xref: /openbmc/linux/fs/btrfs/send.c (revision 5cd17f0e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19 
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "xattr.h"
29 #include "print-tree.h"
30 #include "accessors.h"
31 #include "dir-item.h"
32 #include "file-item.h"
33 #include "ioctl.h"
34 #include "verity.h"
35 #include "lru_cache.h"
36 
37 /*
38  * Maximum number of references an extent can have in order for us to attempt to
39  * issue clone operations instead of write operations. This currently exists to
40  * avoid hitting limitations of the backreference walking code (taking a lot of
41  * time and using too much memory for extents with large number of references).
42  */
43 #define SEND_MAX_EXTENT_REFS	1024
44 
45 /*
46  * A fs_path is a helper to dynamically build path names with unknown size.
47  * It reallocates the internal buffer on demand.
48  * It allows fast adding of path elements on the right side (normal path) and
49  * fast adding to the left side (reversed path). A reversed path can also be
50  * unreversed if needed.
51  */
52 struct fs_path {
53 	union {
54 		struct {
55 			char *start;
56 			char *end;
57 
58 			char *buf;
59 			unsigned short buf_len:15;
60 			unsigned short reversed:1;
61 			char inline_buf[];
62 		};
63 		/*
64 		 * Average path length does not exceed 200 bytes, we'll have
65 		 * better packing in the slab and higher chance to satisfy
66 		 * a allocation later during send.
67 		 */
68 		char pad[256];
69 	};
70 };
71 #define FS_PATH_INLINE_SIZE \
72 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
73 
74 
75 /* reused for each extent */
76 struct clone_root {
77 	struct btrfs_root *root;
78 	u64 ino;
79 	u64 offset;
80 	u64 num_bytes;
81 	bool found_ref;
82 };
83 
84 #define SEND_MAX_NAME_CACHE_SIZE			256
85 
86 /*
87  * Limit the root_ids array of struct backref_cache_entry to 17 elements.
88  * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
89  * can be satisfied from the kmalloc-192 slab, without wasting any space.
90  * The most common case is to have a single root for cloning, which corresponds
91  * to the send root. Having the user specify more than 16 clone roots is not
92  * common, and in such rare cases we simply don't use caching if the number of
93  * cloning roots that lead down to a leaf is more than 17.
94  */
95 #define SEND_MAX_BACKREF_CACHE_ROOTS			17
96 
97 /*
98  * Max number of entries in the cache.
99  * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
100  * maple tree's internal nodes, is 24K.
101  */
102 #define SEND_MAX_BACKREF_CACHE_SIZE 128
103 
104 /*
105  * A backref cache entry maps a leaf to a list of IDs of roots from which the
106  * leaf is accessible and we can use for clone operations.
107  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
108  * x86_64).
109  */
110 struct backref_cache_entry {
111 	struct btrfs_lru_cache_entry entry;
112 	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
113 	/* Number of valid elements in the root_ids array. */
114 	int num_roots;
115 };
116 
117 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
118 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
119 
120 /*
121  * Max number of entries in the cache that stores directories that were already
122  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
123  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
124  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
125  */
126 #define SEND_MAX_DIR_CREATED_CACHE_SIZE			64
127 
128 /*
129  * Max number of entries in the cache that stores directories that were already
130  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
131  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
132  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
133  */
134 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64
135 
136 struct send_ctx {
137 	struct file *send_filp;
138 	loff_t send_off;
139 	char *send_buf;
140 	u32 send_size;
141 	u32 send_max_size;
142 	/*
143 	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
144 	 * command (since protocol v2, data must be the last attribute).
145 	 */
146 	bool put_data;
147 	struct page **send_buf_pages;
148 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
149 	/* Protocol version compatibility requested */
150 	u32 proto;
151 
152 	struct btrfs_root *send_root;
153 	struct btrfs_root *parent_root;
154 	struct clone_root *clone_roots;
155 	int clone_roots_cnt;
156 
157 	/* current state of the compare_tree call */
158 	struct btrfs_path *left_path;
159 	struct btrfs_path *right_path;
160 	struct btrfs_key *cmp_key;
161 
162 	/*
163 	 * Keep track of the generation of the last transaction that was used
164 	 * for relocating a block group. This is periodically checked in order
165 	 * to detect if a relocation happened since the last check, so that we
166 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
167 	 * stale disk_bytenr values of file extent items.
168 	 */
169 	u64 last_reloc_trans;
170 
171 	/*
172 	 * infos of the currently processed inode. In case of deleted inodes,
173 	 * these are the values from the deleted inode.
174 	 */
175 	u64 cur_ino;
176 	u64 cur_inode_gen;
177 	u64 cur_inode_size;
178 	u64 cur_inode_mode;
179 	u64 cur_inode_rdev;
180 	u64 cur_inode_last_extent;
181 	u64 cur_inode_next_write_offset;
182 	bool cur_inode_new;
183 	bool cur_inode_new_gen;
184 	bool cur_inode_deleted;
185 	bool ignore_cur_inode;
186 	bool cur_inode_needs_verity;
187 	void *verity_descriptor;
188 
189 	u64 send_progress;
190 
191 	struct list_head new_refs;
192 	struct list_head deleted_refs;
193 
194 	struct btrfs_lru_cache name_cache;
195 
196 	/*
197 	 * The inode we are currently processing. It's not NULL only when we
198 	 * need to issue write commands for data extents from this inode.
199 	 */
200 	struct inode *cur_inode;
201 	struct file_ra_state ra;
202 	u64 page_cache_clear_start;
203 	bool clean_page_cache;
204 
205 	/*
206 	 * We process inodes by their increasing order, so if before an
207 	 * incremental send we reverse the parent/child relationship of
208 	 * directories such that a directory with a lower inode number was
209 	 * the parent of a directory with a higher inode number, and the one
210 	 * becoming the new parent got renamed too, we can't rename/move the
211 	 * directory with lower inode number when we finish processing it - we
212 	 * must process the directory with higher inode number first, then
213 	 * rename/move it and then rename/move the directory with lower inode
214 	 * number. Example follows.
215 	 *
216 	 * Tree state when the first send was performed:
217 	 *
218 	 * .
219 	 * |-- a                   (ino 257)
220 	 *     |-- b               (ino 258)
221 	 *         |
222 	 *         |
223 	 *         |-- c           (ino 259)
224 	 *         |   |-- d       (ino 260)
225 	 *         |
226 	 *         |-- c2          (ino 261)
227 	 *
228 	 * Tree state when the second (incremental) send is performed:
229 	 *
230 	 * .
231 	 * |-- a                   (ino 257)
232 	 *     |-- b               (ino 258)
233 	 *         |-- c2          (ino 261)
234 	 *             |-- d2      (ino 260)
235 	 *                 |-- cc  (ino 259)
236 	 *
237 	 * The sequence of steps that lead to the second state was:
238 	 *
239 	 * mv /a/b/c/d /a/b/c2/d2
240 	 * mv /a/b/c /a/b/c2/d2/cc
241 	 *
242 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
243 	 * before we move "d", which has higher inode number.
244 	 *
245 	 * So we just memorize which move/rename operations must be performed
246 	 * later when their respective parent is processed and moved/renamed.
247 	 */
248 
249 	/* Indexed by parent directory inode number. */
250 	struct rb_root pending_dir_moves;
251 
252 	/*
253 	 * Reverse index, indexed by the inode number of a directory that
254 	 * is waiting for the move/rename of its immediate parent before its
255 	 * own move/rename can be performed.
256 	 */
257 	struct rb_root waiting_dir_moves;
258 
259 	/*
260 	 * A directory that is going to be rm'ed might have a child directory
261 	 * which is in the pending directory moves index above. In this case,
262 	 * the directory can only be removed after the move/rename of its child
263 	 * is performed. Example:
264 	 *
265 	 * Parent snapshot:
266 	 *
267 	 * .                        (ino 256)
268 	 * |-- a/                   (ino 257)
269 	 *     |-- b/               (ino 258)
270 	 *         |-- c/           (ino 259)
271 	 *         |   |-- x/       (ino 260)
272 	 *         |
273 	 *         |-- y/           (ino 261)
274 	 *
275 	 * Send snapshot:
276 	 *
277 	 * .                        (ino 256)
278 	 * |-- a/                   (ino 257)
279 	 *     |-- b/               (ino 258)
280 	 *         |-- YY/          (ino 261)
281 	 *              |-- x/      (ino 260)
282 	 *
283 	 * Sequence of steps that lead to the send snapshot:
284 	 * rm -f /a/b/c/foo.txt
285 	 * mv /a/b/y /a/b/YY
286 	 * mv /a/b/c/x /a/b/YY
287 	 * rmdir /a/b/c
288 	 *
289 	 * When the child is processed, its move/rename is delayed until its
290 	 * parent is processed (as explained above), but all other operations
291 	 * like update utimes, chown, chgrp, etc, are performed and the paths
292 	 * that it uses for those operations must use the orphanized name of
293 	 * its parent (the directory we're going to rm later), so we need to
294 	 * memorize that name.
295 	 *
296 	 * Indexed by the inode number of the directory to be deleted.
297 	 */
298 	struct rb_root orphan_dirs;
299 
300 	struct rb_root rbtree_new_refs;
301 	struct rb_root rbtree_deleted_refs;
302 
303 	struct btrfs_lru_cache backref_cache;
304 	u64 backref_cache_last_reloc_trans;
305 
306 	struct btrfs_lru_cache dir_created_cache;
307 	struct btrfs_lru_cache dir_utimes_cache;
308 };
309 
310 struct pending_dir_move {
311 	struct rb_node node;
312 	struct list_head list;
313 	u64 parent_ino;
314 	u64 ino;
315 	u64 gen;
316 	struct list_head update_refs;
317 };
318 
319 struct waiting_dir_move {
320 	struct rb_node node;
321 	u64 ino;
322 	/*
323 	 * There might be some directory that could not be removed because it
324 	 * was waiting for this directory inode to be moved first. Therefore
325 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
326 	 */
327 	u64 rmdir_ino;
328 	u64 rmdir_gen;
329 	bool orphanized;
330 };
331 
332 struct orphan_dir_info {
333 	struct rb_node node;
334 	u64 ino;
335 	u64 gen;
336 	u64 last_dir_index_offset;
337 	u64 dir_high_seq_ino;
338 };
339 
340 struct name_cache_entry {
341 	/*
342 	 * The key in the entry is an inode number, and the generation matches
343 	 * the inode's generation.
344 	 */
345 	struct btrfs_lru_cache_entry entry;
346 	u64 parent_ino;
347 	u64 parent_gen;
348 	int ret;
349 	int need_later_update;
350 	int name_len;
351 	char name[];
352 };
353 
354 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
355 static_assert(offsetof(struct name_cache_entry, entry) == 0);
356 
357 #define ADVANCE							1
358 #define ADVANCE_ONLY_NEXT					-1
359 
360 enum btrfs_compare_tree_result {
361 	BTRFS_COMPARE_TREE_NEW,
362 	BTRFS_COMPARE_TREE_DELETED,
363 	BTRFS_COMPARE_TREE_CHANGED,
364 	BTRFS_COMPARE_TREE_SAME,
365 };
366 
367 __cold
368 static void inconsistent_snapshot_error(struct send_ctx *sctx,
369 					enum btrfs_compare_tree_result result,
370 					const char *what)
371 {
372 	const char *result_string;
373 
374 	switch (result) {
375 	case BTRFS_COMPARE_TREE_NEW:
376 		result_string = "new";
377 		break;
378 	case BTRFS_COMPARE_TREE_DELETED:
379 		result_string = "deleted";
380 		break;
381 	case BTRFS_COMPARE_TREE_CHANGED:
382 		result_string = "updated";
383 		break;
384 	case BTRFS_COMPARE_TREE_SAME:
385 		ASSERT(0);
386 		result_string = "unchanged";
387 		break;
388 	default:
389 		ASSERT(0);
390 		result_string = "unexpected";
391 	}
392 
393 	btrfs_err(sctx->send_root->fs_info,
394 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
395 		  result_string, what, sctx->cmp_key->objectid,
396 		  sctx->send_root->root_key.objectid,
397 		  (sctx->parent_root ?
398 		   sctx->parent_root->root_key.objectid : 0));
399 }
400 
401 __maybe_unused
402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403 {
404 	switch (sctx->proto) {
405 	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
406 	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
407 	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
408 	default: return false;
409 	}
410 }
411 
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413 
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416 
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418 
419 static int need_send_hole(struct send_ctx *sctx)
420 {
421 	return (sctx->parent_root && !sctx->cur_inode_new &&
422 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 		S_ISREG(sctx->cur_inode_mode));
424 }
425 
426 static void fs_path_reset(struct fs_path *p)
427 {
428 	if (p->reversed) {
429 		p->start = p->buf + p->buf_len - 1;
430 		p->end = p->start;
431 		*p->start = 0;
432 	} else {
433 		p->start = p->buf;
434 		p->end = p->start;
435 		*p->start = 0;
436 	}
437 }
438 
439 static struct fs_path *fs_path_alloc(void)
440 {
441 	struct fs_path *p;
442 
443 	p = kmalloc(sizeof(*p), GFP_KERNEL);
444 	if (!p)
445 		return NULL;
446 	p->reversed = 0;
447 	p->buf = p->inline_buf;
448 	p->buf_len = FS_PATH_INLINE_SIZE;
449 	fs_path_reset(p);
450 	return p;
451 }
452 
453 static struct fs_path *fs_path_alloc_reversed(void)
454 {
455 	struct fs_path *p;
456 
457 	p = fs_path_alloc();
458 	if (!p)
459 		return NULL;
460 	p->reversed = 1;
461 	fs_path_reset(p);
462 	return p;
463 }
464 
465 static void fs_path_free(struct fs_path *p)
466 {
467 	if (!p)
468 		return;
469 	if (p->buf != p->inline_buf)
470 		kfree(p->buf);
471 	kfree(p);
472 }
473 
474 static int fs_path_len(struct fs_path *p)
475 {
476 	return p->end - p->start;
477 }
478 
479 static int fs_path_ensure_buf(struct fs_path *p, int len)
480 {
481 	char *tmp_buf;
482 	int path_len;
483 	int old_buf_len;
484 
485 	len++;
486 
487 	if (p->buf_len >= len)
488 		return 0;
489 
490 	if (len > PATH_MAX) {
491 		WARN_ON(1);
492 		return -ENOMEM;
493 	}
494 
495 	path_len = p->end - p->start;
496 	old_buf_len = p->buf_len;
497 
498 	/*
499 	 * Allocate to the next largest kmalloc bucket size, to let
500 	 * the fast path happen most of the time.
501 	 */
502 	len = kmalloc_size_roundup(len);
503 	/*
504 	 * First time the inline_buf does not suffice
505 	 */
506 	if (p->buf == p->inline_buf) {
507 		tmp_buf = kmalloc(len, GFP_KERNEL);
508 		if (tmp_buf)
509 			memcpy(tmp_buf, p->buf, old_buf_len);
510 	} else {
511 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
512 	}
513 	if (!tmp_buf)
514 		return -ENOMEM;
515 	p->buf = tmp_buf;
516 	p->buf_len = len;
517 
518 	if (p->reversed) {
519 		tmp_buf = p->buf + old_buf_len - path_len - 1;
520 		p->end = p->buf + p->buf_len - 1;
521 		p->start = p->end - path_len;
522 		memmove(p->start, tmp_buf, path_len + 1);
523 	} else {
524 		p->start = p->buf;
525 		p->end = p->start + path_len;
526 	}
527 	return 0;
528 }
529 
530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
531 				   char **prepared)
532 {
533 	int ret;
534 	int new_len;
535 
536 	new_len = p->end - p->start + name_len;
537 	if (p->start != p->end)
538 		new_len++;
539 	ret = fs_path_ensure_buf(p, new_len);
540 	if (ret < 0)
541 		goto out;
542 
543 	if (p->reversed) {
544 		if (p->start != p->end)
545 			*--p->start = '/';
546 		p->start -= name_len;
547 		*prepared = p->start;
548 	} else {
549 		if (p->start != p->end)
550 			*p->end++ = '/';
551 		*prepared = p->end;
552 		p->end += name_len;
553 		*p->end = 0;
554 	}
555 
556 out:
557 	return ret;
558 }
559 
560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561 {
562 	int ret;
563 	char *prepared;
564 
565 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
566 	if (ret < 0)
567 		goto out;
568 	memcpy(prepared, name, name_len);
569 
570 out:
571 	return ret;
572 }
573 
574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
575 {
576 	int ret;
577 	char *prepared;
578 
579 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
580 	if (ret < 0)
581 		goto out;
582 	memcpy(prepared, p2->start, p2->end - p2->start);
583 
584 out:
585 	return ret;
586 }
587 
588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 					  struct extent_buffer *eb,
590 					  unsigned long off, int len)
591 {
592 	int ret;
593 	char *prepared;
594 
595 	ret = fs_path_prepare_for_add(p, len, &prepared);
596 	if (ret < 0)
597 		goto out;
598 
599 	read_extent_buffer(eb, prepared, off, len);
600 
601 out:
602 	return ret;
603 }
604 
605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
606 {
607 	p->reversed = from->reversed;
608 	fs_path_reset(p);
609 
610 	return fs_path_add_path(p, from);
611 }
612 
613 static void fs_path_unreverse(struct fs_path *p)
614 {
615 	char *tmp;
616 	int len;
617 
618 	if (!p->reversed)
619 		return;
620 
621 	tmp = p->start;
622 	len = p->end - p->start;
623 	p->start = p->buf;
624 	p->end = p->start + len;
625 	memmove(p->start, tmp, len + 1);
626 	p->reversed = 0;
627 }
628 
629 static struct btrfs_path *alloc_path_for_send(void)
630 {
631 	struct btrfs_path *path;
632 
633 	path = btrfs_alloc_path();
634 	if (!path)
635 		return NULL;
636 	path->search_commit_root = 1;
637 	path->skip_locking = 1;
638 	path->need_commit_sem = 1;
639 	return path;
640 }
641 
642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643 {
644 	int ret;
645 	u32 pos = 0;
646 
647 	while (pos < len) {
648 		ret = kernel_write(filp, buf + pos, len - pos, off);
649 		if (ret < 0)
650 			return ret;
651 		if (ret == 0)
652 			return -EIO;
653 		pos += ret;
654 	}
655 
656 	return 0;
657 }
658 
659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660 {
661 	struct btrfs_tlv_header *hdr;
662 	int total_len = sizeof(*hdr) + len;
663 	int left = sctx->send_max_size - sctx->send_size;
664 
665 	if (WARN_ON_ONCE(sctx->put_data))
666 		return -EINVAL;
667 
668 	if (unlikely(left < total_len))
669 		return -EOVERFLOW;
670 
671 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 	put_unaligned_le16(attr, &hdr->tlv_type);
673 	put_unaligned_le16(len, &hdr->tlv_len);
674 	memcpy(hdr + 1, data, len);
675 	sctx->send_size += total_len;
676 
677 	return 0;
678 }
679 
680 #define TLV_PUT_DEFINE_INT(bits) \
681 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
682 			u##bits attr, u##bits value)			\
683 	{								\
684 		__le##bits __tmp = cpu_to_le##bits(value);		\
685 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
686 	}
687 
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
691 
692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 			  const char *str, int len)
694 {
695 	if (len == -1)
696 		len = strlen(str);
697 	return tlv_put(sctx, attr, str, len);
698 }
699 
700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701 			const u8 *uuid)
702 {
703 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704 }
705 
706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 				  struct extent_buffer *eb,
708 				  struct btrfs_timespec *ts)
709 {
710 	struct btrfs_timespec bts;
711 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 	return tlv_put(sctx, attr, &bts, sizeof(bts));
713 }
714 
715 
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
717 	do { \
718 		ret = tlv_put(sctx, attrtype, data, attrlen); \
719 		if (ret < 0) \
720 			goto tlv_put_failure; \
721 	} while (0)
722 
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
724 	do { \
725 		ret = tlv_put_u##bits(sctx, attrtype, value); \
726 		if (ret < 0) \
727 			goto tlv_put_failure; \
728 	} while (0)
729 
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
735 	do { \
736 		ret = tlv_put_string(sctx, attrtype, str, len); \
737 		if (ret < 0) \
738 			goto tlv_put_failure; \
739 	} while (0)
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
741 	do { \
742 		ret = tlv_put_string(sctx, attrtype, p->start, \
743 			p->end - p->start); \
744 		if (ret < 0) \
745 			goto tlv_put_failure; \
746 	} while(0)
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
748 	do { \
749 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
750 		if (ret < 0) \
751 			goto tlv_put_failure; \
752 	} while (0)
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754 	do { \
755 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756 		if (ret < 0) \
757 			goto tlv_put_failure; \
758 	} while (0)
759 
760 static int send_header(struct send_ctx *sctx)
761 {
762 	struct btrfs_stream_header hdr;
763 
764 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 	hdr.version = cpu_to_le32(sctx->proto);
766 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767 					&sctx->send_off);
768 }
769 
770 /*
771  * For each command/item we want to send to userspace, we call this function.
772  */
773 static int begin_cmd(struct send_ctx *sctx, int cmd)
774 {
775 	struct btrfs_cmd_header *hdr;
776 
777 	if (WARN_ON(!sctx->send_buf))
778 		return -EINVAL;
779 
780 	BUG_ON(sctx->send_size);
781 
782 	sctx->send_size += sizeof(*hdr);
783 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
784 	put_unaligned_le16(cmd, &hdr->cmd);
785 
786 	return 0;
787 }
788 
789 static int send_cmd(struct send_ctx *sctx)
790 {
791 	int ret;
792 	struct btrfs_cmd_header *hdr;
793 	u32 crc;
794 
795 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
796 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
797 	put_unaligned_le32(0, &hdr->crc);
798 
799 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
800 	put_unaligned_le32(crc, &hdr->crc);
801 
802 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
803 					&sctx->send_off);
804 
805 	sctx->send_size = 0;
806 	sctx->put_data = false;
807 
808 	return ret;
809 }
810 
811 /*
812  * Sends a move instruction to user space
813  */
814 static int send_rename(struct send_ctx *sctx,
815 		     struct fs_path *from, struct fs_path *to)
816 {
817 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
818 	int ret;
819 
820 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
821 
822 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
823 	if (ret < 0)
824 		goto out;
825 
826 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
827 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
828 
829 	ret = send_cmd(sctx);
830 
831 tlv_put_failure:
832 out:
833 	return ret;
834 }
835 
836 /*
837  * Sends a link instruction to user space
838  */
839 static int send_link(struct send_ctx *sctx,
840 		     struct fs_path *path, struct fs_path *lnk)
841 {
842 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
843 	int ret;
844 
845 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
846 
847 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
848 	if (ret < 0)
849 		goto out;
850 
851 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
852 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
853 
854 	ret = send_cmd(sctx);
855 
856 tlv_put_failure:
857 out:
858 	return ret;
859 }
860 
861 /*
862  * Sends an unlink instruction to user space
863  */
864 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
865 {
866 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
867 	int ret;
868 
869 	btrfs_debug(fs_info, "send_unlink %s", path->start);
870 
871 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
872 	if (ret < 0)
873 		goto out;
874 
875 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
876 
877 	ret = send_cmd(sctx);
878 
879 tlv_put_failure:
880 out:
881 	return ret;
882 }
883 
884 /*
885  * Sends a rmdir instruction to user space
886  */
887 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
888 {
889 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
890 	int ret;
891 
892 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
893 
894 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
895 	if (ret < 0)
896 		goto out;
897 
898 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
899 
900 	ret = send_cmd(sctx);
901 
902 tlv_put_failure:
903 out:
904 	return ret;
905 }
906 
907 struct btrfs_inode_info {
908 	u64 size;
909 	u64 gen;
910 	u64 mode;
911 	u64 uid;
912 	u64 gid;
913 	u64 rdev;
914 	u64 fileattr;
915 	u64 nlink;
916 };
917 
918 /*
919  * Helper function to retrieve some fields from an inode item.
920  */
921 static int get_inode_info(struct btrfs_root *root, u64 ino,
922 			  struct btrfs_inode_info *info)
923 {
924 	int ret;
925 	struct btrfs_path *path;
926 	struct btrfs_inode_item *ii;
927 	struct btrfs_key key;
928 
929 	path = alloc_path_for_send();
930 	if (!path)
931 		return -ENOMEM;
932 
933 	key.objectid = ino;
934 	key.type = BTRFS_INODE_ITEM_KEY;
935 	key.offset = 0;
936 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
937 	if (ret) {
938 		if (ret > 0)
939 			ret = -ENOENT;
940 		goto out;
941 	}
942 
943 	if (!info)
944 		goto out;
945 
946 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
947 			struct btrfs_inode_item);
948 	info->size = btrfs_inode_size(path->nodes[0], ii);
949 	info->gen = btrfs_inode_generation(path->nodes[0], ii);
950 	info->mode = btrfs_inode_mode(path->nodes[0], ii);
951 	info->uid = btrfs_inode_uid(path->nodes[0], ii);
952 	info->gid = btrfs_inode_gid(path->nodes[0], ii);
953 	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
954 	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
955 	/*
956 	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
957 	 * otherwise logically split to 32/32 parts.
958 	 */
959 	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
960 
961 out:
962 	btrfs_free_path(path);
963 	return ret;
964 }
965 
966 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
967 {
968 	int ret;
969 	struct btrfs_inode_info info = { 0 };
970 
971 	ASSERT(gen);
972 
973 	ret = get_inode_info(root, ino, &info);
974 	*gen = info.gen;
975 	return ret;
976 }
977 
978 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
979 				   struct fs_path *p,
980 				   void *ctx);
981 
982 /*
983  * Helper function to iterate the entries in ONE btrfs_inode_ref or
984  * btrfs_inode_extref.
985  * The iterate callback may return a non zero value to stop iteration. This can
986  * be a negative value for error codes or 1 to simply stop it.
987  *
988  * path must point to the INODE_REF or INODE_EXTREF when called.
989  */
990 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
991 			     struct btrfs_key *found_key, int resolve,
992 			     iterate_inode_ref_t iterate, void *ctx)
993 {
994 	struct extent_buffer *eb = path->nodes[0];
995 	struct btrfs_inode_ref *iref;
996 	struct btrfs_inode_extref *extref;
997 	struct btrfs_path *tmp_path;
998 	struct fs_path *p;
999 	u32 cur = 0;
1000 	u32 total;
1001 	int slot = path->slots[0];
1002 	u32 name_len;
1003 	char *start;
1004 	int ret = 0;
1005 	int num = 0;
1006 	int index;
1007 	u64 dir;
1008 	unsigned long name_off;
1009 	unsigned long elem_size;
1010 	unsigned long ptr;
1011 
1012 	p = fs_path_alloc_reversed();
1013 	if (!p)
1014 		return -ENOMEM;
1015 
1016 	tmp_path = alloc_path_for_send();
1017 	if (!tmp_path) {
1018 		fs_path_free(p);
1019 		return -ENOMEM;
1020 	}
1021 
1022 
1023 	if (found_key->type == BTRFS_INODE_REF_KEY) {
1024 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1025 						    struct btrfs_inode_ref);
1026 		total = btrfs_item_size(eb, slot);
1027 		elem_size = sizeof(*iref);
1028 	} else {
1029 		ptr = btrfs_item_ptr_offset(eb, slot);
1030 		total = btrfs_item_size(eb, slot);
1031 		elem_size = sizeof(*extref);
1032 	}
1033 
1034 	while (cur < total) {
1035 		fs_path_reset(p);
1036 
1037 		if (found_key->type == BTRFS_INODE_REF_KEY) {
1038 			iref = (struct btrfs_inode_ref *)(ptr + cur);
1039 			name_len = btrfs_inode_ref_name_len(eb, iref);
1040 			name_off = (unsigned long)(iref + 1);
1041 			index = btrfs_inode_ref_index(eb, iref);
1042 			dir = found_key->offset;
1043 		} else {
1044 			extref = (struct btrfs_inode_extref *)(ptr + cur);
1045 			name_len = btrfs_inode_extref_name_len(eb, extref);
1046 			name_off = (unsigned long)&extref->name;
1047 			index = btrfs_inode_extref_index(eb, extref);
1048 			dir = btrfs_inode_extref_parent(eb, extref);
1049 		}
1050 
1051 		if (resolve) {
1052 			start = btrfs_ref_to_path(root, tmp_path, name_len,
1053 						  name_off, eb, dir,
1054 						  p->buf, p->buf_len);
1055 			if (IS_ERR(start)) {
1056 				ret = PTR_ERR(start);
1057 				goto out;
1058 			}
1059 			if (start < p->buf) {
1060 				/* overflow , try again with larger buffer */
1061 				ret = fs_path_ensure_buf(p,
1062 						p->buf_len + p->buf - start);
1063 				if (ret < 0)
1064 					goto out;
1065 				start = btrfs_ref_to_path(root, tmp_path,
1066 							  name_len, name_off,
1067 							  eb, dir,
1068 							  p->buf, p->buf_len);
1069 				if (IS_ERR(start)) {
1070 					ret = PTR_ERR(start);
1071 					goto out;
1072 				}
1073 				if (unlikely(start < p->buf)) {
1074 					btrfs_err(root->fs_info,
1075 			"send: path ref buffer underflow for key (%llu %u %llu)",
1076 						  found_key->objectid,
1077 						  found_key->type,
1078 						  found_key->offset);
1079 					ret = -EINVAL;
1080 					goto out;
1081 				}
1082 			}
1083 			p->start = start;
1084 		} else {
1085 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1086 							     name_len);
1087 			if (ret < 0)
1088 				goto out;
1089 		}
1090 
1091 		cur += elem_size + name_len;
1092 		ret = iterate(num, dir, index, p, ctx);
1093 		if (ret)
1094 			goto out;
1095 		num++;
1096 	}
1097 
1098 out:
1099 	btrfs_free_path(tmp_path);
1100 	fs_path_free(p);
1101 	return ret;
1102 }
1103 
1104 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1105 				  const char *name, int name_len,
1106 				  const char *data, int data_len,
1107 				  void *ctx);
1108 
1109 /*
1110  * Helper function to iterate the entries in ONE btrfs_dir_item.
1111  * The iterate callback may return a non zero value to stop iteration. This can
1112  * be a negative value for error codes or 1 to simply stop it.
1113  *
1114  * path must point to the dir item when called.
1115  */
1116 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1117 			    iterate_dir_item_t iterate, void *ctx)
1118 {
1119 	int ret = 0;
1120 	struct extent_buffer *eb;
1121 	struct btrfs_dir_item *di;
1122 	struct btrfs_key di_key;
1123 	char *buf = NULL;
1124 	int buf_len;
1125 	u32 name_len;
1126 	u32 data_len;
1127 	u32 cur;
1128 	u32 len;
1129 	u32 total;
1130 	int slot;
1131 	int num;
1132 
1133 	/*
1134 	 * Start with a small buffer (1 page). If later we end up needing more
1135 	 * space, which can happen for xattrs on a fs with a leaf size greater
1136 	 * then the page size, attempt to increase the buffer. Typically xattr
1137 	 * values are small.
