0; 4029 break; 4030 } 4031 4032 len1 = fs_path_len(path_before); 4033 len2 = fs_path_len(path_after); 4034 if (ino > sctx->cur_ino && 4035 (parent_ino_before != parent_ino_after || len1 != len2 || 4036 memcmp(path_before->start, path_after->start, len1))) { 4037 u64 parent_ino_gen; 4038 4039 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 4040 if (ret < 0) 4041 goto out; 4042 if (ino_gen == parent_ino_gen) { 4043 ret = 1; 4044 break; 4045 } 4046 } 4047 ino = parent_ino_after; 4048 ino_gen = parent_ino_after_gen; 4049 } 4050 4051 out: 4052 fs_path_free(path_before); 4053 fs_path_free(path_after); 4054 4055 if (ret == 1) { 4056 ret = add_pending_dir_move(sctx, 4057 sctx->cur_ino, 4058 sctx->cur_inode_gen, 4059 ino, 4060 &sctx->new_refs, 4061 &sctx->deleted_refs, 4062 is_orphan); 4063 if (!ret) 4064 ret = 1; 4065 } 4066 4067 return ret; 4068 } 4069 4070 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4071 { 4072 int ret; 4073 struct fs_path *new_path; 4074 4075 /* 4076 * Our reference's name member points to its full_path member string, so 4077 * we use here a new path. 4078 */ 4079 new_path = fs_path_alloc(); 4080 if (!new_path) 4081 return -ENOMEM; 4082 4083 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4084 if (ret < 0) { 4085 fs_path_free(new_path); 4086 return ret; 4087 } 4088 ret = fs_path_add(new_path, ref->name, ref->name_len); 4089 if (ret < 0) { 4090 fs_path_free(new_path); 4091 return ret; 4092 } 4093 4094 fs_path_free(ref->full_path); 4095 set_ref_path(ref, new_path); 4096 4097 return 0; 4098 } 4099 4100 /* 4101 * When processing the new references for an inode we may orphanize an existing 4102 * directory inode because its old name conflicts with one of the new references 4103 * of the current inode. Later, when processing another new reference of our 4104 * inode, we might need to orphanize another inode, but the path we have in the 4105 * reference reflects the pre-orphanization name of the directory we previously 4106 * orphanized. For example: 4107 * 4108 * parent snapshot looks like: 4109 * 4110 * . (ino 256) 4111 * |----- f1 (ino 257) 4112 * |----- f2 (ino 258) 4113 * |----- d1/ (ino 259) 4114 * |----- d2/ (ino 260) 4115 * 4116 * send snapshot looks like: 4117 * 4118 * . (ino 256) 4119 * |----- d1 (ino 258) 4120 * |----- f2/ (ino 259) 4121 * |----- f2_link/ (ino 260) 4122 * | |----- f1 (ino 257) 4123 * | 4124 * |----- d2 (ino 258) 4125 * 4126 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4127 * cache it in the name cache. Later when we start processing inode 258, when 4128 * collecting all its new references we set a full path of "d1/d2" for its new 4129 * reference with name "d2". When we start processing the new references we 4130 * start by processing the new reference with name "d1", and this results in 4131 * orphanizing inode 259, since its old reference causes a conflict. Then we 4132 * move on the next new reference, with name "d2", and we find out we must 4133 * orphanize inode 260, as its old reference conflicts with ours - but for the 4134 * orphanization we use a source path corresponding to the path we stored in the 4135 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4136 * receiver fail since the path component "d1/" no longer exists, it was renamed 4137 * to "o259-6-0/" when processing the previous new reference. So in this case we 4138 * must recompute the path in the new reference and use it for the new 4139 * orphanization operation. 4140 */ 4141 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4142 { 4143 char *name; 4144 int ret; 4145 4146 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4147 if (!name) 4148 return -ENOMEM; 4149 4150 fs_path_reset(ref->full_path); 4151 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4152 if (ret < 0) 4153 goto out; 4154 4155 ret = fs_path_add(ref->full_path, name, ref->name_len); 4156 if (ret < 0) 4157 goto out; 4158 4159 /* Update the reference's base name pointer. */ 4160 set_ref_path(ref, ref->full_path); 4161 out: 4162 kfree(name); 4163 return ret; 4164 } 4165 4166 /* 4167 * This does all the move/link/unlink/rmdir magic. 4168 */ 4169 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4170 { 4171 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4172 int ret = 0; 4173 struct recorded_ref *cur; 4174 struct recorded_ref *cur2; 4175 LIST_HEAD(check_dirs); 4176 struct fs_path *valid_path = NULL; 4177 u64 ow_inode = 0; 4178 u64 ow_gen; 4179 u64 ow_mode; 4180 int did_overwrite = 0; 4181 int is_orphan = 0; 4182 u64 last_dir_ino_rm = 0; 4183 bool can_rename = true; 4184 bool orphanized_dir = false; 4185 bool orphanized_ancestor = false; 4186 4187 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 4188 4189 /* 4190 * This should never happen as the root dir always has the same ref 4191 * which is always '..' 4192 */ 4193 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 4194 4195 valid_path = fs_path_alloc(); 4196 if (!valid_path) { 4197 ret = -ENOMEM; 4198 goto out; 4199 } 4200 4201 /* 4202 * First, check if the first ref of the current inode was overwritten 4203 * before. If yes, we know that the current inode was already orphanized 4204 * and thus use the orphan name. If not, we can use get_cur_path to 4205 * get the path of the first ref as it would like while receiving at 4206 * this point in time. 4207 * New inodes are always orphan at the beginning, so force to use the 4208 * orphan name in this case. 4209 * The first ref is stored in valid_path and will be updated if it 4210 * gets moved around. 4211 */ 4212 if (!sctx->cur_inode_new) { 4213 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4214 sctx->cur_inode_gen); 4215 if (ret < 0) 4216 goto out; 4217 if (ret) 4218 did_overwrite = 1; 4219 } 4220 if (sctx->cur_inode_new || did_overwrite) { 4221 ret = gen_unique_name(sctx, sctx->cur_ino, 4222 sctx->cur_inode_gen, valid_path); 4223 if (ret < 0) 4224 goto out; 4225 is_orphan = 1; 4226 } else { 4227 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4228 valid_path); 4229 if (ret < 0) 4230 goto out; 4231 } 4232 4233 /* 4234 * Before doing any rename and link operations, do a first pass on the 4235 * new references to orphanize any unprocessed inodes that may have a 4236 * reference that conflicts with one of the new references of the current 4237 * inode. This needs to happen first because a new reference may conflict 4238 * with the old reference of a parent directory, so we must make sure 4239 * that the path used for link and rename commands don't use an 4240 * orphanized name when an ancestor was not yet orphanized. 4241 * 4242 * Example: 4243 * 4244 * Parent snapshot: 4245 * 4246 * . (ino 256) 4247 * |----- testdir/ (ino 259) 4248 * | |----- a (ino 257) 4249 * | 4250 * |----- b (ino 258) 4251 * 4252 * Send snapshot: 4253 * 4254 * . (ino 256) 4255 * |----- testdir_2/ (ino 259) 4256 * | |----- a (ino 260) 4257 * | 4258 * |----- testdir (ino 257) 4259 * |----- b (ino 257) 4260 * |----- b2 (ino 258) 4261 * 4262 * Processing the new reference for inode 257 with name "b" may happen 4263 * before processing the new reference with name "testdir". If so, we 4264 * must make sure that by the time we send a link command to create the 4265 * hard link "b", inode 259 was already orphanized, since the generated 4266 * path in "valid_path" already contains the orphanized name for 259. 4267 * We are processing inode 257, so only later when processing 259 we do 4268 * the rename operation to change its temporary (orphanized) name to 4269 * "testdir_2". 4270 */ 4271 list_for_each_entry(cur, &sctx->new_refs, list) { 4272 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4273 if (ret < 0) 4274 goto out; 4275 if (ret == inode_state_will_create) 4276 continue; 4277 4278 /* 4279 * Check if this new ref would overwrite the first ref of another 4280 * unprocessed inode. If yes, orphanize the overwritten inode. 4281 * If we find an overwritten ref that is not the first ref, 4282 * simply unlink it. 4283 */ 4284 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4285 cur->name, cur->name_len, 4286 &ow_inode, &ow_gen, &ow_mode); 4287 if (ret < 0) 4288 goto out; 4289 if (ret) { 4290 ret = is_first_ref(sctx->parent_root, 4291 ow_inode, cur->dir, cur->name, 4292 cur->name_len); 4293 if (ret < 0) 4294 goto out; 4295 if (ret) { 4296 struct name_cache_entry *nce; 4297 struct waiting_dir_move *wdm; 4298 4299 if (orphanized_dir) { 4300 ret = refresh_ref_path(sctx, cur); 4301 if (ret < 0) 4302 goto out; 4303 } 4304 4305 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4306 cur->full_path); 4307 if (ret < 0) 4308 goto out; 4309 if (S_ISDIR(ow_mode)) 4310 orphanized_dir = true; 4311 4312 /* 4313 * If ow_inode has its rename operation delayed 4314 * make sure that its orphanized name is used in 4315 * the source path when performing its rename 4316 * operation. 4317 */ 4318 wdm = get_waiting_dir_move(sctx, ow_inode); 4319 if (wdm) 4320 wdm->orphanized = true; 4321 4322 /* 4323 * Make sure we clear our orphanized inode's 4324 * name from the name cache. This is because the 4325 * inode ow_inode might be an ancestor of some 4326 * other inode that will be orphanized as well 4327 * later and has an inode number greater than 4328 * sctx->send_progress. We need to prevent 4329 * future name lookups from using the old name 4330 * and get instead the orphan name. 4331 */ 4332 nce = name_cache_search(sctx, ow_inode, ow_gen); 4333 if (nce) 4334 btrfs_lru_cache_remove(&sctx->name_cache, 4335 &nce->entry); 4336 4337 /* 4338 * ow_inode might currently be an ancestor of 4339 * cur_ino, therefore compute valid_path (the 4340 * current path of cur_ino) again because it 4341 * might contain the pre-orphanization name of 4342 * ow_inode, which is no longer valid. 4343 */ 4344 ret = is_ancestor(sctx->parent_root, 4345 ow_inode, ow_gen, 4346 sctx->cur_ino, NULL); 4347 if (ret > 0) { 4348 orphanized_ancestor = true; 4349 fs_path_reset(valid_path); 4350 ret = get_cur_path(sctx, sctx->cur_ino, 4351 sctx->cur_inode_gen, 4352 valid_path); 4353 } 4354 if (ret < 0) 4355 goto out; 4356 } else { 4357 /* 4358 * If we previously orphanized a directory that 4359 * collided with a new reference that we already 4360 * processed, recompute the current path because 4361 * that directory may be part of the path. 4362 */ 4363 if (orphanized_dir) { 4364 ret = refresh_ref_path(sctx, cur); 4365 if (ret < 0) 4366 goto out; 4367 } 4368 ret = send_unlink(sctx, cur->full_path); 4369 if (ret < 0) 4370 goto out; 4371 } 4372 } 4373 4374 } 4375 4376 list_for_each_entry(cur, &sctx->new_refs, list) { 4377 /* 4378 * We may have refs where the parent directory does not exist 4379 * yet. This happens if the parent directories inum is higher 4380 * than the current inum. To handle this case, we create the 4381 * parent directory out of order. But we need to check if this 4382 * did already happen before due to other refs in the same dir. 4383 */ 4384 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4385 if (ret < 0) 4386 goto out; 4387 if (ret == inode_state_will_create) { 4388 ret = 0; 4389 /* 4390 * First check if any of the current inodes refs did 4391 * already create the dir. 4392 */ 4393 list_for_each_entry(cur2, &sctx->new_refs, list) { 4394 if (cur == cur2) 4395 break; 4396 if (cur2->dir == cur->dir) { 4397 ret = 1; 4398 break; 4399 } 4400 } 4401 4402 /* 4403 * If that did not happen, check if a previous inode 4404 * did already create the dir. 4405 */ 4406 if (!ret) 4407 ret = did_create_dir(sctx, cur->dir); 4408 if (ret < 0) 4409 goto out; 4410 if (!ret) { 4411 ret = send_create_inode(sctx, cur->dir); 4412 if (ret < 0) 4413 goto out; 4414 cache_dir_created(sctx, cur->dir); 4415 } 4416 } 4417 4418 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4419 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4420 if (ret < 0) 4421 goto out; 4422 if (ret == 1) { 4423 can_rename = false; 4424 *pending_move = 1; 4425 } 4426 } 4427 4428 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4429 can_rename) { 4430 ret = wait_for_parent_move(sctx, cur, is_orphan); 4431 if (ret < 0) 4432 goto out; 4433 if (ret == 1) { 4434 can_rename = false; 4435 *pending_move = 1; 4436 } 4437 } 4438 4439 /* 4440 * link/move the ref to the new place. If we have an orphan 4441 * inode, move it and update valid_path. If not, link or move 4442 * it depending on the inode mode. 4443 */ 4444 if (is_orphan && can_rename) { 4445 ret = send_rename(sctx, valid_path, cur->full_path); 4446 if (ret < 0) 4447 goto out; 4448 is_orphan = 0; 4449 ret = fs_path_copy(valid_path, cur->full_path); 4450 if (ret < 0) 4451 goto out; 4452 } else if (can_rename) { 4453 if (S_ISDIR(sctx->cur_inode_mode)) { 4454 /* 4455 * Dirs can't be linked, so move it. For moved 4456 * dirs, we always have one new and one deleted 4457 * ref. The deleted ref is ignored later. 4458 */ 4459 ret = send_rename(sctx, valid_path, 4460 cur->full_path); 4461 if (!ret) 4462 ret = fs_path_copy(valid_path, 4463 cur->full_path); 4464 if (ret < 0) 4465 goto out; 4466 } else { 4467 /* 4468 * We might have previously orphanized an inode 4469 * which is an ancestor of our current inode, 4470 * so our reference's full path, which was 4471 * computed before any such orphanizations, must 4472 * be updated. 4473 */ 4474 if (orphanized_dir) { 4475 ret = update_ref_path(sctx, cur); 4476 if (ret < 0) 4477 goto out; 4478 } 4479 ret = send_link(sctx, cur->full_path, 4480 valid_path); 4481 if (ret < 0) 4482 goto out; 4483 } 4484 } 4485 ret = dup_ref(cur, &check_dirs); 4486 if (ret < 0) 4487 goto out; 4488 } 4489 4490 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4491 /* 4492 * Check if we can already rmdir the directory. If not, 4493 * orphanize it. For every dir item inside that gets deleted 4494 * later, we do this check again and rmdir it then if possible. 4495 * See the use of check_dirs for more details. 4496 */ 4497 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4498 if (ret < 0) 4499 goto out; 4500 if (ret) { 4501 ret = send_rmdir(sctx, valid_path); 4502 if (ret < 0) 4503 goto out; 4504 } else if (!is_orphan) { 4505 ret = orphanize_inode(sctx, sctx->cur_ino, 4506 sctx->cur_inode_gen, valid_path); 4507 if (ret < 0) 4508 goto out; 4509 is_orphan = 1; 4510 } 4511 4512 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4513 ret = dup_ref(cur, &check_dirs); 4514 if (ret < 0) 4515 goto out; 4516 } 4517 } else if (S_ISDIR(sctx->cur_inode_mode) && 4518 !list_empty(&sctx->deleted_refs)) { 4519 /* 4520 * We have a moved dir. Add the old parent to check_dirs 4521 */ 4522 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4523 list); 4524 ret = dup_ref(cur, &check_dirs); 4525 if (ret < 0) 4526 goto out; 4527 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4528 /* 4529 * We have a non dir inode. Go through all deleted refs and 4530 * unlink them if they were not already overwritten by other 4531 * inodes. 4532 */ 4533 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4534 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4535 sctx->cur_ino, sctx->cur_inode_gen, 4536 cur->name, cur->name_len); 4537 if (ret < 0) 4538 goto out; 4539 if (!ret) { 4540 /* 4541 * If we orphanized any ancestor before, we need 4542 * to recompute the full path for deleted names, 4543 * since any such path was computed before we 4544 * processed any references and orphanized any 4545 * ancestor inode. 4546 */ 4547 if (orphanized_ancestor) { 4548 ret = update_ref_path(sctx, cur); 4549 if (ret < 0) 4550 goto out; 4551 } 4552 ret = send_unlink(sctx, cur->full_path); 4553 if (ret < 0) 4554 goto out; 4555 } 4556 ret = dup_ref(cur, &check_dirs); 4557 if (ret < 0) 4558 goto out; 4559 } 4560 /* 4561 * If the inode is still orphan, unlink the orphan. This may 4562 * happen when a previous inode did overwrite the first ref 4563 * of this inode and no new refs were added for the current 4564 * inode. Unlinking does not mean that the inode is deleted in 4565 * all cases. There may still be links to this inode in other 4566 * places. 4567 */ 4568 if (is_orphan) { 4569 ret = send_unlink(sctx, valid_path); 4570 if (ret < 0) 4571 goto out; 4572 } 4573 } 4574 4575 /* 4576 * We did collect all parent dirs where cur_inode was once located. We 4577 * now go through all these dirs and check if they are pending for 4578 * deletion and if it's finally possible to perform the rmdir now. 4579 * We also update the inode stats of the parent dirs here. 4580 */ 4581 list_for_each_entry(cur, &check_dirs, list) { 4582 /* 4583 * In case we had refs into dirs that were not processed yet, 4584 * we don't need to do the utime and rmdir logic for these dirs. 4585 * The dir will be processed later. 