1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/crc32c.h> 28 #include <linux/vmalloc.h> 29 #include <linux/string.h> 30 31 #include "send.h" 32 #include "backref.h" 33 #include "locking.h" 34 #include "disk-io.h" 35 #include "btrfs_inode.h" 36 #include "transaction.h" 37 38 static int g_verbose = 0; 39 40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__) 41 42 /* 43 * A fs_path is a helper to dynamically build path names with unknown size. 44 * It reallocates the internal buffer on demand. 45 * It allows fast adding of path elements on the right side (normal path) and 46 * fast adding to the left side (reversed path). A reversed path can also be 47 * unreversed if needed. 48 */ 49 struct fs_path { 50 union { 51 struct { 52 char *start; 53 char *end; 54 char *prepared; 55 56 char *buf; 57 int buf_len; 58 unsigned int reversed:1; 59 unsigned int virtual_mem:1; 60 char inline_buf[]; 61 }; 62 char pad[PAGE_SIZE]; 63 }; 64 }; 65 #define FS_PATH_INLINE_SIZE \ 66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 67 68 69 /* reused for each extent */ 70 struct clone_root { 71 struct btrfs_root *root; 72 u64 ino; 73 u64 offset; 74 75 u64 found_refs; 76 }; 77 78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 80 81 struct send_ctx { 82 struct file *send_filp; 83 loff_t send_off; 84 char *send_buf; 85 u32 send_size; 86 u32 send_max_size; 87 u64 total_send_size; 88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 90 91 struct vfsmount *mnt; 92 93 struct btrfs_root *send_root; 94 struct btrfs_root *parent_root; 95 struct clone_root *clone_roots; 96 int clone_roots_cnt; 97 98 /* current state of the compare_tree call */ 99 struct btrfs_path *left_path; 100 struct btrfs_path *right_path; 101 struct btrfs_key *cmp_key; 102 103 /* 104 * infos of the currently processed inode. In case of deleted inodes, 105 * these are the values from the deleted inode. 106 */ 107 u64 cur_ino; 108 u64 cur_inode_gen; 109 int cur_inode_new; 110 int cur_inode_new_gen; 111 int cur_inode_deleted; 112 u64 cur_inode_size; 113 u64 cur_inode_mode; 114 115 u64 send_progress; 116 117 struct list_head new_refs; 118 struct list_head deleted_refs; 119 120 struct radix_tree_root name_cache; 121 struct list_head name_cache_list; 122 int name_cache_size; 123 124 struct file *cur_inode_filp; 125 char *read_buf; 126 }; 127 128 struct name_cache_entry { 129 struct list_head list; 130 /* 131 * radix_tree has only 32bit entries but we need to handle 64bit inums. 132 * We use the lower 32bit of the 64bit inum to store it in the tree. If 133 * more then one inum would fall into the same entry, we use radix_list 134 * to store the additional entries. radix_list is also used to store 135 * entries where two entries have the same inum but different 136 * generations. 137 */ 138 struct list_head radix_list; 139 u64 ino; 140 u64 gen; 141 u64 parent_ino; 142 u64 parent_gen; 143 int ret; 144 int need_later_update; 145 int name_len; 146 char name[]; 147 }; 148 149 static void fs_path_reset(struct fs_path *p) 150 { 151 if (p->reversed) { 152 p->start = p->buf + p->buf_len - 1; 153 p->end = p->start; 154 *p->start = 0; 155 } else { 156 p->start = p->buf; 157 p->end = p->start; 158 *p->start = 0; 159 } 160 } 161 162 static struct fs_path *fs_path_alloc(void) 163 { 164 struct fs_path *p; 165 166 p = kmalloc(sizeof(*p), GFP_NOFS); 167 if (!p) 168 return NULL; 169 p->reversed = 0; 170 p->virtual_mem = 0; 171 p->buf = p->inline_buf; 172 p->buf_len = FS_PATH_INLINE_SIZE; 173 fs_path_reset(p); 174 return p; 175 } 176 177 static struct fs_path *fs_path_alloc_reversed(void) 178 { 179 struct fs_path *p; 180 181 p = fs_path_alloc(); 182 if (!p) 183 return NULL; 184 p->reversed = 1; 185 fs_path_reset(p); 186 return p; 187 } 188 189 static void fs_path_free(struct fs_path *p) 190 { 191 if (!p) 192 return; 193 if (p->buf != p->inline_buf) { 194 if (p->virtual_mem) 195 vfree(p->buf); 196 else 197 kfree(p->buf); 198 } 199 kfree(p); 200 } 201 202 static int fs_path_len(struct fs_path *p) 203 { 204 return p->end - p->start; 205 } 206 207 static int fs_path_ensure_buf(struct fs_path *p, int len) 208 { 209 char *tmp_buf; 210 int path_len; 211 int old_buf_len; 212 213 len++; 214 215 if (p->buf_len >= len) 216 return 0; 217 218 path_len = p->end - p->start; 219 old_buf_len = p->buf_len; 220 len = PAGE_ALIGN(len); 221 222 if (p->buf == p->inline_buf) { 223 tmp_buf = kmalloc(len, GFP_NOFS | __GFP_NOWARN); 224 if (!tmp_buf) { 225 tmp_buf = vmalloc(len); 226 if (!tmp_buf) 227 return -ENOMEM; 228 p->virtual_mem = 1; 229 } 230 memcpy(tmp_buf, p->buf, p->buf_len); 231 p->buf = tmp_buf; 232 p->buf_len = len; 233 } else { 234 if (p->virtual_mem) { 235 tmp_buf = vmalloc(len); 236 if (!tmp_buf) 237 return -ENOMEM; 238 memcpy(tmp_buf, p->buf, p->buf_len); 239 vfree(p->buf); 240 } else { 241 tmp_buf = krealloc(p->buf, len, GFP_NOFS); 242 if (!tmp_buf) { 243 tmp_buf = vmalloc(len); 244 if (!tmp_buf) 245 return -ENOMEM; 246 memcpy(tmp_buf, p->buf, p->buf_len); 247 kfree(p->buf); 248 p->virtual_mem = 1; 249 } 250 } 251 p->buf = tmp_buf; 252 p->buf_len = len; 253 } 254 if (p->reversed) { 255 tmp_buf = p->buf + old_buf_len - path_len - 1; 256 p->end = p->buf + p->buf_len - 1; 257 p->start = p->end - path_len; 258 memmove(p->start, tmp_buf, path_len + 1); 259 } else { 260 p->start = p->buf; 261 p->end = p->start + path_len; 262 } 263 return 0; 264 } 265 266 static int fs_path_prepare_for_add(struct fs_path *p, int name_len) 267 { 268 int ret; 269 int new_len; 270 271 new_len = p->end - p->start + name_len; 272 if (p->start != p->end) 273 new_len++; 274 ret = fs_path_ensure_buf(p, new_len); 275 if (ret < 0) 276 goto out; 277 278 if (p->reversed) { 279 if (p->start != p->end) 280 *--p->start = '/'; 281 p->start -= name_len; 282 p->prepared = p->start; 283 } else { 284 if (p->start != p->end) 285 *p->end++ = '/'; 286 p->prepared = p->end; 287 p->end += name_len; 288 *p->end = 0; 289 } 290 291 out: 292 return ret; 293 } 294 295 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 296 { 297 int ret; 298 299 ret = fs_path_prepare_for_add(p, name_len); 300 if (ret < 0) 301 goto out; 302 memcpy(p->prepared, name, name_len); 303 p->prepared = NULL; 304 305 out: 306 return ret; 307 } 308 309 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 310 { 311 int ret; 312 313 ret = fs_path_prepare_for_add(p, p2->end - p2->start); 314 if (ret < 0) 315 goto out; 316 memcpy(p->prepared, p2->start, p2->end - p2->start); 317 p->prepared = NULL; 318 319 out: 320 return ret; 321 } 322 323 static int fs_path_add_from_extent_buffer(struct fs_path *p, 324 struct extent_buffer *eb, 325 unsigned long off, int len) 326 { 327 int ret; 328 329 ret = fs_path_prepare_for_add(p, len); 330 if (ret < 0) 331 goto out; 332 333 read_extent_buffer(eb, p->prepared, off, len); 334 p->prepared = NULL; 335 336 out: 337 return ret; 338 } 339 340 #if 0 341 static void fs_path_remove(struct fs_path *p) 342 { 343 BUG_ON(p->reversed); 344 while (p->start != p->end && *p->end != '/') 345 p->end--; 346 *p->end = 0; 347 } 348 #endif 349 350 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 351 { 352 int ret; 353 354 p->reversed = from->reversed; 355 fs_path_reset(p); 356 357 ret = fs_path_add_path(p, from); 358 359 return ret; 360 } 361 362 363 static void fs_path_unreverse(struct fs_path *p) 364 { 365 char *tmp; 366 int len; 367 368 if (!p->reversed) 369 return; 370 371 tmp = p->start; 372 len = p->end - p->start; 373 p->start = p->buf; 374 p->end = p->start + len; 375 memmove(p->start, tmp, len + 1); 376 p->reversed = 0; 377 } 378 379 static struct btrfs_path *alloc_path_for_send(void) 380 { 381 struct btrfs_path *path; 382 383 path = btrfs_alloc_path(); 384 if (!path) 385 return NULL; 386 path->search_commit_root = 1; 387 path->skip_locking = 1; 388 return path; 389 } 390 391 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 392 { 393 int ret; 394 mm_segment_t old_fs; 395 u32 pos = 0; 396 397 old_fs = get_fs(); 398 set_fs(KERNEL_DS); 399 400 while (pos < len) { 401 ret = vfs_write(filp, (char *)buf + pos, len - pos, off); 402 /* TODO handle that correctly */ 403 /*if (ret == -ERESTARTSYS) { 404 continue; 405 }*/ 406 if (ret < 0) 407 goto out; 408 if (ret == 0) { 409 ret = -EIO; 410 goto out; 411 } 412 pos += ret; 413 } 414 415 ret = 0; 416 417 out: 418 set_fs(old_fs); 419 return ret; 420 } 421 422 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 423 { 424 struct btrfs_tlv_header *hdr; 425 int total_len = sizeof(*hdr) + len; 426 int left = sctx->send_max_size - sctx->send_size; 427 428 if (unlikely(left < total_len)) 429 return -EOVERFLOW; 430 431 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 432 hdr->tlv_type = cpu_to_le16(attr); 433 hdr->tlv_len = cpu_to_le16(len); 434 memcpy(hdr + 1, data, len); 435 sctx->send_size += total_len; 436 437 return 0; 438 } 439 440 #if 0 441 static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value) 442 { 443 return tlv_put(sctx, attr, &value, sizeof(value)); 444 } 445 446 static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value) 447 { 448 __le16 tmp = cpu_to_le16(value); 449 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 450 } 451 452 static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value) 453 { 454 __le32 tmp = cpu_to_le32(value); 455 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 456 } 457 #endif 458 459 static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value) 460 { 461 __le64 tmp = cpu_to_le64(value); 462 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 463 } 464 465 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 466 const char *str, int len) 467 { 468 if (len == -1) 469 len = strlen(str); 470 return tlv_put(sctx, attr, str, len); 471 } 472 473 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 474 const u8 *uuid) 475 { 476 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 477 } 478 479 #if 0 480 static int tlv_put_timespec(struct send_ctx *sctx, u16 attr, 481 struct timespec *ts) 482 { 483 struct btrfs_timespec bts; 484 bts.sec = cpu_to_le64(ts->tv_sec); 485 bts.nsec = cpu_to_le32(ts->tv_nsec); 486 return tlv_put(sctx, attr, &bts, sizeof(bts)); 487 } 488 #endif 489 490 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 491 struct extent_buffer *eb, 492 struct btrfs_timespec *ts) 493 { 494 struct btrfs_timespec bts; 495 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 496 return tlv_put(sctx, attr, &bts, sizeof(bts)); 497 } 498 499 500 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 501 do { \ 502 ret = tlv_put(sctx, attrtype, attrlen, data); \ 503 if (ret < 0) \ 504 goto tlv_put_failure; \ 505 } while (0) 506 507 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 508 do { \ 509 ret = tlv_put_u##bits(sctx, attrtype, value); \ 510 if (ret < 0) \ 511 goto tlv_put_failure; \ 512 } while (0) 513 514 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 515 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 516 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 517 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 518 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 519 do { \ 520 ret = tlv_put_string(sctx, attrtype, str, len); \ 521 if (ret < 0) \ 522 goto tlv_put_failure; \ 523 } while (0) 524 #define TLV_PUT_PATH(sctx, attrtype, p) \ 525 do { \ 526 ret = tlv_put_string(sctx, attrtype, p->start, \ 527 p->end - p->start); \ 528 if (ret < 0) \ 529 goto tlv_put_failure; \ 530 } while(0) 531 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 532 do { \ 533 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 534 if (ret < 0) \ 535 goto tlv_put_failure; \ 536 } while (0) 537 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \ 538 do { \ 539 ret = tlv_put_timespec(sctx, attrtype, ts); \ 540 if (ret < 0) \ 541 goto tlv_put_failure; \ 542 } while (0) 543 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 544 do { \ 545 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 546 if (ret < 0) \ 547 goto tlv_put_failure; \ 548 } while (0) 549 550 static int send_header(struct send_ctx *sctx) 551 { 552 struct btrfs_stream_header hdr; 553 554 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 555 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 556 557 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 558 &sctx->send_off); 559 } 560 561 /* 562 * For each command/item we want to send to userspace, we call this function. 563 */ 564 static int begin_cmd(struct send_ctx *sctx, int cmd) 565 { 566 struct btrfs_cmd_header *hdr; 567 568 if (!sctx->send_buf) { 569 WARN_ON(1); 570 return -EINVAL; 571 } 572 573 BUG_ON(sctx->send_size); 574 575 sctx->send_size += sizeof(*hdr); 576 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 577 hdr->cmd = cpu_to_le16(cmd); 578 579 return 0; 580 } 581 582 static int send_cmd(struct send_ctx *sctx) 583 { 584 int ret; 585 struct btrfs_cmd_header *hdr; 586 u32 crc; 587 588 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 589 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 590 hdr->crc = 0; 591 592 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 593 hdr->crc = cpu_to_le32(crc); 594 595 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 596 &sctx->send_off); 597 598 sctx->total_send_size += sctx->send_size; 599 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 600 sctx->send_size = 0; 601 602 return ret; 603 } 604 605 /* 606 * Sends a move instruction to user space 607 */ 608 static int send_rename(struct send_ctx *sctx, 609 struct fs_path *from, struct fs_path *to) 610 { 611 int ret; 612 613 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start); 614 615 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 616 if (ret < 0) 617 goto out; 618 619 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 620 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 621 622 ret = send_cmd(sctx); 623 624 tlv_put_failure: 625 out: 626 return ret; 627 } 628 629 /* 630 * Sends a link instruction to user space 631 */ 632 static int send_link(struct send_ctx *sctx, 633 struct fs_path *path, struct fs_path *lnk) 634 { 635 int ret; 636 637 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start); 638 639 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 640 if (ret < 0) 641 goto out; 642 643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 645 646 ret = send_cmd(sctx); 647 648 tlv_put_failure: 649 out: 650 return ret; 651 } 652 653 /* 654 * Sends an unlink instruction to user space 655 */ 656 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 657 { 658 int ret; 659 660 verbose_printk("btrfs: send_unlink %s\n", path->start); 661 662 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 663 if (ret < 0) 664 goto out; 665 666 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 667 668 ret = send_cmd(sctx); 669 670 tlv_put_failure: 671 out: 672 return ret; 673 } 674 675 /* 676 * Sends a rmdir instruction to user space 677 */ 678 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 679 { 680 int ret; 681 682 verbose_printk("btrfs: send_rmdir %s\n", path->start); 683 684 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 685 if (ret < 0) 686 goto out; 687 688 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 689 690 ret = send_cmd(sctx); 691 692 tlv_put_failure: 693 out: 694 return ret; 695 } 696 697 /* 698 * Helper function to retrieve some fields from an inode item. 699 */ 700 static int get_inode_info(struct btrfs_root *root, 701 u64 ino, u64 *size, u64 *gen, 702 u64 *mode, u64 *uid, u64 *gid, 703 u64 *rdev) 704 { 705 int ret; 706 struct btrfs_inode_item *ii; 707 struct btrfs_key key; 708 struct btrfs_path *path; 709 710 path = alloc_path_for_send(); 711 if (!path) 712 return -ENOMEM; 713 714 key.objectid = ino; 715 key.type = BTRFS_INODE_ITEM_KEY; 716 key.offset = 0; 717 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 718 if (ret < 0) 719 goto out; 720 if (ret) { 721 ret = -ENOENT; 722 goto out; 723 } 724 725 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 726 struct btrfs_inode_item); 727 if (size) 728 *size = btrfs_inode_size(path->nodes[0], ii); 729 if (gen) 730 *gen = btrfs_inode_generation(path->nodes[0], ii); 731 if (mode) 732 *mode = btrfs_inode_mode(path->nodes[0], ii); 733 if (uid) 734 *uid = btrfs_inode_uid(path->nodes[0], ii); 735 if (gid) 736 *gid = btrfs_inode_gid(path->nodes[0], ii); 737 if (rdev) 738 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 739 740 out: 741 btrfs_free_path(path); 742 return ret; 743 } 744 745 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 746 struct fs_path *p, 747 void *ctx); 748 749 /* 750 * Helper function to iterate the entries in ONE btrfs_inode_ref or 751 * btrfs_inode_extref. 