1138 	 */
1139 	buf_len = PATH_MAX;
1140 	buf = kmalloc(buf_len, GFP_KERNEL);
1141 	if (!buf) {
1142 		ret = -ENOMEM;
1143 		goto out;
1144 	}
1145 
1146 	eb = path->nodes[0];
1147 	slot = path->slots[0];
1148 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1149 	cur = 0;
1150 	len = 0;
1151 	total = btrfs_item_size(eb, slot);
1152 
1153 	num = 0;
1154 	while (cur < total) {
1155 		name_len = btrfs_dir_name_len(eb, di);
1156 		data_len = btrfs_dir_data_len(eb, di);
1157 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1158 
1159 		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1160 			if (name_len > XATTR_NAME_MAX) {
1161 				ret = -ENAMETOOLONG;
1162 				goto out;
1163 			}
1164 			if (name_len + data_len >
1165 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1166 				ret = -E2BIG;
1167 				goto out;
1168 			}
1169 		} else {
1170 			/*
1171 			 * Path too long
1172 			 */
1173 			if (name_len + data_len > PATH_MAX) {
1174 				ret = -ENAMETOOLONG;
1175 				goto out;
1176 			}
1177 		}
1178 
1179 		if (name_len + data_len > buf_len) {
1180 			buf_len = name_len + data_len;
1181 			if (is_vmalloc_addr(buf)) {
1182 				vfree(buf);
1183 				buf = NULL;
1184 			} else {
1185 				char *tmp = krealloc(buf, buf_len,
1186 						GFP_KERNEL | __GFP_NOWARN);
1187 
1188 				if (!tmp)
1189 					kfree(buf);
1190 				buf = tmp;
1191 			}
1192 			if (!buf) {
1193 				buf = kvmalloc(buf_len, GFP_KERNEL);
1194 				if (!buf) {
1195 					ret = -ENOMEM;
1196 					goto out;
1197 				}
1198 			}
1199 		}
1200 
1201 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1202 				name_len + data_len);
1203 
1204 		len = sizeof(*di) + name_len + data_len;
1205 		di = (struct btrfs_dir_item *)((char *)di + len);
1206 		cur += len;
1207 
1208 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1209 			      data_len, ctx);
1210 		if (ret < 0)
1211 			goto out;
1212 		if (ret) {
1213 			ret = 0;
1214 			goto out;
1215 		}
1216 
1217 		num++;
1218 	}
1219 
1220 out:
1221 	kvfree(buf);
1222 	return ret;
1223 }
1224 
1225 static int __copy_first_ref(int num, u64 dir, int index,
1226 			    struct fs_path *p, void *ctx)
1227 {
1228 	int ret;
1229 	struct fs_path *pt = ctx;
1230 
1231 	ret = fs_path_copy(pt, p);
1232 	if (ret < 0)
1233 		return ret;
1234 
1235 	/* we want the first only */
1236 	return 1;
1237 }
1238 
1239 /*
1240  * Retrieve the first path of an inode. If an inode has more then one
1241  * ref/hardlink, this is ignored.
1242  */
1243 static int get_inode_path(struct btrfs_root *root,
1244 			  u64 ino, struct fs_path *path)
1245 {
1246 	int ret;
1247 	struct btrfs_key key, found_key;
1248 	struct btrfs_path *p;
1249 
1250 	p = alloc_path_for_send();
1251 	if (!p)
1252 		return -ENOMEM;
1253 
1254 	fs_path_reset(path);
1255 
1256 	key.objectid = ino;
1257 	key.type = BTRFS_INODE_REF_KEY;
1258 	key.offset = 0;
1259 
1260 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1261 	if (ret < 0)
1262 		goto out;
1263 	if (ret) {
1264 		ret = 1;
1265 		goto out;
1266 	}
1267 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1268 	if (found_key.objectid != ino ||
1269 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1270 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1271 		ret = -ENOENT;
1272 		goto out;
1273 	}
1274 
1275 	ret = iterate_inode_ref(root, p, &found_key, 1,
1276 				__copy_first_ref, path);
1277 	if (ret < 0)
1278 		goto out;
1279 	ret = 0;
1280 
1281 out:
1282 	btrfs_free_path(p);
1283 	return ret;
1284 }
1285 
1286 struct backref_ctx {
1287 	struct send_ctx *sctx;
1288 
1289 	/* number of total found references */
1290 	u64 found;
1291 
1292 	/*
1293 	 * used for clones found in send_root. clones found behind cur_objectid
1294 	 * and cur_offset are not considered as allowed clones.
1295 	 */
1296 	u64 cur_objectid;
1297 	u64 cur_offset;
1298 
1299 	/* may be truncated in case it's the last extent in a file */
1300 	u64 extent_len;
1301 
1302 	/* The bytenr the file extent item we are processing refers to. */
1303 	u64 bytenr;
1304 	/* The owner (root id) of the data backref for the current extent. */
1305 	u64 backref_owner;
1306 	/* The offset of the data backref for the current extent. */
1307 	u64 backref_offset;
1308 };
1309 
1310 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1311 {
1312 	u64 root = (u64)(uintptr_t)key;
1313 	const struct clone_root *cr = elt;
1314 
1315 	if (root < cr->root->root_key.objectid)
1316 		return -1;
1317 	if (root > cr->root->root_key.objectid)
1318 		return 1;
1319 	return 0;
1320 }
1321 
1322 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1323 {
1324 	const struct clone_root *cr1 = e1;
1325 	const struct clone_root *cr2 = e2;
1326 
1327 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1328 		return -1;
1329 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1330 		return 1;
1331 	return 0;
1332 }
1333 
1334 /*
1335  * Called for every backref that is found for the current extent.
1336  * Results are collected in sctx->clone_roots->ino/offset.
1337  */
1338 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1339 			    void *ctx_)
1340 {
1341 	struct backref_ctx *bctx = ctx_;
1342 	struct clone_root *clone_root;
1343 
1344 	/* First check if the root is in the list of accepted clone sources */
1345 	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1346 			     bctx->sctx->clone_roots_cnt,
1347 			     sizeof(struct clone_root),
1348 			     __clone_root_cmp_bsearch);
1349 	if (!clone_root)
1350 		return 0;
1351 
1352 	/* This is our own reference, bail out as we can't clone from it. */
1353 	if (clone_root->root == bctx->sctx->send_root &&
1354 	    ino == bctx->cur_objectid &&
1355 	    offset == bctx->cur_offset)
1356 		return 0;
1357 
1358 	/*
1359 	 * Make sure we don't consider clones from send_root that are
1360 	 * behind the current inode/offset.
1361 	 */
1362 	if (clone_root->root == bctx->sctx->send_root) {
1363 		/*
1364 		 * If the source inode was not yet processed we can't issue a
1365 		 * clone operation, as the source extent does not exist yet at
1366 		 * the destination of the stream.
1367 		 */
1368 		if (ino > bctx->cur_objectid)
1369 			return 0;
1370 		/*
1371 		 * We clone from the inode currently being sent as long as the
1372 		 * source extent is already processed, otherwise we could try
1373 		 * to clone from an extent that does not exist yet at the
1374 		 * destination of the stream.
1375 		 */
1376 		if (ino == bctx->cur_objectid &&
1377 		    offset + bctx->extent_len >
1378 		    bctx->sctx->cur_inode_next_write_offset)
1379 			return 0;
1380 	}
1381 
1382 	bctx->found++;
1383 	clone_root->found_ref = true;
1384 
1385 	/*
1386 	 * If the given backref refers to a file extent item with a larger
1387 	 * number of bytes than what we found before, use the new one so that
1388 	 * we clone more optimally and end up doing less writes and getting
1389 	 * less exclusive, non-shared extents at the destination.
1390 	 */
1391 	if (num_bytes > clone_root->num_bytes) {
1392 		clone_root->ino = ino;
1393 		clone_root->offset = offset;
1394 		clone_root->num_bytes = num_bytes;
1395 
1396 		/*
1397 		 * Found a perfect candidate, so there's no need to continue
1398 		 * backref walking.
1399 		 */
1400 		if (num_bytes >= bctx->extent_len)
1401 			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1408 				 const u64 **root_ids_ret, int *root_count_ret)
1409 {
1410 	struct backref_ctx *bctx = ctx;
1411 	struct send_ctx *sctx = bctx->sctx;
1412 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1413 	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1414 	struct btrfs_lru_cache_entry *raw_entry;
1415 	struct backref_cache_entry *entry;
1416 
1417 	if (btrfs_lru_cache_size(&sctx->backref_cache) == 0)
1418 		return false;
1419 
1420 	/*
1421 	 * If relocation happened since we first filled the cache, then we must
1422 	 * empty the cache and can not use it, because even though we operate on
1423 	 * read-only roots, their leaves and nodes may have been reallocated and
1424 	 * now be used for different nodes/leaves of the same tree or some other
1425 	 * tree.
1426 	 *
1427 	 * We are called from iterate_extent_inodes() while either holding a
1428 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1429 	 * to take any lock here.
1430 	 */
1431 	if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1432 		btrfs_lru_cache_clear(&sctx->backref_cache);
1433 		return false;
1434 	}
1435 
1436 	raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1437 	if (!raw_entry)
1438 		return false;
1439 
1440 	entry = container_of(raw_entry, struct backref_cache_entry, entry);
1441 	*root_ids_ret = entry->root_ids;
1442 	*root_count_ret = entry->num_roots;
1443 
1444 	return true;
1445 }
1446 
1447 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1448 				void *ctx)
1449 {
1450 	struct backref_ctx *bctx = ctx;
1451 	struct send_ctx *sctx = bctx->sctx;
1452 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1453 	struct backref_cache_entry *new_entry;
1454 	struct ulist_iterator uiter;
1455 	struct ulist_node *node;
1456 	int ret;
1457 
1458 	/*
1459 	 * We're called while holding a transaction handle or while holding
1460 	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1461 	 * NOFS allocation.
1462 	 */
1463 	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1464 	/* No worries, cache is optional. */
1465 	if (!new_entry)
1466 		return;
1467 
1468 	new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1469 	new_entry->entry.gen = 0;
1470 	new_entry->num_roots = 0;
1471 	ULIST_ITER_INIT(&uiter);
1472 	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1473 		const u64 root_id = node->val;
1474 		struct clone_root *root;
1475 
1476 		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1477 			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1478 			       __clone_root_cmp_bsearch);
1479 		if (!root)
1480 			continue;
1481 
1482 		/* Too many roots, just exit, no worries as caching is optional. */
1483 		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1484 			kfree(new_entry);
1485 			return;
1486 		}
1487 
1488 		new_entry->root_ids[new_entry->num_roots] = root_id;
1489 		new_entry->num_roots++;
1490 	}
1491 
1492 	/*
1493 	 * We may have not added any roots to the new cache entry, which means
1494 	 * none of the roots is part of the list of roots from which we are
1495 	 * allowed to clone. Cache the new entry as it's still useful to avoid
1496 	 * backref walking to determine which roots have a path to the leaf.
1497 	 *
1498 	 * Also use GFP_NOFS because we're called while holding a transaction
1499 	 * handle or while holding fs_info->commit_root_sem.
1500 	 */
1501 	ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1502 				    GFP_NOFS);
1503 	ASSERT(ret == 0 || ret == -ENOMEM);
1504 	if (ret) {
1505 		/* Caching is optional, no worries. */
1506 		kfree(new_entry);
1507 		return;
1508 	}
1509 
1510 	/*
1511 	 * We are called from iterate_extent_inodes() while either holding a
1512 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1513 	 * to take any lock here.
1514 	 */
1515 	if (btrfs_lru_cache_size(&sctx->backref_cache) == 1)
1516 		sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1517 }
1518 
1519 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1520 			     const struct extent_buffer *leaf, void *ctx)
1521 {
1522 	const u64 refs = btrfs_extent_refs(leaf, ei);
1523 	const struct backref_ctx *bctx = ctx;
1524 	const struct send_ctx *sctx = bctx->sctx;
1525 
1526 	if (bytenr == bctx->bytenr) {
1527 		const u64 flags = btrfs_extent_flags(leaf, ei);
1528 
1529 		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1530 			return -EUCLEAN;
1531 
1532 		/*
1533 		 * If we have only one reference and only the send root as a
1534 		 * clone source - meaning no clone roots were given in the
1535 		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1536 		 * it's our reference and there's no point in doing backref
1537 		 * walking which is expensive, so exit early.
1538 		 */
1539 		if (refs == 1 && sctx->clone_roots_cnt == 1)
1540 			return -ENOENT;
1541 	}
1542 
1543 	/*
1544 	 * Backreference walking (iterate_extent_inodes() below) is currently
1545 	 * too expensive when an extent has a large number of references, both
1546 	 * in time spent and used memory. So for now just fallback to write
1547 	 * operations instead of clone operations when an extent has more than
1548 	 * a certain amount of references.
1549 	 */
1550 	if (refs > SEND_MAX_EXTENT_REFS)
1551 		return -ENOENT;
1552 
1553 	return 0;
1554 }
1555 
1556 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1557 {
1558 	const struct backref_ctx *bctx = ctx;
1559 
1560 	if (ino == bctx->cur_objectid &&
1561 	    root == bctx->backref_owner &&
1562 	    offset == bctx->backref_offset)
1563 		return true;
1564 
1565 	return false;
1566 }
1567 
1568 /*
1569  * Given an inode, offset and extent item, it finds a good clone for a clone
1570  * instruction. Returns -ENOENT when none could be found. The function makes
1571  * sure that the returned clone is usable at the point where sending is at the
1572  * moment. This means, that no clones are accepted which lie behind the current
1573  * inode+offset.
1574  *
1575  * path must point to the extent item when called.
1576  */
1577 static int find_extent_clone(struct send_ctx *sctx,
1578 			     struct btrfs_path *path,
1579 			     u64 ino, u64 data_offset,
1580 			     u64 ino_size,
1581 			     struct clone_root **found)
1582 {
1583 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1584 	int ret;
1585 	int extent_type;
1586 	u64 logical;
1587 	u64 disk_byte;
1588 	u64 num_bytes;
1589 	struct btrfs_file_extent_item *fi;
1590 	struct extent_buffer *eb = path->nodes[0];
1591 	struct backref_ctx backref_ctx = { 0 };
1592 	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1593 	struct clone_root *cur_clone_root;
1594 	int compressed;
1595 	u32 i;
1596 
1597 	/*
1598 	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1599 	 * so we don't do anything here because clone operations can not clone
1600 	 * to a range beyond i_size without increasing the i_size of the
1601 	 * destination inode.
1602 	 */
1603 	if (data_offset >= ino_size)
1604 		return 0;
1605 
1606 	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1607 	extent_type = btrfs_file_extent_type(eb, fi);
1608 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1609 		return -ENOENT;
1610 
1611 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1612 	if (disk_byte == 0)
1613 		return -ENOENT;
1614 
1615 	compressed = btrfs_file_extent_compression(eb, fi);
1616 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1617 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1618 
1619 	/*
1620 	 * Setup the clone roots.
1621 	 */
1622 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1623 		cur_clone_root = sctx->clone_roots + i;
1624 		cur_clone_root->ino = (u64)-1;
1625 		cur_clone_root->offset = 0;
1626 		cur_clone_root->num_bytes = 0;
1627 		cur_clone_root->found_ref = false;
1628 	}
1629 
1630 	backref_ctx.sctx = sctx;
1631 	backref_ctx.cur_objectid = ino;
1632 	backref_ctx.cur_offset = data_offset;
1633 	backref_ctx.bytenr = disk_byte;
1634 	/*
1635 	 * Use the header owner and not the send root's id, because in case of a
1636 	 * snapshot we can have shared subtrees.
1637 	 */
1638 	backref_ctx.backref_owner = btrfs_header_owner(eb);
1639 	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1640 
1641 	/*
1642 	 * The last extent of a file may be too large due to page alignment.
1643 	 * We need to adjust extent_len in this case so that the checks in
1644 	 * iterate_backrefs() work.
1645 	 */
1646 	if (data_offset + num_bytes >= ino_size)
1647 		backref_ctx.extent_len = ino_size - data_offset;
1648 	else
1649 		backref_ctx.extent_len = num_bytes;
1650 
1651 	/*
1652 	 * Now collect all backrefs.
1653 	 */
1654 	backref_walk_ctx.bytenr = disk_byte;
1655 	if (compressed == BTRFS_COMPRESS_NONE)
1656 		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1657 	backref_walk_ctx.fs_info = fs_info;
1658 	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1659 	backref_walk_ctx.cache_store = store_backref_cache;
1660 	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1661 	backref_walk_ctx.check_extent_item = check_extent_item;
1662 	backref_walk_ctx.user_ctx = &backref_ctx;
1663 
1664 	/*
1665 	 * If have a single clone root, then it's the send root and we can tell
1666 	 * the backref walking code to skip our own backref and not resolve it,
1667 	 * since we can not use it for cloning - the source and destination
1668 	 * ranges can't overlap and in case the leaf is shared through a subtree
1669 	 * due to snapshots, we can't use those other roots since they are not
1670 	 * in the list of clone roots.
1671 	 */
1672 	if (sctx->clone_roots_cnt == 1)
1673 		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1674 
1675 	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1676 				    &backref_ctx);
1677 	if (ret < 0)
1678 		return ret;
1679 
1680 	down_read(&fs_info->commit_root_sem);
1681 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1682 		/*
1683 		 * A transaction commit for a transaction in which block group
1684 		 * relocation was done just happened.
1685 		 * The disk_bytenr of the file extent item we processed is
1686 		 * possibly stale, referring to the extent's location before
1687 		 * relocation. So act as if we haven't found any clone sources
1688 		 * and fallback to write commands, which will read the correct
1689 		 * data from the new extent location. Otherwise we will fail
1690 		 * below because we haven't found our own back reference or we
1691 		 * could be getting incorrect sources in case the old extent
1692 		 * was already reallocated after the relocation.
1693 		 */
1694 		up_read(&fs_info->commit_root_sem);
1695 		return -ENOENT;
1696 	}
1697 	up_read(&fs_info->commit_root_sem);
1698 
1699 	btrfs_debug(fs_info,
1700 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1701 		    data_offset, ino, num_bytes, logical);
1702 
1703 	if (!backref_ctx.found) {
1704 		btrfs_debug(fs_info, "no clones found");
1705 		return -ENOENT;
1706 	}
1707 
1708 	cur_clone_root = NULL;
1709 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1710 		struct clone_root *clone_root = &sctx->clone_roots[i];
1711 
1712 		if (!clone_root->found_ref)
1713 			continue;
1714 
1715 		/*
1716 		 * Choose the root from which we can clone more bytes, to
1717 		 * minimize write operations and therefore have more extent
1718 		 * sharing at the destination (the same as in the source).
1719 		 */
1720 		if (!cur_clone_root ||
1721 		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1722 			cur_clone_root = clone_root;
1723 
1724 			/*
1725 			 * We found an optimal clone candidate (any inode from
1726 			 * any root is fine), so we're done.
1727 			 */
1728 			if (clone_root->num_bytes >= backref_ctx.extent_len)
1729 				break;
1730 		}
1731 	}
1732 
1733 	if (cur_clone_root) {
1734 		*found = cur_clone_root;
1735 		ret = 0;
1736 	} else {
1737 		ret = -ENOENT;
1738 	}
1739 
1740 	return ret;
1741 }
1742 
1743 static int read_symlink(struct btrfs_root *root,
1744 			u64 ino,
1745 			struct fs_path *dest)
1746 {
1747 	int ret;
1748 	struct btrfs_path *path;
1749 	struct btrfs_key key;
1750 	struct btrfs_file_extent_item *ei;
1751 	u8 type;
1752 	u8 compression;
1753 	unsigned long off;
1754 	int len;
1755 
1756 	path = alloc_path_for_send();
1757 	if (!path)
1758 		return -ENOMEM;
1759 
1760 	key.objectid = ino;
1761 	key.type = BTRFS_EXTENT_DATA_KEY;
1762 	key.offset = 0;
1763 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1764 	if (ret < 0)
1765 		goto out;
1766 	if (ret) {
1767 		/*
1768 		 * An empty symlink inode. Can happen in rare error paths when
1769 		 * creating a symlink (transaction committed before the inode
1770 		 * eviction handler removed the symlink inode items and a crash
1771 		 * happened in between or the subvol was snapshoted in between).
1772 		 * Print an informative message to dmesg/syslog so that the user
1773 		 * can delete the symlink.
1774 		 */
1775 		btrfs_err(root->fs_info,
1776 			  "Found empty symlink inode %llu at root %llu",
1777 			  ino, root->root_key.objectid);
1778 		ret = -EIO;
1779 		goto out;
1780 	}
1781 
1782 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1783 			struct btrfs_file_extent_item);
1784 	type = btrfs_file_extent_type(path->nodes[0], ei);
1785 	if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1786 		ret = -EUCLEAN;
1787 		btrfs_crit(root->fs_info,
1788 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1789 			   ino, btrfs_root_id(root), type);
1790 		goto out;
1791 	}
1792 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1793 	if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1794 		ret = -EUCLEAN;
1795 		btrfs_crit(root->fs_info,
1796 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1797 			   ino, btrfs_root_id(root), compression);
1798 		goto out;
1799 	}
1800 
1801 	off = btrfs_file_extent_inline_start(ei);
1802 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1803 
1804 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1805 
1806 out:
1807 	btrfs_free_path(path);
1808 	return ret;
1809 }
1810 
1811 /*
1812  * Helper function to generate a file name that is unique in the root of
1813  * send_root and parent_root. This is used to generate names for orphan inodes.
1814  */
1815 static int gen_unique_name(struct send_ctx *sctx,
1816 			   u64 ino, u64 gen,
1817 			   struct fs_path *dest)
1818 {
1819 	int ret = 0;
1820 	struct btrfs_path *path;
1821 	struct btrfs_dir_item *di;
1822 	char tmp[64];
1823 	int len;
1824 	u64 idx = 0;
1825 
1826 	path = alloc_path_for_send();
1827 	if (!path)
1828 		return -ENOMEM;
1829 
1830 	while (1) {
1831 		struct fscrypt_str tmp_name;
1832 
1833 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1834 				ino, gen, idx);
1835 		ASSERT(len < sizeof(tmp));
1836 		tmp_name.name = tmp;
1837 		tmp_name.len = strlen(tmp);
1838 
1839 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1840 				path, BTRFS_FIRST_FREE_OBJECTID,
1841 				&tmp_name, 0);
1842 		btrfs_release_path(path);
1843 		if (IS_ERR(di)) {
1844 			ret = PTR_ERR(di);
1845 			goto out;
1846 		}
1847 		if (di) {
1848 			/* not unique, try again */
1849 			idx++;
1850 			continue;
1851 		}
1852 
1853 		if (!sctx->parent_root) {
1854 			/* unique */
1855 			ret = 0;
1856 			break;
1857 		}
1858 
1859 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1860 				path, BTRFS_FIRST_FREE_OBJECTID,
1861 				&tmp_name, 0);
1862 		btrfs_release_path(path);
1863 		if (IS_ERR(di)) {
1864 			ret = PTR_ERR(di);
1865 			goto out;
1866 		}
1867 		if (di) {
1868 			/* not unique, try again */
1869 			idx++;
1870 			continue;
1871 		}
1872 		/* unique */
1873 		break;
1874 	}
1875 
1876 	ret = fs_path_add(dest, tmp, strlen(tmp));
1877 
1878 out:
1879 	btrfs_free_path(path);
1880 	return ret;
1881 }
1882 
1883 enum inode_state {
1884 	inode_state_no_change,
1885 	inode_state_will_create,
1886 	inode_state_did_create,
1887 	inode_state_will_delete,
1888 	inode_state_did_delete,
1889 };
1890 
1891 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1892 			       u64 *send_gen, u64 *parent_gen)
1893 {
1894 	int ret;
1895 	int left_ret;
1896 	int right_ret;
1897 	u64 left_gen;
1898 	u64 right_gen = 0;
1899 	struct btrfs_inode_info info;
1900 
1901 	ret = get_inode_info(sctx->send_root, ino, &info);
1902 	if (ret < 0 && ret != -ENOENT)
1903 		goto out;
1904 	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1905 	left_gen = info.gen;
1906 	if (send_gen)
1907 		*send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1908 
1909 	if (!sctx->parent_root) {
1910 		right_ret = -ENOENT;
1911 	} else {
1912 		ret = get_inode_info(sctx->parent_root, ino, &info);
1913 		if (ret < 0 && ret != -ENOENT)
1914 			goto out;
1915 		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1916 		right_gen = info.gen;
1917 		if (parent_gen)
1918 			*parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1919 	}
1920 
1921 	if (!left_ret && !right_ret) {
1922 		if (left_gen == gen && right_gen == gen) {
1923 			ret = inode_state_no_change;
1924 		} else if (left_gen == gen) {
1925 			if (ino < sctx->send_progress)
1926 				ret = inode_state_did_create;
1927 			else
1928 				ret = inode_state_will_create;
1929 		} else if (right_gen == gen) {
1930 			if (ino < sctx->send_progress)
1931 				ret = inode_state_did_delete;
1932 			else
1933 				ret = inode_state_will_delete;
1934 		} else  {
1935 			ret = -ENOENT;
1936 		}
1937 	} else if (!left_ret) {
1938 		if (left_gen == gen) {
1939 			if (ino < sctx->send_progress)
1940 				ret = inode_state_did_create;
1941 			else
1942 				ret = inode_state_will_create;
1943 		} else {
1944 			ret = -ENOENT;
1945 		}
1946 	} else if (!right_ret) {
1947 		if (right_gen == gen) {
1948 			if (ino < sctx->send_progress)
1949 				ret = inode_state_did_delete;
1950 			else
1951 				ret = inode_state_will_delete;
1952 		} else {
1953 			ret = -ENOENT;
1954 		}
1955 	} else {
1956 		ret = -ENOENT;
1957 	}
1958 
1959 out:
1960 	return ret;
1961 }
1962 
1963 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1964 			     u64 *send_gen, u64 *parent_gen)
1965 {
1966 	int ret;
1967 
1968 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1969 		return 1;
1970 
1971 	ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1972 	if (ret < 0)
1973 		goto out;
1974 
1975 	if (ret == inode_state_no_change ||
1976 	    ret == inode_state_did_create ||
1977 	    ret == inode_state_will_delete)
1978 		ret = 1;
1979 	else
1980 		ret = 0;
1981 
1982 out:
1983 	return ret;
1984 }
1985 
1986 /*
1987  * Helper function to lookup a dir item in a dir.
1988  */
1989 static int lookup_dir_item_inode(struct btrfs_root *root,
1990 				 u64 dir, const char *name, int name_len,
1991 				 u64 *found_inode)
1992 {
1993 	int ret = 0;
1994 	struct btrfs_dir_item *di;
1995 	struct btrfs_key key;
1996 	struct btrfs_path *path;
1997 	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1998 
1999 	path = alloc_path_for_send();
2000 	if (!path)
2001 		return -ENOMEM;
2002 
2003 	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2004 	if (IS_ERR_OR_NULL(di)) {
2005 		ret = di ? PTR_ERR(di) : -ENOENT;
2006 		goto out;
2007 	}
2008 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2009 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2010 		ret = -ENOENT;
2011 		goto out;
2012 	}
2013 	*found_inode = key.objectid;
2014 
2015 out:
2016 	btrfs_free_path(path);
2017 	return ret;
2018 }
2019 
2020 /*
2021  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2022  * generation of the parent dir and the name of the dir entry.
2023  */
2024 static int get_first_ref(struct btrfs_root *root, u64 ino,
2025 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2026 {
2027 	int ret;
2028 	struct btrfs_key key;
2029 	struct btrfs_key found_key;
2030 	struct btrfs_path *path;
2031 	int len;
2032 	u64 parent_dir;
2033 
2034 	path = alloc_path_for_send();
2035 	if (!path)
2036 		return -ENOMEM;
2037 
2038 	key.objectid = ino;
2039 	key.type = BTRFS_INODE_REF_KEY;
2040 	key.offset = 0;
2041 
2042 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2043 	if (ret < 0)
2044 		goto out;
2045 	if (!ret)
2046 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2047 				path->slots[0]);
2048 	if (ret || found_key.objectid != ino ||
2049 	    (found_key.type != BTRFS_INODE_REF_KEY &&
2050 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2051 		ret = -ENOENT;
2052 		goto out;
2053 	}
2054 
2055 	if (found_key.type == BTRFS_INODE_REF_KEY) {
2056 		struct btrfs_inode_ref *iref;
2057 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2058 				      struct btrfs_inode_ref);
2059 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2060 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2061 						     (unsigned long)(iref + 1),
2062 						     len);
2063 		parent_dir = found_key.offset;
2064 	} else {
2065 		struct btrfs_inode_extref *extref;
2066 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2067 					struct btrfs_inode_extref);
2068 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2069 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2070 					(unsigned long)&extref->name, len);
2071 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2072 	}
2073 	if (ret < 0)
2074 		goto out;
2075 	btrfs_release_path(path);
2076 
2077 	if (dir_gen) {
2078 		ret = get_inode_gen(root, parent_dir, dir_gen);
2079 		if (ret < 0)
2080 			goto out;
2081 	}
2082 
2083 	*dir = parent_dir;
2084 
2085 out:
2086 	btrfs_free_path(path);
2087 	return ret;
2088 }
2089 
2090 static int is_first_ref(struct btrfs_root *root,
2091 			u64 ino, u64 dir,
2092 			const char *name, int name_len)
2093 {
2094 	int ret;
2095 	struct fs_path *tmp_name;
2096 	u64 tmp_dir;
2097 
2098 	tmp_name = fs_path_alloc();
2099 	if (!tmp_name)
2100 		return -ENOMEM;
2101 
2102 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2103 	if (ret < 0)
2104 		goto out;
2105 
2106 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2107 		ret = 0;
2108 		goto out;
2109 	}
2110 
2111 	ret = !memcmp(tmp_name->start, name, name_len);
2112 
2113 out:
2114 	fs_path_free(tmp_name);
2115 	return ret;
2116 }
2117 
2118 /*
2119  * Used by process_recorded_refs to determine if a new ref would overwrite an
2120  * already existing ref. In case it detects an overwrite, it returns the
2121  * inode/gen in who_ino/who_gen.
2122  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2123  * to make sure later references to the overwritten inode are possible.
2124  * Orphanizing is however only required for the first ref of an inode.
2125  * process_recorded_refs does an additional is_first_ref check to see if
2126  * orphanizing is really required.
2127  */
2128 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2129 			      const char *name, int name_len,
2130 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2131 {
2132 	int ret;
2133 	u64 parent_root_dir_gen;
2134 	u64 other_inode = 0;
2135 	struct btrfs_inode_info info;
2136 
2137 	if (!sctx->parent_root)
2138 		return 0;
2139 
2140 	ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2141 	if (ret <= 0)
2142 		return 0;
2143 
2144 	/*
2145 	 * If we have a parent root we need to verify that the parent dir was
2146 	 * not deleted and then re-created, if it was then we have no overwrite
2147 	 * and we can just unlink this entry.
2148 	 *
2149 	 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2150 	 * parent root.
2151 	 */
2152 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2153 	    parent_root_dir_gen != dir_gen)
2154 		return 0;
2155 
2156 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2157 				    &other_inode);
2158 	if (ret == -ENOENT)
2159 		return 0;
2160 	else if (ret < 0)
2161 		return ret;
2162 
2163 	/*
2164 	 * Check if the overwritten ref was already processed. If yes, the ref
2165 	 * was already unlinked/moved, so we can safely assume that we will not
2166 	 * overwrite anything at this point in time.
2167 	 */
2168 	if (other_inode > sctx->send_progress ||
2169 	    is_waiting_for_move(sctx, other_inode)) {
2170 		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2171 		if (ret < 0)
2172 			return ret;
2173 
2174 		*who_ino = other_inode;
2175 		*who_gen = info.gen;
2176 		*who_mode = info.mode;
2177 		return 1;
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 /*
2184  * Checks if the ref was overwritten by an already processed inode. This is
2185  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2186  * thus the orphan name needs be used.
2187  * process_recorded_refs also uses it to avoid unlinking of refs that were
2188  * overwritten.
2189  */
2190 static int did_overwrite_ref(struct send_ctx *sctx,
2191 			    u64 dir, u64 dir_gen,
2192 			    u64 ino, u64 ino_gen,
2193 			    const char *name, int name_len)
2194 {
2195 	int ret;
2196 	u64 ow_inode;
2197 	u64 ow_gen = 0;
2198 	u64 send_root_dir_gen;
2199 
2200 	if (!sctx->parent_root)
2201 		return 0;
2202 
2203 	ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2204 	if (ret <= 0)
2205 		return ret;
2206 
2207 	/*
2208 	 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2209 	 * send root.
2210 	 */
2211 	if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2212 		return 0;
2213 
2214 	/* check if the ref was overwritten by another ref */
2215 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2216 				    &ow_inode);
2217 	if (ret == -ENOENT) {
2218 		/* was never and will never be overwritten */
2219 		return 0;
2220 	} else if (ret < 0) {
2221 		return ret;
2222 	}
2223 
2224 	if (ow_inode == ino) {
2225 		ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2226 		if (ret < 0)
2227 			return ret;
2228 
2229 		/* It's the same inode, so no overwrite happened. */
2230 		if (ow_gen == ino_gen)
2231 			return 0;
2232 	}
2233 
2234 	/*
2235 	 * We know that it is or will be overwritten. Check this now.