4586 */ 4587 if (cur->dir > sctx->cur_ino) 4588 continue; 4589 4590 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4591 if (ret < 0) 4592 goto out; 4593 4594 if (ret == inode_state_did_create || 4595 ret == inode_state_no_change) { 4596 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4597 if (ret < 0) 4598 goto out; 4599 } else if (ret == inode_state_did_delete && 4600 cur->dir != last_dir_ino_rm) { 4601 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4602 if (ret < 0) 4603 goto out; 4604 if (ret) { 4605 ret = get_cur_path(sctx, cur->dir, 4606 cur->dir_gen, valid_path); 4607 if (ret < 0) 4608 goto out; 4609 ret = send_rmdir(sctx, valid_path); 4610 if (ret < 0) 4611 goto out; 4612 last_dir_ino_rm = cur->dir; 4613 } 4614 } 4615 } 4616 4617 ret = 0; 4618 4619 out: 4620 __free_recorded_refs(&check_dirs); 4621 free_recorded_refs(sctx); 4622 fs_path_free(valid_path); 4623 return ret; 4624 } 4625 4626 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4627 { 4628 const struct recorded_ref *data = k; 4629 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4630 int result; 4631 4632 if (data->dir > ref->dir) 4633 return 1; 4634 if (data->dir < ref->dir) 4635 return -1; 4636 if (data->dir_gen > ref->dir_gen) 4637 return 1; 4638 if (data->dir_gen < ref->dir_gen) 4639 return -1; 4640 if (data->name_len > ref->name_len) 4641 return 1; 4642 if (data->name_len < ref->name_len) 4643 return -1; 4644 result = strcmp(data->name, ref->name); 4645 if (result > 0) 4646 return 1; 4647 if (result < 0) 4648 return -1; 4649 return 0; 4650 } 4651 4652 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4653 { 4654 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4655 4656 return rbtree_ref_comp(entry, parent) < 0; 4657 } 4658 4659 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4660 struct fs_path *name, u64 dir, u64 dir_gen, 4661 struct send_ctx *sctx) 4662 { 4663 int ret = 0; 4664 struct fs_path *path = NULL; 4665 struct recorded_ref *ref = NULL; 4666 4667 path = fs_path_alloc(); 4668 if (!path) { 4669 ret = -ENOMEM; 4670 goto out; 4671 } 4672 4673 ref = recorded_ref_alloc(); 4674 if (!ref) { 4675 ret = -ENOMEM; 4676 goto out; 4677 } 4678 4679 ret = get_cur_path(sctx, dir, dir_gen, path); 4680 if (ret < 0) 4681 goto out; 4682 ret = fs_path_add_path(path, name); 4683 if (ret < 0) 4684 goto out; 4685 4686 ref->dir = dir; 4687 ref->dir_gen = dir_gen; 4688 set_ref_path(ref, path); 4689 list_add_tail(&ref->list, refs); 4690 rb_add(&ref->node, root, rbtree_ref_less); 4691 ref->root = root; 4692 out: 4693 if (ret) { 4694 if (path && (!ref || !ref->full_path)) 4695 fs_path_free(path); 4696 recorded_ref_free(ref); 4697 } 4698 return ret; 4699 } 4700 4701 static int record_new_ref_if_needed(int num, u64 dir, int index, 4702 struct fs_path *name, void *ctx) 4703 { 4704 int ret = 0; 4705 struct send_ctx *sctx = ctx; 4706 struct rb_node *node = NULL; 4707 struct recorded_ref data; 4708 struct recorded_ref *ref; 4709 u64 dir_gen; 4710 4711 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4712 if (ret < 0) 4713 goto out; 4714 4715 data.dir = dir; 4716 data.dir_gen = dir_gen; 4717 set_ref_path(&data, name); 4718 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4719 if (node) { 4720 ref = rb_entry(node, struct recorded_ref, node); 4721 recorded_ref_free(ref); 4722 } else { 4723 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4724 &sctx->new_refs, name, dir, dir_gen, 4725 sctx); 4726 } 4727 out: 4728 return ret; 4729 } 4730 4731 static int record_deleted_ref_if_needed(int num, u64 dir, int index, 4732 struct fs_path *name, void *ctx) 4733 { 4734 int ret = 0; 4735 struct send_ctx *sctx = ctx; 4736 struct rb_node *node = NULL; 4737 struct recorded_ref data; 4738 struct recorded_ref *ref; 4739 u64 dir_gen; 4740 4741 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4742 if (ret < 0) 4743 goto out; 4744 4745 data.dir = dir; 4746 data.dir_gen = dir_gen; 4747 set_ref_path(&data, name); 4748 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4749 if (node) { 4750 ref = rb_entry(node, struct recorded_ref, node); 4751 recorded_ref_free(ref); 4752 } else { 4753 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4754 &sctx->deleted_refs, name, dir, 4755 dir_gen, sctx); 4756 } 4757 out: 4758 return ret; 4759 } 4760 4761 static int record_new_ref(struct send_ctx *sctx) 4762 { 4763 int ret; 4764 4765 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4766 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4767 if (ret < 0) 4768 goto out; 4769 ret = 0; 4770 4771 out: 4772 return ret; 4773 } 4774 4775 static int record_deleted_ref(struct send_ctx *sctx) 4776 { 4777 int ret; 4778 4779 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4780 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4781 sctx); 4782 if (ret < 0) 4783 goto out; 4784 ret = 0; 4785 4786 out: 4787 return ret; 4788 } 4789 4790 static int record_changed_ref(struct send_ctx *sctx) 4791 { 4792 int ret = 0; 4793 4794 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4795 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4796 if (ret < 0) 4797 goto out; 4798 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4799 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4800 if (ret < 0) 4801 goto out; 4802 ret = 0; 4803 4804 out: 4805 return ret; 4806 } 4807 4808 /* 4809 * Record and process all refs at once. Needed when an inode changes the 4810 * generation number, which means that it was deleted and recreated. 4811 */ 4812 static int process_all_refs(struct send_ctx *sctx, 4813 enum btrfs_compare_tree_result cmd) 4814 { 4815 int ret = 0; 4816 int iter_ret = 0; 4817 struct btrfs_root *root; 4818 struct btrfs_path *path; 4819 struct btrfs_key key; 4820 struct btrfs_key found_key; 4821 iterate_inode_ref_t cb; 4822 int pending_move = 0; 4823 4824 path = alloc_path_for_send(); 4825 if (!path) 4826 return -ENOMEM; 4827 4828 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4829 root = sctx->send_root; 4830 cb = record_new_ref_if_needed; 4831 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4832 root = sctx->parent_root; 4833 cb = record_deleted_ref_if_needed; 4834 } else { 4835 btrfs_err(sctx->send_root->fs_info, 4836 "Wrong command %d in process_all_refs", cmd); 4837 ret = -EINVAL; 4838 goto out; 4839 } 4840 4841 key.objectid = sctx->cmp_key->objectid; 4842 key.type = BTRFS_INODE_REF_KEY; 4843 key.offset = 0; 4844 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4845 if (found_key.objectid != key.objectid || 4846 (found_key.type != BTRFS_INODE_REF_KEY && 4847 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4848 break; 4849 4850 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4851 if (ret < 0) 4852 goto out; 4853 } 4854 /* Catch error found during iteration */ 4855 if (iter_ret < 0) { 4856 ret = iter_ret; 4857 goto out; 4858 } 4859 btrfs_release_path(path); 4860 4861 /* 4862 * We don't actually care about pending_move as we are simply 4863 * re-creating this inode and will be rename'ing it into place once we 4864 * rename the parent directory. 4865 */ 4866 ret = process_recorded_refs(sctx, &pending_move); 4867 out: 4868 btrfs_free_path(path); 4869 return ret; 4870 } 4871 4872 static int send_set_xattr(struct send_ctx *sctx, 4873 struct fs_path *path, 4874 const char *name, int name_len, 4875 const char *data, int data_len) 4876 { 4877 int ret = 0; 4878 4879 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4880 if (ret < 0) 4881 goto out; 4882 4883 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4884 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4885 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4886 4887 ret = send_cmd(sctx); 4888 4889 tlv_put_failure: 4890 out: 4891 return ret; 4892 } 4893 4894 static int send_remove_xattr(struct send_ctx *sctx, 4895 struct fs_path *path, 4896 const char *name, int name_len) 4897 { 4898 int ret = 0; 4899 4900 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4901 if (ret < 0) 4902 goto out; 4903 4904 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4905 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4906 4907 ret = send_cmd(sctx); 4908 4909 tlv_put_failure: 4910 out: 4911 return ret; 4912 } 4913 4914 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4915 const char *name, int name_len, const char *data, 4916 int data_len, void *ctx) 4917 { 4918 int ret; 4919 struct send_ctx *sctx = ctx; 4920 struct fs_path *p; 4921 struct posix_acl_xattr_header dummy_acl; 4922 4923 /* Capabilities are emitted by finish_inode_if_needed */ 4924 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4925 return 0; 4926 4927 p = fs_path_alloc(); 4928 if (!p) 4929 return -ENOMEM; 4930 4931 /* 4932 * This hack is needed because empty acls are stored as zero byte 4933 * data in xattrs. Problem with that is, that receiving these zero byte 4934 * acls will fail later. To fix this, we send a dummy acl list that 4935 * only contains the version number and no entries. 4936 */ 4937 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4938 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4939 if (data_len == 0) { 4940 dummy_acl.a_version = 4941 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4942 data = (char *)&dummy_acl; 4943 data_len = sizeof(dummy_acl); 4944 } 4945 } 4946 4947 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4948 if (ret < 0) 4949 goto out; 4950 4951 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4952 4953 out: 4954 fs_path_free(p); 4955 return ret; 4956 } 4957 4958 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4959 const char *name, int name_len, 4960 const char *data, int data_len, void *ctx) 4961 { 4962 int ret; 4963 struct send_ctx *sctx = ctx; 4964 struct fs_path *p; 4965 4966 p = fs_path_alloc(); 4967 if (!p) 4968 return -ENOMEM; 4969 4970 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4971 if (ret < 0) 4972 goto out; 4973 4974 ret = send_remove_xattr(sctx, p, name, name_len); 4975 4976 out: 4977 fs_path_free(p); 4978 return ret; 4979 } 4980 4981 static int process_new_xattr(struct send_ctx *sctx) 4982 { 4983 int ret = 0; 4984 4985 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4986 __process_new_xattr, sctx); 4987 4988 return ret; 4989 } 4990 4991 static int process_deleted_xattr(struct send_ctx *sctx) 4992 { 4993 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4994 __process_deleted_xattr, sctx); 4995 } 4996 4997 struct find_xattr_ctx { 4998 const char *name; 4999 int name_len; 5000 int found_idx; 5001 char *found_data; 5002 int found_data_len; 5003 }; 5004 5005 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 5006 int name_len, const char *data, int data_len, void *vctx) 5007 { 5008 struct find_xattr_ctx *ctx = vctx; 5009 5010 if (name_len == ctx->name_len && 5011 strncmp(name, ctx->name, name_len) == 0) { 5012 ctx->found_idx = num; 5013 ctx->found_data_len = data_len; 5014 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 5015 if (!ctx->found_data) 5016 return -ENOMEM; 5017 return 1; 5018 } 5019 return 0; 5020 } 5021 5022 static int find_xattr(struct btrfs_root *root, 5023 struct btrfs_path *path, 5024 struct btrfs_key *key, 5025 const char *name, int name_len, 5026 char **data, int *data_len) 5027 { 5028 int ret; 5029 struct find_xattr_ctx ctx; 5030 5031 ctx.name = name; 5032 ctx.name_len = name_len; 5033 ctx.found_idx = -1; 5034 ctx.found_data = NULL; 5035 ctx.found_data_len = 0; 5036 5037 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 5038 if (ret < 0) 5039 return ret; 5040 5041 if (ctx.found_idx == -1) 5042 return -ENOENT; 5043 if (data) { 5044 *data = ctx.found_data; 5045 *data_len = ctx.found_data_len; 5046 } else { 5047 kfree(ctx.found_data); 5048 } 5049 return ctx.found_idx; 5050 } 5051 5052 5053 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5054 const char *name, int name_len, 5055 const char *data, int data_len, 5056 void *ctx) 5057 { 5058 int ret; 5059 struct send_ctx *sctx = ctx; 5060 char *found_data = NULL; 5061 int found_data_len = 0; 5062 5063 ret = find_xattr(sctx->parent_root, sctx->right_path, 5064 sctx->cmp_key, name, name_len, &found_data, 5065 &found_data_len); 5066 if (ret == -ENOENT) { 5067 ret = __process_new_xattr(num, di_key, name, name_len, data, 5068 data_len, ctx); 5069 } else if (ret >= 0) { 5070 if (data_len != found_data_len || 5071 memcmp(data, found_data, data_len)) { 5072 ret = __process_new_xattr(num, di_key, name, name_len, 5073 data, data_len, ctx); 5074 } else { 5075 ret = 0; 5076 } 5077 } 5078 5079 kfree(found_data); 5080 return ret; 5081 } 5082 5083 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5084 const char *name, int name_len, 5085 const char *data, int data_len, 5086 void *ctx) 5087 { 5088 int ret; 5089 struct send_ctx *sctx = ctx; 5090 5091 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5092 name, name_len, NULL, NULL); 5093 if (ret == -ENOENT) 5094 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5095 data_len, ctx); 5096 else if (ret >= 0) 5097 ret = 0; 5098 5099 return ret; 5100 } 5101 5102 static int process_changed_xattr(struct send_ctx *sctx) 5103 { 5104 int ret = 0; 5105 5106 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5107 __process_changed_new_xattr, sctx); 5108 if (ret < 0) 5109 goto out; 5110 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 5111 __process_changed_deleted_xattr, sctx); 5112 5113 out: 5114 return ret; 5115 } 5116 5117 static int process_all_new_xattrs(struct send_ctx *sctx) 5118 { 5119 int ret = 0; 5120 int iter_ret = 0; 5121 struct btrfs_root *root; 5122 struct btrfs_path *path; 5123 struct btrfs_key key; 5124 struct btrfs_key found_key; 5125 5126 path = alloc_path_for_send(); 5127 if (!path) 5128 return -ENOMEM; 5129 5130 root = sctx->send_root; 5131 5132 key.objectid = sctx->cmp_key->objectid; 5133 key.type = BTRFS_XATTR_ITEM_KEY; 5134 key.offset = 0; 5135 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5136 if (found_key.objectid != key.objectid || 5137 found_key.type != key.type) { 5138 ret = 0; 5139 break; 5140 } 5141 5142 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5143 if (ret < 0) 5144 break; 5145 } 5146 /* Catch error found during iteration */ 5147 if (iter_ret < 0) 5148 ret = iter_ret; 5149 5150 btrfs_free_path(path); 5151 return ret; 5152 } 5153 5154 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5155 struct fsverity_descriptor *desc) 5156 { 5157 int ret; 5158 5159 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5160 if (ret < 0) 5161 goto out; 5162 5163 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5164 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5165 le8_to_cpu(desc->hash_algorithm)); 5166 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5167 1U << le8_to_cpu(desc->log_blocksize)); 5168 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5169 le8_to_cpu(desc->salt_size)); 5170 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5171 le32_to_cpu(desc->sig_size)); 5172 5173 ret = send_cmd(sctx); 5174 5175 tlv_put_failure: 5176 out: 5177 return ret; 5178 } 5179 5180 static int process_verity(struct send_ctx *sctx) 5181 { 5182 int ret = 0; 5183 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5184 struct inode *inode; 5185 struct fs_path *p; 5186 5187 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root); 5188 if (IS_ERR(inode)) 5189 return PTR_ERR(inode); 5190 5191 ret = btrfs_get_verity_descriptor(inode, NULL, 0); 5192 if (ret < 0) 5193 goto iput; 5194 5195 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5196 ret = -EMSGSIZE; 5197 goto iput; 5198 } 5199 if (!sctx->verity_descriptor) { 5200 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5201 GFP_KERNEL); 5202 if (!sctx->verity_descriptor) { 5203 ret = -ENOMEM; 5204 goto iput; 5205 } 5206 } 5207 5208 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret); 5209 if (ret < 0) 5210 goto iput; 5211 5212 p = fs_path_alloc(); 5213 if (!p) { 5214 ret = -ENOMEM; 5215 goto iput; 5216 } 5217 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5218 if (ret < 0) 5219 goto free_path; 5220 5221 ret = send_verity(sctx, p, sctx->verity_descriptor); 5222 if (ret < 0) 5223 goto free_path; 5224 5225 free_path: 5226 fs_path_free(p); 5227 iput: 5228 iput(inode); 5229 return ret; 5230 } 5231 5232 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5233 { 5234 return sctx->send_max_size - SZ_16K; 5235 } 5236 5237 static int put_data_header(struct send_ctx *sctx, u32 len) 5238 { 5239 if (WARN_ON_ONCE(sctx->put_data)) 5240 return -EINVAL; 5241 sctx->put_data = true; 5242 if (sctx->proto >= 2) { 5243 /* 5244 * Since v2, the data attribute header doesn't include a length, 5245 * it is implicitly to the end of the command. 