752 * The iterate callback may return a non zero value to stop iteration. This can 753 * be a negative value for error codes or 1 to simply stop it. 754 * 755 * path must point to the INODE_REF or INODE_EXTREF when called. 756 */ 757 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 758 struct btrfs_key *found_key, int resolve, 759 iterate_inode_ref_t iterate, void *ctx) 760 { 761 struct extent_buffer *eb = path->nodes[0]; 762 struct btrfs_item *item; 763 struct btrfs_inode_ref *iref; 764 struct btrfs_inode_extref *extref; 765 struct btrfs_path *tmp_path; 766 struct fs_path *p; 767 u32 cur = 0; 768 u32 total; 769 int slot = path->slots[0]; 770 u32 name_len; 771 char *start; 772 int ret = 0; 773 int num = 0; 774 int index; 775 u64 dir; 776 unsigned long name_off; 777 unsigned long elem_size; 778 unsigned long ptr; 779 780 p = fs_path_alloc_reversed(); 781 if (!p) 782 return -ENOMEM; 783 784 tmp_path = alloc_path_for_send(); 785 if (!tmp_path) { 786 fs_path_free(p); 787 return -ENOMEM; 788 } 789 790 791 if (found_key->type == BTRFS_INODE_REF_KEY) { 792 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 793 struct btrfs_inode_ref); 794 item = btrfs_item_nr(eb, slot); 795 total = btrfs_item_size(eb, item); 796 elem_size = sizeof(*iref); 797 } else { 798 ptr = btrfs_item_ptr_offset(eb, slot); 799 total = btrfs_item_size_nr(eb, slot); 800 elem_size = sizeof(*extref); 801 } 802 803 while (cur < total) { 804 fs_path_reset(p); 805 806 if (found_key->type == BTRFS_INODE_REF_KEY) { 807 iref = (struct btrfs_inode_ref *)(ptr + cur); 808 name_len = btrfs_inode_ref_name_len(eb, iref); 809 name_off = (unsigned long)(iref + 1); 810 index = btrfs_inode_ref_index(eb, iref); 811 dir = found_key->offset; 812 } else { 813 extref = (struct btrfs_inode_extref *)(ptr + cur); 814 name_len = btrfs_inode_extref_name_len(eb, extref); 815 name_off = (unsigned long)&extref->name; 816 index = btrfs_inode_extref_index(eb, extref); 817 dir = btrfs_inode_extref_parent(eb, extref); 818 } 819 820 if (resolve) { 821 start = btrfs_ref_to_path(root, tmp_path, name_len, 822 name_off, eb, dir, 823 p->buf, p->buf_len); 824 if (IS_ERR(start)) { 825 ret = PTR_ERR(start); 826 goto out; 827 } 828 if (start < p->buf) { 829 /* overflow , try again with larger buffer */ 830 ret = fs_path_ensure_buf(p, 831 p->buf_len + p->buf - start); 832 if (ret < 0) 833 goto out; 834 start = btrfs_ref_to_path(root, tmp_path, 835 name_len, name_off, 836 eb, dir, 837 p->buf, p->buf_len); 838 if (IS_ERR(start)) { 839 ret = PTR_ERR(start); 840 goto out; 841 } 842 BUG_ON(start < p->buf); 843 } 844 p->start = start; 845 } else { 846 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 847 name_len); 848 if (ret < 0) 849 goto out; 850 } 851 852 cur += elem_size + name_len; 853 ret = iterate(num, dir, index, p, ctx); 854 if (ret) 855 goto out; 856 num++; 857 } 858 859 out: 860 btrfs_free_path(tmp_path); 861 fs_path_free(p); 862 return ret; 863 } 864 865 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 866 const char *name, int name_len, 867 const char *data, int data_len, 868 u8 type, void *ctx); 869 870 /* 871 * Helper function to iterate the entries in ONE btrfs_dir_item. 872 * The iterate callback may return a non zero value to stop iteration. This can 873 * be a negative value for error codes or 1 to simply stop it. 874 * 875 * path must point to the dir item when called. 876 */ 877 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 878 struct btrfs_key *found_key, 879 iterate_dir_item_t iterate, void *ctx) 880 { 881 int ret = 0; 882 struct extent_buffer *eb; 883 struct btrfs_item *item; 884 struct btrfs_dir_item *di; 885 struct btrfs_key di_key; 886 char *buf = NULL; 887 char *buf2 = NULL; 888 int buf_len; 889 int buf_virtual = 0; 890 u32 name_len; 891 u32 data_len; 892 u32 cur; 893 u32 len; 894 u32 total; 895 int slot; 896 int num; 897 u8 type; 898 899 buf_len = PAGE_SIZE; 900 buf = kmalloc(buf_len, GFP_NOFS); 901 if (!buf) { 902 ret = -ENOMEM; 903 goto out; 904 } 905 906 eb = path->nodes[0]; 907 slot = path->slots[0]; 908 item = btrfs_item_nr(eb, slot); 909 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 910 cur = 0; 911 len = 0; 912 total = btrfs_item_size(eb, item); 913 914 num = 0; 915 while (cur < total) { 916 name_len = btrfs_dir_name_len(eb, di); 917 data_len = btrfs_dir_data_len(eb, di); 918 type = btrfs_dir_type(eb, di); 919 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 920 921 if (name_len + data_len > buf_len) { 922 buf_len = PAGE_ALIGN(name_len + data_len); 923 if (buf_virtual) { 924 buf2 = vmalloc(buf_len); 925 if (!buf2) { 926 ret = -ENOMEM; 927 goto out; 928 } 929 vfree(buf); 930 } else { 931 buf2 = krealloc(buf, buf_len, GFP_NOFS); 932 if (!buf2) { 933 buf2 = vmalloc(buf_len); 934 if (!buf2) { 935 ret = -ENOMEM; 936 goto out; 937 } 938 kfree(buf); 939 buf_virtual = 1; 940 } 941 } 942 943 buf = buf2; 944 buf2 = NULL; 945 } 946 947 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 948 name_len + data_len); 949 950 len = sizeof(*di) + name_len + data_len; 951 di = (struct btrfs_dir_item *)((char *)di + len); 952 cur += len; 953 954 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 955 data_len, type, ctx); 956 if (ret < 0) 957 goto out; 958 if (ret) { 959 ret = 0; 960 goto out; 961 } 962 963 num++; 964 } 965 966 out: 967 if (buf_virtual) 968 vfree(buf); 969 else 970 kfree(buf); 971 return ret; 972 } 973 974 static int __copy_first_ref(int num, u64 dir, int index, 975 struct fs_path *p, void *ctx) 976 { 977 int ret; 978 struct fs_path *pt = ctx; 979 980 ret = fs_path_copy(pt, p); 981 if (ret < 0) 982 return ret; 983 984 /* we want the first only */ 985 return 1; 986 } 987 988 /* 989 * Retrieve the first path of an inode. If an inode has more then one 990 * ref/hardlink, this is ignored. 991 */ 992 static int get_inode_path(struct btrfs_root *root, 993 u64 ino, struct fs_path *path) 994 { 995 int ret; 996 struct btrfs_key key, found_key; 997 struct btrfs_path *p; 998 999 p = alloc_path_for_send(); 1000 if (!p) 1001 return -ENOMEM; 1002 1003 fs_path_reset(path); 1004 1005 key.objectid = ino; 1006 key.type = BTRFS_INODE_REF_KEY; 1007 key.offset = 0; 1008 1009 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1010 if (ret < 0) 1011 goto out; 1012 if (ret) { 1013 ret = 1; 1014 goto out; 1015 } 1016 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1017 if (found_key.objectid != ino || 1018 (found_key.type != BTRFS_INODE_REF_KEY && 1019 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1020 ret = -ENOENT; 1021 goto out; 1022 } 1023 1024 ret = iterate_inode_ref(root, p, &found_key, 1, 1025 __copy_first_ref, path); 1026 if (ret < 0) 1027 goto out; 1028 ret = 0; 1029 1030 out: 1031 btrfs_free_path(p); 1032 return ret; 1033 } 1034 1035 struct backref_ctx { 1036 struct send_ctx *sctx; 1037 1038 /* number of total found references */ 1039 u64 found; 1040 1041 /* 1042 * used for clones found in send_root. clones found behind cur_objectid 1043 * and cur_offset are not considered as allowed clones. 1044 */ 1045 u64 cur_objectid; 1046 u64 cur_offset; 1047 1048 /* may be truncated in case it's the last extent in a file */ 1049 u64 extent_len; 1050 1051 /* Just to check for bugs in backref resolving */ 1052 int found_itself; 1053 }; 1054 1055 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1056 { 1057 u64 root = (u64)(uintptr_t)key; 1058 struct clone_root *cr = (struct clone_root *)elt; 1059 1060 if (root < cr->root->objectid) 1061 return -1; 1062 if (root > cr->root->objectid) 1063 return 1; 1064 return 0; 1065 } 1066 1067 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1068 { 1069 struct clone_root *cr1 = (struct clone_root *)e1; 1070 struct clone_root *cr2 = (struct clone_root *)e2; 1071 1072 if (cr1->root->objectid < cr2->root->objectid) 1073 return -1; 1074 if (cr1->root->objectid > cr2->root->objectid) 1075 return 1; 1076 return 0; 1077 } 1078 1079 /* 1080 * Called for every backref that is found for the current extent. 1081 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1082 */ 1083 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1084 { 1085 struct backref_ctx *bctx = ctx_; 1086 struct clone_root *found; 1087 int ret; 1088 u64 i_size; 1089 1090 /* First check if the root is in the list of accepted clone sources */ 1091 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1092 bctx->sctx->clone_roots_cnt, 1093 sizeof(struct clone_root), 1094 __clone_root_cmp_bsearch); 1095 if (!found) 1096 return 0; 1097 1098 if (found->root == bctx->sctx->send_root && 1099 ino == bctx->cur_objectid && 1100 offset == bctx->cur_offset) { 1101 bctx->found_itself = 1; 1102 } 1103 1104 /* 1105 * There are inodes that have extents that lie behind its i_size. Don't 1106 * accept clones from these extents. 1107 */ 1108 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL, 1109 NULL); 1110 if (ret < 0) 1111 return ret; 1112 1113 if (offset + bctx->extent_len > i_size) 1114 return 0; 1115 1116 /* 1117 * Make sure we don't consider clones from send_root that are 1118 * behind the current inode/offset. 1119 */ 1120 if (found->root == bctx->sctx->send_root) { 1121 /* 1122 * TODO for the moment we don't accept clones from the inode 1123 * that is currently send. We may change this when 1124 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1125 * file. 1126 */ 1127 if (ino >= bctx->cur_objectid) 1128 return 0; 1129 #if 0 1130 if (ino > bctx->cur_objectid) 1131 return 0; 1132 if (offset + bctx->extent_len > bctx->cur_offset) 1133 return 0; 1134 #endif 1135 } 1136 1137 bctx->found++; 1138 found->found_refs++; 1139 if (ino < found->ino) { 1140 found->ino = ino; 1141 found->offset = offset; 1142 } else if (found->ino == ino) { 1143 /* 1144 * same extent found more then once in the same file. 1145 */ 1146 if (found->offset > offset + bctx->extent_len) 1147 found->offset = offset; 1148 } 1149 1150 return 0; 1151 } 1152 1153 /* 1154 * Given an inode, offset and extent item, it finds a good clone for a clone 1155 * instruction. Returns -ENOENT when none could be found. The function makes 1156 * sure that the returned clone is usable at the point where sending is at the 1157 * moment. This means, that no clones are accepted which lie behind the current 1158 * inode+offset. 1159 * 1160 * path must point to the extent item when called. 1161 */ 1162 static int find_extent_clone(struct send_ctx *sctx, 1163 struct btrfs_path *path, 1164 u64 ino, u64 data_offset, 1165 u64 ino_size, 1166 struct clone_root **found) 1167 { 1168 int ret; 1169 int extent_type; 1170 u64 logical; 1171 u64 disk_byte; 1172 u64 num_bytes; 1173 u64 extent_item_pos; 1174 u64 flags = 0; 1175 struct btrfs_file_extent_item *fi; 1176 struct extent_buffer *eb = path->nodes[0]; 1177 struct backref_ctx *backref_ctx = NULL; 1178 struct clone_root *cur_clone_root; 1179 struct btrfs_key found_key; 1180 struct btrfs_path *tmp_path; 1181 int compressed; 1182 u32 i; 1183 1184 tmp_path = alloc_path_for_send(); 1185 if (!tmp_path) 1186 return -ENOMEM; 1187 1188 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS); 1189 if (!backref_ctx) { 1190 ret = -ENOMEM; 1191 goto out; 1192 } 1193 1194 if (data_offset >= ino_size) { 1195 /* 1196 * There may be extents that lie behind the file's size. 1197 * I at least had this in combination with snapshotting while 1198 * writing large files. 1199 */ 1200 ret = 0; 1201 goto out; 1202 } 1203 1204 fi = btrfs_item_ptr(eb, path->slots[0], 1205 struct btrfs_file_extent_item); 1206 extent_type = btrfs_file_extent_type(eb, fi); 1207 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1208 ret = -ENOENT; 1209 goto out; 1210 } 1211 compressed = btrfs_file_extent_compression(eb, fi); 1212 1213 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1214 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1215 if (disk_byte == 0) { 1216 ret = -ENOENT; 1217 goto out; 1218 } 1219 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1220 1221 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path, 1222 &found_key, &flags); 1223 btrfs_release_path(tmp_path); 1224 1225 if (ret < 0) 1226 goto out; 1227 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1228 ret = -EIO; 1229 goto out; 1230 } 1231 1232 /* 1233 * Setup the clone roots. 1234 */ 1235 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1236 cur_clone_root = sctx->clone_roots + i; 1237 cur_clone_root->ino = (u64)-1; 1238 cur_clone_root->offset = 0; 1239 cur_clone_root->found_refs = 0; 1240 } 1241 1242 backref_ctx->sctx = sctx; 1243 backref_ctx->found = 0; 1244 backref_ctx->cur_objectid = ino; 1245 backref_ctx->cur_offset = data_offset; 1246 backref_ctx->found_itself = 0; 1247 backref_ctx->extent_len = num_bytes; 1248 1249 /* 1250 * The last extent of a file may be too large due to page alignment. 1251 * We need to adjust extent_len in this case so that the checks in 1252 * __iterate_backrefs work. 1253 */ 1254 if (data_offset + num_bytes >= ino_size) 1255 backref_ctx->extent_len = ino_size - data_offset; 1256 1257 /* 1258 * Now collect all backrefs. 1259 */ 1260 if (compressed == BTRFS_COMPRESS_NONE) 1261 extent_item_pos = logical - found_key.objectid; 1262 else 1263 extent_item_pos = 0; 1264 1265 extent_item_pos = logical - found_key.objectid; 1266 ret = iterate_extent_inodes(sctx->send_root->fs_info, 1267 found_key.objectid, extent_item_pos, 1, 1268 __iterate_backrefs, backref_ctx); 1269 1270 if (ret < 0) 1271 goto out; 1272 1273 if (!backref_ctx->found_itself) { 1274 /* found a bug in backref code? */ 1275 ret = -EIO; 1276 printk(KERN_ERR "btrfs: ERROR did not find backref in " 1277 "send_root. inode=%llu, offset=%llu, " 1278 "disk_byte=%llu found extent=%llu\n", 1279 ino, data_offset, disk_byte, found_key.objectid); 1280 goto out; 1281 } 1282 1283 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, " 1284 "ino=%llu, " 1285 "num_bytes=%llu, logical=%llu\n", 1286 data_offset, ino, num_bytes, logical); 1287 1288 if (!backref_ctx->found) 1289 verbose_printk("btrfs: no clones found\n"); 1290 1291 cur_clone_root = NULL; 1292 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1293 if (sctx->clone_roots[i].found_refs) { 1294 if (!cur_clone_root) 1295 cur_clone_root = sctx->clone_roots + i; 1296 else if (sctx->clone_roots[i].root == sctx->send_root) 1297 /* prefer clones from send_root over others */ 1298 cur_clone_root = sctx->clone_roots + i; 1299 } 1300 1301 } 1302 1303 if (cur_clone_root) { 1304 *found = cur_clone_root; 1305 ret = 0; 1306 } else { 1307 ret = -ENOENT; 1308 } 1309 1310 out: 1311 btrfs_free_path(tmp_path); 1312 kfree(backref_ctx); 1313 return ret; 1314 } 1315 1316 static int read_symlink(struct btrfs_root *root, 1317 u64 ino, 1318 struct fs_path *dest) 1319 { 1320 int ret; 1321 struct btrfs_path *path; 1322 struct btrfs_key key; 1323 struct btrfs_file_extent_item *ei; 1324 u8 type; 1325 u8 compression; 1326 unsigned long off; 1327 int len; 1328 1329 path = alloc_path_for_send(); 1330 if (!path) 1331 return -ENOMEM; 1332 1333 key.objectid = ino; 1334 key.type = BTRFS_EXTENT_DATA_KEY; 1335 key.offset = 0; 1336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1337 if (ret < 0) 1338 goto out; 1339 BUG_ON(ret); 1340 1341 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1342 struct btrfs_file_extent_item); 1343 type = btrfs_file_extent_type(path->nodes[0], ei); 1344 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1345 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1346 BUG_ON(compression); 1347 1348 off = btrfs_file_extent_inline_start(ei); 1349 len = btrfs_file_extent_inline_len(path->nodes[0], ei); 1350 1351 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1352 1353 out: 1354 btrfs_free_path(path); 1355 return ret; 1356 } 1357 1358 /* 1359 * Helper function to generate a file name that is unique in the root of 1360 * send_root and parent_root. This is used to generate names for orphan inodes. 