2236 	 * The current inode being processed might have been the one that caused
2237 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2238 	 * the current inode being processed.
2239 	 */
2240 	if (ow_inode < sctx->send_progress)
2241 		return 1;
2242 
2243 	if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2244 		if (ow_gen == 0) {
2245 			ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2246 			if (ret < 0)
2247 				return ret;
2248 		}
2249 		if (ow_gen == sctx->cur_inode_gen)
2250 			return 1;
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 /*
2257  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2258  * that got overwritten. This is used by process_recorded_refs to determine
2259  * if it has to use the path as returned by get_cur_path or the orphan name.
2260  */
2261 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2262 {
2263 	int ret = 0;
2264 	struct fs_path *name = NULL;
2265 	u64 dir;
2266 	u64 dir_gen;
2267 
2268 	if (!sctx->parent_root)
2269 		goto out;
2270 
2271 	name = fs_path_alloc();
2272 	if (!name)
2273 		return -ENOMEM;
2274 
2275 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2276 	if (ret < 0)
2277 		goto out;
2278 
2279 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2280 			name->start, fs_path_len(name));
2281 
2282 out:
2283 	fs_path_free(name);
2284 	return ret;
2285 }
2286 
2287 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2288 							 u64 ino, u64 gen)
2289 {
2290 	struct btrfs_lru_cache_entry *entry;
2291 
2292 	entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2293 	if (!entry)
2294 		return NULL;
2295 
2296 	return container_of(entry, struct name_cache_entry, entry);
2297 }
2298 
2299 /*
2300  * Used by get_cur_path for each ref up to the root.
2301  * Returns 0 if it succeeded.
2302  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2303  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2304  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2305  * Returns <0 in case of error.
2306  */
2307 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2308 				     u64 ino, u64 gen,
2309 				     u64 *parent_ino,
2310 				     u64 *parent_gen,
2311 				     struct fs_path *dest)
2312 {
2313 	int ret;
2314 	int nce_ret;
2315 	struct name_cache_entry *nce;
2316 
2317 	/*
2318 	 * First check if we already did a call to this function with the same
2319 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2320 	 * return the cached result.
2321 	 */
2322 	nce = name_cache_search(sctx, ino, gen);
2323 	if (nce) {
2324 		if (ino < sctx->send_progress && nce->need_later_update) {
2325 			btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2326 			nce = NULL;
2327 		} else {
2328 			*parent_ino = nce->parent_ino;
2329 			*parent_gen = nce->parent_gen;
2330 			ret = fs_path_add(dest, nce->name, nce->name_len);
2331 			if (ret < 0)
2332 				goto out;
2333 			ret = nce->ret;
2334 			goto out;
2335 		}
2336 	}
2337 
2338 	/*
2339 	 * If the inode is not existent yet, add the orphan name and return 1.
2340 	 * This should only happen for the parent dir that we determine in
2341 	 * record_new_ref_if_needed().
2342 	 */
2343 	ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2344 	if (ret < 0)
2345 		goto out;
2346 
2347 	if (!ret) {
2348 		ret = gen_unique_name(sctx, ino, gen, dest);
2349 		if (ret < 0)
2350 			goto out;
2351 		ret = 1;
2352 		goto out_cache;
2353 	}
2354 
2355 	/*
2356 	 * Depending on whether the inode was already processed or not, use
2357 	 * send_root or parent_root for ref lookup.
2358 	 */
2359 	if (ino < sctx->send_progress)
2360 		ret = get_first_ref(sctx->send_root, ino,
2361 				    parent_ino, parent_gen, dest);
2362 	else
2363 		ret = get_first_ref(sctx->parent_root, ino,
2364 				    parent_ino, parent_gen, dest);
2365 	if (ret < 0)
2366 		goto out;
2367 
2368 	/*
2369 	 * Check if the ref was overwritten by an inode's ref that was processed
2370 	 * earlier. If yes, treat as orphan and return 1.
2371 	 */
2372 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2373 			dest->start, dest->end - dest->start);
2374 	if (ret < 0)
2375 		goto out;
2376 	if (ret) {
2377 		fs_path_reset(dest);
2378 		ret = gen_unique_name(sctx, ino, gen, dest);
2379 		if (ret < 0)
2380 			goto out;
2381 		ret = 1;
2382 	}
2383 
2384 out_cache:
2385 	/*
2386 	 * Store the result of the lookup in the name cache.
2387 	 */
2388 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2389 	if (!nce) {
2390 		ret = -ENOMEM;
2391 		goto out;
2392 	}
2393 
2394 	nce->entry.key = ino;
2395 	nce->entry.gen = gen;
2396 	nce->parent_ino = *parent_ino;
2397 	nce->parent_gen = *parent_gen;
2398 	nce->name_len = fs_path_len(dest);
2399 	nce->ret = ret;
2400 	strcpy(nce->name, dest->start);
2401 
2402 	if (ino < sctx->send_progress)
2403 		nce->need_later_update = 0;
2404 	else
2405 		nce->need_later_update = 1;
2406 
2407 	nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2408 	if (nce_ret < 0) {
2409 		kfree(nce);
2410 		ret = nce_ret;
2411 	}
2412 
2413 out:
2414 	return ret;
2415 }
2416 
2417 /*
2418  * Magic happens here. This function returns the first ref to an inode as it
2419  * would look like while receiving the stream at this point in time.
2420  * We walk the path up to the root. For every inode in between, we check if it
2421  * was already processed/sent. If yes, we continue with the parent as found
2422  * in send_root. If not, we continue with the parent as found in parent_root.
2423  * If we encounter an inode that was deleted at this point in time, we use the
2424  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2425  * that were not created yet and overwritten inodes/refs.
2426  *
2427  * When do we have orphan inodes:
2428  * 1. When an inode is freshly created and thus no valid refs are available yet
2429  * 2. When a directory lost all it's refs (deleted) but still has dir items
2430  *    inside which were not processed yet (pending for move/delete). If anyone
2431  *    tried to get the path to the dir items, it would get a path inside that
2432  *    orphan directory.
2433  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2434  *    of an unprocessed inode. If in that case the first ref would be
2435  *    overwritten, the overwritten inode gets "orphanized". Later when we
2436  *    process this overwritten inode, it is restored at a new place by moving
2437  *    the orphan inode.
2438  *
2439  * sctx->send_progress tells this function at which point in time receiving
2440  * would be.
2441  */
2442 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2443 			struct fs_path *dest)
2444 {
2445 	int ret = 0;
2446 	struct fs_path *name = NULL;
2447 	u64 parent_inode = 0;
2448 	u64 parent_gen = 0;
2449 	int stop = 0;
2450 
2451 	name = fs_path_alloc();
2452 	if (!name) {
2453 		ret = -ENOMEM;
2454 		goto out;
2455 	}
2456 
2457 	dest->reversed = 1;
2458 	fs_path_reset(dest);
2459 
2460 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2461 		struct waiting_dir_move *wdm;
2462 
2463 		fs_path_reset(name);
2464 
2465 		if (is_waiting_for_rm(sctx, ino, gen)) {
2466 			ret = gen_unique_name(sctx, ino, gen, name);
2467 			if (ret < 0)
2468 				goto out;
2469 			ret = fs_path_add_path(dest, name);
2470 			break;
2471 		}
2472 
2473 		wdm = get_waiting_dir_move(sctx, ino);
2474 		if (wdm && wdm->orphanized) {
2475 			ret = gen_unique_name(sctx, ino, gen, name);
2476 			stop = 1;
2477 		} else if (wdm) {
2478 			ret = get_first_ref(sctx->parent_root, ino,
2479 					    &parent_inode, &parent_gen, name);
2480 		} else {
2481 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2482 							&parent_inode,
2483 							&parent_gen, name);
2484 			if (ret)
2485 				stop = 1;
2486 		}
2487 
2488 		if (ret < 0)
2489 			goto out;
2490 
2491 		ret = fs_path_add_path(dest, name);
2492 		if (ret < 0)
2493 			goto out;
2494 
2495 		ino = parent_inode;
2496 		gen = parent_gen;
2497 	}
2498 
2499 out:
2500 	fs_path_free(name);
2501 	if (!ret)
2502 		fs_path_unreverse(dest);
2503 	return ret;
2504 }
2505 
2506 /*
2507  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2508  */
2509 static int send_subvol_begin(struct send_ctx *sctx)
2510 {
2511 	int ret;
2512 	struct btrfs_root *send_root = sctx->send_root;
2513 	struct btrfs_root *parent_root = sctx->parent_root;
2514 	struct btrfs_path *path;
2515 	struct btrfs_key key;
2516 	struct btrfs_root_ref *ref;
2517 	struct extent_buffer *leaf;
2518 	char *name = NULL;
2519 	int namelen;
2520 
2521 	path = btrfs_alloc_path();
2522 	if (!path)
2523 		return -ENOMEM;
2524 
2525 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2526 	if (!name) {
2527 		btrfs_free_path(path);
2528 		return -ENOMEM;
2529 	}
2530 
2531 	key.objectid = send_root->root_key.objectid;
2532 	key.type = BTRFS_ROOT_BACKREF_KEY;
2533 	key.offset = 0;
2534 
2535 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2536 				&key, path, 1, 0);
2537 	if (ret < 0)
2538 		goto out;
2539 	if (ret) {
2540 		ret = -ENOENT;
2541 		goto out;
2542 	}
2543 
2544 	leaf = path->nodes[0];
2545 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2546 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2547 	    key.objectid != send_root->root_key.objectid) {
2548 		ret = -ENOENT;
2549 		goto out;
2550 	}
2551 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2552 	namelen = btrfs_root_ref_name_len(leaf, ref);
2553 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2554 	btrfs_release_path(path);
2555 
2556 	if (parent_root) {
2557 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2558 		if (ret < 0)
2559 			goto out;
2560 	} else {
2561 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2562 		if (ret < 0)
2563 			goto out;
2564 	}
2565 
2566 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2567 
2568 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2569 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2570 			    sctx->send_root->root_item.received_uuid);
2571 	else
2572 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2573 			    sctx->send_root->root_item.uuid);
2574 
2575 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2576 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2577 	if (parent_root) {
2578 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2579 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2580 				     parent_root->root_item.received_uuid);
2581 		else
2582 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2583 				     parent_root->root_item.uuid);
2584 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2585 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2586 	}
2587 
2588 	ret = send_cmd(sctx);
2589 
2590 tlv_put_failure:
2591 out:
2592 	btrfs_free_path(path);
2593 	kfree(name);
2594 	return ret;
2595 }
2596 
2597 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2598 {
2599 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2600 	int ret = 0;
2601 	struct fs_path *p;
2602 
2603 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2604 
2605 	p = fs_path_alloc();
2606 	if (!p)
2607 		return -ENOMEM;
2608 
2609 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2610 	if (ret < 0)
2611 		goto out;
2612 
2613 	ret = get_cur_path(sctx, ino, gen, p);
2614 	if (ret < 0)
2615 		goto out;
2616 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2617 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2618 
2619 	ret = send_cmd(sctx);
2620 
2621 tlv_put_failure:
2622 out:
2623 	fs_path_free(p);
2624 	return ret;
2625 }
2626 
2627 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2628 {
2629 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2630 	int ret = 0;
2631 	struct fs_path *p;
2632 
2633 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2634 
2635 	p = fs_path_alloc();
2636 	if (!p)
2637 		return -ENOMEM;
2638 
2639 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2640 	if (ret < 0)
2641 		goto out;
2642 
2643 	ret = get_cur_path(sctx, ino, gen, p);
2644 	if (ret < 0)
2645 		goto out;
2646 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2647 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2648 
2649 	ret = send_cmd(sctx);
2650 
2651 tlv_put_failure:
2652 out:
2653 	fs_path_free(p);
2654 	return ret;
2655 }
2656 
2657 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2658 {
2659 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2660 	int ret = 0;
2661 	struct fs_path *p;
2662 
2663 	if (sctx->proto < 2)
2664 		return 0;
2665 
2666 	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2667 
2668 	p = fs_path_alloc();
2669 	if (!p)
2670 		return -ENOMEM;
2671 
2672 	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2673 	if (ret < 0)
2674 		goto out;
2675 
2676 	ret = get_cur_path(sctx, ino, gen, p);
2677 	if (ret < 0)
2678 		goto out;
2679 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2680 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2681 
2682 	ret = send_cmd(sctx);
2683 
2684 tlv_put_failure:
2685 out:
2686 	fs_path_free(p);
2687 	return ret;
2688 }
2689 
2690 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2691 {
2692 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2693 	int ret = 0;
2694 	struct fs_path *p;
2695 
2696 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2697 		    ino, uid, gid);
2698 
2699 	p = fs_path_alloc();
2700 	if (!p)
2701 		return -ENOMEM;
2702 
2703 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2704 	if (ret < 0)
2705 		goto out;
2706 
2707 	ret = get_cur_path(sctx, ino, gen, p);
2708 	if (ret < 0)
2709 		goto out;
2710 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2711 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2712 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2713 
2714 	ret = send_cmd(sctx);
2715 
2716 tlv_put_failure:
2717 out:
2718 	fs_path_free(p);
2719 	return ret;
2720 }
2721 
2722 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2723 {
2724 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2725 	int ret = 0;
2726 	struct fs_path *p = NULL;
2727 	struct btrfs_inode_item *ii;
2728 	struct btrfs_path *path = NULL;
2729 	struct extent_buffer *eb;
2730 	struct btrfs_key key;
2731 	int slot;
2732 
2733 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2734 
2735 	p = fs_path_alloc();
2736 	if (!p)
2737 		return -ENOMEM;
2738 
2739 	path = alloc_path_for_send();
2740 	if (!path) {
2741 		ret = -ENOMEM;
2742 		goto out;
2743 	}
2744 
2745 	key.objectid = ino;
2746 	key.type = BTRFS_INODE_ITEM_KEY;
2747 	key.offset = 0;
2748 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2749 	if (ret > 0)
2750 		ret = -ENOENT;
2751 	if (ret < 0)
2752 		goto out;
2753 
2754 	eb = path->nodes[0];
2755 	slot = path->slots[0];
2756 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2757 
2758 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2759 	if (ret < 0)
2760 		goto out;
2761 
2762 	ret = get_cur_path(sctx, ino, gen, p);
2763 	if (ret < 0)
2764 		goto out;
2765 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2766 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2767 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2768 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2769 	if (sctx->proto >= 2)
2770 		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2771 
2772 	ret = send_cmd(sctx);
2773 
2774 tlv_put_failure:
2775 out:
2776 	fs_path_free(p);
2777 	btrfs_free_path(path);
2778 	return ret;
2779 }
2780 
2781 /*
2782  * If the cache is full, we can't remove entries from it and do a call to
2783  * send_utimes() for each respective inode, because we might be finishing
2784  * processing an inode that is a directory and it just got renamed, and existing
2785  * entries in the cache may refer to inodes that have the directory in their
2786  * full path - in which case we would generate outdated paths (pre-rename)
2787  * for the inodes that the cache entries point to. Instead of prunning the
2788  * cache when inserting, do it after we finish processing each inode at
2789  * finish_inode_if_needed().
2790  */
2791 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2792 {
2793 	struct btrfs_lru_cache_entry *entry;
2794 	int ret;
2795 
2796 	entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2797 	if (entry != NULL)
2798 		return 0;
2799 
2800 	/* Caching is optional, don't fail if we can't allocate memory. */
2801 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2802 	if (!entry)
2803 		return send_utimes(sctx, dir, gen);
2804 
2805 	entry->key = dir;
2806 	entry->gen = gen;
2807 
2808 	ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2809 	ASSERT(ret != -EEXIST);
2810 	if (ret) {
2811 		kfree(entry);
2812 		return send_utimes(sctx, dir, gen);
2813 	}
2814 
2815 	return 0;
2816 }
2817 
2818 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2819 {
2820 	while (btrfs_lru_cache_size(&sctx->dir_utimes_cache) >
2821 	       SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2822 		struct btrfs_lru_cache_entry *lru;
2823 		int ret;
2824 
2825 		lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2826 		ASSERT(lru != NULL);
2827 
2828 		ret = send_utimes(sctx, lru->key, lru->gen);
2829 		if (ret)
2830 			return ret;
2831 
2832 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2833 	}
2834 
2835 	return 0;
2836 }
2837 
2838 /*
2839  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2840  * a valid path yet because we did not process the refs yet. So, the inode
2841  * is created as orphan.
2842  */
2843 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2844 {
2845 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2846 	int ret = 0;
2847 	struct fs_path *p;
2848 	int cmd;
2849 	struct btrfs_inode_info info;
2850 	u64 gen;
2851 	u64 mode;
2852 	u64 rdev;
2853 
2854 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2855 
2856 	p = fs_path_alloc();
2857 	if (!p)
2858 		return -ENOMEM;
2859 
2860 	if (ino != sctx->cur_ino) {
2861 		ret = get_inode_info(sctx->send_root, ino, &info);
2862 		if (ret < 0)
2863 			goto out;
2864 		gen = info.gen;
2865 		mode = info.mode;
2866 		rdev = info.rdev;
2867 	} else {
2868 		gen = sctx->cur_inode_gen;
2869 		mode = sctx->cur_inode_mode;
2870 		rdev = sctx->cur_inode_rdev;
2871 	}
2872 
2873 	if (S_ISREG(mode)) {
2874 		cmd = BTRFS_SEND_C_MKFILE;
2875 	} else if (S_ISDIR(mode)) {
2876 		cmd = BTRFS_SEND_C_MKDIR;
2877 	} else if (S_ISLNK(mode)) {
2878 		cmd = BTRFS_SEND_C_SYMLINK;
2879 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2880 		cmd = BTRFS_SEND_C_MKNOD;
2881 	} else if (S_ISFIFO(mode)) {
2882 		cmd = BTRFS_SEND_C_MKFIFO;
2883 	} else if (S_ISSOCK(mode)) {
2884 		cmd = BTRFS_SEND_C_MKSOCK;
2885 	} else {
2886 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2887 				(int)(mode & S_IFMT));
2888 		ret = -EOPNOTSUPP;
2889 		goto out;
2890 	}
2891 
2892 	ret = begin_cmd(sctx, cmd);
2893 	if (ret < 0)
2894 		goto out;
2895 
2896 	ret = gen_unique_name(sctx, ino, gen, p);
2897 	if (ret < 0)
2898 		goto out;
2899 
2900 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2901 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2902 
2903 	if (S_ISLNK(mode)) {
2904 		fs_path_reset(p);
2905 		ret = read_symlink(sctx->send_root, ino, p);
2906 		if (ret < 0)
2907 			goto out;
2908 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2909 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2910 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2911 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2912 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2913 	}
2914 
2915 	ret = send_cmd(sctx);
2916 	if (ret < 0)
2917 		goto out;
2918 
2919 
2920 tlv_put_failure:
2921 out:
2922 	fs_path_free(p);
2923 	return ret;
2924 }
2925 
2926 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2927 {
2928 	struct btrfs_lru_cache_entry *entry;
2929 	int ret;
2930 
2931 	/* Caching is optional, ignore any failures. */
2932 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2933 	if (!entry)
2934 		return;
2935 
2936 	entry->key = dir;
2937 	entry->gen = 0;
2938 	ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2939 	if (ret < 0)
2940 		kfree(entry);
2941 }
2942 
2943 /*
2944  * We need some special handling for inodes that get processed before the parent
2945  * directory got created. See process_recorded_refs for details.
2946  * This function does the check if we already created the dir out of order.
2947  */
2948 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2949 {
2950 	int ret = 0;
2951 	int iter_ret = 0;
2952 	struct btrfs_path *path = NULL;
2953 	struct btrfs_key key;
2954 	struct btrfs_key found_key;
2955 	struct btrfs_key di_key;
2956 	struct btrfs_dir_item *di;
2957 
2958 	if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2959 		return 1;
2960 
2961 	path = alloc_path_for_send();
2962 	if (!path)
2963 		return -ENOMEM;
2964 
2965 	key.objectid = dir;
2966 	key.type = BTRFS_DIR_INDEX_KEY;
2967 	key.offset = 0;
2968 
2969 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2970 		struct extent_buffer *eb = path->nodes[0];
2971 
2972 		if (found_key.objectid != key.objectid ||
2973 		    found_key.type != key.type) {
2974 			ret = 0;
2975 			break;
2976 		}
2977 
2978 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2979 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2980 
2981 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2982 		    di_key.objectid < sctx->send_progress) {
2983 			ret = 1;
2984 			cache_dir_created(sctx, dir);
2985 			break;
2986 		}
2987 	}
2988 	/* Catch error found during iteration */
2989 	if (iter_ret < 0)
2990 		ret = iter_ret;
2991 
2992 	btrfs_free_path(path);
2993 	return ret;
2994 }
2995 
2996 /*
2997  * Only creates the inode if it is:
2998  * 1. Not a directory
2999  * 2. Or a directory which was not created already due to out of order
3000  *    directories. See did_create_dir and process_recorded_refs for details.
3001  */
3002 static int send_create_inode_if_needed(struct send_ctx *sctx)
3003 {
3004 	int ret;
3005 
3006 	if (S_ISDIR(sctx->cur_inode_mode)) {
3007 		ret = did_create_dir(sctx, sctx->cur_ino);
3008 		if (ret < 0)
3009 			return ret;
3010 		else if (ret > 0)
3011 			return 0;
3012 	}
3013 
3014 	ret = send_create_inode(sctx, sctx->cur_ino);
3015 
3016 	if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3017 		cache_dir_created(sctx, sctx->cur_ino);
3018 
3019 	return ret;
3020 }
3021 
3022 struct recorded_ref {
3023 	struct list_head list;
3024 	char *name;
3025 	struct fs_path *full_path;
3026 	u64 dir;
3027 	u64 dir_gen;
3028 	int name_len;
3029 	struct rb_node node;
3030 	struct rb_root *root;
3031 };
3032 
3033 static struct recorded_ref *recorded_ref_alloc(void)
3034 {
3035 	struct recorded_ref *ref;
3036 
3037 	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3038 	if (!ref)
3039 		return NULL;
3040 	RB_CLEAR_NODE(&ref->node);
3041 	INIT_LIST_HEAD(&ref->list);
3042 	return ref;
3043 }
3044 
3045 static void recorded_ref_free(struct recorded_ref *ref)
3046 {
3047 	if (!ref)
3048 		return;
3049 	if (!RB_EMPTY_NODE(&ref->node))
3050 		rb_erase(&ref->node, ref->root);
3051 	list_del(&ref->list);
3052 	fs_path_free(ref->full_path);
3053 	kfree(ref);
3054 }
3055 
3056 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3057 {
3058 	ref->full_path = path;
3059 	ref->name = (char *)kbasename(ref->full_path->start);
3060 	ref->name_len = ref->full_path->end - ref->name;
3061 }
3062 
3063 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3064 {
3065 	struct recorded_ref *new;
3066 
3067 	new = recorded_ref_alloc();
3068 	if (!new)
3069 		return -ENOMEM;
3070 
3071 	new->dir = ref->dir;
3072 	new->dir_gen = ref->dir_gen;
3073 	list_add_tail(&new->list, list);
3074 	return 0;
3075 }
3076 
3077 static void __free_recorded_refs(struct list_head *head)
3078 {
3079 	struct recorded_ref *cur;
3080 
3081 	while (!list_empty(head)) {
3082 		cur = list_entry(head->next, struct recorded_ref, list);
3083 		recorded_ref_free(cur);
3084 	}
3085 }
3086 
3087 static void free_recorded_refs(struct send_ctx *sctx)
3088 {
3089 	__free_recorded_refs(&sctx->new_refs);
3090 	__free_recorded_refs(&sctx->deleted_refs);
3091 }
3092 
3093 /*
3094  * Renames/moves a file/dir to its orphan name. Used when the first
3095  * ref of an unprocessed inode gets overwritten and for all non empty
3096  * directories.
3097  */
3098 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3099 			  struct fs_path *path)
3100 {
3101 	int ret;
3102 	struct fs_path *orphan;
3103 
3104 	orphan = fs_path_alloc();
3105 	if (!orphan)
3106 		return -ENOMEM;
3107 
3108 	ret = gen_unique_name(sctx, ino, gen, orphan);
3109 	if (ret < 0)
3110 		goto out;
3111 
3112 	ret = send_rename(sctx, path, orphan);
3113 
3114 out:
3115 	fs_path_free(orphan);
3116 	return ret;
3117 }
3118 
3119 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3120 						   u64 dir_ino, u64 dir_gen)
3121 {
3122 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3123 	struct rb_node *parent = NULL;
3124 	struct orphan_dir_info *entry, *odi;
3125 
3126 	while (*p) {
3127 		parent = *p;
3128 		entry = rb_entry(parent, struct orphan_dir_info, node);
3129 		if (dir_ino < entry->ino)
3130 			p = &(*p)->rb_left;
3131 		else if (dir_ino > entry->ino)
3132 			p = &(*p)->rb_right;
3133 		else if (dir_gen < entry->gen)
3134 			p = &(*p)->rb_left;
3135 		else if (dir_gen > entry->gen)
3136 			p = &(*p)->rb_right;
3137 		else
3138 			return entry;
3139 	}
3140 
3141 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3142 	if (!odi)
3143 		return ERR_PTR(-ENOMEM);
3144 	odi->ino = dir_ino;
3145 	odi->gen = dir_gen;
3146 	odi->last_dir_index_offset = 0;
3147 	odi->dir_high_seq_ino = 0;
3148 
3149 	rb_link_node(&odi->node, parent, p);
3150 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3151 	return odi;
3152 }
3153 
3154 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3155 						   u64 dir_ino, u64 gen)
3156 {
3157 	struct rb_node *n = sctx->orphan_dirs.rb_node;
3158 	struct orphan_dir_info *entry;
3159 
3160 	while (n) {
3161 		entry = rb_entry(n, struct orphan_dir_info, node);
3162 		if (dir_ino < entry->ino)
3163 			n = n->rb_left;
3164 		else if (dir_ino > entry->ino)
3165 			n = n->rb_right;
3166 		else if (gen < entry->gen)
3167 			n = n->rb_left;
3168 		else if (gen > entry->gen)
3169 			n = n->rb_right;
3170 		else
3171 			return entry;
3172 	}
3173 	return NULL;
3174 }
3175 
3176 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3177 {
3178 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3179 
3180 	return odi != NULL;
3181 }
3182 
3183 static void free_orphan_dir_info(struct send_ctx *sctx,
3184 				 struct orphan_dir_info *odi)
3185 {
3186 	if (!odi)
3187 		return;
3188 	rb_erase(&odi->node, &sctx->orphan_dirs);
3189 	kfree(odi);
3190 }
3191 
3192 /*
3193  * Returns 1 if a directory can be removed at this point in time.
3194  * We check this by iterating all dir items and checking if the inode behind
3195  * the dir item was already processed.
3196  */
3197 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3198 {
3199 	int ret = 0;
3200 	int iter_ret = 0;
3201 	struct btrfs_root *root = sctx->parent_root;
3202 	struct btrfs_path *path;
3203 	struct btrfs_key key;
3204 	struct btrfs_key found_key;
3205 	struct btrfs_key loc;
3206 	struct btrfs_dir_item *di;
3207 	struct orphan_dir_info *odi = NULL;
3208 	u64 dir_high_seq_ino = 0;
3209 	u64 last_dir_index_offset = 0;
3210 
3211 	/*
3212 	 * Don't try to rmdir the top/root subvolume dir.
3213 	 */
3214 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3215 		return 0;
3216 
3217 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3218 	if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3219 		return 0;
3220 
3221 	path = alloc_path_for_send();
3222 	if (!path)
3223 		return -ENOMEM;
3224 
3225 	if (!odi) {
3226 		/*
3227 		 * Find the inode number associated with the last dir index
3228 		 * entry. This is very likely the inode with the highest number
3229 		 * of all inodes that have an entry in the directory. We can
3230 		 * then use it to avoid future calls to can_rmdir(), when
3231 		 * processing inodes with a lower number, from having to search
3232 		 * the parent root b+tree for dir index keys.