5246 */ 5247 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5248 return -EOVERFLOW; 5249 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5250 sctx->send_size += sizeof(__le16); 5251 } else { 5252 struct btrfs_tlv_header *hdr; 5253 5254 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5255 return -EOVERFLOW; 5256 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5257 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5258 put_unaligned_le16(len, &hdr->tlv_len); 5259 sctx->send_size += sizeof(*hdr); 5260 } 5261 return 0; 5262 } 5263 5264 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5265 { 5266 struct btrfs_root *root = sctx->send_root; 5267 struct btrfs_fs_info *fs_info = root->fs_info; 5268 struct page *page; 5269 pgoff_t index = offset >> PAGE_SHIFT; 5270 pgoff_t last_index; 5271 unsigned pg_offset = offset_in_page(offset); 5272 int ret; 5273 5274 ret = put_data_header(sctx, len); 5275 if (ret) 5276 return ret; 5277 5278 last_index = (offset + len - 1) >> PAGE_SHIFT; 5279 5280 while (index <= last_index) { 5281 unsigned cur_len = min_t(unsigned, len, 5282 PAGE_SIZE - pg_offset); 5283 5284 page = find_lock_page(sctx->cur_inode->i_mapping, index); 5285 if (!page) { 5286 page_cache_sync_readahead(sctx->cur_inode->i_mapping, 5287 &sctx->ra, NULL, index, 5288 last_index + 1 - index); 5289 5290 page = find_or_create_page(sctx->cur_inode->i_mapping, 5291 index, GFP_KERNEL); 5292 if (!page) { 5293 ret = -ENOMEM; 5294 break; 5295 } 5296 } 5297 5298 if (PageReadahead(page)) 5299 page_cache_async_readahead(sctx->cur_inode->i_mapping, 5300 &sctx->ra, NULL, page_folio(page), 5301 index, last_index + 1 - index); 5302 5303 if (!PageUptodate(page)) { 5304 btrfs_read_folio(NULL, page_folio(page)); 5305 lock_page(page); 5306 if (!PageUptodate(page)) { 5307 unlock_page(page); 5308 btrfs_err(fs_info, 5309 "send: IO error at offset %llu for inode %llu root %llu", 5310 page_offset(page), sctx->cur_ino, 5311 sctx->send_root->root_key.objectid); 5312 put_page(page); 5313 ret = -EIO; 5314 break; 5315 } 5316 } 5317 5318 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 5319 pg_offset, cur_len); 5320 unlock_page(page); 5321 put_page(page); 5322 index++; 5323 pg_offset = 0; 5324 len -= cur_len; 5325 sctx->send_size += cur_len; 5326 } 5327 5328 return ret; 5329 } 5330 5331 /* 5332 * Read some bytes from the current inode/file and send a write command to 5333 * user space. 5334 */ 5335 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5336 { 5337 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5338 int ret = 0; 5339 struct fs_path *p; 5340 5341 p = fs_path_alloc(); 5342 if (!p) 5343 return -ENOMEM; 5344 5345 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5346 5347 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5348 if (ret < 0) 5349 goto out; 5350 5351 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5352 if (ret < 0) 5353 goto out; 5354 5355 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5356 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5357 ret = put_file_data(sctx, offset, len); 5358 if (ret < 0) 5359 goto out; 5360 5361 ret = send_cmd(sctx); 5362 5363 tlv_put_failure: 5364 out: 5365 fs_path_free(p); 5366 return ret; 5367 } 5368 5369 /* 5370 * Send a clone command to user space. 5371 */ 5372 static int send_clone(struct send_ctx *sctx, 5373 u64 offset, u32 len, 5374 struct clone_root *clone_root) 5375 { 5376 int ret = 0; 5377 struct fs_path *p; 5378 u64 gen; 5379 5380 btrfs_debug(sctx->send_root->fs_info, 5381 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5382 offset, len, clone_root->root->root_key.objectid, 5383 clone_root->ino, clone_root->offset); 5384 5385 p = fs_path_alloc(); 5386 if (!p) 5387 return -ENOMEM; 5388 5389 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5390 if (ret < 0) 5391 goto out; 5392 5393 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5394 if (ret < 0) 5395 goto out; 5396 5397 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5398 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5399 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5400 5401 if (clone_root->root == sctx->send_root) { 5402 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5403 if (ret < 0) 5404 goto out; 5405 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5406 } else { 5407 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5408 } 5409 if (ret < 0) 5410 goto out; 5411 5412 /* 5413 * If the parent we're using has a received_uuid set then use that as 5414 * our clone source as that is what we will look for when doing a 5415 * receive. 5416 * 5417 * This covers the case that we create a snapshot off of a received 5418 * subvolume and then use that as the parent and try to receive on a 5419 * different host. 5420 */ 5421 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5422 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5423 clone_root->root->root_item.received_uuid); 5424 else 5425 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5426 clone_root->root->root_item.uuid); 5427 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5428 btrfs_root_ctransid(&clone_root->root->root_item)); 5429 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5430 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5431 clone_root->offset); 5432 5433 ret = send_cmd(sctx); 5434 5435 tlv_put_failure: 5436 out: 5437 fs_path_free(p); 5438 return ret; 5439 } 5440 5441 /* 5442 * Send an update extent command to user space. 5443 */ 5444 static int send_update_extent(struct send_ctx *sctx, 5445 u64 offset, u32 len) 5446 { 5447 int ret = 0; 5448 struct fs_path *p; 5449 5450 p = fs_path_alloc(); 5451 if (!p) 5452 return -ENOMEM; 5453 5454 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5455 if (ret < 0) 5456 goto out; 5457 5458 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5459 if (ret < 0) 5460 goto out; 5461 5462 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5463 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5464 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5465 5466 ret = send_cmd(sctx); 5467 5468 tlv_put_failure: 5469 out: 5470 fs_path_free(p); 5471 return ret; 5472 } 5473 5474 static int send_hole(struct send_ctx *sctx, u64 end) 5475 { 5476 struct fs_path *p = NULL; 5477 u64 read_size = max_send_read_size(sctx); 5478 u64 offset = sctx->cur_inode_last_extent; 5479 int ret = 0; 5480 5481 /* 5482 * A hole that starts at EOF or beyond it. Since we do not yet support 5483 * fallocate (for extent preallocation and hole punching), sending a 5484 * write of zeroes starting at EOF or beyond would later require issuing 5485 * a truncate operation which would undo the write and achieve nothing. 5486 */ 5487 if (offset >= sctx->cur_inode_size) 5488 return 0; 5489 5490 /* 5491 * Don't go beyond the inode's i_size due to prealloc extents that start 5492 * after the i_size. 5493 */ 5494 end = min_t(u64, end, sctx->cur_inode_size); 5495 5496 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5497 return send_update_extent(sctx, offset, end - offset); 5498 5499 p = fs_path_alloc(); 5500 if (!p) 5501 return -ENOMEM; 5502 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5503 if (ret < 0) 5504 goto tlv_put_failure; 5505 while (offset < end) { 5506 u64 len = min(end - offset, read_size); 5507 5508 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5509 if (ret < 0) 5510 break; 5511 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5512 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5513 ret = put_data_header(sctx, len); 5514 if (ret < 0) 5515 break; 5516 memset(sctx->send_buf + sctx->send_size, 0, len); 5517 sctx->send_size += len; 5518 ret = send_cmd(sctx); 5519 if (ret < 0) 5520 break; 5521 offset += len; 5522 } 5523 sctx->cur_inode_next_write_offset = offset; 5524 tlv_put_failure: 5525 fs_path_free(p); 5526 return ret; 5527 } 5528 5529 static int send_encoded_inline_extent(struct send_ctx *sctx, 5530 struct btrfs_path *path, u64 offset, 5531 u64 len) 5532 { 5533 struct btrfs_root *root = sctx->send_root; 5534 struct btrfs_fs_info *fs_info = root->fs_info; 5535 struct inode *inode; 5536 struct fs_path *fspath; 5537 struct extent_buffer *leaf = path->nodes[0]; 5538 struct btrfs_key key; 5539 struct btrfs_file_extent_item *ei; 5540 u64 ram_bytes; 5541 size_t inline_size; 5542 int ret; 5543 5544 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5545 if (IS_ERR(inode)) 5546 return PTR_ERR(inode); 5547 5548 fspath = fs_path_alloc(); 5549 if (!fspath) { 5550 ret = -ENOMEM; 5551 goto out; 5552 } 5553 5554 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5555 if (ret < 0) 5556 goto out; 5557 5558 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5559 if (ret < 0) 5560 goto out; 5561 5562 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5563 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5564 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5565 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5566 5567 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5568 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5569 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5570 min(key.offset + ram_bytes - offset, len)); 5571 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5572 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5573 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5574 btrfs_file_extent_compression(leaf, ei)); 5575 if (ret < 0) 5576 goto out; 5577 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5578 5579 ret = put_data_header(sctx, inline_size); 5580 if (ret < 0) 5581 goto out; 5582 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5583 btrfs_file_extent_inline_start(ei), inline_size); 5584 sctx->send_size += inline_size; 5585 5586 ret = send_cmd(sctx); 5587 5588 tlv_put_failure: 5589 out: 5590 fs_path_free(fspath); 5591 iput(inode); 5592 return ret; 5593 } 5594 5595 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5596 u64 offset, u64 len) 5597 { 5598 struct btrfs_root *root = sctx->send_root; 5599 struct btrfs_fs_info *fs_info = root->fs_info; 5600 struct inode *inode; 5601 struct fs_path *fspath; 5602 struct extent_buffer *leaf = path->nodes[0]; 5603 struct btrfs_key key; 5604 struct btrfs_file_extent_item *ei; 5605 u64 disk_bytenr, disk_num_bytes; 5606 u32 data_offset; 5607 struct btrfs_cmd_header *hdr; 5608 u32 crc; 5609 int ret; 5610 5611 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5612 if (IS_ERR(inode)) 5613 return PTR_ERR(inode); 5614 5615 fspath = fs_path_alloc(); 5616 if (!fspath) { 5617 ret = -ENOMEM; 5618 goto out; 5619 } 5620 5621 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5622 if (ret < 0) 5623 goto out; 5624 5625 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5626 if (ret < 0) 5627 goto out; 5628 5629 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5630 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5631 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5632 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5633 5634 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5635 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5636 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5637 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5638 len)); 5639 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5640 btrfs_file_extent_ram_bytes(leaf, ei)); 5641 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5642 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5643 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5644 btrfs_file_extent_compression(leaf, ei)); 5645 if (ret < 0) 5646 goto out; 5647 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5648 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5649 5650 ret = put_data_header(sctx, disk_num_bytes); 5651 if (ret < 0) 5652 goto out; 5653 5654 /* 5655 * We want to do I/O directly into the send buffer, so get the next page 5656 * boundary in the send buffer. This means that there may be a gap 5657 * between the beginning of the command and the file data. 5658 */ 5659 data_offset = PAGE_ALIGN(sctx->send_size); 5660 if (data_offset > sctx->send_max_size || 5661 sctx->send_max_size - data_offset < disk_num_bytes) { 5662 ret = -EOVERFLOW; 5663 goto out; 5664 } 5665 5666 /* 5667 * Note that send_buf is a mapping of send_buf_pages, so this is really 5668 * reading into send_buf. 5669 */ 5670 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset, 5671 disk_bytenr, disk_num_bytes, 5672 sctx->send_buf_pages + 5673 (data_offset >> PAGE_SHIFT)); 5674 if (ret) 5675 goto out; 5676 5677 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5678 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5679 hdr->crc = 0; 5680 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size); 5681 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5682 hdr->crc = cpu_to_le32(crc); 5683 5684 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5685 &sctx->send_off); 5686 if (!ret) { 5687 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5688 disk_num_bytes, &sctx->send_off); 5689 } 5690 sctx->send_size = 0; 5691 sctx->put_data = false; 5692 5693 tlv_put_failure: 5694 out: 5695 fs_path_free(fspath); 5696 iput(inode); 5697 return ret; 5698 } 5699 5700 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5701 const u64 offset, const u64 len) 5702 { 5703 const u64 end = offset + len; 5704 struct extent_buffer *leaf = path->nodes[0]; 5705 struct btrfs_file_extent_item *ei; 5706 u64 read_size = max_send_read_size(sctx); 5707 u64 sent = 0; 5708 5709 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5710 return send_update_extent(sctx, offset, len); 5711 5712 ei = btrfs_item_ptr(leaf, path->slots[0], 5713 struct btrfs_file_extent_item); 5714 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5715 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5716 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5717 BTRFS_FILE_EXTENT_INLINE); 5718 5719 /* 5720 * Send the compressed extent unless the compressed data is 5721 * larger than the decompressed data. This can happen if we're 5722 * not sending the entire extent, either because it has been 5723 * partially overwritten/truncated or because this is a part of 5724 * the extent that we couldn't clone in clone_range(). 5725 */ 5726 if (is_inline && 5727 btrfs_file_extent_inline_item_len(leaf, 5728 path->slots[0]) <= len) { 5729 return send_encoded_inline_extent(sctx, path, offset, 5730 len); 5731 } else if (!is_inline && 5732 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5733 return send_encoded_extent(sctx, path, offset, len); 5734 } 5735 } 5736 5737 if (sctx->cur_inode == NULL) { 5738 struct btrfs_root *root = sctx->send_root; 5739 5740 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root); 5741 if (IS_ERR(sctx->cur_inode)) { 5742 int err = PTR_ERR(sctx->cur_inode); 5743 5744 sctx->cur_inode = NULL; 5745 return err; 5746 } 5747 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5748 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5749 5750 /* 5751 * It's very likely there are no pages from this inode in the page 5752 * cache, so after reading extents and sending their data, we clean 5753 * the page cache to avoid trashing the page cache (adding pressure 5754 * to the page cache and forcing eviction of other data more useful 5755 * for applications). 