1361 */ 1362 static int gen_unique_name(struct send_ctx *sctx, 1363 u64 ino, u64 gen, 1364 struct fs_path *dest) 1365 { 1366 int ret = 0; 1367 struct btrfs_path *path; 1368 struct btrfs_dir_item *di; 1369 char tmp[64]; 1370 int len; 1371 u64 idx = 0; 1372 1373 path = alloc_path_for_send(); 1374 if (!path) 1375 return -ENOMEM; 1376 1377 while (1) { 1378 len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu", 1379 ino, gen, idx); 1380 if (len >= sizeof(tmp)) { 1381 /* should really not happen */ 1382 ret = -EOVERFLOW; 1383 goto out; 1384 } 1385 1386 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1387 path, BTRFS_FIRST_FREE_OBJECTID, 1388 tmp, strlen(tmp), 0); 1389 btrfs_release_path(path); 1390 if (IS_ERR(di)) { 1391 ret = PTR_ERR(di); 1392 goto out; 1393 } 1394 if (di) { 1395 /* not unique, try again */ 1396 idx++; 1397 continue; 1398 } 1399 1400 if (!sctx->parent_root) { 1401 /* unique */ 1402 ret = 0; 1403 break; 1404 } 1405 1406 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1407 path, BTRFS_FIRST_FREE_OBJECTID, 1408 tmp, strlen(tmp), 0); 1409 btrfs_release_path(path); 1410 if (IS_ERR(di)) { 1411 ret = PTR_ERR(di); 1412 goto out; 1413 } 1414 if (di) { 1415 /* not unique, try again */ 1416 idx++; 1417 continue; 1418 } 1419 /* unique */ 1420 break; 1421 } 1422 1423 ret = fs_path_add(dest, tmp, strlen(tmp)); 1424 1425 out: 1426 btrfs_free_path(path); 1427 return ret; 1428 } 1429 1430 enum inode_state { 1431 inode_state_no_change, 1432 inode_state_will_create, 1433 inode_state_did_create, 1434 inode_state_will_delete, 1435 inode_state_did_delete, 1436 }; 1437 1438 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1439 { 1440 int ret; 1441 int left_ret; 1442 int right_ret; 1443 u64 left_gen; 1444 u64 right_gen; 1445 1446 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1447 NULL, NULL); 1448 if (ret < 0 && ret != -ENOENT) 1449 goto out; 1450 left_ret = ret; 1451 1452 if (!sctx->parent_root) { 1453 right_ret = -ENOENT; 1454 } else { 1455 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1456 NULL, NULL, NULL, NULL); 1457 if (ret < 0 && ret != -ENOENT) 1458 goto out; 1459 right_ret = ret; 1460 } 1461 1462 if (!left_ret && !right_ret) { 1463 if (left_gen == gen && right_gen == gen) { 1464 ret = inode_state_no_change; 1465 } else if (left_gen == gen) { 1466 if (ino < sctx->send_progress) 1467 ret = inode_state_did_create; 1468 else 1469 ret = inode_state_will_create; 1470 } else if (right_gen == gen) { 1471 if (ino < sctx->send_progress) 1472 ret = inode_state_did_delete; 1473 else 1474 ret = inode_state_will_delete; 1475 } else { 1476 ret = -ENOENT; 1477 } 1478 } else if (!left_ret) { 1479 if (left_gen == gen) { 1480 if (ino < sctx->send_progress) 1481 ret = inode_state_did_create; 1482 else 1483 ret = inode_state_will_create; 1484 } else { 1485 ret = -ENOENT; 1486 } 1487 } else if (!right_ret) { 1488 if (right_gen == gen) { 1489 if (ino < sctx->send_progress) 1490 ret = inode_state_did_delete; 1491 else 1492 ret = inode_state_will_delete; 1493 } else { 1494 ret = -ENOENT; 1495 } 1496 } else { 1497 ret = -ENOENT; 1498 } 1499 1500 out: 1501 return ret; 1502 } 1503 1504 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1505 { 1506 int ret; 1507 1508 ret = get_cur_inode_state(sctx, ino, gen); 1509 if (ret < 0) 1510 goto out; 1511 1512 if (ret == inode_state_no_change || 1513 ret == inode_state_did_create || 1514 ret == inode_state_will_delete) 1515 ret = 1; 1516 else 1517 ret = 0; 1518 1519 out: 1520 return ret; 1521 } 1522 1523 /* 1524 * Helper function to lookup a dir item in a dir. 1525 */ 1526 static int lookup_dir_item_inode(struct btrfs_root *root, 1527 u64 dir, const char *name, int name_len, 1528 u64 *found_inode, 1529 u8 *found_type) 1530 { 1531 int ret = 0; 1532 struct btrfs_dir_item *di; 1533 struct btrfs_key key; 1534 struct btrfs_path *path; 1535 1536 path = alloc_path_for_send(); 1537 if (!path) 1538 return -ENOMEM; 1539 1540 di = btrfs_lookup_dir_item(NULL, root, path, 1541 dir, name, name_len, 0); 1542 if (!di) { 1543 ret = -ENOENT; 1544 goto out; 1545 } 1546 if (IS_ERR(di)) { 1547 ret = PTR_ERR(di); 1548 goto out; 1549 } 1550 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1551 *found_inode = key.objectid; 1552 *found_type = btrfs_dir_type(path->nodes[0], di); 1553 1554 out: 1555 btrfs_free_path(path); 1556 return ret; 1557 } 1558 1559 /* 1560 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1561 * generation of the parent dir and the name of the dir entry. 1562 */ 1563 static int get_first_ref(struct btrfs_root *root, u64 ino, 1564 u64 *dir, u64 *dir_gen, struct fs_path *name) 1565 { 1566 int ret; 1567 struct btrfs_key key; 1568 struct btrfs_key found_key; 1569 struct btrfs_path *path; 1570 int len; 1571 u64 parent_dir; 1572 1573 path = alloc_path_for_send(); 1574 if (!path) 1575 return -ENOMEM; 1576 1577 key.objectid = ino; 1578 key.type = BTRFS_INODE_REF_KEY; 1579 key.offset = 0; 1580 1581 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1582 if (ret < 0) 1583 goto out; 1584 if (!ret) 1585 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1586 path->slots[0]); 1587 if (ret || found_key.objectid != ino || 1588 (found_key.type != BTRFS_INODE_REF_KEY && 1589 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1590 ret = -ENOENT; 1591 goto out; 1592 } 1593 1594 if (key.type == BTRFS_INODE_REF_KEY) { 1595 struct btrfs_inode_ref *iref; 1596 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1597 struct btrfs_inode_ref); 1598 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1599 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1600 (unsigned long)(iref + 1), 1601 len); 1602 parent_dir = found_key.offset; 1603 } else { 1604 struct btrfs_inode_extref *extref; 1605 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1606 struct btrfs_inode_extref); 1607 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1608 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1609 (unsigned long)&extref->name, len); 1610 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1611 } 1612 if (ret < 0) 1613 goto out; 1614 btrfs_release_path(path); 1615 1616 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL, 1617 NULL, NULL); 1618 if (ret < 0) 1619 goto out; 1620 1621 *dir = parent_dir; 1622 1623 out: 1624 btrfs_free_path(path); 1625 return ret; 1626 } 1627 1628 static int is_first_ref(struct btrfs_root *root, 1629 u64 ino, u64 dir, 1630 const char *name, int name_len) 1631 { 1632 int ret; 1633 struct fs_path *tmp_name; 1634 u64 tmp_dir; 1635 u64 tmp_dir_gen; 1636 1637 tmp_name = fs_path_alloc(); 1638 if (!tmp_name) 1639 return -ENOMEM; 1640 1641 ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name); 1642 if (ret < 0) 1643 goto out; 1644 1645 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1646 ret = 0; 1647 goto out; 1648 } 1649 1650 ret = !memcmp(tmp_name->start, name, name_len); 1651 1652 out: 1653 fs_path_free(tmp_name); 1654 return ret; 1655 } 1656 1657 /* 1658 * Used by process_recorded_refs to determine if a new ref would overwrite an 1659 * already existing ref. In case it detects an overwrite, it returns the 1660 * inode/gen in who_ino/who_gen. 1661 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1662 * to make sure later references to the overwritten inode are possible. 1663 * Orphanizing is however only required for the first ref of an inode. 1664 * process_recorded_refs does an additional is_first_ref check to see if 1665 * orphanizing is really required. 1666 */ 1667 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1668 const char *name, int name_len, 1669 u64 *who_ino, u64 *who_gen) 1670 { 1671 int ret = 0; 1672 u64 gen; 1673 u64 other_inode = 0; 1674 u8 other_type = 0; 1675 1676 if (!sctx->parent_root) 1677 goto out; 1678 1679 ret = is_inode_existent(sctx, dir, dir_gen); 1680 if (ret <= 0) 1681 goto out; 1682 1683 /* 1684 * If we have a parent root we need to verify that the parent dir was 1685 * not delted and then re-created, if it was then we have no overwrite 1686 * and we can just unlink this entry. 1687 */ 1688 if (sctx->parent_root) { 1689 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1690 NULL, NULL, NULL); 1691 if (ret < 0 && ret != -ENOENT) 1692 goto out; 1693 if (ret) { 1694 ret = 0; 1695 goto out; 1696 } 1697 if (gen != dir_gen) 1698 goto out; 1699 } 1700 1701 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1702 &other_inode, &other_type); 1703 if (ret < 0 && ret != -ENOENT) 1704 goto out; 1705 if (ret) { 1706 ret = 0; 1707 goto out; 1708 } 1709 1710 /* 1711 * Check if the overwritten ref was already processed. If yes, the ref 1712 * was already unlinked/moved, so we can safely assume that we will not 1713 * overwrite anything at this point in time. 1714 */ 1715 if (other_inode > sctx->send_progress) { 1716 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1717 who_gen, NULL, NULL, NULL, NULL); 1718 if (ret < 0) 1719 goto out; 1720 1721 ret = 1; 1722 *who_ino = other_inode; 1723 } else { 1724 ret = 0; 1725 } 1726 1727 out: 1728 return ret; 1729 } 1730 1731 /* 1732 * Checks if the ref was overwritten by an already processed inode. This is 1733 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1734 * thus the orphan name needs be used. 1735 * process_recorded_refs also uses it to avoid unlinking of refs that were 1736 * overwritten. 1737 */ 1738 static int did_overwrite_ref(struct send_ctx *sctx, 1739 u64 dir, u64 dir_gen, 1740 u64 ino, u64 ino_gen, 1741 const char *name, int name_len) 1742 { 1743 int ret = 0; 1744 u64 gen; 1745 u64 ow_inode; 1746 u8 other_type; 1747 1748 if (!sctx->parent_root) 1749 goto out; 1750 1751 ret = is_inode_existent(sctx, dir, dir_gen); 1752 if (ret <= 0) 1753 goto out; 1754 1755 /* check if the ref was overwritten by another ref */ 1756 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1757 &ow_inode, &other_type); 1758 if (ret < 0 && ret != -ENOENT) 1759 goto out; 1760 if (ret) { 1761 /* was never and will never be overwritten */ 1762 ret = 0; 1763 goto out; 1764 } 1765 1766 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1767 NULL, NULL); 1768 if (ret < 0) 1769 goto out; 1770 1771 if (ow_inode == ino && gen == ino_gen) { 1772 ret = 0; 1773 goto out; 1774 } 1775 1776 /* we know that it is or will be overwritten. check this now */ 1777 if (ow_inode < sctx->send_progress) 1778 ret = 1; 1779 else 1780 ret = 0; 1781 1782 out: 1783 return ret; 1784 } 1785 1786 /* 1787 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1788 * that got overwritten. This is used by process_recorded_refs to determine 1789 * if it has to use the path as returned by get_cur_path or the orphan name. 1790 */ 1791 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1792 { 1793 int ret = 0; 1794 struct fs_path *name = NULL; 1795 u64 dir; 1796 u64 dir_gen; 1797 1798 if (!sctx->parent_root) 1799 goto out; 1800 1801 name = fs_path_alloc(); 1802 if (!name) 1803 return -ENOMEM; 1804 1805 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1806 if (ret < 0) 1807 goto out; 1808 1809 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1810 name->start, fs_path_len(name)); 1811 1812 out: 1813 fs_path_free(name); 1814 return ret; 1815 } 1816 1817 /* 1818 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1819 * so we need to do some special handling in case we have clashes. This function 1820 * takes care of this with the help of name_cache_entry::radix_list. 1821 * In case of error, nce is kfreed. 1822 */ 1823 static int name_cache_insert(struct send_ctx *sctx, 1824 struct name_cache_entry *nce) 1825 { 1826 int ret = 0; 1827 struct list_head *nce_head; 1828 1829 nce_head = radix_tree_lookup(&sctx->name_cache, 1830 (unsigned long)nce->ino); 1831 if (!nce_head) { 1832 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS); 1833 if (!nce_head) { 1834 kfree(nce); 1835 return -ENOMEM; 1836 } 1837 INIT_LIST_HEAD(nce_head); 1838 1839 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 1840 if (ret < 0) { 1841 kfree(nce_head); 1842 kfree(nce); 1843 return ret; 1844 } 1845 } 1846 list_add_tail(&nce->radix_list, nce_head); 1847 list_add_tail(&nce->list, &sctx->name_cache_list); 1848 sctx->name_cache_size++; 1849 1850 return ret; 1851 } 1852 1853 static void name_cache_delete(struct send_ctx *sctx, 1854 struct name_cache_entry *nce) 1855 { 1856 struct list_head *nce_head; 1857 1858 nce_head = radix_tree_lookup(&sctx->name_cache, 1859 (unsigned long)nce->ino); 1860 BUG_ON(!nce_head); 1861 1862 list_del(&nce->radix_list); 1863 list_del(&nce->list); 1864 sctx->name_cache_size--; 1865 1866 if (list_empty(nce_head)) { 1867 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 1868 kfree(nce_head); 1869 } 1870 } 1871 1872 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 1873 u64 ino, u64 gen) 1874 { 1875 struct list_head *nce_head; 1876 struct name_cache_entry *cur; 1877 1878 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 1879 if (!nce_head) 1880 return NULL; 1881 1882 list_for_each_entry(cur, nce_head, radix_list) { 1883 if (cur->ino == ino && cur->gen == gen) 1884 return cur; 1885 } 1886 return NULL; 1887 } 1888 1889 /* 1890 * Removes the entry from the list and adds it back to the end. This marks the 1891 * entry as recently used so that name_cache_clean_unused does not remove it. 1892 */ 1893 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 1894 { 1895 list_del(&nce->list); 1896 list_add_tail(&nce->list, &sctx->name_cache_list); 1897 } 1898 1899 /* 1900 * Remove some entries from the beginning of name_cache_list. 1901 */ 1902 static void name_cache_clean_unused(struct send_ctx *sctx) 1903 { 1904 struct name_cache_entry *nce; 1905 1906 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 1907 return; 1908 1909 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 1910 nce = list_entry(sctx->name_cache_list.next, 1911 struct name_cache_entry, list); 1912 name_cache_delete(sctx, nce); 1913 kfree(nce); 1914 } 1915 } 1916 1917 static void name_cache_free(struct send_ctx *sctx) 1918 { 1919 struct name_cache_entry *nce; 1920 1921 while (!list_empty(&sctx->name_cache_list)) { 1922 nce = list_entry(sctx->name_cache_list.next, 1923 struct name_cache_entry, list); 1924 name_cache_delete(sctx, nce); 1925 kfree(nce); 1926 } 1927 } 1928 1929 /* 1930 * Used by get_cur_path for each ref up to the root. 1931 * Returns 0 if it succeeded. 