3233 		 */
3234 		key.objectid = dir;
3235 		key.type = BTRFS_DIR_INDEX_KEY;
3236 		key.offset = (u64)-1;
3237 
3238 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3239 		if (ret < 0) {
3240 			goto out;
3241 		} else if (ret > 0) {
3242 			/* Can't happen, the root is never empty. */
3243 			ASSERT(path->slots[0] > 0);
3244 			if (WARN_ON(path->slots[0] == 0)) {
3245 				ret = -EUCLEAN;
3246 				goto out;
3247 			}
3248 			path->slots[0]--;
3249 		}
3250 
3251 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3252 		if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3253 			/* No index keys, dir can be removed. */
3254 			ret = 1;
3255 			goto out;
3256 		}
3257 
3258 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3259 				    struct btrfs_dir_item);
3260 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3261 		dir_high_seq_ino = loc.objectid;
3262 		if (sctx->cur_ino < dir_high_seq_ino) {
3263 			ret = 0;
3264 			goto out;
3265 		}
3266 
3267 		btrfs_release_path(path);
3268 	}
3269 
3270 	key.objectid = dir;
3271 	key.type = BTRFS_DIR_INDEX_KEY;
3272 	key.offset = (odi ? odi->last_dir_index_offset : 0);
3273 
3274 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3275 		struct waiting_dir_move *dm;
3276 
3277 		if (found_key.objectid != key.objectid ||
3278 		    found_key.type != key.type)
3279 			break;
3280 
3281 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3282 				struct btrfs_dir_item);
3283 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3284 
3285 		dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3286 		last_dir_index_offset = found_key.offset;
3287 
3288 		dm = get_waiting_dir_move(sctx, loc.objectid);
3289 		if (dm) {
3290 			dm->rmdir_ino = dir;
3291 			dm->rmdir_gen = dir_gen;
3292 			ret = 0;
3293 			goto out;
3294 		}
3295 
3296 		if (loc.objectid > sctx->cur_ino) {
3297 			ret = 0;
3298 			goto out;
3299 		}
3300 	}
3301 	if (iter_ret < 0) {
3302 		ret = iter_ret;
3303 		goto out;
3304 	}
3305 	free_orphan_dir_info(sctx, odi);
3306 
3307 	ret = 1;
3308 
3309 out:
3310 	btrfs_free_path(path);
3311 
3312 	if (ret)
3313 		return ret;
3314 
3315 	if (!odi) {
3316 		odi = add_orphan_dir_info(sctx, dir, dir_gen);
3317 		if (IS_ERR(odi))
3318 			return PTR_ERR(odi);
3319 
3320 		odi->gen = dir_gen;
3321 	}
3322 
3323 	odi->last_dir_index_offset = last_dir_index_offset;
3324 	odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3325 
3326 	return 0;
3327 }
3328 
3329 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3330 {
3331 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3332 
3333 	return entry != NULL;
3334 }
3335 
3336 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3337 {
3338 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3339 	struct rb_node *parent = NULL;
3340 	struct waiting_dir_move *entry, *dm;
3341 
3342 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3343 	if (!dm)
3344 		return -ENOMEM;
3345 	dm->ino = ino;
3346 	dm->rmdir_ino = 0;
3347 	dm->rmdir_gen = 0;
3348 	dm->orphanized = orphanized;
3349 
3350 	while (*p) {
3351 		parent = *p;
3352 		entry = rb_entry(parent, struct waiting_dir_move, node);
3353 		if (ino < entry->ino) {
3354 			p = &(*p)->rb_left;
3355 		} else if (ino > entry->ino) {
3356 			p = &(*p)->rb_right;
3357 		} else {
3358 			kfree(dm);
3359 			return -EEXIST;
3360 		}
3361 	}
3362 
3363 	rb_link_node(&dm->node, parent, p);
3364 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3365 	return 0;
3366 }
3367 
3368 static struct waiting_dir_move *
3369 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3370 {
3371 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3372 	struct waiting_dir_move *entry;
3373 
3374 	while (n) {
3375 		entry = rb_entry(n, struct waiting_dir_move, node);
3376 		if (ino < entry->ino)
3377 			n = n->rb_left;
3378 		else if (ino > entry->ino)
3379 			n = n->rb_right;
3380 		else
3381 			return entry;
3382 	}
3383 	return NULL;
3384 }
3385 
3386 static void free_waiting_dir_move(struct send_ctx *sctx,
3387 				  struct waiting_dir_move *dm)
3388 {
3389 	if (!dm)
3390 		return;
3391 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3392 	kfree(dm);
3393 }
3394 
3395 static int add_pending_dir_move(struct send_ctx *sctx,
3396 				u64 ino,
3397 				u64 ino_gen,
3398 				u64 parent_ino,
3399 				struct list_head *new_refs,
3400 				struct list_head *deleted_refs,
3401 				const bool is_orphan)
3402 {
3403 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3404 	struct rb_node *parent = NULL;
3405 	struct pending_dir_move *entry = NULL, *pm;
3406 	struct recorded_ref *cur;
3407 	int exists = 0;
3408 	int ret;
3409 
3410 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3411 	if (!pm)
3412 		return -ENOMEM;
3413 	pm->parent_ino = parent_ino;
3414 	pm->ino = ino;
3415 	pm->gen = ino_gen;
3416 	INIT_LIST_HEAD(&pm->list);
3417 	INIT_LIST_HEAD(&pm->update_refs);
3418 	RB_CLEAR_NODE(&pm->node);
3419 
3420 	while (*p) {
3421 		parent = *p;
3422 		entry = rb_entry(parent, struct pending_dir_move, node);
3423 		if (parent_ino < entry->parent_ino) {
3424 			p = &(*p)->rb_left;
3425 		} else if (parent_ino > entry->parent_ino) {
3426 			p = &(*p)->rb_right;
3427 		} else {
3428 			exists = 1;
3429 			break;
3430 		}
3431 	}
3432 
3433 	list_for_each_entry(cur, deleted_refs, list) {
3434 		ret = dup_ref(cur, &pm->update_refs);
3435 		if (ret < 0)
3436 			goto out;
3437 	}
3438 	list_for_each_entry(cur, new_refs, list) {
3439 		ret = dup_ref(cur, &pm->update_refs);
3440 		if (ret < 0)
3441 			goto out;
3442 	}
3443 
3444 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3445 	if (ret)
3446 		goto out;
3447 
3448 	if (exists) {
3449 		list_add_tail(&pm->list, &entry->list);
3450 	} else {
3451 		rb_link_node(&pm->node, parent, p);
3452 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3453 	}
3454 	ret = 0;
3455 out:
3456 	if (ret) {
3457 		__free_recorded_refs(&pm->update_refs);
3458 		kfree(pm);
3459 	}
3460 	return ret;
3461 }
3462 
3463 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3464 						      u64 parent_ino)
3465 {
3466 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3467 	struct pending_dir_move *entry;
3468 
3469 	while (n) {
3470 		entry = rb_entry(n, struct pending_dir_move, node);
3471 		if (parent_ino < entry->parent_ino)
3472 			n = n->rb_left;
3473 		else if (parent_ino > entry->parent_ino)
3474 			n = n->rb_right;
3475 		else
3476 			return entry;
3477 	}
3478 	return NULL;
3479 }
3480 
3481 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3482 		     u64 ino, u64 gen, u64 *ancestor_ino)
3483 {
3484 	int ret = 0;
3485 	u64 parent_inode = 0;
3486 	u64 parent_gen = 0;
3487 	u64 start_ino = ino;
3488 
3489 	*ancestor_ino = 0;
3490 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3491 		fs_path_reset(name);
3492 
3493 		if (is_waiting_for_rm(sctx, ino, gen))
3494 			break;
3495 		if (is_waiting_for_move(sctx, ino)) {
3496 			if (*ancestor_ino == 0)
3497 				*ancestor_ino = ino;
3498 			ret = get_first_ref(sctx->parent_root, ino,
3499 					    &parent_inode, &parent_gen, name);
3500 		} else {
3501 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3502 							&parent_inode,
3503 							&parent_gen, name);
3504 			if (ret > 0) {
3505 				ret = 0;
3506 				break;
3507 			}
3508 		}
3509 		if (ret < 0)
3510 			break;
3511 		if (parent_inode == start_ino) {
3512 			ret = 1;
3513 			if (*ancestor_ino == 0)
3514 				*ancestor_ino = ino;
3515 			break;
3516 		}
3517 		ino = parent_inode;
3518 		gen = parent_gen;
3519 	}
3520 	return ret;
3521 }
3522 
3523 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3524 {
3525 	struct fs_path *from_path = NULL;
3526 	struct fs_path *to_path = NULL;
3527 	struct fs_path *name = NULL;
3528 	u64 orig_progress = sctx->send_progress;
3529 	struct recorded_ref *cur;
3530 	u64 parent_ino, parent_gen;
3531 	struct waiting_dir_move *dm = NULL;
3532 	u64 rmdir_ino = 0;
3533 	u64 rmdir_gen;
3534 	u64 ancestor;
3535 	bool is_orphan;
3536 	int ret;
3537 
3538 	name = fs_path_alloc();
3539 	from_path = fs_path_alloc();
3540 	if (!name || !from_path) {
3541 		ret = -ENOMEM;
3542 		goto out;
3543 	}
3544 
3545 	dm = get_waiting_dir_move(sctx, pm->ino);
3546 	ASSERT(dm);
3547 	rmdir_ino = dm->rmdir_ino;
3548 	rmdir_gen = dm->rmdir_gen;
3549 	is_orphan = dm->orphanized;
3550 	free_waiting_dir_move(sctx, dm);
3551 
3552 	if (is_orphan) {
3553 		ret = gen_unique_name(sctx, pm->ino,
3554 				      pm->gen, from_path);
3555 	} else {
3556 		ret = get_first_ref(sctx->parent_root, pm->ino,
3557 				    &parent_ino, &parent_gen, name);
3558 		if (ret < 0)
3559 			goto out;
3560 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3561 				   from_path);
3562 		if (ret < 0)
3563 			goto out;
3564 		ret = fs_path_add_path(from_path, name);
3565 	}
3566 	if (ret < 0)
3567 		goto out;
3568 
3569 	sctx->send_progress = sctx->cur_ino + 1;
3570 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3571 	if (ret < 0)
3572 		goto out;
3573 	if (ret) {
3574 		LIST_HEAD(deleted_refs);
3575 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3576 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3577 					   &pm->update_refs, &deleted_refs,
3578 					   is_orphan);
3579 		if (ret < 0)
3580 			goto out;
3581 		if (rmdir_ino) {
3582 			dm = get_waiting_dir_move(sctx, pm->ino);
3583 			ASSERT(dm);
3584 			dm->rmdir_ino = rmdir_ino;
3585 			dm->rmdir_gen = rmdir_gen;
3586 		}
3587 		goto out;
3588 	}
3589 	fs_path_reset(name);
3590 	to_path = name;
3591 	name = NULL;
3592 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3593 	if (ret < 0)
3594 		goto out;
3595 
3596 	ret = send_rename(sctx, from_path, to_path);
3597 	if (ret < 0)
3598 		goto out;
3599 
3600 	if (rmdir_ino) {
3601 		struct orphan_dir_info *odi;
3602 		u64 gen;
3603 
3604 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3605 		if (!odi) {
3606 			/* already deleted */
3607 			goto finish;
3608 		}
3609 		gen = odi->gen;
3610 
3611 		ret = can_rmdir(sctx, rmdir_ino, gen);
3612 		if (ret < 0)
3613 			goto out;
3614 		if (!ret)
3615 			goto finish;
3616 
3617 		name = fs_path_alloc();
3618 		if (!name) {
3619 			ret = -ENOMEM;
3620 			goto out;
3621 		}
3622 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3623 		if (ret < 0)
3624 			goto out;
3625 		ret = send_rmdir(sctx, name);
3626 		if (ret < 0)
3627 			goto out;
3628 	}
3629 
3630 finish:
3631 	ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3632 	if (ret < 0)
3633 		goto out;
3634 
3635 	/*
3636 	 * After rename/move, need to update the utimes of both new parent(s)
3637 	 * and old parent(s).
3638 	 */
3639 	list_for_each_entry(cur, &pm->update_refs, list) {
3640 		/*
3641 		 * The parent inode might have been deleted in the send snapshot
3642 		 */
3643 		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3644 		if (ret == -ENOENT) {
3645 			ret = 0;
3646 			continue;
3647 		}
3648 		if (ret < 0)
3649 			goto out;
3650 
3651 		ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3652 		if (ret < 0)
3653 			goto out;
3654 	}
3655 
3656 out:
3657 	fs_path_free(name);
3658 	fs_path_free(from_path);
3659 	fs_path_free(to_path);
3660 	sctx->send_progress = orig_progress;
3661 
3662 	return ret;
3663 }
3664 
3665 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3666 {
3667 	if (!list_empty(&m->list))
3668 		list_del(&m->list);
3669 	if (!RB_EMPTY_NODE(&m->node))
3670 		rb_erase(&m->node, &sctx->pending_dir_moves);
3671 	__free_recorded_refs(&m->update_refs);
3672 	kfree(m);
3673 }
3674 
3675 static void tail_append_pending_moves(struct send_ctx *sctx,
3676 				      struct pending_dir_move *moves,
3677 				      struct list_head *stack)
3678 {
3679 	if (list_empty(&moves->list)) {
3680 		list_add_tail(&moves->list, stack);
3681 	} else {
3682 		LIST_HEAD(list);
3683 		list_splice_init(&moves->list, &list);
3684 		list_add_tail(&moves->list, stack);
3685 		list_splice_tail(&list, stack);
3686 	}
3687 	if (!RB_EMPTY_NODE(&moves->node)) {
3688 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3689 		RB_CLEAR_NODE(&moves->node);
3690 	}
3691 }
3692 
3693 static int apply_children_dir_moves(struct send_ctx *sctx)
3694 {
3695 	struct pending_dir_move *pm;
3696 	LIST_HEAD(stack);
3697 	u64 parent_ino = sctx->cur_ino;
3698 	int ret = 0;
3699 
3700 	pm = get_pending_dir_moves(sctx, parent_ino);
3701 	if (!pm)
3702 		return 0;
3703 
3704 	tail_append_pending_moves(sctx, pm, &stack);
3705 
3706 	while (!list_empty(&stack)) {
3707 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3708 		parent_ino = pm->ino;
3709 		ret = apply_dir_move(sctx, pm);
3710 		free_pending_move(sctx, pm);
3711 		if (ret)
3712 			goto out;
3713 		pm = get_pending_dir_moves(sctx, parent_ino);
3714 		if (pm)
3715 			tail_append_pending_moves(sctx, pm, &stack);
3716 	}
3717 	return 0;
3718 
3719 out:
3720 	while (!list_empty(&stack)) {
3721 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3722 		free_pending_move(sctx, pm);
3723 	}
3724 	return ret;
3725 }
3726 
3727 /*
3728  * We might need to delay a directory rename even when no ancestor directory
3729  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3730  * renamed. This happens when we rename a directory to the old name (the name
3731  * in the parent root) of some other unrelated directory that got its rename
3732  * delayed due to some ancestor with higher number that got renamed.
3733  *
3734  * Example:
3735  *
3736  * Parent snapshot:
3737  * .                                       (ino 256)
3738  * |---- a/                                (ino 257)
3739  * |     |---- file                        (ino 260)
3740  * |
3741  * |---- b/                                (ino 258)
3742  * |---- c/                                (ino 259)
3743  *
3744  * Send snapshot:
3745  * .                                       (ino 256)
3746  * |---- a/                                (ino 258)
3747  * |---- x/                                (ino 259)
3748  *       |---- y/                          (ino 257)
3749  *             |----- file                 (ino 260)
3750  *
3751  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3752  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3753  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3754  * must issue is:
3755  *
3756  * 1 - rename 259 from 'c' to 'x'
3757  * 2 - rename 257 from 'a' to 'x/y'
3758  * 3 - rename 258 from 'b' to 'a'
3759  *
3760  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3761  * be done right away and < 0 on error.
3762  */
3763 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3764 				  struct recorded_ref *parent_ref,
3765 				  const bool is_orphan)
3766 {
3767 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3768 	struct btrfs_path *path;
3769 	struct btrfs_key key;
3770 	struct btrfs_key di_key;
3771 	struct btrfs_dir_item *di;
3772 	u64 left_gen;
3773 	u64 right_gen;
3774 	int ret = 0;
3775 	struct waiting_dir_move *wdm;
3776 
3777 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3778 		return 0;
3779 
3780 	path = alloc_path_for_send();
3781 	if (!path)
3782 		return -ENOMEM;
3783 
3784 	key.objectid = parent_ref->dir;
3785 	key.type = BTRFS_DIR_ITEM_KEY;
3786 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3787 
3788 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3789 	if (ret < 0) {
3790 		goto out;
3791 	} else if (ret > 0) {
3792 		ret = 0;
3793 		goto out;
3794 	}
3795 
3796 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3797 				       parent_ref->name_len);
3798 	if (!di) {
3799 		ret = 0;
3800 		goto out;
3801 	}
3802 	/*
3803 	 * di_key.objectid has the number of the inode that has a dentry in the
3804 	 * parent directory with the same name that sctx->cur_ino is being
3805 	 * renamed to. We need to check if that inode is in the send root as
3806 	 * well and if it is currently marked as an inode with a pending rename,
3807 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3808 	 * that it happens after that other inode is renamed.
3809 	 */
3810 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3811 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3812 		ret = 0;
3813 		goto out;
3814 	}
3815 
3816 	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3817 	if (ret < 0)
3818 		goto out;
3819 	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3820 	if (ret < 0) {
3821 		if (ret == -ENOENT)
3822 			ret = 0;
3823 		goto out;
3824 	}
3825 
3826 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3827 	if (right_gen != left_gen) {
3828 		ret = 0;
3829 		goto out;
3830 	}
3831 
3832 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3833 	if (wdm && !wdm->orphanized) {
3834 		ret = add_pending_dir_move(sctx,
3835 					   sctx->cur_ino,
3836 					   sctx->cur_inode_gen,
3837 					   di_key.objectid,
3838 					   &sctx->new_refs,
3839 					   &sctx->deleted_refs,
3840 					   is_orphan);
3841 		if (!ret)
3842 			ret = 1;
3843 	}
3844 out:
3845 	btrfs_free_path(path);
3846 	return ret;
3847 }
3848 
3849 /*
3850  * Check if inode ino2, or any of its ancestors, is inode ino1.
3851  * Return 1 if true, 0 if false and < 0 on error.
3852  */
3853 static int check_ino_in_path(struct btrfs_root *root,
3854 			     const u64 ino1,
3855 			     const u64 ino1_gen,
3856 			     const u64 ino2,
3857 			     const u64 ino2_gen,
3858 			     struct fs_path *fs_path)
3859 {
3860 	u64 ino = ino2;
3861 
3862 	if (ino1 == ino2)
3863 		return ino1_gen == ino2_gen;
3864 
3865 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3866 		u64 parent;
3867 		u64 parent_gen;
3868 		int ret;
3869 
3870 		fs_path_reset(fs_path);
3871 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3872 		if (ret < 0)
3873 			return ret;
3874 		if (parent == ino1)
3875 			return parent_gen == ino1_gen;
3876 		ino = parent;
3877 	}
3878 	return 0;
3879 }
3880 
3881 /*
3882  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3883  * possible path (in case ino2 is not a directory and has multiple hard links).
3884  * Return 1 if true, 0 if false and < 0 on error.
3885  */
3886 static int is_ancestor(struct btrfs_root *root,
3887 		       const u64 ino1,
3888 		       const u64 ino1_gen,
3889 		       const u64 ino2,
3890 		       struct fs_path *fs_path)
3891 {
3892 	bool free_fs_path = false;
3893 	int ret = 0;
3894 	int iter_ret = 0;
3895 	struct btrfs_path *path = NULL;
3896 	struct btrfs_key key;
3897 
3898 	if (!fs_path) {
3899 		fs_path = fs_path_alloc();
3900 		if (!fs_path)
3901 			return -ENOMEM;
3902 		free_fs_path = true;
3903 	}
3904 
3905 	path = alloc_path_for_send();
3906 	if (!path) {
3907 		ret = -ENOMEM;
3908 		goto out;
3909 	}
3910 
3911 	key.objectid = ino2;
3912 	key.type = BTRFS_INODE_REF_KEY;
3913 	key.offset = 0;
3914 
3915 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3916 		struct extent_buffer *leaf = path->nodes[0];
3917 		int slot = path->slots[0];
3918 		u32 cur_offset = 0;
3919 		u32 item_size;
3920 
3921 		if (key.objectid != ino2)
3922 			break;
3923 		if (key.type != BTRFS_INODE_REF_KEY &&
3924 		    key.type != BTRFS_INODE_EXTREF_KEY)
3925 			break;
3926 
3927 		item_size = btrfs_item_size(leaf, slot);
3928 		while (cur_offset < item_size) {
3929 			u64 parent;
3930 			u64 parent_gen;
3931 
3932 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3933 				unsigned long ptr;
3934 				struct btrfs_inode_extref *extref;
3935 
3936 				ptr = btrfs_item_ptr_offset(leaf, slot);
3937 				extref = (struct btrfs_inode_extref *)
3938 					(ptr + cur_offset);
3939 				parent = btrfs_inode_extref_parent(leaf,
3940 								   extref);
3941 				cur_offset += sizeof(*extref);
3942 				cur_offset += btrfs_inode_extref_name_len(leaf,
3943 								  extref);
3944 			} else {
3945 				parent = key.offset;
3946 				cur_offset = item_size;
3947 			}
3948 
3949 			ret = get_inode_gen(root, parent, &parent_gen);
3950 			if (ret < 0)
3951 				goto out;
3952 			ret = check_ino_in_path(root, ino1, ino1_gen,
3953 						parent, parent_gen, fs_path);
3954 			if (ret)
3955 				goto out;
3956 		}
3957 	}
3958 	ret = 0;
3959 	if (iter_ret < 0)
3960 		ret = iter_ret;
3961 
3962 out:
3963 	btrfs_free_path(path);
3964 	if (free_fs_path)
3965 		fs_path_free(fs_path);
3966 	return ret;
3967 }
3968 
3969 static int wait_for_parent_move(struct send_ctx *sctx,
3970 				struct recorded_ref *parent_ref,
3971 				const bool is_orphan)
3972 {
3973 	int ret = 0;
3974 	u64 ino = parent_ref->dir;
3975 	u64 ino_gen = parent_ref->dir_gen;
3976 	u64 parent_ino_before, parent_ino_after;
3977 	struct fs_path *path_before = NULL;
3978 	struct fs_path *path_after = NULL;
3979 	int len1, len2;
3980 
3981 	path_after = fs_path_alloc();
3982 	path_before = fs_path_alloc();
3983 	if (!path_after || !path_before) {
3984 		ret = -ENOMEM;
3985 		goto out;
3986 	}
3987 
3988 	/*
3989 	 * Our current directory inode may not yet be renamed/moved because some
3990 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3991 	 * such ancestor exists and make sure our own rename/move happens after
3992 	 * that ancestor is processed to avoid path build infinite loops (done
3993 	 * at get_cur_path()).
3994 	 */
3995 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3996 		u64 parent_ino_after_gen;
3997 
3998 		if (is_waiting_for_move(sctx, ino)) {
3999 			/*
4000 			 * If the current inode is an ancestor of ino in the
4001 			 * parent root, we need to delay the rename of the
4002 			 * current inode, otherwise don't delayed the rename
4003 			 * because we can end up with a circular dependency
4004 			 * of renames, resulting in some directories never
4005 			 * getting the respective rename operations issued in
4006 			 * the send stream or getting into infinite path build
4007 			 * loops.
4008 			 */
4009 			ret = is_ancestor(sctx->parent_root,
4010 					  sctx->cur_ino, sctx->cur_inode_gen,
4011 					  ino, path_before);
4012 			if (ret)
4013 				break;
4014 		}
4015 
4016 		fs_path_reset(path_before);
4017 		fs_path_reset(path_after);
4018 
4019 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4020 				    &parent_ino_after_gen, path_after);
4021 		if (ret < 0)
4022 			goto out;
4023 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4024 				    NULL, path_before);
4025 		if (ret < 0 && ret != -ENOENT) {
4026 			goto out;
4027 		} else if (ret == -ENOENT) {
4028 			ret = 0;
4029 			break;
4030 		}
4031 
4032 		len1 = fs_path_len(path_before);
4033 		len2 = fs_path_len(path_after);
4034 		if (ino > sctx->cur_ino &&
4035 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4036 		     memcmp(path_before->start, path_after->start, len1))) {
4037 			u64 parent_ino_gen;
4038 
4039 			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4040 			if (ret < 0)
4041 				goto out;
4042 			if (ino_gen == parent_ino_gen) {
4043 				ret = 1;
4044 				break;
4045 			}
4046 		}
4047 		ino = parent_ino_after;
4048 		ino_gen = parent_ino_after_gen;
4049 	}
4050 
4051 out:
4052 	fs_path_free(path_before);
4053 	fs_path_free(path_after);
4054 
4055 	if (ret == 1) {
4056 		ret = add_pending_dir_move(sctx,
4057 					   sctx->cur_ino,
4058 					   sctx->cur_inode_gen,
4059 					   ino,
4060 					   &sctx->new_refs,
4061 					   &sctx->deleted_refs,
4062 					   is_orphan);
4063 		if (!ret)
4064 			ret = 1;
4065 	}
4066 
4067 	return ret;
4068 }
4069 
4070 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4071 {
4072 	int ret;
4073 	struct fs_path *new_path;
4074 
4075 	/*
4076 	 * Our reference's name member points to its full_path member string, so
4077 	 * we use here a new path.
4078 	 */
4079 	new_path = fs_path_alloc();
4080 	if (!new_path)
4081 		return -ENOMEM;
4082 
4083 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4084 	if (ret < 0) {
4085 		fs_path_free(new_path);
4086 		return ret;
4087 	}
4088 	ret = fs_path_add(new_path, ref->name, ref->name_len);
4089 	if (ret < 0) {
4090 		fs_path_free(new_path);
4091 		return ret;
4092 	}
4093 
4094 	fs_path_free(ref->full_path);
4095 	set_ref_path(ref, new_path);
4096 
4097 	return 0;
4098 }
4099 
4100 /*
4101  * When processing the new references for an inode we may orphanize an existing
4102  * directory inode because its old name conflicts with one of the new references
4103  * of the current inode. Later, when processing another new reference of our
4104  * inode, we might need to orphanize another inode, but the path we have in the
4105  * reference reflects the pre-orphanization name of the directory we previously
4106  * orphanized. For example:
4107  *
4108  * parent snapshot looks like:
4109  *
4110  * .                                     (ino 256)
4111  * |----- f1                             (ino 257)
4112  * |----- f2                             (ino 258)
4113  * |----- d1/                            (ino 259)
4114  *        |----- d2/                     (ino 260)
4115  *
4116  * send snapshot looks like:
4117  *
4118  * .                                     (ino 256)
4119  * |----- d1                             (ino 258)
4120  * |----- f2/                            (ino 259)
4121  *        |----- f2_link/                (ino 260)
4122  *        |       |----- f1              (ino 257)
4123  *        |
4124  *        |----- d2                      (ino 258)
4125  *
4126  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4127  * cache it in the name cache. Later when we start processing inode 258, when
4128  * collecting all its new references we set a full path of "d1/d2" for its new
4129  * reference with name "d2". When we start processing the new references we
4130  * start by processing the new reference with name "d1", and this results in
4131  * orphanizing inode 259, since its old reference causes a conflict. Then we
4132  * move on the next new reference, with name "d2", and we find out we must
4133  * orphanize inode 260, as its old reference conflicts with ours - but for the
4134  * orphanization we use a source path corresponding to the path we stored in the
4135  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4136  * receiver fail since the path component "d1/" no longer exists, it was renamed
4137  * to "o259-6-0/" when processing the previous new reference. So in this case we
4138  * must recompute the path in the new reference and use it for the new
4139  * orphanization operation.
4140  */
4141 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4142 {
4143 	char *name;
4144 	int ret;
4145 
4146 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4147 	if (!name)
4148 		return -ENOMEM;
4149 
4150 	fs_path_reset(ref->full_path);
4151 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4152 	if (ret < 0)
4153 		goto out;
4154 
4155 	ret = fs_path_add(ref->full_path, name, ref->name_len);
4156 	if (ret < 0)
4157 		goto out;
4158 
4159 	/* Update the reference's base name pointer. */
4160 	set_ref_path(ref, ref->full_path);
4161 out:
4162 	kfree(name);
4163 	return ret;
4164 }
4165 
4166 /*
4167  * This does all the move/link/unlink/rmdir magic.
4168  */
4169 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4170 {
4171 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4172 	int ret = 0;
4173 	struct recorded_ref *cur;
4174 	struct recorded_ref *cur2;
4175 	LIST_HEAD(check_dirs);
4176 	struct fs_path *valid_path = NULL;
4177 	u64 ow_inode = 0;
4178 	u64 ow_gen;
4179 	u64 ow_mode;
4180 	int did_overwrite = 0;
4181 	int is_orphan = 0;
4182 	u64 last_dir_ino_rm = 0;
4183 	bool can_rename = true;
4184 	bool orphanized_dir = false;
4185 	bool orphanized_ancestor = false;
4186 
4187 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4188 
4189 	/*
4190 	 * This should never happen as the root dir always has the same ref
4191 	 * which is always '..'
4192 	 */
4193 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
4194 
4195 	valid_path = fs_path_alloc();
4196 	if (!valid_path) {
4197 		ret = -ENOMEM;
4198 		goto out;
4199 	}
4200 
4201 	/*
4202 	 * First, check if the first ref of the current inode was overwritten
4203 	 * before. If yes, we know that the current inode was already orphanized
4204 	 * and thus use the orphan name. If not, we can use get_cur_path to
4205 	 * get the path of the first ref as it would like while receiving at
4206 	 * this point in time.
4207 	 * New inodes are always orphan at the beginning, so force to use the
4208 	 * orphan name in this case.
4209 	 * The first ref is stored in valid_path and will be updated if it
4210 	 * gets moved around.
4211 	 */
4212 	if (!sctx->cur_inode_new) {
4213 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4214 				sctx->cur_inode_gen);
4215 		if (ret < 0)
4216 			goto out;
4217 		if (ret)
4218 			did_overwrite = 1;
4219 	}
4220 	if (sctx->cur_inode_new || did_overwrite) {
4221 		ret = gen_unique_name(sctx, sctx->cur_ino,
4222 				sctx->cur_inode_gen, valid_path);
4223 		if (ret < 0)
4224 			goto out;
4225 		is_orphan = 1;
4226 	} else {
4227 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4228 				valid_path);
4229 		if (ret < 0)
4230 			goto out;
4231 	}
4232 
4233 	/*
4234 	 * Before doing any rename and link operations, do a first pass on the
4235 	 * new references to orphanize any unprocessed inodes that may have a
4236 	 * reference that conflicts with one of the new references of the current
4237 	 * inode. This needs to happen first because a new reference may conflict
4238 	 * with the old reference of a parent directory, so we must make sure
4239 	 * that the path used for link and rename commands don't use an
4240 	 * orphanized name when an ancestor was not yet orphanized.
4241 	 *
4242 	 * Example:
4243 	 *
4244 	 * Parent snapshot:
4245 	 *
4246 	 * .                                                      (ino 256)
4247 	 * |----- testdir/                                        (ino 259)
4248 	 * |          |----- a                                    (ino 257)
4249 	 * |
4250 	 * |----- b                                               (ino 258)
4251 	 *
4252 	 * Send snapshot:
4253 	 *
4254 	 * .                                                      (ino 256)
4255 	 * |----- testdir_2/                                      (ino 259)
4256 	 * |          |----- a                                    (ino 260)
4257 	 * |
4258 	 * |----- testdir                                         (ino 257)
4259 	 * |----- b                                               (ino 257)
4260 	 * |----- b2                                              (ino 258)
4261 	 *
4262 	 * Processing the new reference for inode 257 with name "b" may happen
4263 	 * before processing the new reference with name "testdir". If so, we
4264 	 * must make sure that by the time we send a link command to create the
4265 	 * hard link "b", inode 259 was already orphanized, since the generated
4266 	 * path in "valid_path" already contains the orphanized name for 259.
4267 	 * We are processing inode 257, so only later when processing 259 we do
4268 	 * the rename operation to change its temporary (orphanized) name to
4269 	 * "testdir_2".
4270 	 */
4271 	list_for_each_entry(cur, &sctx->new_refs, list) {
4272 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4273 		if (ret < 0)
4274 			goto out;
4275 		if (ret == inode_state_will_create)
4276 			continue;
4277 
4278 		/*
4279 		 * Check if this new ref would overwrite the first ref of another
4280 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4281 		 * If we find an overwritten ref that is not the first ref,
4282 		 * simply unlink it.
4283 		 */
4284 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4285 				cur->name, cur->name_len,
4286 				&ow_inode, &ow_gen, &ow_mode);
4287 		if (ret < 0)
4288 			goto out;
4289 		if (ret) {
4290 			ret = is_first_ref(sctx->parent_root,
4291 					   ow_inode, cur->dir, cur->name,
4292 					   cur->name_len);
4293 			if (ret < 0)
4294 				goto out;
4295 			if (ret) {
4296 				struct name_cache_entry *nce;
4297 				struct waiting_dir_move *wdm;
4298 
4299 				if (orphanized_dir) {
4300 					ret = refresh_ref_path(sctx, cur);
4301 					if (ret < 0)
4302 						goto out;
4303 				}
4304 
4305 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4306 						cur->full_path);
4307 				if (ret < 0)
4308 					goto out;
4309 				if (S_ISDIR(ow_mode))
4310 					orphanized_dir = true;
4311 
4312 				/*
4313 				 * If ow_inode has its rename operation delayed
4314 				 * make sure that its orphanized name is used in
4315 				 * the source path when performing its rename
4316 				 * operation.
4317 				 */
4318 				wdm = get_waiting_dir_move(sctx, ow_inode);
4319 				if (wdm)
4320 					wdm->orphanized = true;
4321 
4322 				/*
4323 				 * Make sure we clear our orphanized inode's
4324 				 * name from the name cache. This is because the
4325 				 * inode ow_inode might be an ancestor of some
4326 				 * other inode that will be orphanized as well
4327 				 * later and has an inode number greater than
4328 				 * sctx->send_progress. We need to prevent
4329 				 * future name lookups from using the old name
4330 				 * and get instead the orphan name.
4331 				 */
4332 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4333 				if (nce)
4334 					btrfs_lru_cache_remove(&sctx->name_cache,
4335 							       &nce->entry);
4336 
4337 				/*
4338 				 * ow_inode might currently be an ancestor of
4339 				 * cur_ino, therefore compute valid_path (the
4340 				 * current path of cur_ino) again because it
4341 				 * might contain the pre-orphanization name of
4342 				 * ow_inode, which is no longer valid.
4343 				 */
4344 				ret = is_ancestor(sctx->parent_root,
4345 						  ow_inode, ow_gen,
4346 						  sctx->cur_ino, NULL);
4347 				if (ret > 0) {
4348 					orphanized_ancestor = true;
4349 					fs_path_reset(valid_path);
4350 					ret = get_cur_path(sctx, sctx->cur_ino,
4351 							   sctx->cur_inode_gen,
4352 							   valid_path);
4353 				}
4354 				if (ret < 0)
4355 					goto out;
4356 			} else {
4357 				/*
4358 				 * If we previously orphanized a directory that
4359 				 * collided with a new reference that we already
4360 				 * processed, recompute the current path because
4361 				 * that directory may be part of the path.
4362 				 */
4363 				if (orphanized_dir) {
4364 					ret = refresh_ref_path(sctx, cur);
4365 					if (ret < 0)
4366 						goto out;
4367 				}
4368 				ret = send_unlink(sctx, cur->full_path);
4369 				if (ret < 0)
4370 					goto out;
4371 			}
4372 		}
4373 
4374 	}
4375 
4376 	list_for_each_entry(cur, &sctx->new_refs, list) {
4377 		/*
4378 		 * We may have refs where the parent directory does not exist
4379 		 * yet. This happens if the parent directories inum is higher
4380 		 * than the current inum. To handle this case, we create the
4381 		 * parent directory out of order. But we need to check if this
4382 		 * did already happen before due to other refs in the same dir.
4383 		 */
4384 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4385 		if (ret < 0)
4386 			goto out;
4387 		if (ret == inode_state_will_create) {
4388 			ret = 0;
4389 			/*
4390 			 * First check if any of the current inodes refs did
4391 			 * already create the dir.
