xref: /openbmc/linux/fs/btrfs/send.c (revision 583f12a80dfb7997d59a42e8642019695f5aa15a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19 
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "xattr.h"
29 #include "print-tree.h"
30 #include "accessors.h"
31 #include "dir-item.h"
32 #include "file-item.h"
33 #include "ioctl.h"
34 #include "verity.h"
35 #include "lru_cache.h"
36 
37 /*
38  * Maximum number of references an extent can have in order for us to attempt to
39  * issue clone operations instead of write operations. This currently exists to
40  * avoid hitting limitations of the backreference walking code (taking a lot of
41  * time and using too much memory for extents with large number of references).
42  */
43 #define SEND_MAX_EXTENT_REFS	1024
44 
45 /*
46  * A fs_path is a helper to dynamically build path names with unknown size.
47  * It reallocates the internal buffer on demand.
48  * It allows fast adding of path elements on the right side (normal path) and
49  * fast adding to the left side (reversed path). A reversed path can also be
50  * unreversed if needed.
51  */
52 struct fs_path {
53 	union {
54 		struct {
55 			char *start;
56 			char *end;
57 
58 			char *buf;
59 			unsigned short buf_len:15;
60 			unsigned short reversed:1;
61 			char inline_buf[];
62 		};
63 		/*
64 		 * Average path length does not exceed 200 bytes, we'll have
65 		 * better packing in the slab and higher chance to satisfy
66 		 * a allocation later during send.
67 		 */
68 		char pad[256];
69 	};
70 };
71 #define FS_PATH_INLINE_SIZE \
72 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
73 
74 
75 /* reused for each extent */
76 struct clone_root {
77 	struct btrfs_root *root;
78 	u64 ino;
79 	u64 offset;
80 	u64 num_bytes;
81 	bool found_ref;
82 };
83 
84 #define SEND_MAX_NAME_CACHE_SIZE			256
85 
86 /*
87  * Limit the root_ids array of struct backref_cache_entry to 17 elements.
88  * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
89  * can be satisfied from the kmalloc-192 slab, without wasting any space.
90  * The most common case is to have a single root for cloning, which corresponds
91  * to the send root. Having the user specify more than 16 clone roots is not
92  * common, and in such rare cases we simply don't use caching if the number of
93  * cloning roots that lead down to a leaf is more than 17.
94  */
95 #define SEND_MAX_BACKREF_CACHE_ROOTS			17
96 
97 /*
98  * Max number of entries in the cache.
99  * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
100  * maple tree's internal nodes, is 24K.
101  */
102 #define SEND_MAX_BACKREF_CACHE_SIZE 128
103 
104 /*
105  * A backref cache entry maps a leaf to a list of IDs of roots from which the
106  * leaf is accessible and we can use for clone operations.
107  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
108  * x86_64).
109  */
110 struct backref_cache_entry {
111 	struct btrfs_lru_cache_entry entry;
112 	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
113 	/* Number of valid elements in the root_ids array. */
114 	int num_roots;
115 };
116 
117 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
118 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
119 
120 /*
121  * Max number of entries in the cache that stores directories that were already
122  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
123  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
124  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
125  */
126 #define SEND_MAX_DIR_CREATED_CACHE_SIZE			64
127 
128 /*
129  * Max number of entries in the cache that stores directories that were already
130  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
131  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
132  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
133  */
134 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64
135 
136 struct send_ctx {
137 	struct file *send_filp;
138 	loff_t send_off;
139 	char *send_buf;
140 	u32 send_size;
141 	u32 send_max_size;
142 	/*
143 	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
144 	 * command (since protocol v2, data must be the last attribute).
145 	 */
146 	bool put_data;
147 	struct page **send_buf_pages;
148 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
149 	/* Protocol version compatibility requested */
150 	u32 proto;
151 
152 	struct btrfs_root *send_root;
153 	struct btrfs_root *parent_root;
154 	struct clone_root *clone_roots;
155 	int clone_roots_cnt;
156 
157 	/* current state of the compare_tree call */
158 	struct btrfs_path *left_path;
159 	struct btrfs_path *right_path;
160 	struct btrfs_key *cmp_key;
161 
162 	/*
163 	 * Keep track of the generation of the last transaction that was used
164 	 * for relocating a block group. This is periodically checked in order
165 	 * to detect if a relocation happened since the last check, so that we
166 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
167 	 * stale disk_bytenr values of file extent items.
168 	 */
169 	u64 last_reloc_trans;
170 
171 	/*
172 	 * infos of the currently processed inode. In case of deleted inodes,
173 	 * these are the values from the deleted inode.
174 	 */
175 	u64 cur_ino;
176 	u64 cur_inode_gen;
177 	u64 cur_inode_size;
178 	u64 cur_inode_mode;
179 	u64 cur_inode_rdev;
180 	u64 cur_inode_last_extent;
181 	u64 cur_inode_next_write_offset;
182 	bool cur_inode_new;
183 	bool cur_inode_new_gen;
184 	bool cur_inode_deleted;
185 	bool ignore_cur_inode;
186 	bool cur_inode_needs_verity;
187 	void *verity_descriptor;
188 
189 	u64 send_progress;
190 
191 	struct list_head new_refs;
192 	struct list_head deleted_refs;
193 
194 	struct btrfs_lru_cache name_cache;
195 
196 	/*
197 	 * The inode we are currently processing. It's not NULL only when we
198 	 * need to issue write commands for data extents from this inode.
199 	 */
200 	struct inode *cur_inode;
201 	struct file_ra_state ra;
202 	u64 page_cache_clear_start;
203 	bool clean_page_cache;
204 
205 	/*
206 	 * We process inodes by their increasing order, so if before an
207 	 * incremental send we reverse the parent/child relationship of
208 	 * directories such that a directory with a lower inode number was
209 	 * the parent of a directory with a higher inode number, and the one
210 	 * becoming the new parent got renamed too, we can't rename/move the
211 	 * directory with lower inode number when we finish processing it - we
212 	 * must process the directory with higher inode number first, then
213 	 * rename/move it and then rename/move the directory with lower inode
214 	 * number. Example follows.
215 	 *
216 	 * Tree state when the first send was performed:
217 	 *
218 	 * .
219 	 * |-- a                   (ino 257)
220 	 *     |-- b               (ino 258)
221 	 *         |
222 	 *         |
223 	 *         |-- c           (ino 259)
224 	 *         |   |-- d       (ino 260)
225 	 *         |
226 	 *         |-- c2          (ino 261)
227 	 *
228 	 * Tree state when the second (incremental) send is performed:
229 	 *
230 	 * .
231 	 * |-- a                   (ino 257)
232 	 *     |-- b               (ino 258)
233 	 *         |-- c2          (ino 261)
234 	 *             |-- d2      (ino 260)
235 	 *                 |-- cc  (ino 259)
236 	 *
237 	 * The sequence of steps that lead to the second state was:
238 	 *
239 	 * mv /a/b/c/d /a/b/c2/d2
240 	 * mv /a/b/c /a/b/c2/d2/cc
241 	 *
242 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
243 	 * before we move "d", which has higher inode number.
244 	 *
245 	 * So we just memorize which move/rename operations must be performed
246 	 * later when their respective parent is processed and moved/renamed.
247 	 */
248 
249 	/* Indexed by parent directory inode number. */
250 	struct rb_root pending_dir_moves;
251 
252 	/*
253 	 * Reverse index, indexed by the inode number of a directory that
254 	 * is waiting for the move/rename of its immediate parent before its
255 	 * own move/rename can be performed.
256 	 */
257 	struct rb_root waiting_dir_moves;
258 
259 	/*
260 	 * A directory that is going to be rm'ed might have a child directory
261 	 * which is in the pending directory moves index above. In this case,
262 	 * the directory can only be removed after the move/rename of its child
263 	 * is performed. Example:
264 	 *
265 	 * Parent snapshot:
266 	 *
267 	 * .                        (ino 256)
268 	 * |-- a/                   (ino 257)
269 	 *     |-- b/               (ino 258)
270 	 *         |-- c/           (ino 259)
271 	 *         |   |-- x/       (ino 260)
272 	 *         |
273 	 *         |-- y/           (ino 261)
274 	 *
275 	 * Send snapshot:
276 	 *
277 	 * .                        (ino 256)
278 	 * |-- a/                   (ino 257)
279 	 *     |-- b/               (ino 258)
280 	 *         |-- YY/          (ino 261)
281 	 *              |-- x/      (ino 260)
282 	 *
283 	 * Sequence of steps that lead to the send snapshot:
284 	 * rm -f /a/b/c/foo.txt
285 	 * mv /a/b/y /a/b/YY
286 	 * mv /a/b/c/x /a/b/YY
287 	 * rmdir /a/b/c
288 	 *
289 	 * When the child is processed, its move/rename is delayed until its
290 	 * parent is processed (as explained above), but all other operations
291 	 * like update utimes, chown, chgrp, etc, are performed and the paths
292 	 * that it uses for those operations must use the orphanized name of
293 	 * its parent (the directory we're going to rm later), so we need to
294 	 * memorize that name.
295 	 *
296 	 * Indexed by the inode number of the directory to be deleted.
297 	 */
298 	struct rb_root orphan_dirs;
299 
300 	struct rb_root rbtree_new_refs;
301 	struct rb_root rbtree_deleted_refs;
302 
303 	struct btrfs_lru_cache backref_cache;
304 	u64 backref_cache_last_reloc_trans;
305 
306 	struct btrfs_lru_cache dir_created_cache;
307 	struct btrfs_lru_cache dir_utimes_cache;
308 };
309 
310 struct pending_dir_move {
311 	struct rb_node node;
312 	struct list_head list;
313 	u64 parent_ino;
314 	u64 ino;
315 	u64 gen;
316 	struct list_head update_refs;
317 };
318 
319 struct waiting_dir_move {
320 	struct rb_node node;
321 	u64 ino;
322 	/*
323 	 * There might be some directory that could not be removed because it
324 	 * was waiting for this directory inode to be moved first. Therefore
325 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
326 	 */
327 	u64 rmdir_ino;
328 	u64 rmdir_gen;
329 	bool orphanized;
330 };
331 
332 struct orphan_dir_info {
333 	struct rb_node node;
334 	u64 ino;
335 	u64 gen;
336 	u64 last_dir_index_offset;
337 	u64 dir_high_seq_ino;
338 };
339 
340 struct name_cache_entry {
341 	/*
342 	 * The key in the entry is an inode number, and the generation matches
343 	 * the inode's generation.
344 	 */
345 	struct btrfs_lru_cache_entry entry;
346 	u64 parent_ino;
347 	u64 parent_gen;
348 	int ret;
349 	int need_later_update;
350 	int name_len;
351 	char name[];
352 };
353 
354 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
355 static_assert(offsetof(struct name_cache_entry, entry) == 0);
356 
357 #define ADVANCE							1
358 #define ADVANCE_ONLY_NEXT					-1
359 
360 enum btrfs_compare_tree_result {
361 	BTRFS_COMPARE_TREE_NEW,
362 	BTRFS_COMPARE_TREE_DELETED,
363 	BTRFS_COMPARE_TREE_CHANGED,
364 	BTRFS_COMPARE_TREE_SAME,
365 };
366 
367 __cold
368 static void inconsistent_snapshot_error(struct send_ctx *sctx,
369 					enum btrfs_compare_tree_result result,
370 					const char *what)
371 {
372 	const char *result_string;
373 
374 	switch (result) {
375 	case BTRFS_COMPARE_TREE_NEW:
376 		result_string = "new";
377 		break;
378 	case BTRFS_COMPARE_TREE_DELETED:
379 		result_string = "deleted";
380 		break;
381 	case BTRFS_COMPARE_TREE_CHANGED:
382 		result_string = "updated";
383 		break;
384 	case BTRFS_COMPARE_TREE_SAME:
385 		ASSERT(0);
386 		result_string = "unchanged";
387 		break;
388 	default:
389 		ASSERT(0);
390 		result_string = "unexpected";
391 	}
392 
393 	btrfs_err(sctx->send_root->fs_info,
394 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
395 		  result_string, what, sctx->cmp_key->objectid,
396 		  sctx->send_root->root_key.objectid,
397 		  (sctx->parent_root ?
398 		   sctx->parent_root->root_key.objectid : 0));
399 }
400 
401 __maybe_unused
402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403 {
404 	switch (sctx->proto) {
405 	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
406 	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
407 	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
408 	default: return false;
409 	}
410 }
411 
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413 
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416 
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418 
419 static int need_send_hole(struct send_ctx *sctx)
420 {
421 	return (sctx->parent_root && !sctx->cur_inode_new &&
422 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 		S_ISREG(sctx->cur_inode_mode));
424 }
425 
426 static void fs_path_reset(struct fs_path *p)
427 {
428 	if (p->reversed) {
429 		p->start = p->buf + p->buf_len - 1;
430 		p->end = p->start;
431 		*p->start = 0;
432 	} else {
433 		p->start = p->buf;
434 		p->end = p->start;
435 		*p->start = 0;
436 	}
437 }
438 
439 static struct fs_path *fs_path_alloc(void)
440 {
441 	struct fs_path *p;
442 
443 	p = kmalloc(sizeof(*p), GFP_KERNEL);
444 	if (!p)
445 		return NULL;
446 	p->reversed = 0;
447 	p->buf = p->inline_buf;
448 	p->buf_len = FS_PATH_INLINE_SIZE;
449 	fs_path_reset(p);
450 	return p;
451 }
452 
453 static struct fs_path *fs_path_alloc_reversed(void)
454 {
455 	struct fs_path *p;
456 
457 	p = fs_path_alloc();
458 	if (!p)
459 		return NULL;
460 	p->reversed = 1;
461 	fs_path_reset(p);
462 	return p;
463 }
464 
465 static void fs_path_free(struct fs_path *p)
466 {
467 	if (!p)
468 		return;
469 	if (p->buf != p->inline_buf)
470 		kfree(p->buf);
471 	kfree(p);
472 }
473 
474 static int fs_path_len(struct fs_path *p)
475 {
476 	return p->end - p->start;
477 }
478 
479 static int fs_path_ensure_buf(struct fs_path *p, int len)
480 {
481 	char *tmp_buf;
482 	int path_len;
483 	int old_buf_len;
484 
485 	len++;
486 
487 	if (p->buf_len >= len)
488 		return 0;
489 
490 	if (len > PATH_MAX) {
491 		WARN_ON(1);
492 		return -ENOMEM;
493 	}
494 
495 	path_len = p->end - p->start;
496 	old_buf_len = p->buf_len;
497 
498 	/*
499 	 * Allocate to the next largest kmalloc bucket size, to let
500 	 * the fast path happen most of the time.
501 	 */
502 	len = kmalloc_size_roundup(len);
503 	/*
504 	 * First time the inline_buf does not suffice
505 	 */
506 	if (p->buf == p->inline_buf) {
507 		tmp_buf = kmalloc(len, GFP_KERNEL);
508 		if (tmp_buf)
509 			memcpy(tmp_buf, p->buf, old_buf_len);
510 	} else {
511 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
512 	}
513 	if (!tmp_buf)
514 		return -ENOMEM;
515 	p->buf = tmp_buf;
516 	p->buf_len = len;
517 
518 	if (p->reversed) {
519 		tmp_buf = p->buf + old_buf_len - path_len - 1;
520 		p->end = p->buf + p->buf_len - 1;
521 		p->start = p->end - path_len;
522 		memmove(p->start, tmp_buf, path_len + 1);
523 	} else {
524 		p->start = p->buf;
525 		p->end = p->start + path_len;
526 	}
527 	return 0;
528 }
529 
530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
531 				   char **prepared)
532 {
533 	int ret;
534 	int new_len;
535 
536 	new_len = p->end - p->start + name_len;
537 	if (p->start != p->end)
538 		new_len++;
539 	ret = fs_path_ensure_buf(p, new_len);
540 	if (ret < 0)
541 		goto out;
542 
543 	if (p->reversed) {
544 		if (p->start != p->end)
545 			*--p->start = '/';
546 		p->start -= name_len;
547 		*prepared = p->start;
548 	} else {
549 		if (p->start != p->end)
550 			*p->end++ = '/';
551 		*prepared = p->end;
552 		p->end += name_len;
553 		*p->end = 0;
554 	}
555 
556 out:
557 	return ret;
558 }
559 
560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561 {
562 	int ret;
563 	char *prepared;
564 
565 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
566 	if (ret < 0)
567 		goto out;
568 	memcpy(prepared, name, name_len);
569 
570 out:
571 	return ret;
572 }
573 
574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
575 {
576 	int ret;
577 	char *prepared;
578 
579 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
580 	if (ret < 0)
581 		goto out;
582 	memcpy(prepared, p2->start, p2->end - p2->start);
583 
584 out:
585 	return ret;
586 }
587 
588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 					  struct extent_buffer *eb,
590 					  unsigned long off, int len)
591 {
592 	int ret;
593 	char *prepared;
594 
595 	ret = fs_path_prepare_for_add(p, len, &prepared);
596 	if (ret < 0)
597 		goto out;
598 
599 	read_extent_buffer(eb, prepared, off, len);
600 
601 out:
602 	return ret;
603 }
604 
605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
606 {
607 	p->reversed = from->reversed;
608 	fs_path_reset(p);
609 
610 	return fs_path_add_path(p, from);
611 }
612 
613 static void fs_path_unreverse(struct fs_path *p)
614 {
615 	char *tmp;
616 	int len;
617 
618 	if (!p->reversed)
619 		return;
620 
621 	tmp = p->start;
622 	len = p->end - p->start;
623 	p->start = p->buf;
624 	p->end = p->start + len;
625 	memmove(p->start, tmp, len + 1);
626 	p->reversed = 0;
627 }
628 
629 static struct btrfs_path *alloc_path_for_send(void)
630 {
631 	struct btrfs_path *path;
632 
633 	path = btrfs_alloc_path();
634 	if (!path)
635 		return NULL;
636 	path->search_commit_root = 1;
637 	path->skip_locking = 1;
638 	path->need_commit_sem = 1;
639 	return path;
640 }
641 
642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643 {
644 	int ret;
645 	u32 pos = 0;
646 
647 	while (pos < len) {
648 		ret = kernel_write(filp, buf + pos, len - pos, off);
649 		if (ret < 0)
650 			return ret;
651 		if (ret == 0)
652 			return -EIO;
653 		pos += ret;
654 	}
655 
656 	return 0;
657 }
658 
659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660 {
661 	struct btrfs_tlv_header *hdr;
662 	int total_len = sizeof(*hdr) + len;
663 	int left = sctx->send_max_size - sctx->send_size;
664 
665 	if (WARN_ON_ONCE(sctx->put_data))
666 		return -EINVAL;
667 
668 	if (unlikely(left < total_len))
669 		return -EOVERFLOW;
670 
671 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 	put_unaligned_le16(attr, &hdr->tlv_type);
673 	put_unaligned_le16(len, &hdr->tlv_len);
674 	memcpy(hdr + 1, data, len);
675 	sctx->send_size += total_len;
676 
677 	return 0;
678 }
679 
680 #define TLV_PUT_DEFINE_INT(bits) \
681 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
682 			u##bits attr, u##bits value)			\
683 	{								\
684 		__le##bits __tmp = cpu_to_le##bits(value);		\
685 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
686 	}
687 
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
691 
692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 			  const char *str, int len)
694 {
695 	if (len == -1)
696 		len = strlen(str);
697 	return tlv_put(sctx, attr, str, len);
698 }
699 
700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701 			const u8 *uuid)
702 {
703 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704 }
705 
706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 				  struct extent_buffer *eb,
708 				  struct btrfs_timespec *ts)
709 {
710 	struct btrfs_timespec bts;
711 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 	return tlv_put(sctx, attr, &bts, sizeof(bts));
713 }
714 
715 
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
717 	do { \
718 		ret = tlv_put(sctx, attrtype, data, attrlen); \
719 		if (ret < 0) \
720 			goto tlv_put_failure; \
721 	} while (0)
722 
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
724 	do { \
725 		ret = tlv_put_u##bits(sctx, attrtype, value); \
726 		if (ret < 0) \
727 			goto tlv_put_failure; \
728 	} while (0)
729 
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
735 	do { \
736 		ret = tlv_put_string(sctx, attrtype, str, len); \
737 		if (ret < 0) \
738 			goto tlv_put_failure; \
739 	} while (0)
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
741 	do { \
742 		ret = tlv_put_string(sctx, attrtype, p->start, \
743 			p->end - p->start); \
744 		if (ret < 0) \
745 			goto tlv_put_failure; \
746 	} while(0)
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
748 	do { \
749 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
750 		if (ret < 0) \
751 			goto tlv_put_failure; \
752 	} while (0)
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754 	do { \
755 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756 		if (ret < 0) \
757 			goto tlv_put_failure; \
758 	} while (0)
759 
760 static int send_header(struct send_ctx *sctx)
761 {
762 	struct btrfs_stream_header hdr;
763 
764 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 	hdr.version = cpu_to_le32(sctx->proto);
766 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767 					&sctx->send_off);
768 }
769 
770 /*
771  * For each command/item we want to send to userspace, we call this function.
772  */
773 static int begin_cmd(struct send_ctx *sctx, int cmd)
774 {
775 	struct btrfs_cmd_header *hdr;
776 
777 	if (WARN_ON(!sctx->send_buf))
778 		return -EINVAL;
779 
780 	BUG_ON(sctx->send_size);
781 
782 	sctx->send_size += sizeof(*hdr);
783 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
784 	put_unaligned_le16(cmd, &hdr->cmd);
785 
786 	return 0;
787 }
788 
789 static int send_cmd(struct send_ctx *sctx)
790 {
791 	int ret;
792 	struct btrfs_cmd_header *hdr;
793 	u32 crc;
794 
795 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
796 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
797 	put_unaligned_le32(0, &hdr->crc);
798 
799 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
800 	put_unaligned_le32(crc, &hdr->crc);
801 
802 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
803 					&sctx->send_off);
804 
805 	sctx->send_size = 0;
806 	sctx->put_data = false;
807 
808 	return ret;
809 }
810 
811 /*
812  * Sends a move instruction to user space
813  */
814 static int send_rename(struct send_ctx *sctx,
815 		     struct fs_path *from, struct fs_path *to)
816 {
817 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
818 	int ret;
819 
820 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
821 
822 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
823 	if (ret < 0)
824 		goto out;
825 
826 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
827 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
828 
829 	ret = send_cmd(sctx);
830 
831 tlv_put_failure:
832 out:
833 	return ret;
834 }
835 
836 /*
837  * Sends a link instruction to user space
838  */
839 static int send_link(struct send_ctx *sctx,
840 		     struct fs_path *path, struct fs_path *lnk)
841 {
842 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
843 	int ret;
844 
845 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
846 
847 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
848 	if (ret < 0)
849 		goto out;
850 
851 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
852 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
853 
854 	ret = send_cmd(sctx);
855 
856 tlv_put_failure:
857 out:
858 	return ret;
859 }
860 
861 /*
862  * Sends an unlink instruction to user space
863  */
864 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
865 {
866 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
867 	int ret;
868 
869 	btrfs_debug(fs_info, "send_unlink %s", path->start);
870 
871 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
872 	if (ret < 0)
873 		goto out;
874 
875 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
876 
877 	ret = send_cmd(sctx);
878 
879 tlv_put_failure:
880 out:
881 	return ret;
882 }
883 
884 /*
885  * Sends a rmdir instruction to user space
886  */
887 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
888 {
889 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
890 	int ret;
891 
892 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
893 
894 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
895 	if (ret < 0)
896 		goto out;
897 
898 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
899 
900 	ret = send_cmd(sctx);
901 
902 tlv_put_failure:
903 out:
904 	return ret;
905 }
906 
907 struct btrfs_inode_info {
908 	u64 size;
909 	u64 gen;
910 	u64 mode;
911 	u64 uid;
912 	u64 gid;
913 	u64 rdev;
914 	u64 fileattr;
915 	u64 nlink;
916 };
917 
918 /*
919  * Helper function to retrieve some fields from an inode item.
920  */
921 static int get_inode_info(struct btrfs_root *root, u64 ino,
922 			  struct btrfs_inode_info *info)
923 {
924 	int ret;
925 	struct btrfs_path *path;
926 	struct btrfs_inode_item *ii;
927 	struct btrfs_key key;
928 
929 	path = alloc_path_for_send();
930 	if (!path)
931 		return -ENOMEM;
932 
933 	key.objectid = ino;
934 	key.type = BTRFS_INODE_ITEM_KEY;
935 	key.offset = 0;
936 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
937 	if (ret) {
938 		if (ret > 0)
939 			ret = -ENOENT;
940 		goto out;
941 	}
942 
943 	if (!info)
944 		goto out;
945 
946 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
947 			struct btrfs_inode_item);
948 	info->size = btrfs_inode_size(path->nodes[0], ii);
949 	info->gen = btrfs_inode_generation(path->nodes[0], ii);
950 	info->mode = btrfs_inode_mode(path->nodes[0], ii);
951 	info->uid = btrfs_inode_uid(path->nodes[0], ii);
952 	info->gid = btrfs_inode_gid(path->nodes[0], ii);
953 	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
954 	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
955 	/*
956 	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
957 	 * otherwise logically split to 32/32 parts.
958 	 */
959 	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
960 
961 out:
962 	btrfs_free_path(path);
963 	return ret;
964 }
965 
966 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
967 {
968 	int ret;
969 	struct btrfs_inode_info info = { 0 };
970 
971 	ASSERT(gen);
972 
973 	ret = get_inode_info(root, ino, &info);
974 	*gen = info.gen;
975 	return ret;
976 }
977 
978 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
979 				   struct fs_path *p,
980 				   void *ctx);
981 
982 /*
983  * Helper function to iterate the entries in ONE btrfs_inode_ref or
984  * btrfs_inode_extref.
985  * The iterate callback may return a non zero value to stop iteration. This can
986  * be a negative value for error codes or 1 to simply stop it.
987  *
988  * path must point to the INODE_REF or INODE_EXTREF when called.
989  */
990 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
991 			     struct btrfs_key *found_key, int resolve,
992 			     iterate_inode_ref_t iterate, void *ctx)
993 {
994 	struct extent_buffer *eb = path->nodes[0];
995 	struct btrfs_inode_ref *iref;
996 	struct btrfs_inode_extref *extref;
997 	struct btrfs_path *tmp_path;
998 	struct fs_path *p;
999 	u32 cur = 0;
1000 	u32 total;
1001 	int slot = path->slots[0];
1002 	u32 name_len;
1003 	char *start;
1004 	int ret = 0;
1005 	int num = 0;
1006 	int index;
1007 	u64 dir;
1008 	unsigned long name_off;
1009 	unsigned long elem_size;
1010 	unsigned long ptr;
1011 
1012 	p = fs_path_alloc_reversed();
1013 	if (!p)
1014 		return -ENOMEM;
1015 
1016 	tmp_path = alloc_path_for_send();
1017 	if (!tmp_path) {
1018 		fs_path_free(p);
1019 		return -ENOMEM;
1020 	}
1021 
1022 
1023 	if (found_key->type == BTRFS_INODE_REF_KEY) {
1024 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1025 						    struct btrfs_inode_ref);
1026 		total = btrfs_item_size(eb, slot);
1027 		elem_size = sizeof(*iref);
1028 	} else {
1029 		ptr = btrfs_item_ptr_offset(eb, slot);
1030 		total = btrfs_item_size(eb, slot);
1031 		elem_size = sizeof(*extref);
1032 	}
1033 
1034 	while (cur < total) {
1035 		fs_path_reset(p);
1036 
1037 		if (found_key->type == BTRFS_INODE_REF_KEY) {
1038 			iref = (struct btrfs_inode_ref *)(ptr + cur);
1039 			name_len = btrfs_inode_ref_name_len(eb, iref);
1040 			name_off = (unsigned long)(iref + 1);
1041 			index = btrfs_inode_ref_index(eb, iref);
1042 			dir = found_key->offset;
1043 		} else {
1044 			extref = (struct btrfs_inode_extref *)(ptr + cur);
1045 			name_len = btrfs_inode_extref_name_len(eb, extref);
1046 			name_off = (unsigned long)&extref->name;
1047 			index = btrfs_inode_extref_index(eb, extref);
1048 			dir = btrfs_inode_extref_parent(eb, extref);
1049 		}
1050 
1051 		if (resolve) {
1052 			start = btrfs_ref_to_path(root, tmp_path, name_len,
1053 						  name_off, eb, dir,
1054 						  p->buf, p->buf_len);
1055 			if (IS_ERR(start)) {
1056 				ret = PTR_ERR(start);
1057 				goto out;
1058 			}
1059 			if (start < p->buf) {
1060 				/* overflow , try again with larger buffer */
1061 				ret = fs_path_ensure_buf(p,
1062 						p->buf_len + p->buf - start);
1063 				if (ret < 0)
1064 					goto out;
1065 				start = btrfs_ref_to_path(root, tmp_path,
1066 							  name_len, name_off,
1067 							  eb, dir,
1068 							  p->buf, p->buf_len);
1069 				if (IS_ERR(start)) {
1070 					ret = PTR_ERR(start);
1071 					goto out;
1072 				}
1073 				BUG_ON(start < p->buf);
1074 			}
1075 			p->start = start;
1076 		} else {
1077 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1078 							     name_len);
1079 			if (ret < 0)
1080 				goto out;
1081 		}
1082 
1083 		cur += elem_size + name_len;
1084 		ret = iterate(num, dir, index, p, ctx);
1085 		if (ret)
1086 			goto out;
1087 		num++;
1088 	}
1089 
1090 out:
1091 	btrfs_free_path(tmp_path);
1092 	fs_path_free(p);
1093 	return ret;
1094 }
1095 
1096 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1097 				  const char *name, int name_len,
1098 				  const char *data, int data_len,
1099 				  void *ctx);
1100 
1101 /*
1102  * Helper function to iterate the entries in ONE btrfs_dir_item.