1932 * Returns 1 if the inode is not existent or got overwritten. In that case, the 1933 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 1934 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 1935 * Returns <0 in case of error. 1936 */ 1937 static int __get_cur_name_and_parent(struct send_ctx *sctx, 1938 u64 ino, u64 gen, 1939 u64 *parent_ino, 1940 u64 *parent_gen, 1941 struct fs_path *dest) 1942 { 1943 int ret; 1944 int nce_ret; 1945 struct btrfs_path *path = NULL; 1946 struct name_cache_entry *nce = NULL; 1947 1948 /* 1949 * First check if we already did a call to this function with the same 1950 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 1951 * return the cached result. 1952 */ 1953 nce = name_cache_search(sctx, ino, gen); 1954 if (nce) { 1955 if (ino < sctx->send_progress && nce->need_later_update) { 1956 name_cache_delete(sctx, nce); 1957 kfree(nce); 1958 nce = NULL; 1959 } else { 1960 name_cache_used(sctx, nce); 1961 *parent_ino = nce->parent_ino; 1962 *parent_gen = nce->parent_gen; 1963 ret = fs_path_add(dest, nce->name, nce->name_len); 1964 if (ret < 0) 1965 goto out; 1966 ret = nce->ret; 1967 goto out; 1968 } 1969 } 1970 1971 path = alloc_path_for_send(); 1972 if (!path) 1973 return -ENOMEM; 1974 1975 /* 1976 * If the inode is not existent yet, add the orphan name and return 1. 1977 * This should only happen for the parent dir that we determine in 1978 * __record_new_ref 1979 */ 1980 ret = is_inode_existent(sctx, ino, gen); 1981 if (ret < 0) 1982 goto out; 1983 1984 if (!ret) { 1985 ret = gen_unique_name(sctx, ino, gen, dest); 1986 if (ret < 0) 1987 goto out; 1988 ret = 1; 1989 goto out_cache; 1990 } 1991 1992 /* 1993 * Depending on whether the inode was already processed or not, use 1994 * send_root or parent_root for ref lookup. 1995 */ 1996 if (ino < sctx->send_progress) 1997 ret = get_first_ref(sctx->send_root, ino, 1998 parent_ino, parent_gen, dest); 1999 else 2000 ret = get_first_ref(sctx->parent_root, ino, 2001 parent_ino, parent_gen, dest); 2002 if (ret < 0) 2003 goto out; 2004 2005 /* 2006 * Check if the ref was overwritten by an inode's ref that was processed 2007 * earlier. If yes, treat as orphan and return 1. 2008 */ 2009 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2010 dest->start, dest->end - dest->start); 2011 if (ret < 0) 2012 goto out; 2013 if (ret) { 2014 fs_path_reset(dest); 2015 ret = gen_unique_name(sctx, ino, gen, dest); 2016 if (ret < 0) 2017 goto out; 2018 ret = 1; 2019 } 2020 2021 out_cache: 2022 /* 2023 * Store the result of the lookup in the name cache. 2024 */ 2025 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS); 2026 if (!nce) { 2027 ret = -ENOMEM; 2028 goto out; 2029 } 2030 2031 nce->ino = ino; 2032 nce->gen = gen; 2033 nce->parent_ino = *parent_ino; 2034 nce->parent_gen = *parent_gen; 2035 nce->name_len = fs_path_len(dest); 2036 nce->ret = ret; 2037 strcpy(nce->name, dest->start); 2038 2039 if (ino < sctx->send_progress) 2040 nce->need_later_update = 0; 2041 else 2042 nce->need_later_update = 1; 2043 2044 nce_ret = name_cache_insert(sctx, nce); 2045 if (nce_ret < 0) 2046 ret = nce_ret; 2047 name_cache_clean_unused(sctx); 2048 2049 out: 2050 btrfs_free_path(path); 2051 return ret; 2052 } 2053 2054 /* 2055 * Magic happens here. This function returns the first ref to an inode as it 2056 * would look like while receiving the stream at this point in time. 2057 * We walk the path up to the root. For every inode in between, we check if it 2058 * was already processed/sent. If yes, we continue with the parent as found 2059 * in send_root. If not, we continue with the parent as found in parent_root. 2060 * If we encounter an inode that was deleted at this point in time, we use the 2061 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2062 * that were not created yet and overwritten inodes/refs. 2063 * 2064 * When do we have have orphan inodes: 2065 * 1. When an inode is freshly created and thus no valid refs are available yet 2066 * 2. When a directory lost all it's refs (deleted) but still has dir items 2067 * inside which were not processed yet (pending for move/delete). If anyone 2068 * tried to get the path to the dir items, it would get a path inside that 2069 * orphan directory. 2070 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2071 * of an unprocessed inode. If in that case the first ref would be 2072 * overwritten, the overwritten inode gets "orphanized". Later when we 2073 * process this overwritten inode, it is restored at a new place by moving 2074 * the orphan inode. 2075 * 2076 * sctx->send_progress tells this function at which point in time receiving 2077 * would be. 2078 */ 2079 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2080 struct fs_path *dest) 2081 { 2082 int ret = 0; 2083 struct fs_path *name = NULL; 2084 u64 parent_inode = 0; 2085 u64 parent_gen = 0; 2086 int stop = 0; 2087 2088 name = fs_path_alloc(); 2089 if (!name) { 2090 ret = -ENOMEM; 2091 goto out; 2092 } 2093 2094 dest->reversed = 1; 2095 fs_path_reset(dest); 2096 2097 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2098 fs_path_reset(name); 2099 2100 ret = __get_cur_name_and_parent(sctx, ino, gen, 2101 &parent_inode, &parent_gen, name); 2102 if (ret < 0) 2103 goto out; 2104 if (ret) 2105 stop = 1; 2106 2107 ret = fs_path_add_path(dest, name); 2108 if (ret < 0) 2109 goto out; 2110 2111 ino = parent_inode; 2112 gen = parent_gen; 2113 } 2114 2115 out: 2116 fs_path_free(name); 2117 if (!ret) 2118 fs_path_unreverse(dest); 2119 return ret; 2120 } 2121 2122 /* 2123 * Called for regular files when sending extents data. Opens a struct file 2124 * to read from the file. 2125 */ 2126 static int open_cur_inode_file(struct send_ctx *sctx) 2127 { 2128 int ret = 0; 2129 struct btrfs_key key; 2130 struct path path; 2131 struct inode *inode; 2132 struct dentry *dentry; 2133 struct file *filp; 2134 int new = 0; 2135 2136 if (sctx->cur_inode_filp) 2137 goto out; 2138 2139 key.objectid = sctx->cur_ino; 2140 key.type = BTRFS_INODE_ITEM_KEY; 2141 key.offset = 0; 2142 2143 inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root, 2144 &new); 2145 if (IS_ERR(inode)) { 2146 ret = PTR_ERR(inode); 2147 goto out; 2148 } 2149 2150 dentry = d_obtain_alias(inode); 2151 inode = NULL; 2152 if (IS_ERR(dentry)) { 2153 ret = PTR_ERR(dentry); 2154 goto out; 2155 } 2156 2157 path.mnt = sctx->mnt; 2158 path.dentry = dentry; 2159 filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred()); 2160 dput(dentry); 2161 dentry = NULL; 2162 if (IS_ERR(filp)) { 2163 ret = PTR_ERR(filp); 2164 goto out; 2165 } 2166 sctx->cur_inode_filp = filp; 2167 2168 out: 2169 /* 2170 * no xxxput required here as every vfs op 2171 * does it by itself on failure 2172 */ 2173 return ret; 2174 } 2175 2176 /* 2177 * Closes the struct file that was created in open_cur_inode_file 2178 */ 2179 static int close_cur_inode_file(struct send_ctx *sctx) 2180 { 2181 int ret = 0; 2182 2183 if (!sctx->cur_inode_filp) 2184 goto out; 2185 2186 ret = filp_close(sctx->cur_inode_filp, NULL); 2187 sctx->cur_inode_filp = NULL; 2188 2189 out: 2190 return ret; 2191 } 2192 2193 /* 2194 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2195 */ 2196 static int send_subvol_begin(struct send_ctx *sctx) 2197 { 2198 int ret; 2199 struct btrfs_root *send_root = sctx->send_root; 2200 struct btrfs_root *parent_root = sctx->parent_root; 2201 struct btrfs_path *path; 2202 struct btrfs_key key; 2203 struct btrfs_root_ref *ref; 2204 struct extent_buffer *leaf; 2205 char *name = NULL; 2206 int namelen; 2207 2208 path = alloc_path_for_send(); 2209 if (!path) 2210 return -ENOMEM; 2211 2212 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS); 2213 if (!name) { 2214 btrfs_free_path(path); 2215 return -ENOMEM; 2216 } 2217 2218 key.objectid = send_root->objectid; 2219 key.type = BTRFS_ROOT_BACKREF_KEY; 2220 key.offset = 0; 2221 2222 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2223 &key, path, 1, 0); 2224 if (ret < 0) 2225 goto out; 2226 if (ret) { 2227 ret = -ENOENT; 2228 goto out; 2229 } 2230 2231 leaf = path->nodes[0]; 2232 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2233 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2234 key.objectid != send_root->objectid) { 2235 ret = -ENOENT; 2236 goto out; 2237 } 2238 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2239 namelen = btrfs_root_ref_name_len(leaf, ref); 2240 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2241 btrfs_release_path(path); 2242 2243 if (parent_root) { 2244 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2245 if (ret < 0) 2246 goto out; 2247 } else { 2248 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2249 if (ret < 0) 2250 goto out; 2251 } 2252 2253 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2254 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2255 sctx->send_root->root_item.uuid); 2256 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2257 sctx->send_root->root_item.ctransid); 2258 if (parent_root) { 2259 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2260 sctx->parent_root->root_item.uuid); 2261 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2262 sctx->parent_root->root_item.ctransid); 2263 } 2264 2265 ret = send_cmd(sctx); 2266 2267 tlv_put_failure: 2268 out: 2269 btrfs_free_path(path); 2270 kfree(name); 2271 return ret; 2272 } 2273 2274 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2275 { 2276 int ret = 0; 2277 struct fs_path *p; 2278 2279 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size); 2280 2281 p = fs_path_alloc(); 2282 if (!p) 2283 return -ENOMEM; 2284 2285 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2286 if (ret < 0) 2287 goto out; 2288 2289 ret = get_cur_path(sctx, ino, gen, p); 2290 if (ret < 0) 2291 goto out; 2292 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2293 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2294 2295 ret = send_cmd(sctx); 2296 2297 tlv_put_failure: 2298 out: 2299 fs_path_free(p); 2300 return ret; 2301 } 2302 2303 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2304 { 2305 int ret = 0; 2306 struct fs_path *p; 2307 2308 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode); 2309 2310 p = fs_path_alloc(); 2311 if (!p) 2312 return -ENOMEM; 2313 2314 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2315 if (ret < 0) 2316 goto out; 2317 2318 ret = get_cur_path(sctx, ino, gen, p); 2319 if (ret < 0) 2320 goto out; 2321 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2322 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2323 2324 ret = send_cmd(sctx); 2325 2326 tlv_put_failure: 2327 out: 2328 fs_path_free(p); 2329 return ret; 2330 } 2331 2332 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2333 { 2334 int ret = 0; 2335 struct fs_path *p; 2336 2337 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid); 2338 2339 p = fs_path_alloc(); 2340 if (!p) 2341 return -ENOMEM; 2342 2343 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2344 if (ret < 0) 2345 goto out; 2346 2347 ret = get_cur_path(sctx, ino, gen, p); 2348 if (ret < 0) 2349 goto out; 2350 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2351 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2352 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2353 2354 ret = send_cmd(sctx); 2355 2356 tlv_put_failure: 2357 out: 2358 fs_path_free(p); 2359 return ret; 2360 } 2361 2362 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2363 { 2364 int ret = 0; 2365 struct fs_path *p = NULL; 2366 struct btrfs_inode_item *ii; 2367 struct btrfs_path *path = NULL; 2368 struct extent_buffer *eb; 2369 struct btrfs_key key; 2370 int slot; 2371 2372 verbose_printk("btrfs: send_utimes %llu\n", ino); 2373 2374 p = fs_path_alloc(); 2375 if (!p) 2376 return -ENOMEM; 2377 2378 path = alloc_path_for_send(); 2379 if (!path) { 2380 ret = -ENOMEM; 2381 goto out; 2382 } 2383 2384 key.objectid = ino; 2385 key.type = BTRFS_INODE_ITEM_KEY; 2386 key.offset = 0; 2387 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2388 if (ret < 0) 2389 goto out; 2390 2391 eb = path->nodes[0]; 2392 slot = path->slots[0]; 2393 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2394 2395 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2396 if (ret < 0) 2397 goto out; 2398 2399 ret = get_cur_path(sctx, ino, gen, p); 2400 if (ret < 0) 2401 goto out; 2402 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2403 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, 2404 btrfs_inode_atime(ii)); 2405 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, 2406 btrfs_inode_mtime(ii)); 2407 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, 2408 btrfs_inode_ctime(ii)); 2409 /* TODO Add otime support when the otime patches get into upstream */ 2410 2411 ret = send_cmd(sctx); 2412 2413 tlv_put_failure: 2414 out: 2415 fs_path_free(p); 2416 btrfs_free_path(path); 2417 return ret; 2418 } 2419 2420 /* 2421 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2422 * a valid path yet because we did not process the refs yet. So, the inode 2423 * is created as orphan. 2424 */ 2425 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2426 { 2427 int ret = 0; 2428 struct fs_path *p; 2429 int cmd; 2430 u64 gen; 2431 u64 mode; 2432 u64 rdev; 2433 2434 verbose_printk("btrfs: send_create_inode %llu\n", ino); 2435 2436 p = fs_path_alloc(); 2437 if (!p) 2438 return -ENOMEM; 2439 2440 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL, 2441 NULL, &rdev); 2442 if (ret < 0) 2443 goto out; 2444 2445 if (S_ISREG(mode)) { 2446 cmd = BTRFS_SEND_C_MKFILE; 2447 } else if (S_ISDIR(mode)) { 2448 cmd = BTRFS_SEND_C_MKDIR; 2449 } else if (S_ISLNK(mode)) { 2450 cmd = BTRFS_SEND_C_SYMLINK; 2451 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2452 cmd = BTRFS_SEND_C_MKNOD; 2453 } else if (S_ISFIFO(mode)) { 2454 cmd = BTRFS_SEND_C_MKFIFO; 2455 } else if (S_ISSOCK(mode)) { 2456 cmd = BTRFS_SEND_C_MKSOCK; 2457 } else { 2458 printk(KERN_WARNING "btrfs: unexpected inode type %o", 2459 (int)(mode & S_IFMT)); 2460 ret = -ENOTSUPP; 2461 goto out; 2462 } 2463 2464 ret = begin_cmd(sctx, cmd); 2465 if (ret < 0) 2466 goto out; 2467 2468 ret = gen_unique_name(sctx, ino, gen, p); 2469 if (ret < 0) 2470 goto out; 2471 2472 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2473 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2474 2475 if (S_ISLNK(mode)) { 2476 fs_path_reset(p); 2477 ret = read_symlink(sctx->send_root, ino, p); 2478 if (ret < 0) 2479 goto out; 2480 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2481 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2482 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2483 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2484 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2485 } 2486 2487 ret = send_cmd(sctx); 2488 if (ret < 0) 2489 goto out; 2490 2491 2492 tlv_put_failure: 2493 out: 2494 fs_path_free(p); 2495 return ret; 2496 } 2497 2498 /* 2499 * We need some special handling for inodes that get processed before the parent 2500 * directory got created. See process_recorded_refs for details. 2501 * This function does the check if we already created the dir out of order. 