4392 			 */
4393 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4394 				if (cur == cur2)
4395 					break;
4396 				if (cur2->dir == cur->dir) {
4397 					ret = 1;
4398 					break;
4399 				}
4400 			}
4401 
4402 			/*
4403 			 * If that did not happen, check if a previous inode
4404 			 * did already create the dir.
4405 			 */
4406 			if (!ret)
4407 				ret = did_create_dir(sctx, cur->dir);
4408 			if (ret < 0)
4409 				goto out;
4410 			if (!ret) {
4411 				ret = send_create_inode(sctx, cur->dir);
4412 				if (ret < 0)
4413 					goto out;
4414 				cache_dir_created(sctx, cur->dir);
4415 			}
4416 		}
4417 
4418 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4419 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4420 			if (ret < 0)
4421 				goto out;
4422 			if (ret == 1) {
4423 				can_rename = false;
4424 				*pending_move = 1;
4425 			}
4426 		}
4427 
4428 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4429 		    can_rename) {
4430 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4431 			if (ret < 0)
4432 				goto out;
4433 			if (ret == 1) {
4434 				can_rename = false;
4435 				*pending_move = 1;
4436 			}
4437 		}
4438 
4439 		/*
4440 		 * link/move the ref to the new place. If we have an orphan
4441 		 * inode, move it and update valid_path. If not, link or move
4442 		 * it depending on the inode mode.
4443 		 */
4444 		if (is_orphan && can_rename) {
4445 			ret = send_rename(sctx, valid_path, cur->full_path);
4446 			if (ret < 0)
4447 				goto out;
4448 			is_orphan = 0;
4449 			ret = fs_path_copy(valid_path, cur->full_path);
4450 			if (ret < 0)
4451 				goto out;
4452 		} else if (can_rename) {
4453 			if (S_ISDIR(sctx->cur_inode_mode)) {
4454 				/*
4455 				 * Dirs can't be linked, so move it. For moved
4456 				 * dirs, we always have one new and one deleted
4457 				 * ref. The deleted ref is ignored later.
4458 				 */
4459 				ret = send_rename(sctx, valid_path,
4460 						  cur->full_path);
4461 				if (!ret)
4462 					ret = fs_path_copy(valid_path,
4463 							   cur->full_path);
4464 				if (ret < 0)
4465 					goto out;
4466 			} else {
4467 				/*
4468 				 * We might have previously orphanized an inode
4469 				 * which is an ancestor of our current inode,
4470 				 * so our reference's full path, which was
4471 				 * computed before any such orphanizations, must
4472 				 * be updated.
4473 				 */
4474 				if (orphanized_dir) {
4475 					ret = update_ref_path(sctx, cur);
4476 					if (ret < 0)
4477 						goto out;
4478 				}
4479 				ret = send_link(sctx, cur->full_path,
4480 						valid_path);
4481 				if (ret < 0)
4482 					goto out;
4483 			}
4484 		}
4485 		ret = dup_ref(cur, &check_dirs);
4486 		if (ret < 0)
4487 			goto out;
4488 	}
4489 
4490 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4491 		/*
4492 		 * Check if we can already rmdir the directory. If not,
4493 		 * orphanize it. For every dir item inside that gets deleted
4494 		 * later, we do this check again and rmdir it then if possible.
4495 		 * See the use of check_dirs for more details.
4496 		 */
4497 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4498 		if (ret < 0)
4499 			goto out;
4500 		if (ret) {
4501 			ret = send_rmdir(sctx, valid_path);
4502 			if (ret < 0)
4503 				goto out;
4504 		} else if (!is_orphan) {
4505 			ret = orphanize_inode(sctx, sctx->cur_ino,
4506 					sctx->cur_inode_gen, valid_path);
4507 			if (ret < 0)
4508 				goto out;
4509 			is_orphan = 1;
4510 		}
4511 
4512 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4513 			ret = dup_ref(cur, &check_dirs);
4514 			if (ret < 0)
4515 				goto out;
4516 		}
4517 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4518 		   !list_empty(&sctx->deleted_refs)) {
4519 		/*
4520 		 * We have a moved dir. Add the old parent to check_dirs
4521 		 */
4522 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4523 				list);
4524 		ret = dup_ref(cur, &check_dirs);
4525 		if (ret < 0)
4526 			goto out;
4527 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4528 		/*
4529 		 * We have a non dir inode. Go through all deleted refs and
4530 		 * unlink them if they were not already overwritten by other
4531 		 * inodes.
4532 		 */
4533 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4534 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4535 					sctx->cur_ino, sctx->cur_inode_gen,
4536 					cur->name, cur->name_len);
4537 			if (ret < 0)
4538 				goto out;
4539 			if (!ret) {
4540 				/*
4541 				 * If we orphanized any ancestor before, we need
4542 				 * to recompute the full path for deleted names,
4543 				 * since any such path was computed before we
4544 				 * processed any references and orphanized any
4545 				 * ancestor inode.
4546 				 */
4547 				if (orphanized_ancestor) {
4548 					ret = update_ref_path(sctx, cur);
4549 					if (ret < 0)
4550 						goto out;
4551 				}
4552 				ret = send_unlink(sctx, cur->full_path);
4553 				if (ret < 0)
4554 					goto out;
4555 			}
4556 			ret = dup_ref(cur, &check_dirs);
4557 			if (ret < 0)
4558 				goto out;
4559 		}
4560 		/*
4561 		 * If the inode is still orphan, unlink the orphan. This may
4562 		 * happen when a previous inode did overwrite the first ref
4563 		 * of this inode and no new refs were added for the current
4564 		 * inode. Unlinking does not mean that the inode is deleted in
4565 		 * all cases. There may still be links to this inode in other
4566 		 * places.
4567 		 */
4568 		if (is_orphan) {
4569 			ret = send_unlink(sctx, valid_path);
4570 			if (ret < 0)
4571 				goto out;
4572 		}
4573 	}
4574 
4575 	/*
4576 	 * We did collect all parent dirs where cur_inode was once located. We
4577 	 * now go through all these dirs and check if they are pending for
4578 	 * deletion and if it's finally possible to perform the rmdir now.
4579 	 * We also update the inode stats of the parent dirs here.
4580 	 */
4581 	list_for_each_entry(cur, &check_dirs, list) {
4582 		/*
4583 		 * In case we had refs into dirs that were not processed yet,
4584 		 * we don't need to do the utime and rmdir logic for these dirs.
4585 		 * The dir will be processed later.
4586 		 */
4587 		if (cur->dir > sctx->cur_ino)
4588 			continue;
4589 
4590 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4591 		if (ret < 0)
4592 			goto out;
4593 
4594 		if (ret == inode_state_did_create ||
4595 		    ret == inode_state_no_change) {
4596 			ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4597 			if (ret < 0)
4598 				goto out;
4599 		} else if (ret == inode_state_did_delete &&
4600 			   cur->dir != last_dir_ino_rm) {
4601 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4602 			if (ret < 0)
4603 				goto out;
4604 			if (ret) {
4605 				ret = get_cur_path(sctx, cur->dir,
4606 						   cur->dir_gen, valid_path);
4607 				if (ret < 0)
4608 					goto out;
4609 				ret = send_rmdir(sctx, valid_path);
4610 				if (ret < 0)
4611 					goto out;
4612 				last_dir_ino_rm = cur->dir;
4613 			}
4614 		}
4615 	}
4616 
4617 	ret = 0;
4618 
4619 out:
4620 	__free_recorded_refs(&check_dirs);
4621 	free_recorded_refs(sctx);
4622 	fs_path_free(valid_path);
4623 	return ret;
4624 }
4625 
4626 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4627 {
4628 	const struct recorded_ref *data = k;
4629 	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4630 	int result;
4631 
4632 	if (data->dir > ref->dir)
4633 		return 1;
4634 	if (data->dir < ref->dir)
4635 		return -1;
4636 	if (data->dir_gen > ref->dir_gen)
4637 		return 1;
4638 	if (data->dir_gen < ref->dir_gen)
4639 		return -1;
4640 	if (data->name_len > ref->name_len)
4641 		return 1;
4642 	if (data->name_len < ref->name_len)
4643 		return -1;
4644 	result = strcmp(data->name, ref->name);
4645 	if (result > 0)
4646 		return 1;
4647 	if (result < 0)
4648 		return -1;
4649 	return 0;
4650 }
4651 
4652 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4653 {
4654 	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4655 
4656 	return rbtree_ref_comp(entry, parent) < 0;
4657 }
4658 
4659 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4660 			      struct fs_path *name, u64 dir, u64 dir_gen,
4661 			      struct send_ctx *sctx)
4662 {
4663 	int ret = 0;
4664 	struct fs_path *path = NULL;
4665 	struct recorded_ref *ref = NULL;
4666 
4667 	path = fs_path_alloc();
4668 	if (!path) {
4669 		ret = -ENOMEM;
4670 		goto out;
4671 	}
4672 
4673 	ref = recorded_ref_alloc();
4674 	if (!ref) {
4675 		ret = -ENOMEM;
4676 		goto out;
4677 	}
4678 
4679 	ret = get_cur_path(sctx, dir, dir_gen, path);
4680 	if (ret < 0)
4681 		goto out;
4682 	ret = fs_path_add_path(path, name);
4683 	if (ret < 0)
4684 		goto out;
4685 
4686 	ref->dir = dir;
4687 	ref->dir_gen = dir_gen;
4688 	set_ref_path(ref, path);
4689 	list_add_tail(&ref->list, refs);
4690 	rb_add(&ref->node, root, rbtree_ref_less);
4691 	ref->root = root;
4692 out:
4693 	if (ret) {
4694 		if (path && (!ref || !ref->full_path))
4695 			fs_path_free(path);
4696 		recorded_ref_free(ref);
4697 	}
4698 	return ret;
4699 }
4700 
4701 static int record_new_ref_if_needed(int num, u64 dir, int index,
4702 				    struct fs_path *name, void *ctx)
4703 {
4704 	int ret = 0;
4705 	struct send_ctx *sctx = ctx;
4706 	struct rb_node *node = NULL;
4707 	struct recorded_ref data;
4708 	struct recorded_ref *ref;
4709 	u64 dir_gen;
4710 
4711 	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4712 	if (ret < 0)
4713 		goto out;
4714 
4715 	data.dir = dir;
4716 	data.dir_gen = dir_gen;
4717 	set_ref_path(&data, name);
4718 	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4719 	if (node) {
4720 		ref = rb_entry(node, struct recorded_ref, node);
4721 		recorded_ref_free(ref);
4722 	} else {
4723 		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4724 					 &sctx->new_refs, name, dir, dir_gen,
4725 					 sctx);
4726 	}
4727 out:
4728 	return ret;
4729 }
4730 
4731 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4732 					struct fs_path *name, void *ctx)
4733 {
4734 	int ret = 0;
4735 	struct send_ctx *sctx = ctx;
4736 	struct rb_node *node = NULL;
4737 	struct recorded_ref data;
4738 	struct recorded_ref *ref;
4739 	u64 dir_gen;
4740 
4741 	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4742 	if (ret < 0)
4743 		goto out;
4744 
4745 	data.dir = dir;
4746 	data.dir_gen = dir_gen;
4747 	set_ref_path(&data, name);
4748 	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4749 	if (node) {
4750 		ref = rb_entry(node, struct recorded_ref, node);
4751 		recorded_ref_free(ref);
4752 	} else {
4753 		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4754 					 &sctx->deleted_refs, name, dir,
4755 					 dir_gen, sctx);
4756 	}
4757 out:
4758 	return ret;
4759 }
4760 
4761 static int record_new_ref(struct send_ctx *sctx)
4762 {
4763 	int ret;
4764 
4765 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4766 				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4767 	if (ret < 0)
4768 		goto out;
4769 	ret = 0;
4770 
4771 out:
4772 	return ret;
4773 }
4774 
4775 static int record_deleted_ref(struct send_ctx *sctx)
4776 {
4777 	int ret;
4778 
4779 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4780 				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4781 				sctx);
4782 	if (ret < 0)
4783 		goto out;
4784 	ret = 0;
4785 
4786 out:
4787 	return ret;
4788 }
4789 
4790 static int record_changed_ref(struct send_ctx *sctx)
4791 {
4792 	int ret = 0;
4793 
4794 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4795 			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4796 	if (ret < 0)
4797 		goto out;
4798 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4799 			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4800 	if (ret < 0)
4801 		goto out;
4802 	ret = 0;
4803 
4804 out:
4805 	return ret;
4806 }
4807 
4808 /*
4809  * Record and process all refs at once. Needed when an inode changes the
4810  * generation number, which means that it was deleted and recreated.
4811  */
4812 static int process_all_refs(struct send_ctx *sctx,
4813 			    enum btrfs_compare_tree_result cmd)
4814 {
4815 	int ret = 0;
4816 	int iter_ret = 0;
4817 	struct btrfs_root *root;
4818 	struct btrfs_path *path;
4819 	struct btrfs_key key;
4820 	struct btrfs_key found_key;
4821 	iterate_inode_ref_t cb;
4822 	int pending_move = 0;
4823 
4824 	path = alloc_path_for_send();
4825 	if (!path)
4826 		return -ENOMEM;
4827 
4828 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4829 		root = sctx->send_root;
4830 		cb = record_new_ref_if_needed;
4831 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4832 		root = sctx->parent_root;
4833 		cb = record_deleted_ref_if_needed;
4834 	} else {
4835 		btrfs_err(sctx->send_root->fs_info,
4836 				"Wrong command %d in process_all_refs", cmd);
4837 		ret = -EINVAL;
4838 		goto out;
4839 	}
4840 
4841 	key.objectid = sctx->cmp_key->objectid;
4842 	key.type = BTRFS_INODE_REF_KEY;
4843 	key.offset = 0;
4844 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4845 		if (found_key.objectid != key.objectid ||
4846 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4847 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4848 			break;
4849 
4850 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4851 		if (ret < 0)
4852 			goto out;
4853 	}
4854 	/* Catch error found during iteration */
4855 	if (iter_ret < 0) {
4856 		ret = iter_ret;
4857 		goto out;
4858 	}
4859 	btrfs_release_path(path);
4860 
4861 	/*
4862 	 * We don't actually care about pending_move as we are simply
4863 	 * re-creating this inode and will be rename'ing it into place once we
4864 	 * rename the parent directory.
4865 	 */
4866 	ret = process_recorded_refs(sctx, &pending_move);
4867 out:
4868 	btrfs_free_path(path);
4869 	return ret;
4870 }
4871 
4872 static int send_set_xattr(struct send_ctx *sctx,
4873 			  struct fs_path *path,
4874 			  const char *name, int name_len,
4875 			  const char *data, int data_len)
4876 {
4877 	int ret = 0;
4878 
4879 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4880 	if (ret < 0)
4881 		goto out;
4882 
4883 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4884 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4885 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4886 
4887 	ret = send_cmd(sctx);
4888 
4889 tlv_put_failure:
4890 out:
4891 	return ret;
4892 }
4893 
4894 static int send_remove_xattr(struct send_ctx *sctx,
4895 			  struct fs_path *path,
4896 			  const char *name, int name_len)
4897 {
4898 	int ret = 0;
4899 
4900 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4901 	if (ret < 0)
4902 		goto out;
4903 
4904 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4905 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4906 
4907 	ret = send_cmd(sctx);
4908 
4909 tlv_put_failure:
4910 out:
4911 	return ret;
4912 }
4913 
4914 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4915 			       const char *name, int name_len, const char *data,
4916 			       int data_len, void *ctx)
4917 {
4918 	int ret;
4919 	struct send_ctx *sctx = ctx;
4920 	struct fs_path *p;
4921 	struct posix_acl_xattr_header dummy_acl;
4922 
4923 	/* Capabilities are emitted by finish_inode_if_needed */
4924 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4925 		return 0;
4926 
4927 	p = fs_path_alloc();
4928 	if (!p)
4929 		return -ENOMEM;
4930 
4931 	/*
4932 	 * This hack is needed because empty acls are stored as zero byte
4933 	 * data in xattrs. Problem with that is, that receiving these zero byte
4934 	 * acls will fail later. To fix this, we send a dummy acl list that
4935 	 * only contains the version number and no entries.
4936 	 */
4937 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4938 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4939 		if (data_len == 0) {
4940 			dummy_acl.a_version =
4941 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4942 			data = (char *)&dummy_acl;
4943 			data_len = sizeof(dummy_acl);
4944 		}
4945 	}
4946 
4947 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4948 	if (ret < 0)
4949 		goto out;
4950 
4951 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4952 
4953 out:
4954 	fs_path_free(p);
4955 	return ret;
4956 }
4957 
4958 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4959 				   const char *name, int name_len,
4960 				   const char *data, int data_len, void *ctx)
4961 {
4962 	int ret;
4963 	struct send_ctx *sctx = ctx;
4964 	struct fs_path *p;
4965 
4966 	p = fs_path_alloc();
4967 	if (!p)
4968 		return -ENOMEM;
4969 
4970 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4971 	if (ret < 0)
4972 		goto out;
4973 
4974 	ret = send_remove_xattr(sctx, p, name, name_len);
4975 
4976 out:
4977 	fs_path_free(p);
4978 	return ret;
4979 }
4980 
4981 static int process_new_xattr(struct send_ctx *sctx)
4982 {
4983 	int ret = 0;
4984 
4985 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4986 			       __process_new_xattr, sctx);
4987 
4988 	return ret;
4989 }
4990 
4991 static int process_deleted_xattr(struct send_ctx *sctx)
4992 {
4993 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4994 				__process_deleted_xattr, sctx);
4995 }
4996 
4997 struct find_xattr_ctx {
4998 	const char *name;
4999 	int name_len;
5000 	int found_idx;
5001 	char *found_data;
5002 	int found_data_len;
5003 };
5004 
5005 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5006 			int name_len, const char *data, int data_len, void *vctx)
5007 {
5008 	struct find_xattr_ctx *ctx = vctx;
5009 
5010 	if (name_len == ctx->name_len &&
5011 	    strncmp(name, ctx->name, name_len) == 0) {
5012 		ctx->found_idx = num;
5013 		ctx->found_data_len = data_len;
5014 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5015 		if (!ctx->found_data)
5016 			return -ENOMEM;
5017 		return 1;
5018 	}
5019 	return 0;
5020 }
5021 
5022 static int find_xattr(struct btrfs_root *root,
5023 		      struct btrfs_path *path,
5024 		      struct btrfs_key *key,
5025 		      const char *name, int name_len,
5026 		      char **data, int *data_len)
5027 {
5028 	int ret;
5029 	struct find_xattr_ctx ctx;
5030 
5031 	ctx.name = name;
5032 	ctx.name_len = name_len;
5033 	ctx.found_idx = -1;
5034 	ctx.found_data = NULL;
5035 	ctx.found_data_len = 0;
5036 
5037 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5038 	if (ret < 0)
5039 		return ret;
5040 
5041 	if (ctx.found_idx == -1)
5042 		return -ENOENT;
5043 	if (data) {
5044 		*data = ctx.found_data;
5045 		*data_len = ctx.found_data_len;
5046 	} else {
5047 		kfree(ctx.found_data);
5048 	}
5049 	return ctx.found_idx;
5050 }
5051 
5052 
5053 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5054 				       const char *name, int name_len,
5055 				       const char *data, int data_len,
5056 				       void *ctx)
5057 {
5058 	int ret;
5059 	struct send_ctx *sctx = ctx;
5060 	char *found_data = NULL;
5061 	int found_data_len  = 0;
5062 
5063 	ret = find_xattr(sctx->parent_root, sctx->right_path,
5064 			 sctx->cmp_key, name, name_len, &found_data,
5065 			 &found_data_len);
5066 	if (ret == -ENOENT) {
5067 		ret = __process_new_xattr(num, di_key, name, name_len, data,
5068 					  data_len, ctx);
5069 	} else if (ret >= 0) {
5070 		if (data_len != found_data_len ||
5071 		    memcmp(data, found_data, data_len)) {
5072 			ret = __process_new_xattr(num, di_key, name, name_len,
5073 						  data, data_len, ctx);
5074 		} else {
5075 			ret = 0;
5076 		}
5077 	}
5078 
5079 	kfree(found_data);
5080 	return ret;
5081 }
5082 
5083 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5084 					   const char *name, int name_len,
5085 					   const char *data, int data_len,
5086 					   void *ctx)
5087 {
5088 	int ret;
5089 	struct send_ctx *sctx = ctx;
5090 
5091 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5092 			 name, name_len, NULL, NULL);
5093 	if (ret == -ENOENT)
5094 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5095 					      data_len, ctx);
5096 	else if (ret >= 0)
5097 		ret = 0;
5098 
5099 	return ret;
5100 }
5101 
5102 static int process_changed_xattr(struct send_ctx *sctx)
5103 {
5104 	int ret = 0;
5105 
5106 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5107 			__process_changed_new_xattr, sctx);
5108 	if (ret < 0)
5109 		goto out;
5110 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5111 			__process_changed_deleted_xattr, sctx);
5112 
5113 out:
5114 	return ret;
5115 }
5116 
5117 static int process_all_new_xattrs(struct send_ctx *sctx)
5118 {
5119 	int ret = 0;
5120 	int iter_ret = 0;
5121 	struct btrfs_root *root;
5122 	struct btrfs_path *path;
5123 	struct btrfs_key key;
5124 	struct btrfs_key found_key;
5125 
5126 	path = alloc_path_for_send();
5127 	if (!path)
5128 		return -ENOMEM;
5129 
5130 	root = sctx->send_root;
5131 
5132 	key.objectid = sctx->cmp_key->objectid;
5133 	key.type = BTRFS_XATTR_ITEM_KEY;
5134 	key.offset = 0;
5135 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5136 		if (found_key.objectid != key.objectid ||
5137 		    found_key.type != key.type) {
5138 			ret = 0;
5139 			break;
5140 		}
5141 
5142 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5143 		if (ret < 0)
5144 			break;
5145 	}
5146 	/* Catch error found during iteration */
5147 	if (iter_ret < 0)
5148 		ret = iter_ret;
5149 
5150 	btrfs_free_path(path);
5151 	return ret;
5152 }
5153 
5154 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5155 		       struct fsverity_descriptor *desc)
5156 {
5157 	int ret;
5158 
5159 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5160 	if (ret < 0)
5161 		goto out;
5162 
5163 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5164 	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5165 			le8_to_cpu(desc->hash_algorithm));
5166 	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5167 			1U << le8_to_cpu(desc->log_blocksize));
5168 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5169 			le8_to_cpu(desc->salt_size));
5170 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5171 			le32_to_cpu(desc->sig_size));
5172 
5173 	ret = send_cmd(sctx);
5174 
5175 tlv_put_failure:
5176 out:
5177 	return ret;
5178 }
5179 
5180 static int process_verity(struct send_ctx *sctx)
5181 {
5182 	int ret = 0;
5183 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5184 	struct inode *inode;
5185 	struct fs_path *p;
5186 
5187 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5188 	if (IS_ERR(inode))
5189 		return PTR_ERR(inode);
5190 
5191 	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5192 	if (ret < 0)
5193 		goto iput;
5194 
5195 	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5196 		ret = -EMSGSIZE;
5197 		goto iput;
5198 	}
5199 	if (!sctx->verity_descriptor) {
5200 		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5201 						   GFP_KERNEL);
5202 		if (!sctx->verity_descriptor) {
5203 			ret = -ENOMEM;
5204 			goto iput;
5205 		}
5206 	}
5207 
5208 	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5209 	if (ret < 0)
5210 		goto iput;
5211 
5212 	p = fs_path_alloc();
5213 	if (!p) {
5214 		ret = -ENOMEM;
5215 		goto iput;
5216 	}
5217 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5218 	if (ret < 0)
5219 		goto free_path;
5220 
5221 	ret = send_verity(sctx, p, sctx->verity_descriptor);
5222 	if (ret < 0)
5223 		goto free_path;
5224 
5225 free_path:
5226 	fs_path_free(p);
5227 iput:
5228 	iput(inode);
5229 	return ret;
5230 }
5231 
5232 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5233 {
5234 	return sctx->send_max_size - SZ_16K;
5235 }
5236 
5237 static int put_data_header(struct send_ctx *sctx, u32 len)
5238 {
5239 	if (WARN_ON_ONCE(sctx->put_data))
5240 		return -EINVAL;
5241 	sctx->put_data = true;
5242 	if (sctx->proto >= 2) {
5243 		/*
5244 		 * Since v2, the data attribute header doesn't include a length,
5245 		 * it is implicitly to the end of the command.
5246 		 */
5247 		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5248 			return -EOVERFLOW;
5249 		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5250 		sctx->send_size += sizeof(__le16);
5251 	} else {
5252 		struct btrfs_tlv_header *hdr;
5253 
5254 		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5255 			return -EOVERFLOW;
5256 		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5257 		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5258 		put_unaligned_le16(len, &hdr->tlv_len);
5259 		sctx->send_size += sizeof(*hdr);
5260 	}
5261 	return 0;
5262 }
5263 
5264 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5265 {
5266 	struct btrfs_root *root = sctx->send_root;
5267 	struct btrfs_fs_info *fs_info = root->fs_info;
5268 	struct page *page;
5269 	pgoff_t index = offset >> PAGE_SHIFT;
5270 	pgoff_t last_index;
5271 	unsigned pg_offset = offset_in_page(offset);
5272 	int ret;
5273 
5274 	ret = put_data_header(sctx, len);
5275 	if (ret)
5276 		return ret;
5277 
5278 	last_index = (offset + len - 1) >> PAGE_SHIFT;
5279 
5280 	while (index <= last_index) {
5281 		unsigned cur_len = min_t(unsigned, len,
5282 					 PAGE_SIZE - pg_offset);
5283 
5284 		page = find_lock_page(sctx->cur_inode->i_mapping, index);
5285 		if (!page) {
5286 			page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5287 						  &sctx->ra, NULL, index,
5288 						  last_index + 1 - index);
5289 
5290 			page = find_or_create_page(sctx->cur_inode->i_mapping,
5291 						   index, GFP_KERNEL);
5292 			if (!page) {
5293 				ret = -ENOMEM;
5294 				break;
5295 			}
5296 		}
5297 
5298 		if (PageReadahead(page))
5299 			page_cache_async_readahead(sctx->cur_inode->i_mapping,
5300 						   &sctx->ra, NULL, page_folio(page),
5301 						   index, last_index + 1 - index);
5302 
5303 		if (!PageUptodate(page)) {
5304 			btrfs_read_folio(NULL, page_folio(page));
5305 			lock_page(page);
5306 			if (!PageUptodate(page)) {
5307 				unlock_page(page);
5308 				btrfs_err(fs_info,
5309 			"send: IO error at offset %llu for inode %llu root %llu",
5310 					page_offset(page), sctx->cur_ino,
5311 					sctx->send_root->root_key.objectid);
5312 				put_page(page);
5313 				ret = -EIO;
5314 				break;
5315 			}
5316 		}
5317 
5318 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5319 				 pg_offset, cur_len);
5320 		unlock_page(page);
5321 		put_page(page);
5322 		index++;
5323 		pg_offset = 0;
5324 		len -= cur_len;
5325 		sctx->send_size += cur_len;
5326 	}
5327 
5328 	return ret;
5329 }
5330 
5331 /*
5332  * Read some bytes from the current inode/file and send a write command to
5333  * user space.
5334  */
5335 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5336 {
5337 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5338 	int ret = 0;
5339 	struct fs_path *p;
5340 
5341 	p = fs_path_alloc();
5342 	if (!p)
5343 		return -ENOMEM;
5344 
5345 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5346 
5347 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5348 	if (ret < 0)
5349 		goto out;
5350 
5351 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5352 	if (ret < 0)
5353 		goto out;
5354 
5355 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5356 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5357 	ret = put_file_data(sctx, offset, len);
5358 	if (ret < 0)
5359 		goto out;
5360 
5361 	ret = send_cmd(sctx);
5362 
5363 tlv_put_failure:
5364 out:
5365 	fs_path_free(p);
5366 	return ret;
5367 }
5368 
5369 /*
5370  * Send a clone command to user space.
5371  */
5372 static int send_clone(struct send_ctx *sctx,
5373 		      u64 offset, u32 len,
5374 		      struct clone_root *clone_root)
5375 {
5376 	int ret = 0;
5377 	struct fs_path *p;
5378 	u64 gen;
5379 
5380 	btrfs_debug(sctx->send_root->fs_info,
5381 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5382 		    offset, len, clone_root->root->root_key.objectid,
5383 		    clone_root->ino, clone_root->offset);
5384 
5385 	p = fs_path_alloc();
5386 	if (!p)
5387 		return -ENOMEM;
5388 
5389 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5390 	if (ret < 0)
5391 		goto out;
5392 
5393 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5394 	if (ret < 0)
5395 		goto out;
5396 
5397 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5398 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5399 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5400 
5401 	if (clone_root->root == sctx->send_root) {
5402 		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5403 		if (ret < 0)
5404 			goto out;
5405 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5406 	} else {
5407 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5408 	}
5409 	if (ret < 0)
5410 		goto out;
5411 
5412 	/*
5413 	 * If the parent we're using has a received_uuid set then use that as
5414 	 * our clone source as that is what we will look for when doing a
5415 	 * receive.
5416 	 *
5417 	 * This covers the case that we create a snapshot off of a received
5418 	 * subvolume and then use that as the parent and try to receive on a
5419 	 * different host.
5420 	 */
5421 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5422 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5423 			     clone_root->root->root_item.received_uuid);
5424 	else
5425 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5426 			     clone_root->root->root_item.uuid);
5427 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5428 		    btrfs_root_ctransid(&clone_root->root->root_item));
5429 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5430 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5431 			clone_root->offset);
5432 
5433 	ret = send_cmd(sctx);
5434 
5435 tlv_put_failure:
5436 out:
5437 	fs_path_free(p);
5438 	return ret;
5439 }
5440 
5441 /*
5442  * Send an update extent command to user space.
5443  */
5444 static int send_update_extent(struct send_ctx *sctx,
5445 			      u64 offset, u32 len)
5446 {
5447 	int ret = 0;
5448 	struct fs_path *p;
5449 
5450 	p = fs_path_alloc();
5451 	if (!p)
5452 		return -ENOMEM;
5453 
5454 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5455 	if (ret < 0)
5456 		goto out;
5457 
5458 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5459 	if (ret < 0)
5460 		goto out;
5461 
5462 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5463 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5464 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5465 
5466 	ret = send_cmd(sctx);
5467 
5468 tlv_put_failure:
5469 out:
5470 	fs_path_free(p);
5471 	return ret;
5472 }
5473 
5474 static int send_hole(struct send_ctx *sctx, u64 end)
5475 {
5476 	struct fs_path *p = NULL;
5477 	u64 read_size = max_send_read_size(sctx);
5478 	u64 offset = sctx->cur_inode_last_extent;
5479 	int ret = 0;
5480 
5481 	/*
5482 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5483 	 * fallocate (for extent preallocation and hole punching), sending a
5484 	 * write of zeroes starting at EOF or beyond would later require issuing
5485 	 * a truncate operation which would undo the write and achieve nothing.
5486 	 */
5487 	if (offset >= sctx->cur_inode_size)
5488 		return 0;
5489 
5490 	/*
5491 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5492 	 * after the i_size.