5756 * 5757 * We decide if we should clean the page cache simply by checking 5758 * if the inode's mapping nrpages is 0 when we first open it, and 5759 * not by using something like filemap_range_has_page() before 5760 * reading an extent because when we ask the readahead code to 5761 * read a given file range, it may (and almost always does) read 5762 * pages from beyond that range (see the documentation for 5763 * page_cache_sync_readahead()), so it would not be reliable, 5764 * because after reading the first extent future calls to 5765 * filemap_range_has_page() would return true because the readahead 5766 * on the previous extent resulted in reading pages of the current 5767 * extent as well. 5768 */ 5769 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5770 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5771 } 5772 5773 while (sent < len) { 5774 u64 size = min(len - sent, read_size); 5775 int ret; 5776 5777 ret = send_write(sctx, offset + sent, size); 5778 if (ret < 0) 5779 return ret; 5780 sent += size; 5781 } 5782 5783 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5784 /* 5785 * Always operate only on ranges that are a multiple of the page 5786 * size. This is not only to prevent zeroing parts of a page in 5787 * the case of subpage sector size, but also to guarantee we evict 5788 * pages, as passing a range that is smaller than page size does 5789 * not evict the respective page (only zeroes part of its content). 5790 * 5791 * Always start from the end offset of the last range cleared. 5792 * This is because the readahead code may (and very often does) 5793 * reads pages beyond the range we request for readahead. So if 5794 * we have an extent layout like this: 5795 * 5796 * [ extent A ] [ extent B ] [ extent C ] 5797 * 5798 * When we ask page_cache_sync_readahead() to read extent A, it 5799 * may also trigger reads for pages of extent B. If we are doing 5800 * an incremental send and extent B has not changed between the 5801 * parent and send snapshots, some or all of its pages may end 5802 * up being read and placed in the page cache. So when truncating 5803 * the page cache we always start from the end offset of the 5804 * previously processed extent up to the end of the current 5805 * extent. 5806 */ 5807 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5808 sctx->page_cache_clear_start, 5809 end - 1); 5810 sctx->page_cache_clear_start = end; 5811 } 5812 5813 return 0; 5814 } 5815 5816 /* 5817 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5818 * found, call send_set_xattr function to emit it. 5819 * 5820 * Return 0 if there isn't a capability, or when the capability was emitted 5821 * successfully, or < 0 if an error occurred. 5822 */ 5823 static int send_capabilities(struct send_ctx *sctx) 5824 { 5825 struct fs_path *fspath = NULL; 5826 struct btrfs_path *path; 5827 struct btrfs_dir_item *di; 5828 struct extent_buffer *leaf; 5829 unsigned long data_ptr; 5830 char *buf = NULL; 5831 int buf_len; 5832 int ret = 0; 5833 5834 path = alloc_path_for_send(); 5835 if (!path) 5836 return -ENOMEM; 5837 5838 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5839 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5840 if (!di) { 5841 /* There is no xattr for this inode */ 5842 goto out; 5843 } else if (IS_ERR(di)) { 5844 ret = PTR_ERR(di); 5845 goto out; 5846 } 5847 5848 leaf = path->nodes[0]; 5849 buf_len = btrfs_dir_data_len(leaf, di); 5850 5851 fspath = fs_path_alloc(); 5852 buf = kmalloc(buf_len, GFP_KERNEL); 5853 if (!fspath || !buf) { 5854 ret = -ENOMEM; 5855 goto out; 5856 } 5857 5858 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5859 if (ret < 0) 5860 goto out; 5861 5862 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5863 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5864 5865 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5866 strlen(XATTR_NAME_CAPS), buf, buf_len); 5867 out: 5868 kfree(buf); 5869 fs_path_free(fspath); 5870 btrfs_free_path(path); 5871 return ret; 5872 } 5873 5874 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5875 struct clone_root *clone_root, const u64 disk_byte, 5876 u64 data_offset, u64 offset, u64 len) 5877 { 5878 struct btrfs_path *path; 5879 struct btrfs_key key; 5880 int ret; 5881 struct btrfs_inode_info info; 5882 u64 clone_src_i_size = 0; 5883 5884 /* 5885 * Prevent cloning from a zero offset with a length matching the sector 5886 * size because in some scenarios this will make the receiver fail. 5887 * 5888 * For example, if in the source filesystem the extent at offset 0 5889 * has a length of sectorsize and it was written using direct IO, then 5890 * it can never be an inline extent (even if compression is enabled). 5891 * Then this extent can be cloned in the original filesystem to a non 5892 * zero file offset, but it may not be possible to clone in the 5893 * destination filesystem because it can be inlined due to compression 5894 * on the destination filesystem (as the receiver's write operations are 5895 * always done using buffered IO). The same happens when the original 5896 * filesystem does not have compression enabled but the destination 5897 * filesystem has. 5898 */ 5899 if (clone_root->offset == 0 && 5900 len == sctx->send_root->fs_info->sectorsize) 5901 return send_extent_data(sctx, dst_path, offset, len); 5902 5903 path = alloc_path_for_send(); 5904 if (!path) 5905 return -ENOMEM; 5906 5907 /* 5908 * There are inodes that have extents that lie behind its i_size. Don't 5909 * accept clones from these extents. 5910 */ 5911 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5912 btrfs_release_path(path); 5913 if (ret < 0) 5914 goto out; 5915 clone_src_i_size = info.size; 5916 5917 /* 5918 * We can't send a clone operation for the entire range if we find 5919 * extent items in the respective range in the source file that 5920 * refer to different extents or if we find holes. 5921 * So check for that and do a mix of clone and regular write/copy 5922 * operations if needed. 5923 * 5924 * Example: 5925 * 5926 * mkfs.btrfs -f /dev/sda 5927 * mount /dev/sda /mnt 5928 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5929 * cp --reflink=always /mnt/foo /mnt/bar 5930 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5931 * btrfs subvolume snapshot -r /mnt /mnt/snap 5932 * 5933 * If when we send the snapshot and we are processing file bar (which 5934 * has a higher inode number than foo) we blindly send a clone operation 5935 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5936 * a file bar that matches the content of file foo - iow, doesn't match 5937 * the content from bar in the original filesystem. 5938 */ 5939 key.objectid = clone_root->ino; 5940 key.type = BTRFS_EXTENT_DATA_KEY; 5941 key.offset = clone_root->offset; 5942 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5943 if (ret < 0) 5944 goto out; 5945 if (ret > 0 && path->slots[0] > 0) { 5946 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5947 if (key.objectid == clone_root->ino && 5948 key.type == BTRFS_EXTENT_DATA_KEY) 5949 path->slots[0]--; 5950 } 5951 5952 while (true) { 5953 struct extent_buffer *leaf = path->nodes[0]; 5954 int slot = path->slots[0]; 5955 struct btrfs_file_extent_item *ei; 5956 u8 type; 5957 u64 ext_len; 5958 u64 clone_len; 5959 u64 clone_data_offset; 5960 bool crossed_src_i_size = false; 5961 5962 if (slot >= btrfs_header_nritems(leaf)) { 5963 ret = btrfs_next_leaf(clone_root->root, path); 5964 if (ret < 0) 5965 goto out; 5966 else if (ret > 0) 5967 break; 5968 continue; 5969 } 5970 5971 btrfs_item_key_to_cpu(leaf, &key, slot); 5972 5973 /* 5974 * We might have an implicit trailing hole (NO_HOLES feature 5975 * enabled). We deal with it after leaving this loop. 5976 */ 5977 if (key.objectid != clone_root->ino || 5978 key.type != BTRFS_EXTENT_DATA_KEY) 5979 break; 5980 5981 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5982 type = btrfs_file_extent_type(leaf, ei); 5983 if (type == BTRFS_FILE_EXTENT_INLINE) { 5984 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5985 ext_len = PAGE_ALIGN(ext_len); 5986 } else { 5987 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5988 } 5989 5990 if (key.offset + ext_len <= clone_root->offset) 5991 goto next; 5992 5993 if (key.offset > clone_root->offset) { 5994 /* Implicit hole, NO_HOLES feature enabled. */ 5995 u64 hole_len = key.offset - clone_root->offset; 5996 5997 if (hole_len > len) 5998 hole_len = len; 5999 ret = send_extent_data(sctx, dst_path, offset, 6000 hole_len); 6001 if (ret < 0) 6002 goto out; 6003 6004 len -= hole_len; 6005 if (len == 0) 6006 break; 6007 offset += hole_len; 6008 clone_root->offset += hole_len; 6009 data_offset += hole_len; 6010 } 6011 6012 if (key.offset >= clone_root->offset + len) 6013 break; 6014 6015 if (key.offset >= clone_src_i_size) 6016 break; 6017 6018 if (key.offset + ext_len > clone_src_i_size) { 6019 ext_len = clone_src_i_size - key.offset; 6020 crossed_src_i_size = true; 6021 } 6022 6023 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 6024 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 6025 clone_root->offset = key.offset; 6026 if (clone_data_offset < data_offset && 6027 clone_data_offset + ext_len > data_offset) { 6028 u64 extent_offset; 6029 6030 extent_offset = data_offset - clone_data_offset; 6031 ext_len -= extent_offset; 6032 clone_data_offset += extent_offset; 6033 clone_root->offset += extent_offset; 6034 } 6035 } 6036 6037 clone_len = min_t(u64, ext_len, len); 6038 6039 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 6040 clone_data_offset == data_offset) { 6041 const u64 src_end = clone_root->offset + clone_len; 6042 const u64 sectorsize = SZ_64K; 6043 6044 /* 6045 * We can't clone the last block, when its size is not 6046 * sector size aligned, into the middle of a file. If we 6047 * do so, the receiver will get a failure (-EINVAL) when 6048 * trying to clone or will silently corrupt the data in 6049 * the destination file if it's on a kernel without the 6050 * fix introduced by commit ac765f83f1397646 6051 * ("Btrfs: fix data corruption due to cloning of eof 6052 * block). 6053 * 6054 * So issue a clone of the aligned down range plus a 6055 * regular write for the eof block, if we hit that case. 6056 * 6057 * Also, we use the maximum possible sector size, 64K, 6058 * because we don't know what's the sector size of the 6059 * filesystem that receives the stream, so we have to 6060 * assume the largest possible sector size. 6061 */ 6062 if (src_end == clone_src_i_size && 6063 !IS_ALIGNED(src_end, sectorsize) && 6064 offset + clone_len < sctx->cur_inode_size) { 6065 u64 slen; 6066 6067 slen = ALIGN_DOWN(src_end - clone_root->offset, 6068 sectorsize); 6069 if (slen > 0) { 6070 ret = send_clone(sctx, offset, slen, 6071 clone_root); 6072 if (ret < 0) 6073 goto out; 6074 } 6075 ret = send_extent_data(sctx, dst_path, 6076 offset + slen, 6077 clone_len - slen); 6078 } else { 6079 ret = send_clone(sctx, offset, clone_len, 6080 clone_root); 6081 } 6082 } else if (crossed_src_i_size && clone_len < len) { 6083 /* 6084 * If we are at i_size of the clone source inode and we 6085 * can not clone from it, terminate the loop. This is 6086 * to avoid sending two write operations, one with a 6087 * length matching clone_len and the final one after 6088 * this loop with a length of len - clone_len. 6089 * 6090 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6091 * was passed to the send ioctl), this helps avoid 6092 * sending an encoded write for an offset that is not 6093 * sector size aligned, in case the i_size of the source 6094 * inode is not sector size aligned. That will make the 6095 * receiver fallback to decompression of the data and 6096 * writing it using regular buffered IO, therefore while 6097 * not incorrect, it's not optimal due decompression and 6098 * possible re-compression at the receiver. 6099 */ 6100 break; 6101 } else { 6102 ret = send_extent_data(sctx, dst_path, offset, 6103 clone_len); 6104 } 6105 6106 if (ret < 0) 6107 goto out; 6108 6109 len -= clone_len; 6110 if (len == 0) 6111 break; 6112 offset += clone_len; 6113 clone_root->offset += clone_len; 6114 6115 /* 6116 * If we are cloning from the file we are currently processing, 6117 * and using the send root as the clone root, we must stop once 6118 * the current clone offset reaches the current eof of the file 6119 * at the receiver, otherwise we would issue an invalid clone 6120 * operation (source range going beyond eof) and cause the 6121 * receiver to fail. So if we reach the current eof, bail out 6122 * and fallback to a regular write. 6123 */ 6124 if (clone_root->root == sctx->send_root && 6125 clone_root->ino == sctx->cur_ino && 6126 clone_root->offset >= sctx->cur_inode_next_write_offset) 6127 break; 6128 6129 data_offset += clone_len; 6130 next: 6131 path->slots[0]++; 6132 } 6133 6134 if (len > 0) 6135 ret = send_extent_data(sctx, dst_path, offset, len); 6136 else 6137 ret = 0; 6138 out: 6139 btrfs_free_path(path); 6140 return ret; 6141 } 6142 6143 static int send_write_or_clone(struct send_ctx *sctx, 6144 struct btrfs_path *path, 6145 struct btrfs_key *key, 6146 struct clone_root *clone_root) 6147 { 6148 int ret = 0; 6149 u64 offset = key->offset; 6150 u64 end; 6151 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 6152 6153 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6154 if (offset >= end) 6155 return 0; 6156 6157 if (clone_root && IS_ALIGNED(end, bs)) { 6158 struct btrfs_file_extent_item *ei; 6159 u64 disk_byte; 6160 u64 data_offset; 6161 6162 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6163 struct btrfs_file_extent_item); 6164 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6165 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6166 ret = clone_range(sctx, path, clone_root, disk_byte, 6167 data_offset, offset, end - offset); 6168 } else { 6169 ret = send_extent_data(sctx, path, offset, end - offset); 6170 } 6171 sctx->cur_inode_next_write_offset = end; 6172 return ret; 6173 } 6174 6175 static int is_extent_unchanged(struct send_ctx *sctx, 6176 struct btrfs_path *left_path, 6177 struct btrfs_key *ekey) 6178 { 6179 int ret = 0; 6180 struct btrfs_key key; 6181 struct btrfs_path *path = NULL; 6182 struct extent_buffer *eb; 6183 int slot; 6184 struct btrfs_key found_key; 6185 struct btrfs_file_extent_item *ei; 6186 u64 left_disknr; 6187 u64 right_disknr; 6188 u64 left_offset; 6189 u64 right_offset; 6190 u64 left_offset_fixed; 6191 u64 left_len; 6192 u64 right_len; 6193 u64 left_gen; 6194 u64 right_gen; 6195 u8 left_type; 6196 u8 right_type; 6197 6198 path = alloc_path_for_send(); 6199 if (!path) 6200 return -ENOMEM; 6201 6202 eb = left_path->nodes[0]; 6203 slot = left_path->slots[0]; 6204 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6205 left_type = btrfs_file_extent_type(eb, ei); 6206 6207 if (left_type != BTRFS_FILE_EXTENT_REG) { 6208 ret = 0; 6209 goto out; 6210 } 6211 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6212 left_len = btrfs_file_extent_num_bytes(eb, ei); 6213 left_offset = btrfs_file_extent_offset(eb, ei); 6214 left_gen = btrfs_file_extent_generation(eb, ei); 6215 6216 /* 6217 * Following comments will refer to these graphics. L is the left 6218 * extents which we are checking at the moment. 1-8 are the right 6219 * extents that we iterate. 6220 * 6221 * |-----L-----| 6222 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6223 * 6224 * |-----L-----| 6225 * |--1--|-2b-|...(same as above) 6226 * 6227 * Alternative situation. Happens on files where extents got split. 6228 * |-----L-----| 6229 * |-----------7-----------|-6-| 6230 * 6231 * Alternative situation. Happens on files which got larger. 6232 * |-----L-----| 6233 * |-8-| 6234 * Nothing follows after 8. 6235 */ 6236 6237 key.objectid = ekey->objectid; 6238 key.type = BTRFS_EXTENT_DATA_KEY; 6239 key.offset = ekey->offset; 6240 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6241 if (ret < 0) 6242 goto out; 6243 if (ret) { 6244 ret = 0; 6245 goto out; 6246 } 6247 6248 /* 6249 * Handle special case where the right side has no extents at all. 6250 */ 6251 eb = path->nodes[0]; 6252 slot = path->slots[0]; 6253 btrfs_item_key_to_cpu(eb, &found_key, slot); 6254 if (found_key.objectid != key.objectid || 6255 found_key.type != key.type) { 6256 /* If we're a hole then just pretend nothing changed */ 6257 ret = (left_disknr) ? 0 : 1; 6258 goto out; 6259 } 6260 6261 /* 6262 * We're now on 2a, 2b or 7. 6263 */ 6264 key = found_key; 6265 while (key.offset < ekey->offset + left_len) { 6266 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6267 right_type = btrfs_file_extent_type(eb, ei); 6268 if (right_type != BTRFS_FILE_EXTENT_REG && 6269 right_type != BTRFS_FILE_EXTENT_INLINE) { 6270 ret = 0; 6271 goto out; 6272 } 6273 6274 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6275 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6276 right_len = PAGE_ALIGN(right_len); 6277 } else { 6278 right_len = btrfs_file_extent_num_bytes(eb, ei); 6279 } 6280 6281 /* 6282 * Are we at extent 8? If yes, we know the extent is changed. 