2502 */ 2503 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2504 { 2505 int ret = 0; 2506 struct btrfs_path *path = NULL; 2507 struct btrfs_key key; 2508 struct btrfs_key found_key; 2509 struct btrfs_key di_key; 2510 struct extent_buffer *eb; 2511 struct btrfs_dir_item *di; 2512 int slot; 2513 2514 path = alloc_path_for_send(); 2515 if (!path) { 2516 ret = -ENOMEM; 2517 goto out; 2518 } 2519 2520 key.objectid = dir; 2521 key.type = BTRFS_DIR_INDEX_KEY; 2522 key.offset = 0; 2523 while (1) { 2524 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path, 2525 1, 0); 2526 if (ret < 0) 2527 goto out; 2528 if (!ret) { 2529 eb = path->nodes[0]; 2530 slot = path->slots[0]; 2531 btrfs_item_key_to_cpu(eb, &found_key, slot); 2532 } 2533 if (ret || found_key.objectid != key.objectid || 2534 found_key.type != key.type) { 2535 ret = 0; 2536 goto out; 2537 } 2538 2539 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2540 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2541 2542 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2543 di_key.objectid < sctx->send_progress) { 2544 ret = 1; 2545 goto out; 2546 } 2547 2548 key.offset = found_key.offset + 1; 2549 btrfs_release_path(path); 2550 } 2551 2552 out: 2553 btrfs_free_path(path); 2554 return ret; 2555 } 2556 2557 /* 2558 * Only creates the inode if it is: 2559 * 1. Not a directory 2560 * 2. Or a directory which was not created already due to out of order 2561 * directories. See did_create_dir and process_recorded_refs for details. 2562 */ 2563 static int send_create_inode_if_needed(struct send_ctx *sctx) 2564 { 2565 int ret; 2566 2567 if (S_ISDIR(sctx->cur_inode_mode)) { 2568 ret = did_create_dir(sctx, sctx->cur_ino); 2569 if (ret < 0) 2570 goto out; 2571 if (ret) { 2572 ret = 0; 2573 goto out; 2574 } 2575 } 2576 2577 ret = send_create_inode(sctx, sctx->cur_ino); 2578 if (ret < 0) 2579 goto out; 2580 2581 out: 2582 return ret; 2583 } 2584 2585 struct recorded_ref { 2586 struct list_head list; 2587 char *dir_path; 2588 char *name; 2589 struct fs_path *full_path; 2590 u64 dir; 2591 u64 dir_gen; 2592 int dir_path_len; 2593 int name_len; 2594 }; 2595 2596 /* 2597 * We need to process new refs before deleted refs, but compare_tree gives us 2598 * everything mixed. So we first record all refs and later process them. 2599 * This function is a helper to record one ref. 2600 */ 2601 static int record_ref(struct list_head *head, u64 dir, 2602 u64 dir_gen, struct fs_path *path) 2603 { 2604 struct recorded_ref *ref; 2605 2606 ref = kmalloc(sizeof(*ref), GFP_NOFS); 2607 if (!ref) 2608 return -ENOMEM; 2609 2610 ref->dir = dir; 2611 ref->dir_gen = dir_gen; 2612 ref->full_path = path; 2613 2614 ref->name = (char *)kbasename(ref->full_path->start); 2615 ref->name_len = ref->full_path->end - ref->name; 2616 ref->dir_path = ref->full_path->start; 2617 if (ref->name == ref->full_path->start) 2618 ref->dir_path_len = 0; 2619 else 2620 ref->dir_path_len = ref->full_path->end - 2621 ref->full_path->start - 1 - ref->name_len; 2622 2623 list_add_tail(&ref->list, head); 2624 return 0; 2625 } 2626 2627 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2628 { 2629 struct recorded_ref *new; 2630 2631 new = kmalloc(sizeof(*ref), GFP_NOFS); 2632 if (!new) 2633 return -ENOMEM; 2634 2635 new->dir = ref->dir; 2636 new->dir_gen = ref->dir_gen; 2637 new->full_path = NULL; 2638 INIT_LIST_HEAD(&new->list); 2639 list_add_tail(&new->list, list); 2640 return 0; 2641 } 2642 2643 static void __free_recorded_refs(struct list_head *head) 2644 { 2645 struct recorded_ref *cur; 2646 2647 while (!list_empty(head)) { 2648 cur = list_entry(head->next, struct recorded_ref, list); 2649 fs_path_free(cur->full_path); 2650 list_del(&cur->list); 2651 kfree(cur); 2652 } 2653 } 2654 2655 static void free_recorded_refs(struct send_ctx *sctx) 2656 { 2657 __free_recorded_refs(&sctx->new_refs); 2658 __free_recorded_refs(&sctx->deleted_refs); 2659 } 2660 2661 /* 2662 * Renames/moves a file/dir to its orphan name. Used when the first 2663 * ref of an unprocessed inode gets overwritten and for all non empty 2664 * directories. 2665 */ 2666 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2667 struct fs_path *path) 2668 { 2669 int ret; 2670 struct fs_path *orphan; 2671 2672 orphan = fs_path_alloc(); 2673 if (!orphan) 2674 return -ENOMEM; 2675 2676 ret = gen_unique_name(sctx, ino, gen, orphan); 2677 if (ret < 0) 2678 goto out; 2679 2680 ret = send_rename(sctx, path, orphan); 2681 2682 out: 2683 fs_path_free(orphan); 2684 return ret; 2685 } 2686 2687 /* 2688 * Returns 1 if a directory can be removed at this point in time. 2689 * We check this by iterating all dir items and checking if the inode behind 2690 * the dir item was already processed. 2691 */ 2692 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress) 2693 { 2694 int ret = 0; 2695 struct btrfs_root *root = sctx->parent_root; 2696 struct btrfs_path *path; 2697 struct btrfs_key key; 2698 struct btrfs_key found_key; 2699 struct btrfs_key loc; 2700 struct btrfs_dir_item *di; 2701 2702 /* 2703 * Don't try to rmdir the top/root subvolume dir. 2704 */ 2705 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2706 return 0; 2707 2708 path = alloc_path_for_send(); 2709 if (!path) 2710 return -ENOMEM; 2711 2712 key.objectid = dir; 2713 key.type = BTRFS_DIR_INDEX_KEY; 2714 key.offset = 0; 2715 2716 while (1) { 2717 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2718 if (ret < 0) 2719 goto out; 2720 if (!ret) { 2721 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2722 path->slots[0]); 2723 } 2724 if (ret || found_key.objectid != key.objectid || 2725 found_key.type != key.type) { 2726 break; 2727 } 2728 2729 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2730 struct btrfs_dir_item); 2731 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2732 2733 if (loc.objectid > send_progress) { 2734 ret = 0; 2735 goto out; 2736 } 2737 2738 btrfs_release_path(path); 2739 key.offset = found_key.offset + 1; 2740 } 2741 2742 ret = 1; 2743 2744 out: 2745 btrfs_free_path(path); 2746 return ret; 2747 } 2748 2749 /* 2750 * This does all the move/link/unlink/rmdir magic. 2751 */ 2752 static int process_recorded_refs(struct send_ctx *sctx) 2753 { 2754 int ret = 0; 2755 struct recorded_ref *cur; 2756 struct recorded_ref *cur2; 2757 struct list_head check_dirs; 2758 struct fs_path *valid_path = NULL; 2759 u64 ow_inode = 0; 2760 u64 ow_gen; 2761 int did_overwrite = 0; 2762 int is_orphan = 0; 2763 2764 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino); 2765 2766 /* 2767 * This should never happen as the root dir always has the same ref 2768 * which is always '..' 2769 */ 2770 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 2771 INIT_LIST_HEAD(&check_dirs); 2772 2773 valid_path = fs_path_alloc(); 2774 if (!valid_path) { 2775 ret = -ENOMEM; 2776 goto out; 2777 } 2778 2779 /* 2780 * First, check if the first ref of the current inode was overwritten 2781 * before. If yes, we know that the current inode was already orphanized 2782 * and thus use the orphan name. If not, we can use get_cur_path to 2783 * get the path of the first ref as it would like while receiving at 2784 * this point in time. 2785 * New inodes are always orphan at the beginning, so force to use the 2786 * orphan name in this case. 2787 * The first ref is stored in valid_path and will be updated if it 2788 * gets moved around. 2789 */ 2790 if (!sctx->cur_inode_new) { 2791 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 2792 sctx->cur_inode_gen); 2793 if (ret < 0) 2794 goto out; 2795 if (ret) 2796 did_overwrite = 1; 2797 } 2798 if (sctx->cur_inode_new || did_overwrite) { 2799 ret = gen_unique_name(sctx, sctx->cur_ino, 2800 sctx->cur_inode_gen, valid_path); 2801 if (ret < 0) 2802 goto out; 2803 is_orphan = 1; 2804 } else { 2805 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 2806 valid_path); 2807 if (ret < 0) 2808 goto out; 2809 } 2810 2811 list_for_each_entry(cur, &sctx->new_refs, list) { 2812 /* 2813 * We may have refs where the parent directory does not exist 2814 * yet. This happens if the parent directories inum is higher 2815 * the the current inum. To handle this case, we create the 2816 * parent directory out of order. But we need to check if this 2817 * did already happen before due to other refs in the same dir. 2818 */ 2819 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 2820 if (ret < 0) 2821 goto out; 2822 if (ret == inode_state_will_create) { 2823 ret = 0; 2824 /* 2825 * First check if any of the current inodes refs did 2826 * already create the dir. 2827 */ 2828 list_for_each_entry(cur2, &sctx->new_refs, list) { 2829 if (cur == cur2) 2830 break; 2831 if (cur2->dir == cur->dir) { 2832 ret = 1; 2833 break; 2834 } 2835 } 2836 2837 /* 2838 * If that did not happen, check if a previous inode 2839 * did already create the dir. 2840 */ 2841 if (!ret) 2842 ret = did_create_dir(sctx, cur->dir); 2843 if (ret < 0) 2844 goto out; 2845 if (!ret) { 2846 ret = send_create_inode(sctx, cur->dir); 2847 if (ret < 0) 2848 goto out; 2849 } 2850 } 2851 2852 /* 2853 * Check if this new ref would overwrite the first ref of 2854 * another unprocessed inode. If yes, orphanize the 2855 * overwritten inode. If we find an overwritten ref that is 2856 * not the first ref, simply unlink it. 2857 */ 2858 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 2859 cur->name, cur->name_len, 2860 &ow_inode, &ow_gen); 2861 if (ret < 0) 2862 goto out; 2863 if (ret) { 2864 ret = is_first_ref(sctx->parent_root, 2865 ow_inode, cur->dir, cur->name, 2866 cur->name_len); 2867 if (ret < 0) 2868 goto out; 2869 if (ret) { 2870 ret = orphanize_inode(sctx, ow_inode, ow_gen, 2871 cur->full_path); 2872 if (ret < 0) 2873 goto out; 2874 } else { 2875 ret = send_unlink(sctx, cur->full_path); 2876 if (ret < 0) 2877 goto out; 2878 } 2879 } 2880 2881 /* 2882 * link/move the ref to the new place. If we have an orphan 2883 * inode, move it and update valid_path. If not, link or move 2884 * it depending on the inode mode. 2885 */ 2886 if (is_orphan) { 2887 ret = send_rename(sctx, valid_path, cur->full_path); 2888 if (ret < 0) 2889 goto out; 2890 is_orphan = 0; 2891 ret = fs_path_copy(valid_path, cur->full_path); 2892 if (ret < 0) 2893 goto out; 2894 } else { 2895 if (S_ISDIR(sctx->cur_inode_mode)) { 2896 /* 2897 * Dirs can't be linked, so move it. For moved 2898 * dirs, we always have one new and one deleted 2899 * ref. The deleted ref is ignored later. 2900 */ 2901 ret = send_rename(sctx, valid_path, 2902 cur->full_path); 2903 if (ret < 0) 2904 goto out; 2905 ret = fs_path_copy(valid_path, cur->full_path); 2906 if (ret < 0) 2907 goto out; 2908 } else { 2909 ret = send_link(sctx, cur->full_path, 2910 valid_path); 2911 if (ret < 0) 2912 goto out; 2913 } 2914 } 2915 ret = dup_ref(cur, &check_dirs); 2916 if (ret < 0) 2917 goto out; 2918 } 2919 2920 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 2921 /* 2922 * Check if we can already rmdir the directory. If not, 2923 * orphanize it. For every dir item inside that gets deleted 2924 * later, we do this check again and rmdir it then if possible. 2925 * See the use of check_dirs for more details. 2926 */ 2927 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino); 2928 if (ret < 0) 2929 goto out; 2930 if (ret) { 2931 ret = send_rmdir(sctx, valid_path); 2932 if (ret < 0) 2933 goto out; 2934 } else if (!is_orphan) { 2935 ret = orphanize_inode(sctx, sctx->cur_ino, 2936 sctx->cur_inode_gen, valid_path); 2937 if (ret < 0) 2938 goto out; 2939 is_orphan = 1; 2940 } 2941 2942 list_for_each_entry(cur, &sctx->deleted_refs, list) { 2943 ret = dup_ref(cur, &check_dirs); 2944 if (ret < 0) 2945 goto out; 2946 } 2947 } else if (S_ISDIR(sctx->cur_inode_mode) && 2948 !list_empty(&sctx->deleted_refs)) { 2949 /* 2950 * We have a moved dir. Add the old parent to check_dirs 2951 */ 2952 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 2953 list); 2954 ret = dup_ref(cur, &check_dirs); 2955 if (ret < 0) 2956 goto out; 2957 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 2958 /* 2959 * We have a non dir inode. Go through all deleted refs and 2960 * unlink them if they were not already overwritten by other 2961 * inodes. 2962 */ 2963 list_for_each_entry(cur, &sctx->deleted_refs, list) { 2964 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 2965 sctx->cur_ino, sctx->cur_inode_gen, 2966 cur->name, cur->name_len); 2967 if (ret < 0) 2968 goto out; 2969 if (!ret) { 2970 ret = send_unlink(sctx, cur->full_path); 2971 if (ret < 0) 2972 goto out; 2973 } 2974 ret = dup_ref(cur, &check_dirs); 2975 if (ret < 0) 2976 goto out; 2977 } 2978 /* 2979 * If the inode is still orphan, unlink the orphan. This may 2980 * happen when a previous inode did overwrite the first ref 2981 * of this inode and no new refs were added for the current 2982 * inode. Unlinking does not mean that the inode is deleted in 2983 * all cases. There may still be links to this inode in other 2984 * places. 2985 */ 2986 if (is_orphan) { 2987 ret = send_unlink(sctx, valid_path); 2988 if (ret < 0) 2989 goto out; 2990 } 2991 } 2992 2993 /* 2994 * We did collect all parent dirs where cur_inode was once located. We 2995 * now go through all these dirs and check if they are pending for 2996 * deletion and if it's finally possible to perform the rmdir now. 2997 * We also update the inode stats of the parent dirs here. 2998 */ 2999 list_for_each_entry(cur, &check_dirs, list) { 3000 /* 3001 * In case we had refs into dirs that were not processed yet, 3002 * we don't need to do the utime and rmdir logic for these dirs. 3003 * The dir will be processed later. 3004 */ 3005 if (cur->dir > sctx->cur_ino) 3006 continue; 3007 3008 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3009 if (ret < 0) 3010 goto out; 3011 3012 if (ret == inode_state_did_create || 3013 ret == inode_state_no_change) { 3014 /* TODO delayed utimes */ 3015 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3016 if (ret < 0) 3017 goto out; 3018 } else if (ret == inode_state_did_delete) { 3019 ret = can_rmdir(sctx, cur->dir, sctx->cur_ino); 3020 if (ret < 0) 3021 goto out; 3022 if (ret) { 3023 ret = get_cur_path(sctx, cur->dir, 3024 cur->dir_gen, valid_path); 3025 if (ret < 0) 3026 goto out; 3027 ret = send_rmdir(sctx, valid_path); 3028 if (ret < 0) 3029 goto out; 3030 } 3031 } 3032 } 3033 3034 ret = 0; 3035 3036 out: 3037 __free_recorded_refs(&check_dirs); 3038 free_recorded_refs(sctx); 3039 fs_path_free(valid_path); 3040 return ret; 3041 } 3042 3043 static int __record_new_ref(int num, u64 dir, int index, 3044 struct fs_path *name, 3045 void *ctx) 3046 { 3047 int ret = 0; 3048 struct send_ctx *sctx = ctx; 3049 struct fs_path *p; 3050 u64 gen; 3051 3052 p = fs_path_alloc(); 3053 if (!p) 3054 return -ENOMEM; 3055 3056 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL, 3057 NULL, NULL); 3058 if (ret < 0) 3059 goto out; 3060 3061 ret = get_cur_path(sctx, dir, gen, p); 3062 if (ret < 0) 3063 goto out; 3064 ret = fs_path_add_path(p, name); 3065 if (ret < 0) 3066 goto out; 3067 3068 ret = record_ref(&sctx->new_refs, dir, gen, p); 3069 3070 out: 3071 if (ret) 3072 fs_path_free(p); 3073 return ret; 3074 } 3075 3076 static int __record_deleted_ref(int num, u64 dir, int index, 3077 struct fs_path *name, 3078 void *ctx) 3079 { 3080 int ret = 0; 3081 struct send_ctx *sctx = ctx; 3082 struct fs_path *p; 3083 u64 gen; 3084 3085 p = fs_path_alloc(); 3086 if (!p) 3087 return -ENOMEM; 3088 3089 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL, 3090 NULL, NULL); 3091 if (ret < 0) 3092 goto out; 3093 3094 ret = get_cur_path(sctx, dir, gen, p); 3095 if (ret < 0) 3096 goto out; 3097 ret = fs_path_add_path(p, name); 3098 if (ret < 0) 3099 goto out; 3100 3101 ret = record_ref(&sctx->deleted_refs, dir, gen, p); 3102 3103 out: 3104 if (ret) 3105 fs_path_free(p); 3106 return ret; 3107 } 3108 3109 static int record_new_ref(struct send_ctx *sctx) 3110 { 3111 int ret; 3112 3113 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3114 sctx->cmp_key, 0, __record_new_ref, sctx); 3115 if (ret < 0) 3116 goto out; 3117 ret = 0; 3118 3119 out: 3120 return ret; 3121 } 3122 3123 static int record_deleted_ref(struct send_ctx *sctx) 3124 { 3125 int ret; 3126 3127 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3128 sctx->cmp_key, 0, __record_deleted_ref, sctx); 3129 if (ret < 0) 3130 goto out; 3131 ret = 0; 3132 3133 out: 3134 return ret; 3135 } 3136 3137 struct find_ref_ctx { 3138 u64 dir; 3139 u64 dir_gen; 3140 struct btrfs_root *root; 3141 struct fs_path *name; 3142 int found_idx; 3143 }; 3144 3145 static int __find_iref(int num, u64 dir, int index, 3146 struct fs_path *name, 3147 void *ctx_) 3148 { 3149 struct find_ref_ctx *ctx = ctx_; 3150 u64 dir_gen; 3151 int ret; 3152 3153 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 3154 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 3155 /* 3156 * To avoid doing extra lookups we'll only do this if everything 3157 * else matches. 