1103  * The iterate callback may return a non zero value to stop iteration. This can
1104  * be a negative value for error codes or 1 to simply stop it.
1105  *
1106  * path must point to the dir item when called.
1107  */
1108 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1109 			    iterate_dir_item_t iterate, void *ctx)
1110 {
1111 	int ret = 0;
1112 	struct extent_buffer *eb;
1113 	struct btrfs_dir_item *di;
1114 	struct btrfs_key di_key;
1115 	char *buf = NULL;
1116 	int buf_len;
1117 	u32 name_len;
1118 	u32 data_len;
1119 	u32 cur;
1120 	u32 len;
1121 	u32 total;
1122 	int slot;
1123 	int num;
1124 
1125 	/*
1126 	 * Start with a small buffer (1 page). If later we end up needing more
1127 	 * space, which can happen for xattrs on a fs with a leaf size greater
1128 	 * then the page size, attempt to increase the buffer. Typically xattr
1129 	 * values are small.
1130 	 */
1131 	buf_len = PATH_MAX;
1132 	buf = kmalloc(buf_len, GFP_KERNEL);
1133 	if (!buf) {
1134 		ret = -ENOMEM;
1135 		goto out;
1136 	}
1137 
1138 	eb = path->nodes[0];
1139 	slot = path->slots[0];
1140 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1141 	cur = 0;
1142 	len = 0;
1143 	total = btrfs_item_size(eb, slot);
1144 
1145 	num = 0;
1146 	while (cur < total) {
1147 		name_len = btrfs_dir_name_len(eb, di);
1148 		data_len = btrfs_dir_data_len(eb, di);
1149 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1150 
1151 		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1152 			if (name_len > XATTR_NAME_MAX) {
1153 				ret = -ENAMETOOLONG;
1154 				goto out;
1155 			}
1156 			if (name_len + data_len >
1157 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1158 				ret = -E2BIG;
1159 				goto out;
1160 			}
1161 		} else {
1162 			/*
1163 			 * Path too long
1164 			 */
1165 			if (name_len + data_len > PATH_MAX) {
1166 				ret = -ENAMETOOLONG;
1167 				goto out;
1168 			}
1169 		}
1170 
1171 		if (name_len + data_len > buf_len) {
1172 			buf_len = name_len + data_len;
1173 			if (is_vmalloc_addr(buf)) {
1174 				vfree(buf);
1175 				buf = NULL;
1176 			} else {
1177 				char *tmp = krealloc(buf, buf_len,
1178 						GFP_KERNEL | __GFP_NOWARN);
1179 
1180 				if (!tmp)
1181 					kfree(buf);
1182 				buf = tmp;
1183 			}
1184 			if (!buf) {
1185 				buf = kvmalloc(buf_len, GFP_KERNEL);
1186 				if (!buf) {
1187 					ret = -ENOMEM;
1188 					goto out;
1189 				}
1190 			}
1191 		}
1192 
1193 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1194 				name_len + data_len);
1195 
1196 		len = sizeof(*di) + name_len + data_len;
1197 		di = (struct btrfs_dir_item *)((char *)di + len);
1198 		cur += len;
1199 
1200 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1201 			      data_len, ctx);
1202 		if (ret < 0)
1203 			goto out;
1204 		if (ret) {
1205 			ret = 0;
1206 			goto out;
1207 		}
1208 
1209 		num++;
1210 	}
1211 
1212 out:
1213 	kvfree(buf);
1214 	return ret;
1215 }
1216 
1217 static int __copy_first_ref(int num, u64 dir, int index,
1218 			    struct fs_path *p, void *ctx)
1219 {
1220 	int ret;
1221 	struct fs_path *pt = ctx;
1222 
1223 	ret = fs_path_copy(pt, p);
1224 	if (ret < 0)
1225 		return ret;
1226 
1227 	/* we want the first only */
1228 	return 1;
1229 }
1230 
1231 /*
1232  * Retrieve the first path of an inode. If an inode has more then one
1233  * ref/hardlink, this is ignored.
1234  */
1235 static int get_inode_path(struct btrfs_root *root,
1236 			  u64 ino, struct fs_path *path)
1237 {
1238 	int ret;
1239 	struct btrfs_key key, found_key;
1240 	struct btrfs_path *p;
1241 
1242 	p = alloc_path_for_send();
1243 	if (!p)
1244 		return -ENOMEM;
1245 
1246 	fs_path_reset(path);
1247 
1248 	key.objectid = ino;
1249 	key.type = BTRFS_INODE_REF_KEY;
1250 	key.offset = 0;
1251 
1252 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1253 	if (ret < 0)
1254 		goto out;
1255 	if (ret) {
1256 		ret = 1;
1257 		goto out;
1258 	}
1259 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1260 	if (found_key.objectid != ino ||
1261 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1262 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1263 		ret = -ENOENT;
1264 		goto out;
1265 	}
1266 
1267 	ret = iterate_inode_ref(root, p, &found_key, 1,
1268 				__copy_first_ref, path);
1269 	if (ret < 0)
1270 		goto out;
1271 	ret = 0;
1272 
1273 out:
1274 	btrfs_free_path(p);
1275 	return ret;
1276 }
1277 
1278 struct backref_ctx {
1279 	struct send_ctx *sctx;
1280 
1281 	/* number of total found references */
1282 	u64 found;
1283 
1284 	/*
1285 	 * used for clones found in send_root. clones found behind cur_objectid
1286 	 * and cur_offset are not considered as allowed clones.
1287 	 */
1288 	u64 cur_objectid;
1289 	u64 cur_offset;
1290 
1291 	/* may be truncated in case it's the last extent in a file */
1292 	u64 extent_len;
1293 
1294 	/* The bytenr the file extent item we are processing refers to. */
1295 	u64 bytenr;
1296 	/* The owner (root id) of the data backref for the current extent. */
1297 	u64 backref_owner;
1298 	/* The offset of the data backref for the current extent. */
1299 	u64 backref_offset;
1300 };
1301 
1302 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1303 {
1304 	u64 root = (u64)(uintptr_t)key;
1305 	const struct clone_root *cr = elt;
1306 
1307 	if (root < cr->root->root_key.objectid)
1308 		return -1;
1309 	if (root > cr->root->root_key.objectid)
1310 		return 1;
1311 	return 0;
1312 }
1313 
1314 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1315 {
1316 	const struct clone_root *cr1 = e1;
1317 	const struct clone_root *cr2 = e2;
1318 
1319 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1320 		return -1;
1321 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1322 		return 1;
1323 	return 0;
1324 }
1325 
1326 /*
1327  * Called for every backref that is found for the current extent.
1328  * Results are collected in sctx->clone_roots->ino/offset.
1329  */
1330 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1331 			    void *ctx_)
1332 {
1333 	struct backref_ctx *bctx = ctx_;
1334 	struct clone_root *clone_root;
1335 
1336 	/* First check if the root is in the list of accepted clone sources */
1337 	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1338 			     bctx->sctx->clone_roots_cnt,
1339 			     sizeof(struct clone_root),
1340 			     __clone_root_cmp_bsearch);
1341 	if (!clone_root)
1342 		return 0;
1343 
1344 	/* This is our own reference, bail out as we can't clone from it. */
1345 	if (clone_root->root == bctx->sctx->send_root &&
1346 	    ino == bctx->cur_objectid &&
1347 	    offset == bctx->cur_offset)
1348 		return 0;
1349 
1350 	/*
1351 	 * Make sure we don't consider clones from send_root that are
1352 	 * behind the current inode/offset.
1353 	 */
1354 	if (clone_root->root == bctx->sctx->send_root) {
1355 		/*
1356 		 * If the source inode was not yet processed we can't issue a
1357 		 * clone operation, as the source extent does not exist yet at
1358 		 * the destination of the stream.
1359 		 */
1360 		if (ino > bctx->cur_objectid)
1361 			return 0;
1362 		/*
1363 		 * We clone from the inode currently being sent as long as the
1364 		 * source extent is already processed, otherwise we could try
1365 		 * to clone from an extent that does not exist yet at the
1366 		 * destination of the stream.
1367 		 */
1368 		if (ino == bctx->cur_objectid &&
1369 		    offset + bctx->extent_len >
1370 		    bctx->sctx->cur_inode_next_write_offset)
1371 			return 0;
1372 	}
1373 
1374 	bctx->found++;
1375 	clone_root->found_ref = true;
1376 
1377 	/*
1378 	 * If the given backref refers to a file extent item with a larger
1379 	 * number of bytes than what we found before, use the new one so that
1380 	 * we clone more optimally and end up doing less writes and getting
1381 	 * less exclusive, non-shared extents at the destination.
1382 	 */
1383 	if (num_bytes > clone_root->num_bytes) {
1384 		clone_root->ino = ino;
1385 		clone_root->offset = offset;
1386 		clone_root->num_bytes = num_bytes;
1387 
1388 		/*
1389 		 * Found a perfect candidate, so there's no need to continue
1390 		 * backref walking.
1391 		 */
1392 		if (num_bytes >= bctx->extent_len)
1393 			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1400 				 const u64 **root_ids_ret, int *root_count_ret)
1401 {
1402 	struct backref_ctx *bctx = ctx;
1403 	struct send_ctx *sctx = bctx->sctx;
1404 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1405 	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1406 	struct btrfs_lru_cache_entry *raw_entry;
1407 	struct backref_cache_entry *entry;
1408 
1409 	if (btrfs_lru_cache_size(&sctx->backref_cache) == 0)
1410 		return false;
1411 
1412 	/*
1413 	 * If relocation happened since we first filled the cache, then we must
1414 	 * empty the cache and can not use it, because even though we operate on
1415 	 * read-only roots, their leaves and nodes may have been reallocated and
1416 	 * now be used for different nodes/leaves of the same tree or some other
1417 	 * tree.
1418 	 *
1419 	 * We are called from iterate_extent_inodes() while either holding a
1420 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1421 	 * to take any lock here.
1422 	 */
1423 	if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1424 		btrfs_lru_cache_clear(&sctx->backref_cache);
1425 		return false;
1426 	}
1427 
1428 	raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1429 	if (!raw_entry)
1430 		return false;
1431 
1432 	entry = container_of(raw_entry, struct backref_cache_entry, entry);
1433 	*root_ids_ret = entry->root_ids;
1434 	*root_count_ret = entry->num_roots;
1435 
1436 	return true;
1437 }
1438 
1439 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1440 				void *ctx)
1441 {
1442 	struct backref_ctx *bctx = ctx;
1443 	struct send_ctx *sctx = bctx->sctx;
1444 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1445 	struct backref_cache_entry *new_entry;
1446 	struct ulist_iterator uiter;
1447 	struct ulist_node *node;
1448 	int ret;
1449 
1450 	/*
1451 	 * We're called while holding a transaction handle or while holding
1452 	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1453 	 * NOFS allocation.
1454 	 */
1455 	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1456 	/* No worries, cache is optional. */
1457 	if (!new_entry)
1458 		return;
1459 
1460 	new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1461 	new_entry->entry.gen = 0;
1462 	new_entry->num_roots = 0;
1463 	ULIST_ITER_INIT(&uiter);
1464 	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1465 		const u64 root_id = node->val;
1466 		struct clone_root *root;
1467 
1468 		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1469 			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1470 			       __clone_root_cmp_bsearch);
1471 		if (!root)
1472 			continue;
1473 
1474 		/* Too many roots, just exit, no worries as caching is optional. */
1475 		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1476 			kfree(new_entry);
1477 			return;
1478 		}
1479 
1480 		new_entry->root_ids[new_entry->num_roots] = root_id;
1481 		new_entry->num_roots++;
1482 	}
1483 
1484 	/*
1485 	 * We may have not added any roots to the new cache entry, which means
1486 	 * none of the roots is part of the list of roots from which we are
1487 	 * allowed to clone. Cache the new entry as it's still useful to avoid
1488 	 * backref walking to determine which roots have a path to the leaf.
1489 	 *
1490 	 * Also use GFP_NOFS because we're called while holding a transaction
1491 	 * handle or while holding fs_info->commit_root_sem.
1492 	 */
1493 	ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1494 				    GFP_NOFS);
1495 	ASSERT(ret == 0 || ret == -ENOMEM);
1496 	if (ret) {
1497 		/* Caching is optional, no worries. */
1498 		kfree(new_entry);
1499 		return;
1500 	}
1501 
1502 	/*
1503 	 * We are called from iterate_extent_inodes() while either holding a
1504 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1505 	 * to take any lock here.
1506 	 */
1507 	if (btrfs_lru_cache_size(&sctx->backref_cache) == 1)
1508 		sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1509 }
1510 
1511 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1512 			     const struct extent_buffer *leaf, void *ctx)
1513 {
1514 	const u64 refs = btrfs_extent_refs(leaf, ei);
1515 	const struct backref_ctx *bctx = ctx;
1516 	const struct send_ctx *sctx = bctx->sctx;
1517 
1518 	if (bytenr == bctx->bytenr) {
1519 		const u64 flags = btrfs_extent_flags(leaf, ei);
1520 
1521 		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1522 			return -EUCLEAN;
1523 
1524 		/*
1525 		 * If we have only one reference and only the send root as a
1526 		 * clone source - meaning no clone roots were given in the
1527 		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1528 		 * it's our reference and there's no point in doing backref
1529 		 * walking which is expensive, so exit early.
1530 		 */
1531 		if (refs == 1 && sctx->clone_roots_cnt == 1)
1532 			return -ENOENT;
1533 	}
1534 
1535 	/*
1536 	 * Backreference walking (iterate_extent_inodes() below) is currently
1537 	 * too expensive when an extent has a large number of references, both
1538 	 * in time spent and used memory. So for now just fallback to write
1539 	 * operations instead of clone operations when an extent has more than
1540 	 * a certain amount of references.
1541 	 */
1542 	if (refs > SEND_MAX_EXTENT_REFS)
1543 		return -ENOENT;
1544 
1545 	return 0;
1546 }
1547 
1548 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1549 {
1550 	const struct backref_ctx *bctx = ctx;
1551 
1552 	if (ino == bctx->cur_objectid &&
1553 	    root == bctx->backref_owner &&
1554 	    offset == bctx->backref_offset)
1555 		return true;
1556 
1557 	return false;
1558 }
1559 
1560 /*
1561  * Given an inode, offset and extent item, it finds a good clone for a clone
1562  * instruction. Returns -ENOENT when none could be found. The function makes
1563  * sure that the returned clone is usable at the point where sending is at the
1564  * moment. This means, that no clones are accepted which lie behind the current
1565  * inode+offset.
1566  *
1567  * path must point to the extent item when called.
1568  */
1569 static int find_extent_clone(struct send_ctx *sctx,
1570 			     struct btrfs_path *path,
1571 			     u64 ino, u64 data_offset,
1572 			     u64 ino_size,
1573 			     struct clone_root **found)
1574 {
1575 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1576 	int ret;
1577 	int extent_type;
1578 	u64 logical;
1579 	u64 disk_byte;
1580 	u64 num_bytes;
1581 	struct btrfs_file_extent_item *fi;
1582 	struct extent_buffer *eb = path->nodes[0];
1583 	struct backref_ctx backref_ctx = { 0 };
1584 	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1585 	struct clone_root *cur_clone_root;
1586 	int compressed;
1587 	u32 i;
1588 
1589 	/*
1590 	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1591 	 * so we don't do anything here because clone operations can not clone
1592 	 * to a range beyond i_size without increasing the i_size of the
1593 	 * destination inode.
1594 	 */
1595 	if (data_offset >= ino_size)
1596 		return 0;
1597 
1598 	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1599 	extent_type = btrfs_file_extent_type(eb, fi);
1600 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1601 		return -ENOENT;
1602 
1603 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1604 	if (disk_byte == 0)
1605 		return -ENOENT;
1606 
1607 	compressed = btrfs_file_extent_compression(eb, fi);
1608 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1609 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1610 
1611 	/*
1612 	 * Setup the clone roots.
1613 	 */
1614 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1615 		cur_clone_root = sctx->clone_roots + i;
1616 		cur_clone_root->ino = (u64)-1;
1617 		cur_clone_root->offset = 0;
1618 		cur_clone_root->num_bytes = 0;
1619 		cur_clone_root->found_ref = false;
1620 	}
1621 
1622 	backref_ctx.sctx = sctx;
1623 	backref_ctx.cur_objectid = ino;
1624 	backref_ctx.cur_offset = data_offset;
1625 	backref_ctx.bytenr = disk_byte;
1626 	/*
1627 	 * Use the header owner and not the send root's id, because in case of a
1628 	 * snapshot we can have shared subtrees.
1629 	 */
1630 	backref_ctx.backref_owner = btrfs_header_owner(eb);
1631 	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1632 
1633 	/*
1634 	 * The last extent of a file may be too large due to page alignment.
1635 	 * We need to adjust extent_len in this case so that the checks in
1636 	 * iterate_backrefs() work.
1637 	 */
1638 	if (data_offset + num_bytes >= ino_size)
1639 		backref_ctx.extent_len = ino_size - data_offset;
1640 	else
1641 		backref_ctx.extent_len = num_bytes;
1642 
1643 	/*
1644 	 * Now collect all backrefs.
1645 	 */
1646 	backref_walk_ctx.bytenr = disk_byte;
1647 	if (compressed == BTRFS_COMPRESS_NONE)
1648 		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1649 	backref_walk_ctx.fs_info = fs_info;
1650 	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1651 	backref_walk_ctx.cache_store = store_backref_cache;
1652 	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1653 	backref_walk_ctx.check_extent_item = check_extent_item;
1654 	backref_walk_ctx.user_ctx = &backref_ctx;
1655 
1656 	/*
1657 	 * If have a single clone root, then it's the send root and we can tell
1658 	 * the backref walking code to skip our own backref and not resolve it,
1659 	 * since we can not use it for cloning - the source and destination
1660 	 * ranges can't overlap and in case the leaf is shared through a subtree
1661 	 * due to snapshots, we can't use those other roots since they are not
1662 	 * in the list of clone roots.
1663 	 */
1664 	if (sctx->clone_roots_cnt == 1)
1665 		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1666 
1667 	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1668 				    &backref_ctx);
1669 	if (ret < 0)
1670 		return ret;
1671 
1672 	down_read(&fs_info->commit_root_sem);
1673 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1674 		/*
1675 		 * A transaction commit for a transaction in which block group
1676 		 * relocation was done just happened.
1677 		 * The disk_bytenr of the file extent item we processed is
1678 		 * possibly stale, referring to the extent's location before
1679 		 * relocation. So act as if we haven't found any clone sources
1680 		 * and fallback to write commands, which will read the correct
1681 		 * data from the new extent location. Otherwise we will fail
1682 		 * below because we haven't found our own back reference or we
1683 		 * could be getting incorrect sources in case the old extent
1684 		 * was already reallocated after the relocation.
1685 		 */
1686 		up_read(&fs_info->commit_root_sem);
1687 		return -ENOENT;
1688 	}
1689 	up_read(&fs_info->commit_root_sem);
1690 
1691 	btrfs_debug(fs_info,
1692 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1693 		    data_offset, ino, num_bytes, logical);
1694 
1695 	if (!backref_ctx.found) {
1696 		btrfs_debug(fs_info, "no clones found");
1697 		return -ENOENT;
1698 	}
1699 
1700 	cur_clone_root = NULL;
1701 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1702 		struct clone_root *clone_root = &sctx->clone_roots[i];
1703 
1704 		if (!clone_root->found_ref)
1705 			continue;
1706 
1707 		/*
1708 		 * Choose the root from which we can clone more bytes, to
1709 		 * minimize write operations and therefore have more extent
1710 		 * sharing at the destination (the same as in the source).
1711 		 */
1712 		if (!cur_clone_root ||
1713 		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1714 			cur_clone_root = clone_root;
1715 
1716 			/*
1717 			 * We found an optimal clone candidate (any inode from
1718 			 * any root is fine), so we're done.
1719 			 */
1720 			if (clone_root->num_bytes >= backref_ctx.extent_len)
1721 				break;
1722 		}
1723 	}
1724 
1725 	if (cur_clone_root) {
1726 		*found = cur_clone_root;
1727 		ret = 0;
1728 	} else {
1729 		ret = -ENOENT;
1730 	}
1731 
1732 	return ret;
1733 }
1734 
1735 static int read_symlink(struct btrfs_root *root,
1736 			u64 ino,
1737 			struct fs_path *dest)
1738 {
1739 	int ret;
1740 	struct btrfs_path *path;
1741 	struct btrfs_key key;
1742 	struct btrfs_file_extent_item *ei;
1743 	u8 type;
1744 	u8 compression;
1745 	unsigned long off;
1746 	int len;
1747 
1748 	path = alloc_path_for_send();
1749 	if (!path)
1750 		return -ENOMEM;
1751 
1752 	key.objectid = ino;
1753 	key.type = BTRFS_EXTENT_DATA_KEY;
1754 	key.offset = 0;
1755 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1756 	if (ret < 0)
1757 		goto out;
1758 	if (ret) {
1759 		/*
1760 		 * An empty symlink inode. Can happen in rare error paths when
1761 		 * creating a symlink (transaction committed before the inode
1762 		 * eviction handler removed the symlink inode items and a crash
1763 		 * happened in between or the subvol was snapshoted in between).
1764 		 * Print an informative message to dmesg/syslog so that the user
1765 		 * can delete the symlink.
1766 		 */
1767 		btrfs_err(root->fs_info,
1768 			  "Found empty symlink inode %llu at root %llu",
1769 			  ino, root->root_key.objectid);
1770 		ret = -EIO;
1771 		goto out;
1772 	}
1773 
1774 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1775 			struct btrfs_file_extent_item);
1776 	type = btrfs_file_extent_type(path->nodes[0], ei);
1777 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1778 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1779 	BUG_ON(compression);
1780 
1781 	off = btrfs_file_extent_inline_start(ei);
1782 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1783 
1784 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1785 
1786 out:
1787 	btrfs_free_path(path);
1788 	return ret;
1789 }
1790 
1791 /*
1792  * Helper function to generate a file name that is unique in the root of
1793  * send_root and parent_root. This is used to generate names for orphan inodes.
1794  */
1795 static int gen_unique_name(struct send_ctx *sctx,
1796 			   u64 ino, u64 gen,
1797 			   struct fs_path *dest)
1798 {
1799 	int ret = 0;
1800 	struct btrfs_path *path;
1801 	struct btrfs_dir_item *di;
1802 	char tmp[64];
1803 	int len;
1804 	u64 idx = 0;
1805 
1806 	path = alloc_path_for_send();
1807 	if (!path)
1808 		return -ENOMEM;
1809 
1810 	while (1) {
1811 		struct fscrypt_str tmp_name;
1812 
1813 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1814 				ino, gen, idx);
1815 		ASSERT(len < sizeof(tmp));
1816 		tmp_name.name = tmp;
1817 		tmp_name.len = strlen(tmp);
1818 
1819 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1820 				path, BTRFS_FIRST_FREE_OBJECTID,
1821 				&tmp_name, 0);
1822 		btrfs_release_path(path);
1823 		if (IS_ERR(di)) {
1824 			ret = PTR_ERR(di);
1825 			goto out;
1826 		}
1827 		if (di) {
1828 			/* not unique, try again */
1829 			idx++;
1830 			continue;
1831 		}
1832 
1833 		if (!sctx->parent_root) {
1834 			/* unique */
1835 			ret = 0;
1836 			break;
1837 		}
1838 
1839 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1840 				path, BTRFS_FIRST_FREE_OBJECTID,
1841 				&tmp_name, 0);
1842 		btrfs_release_path(path);
1843 		if (IS_ERR(di)) {
1844 			ret = PTR_ERR(di);
1845 			goto out;
1846 		}
1847 		if (di) {
1848 			/* not unique, try again */
1849 			idx++;
1850 			continue;
1851 		}
1852 		/* unique */
1853 		break;
1854 	}
1855 
1856 	ret = fs_path_add(dest, tmp, strlen(tmp));
1857 
1858 out:
1859 	btrfs_free_path(path);
1860 	return ret;
1861 }
1862 
1863 enum inode_state {
1864 	inode_state_no_change,
1865 	inode_state_will_create,
1866 	inode_state_did_create,
1867 	inode_state_will_delete,
1868 	inode_state_did_delete,
1869 };
1870 
1871 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1872 			       u64 *send_gen, u64 *parent_gen)
1873 {
1874 	int ret;
1875 	int left_ret;
1876 	int right_ret;
1877 	u64 left_gen;
1878 	u64 right_gen = 0;
1879 	struct btrfs_inode_info info;
1880 
1881 	ret = get_inode_info(sctx->send_root, ino, &info);
1882 	if (ret < 0 && ret != -ENOENT)
1883 		goto out;
1884 	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1885 	left_gen = info.gen;
1886 	if (send_gen)
1887 		*send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1888 
1889 	if (!sctx->parent_root) {
1890 		right_ret = -ENOENT;
1891 	} else {
1892 		ret = get_inode_info(sctx->parent_root, ino, &info);
1893 		if (ret < 0 && ret != -ENOENT)
1894 			goto out;
1895 		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1896 		right_gen = info.gen;
1897 		if (parent_gen)
1898 			*parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1899 	}
1900 
1901 	if (!left_ret && !right_ret) {
1902 		if (left_gen == gen && right_gen == gen) {
1903 			ret = inode_state_no_change;
1904 		} else if (left_gen == gen) {
1905 			if (ino < sctx->send_progress)
1906 				ret = inode_state_did_create;
1907 			else
1908 				ret = inode_state_will_create;
1909 		} else if (right_gen == gen) {
1910 			if (ino < sctx->send_progress)
1911 				ret = inode_state_did_delete;
1912 			else
1913 				ret = inode_state_will_delete;
1914 		} else  {
1915 			ret = -ENOENT;
1916 		}
1917 	} else if (!left_ret) {
1918 		if (left_gen == gen) {
1919 			if (ino < sctx->send_progress)
1920 				ret = inode_state_did_create;
1921 			else
1922 				ret = inode_state_will_create;
1923 		} else {
1924 			ret = -ENOENT;
1925 		}
1926 	} else if (!right_ret) {
1927 		if (right_gen == gen) {
1928 			if (ino < sctx->send_progress)
1929 				ret = inode_state_did_delete;
1930 			else
1931 				ret = inode_state_will_delete;
1932 		} else {
1933 			ret = -ENOENT;
1934 		}
1935 	} else {
1936 		ret = -ENOENT;
1937 	}
1938 
1939 out:
1940 	return ret;
1941 }
1942 
1943 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1944 			     u64 *send_gen, u64 *parent_gen)
1945 {
1946 	int ret;
1947 
1948 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1949 		return 1;
1950 
1951 	ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1952 	if (ret < 0)
1953 		goto out;
1954 
1955 	if (ret == inode_state_no_change ||
1956 	    ret == inode_state_did_create ||
1957 	    ret == inode_state_will_delete)
1958 		ret = 1;
1959 	else
1960 		ret = 0;
1961 
1962 out:
1963 	return ret;
1964 }
1965 
1966 /*
1967  * Helper function to lookup a dir item in a dir.