5493 	 */
5494 	end = min_t(u64, end, sctx->cur_inode_size);
5495 
5496 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5497 		return send_update_extent(sctx, offset, end - offset);
5498 
5499 	p = fs_path_alloc();
5500 	if (!p)
5501 		return -ENOMEM;
5502 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5503 	if (ret < 0)
5504 		goto tlv_put_failure;
5505 	while (offset < end) {
5506 		u64 len = min(end - offset, read_size);
5507 
5508 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5509 		if (ret < 0)
5510 			break;
5511 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5512 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5513 		ret = put_data_header(sctx, len);
5514 		if (ret < 0)
5515 			break;
5516 		memset(sctx->send_buf + sctx->send_size, 0, len);
5517 		sctx->send_size += len;
5518 		ret = send_cmd(sctx);
5519 		if (ret < 0)
5520 			break;
5521 		offset += len;
5522 	}
5523 	sctx->cur_inode_next_write_offset = offset;
5524 tlv_put_failure:
5525 	fs_path_free(p);
5526 	return ret;
5527 }
5528 
5529 static int send_encoded_inline_extent(struct send_ctx *sctx,
5530 				      struct btrfs_path *path, u64 offset,
5531 				      u64 len)
5532 {
5533 	struct btrfs_root *root = sctx->send_root;
5534 	struct btrfs_fs_info *fs_info = root->fs_info;
5535 	struct inode *inode;
5536 	struct fs_path *fspath;
5537 	struct extent_buffer *leaf = path->nodes[0];
5538 	struct btrfs_key key;
5539 	struct btrfs_file_extent_item *ei;
5540 	u64 ram_bytes;
5541 	size_t inline_size;
5542 	int ret;
5543 
5544 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5545 	if (IS_ERR(inode))
5546 		return PTR_ERR(inode);
5547 
5548 	fspath = fs_path_alloc();
5549 	if (!fspath) {
5550 		ret = -ENOMEM;
5551 		goto out;
5552 	}
5553 
5554 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5555 	if (ret < 0)
5556 		goto out;
5557 
5558 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5559 	if (ret < 0)
5560 		goto out;
5561 
5562 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5563 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5564 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5565 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5566 
5567 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5568 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5569 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5570 		    min(key.offset + ram_bytes - offset, len));
5571 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5572 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5573 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5574 				btrfs_file_extent_compression(leaf, ei));
5575 	if (ret < 0)
5576 		goto out;
5577 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5578 
5579 	ret = put_data_header(sctx, inline_size);
5580 	if (ret < 0)
5581 		goto out;
5582 	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5583 			   btrfs_file_extent_inline_start(ei), inline_size);
5584 	sctx->send_size += inline_size;
5585 
5586 	ret = send_cmd(sctx);
5587 
5588 tlv_put_failure:
5589 out:
5590 	fs_path_free(fspath);
5591 	iput(inode);
5592 	return ret;
5593 }
5594 
5595 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5596 			       u64 offset, u64 len)
5597 {
5598 	struct btrfs_root *root = sctx->send_root;
5599 	struct btrfs_fs_info *fs_info = root->fs_info;
5600 	struct inode *inode;
5601 	struct fs_path *fspath;
5602 	struct extent_buffer *leaf = path->nodes[0];
5603 	struct btrfs_key key;
5604 	struct btrfs_file_extent_item *ei;
5605 	u64 disk_bytenr, disk_num_bytes;
5606 	u32 data_offset;
5607 	struct btrfs_cmd_header *hdr;
5608 	u32 crc;
5609 	int ret;
5610 
5611 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5612 	if (IS_ERR(inode))
5613 		return PTR_ERR(inode);
5614 
5615 	fspath = fs_path_alloc();
5616 	if (!fspath) {
5617 		ret = -ENOMEM;
5618 		goto out;
5619 	}
5620 
5621 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5622 	if (ret < 0)
5623 		goto out;
5624 
5625 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5626 	if (ret < 0)
5627 		goto out;
5628 
5629 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5630 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5631 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5632 	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5633 
5634 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5635 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5636 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5637 		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5638 			len));
5639 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5640 		    btrfs_file_extent_ram_bytes(leaf, ei));
5641 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5642 		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5643 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5644 				btrfs_file_extent_compression(leaf, ei));
5645 	if (ret < 0)
5646 		goto out;
5647 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5648 	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5649 
5650 	ret = put_data_header(sctx, disk_num_bytes);
5651 	if (ret < 0)
5652 		goto out;
5653 
5654 	/*
5655 	 * We want to do I/O directly into the send buffer, so get the next page
5656 	 * boundary in the send buffer. This means that there may be a gap
5657 	 * between the beginning of the command and the file data.
5658 	 */
5659 	data_offset = PAGE_ALIGN(sctx->send_size);
5660 	if (data_offset > sctx->send_max_size ||
5661 	    sctx->send_max_size - data_offset < disk_num_bytes) {
5662 		ret = -EOVERFLOW;
5663 		goto out;
5664 	}
5665 
5666 	/*
5667 	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5668 	 * reading into send_buf.
5669 	 */
5670 	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5671 						    disk_bytenr, disk_num_bytes,
5672 						    sctx->send_buf_pages +
5673 						    (data_offset >> PAGE_SHIFT));
5674 	if (ret)
5675 		goto out;
5676 
5677 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5678 	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5679 	hdr->crc = 0;
5680 	crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5681 	crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5682 	hdr->crc = cpu_to_le32(crc);
5683 
5684 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5685 			&sctx->send_off);
5686 	if (!ret) {
5687 		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5688 				disk_num_bytes, &sctx->send_off);
5689 	}
5690 	sctx->send_size = 0;
5691 	sctx->put_data = false;
5692 
5693 tlv_put_failure:
5694 out:
5695 	fs_path_free(fspath);
5696 	iput(inode);
5697 	return ret;
5698 }
5699 
5700 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5701 			    const u64 offset, const u64 len)
5702 {
5703 	const u64 end = offset + len;
5704 	struct extent_buffer *leaf = path->nodes[0];
5705 	struct btrfs_file_extent_item *ei;
5706 	u64 read_size = max_send_read_size(sctx);
5707 	u64 sent = 0;
5708 
5709 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5710 		return send_update_extent(sctx, offset, len);
5711 
5712 	ei = btrfs_item_ptr(leaf, path->slots[0],
5713 			    struct btrfs_file_extent_item);
5714 	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5715 	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5716 		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5717 				  BTRFS_FILE_EXTENT_INLINE);
5718 
5719 		/*
5720 		 * Send the compressed extent unless the compressed data is
5721 		 * larger than the decompressed data. This can happen if we're
5722 		 * not sending the entire extent, either because it has been
5723 		 * partially overwritten/truncated or because this is a part of
5724 		 * the extent that we couldn't clone in clone_range().
5725 		 */
5726 		if (is_inline &&
5727 		    btrfs_file_extent_inline_item_len(leaf,
5728 						      path->slots[0]) <= len) {
5729 			return send_encoded_inline_extent(sctx, path, offset,
5730 							  len);
5731 		} else if (!is_inline &&
5732 			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5733 			return send_encoded_extent(sctx, path, offset, len);
5734 		}
5735 	}
5736 
5737 	if (sctx->cur_inode == NULL) {
5738 		struct btrfs_root *root = sctx->send_root;
5739 
5740 		sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5741 		if (IS_ERR(sctx->cur_inode)) {
5742 			int err = PTR_ERR(sctx->cur_inode);
5743 
5744 			sctx->cur_inode = NULL;
5745 			return err;
5746 		}
5747 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5748 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5749 
5750 		/*
5751 		 * It's very likely there are no pages from this inode in the page
5752 		 * cache, so after reading extents and sending their data, we clean
5753 		 * the page cache to avoid trashing the page cache (adding pressure
5754 		 * to the page cache and forcing eviction of other data more useful
5755 		 * for applications).
5756 		 *
5757 		 * We decide if we should clean the page cache simply by checking
5758 		 * if the inode's mapping nrpages is 0 when we first open it, and
5759 		 * not by using something like filemap_range_has_page() before
5760 		 * reading an extent because when we ask the readahead code to
5761 		 * read a given file range, it may (and almost always does) read
5762 		 * pages from beyond that range (see the documentation for
5763 		 * page_cache_sync_readahead()), so it would not be reliable,
5764 		 * because after reading the first extent future calls to
5765 		 * filemap_range_has_page() would return true because the readahead
5766 		 * on the previous extent resulted in reading pages of the current
5767 		 * extent as well.
5768 		 */
5769 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5770 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5771 	}
5772 
5773 	while (sent < len) {
5774 		u64 size = min(len - sent, read_size);
5775 		int ret;
5776 
5777 		ret = send_write(sctx, offset + sent, size);
5778 		if (ret < 0)
5779 			return ret;
5780 		sent += size;
5781 	}
5782 
5783 	if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5784 		/*
5785 		 * Always operate only on ranges that are a multiple of the page
5786 		 * size. This is not only to prevent zeroing parts of a page in
5787 		 * the case of subpage sector size, but also to guarantee we evict
5788 		 * pages, as passing a range that is smaller than page size does
5789 		 * not evict the respective page (only zeroes part of its content).
5790 		 *
5791 		 * Always start from the end offset of the last range cleared.
5792 		 * This is because the readahead code may (and very often does)
5793 		 * reads pages beyond the range we request for readahead. So if
5794 		 * we have an extent layout like this:
5795 		 *
5796 		 *            [ extent A ] [ extent B ] [ extent C ]
5797 		 *
5798 		 * When we ask page_cache_sync_readahead() to read extent A, it
5799 		 * may also trigger reads for pages of extent B. If we are doing
5800 		 * an incremental send and extent B has not changed between the
5801 		 * parent and send snapshots, some or all of its pages may end
5802 		 * up being read and placed in the page cache. So when truncating
5803 		 * the page cache we always start from the end offset of the
5804 		 * previously processed extent up to the end of the current
5805 		 * extent.
5806 		 */
5807 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5808 					   sctx->page_cache_clear_start,
5809 					   end - 1);
5810 		sctx->page_cache_clear_start = end;
5811 	}
5812 
5813 	return 0;
5814 }
5815 
5816 /*
5817  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5818  * found, call send_set_xattr function to emit it.
5819  *
5820  * Return 0 if there isn't a capability, or when the capability was emitted
5821  * successfully, or < 0 if an error occurred.
5822  */
5823 static int send_capabilities(struct send_ctx *sctx)
5824 {
5825 	struct fs_path *fspath = NULL;
5826 	struct btrfs_path *path;
5827 	struct btrfs_dir_item *di;
5828 	struct extent_buffer *leaf;
5829 	unsigned long data_ptr;
5830 	char *buf = NULL;
5831 	int buf_len;
5832 	int ret = 0;
5833 
5834 	path = alloc_path_for_send();
5835 	if (!path)
5836 		return -ENOMEM;
5837 
5838 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5839 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5840 	if (!di) {
5841 		/* There is no xattr for this inode */
5842 		goto out;
5843 	} else if (IS_ERR(di)) {
5844 		ret = PTR_ERR(di);
5845 		goto out;
5846 	}
5847 
5848 	leaf = path->nodes[0];
5849 	buf_len = btrfs_dir_data_len(leaf, di);
5850 
5851 	fspath = fs_path_alloc();
5852 	buf = kmalloc(buf_len, GFP_KERNEL);
5853 	if (!fspath || !buf) {
5854 		ret = -ENOMEM;
5855 		goto out;
5856 	}
5857 
5858 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5859 	if (ret < 0)
5860 		goto out;
5861 
5862 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5863 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5864 
5865 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5866 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5867 out:
5868 	kfree(buf);
5869 	fs_path_free(fspath);
5870 	btrfs_free_path(path);
5871 	return ret;
5872 }
5873 
5874 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5875 		       struct clone_root *clone_root, const u64 disk_byte,
5876 		       u64 data_offset, u64 offset, u64 len)
5877 {
5878 	struct btrfs_path *path;
5879 	struct btrfs_key key;
5880 	int ret;
5881 	struct btrfs_inode_info info;
5882 	u64 clone_src_i_size = 0;
5883 
5884 	/*
5885 	 * Prevent cloning from a zero offset with a length matching the sector
5886 	 * size because in some scenarios this will make the receiver fail.
5887 	 *
5888 	 * For example, if in the source filesystem the extent at offset 0
5889 	 * has a length of sectorsize and it was written using direct IO, then
5890 	 * it can never be an inline extent (even if compression is enabled).
5891 	 * Then this extent can be cloned in the original filesystem to a non
5892 	 * zero file offset, but it may not be possible to clone in the
5893 	 * destination filesystem because it can be inlined due to compression
5894 	 * on the destination filesystem (as the receiver's write operations are
5895 	 * always done using buffered IO). The same happens when the original
5896 	 * filesystem does not have compression enabled but the destination
5897 	 * filesystem has.
5898 	 */
5899 	if (clone_root->offset == 0 &&
5900 	    len == sctx->send_root->fs_info->sectorsize)
5901 		return send_extent_data(sctx, dst_path, offset, len);
5902 
5903 	path = alloc_path_for_send();
5904 	if (!path)
5905 		return -ENOMEM;
5906 
5907 	/*
5908 	 * There are inodes that have extents that lie behind its i_size. Don't
5909 	 * accept clones from these extents.
5910 	 */
5911 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5912 	btrfs_release_path(path);
5913 	if (ret < 0)
5914 		goto out;
5915 	clone_src_i_size = info.size;
5916 
5917 	/*
5918 	 * We can't send a clone operation for the entire range if we find
5919 	 * extent items in the respective range in the source file that
5920 	 * refer to different extents or if we find holes.
5921 	 * So check for that and do a mix of clone and regular write/copy
5922 	 * operations if needed.
5923 	 *
5924 	 * Example:
5925 	 *
5926 	 * mkfs.btrfs -f /dev/sda
5927 	 * mount /dev/sda /mnt
5928 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5929 	 * cp --reflink=always /mnt/foo /mnt/bar
5930 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5931 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5932 	 *
5933 	 * If when we send the snapshot and we are processing file bar (which
5934 	 * has a higher inode number than foo) we blindly send a clone operation
5935 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5936 	 * a file bar that matches the content of file foo - iow, doesn't match
5937 	 * the content from bar in the original filesystem.
5938 	 */
5939 	key.objectid = clone_root->ino;
5940 	key.type = BTRFS_EXTENT_DATA_KEY;
5941 	key.offset = clone_root->offset;
5942 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5943 	if (ret < 0)
5944 		goto out;
5945 	if (ret > 0 && path->slots[0] > 0) {
5946 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5947 		if (key.objectid == clone_root->ino &&
5948 		    key.type == BTRFS_EXTENT_DATA_KEY)
5949 			path->slots[0]--;
5950 	}
5951 
5952 	while (true) {
5953 		struct extent_buffer *leaf = path->nodes[0];
5954 		int slot = path->slots[0];
5955 		struct btrfs_file_extent_item *ei;
5956 		u8 type;
5957 		u64 ext_len;
5958 		u64 clone_len;
5959 		u64 clone_data_offset;
5960 		bool crossed_src_i_size = false;
5961 
5962 		if (slot >= btrfs_header_nritems(leaf)) {
5963 			ret = btrfs_next_leaf(clone_root->root, path);
5964 			if (ret < 0)
5965 				goto out;
5966 			else if (ret > 0)
5967 				break;
5968 			continue;
5969 		}
5970 
5971 		btrfs_item_key_to_cpu(leaf, &key, slot);
5972 
5973 		/*
5974 		 * We might have an implicit trailing hole (NO_HOLES feature
5975 		 * enabled). We deal with it after leaving this loop.
5976 		 */
5977 		if (key.objectid != clone_root->ino ||
5978 		    key.type != BTRFS_EXTENT_DATA_KEY)
5979 			break;
5980 
5981 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5982 		type = btrfs_file_extent_type(leaf, ei);
5983 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5984 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5985 			ext_len = PAGE_ALIGN(ext_len);
5986 		} else {
5987 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5988 		}
5989 
5990 		if (key.offset + ext_len <= clone_root->offset)
5991 			goto next;
5992 
5993 		if (key.offset > clone_root->offset) {
5994 			/* Implicit hole, NO_HOLES feature enabled. */
5995 			u64 hole_len = key.offset - clone_root->offset;
5996 
5997 			if (hole_len > len)
5998 				hole_len = len;
5999 			ret = send_extent_data(sctx, dst_path, offset,
6000 					       hole_len);
6001 			if (ret < 0)
6002 				goto out;
6003 
6004 			len -= hole_len;
6005 			if (len == 0)
6006 				break;
6007 			offset += hole_len;
6008 			clone_root->offset += hole_len;
6009 			data_offset += hole_len;
6010 		}
6011 
6012 		if (key.offset >= clone_root->offset + len)
6013 			break;
6014 
6015 		if (key.offset >= clone_src_i_size)
6016 			break;
6017 
6018 		if (key.offset + ext_len > clone_src_i_size) {
6019 			ext_len = clone_src_i_size - key.offset;
6020 			crossed_src_i_size = true;
6021 		}
6022 
6023 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6024 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6025 			clone_root->offset = key.offset;
6026 			if (clone_data_offset < data_offset &&
6027 				clone_data_offset + ext_len > data_offset) {
6028 				u64 extent_offset;
6029 
6030 				extent_offset = data_offset - clone_data_offset;
6031 				ext_len -= extent_offset;
6032 				clone_data_offset += extent_offset;
6033 				clone_root->offset += extent_offset;
6034 			}
6035 		}
6036 
6037 		clone_len = min_t(u64, ext_len, len);
6038 
6039 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6040 		    clone_data_offset == data_offset) {
6041 			const u64 src_end = clone_root->offset + clone_len;
6042 			const u64 sectorsize = SZ_64K;
6043 
6044 			/*
6045 			 * We can't clone the last block, when its size is not
6046 			 * sector size aligned, into the middle of a file. If we
6047 			 * do so, the receiver will get a failure (-EINVAL) when
6048 			 * trying to clone or will silently corrupt the data in
6049 			 * the destination file if it's on a kernel without the
6050 			 * fix introduced by commit ac765f83f1397646
6051 			 * ("Btrfs: fix data corruption due to cloning of eof
6052 			 * block).
6053 			 *
6054 			 * So issue a clone of the aligned down range plus a
6055 			 * regular write for the eof block, if we hit that case.
6056 			 *
6057 			 * Also, we use the maximum possible sector size, 64K,
6058 			 * because we don't know what's the sector size of the
6059 			 * filesystem that receives the stream, so we have to
6060 			 * assume the largest possible sector size.
6061 			 */
6062 			if (src_end == clone_src_i_size &&
6063 			    !IS_ALIGNED(src_end, sectorsize) &&
6064 			    offset + clone_len < sctx->cur_inode_size) {
6065 				u64 slen;
6066 
6067 				slen = ALIGN_DOWN(src_end - clone_root->offset,
6068 						  sectorsize);
6069 				if (slen > 0) {
6070 					ret = send_clone(sctx, offset, slen,
6071 							 clone_root);
6072 					if (ret < 0)
6073 						goto out;
6074 				}
6075 				ret = send_extent_data(sctx, dst_path,
6076 						       offset + slen,
6077 						       clone_len - slen);
6078 			} else {
6079 				ret = send_clone(sctx, offset, clone_len,
6080 						 clone_root);
6081 			}
6082 		} else if (crossed_src_i_size && clone_len < len) {
6083 			/*
6084 			 * If we are at i_size of the clone source inode and we
6085 			 * can not clone from it, terminate the loop. This is
6086 			 * to avoid sending two write operations, one with a
6087 			 * length matching clone_len and the final one after
6088 			 * this loop with a length of len - clone_len.
6089 			 *
6090 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6091 			 * was passed to the send ioctl), this helps avoid
6092 			 * sending an encoded write for an offset that is not
6093 			 * sector size aligned, in case the i_size of the source
6094 			 * inode is not sector size aligned. That will make the
6095 			 * receiver fallback to decompression of the data and
6096 			 * writing it using regular buffered IO, therefore while
6097 			 * not incorrect, it's not optimal due decompression and
6098 			 * possible re-compression at the receiver.
6099 			 */
6100 			break;
6101 		} else {
6102 			ret = send_extent_data(sctx, dst_path, offset,
6103 					       clone_len);
6104 		}
6105 
6106 		if (ret < 0)
6107 			goto out;
6108 
6109 		len -= clone_len;
6110 		if (len == 0)
6111 			break;
6112 		offset += clone_len;
6113 		clone_root->offset += clone_len;
6114 
6115 		/*
6116 		 * If we are cloning from the file we are currently processing,
6117 		 * and using the send root as the clone root, we must stop once
6118 		 * the current clone offset reaches the current eof of the file
6119 		 * at the receiver, otherwise we would issue an invalid clone
6120 		 * operation (source range going beyond eof) and cause the
6121 		 * receiver to fail. So if we reach the current eof, bail out
6122 		 * and fallback to a regular write.
6123 		 */
6124 		if (clone_root->root == sctx->send_root &&
6125 		    clone_root->ino == sctx->cur_ino &&
6126 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6127 			break;
6128 
6129 		data_offset += clone_len;
6130 next:
6131 		path->slots[0]++;
6132 	}
6133 
6134 	if (len > 0)
6135 		ret = send_extent_data(sctx, dst_path, offset, len);
6136 	else
6137 		ret = 0;
6138 out:
6139 	btrfs_free_path(path);
6140 	return ret;
6141 }
6142 
6143 static int send_write_or_clone(struct send_ctx *sctx,
6144 			       struct btrfs_path *path,
6145 			       struct btrfs_key *key,
6146 			       struct clone_root *clone_root)
6147 {
6148 	int ret = 0;
6149 	u64 offset = key->offset;
6150 	u64 end;
6151 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
6152 
6153 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6154 	if (offset >= end)
6155 		return 0;
6156 
6157 	if (clone_root && IS_ALIGNED(end, bs)) {
6158 		struct btrfs_file_extent_item *ei;
6159 		u64 disk_byte;
6160 		u64 data_offset;
6161 
6162 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6163 				    struct btrfs_file_extent_item);
6164 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6165 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6166 		ret = clone_range(sctx, path, clone_root, disk_byte,
6167 				  data_offset, offset, end - offset);
6168 	} else {
6169 		ret = send_extent_data(sctx, path, offset, end - offset);
6170 	}
6171 	sctx->cur_inode_next_write_offset = end;
6172 	return ret;
6173 }
6174 
6175 static int is_extent_unchanged(struct send_ctx *sctx,
6176 			       struct btrfs_path *left_path,
6177 			       struct btrfs_key *ekey)
6178 {
6179 	int ret = 0;
6180 	struct btrfs_key key;
6181 	struct btrfs_path *path = NULL;
6182 	struct extent_buffer *eb;
6183 	int slot;
6184 	struct btrfs_key found_key;
6185 	struct btrfs_file_extent_item *ei;
6186 	u64 left_disknr;
6187 	u64 right_disknr;
6188 	u64 left_offset;
6189 	u64 right_offset;
6190 	u64 left_offset_fixed;
6191 	u64 left_len;
6192 	u64 right_len;
6193 	u64 left_gen;
6194 	u64 right_gen;
6195 	u8 left_type;
6196 	u8 right_type;
6197 
6198 	path = alloc_path_for_send();
6199 	if (!path)
6200 		return -ENOMEM;
6201 
6202 	eb = left_path->nodes[0];
6203 	slot = left_path->slots[0];
6204 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6205 	left_type = btrfs_file_extent_type(eb, ei);
6206 
6207 	if (left_type != BTRFS_FILE_EXTENT_REG) {
6208 		ret = 0;
6209 		goto out;
6210 	}
6211 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6212 	left_len = btrfs_file_extent_num_bytes(eb, ei);
6213 	left_offset = btrfs_file_extent_offset(eb, ei);
6214 	left_gen = btrfs_file_extent_generation(eb, ei);
6215 
6216 	/*
6217 	 * Following comments will refer to these graphics. L is the left
6218 	 * extents which we are checking at the moment. 1-8 are the right
6219 	 * extents that we iterate.
6220 	 *
6221 	 *       |-----L-----|
6222 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6223 	 *
6224 	 *       |-----L-----|
6225 	 * |--1--|-2b-|...(same as above)
6226 	 *
6227 	 * Alternative situation. Happens on files where extents got split.
6228 	 *       |-----L-----|
6229 	 * |-----------7-----------|-6-|
6230 	 *
6231 	 * Alternative situation. Happens on files which got larger.
6232 	 *       |-----L-----|
6233 	 * |-8-|
6234 	 * Nothing follows after 8.
6235 	 */
6236 
6237 	key.objectid = ekey->objectid;
6238 	key.type = BTRFS_EXTENT_DATA_KEY;
6239 	key.offset = ekey->offset;
6240 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6241 	if (ret < 0)
6242 		goto out;
6243 	if (ret) {
6244 		ret = 0;
6245 		goto out;
6246 	}
6247 
6248 	/*
6249 	 * Handle special case where the right side has no extents at all.
6250 	 */
6251 	eb = path->nodes[0];
6252 	slot = path->slots[0];
6253 	btrfs_item_key_to_cpu(eb, &found_key, slot);
6254 	if (found_key.objectid != key.objectid ||
6255 	    found_key.type != key.type) {
6256 		/* If we're a hole then just pretend nothing changed */
6257 		ret = (left_disknr) ? 0 : 1;
6258 		goto out;
6259 	}
6260 
6261 	/*
6262 	 * We're now on 2a, 2b or 7.
6263 	 */
6264 	key = found_key;
6265 	while (key.offset < ekey->offset + left_len) {
6266 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6267 		right_type = btrfs_file_extent_type(eb, ei);
6268 		if (right_type != BTRFS_FILE_EXTENT_REG &&
6269 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6270 			ret = 0;
6271 			goto out;
6272 		}
6273 
6274 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6275 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6276 			right_len = PAGE_ALIGN(right_len);
6277 		} else {
6278 			right_len = btrfs_file_extent_num_bytes(eb, ei);
6279 		}
6280 
6281 		/*
6282 		 * Are we at extent 8? If yes, we know the extent is changed.
6283 		 * This may only happen on the first iteration.
6284 		 */
6285 		if (found_key.offset + right_len <= ekey->offset) {
6286 			/* If we're a hole just pretend nothing changed */
6287 			ret = (left_disknr) ? 0 : 1;
6288 			goto out;
6289 		}
6290 
6291 		/*
6292 		 * We just wanted to see if when we have an inline extent, what
6293 		 * follows it is a regular extent (wanted to check the above
6294 		 * condition for inline extents too). This should normally not
6295 		 * happen but it's possible for example when we have an inline
6296 		 * compressed extent representing data with a size matching
6297 		 * the page size (currently the same as sector size).
6298 		 */
6299 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6300 			ret = 0;
6301 			goto out;
6302 		}
6303 
6304 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6305 		right_offset = btrfs_file_extent_offset(eb, ei);
6306 		right_gen = btrfs_file_extent_generation(eb, ei);
6307 
6308 		left_offset_fixed = left_offset;
6309 		if (key.offset < ekey->offset) {
6310 			/* Fix the right offset for 2a and 7. */
6311 			right_offset += ekey->offset - key.offset;
6312 		} else {
6313 			/* Fix the left offset for all behind 2a and 2b */
6314 			left_offset_fixed += key.offset - ekey->offset;
6315 		}
6316 
6317 		/*
6318 		 * Check if we have the same extent.
6319 		 */
6320 		if (left_disknr != right_disknr ||
6321 		    left_offset_fixed != right_offset ||
6322 		    left_gen != right_gen) {
6323 			ret = 0;
6324 			goto out;
6325 		}
6326 
6327 		/*
6328 		 * Go to the next extent.
6329 		 */
6330 		ret = btrfs_next_item(sctx->parent_root, path);
6331 		if (ret < 0)
6332 			goto out;
6333 		if (!ret) {
6334 			eb = path->nodes[0];
6335 			slot = path->slots[0];
6336 			btrfs_item_key_to_cpu(eb, &found_key, slot);
6337 		}
6338 		if (ret || found_key.objectid != key.objectid ||
6339 		    found_key.type != key.type) {
6340 			key.offset += right_len;
6341 			break;
6342 		}
6343 		if (found_key.offset != key.offset + right_len) {
6344 			ret = 0;
6345 			goto out;
6346 		}
6347 		key = found_key;
6348 	}
6349 
6350 	/*
6351 	 * We're now behind the left extent (treat as unchanged) or at the end
6352 	 * of the right side (treat as changed).
6353 	 */
6354 	if (key.offset >= ekey->offset + left_len)
6355 		ret = 1;
6356 	else
6357 		ret = 0;
6358 
6359 
6360 out:
6361 	btrfs_free_path(path);
6362 	return ret;
6363 }
6364 
6365 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6366 {
6367 	struct btrfs_path *path;
6368 	struct btrfs_root *root = sctx->send_root;
6369 	struct btrfs_key key;
6370 	int ret;
6371 
6372 	path = alloc_path_for_send();
6373 	if (!path)
6374 		return -ENOMEM;
6375 
6376 	sctx->cur_inode_last_extent = 0;
6377 
6378 	key.objectid = sctx->cur_ino;
6379 	key.type = BTRFS_EXTENT_DATA_KEY;
6380 	key.offset = offset;
6381 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6382 	if (ret < 0)
6383 		goto out;
6384 	ret = 0;
6385 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6386 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6387 		goto out;
6388 
6389 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6390 out:
6391 	btrfs_free_path(path);
6392 	return ret;
6393 }
6394 
6395 static int range_is_hole_in_parent(struct send_ctx *sctx,
6396 				   const u64 start,
6397 				   const u64 end)
6398 {
6399 	struct btrfs_path *path;
6400 	struct btrfs_key key;
6401 	struct btrfs_root *root = sctx->parent_root;
6402 	u64 search_start = start;
6403 	int ret;
6404 
6405 	path = alloc_path_for_send();
6406 	if (!path)
6407 		return -ENOMEM;
6408 
6409 	key.objectid = sctx->cur_ino;
6410 	key.type = BTRFS_EXTENT_DATA_KEY;
6411 	key.offset = search_start;
6412 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6413 	if (ret < 0)
6414 		goto out;
6415 	if (ret > 0 && path->slots[0] > 0)
6416 		path->slots[0]--;
6417 
6418 	while (search_start < end) {
6419 		struct extent_buffer *leaf = path->nodes[0];
6420 		int slot = path->slots[0];
6421 		struct btrfs_file_extent_item *fi;
6422 		u64 extent_end;
6423 
6424 		if (slot >= btrfs_header_nritems(leaf)) {
6425 			ret = btrfs_next_leaf(root, path);
6426 			if (ret < 0)
6427 				goto out;
6428 			else if (ret > 0)
6429 				break;
6430 			continue;
6431 		}
6432 
6433 		btrfs_item_key_to_cpu(leaf, &key, slot);
6434 		if (key.objectid < sctx->cur_ino ||
6435 		    key.type < BTRFS_EXTENT_DATA_KEY)
6436 			goto next;
6437 		if (key.objectid > sctx->cur_ino ||
6438 		    key.type > BTRFS_EXTENT_DATA_KEY ||
6439 		    key.offset >= end)
6440 			break;
6441 
6442 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6443 		extent_end = btrfs_file_extent_end(path);
6444 		if (extent_end <= start)
6445 			goto next;
6446 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6447 			search_start = extent_end;
6448 			goto next;
6449 		}
6450 		ret = 0;
6451 		goto out;
6452 next:
6453 		path->slots[0]++;
6454 	}
6455 	ret = 1;
6456 out:
6457 	btrfs_free_path(path);
6458 	return ret;
6459 }
6460 
6461 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6462 			   struct btrfs_key *key)
6463 {
6464 	int ret = 0;
6465 
6466 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6467 		return 0;
6468 
6469 	if (sctx->cur_inode_last_extent == (u64)-1) {
6470 		ret = get_last_extent(sctx, key->offset - 1);
6471 		if (ret)
6472 			return ret;
6473 	}
6474 
6475 	if (path->slots[0] == 0 &&
6476 	    sctx->cur_inode_last_extent < key->offset) {
6477 		/*
6478 		 * We might have skipped entire leafs that contained only
6479 		 * file extent items for our current inode. These leafs have
6480 		 * a generation number smaller (older) than the one in the
6481 		 * current leaf and the leaf our last extent came from, and
6482 		 * are located between these 2 leafs.
6483 		 */
6484 		ret = get_last_extent(sctx, key->offset - 1);
6485 		if (ret)
6486 			return ret;
6487 	}
6488 
6489 	if (sctx->cur_inode_last_extent < key->offset) {
6490 		ret = range_is_hole_in_parent(sctx,
6491 					      sctx->cur_inode_last_extent,
6492 					      key->offset);
6493 		if (ret < 0)
6494 			return ret;
6495 		else if (ret == 0)
6496 			ret = send_hole(sctx, key->offset);
6497 		else
6498 			ret = 0;
6499 	}
6500 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6501 	return ret;
6502 }
6503 
6504 static int process_extent(struct send_ctx *sctx,
6505 			  struct btrfs_path *path,
6506 			  struct btrfs_key *key)
6507 {
6508 	struct clone_root *found_clone = NULL;
6509 	int ret = 0;
6510 
6511 	if (S_ISLNK(sctx->cur_inode_mode))
6512 		return 0;
6513 
6514 	if (sctx->parent_root && !sctx->cur_inode_new) {
6515 		ret = is_extent_unchanged(sctx, path, key);
6516 		if (ret < 0)
6517 			goto out;
6518 		if (ret) {
6519 			ret = 0;
6520 			goto out_hole;
6521 		}
6522 	} else {
6523 		struct btrfs_file_extent_item *ei;
6524 		u8 type;
6525 
6526 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6527 				    struct btrfs_file_extent_item);
6528 		type = btrfs_file_extent_type(path->nodes[0], ei);
6529 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6530 		    type == BTRFS_FILE_EXTENT_REG) {
6531 			/*
6532 			 * The send spec does not have a prealloc command yet,
6533 			 * so just leave a hole for prealloc'ed extents until
6534 			 * we have enough commands queued up to justify rev'ing
6535 			 * the send spec.