3158 */ 3159 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 3160 NULL, NULL, NULL); 3161 if (ret) 3162 return ret; 3163 if (dir_gen != ctx->dir_gen) 3164 return 0; 3165 ctx->found_idx = num; 3166 return 1; 3167 } 3168 return 0; 3169 } 3170 3171 static int find_iref(struct btrfs_root *root, 3172 struct btrfs_path *path, 3173 struct btrfs_key *key, 3174 u64 dir, u64 dir_gen, struct fs_path *name) 3175 { 3176 int ret; 3177 struct find_ref_ctx ctx; 3178 3179 ctx.dir = dir; 3180 ctx.name = name; 3181 ctx.dir_gen = dir_gen; 3182 ctx.found_idx = -1; 3183 ctx.root = root; 3184 3185 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 3186 if (ret < 0) 3187 return ret; 3188 3189 if (ctx.found_idx == -1) 3190 return -ENOENT; 3191 3192 return ctx.found_idx; 3193 } 3194 3195 static int __record_changed_new_ref(int num, u64 dir, int index, 3196 struct fs_path *name, 3197 void *ctx) 3198 { 3199 u64 dir_gen; 3200 int ret; 3201 struct send_ctx *sctx = ctx; 3202 3203 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 3204 NULL, NULL, NULL); 3205 if (ret) 3206 return ret; 3207 3208 ret = find_iref(sctx->parent_root, sctx->right_path, 3209 sctx->cmp_key, dir, dir_gen, name); 3210 if (ret == -ENOENT) 3211 ret = __record_new_ref(num, dir, index, name, sctx); 3212 else if (ret > 0) 3213 ret = 0; 3214 3215 return ret; 3216 } 3217 3218 static int __record_changed_deleted_ref(int num, u64 dir, int index, 3219 struct fs_path *name, 3220 void *ctx) 3221 { 3222 u64 dir_gen; 3223 int ret; 3224 struct send_ctx *sctx = ctx; 3225 3226 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 3227 NULL, NULL, NULL); 3228 if (ret) 3229 return ret; 3230 3231 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 3232 dir, dir_gen, name); 3233 if (ret == -ENOENT) 3234 ret = __record_deleted_ref(num, dir, index, name, sctx); 3235 else if (ret > 0) 3236 ret = 0; 3237 3238 return ret; 3239 } 3240 3241 static int record_changed_ref(struct send_ctx *sctx) 3242 { 3243 int ret = 0; 3244 3245 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3246 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 3247 if (ret < 0) 3248 goto out; 3249 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3250 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 3251 if (ret < 0) 3252 goto out; 3253 ret = 0; 3254 3255 out: 3256 return ret; 3257 } 3258 3259 /* 3260 * Record and process all refs at once. Needed when an inode changes the 3261 * generation number, which means that it was deleted and recreated. 3262 */ 3263 static int process_all_refs(struct send_ctx *sctx, 3264 enum btrfs_compare_tree_result cmd) 3265 { 3266 int ret; 3267 struct btrfs_root *root; 3268 struct btrfs_path *path; 3269 struct btrfs_key key; 3270 struct btrfs_key found_key; 3271 struct extent_buffer *eb; 3272 int slot; 3273 iterate_inode_ref_t cb; 3274 3275 path = alloc_path_for_send(); 3276 if (!path) 3277 return -ENOMEM; 3278 3279 if (cmd == BTRFS_COMPARE_TREE_NEW) { 3280 root = sctx->send_root; 3281 cb = __record_new_ref; 3282 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 3283 root = sctx->parent_root; 3284 cb = __record_deleted_ref; 3285 } else { 3286 BUG(); 3287 } 3288 3289 key.objectid = sctx->cmp_key->objectid; 3290 key.type = BTRFS_INODE_REF_KEY; 3291 key.offset = 0; 3292 while (1) { 3293 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 3294 if (ret < 0) 3295 goto out; 3296 if (ret) 3297 break; 3298 3299 eb = path->nodes[0]; 3300 slot = path->slots[0]; 3301 btrfs_item_key_to_cpu(eb, &found_key, slot); 3302 3303 if (found_key.objectid != key.objectid || 3304 (found_key.type != BTRFS_INODE_REF_KEY && 3305 found_key.type != BTRFS_INODE_EXTREF_KEY)) 3306 break; 3307 3308 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 3309 btrfs_release_path(path); 3310 if (ret < 0) 3311 goto out; 3312 3313 key.offset = found_key.offset + 1; 3314 } 3315 btrfs_release_path(path); 3316 3317 ret = process_recorded_refs(sctx); 3318 3319 out: 3320 btrfs_free_path(path); 3321 return ret; 3322 } 3323 3324 static int send_set_xattr(struct send_ctx *sctx, 3325 struct fs_path *path, 3326 const char *name, int name_len, 3327 const char *data, int data_len) 3328 { 3329 int ret = 0; 3330 3331 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 3332 if (ret < 0) 3333 goto out; 3334 3335 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3336 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3337 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 3338 3339 ret = send_cmd(sctx); 3340 3341 tlv_put_failure: 3342 out: 3343 return ret; 3344 } 3345 3346 static int send_remove_xattr(struct send_ctx *sctx, 3347 struct fs_path *path, 3348 const char *name, int name_len) 3349 { 3350 int ret = 0; 3351 3352 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 3353 if (ret < 0) 3354 goto out; 3355 3356 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3357 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3358 3359 ret = send_cmd(sctx); 3360 3361 tlv_put_failure: 3362 out: 3363 return ret; 3364 } 3365 3366 static int __process_new_xattr(int num, struct btrfs_key *di_key, 3367 const char *name, int name_len, 3368 const char *data, int data_len, 3369 u8 type, void *ctx) 3370 { 3371 int ret; 3372 struct send_ctx *sctx = ctx; 3373 struct fs_path *p; 3374 posix_acl_xattr_header dummy_acl; 3375 3376 p = fs_path_alloc(); 3377 if (!p) 3378 return -ENOMEM; 3379 3380 /* 3381 * This hack is needed because empty acl's are stored as zero byte 3382 * data in xattrs. Problem with that is, that receiving these zero byte 3383 * acl's will fail later. To fix this, we send a dummy acl list that 3384 * only contains the version number and no entries. 3385 */ 3386 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 3387 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 3388 if (data_len == 0) { 3389 dummy_acl.a_version = 3390 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 3391 data = (char *)&dummy_acl; 3392 data_len = sizeof(dummy_acl); 3393 } 3394 } 3395 3396 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3397 if (ret < 0) 3398 goto out; 3399 3400 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 3401 3402 out: 3403 fs_path_free(p); 3404 return ret; 3405 } 3406 3407 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 3408 const char *name, int name_len, 3409 const char *data, int data_len, 3410 u8 type, void *ctx) 3411 { 3412 int ret; 3413 struct send_ctx *sctx = ctx; 3414 struct fs_path *p; 3415 3416 p = fs_path_alloc(); 3417 if (!p) 3418 return -ENOMEM; 3419 3420 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3421 if (ret < 0) 3422 goto out; 3423 3424 ret = send_remove_xattr(sctx, p, name, name_len); 3425 3426 out: 3427 fs_path_free(p); 3428 return ret; 3429 } 3430 3431 static int process_new_xattr(struct send_ctx *sctx) 3432 { 3433 int ret = 0; 3434 3435 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 3436 sctx->cmp_key, __process_new_xattr, sctx); 3437 3438 return ret; 3439 } 3440 3441 static int process_deleted_xattr(struct send_ctx *sctx) 3442 { 3443 int ret; 3444 3445 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 3446 sctx->cmp_key, __process_deleted_xattr, sctx); 3447 3448 return ret; 3449 } 3450 3451 struct find_xattr_ctx { 3452 const char *name; 3453 int name_len; 3454 int found_idx; 3455 char *found_data; 3456 int found_data_len; 3457 }; 3458 3459 static int __find_xattr(int num, struct btrfs_key *di_key, 3460 const char *name, int name_len, 3461 const char *data, int data_len, 3462 u8 type, void *vctx) 3463 { 3464 struct find_xattr_ctx *ctx = vctx; 3465 3466 if (name_len == ctx->name_len && 3467 strncmp(name, ctx->name, name_len) == 0) { 3468 ctx->found_idx = num; 3469 ctx->found_data_len = data_len; 3470 ctx->found_data = kmemdup(data, data_len, GFP_NOFS); 3471 if (!ctx->found_data) 3472 return -ENOMEM; 3473 return 1; 3474 } 3475 return 0; 3476 } 3477 3478 static int find_xattr(struct btrfs_root *root, 3479 struct btrfs_path *path, 3480 struct btrfs_key *key, 3481 const char *name, int name_len, 3482 char **data, int *data_len) 3483 { 3484 int ret; 3485 struct find_xattr_ctx ctx; 3486 3487 ctx.name = name; 3488 ctx.name_len = name_len; 3489 ctx.found_idx = -1; 3490 ctx.found_data = NULL; 3491 ctx.found_data_len = 0; 3492 3493 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 3494 if (ret < 0) 3495 return ret; 3496 3497 if (ctx.found_idx == -1) 3498 return -ENOENT; 3499 if (data) { 3500 *data = ctx.found_data; 3501 *data_len = ctx.found_data_len; 3502 } else { 3503 kfree(ctx.found_data); 3504 } 3505 return ctx.found_idx; 3506 } 3507 3508 3509 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 3510 const char *name, int name_len, 3511 const char *data, int data_len, 3512 u8 type, void *ctx) 3513 { 3514 int ret; 3515 struct send_ctx *sctx = ctx; 3516 char *found_data = NULL; 3517 int found_data_len = 0; 3518 3519 ret = find_xattr(sctx->parent_root, sctx->right_path, 3520 sctx->cmp_key, name, name_len, &found_data, 3521 &found_data_len); 3522 if (ret == -ENOENT) { 3523 ret = __process_new_xattr(num, di_key, name, name_len, data, 3524 data_len, type, ctx); 3525 } else if (ret >= 0) { 3526 if (data_len != found_data_len || 3527 memcmp(data, found_data, data_len)) { 3528 ret = __process_new_xattr(num, di_key, name, name_len, 3529 data, data_len, type, ctx); 3530 } else { 3531 ret = 0; 3532 } 3533 } 3534 3535 kfree(found_data); 3536 return ret; 3537 } 3538 3539 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 3540 const char *name, int name_len, 3541 const char *data, int data_len, 3542 u8 type, void *ctx) 3543 { 3544 int ret; 3545 struct send_ctx *sctx = ctx; 3546 3547 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 3548 name, name_len, NULL, NULL); 3549 if (ret == -ENOENT) 3550 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 3551 data_len, type, ctx); 3552 else if (ret >= 0) 3553 ret = 0; 3554 3555 return ret; 3556 } 3557 3558 static int process_changed_xattr(struct send_ctx *sctx) 3559 { 3560 int ret = 0; 3561 3562 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 3563 sctx->cmp_key, __process_changed_new_xattr, sctx); 3564 if (ret < 0) 3565 goto out; 3566 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 3567 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 3568 3569 out: 3570 return ret; 3571 } 3572 3573 static int process_all_new_xattrs(struct send_ctx *sctx) 3574 { 3575 int ret; 3576 struct btrfs_root *root; 3577 struct btrfs_path *path; 3578 struct btrfs_key key; 3579 struct btrfs_key found_key; 3580 struct extent_buffer *eb; 3581 int slot; 3582 3583 path = alloc_path_for_send(); 3584 if (!path) 3585 return -ENOMEM; 3586 3587 root = sctx->send_root; 3588 3589 key.objectid = sctx->cmp_key->objectid; 3590 key.type = BTRFS_XATTR_ITEM_KEY; 3591 key.offset = 0; 3592 while (1) { 3593 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 3594 if (ret < 0) 3595 goto out; 3596 if (ret) { 3597 ret = 0; 3598 goto out; 3599 } 3600 3601 eb = path->nodes[0]; 3602 slot = path->slots[0]; 3603 btrfs_item_key_to_cpu(eb, &found_key, slot); 3604 3605 if (found_key.objectid != key.objectid || 3606 found_key.type != key.type) { 3607 ret = 0; 3608 goto out; 3609 } 3610 3611 ret = iterate_dir_item(root, path, &found_key, 3612 __process_new_xattr, sctx); 3613 if (ret < 0) 3614 goto out; 3615 3616 btrfs_release_path(path); 3617 key.offset = found_key.offset + 1; 3618 } 3619 3620 out: 3621 btrfs_free_path(path); 3622 return ret; 3623 } 3624 3625 /* 3626 * Read some bytes from the current inode/file and send a write command to 3627 * user space. 3628 */ 3629 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 3630 { 3631 int ret = 0; 3632 struct fs_path *p; 3633 loff_t pos = offset; 3634 int num_read = 0; 3635 mm_segment_t old_fs; 3636 3637 p = fs_path_alloc(); 3638 if (!p) 3639 return -ENOMEM; 3640 3641 /* 3642 * vfs normally only accepts user space buffers for security reasons. 3643 * we only read from the file and also only provide the read_buf buffer 3644 * to vfs. As this buffer does not come from a user space call, it's 3645 * ok to temporary allow kernel space buffers. 3646 */ 3647 old_fs = get_fs(); 3648 set_fs(KERNEL_DS); 3649 3650 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len); 3651 3652 ret = open_cur_inode_file(sctx); 3653 if (ret < 0) 3654 goto out; 3655 3656 ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos); 3657 if (ret < 0) 3658 goto out; 3659 num_read = ret; 3660 if (!num_read) 3661 goto out; 3662 3663 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 3664 if (ret < 0) 3665 goto out; 3666 3667 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3668 if (ret < 0) 3669 goto out; 3670 3671 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 3672 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 3673 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 3674 3675 ret = send_cmd(sctx); 3676 3677 tlv_put_failure: 3678 out: 3679 fs_path_free(p); 3680 set_fs(old_fs); 3681 if (ret < 0) 3682 return ret; 3683 return num_read; 3684 } 3685 3686 /* 3687 * Send a clone command to user space. 3688 */ 3689 static int send_clone(struct send_ctx *sctx, 3690 u64 offset, u32 len, 3691 struct clone_root *clone_root) 3692 { 3693 int ret = 0; 3694 struct fs_path *p; 3695 u64 gen; 3696 3697 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, " 3698 "clone_inode=%llu, clone_offset=%llu\n", offset, len, 3699 clone_root->root->objectid, clone_root->ino, 3700 clone_root->offset); 3701 3702 p = fs_path_alloc(); 3703 if (!p) 3704 return -ENOMEM; 3705 3706 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 3707 if (ret < 0) 3708 goto out; 3709 3710 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3711 if (ret < 0) 3712 goto out; 3713 3714 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 3715 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 3716 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 3717 3718 if (clone_root->root == sctx->send_root) { 3719 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 3720 &gen, NULL, NULL, NULL, NULL); 3721 if (ret < 0) 3722 goto out; 3723 ret = get_cur_path(sctx, clone_root->ino, gen, p); 3724 } else { 3725 ret = get_inode_path(clone_root->root, clone_root->ino, p); 3726 } 3727 if (ret < 0) 3728 goto out; 3729 3730 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 3731 clone_root->root->root_item.uuid); 3732 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 3733 clone_root->root->root_item.ctransid); 3734 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 3735 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 3736 clone_root->offset); 3737 3738 ret = send_cmd(sctx); 3739 3740 tlv_put_failure: 3741 out: 3742 fs_path_free(p); 3743 return ret; 3744 } 3745 3746 /* 3747 * Send an update extent command to user space. 