1968  */
1969 static int lookup_dir_item_inode(struct btrfs_root *root,
1970 				 u64 dir, const char *name, int name_len,
1971 				 u64 *found_inode)
1972 {
1973 	int ret = 0;
1974 	struct btrfs_dir_item *di;
1975 	struct btrfs_key key;
1976 	struct btrfs_path *path;
1977 	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1978 
1979 	path = alloc_path_for_send();
1980 	if (!path)
1981 		return -ENOMEM;
1982 
1983 	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1984 	if (IS_ERR_OR_NULL(di)) {
1985 		ret = di ? PTR_ERR(di) : -ENOENT;
1986 		goto out;
1987 	}
1988 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1989 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1990 		ret = -ENOENT;
1991 		goto out;
1992 	}
1993 	*found_inode = key.objectid;
1994 
1995 out:
1996 	btrfs_free_path(path);
1997 	return ret;
1998 }
1999 
2000 /*
2001  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2002  * generation of the parent dir and the name of the dir entry.
2003  */
2004 static int get_first_ref(struct btrfs_root *root, u64 ino,
2005 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2006 {
2007 	int ret;
2008 	struct btrfs_key key;
2009 	struct btrfs_key found_key;
2010 	struct btrfs_path *path;
2011 	int len;
2012 	u64 parent_dir;
2013 
2014 	path = alloc_path_for_send();
2015 	if (!path)
2016 		return -ENOMEM;
2017 
2018 	key.objectid = ino;
2019 	key.type = BTRFS_INODE_REF_KEY;
2020 	key.offset = 0;
2021 
2022 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2023 	if (ret < 0)
2024 		goto out;
2025 	if (!ret)
2026 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2027 				path->slots[0]);
2028 	if (ret || found_key.objectid != ino ||
2029 	    (found_key.type != BTRFS_INODE_REF_KEY &&
2030 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2031 		ret = -ENOENT;
2032 		goto out;
2033 	}
2034 
2035 	if (found_key.type == BTRFS_INODE_REF_KEY) {
2036 		struct btrfs_inode_ref *iref;
2037 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2038 				      struct btrfs_inode_ref);
2039 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2040 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2041 						     (unsigned long)(iref + 1),
2042 						     len);
2043 		parent_dir = found_key.offset;
2044 	} else {
2045 		struct btrfs_inode_extref *extref;
2046 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2047 					struct btrfs_inode_extref);
2048 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2049 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2050 					(unsigned long)&extref->name, len);
2051 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2052 	}
2053 	if (ret < 0)
2054 		goto out;
2055 	btrfs_release_path(path);
2056 
2057 	if (dir_gen) {
2058 		ret = get_inode_gen(root, parent_dir, dir_gen);
2059 		if (ret < 0)
2060 			goto out;
2061 	}
2062 
2063 	*dir = parent_dir;
2064 
2065 out:
2066 	btrfs_free_path(path);
2067 	return ret;
2068 }
2069 
2070 static int is_first_ref(struct btrfs_root *root,
2071 			u64 ino, u64 dir,
2072 			const char *name, int name_len)
2073 {
2074 	int ret;
2075 	struct fs_path *tmp_name;
2076 	u64 tmp_dir;
2077 
2078 	tmp_name = fs_path_alloc();
2079 	if (!tmp_name)
2080 		return -ENOMEM;
2081 
2082 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2083 	if (ret < 0)
2084 		goto out;
2085 
2086 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2087 		ret = 0;
2088 		goto out;
2089 	}
2090 
2091 	ret = !memcmp(tmp_name->start, name, name_len);
2092 
2093 out:
2094 	fs_path_free(tmp_name);
2095 	return ret;
2096 }
2097 
2098 /*
2099  * Used by process_recorded_refs to determine if a new ref would overwrite an
2100  * already existing ref. In case it detects an overwrite, it returns the
2101  * inode/gen in who_ino/who_gen.
2102  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2103  * to make sure later references to the overwritten inode are possible.
2104  * Orphanizing is however only required for the first ref of an inode.
2105  * process_recorded_refs does an additional is_first_ref check to see if
2106  * orphanizing is really required.
2107  */
2108 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2109 			      const char *name, int name_len,
2110 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2111 {
2112 	int ret;
2113 	u64 parent_root_dir_gen;
2114 	u64 other_inode = 0;
2115 	struct btrfs_inode_info info;
2116 
2117 	if (!sctx->parent_root)
2118 		return 0;
2119 
2120 	ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2121 	if (ret <= 0)
2122 		return 0;
2123 
2124 	/*
2125 	 * If we have a parent root we need to verify that the parent dir was
2126 	 * not deleted and then re-created, if it was then we have no overwrite
2127 	 * and we can just unlink this entry.
2128 	 *
2129 	 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2130 	 * parent root.
2131 	 */
2132 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2133 	    parent_root_dir_gen != dir_gen)
2134 		return 0;
2135 
2136 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2137 				    &other_inode);
2138 	if (ret == -ENOENT)
2139 		return 0;
2140 	else if (ret < 0)
2141 		return ret;
2142 
2143 	/*
2144 	 * Check if the overwritten ref was already processed. If yes, the ref
2145 	 * was already unlinked/moved, so we can safely assume that we will not
2146 	 * overwrite anything at this point in time.
2147 	 */
2148 	if (other_inode > sctx->send_progress ||
2149 	    is_waiting_for_move(sctx, other_inode)) {
2150 		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2151 		if (ret < 0)
2152 			return ret;
2153 
2154 		*who_ino = other_inode;
2155 		*who_gen = info.gen;
2156 		*who_mode = info.mode;
2157 		return 1;
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 /*
2164  * Checks if the ref was overwritten by an already processed inode. This is
2165  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2166  * thus the orphan name needs be used.
2167  * process_recorded_refs also uses it to avoid unlinking of refs that were
2168  * overwritten.
2169  */
2170 static int did_overwrite_ref(struct send_ctx *sctx,
2171 			    u64 dir, u64 dir_gen,
2172 			    u64 ino, u64 ino_gen,
2173 			    const char *name, int name_len)
2174 {
2175 	int ret;
2176 	u64 ow_inode;
2177 	u64 ow_gen = 0;
2178 	u64 send_root_dir_gen;
2179 
2180 	if (!sctx->parent_root)
2181 		return 0;
2182 
2183 	ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2184 	if (ret <= 0)
2185 		return ret;
2186 
2187 	/*
2188 	 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2189 	 * send root.
2190 	 */
2191 	if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2192 		return 0;
2193 
2194 	/* check if the ref was overwritten by another ref */
2195 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2196 				    &ow_inode);
2197 	if (ret == -ENOENT) {
2198 		/* was never and will never be overwritten */
2199 		return 0;
2200 	} else if (ret < 0) {
2201 		return ret;
2202 	}
2203 
2204 	if (ow_inode == ino) {
2205 		ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2206 		if (ret < 0)
2207 			return ret;
2208 
2209 		/* It's the same inode, so no overwrite happened. */
2210 		if (ow_gen == ino_gen)
2211 			return 0;
2212 	}
2213 
2214 	/*
2215 	 * We know that it is or will be overwritten. Check this now.
2216 	 * The current inode being processed might have been the one that caused
2217 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2218 	 * the current inode being processed.
2219 	 */
2220 	if (ow_inode < sctx->send_progress)
2221 		return 1;
2222 
2223 	if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2224 		if (ow_gen == 0) {
2225 			ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2226 			if (ret < 0)
2227 				return ret;
2228 		}
2229 		if (ow_gen == sctx->cur_inode_gen)
2230 			return 1;
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 /*
2237  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2238  * that got overwritten. This is used by process_recorded_refs to determine
2239  * if it has to use the path as returned by get_cur_path or the orphan name.
2240  */
2241 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2242 {
2243 	int ret = 0;
2244 	struct fs_path *name = NULL;
2245 	u64 dir;
2246 	u64 dir_gen;
2247 
2248 	if (!sctx->parent_root)
2249 		goto out;
2250 
2251 	name = fs_path_alloc();
2252 	if (!name)
2253 		return -ENOMEM;
2254 
2255 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2256 	if (ret < 0)
2257 		goto out;
2258 
2259 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2260 			name->start, fs_path_len(name));
2261 
2262 out:
2263 	fs_path_free(name);
2264 	return ret;
2265 }
2266 
2267 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2268 							 u64 ino, u64 gen)
2269 {
2270 	struct btrfs_lru_cache_entry *entry;
2271 
2272 	entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2273 	if (!entry)
2274 		return NULL;
2275 
2276 	return container_of(entry, struct name_cache_entry, entry);
2277 }
2278 
2279 /*
2280  * Used by get_cur_path for each ref up to the root.
2281  * Returns 0 if it succeeded.
2282  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2283  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2284  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2285  * Returns <0 in case of error.
2286  */
2287 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2288 				     u64 ino, u64 gen,
2289 				     u64 *parent_ino,
2290 				     u64 *parent_gen,
2291 				     struct fs_path *dest)
2292 {
2293 	int ret;
2294 	int nce_ret;
2295 	struct name_cache_entry *nce;
2296 
2297 	/*
2298 	 * First check if we already did a call to this function with the same
2299 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2300 	 * return the cached result.
2301 	 */
2302 	nce = name_cache_search(sctx, ino, gen);
2303 	if (nce) {
2304 		if (ino < sctx->send_progress && nce->need_later_update) {
2305 			btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2306 			nce = NULL;
2307 		} else {
2308 			*parent_ino = nce->parent_ino;
2309 			*parent_gen = nce->parent_gen;
2310 			ret = fs_path_add(dest, nce->name, nce->name_len);
2311 			if (ret < 0)
2312 				goto out;
2313 			ret = nce->ret;
2314 			goto out;
2315 		}
2316 	}
2317 
2318 	/*
2319 	 * If the inode is not existent yet, add the orphan name and return 1.
2320 	 * This should only happen for the parent dir that we determine in
2321 	 * record_new_ref_if_needed().
2322 	 */
2323 	ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2324 	if (ret < 0)
2325 		goto out;
2326 
2327 	if (!ret) {
2328 		ret = gen_unique_name(sctx, ino, gen, dest);
2329 		if (ret < 0)
2330 			goto out;
2331 		ret = 1;
2332 		goto out_cache;
2333 	}
2334 
2335 	/*
2336 	 * Depending on whether the inode was already processed or not, use
2337 	 * send_root or parent_root for ref lookup.
2338 	 */
2339 	if (ino < sctx->send_progress)
2340 		ret = get_first_ref(sctx->send_root, ino,
2341 				    parent_ino, parent_gen, dest);
2342 	else
2343 		ret = get_first_ref(sctx->parent_root, ino,
2344 				    parent_ino, parent_gen, dest);
2345 	if (ret < 0)
2346 		goto out;
2347 
2348 	/*
2349 	 * Check if the ref was overwritten by an inode's ref that was processed
2350 	 * earlier. If yes, treat as orphan and return 1.
2351 	 */
2352 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2353 			dest->start, dest->end - dest->start);
2354 	if (ret < 0)
2355 		goto out;
2356 	if (ret) {
2357 		fs_path_reset(dest);
2358 		ret = gen_unique_name(sctx, ino, gen, dest);
2359 		if (ret < 0)
2360 			goto out;
2361 		ret = 1;
2362 	}
2363 
2364 out_cache:
2365 	/*
2366 	 * Store the result of the lookup in the name cache.
2367 	 */
2368 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2369 	if (!nce) {
2370 		ret = -ENOMEM;
2371 		goto out;
2372 	}
2373 
2374 	nce->entry.key = ino;
2375 	nce->entry.gen = gen;
2376 	nce->parent_ino = *parent_ino;
2377 	nce->parent_gen = *parent_gen;
2378 	nce->name_len = fs_path_len(dest);
2379 	nce->ret = ret;
2380 	strcpy(nce->name, dest->start);
2381 
2382 	if (ino < sctx->send_progress)
2383 		nce->need_later_update = 0;
2384 	else
2385 		nce->need_later_update = 1;
2386 
2387 	nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2388 	if (nce_ret < 0) {
2389 		kfree(nce);
2390 		ret = nce_ret;
2391 	}
2392 
2393 out:
2394 	return ret;
2395 }
2396 
2397 /*
2398  * Magic happens here. This function returns the first ref to an inode as it
2399  * would look like while receiving the stream at this point in time.
2400  * We walk the path up to the root. For every inode in between, we check if it
2401  * was already processed/sent. If yes, we continue with the parent as found
2402  * in send_root. If not, we continue with the parent as found in parent_root.
2403  * If we encounter an inode that was deleted at this point in time, we use the
2404  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2405  * that were not created yet and overwritten inodes/refs.
2406  *
2407  * When do we have orphan inodes:
2408  * 1. When an inode is freshly created and thus no valid refs are available yet
2409  * 2. When a directory lost all it's refs (deleted) but still has dir items
2410  *    inside which were not processed yet (pending for move/delete). If anyone
2411  *    tried to get the path to the dir items, it would get a path inside that
2412  *    orphan directory.
2413  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2414  *    of an unprocessed inode. If in that case the first ref would be
2415  *    overwritten, the overwritten inode gets "orphanized". Later when we
2416  *    process this overwritten inode, it is restored at a new place by moving
2417  *    the orphan inode.
2418  *
2419  * sctx->send_progress tells this function at which point in time receiving
2420  * would be.
2421  */
2422 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2423 			struct fs_path *dest)
2424 {
2425 	int ret = 0;
2426 	struct fs_path *name = NULL;
2427 	u64 parent_inode = 0;
2428 	u64 parent_gen = 0;
2429 	int stop = 0;
2430 
2431 	name = fs_path_alloc();
2432 	if (!name) {
2433 		ret = -ENOMEM;
2434 		goto out;
2435 	}
2436 
2437 	dest->reversed = 1;
2438 	fs_path_reset(dest);
2439 
2440 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2441 		struct waiting_dir_move *wdm;
2442 
2443 		fs_path_reset(name);
2444 
2445 		if (is_waiting_for_rm(sctx, ino, gen)) {
2446 			ret = gen_unique_name(sctx, ino, gen, name);
2447 			if (ret < 0)
2448 				goto out;
2449 			ret = fs_path_add_path(dest, name);
2450 			break;
2451 		}
2452 
2453 		wdm = get_waiting_dir_move(sctx, ino);
2454 		if (wdm && wdm->orphanized) {
2455 			ret = gen_unique_name(sctx, ino, gen, name);
2456 			stop = 1;
2457 		} else if (wdm) {
2458 			ret = get_first_ref(sctx->parent_root, ino,
2459 					    &parent_inode, &parent_gen, name);
2460 		} else {
2461 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2462 							&parent_inode,
2463 							&parent_gen, name);
2464 			if (ret)
2465 				stop = 1;
2466 		}
2467 
2468 		if (ret < 0)
2469 			goto out;
2470 
2471 		ret = fs_path_add_path(dest, name);
2472 		if (ret < 0)
2473 			goto out;
2474 
2475 		ino = parent_inode;
2476 		gen = parent_gen;
2477 	}
2478 
2479 out:
2480 	fs_path_free(name);
2481 	if (!ret)
2482 		fs_path_unreverse(dest);
2483 	return ret;
2484 }
2485 
2486 /*
2487  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2488  */
2489 static int send_subvol_begin(struct send_ctx *sctx)
2490 {
2491 	int ret;
2492 	struct btrfs_root *send_root = sctx->send_root;
2493 	struct btrfs_root *parent_root = sctx->parent_root;
2494 	struct btrfs_path *path;
2495 	struct btrfs_key key;
2496 	struct btrfs_root_ref *ref;
2497 	struct extent_buffer *leaf;
2498 	char *name = NULL;
2499 	int namelen;
2500 
2501 	path = btrfs_alloc_path();
2502 	if (!path)
2503 		return -ENOMEM;
2504 
2505 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2506 	if (!name) {
2507 		btrfs_free_path(path);
2508 		return -ENOMEM;
2509 	}
2510 
2511 	key.objectid = send_root->root_key.objectid;
2512 	key.type = BTRFS_ROOT_BACKREF_KEY;
2513 	key.offset = 0;
2514 
2515 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2516 				&key, path, 1, 0);
2517 	if (ret < 0)
2518 		goto out;
2519 	if (ret) {
2520 		ret = -ENOENT;
2521 		goto out;
2522 	}
2523 
2524 	leaf = path->nodes[0];
2525 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2526 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2527 	    key.objectid != send_root->root_key.objectid) {
2528 		ret = -ENOENT;
2529 		goto out;
2530 	}
2531 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2532 	namelen = btrfs_root_ref_name_len(leaf, ref);
2533 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2534 	btrfs_release_path(path);
2535 
2536 	if (parent_root) {
2537 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2538 		if (ret < 0)
2539 			goto out;
2540 	} else {
2541 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2542 		if (ret < 0)
2543 			goto out;
2544 	}
2545 
2546 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2547 
2548 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2549 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2550 			    sctx->send_root->root_item.received_uuid);
2551 	else
2552 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2553 			    sctx->send_root->root_item.uuid);
2554 
2555 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2556 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2557 	if (parent_root) {
2558 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2559 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2560 				     parent_root->root_item.received_uuid);
2561 		else
2562 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2563 				     parent_root->root_item.uuid);
2564 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2565 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2566 	}
2567 
2568 	ret = send_cmd(sctx);
2569 
2570 tlv_put_failure:
2571 out:
2572 	btrfs_free_path(path);
2573 	kfree(name);
2574 	return ret;
2575 }
2576 
2577 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2578 {
2579 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2580 	int ret = 0;
2581 	struct fs_path *p;
2582 
2583 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2584 
2585 	p = fs_path_alloc();
2586 	if (!p)
2587 		return -ENOMEM;
2588 
2589 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2590 	if (ret < 0)
2591 		goto out;
2592 
2593 	ret = get_cur_path(sctx, ino, gen, p);
2594 	if (ret < 0)
2595 		goto out;
2596 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2597 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2598 
2599 	ret = send_cmd(sctx);
2600 
2601 tlv_put_failure:
2602 out:
2603 	fs_path_free(p);
2604 	return ret;
2605 }
2606 
2607 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2608 {
2609 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2610 	int ret = 0;
2611 	struct fs_path *p;
2612 
2613 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2614 
2615 	p = fs_path_alloc();
2616 	if (!p)
2617 		return -ENOMEM;
2618 
2619 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2620 	if (ret < 0)
2621 		goto out;
2622 
2623 	ret = get_cur_path(sctx, ino, gen, p);
2624 	if (ret < 0)
2625 		goto out;
2626 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2627 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2628 
2629 	ret = send_cmd(sctx);
2630 
2631 tlv_put_failure:
2632 out:
2633 	fs_path_free(p);
2634 	return ret;
2635 }
2636 
2637 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2638 {
2639 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2640 	int ret = 0;
2641 	struct fs_path *p;
2642 
2643 	if (sctx->proto < 2)
2644 		return 0;
2645 
2646 	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2647 
2648 	p = fs_path_alloc();
2649 	if (!p)
2650 		return -ENOMEM;
2651 
2652 	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2653 	if (ret < 0)
2654 		goto out;
2655 
2656 	ret = get_cur_path(sctx, ino, gen, p);
2657 	if (ret < 0)
2658 		goto out;
2659 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2660 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2661 
2662 	ret = send_cmd(sctx);
2663 
2664 tlv_put_failure:
2665 out:
2666 	fs_path_free(p);
2667 	return ret;
2668 }
2669 
2670 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2671 {
2672 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2673 	int ret = 0;
2674 	struct fs_path *p;
2675 
2676 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2677 		    ino, uid, gid);
2678 
2679 	p = fs_path_alloc();
2680 	if (!p)
2681 		return -ENOMEM;
2682 
2683 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2684 	if (ret < 0)
2685 		goto out;
2686 
2687 	ret = get_cur_path(sctx, ino, gen, p);
2688 	if (ret < 0)
2689 		goto out;
2690 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2691 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2692 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2693 
2694 	ret = send_cmd(sctx);
2695 
2696 tlv_put_failure:
2697 out:
2698 	fs_path_free(p);
2699 	return ret;
2700 }
2701 
2702 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2703 {
2704 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2705 	int ret = 0;
2706 	struct fs_path *p = NULL;
2707 	struct btrfs_inode_item *ii;
2708 	struct btrfs_path *path = NULL;
2709 	struct extent_buffer *eb;
2710 	struct btrfs_key key;
2711 	int slot;
2712 
2713 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2714 
2715 	p = fs_path_alloc();
2716 	if (!p)
2717 		return -ENOMEM;
2718 
2719 	path = alloc_path_for_send();
2720 	if (!path) {
2721 		ret = -ENOMEM;
2722 		goto out;
2723 	}
2724 
2725 	key.objectid = ino;
2726 	key.type = BTRFS_INODE_ITEM_KEY;
2727 	key.offset = 0;
2728 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2729 	if (ret > 0)
2730 		ret = -ENOENT;
2731 	if (ret < 0)
2732 		goto out;
2733 
2734 	eb = path->nodes[0];
2735 	slot = path->slots[0];
2736 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2737 
2738 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2739 	if (ret < 0)
2740 		goto out;
2741 
2742 	ret = get_cur_path(sctx, ino, gen, p);
2743 	if (ret < 0)
2744 		goto out;
2745 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2746 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2747 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2748 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2749 	if (sctx->proto >= 2)
2750 		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2751 
2752 	ret = send_cmd(sctx);
2753 
2754 tlv_put_failure:
2755 out:
2756 	fs_path_free(p);
2757 	btrfs_free_path(path);
2758 	return ret;
2759 }
2760 
2761 /*
2762  * If the cache is full, we can't remove entries from it and do a call to
2763  * send_utimes() for each respective inode, because we might be finishing
2764  * processing an inode that is a directory and it just got renamed, and existing
2765  * entries in the cache may refer to inodes that have the directory in their
2766  * full path - in which case we would generate outdated paths (pre-rename)
2767  * for the inodes that the cache entries point to. Instead of prunning the
2768  * cache when inserting, do it after we finish processing each inode at
2769  * finish_inode_if_needed().
2770  */
2771 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2772 {
2773 	struct btrfs_lru_cache_entry *entry;
2774 	int ret;
2775 
2776 	entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2777 	if (entry != NULL)
2778 		return 0;
2779 
2780 	/* Caching is optional, don't fail if we can't allocate memory. */
2781 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2782 	if (!entry)
2783 		return send_utimes(sctx, dir, gen);
2784 
2785 	entry->key = dir;
2786 	entry->gen = gen;
2787 
2788 	ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2789 	ASSERT(ret != -EEXIST);
2790 	if (ret) {
2791 		kfree(entry);
2792 		return send_utimes(sctx, dir, gen);
2793 	}
2794 
2795 	return 0;
2796 }
2797 
2798 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2799 {
2800 	while (btrfs_lru_cache_size(&sctx->dir_utimes_cache) >
2801 	       SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2802 		struct btrfs_lru_cache_entry *lru;
2803 		int ret;
2804 
2805 		lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2806 		ASSERT(lru != NULL);
2807 
2808 		ret = send_utimes(sctx, lru->key, lru->gen);
2809 		if (ret)
2810 			return ret;
2811 
2812 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2813 	}
2814 
2815 	return 0;
2816 }
2817 
2818 /*
2819  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2820  * a valid path yet because we did not process the refs yet. So, the inode
2821  * is created as orphan.
2822  */
2823 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2824 {
2825 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2826 	int ret = 0;
2827 	struct fs_path *p;
2828 	int cmd;
2829 	struct btrfs_inode_info info;
2830 	u64 gen;
2831 	u64 mode;
2832 	u64 rdev;
2833 
2834 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2835 
2836 	p = fs_path_alloc();
2837 	if (!p)
2838 		return -ENOMEM;
2839 
2840 	if (ino != sctx->cur_ino) {
2841 		ret = get_inode_info(sctx->send_root, ino, &info);
2842 		if (ret < 0)
2843 			goto out;
2844 		gen = info.gen;
2845 		mode = info.mode;
2846 		rdev = info.rdev;
2847 	} else {
2848 		gen = sctx->cur_inode_gen;
2849 		mode = sctx->cur_inode_mode;
2850 		rdev = sctx->cur_inode_rdev;
2851 	}
2852 
2853 	if (S_ISREG(mode)) {
2854 		cmd = BTRFS_SEND_C_MKFILE;
2855 	} else if (S_ISDIR(mode)) {
2856 		cmd = BTRFS_SEND_C_MKDIR;
2857 	} else if (S_ISLNK(mode)) {
2858 		cmd = BTRFS_SEND_C_SYMLINK;
2859 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2860 		cmd = BTRFS_SEND_C_MKNOD;
2861 	} else if (S_ISFIFO(mode)) {
2862 		cmd = BTRFS_SEND_C_MKFIFO;
2863 	} else if (S_ISSOCK(mode)) {
2864 		cmd = BTRFS_SEND_C_MKSOCK;
2865 	} else {
2866 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2867 				(int)(mode & S_IFMT));
2868 		ret = -EOPNOTSUPP;
2869 		goto out;
2870 	}
2871 
2872 	ret = begin_cmd(sctx, cmd);
2873 	if (ret < 0)
2874 		goto out;
2875 
2876 	ret = gen_unique_name(sctx, ino, gen, p);
2877 	if (ret < 0)
2878 		goto out;
2879 
2880 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2881 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2882 
2883 	if (S_ISLNK(mode)) {
2884 		fs_path_reset(p);
2885 		ret = read_symlink(sctx->send_root, ino, p);
2886 		if (ret < 0)
2887 			goto out;
2888 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2889 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2890 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2891 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2892 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2893 	}
2894 
2895 	ret = send_cmd(sctx);
2896 	if (ret < 0)
2897 		goto out;
2898 
2899 
2900 tlv_put_failure:
2901 out:
2902 	fs_path_free(p);
2903 	return ret;
2904 }
2905 
2906 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2907 {
2908 	struct btrfs_lru_cache_entry *entry;
2909 	int ret;
2910 
2911 	/* Caching is optional, ignore any failures. */
2912 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2913 	if (!entry)
2914 		return;
2915 
2916 	entry->key = dir;
2917 	entry->gen = 0;
2918 	ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2919 	if (ret < 0)
2920 		kfree(entry);
2921 }
2922 
2923 /*
2924  * We need some special handling for inodes that get processed before the parent
2925  * directory got created. See process_recorded_refs for details.
2926  * This function does the check if we already created the dir out of order.
2927  */
2928 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2929 {
2930 	int ret = 0;
2931 	int iter_ret = 0;
2932 	struct btrfs_path *path = NULL;
2933 	struct btrfs_key key;
2934 	struct btrfs_key found_key;
2935 	struct btrfs_key di_key;
2936 	struct btrfs_dir_item *di;
2937 
2938 	if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2939 		return 1;
2940 
2941 	path = alloc_path_for_send();
2942 	if (!path)
2943 		return -ENOMEM;
2944 
2945 	key.objectid = dir;
2946 	key.type = BTRFS_DIR_INDEX_KEY;
2947 	key.offset = 0;
2948 
2949 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2950 		struct extent_buffer *eb = path->nodes[0];
2951 
2952 		if (found_key.objectid != key.objectid ||
2953 		    found_key.type != key.type) {
2954 			ret = 0;
2955 			break;
2956 		}
2957 
2958 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2959 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2960 
2961 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2962 		    di_key.objectid < sctx->send_progress) {
2963 			ret = 1;
2964 			cache_dir_created(sctx, dir);
2965 			break;
2966 		}
2967 	}
2968 	/* Catch error found during iteration */
2969 	if (iter_ret < 0)
2970 		ret = iter_ret;
2971 
2972 	btrfs_free_path(path);
2973 	return ret;
2974 }
2975 
2976 /*
2977  * Only creates the inode if it is:
2978  * 1. Not a directory
2979  * 2. Or a directory which was not created already due to out of order
2980  *    directories. See did_create_dir and process_recorded_refs for details.