6283 * This may only happen on the first iteration. 6284 */ 6285 if (found_key.offset + right_len <= ekey->offset) { 6286 /* If we're a hole just pretend nothing changed */ 6287 ret = (left_disknr) ? 0 : 1; 6288 goto out; 6289 } 6290 6291 /* 6292 * We just wanted to see if when we have an inline extent, what 6293 * follows it is a regular extent (wanted to check the above 6294 * condition for inline extents too). This should normally not 6295 * happen but it's possible for example when we have an inline 6296 * compressed extent representing data with a size matching 6297 * the page size (currently the same as sector size). 6298 */ 6299 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6300 ret = 0; 6301 goto out; 6302 } 6303 6304 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6305 right_offset = btrfs_file_extent_offset(eb, ei); 6306 right_gen = btrfs_file_extent_generation(eb, ei); 6307 6308 left_offset_fixed = left_offset; 6309 if (key.offset < ekey->offset) { 6310 /* Fix the right offset for 2a and 7. */ 6311 right_offset += ekey->offset - key.offset; 6312 } else { 6313 /* Fix the left offset for all behind 2a and 2b */ 6314 left_offset_fixed += key.offset - ekey->offset; 6315 } 6316 6317 /* 6318 * Check if we have the same extent. 6319 */ 6320 if (left_disknr != right_disknr || 6321 left_offset_fixed != right_offset || 6322 left_gen != right_gen) { 6323 ret = 0; 6324 goto out; 6325 } 6326 6327 /* 6328 * Go to the next extent. 6329 */ 6330 ret = btrfs_next_item(sctx->parent_root, path); 6331 if (ret < 0) 6332 goto out; 6333 if (!ret) { 6334 eb = path->nodes[0]; 6335 slot = path->slots[0]; 6336 btrfs_item_key_to_cpu(eb, &found_key, slot); 6337 } 6338 if (ret || found_key.objectid != key.objectid || 6339 found_key.type != key.type) { 6340 key.offset += right_len; 6341 break; 6342 } 6343 if (found_key.offset != key.offset + right_len) { 6344 ret = 0; 6345 goto out; 6346 } 6347 key = found_key; 6348 } 6349 6350 /* 6351 * We're now behind the left extent (treat as unchanged) or at the end 6352 * of the right side (treat as changed). 6353 */ 6354 if (key.offset >= ekey->offset + left_len) 6355 ret = 1; 6356 else 6357 ret = 0; 6358 6359 6360 out: 6361 btrfs_free_path(path); 6362 return ret; 6363 } 6364 6365 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6366 { 6367 struct btrfs_path *path; 6368 struct btrfs_root *root = sctx->send_root; 6369 struct btrfs_key key; 6370 int ret; 6371 6372 path = alloc_path_for_send(); 6373 if (!path) 6374 return -ENOMEM; 6375 6376 sctx->cur_inode_last_extent = 0; 6377 6378 key.objectid = sctx->cur_ino; 6379 key.type = BTRFS_EXTENT_DATA_KEY; 6380 key.offset = offset; 6381 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6382 if (ret < 0) 6383 goto out; 6384 ret = 0; 6385 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6386 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6387 goto out; 6388 6389 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6390 out: 6391 btrfs_free_path(path); 6392 return ret; 6393 } 6394 6395 static int range_is_hole_in_parent(struct send_ctx *sctx, 6396 const u64 start, 6397 const u64 end) 6398 { 6399 struct btrfs_path *path; 6400 struct btrfs_key key; 6401 struct btrfs_root *root = sctx->parent_root; 6402 u64 search_start = start; 6403 int ret; 6404 6405 path = alloc_path_for_send(); 6406 if (!path) 6407 return -ENOMEM; 6408 6409 key.objectid = sctx->cur_ino; 6410 key.type = BTRFS_EXTENT_DATA_KEY; 6411 key.offset = search_start; 6412 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6413 if (ret < 0) 6414 goto out; 6415 if (ret > 0 && path->slots[0] > 0) 6416 path->slots[0]--; 6417 6418 while (search_start < end) { 6419 struct extent_buffer *leaf = path->nodes[0]; 6420 int slot = path->slots[0]; 6421 struct btrfs_file_extent_item *fi; 6422 u64 extent_end; 6423 6424 if (slot >= btrfs_header_nritems(leaf)) { 6425 ret = btrfs_next_leaf(root, path); 6426 if (ret < 0) 6427 goto out; 6428 else if (ret > 0) 6429 break; 6430 continue; 6431 } 6432 6433 btrfs_item_key_to_cpu(leaf, &key, slot); 6434 if (key.objectid < sctx->cur_ino || 6435 key.type < BTRFS_EXTENT_DATA_KEY) 6436 goto next; 6437 if (key.objectid > sctx->cur_ino || 6438 key.type > BTRFS_EXTENT_DATA_KEY || 6439 key.offset >= end) 6440 break; 6441 6442 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6443 extent_end = btrfs_file_extent_end(path); 6444 if (extent_end <= start) 6445 goto next; 6446 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6447 search_start = extent_end; 6448 goto next; 6449 } 6450 ret = 0; 6451 goto out; 6452 next: 6453 path->slots[0]++; 6454 } 6455 ret = 1; 6456 out: 6457 btrfs_free_path(path); 6458 return ret; 6459 } 6460 6461 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6462 struct btrfs_key *key) 6463 { 6464 int ret = 0; 6465 6466 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6467 return 0; 6468 6469 if (sctx->cur_inode_last_extent == (u64)-1) { 6470 ret = get_last_extent(sctx, key->offset - 1); 6471 if (ret) 6472 return ret; 6473 } 6474 6475 if (path->slots[0] == 0 && 6476 sctx->cur_inode_last_extent < key->offset) { 6477 /* 6478 * We might have skipped entire leafs that contained only 6479 * file extent items for our current inode. These leafs have 6480 * a generation number smaller (older) than the one in the 6481 * current leaf and the leaf our last extent came from, and 6482 * are located between these 2 leafs. 6483 */ 6484 ret = get_last_extent(sctx, key->offset - 1); 6485 if (ret) 6486 return ret; 6487 } 6488 6489 if (sctx->cur_inode_last_extent < key->offset) { 6490 ret = range_is_hole_in_parent(sctx, 6491 sctx->cur_inode_last_extent, 6492 key->offset); 6493 if (ret < 0) 6494 return ret; 6495 else if (ret == 0) 6496 ret = send_hole(sctx, key->offset); 6497 else 6498 ret = 0; 6499 } 6500 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6501 return ret; 6502 } 6503 6504 static int process_extent(struct send_ctx *sctx, 6505 struct btrfs_path *path, 6506 struct btrfs_key *key) 6507 { 6508 struct clone_root *found_clone = NULL; 6509 int ret = 0; 6510 6511 if (S_ISLNK(sctx->cur_inode_mode)) 6512 return 0; 6513 6514 if (sctx->parent_root && !sctx->cur_inode_new) { 6515 ret = is_extent_unchanged(sctx, path, key); 6516 if (ret < 0) 6517 goto out; 6518 if (ret) { 6519 ret = 0; 6520 goto out_hole; 6521 } 6522 } else { 6523 struct btrfs_file_extent_item *ei; 6524 u8 type; 6525 6526 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6527 struct btrfs_file_extent_item); 6528 type = btrfs_file_extent_type(path->nodes[0], ei); 6529 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6530 type == BTRFS_FILE_EXTENT_REG) { 6531 /* 6532 * The send spec does not have a prealloc command yet, 6533 * so just leave a hole for prealloc'ed extents until 6534 * we have enough commands queued up to justify rev'ing 6535 * the send spec. 6536 */ 6537 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6538 ret = 0; 6539 goto out; 6540 } 6541 6542 /* Have a hole, just skip it. */ 6543 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6544 ret = 0; 6545 goto out; 6546 } 6547 } 6548 } 6549 6550 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6551 sctx->cur_inode_size, &found_clone); 6552 if (ret != -ENOENT && ret < 0) 6553 goto out; 6554 6555 ret = send_write_or_clone(sctx, path, key, found_clone); 6556 if (ret) 6557 goto out; 6558 out_hole: 6559 ret = maybe_send_hole(sctx, path, key); 6560 out: 6561 return ret; 6562 } 6563 6564 static int process_all_extents(struct send_ctx *sctx) 6565 { 6566 int ret = 0; 6567 int iter_ret = 0; 6568 struct btrfs_root *root; 6569 struct btrfs_path *path; 6570 struct btrfs_key key; 6571 struct btrfs_key found_key; 6572 6573 root = sctx->send_root; 6574 path = alloc_path_for_send(); 6575 if (!path) 6576 return -ENOMEM; 6577 6578 key.objectid = sctx->cmp_key->objectid; 6579 key.type = BTRFS_EXTENT_DATA_KEY; 6580 key.offset = 0; 6581 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6582 if (found_key.objectid != key.objectid || 6583 found_key.type != key.type) { 6584 ret = 0; 6585 break; 6586 } 6587 6588 ret = process_extent(sctx, path, &found_key); 6589 if (ret < 0) 6590 break; 6591 } 6592 /* Catch error found during iteration */ 6593 if (iter_ret < 0) 6594 ret = iter_ret; 6595 6596 btrfs_free_path(path); 6597 return ret; 6598 } 6599 6600 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6601 int *pending_move, 6602 int *refs_processed) 6603 { 6604 int ret = 0; 6605 6606 if (sctx->cur_ino == 0) 6607 goto out; 6608 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6609 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6610 goto out; 6611 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6612 goto out; 6613 6614 ret = process_recorded_refs(sctx, pending_move); 6615 if (ret < 0) 6616 goto out; 6617 6618 *refs_processed = 1; 6619 out: 6620 return ret; 6621 } 6622 6623 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6624 { 6625 int ret = 0; 6626 struct btrfs_inode_info info; 6627 u64 left_mode; 6628 u64 left_uid; 6629 u64 left_gid; 6630 u64 left_fileattr; 6631 u64 right_mode; 6632 u64 right_uid; 6633 u64 right_gid; 6634 u64 right_fileattr; 6635 int need_chmod = 0; 6636 int need_chown = 0; 6637 bool need_fileattr = false; 6638 int need_truncate = 1; 6639 int pending_move = 0; 6640 int refs_processed = 0; 6641 6642 if (sctx->ignore_cur_inode) 6643 return 0; 6644 6645 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6646 &refs_processed); 6647 if (ret < 0) 6648 goto out; 6649 6650 /* 6651 * We have processed the refs and thus need to advance send_progress. 6652 * Now, calls to get_cur_xxx will take the updated refs of the current 6653 * inode into account. 6654 * 6655 * On the other hand, if our current inode is a directory and couldn't 6656 * be moved/renamed because its parent was renamed/moved too and it has 6657 * a higher inode number, we can only move/rename our current inode 6658 * after we moved/renamed its parent. Therefore in this case operate on 6659 * the old path (pre move/rename) of our current inode, and the 6660 * move/rename will be performed later. 6661 */ 6662 if (refs_processed && !pending_move) 6663 sctx->send_progress = sctx->cur_ino + 1; 6664 6665 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6666 goto out; 6667 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6668 goto out; 6669 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6670 if (ret < 0) 6671 goto out; 6672 left_mode = info.mode; 6673 left_uid = info.uid; 6674 left_gid = info.gid; 6675 left_fileattr = info.fileattr; 6676 6677 if (!sctx->parent_root || sctx->cur_inode_new) { 6678 need_chown = 1; 6679 if (!S_ISLNK(sctx->cur_inode_mode)) 6680 need_chmod = 1; 6681 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6682 need_truncate = 0; 6683 } else { 6684 u64 old_size; 6685 6686 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6687 if (ret < 0) 6688 goto out; 6689 old_size = info.size; 6690 right_mode = info.mode; 6691 right_uid = info.uid; 6692 right_gid = info.gid; 6693 right_fileattr = info.fileattr; 6694 6695 if (left_uid != right_uid || left_gid != right_gid) 6696 need_chown = 1; 6697 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6698 need_chmod = 1; 6699 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6700 need_fileattr = true; 6701 if ((old_size == sctx->cur_inode_size) || 6702 (sctx->cur_inode_size > old_size && 6703 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6704 need_truncate = 0; 6705 } 6706 6707 if (S_ISREG(sctx->cur_inode_mode)) { 6708 if (need_send_hole(sctx)) { 6709 if (sctx->cur_inode_last_extent == (u64)-1 || 6710 sctx->cur_inode_last_extent < 6711 sctx->cur_inode_size) { 6712 ret = get_last_extent(sctx, (u64)-1); 6713 if (ret) 6714 goto out; 6715 } 6716 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6717 ret = range_is_hole_in_parent(sctx, 6718 sctx->cur_inode_last_extent, 6719 sctx->cur_inode_size); 6720 if (ret < 0) { 6721 goto out; 6722 } else if (ret == 0) { 6723 ret = send_hole(sctx, sctx->cur_inode_size); 6724 if (ret < 0) 6725 goto out; 6726 } else { 6727 /* Range is already a hole, skip. */ 6728 ret = 0; 6729 } 6730 } 6731 } 6732 if (need_truncate) { 6733 ret = send_truncate(sctx, sctx->cur_ino, 6734 sctx->cur_inode_gen, 6735 sctx->cur_inode_size); 6736 if (ret < 0) 6737 goto out; 6738 } 6739 } 6740 6741 if (need_chown) { 6742 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6743 left_uid, left_gid); 6744 if (ret < 0) 6745 goto out; 6746 } 6747 if (need_chmod) { 6748 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6749 left_mode); 6750 if (ret < 0) 6751 goto out; 6752 } 6753 if (need_fileattr) { 6754 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6755 left_fileattr); 6756 if (ret < 0) 6757 goto out; 6758 } 6759 6760 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6761 && sctx->cur_inode_needs_verity) { 6762 ret = process_verity(sctx); 6763 if (ret < 0) 6764 goto out; 6765 } 6766 6767 ret = send_capabilities(sctx); 6768 if (ret < 0) 6769 goto out; 6770 6771 /* 6772 * If other directory inodes depended on our current directory 6773 * inode's move/rename, now do their move/rename operations. 6774 */ 6775 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6776 ret = apply_children_dir_moves(sctx); 6777 if (ret) 6778 goto out; 6779 /* 6780 * Need to send that every time, no matter if it actually 6781 * changed between the two trees as we have done changes to 6782 * the inode before. If our inode is a directory and it's 6783 * waiting to be moved/renamed, we will send its utimes when 6784 * it's moved/renamed, therefore we don't need to do it here. 6785 */ 6786 sctx->send_progress = sctx->cur_ino + 1; 6787 6788 /* 6789 * If the current inode is a non-empty directory, delay issuing 6790 * the utimes command for it, as it's very likely we have inodes 6791 * with an higher number inside it. We want to issue the utimes 6792 * command only after adding all dentries to it. 6793 */ 6794 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6795 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6796 else 6797 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6798 6799 if (ret < 0) 6800 goto out; 6801 } 6802 6803 out: 6804 if (!ret) 6805 ret = trim_dir_utimes_cache(sctx); 6806 6807 return ret; 6808 } 6809 6810 static void close_current_inode(struct send_ctx *sctx) 6811 { 6812 u64 i_size; 6813 6814 if (sctx->cur_inode == NULL) 6815 return; 6816 6817 i_size = i_size_read(sctx->cur_inode); 6818 6819 /* 6820 * If we are doing an incremental send, we may have extents between the 6821 * last processed extent and the i_size that have not been processed 6822 * because they haven't changed but we may have read some of their pages 6823 * through readahead, see the comments at send_extent_data(). 