3748 */ 3749 static int send_update_extent(struct send_ctx *sctx, 3750 u64 offset, u32 len) 3751 { 3752 int ret = 0; 3753 struct fs_path *p; 3754 3755 p = fs_path_alloc(); 3756 if (!p) 3757 return -ENOMEM; 3758 3759 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 3760 if (ret < 0) 3761 goto out; 3762 3763 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3764 if (ret < 0) 3765 goto out; 3766 3767 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 3768 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 3769 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 3770 3771 ret = send_cmd(sctx); 3772 3773 tlv_put_failure: 3774 out: 3775 fs_path_free(p); 3776 return ret; 3777 } 3778 3779 static int send_write_or_clone(struct send_ctx *sctx, 3780 struct btrfs_path *path, 3781 struct btrfs_key *key, 3782 struct clone_root *clone_root) 3783 { 3784 int ret = 0; 3785 struct btrfs_file_extent_item *ei; 3786 u64 offset = key->offset; 3787 u64 pos = 0; 3788 u64 len; 3789 u32 l; 3790 u8 type; 3791 3792 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3793 struct btrfs_file_extent_item); 3794 type = btrfs_file_extent_type(path->nodes[0], ei); 3795 if (type == BTRFS_FILE_EXTENT_INLINE) { 3796 len = btrfs_file_extent_inline_len(path->nodes[0], ei); 3797 /* 3798 * it is possible the inline item won't cover the whole page, 3799 * but there may be items after this page. Make 3800 * sure to send the whole thing 3801 */ 3802 len = PAGE_CACHE_ALIGN(len); 3803 } else { 3804 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3805 } 3806 3807 if (offset + len > sctx->cur_inode_size) 3808 len = sctx->cur_inode_size - offset; 3809 if (len == 0) { 3810 ret = 0; 3811 goto out; 3812 } 3813 3814 if (clone_root) { 3815 ret = send_clone(sctx, offset, len, clone_root); 3816 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) { 3817 ret = send_update_extent(sctx, offset, len); 3818 } else { 3819 while (pos < len) { 3820 l = len - pos; 3821 if (l > BTRFS_SEND_READ_SIZE) 3822 l = BTRFS_SEND_READ_SIZE; 3823 ret = send_write(sctx, pos + offset, l); 3824 if (ret < 0) 3825 goto out; 3826 if (!ret) 3827 break; 3828 pos += ret; 3829 } 3830 ret = 0; 3831 } 3832 out: 3833 return ret; 3834 } 3835 3836 static int is_extent_unchanged(struct send_ctx *sctx, 3837 struct btrfs_path *left_path, 3838 struct btrfs_key *ekey) 3839 { 3840 int ret = 0; 3841 struct btrfs_key key; 3842 struct btrfs_path *path = NULL; 3843 struct extent_buffer *eb; 3844 int slot; 3845 struct btrfs_key found_key; 3846 struct btrfs_file_extent_item *ei; 3847 u64 left_disknr; 3848 u64 right_disknr; 3849 u64 left_offset; 3850 u64 right_offset; 3851 u64 left_offset_fixed; 3852 u64 left_len; 3853 u64 right_len; 3854 u64 left_gen; 3855 u64 right_gen; 3856 u8 left_type; 3857 u8 right_type; 3858 3859 path = alloc_path_for_send(); 3860 if (!path) 3861 return -ENOMEM; 3862 3863 eb = left_path->nodes[0]; 3864 slot = left_path->slots[0]; 3865 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 3866 left_type = btrfs_file_extent_type(eb, ei); 3867 3868 if (left_type != BTRFS_FILE_EXTENT_REG) { 3869 ret = 0; 3870 goto out; 3871 } 3872 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 3873 left_len = btrfs_file_extent_num_bytes(eb, ei); 3874 left_offset = btrfs_file_extent_offset(eb, ei); 3875 left_gen = btrfs_file_extent_generation(eb, ei); 3876 3877 /* 3878 * Following comments will refer to these graphics. L is the left 3879 * extents which we are checking at the moment. 1-8 are the right 3880 * extents that we iterate. 3881 * 3882 * |-----L-----| 3883 * |-1-|-2a-|-3-|-4-|-5-|-6-| 3884 * 3885 * |-----L-----| 3886 * |--1--|-2b-|...(same as above) 3887 * 3888 * Alternative situation. Happens on files where extents got split. 3889 * |-----L-----| 3890 * |-----------7-----------|-6-| 3891 * 3892 * Alternative situation. Happens on files which got larger. 3893 * |-----L-----| 3894 * |-8-| 3895 * Nothing follows after 8. 3896 */ 3897 3898 key.objectid = ekey->objectid; 3899 key.type = BTRFS_EXTENT_DATA_KEY; 3900 key.offset = ekey->offset; 3901 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 3902 if (ret < 0) 3903 goto out; 3904 if (ret) { 3905 ret = 0; 3906 goto out; 3907 } 3908 3909 /* 3910 * Handle special case where the right side has no extents at all. 3911 */ 3912 eb = path->nodes[0]; 3913 slot = path->slots[0]; 3914 btrfs_item_key_to_cpu(eb, &found_key, slot); 3915 if (found_key.objectid != key.objectid || 3916 found_key.type != key.type) { 3917 /* If we're a hole then just pretend nothing changed */ 3918 ret = (left_disknr) ? 0 : 1; 3919 goto out; 3920 } 3921 3922 /* 3923 * We're now on 2a, 2b or 7. 3924 */ 3925 key = found_key; 3926 while (key.offset < ekey->offset + left_len) { 3927 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 3928 right_type = btrfs_file_extent_type(eb, ei); 3929 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 3930 right_len = btrfs_file_extent_num_bytes(eb, ei); 3931 right_offset = btrfs_file_extent_offset(eb, ei); 3932 right_gen = btrfs_file_extent_generation(eb, ei); 3933 3934 if (right_type != BTRFS_FILE_EXTENT_REG) { 3935 ret = 0; 3936 goto out; 3937 } 3938 3939 /* 3940 * Are we at extent 8? If yes, we know the extent is changed. 3941 * This may only happen on the first iteration. 3942 */ 3943 if (found_key.offset + right_len <= ekey->offset) { 3944 /* If we're a hole just pretend nothing changed */ 3945 ret = (left_disknr) ? 0 : 1; 3946 goto out; 3947 } 3948 3949 left_offset_fixed = left_offset; 3950 if (key.offset < ekey->offset) { 3951 /* Fix the right offset for 2a and 7. */ 3952 right_offset += ekey->offset - key.offset; 3953 } else { 3954 /* Fix the left offset for all behind 2a and 2b */ 3955 left_offset_fixed += key.offset - ekey->offset; 3956 } 3957 3958 /* 3959 * Check if we have the same extent. 3960 */ 3961 if (left_disknr != right_disknr || 3962 left_offset_fixed != right_offset || 3963 left_gen != right_gen) { 3964 ret = 0; 3965 goto out; 3966 } 3967 3968 /* 3969 * Go to the next extent. 3970 */ 3971 ret = btrfs_next_item(sctx->parent_root, path); 3972 if (ret < 0) 3973 goto out; 3974 if (!ret) { 3975 eb = path->nodes[0]; 3976 slot = path->slots[0]; 3977 btrfs_item_key_to_cpu(eb, &found_key, slot); 3978 } 3979 if (ret || found_key.objectid != key.objectid || 3980 found_key.type != key.type) { 3981 key.offset += right_len; 3982 break; 3983 } 3984 if (found_key.offset != key.offset + right_len) { 3985 ret = 0; 3986 goto out; 3987 } 3988 key = found_key; 3989 } 3990 3991 /* 3992 * We're now behind the left extent (treat as unchanged) or at the end 3993 * of the right side (treat as changed). 3994 */ 3995 if (key.offset >= ekey->offset + left_len) 3996 ret = 1; 3997 else 3998 ret = 0; 3999 4000 4001 out: 4002 btrfs_free_path(path); 4003 return ret; 4004 } 4005 4006 static int process_extent(struct send_ctx *sctx, 4007 struct btrfs_path *path, 4008 struct btrfs_key *key) 4009 { 4010 struct clone_root *found_clone = NULL; 4011 int ret = 0; 4012 4013 if (S_ISLNK(sctx->cur_inode_mode)) 4014 return 0; 4015 4016 if (sctx->parent_root && !sctx->cur_inode_new) { 4017 ret = is_extent_unchanged(sctx, path, key); 4018 if (ret < 0) 4019 goto out; 4020 if (ret) { 4021 ret = 0; 4022 goto out; 4023 } 4024 } else { 4025 struct btrfs_file_extent_item *ei; 4026 u8 type; 4027 4028 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4029 struct btrfs_file_extent_item); 4030 type = btrfs_file_extent_type(path->nodes[0], ei); 4031 if (type == BTRFS_FILE_EXTENT_PREALLOC || 4032 type == BTRFS_FILE_EXTENT_REG) { 4033 /* 4034 * The send spec does not have a prealloc command yet, 4035 * so just leave a hole for prealloc'ed extents until 4036 * we have enough commands queued up to justify rev'ing 4037 * the send spec. 4038 */ 4039 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 4040 ret = 0; 4041 goto out; 4042 } 4043 4044 /* Have a hole, just skip it. */ 4045 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 4046 ret = 0; 4047 goto out; 4048 } 4049 } 4050 } 4051 4052 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 4053 sctx->cur_inode_size, &found_clone); 4054 if (ret != -ENOENT && ret < 0) 4055 goto out; 4056 4057 ret = send_write_or_clone(sctx, path, key, found_clone); 4058 4059 out: 4060 return ret; 4061 } 4062 4063 static int process_all_extents(struct send_ctx *sctx) 4064 { 4065 int ret; 4066 struct btrfs_root *root; 4067 struct btrfs_path *path; 4068 struct btrfs_key key; 4069 struct btrfs_key found_key; 4070 struct extent_buffer *eb; 4071 int slot; 4072 4073 root = sctx->send_root; 4074 path = alloc_path_for_send(); 4075 if (!path) 4076 return -ENOMEM; 4077 4078 key.objectid = sctx->cmp_key->objectid; 4079 key.type = BTRFS_EXTENT_DATA_KEY; 4080 key.offset = 0; 4081 while (1) { 4082 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 4083 if (ret < 0) 4084 goto out; 4085 if (ret) { 4086 ret = 0; 4087 goto out; 4088 } 4089 4090 eb = path->nodes[0]; 4091 slot = path->slots[0]; 4092 btrfs_item_key_to_cpu(eb, &found_key, slot); 4093 4094 if (found_key.objectid != key.objectid || 4095 found_key.type != key.type) { 4096 ret = 0; 4097 goto out; 4098 } 4099 4100 ret = process_extent(sctx, path, &found_key); 4101 if (ret < 0) 4102 goto out; 4103 4104 btrfs_release_path(path); 4105 key.offset = found_key.offset + 1; 4106 } 4107 4108 out: 4109 btrfs_free_path(path); 4110 return ret; 4111 } 4112 4113 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end) 4114 { 4115 int ret = 0; 4116 4117 if (sctx->cur_ino == 0) 4118 goto out; 4119 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 4120 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 4121 goto out; 4122 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 4123 goto out; 4124 4125 ret = process_recorded_refs(sctx); 4126 if (ret < 0) 4127 goto out; 4128 4129 /* 4130 * We have processed the refs and thus need to advance send_progress. 4131 * Now, calls to get_cur_xxx will take the updated refs of the current 4132 * inode into account. 4133 */ 4134 sctx->send_progress = sctx->cur_ino + 1; 4135 4136 out: 4137 return ret; 4138 } 4139 4140 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 4141 { 4142 int ret = 0; 4143 u64 left_mode; 4144 u64 left_uid; 4145 u64 left_gid; 4146 u64 right_mode; 4147 u64 right_uid; 4148 u64 right_gid; 4149 int need_chmod = 0; 4150 int need_chown = 0; 4151 4152 ret = process_recorded_refs_if_needed(sctx, at_end); 4153 if (ret < 0) 4154 goto out; 4155 4156 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 4157 goto out; 4158 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 4159 goto out; 4160 4161 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 4162 &left_mode, &left_uid, &left_gid, NULL); 4163 if (ret < 0) 4164 goto out; 4165 4166 if (!sctx->parent_root || sctx->cur_inode_new) { 4167 need_chown = 1; 4168 if (!S_ISLNK(sctx->cur_inode_mode)) 4169 need_chmod = 1; 4170 } else { 4171 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 4172 NULL, NULL, &right_mode, &right_uid, 4173 &right_gid, NULL); 4174 if (ret < 0) 4175 goto out; 4176 4177 if (left_uid != right_uid || left_gid != right_gid) 4178 need_chown = 1; 4179 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 4180 need_chmod = 1; 4181 } 4182 4183 if (S_ISREG(sctx->cur_inode_mode)) { 4184 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4185 sctx->cur_inode_size); 4186 if (ret < 0) 4187 goto out; 4188 } 4189 4190 if (need_chown) { 4191 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4192 left_uid, left_gid); 4193 if (ret < 0) 4194 goto out; 4195 } 4196 if (need_chmod) { 4197 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4198 left_mode); 4199 if (ret < 0) 4200 goto out; 4201 } 4202 4203 /* 4204 * Need to send that every time, no matter if it actually changed 4205 * between the two trees as we have done changes to the inode before. 4206 */ 4207 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4208 if (ret < 0) 4209 goto out; 4210 4211 out: 4212 return ret; 4213 } 4214 4215 static int changed_inode(struct send_ctx *sctx, 4216 enum btrfs_compare_tree_result result) 4217 { 4218 int ret = 0; 4219 struct btrfs_key *key = sctx->cmp_key; 4220 struct btrfs_inode_item *left_ii = NULL; 4221 struct btrfs_inode_item *right_ii = NULL; 4222 u64 left_gen = 0; 4223 u64 right_gen = 0; 4224 4225 ret = close_cur_inode_file(sctx); 4226 if (ret < 0) 4227 goto out; 4228 4229 sctx->cur_ino = key->objectid; 4230 sctx->cur_inode_new_gen = 0; 4231 4232 /* 4233 * Set send_progress to current inode. This will tell all get_cur_xxx 4234 * functions that the current inode's refs are not updated yet. Later, 4235 * when process_recorded_refs is finished, it is set to cur_ino + 1. 4236 */ 4237 sctx->send_progress = sctx->cur_ino; 4238 4239 if (result == BTRFS_COMPARE_TREE_NEW || 4240 result == BTRFS_COMPARE_TREE_CHANGED) { 4241 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 4242 sctx->left_path->slots[0], 4243 struct btrfs_inode_item); 4244 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 4245 left_ii); 4246 } else { 4247 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 4248 sctx->right_path->slots[0], 4249 struct btrfs_inode_item); 4250 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 4251 right_ii); 4252 } 4253 if (result == BTRFS_COMPARE_TREE_CHANGED) { 4254 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 4255 sctx->right_path->slots[0], 4256 struct btrfs_inode_item); 4257 4258 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 4259 right_ii); 4260 4261 /* 4262 * The cur_ino = root dir case is special here. We can't treat 4263 * the inode as deleted+reused because it would generate a 4264 * stream that tries to delete/mkdir the root dir. 4265 */ 4266 if (left_gen != right_gen && 4267 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 4268 sctx->cur_inode_new_gen = 1; 4269 } 4270 4271 if (result == BTRFS_COMPARE_TREE_NEW) { 4272 sctx->cur_inode_gen = left_gen; 4273 sctx->cur_inode_new = 1; 4274 sctx->cur_inode_deleted = 0; 4275 sctx->cur_inode_size = btrfs_inode_size( 4276 sctx->left_path->nodes[0], left_ii); 4277 sctx->cur_inode_mode = btrfs_inode_mode( 4278 sctx->left_path->nodes[0], left_ii); 4279 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 4280 ret = send_create_inode_if_needed(sctx); 4281 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 4282 sctx->cur_inode_gen = right_gen; 4283 sctx->cur_inode_new = 0; 4284 sctx->cur_inode_deleted = 1; 4285 sctx->cur_inode_size = btrfs_inode_size( 4286 sctx->right_path->nodes[0], right_ii); 4287 sctx->cur_inode_mode = btrfs_inode_mode( 4288 sctx->right_path->nodes[0], right_ii); 4289 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 4290 /* 4291 * We need to do some special handling in case the inode was 4292 * reported as changed with a changed generation number. This 4293 * means that the original inode was deleted and new inode 4294 * reused the same inum. So we have to treat the old inode as 4295 * deleted and the new one as new. 4296 */ 4297 if (sctx->cur_inode_new_gen) { 4298 /* 4299 * First, process the inode as if it was deleted. 