2981  */
2982 static int send_create_inode_if_needed(struct send_ctx *sctx)
2983 {
2984 	int ret;
2985 
2986 	if (S_ISDIR(sctx->cur_inode_mode)) {
2987 		ret = did_create_dir(sctx, sctx->cur_ino);
2988 		if (ret < 0)
2989 			return ret;
2990 		else if (ret > 0)
2991 			return 0;
2992 	}
2993 
2994 	ret = send_create_inode(sctx, sctx->cur_ino);
2995 
2996 	if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
2997 		cache_dir_created(sctx, sctx->cur_ino);
2998 
2999 	return ret;
3000 }
3001 
3002 struct recorded_ref {
3003 	struct list_head list;
3004 	char *name;
3005 	struct fs_path *full_path;
3006 	u64 dir;
3007 	u64 dir_gen;
3008 	int name_len;
3009 	struct rb_node node;
3010 	struct rb_root *root;
3011 };
3012 
3013 static struct recorded_ref *recorded_ref_alloc(void)
3014 {
3015 	struct recorded_ref *ref;
3016 
3017 	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3018 	if (!ref)
3019 		return NULL;
3020 	RB_CLEAR_NODE(&ref->node);
3021 	INIT_LIST_HEAD(&ref->list);
3022 	return ref;
3023 }
3024 
3025 static void recorded_ref_free(struct recorded_ref *ref)
3026 {
3027 	if (!ref)
3028 		return;
3029 	if (!RB_EMPTY_NODE(&ref->node))
3030 		rb_erase(&ref->node, ref->root);
3031 	list_del(&ref->list);
3032 	fs_path_free(ref->full_path);
3033 	kfree(ref);
3034 }
3035 
3036 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3037 {
3038 	ref->full_path = path;
3039 	ref->name = (char *)kbasename(ref->full_path->start);
3040 	ref->name_len = ref->full_path->end - ref->name;
3041 }
3042 
3043 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3044 {
3045 	struct recorded_ref *new;
3046 
3047 	new = recorded_ref_alloc();
3048 	if (!new)
3049 		return -ENOMEM;
3050 
3051 	new->dir = ref->dir;
3052 	new->dir_gen = ref->dir_gen;
3053 	list_add_tail(&new->list, list);
3054 	return 0;
3055 }
3056 
3057 static void __free_recorded_refs(struct list_head *head)
3058 {
3059 	struct recorded_ref *cur;
3060 
3061 	while (!list_empty(head)) {
3062 		cur = list_entry(head->next, struct recorded_ref, list);
3063 		recorded_ref_free(cur);
3064 	}
3065 }
3066 
3067 static void free_recorded_refs(struct send_ctx *sctx)
3068 {
3069 	__free_recorded_refs(&sctx->new_refs);
3070 	__free_recorded_refs(&sctx->deleted_refs);
3071 }
3072 
3073 /*
3074  * Renames/moves a file/dir to its orphan name. Used when the first
3075  * ref of an unprocessed inode gets overwritten and for all non empty
3076  * directories.
3077  */
3078 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3079 			  struct fs_path *path)
3080 {
3081 	int ret;
3082 	struct fs_path *orphan;
3083 
3084 	orphan = fs_path_alloc();
3085 	if (!orphan)
3086 		return -ENOMEM;
3087 
3088 	ret = gen_unique_name(sctx, ino, gen, orphan);
3089 	if (ret < 0)
3090 		goto out;
3091 
3092 	ret = send_rename(sctx, path, orphan);
3093 
3094 out:
3095 	fs_path_free(orphan);
3096 	return ret;
3097 }
3098 
3099 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3100 						   u64 dir_ino, u64 dir_gen)
3101 {
3102 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3103 	struct rb_node *parent = NULL;
3104 	struct orphan_dir_info *entry, *odi;
3105 
3106 	while (*p) {
3107 		parent = *p;
3108 		entry = rb_entry(parent, struct orphan_dir_info, node);
3109 		if (dir_ino < entry->ino)
3110 			p = &(*p)->rb_left;
3111 		else if (dir_ino > entry->ino)
3112 			p = &(*p)->rb_right;
3113 		else if (dir_gen < entry->gen)
3114 			p = &(*p)->rb_left;
3115 		else if (dir_gen > entry->gen)
3116 			p = &(*p)->rb_right;
3117 		else
3118 			return entry;
3119 	}
3120 
3121 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3122 	if (!odi)
3123 		return ERR_PTR(-ENOMEM);
3124 	odi->ino = dir_ino;
3125 	odi->gen = dir_gen;
3126 	odi->last_dir_index_offset = 0;
3127 	odi->dir_high_seq_ino = 0;
3128 
3129 	rb_link_node(&odi->node, parent, p);
3130 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3131 	return odi;
3132 }
3133 
3134 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3135 						   u64 dir_ino, u64 gen)
3136 {
3137 	struct rb_node *n = sctx->orphan_dirs.rb_node;
3138 	struct orphan_dir_info *entry;
3139 
3140 	while (n) {
3141 		entry = rb_entry(n, struct orphan_dir_info, node);
3142 		if (dir_ino < entry->ino)
3143 			n = n->rb_left;
3144 		else if (dir_ino > entry->ino)
3145 			n = n->rb_right;
3146 		else if (gen < entry->gen)
3147 			n = n->rb_left;
3148 		else if (gen > entry->gen)
3149 			n = n->rb_right;
3150 		else
3151 			return entry;
3152 	}
3153 	return NULL;
3154 }
3155 
3156 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3157 {
3158 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3159 
3160 	return odi != NULL;
3161 }
3162 
3163 static void free_orphan_dir_info(struct send_ctx *sctx,
3164 				 struct orphan_dir_info *odi)
3165 {
3166 	if (!odi)
3167 		return;
3168 	rb_erase(&odi->node, &sctx->orphan_dirs);
3169 	kfree(odi);
3170 }
3171 
3172 /*
3173  * Returns 1 if a directory can be removed at this point in time.
3174  * We check this by iterating all dir items and checking if the inode behind
3175  * the dir item was already processed.
3176  */
3177 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3178 {
3179 	int ret = 0;
3180 	int iter_ret = 0;
3181 	struct btrfs_root *root = sctx->parent_root;
3182 	struct btrfs_path *path;
3183 	struct btrfs_key key;
3184 	struct btrfs_key found_key;
3185 	struct btrfs_key loc;
3186 	struct btrfs_dir_item *di;
3187 	struct orphan_dir_info *odi = NULL;
3188 	u64 dir_high_seq_ino = 0;
3189 	u64 last_dir_index_offset = 0;
3190 
3191 	/*
3192 	 * Don't try to rmdir the top/root subvolume dir.
3193 	 */
3194 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3195 		return 0;
3196 
3197 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3198 	if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3199 		return 0;
3200 
3201 	path = alloc_path_for_send();
3202 	if (!path)
3203 		return -ENOMEM;
3204 
3205 	if (!odi) {
3206 		/*
3207 		 * Find the inode number associated with the last dir index
3208 		 * entry. This is very likely the inode with the highest number
3209 		 * of all inodes that have an entry in the directory. We can
3210 		 * then use it to avoid future calls to can_rmdir(), when
3211 		 * processing inodes with a lower number, from having to search
3212 		 * the parent root b+tree for dir index keys.
3213 		 */
3214 		key.objectid = dir;
3215 		key.type = BTRFS_DIR_INDEX_KEY;
3216 		key.offset = (u64)-1;
3217 
3218 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3219 		if (ret < 0) {
3220 			goto out;
3221 		} else if (ret > 0) {
3222 			/* Can't happen, the root is never empty. */
3223 			ASSERT(path->slots[0] > 0);
3224 			if (WARN_ON(path->slots[0] == 0)) {
3225 				ret = -EUCLEAN;
3226 				goto out;
3227 			}
3228 			path->slots[0]--;
3229 		}
3230 
3231 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3232 		if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3233 			/* No index keys, dir can be removed. */
3234 			ret = 1;
3235 			goto out;
3236 		}
3237 
3238 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3239 				    struct btrfs_dir_item);
3240 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3241 		dir_high_seq_ino = loc.objectid;
3242 		if (sctx->cur_ino < dir_high_seq_ino) {
3243 			ret = 0;
3244 			goto out;
3245 		}
3246 
3247 		btrfs_release_path(path);
3248 	}
3249 
3250 	key.objectid = dir;
3251 	key.type = BTRFS_DIR_INDEX_KEY;
3252 	key.offset = (odi ? odi->last_dir_index_offset : 0);
3253 
3254 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3255 		struct waiting_dir_move *dm;
3256 
3257 		if (found_key.objectid != key.objectid ||
3258 		    found_key.type != key.type)
3259 			break;
3260 
3261 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3262 				struct btrfs_dir_item);
3263 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3264 
3265 		dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3266 		last_dir_index_offset = found_key.offset;
3267 
3268 		dm = get_waiting_dir_move(sctx, loc.objectid);
3269 		if (dm) {
3270 			dm->rmdir_ino = dir;
3271 			dm->rmdir_gen = dir_gen;
3272 			ret = 0;
3273 			goto out;
3274 		}
3275 
3276 		if (loc.objectid > sctx->cur_ino) {
3277 			ret = 0;
3278 			goto out;
3279 		}
3280 	}
3281 	if (iter_ret < 0) {
3282 		ret = iter_ret;
3283 		goto out;
3284 	}
3285 	free_orphan_dir_info(sctx, odi);
3286 
3287 	ret = 1;
3288 
3289 out:
3290 	btrfs_free_path(path);
3291 
3292 	if (ret)
3293 		return ret;
3294 
3295 	if (!odi) {
3296 		odi = add_orphan_dir_info(sctx, dir, dir_gen);
3297 		if (IS_ERR(odi))
3298 			return PTR_ERR(odi);
3299 
3300 		odi->gen = dir_gen;
3301 	}
3302 
3303 	odi->last_dir_index_offset = last_dir_index_offset;
3304 	odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3305 
3306 	return 0;
3307 }
3308 
3309 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3310 {
3311 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3312 
3313 	return entry != NULL;
3314 }
3315 
3316 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3317 {
3318 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3319 	struct rb_node *parent = NULL;
3320 	struct waiting_dir_move *entry, *dm;
3321 
3322 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3323 	if (!dm)
3324 		return -ENOMEM;
3325 	dm->ino = ino;
3326 	dm->rmdir_ino = 0;
3327 	dm->rmdir_gen = 0;
3328 	dm->orphanized = orphanized;
3329 
3330 	while (*p) {
3331 		parent = *p;
3332 		entry = rb_entry(parent, struct waiting_dir_move, node);
3333 		if (ino < entry->ino) {
3334 			p = &(*p)->rb_left;
3335 		} else if (ino > entry->ino) {
3336 			p = &(*p)->rb_right;
3337 		} else {
3338 			kfree(dm);
3339 			return -EEXIST;
3340 		}
3341 	}
3342 
3343 	rb_link_node(&dm->node, parent, p);
3344 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3345 	return 0;
3346 }
3347 
3348 static struct waiting_dir_move *
3349 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3350 {
3351 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3352 	struct waiting_dir_move *entry;
3353 
3354 	while (n) {
3355 		entry = rb_entry(n, struct waiting_dir_move, node);
3356 		if (ino < entry->ino)
3357 			n = n->rb_left;
3358 		else if (ino > entry->ino)
3359 			n = n->rb_right;
3360 		else
3361 			return entry;
3362 	}
3363 	return NULL;
3364 }
3365 
3366 static void free_waiting_dir_move(struct send_ctx *sctx,
3367 				  struct waiting_dir_move *dm)
3368 {
3369 	if (!dm)
3370 		return;
3371 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3372 	kfree(dm);
3373 }
3374 
3375 static int add_pending_dir_move(struct send_ctx *sctx,
3376 				u64 ino,
3377 				u64 ino_gen,
3378 				u64 parent_ino,
3379 				struct list_head *new_refs,
3380 				struct list_head *deleted_refs,
3381 				const bool is_orphan)
3382 {
3383 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3384 	struct rb_node *parent = NULL;
3385 	struct pending_dir_move *entry = NULL, *pm;
3386 	struct recorded_ref *cur;
3387 	int exists = 0;
3388 	int ret;
3389 
3390 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3391 	if (!pm)
3392 		return -ENOMEM;
3393 	pm->parent_ino = parent_ino;
3394 	pm->ino = ino;
3395 	pm->gen = ino_gen;
3396 	INIT_LIST_HEAD(&pm->list);
3397 	INIT_LIST_HEAD(&pm->update_refs);
3398 	RB_CLEAR_NODE(&pm->node);
3399 
3400 	while (*p) {
3401 		parent = *p;
3402 		entry = rb_entry(parent, struct pending_dir_move, node);
3403 		if (parent_ino < entry->parent_ino) {
3404 			p = &(*p)->rb_left;
3405 		} else if (parent_ino > entry->parent_ino) {
3406 			p = &(*p)->rb_right;
3407 		} else {
3408 			exists = 1;
3409 			break;
3410 		}
3411 	}
3412 
3413 	list_for_each_entry(cur, deleted_refs, list) {
3414 		ret = dup_ref(cur, &pm->update_refs);
3415 		if (ret < 0)
3416 			goto out;
3417 	}
3418 	list_for_each_entry(cur, new_refs, list) {
3419 		ret = dup_ref(cur, &pm->update_refs);
3420 		if (ret < 0)
3421 			goto out;
3422 	}
3423 
3424 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3425 	if (ret)
3426 		goto out;
3427 
3428 	if (exists) {
3429 		list_add_tail(&pm->list, &entry->list);
3430 	} else {
3431 		rb_link_node(&pm->node, parent, p);
3432 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3433 	}
3434 	ret = 0;
3435 out:
3436 	if (ret) {
3437 		__free_recorded_refs(&pm->update_refs);
3438 		kfree(pm);
3439 	}
3440 	return ret;
3441 }
3442 
3443 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3444 						      u64 parent_ino)
3445 {
3446 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3447 	struct pending_dir_move *entry;
3448 
3449 	while (n) {
3450 		entry = rb_entry(n, struct pending_dir_move, node);
3451 		if (parent_ino < entry->parent_ino)
3452 			n = n->rb_left;
3453 		else if (parent_ino > entry->parent_ino)
3454 			n = n->rb_right;
3455 		else
3456 			return entry;
3457 	}
3458 	return NULL;
3459 }
3460 
3461 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3462 		     u64 ino, u64 gen, u64 *ancestor_ino)
3463 {
3464 	int ret = 0;
3465 	u64 parent_inode = 0;
3466 	u64 parent_gen = 0;
3467 	u64 start_ino = ino;
3468 
3469 	*ancestor_ino = 0;
3470 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3471 		fs_path_reset(name);
3472 
3473 		if (is_waiting_for_rm(sctx, ino, gen))
3474 			break;
3475 		if (is_waiting_for_move(sctx, ino)) {
3476 			if (*ancestor_ino == 0)
3477 				*ancestor_ino = ino;
3478 			ret = get_first_ref(sctx->parent_root, ino,
3479 					    &parent_inode, &parent_gen, name);
3480 		} else {
3481 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3482 							&parent_inode,
3483 							&parent_gen, name);
3484 			if (ret > 0) {
3485 				ret = 0;
3486 				break;
3487 			}
3488 		}
3489 		if (ret < 0)
3490 			break;
3491 		if (parent_inode == start_ino) {
3492 			ret = 1;
3493 			if (*ancestor_ino == 0)
3494 				*ancestor_ino = ino;
3495 			break;
3496 		}
3497 		ino = parent_inode;
3498 		gen = parent_gen;
3499 	}
3500 	return ret;
3501 }
3502 
3503 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3504 {
3505 	struct fs_path *from_path = NULL;
3506 	struct fs_path *to_path = NULL;
3507 	struct fs_path *name = NULL;
3508 	u64 orig_progress = sctx->send_progress;
3509 	struct recorded_ref *cur;
3510 	u64 parent_ino, parent_gen;
3511 	struct waiting_dir_move *dm = NULL;
3512 	u64 rmdir_ino = 0;
3513 	u64 rmdir_gen;
3514 	u64 ancestor;
3515 	bool is_orphan;
3516 	int ret;
3517 
3518 	name = fs_path_alloc();
3519 	from_path = fs_path_alloc();
3520 	if (!name || !from_path) {
3521 		ret = -ENOMEM;
3522 		goto out;
3523 	}
3524 
3525 	dm = get_waiting_dir_move(sctx, pm->ino);
3526 	ASSERT(dm);
3527 	rmdir_ino = dm->rmdir_ino;
3528 	rmdir_gen = dm->rmdir_gen;
3529 	is_orphan = dm->orphanized;
3530 	free_waiting_dir_move(sctx, dm);
3531 
3532 	if (is_orphan) {
3533 		ret = gen_unique_name(sctx, pm->ino,
3534 				      pm->gen, from_path);
3535 	} else {
3536 		ret = get_first_ref(sctx->parent_root, pm->ino,
3537 				    &parent_ino, &parent_gen, name);
3538 		if (ret < 0)
3539 			goto out;
3540 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3541 				   from_path);
3542 		if (ret < 0)
3543 			goto out;
3544 		ret = fs_path_add_path(from_path, name);
3545 	}
3546 	if (ret < 0)
3547 		goto out;
3548 
3549 	sctx->send_progress = sctx->cur_ino + 1;
3550 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3551 	if (ret < 0)
3552 		goto out;
3553 	if (ret) {
3554 		LIST_HEAD(deleted_refs);
3555 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3556 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3557 					   &pm->update_refs, &deleted_refs,
3558 					   is_orphan);
3559 		if (ret < 0)
3560 			goto out;
3561 		if (rmdir_ino) {
3562 			dm = get_waiting_dir_move(sctx, pm->ino);
3563 			ASSERT(dm);
3564 			dm->rmdir_ino = rmdir_ino;
3565 			dm->rmdir_gen = rmdir_gen;
3566 		}
3567 		goto out;
3568 	}
3569 	fs_path_reset(name);
3570 	to_path = name;
3571 	name = NULL;
3572 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3573 	if (ret < 0)
3574 		goto out;
3575 
3576 	ret = send_rename(sctx, from_path, to_path);
3577 	if (ret < 0)
3578 		goto out;
3579 
3580 	if (rmdir_ino) {
3581 		struct orphan_dir_info *odi;
3582 		u64 gen;
3583 
3584 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3585 		if (!odi) {
3586 			/* already deleted */
3587 			goto finish;
3588 		}
3589 		gen = odi->gen;
3590 
3591 		ret = can_rmdir(sctx, rmdir_ino, gen);
3592 		if (ret < 0)
3593 			goto out;
3594 		if (!ret)
3595 			goto finish;
3596 
3597 		name = fs_path_alloc();
3598 		if (!name) {
3599 			ret = -ENOMEM;
3600 			goto out;
3601 		}
3602 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3603 		if (ret < 0)
3604 			goto out;
3605 		ret = send_rmdir(sctx, name);
3606 		if (ret < 0)
3607 			goto out;
3608 	}
3609 
3610 finish:
3611 	ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3612 	if (ret < 0)
3613 		goto out;
3614 
3615 	/*
3616 	 * After rename/move, need to update the utimes of both new parent(s)
3617 	 * and old parent(s).
3618 	 */
3619 	list_for_each_entry(cur, &pm->update_refs, list) {
3620 		/*
3621 		 * The parent inode might have been deleted in the send snapshot
3622 		 */
3623 		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3624 		if (ret == -ENOENT) {
3625 			ret = 0;
3626 			continue;
3627 		}
3628 		if (ret < 0)
3629 			goto out;
3630 
3631 		ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3632 		if (ret < 0)
3633 			goto out;
3634 	}
3635 
3636 out:
3637 	fs_path_free(name);
3638 	fs_path_free(from_path);
3639 	fs_path_free(to_path);
3640 	sctx->send_progress = orig_progress;
3641 
3642 	return ret;
3643 }
3644 
3645 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3646 {
3647 	if (!list_empty(&m->list))
3648 		list_del(&m->list);
3649 	if (!RB_EMPTY_NODE(&m->node))
3650 		rb_erase(&m->node, &sctx->pending_dir_moves);
3651 	__free_recorded_refs(&m->update_refs);
3652 	kfree(m);
3653 }
3654 
3655 static void tail_append_pending_moves(struct send_ctx *sctx,
3656 				      struct pending_dir_move *moves,
3657 				      struct list_head *stack)
3658 {
3659 	if (list_empty(&moves->list)) {
3660 		list_add_tail(&moves->list, stack);
3661 	} else {
3662 		LIST_HEAD(list);
3663 		list_splice_init(&moves->list, &list);
3664 		list_add_tail(&moves->list, stack);
3665 		list_splice_tail(&list, stack);
3666 	}
3667 	if (!RB_EMPTY_NODE(&moves->node)) {
3668 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3669 		RB_CLEAR_NODE(&moves->node);
3670 	}
3671 }
3672 
3673 static int apply_children_dir_moves(struct send_ctx *sctx)
3674 {
3675 	struct pending_dir_move *pm;
3676 	struct list_head stack;
3677 	u64 parent_ino = sctx->cur_ino;
3678 	int ret = 0;
3679 
3680 	pm = get_pending_dir_moves(sctx, parent_ino);
3681 	if (!pm)
3682 		return 0;
3683 
3684 	INIT_LIST_HEAD(&stack);
3685 	tail_append_pending_moves(sctx, pm, &stack);
3686 
3687 	while (!list_empty(&stack)) {
3688 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3689 		parent_ino = pm->ino;
3690 		ret = apply_dir_move(sctx, pm);
3691 		free_pending_move(sctx, pm);
3692 		if (ret)
3693 			goto out;
3694 		pm = get_pending_dir_moves(sctx, parent_ino);
3695 		if (pm)
3696 			tail_append_pending_moves(sctx, pm, &stack);
3697 	}
3698 	return 0;
3699 
3700 out:
3701 	while (!list_empty(&stack)) {
3702 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3703 		free_pending_move(sctx, pm);
3704 	}
3705 	return ret;
3706 }
3707 
3708 /*
3709  * We might need to delay a directory rename even when no ancestor directory
3710  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3711  * renamed. This happens when we rename a directory to the old name (the name
3712  * in the parent root) of some other unrelated directory that got its rename
3713  * delayed due to some ancestor with higher number that got renamed.
3714  *
3715  * Example:
3716  *
3717  * Parent snapshot:
3718  * .                                       (ino 256)
3719  * |---- a/                                (ino 257)
3720  * |     |---- file                        (ino 260)
3721  * |
3722  * |---- b/                                (ino 258)
3723  * |---- c/                                (ino 259)
3724  *
3725  * Send snapshot:
3726  * .                                       (ino 256)
3727  * |---- a/                                (ino 258)
3728  * |---- x/                                (ino 259)
3729  *       |---- y/                          (ino 257)
3730  *             |----- file                 (ino 260)
3731  *
3732  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3733  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3734  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3735  * must issue is:
3736  *
3737  * 1 - rename 259 from 'c' to 'x'
3738  * 2 - rename 257 from 'a' to 'x/y'
3739  * 3 - rename 258 from 'b' to 'a'
3740  *
3741  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3742  * be done right away and < 0 on error.
3743  */
3744 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3745 				  struct recorded_ref *parent_ref,
3746 				  const bool is_orphan)
3747 {
3748 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3749 	struct btrfs_path *path;
3750 	struct btrfs_key key;
3751 	struct btrfs_key di_key;
3752 	struct btrfs_dir_item *di;
3753 	u64 left_gen;
3754 	u64 right_gen;
3755 	int ret = 0;
3756 	struct waiting_dir_move *wdm;
3757 
3758 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3759 		return 0;
3760 
3761 	path = alloc_path_for_send();
3762 	if (!path)
3763 		return -ENOMEM;
3764 
3765 	key.objectid = parent_ref->dir;
3766 	key.type = BTRFS_DIR_ITEM_KEY;
3767 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3768 
3769 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3770 	if (ret < 0) {
3771 		goto out;
3772 	} else if (ret > 0) {
3773 		ret = 0;
3774 		goto out;
3775 	}
3776 
3777 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3778 				       parent_ref->name_len);
3779 	if (!di) {
3780 		ret = 0;
3781 		goto out;
3782 	}
3783 	/*
3784 	 * di_key.objectid has the number of the inode that has a dentry in the
3785 	 * parent directory with the same name that sctx->cur_ino is being
3786 	 * renamed to. We need to check if that inode is in the send root as
3787 	 * well and if it is currently marked as an inode with a pending rename,
3788 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3789 	 * that it happens after that other inode is renamed.
3790 	 */
3791 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3792 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3793 		ret = 0;
3794 		goto out;
3795 	}
3796 
3797 	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3798 	if (ret < 0)
3799 		goto out;
3800 	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3801 	if (ret < 0) {
3802 		if (ret == -ENOENT)
3803 			ret = 0;
3804 		goto out;
3805 	}
3806 
3807 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3808 	if (right_gen != left_gen) {
3809 		ret = 0;
3810 		goto out;
3811 	}
3812 
3813 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3814 	if (wdm && !wdm->orphanized) {
3815 		ret = add_pending_dir_move(sctx,
3816 					   sctx->cur_ino,
3817 					   sctx->cur_inode_gen,
3818 					   di_key.objectid,
3819 					   &sctx->new_refs,
3820 					   &sctx->deleted_refs,
3821 					   is_orphan);
3822 		if (!ret)
3823 			ret = 1;
3824 	}
3825 out:
3826 	btrfs_free_path(path);
3827 	return ret;
3828 }
3829 
3830 /*
3831  * Check if inode ino2, or any of its ancestors, is inode ino1.
3832  * Return 1 if true, 0 if false and < 0 on error.
3833  */
3834 static int check_ino_in_path(struct btrfs_root *root,
3835 			     const u64 ino1,
3836 			     const u64 ino1_gen,
3837 			     const u64 ino2,
3838 			     const u64 ino2_gen,
3839 			     struct fs_path *fs_path)
3840 {
3841 	u64 ino = ino2;
3842 
3843 	if (ino1 == ino2)
3844 		return ino1_gen == ino2_gen;
3845 
3846 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3847 		u64 parent;
3848 		u64 parent_gen;
3849 		int ret;
3850 
3851 		fs_path_reset(fs_path);
3852 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3853 		if (ret < 0)
3854 			return ret;
3855 		if (parent == ino1)
3856 			return parent_gen == ino1_gen;
3857 		ino = parent;
3858 	}
3859 	return 0;
3860 }
3861 
3862 /*
3863  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3864  * possible path (in case ino2 is not a directory and has multiple hard links).
3865  * Return 1 if true, 0 if false and < 0 on error.