6536 			 */
6537 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6538 				ret = 0;
6539 				goto out;
6540 			}
6541 
6542 			/* Have a hole, just skip it. */
6543 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6544 				ret = 0;
6545 				goto out;
6546 			}
6547 		}
6548 	}
6549 
6550 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6551 			sctx->cur_inode_size, &found_clone);
6552 	if (ret != -ENOENT && ret < 0)
6553 		goto out;
6554 
6555 	ret = send_write_or_clone(sctx, path, key, found_clone);
6556 	if (ret)
6557 		goto out;
6558 out_hole:
6559 	ret = maybe_send_hole(sctx, path, key);
6560 out:
6561 	return ret;
6562 }
6563 
6564 static int process_all_extents(struct send_ctx *sctx)
6565 {
6566 	int ret = 0;
6567 	int iter_ret = 0;
6568 	struct btrfs_root *root;
6569 	struct btrfs_path *path;
6570 	struct btrfs_key key;
6571 	struct btrfs_key found_key;
6572 
6573 	root = sctx->send_root;
6574 	path = alloc_path_for_send();
6575 	if (!path)
6576 		return -ENOMEM;
6577 
6578 	key.objectid = sctx->cmp_key->objectid;
6579 	key.type = BTRFS_EXTENT_DATA_KEY;
6580 	key.offset = 0;
6581 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6582 		if (found_key.objectid != key.objectid ||
6583 		    found_key.type != key.type) {
6584 			ret = 0;
6585 			break;
6586 		}
6587 
6588 		ret = process_extent(sctx, path, &found_key);
6589 		if (ret < 0)
6590 			break;
6591 	}
6592 	/* Catch error found during iteration */
6593 	if (iter_ret < 0)
6594 		ret = iter_ret;
6595 
6596 	btrfs_free_path(path);
6597 	return ret;
6598 }
6599 
6600 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6601 					   int *pending_move,
6602 					   int *refs_processed)
6603 {
6604 	int ret = 0;
6605 
6606 	if (sctx->cur_ino == 0)
6607 		goto out;
6608 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6609 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6610 		goto out;
6611 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6612 		goto out;
6613 
6614 	ret = process_recorded_refs(sctx, pending_move);
6615 	if (ret < 0)
6616 		goto out;
6617 
6618 	*refs_processed = 1;
6619 out:
6620 	return ret;
6621 }
6622 
6623 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6624 {
6625 	int ret = 0;
6626 	struct btrfs_inode_info info;
6627 	u64 left_mode;
6628 	u64 left_uid;
6629 	u64 left_gid;
6630 	u64 left_fileattr;
6631 	u64 right_mode;
6632 	u64 right_uid;
6633 	u64 right_gid;
6634 	u64 right_fileattr;
6635 	int need_chmod = 0;
6636 	int need_chown = 0;
6637 	bool need_fileattr = false;
6638 	int need_truncate = 1;
6639 	int pending_move = 0;
6640 	int refs_processed = 0;
6641 
6642 	if (sctx->ignore_cur_inode)
6643 		return 0;
6644 
6645 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6646 					      &refs_processed);
6647 	if (ret < 0)
6648 		goto out;
6649 
6650 	/*
6651 	 * We have processed the refs and thus need to advance send_progress.
6652 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6653 	 * inode into account.
6654 	 *
6655 	 * On the other hand, if our current inode is a directory and couldn't
6656 	 * be moved/renamed because its parent was renamed/moved too and it has
6657 	 * a higher inode number, we can only move/rename our current inode
6658 	 * after we moved/renamed its parent. Therefore in this case operate on
6659 	 * the old path (pre move/rename) of our current inode, and the
6660 	 * move/rename will be performed later.
6661 	 */
6662 	if (refs_processed && !pending_move)
6663 		sctx->send_progress = sctx->cur_ino + 1;
6664 
6665 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6666 		goto out;
6667 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6668 		goto out;
6669 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6670 	if (ret < 0)
6671 		goto out;
6672 	left_mode = info.mode;
6673 	left_uid = info.uid;
6674 	left_gid = info.gid;
6675 	left_fileattr = info.fileattr;
6676 
6677 	if (!sctx->parent_root || sctx->cur_inode_new) {
6678 		need_chown = 1;
6679 		if (!S_ISLNK(sctx->cur_inode_mode))
6680 			need_chmod = 1;
6681 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6682 			need_truncate = 0;
6683 	} else {
6684 		u64 old_size;
6685 
6686 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6687 		if (ret < 0)
6688 			goto out;
6689 		old_size = info.size;
6690 		right_mode = info.mode;
6691 		right_uid = info.uid;
6692 		right_gid = info.gid;
6693 		right_fileattr = info.fileattr;
6694 
6695 		if (left_uid != right_uid || left_gid != right_gid)
6696 			need_chown = 1;
6697 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6698 			need_chmod = 1;
6699 		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6700 			need_fileattr = true;
6701 		if ((old_size == sctx->cur_inode_size) ||
6702 		    (sctx->cur_inode_size > old_size &&
6703 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6704 			need_truncate = 0;
6705 	}
6706 
6707 	if (S_ISREG(sctx->cur_inode_mode)) {
6708 		if (need_send_hole(sctx)) {
6709 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6710 			    sctx->cur_inode_last_extent <
6711 			    sctx->cur_inode_size) {
6712 				ret = get_last_extent(sctx, (u64)-1);
6713 				if (ret)
6714 					goto out;
6715 			}
6716 			if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6717 				ret = range_is_hole_in_parent(sctx,
6718 						      sctx->cur_inode_last_extent,
6719 						      sctx->cur_inode_size);
6720 				if (ret < 0) {
6721 					goto out;
6722 				} else if (ret == 0) {
6723 					ret = send_hole(sctx, sctx->cur_inode_size);
6724 					if (ret < 0)
6725 						goto out;
6726 				} else {
6727 					/* Range is already a hole, skip. */
6728 					ret = 0;
6729 				}
6730 			}
6731 		}
6732 		if (need_truncate) {
6733 			ret = send_truncate(sctx, sctx->cur_ino,
6734 					    sctx->cur_inode_gen,
6735 					    sctx->cur_inode_size);
6736 			if (ret < 0)
6737 				goto out;
6738 		}
6739 	}
6740 
6741 	if (need_chown) {
6742 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6743 				left_uid, left_gid);
6744 		if (ret < 0)
6745 			goto out;
6746 	}
6747 	if (need_chmod) {
6748 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6749 				left_mode);
6750 		if (ret < 0)
6751 			goto out;
6752 	}
6753 	if (need_fileattr) {
6754 		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6755 				    left_fileattr);
6756 		if (ret < 0)
6757 			goto out;
6758 	}
6759 
6760 	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6761 	    && sctx->cur_inode_needs_verity) {
6762 		ret = process_verity(sctx);
6763 		if (ret < 0)
6764 			goto out;
6765 	}
6766 
6767 	ret = send_capabilities(sctx);
6768 	if (ret < 0)
6769 		goto out;
6770 
6771 	/*
6772 	 * If other directory inodes depended on our current directory
6773 	 * inode's move/rename, now do their move/rename operations.
6774 	 */
6775 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6776 		ret = apply_children_dir_moves(sctx);
6777 		if (ret)
6778 			goto out;
6779 		/*
6780 		 * Need to send that every time, no matter if it actually
6781 		 * changed between the two trees as we have done changes to
6782 		 * the inode before. If our inode is a directory and it's
6783 		 * waiting to be moved/renamed, we will send its utimes when
6784 		 * it's moved/renamed, therefore we don't need to do it here.
6785 		 */
6786 		sctx->send_progress = sctx->cur_ino + 1;
6787 
6788 		/*
6789 		 * If the current inode is a non-empty directory, delay issuing
6790 		 * the utimes command for it, as it's very likely we have inodes
6791 		 * with an higher number inside it. We want to issue the utimes
6792 		 * command only after adding all dentries to it.
6793 		 */
6794 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6795 			ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6796 		else
6797 			ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6798 
6799 		if (ret < 0)
6800 			goto out;
6801 	}
6802 
6803 out:
6804 	if (!ret)
6805 		ret = trim_dir_utimes_cache(sctx);
6806 
6807 	return ret;
6808 }
6809 
6810 static void close_current_inode(struct send_ctx *sctx)
6811 {
6812 	u64 i_size;
6813 
6814 	if (sctx->cur_inode == NULL)
6815 		return;
6816 
6817 	i_size = i_size_read(sctx->cur_inode);
6818 
6819 	/*
6820 	 * If we are doing an incremental send, we may have extents between the
6821 	 * last processed extent and the i_size that have not been processed
6822 	 * because they haven't changed but we may have read some of their pages
6823 	 * through readahead, see the comments at send_extent_data().
6824 	 */
6825 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6826 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6827 					   sctx->page_cache_clear_start,
6828 					   round_up(i_size, PAGE_SIZE) - 1);
6829 
6830 	iput(sctx->cur_inode);
6831 	sctx->cur_inode = NULL;
6832 }
6833 
6834 static int changed_inode(struct send_ctx *sctx,
6835 			 enum btrfs_compare_tree_result result)
6836 {
6837 	int ret = 0;
6838 	struct btrfs_key *key = sctx->cmp_key;
6839 	struct btrfs_inode_item *left_ii = NULL;
6840 	struct btrfs_inode_item *right_ii = NULL;
6841 	u64 left_gen = 0;
6842 	u64 right_gen = 0;
6843 
6844 	close_current_inode(sctx);
6845 
6846 	sctx->cur_ino = key->objectid;
6847 	sctx->cur_inode_new_gen = false;
6848 	sctx->cur_inode_last_extent = (u64)-1;
6849 	sctx->cur_inode_next_write_offset = 0;
6850 	sctx->ignore_cur_inode = false;
6851 
6852 	/*
6853 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6854 	 * functions that the current inode's refs are not updated yet. Later,
6855 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6856 	 */
6857 	sctx->send_progress = sctx->cur_ino;
6858 
6859 	if (result == BTRFS_COMPARE_TREE_NEW ||
6860 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6861 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6862 				sctx->left_path->slots[0],
6863 				struct btrfs_inode_item);
6864 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6865 				left_ii);
6866 	} else {
6867 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6868 				sctx->right_path->slots[0],
6869 				struct btrfs_inode_item);
6870 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6871 				right_ii);
6872 	}
6873 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6874 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6875 				sctx->right_path->slots[0],
6876 				struct btrfs_inode_item);
6877 
6878 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6879 				right_ii);
6880 
6881 		/*
6882 		 * The cur_ino = root dir case is special here. We can't treat
6883 		 * the inode as deleted+reused because it would generate a
6884 		 * stream that tries to delete/mkdir the root dir.
6885 		 */
6886 		if (left_gen != right_gen &&
6887 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6888 			sctx->cur_inode_new_gen = true;
6889 	}
6890 
6891 	/*
6892 	 * Normally we do not find inodes with a link count of zero (orphans)
6893 	 * because the most common case is to create a snapshot and use it
6894 	 * for a send operation. However other less common use cases involve
6895 	 * using a subvolume and send it after turning it to RO mode just
6896 	 * after deleting all hard links of a file while holding an open
6897 	 * file descriptor against it or turning a RO snapshot into RW mode,
6898 	 * keep an open file descriptor against a file, delete it and then
6899 	 * turn the snapshot back to RO mode before using it for a send
6900 	 * operation. The former is what the receiver operation does.
6901 	 * Therefore, if we want to send these snapshots soon after they're
6902 	 * received, we need to handle orphan inodes as well. Moreover, orphans
6903 	 * can appear not only in the send snapshot but also in the parent
6904 	 * snapshot. Here are several cases:
6905 	 *
6906 	 * Case 1: BTRFS_COMPARE_TREE_NEW
6907 	 *       |  send snapshot  | action
6908 	 * --------------------------------
6909 	 * nlink |        0        | ignore
6910 	 *
6911 	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6912 	 *       | parent snapshot | action
6913 	 * ----------------------------------
6914 	 * nlink |        0        | as usual
6915 	 * Note: No unlinks will be sent because there're no paths for it.
6916 	 *
6917 	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6918 	 *           |       | parent snapshot | send snapshot | action
6919 	 * -----------------------------------------------------------------------
6920 	 * subcase 1 | nlink |        0        |       0       | ignore
6921 	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6922 	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6923 	 *
6924 	 */
6925 	if (result == BTRFS_COMPARE_TREE_NEW) {
6926 		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6927 			sctx->ignore_cur_inode = true;
6928 			goto out;
6929 		}
6930 		sctx->cur_inode_gen = left_gen;
6931 		sctx->cur_inode_new = true;
6932 		sctx->cur_inode_deleted = false;
6933 		sctx->cur_inode_size = btrfs_inode_size(
6934 				sctx->left_path->nodes[0], left_ii);
6935 		sctx->cur_inode_mode = btrfs_inode_mode(
6936 				sctx->left_path->nodes[0], left_ii);
6937 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6938 				sctx->left_path->nodes[0], left_ii);
6939 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6940 			ret = send_create_inode_if_needed(sctx);
6941 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6942 		sctx->cur_inode_gen = right_gen;
6943 		sctx->cur_inode_new = false;
6944 		sctx->cur_inode_deleted = true;
6945 		sctx->cur_inode_size = btrfs_inode_size(
6946 				sctx->right_path->nodes[0], right_ii);
6947 		sctx->cur_inode_mode = btrfs_inode_mode(
6948 				sctx->right_path->nodes[0], right_ii);
6949 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6950 		u32 new_nlinks, old_nlinks;
6951 
6952 		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6953 		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6954 		if (new_nlinks == 0 && old_nlinks == 0) {
6955 			sctx->ignore_cur_inode = true;
6956 			goto out;
6957 		} else if (new_nlinks == 0 || old_nlinks == 0) {
6958 			sctx->cur_inode_new_gen = 1;
6959 		}
6960 		/*
6961 		 * We need to do some special handling in case the inode was
6962 		 * reported as changed with a changed generation number. This
6963 		 * means that the original inode was deleted and new inode
6964 		 * reused the same inum. So we have to treat the old inode as
6965 		 * deleted and the new one as new.
6966 		 */
6967 		if (sctx->cur_inode_new_gen) {
6968 			/*
6969 			 * First, process the inode as if it was deleted.
6970 			 */
6971 			if (old_nlinks > 0) {
6972 				sctx->cur_inode_gen = right_gen;
6973 				sctx->cur_inode_new = false;
6974 				sctx->cur_inode_deleted = true;
6975 				sctx->cur_inode_size = btrfs_inode_size(
6976 						sctx->right_path->nodes[0], right_ii);
6977 				sctx->cur_inode_mode = btrfs_inode_mode(
6978 						sctx->right_path->nodes[0], right_ii);
6979 				ret = process_all_refs(sctx,
6980 						BTRFS_COMPARE_TREE_DELETED);
6981 				if (ret < 0)
6982 					goto out;
6983 			}
6984 
6985 			/*
6986 			 * Now process the inode as if it was new.
6987 			 */
6988 			if (new_nlinks > 0) {
6989 				sctx->cur_inode_gen = left_gen;
6990 				sctx->cur_inode_new = true;
6991 				sctx->cur_inode_deleted = false;
6992 				sctx->cur_inode_size = btrfs_inode_size(
6993 						sctx->left_path->nodes[0],
6994 						left_ii);
6995 				sctx->cur_inode_mode = btrfs_inode_mode(
6996 						sctx->left_path->nodes[0],
6997 						left_ii);
6998 				sctx->cur_inode_rdev = btrfs_inode_rdev(
6999 						sctx->left_path->nodes[0],
7000 						left_ii);
7001 				ret = send_create_inode_if_needed(sctx);
7002 				if (ret < 0)
7003 					goto out;
7004 
7005 				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7006 				if (ret < 0)
7007 					goto out;
7008 				/*
7009 				 * Advance send_progress now as we did not get
7010 				 * into process_recorded_refs_if_needed in the
7011 				 * new_gen case.
7012 				 */
7013 				sctx->send_progress = sctx->cur_ino + 1;
7014 
7015 				/*
7016 				 * Now process all extents and xattrs of the
7017 				 * inode as if they were all new.
7018 				 */
7019 				ret = process_all_extents(sctx);
7020 				if (ret < 0)
7021 					goto out;
7022 				ret = process_all_new_xattrs(sctx);
7023 				if (ret < 0)
7024 					goto out;
7025 			}
7026 		} else {
7027 			sctx->cur_inode_gen = left_gen;
7028 			sctx->cur_inode_new = false;
7029 			sctx->cur_inode_new_gen = false;
7030 			sctx->cur_inode_deleted = false;
7031 			sctx->cur_inode_size = btrfs_inode_size(
7032 					sctx->left_path->nodes[0], left_ii);
7033 			sctx->cur_inode_mode = btrfs_inode_mode(
7034 					sctx->left_path->nodes[0], left_ii);
7035 		}
7036 	}
7037 
7038 out:
7039 	return ret;
7040 }
7041 
7042 /*
7043  * We have to process new refs before deleted refs, but compare_trees gives us
7044  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7045  * first and later process them in process_recorded_refs.
7046  * For the cur_inode_new_gen case, we skip recording completely because
7047  * changed_inode did already initiate processing of refs. The reason for this is
7048  * that in this case, compare_tree actually compares the refs of 2 different
7049  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7050  * refs of the right tree as deleted and all refs of the left tree as new.
7051  */
7052 static int changed_ref(struct send_ctx *sctx,
7053 		       enum btrfs_compare_tree_result result)
7054 {
7055 	int ret = 0;
7056 
7057 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7058 		inconsistent_snapshot_error(sctx, result, "reference");
7059 		return -EIO;
7060 	}
7061 
7062 	if (!sctx->cur_inode_new_gen &&
7063 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7064 		if (result == BTRFS_COMPARE_TREE_NEW)
7065 			ret = record_new_ref(sctx);
7066 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7067 			ret = record_deleted_ref(sctx);
7068 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7069 			ret = record_changed_ref(sctx);
7070 	}
7071 
7072 	return ret;
7073 }
7074 
7075 /*
7076  * Process new/deleted/changed xattrs. We skip processing in the
7077  * cur_inode_new_gen case because changed_inode did already initiate processing
7078  * of xattrs. The reason is the same as in changed_ref
7079  */
7080 static int changed_xattr(struct send_ctx *sctx,
7081 			 enum btrfs_compare_tree_result result)
7082 {
7083 	int ret = 0;
7084 
7085 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7086 		inconsistent_snapshot_error(sctx, result, "xattr");
7087 		return -EIO;
7088 	}
7089 
7090 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7091 		if (result == BTRFS_COMPARE_TREE_NEW)
7092 			ret = process_new_xattr(sctx);
7093 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7094 			ret = process_deleted_xattr(sctx);
7095 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7096 			ret = process_changed_xattr(sctx);
7097 	}
7098 
7099 	return ret;
7100 }
7101 
7102 /*
7103  * Process new/deleted/changed extents. We skip processing in the
7104  * cur_inode_new_gen case because changed_inode did already initiate processing
7105  * of extents. The reason is the same as in changed_ref
7106  */
7107 static int changed_extent(struct send_ctx *sctx,
7108 			  enum btrfs_compare_tree_result result)
7109 {
7110 	int ret = 0;
7111 
7112 	/*
7113 	 * We have found an extent item that changed without the inode item
7114 	 * having changed. This can happen either after relocation (where the
7115 	 * disk_bytenr of an extent item is replaced at
7116 	 * relocation.c:replace_file_extents()) or after deduplication into a
7117 	 * file in both the parent and send snapshots (where an extent item can
7118 	 * get modified or replaced with a new one). Note that deduplication
7119 	 * updates the inode item, but it only changes the iversion (sequence
7120 	 * field in the inode item) of the inode, so if a file is deduplicated
7121 	 * the same amount of times in both the parent and send snapshots, its
7122 	 * iversion becomes the same in both snapshots, whence the inode item is
7123 	 * the same on both snapshots.
7124 	 */
7125 	if (sctx->cur_ino != sctx->cmp_key->objectid)
7126 		return 0;
7127 
7128 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7129 		if (result != BTRFS_COMPARE_TREE_DELETED)
7130 			ret = process_extent(sctx, sctx->left_path,
7131 					sctx->cmp_key);
7132 	}
7133 
7134 	return ret;
7135 }
7136 
7137 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7138 {
7139 	int ret = 0;
7140 
7141 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7142 		if (result == BTRFS_COMPARE_TREE_NEW)
7143 			sctx->cur_inode_needs_verity = true;
7144 	}
7145 	return ret;
7146 }
7147 
7148 static int dir_changed(struct send_ctx *sctx, u64 dir)
7149 {
7150 	u64 orig_gen, new_gen;
7151 	int ret;
7152 
7153 	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7154 	if (ret)
7155 		return ret;
7156 
7157 	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7158 	if (ret)
7159 		return ret;
7160 
7161 	return (orig_gen != new_gen) ? 1 : 0;
7162 }
7163 
7164 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7165 			struct btrfs_key *key)
7166 {
7167 	struct btrfs_inode_extref *extref;
7168 	struct extent_buffer *leaf;
7169 	u64 dirid = 0, last_dirid = 0;
7170 	unsigned long ptr;
7171 	u32 item_size;
7172 	u32 cur_offset = 0;
7173 	int ref_name_len;
7174 	int ret = 0;
7175 
7176 	/* Easy case, just check this one dirid */
7177 	if (key->type == BTRFS_INODE_REF_KEY) {
7178 		dirid = key->offset;
7179 
7180 		ret = dir_changed(sctx, dirid);
7181 		goto out;
7182 	}
7183 
7184 	leaf = path->nodes[0];
7185 	item_size = btrfs_item_size(leaf, path->slots[0]);
7186 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7187 	while (cur_offset < item_size) {
7188 		extref = (struct btrfs_inode_extref *)(ptr +
7189 						       cur_offset);
7190 		dirid = btrfs_inode_extref_parent(leaf, extref);
7191 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7192 		cur_offset += ref_name_len + sizeof(*extref);
7193 		if (dirid == last_dirid)
7194 			continue;
7195 		ret = dir_changed(sctx, dirid);
7196 		if (ret)
7197 			break;
7198 		last_dirid = dirid;
7199 	}
7200 out:
7201 	return ret;
7202 }
7203 
7204 /*
7205  * Updates compare related fields in sctx and simply forwards to the actual
7206  * changed_xxx functions.
7207  */
7208 static int changed_cb(struct btrfs_path *left_path,
7209 		      struct btrfs_path *right_path,
7210 		      struct btrfs_key *key,
7211 		      enum btrfs_compare_tree_result result,
7212 		      struct send_ctx *sctx)
7213 {
7214 	int ret = 0;
7215 
7216 	/*
7217 	 * We can not hold the commit root semaphore here. This is because in
7218 	 * the case of sending and receiving to the same filesystem, using a
7219 	 * pipe, could result in a deadlock:
7220 	 *
7221 	 * 1) The task running send blocks on the pipe because it's full;
7222 	 *
7223 	 * 2) The task running receive, which is the only consumer of the pipe,
7224 	 *    is waiting for a transaction commit (for example due to a space
7225 	 *    reservation when doing a write or triggering a transaction commit
7226 	 *    when creating a subvolume);
7227 	 *
7228 	 * 3) The transaction is waiting to write lock the commit root semaphore,
7229 	 *    but can not acquire it since it's being held at 1).
7230 	 *
7231 	 * Down this call chain we write to the pipe through kernel_write().
7232 	 * The same type of problem can also happen when sending to a file that
7233 	 * is stored in the same filesystem - when reserving space for a write
7234 	 * into the file, we can trigger a transaction commit.
7235 	 *
7236 	 * Our caller has supplied us with clones of leaves from the send and
7237 	 * parent roots, so we're safe here from a concurrent relocation and
7238 	 * further reallocation of metadata extents while we are here. Below we
7239 	 * also assert that the leaves are clones.
7240 	 */
7241 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7242 
7243 	/*
7244 	 * We always have a send root, so left_path is never NULL. We will not
7245 	 * have a leaf when we have reached the end of the send root but have
7246 	 * not yet reached the end of the parent root.
7247 	 */
7248 	if (left_path->nodes[0])
7249 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7250 				&left_path->nodes[0]->bflags));
7251 	/*
7252 	 * When doing a full send we don't have a parent root, so right_path is
7253 	 * NULL. When doing an incremental send, we may have reached the end of
7254 	 * the parent root already, so we don't have a leaf at right_path.
7255 	 */
7256 	if (right_path && right_path->nodes[0])
7257 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7258 				&right_path->nodes[0]->bflags));
7259 
7260 	if (result == BTRFS_COMPARE_TREE_SAME) {
7261 		if (key->type == BTRFS_INODE_REF_KEY ||
7262 		    key->type == BTRFS_INODE_EXTREF_KEY) {
7263 			ret = compare_refs(sctx, left_path, key);
7264 			if (!ret)
7265 				return 0;
7266 			if (ret < 0)
7267 				return ret;
7268 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7269 			return maybe_send_hole(sctx, left_path, key);
7270 		} else {
7271 			return 0;
7272 		}
7273 		result = BTRFS_COMPARE_TREE_CHANGED;
7274 		ret = 0;
7275 	}
7276 
7277 	sctx->left_path = left_path;
7278 	sctx->right_path = right_path;
7279 	sctx->cmp_key = key;
7280 
7281 	ret = finish_inode_if_needed(sctx, 0);
7282 	if (ret < 0)
7283 		goto out;
7284 
7285 	/* Ignore non-FS objects */
7286 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7287 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7288 		goto out;
7289 
7290 	if (key->type == BTRFS_INODE_ITEM_KEY) {
7291 		ret = changed_inode(sctx, result);
7292 	} else if (!sctx->ignore_cur_inode) {
7293 		if (key->type == BTRFS_INODE_REF_KEY ||
7294 		    key->type == BTRFS_INODE_EXTREF_KEY)
7295 			ret = changed_ref(sctx, result);
7296 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7297 			ret = changed_xattr(sctx, result);
7298 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7299 			ret = changed_extent(sctx, result);
7300 		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7301 			 key->offset == 0)
7302 			ret = changed_verity(sctx, result);
7303 	}
7304 
7305 out:
7306 	return ret;
7307 }
7308 
7309 static int search_key_again(const struct send_ctx *sctx,
7310 			    struct btrfs_root *root,
7311 			    struct btrfs_path *path,
7312 			    const struct btrfs_key *key)
7313 {
7314 	int ret;
7315 
7316 	if (!path->need_commit_sem)
7317 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7318 
7319 	/*
7320 	 * Roots used for send operations are readonly and no one can add,
7321 	 * update or remove keys from them, so we should be able to find our
7322 	 * key again. The only exception is deduplication, which can operate on
7323 	 * readonly roots and add, update or remove keys to/from them - but at
7324 	 * the moment we don't allow it to run in parallel with send.
7325 	 */
7326 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7327 	ASSERT(ret <= 0);
7328 	if (ret > 0) {
7329 		btrfs_print_tree(path->nodes[path->lowest_level], false);
7330 		btrfs_err(root->fs_info,
7331 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7332 			  key->objectid, key->type, key->offset,
7333 			  (root == sctx->parent_root ? "parent" : "send"),
7334 			  root->root_key.objectid, path->lowest_level,
7335 			  path->slots[path->lowest_level]);
7336 		return -EUCLEAN;
7337 	}
7338 
7339 	return ret;
7340 }
7341 
7342 static int full_send_tree(struct send_ctx *sctx)
7343 {
7344 	int ret;
7345 	struct btrfs_root *send_root = sctx->send_root;
7346 	struct btrfs_key key;
7347 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7348 	struct btrfs_path *path;
7349 
7350 	path = alloc_path_for_send();
7351 	if (!path)
7352 		return -ENOMEM;
7353 	path->reada = READA_FORWARD_ALWAYS;
7354 
7355 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7356 	key.type = BTRFS_INODE_ITEM_KEY;
7357 	key.offset = 0;
7358 
7359 	down_read(&fs_info->commit_root_sem);
7360 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7361 	up_read(&fs_info->commit_root_sem);
7362 
7363 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7364 	if (ret < 0)
7365 		goto out;
7366 	if (ret)
7367 		goto out_finish;
7368 
7369 	while (1) {
7370 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7371 
7372 		ret = changed_cb(path, NULL, &key,
7373 				 BTRFS_COMPARE_TREE_NEW, sctx);
7374 		if (ret < 0)
7375 			goto out;
7376 
7377 		down_read(&fs_info->commit_root_sem);
7378 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7379 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7380 			up_read(&fs_info->commit_root_sem);
7381 			/*
7382 			 * A transaction used for relocating a block group was
7383 			 * committed or is about to finish its commit. Release
7384 			 * our path (leaf) and restart the search, so that we
7385 			 * avoid operating on any file extent items that are
7386 			 * stale, with a disk_bytenr that reflects a pre
7387 			 * relocation value. This way we avoid as much as
7388 			 * possible to fallback to regular writes when checking
7389 			 * if we can clone file ranges.
7390 			 */
7391 			btrfs_release_path(path);
7392 			ret = search_key_again(sctx, send_root, path, &key);
7393 			if (ret < 0)
7394 				goto out;
7395 		} else {
7396 			up_read(&fs_info->commit_root_sem);
7397 		}
7398 
7399 		ret = btrfs_next_item(send_root, path);
7400 		if (ret < 0)
7401 			goto out;
7402 		if (ret) {
7403 			ret  = 0;
7404 			break;
7405 		}
7406 	}
7407 
7408 out_finish:
7409 	ret = finish_inode_if_needed(sctx, 1);
7410 
7411 out:
7412 	btrfs_free_path(path);
7413 	return ret;
7414 }
7415 
7416 static int replace_node_with_clone(struct btrfs_path *path, int level)
7417 {
7418 	struct extent_buffer *clone;
7419 
7420 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7421 	if (!clone)
7422 		return -ENOMEM;
7423 
7424 	free_extent_buffer(path->nodes[level]);
7425 	path->nodes[level] = clone;
7426 
7427 	return 0;
7428 }
7429 
7430 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7431 {
7432 	struct extent_buffer *eb;
7433 	struct extent_buffer *parent = path->nodes[*level];
7434 	int slot = path->slots[*level];
7435 	const int nritems = btrfs_header_nritems(parent);
7436 	u64 reada_max;
7437 	u64 reada_done = 0;
7438 
7439 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7440 
7441 	BUG_ON(*level == 0);
7442 	eb = btrfs_read_node_slot(parent, slot);
7443 	if (IS_ERR(eb))
7444 		return PTR_ERR(eb);
7445 
7446 	/*
7447 	 * Trigger readahead for the next leaves we will process, so that it is
7448 	 * very likely that when we need them they are already in memory and we
7449 	 * will not block on disk IO. For nodes we only do readahead for one,
7450 	 * since the time window between processing nodes is typically larger.