4300 */ 4301 sctx->cur_inode_gen = right_gen; 4302 sctx->cur_inode_new = 0; 4303 sctx->cur_inode_deleted = 1; 4304 sctx->cur_inode_size = btrfs_inode_size( 4305 sctx->right_path->nodes[0], right_ii); 4306 sctx->cur_inode_mode = btrfs_inode_mode( 4307 sctx->right_path->nodes[0], right_ii); 4308 ret = process_all_refs(sctx, 4309 BTRFS_COMPARE_TREE_DELETED); 4310 if (ret < 0) 4311 goto out; 4312 4313 /* 4314 * Now process the inode as if it was new. 4315 */ 4316 sctx->cur_inode_gen = left_gen; 4317 sctx->cur_inode_new = 1; 4318 sctx->cur_inode_deleted = 0; 4319 sctx->cur_inode_size = btrfs_inode_size( 4320 sctx->left_path->nodes[0], left_ii); 4321 sctx->cur_inode_mode = btrfs_inode_mode( 4322 sctx->left_path->nodes[0], left_ii); 4323 ret = send_create_inode_if_needed(sctx); 4324 if (ret < 0) 4325 goto out; 4326 4327 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 4328 if (ret < 0) 4329 goto out; 4330 /* 4331 * Advance send_progress now as we did not get into 4332 * process_recorded_refs_if_needed in the new_gen case. 4333 */ 4334 sctx->send_progress = sctx->cur_ino + 1; 4335 4336 /* 4337 * Now process all extents and xattrs of the inode as if 4338 * they were all new. 4339 */ 4340 ret = process_all_extents(sctx); 4341 if (ret < 0) 4342 goto out; 4343 ret = process_all_new_xattrs(sctx); 4344 if (ret < 0) 4345 goto out; 4346 } else { 4347 sctx->cur_inode_gen = left_gen; 4348 sctx->cur_inode_new = 0; 4349 sctx->cur_inode_new_gen = 0; 4350 sctx->cur_inode_deleted = 0; 4351 sctx->cur_inode_size = btrfs_inode_size( 4352 sctx->left_path->nodes[0], left_ii); 4353 sctx->cur_inode_mode = btrfs_inode_mode( 4354 sctx->left_path->nodes[0], left_ii); 4355 } 4356 } 4357 4358 out: 4359 return ret; 4360 } 4361 4362 /* 4363 * We have to process new refs before deleted refs, but compare_trees gives us 4364 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 4365 * first and later process them in process_recorded_refs. 4366 * For the cur_inode_new_gen case, we skip recording completely because 4367 * changed_inode did already initiate processing of refs. The reason for this is 4368 * that in this case, compare_tree actually compares the refs of 2 different 4369 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 4370 * refs of the right tree as deleted and all refs of the left tree as new. 4371 */ 4372 static int changed_ref(struct send_ctx *sctx, 4373 enum btrfs_compare_tree_result result) 4374 { 4375 int ret = 0; 4376 4377 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4378 4379 if (!sctx->cur_inode_new_gen && 4380 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 4381 if (result == BTRFS_COMPARE_TREE_NEW) 4382 ret = record_new_ref(sctx); 4383 else if (result == BTRFS_COMPARE_TREE_DELETED) 4384 ret = record_deleted_ref(sctx); 4385 else if (result == BTRFS_COMPARE_TREE_CHANGED) 4386 ret = record_changed_ref(sctx); 4387 } 4388 4389 return ret; 4390 } 4391 4392 /* 4393 * Process new/deleted/changed xattrs. We skip processing in the 4394 * cur_inode_new_gen case because changed_inode did already initiate processing 4395 * of xattrs. The reason is the same as in changed_ref 4396 */ 4397 static int changed_xattr(struct send_ctx *sctx, 4398 enum btrfs_compare_tree_result result) 4399 { 4400 int ret = 0; 4401 4402 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4403 4404 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 4405 if (result == BTRFS_COMPARE_TREE_NEW) 4406 ret = process_new_xattr(sctx); 4407 else if (result == BTRFS_COMPARE_TREE_DELETED) 4408 ret = process_deleted_xattr(sctx); 4409 else if (result == BTRFS_COMPARE_TREE_CHANGED) 4410 ret = process_changed_xattr(sctx); 4411 } 4412 4413 return ret; 4414 } 4415 4416 /* 4417 * Process new/deleted/changed extents. We skip processing in the 4418 * cur_inode_new_gen case because changed_inode did already initiate processing 4419 * of extents. The reason is the same as in changed_ref 4420 */ 4421 static int changed_extent(struct send_ctx *sctx, 4422 enum btrfs_compare_tree_result result) 4423 { 4424 int ret = 0; 4425 4426 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4427 4428 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 4429 if (result != BTRFS_COMPARE_TREE_DELETED) 4430 ret = process_extent(sctx, sctx->left_path, 4431 sctx->cmp_key); 4432 } 4433 4434 return ret; 4435 } 4436 4437 static int dir_changed(struct send_ctx *sctx, u64 dir) 4438 { 4439 u64 orig_gen, new_gen; 4440 int ret; 4441 4442 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 4443 NULL, NULL); 4444 if (ret) 4445 return ret; 4446 4447 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 4448 NULL, NULL, NULL); 4449 if (ret) 4450 return ret; 4451 4452 return (orig_gen != new_gen) ? 1 : 0; 4453 } 4454 4455 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 4456 struct btrfs_key *key) 4457 { 4458 struct btrfs_inode_extref *extref; 4459 struct extent_buffer *leaf; 4460 u64 dirid = 0, last_dirid = 0; 4461 unsigned long ptr; 4462 u32 item_size; 4463 u32 cur_offset = 0; 4464 int ref_name_len; 4465 int ret = 0; 4466 4467 /* Easy case, just check this one dirid */ 4468 if (key->type == BTRFS_INODE_REF_KEY) { 4469 dirid = key->offset; 4470 4471 ret = dir_changed(sctx, dirid); 4472 goto out; 4473 } 4474 4475 leaf = path->nodes[0]; 4476 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4477 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4478 while (cur_offset < item_size) { 4479 extref = (struct btrfs_inode_extref *)(ptr + 4480 cur_offset); 4481 dirid = btrfs_inode_extref_parent(leaf, extref); 4482 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 4483 cur_offset += ref_name_len + sizeof(*extref); 4484 if (dirid == last_dirid) 4485 continue; 4486 ret = dir_changed(sctx, dirid); 4487 if (ret) 4488 break; 4489 last_dirid = dirid; 4490 } 4491 out: 4492 return ret; 4493 } 4494 4495 /* 4496 * Updates compare related fields in sctx and simply forwards to the actual 4497 * changed_xxx functions. 4498 */ 4499 static int changed_cb(struct btrfs_root *left_root, 4500 struct btrfs_root *right_root, 4501 struct btrfs_path *left_path, 4502 struct btrfs_path *right_path, 4503 struct btrfs_key *key, 4504 enum btrfs_compare_tree_result result, 4505 void *ctx) 4506 { 4507 int ret = 0; 4508 struct send_ctx *sctx = ctx; 4509 4510 if (result == BTRFS_COMPARE_TREE_SAME) { 4511 if (key->type != BTRFS_INODE_REF_KEY && 4512 key->type != BTRFS_INODE_EXTREF_KEY) 4513 return 0; 4514 ret = compare_refs(sctx, left_path, key); 4515 if (!ret) 4516 return 0; 4517 if (ret < 0) 4518 return ret; 4519 result = BTRFS_COMPARE_TREE_CHANGED; 4520 ret = 0; 4521 } 4522 4523 sctx->left_path = left_path; 4524 sctx->right_path = right_path; 4525 sctx->cmp_key = key; 4526 4527 ret = finish_inode_if_needed(sctx, 0); 4528 if (ret < 0) 4529 goto out; 4530 4531 /* Ignore non-FS objects */ 4532 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 4533 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 4534 goto out; 4535 4536 if (key->type == BTRFS_INODE_ITEM_KEY) 4537 ret = changed_inode(sctx, result); 4538 else if (key->type == BTRFS_INODE_REF_KEY || 4539 key->type == BTRFS_INODE_EXTREF_KEY) 4540 ret = changed_ref(sctx, result); 4541 else if (key->type == BTRFS_XATTR_ITEM_KEY) 4542 ret = changed_xattr(sctx, result); 4543 else if (key->type == BTRFS_EXTENT_DATA_KEY) 4544 ret = changed_extent(sctx, result); 4545 4546 out: 4547 return ret; 4548 } 4549 4550 static int full_send_tree(struct send_ctx *sctx) 4551 { 4552 int ret; 4553 struct btrfs_trans_handle *trans = NULL; 4554 struct btrfs_root *send_root = sctx->send_root; 4555 struct btrfs_key key; 4556 struct btrfs_key found_key; 4557 struct btrfs_path *path; 4558 struct extent_buffer *eb; 4559 int slot; 4560 u64 start_ctransid; 4561 u64 ctransid; 4562 4563 path = alloc_path_for_send(); 4564 if (!path) 4565 return -ENOMEM; 4566 4567 spin_lock(&send_root->root_item_lock); 4568 start_ctransid = btrfs_root_ctransid(&send_root->root_item); 4569 spin_unlock(&send_root->root_item_lock); 4570 4571 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 4572 key.type = BTRFS_INODE_ITEM_KEY; 4573 key.offset = 0; 4574 4575 join_trans: 4576 /* 4577 * We need to make sure the transaction does not get committed 4578 * while we do anything on commit roots. Join a transaction to prevent 4579 * this. 4580 */ 4581 trans = btrfs_join_transaction(send_root); 4582 if (IS_ERR(trans)) { 4583 ret = PTR_ERR(trans); 4584 trans = NULL; 4585 goto out; 4586 } 4587 4588 /* 4589 * Make sure the tree has not changed after re-joining. We detect this 4590 * by comparing start_ctransid and ctransid. They should always match. 4591 */ 4592 spin_lock(&send_root->root_item_lock); 4593 ctransid = btrfs_root_ctransid(&send_root->root_item); 4594 spin_unlock(&send_root->root_item_lock); 4595 4596 if (ctransid != start_ctransid) { 4597 WARN(1, KERN_WARNING "btrfs: the root that you're trying to " 4598 "send was modified in between. This is " 4599 "probably a bug.\n"); 4600 ret = -EIO; 4601 goto out; 4602 } 4603 4604 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 4605 if (ret < 0) 4606 goto out; 4607 if (ret) 4608 goto out_finish; 4609 4610 while (1) { 4611 /* 4612 * When someone want to commit while we iterate, end the 4613 * joined transaction and rejoin. 4614 */ 4615 if (btrfs_should_end_transaction(trans, send_root)) { 4616 ret = btrfs_end_transaction(trans, send_root); 4617 trans = NULL; 4618 if (ret < 0) 4619 goto out; 4620 btrfs_release_path(path); 4621 goto join_trans; 4622 } 4623 4624 eb = path->nodes[0]; 4625 slot = path->slots[0]; 4626 btrfs_item_key_to_cpu(eb, &found_key, slot); 4627 4628 ret = changed_cb(send_root, NULL, path, NULL, 4629 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 4630 if (ret < 0) 4631 goto out; 4632 4633 key.objectid = found_key.objectid; 4634 key.type = found_key.type; 4635 key.offset = found_key.offset + 1; 4636 4637 ret = btrfs_next_item(send_root, path); 4638 if (ret < 0) 4639 goto out; 4640 if (ret) { 4641 ret = 0; 4642 break; 4643 } 4644 } 4645 4646 out_finish: 4647 ret = finish_inode_if_needed(sctx, 1); 4648 4649 out: 4650 btrfs_free_path(path); 4651 if (trans) { 4652 if (!ret) 4653 ret = btrfs_end_transaction(trans, send_root); 4654 else 4655 btrfs_end_transaction(trans, send_root); 4656 } 4657 return ret; 4658 } 4659 4660 static int send_subvol(struct send_ctx *sctx) 4661 { 4662 int ret; 4663 4664 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 4665 ret = send_header(sctx); 4666 if (ret < 0) 4667 goto out; 4668 } 4669 4670 ret = send_subvol_begin(sctx); 4671 if (ret < 0) 4672 goto out; 4673 4674 if (sctx->parent_root) { 4675 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 4676 changed_cb, sctx); 4677 if (ret < 0) 4678 goto out; 4679 ret = finish_inode_if_needed(sctx, 1); 4680 if (ret < 0) 4681 goto out; 4682 } else { 4683 ret = full_send_tree(sctx); 4684 if (ret < 0) 4685 goto out; 4686 } 4687 4688 out: 4689 if (!ret) 4690 ret = close_cur_inode_file(sctx); 4691 else 4692 close_cur_inode_file(sctx); 4693 4694 free_recorded_refs(sctx); 4695 return ret; 4696 } 4697 4698 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 4699 { 4700 int ret = 0; 4701 struct btrfs_root *send_root; 4702 struct btrfs_root *clone_root; 4703 struct btrfs_fs_info *fs_info; 4704 struct btrfs_ioctl_send_args *arg = NULL; 4705 struct btrfs_key key; 4706 struct send_ctx *sctx = NULL; 4707 u32 i; 4708 u64 *clone_sources_tmp = NULL; 4709 4710 if (!capable(CAP_SYS_ADMIN)) 4711 return -EPERM; 4712 4713 send_root = BTRFS_I(file_inode(mnt_file))->root; 4714 fs_info = send_root->fs_info; 4715 4716 /* 4717 * This is done when we lookup the root, it should already be complete 4718 * by the time we get here. 4719 */ 4720 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 4721 4722 /* 4723 * If we just created this root we need to make sure that the orphan 4724 * cleanup has been done and committed since we search the commit root, 4725 * so check its commit root transid with our otransid and if they match 4726 * commit the transaction to make sure everything is updated. 4727 */ 4728 down_read(&send_root->fs_info->extent_commit_sem); 4729 if (btrfs_header_generation(send_root->commit_root) == 4730 btrfs_root_otransid(&send_root->root_item)) { 4731 struct btrfs_trans_handle *trans; 4732 4733 up_read(&send_root->fs_info->extent_commit_sem); 4734 4735 trans = btrfs_attach_transaction_barrier(send_root); 4736 if (IS_ERR(trans)) { 4737 if (PTR_ERR(trans) != -ENOENT) { 4738 ret = PTR_ERR(trans); 4739 goto out; 4740 } 4741 /* ENOENT means theres no transaction */ 4742 } else { 4743 ret = btrfs_commit_transaction(trans, send_root); 4744 if (ret) 4745 goto out; 4746 } 4747 } else { 4748 up_read(&send_root->fs_info->extent_commit_sem); 4749 } 4750 4751 arg = memdup_user(arg_, sizeof(*arg)); 4752 if (IS_ERR(arg)) { 4753 ret = PTR_ERR(arg); 4754 arg = NULL; 4755 goto out; 4756 } 4757 4758 if (!access_ok(VERIFY_READ, arg->clone_sources, 4759 sizeof(*arg->clone_sources * 4760 arg->clone_sources_count))) { 4761 ret = -EFAULT; 4762 goto out; 4763 } 4764 4765 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 4766 ret = -EINVAL; 4767 goto out; 4768 } 4769 4770 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS); 4771 if (!sctx) { 4772 ret = -ENOMEM; 4773 goto out; 4774 } 4775 4776 INIT_LIST_HEAD(&sctx->new_refs); 4777 INIT_LIST_HEAD(&sctx->deleted_refs); 4778 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS); 4779 INIT_LIST_HEAD(&sctx->name_cache_list); 4780 4781 sctx->flags = arg->flags; 4782 4783 sctx->send_filp = fget(arg->send_fd); 4784 if (!sctx->send_filp) { 4785 ret = -EBADF; 4786 goto out; 4787 } 4788 4789 sctx->mnt = mnt_file->f_path.mnt; 4790 4791 sctx->send_root = send_root; 4792 sctx->clone_roots_cnt = arg->clone_sources_count; 4793 4794 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 4795 sctx->send_buf = vmalloc(sctx->send_max_size); 4796 if (!sctx->send_buf) { 4797 ret = -ENOMEM; 4798 goto out; 4799 } 4800 4801 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 4802 if (!sctx->read_buf) { 4803 ret = -ENOMEM; 4804 goto out; 4805 } 4806 4807 sctx->clone_roots = vzalloc(sizeof(struct clone_root) * 4808 (arg->clone_sources_count + 1)); 4809 if (!sctx->clone_roots) { 4810 ret = -ENOMEM; 4811 goto out; 4812 } 4813 4814 if (arg->clone_sources_count) { 4815 clone_sources_tmp = vmalloc(arg->clone_sources_count * 4816 sizeof(*arg->clone_sources)); 4817 if (!clone_sources_tmp) { 4818 ret = -ENOMEM; 4819 goto out; 4820 } 4821 4822 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 4823 arg->clone_sources_count * 4824 sizeof(*arg->clone_sources)); 4825 if (ret) { 4826 ret = -EFAULT; 4827 goto out; 4828 } 4829 4830 for (i = 0; i < arg->clone_sources_count; i++) { 4831 key.objectid = clone_sources_tmp[i]; 4832 key.type = BTRFS_ROOT_ITEM_KEY; 4833 key.offset = (u64)-1; 4834 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 4835 if (IS_ERR(clone_root)) { 4836 ret = PTR_ERR(clone_root); 4837 goto out; 4838 } 4839 sctx->clone_roots[i].root = clone_root; 4840 } 4841 vfree(clone_sources_tmp); 4842 clone_sources_tmp = NULL; 4843 } 4844 4845 if (arg->parent_root) { 4846 key.objectid = arg->parent_root; 4847 key.type = BTRFS_ROOT_ITEM_KEY; 4848 key.offset = (u64)-1; 4849 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 4850 if (IS_ERR(sctx->parent_root)) { 4851 ret = PTR_ERR(sctx->parent_root); 4852 goto out; 4853 } 4854 } 4855 4856 /* 4857 * Clones from send_root are allowed, but only if the clone source 4858 * is behind the current send position. This is checked while searching 4859 * for possible clone sources. 4860 */ 4861 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 4862 4863 /* We do a bsearch later */ 4864 sort(sctx->clone_roots, sctx->clone_roots_cnt, 4865 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 4866 NULL); 4867 4868 ret = send_subvol(sctx); 4869 if (ret < 0) 4870 goto out; 4871 4872 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 4873 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 4874 if (ret < 0) 4875 goto out; 4876 ret = send_cmd(sctx); 4877 if (ret < 0) 4878 goto out; 4879 } 4880 4881 out: 4882 kfree(arg); 4883 vfree(clone_sources_tmp); 4884 4885 if (sctx) { 4886 if (sctx->send_filp) 4887 fput(sctx->send_filp); 4888 4889 vfree(sctx->clone_roots); 4890 vfree(sctx->send_buf); 4891 vfree(sctx->read_buf); 4892 4893 name_cache_free(sctx); 4894 4895 kfree(sctx); 4896 } 4897 4898 return ret; 4899 } 4900