3866  */
3867 static int is_ancestor(struct btrfs_root *root,
3868 		       const u64 ino1,
3869 		       const u64 ino1_gen,
3870 		       const u64 ino2,
3871 		       struct fs_path *fs_path)
3872 {
3873 	bool free_fs_path = false;
3874 	int ret = 0;
3875 	int iter_ret = 0;
3876 	struct btrfs_path *path = NULL;
3877 	struct btrfs_key key;
3878 
3879 	if (!fs_path) {
3880 		fs_path = fs_path_alloc();
3881 		if (!fs_path)
3882 			return -ENOMEM;
3883 		free_fs_path = true;
3884 	}
3885 
3886 	path = alloc_path_for_send();
3887 	if (!path) {
3888 		ret = -ENOMEM;
3889 		goto out;
3890 	}
3891 
3892 	key.objectid = ino2;
3893 	key.type = BTRFS_INODE_REF_KEY;
3894 	key.offset = 0;
3895 
3896 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3897 		struct extent_buffer *leaf = path->nodes[0];
3898 		int slot = path->slots[0];
3899 		u32 cur_offset = 0;
3900 		u32 item_size;
3901 
3902 		if (key.objectid != ino2)
3903 			break;
3904 		if (key.type != BTRFS_INODE_REF_KEY &&
3905 		    key.type != BTRFS_INODE_EXTREF_KEY)
3906 			break;
3907 
3908 		item_size = btrfs_item_size(leaf, slot);
3909 		while (cur_offset < item_size) {
3910 			u64 parent;
3911 			u64 parent_gen;
3912 
3913 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3914 				unsigned long ptr;
3915 				struct btrfs_inode_extref *extref;
3916 
3917 				ptr = btrfs_item_ptr_offset(leaf, slot);
3918 				extref = (struct btrfs_inode_extref *)
3919 					(ptr + cur_offset);
3920 				parent = btrfs_inode_extref_parent(leaf,
3921 								   extref);
3922 				cur_offset += sizeof(*extref);
3923 				cur_offset += btrfs_inode_extref_name_len(leaf,
3924 								  extref);
3925 			} else {
3926 				parent = key.offset;
3927 				cur_offset = item_size;
3928 			}
3929 
3930 			ret = get_inode_gen(root, parent, &parent_gen);
3931 			if (ret < 0)
3932 				goto out;
3933 			ret = check_ino_in_path(root, ino1, ino1_gen,
3934 						parent, parent_gen, fs_path);
3935 			if (ret)
3936 				goto out;
3937 		}
3938 	}
3939 	ret = 0;
3940 	if (iter_ret < 0)
3941 		ret = iter_ret;
3942 
3943 out:
3944 	btrfs_free_path(path);
3945 	if (free_fs_path)
3946 		fs_path_free(fs_path);
3947 	return ret;
3948 }
3949 
3950 static int wait_for_parent_move(struct send_ctx *sctx,
3951 				struct recorded_ref *parent_ref,
3952 				const bool is_orphan)
3953 {
3954 	int ret = 0;
3955 	u64 ino = parent_ref->dir;
3956 	u64 ino_gen = parent_ref->dir_gen;
3957 	u64 parent_ino_before, parent_ino_after;
3958 	struct fs_path *path_before = NULL;
3959 	struct fs_path *path_after = NULL;
3960 	int len1, len2;
3961 
3962 	path_after = fs_path_alloc();
3963 	path_before = fs_path_alloc();
3964 	if (!path_after || !path_before) {
3965 		ret = -ENOMEM;
3966 		goto out;
3967 	}
3968 
3969 	/*
3970 	 * Our current directory inode may not yet be renamed/moved because some
3971 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3972 	 * such ancestor exists and make sure our own rename/move happens after
3973 	 * that ancestor is processed to avoid path build infinite loops (done
3974 	 * at get_cur_path()).
3975 	 */
3976 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3977 		u64 parent_ino_after_gen;
3978 
3979 		if (is_waiting_for_move(sctx, ino)) {
3980 			/*
3981 			 * If the current inode is an ancestor of ino in the
3982 			 * parent root, we need to delay the rename of the
3983 			 * current inode, otherwise don't delayed the rename
3984 			 * because we can end up with a circular dependency
3985 			 * of renames, resulting in some directories never
3986 			 * getting the respective rename operations issued in
3987 			 * the send stream or getting into infinite path build
3988 			 * loops.
3989 			 */
3990 			ret = is_ancestor(sctx->parent_root,
3991 					  sctx->cur_ino, sctx->cur_inode_gen,
3992 					  ino, path_before);
3993 			if (ret)
3994 				break;
3995 		}
3996 
3997 		fs_path_reset(path_before);
3998 		fs_path_reset(path_after);
3999 
4000 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4001 				    &parent_ino_after_gen, path_after);
4002 		if (ret < 0)
4003 			goto out;
4004 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4005 				    NULL, path_before);
4006 		if (ret < 0 && ret != -ENOENT) {
4007 			goto out;
4008 		} else if (ret == -ENOENT) {
4009 			ret = 0;
4010 			break;
4011 		}
4012 
4013 		len1 = fs_path_len(path_before);
4014 		len2 = fs_path_len(path_after);
4015 		if (ino > sctx->cur_ino &&
4016 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4017 		     memcmp(path_before->start, path_after->start, len1))) {
4018 			u64 parent_ino_gen;
4019 
4020 			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4021 			if (ret < 0)
4022 				goto out;
4023 			if (ino_gen == parent_ino_gen) {
4024 				ret = 1;
4025 				break;
4026 			}
4027 		}
4028 		ino = parent_ino_after;
4029 		ino_gen = parent_ino_after_gen;
4030 	}
4031 
4032 out:
4033 	fs_path_free(path_before);
4034 	fs_path_free(path_after);
4035 
4036 	if (ret == 1) {
4037 		ret = add_pending_dir_move(sctx,
4038 					   sctx->cur_ino,
4039 					   sctx->cur_inode_gen,
4040 					   ino,
4041 					   &sctx->new_refs,
4042 					   &sctx->deleted_refs,
4043 					   is_orphan);
4044 		if (!ret)
4045 			ret = 1;
4046 	}
4047 
4048 	return ret;
4049 }
4050 
4051 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4052 {
4053 	int ret;
4054 	struct fs_path *new_path;
4055 
4056 	/*
4057 	 * Our reference's name member points to its full_path member string, so
4058 	 * we use here a new path.
4059 	 */
4060 	new_path = fs_path_alloc();
4061 	if (!new_path)
4062 		return -ENOMEM;
4063 
4064 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4065 	if (ret < 0) {
4066 		fs_path_free(new_path);
4067 		return ret;
4068 	}
4069 	ret = fs_path_add(new_path, ref->name, ref->name_len);
4070 	if (ret < 0) {
4071 		fs_path_free(new_path);
4072 		return ret;
4073 	}
4074 
4075 	fs_path_free(ref->full_path);
4076 	set_ref_path(ref, new_path);
4077 
4078 	return 0;
4079 }
4080 
4081 /*
4082  * When processing the new references for an inode we may orphanize an existing
4083  * directory inode because its old name conflicts with one of the new references
4084  * of the current inode. Later, when processing another new reference of our
4085  * inode, we might need to orphanize another inode, but the path we have in the
4086  * reference reflects the pre-orphanization name of the directory we previously
4087  * orphanized. For example:
4088  *
4089  * parent snapshot looks like:
4090  *
4091  * .                                     (ino 256)
4092  * |----- f1                             (ino 257)
4093  * |----- f2                             (ino 258)
4094  * |----- d1/                            (ino 259)
4095  *        |----- d2/                     (ino 260)
4096  *
4097  * send snapshot looks like:
4098  *
4099  * .                                     (ino 256)
4100  * |----- d1                             (ino 258)
4101  * |----- f2/                            (ino 259)
4102  *        |----- f2_link/                (ino 260)
4103  *        |       |----- f1              (ino 257)
4104  *        |
4105  *        |----- d2                      (ino 258)
4106  *
4107  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4108  * cache it in the name cache. Later when we start processing inode 258, when
4109  * collecting all its new references we set a full path of "d1/d2" for its new
4110  * reference with name "d2". When we start processing the new references we
4111  * start by processing the new reference with name "d1", and this results in
4112  * orphanizing inode 259, since its old reference causes a conflict. Then we
4113  * move on the next new reference, with name "d2", and we find out we must
4114  * orphanize inode 260, as its old reference conflicts with ours - but for the
4115  * orphanization we use a source path corresponding to the path we stored in the
4116  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4117  * receiver fail since the path component "d1/" no longer exists, it was renamed
4118  * to "o259-6-0/" when processing the previous new reference. So in this case we
4119  * must recompute the path in the new reference and use it for the new
4120  * orphanization operation.
4121  */
4122 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4123 {
4124 	char *name;
4125 	int ret;
4126 
4127 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4128 	if (!name)
4129 		return -ENOMEM;
4130 
4131 	fs_path_reset(ref->full_path);
4132 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4133 	if (ret < 0)
4134 		goto out;
4135 
4136 	ret = fs_path_add(ref->full_path, name, ref->name_len);
4137 	if (ret < 0)
4138 		goto out;
4139 
4140 	/* Update the reference's base name pointer. */
4141 	set_ref_path(ref, ref->full_path);
4142 out:
4143 	kfree(name);
4144 	return ret;
4145 }
4146 
4147 /*
4148  * This does all the move/link/unlink/rmdir magic.
4149  */
4150 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4151 {
4152 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4153 	int ret = 0;
4154 	struct recorded_ref *cur;
4155 	struct recorded_ref *cur2;
4156 	struct list_head check_dirs;
4157 	struct fs_path *valid_path = NULL;
4158 	u64 ow_inode = 0;
4159 	u64 ow_gen;
4160 	u64 ow_mode;
4161 	int did_overwrite = 0;
4162 	int is_orphan = 0;
4163 	u64 last_dir_ino_rm = 0;
4164 	bool can_rename = true;
4165 	bool orphanized_dir = false;
4166 	bool orphanized_ancestor = false;
4167 
4168 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4169 
4170 	/*
4171 	 * This should never happen as the root dir always has the same ref
4172 	 * which is always '..'
4173 	 */
4174 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
4175 	INIT_LIST_HEAD(&check_dirs);
4176 
4177 	valid_path = fs_path_alloc();
4178 	if (!valid_path) {
4179 		ret = -ENOMEM;
4180 		goto out;
4181 	}
4182 
4183 	/*
4184 	 * First, check if the first ref of the current inode was overwritten
4185 	 * before. If yes, we know that the current inode was already orphanized
4186 	 * and thus use the orphan name. If not, we can use get_cur_path to
4187 	 * get the path of the first ref as it would like while receiving at
4188 	 * this point in time.
4189 	 * New inodes are always orphan at the beginning, so force to use the
4190 	 * orphan name in this case.
4191 	 * The first ref is stored in valid_path and will be updated if it
4192 	 * gets moved around.
4193 	 */
4194 	if (!sctx->cur_inode_new) {
4195 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4196 				sctx->cur_inode_gen);
4197 		if (ret < 0)
4198 			goto out;
4199 		if (ret)
4200 			did_overwrite = 1;
4201 	}
4202 	if (sctx->cur_inode_new || did_overwrite) {
4203 		ret = gen_unique_name(sctx, sctx->cur_ino,
4204 				sctx->cur_inode_gen, valid_path);
4205 		if (ret < 0)
4206 			goto out;
4207 		is_orphan = 1;
4208 	} else {
4209 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4210 				valid_path);
4211 		if (ret < 0)
4212 			goto out;
4213 	}
4214 
4215 	/*
4216 	 * Before doing any rename and link operations, do a first pass on the
4217 	 * new references to orphanize any unprocessed inodes that may have a
4218 	 * reference that conflicts with one of the new references of the current
4219 	 * inode. This needs to happen first because a new reference may conflict
4220 	 * with the old reference of a parent directory, so we must make sure
4221 	 * that the path used for link and rename commands don't use an
4222 	 * orphanized name when an ancestor was not yet orphanized.
4223 	 *
4224 	 * Example:
4225 	 *
4226 	 * Parent snapshot:
4227 	 *
4228 	 * .                                                      (ino 256)
4229 	 * |----- testdir/                                        (ino 259)
4230 	 * |          |----- a                                    (ino 257)
4231 	 * |
4232 	 * |----- b                                               (ino 258)
4233 	 *
4234 	 * Send snapshot:
4235 	 *
4236 	 * .                                                      (ino 256)
4237 	 * |----- testdir_2/                                      (ino 259)
4238 	 * |          |----- a                                    (ino 260)
4239 	 * |
4240 	 * |----- testdir                                         (ino 257)
4241 	 * |----- b                                               (ino 257)
4242 	 * |----- b2                                              (ino 258)
4243 	 *
4244 	 * Processing the new reference for inode 257 with name "b" may happen
4245 	 * before processing the new reference with name "testdir". If so, we
4246 	 * must make sure that by the time we send a link command to create the
4247 	 * hard link "b", inode 259 was already orphanized, since the generated
4248 	 * path in "valid_path" already contains the orphanized name for 259.
4249 	 * We are processing inode 257, so only later when processing 259 we do
4250 	 * the rename operation to change its temporary (orphanized) name to
4251 	 * "testdir_2".
4252 	 */
4253 	list_for_each_entry(cur, &sctx->new_refs, list) {
4254 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4255 		if (ret < 0)
4256 			goto out;
4257 		if (ret == inode_state_will_create)
4258 			continue;
4259 
4260 		/*
4261 		 * Check if this new ref would overwrite the first ref of another
4262 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4263 		 * If we find an overwritten ref that is not the first ref,
4264 		 * simply unlink it.
4265 		 */
4266 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4267 				cur->name, cur->name_len,
4268 				&ow_inode, &ow_gen, &ow_mode);
4269 		if (ret < 0)
4270 			goto out;
4271 		if (ret) {
4272 			ret = is_first_ref(sctx->parent_root,
4273 					   ow_inode, cur->dir, cur->name,
4274 					   cur->name_len);
4275 			if (ret < 0)
4276 				goto out;
4277 			if (ret) {
4278 				struct name_cache_entry *nce;
4279 				struct waiting_dir_move *wdm;
4280 
4281 				if (orphanized_dir) {
4282 					ret = refresh_ref_path(sctx, cur);
4283 					if (ret < 0)
4284 						goto out;
4285 				}
4286 
4287 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4288 						cur->full_path);
4289 				if (ret < 0)
4290 					goto out;
4291 				if (S_ISDIR(ow_mode))
4292 					orphanized_dir = true;
4293 
4294 				/*
4295 				 * If ow_inode has its rename operation delayed
4296 				 * make sure that its orphanized name is used in
4297 				 * the source path when performing its rename
4298 				 * operation.
4299 				 */
4300 				wdm = get_waiting_dir_move(sctx, ow_inode);
4301 				if (wdm)
4302 					wdm->orphanized = true;
4303 
4304 				/*
4305 				 * Make sure we clear our orphanized inode's
4306 				 * name from the name cache. This is because the
4307 				 * inode ow_inode might be an ancestor of some
4308 				 * other inode that will be orphanized as well
4309 				 * later and has an inode number greater than
4310 				 * sctx->send_progress. We need to prevent
4311 				 * future name lookups from using the old name
4312 				 * and get instead the orphan name.
4313 				 */
4314 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4315 				if (nce)
4316 					btrfs_lru_cache_remove(&sctx->name_cache,
4317 							       &nce->entry);
4318 
4319 				/*
4320 				 * ow_inode might currently be an ancestor of
4321 				 * cur_ino, therefore compute valid_path (the
4322 				 * current path of cur_ino) again because it
4323 				 * might contain the pre-orphanization name of
4324 				 * ow_inode, which is no longer valid.
4325 				 */
4326 				ret = is_ancestor(sctx->parent_root,
4327 						  ow_inode, ow_gen,
4328 						  sctx->cur_ino, NULL);
4329 				if (ret > 0) {
4330 					orphanized_ancestor = true;
4331 					fs_path_reset(valid_path);
4332 					ret = get_cur_path(sctx, sctx->cur_ino,
4333 							   sctx->cur_inode_gen,
4334 							   valid_path);
4335 				}
4336 				if (ret < 0)
4337 					goto out;
4338 			} else {
4339 				/*
4340 				 * If we previously orphanized a directory that
4341 				 * collided with a new reference that we already
4342 				 * processed, recompute the current path because
4343 				 * that directory may be part of the path.
4344 				 */
4345 				if (orphanized_dir) {
4346 					ret = refresh_ref_path(sctx, cur);
4347 					if (ret < 0)
4348 						goto out;
4349 				}
4350 				ret = send_unlink(sctx, cur->full_path);
4351 				if (ret < 0)
4352 					goto out;
4353 			}
4354 		}
4355 
4356 	}
4357 
4358 	list_for_each_entry(cur, &sctx->new_refs, list) {
4359 		/*
4360 		 * We may have refs where the parent directory does not exist
4361 		 * yet. This happens if the parent directories inum is higher
4362 		 * than the current inum. To handle this case, we create the
4363 		 * parent directory out of order. But we need to check if this
4364 		 * did already happen before due to other refs in the same dir.
4365 		 */
4366 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4367 		if (ret < 0)
4368 			goto out;
4369 		if (ret == inode_state_will_create) {
4370 			ret = 0;
4371 			/*
4372 			 * First check if any of the current inodes refs did
4373 			 * already create the dir.
4374 			 */
4375 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4376 				if (cur == cur2)
4377 					break;
4378 				if (cur2->dir == cur->dir) {
4379 					ret = 1;
4380 					break;
4381 				}
4382 			}
4383 
4384 			/*
4385 			 * If that did not happen, check if a previous inode
4386 			 * did already create the dir.
4387 			 */
4388 			if (!ret)
4389 				ret = did_create_dir(sctx, cur->dir);
4390 			if (ret < 0)
4391 				goto out;
4392 			if (!ret) {
4393 				ret = send_create_inode(sctx, cur->dir);
4394 				if (ret < 0)
4395 					goto out;
4396 				cache_dir_created(sctx, cur->dir);
4397 			}
4398 		}
4399 
4400 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4401 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4402 			if (ret < 0)
4403 				goto out;
4404 			if (ret == 1) {
4405 				can_rename = false;
4406 				*pending_move = 1;
4407 			}
4408 		}
4409 
4410 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4411 		    can_rename) {
4412 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4413 			if (ret < 0)
4414 				goto out;
4415 			if (ret == 1) {
4416 				can_rename = false;
4417 				*pending_move = 1;
4418 			}
4419 		}
4420 
4421 		/*
4422 		 * link/move the ref to the new place. If we have an orphan
4423 		 * inode, move it and update valid_path. If not, link or move
4424 		 * it depending on the inode mode.
4425 		 */
4426 		if (is_orphan && can_rename) {
4427 			ret = send_rename(sctx, valid_path, cur->full_path);
4428 			if (ret < 0)
4429 				goto out;
4430 			is_orphan = 0;
4431 			ret = fs_path_copy(valid_path, cur->full_path);
4432 			if (ret < 0)
4433 				goto out;
4434 		} else if (can_rename) {
4435 			if (S_ISDIR(sctx->cur_inode_mode)) {
4436 				/*
4437 				 * Dirs can't be linked, so move it. For moved
4438 				 * dirs, we always have one new and one deleted
4439 				 * ref. The deleted ref is ignored later.
4440 				 */
4441 				ret = send_rename(sctx, valid_path,
4442 						  cur->full_path);
4443 				if (!ret)
4444 					ret = fs_path_copy(valid_path,
4445 							   cur->full_path);
4446 				if (ret < 0)
4447 					goto out;
4448 			} else {
4449 				/*
4450 				 * We might have previously orphanized an inode
4451 				 * which is an ancestor of our current inode,
4452 				 * so our reference's full path, which was
4453 				 * computed before any such orphanizations, must
4454 				 * be updated.
4455 				 */
4456 				if (orphanized_dir) {
4457 					ret = update_ref_path(sctx, cur);
4458 					if (ret < 0)
4459 						goto out;
4460 				}
4461 				ret = send_link(sctx, cur->full_path,
4462 						valid_path);
4463 				if (ret < 0)
4464 					goto out;
4465 			}
4466 		}
4467 		ret = dup_ref(cur, &check_dirs);
4468 		if (ret < 0)
4469 			goto out;
4470 	}
4471 
4472 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4473 		/*
4474 		 * Check if we can already rmdir the directory. If not,
4475 		 * orphanize it. For every dir item inside that gets deleted
4476 		 * later, we do this check again and rmdir it then if possible.
4477 		 * See the use of check_dirs for more details.
4478 		 */
4479 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4480 		if (ret < 0)
4481 			goto out;
4482 		if (ret) {
4483 			ret = send_rmdir(sctx, valid_path);
4484 			if (ret < 0)
4485 				goto out;
4486 		} else if (!is_orphan) {
4487 			ret = orphanize_inode(sctx, sctx->cur_ino,
4488 					sctx->cur_inode_gen, valid_path);
4489 			if (ret < 0)
4490 				goto out;
4491 			is_orphan = 1;
4492 		}
4493 
4494 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4495 			ret = dup_ref(cur, &check_dirs);
4496 			if (ret < 0)
4497 				goto out;
4498 		}
4499 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4500 		   !list_empty(&sctx->deleted_refs)) {
4501 		/*
4502 		 * We have a moved dir. Add the old parent to check_dirs
4503 		 */
4504 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4505 				list);
4506 		ret = dup_ref(cur, &check_dirs);
4507 		if (ret < 0)
4508 			goto out;
4509 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4510 		/*
4511 		 * We have a non dir inode. Go through all deleted refs and
4512 		 * unlink them if they were not already overwritten by other
4513 		 * inodes.
4514 		 */
4515 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4516 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4517 					sctx->cur_ino, sctx->cur_inode_gen,
4518 					cur->name, cur->name_len);
4519 			if (ret < 0)
4520 				goto out;
4521 			if (!ret) {
4522 				/*
4523 				 * If we orphanized any ancestor before, we need
4524 				 * to recompute the full path for deleted names,
4525 				 * since any such path was computed before we
4526 				 * processed any references and orphanized any
4527 				 * ancestor inode.
4528 				 */
4529 				if (orphanized_ancestor) {
4530 					ret = update_ref_path(sctx, cur);
4531 					if (ret < 0)
4532 						goto out;
4533 				}
4534 				ret = send_unlink(sctx, cur->full_path);
4535 				if (ret < 0)
4536 					goto out;
4537 			}
4538 			ret = dup_ref(cur, &check_dirs);
4539 			if (ret < 0)
4540 				goto out;
4541 		}
4542 		/*
4543 		 * If the inode is still orphan, unlink the orphan. This may
4544 		 * happen when a previous inode did overwrite the first ref
4545 		 * of this inode and no new refs were added for the current
4546 		 * inode. Unlinking does not mean that the inode is deleted in
4547 		 * all cases. There may still be links to this inode in other
4548 		 * places.
4549 		 */
4550 		if (is_orphan) {
4551 			ret = send_unlink(sctx, valid_path);
4552 			if (ret < 0)
4553 				goto out;
4554 		}
4555 	}
4556 
4557 	/*
4558 	 * We did collect all parent dirs where cur_inode was once located. We
4559 	 * now go through all these dirs and check if they are pending for
4560 	 * deletion and if it's finally possible to perform the rmdir now.
4561 	 * We also update the inode stats of the parent dirs here.
4562 	 */
4563 	list_for_each_entry(cur, &check_dirs, list) {
4564 		/*
4565 		 * In case we had refs into dirs that were not processed yet,
4566 		 * we don't need to do the utime and rmdir logic for these dirs.
4567 		 * The dir will be processed later.
4568 		 */
4569 		if (cur->dir > sctx->cur_ino)
4570 			continue;
4571 
4572 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4573 		if (ret < 0)
4574 			goto out;
4575 
4576 		if (ret == inode_state_did_create ||
4577 		    ret == inode_state_no_change) {
4578 			ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4579 			if (ret < 0)
4580 				goto out;
4581 		} else if (ret == inode_state_did_delete &&
4582 			   cur->dir != last_dir_ino_rm) {
4583 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4584 			if (ret < 0)
4585 				goto out;
4586 			if (ret) {
4587 				ret = get_cur_path(sctx, cur->dir,
4588 						   cur->dir_gen, valid_path);
4589 				if (ret < 0)
4590 					goto out;
4591 				ret = send_rmdir(sctx, valid_path);
4592 				if (ret < 0)
4593 					goto out;
4594 				last_dir_ino_rm = cur->dir;
4595 			}
4596 		}
4597 	}
4598 
4599 	ret = 0;
4600 
4601 out:
4602 	__free_recorded_refs(&check_dirs);
4603 	free_recorded_refs(sctx);
4604 	fs_path_free(valid_path);
4605 	return ret;
4606 }
4607 
4608 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4609 {
4610 	const struct recorded_ref *data = k;
4611 	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4612 	int result;
4613 
4614 	if (data->dir > ref->dir)
4615 		return 1;
4616 	if (data->dir < ref->dir)
4617 		return -1;
4618 	if (data->dir_gen > ref->dir_gen)
4619 		return 1;
4620 	if (data->dir_gen < ref->dir_gen)
4621 		return -1;
4622 	if (data->name_len > ref->name_len)
4623 		return 1;
4624 	if (data->name_len < ref->name_len)
4625 		return -1;
4626 	result = strcmp(data->name, ref->name);
4627 	if (result > 0)
4628 		return 1;
4629 	if (result < 0)
4630 		return -1;
4631 	return 0;
4632 }
4633 
4634 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4635 {
4636 	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4637 
4638 	return rbtree_ref_comp(entry, parent) < 0;
4639 }
4640 
4641 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4642 			      struct fs_path *name, u64 dir, u64 dir_gen,
4643 			      struct send_ctx *sctx)
4644 {
4645 	int ret = 0;
4646 	struct fs_path *path = NULL;
4647 	struct recorded_ref *ref = NULL;
4648 
4649 	path = fs_path_alloc();
4650 	if (!path) {
4651 		ret = -ENOMEM;
4652 		goto out;
4653 	}
4654 
4655 	ref = recorded_ref_alloc();
4656 	if (!ref) {
4657 		ret = -ENOMEM;
4658 		goto out;
4659 	}
4660 
4661 	ret = get_cur_path(sctx, dir, dir_gen, path);
4662 	if (ret < 0)
4663 		goto out;
4664 	ret = fs_path_add_path(path, name);
4665 	if (ret < 0)
4666 		goto out;
4667 
4668 	ref->dir = dir;
4669 	ref->dir_gen = dir_gen;
4670 	set_ref_path(ref, path);
4671 	list_add_tail(&ref->list, refs);
4672 	rb_add(&ref->node, root, rbtree_ref_less);
4673 	ref->root = root;
4674 out:
4675 	if (ret) {
4676 		if (path && (!ref || !ref->full_path))
4677 			fs_path_free(path);
4678 		recorded_ref_free(ref);
4679 	}
4680 	return ret;
4681 }
4682 
4683 static int record_new_ref_if_needed(int num, u64 dir, int index,
4684 				    struct fs_path *name, void *ctx)
4685 {
4686 	int ret = 0;
4687 	struct send_ctx *sctx = ctx;
4688 	struct rb_node *node = NULL;
4689 	struct recorded_ref data;
4690 	struct recorded_ref *ref;
4691 	u64 dir_gen;
4692 
4693 	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4694 	if (ret < 0)
4695 		goto out;
4696 
4697 	data.dir = dir;
4698 	data.dir_gen = dir_gen;
4699 	set_ref_path(&data, name);
4700 	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4701 	if (node) {
4702 		ref = rb_entry(node, struct recorded_ref, node);
4703 		recorded_ref_free(ref);
4704 	} else {
4705 		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4706 					 &sctx->new_refs, name, dir, dir_gen,
4707 					 sctx);
4708 	}
4709 out:
4710 	return ret;
4711 }
4712 
4713 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4714 					struct fs_path *name, void *ctx)
4715 {
4716 	int ret = 0;
4717 	struct send_ctx *sctx = ctx;
4718 	struct rb_node *node = NULL;
4719 	struct recorded_ref data;
4720 	struct recorded_ref *ref;
4721 	u64 dir_gen;
4722 
4723 	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4724 	if (ret < 0)
4725 		goto out;
4726 
4727 	data.dir = dir;
4728 	data.dir_gen = dir_gen;
4729 	set_ref_path(&data, name);
4730 	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4731 	if (node) {
4732 		ref = rb_entry(node, struct recorded_ref, node);
4733 		recorded_ref_free(ref);
4734 	} else {
4735 		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4736 					 &sctx->deleted_refs, name, dir,
4737 					 dir_gen, sctx);
4738 	}
4739 out:
4740 	return ret;
4741 }
4742 
4743 static int record_new_ref(struct send_ctx *sctx)
4744 {
4745 	int ret;
4746 
4747 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4748 				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4749 	if (ret < 0)
4750 		goto out;
4751 	ret = 0;
4752 
4753 out:
4754 	return ret;
4755 }
4756 
4757 static int record_deleted_ref(struct send_ctx *sctx)
4758 {
4759 	int ret;
4760 
4761 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4762 				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4763 				sctx);
4764 	if (ret < 0)
4765 		goto out;
4766 	ret = 0;
4767 
4768 out:
4769 	return ret;
4770 }
4771 
4772 static int record_changed_ref(struct send_ctx *sctx)
4773 {
4774 	int ret = 0;
4775 
4776 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4777 			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4778 	if (ret < 0)
4779 		goto out;
4780 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4781 			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4782 	if (ret < 0)
4783 		goto out;
4784 	ret = 0;
4785 
4786 out:
4787 	return ret;
4788 }
4789 
4790 /*
4791  * Record and process all refs at once. Needed when an inode changes the
4792  * generation number, which means that it was deleted and recreated.