7451 	 */
7452 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7453 
7454 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7455 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7456 			btrfs_readahead_node_child(parent, slot);
7457 			reada_done += eb->fs_info->nodesize;
7458 		}
7459 	}
7460 
7461 	path->nodes[*level - 1] = eb;
7462 	path->slots[*level - 1] = 0;
7463 	(*level)--;
7464 
7465 	if (*level == 0)
7466 		return replace_node_with_clone(path, 0);
7467 
7468 	return 0;
7469 }
7470 
7471 static int tree_move_next_or_upnext(struct btrfs_path *path,
7472 				    int *level, int root_level)
7473 {
7474 	int ret = 0;
7475 	int nritems;
7476 	nritems = btrfs_header_nritems(path->nodes[*level]);
7477 
7478 	path->slots[*level]++;
7479 
7480 	while (path->slots[*level] >= nritems) {
7481 		if (*level == root_level) {
7482 			path->slots[*level] = nritems - 1;
7483 			return -1;
7484 		}
7485 
7486 		/* move upnext */
7487 		path->slots[*level] = 0;
7488 		free_extent_buffer(path->nodes[*level]);
7489 		path->nodes[*level] = NULL;
7490 		(*level)++;
7491 		path->slots[*level]++;
7492 
7493 		nritems = btrfs_header_nritems(path->nodes[*level]);
7494 		ret = 1;
7495 	}
7496 	return ret;
7497 }
7498 
7499 /*
7500  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7501  * or down.
7502  */
7503 static int tree_advance(struct btrfs_path *path,
7504 			int *level, int root_level,
7505 			int allow_down,
7506 			struct btrfs_key *key,
7507 			u64 reada_min_gen)
7508 {
7509 	int ret;
7510 
7511 	if (*level == 0 || !allow_down) {
7512 		ret = tree_move_next_or_upnext(path, level, root_level);
7513 	} else {
7514 		ret = tree_move_down(path, level, reada_min_gen);
7515 	}
7516 
7517 	/*
7518 	 * Even if we have reached the end of a tree, ret is -1, update the key
7519 	 * anyway, so that in case we need to restart due to a block group
7520 	 * relocation, we can assert that the last key of the root node still
7521 	 * exists in the tree.
7522 	 */
7523 	if (*level == 0)
7524 		btrfs_item_key_to_cpu(path->nodes[*level], key,
7525 				      path->slots[*level]);
7526 	else
7527 		btrfs_node_key_to_cpu(path->nodes[*level], key,
7528 				      path->slots[*level]);
7529 
7530 	return ret;
7531 }
7532 
7533 static int tree_compare_item(struct btrfs_path *left_path,
7534 			     struct btrfs_path *right_path,
7535 			     char *tmp_buf)
7536 {
7537 	int cmp;
7538 	int len1, len2;
7539 	unsigned long off1, off2;
7540 
7541 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7542 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7543 	if (len1 != len2)
7544 		return 1;
7545 
7546 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7547 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7548 				right_path->slots[0]);
7549 
7550 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7551 
7552 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7553 	if (cmp)
7554 		return 1;
7555 	return 0;
7556 }
7557 
7558 /*
7559  * A transaction used for relocating a block group was committed or is about to
7560  * finish its commit. Release our paths and restart the search, so that we are
7561  * not using stale extent buffers:
7562  *
7563  * 1) For levels > 0, we are only holding references of extent buffers, without
7564  *    any locks on them, which does not prevent them from having been relocated
7565  *    and reallocated after the last time we released the commit root semaphore.
7566  *    The exception are the root nodes, for which we always have a clone, see
7567  *    the comment at btrfs_compare_trees();
7568  *
7569  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7570  *    we are safe from the concurrent relocation and reallocation. However they
7571  *    can have file extent items with a pre relocation disk_bytenr value, so we
7572  *    restart the start from the current commit roots and clone the new leaves so
7573  *    that we get the post relocation disk_bytenr values. Not doing so, could
7574  *    make us clone the wrong data in case there are new extents using the old
7575  *    disk_bytenr that happen to be shared.
7576  */
7577 static int restart_after_relocation(struct btrfs_path *left_path,
7578 				    struct btrfs_path *right_path,
7579 				    const struct btrfs_key *left_key,
7580 				    const struct btrfs_key *right_key,
7581 				    int left_level,
7582 				    int right_level,
7583 				    const struct send_ctx *sctx)
7584 {
7585 	int root_level;
7586 	int ret;
7587 
7588 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7589 
7590 	btrfs_release_path(left_path);
7591 	btrfs_release_path(right_path);
7592 
7593 	/*
7594 	 * Since keys can not be added or removed to/from our roots because they
7595 	 * are readonly and we do not allow deduplication to run in parallel
7596 	 * (which can add, remove or change keys), the layout of the trees should
7597 	 * not change.
7598 	 */
7599 	left_path->lowest_level = left_level;
7600 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7601 	if (ret < 0)
7602 		return ret;
7603 
7604 	right_path->lowest_level = right_level;
7605 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7606 	if (ret < 0)
7607 		return ret;
7608 
7609 	/*
7610 	 * If the lowest level nodes are leaves, clone them so that they can be
7611 	 * safely used by changed_cb() while not under the protection of the
7612 	 * commit root semaphore, even if relocation and reallocation happens in
7613 	 * parallel.
7614 	 */
7615 	if (left_level == 0) {
7616 		ret = replace_node_with_clone(left_path, 0);
7617 		if (ret < 0)
7618 			return ret;
7619 	}
7620 
7621 	if (right_level == 0) {
7622 		ret = replace_node_with_clone(right_path, 0);
7623 		if (ret < 0)
7624 			return ret;
7625 	}
7626 
7627 	/*
7628 	 * Now clone the root nodes (unless they happen to be the leaves we have
7629 	 * already cloned). This is to protect against concurrent snapshotting of
7630 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7631 	 */
7632 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7633 	if (root_level > 0) {
7634 		ret = replace_node_with_clone(left_path, root_level);
7635 		if (ret < 0)
7636 			return ret;
7637 	}
7638 
7639 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7640 	if (root_level > 0) {
7641 		ret = replace_node_with_clone(right_path, root_level);
7642 		if (ret < 0)
7643 			return ret;
7644 	}
7645 
7646 	return 0;
7647 }
7648 
7649 /*
7650  * This function compares two trees and calls the provided callback for
7651  * every changed/new/deleted item it finds.
7652  * If shared tree blocks are encountered, whole subtrees are skipped, making
7653  * the compare pretty fast on snapshotted subvolumes.
7654  *
7655  * This currently works on commit roots only. As commit roots are read only,
7656  * we don't do any locking. The commit roots are protected with transactions.
7657  * Transactions are ended and rejoined when a commit is tried in between.
7658  *
7659  * This function checks for modifications done to the trees while comparing.
7660  * If it detects a change, it aborts immediately.
7661  */
7662 static int btrfs_compare_trees(struct btrfs_root *left_root,
7663 			struct btrfs_root *right_root, struct send_ctx *sctx)
7664 {
7665 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7666 	int ret;
7667 	int cmp;
7668 	struct btrfs_path *left_path = NULL;
7669 	struct btrfs_path *right_path = NULL;
7670 	struct btrfs_key left_key;
7671 	struct btrfs_key right_key;
7672 	char *tmp_buf = NULL;
7673 	int left_root_level;
7674 	int right_root_level;
7675 	int left_level;
7676 	int right_level;
7677 	int left_end_reached = 0;
7678 	int right_end_reached = 0;
7679 	int advance_left = 0;
7680 	int advance_right = 0;
7681 	u64 left_blockptr;
7682 	u64 right_blockptr;
7683 	u64 left_gen;
7684 	u64 right_gen;
7685 	u64 reada_min_gen;
7686 
7687 	left_path = btrfs_alloc_path();
7688 	if (!left_path) {
7689 		ret = -ENOMEM;
7690 		goto out;
7691 	}
7692 	right_path = btrfs_alloc_path();
7693 	if (!right_path) {
7694 		ret = -ENOMEM;
7695 		goto out;
7696 	}
7697 
7698 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7699 	if (!tmp_buf) {
7700 		ret = -ENOMEM;
7701 		goto out;
7702 	}
7703 
7704 	left_path->search_commit_root = 1;
7705 	left_path->skip_locking = 1;
7706 	right_path->search_commit_root = 1;
7707 	right_path->skip_locking = 1;
7708 
7709 	/*
7710 	 * Strategy: Go to the first items of both trees. Then do
7711 	 *
7712 	 * If both trees are at level 0
7713 	 *   Compare keys of current items
7714 	 *     If left < right treat left item as new, advance left tree
7715 	 *       and repeat
7716 	 *     If left > right treat right item as deleted, advance right tree
7717 	 *       and repeat
7718 	 *     If left == right do deep compare of items, treat as changed if
7719 	 *       needed, advance both trees and repeat
7720 	 * If both trees are at the same level but not at level 0
7721 	 *   Compare keys of current nodes/leafs
7722 	 *     If left < right advance left tree and repeat
7723 	 *     If left > right advance right tree and repeat
7724 	 *     If left == right compare blockptrs of the next nodes/leafs
7725 	 *       If they match advance both trees but stay at the same level
7726 	 *         and repeat
7727 	 *       If they don't match advance both trees while allowing to go
7728 	 *         deeper and repeat
7729 	 * If tree levels are different
7730 	 *   Advance the tree that needs it and repeat
7731 	 *
7732 	 * Advancing a tree means:
7733 	 *   If we are at level 0, try to go to the next slot. If that's not
7734 	 *   possible, go one level up and repeat. Stop when we found a level
7735 	 *   where we could go to the next slot. We may at this point be on a
7736 	 *   node or a leaf.
7737 	 *
7738 	 *   If we are not at level 0 and not on shared tree blocks, go one
7739 	 *   level deeper.
7740 	 *
7741 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7742 	 *   the right if possible or go up and right.
7743 	 */
7744 
7745 	down_read(&fs_info->commit_root_sem);
7746 	left_level = btrfs_header_level(left_root->commit_root);
7747 	left_root_level = left_level;
7748 	/*
7749 	 * We clone the root node of the send and parent roots to prevent races
7750 	 * with snapshot creation of these roots. Snapshot creation COWs the
7751 	 * root node of a tree, so after the transaction is committed the old
7752 	 * extent can be reallocated while this send operation is still ongoing.
7753 	 * So we clone them, under the commit root semaphore, to be race free.
7754 	 */
7755 	left_path->nodes[left_level] =
7756 			btrfs_clone_extent_buffer(left_root->commit_root);
7757 	if (!left_path->nodes[left_level]) {
7758 		ret = -ENOMEM;
7759 		goto out_unlock;
7760 	}
7761 
7762 	right_level = btrfs_header_level(right_root->commit_root);
7763 	right_root_level = right_level;
7764 	right_path->nodes[right_level] =
7765 			btrfs_clone_extent_buffer(right_root->commit_root);
7766 	if (!right_path->nodes[right_level]) {
7767 		ret = -ENOMEM;
7768 		goto out_unlock;
7769 	}
7770 	/*
7771 	 * Our right root is the parent root, while the left root is the "send"
7772 	 * root. We know that all new nodes/leaves in the left root must have
7773 	 * a generation greater than the right root's generation, so we trigger
7774 	 * readahead for those nodes and leaves of the left root, as we know we
7775 	 * will need to read them at some point.
7776 	 */
7777 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7778 
7779 	if (left_level == 0)
7780 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7781 				&left_key, left_path->slots[left_level]);
7782 	else
7783 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7784 				&left_key, left_path->slots[left_level]);
7785 	if (right_level == 0)
7786 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7787 				&right_key, right_path->slots[right_level]);
7788 	else
7789 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7790 				&right_key, right_path->slots[right_level]);
7791 
7792 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7793 
7794 	while (1) {
7795 		if (need_resched() ||
7796 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7797 			up_read(&fs_info->commit_root_sem);
7798 			cond_resched();
7799 			down_read(&fs_info->commit_root_sem);
7800 		}
7801 
7802 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7803 			ret = restart_after_relocation(left_path, right_path,
7804 						       &left_key, &right_key,
7805 						       left_level, right_level,
7806 						       sctx);
7807 			if (ret < 0)
7808 				goto out_unlock;
7809 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7810 		}
7811 
7812 		if (advance_left && !left_end_reached) {
7813 			ret = tree_advance(left_path, &left_level,
7814 					left_root_level,
7815 					advance_left != ADVANCE_ONLY_NEXT,
7816 					&left_key, reada_min_gen);
7817 			if (ret == -1)
7818 				left_end_reached = ADVANCE;
7819 			else if (ret < 0)
7820 				goto out_unlock;
7821 			advance_left = 0;
7822 		}
7823 		if (advance_right && !right_end_reached) {
7824 			ret = tree_advance(right_path, &right_level,
7825 					right_root_level,
7826 					advance_right != ADVANCE_ONLY_NEXT,
7827 					&right_key, reada_min_gen);
7828 			if (ret == -1)
7829 				right_end_reached = ADVANCE;
7830 			else if (ret < 0)
7831 				goto out_unlock;
7832 			advance_right = 0;
7833 		}
7834 
7835 		if (left_end_reached && right_end_reached) {
7836 			ret = 0;
7837 			goto out_unlock;
7838 		} else if (left_end_reached) {
7839 			if (right_level == 0) {
7840 				up_read(&fs_info->commit_root_sem);
7841 				ret = changed_cb(left_path, right_path,
7842 						&right_key,
7843 						BTRFS_COMPARE_TREE_DELETED,
7844 						sctx);
7845 				if (ret < 0)
7846 					goto out;
7847 				down_read(&fs_info->commit_root_sem);
7848 			}
7849 			advance_right = ADVANCE;
7850 			continue;
7851 		} else if (right_end_reached) {
7852 			if (left_level == 0) {
7853 				up_read(&fs_info->commit_root_sem);
7854 				ret = changed_cb(left_path, right_path,
7855 						&left_key,
7856 						BTRFS_COMPARE_TREE_NEW,
7857 						sctx);
7858 				if (ret < 0)
7859 					goto out;
7860 				down_read(&fs_info->commit_root_sem);
7861 			}
7862 			advance_left = ADVANCE;
7863 			continue;
7864 		}
7865 
7866 		if (left_level == 0 && right_level == 0) {
7867 			up_read(&fs_info->commit_root_sem);
7868 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7869 			if (cmp < 0) {
7870 				ret = changed_cb(left_path, right_path,
7871 						&left_key,
7872 						BTRFS_COMPARE_TREE_NEW,
7873 						sctx);
7874 				advance_left = ADVANCE;
7875 			} else if (cmp > 0) {
7876 				ret = changed_cb(left_path, right_path,
7877 						&right_key,
7878 						BTRFS_COMPARE_TREE_DELETED,
7879 						sctx);
7880 				advance_right = ADVANCE;
7881 			} else {
7882 				enum btrfs_compare_tree_result result;
7883 
7884 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7885 				ret = tree_compare_item(left_path, right_path,
7886 							tmp_buf);
7887 				if (ret)
7888 					result = BTRFS_COMPARE_TREE_CHANGED;
7889 				else
7890 					result = BTRFS_COMPARE_TREE_SAME;
7891 				ret = changed_cb(left_path, right_path,
7892 						 &left_key, result, sctx);
7893 				advance_left = ADVANCE;
7894 				advance_right = ADVANCE;
7895 			}
7896 
7897 			if (ret < 0)
7898 				goto out;
7899 			down_read(&fs_info->commit_root_sem);
7900 		} else if (left_level == right_level) {
7901 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7902 			if (cmp < 0) {
7903 				advance_left = ADVANCE;
7904 			} else if (cmp > 0) {
7905 				advance_right = ADVANCE;
7906 			} else {
7907 				left_blockptr = btrfs_node_blockptr(
7908 						left_path->nodes[left_level],
7909 						left_path->slots[left_level]);
7910 				right_blockptr = btrfs_node_blockptr(
7911 						right_path->nodes[right_level],
7912 						right_path->slots[right_level]);
7913 				left_gen = btrfs_node_ptr_generation(
7914 						left_path->nodes[left_level],
7915 						left_path->slots[left_level]);
7916 				right_gen = btrfs_node_ptr_generation(
7917 						right_path->nodes[right_level],
7918 						right_path->slots[right_level]);
7919 				if (left_blockptr == right_blockptr &&
7920 				    left_gen == right_gen) {
7921 					/*
7922 					 * As we're on a shared block, don't
7923 					 * allow to go deeper.
7924 					 */
7925 					advance_left = ADVANCE_ONLY_NEXT;
7926 					advance_right = ADVANCE_ONLY_NEXT;
7927 				} else {
7928 					advance_left = ADVANCE;
7929 					advance_right = ADVANCE;
7930 				}
7931 			}
7932 		} else if (left_level < right_level) {
7933 			advance_right = ADVANCE;
7934 		} else {
7935 			advance_left = ADVANCE;
7936 		}
7937 	}
7938 
7939 out_unlock:
7940 	up_read(&fs_info->commit_root_sem);
7941 out:
7942 	btrfs_free_path(left_path);
7943 	btrfs_free_path(right_path);
7944 	kvfree(tmp_buf);
7945 	return ret;
7946 }
7947 
7948 static int send_subvol(struct send_ctx *sctx)
7949 {
7950 	int ret;
7951 
7952 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7953 		ret = send_header(sctx);
7954 		if (ret < 0)
7955 			goto out;
7956 	}
7957 
7958 	ret = send_subvol_begin(sctx);
7959 	if (ret < 0)
7960 		goto out;
7961 
7962 	if (sctx->parent_root) {
7963 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7964 		if (ret < 0)
7965 			goto out;
7966 		ret = finish_inode_if_needed(sctx, 1);
7967 		if (ret < 0)
7968 			goto out;
7969 	} else {
7970 		ret = full_send_tree(sctx);
7971 		if (ret < 0)
7972 			goto out;
7973 	}
7974 
7975 out:
7976 	free_recorded_refs(sctx);
7977 	return ret;
7978 }
7979 
7980 /*
7981  * If orphan cleanup did remove any orphans from a root, it means the tree
7982  * was modified and therefore the commit root is not the same as the current
7983  * root anymore. This is a problem, because send uses the commit root and
7984  * therefore can see inode items that don't exist in the current root anymore,
7985  * and for example make calls to btrfs_iget, which will do tree lookups based
7986  * on the current root and not on the commit root. Those lookups will fail,
7987  * returning a -ESTALE error, and making send fail with that error. So make
7988  * sure a send does not see any orphans we have just removed, and that it will
7989  * see the same inodes regardless of whether a transaction commit happened
7990  * before it started (meaning that the commit root will be the same as the
7991  * current root) or not.
7992  */
7993 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7994 {
7995 	int i;
7996 	struct btrfs_trans_handle *trans = NULL;
7997 
7998 again:
7999 	if (sctx->parent_root &&
8000 	    sctx->parent_root->node != sctx->parent_root->commit_root)
8001 		goto commit_trans;
8002 
8003 	for (i = 0; i < sctx->clone_roots_cnt; i++)
8004 		if (sctx->clone_roots[i].root->node !=
8005 		    sctx->clone_roots[i].root->commit_root)
8006 			goto commit_trans;
8007 
8008 	if (trans)
8009 		return btrfs_end_transaction(trans);
8010 
8011 	return 0;
8012 
8013 commit_trans:
8014 	/* Use any root, all fs roots will get their commit roots updated. */
8015 	if (!trans) {
8016 		trans = btrfs_join_transaction(sctx->send_root);
8017 		if (IS_ERR(trans))
8018 			return PTR_ERR(trans);
8019 		goto again;
8020 	}
8021 
8022 	return btrfs_commit_transaction(trans);
8023 }
8024 
8025 /*
8026  * Make sure any existing dellaloc is flushed for any root used by a send
8027  * operation so that we do not miss any data and we do not race with writeback
8028  * finishing and changing a tree while send is using the tree. This could
8029  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8030  * a send operation then uses the subvolume.
8031  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8032  */
8033 static int flush_delalloc_roots(struct send_ctx *sctx)
8034 {
8035 	struct btrfs_root *root = sctx->parent_root;
8036 	int ret;
8037 	int i;
8038 
8039 	if (root) {
8040 		ret = btrfs_start_delalloc_snapshot(root, false);
8041 		if (ret)
8042 			return ret;
8043 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8044 	}
8045 
8046 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8047 		root = sctx->clone_roots[i].root;
8048 		ret = btrfs_start_delalloc_snapshot(root, false);
8049 		if (ret)
8050 			return ret;
8051 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8052 	}
8053 
8054 	return 0;
8055 }
8056 
8057 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8058 {
8059 	spin_lock(&root->root_item_lock);
8060 	root->send_in_progress--;
8061 	/*
8062 	 * Not much left to do, we don't know why it's unbalanced and
8063 	 * can't blindly reset it to 0.
8064 	 */
8065 	if (root->send_in_progress < 0)
8066 		btrfs_err(root->fs_info,
8067 			  "send_in_progress unbalanced %d root %llu",
8068 			  root->send_in_progress, root->root_key.objectid);
8069 	spin_unlock(&root->root_item_lock);
8070 }
8071 
8072 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8073 {
8074 	btrfs_warn_rl(root->fs_info,
8075 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8076 		      root->root_key.objectid, root->dedupe_in_progress);
8077 }
8078 
8079 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8080 {
8081 	int ret = 0;
8082 	struct btrfs_root *send_root = BTRFS_I(inode)->root;
8083 	struct btrfs_fs_info *fs_info = send_root->fs_info;
8084 	struct btrfs_root *clone_root;
8085 	struct send_ctx *sctx = NULL;
8086 	u32 i;
8087 	u64 *clone_sources_tmp = NULL;
8088 	int clone_sources_to_rollback = 0;
8089 	size_t alloc_size;
8090 	int sort_clone_roots = 0;
8091 	struct btrfs_lru_cache_entry *entry;
8092 	struct btrfs_lru_cache_entry *tmp;
8093 
8094 	if (!capable(CAP_SYS_ADMIN))
8095 		return -EPERM;
8096 
8097 	/*
8098 	 * The subvolume must remain read-only during send, protect against
8099 	 * making it RW. This also protects against deletion.
8100 	 */
8101 	spin_lock(&send_root->root_item_lock);
8102 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8103 		dedupe_in_progress_warn(send_root);
8104 		spin_unlock(&send_root->root_item_lock);
8105 		return -EAGAIN;
8106 	}
8107 	send_root->send_in_progress++;
8108 	spin_unlock(&send_root->root_item_lock);
8109 
8110 	/*
8111 	 * Userspace tools do the checks and warn the user if it's
8112 	 * not RO.
8113 	 */
8114 	if (!btrfs_root_readonly(send_root)) {
8115 		ret = -EPERM;
8116 		goto out;
8117 	}
8118 
8119 	/*
8120 	 * Check that we don't overflow at later allocations, we request
8121 	 * clone_sources_count + 1 items, and compare to unsigned long inside
8122 	 * access_ok. Also set an upper limit for allocation size so this can't
8123 	 * easily exhaust memory. Max number of clone sources is about 200K.
8124 	 */
8125 	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8126 		ret = -EINVAL;
8127 		goto out;
8128 	}
8129 
8130 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8131 		ret = -EOPNOTSUPP;
8132 		goto out;
8133 	}
8134 
8135 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8136 	if (!sctx) {
8137 		ret = -ENOMEM;
8138 		goto out;
8139 	}
8140 
8141 	INIT_LIST_HEAD(&sctx->new_refs);
8142 	INIT_LIST_HEAD(&sctx->deleted_refs);
8143 
8144 	btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8145 	btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8146 	btrfs_lru_cache_init(&sctx->dir_created_cache,
8147 			     SEND_MAX_DIR_CREATED_CACHE_SIZE);
8148 	/*
8149 	 * This cache is periodically trimmed to a fixed size elsewhere, see
8150 	 * cache_dir_utimes() and trim_dir_utimes_cache().
8151 	 */
8152 	btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8153 
8154 	sctx->pending_dir_moves = RB_ROOT;
8155 	sctx->waiting_dir_moves = RB_ROOT;
8156 	sctx->orphan_dirs = RB_ROOT;
8157 	sctx->rbtree_new_refs = RB_ROOT;
8158 	sctx->rbtree_deleted_refs = RB_ROOT;
8159 
8160 	sctx->flags = arg->flags;
8161 
8162 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8163 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8164 			ret = -EPROTO;
8165 			goto out;
8166 		}
8167 		/* Zero means "use the highest version" */
8168 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8169 	} else {
8170 		sctx->proto = 1;
8171 	}
8172 	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8173 		ret = -EINVAL;
8174 		goto out;
8175 	}
8176 
8177 	sctx->send_filp = fget(arg->send_fd);
8178 	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8179 		ret = -EBADF;
8180 		goto out;
8181 	}
8182 
8183 	sctx->send_root = send_root;
8184 	/*
8185 	 * Unlikely but possible, if the subvolume is marked for deletion but
8186 	 * is slow to remove the directory entry, send can still be started
8187 	 */
8188 	if (btrfs_root_dead(sctx->send_root)) {
8189 		ret = -EPERM;
8190 		goto out;
8191 	}
8192 
8193 	sctx->clone_roots_cnt = arg->clone_sources_count;
8194 
8195 	if (sctx->proto >= 2) {
8196 		u32 send_buf_num_pages;
8197 
8198 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8199 		sctx->send_buf = vmalloc(sctx->send_max_size);
8200 		if (!sctx->send_buf) {
8201 			ret = -ENOMEM;
8202 			goto out;
8203 		}
8204 		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8205 		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8206 					       sizeof(*sctx->send_buf_pages),
8207 					       GFP_KERNEL);
8208 		if (!sctx->send_buf_pages) {
8209 			ret = -ENOMEM;
8210 			goto out;
8211 		}
8212 		for (i = 0; i < send_buf_num_pages; i++) {
8213 			sctx->send_buf_pages[i] =
8214 				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8215 		}
8216 	} else {
8217 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8218 		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8219 	}
8220 	if (!sctx->send_buf) {
8221 		ret = -ENOMEM;
8222 		goto out;
8223 	}
8224 
8225 	sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8226 				     sizeof(*sctx->clone_roots),
8227 				     GFP_KERNEL);
8228 	if (!sctx->clone_roots) {
8229 		ret = -ENOMEM;
8230 		goto out;
8231 	}
8232 
8233 	alloc_size = array_size(sizeof(*arg->clone_sources),
8234 				arg->clone_sources_count);
8235 
8236 	if (arg->clone_sources_count) {
8237 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8238 		if (!clone_sources_tmp) {
8239 			ret = -ENOMEM;
8240 			goto out;
8241 		}
8242 
8243 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8244 				alloc_size);
8245 		if (ret) {
8246 			ret = -EFAULT;
8247 			goto out;
8248 		}
8249 
8250 		for (i = 0; i < arg->clone_sources_count; i++) {
8251 			clone_root = btrfs_get_fs_root(fs_info,
8252 						clone_sources_tmp[i], true);
8253 			if (IS_ERR(clone_root)) {
8254 				ret = PTR_ERR(clone_root);
8255 				goto out;
8256 			}
8257 			spin_lock(&clone_root->root_item_lock);
8258 			if (!btrfs_root_readonly(clone_root) ||
8259 			    btrfs_root_dead(clone_root)) {
8260 				spin_unlock(&clone_root->root_item_lock);
8261 				btrfs_put_root(clone_root);
8262 				ret = -EPERM;
8263 				goto out;
8264 			}
8265 			if (clone_root->dedupe_in_progress) {
8266 				dedupe_in_progress_warn(clone_root);
8267 				spin_unlock(&clone_root->root_item_lock);
8268 				btrfs_put_root(clone_root);
8269 				ret = -EAGAIN;
8270 				goto out;
8271 			}
8272 			clone_root->send_in_progress++;
8273 			spin_unlock(&clone_root->root_item_lock);
8274 
8275 			sctx->clone_roots[i].root = clone_root;
8276 			clone_sources_to_rollback = i + 1;
8277 		}
8278 		kvfree(clone_sources_tmp);
8279 		clone_sources_tmp = NULL;
8280 	}
8281 
8282 	if (arg->parent_root) {
8283 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8284 						      true);
8285 		if (IS_ERR(sctx->parent_root)) {
8286 			ret = PTR_ERR(sctx->parent_root);
8287 			goto out;
8288 		}
8289 
8290 		spin_lock(&sctx->parent_root->root_item_lock);
8291 		sctx->parent_root->send_in_progress++;
8292 		if (!btrfs_root_readonly(sctx->parent_root) ||
8293 				btrfs_root_dead(sctx->parent_root)) {
8294 			spin_unlock(&sctx->parent_root->root_item_lock);
8295 			ret = -EPERM;
8296 			goto out;
8297 		}
8298 		if (sctx->parent_root->dedupe_in_progress) {
8299 			dedupe_in_progress_warn(sctx->parent_root);
8300 			spin_unlock(&sctx->parent_root->root_item_lock);
8301 			ret = -EAGAIN;
8302 			goto out;
8303 		}
8304 		spin_unlock(&sctx->parent_root->root_item_lock);
8305 	}
8306 
8307 	/*
8308 	 * Clones from send_root are allowed, but only if the clone source
8309 	 * is behind the current send position. This is checked while searching
8310 	 * for possible clone sources.
8311 	 */
8312 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8313 		btrfs_grab_root(sctx->send_root);
8314 
8315 	/* We do a bsearch later */
8316 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8317 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8318 			NULL);
8319 	sort_clone_roots = 1;
8320 
8321 	ret = flush_delalloc_roots(sctx);
8322 	if (ret)
8323 		goto out;
8324 
8325 	ret = ensure_commit_roots_uptodate(sctx);
8326 	if (ret)
8327 		goto out;
8328 
8329 	ret = send_subvol(sctx);
8330 	if (ret < 0)
8331 		goto out;
8332 
8333 	btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8334 		ret = send_utimes(sctx, entry->key, entry->gen);
8335 		if (ret < 0)
8336 			goto out;
8337 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8338 	}
8339 
8340 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8341 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8342 		if (ret < 0)
8343 			goto out;
8344 		ret = send_cmd(sctx);
8345 		if (ret < 0)
8346 			goto out;
8347 	}
8348 
8349 out:
8350 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8351 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8352 		struct rb_node *n;
8353 		struct pending_dir_move *pm;
8354 
8355 		n = rb_first(&sctx->pending_dir_moves);
8356 		pm = rb_entry(n, struct pending_dir_move, node);
8357 		while (!list_empty(&pm->list)) {
8358 			struct pending_dir_move *pm2;
8359 
8360 			pm2 = list_first_entry(&pm->list,
8361 					       struct pending_dir_move, list);
8362 			free_pending_move(sctx, pm2);
8363 		}
8364 		free_pending_move(sctx, pm);
8365 	}
8366 
8367 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8368 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8369 		struct rb_node *n;
8370 		struct waiting_dir_move *dm;
8371 
8372 		n = rb_first(&sctx->waiting_dir_moves);
8373 		dm = rb_entry(n, struct waiting_dir_move, node);
8374 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8375 		kfree(dm);
8376 	}
8377 
8378 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8379 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8380 		struct rb_node *n;
8381 		struct orphan_dir_info *odi;
8382 
8383 		n = rb_first(&sctx->orphan_dirs);
8384 		odi = rb_entry(n, struct orphan_dir_info, node);
8385 		free_orphan_dir_info(sctx, odi);
8386 	}
8387 
8388 	if (sort_clone_roots) {
8389 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8390 			btrfs_root_dec_send_in_progress(
8391 					sctx->clone_roots[i].root);
8392 			btrfs_put_root(sctx->clone_roots[i].root);
8393 		}
8394 	} else {
8395 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8396 			btrfs_root_dec_send_in_progress(
8397 					sctx->clone_roots[i].root);
8398 			btrfs_put_root(sctx->clone_roots[i].root);
8399 		}
8400 
8401 		btrfs_root_dec_send_in_progress(send_root);
8402 	}
8403 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8404 		btrfs_root_dec_send_in_progress(sctx->parent_root);
8405 		btrfs_put_root(sctx->parent_root);
8406 	}
8407 
8408 	kvfree(clone_sources_tmp);
8409 
8410 	if (sctx) {
8411 		if (sctx->send_filp)
8412 			fput(sctx->send_filp);
8413 
8414 		kvfree(sctx->clone_roots);
8415 		kfree(sctx->send_buf_pages);
8416 		kvfree(sctx->send_buf);
8417 		kvfree(sctx->verity_descriptor);
8418 
8419 		close_current_inode(sctx);
8420 
8421 		btrfs_lru_cache_clear(&sctx->name_cache);
8422 		btrfs_lru_cache_clear(&sctx->backref_cache);
8423 		btrfs_lru_cache_clear(&sctx->dir_created_cache);
8424 		btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8425 
8426 		kfree(sctx);
8427 	}
8428 
8429 	return ret;
8430 }
8431