6824 */ 6825 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6826 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6827 sctx->page_cache_clear_start, 6828 round_up(i_size, PAGE_SIZE) - 1); 6829 6830 iput(sctx->cur_inode); 6831 sctx->cur_inode = NULL; 6832 } 6833 6834 static int changed_inode(struct send_ctx *sctx, 6835 enum btrfs_compare_tree_result result) 6836 { 6837 int ret = 0; 6838 struct btrfs_key *key = sctx->cmp_key; 6839 struct btrfs_inode_item *left_ii = NULL; 6840 struct btrfs_inode_item *right_ii = NULL; 6841 u64 left_gen = 0; 6842 u64 right_gen = 0; 6843 6844 close_current_inode(sctx); 6845 6846 sctx->cur_ino = key->objectid; 6847 sctx->cur_inode_new_gen = false; 6848 sctx->cur_inode_last_extent = (u64)-1; 6849 sctx->cur_inode_next_write_offset = 0; 6850 sctx->ignore_cur_inode = false; 6851 6852 /* 6853 * Set send_progress to current inode. This will tell all get_cur_xxx 6854 * functions that the current inode's refs are not updated yet. Later, 6855 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6856 */ 6857 sctx->send_progress = sctx->cur_ino; 6858 6859 if (result == BTRFS_COMPARE_TREE_NEW || 6860 result == BTRFS_COMPARE_TREE_CHANGED) { 6861 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6862 sctx->left_path->slots[0], 6863 struct btrfs_inode_item); 6864 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6865 left_ii); 6866 } else { 6867 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6868 sctx->right_path->slots[0], 6869 struct btrfs_inode_item); 6870 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6871 right_ii); 6872 } 6873 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6874 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6875 sctx->right_path->slots[0], 6876 struct btrfs_inode_item); 6877 6878 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6879 right_ii); 6880 6881 /* 6882 * The cur_ino = root dir case is special here. We can't treat 6883 * the inode as deleted+reused because it would generate a 6884 * stream that tries to delete/mkdir the root dir. 6885 */ 6886 if (left_gen != right_gen && 6887 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6888 sctx->cur_inode_new_gen = true; 6889 } 6890 6891 /* 6892 * Normally we do not find inodes with a link count of zero (orphans) 6893 * because the most common case is to create a snapshot and use it 6894 * for a send operation. However other less common use cases involve 6895 * using a subvolume and send it after turning it to RO mode just 6896 * after deleting all hard links of a file while holding an open 6897 * file descriptor against it or turning a RO snapshot into RW mode, 6898 * keep an open file descriptor against a file, delete it and then 6899 * turn the snapshot back to RO mode before using it for a send 6900 * operation. The former is what the receiver operation does. 6901 * Therefore, if we want to send these snapshots soon after they're 6902 * received, we need to handle orphan inodes as well. Moreover, orphans 6903 * can appear not only in the send snapshot but also in the parent 6904 * snapshot. Here are several cases: 6905 * 6906 * Case 1: BTRFS_COMPARE_TREE_NEW 6907 * | send snapshot | action 6908 * -------------------------------- 6909 * nlink | 0 | ignore 6910 * 6911 * Case 2: BTRFS_COMPARE_TREE_DELETED 6912 * | parent snapshot | action 6913 * ---------------------------------- 6914 * nlink | 0 | as usual 6915 * Note: No unlinks will be sent because there're no paths for it. 6916 * 6917 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6918 * | | parent snapshot | send snapshot | action 6919 * ----------------------------------------------------------------------- 6920 * subcase 1 | nlink | 0 | 0 | ignore 6921 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6922 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6923 * 6924 */ 6925 if (result == BTRFS_COMPARE_TREE_NEW) { 6926 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6927 sctx->ignore_cur_inode = true; 6928 goto out; 6929 } 6930 sctx->cur_inode_gen = left_gen; 6931 sctx->cur_inode_new = true; 6932 sctx->cur_inode_deleted = false; 6933 sctx->cur_inode_size = btrfs_inode_size( 6934 sctx->left_path->nodes[0], left_ii); 6935 sctx->cur_inode_mode = btrfs_inode_mode( 6936 sctx->left_path->nodes[0], left_ii); 6937 sctx->cur_inode_rdev = btrfs_inode_rdev( 6938 sctx->left_path->nodes[0], left_ii); 6939 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6940 ret = send_create_inode_if_needed(sctx); 6941 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6942 sctx->cur_inode_gen = right_gen; 6943 sctx->cur_inode_new = false; 6944 sctx->cur_inode_deleted = true; 6945 sctx->cur_inode_size = btrfs_inode_size( 6946 sctx->right_path->nodes[0], right_ii); 6947 sctx->cur_inode_mode = btrfs_inode_mode( 6948 sctx->right_path->nodes[0], right_ii); 6949 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6950 u32 new_nlinks, old_nlinks; 6951 6952 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6953 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6954 if (new_nlinks == 0 && old_nlinks == 0) { 6955 sctx->ignore_cur_inode = true; 6956 goto out; 6957 } else if (new_nlinks == 0 || old_nlinks == 0) { 6958 sctx->cur_inode_new_gen = 1; 6959 } 6960 /* 6961 * We need to do some special handling in case the inode was 6962 * reported as changed with a changed generation number. This 6963 * means that the original inode was deleted and new inode 6964 * reused the same inum. So we have to treat the old inode as 6965 * deleted and the new one as new. 6966 */ 6967 if (sctx->cur_inode_new_gen) { 6968 /* 6969 * First, process the inode as if it was deleted. 6970 */ 6971 if (old_nlinks > 0) { 6972 sctx->cur_inode_gen = right_gen; 6973 sctx->cur_inode_new = false; 6974 sctx->cur_inode_deleted = true; 6975 sctx->cur_inode_size = btrfs_inode_size( 6976 sctx->right_path->nodes[0], right_ii); 6977 sctx->cur_inode_mode = btrfs_inode_mode( 6978 sctx->right_path->nodes[0], right_ii); 6979 ret = process_all_refs(sctx, 6980 BTRFS_COMPARE_TREE_DELETED); 6981 if (ret < 0) 6982 goto out; 6983 } 6984 6985 /* 6986 * Now process the inode as if it was new. 6987 */ 6988 if (new_nlinks > 0) { 6989 sctx->cur_inode_gen = left_gen; 6990 sctx->cur_inode_new = true; 6991 sctx->cur_inode_deleted = false; 6992 sctx->cur_inode_size = btrfs_inode_size( 6993 sctx->left_path->nodes[0], 6994 left_ii); 6995 sctx->cur_inode_mode = btrfs_inode_mode( 6996 sctx->left_path->nodes[0], 6997 left_ii); 6998 sctx->cur_inode_rdev = btrfs_inode_rdev( 6999 sctx->left_path->nodes[0], 7000 left_ii); 7001 ret = send_create_inode_if_needed(sctx); 7002 if (ret < 0) 7003 goto out; 7004 7005 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 7006 if (ret < 0) 7007 goto out; 7008 /* 7009 * Advance send_progress now as we did not get 7010 * into process_recorded_refs_if_needed in the 7011 * new_gen case. 7012 */ 7013 sctx->send_progress = sctx->cur_ino + 1; 7014 7015 /* 7016 * Now process all extents and xattrs of the 7017 * inode as if they were all new. 7018 */ 7019 ret = process_all_extents(sctx); 7020 if (ret < 0) 7021 goto out; 7022 ret = process_all_new_xattrs(sctx); 7023 if (ret < 0) 7024 goto out; 7025 } 7026 } else { 7027 sctx->cur_inode_gen = left_gen; 7028 sctx->cur_inode_new = false; 7029 sctx->cur_inode_new_gen = false; 7030 sctx->cur_inode_deleted = false; 7031 sctx->cur_inode_size = btrfs_inode_size( 7032 sctx->left_path->nodes[0], left_ii); 7033 sctx->cur_inode_mode = btrfs_inode_mode( 7034 sctx->left_path->nodes[0], left_ii); 7035 } 7036 } 7037 7038 out: 7039 return ret; 7040 } 7041 7042 /* 7043 * We have to process new refs before deleted refs, but compare_trees gives us 7044 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 7045 * first and later process them in process_recorded_refs. 7046 * For the cur_inode_new_gen case, we skip recording completely because 7047 * changed_inode did already initiate processing of refs. The reason for this is 7048 * that in this case, compare_tree actually compares the refs of 2 different 7049 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 7050 * refs of the right tree as deleted and all refs of the left tree as new. 7051 */ 7052 static int changed_ref(struct send_ctx *sctx, 7053 enum btrfs_compare_tree_result result) 7054 { 7055 int ret = 0; 7056 7057 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7058 inconsistent_snapshot_error(sctx, result, "reference"); 7059 return -EIO; 7060 } 7061 7062 if (!sctx->cur_inode_new_gen && 7063 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 7064 if (result == BTRFS_COMPARE_TREE_NEW) 7065 ret = record_new_ref(sctx); 7066 else if (result == BTRFS_COMPARE_TREE_DELETED) 7067 ret = record_deleted_ref(sctx); 7068 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7069 ret = record_changed_ref(sctx); 7070 } 7071 7072 return ret; 7073 } 7074 7075 /* 7076 * Process new/deleted/changed xattrs. We skip processing in the 7077 * cur_inode_new_gen case because changed_inode did already initiate processing 7078 * of xattrs. The reason is the same as in changed_ref 7079 */ 7080 static int changed_xattr(struct send_ctx *sctx, 7081 enum btrfs_compare_tree_result result) 7082 { 7083 int ret = 0; 7084 7085 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7086 inconsistent_snapshot_error(sctx, result, "xattr"); 7087 return -EIO; 7088 } 7089 7090 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7091 if (result == BTRFS_COMPARE_TREE_NEW) 7092 ret = process_new_xattr(sctx); 7093 else if (result == BTRFS_COMPARE_TREE_DELETED) 7094 ret = process_deleted_xattr(sctx); 7095 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7096 ret = process_changed_xattr(sctx); 7097 } 7098 7099 return ret; 7100 } 7101 7102 /* 7103 * Process new/deleted/changed extents. We skip processing in the 7104 * cur_inode_new_gen case because changed_inode did already initiate processing 7105 * of extents. The reason is the same as in changed_ref 7106 */ 7107 static int changed_extent(struct send_ctx *sctx, 7108 enum btrfs_compare_tree_result result) 7109 { 7110 int ret = 0; 7111 7112 /* 7113 * We have found an extent item that changed without the inode item 7114 * having changed. This can happen either after relocation (where the 7115 * disk_bytenr of an extent item is replaced at 7116 * relocation.c:replace_file_extents()) or after deduplication into a 7117 * file in both the parent and send snapshots (where an extent item can 7118 * get modified or replaced with a new one). Note that deduplication 7119 * updates the inode item, but it only changes the iversion (sequence 7120 * field in the inode item) of the inode, so if a file is deduplicated 7121 * the same amount of times in both the parent and send snapshots, its 7122 * iversion becomes the same in both snapshots, whence the inode item is 7123 * the same on both snapshots. 7124 */ 7125 if (sctx->cur_ino != sctx->cmp_key->objectid) 7126 return 0; 7127 7128 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7129 if (result != BTRFS_COMPARE_TREE_DELETED) 7130 ret = process_extent(sctx, sctx->left_path, 7131 sctx->cmp_key); 7132 } 7133 7134 return ret; 7135 } 7136 7137 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7138 { 7139 int ret = 0; 7140 7141 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7142 if (result == BTRFS_COMPARE_TREE_NEW) 7143 sctx->cur_inode_needs_verity = true; 7144 } 7145 return ret; 7146 } 7147 7148 static int dir_changed(struct send_ctx *sctx, u64 dir) 7149 { 7150 u64 orig_gen, new_gen; 7151 int ret; 7152 7153 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7154 if (ret) 7155 return ret; 7156 7157 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7158 if (ret) 7159 return ret; 7160 7161 return (orig_gen != new_gen) ? 1 : 0; 7162 } 7163 7164 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7165 struct btrfs_key *key) 7166 { 7167 struct btrfs_inode_extref *extref; 7168 struct extent_buffer *leaf; 7169 u64 dirid = 0, last_dirid = 0; 7170 unsigned long ptr; 7171 u32 item_size; 7172 u32 cur_offset = 0; 7173 int ref_name_len; 7174 int ret = 0; 7175 7176 /* Easy case, just check this one dirid */ 7177 if (key->type == BTRFS_INODE_REF_KEY) { 7178 dirid = key->offset; 7179 7180 ret = dir_changed(sctx, dirid); 7181 goto out; 7182 } 7183 7184 leaf = path->nodes[0]; 7185 item_size = btrfs_item_size(leaf, path->slots[0]); 7186 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7187 while (cur_offset < item_size) { 7188 extref = (struct btrfs_inode_extref *)(ptr + 7189 cur_offset); 7190 dirid = btrfs_inode_extref_parent(leaf, extref); 7191 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7192 cur_offset += ref_name_len + sizeof(*extref); 7193 if (dirid == last_dirid) 7194 continue; 7195 ret = dir_changed(sctx, dirid); 7196 if (ret) 7197 break; 7198 last_dirid = dirid; 7199 } 7200 out: 7201 return ret; 7202 } 7203 7204 /* 7205 * Updates compare related fields in sctx and simply forwards to the actual 7206 * changed_xxx functions. 7207 */ 7208 static int changed_cb(struct btrfs_path *left_path, 7209 struct btrfs_path *right_path, 7210 struct btrfs_key *key, 7211 enum btrfs_compare_tree_result result, 7212 struct send_ctx *sctx) 7213 { 7214 int ret = 0; 7215 7216 /* 7217 * We can not hold the commit root semaphore here. This is because in 7218 * the case of sending and receiving to the same filesystem, using a 7219 * pipe, could result in a deadlock: 7220 * 7221 * 1) The task running send blocks on the pipe because it's full; 7222 * 7223 * 2) The task running receive, which is the only consumer of the pipe, 7224 * is waiting for a transaction commit (for example due to a space 7225 * reservation when doing a write or triggering a transaction commit 7226 * when creating a subvolume); 7227 * 7228 * 3) The transaction is waiting to write lock the commit root semaphore, 7229 * but can not acquire it since it's being held at 1). 7230 * 7231 * Down this call chain we write to the pipe through kernel_write(). 7232 * The same type of problem can also happen when sending to a file that 7233 * is stored in the same filesystem - when reserving space for a write 7234 * into the file, we can trigger a transaction commit. 7235 * 7236 * Our caller has supplied us with clones of leaves from the send and 7237 * parent roots, so we're safe here from a concurrent relocation and 7238 * further reallocation of metadata extents while we are here. Below we 7239 * also assert that the leaves are clones. 7240 */ 7241 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7242 7243 /* 7244 * We always have a send root, so left_path is never NULL. We will not 7245 * have a leaf when we have reached the end of the send root but have 7246 * not yet reached the end of the parent root. 7247 */ 7248 if (left_path->nodes[0]) 7249 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7250 &left_path->nodes[0]->bflags)); 7251 /* 7252 * When doing a full send we don't have a parent root, so right_path is 7253 * NULL. When doing an incremental send, we may have reached the end of 7254 * the parent root already, so we don't have a leaf at right_path. 7255 */ 7256 if (right_path && right_path->nodes[0]) 7257 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7258 &right_path->nodes[0]->bflags)); 7259 7260 if (result == BTRFS_COMPARE_TREE_SAME) { 7261 if (key->type == BTRFS_INODE_REF_KEY || 7262 key->type == BTRFS_INODE_EXTREF_KEY) { 7263 ret = compare_refs(sctx, left_path, key); 7264 if (!ret) 7265 return 0; 7266 if (ret < 0) 7267 return ret; 7268 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7269 return maybe_send_hole(sctx, left_path, key); 7270 } else { 7271 return 0; 7272 } 7273 result = BTRFS_COMPARE_TREE_CHANGED; 7274 ret = 0; 7275 } 7276 7277 sctx->left_path = left_path; 7278 sctx->right_path = right_path; 7279 sctx->cmp_key = key; 7280 7281 ret = finish_inode_if_needed(sctx, 0); 7282 if (ret < 0) 7283 goto out; 7284 7285 /* Ignore non-FS objects */ 7286 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7287 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7288 goto out; 7289 7290 if (key->type == BTRFS_INODE_ITEM_KEY) { 7291 ret = changed_inode(sctx, result); 7292 } else if (!sctx->ignore_cur_inode) { 7293 if (key->type == BTRFS_INODE_REF_KEY || 7294 key->type == BTRFS_INODE_EXTREF_KEY) 7295 ret = changed_ref(sctx, result); 7296 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7297 ret = changed_xattr(sctx, result); 7298 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7299 ret = changed_extent(sctx, result); 7300 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7301 key->offset == 0) 7302 ret = changed_verity(sctx, result); 7303 } 7304 7305 out: 7306 return ret; 7307 } 7308 7309 static int search_key_again(const struct send_ctx *sctx, 7310 struct btrfs_root *root, 7311 struct btrfs_path *path, 7312 const struct btrfs_key *key) 7313 { 7314 int ret; 7315 7316 if (!path->need_commit_sem) 7317 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7318 7319 /* 7320 * Roots used for send operations are readonly and no one can add, 7321 * update or remove keys from them, so we should be able to find our 7322 * key again. The only exception is deduplication, which can operate on 7323 * readonly roots and add, update or remove keys to/from them - but at 7324 * the moment we don't allow it to run in parallel with send. 7325 */ 7326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7327 ASSERT(ret <= 0); 7328 if (ret > 0) { 7329 btrfs_print_tree(path->nodes[path->lowest_level], false); 7330 btrfs_err(root->fs_info, 7331 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7332 key->objectid, key->type, key->offset, 7333 (root == sctx->parent_root ? "parent" : "send"), 7334 root->root_key.objectid, path->lowest_level, 7335 path->slots[path->lowest_level]); 7336 return -EUCLEAN; 7337 } 7338 7339 return ret; 7340 } 7341 7342 static int full_send_tree(struct send_ctx *sctx) 7343 { 7344 int ret; 7345 struct btrfs_root *send_root = sctx->send_root; 7346 struct btrfs_key key; 7347 struct btrfs_fs_info *fs_info = send_root->fs_info; 7348 struct btrfs_path *path; 7349 7350 path = alloc_path_for_send(); 7351 if (!path) 7352 return -ENOMEM; 7353 path->reada = READA_FORWARD_ALWAYS; 7354 7355 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7356 key.type = BTRFS_INODE_ITEM_KEY; 7357 key.offset = 0; 7358 7359 down_read(&fs_info->commit_root_sem); 7360 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7361 up_read(&fs_info->commit_root_sem); 7362 7363 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7364 if (ret < 0) 7365 goto out; 7366 if (ret) 7367 goto out_finish; 7368 7369 while (1) { 7370 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7371 7372 ret = changed_cb(path, NULL, &key, 7373 BTRFS_COMPARE_TREE_NEW, sctx); 7374 if (ret < 0) 7375 goto out; 7376 7377 down_read(&fs_info->commit_root_sem); 7378 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7379 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7380 up_read(&fs_info->commit_root_sem); 7381 /* 7382 * A transaction used for relocating a block group was 7383 * committed or is about to finish its commit. Release 7384 * our path (leaf) and restart the search, so that we 7385 * avoid operating on any file extent items that are 7386 * stale, with a disk_bytenr that reflects a pre 7387 * relocation value. This way we avoid as much as 7388 * possible to fallback to regular writes when checking 7389 * if we can clone file ranges. 