4793  */
4794 static int process_all_refs(struct send_ctx *sctx,
4795 			    enum btrfs_compare_tree_result cmd)
4796 {
4797 	int ret = 0;
4798 	int iter_ret = 0;
4799 	struct btrfs_root *root;
4800 	struct btrfs_path *path;
4801 	struct btrfs_key key;
4802 	struct btrfs_key found_key;
4803 	iterate_inode_ref_t cb;
4804 	int pending_move = 0;
4805 
4806 	path = alloc_path_for_send();
4807 	if (!path)
4808 		return -ENOMEM;
4809 
4810 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4811 		root = sctx->send_root;
4812 		cb = record_new_ref_if_needed;
4813 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4814 		root = sctx->parent_root;
4815 		cb = record_deleted_ref_if_needed;
4816 	} else {
4817 		btrfs_err(sctx->send_root->fs_info,
4818 				"Wrong command %d in process_all_refs", cmd);
4819 		ret = -EINVAL;
4820 		goto out;
4821 	}
4822 
4823 	key.objectid = sctx->cmp_key->objectid;
4824 	key.type = BTRFS_INODE_REF_KEY;
4825 	key.offset = 0;
4826 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4827 		if (found_key.objectid != key.objectid ||
4828 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4829 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4830 			break;
4831 
4832 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4833 		if (ret < 0)
4834 			goto out;
4835 	}
4836 	/* Catch error found during iteration */
4837 	if (iter_ret < 0) {
4838 		ret = iter_ret;
4839 		goto out;
4840 	}
4841 	btrfs_release_path(path);
4842 
4843 	/*
4844 	 * We don't actually care about pending_move as we are simply
4845 	 * re-creating this inode and will be rename'ing it into place once we
4846 	 * rename the parent directory.
4847 	 */
4848 	ret = process_recorded_refs(sctx, &pending_move);
4849 out:
4850 	btrfs_free_path(path);
4851 	return ret;
4852 }
4853 
4854 static int send_set_xattr(struct send_ctx *sctx,
4855 			  struct fs_path *path,
4856 			  const char *name, int name_len,
4857 			  const char *data, int data_len)
4858 {
4859 	int ret = 0;
4860 
4861 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4862 	if (ret < 0)
4863 		goto out;
4864 
4865 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4866 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4867 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4868 
4869 	ret = send_cmd(sctx);
4870 
4871 tlv_put_failure:
4872 out:
4873 	return ret;
4874 }
4875 
4876 static int send_remove_xattr(struct send_ctx *sctx,
4877 			  struct fs_path *path,
4878 			  const char *name, int name_len)
4879 {
4880 	int ret = 0;
4881 
4882 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4883 	if (ret < 0)
4884 		goto out;
4885 
4886 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4887 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4888 
4889 	ret = send_cmd(sctx);
4890 
4891 tlv_put_failure:
4892 out:
4893 	return ret;
4894 }
4895 
4896 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4897 			       const char *name, int name_len, const char *data,
4898 			       int data_len, void *ctx)
4899 {
4900 	int ret;
4901 	struct send_ctx *sctx = ctx;
4902 	struct fs_path *p;
4903 	struct posix_acl_xattr_header dummy_acl;
4904 
4905 	/* Capabilities are emitted by finish_inode_if_needed */
4906 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4907 		return 0;
4908 
4909 	p = fs_path_alloc();
4910 	if (!p)
4911 		return -ENOMEM;
4912 
4913 	/*
4914 	 * This hack is needed because empty acls are stored as zero byte
4915 	 * data in xattrs. Problem with that is, that receiving these zero byte
4916 	 * acls will fail later. To fix this, we send a dummy acl list that
4917 	 * only contains the version number and no entries.
4918 	 */
4919 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4920 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4921 		if (data_len == 0) {
4922 			dummy_acl.a_version =
4923 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4924 			data = (char *)&dummy_acl;
4925 			data_len = sizeof(dummy_acl);
4926 		}
4927 	}
4928 
4929 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4930 	if (ret < 0)
4931 		goto out;
4932 
4933 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4934 
4935 out:
4936 	fs_path_free(p);
4937 	return ret;
4938 }
4939 
4940 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4941 				   const char *name, int name_len,
4942 				   const char *data, int data_len, void *ctx)
4943 {
4944 	int ret;
4945 	struct send_ctx *sctx = ctx;
4946 	struct fs_path *p;
4947 
4948 	p = fs_path_alloc();
4949 	if (!p)
4950 		return -ENOMEM;
4951 
4952 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4953 	if (ret < 0)
4954 		goto out;
4955 
4956 	ret = send_remove_xattr(sctx, p, name, name_len);
4957 
4958 out:
4959 	fs_path_free(p);
4960 	return ret;
4961 }
4962 
4963 static int process_new_xattr(struct send_ctx *sctx)
4964 {
4965 	int ret = 0;
4966 
4967 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4968 			       __process_new_xattr, sctx);
4969 
4970 	return ret;
4971 }
4972 
4973 static int process_deleted_xattr(struct send_ctx *sctx)
4974 {
4975 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4976 				__process_deleted_xattr, sctx);
4977 }
4978 
4979 struct find_xattr_ctx {
4980 	const char *name;
4981 	int name_len;
4982 	int found_idx;
4983 	char *found_data;
4984 	int found_data_len;
4985 };
4986 
4987 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4988 			int name_len, const char *data, int data_len, void *vctx)
4989 {
4990 	struct find_xattr_ctx *ctx = vctx;
4991 
4992 	if (name_len == ctx->name_len &&
4993 	    strncmp(name, ctx->name, name_len) == 0) {
4994 		ctx->found_idx = num;
4995 		ctx->found_data_len = data_len;
4996 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4997 		if (!ctx->found_data)
4998 			return -ENOMEM;
4999 		return 1;
5000 	}
5001 	return 0;
5002 }
5003 
5004 static int find_xattr(struct btrfs_root *root,
5005 		      struct btrfs_path *path,
5006 		      struct btrfs_key *key,
5007 		      const char *name, int name_len,
5008 		      char **data, int *data_len)
5009 {
5010 	int ret;
5011 	struct find_xattr_ctx ctx;
5012 
5013 	ctx.name = name;
5014 	ctx.name_len = name_len;
5015 	ctx.found_idx = -1;
5016 	ctx.found_data = NULL;
5017 	ctx.found_data_len = 0;
5018 
5019 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5020 	if (ret < 0)
5021 		return ret;
5022 
5023 	if (ctx.found_idx == -1)
5024 		return -ENOENT;
5025 	if (data) {
5026 		*data = ctx.found_data;
5027 		*data_len = ctx.found_data_len;
5028 	} else {
5029 		kfree(ctx.found_data);
5030 	}
5031 	return ctx.found_idx;
5032 }
5033 
5034 
5035 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5036 				       const char *name, int name_len,
5037 				       const char *data, int data_len,
5038 				       void *ctx)
5039 {
5040 	int ret;
5041 	struct send_ctx *sctx = ctx;
5042 	char *found_data = NULL;
5043 	int found_data_len  = 0;
5044 
5045 	ret = find_xattr(sctx->parent_root, sctx->right_path,
5046 			 sctx->cmp_key, name, name_len, &found_data,
5047 			 &found_data_len);
5048 	if (ret == -ENOENT) {
5049 		ret = __process_new_xattr(num, di_key, name, name_len, data,
5050 					  data_len, ctx);
5051 	} else if (ret >= 0) {
5052 		if (data_len != found_data_len ||
5053 		    memcmp(data, found_data, data_len)) {
5054 			ret = __process_new_xattr(num, di_key, name, name_len,
5055 						  data, data_len, ctx);
5056 		} else {
5057 			ret = 0;
5058 		}
5059 	}
5060 
5061 	kfree(found_data);
5062 	return ret;
5063 }
5064 
5065 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5066 					   const char *name, int name_len,
5067 					   const char *data, int data_len,
5068 					   void *ctx)
5069 {
5070 	int ret;
5071 	struct send_ctx *sctx = ctx;
5072 
5073 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5074 			 name, name_len, NULL, NULL);
5075 	if (ret == -ENOENT)
5076 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5077 					      data_len, ctx);
5078 	else if (ret >= 0)
5079 		ret = 0;
5080 
5081 	return ret;
5082 }
5083 
5084 static int process_changed_xattr(struct send_ctx *sctx)
5085 {
5086 	int ret = 0;
5087 
5088 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5089 			__process_changed_new_xattr, sctx);
5090 	if (ret < 0)
5091 		goto out;
5092 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5093 			__process_changed_deleted_xattr, sctx);
5094 
5095 out:
5096 	return ret;
5097 }
5098 
5099 static int process_all_new_xattrs(struct send_ctx *sctx)
5100 {
5101 	int ret = 0;
5102 	int iter_ret = 0;
5103 	struct btrfs_root *root;
5104 	struct btrfs_path *path;
5105 	struct btrfs_key key;
5106 	struct btrfs_key found_key;
5107 
5108 	path = alloc_path_for_send();
5109 	if (!path)
5110 		return -ENOMEM;
5111 
5112 	root = sctx->send_root;
5113 
5114 	key.objectid = sctx->cmp_key->objectid;
5115 	key.type = BTRFS_XATTR_ITEM_KEY;
5116 	key.offset = 0;
5117 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5118 		if (found_key.objectid != key.objectid ||
5119 		    found_key.type != key.type) {
5120 			ret = 0;
5121 			break;
5122 		}
5123 
5124 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5125 		if (ret < 0)
5126 			break;
5127 	}
5128 	/* Catch error found during iteration */
5129 	if (iter_ret < 0)
5130 		ret = iter_ret;
5131 
5132 	btrfs_free_path(path);
5133 	return ret;
5134 }
5135 
5136 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5137 		       struct fsverity_descriptor *desc)
5138 {
5139 	int ret;
5140 
5141 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5142 	if (ret < 0)
5143 		goto out;
5144 
5145 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5146 	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5147 			le8_to_cpu(desc->hash_algorithm));
5148 	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5149 			1U << le8_to_cpu(desc->log_blocksize));
5150 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5151 			le8_to_cpu(desc->salt_size));
5152 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5153 			le32_to_cpu(desc->sig_size));
5154 
5155 	ret = send_cmd(sctx);
5156 
5157 tlv_put_failure:
5158 out:
5159 	return ret;
5160 }
5161 
5162 static int process_verity(struct send_ctx *sctx)
5163 {
5164 	int ret = 0;
5165 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5166 	struct inode *inode;
5167 	struct fs_path *p;
5168 
5169 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5170 	if (IS_ERR(inode))
5171 		return PTR_ERR(inode);
5172 
5173 	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5174 	if (ret < 0)
5175 		goto iput;
5176 
5177 	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5178 		ret = -EMSGSIZE;
5179 		goto iput;
5180 	}
5181 	if (!sctx->verity_descriptor) {
5182 		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5183 						   GFP_KERNEL);
5184 		if (!sctx->verity_descriptor) {
5185 			ret = -ENOMEM;
5186 			goto iput;
5187 		}
5188 	}
5189 
5190 	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5191 	if (ret < 0)
5192 		goto iput;
5193 
5194 	p = fs_path_alloc();
5195 	if (!p) {
5196 		ret = -ENOMEM;
5197 		goto iput;
5198 	}
5199 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5200 	if (ret < 0)
5201 		goto free_path;
5202 
5203 	ret = send_verity(sctx, p, sctx->verity_descriptor);
5204 	if (ret < 0)
5205 		goto free_path;
5206 
5207 free_path:
5208 	fs_path_free(p);
5209 iput:
5210 	iput(inode);
5211 	return ret;
5212 }
5213 
5214 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5215 {
5216 	return sctx->send_max_size - SZ_16K;
5217 }
5218 
5219 static int put_data_header(struct send_ctx *sctx, u32 len)
5220 {
5221 	if (WARN_ON_ONCE(sctx->put_data))
5222 		return -EINVAL;
5223 	sctx->put_data = true;
5224 	if (sctx->proto >= 2) {
5225 		/*
5226 		 * Since v2, the data attribute header doesn't include a length,
5227 		 * it is implicitly to the end of the command.
5228 		 */
5229 		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5230 			return -EOVERFLOW;
5231 		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5232 		sctx->send_size += sizeof(__le16);
5233 	} else {
5234 		struct btrfs_tlv_header *hdr;
5235 
5236 		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5237 			return -EOVERFLOW;
5238 		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5239 		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5240 		put_unaligned_le16(len, &hdr->tlv_len);
5241 		sctx->send_size += sizeof(*hdr);
5242 	}
5243 	return 0;
5244 }
5245 
5246 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5247 {
5248 	struct btrfs_root *root = sctx->send_root;
5249 	struct btrfs_fs_info *fs_info = root->fs_info;
5250 	struct page *page;
5251 	pgoff_t index = offset >> PAGE_SHIFT;
5252 	pgoff_t last_index;
5253 	unsigned pg_offset = offset_in_page(offset);
5254 	int ret;
5255 
5256 	ret = put_data_header(sctx, len);
5257 	if (ret)
5258 		return ret;
5259 
5260 	last_index = (offset + len - 1) >> PAGE_SHIFT;
5261 
5262 	while (index <= last_index) {
5263 		unsigned cur_len = min_t(unsigned, len,
5264 					 PAGE_SIZE - pg_offset);
5265 
5266 		page = find_lock_page(sctx->cur_inode->i_mapping, index);
5267 		if (!page) {
5268 			page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5269 						  &sctx->ra, NULL, index,
5270 						  last_index + 1 - index);
5271 
5272 			page = find_or_create_page(sctx->cur_inode->i_mapping,
5273 						   index, GFP_KERNEL);
5274 			if (!page) {
5275 				ret = -ENOMEM;
5276 				break;
5277 			}
5278 		}
5279 
5280 		if (PageReadahead(page))
5281 			page_cache_async_readahead(sctx->cur_inode->i_mapping,
5282 						   &sctx->ra, NULL, page_folio(page),
5283 						   index, last_index + 1 - index);
5284 
5285 		if (!PageUptodate(page)) {
5286 			btrfs_read_folio(NULL, page_folio(page));
5287 			lock_page(page);
5288 			if (!PageUptodate(page)) {
5289 				unlock_page(page);
5290 				btrfs_err(fs_info,
5291 			"send: IO error at offset %llu for inode %llu root %llu",
5292 					page_offset(page), sctx->cur_ino,
5293 					sctx->send_root->root_key.objectid);
5294 				put_page(page);
5295 				ret = -EIO;
5296 				break;
5297 			}
5298 		}
5299 
5300 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5301 				 pg_offset, cur_len);
5302 		unlock_page(page);
5303 		put_page(page);
5304 		index++;
5305 		pg_offset = 0;
5306 		len -= cur_len;
5307 		sctx->send_size += cur_len;
5308 	}
5309 
5310 	return ret;
5311 }
5312 
5313 /*
5314  * Read some bytes from the current inode/file and send a write command to
5315  * user space.
5316  */
5317 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5318 {
5319 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5320 	int ret = 0;
5321 	struct fs_path *p;
5322 
5323 	p = fs_path_alloc();
5324 	if (!p)
5325 		return -ENOMEM;
5326 
5327 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5328 
5329 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5330 	if (ret < 0)
5331 		goto out;
5332 
5333 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5334 	if (ret < 0)
5335 		goto out;
5336 
5337 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5338 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5339 	ret = put_file_data(sctx, offset, len);
5340 	if (ret < 0)
5341 		goto out;
5342 
5343 	ret = send_cmd(sctx);
5344 
5345 tlv_put_failure:
5346 out:
5347 	fs_path_free(p);
5348 	return ret;
5349 }
5350 
5351 /*
5352  * Send a clone command to user space.
5353  */
5354 static int send_clone(struct send_ctx *sctx,
5355 		      u64 offset, u32 len,
5356 		      struct clone_root *clone_root)
5357 {
5358 	int ret = 0;
5359 	struct fs_path *p;
5360 	u64 gen;
5361 
5362 	btrfs_debug(sctx->send_root->fs_info,
5363 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5364 		    offset, len, clone_root->root->root_key.objectid,
5365 		    clone_root->ino, clone_root->offset);
5366 
5367 	p = fs_path_alloc();
5368 	if (!p)
5369 		return -ENOMEM;
5370 
5371 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5372 	if (ret < 0)
5373 		goto out;
5374 
5375 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5376 	if (ret < 0)
5377 		goto out;
5378 
5379 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5380 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5381 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5382 
5383 	if (clone_root->root == sctx->send_root) {
5384 		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5385 		if (ret < 0)
5386 			goto out;
5387 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5388 	} else {
5389 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5390 	}
5391 	if (ret < 0)
5392 		goto out;
5393 
5394 	/*
5395 	 * If the parent we're using has a received_uuid set then use that as
5396 	 * our clone source as that is what we will look for when doing a
5397 	 * receive.
5398 	 *
5399 	 * This covers the case that we create a snapshot off of a received
5400 	 * subvolume and then use that as the parent and try to receive on a
5401 	 * different host.
5402 	 */
5403 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5404 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5405 			     clone_root->root->root_item.received_uuid);
5406 	else
5407 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5408 			     clone_root->root->root_item.uuid);
5409 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5410 		    btrfs_root_ctransid(&clone_root->root->root_item));
5411 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5412 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5413 			clone_root->offset);
5414 
5415 	ret = send_cmd(sctx);
5416 
5417 tlv_put_failure:
5418 out:
5419 	fs_path_free(p);
5420 	return ret;
5421 }
5422 
5423 /*
5424  * Send an update extent command to user space.
5425  */
5426 static int send_update_extent(struct send_ctx *sctx,
5427 			      u64 offset, u32 len)
5428 {
5429 	int ret = 0;
5430 	struct fs_path *p;
5431 
5432 	p = fs_path_alloc();
5433 	if (!p)
5434 		return -ENOMEM;
5435 
5436 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5437 	if (ret < 0)
5438 		goto out;
5439 
5440 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5441 	if (ret < 0)
5442 		goto out;
5443 
5444 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5445 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5446 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5447 
5448 	ret = send_cmd(sctx);
5449 
5450 tlv_put_failure:
5451 out:
5452 	fs_path_free(p);
5453 	return ret;
5454 }
5455 
5456 static int send_hole(struct send_ctx *sctx, u64 end)
5457 {
5458 	struct fs_path *p = NULL;
5459 	u64 read_size = max_send_read_size(sctx);
5460 	u64 offset = sctx->cur_inode_last_extent;
5461 	int ret = 0;
5462 
5463 	/*
5464 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5465 	 * fallocate (for extent preallocation and hole punching), sending a
5466 	 * write of zeroes starting at EOF or beyond would later require issuing
5467 	 * a truncate operation which would undo the write and achieve nothing.
5468 	 */
5469 	if (offset >= sctx->cur_inode_size)
5470 		return 0;
5471 
5472 	/*
5473 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5474 	 * after the i_size.
5475 	 */
5476 	end = min_t(u64, end, sctx->cur_inode_size);
5477 
5478 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5479 		return send_update_extent(sctx, offset, end - offset);
5480 
5481 	p = fs_path_alloc();
5482 	if (!p)
5483 		return -ENOMEM;
5484 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5485 	if (ret < 0)
5486 		goto tlv_put_failure;
5487 	while (offset < end) {
5488 		u64 len = min(end - offset, read_size);
5489 
5490 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5491 		if (ret < 0)
5492 			break;
5493 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5494 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5495 		ret = put_data_header(sctx, len);
5496 		if (ret < 0)
5497 			break;
5498 		memset(sctx->send_buf + sctx->send_size, 0, len);
5499 		sctx->send_size += len;
5500 		ret = send_cmd(sctx);
5501 		if (ret < 0)
5502 			break;
5503 		offset += len;
5504 	}
5505 	sctx->cur_inode_next_write_offset = offset;
5506 tlv_put_failure:
5507 	fs_path_free(p);
5508 	return ret;
5509 }
5510 
5511 static int send_encoded_inline_extent(struct send_ctx *sctx,
5512 				      struct btrfs_path *path, u64 offset,
5513 				      u64 len)
5514 {
5515 	struct btrfs_root *root = sctx->send_root;
5516 	struct btrfs_fs_info *fs_info = root->fs_info;
5517 	struct inode *inode;
5518 	struct fs_path *fspath;
5519 	struct extent_buffer *leaf = path->nodes[0];
5520 	struct btrfs_key key;
5521 	struct btrfs_file_extent_item *ei;
5522 	u64 ram_bytes;
5523 	size_t inline_size;
5524 	int ret;
5525 
5526 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5527 	if (IS_ERR(inode))
5528 		return PTR_ERR(inode);
5529 
5530 	fspath = fs_path_alloc();
5531 	if (!fspath) {
5532 		ret = -ENOMEM;
5533 		goto out;
5534 	}
5535 
5536 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5537 	if (ret < 0)
5538 		goto out;
5539 
5540 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5541 	if (ret < 0)
5542 		goto out;
5543 
5544 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5545 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5546 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5547 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5548 
5549 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5550 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5551 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5552 		    min(key.offset + ram_bytes - offset, len));
5553 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5554 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5555 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5556 				btrfs_file_extent_compression(leaf, ei));
5557 	if (ret < 0)
5558 		goto out;
5559 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5560 
5561 	ret = put_data_header(sctx, inline_size);
5562 	if (ret < 0)
5563 		goto out;
5564 	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5565 			   btrfs_file_extent_inline_start(ei), inline_size);
5566 	sctx->send_size += inline_size;
5567 
5568 	ret = send_cmd(sctx);
5569 
5570 tlv_put_failure:
5571 out:
5572 	fs_path_free(fspath);
5573 	iput(inode);
5574 	return ret;
5575 }
5576 
5577 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5578 			       u64 offset, u64 len)
5579 {
5580 	struct btrfs_root *root = sctx->send_root;
5581 	struct btrfs_fs_info *fs_info = root->fs_info;
5582 	struct inode *inode;
5583 	struct fs_path *fspath;
5584 	struct extent_buffer *leaf = path->nodes[0];
5585 	struct btrfs_key key;
5586 	struct btrfs_file_extent_item *ei;
5587 	u64 disk_bytenr, disk_num_bytes;
5588 	u32 data_offset;
5589 	struct btrfs_cmd_header *hdr;
5590 	u32 crc;
5591 	int ret;
5592 
5593 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5594 	if (IS_ERR(inode))
5595 		return PTR_ERR(inode);
5596 
5597 	fspath = fs_path_alloc();
5598 	if (!fspath) {
5599 		ret = -ENOMEM;
5600 		goto out;
5601 	}
5602 
5603 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5604 	if (ret < 0)
5605 		goto out;
5606 
5607 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5608 	if (ret < 0)
5609 		goto out;
5610 
5611 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5612 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5613 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5614 	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5615 
5616 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5617 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5618 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5619 		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5620 			len));
5621 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5622 		    btrfs_file_extent_ram_bytes(leaf, ei));
5623 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5624 		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5625 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5626 				btrfs_file_extent_compression(leaf, ei));
5627 	if (ret < 0)
5628 		goto out;
5629 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5630 	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5631 
5632 	ret = put_data_header(sctx, disk_num_bytes);
5633 	if (ret < 0)
5634 		goto out;
5635 
5636 	/*
5637 	 * We want to do I/O directly into the send buffer, so get the next page
5638 	 * boundary in the send buffer. This means that there may be a gap
5639 	 * between the beginning of the command and the file data.
5640 	 */
5641 	data_offset = PAGE_ALIGN(sctx->send_size);
5642 	if (data_offset > sctx->send_max_size ||
5643 	    sctx->send_max_size - data_offset < disk_num_bytes) {
5644 		ret = -EOVERFLOW;
5645 		goto out;
5646 	}
5647 
5648 	/*
5649 	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5650 	 * reading into send_buf.
5651 	 */
5652 	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5653 						    disk_bytenr, disk_num_bytes,
5654 						    sctx->send_buf_pages +
5655 						    (data_offset >> PAGE_SHIFT));
5656 	if (ret)
5657 		goto out;
5658 
5659 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5660 	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5661 	hdr->crc = 0;
5662 	crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5663 	crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5664 	hdr->crc = cpu_to_le32(crc);
5665 
5666 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5667 			&sctx->send_off);
5668 	if (!ret) {
5669 		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5670 				disk_num_bytes, &sctx->send_off);
5671 	}
5672 	sctx->send_size = 0;
5673 	sctx->put_data = false;
5674 
5675 tlv_put_failure:
5676 out:
5677 	fs_path_free(fspath);
5678 	iput(inode);
5679 	return ret;
5680 }
5681 
5682 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5683 			    const u64 offset, const u64 len)
5684 {
5685 	const u64 end = offset + len;
5686 	struct extent_buffer *leaf = path->nodes[0];
5687 	struct btrfs_file_extent_item *ei;
5688 	u64 read_size = max_send_read_size(sctx);
5689 	u64 sent = 0;
5690 
5691 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5692 		return send_update_extent(sctx, offset, len);
5693 
5694 	ei = btrfs_item_ptr(leaf, path->slots[0],
5695 			    struct btrfs_file_extent_item);
5696 	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5697 	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5698 		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5699 				  BTRFS_FILE_EXTENT_INLINE);
5700 
5701 		/*
5702 		 * Send the compressed extent unless the compressed data is
5703 		 * larger than the decompressed data. This can happen if we're
5704 		 * not sending the entire extent, either because it has been
5705 		 * partially overwritten/truncated or because this is a part of
5706 		 * the extent that we couldn't clone in clone_range().
5707 		 */
5708 		if (is_inline &&
5709 		    btrfs_file_extent_inline_item_len(leaf,
5710 						      path->slots[0]) <= len) {
5711 			return send_encoded_inline_extent(sctx, path, offset,
5712 							  len);
5713 		} else if (!is_inline &&
5714 			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5715 			return send_encoded_extent(sctx, path, offset, len);
5716 		}
5717 	}
5718 
5719 	if (sctx->cur_inode == NULL) {
5720 		struct btrfs_root *root = sctx->send_root;
5721 
5722 		sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5723 		if (IS_ERR(sctx->cur_inode)) {
5724 			int err = PTR_ERR(sctx->cur_inode);
5725 
5726 			sctx->cur_inode = NULL;
5727 			return err;
5728 		}
5729 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5730 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5731 
5732 		/*
5733 		 * It's very likely there are no pages from this inode in the page
5734 		 * cache, so after reading extents and sending their data, we clean
5735 		 * the page cache to avoid trashing the page cache (adding pressure
5736 		 * to the page cache and forcing eviction of other data more useful
5737 		 * for applications).
5738 		 *
5739 		 * We decide if we should clean the page cache simply by checking
5740 		 * if the inode's mapping nrpages is 0 when we first open it, and
5741 		 * not by using something like filemap_range_has_page() before
5742 		 * reading an extent because when we ask the readahead code to
5743 		 * read a given file range, it may (and almost always does) read
5744 		 * pages from beyond that range (see the documentation for
5745 		 * page_cache_sync_readahead()), so it would not be reliable,
5746 		 * because after reading the first extent future calls to
5747 		 * filemap_range_has_page() would return true because the readahead
5748 		 * on the previous extent resulted in reading pages of the current
5749 		 * extent as well.
5750 		 */
5751 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5752 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5753 	}
5754 
5755 	while (sent < len) {
5756 		u64 size = min(len - sent, read_size);
5757 		int ret;
5758 
5759 		ret = send_write(sctx, offset + sent, size);
5760 		if (ret < 0)
5761 			return ret;
5762 		sent += size;
5763 	}
5764 
5765 	if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5766 		/*
5767 		 * Always operate only on ranges that are a multiple of the page
5768 		 * size. This is not only to prevent zeroing parts of a page in
5769 		 * the case of subpage sector size, but also to guarantee we evict
5770 		 * pages, as passing a range that is smaller than page size does
5771 		 * not evict the respective page (only zeroes part of its content).
5772 		 *
5773 		 * Always start from the end offset of the last range cleared.
5774 		 * This is because the readahead code may (and very often does)
5775 		 * reads pages beyond the range we request for readahead. So if
5776 		 * we have an extent layout like this:
5777 		 *
5778 		 *            [ extent A ] [ extent B ] [ extent C ]
5779 		 *
5780 		 * When we ask page_cache_sync_readahead() to read extent A, it
5781 		 * may also trigger reads for pages of extent B. If we are doing
5782 		 * an incremental send and extent B has not changed between the
5783 		 * parent and send snapshots, some or all of its pages may end
5784 		 * up being read and placed in the page cache. So when truncating
5785 		 * the page cache we always start from the end offset of the
5786 		 * previously processed extent up to the end of the current
5787 		 * extent.