7390 */ 7391 btrfs_release_path(path); 7392 ret = search_key_again(sctx, send_root, path, &key); 7393 if (ret < 0) 7394 goto out; 7395 } else { 7396 up_read(&fs_info->commit_root_sem); 7397 } 7398 7399 ret = btrfs_next_item(send_root, path); 7400 if (ret < 0) 7401 goto out; 7402 if (ret) { 7403 ret = 0; 7404 break; 7405 } 7406 } 7407 7408 out_finish: 7409 ret = finish_inode_if_needed(sctx, 1); 7410 7411 out: 7412 btrfs_free_path(path); 7413 return ret; 7414 } 7415 7416 static int replace_node_with_clone(struct btrfs_path *path, int level) 7417 { 7418 struct extent_buffer *clone; 7419 7420 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7421 if (!clone) 7422 return -ENOMEM; 7423 7424 free_extent_buffer(path->nodes[level]); 7425 path->nodes[level] = clone; 7426 7427 return 0; 7428 } 7429 7430 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7431 { 7432 struct extent_buffer *eb; 7433 struct extent_buffer *parent = path->nodes[*level]; 7434 int slot = path->slots[*level]; 7435 const int nritems = btrfs_header_nritems(parent); 7436 u64 reada_max; 7437 u64 reada_done = 0; 7438 7439 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7440 7441 BUG_ON(*level == 0); 7442 eb = btrfs_read_node_slot(parent, slot); 7443 if (IS_ERR(eb)) 7444 return PTR_ERR(eb); 7445 7446 /* 7447 * Trigger readahead for the next leaves we will process, so that it is 7448 * very likely that when we need them they are already in memory and we 7449 * will not block on disk IO. For nodes we only do readahead for one, 7450 * since the time window between processing nodes is typically larger. 7451 */ 7452 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7453 7454 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7455 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7456 btrfs_readahead_node_child(parent, slot); 7457 reada_done += eb->fs_info->nodesize; 7458 } 7459 } 7460 7461 path->nodes[*level - 1] = eb; 7462 path->slots[*level - 1] = 0; 7463 (*level)--; 7464 7465 if (*level == 0) 7466 return replace_node_with_clone(path, 0); 7467 7468 return 0; 7469 } 7470 7471 static int tree_move_next_or_upnext(struct btrfs_path *path, 7472 int *level, int root_level) 7473 { 7474 int ret = 0; 7475 int nritems; 7476 nritems = btrfs_header_nritems(path->nodes[*level]); 7477 7478 path->slots[*level]++; 7479 7480 while (path->slots[*level] >= nritems) { 7481 if (*level == root_level) { 7482 path->slots[*level] = nritems - 1; 7483 return -1; 7484 } 7485 7486 /* move upnext */ 7487 path->slots[*level] = 0; 7488 free_extent_buffer(path->nodes[*level]); 7489 path->nodes[*level] = NULL; 7490 (*level)++; 7491 path->slots[*level]++; 7492 7493 nritems = btrfs_header_nritems(path->nodes[*level]); 7494 ret = 1; 7495 } 7496 return ret; 7497 } 7498 7499 /* 7500 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7501 * or down. 7502 */ 7503 static int tree_advance(struct btrfs_path *path, 7504 int *level, int root_level, 7505 int allow_down, 7506 struct btrfs_key *key, 7507 u64 reada_min_gen) 7508 { 7509 int ret; 7510 7511 if (*level == 0 || !allow_down) { 7512 ret = tree_move_next_or_upnext(path, level, root_level); 7513 } else { 7514 ret = tree_move_down(path, level, reada_min_gen); 7515 } 7516 7517 /* 7518 * Even if we have reached the end of a tree, ret is -1, update the key 7519 * anyway, so that in case we need to restart due to a block group 7520 * relocation, we can assert that the last key of the root node still 7521 * exists in the tree. 7522 */ 7523 if (*level == 0) 7524 btrfs_item_key_to_cpu(path->nodes[*level], key, 7525 path->slots[*level]); 7526 else 7527 btrfs_node_key_to_cpu(path->nodes[*level], key, 7528 path->slots[*level]); 7529 7530 return ret; 7531 } 7532 7533 static int tree_compare_item(struct btrfs_path *left_path, 7534 struct btrfs_path *right_path, 7535 char *tmp_buf) 7536 { 7537 int cmp; 7538 int len1, len2; 7539 unsigned long off1, off2; 7540 7541 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7542 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7543 if (len1 != len2) 7544 return 1; 7545 7546 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7547 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7548 right_path->slots[0]); 7549 7550 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7551 7552 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7553 if (cmp) 7554 return 1; 7555 return 0; 7556 } 7557 7558 /* 7559 * A transaction used for relocating a block group was committed or is about to 7560 * finish its commit. Release our paths and restart the search, so that we are 7561 * not using stale extent buffers: 7562 * 7563 * 1) For levels > 0, we are only holding references of extent buffers, without 7564 * any locks on them, which does not prevent them from having been relocated 7565 * and reallocated after the last time we released the commit root semaphore. 7566 * The exception are the root nodes, for which we always have a clone, see 7567 * the comment at btrfs_compare_trees(); 7568 * 7569 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7570 * we are safe from the concurrent relocation and reallocation. However they 7571 * can have file extent items with a pre relocation disk_bytenr value, so we 7572 * restart the start from the current commit roots and clone the new leaves so 7573 * that we get the post relocation disk_bytenr values. Not doing so, could 7574 * make us clone the wrong data in case there are new extents using the old 7575 * disk_bytenr that happen to be shared. 7576 */ 7577 static int restart_after_relocation(struct btrfs_path *left_path, 7578 struct btrfs_path *right_path, 7579 const struct btrfs_key *left_key, 7580 const struct btrfs_key *right_key, 7581 int left_level, 7582 int right_level, 7583 const struct send_ctx *sctx) 7584 { 7585 int root_level; 7586 int ret; 7587 7588 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7589 7590 btrfs_release_path(left_path); 7591 btrfs_release_path(right_path); 7592 7593 /* 7594 * Since keys can not be added or removed to/from our roots because they 7595 * are readonly and we do not allow deduplication to run in parallel 7596 * (which can add, remove or change keys), the layout of the trees should 7597 * not change. 7598 */ 7599 left_path->lowest_level = left_level; 7600 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7601 if (ret < 0) 7602 return ret; 7603 7604 right_path->lowest_level = right_level; 7605 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7606 if (ret < 0) 7607 return ret; 7608 7609 /* 7610 * If the lowest level nodes are leaves, clone them so that they can be 7611 * safely used by changed_cb() while not under the protection of the 7612 * commit root semaphore, even if relocation and reallocation happens in 7613 * parallel. 7614 */ 7615 if (left_level == 0) { 7616 ret = replace_node_with_clone(left_path, 0); 7617 if (ret < 0) 7618 return ret; 7619 } 7620 7621 if (right_level == 0) { 7622 ret = replace_node_with_clone(right_path, 0); 7623 if (ret < 0) 7624 return ret; 7625 } 7626 7627 /* 7628 * Now clone the root nodes (unless they happen to be the leaves we have 7629 * already cloned). This is to protect against concurrent snapshotting of 7630 * the send and parent roots (see the comment at btrfs_compare_trees()). 7631 */ 7632 root_level = btrfs_header_level(sctx->send_root->commit_root); 7633 if (root_level > 0) { 7634 ret = replace_node_with_clone(left_path, root_level); 7635 if (ret < 0) 7636 return ret; 7637 } 7638 7639 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7640 if (root_level > 0) { 7641 ret = replace_node_with_clone(right_path, root_level); 7642 if (ret < 0) 7643 return ret; 7644 } 7645 7646 return 0; 7647 } 7648 7649 /* 7650 * This function compares two trees and calls the provided callback for 7651 * every changed/new/deleted item it finds. 7652 * If shared tree blocks are encountered, whole subtrees are skipped, making 7653 * the compare pretty fast on snapshotted subvolumes. 7654 * 7655 * This currently works on commit roots only. As commit roots are read only, 7656 * we don't do any locking. The commit roots are protected with transactions. 7657 * Transactions are ended and rejoined when a commit is tried in between. 7658 * 7659 * This function checks for modifications done to the trees while comparing. 7660 * If it detects a change, it aborts immediately. 7661 */ 7662 static int btrfs_compare_trees(struct btrfs_root *left_root, 7663 struct btrfs_root *right_root, struct send_ctx *sctx) 7664 { 7665 struct btrfs_fs_info *fs_info = left_root->fs_info; 7666 int ret; 7667 int cmp; 7668 struct btrfs_path *left_path = NULL; 7669 struct btrfs_path *right_path = NULL; 7670 struct btrfs_key left_key; 7671 struct btrfs_key right_key; 7672 char *tmp_buf = NULL; 7673 int left_root_level; 7674 int right_root_level; 7675 int left_level; 7676 int right_level; 7677 int left_end_reached = 0; 7678 int right_end_reached = 0; 7679 int advance_left = 0; 7680 int advance_right = 0; 7681 u64 left_blockptr; 7682 u64 right_blockptr; 7683 u64 left_gen; 7684 u64 right_gen; 7685 u64 reada_min_gen; 7686 7687 left_path = btrfs_alloc_path(); 7688 if (!left_path) { 7689 ret = -ENOMEM; 7690 goto out; 7691 } 7692 right_path = btrfs_alloc_path(); 7693 if (!right_path) { 7694 ret = -ENOMEM; 7695 goto out; 7696 } 7697 7698 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7699 if (!tmp_buf) { 7700 ret = -ENOMEM; 7701 goto out; 7702 } 7703 7704 left_path->search_commit_root = 1; 7705 left_path->skip_locking = 1; 7706 right_path->search_commit_root = 1; 7707 right_path->skip_locking = 1; 7708 7709 /* 7710 * Strategy: Go to the first items of both trees. Then do 7711 * 7712 * If both trees are at level 0 7713 * Compare keys of current items 7714 * If left < right treat left item as new, advance left tree 7715 * and repeat 7716 * If left > right treat right item as deleted, advance right tree 7717 * and repeat 7718 * If left == right do deep compare of items, treat as changed if 7719 * needed, advance both trees and repeat 7720 * If both trees are at the same level but not at level 0 7721 * Compare keys of current nodes/leafs 7722 * If left < right advance left tree and repeat 7723 * If left > right advance right tree and repeat 7724 * If left == right compare blockptrs of the next nodes/leafs 7725 * If they match advance both trees but stay at the same level 7726 * and repeat 7727 * If they don't match advance both trees while allowing to go 7728 * deeper and repeat 7729 * If tree levels are different 7730 * Advance the tree that needs it and repeat 7731 * 7732 * Advancing a tree means: 7733 * If we are at level 0, try to go to the next slot. If that's not 7734 * possible, go one level up and repeat. Stop when we found a level 7735 * where we could go to the next slot. We may at this point be on a 7736 * node or a leaf. 7737 * 7738 * If we are not at level 0 and not on shared tree blocks, go one 7739 * level deeper. 7740 * 7741 * If we are not at level 0 and on shared tree blocks, go one slot to 7742 * the right if possible or go up and right. 7743 */ 7744 7745 down_read(&fs_info->commit_root_sem); 7746 left_level = btrfs_header_level(left_root->commit_root); 7747 left_root_level = left_level; 7748 /* 7749 * We clone the root node of the send and parent roots to prevent races 7750 * with snapshot creation of these roots. Snapshot creation COWs the 7751 * root node of a tree, so after the transaction is committed the old 7752 * extent can be reallocated while this send operation is still ongoing. 7753 * So we clone them, under the commit root semaphore, to be race free. 7754 */ 7755 left_path->nodes[left_level] = 7756 btrfs_clone_extent_buffer(left_root->commit_root); 7757 if (!left_path->nodes[left_level]) { 7758 ret = -ENOMEM; 7759 goto out_unlock; 7760 } 7761 7762 right_level = btrfs_header_level(right_root->commit_root); 7763 right_root_level = right_level; 7764 right_path->nodes[right_level] = 7765 btrfs_clone_extent_buffer(right_root->commit_root); 7766 if (!right_path->nodes[right_level]) { 7767 ret = -ENOMEM; 7768 goto out_unlock; 7769 } 7770 /* 7771 * Our right root is the parent root, while the left root is the "send" 7772 * root. We know that all new nodes/leaves in the left root must have 7773 * a generation greater than the right root's generation, so we trigger 7774 * readahead for those nodes and leaves of the left root, as we know we 7775 * will need to read them at some point. 7776 */ 7777 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7778 7779 if (left_level == 0) 7780 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7781 &left_key, left_path->slots[left_level]); 7782 else 7783 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7784 &left_key, left_path->slots[left_level]); 7785 if (right_level == 0) 7786 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7787 &right_key, right_path->slots[right_level]); 7788 else 7789 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7790 &right_key, right_path->slots[right_level]); 7791 7792 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7793 7794 while (1) { 7795 if (need_resched() || 7796 rwsem_is_contended(&fs_info->commit_root_sem)) { 7797 up_read(&fs_info->commit_root_sem); 7798 cond_resched(); 7799 down_read(&fs_info->commit_root_sem); 7800 } 7801 7802 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7803 ret = restart_after_relocation(left_path, right_path, 7804 &left_key, &right_key, 7805 left_level, right_level, 7806 sctx); 7807 if (ret < 0) 7808 goto out_unlock; 7809 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7810 } 7811 7812 if (advance_left && !left_end_reached) { 7813 ret = tree_advance(left_path, &left_level, 7814 left_root_level, 7815 advance_left != ADVANCE_ONLY_NEXT, 7816 &left_key, reada_min_gen); 7817 if (ret == -1) 7818 left_end_reached = ADVANCE; 7819 else if (ret < 0) 7820 goto out_unlock; 7821 advance_left = 0; 7822 } 7823 if (advance_right && !right_end_reached) { 7824 ret = tree_advance(right_path, &right_level, 7825 right_root_level, 7826 advance_right != ADVANCE_ONLY_NEXT, 7827 &right_key, reada_min_gen); 7828 if (ret == -1) 7829 right_end_reached = ADVANCE; 7830 else if (ret < 0) 7831 goto out_unlock; 7832 advance_right = 0; 7833 } 7834 7835 if (left_end_reached && right_end_reached) { 7836 ret = 0; 7837 goto out_unlock; 7838 } else if (left_end_reached) { 7839 if (right_level == 0) { 7840 up_read(&fs_info->commit_root_sem); 7841 ret = changed_cb(left_path, right_path, 7842 &right_key, 7843 BTRFS_COMPARE_TREE_DELETED, 7844 sctx); 7845 if (ret < 0) 7846 goto out; 7847 down_read(&fs_info->commit_root_sem); 7848 } 7849 advance_right = ADVANCE; 7850 continue; 7851 } else if (right_end_reached) { 7852 if (left_level == 0) { 7853 up_read(&fs_info->commit_root_sem); 7854 ret = changed_cb(left_path, right_path, 7855 &left_key, 7856 BTRFS_COMPARE_TREE_NEW, 7857 sctx); 7858 if (ret < 0) 7859 goto out; 7860 down_read(&fs_info->commit_root_sem); 7861 } 7862 advance_left = ADVANCE; 7863 continue; 7864 } 7865 7866 if (left_level == 0 && right_level == 0) { 7867 up_read(&fs_info->commit_root_sem); 7868 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7869 if (cmp < 0) { 7870 ret = changed_cb(left_path, right_path, 7871 &left_key, 7872 BTRFS_COMPARE_TREE_NEW, 7873 sctx); 7874 advance_left = ADVANCE; 7875 } else if (cmp > 0) { 7876 ret = changed_cb(left_path, right_path, 7877 &right_key, 7878 BTRFS_COMPARE_TREE_DELETED, 7879 sctx); 7880 advance_right = ADVANCE; 7881 } else { 7882 enum btrfs_compare_tree_result result; 7883 7884 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7885 ret = tree_compare_item(left_path, right_path, 7886 tmp_buf); 7887 if (ret) 7888 result = BTRFS_COMPARE_TREE_CHANGED; 7889 else 7890 result = BTRFS_COMPARE_TREE_SAME; 7891 ret = changed_cb(left_path, right_path, 7892 &left_key, result, sctx); 7893 advance_left = ADVANCE; 7894 advance_right = ADVANCE; 7895 } 7896 7897 if (ret < 0) 7898 goto out; 7899 down_read(&fs_info->commit_root_sem); 7900 } else if (left_level == right_level) { 7901 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7902 if (cmp < 0) { 7903 advance_left = ADVANCE; 7904 } else if (cmp > 0) { 7905 advance_right = ADVANCE; 7906 } else { 7907 left_blockptr = btrfs_node_blockptr( 7908 left_path->nodes[left_level], 7909 left_path->slots[left_level]); 7910 right_blockptr = btrfs_node_blockptr( 7911 right_path->nodes[right_level], 7912 right_path->slots[right_level]); 7913 left_gen = btrfs_node_ptr_generation( 7914 left_path->nodes[left_level], 7915 left_path->slots[left_level]); 7916 right_gen = btrfs_node_ptr_generation( 7917 right_path->nodes[right_level], 7918 right_path->slots[right_level]); 7919 if (left_blockptr == right_blockptr && 7920 left_gen == right_gen) { 7921 /* 7922 * As we're on a shared block, don't 7923 * allow to go deeper. 