5788 		 */
5789 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5790 					   sctx->page_cache_clear_start,
5791 					   end - 1);
5792 		sctx->page_cache_clear_start = end;
5793 	}
5794 
5795 	return 0;
5796 }
5797 
5798 /*
5799  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5800  * found, call send_set_xattr function to emit it.
5801  *
5802  * Return 0 if there isn't a capability, or when the capability was emitted
5803  * successfully, or < 0 if an error occurred.
5804  */
5805 static int send_capabilities(struct send_ctx *sctx)
5806 {
5807 	struct fs_path *fspath = NULL;
5808 	struct btrfs_path *path;
5809 	struct btrfs_dir_item *di;
5810 	struct extent_buffer *leaf;
5811 	unsigned long data_ptr;
5812 	char *buf = NULL;
5813 	int buf_len;
5814 	int ret = 0;
5815 
5816 	path = alloc_path_for_send();
5817 	if (!path)
5818 		return -ENOMEM;
5819 
5820 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5821 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5822 	if (!di) {
5823 		/* There is no xattr for this inode */
5824 		goto out;
5825 	} else if (IS_ERR(di)) {
5826 		ret = PTR_ERR(di);
5827 		goto out;
5828 	}
5829 
5830 	leaf = path->nodes[0];
5831 	buf_len = btrfs_dir_data_len(leaf, di);
5832 
5833 	fspath = fs_path_alloc();
5834 	buf = kmalloc(buf_len, GFP_KERNEL);
5835 	if (!fspath || !buf) {
5836 		ret = -ENOMEM;
5837 		goto out;
5838 	}
5839 
5840 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5841 	if (ret < 0)
5842 		goto out;
5843 
5844 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5845 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5846 
5847 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5848 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5849 out:
5850 	kfree(buf);
5851 	fs_path_free(fspath);
5852 	btrfs_free_path(path);
5853 	return ret;
5854 }
5855 
5856 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5857 		       struct clone_root *clone_root, const u64 disk_byte,
5858 		       u64 data_offset, u64 offset, u64 len)
5859 {
5860 	struct btrfs_path *path;
5861 	struct btrfs_key key;
5862 	int ret;
5863 	struct btrfs_inode_info info;
5864 	u64 clone_src_i_size = 0;
5865 
5866 	/*
5867 	 * Prevent cloning from a zero offset with a length matching the sector
5868 	 * size because in some scenarios this will make the receiver fail.
5869 	 *
5870 	 * For example, if in the source filesystem the extent at offset 0
5871 	 * has a length of sectorsize and it was written using direct IO, then
5872 	 * it can never be an inline extent (even if compression is enabled).
5873 	 * Then this extent can be cloned in the original filesystem to a non
5874 	 * zero file offset, but it may not be possible to clone in the
5875 	 * destination filesystem because it can be inlined due to compression
5876 	 * on the destination filesystem (as the receiver's write operations are
5877 	 * always done using buffered IO). The same happens when the original
5878 	 * filesystem does not have compression enabled but the destination
5879 	 * filesystem has.
5880 	 */
5881 	if (clone_root->offset == 0 &&
5882 	    len == sctx->send_root->fs_info->sectorsize)
5883 		return send_extent_data(sctx, dst_path, offset, len);
5884 
5885 	path = alloc_path_for_send();
5886 	if (!path)
5887 		return -ENOMEM;
5888 
5889 	/*
5890 	 * There are inodes that have extents that lie behind its i_size. Don't
5891 	 * accept clones from these extents.
5892 	 */
5893 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5894 	btrfs_release_path(path);
5895 	if (ret < 0)
5896 		goto out;
5897 	clone_src_i_size = info.size;
5898 
5899 	/*
5900 	 * We can't send a clone operation for the entire range if we find
5901 	 * extent items in the respective range in the source file that
5902 	 * refer to different extents or if we find holes.
5903 	 * So check for that and do a mix of clone and regular write/copy
5904 	 * operations if needed.
5905 	 *
5906 	 * Example:
5907 	 *
5908 	 * mkfs.btrfs -f /dev/sda
5909 	 * mount /dev/sda /mnt
5910 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5911 	 * cp --reflink=always /mnt/foo /mnt/bar
5912 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5913 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5914 	 *
5915 	 * If when we send the snapshot and we are processing file bar (which
5916 	 * has a higher inode number than foo) we blindly send a clone operation
5917 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5918 	 * a file bar that matches the content of file foo - iow, doesn't match
5919 	 * the content from bar in the original filesystem.
5920 	 */
5921 	key.objectid = clone_root->ino;
5922 	key.type = BTRFS_EXTENT_DATA_KEY;
5923 	key.offset = clone_root->offset;
5924 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5925 	if (ret < 0)
5926 		goto out;
5927 	if (ret > 0 && path->slots[0] > 0) {
5928 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5929 		if (key.objectid == clone_root->ino &&
5930 		    key.type == BTRFS_EXTENT_DATA_KEY)
5931 			path->slots[0]--;
5932 	}
5933 
5934 	while (true) {
5935 		struct extent_buffer *leaf = path->nodes[0];
5936 		int slot = path->slots[0];
5937 		struct btrfs_file_extent_item *ei;
5938 		u8 type;
5939 		u64 ext_len;
5940 		u64 clone_len;
5941 		u64 clone_data_offset;
5942 		bool crossed_src_i_size = false;
5943 
5944 		if (slot >= btrfs_header_nritems(leaf)) {
5945 			ret = btrfs_next_leaf(clone_root->root, path);
5946 			if (ret < 0)
5947 				goto out;
5948 			else if (ret > 0)
5949 				break;
5950 			continue;
5951 		}
5952 
5953 		btrfs_item_key_to_cpu(leaf, &key, slot);
5954 
5955 		/*
5956 		 * We might have an implicit trailing hole (NO_HOLES feature
5957 		 * enabled). We deal with it after leaving this loop.
5958 		 */
5959 		if (key.objectid != clone_root->ino ||
5960 		    key.type != BTRFS_EXTENT_DATA_KEY)
5961 			break;
5962 
5963 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5964 		type = btrfs_file_extent_type(leaf, ei);
5965 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5966 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5967 			ext_len = PAGE_ALIGN(ext_len);
5968 		} else {
5969 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5970 		}
5971 
5972 		if (key.offset + ext_len <= clone_root->offset)
5973 			goto next;
5974 
5975 		if (key.offset > clone_root->offset) {
5976 			/* Implicit hole, NO_HOLES feature enabled. */
5977 			u64 hole_len = key.offset - clone_root->offset;
5978 
5979 			if (hole_len > len)
5980 				hole_len = len;
5981 			ret = send_extent_data(sctx, dst_path, offset,
5982 					       hole_len);
5983 			if (ret < 0)
5984 				goto out;
5985 
5986 			len -= hole_len;
5987 			if (len == 0)
5988 				break;
5989 			offset += hole_len;
5990 			clone_root->offset += hole_len;
5991 			data_offset += hole_len;
5992 		}
5993 
5994 		if (key.offset >= clone_root->offset + len)
5995 			break;
5996 
5997 		if (key.offset >= clone_src_i_size)
5998 			break;
5999 
6000 		if (key.offset + ext_len > clone_src_i_size) {
6001 			ext_len = clone_src_i_size - key.offset;
6002 			crossed_src_i_size = true;
6003 		}
6004 
6005 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6006 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6007 			clone_root->offset = key.offset;
6008 			if (clone_data_offset < data_offset &&
6009 				clone_data_offset + ext_len > data_offset) {
6010 				u64 extent_offset;
6011 
6012 				extent_offset = data_offset - clone_data_offset;
6013 				ext_len -= extent_offset;
6014 				clone_data_offset += extent_offset;
6015 				clone_root->offset += extent_offset;
6016 			}
6017 		}
6018 
6019 		clone_len = min_t(u64, ext_len, len);
6020 
6021 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6022 		    clone_data_offset == data_offset) {
6023 			const u64 src_end = clone_root->offset + clone_len;
6024 			const u64 sectorsize = SZ_64K;
6025 
6026 			/*
6027 			 * We can't clone the last block, when its size is not
6028 			 * sector size aligned, into the middle of a file. If we
6029 			 * do so, the receiver will get a failure (-EINVAL) when
6030 			 * trying to clone or will silently corrupt the data in
6031 			 * the destination file if it's on a kernel without the
6032 			 * fix introduced by commit ac765f83f1397646
6033 			 * ("Btrfs: fix data corruption due to cloning of eof
6034 			 * block).
6035 			 *
6036 			 * So issue a clone of the aligned down range plus a
6037 			 * regular write for the eof block, if we hit that case.
6038 			 *
6039 			 * Also, we use the maximum possible sector size, 64K,
6040 			 * because we don't know what's the sector size of the
6041 			 * filesystem that receives the stream, so we have to
6042 			 * assume the largest possible sector size.
6043 			 */
6044 			if (src_end == clone_src_i_size &&
6045 			    !IS_ALIGNED(src_end, sectorsize) &&
6046 			    offset + clone_len < sctx->cur_inode_size) {
6047 				u64 slen;
6048 
6049 				slen = ALIGN_DOWN(src_end - clone_root->offset,
6050 						  sectorsize);
6051 				if (slen > 0) {
6052 					ret = send_clone(sctx, offset, slen,
6053 							 clone_root);
6054 					if (ret < 0)
6055 						goto out;
6056 				}
6057 				ret = send_extent_data(sctx, dst_path,
6058 						       offset + slen,
6059 						       clone_len - slen);
6060 			} else {
6061 				ret = send_clone(sctx, offset, clone_len,
6062 						 clone_root);
6063 			}
6064 		} else if (crossed_src_i_size && clone_len < len) {
6065 			/*
6066 			 * If we are at i_size of the clone source inode and we
6067 			 * can not clone from it, terminate the loop. This is
6068 			 * to avoid sending two write operations, one with a
6069 			 * length matching clone_len and the final one after
6070 			 * this loop with a length of len - clone_len.
6071 			 *
6072 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6073 			 * was passed to the send ioctl), this helps avoid
6074 			 * sending an encoded write for an offset that is not
6075 			 * sector size aligned, in case the i_size of the source
6076 			 * inode is not sector size aligned. That will make the
6077 			 * receiver fallback to decompression of the data and
6078 			 * writing it using regular buffered IO, therefore while
6079 			 * not incorrect, it's not optimal due decompression and
6080 			 * possible re-compression at the receiver.
6081 			 */
6082 			break;
6083 		} else {
6084 			ret = send_extent_data(sctx, dst_path, offset,
6085 					       clone_len);
6086 		}
6087 
6088 		if (ret < 0)
6089 			goto out;
6090 
6091 		len -= clone_len;
6092 		if (len == 0)
6093 			break;
6094 		offset += clone_len;
6095 		clone_root->offset += clone_len;
6096 
6097 		/*
6098 		 * If we are cloning from the file we are currently processing,
6099 		 * and using the send root as the clone root, we must stop once
6100 		 * the current clone offset reaches the current eof of the file
6101 		 * at the receiver, otherwise we would issue an invalid clone
6102 		 * operation (source range going beyond eof) and cause the
6103 		 * receiver to fail. So if we reach the current eof, bail out
6104 		 * and fallback to a regular write.
6105 		 */
6106 		if (clone_root->root == sctx->send_root &&
6107 		    clone_root->ino == sctx->cur_ino &&
6108 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6109 			break;
6110 
6111 		data_offset += clone_len;
6112 next:
6113 		path->slots[0]++;
6114 	}
6115 
6116 	if (len > 0)
6117 		ret = send_extent_data(sctx, dst_path, offset, len);
6118 	else
6119 		ret = 0;
6120 out:
6121 	btrfs_free_path(path);
6122 	return ret;
6123 }
6124 
6125 static int send_write_or_clone(struct send_ctx *sctx,
6126 			       struct btrfs_path *path,
6127 			       struct btrfs_key *key,
6128 			       struct clone_root *clone_root)
6129 {
6130 	int ret = 0;
6131 	u64 offset = key->offset;
6132 	u64 end;
6133 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
6134 
6135 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6136 	if (offset >= end)
6137 		return 0;
6138 
6139 	if (clone_root && IS_ALIGNED(end, bs)) {
6140 		struct btrfs_file_extent_item *ei;
6141 		u64 disk_byte;
6142 		u64 data_offset;
6143 
6144 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6145 				    struct btrfs_file_extent_item);
6146 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6147 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6148 		ret = clone_range(sctx, path, clone_root, disk_byte,
6149 				  data_offset, offset, end - offset);
6150 	} else {
6151 		ret = send_extent_data(sctx, path, offset, end - offset);
6152 	}
6153 	sctx->cur_inode_next_write_offset = end;
6154 	return ret;
6155 }
6156 
6157 static int is_extent_unchanged(struct send_ctx *sctx,
6158 			       struct btrfs_path *left_path,
6159 			       struct btrfs_key *ekey)
6160 {
6161 	int ret = 0;
6162 	struct btrfs_key key;
6163 	struct btrfs_path *path = NULL;
6164 	struct extent_buffer *eb;
6165 	int slot;
6166 	struct btrfs_key found_key;
6167 	struct btrfs_file_extent_item *ei;
6168 	u64 left_disknr;
6169 	u64 right_disknr;
6170 	u64 left_offset;
6171 	u64 right_offset;
6172 	u64 left_offset_fixed;
6173 	u64 left_len;
6174 	u64 right_len;
6175 	u64 left_gen;
6176 	u64 right_gen;
6177 	u8 left_type;
6178 	u8 right_type;
6179 
6180 	path = alloc_path_for_send();
6181 	if (!path)
6182 		return -ENOMEM;
6183 
6184 	eb = left_path->nodes[0];
6185 	slot = left_path->slots[0];
6186 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6187 	left_type = btrfs_file_extent_type(eb, ei);
6188 
6189 	if (left_type != BTRFS_FILE_EXTENT_REG) {
6190 		ret = 0;
6191 		goto out;
6192 	}
6193 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6194 	left_len = btrfs_file_extent_num_bytes(eb, ei);
6195 	left_offset = btrfs_file_extent_offset(eb, ei);
6196 	left_gen = btrfs_file_extent_generation(eb, ei);
6197 
6198 	/*
6199 	 * Following comments will refer to these graphics. L is the left
6200 	 * extents which we are checking at the moment. 1-8 are the right
6201 	 * extents that we iterate.
6202 	 *
6203 	 *       |-----L-----|
6204 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6205 	 *
6206 	 *       |-----L-----|
6207 	 * |--1--|-2b-|...(same as above)
6208 	 *
6209 	 * Alternative situation. Happens on files where extents got split.
6210 	 *       |-----L-----|
6211 	 * |-----------7-----------|-6-|
6212 	 *
6213 	 * Alternative situation. Happens on files which got larger.
6214 	 *       |-----L-----|
6215 	 * |-8-|
6216 	 * Nothing follows after 8.
6217 	 */
6218 
6219 	key.objectid = ekey->objectid;
6220 	key.type = BTRFS_EXTENT_DATA_KEY;
6221 	key.offset = ekey->offset;
6222 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6223 	if (ret < 0)
6224 		goto out;
6225 	if (ret) {
6226 		ret = 0;
6227 		goto out;
6228 	}
6229 
6230 	/*
6231 	 * Handle special case where the right side has no extents at all.
6232 	 */
6233 	eb = path->nodes[0];
6234 	slot = path->slots[0];
6235 	btrfs_item_key_to_cpu(eb, &found_key, slot);
6236 	if (found_key.objectid != key.objectid ||
6237 	    found_key.type != key.type) {
6238 		/* If we're a hole then just pretend nothing changed */
6239 		ret = (left_disknr) ? 0 : 1;
6240 		goto out;
6241 	}
6242 
6243 	/*
6244 	 * We're now on 2a, 2b or 7.
6245 	 */
6246 	key = found_key;
6247 	while (key.offset < ekey->offset + left_len) {
6248 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6249 		right_type = btrfs_file_extent_type(eb, ei);
6250 		if (right_type != BTRFS_FILE_EXTENT_REG &&
6251 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6252 			ret = 0;
6253 			goto out;
6254 		}
6255 
6256 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6257 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6258 			right_len = PAGE_ALIGN(right_len);
6259 		} else {
6260 			right_len = btrfs_file_extent_num_bytes(eb, ei);
6261 		}
6262 
6263 		/*
6264 		 * Are we at extent 8? If yes, we know the extent is changed.
6265 		 * This may only happen on the first iteration.
6266 		 */
6267 		if (found_key.offset + right_len <= ekey->offset) {
6268 			/* If we're a hole just pretend nothing changed */
6269 			ret = (left_disknr) ? 0 : 1;
6270 			goto out;
6271 		}
6272 
6273 		/*
6274 		 * We just wanted to see if when we have an inline extent, what
6275 		 * follows it is a regular extent (wanted to check the above
6276 		 * condition for inline extents too). This should normally not
6277 		 * happen but it's possible for example when we have an inline
6278 		 * compressed extent representing data with a size matching
6279 		 * the page size (currently the same as sector size).
6280 		 */
6281 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6282 			ret = 0;
6283 			goto out;
6284 		}
6285 
6286 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6287 		right_offset = btrfs_file_extent_offset(eb, ei);
6288 		right_gen = btrfs_file_extent_generation(eb, ei);
6289 
6290 		left_offset_fixed = left_offset;
6291 		if (key.offset < ekey->offset) {
6292 			/* Fix the right offset for 2a and 7. */
6293 			right_offset += ekey->offset - key.offset;
6294 		} else {
6295 			/* Fix the left offset for all behind 2a and 2b */
6296 			left_offset_fixed += key.offset - ekey->offset;
6297 		}
6298 
6299 		/*
6300 		 * Check if we have the same extent.
6301 		 */
6302 		if (left_disknr != right_disknr ||
6303 		    left_offset_fixed != right_offset ||
6304 		    left_gen != right_gen) {
6305 			ret = 0;
6306 			goto out;
6307 		}
6308 
6309 		/*
6310 		 * Go to the next extent.
6311 		 */
6312 		ret = btrfs_next_item(sctx->parent_root, path);
6313 		if (ret < 0)
6314 			goto out;
6315 		if (!ret) {
6316 			eb = path->nodes[0];
6317 			slot = path->slots[0];
6318 			btrfs_item_key_to_cpu(eb, &found_key, slot);
6319 		}
6320 		if (ret || found_key.objectid != key.objectid ||
6321 		    found_key.type != key.type) {
6322 			key.offset += right_len;
6323 			break;
6324 		}
6325 		if (found_key.offset != key.offset + right_len) {
6326 			ret = 0;
6327 			goto out;
6328 		}
6329 		key = found_key;
6330 	}
6331 
6332 	/*
6333 	 * We're now behind the left extent (treat as unchanged) or at the end
6334 	 * of the right side (treat as changed).
6335 	 */
6336 	if (key.offset >= ekey->offset + left_len)
6337 		ret = 1;
6338 	else
6339 		ret = 0;
6340 
6341 
6342 out:
6343 	btrfs_free_path(path);
6344 	return ret;
6345 }
6346 
6347 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6348 {
6349 	struct btrfs_path *path;
6350 	struct btrfs_root *root = sctx->send_root;
6351 	struct btrfs_key key;
6352 	int ret;
6353 
6354 	path = alloc_path_for_send();
6355 	if (!path)
6356 		return -ENOMEM;
6357 
6358 	sctx->cur_inode_last_extent = 0;
6359 
6360 	key.objectid = sctx->cur_ino;
6361 	key.type = BTRFS_EXTENT_DATA_KEY;
6362 	key.offset = offset;
6363 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6364 	if (ret < 0)
6365 		goto out;
6366 	ret = 0;
6367 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6368 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6369 		goto out;
6370 
6371 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6372 out:
6373 	btrfs_free_path(path);
6374 	return ret;
6375 }
6376 
6377 static int range_is_hole_in_parent(struct send_ctx *sctx,
6378 				   const u64 start,
6379 				   const u64 end)
6380 {
6381 	struct btrfs_path *path;
6382 	struct btrfs_key key;
6383 	struct btrfs_root *root = sctx->parent_root;
6384 	u64 search_start = start;
6385 	int ret;
6386 
6387 	path = alloc_path_for_send();
6388 	if (!path)
6389 		return -ENOMEM;
6390 
6391 	key.objectid = sctx->cur_ino;
6392 	key.type = BTRFS_EXTENT_DATA_KEY;
6393 	key.offset = search_start;
6394 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6395 	if (ret < 0)
6396 		goto out;
6397 	if (ret > 0 && path->slots[0] > 0)
6398 		path->slots[0]--;
6399 
6400 	while (search_start < end) {
6401 		struct extent_buffer *leaf = path->nodes[0];
6402 		int slot = path->slots[0];
6403 		struct btrfs_file_extent_item *fi;
6404 		u64 extent_end;
6405 
6406 		if (slot >= btrfs_header_nritems(leaf)) {
6407 			ret = btrfs_next_leaf(root, path);
6408 			if (ret < 0)
6409 				goto out;
6410 			else if (ret > 0)
6411 				break;
6412 			continue;
6413 		}
6414 
6415 		btrfs_item_key_to_cpu(leaf, &key, slot);
6416 		if (key.objectid < sctx->cur_ino ||
6417 		    key.type < BTRFS_EXTENT_DATA_KEY)
6418 			goto next;
6419 		if (key.objectid > sctx->cur_ino ||
6420 		    key.type > BTRFS_EXTENT_DATA_KEY ||
6421 		    key.offset >= end)
6422 			break;
6423 
6424 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6425 		extent_end = btrfs_file_extent_end(path);
6426 		if (extent_end <= start)
6427 			goto next;
6428 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6429 			search_start = extent_end;
6430 			goto next;
6431 		}
6432 		ret = 0;
6433 		goto out;
6434 next:
6435 		path->slots[0]++;
6436 	}
6437 	ret = 1;
6438 out:
6439 	btrfs_free_path(path);
6440 	return ret;
6441 }
6442 
6443 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6444 			   struct btrfs_key *key)
6445 {
6446 	int ret = 0;
6447 
6448 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6449 		return 0;
6450 
6451 	if (sctx->cur_inode_last_extent == (u64)-1) {
6452 		ret = get_last_extent(sctx, key->offset - 1);
6453 		if (ret)
6454 			return ret;
6455 	}
6456 
6457 	if (path->slots[0] == 0 &&
6458 	    sctx->cur_inode_last_extent < key->offset) {
6459 		/*
6460 		 * We might have skipped entire leafs that contained only
6461 		 * file extent items for our current inode. These leafs have
6462 		 * a generation number smaller (older) than the one in the
6463 		 * current leaf and the leaf our last extent came from, and
6464 		 * are located between these 2 leafs.
6465 		 */
6466 		ret = get_last_extent(sctx, key->offset - 1);
6467 		if (ret)
6468 			return ret;
6469 	}
6470 
6471 	if (sctx->cur_inode_last_extent < key->offset) {
6472 		ret = range_is_hole_in_parent(sctx,
6473 					      sctx->cur_inode_last_extent,
6474 					      key->offset);
6475 		if (ret < 0)
6476 			return ret;
6477 		else if (ret == 0)
6478 			ret = send_hole(sctx, key->offset);
6479 		else
6480 			ret = 0;
6481 	}
6482 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6483 	return ret;
6484 }
6485 
6486 static int process_extent(struct send_ctx *sctx,
6487 			  struct btrfs_path *path,
6488 			  struct btrfs_key *key)
6489 {
6490 	struct clone_root *found_clone = NULL;
6491 	int ret = 0;
6492 
6493 	if (S_ISLNK(sctx->cur_inode_mode))
6494 		return 0;
6495 
6496 	if (sctx->parent_root && !sctx->cur_inode_new) {
6497 		ret = is_extent_unchanged(sctx, path, key);
6498 		if (ret < 0)
6499 			goto out;
6500 		if (ret) {
6501 			ret = 0;
6502 			goto out_hole;
6503 		}
6504 	} else {
6505 		struct btrfs_file_extent_item *ei;
6506 		u8 type;
6507 
6508 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6509 				    struct btrfs_file_extent_item);
6510 		type = btrfs_file_extent_type(path->nodes[0], ei);
6511 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6512 		    type == BTRFS_FILE_EXTENT_REG) {
6513 			/*
6514 			 * The send spec does not have a prealloc command yet,
6515 			 * so just leave a hole for prealloc'ed extents until
6516 			 * we have enough commands queued up to justify rev'ing
6517 			 * the send spec.
6518 			 */
6519 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6520 				ret = 0;
6521 				goto out;
6522 			}
6523 
6524 			/* Have a hole, just skip it. */
6525 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6526 				ret = 0;
6527 				goto out;
6528 			}
6529 		}
6530 	}
6531 
6532 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6533 			sctx->cur_inode_size, &found_clone);
6534 	if (ret != -ENOENT && ret < 0)
6535 		goto out;
6536 
6537 	ret = send_write_or_clone(sctx, path, key, found_clone);
6538 	if (ret)
6539 		goto out;
6540 out_hole:
6541 	ret = maybe_send_hole(sctx, path, key);
6542 out:
6543 	return ret;
6544 }
6545 
6546 static int process_all_extents(struct send_ctx *sctx)
6547 {
6548 	int ret = 0;
6549 	int iter_ret = 0;
6550 	struct btrfs_root *root;
6551 	struct btrfs_path *path;
6552 	struct btrfs_key key;
6553 	struct btrfs_key found_key;
6554 
6555 	root = sctx->send_root;
6556 	path = alloc_path_for_send();
6557 	if (!path)
6558 		return -ENOMEM;
6559 
6560 	key.objectid = sctx->cmp_key->objectid;
6561 	key.type = BTRFS_EXTENT_DATA_KEY;
6562 	key.offset = 0;
6563 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6564 		if (found_key.objectid != key.objectid ||
6565 		    found_key.type != key.type) {
6566 			ret = 0;
6567 			break;
6568 		}
6569 
6570 		ret = process_extent(sctx, path, &found_key);
6571 		if (ret < 0)
6572 			break;
6573 	}
6574 	/* Catch error found during iteration */
6575 	if (iter_ret < 0)
6576 		ret = iter_ret;
6577 
6578 	btrfs_free_path(path);
6579 	return ret;
6580 }
6581 
6582 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6583 					   int *pending_move,
6584 					   int *refs_processed)
6585 {
6586 	int ret = 0;
6587 
6588 	if (sctx->cur_ino == 0)
6589 		goto out;
6590 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6591 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6592 		goto out;
6593 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6594 		goto out;
6595 
6596 	ret = process_recorded_refs(sctx, pending_move);
6597 	if (ret < 0)
6598 		goto out;
6599 
6600 	*refs_processed = 1;
6601 out:
6602 	return ret;
6603 }
6604 
6605 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6606 {
6607 	int ret = 0;
6608 	struct btrfs_inode_info info;
6609 	u64 left_mode;
6610 	u64 left_uid;
6611 	u64 left_gid;
6612 	u64 left_fileattr;
6613 	u64 right_mode;
6614 	u64 right_uid;
6615 	u64 right_gid;
6616 	u64 right_fileattr;
6617 	int need_chmod = 0;
6618 	int need_chown = 0;
6619 	bool need_fileattr = false;
6620 	int need_truncate = 1;
6621 	int pending_move = 0;
6622 	int refs_processed = 0;
6623 
6624 	if (sctx->ignore_cur_inode)
6625 		return 0;
6626 
6627 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6628 					      &refs_processed);
6629 	if (ret < 0)
6630 		goto out;
6631 
6632 	/*
6633 	 * We have processed the refs and thus need to advance send_progress.
6634 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6635 	 * inode into account.
6636 	 *
6637 	 * On the other hand, if our current inode is a directory and couldn't
6638 	 * be moved/renamed because its parent was renamed/moved too and it has
6639 	 * a higher inode number, we can only move/rename our current inode
6640 	 * after we moved/renamed its parent. Therefore in this case operate on
6641 	 * the old path (pre move/rename) of our current inode, and the
6642 	 * move/rename will be performed later.