7924 */ 7925 advance_left = ADVANCE_ONLY_NEXT; 7926 advance_right = ADVANCE_ONLY_NEXT; 7927 } else { 7928 advance_left = ADVANCE; 7929 advance_right = ADVANCE; 7930 } 7931 } 7932 } else if (left_level < right_level) { 7933 advance_right = ADVANCE; 7934 } else { 7935 advance_left = ADVANCE; 7936 } 7937 } 7938 7939 out_unlock: 7940 up_read(&fs_info->commit_root_sem); 7941 out: 7942 btrfs_free_path(left_path); 7943 btrfs_free_path(right_path); 7944 kvfree(tmp_buf); 7945 return ret; 7946 } 7947 7948 static int send_subvol(struct send_ctx *sctx) 7949 { 7950 int ret; 7951 7952 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7953 ret = send_header(sctx); 7954 if (ret < 0) 7955 goto out; 7956 } 7957 7958 ret = send_subvol_begin(sctx); 7959 if (ret < 0) 7960 goto out; 7961 7962 if (sctx->parent_root) { 7963 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7964 if (ret < 0) 7965 goto out; 7966 ret = finish_inode_if_needed(sctx, 1); 7967 if (ret < 0) 7968 goto out; 7969 } else { 7970 ret = full_send_tree(sctx); 7971 if (ret < 0) 7972 goto out; 7973 } 7974 7975 out: 7976 free_recorded_refs(sctx); 7977 return ret; 7978 } 7979 7980 /* 7981 * If orphan cleanup did remove any orphans from a root, it means the tree 7982 * was modified and therefore the commit root is not the same as the current 7983 * root anymore. This is a problem, because send uses the commit root and 7984 * therefore can see inode items that don't exist in the current root anymore, 7985 * and for example make calls to btrfs_iget, which will do tree lookups based 7986 * on the current root and not on the commit root. Those lookups will fail, 7987 * returning a -ESTALE error, and making send fail with that error. So make 7988 * sure a send does not see any orphans we have just removed, and that it will 7989 * see the same inodes regardless of whether a transaction commit happened 7990 * before it started (meaning that the commit root will be the same as the 7991 * current root) or not. 7992 */ 7993 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7994 { 7995 int i; 7996 struct btrfs_trans_handle *trans = NULL; 7997 7998 again: 7999 if (sctx->parent_root && 8000 sctx->parent_root->node != sctx->parent_root->commit_root) 8001 goto commit_trans; 8002 8003 for (i = 0; i < sctx->clone_roots_cnt; i++) 8004 if (sctx->clone_roots[i].root->node != 8005 sctx->clone_roots[i].root->commit_root) 8006 goto commit_trans; 8007 8008 if (trans) 8009 return btrfs_end_transaction(trans); 8010 8011 return 0; 8012 8013 commit_trans: 8014 /* Use any root, all fs roots will get their commit roots updated. */ 8015 if (!trans) { 8016 trans = btrfs_join_transaction(sctx->send_root); 8017 if (IS_ERR(trans)) 8018 return PTR_ERR(trans); 8019 goto again; 8020 } 8021 8022 return btrfs_commit_transaction(trans); 8023 } 8024 8025 /* 8026 * Make sure any existing dellaloc is flushed for any root used by a send 8027 * operation so that we do not miss any data and we do not race with writeback 8028 * finishing and changing a tree while send is using the tree. This could 8029 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 8030 * a send operation then uses the subvolume. 8031 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 8032 */ 8033 static int flush_delalloc_roots(struct send_ctx *sctx) 8034 { 8035 struct btrfs_root *root = sctx->parent_root; 8036 int ret; 8037 int i; 8038 8039 if (root) { 8040 ret = btrfs_start_delalloc_snapshot(root, false); 8041 if (ret) 8042 return ret; 8043 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 8044 } 8045 8046 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8047 root = sctx->clone_roots[i].root; 8048 ret = btrfs_start_delalloc_snapshot(root, false); 8049 if (ret) 8050 return ret; 8051 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 8052 } 8053 8054 return 0; 8055 } 8056 8057 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 8058 { 8059 spin_lock(&root->root_item_lock); 8060 root->send_in_progress--; 8061 /* 8062 * Not much left to do, we don't know why it's unbalanced and 8063 * can't blindly reset it to 0. 8064 */ 8065 if (root->send_in_progress < 0) 8066 btrfs_err(root->fs_info, 8067 "send_in_progress unbalanced %d root %llu", 8068 root->send_in_progress, root->root_key.objectid); 8069 spin_unlock(&root->root_item_lock); 8070 } 8071 8072 static void dedupe_in_progress_warn(const struct btrfs_root *root) 8073 { 8074 btrfs_warn_rl(root->fs_info, 8075 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 8076 root->root_key.objectid, root->dedupe_in_progress); 8077 } 8078 8079 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg) 8080 { 8081 int ret = 0; 8082 struct btrfs_root *send_root = BTRFS_I(inode)->root; 8083 struct btrfs_fs_info *fs_info = send_root->fs_info; 8084 struct btrfs_root *clone_root; 8085 struct send_ctx *sctx = NULL; 8086 u32 i; 8087 u64 *clone_sources_tmp = NULL; 8088 int clone_sources_to_rollback = 0; 8089 size_t alloc_size; 8090 int sort_clone_roots = 0; 8091 struct btrfs_lru_cache_entry *entry; 8092 struct btrfs_lru_cache_entry *tmp; 8093 8094 if (!capable(CAP_SYS_ADMIN)) 8095 return -EPERM; 8096 8097 /* 8098 * The subvolume must remain read-only during send, protect against 8099 * making it RW. This also protects against deletion. 8100 */ 8101 spin_lock(&send_root->root_item_lock); 8102 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 8103 dedupe_in_progress_warn(send_root); 8104 spin_unlock(&send_root->root_item_lock); 8105 return -EAGAIN; 8106 } 8107 send_root->send_in_progress++; 8108 spin_unlock(&send_root->root_item_lock); 8109 8110 /* 8111 * Userspace tools do the checks and warn the user if it's 8112 * not RO. 8113 */ 8114 if (!btrfs_root_readonly(send_root)) { 8115 ret = -EPERM; 8116 goto out; 8117 } 8118 8119 /* 8120 * Check that we don't overflow at later allocations, we request 8121 * clone_sources_count + 1 items, and compare to unsigned long inside 8122 * access_ok. Also set an upper limit for allocation size so this can't 8123 * easily exhaust memory. Max number of clone sources is about 200K. 8124 */ 8125 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8126 ret = -EINVAL; 8127 goto out; 8128 } 8129 8130 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8131 ret = -EOPNOTSUPP; 8132 goto out; 8133 } 8134 8135 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8136 if (!sctx) { 8137 ret = -ENOMEM; 8138 goto out; 8139 } 8140 8141 INIT_LIST_HEAD(&sctx->new_refs); 8142 INIT_LIST_HEAD(&sctx->deleted_refs); 8143 8144 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8145 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8146 btrfs_lru_cache_init(&sctx->dir_created_cache, 8147 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8148 /* 8149 * This cache is periodically trimmed to a fixed size elsewhere, see 8150 * cache_dir_utimes() and trim_dir_utimes_cache(). 8151 */ 8152 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8153 8154 sctx->pending_dir_moves = RB_ROOT; 8155 sctx->waiting_dir_moves = RB_ROOT; 8156 sctx->orphan_dirs = RB_ROOT; 8157 sctx->rbtree_new_refs = RB_ROOT; 8158 sctx->rbtree_deleted_refs = RB_ROOT; 8159 8160 sctx->flags = arg->flags; 8161 8162 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8163 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8164 ret = -EPROTO; 8165 goto out; 8166 } 8167 /* Zero means "use the highest version" */ 8168 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8169 } else { 8170 sctx->proto = 1; 8171 } 8172 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8173 ret = -EINVAL; 8174 goto out; 8175 } 8176 8177 sctx->send_filp = fget(arg->send_fd); 8178 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8179 ret = -EBADF; 8180 goto out; 8181 } 8182 8183 sctx->send_root = send_root; 8184 /* 8185 * Unlikely but possible, if the subvolume is marked for deletion but 8186 * is slow to remove the directory entry, send can still be started 8187 */ 8188 if (btrfs_root_dead(sctx->send_root)) { 8189 ret = -EPERM; 8190 goto out; 8191 } 8192 8193 sctx->clone_roots_cnt = arg->clone_sources_count; 8194 8195 if (sctx->proto >= 2) { 8196 u32 send_buf_num_pages; 8197 8198 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8199 sctx->send_buf = vmalloc(sctx->send_max_size); 8200 if (!sctx->send_buf) { 8201 ret = -ENOMEM; 8202 goto out; 8203 } 8204 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8205 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8206 sizeof(*sctx->send_buf_pages), 8207 GFP_KERNEL); 8208 if (!sctx->send_buf_pages) { 8209 ret = -ENOMEM; 8210 goto out; 8211 } 8212 for (i = 0; i < send_buf_num_pages; i++) { 8213 sctx->send_buf_pages[i] = 8214 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8215 } 8216 } else { 8217 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8218 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8219 } 8220 if (!sctx->send_buf) { 8221 ret = -ENOMEM; 8222 goto out; 8223 } 8224 8225 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8226 sizeof(*sctx->clone_roots), 8227 GFP_KERNEL); 8228 if (!sctx->clone_roots) { 8229 ret = -ENOMEM; 8230 goto out; 8231 } 8232 8233 alloc_size = array_size(sizeof(*arg->clone_sources), 8234 arg->clone_sources_count); 8235 8236 if (arg->clone_sources_count) { 8237 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8238 if (!clone_sources_tmp) { 8239 ret = -ENOMEM; 8240 goto out; 8241 } 8242 8243 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8244 alloc_size); 8245 if (ret) { 8246 ret = -EFAULT; 8247 goto out; 8248 } 8249 8250 for (i = 0; i < arg->clone_sources_count; i++) { 8251 clone_root = btrfs_get_fs_root(fs_info, 8252 clone_sources_tmp[i], true); 8253 if (IS_ERR(clone_root)) { 8254 ret = PTR_ERR(clone_root); 8255 goto out; 8256 } 8257 spin_lock(&clone_root->root_item_lock); 8258 if (!btrfs_root_readonly(clone_root) || 8259 btrfs_root_dead(clone_root)) { 8260 spin_unlock(&clone_root->root_item_lock); 8261 btrfs_put_root(clone_root); 8262 ret = -EPERM; 8263 goto out; 8264 } 8265 if (clone_root->dedupe_in_progress) { 8266 dedupe_in_progress_warn(clone_root); 8267 spin_unlock(&clone_root->root_item_lock); 8268 btrfs_put_root(clone_root); 8269 ret = -EAGAIN; 8270 goto out; 8271 } 8272 clone_root->send_in_progress++; 8273 spin_unlock(&clone_root->root_item_lock); 8274 8275 sctx->clone_roots[i].root = clone_root; 8276 clone_sources_to_rollback = i + 1; 8277 } 8278 kvfree(clone_sources_tmp); 8279 clone_sources_tmp = NULL; 8280 } 8281 8282 if (arg->parent_root) { 8283 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8284 true); 8285 if (IS_ERR(sctx->parent_root)) { 8286 ret = PTR_ERR(sctx->parent_root); 8287 goto out; 8288 } 8289 8290 spin_lock(&sctx->parent_root->root_item_lock); 8291 sctx->parent_root->send_in_progress++; 8292 if (!btrfs_root_readonly(sctx->parent_root) || 8293 btrfs_root_dead(sctx->parent_root)) { 8294 spin_unlock(&sctx->parent_root->root_item_lock); 8295 ret = -EPERM; 8296 goto out; 8297 } 8298 if (sctx->parent_root->dedupe_in_progress) { 8299 dedupe_in_progress_warn(sctx->parent_root); 8300 spin_unlock(&sctx->parent_root->root_item_lock); 8301 ret = -EAGAIN; 8302 goto out; 8303 } 8304 spin_unlock(&sctx->parent_root->root_item_lock); 8305 } 8306 8307 /* 8308 * Clones from send_root are allowed, but only if the clone source 8309 * is behind the current send position. This is checked while searching 8310 * for possible clone sources. 8311 */ 8312 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8313 btrfs_grab_root(sctx->send_root); 8314 8315 /* We do a bsearch later */ 8316 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8317 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8318 NULL); 8319 sort_clone_roots = 1; 8320 8321 ret = flush_delalloc_roots(sctx); 8322 if (ret) 8323 goto out; 8324 8325 ret = ensure_commit_roots_uptodate(sctx); 8326 if (ret) 8327 goto out; 8328 8329 ret = send_subvol(sctx); 8330 if (ret < 0) 8331 goto out; 8332 8333 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8334 ret = send_utimes(sctx, entry->key, entry->gen); 8335 if (ret < 0) 8336 goto out; 8337 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8338 } 8339 8340 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8341 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8342 if (ret < 0) 8343 goto out; 8344 ret = send_cmd(sctx); 8345 if (ret < 0) 8346 goto out; 8347 } 8348 8349 out: 8350 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8351 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8352 struct rb_node *n; 8353 struct pending_dir_move *pm; 8354 8355 n = rb_first(&sctx->pending_dir_moves); 8356 pm = rb_entry(n, struct pending_dir_move, node); 8357 while (!list_empty(&pm->list)) { 8358 struct pending_dir_move *pm2; 8359 8360 pm2 = list_first_entry(&pm->list, 8361 struct pending_dir_move, list); 8362 free_pending_move(sctx, pm2); 8363 } 8364 free_pending_move(sctx, pm); 8365 } 8366 8367 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8368 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8369 struct rb_node *n; 8370 struct waiting_dir_move *dm; 8371 8372 n = rb_first(&sctx->waiting_dir_moves); 8373 dm = rb_entry(n, struct waiting_dir_move, node); 8374 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8375 kfree(dm); 8376 } 8377 8378 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8379 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8380 struct rb_node *n; 8381 struct orphan_dir_info *odi; 8382 8383 n = rb_first(&sctx->orphan_dirs); 8384 odi = rb_entry(n, struct orphan_dir_info, node); 8385 free_orphan_dir_info(sctx, odi); 8386 } 8387 8388 if (sort_clone_roots) { 8389 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8390 btrfs_root_dec_send_in_progress( 8391 sctx->clone_roots[i].root); 8392 btrfs_put_root(sctx->clone_roots[i].root); 8393 } 8394 } else { 8395 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8396 btrfs_root_dec_send_in_progress( 8397 sctx->clone_roots[i].root); 8398 btrfs_put_root(sctx->clone_roots[i].root); 8399 } 8400 8401 btrfs_root_dec_send_in_progress(send_root); 8402 } 8403 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8404 btrfs_root_dec_send_in_progress(sctx->parent_root); 8405 btrfs_put_root(sctx->parent_root); 8406 } 8407 8408 kvfree(clone_sources_tmp); 8409 8410 if (sctx) { 8411 if (sctx->send_filp) 8412 fput(sctx->send_filp); 8413 8414 kvfree(sctx->clone_roots); 8415 kfree(sctx->send_buf_pages); 8416 kvfree(sctx->send_buf); 8417 kvfree(sctx->verity_descriptor); 8418 8419 close_current_inode(sctx); 8420 8421 btrfs_lru_cache_clear(&sctx->name_cache); 8422 btrfs_lru_cache_clear(&sctx->backref_cache); 8423 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8424 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8425 8426 kfree(sctx); 8427 } 8428 8429 return ret; 8430 } 8431