6643 	 */
6644 	if (refs_processed && !pending_move)
6645 		sctx->send_progress = sctx->cur_ino + 1;
6646 
6647 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6648 		goto out;
6649 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6650 		goto out;
6651 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6652 	if (ret < 0)
6653 		goto out;
6654 	left_mode = info.mode;
6655 	left_uid = info.uid;
6656 	left_gid = info.gid;
6657 	left_fileattr = info.fileattr;
6658 
6659 	if (!sctx->parent_root || sctx->cur_inode_new) {
6660 		need_chown = 1;
6661 		if (!S_ISLNK(sctx->cur_inode_mode))
6662 			need_chmod = 1;
6663 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6664 			need_truncate = 0;
6665 	} else {
6666 		u64 old_size;
6667 
6668 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6669 		if (ret < 0)
6670 			goto out;
6671 		old_size = info.size;
6672 		right_mode = info.mode;
6673 		right_uid = info.uid;
6674 		right_gid = info.gid;
6675 		right_fileattr = info.fileattr;
6676 
6677 		if (left_uid != right_uid || left_gid != right_gid)
6678 			need_chown = 1;
6679 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6680 			need_chmod = 1;
6681 		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6682 			need_fileattr = true;
6683 		if ((old_size == sctx->cur_inode_size) ||
6684 		    (sctx->cur_inode_size > old_size &&
6685 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6686 			need_truncate = 0;
6687 	}
6688 
6689 	if (S_ISREG(sctx->cur_inode_mode)) {
6690 		if (need_send_hole(sctx)) {
6691 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6692 			    sctx->cur_inode_last_extent <
6693 			    sctx->cur_inode_size) {
6694 				ret = get_last_extent(sctx, (u64)-1);
6695 				if (ret)
6696 					goto out;
6697 			}
6698 			if (sctx->cur_inode_last_extent <
6699 			    sctx->cur_inode_size) {
6700 				ret = send_hole(sctx, sctx->cur_inode_size);
6701 				if (ret)
6702 					goto out;
6703 			}
6704 		}
6705 		if (need_truncate) {
6706 			ret = send_truncate(sctx, sctx->cur_ino,
6707 					    sctx->cur_inode_gen,
6708 					    sctx->cur_inode_size);
6709 			if (ret < 0)
6710 				goto out;
6711 		}
6712 	}
6713 
6714 	if (need_chown) {
6715 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6716 				left_uid, left_gid);
6717 		if (ret < 0)
6718 			goto out;
6719 	}
6720 	if (need_chmod) {
6721 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6722 				left_mode);
6723 		if (ret < 0)
6724 			goto out;
6725 	}
6726 	if (need_fileattr) {
6727 		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6728 				    left_fileattr);
6729 		if (ret < 0)
6730 			goto out;
6731 	}
6732 
6733 	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6734 	    && sctx->cur_inode_needs_verity) {
6735 		ret = process_verity(sctx);
6736 		if (ret < 0)
6737 			goto out;
6738 	}
6739 
6740 	ret = send_capabilities(sctx);
6741 	if (ret < 0)
6742 		goto out;
6743 
6744 	/*
6745 	 * If other directory inodes depended on our current directory
6746 	 * inode's move/rename, now do their move/rename operations.
6747 	 */
6748 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6749 		ret = apply_children_dir_moves(sctx);
6750 		if (ret)
6751 			goto out;
6752 		/*
6753 		 * Need to send that every time, no matter if it actually
6754 		 * changed between the two trees as we have done changes to
6755 		 * the inode before. If our inode is a directory and it's
6756 		 * waiting to be moved/renamed, we will send its utimes when
6757 		 * it's moved/renamed, therefore we don't need to do it here.
6758 		 */
6759 		sctx->send_progress = sctx->cur_ino + 1;
6760 
6761 		/*
6762 		 * If the current inode is a non-empty directory, delay issuing
6763 		 * the utimes command for it, as it's very likely we have inodes
6764 		 * with an higher number inside it. We want to issue the utimes
6765 		 * command only after adding all dentries to it.
6766 		 */
6767 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6768 			ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6769 		else
6770 			ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6771 
6772 		if (ret < 0)
6773 			goto out;
6774 	}
6775 
6776 out:
6777 	if (!ret)
6778 		ret = trim_dir_utimes_cache(sctx);
6779 
6780 	return ret;
6781 }
6782 
6783 static void close_current_inode(struct send_ctx *sctx)
6784 {
6785 	u64 i_size;
6786 
6787 	if (sctx->cur_inode == NULL)
6788 		return;
6789 
6790 	i_size = i_size_read(sctx->cur_inode);
6791 
6792 	/*
6793 	 * If we are doing an incremental send, we may have extents between the
6794 	 * last processed extent and the i_size that have not been processed
6795 	 * because they haven't changed but we may have read some of their pages
6796 	 * through readahead, see the comments at send_extent_data().
6797 	 */
6798 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6799 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6800 					   sctx->page_cache_clear_start,
6801 					   round_up(i_size, PAGE_SIZE) - 1);
6802 
6803 	iput(sctx->cur_inode);
6804 	sctx->cur_inode = NULL;
6805 }
6806 
6807 static int changed_inode(struct send_ctx *sctx,
6808 			 enum btrfs_compare_tree_result result)
6809 {
6810 	int ret = 0;
6811 	struct btrfs_key *key = sctx->cmp_key;
6812 	struct btrfs_inode_item *left_ii = NULL;
6813 	struct btrfs_inode_item *right_ii = NULL;
6814 	u64 left_gen = 0;
6815 	u64 right_gen = 0;
6816 
6817 	close_current_inode(sctx);
6818 
6819 	sctx->cur_ino = key->objectid;
6820 	sctx->cur_inode_new_gen = false;
6821 	sctx->cur_inode_last_extent = (u64)-1;
6822 	sctx->cur_inode_next_write_offset = 0;
6823 	sctx->ignore_cur_inode = false;
6824 
6825 	/*
6826 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6827 	 * functions that the current inode's refs are not updated yet. Later,
6828 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6829 	 */
6830 	sctx->send_progress = sctx->cur_ino;
6831 
6832 	if (result == BTRFS_COMPARE_TREE_NEW ||
6833 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6834 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6835 				sctx->left_path->slots[0],
6836 				struct btrfs_inode_item);
6837 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6838 				left_ii);
6839 	} else {
6840 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6841 				sctx->right_path->slots[0],
6842 				struct btrfs_inode_item);
6843 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6844 				right_ii);
6845 	}
6846 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6847 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6848 				sctx->right_path->slots[0],
6849 				struct btrfs_inode_item);
6850 
6851 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6852 				right_ii);
6853 
6854 		/*
6855 		 * The cur_ino = root dir case is special here. We can't treat
6856 		 * the inode as deleted+reused because it would generate a
6857 		 * stream that tries to delete/mkdir the root dir.
6858 		 */
6859 		if (left_gen != right_gen &&
6860 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6861 			sctx->cur_inode_new_gen = true;
6862 	}
6863 
6864 	/*
6865 	 * Normally we do not find inodes with a link count of zero (orphans)
6866 	 * because the most common case is to create a snapshot and use it
6867 	 * for a send operation. However other less common use cases involve
6868 	 * using a subvolume and send it after turning it to RO mode just
6869 	 * after deleting all hard links of a file while holding an open
6870 	 * file descriptor against it or turning a RO snapshot into RW mode,
6871 	 * keep an open file descriptor against a file, delete it and then
6872 	 * turn the snapshot back to RO mode before using it for a send
6873 	 * operation. The former is what the receiver operation does.
6874 	 * Therefore, if we want to send these snapshots soon after they're
6875 	 * received, we need to handle orphan inodes as well. Moreover, orphans
6876 	 * can appear not only in the send snapshot but also in the parent
6877 	 * snapshot. Here are several cases:
6878 	 *
6879 	 * Case 1: BTRFS_COMPARE_TREE_NEW
6880 	 *       |  send snapshot  | action
6881 	 * --------------------------------
6882 	 * nlink |        0        | ignore
6883 	 *
6884 	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6885 	 *       | parent snapshot | action
6886 	 * ----------------------------------
6887 	 * nlink |        0        | as usual
6888 	 * Note: No unlinks will be sent because there're no paths for it.
6889 	 *
6890 	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6891 	 *           |       | parent snapshot | send snapshot | action
6892 	 * -----------------------------------------------------------------------
6893 	 * subcase 1 | nlink |        0        |       0       | ignore
6894 	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6895 	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6896 	 *
6897 	 */
6898 	if (result == BTRFS_COMPARE_TREE_NEW) {
6899 		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6900 			sctx->ignore_cur_inode = true;
6901 			goto out;
6902 		}
6903 		sctx->cur_inode_gen = left_gen;
6904 		sctx->cur_inode_new = true;
6905 		sctx->cur_inode_deleted = false;
6906 		sctx->cur_inode_size = btrfs_inode_size(
6907 				sctx->left_path->nodes[0], left_ii);
6908 		sctx->cur_inode_mode = btrfs_inode_mode(
6909 				sctx->left_path->nodes[0], left_ii);
6910 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6911 				sctx->left_path->nodes[0], left_ii);
6912 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6913 			ret = send_create_inode_if_needed(sctx);
6914 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6915 		sctx->cur_inode_gen = right_gen;
6916 		sctx->cur_inode_new = false;
6917 		sctx->cur_inode_deleted = true;
6918 		sctx->cur_inode_size = btrfs_inode_size(
6919 				sctx->right_path->nodes[0], right_ii);
6920 		sctx->cur_inode_mode = btrfs_inode_mode(
6921 				sctx->right_path->nodes[0], right_ii);
6922 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6923 		u32 new_nlinks, old_nlinks;
6924 
6925 		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6926 		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6927 		if (new_nlinks == 0 && old_nlinks == 0) {
6928 			sctx->ignore_cur_inode = true;
6929 			goto out;
6930 		} else if (new_nlinks == 0 || old_nlinks == 0) {
6931 			sctx->cur_inode_new_gen = 1;
6932 		}
6933 		/*
6934 		 * We need to do some special handling in case the inode was
6935 		 * reported as changed with a changed generation number. This
6936 		 * means that the original inode was deleted and new inode
6937 		 * reused the same inum. So we have to treat the old inode as
6938 		 * deleted and the new one as new.
6939 		 */
6940 		if (sctx->cur_inode_new_gen) {
6941 			/*
6942 			 * First, process the inode as if it was deleted.
6943 			 */
6944 			if (old_nlinks > 0) {
6945 				sctx->cur_inode_gen = right_gen;
6946 				sctx->cur_inode_new = false;
6947 				sctx->cur_inode_deleted = true;
6948 				sctx->cur_inode_size = btrfs_inode_size(
6949 						sctx->right_path->nodes[0], right_ii);
6950 				sctx->cur_inode_mode = btrfs_inode_mode(
6951 						sctx->right_path->nodes[0], right_ii);
6952 				ret = process_all_refs(sctx,
6953 						BTRFS_COMPARE_TREE_DELETED);
6954 				if (ret < 0)
6955 					goto out;
6956 			}
6957 
6958 			/*
6959 			 * Now process the inode as if it was new.
6960 			 */
6961 			if (new_nlinks > 0) {
6962 				sctx->cur_inode_gen = left_gen;
6963 				sctx->cur_inode_new = true;
6964 				sctx->cur_inode_deleted = false;
6965 				sctx->cur_inode_size = btrfs_inode_size(
6966 						sctx->left_path->nodes[0],
6967 						left_ii);
6968 				sctx->cur_inode_mode = btrfs_inode_mode(
6969 						sctx->left_path->nodes[0],
6970 						left_ii);
6971 				sctx->cur_inode_rdev = btrfs_inode_rdev(
6972 						sctx->left_path->nodes[0],
6973 						left_ii);
6974 				ret = send_create_inode_if_needed(sctx);
6975 				if (ret < 0)
6976 					goto out;
6977 
6978 				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6979 				if (ret < 0)
6980 					goto out;
6981 				/*
6982 				 * Advance send_progress now as we did not get
6983 				 * into process_recorded_refs_if_needed in the
6984 				 * new_gen case.
6985 				 */
6986 				sctx->send_progress = sctx->cur_ino + 1;
6987 
6988 				/*
6989 				 * Now process all extents and xattrs of the
6990 				 * inode as if they were all new.
6991 				 */
6992 				ret = process_all_extents(sctx);
6993 				if (ret < 0)
6994 					goto out;
6995 				ret = process_all_new_xattrs(sctx);
6996 				if (ret < 0)
6997 					goto out;
6998 			}
6999 		} else {
7000 			sctx->cur_inode_gen = left_gen;
7001 			sctx->cur_inode_new = false;
7002 			sctx->cur_inode_new_gen = false;
7003 			sctx->cur_inode_deleted = false;
7004 			sctx->cur_inode_size = btrfs_inode_size(
7005 					sctx->left_path->nodes[0], left_ii);
7006 			sctx->cur_inode_mode = btrfs_inode_mode(
7007 					sctx->left_path->nodes[0], left_ii);
7008 		}
7009 	}
7010 
7011 out:
7012 	return ret;
7013 }
7014 
7015 /*
7016  * We have to process new refs before deleted refs, but compare_trees gives us
7017  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7018  * first and later process them in process_recorded_refs.
7019  * For the cur_inode_new_gen case, we skip recording completely because
7020  * changed_inode did already initiate processing of refs. The reason for this is
7021  * that in this case, compare_tree actually compares the refs of 2 different
7022  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7023  * refs of the right tree as deleted and all refs of the left tree as new.
7024  */
7025 static int changed_ref(struct send_ctx *sctx,
7026 		       enum btrfs_compare_tree_result result)
7027 {
7028 	int ret = 0;
7029 
7030 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7031 		inconsistent_snapshot_error(sctx, result, "reference");
7032 		return -EIO;
7033 	}
7034 
7035 	if (!sctx->cur_inode_new_gen &&
7036 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7037 		if (result == BTRFS_COMPARE_TREE_NEW)
7038 			ret = record_new_ref(sctx);
7039 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7040 			ret = record_deleted_ref(sctx);
7041 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7042 			ret = record_changed_ref(sctx);
7043 	}
7044 
7045 	return ret;
7046 }
7047 
7048 /*
7049  * Process new/deleted/changed xattrs. We skip processing in the
7050  * cur_inode_new_gen case because changed_inode did already initiate processing
7051  * of xattrs. The reason is the same as in changed_ref
7052  */
7053 static int changed_xattr(struct send_ctx *sctx,
7054 			 enum btrfs_compare_tree_result result)
7055 {
7056 	int ret = 0;
7057 
7058 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7059 		inconsistent_snapshot_error(sctx, result, "xattr");
7060 		return -EIO;
7061 	}
7062 
7063 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7064 		if (result == BTRFS_COMPARE_TREE_NEW)
7065 			ret = process_new_xattr(sctx);
7066 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7067 			ret = process_deleted_xattr(sctx);
7068 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7069 			ret = process_changed_xattr(sctx);
7070 	}
7071 
7072 	return ret;
7073 }
7074 
7075 /*
7076  * Process new/deleted/changed extents. We skip processing in the
7077  * cur_inode_new_gen case because changed_inode did already initiate processing
7078  * of extents. The reason is the same as in changed_ref
7079  */
7080 static int changed_extent(struct send_ctx *sctx,
7081 			  enum btrfs_compare_tree_result result)
7082 {
7083 	int ret = 0;
7084 
7085 	/*
7086 	 * We have found an extent item that changed without the inode item
7087 	 * having changed. This can happen either after relocation (where the
7088 	 * disk_bytenr of an extent item is replaced at
7089 	 * relocation.c:replace_file_extents()) or after deduplication into a
7090 	 * file in both the parent and send snapshots (where an extent item can
7091 	 * get modified or replaced with a new one). Note that deduplication
7092 	 * updates the inode item, but it only changes the iversion (sequence
7093 	 * field in the inode item) of the inode, so if a file is deduplicated
7094 	 * the same amount of times in both the parent and send snapshots, its
7095 	 * iversion becomes the same in both snapshots, whence the inode item is
7096 	 * the same on both snapshots.
7097 	 */
7098 	if (sctx->cur_ino != sctx->cmp_key->objectid)
7099 		return 0;
7100 
7101 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7102 		if (result != BTRFS_COMPARE_TREE_DELETED)
7103 			ret = process_extent(sctx, sctx->left_path,
7104 					sctx->cmp_key);
7105 	}
7106 
7107 	return ret;
7108 }
7109 
7110 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7111 {
7112 	int ret = 0;
7113 
7114 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7115 		if (result == BTRFS_COMPARE_TREE_NEW)
7116 			sctx->cur_inode_needs_verity = true;
7117 	}
7118 	return ret;
7119 }
7120 
7121 static int dir_changed(struct send_ctx *sctx, u64 dir)
7122 {
7123 	u64 orig_gen, new_gen;
7124 	int ret;
7125 
7126 	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7127 	if (ret)
7128 		return ret;
7129 
7130 	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7131 	if (ret)
7132 		return ret;
7133 
7134 	return (orig_gen != new_gen) ? 1 : 0;
7135 }
7136 
7137 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7138 			struct btrfs_key *key)
7139 {
7140 	struct btrfs_inode_extref *extref;
7141 	struct extent_buffer *leaf;
7142 	u64 dirid = 0, last_dirid = 0;
7143 	unsigned long ptr;
7144 	u32 item_size;
7145 	u32 cur_offset = 0;
7146 	int ref_name_len;
7147 	int ret = 0;
7148 
7149 	/* Easy case, just check this one dirid */
7150 	if (key->type == BTRFS_INODE_REF_KEY) {
7151 		dirid = key->offset;
7152 
7153 		ret = dir_changed(sctx, dirid);
7154 		goto out;
7155 	}
7156 
7157 	leaf = path->nodes[0];
7158 	item_size = btrfs_item_size(leaf, path->slots[0]);
7159 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7160 	while (cur_offset < item_size) {
7161 		extref = (struct btrfs_inode_extref *)(ptr +
7162 						       cur_offset);
7163 		dirid = btrfs_inode_extref_parent(leaf, extref);
7164 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7165 		cur_offset += ref_name_len + sizeof(*extref);
7166 		if (dirid == last_dirid)
7167 			continue;
7168 		ret = dir_changed(sctx, dirid);
7169 		if (ret)
7170 			break;
7171 		last_dirid = dirid;
7172 	}
7173 out:
7174 	return ret;
7175 }
7176 
7177 /*
7178  * Updates compare related fields in sctx and simply forwards to the actual
7179  * changed_xxx functions.
7180  */
7181 static int changed_cb(struct btrfs_path *left_path,
7182 		      struct btrfs_path *right_path,
7183 		      struct btrfs_key *key,
7184 		      enum btrfs_compare_tree_result result,
7185 		      struct send_ctx *sctx)
7186 {
7187 	int ret = 0;
7188 
7189 	/*
7190 	 * We can not hold the commit root semaphore here. This is because in
7191 	 * the case of sending and receiving to the same filesystem, using a
7192 	 * pipe, could result in a deadlock:
7193 	 *
7194 	 * 1) The task running send blocks on the pipe because it's full;
7195 	 *
7196 	 * 2) The task running receive, which is the only consumer of the pipe,
7197 	 *    is waiting for a transaction commit (for example due to a space
7198 	 *    reservation when doing a write or triggering a transaction commit
7199 	 *    when creating a subvolume);
7200 	 *
7201 	 * 3) The transaction is waiting to write lock the commit root semaphore,
7202 	 *    but can not acquire it since it's being held at 1).
7203 	 *
7204 	 * Down this call chain we write to the pipe through kernel_write().
7205 	 * The same type of problem can also happen when sending to a file that
7206 	 * is stored in the same filesystem - when reserving space for a write
7207 	 * into the file, we can trigger a transaction commit.
7208 	 *
7209 	 * Our caller has supplied us with clones of leaves from the send and
7210 	 * parent roots, so we're safe here from a concurrent relocation and
7211 	 * further reallocation of metadata extents while we are here. Below we
7212 	 * also assert that the leaves are clones.
7213 	 */
7214 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7215 
7216 	/*
7217 	 * We always have a send root, so left_path is never NULL. We will not
7218 	 * have a leaf when we have reached the end of the send root but have
7219 	 * not yet reached the end of the parent root.
7220 	 */
7221 	if (left_path->nodes[0])
7222 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7223 				&left_path->nodes[0]->bflags));
7224 	/*
7225 	 * When doing a full send we don't have a parent root, so right_path is
7226 	 * NULL. When doing an incremental send, we may have reached the end of
7227 	 * the parent root already, so we don't have a leaf at right_path.
7228 	 */
7229 	if (right_path && right_path->nodes[0])
7230 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7231 				&right_path->nodes[0]->bflags));
7232 
7233 	if (result == BTRFS_COMPARE_TREE_SAME) {
7234 		if (key->type == BTRFS_INODE_REF_KEY ||
7235 		    key->type == BTRFS_INODE_EXTREF_KEY) {
7236 			ret = compare_refs(sctx, left_path, key);
7237 			if (!ret)
7238 				return 0;
7239 			if (ret < 0)
7240 				return ret;
7241 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7242 			return maybe_send_hole(sctx, left_path, key);
7243 		} else {
7244 			return 0;
7245 		}
7246 		result = BTRFS_COMPARE_TREE_CHANGED;
7247 		ret = 0;
7248 	}
7249 
7250 	sctx->left_path = left_path;
7251 	sctx->right_path = right_path;
7252 	sctx->cmp_key = key;
7253 
7254 	ret = finish_inode_if_needed(sctx, 0);
7255 	if (ret < 0)
7256 		goto out;
7257 
7258 	/* Ignore non-FS objects */
7259 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7260 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7261 		goto out;
7262 
7263 	if (key->type == BTRFS_INODE_ITEM_KEY) {
7264 		ret = changed_inode(sctx, result);
7265 	} else if (!sctx->ignore_cur_inode) {
7266 		if (key->type == BTRFS_INODE_REF_KEY ||
7267 		    key->type == BTRFS_INODE_EXTREF_KEY)
7268 			ret = changed_ref(sctx, result);
7269 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7270 			ret = changed_xattr(sctx, result);
7271 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7272 			ret = changed_extent(sctx, result);
7273 		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7274 			 key->offset == 0)
7275 			ret = changed_verity(sctx, result);
7276 	}
7277 
7278 out:
7279 	return ret;
7280 }
7281 
7282 static int search_key_again(const struct send_ctx *sctx,
7283 			    struct btrfs_root *root,
7284 			    struct btrfs_path *path,
7285 			    const struct btrfs_key *key)
7286 {
7287 	int ret;
7288 
7289 	if (!path->need_commit_sem)
7290 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7291 
7292 	/*
7293 	 * Roots used for send operations are readonly and no one can add,
7294 	 * update or remove keys from them, so we should be able to find our
7295 	 * key again. The only exception is deduplication, which can operate on
7296 	 * readonly roots and add, update or remove keys to/from them - but at
7297 	 * the moment we don't allow it to run in parallel with send.
7298 	 */
7299 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7300 	ASSERT(ret <= 0);
7301 	if (ret > 0) {
7302 		btrfs_print_tree(path->nodes[path->lowest_level], false);
7303 		btrfs_err(root->fs_info,
7304 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7305 			  key->objectid, key->type, key->offset,
7306 			  (root == sctx->parent_root ? "parent" : "send"),
7307 			  root->root_key.objectid, path->lowest_level,
7308 			  path->slots[path->lowest_level]);
7309 		return -EUCLEAN;
7310 	}
7311 
7312 	return ret;
7313 }
7314 
7315 static int full_send_tree(struct send_ctx *sctx)
7316 {
7317 	int ret;
7318 	struct btrfs_root *send_root = sctx->send_root;
7319 	struct btrfs_key key;
7320 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7321 	struct btrfs_path *path;
7322 
7323 	path = alloc_path_for_send();
7324 	if (!path)
7325 		return -ENOMEM;
7326 	path->reada = READA_FORWARD_ALWAYS;
7327 
7328 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7329 	key.type = BTRFS_INODE_ITEM_KEY;
7330 	key.offset = 0;
7331 
7332 	down_read(&fs_info->commit_root_sem);
7333 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7334 	up_read(&fs_info->commit_root_sem);
7335 
7336 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7337 	if (ret < 0)
7338 		goto out;
7339 	if (ret)
7340 		goto out_finish;
7341 
7342 	while (1) {
7343 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7344 
7345 		ret = changed_cb(path, NULL, &key,
7346 				 BTRFS_COMPARE_TREE_NEW, sctx);
7347 		if (ret < 0)
7348 			goto out;
7349 
7350 		down_read(&fs_info->commit_root_sem);
7351 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7352 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7353 			up_read(&fs_info->commit_root_sem);
7354 			/*
7355 			 * A transaction used for relocating a block group was
7356 			 * committed or is about to finish its commit. Release
7357 			 * our path (leaf) and restart the search, so that we
7358 			 * avoid operating on any file extent items that are
7359 			 * stale, with a disk_bytenr that reflects a pre
7360 			 * relocation value. This way we avoid as much as
7361 			 * possible to fallback to regular writes when checking
7362 			 * if we can clone file ranges.
7363 			 */
7364 			btrfs_release_path(path);
7365 			ret = search_key_again(sctx, send_root, path, &key);
7366 			if (ret < 0)
7367 				goto out;
7368 		} else {
7369 			up_read(&fs_info->commit_root_sem);
7370 		}
7371 
7372 		ret = btrfs_next_item(send_root, path);
7373 		if (ret < 0)
7374 			goto out;
7375 		if (ret) {
7376 			ret  = 0;
7377 			break;
7378 		}
7379 	}
7380 
7381 out_finish:
7382 	ret = finish_inode_if_needed(sctx, 1);
7383 
7384 out:
7385 	btrfs_free_path(path);
7386 	return ret;
7387 }
7388 
7389 static int replace_node_with_clone(struct btrfs_path *path, int level)
7390 {
7391 	struct extent_buffer *clone;
7392 
7393 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7394 	if (!clone)
7395 		return -ENOMEM;
7396 
7397 	free_extent_buffer(path->nodes[level]);
7398 	path->nodes[level] = clone;
7399 
7400 	return 0;
7401 }
7402 
7403 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7404 {
7405 	struct extent_buffer *eb;
7406 	struct extent_buffer *parent = path->nodes[*level];
7407 	int slot = path->slots[*level];
7408 	const int nritems = btrfs_header_nritems(parent);
7409 	u64 reada_max;
7410 	u64 reada_done = 0;
7411 
7412 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7413 
7414 	BUG_ON(*level == 0);
7415 	eb = btrfs_read_node_slot(parent, slot);
7416 	if (IS_ERR(eb))
7417 		return PTR_ERR(eb);
7418 
7419 	/*
7420 	 * Trigger readahead for the next leaves we will process, so that it is
7421 	 * very likely that when we need them they are already in memory and we
7422 	 * will not block on disk IO. For nodes we only do readahead for one,
7423 	 * since the time window between processing nodes is typically larger.
7424 	 */
7425 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7426 
7427 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7428 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7429 			btrfs_readahead_node_child(parent, slot);
7430 			reada_done += eb->fs_info->nodesize;
7431 		}
7432 	}
7433 
7434 	path->nodes[*level - 1] = eb;
7435 	path->slots[*level - 1] = 0;
7436 	(*level)--;
7437 
7438 	if (*level == 0)
7439 		return replace_node_with_clone(path, 0);
7440 
7441 	return 0;
7442 }
7443 
7444 static int tree_move_next_or_upnext(struct btrfs_path *path,
7445 				    int *level, int root_level)
7446 {
7447 	int ret = 0;
7448 	int nritems;
7449 	nritems = btrfs_header_nritems(path->nodes[*level]);
7450 
7451 	path->slots[*level]++;
7452 
7453 	while (path->slots[*level] >= nritems) {
7454 		if (*level == root_level) {
7455 			path->slots[*level] = nritems - 1;
7456 			return -1;
7457 		}
7458 
7459 		/* move upnext */
7460 		path->slots[*level] = 0;
7461 		free_extent_buffer(path->nodes[*level]);
7462 		path->nodes[*level] = NULL;
7463 		(*level)++;
7464 		path->slots[*level]++;
7465 
7466 		nritems = btrfs_header_nritems(path->nodes[*level]);
7467 		ret = 1;
7468 	}
7469 	return ret;
7470 }
7471 
7472 /*
7473  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7474  * or down.
7475  */
7476 static int tree_advance(struct btrfs_path *path,
7477 			int *level, int root_level,
7478 			int allow_down,
7479 			struct btrfs_key *key,
7480 			u64 reada_min_gen)
7481 {
7482 	int ret;
7483 
7484 	if (*level == 0 || !allow_down) {
7485 		ret = tree_move_next_or_upnext(path, level, root_level);
7486 	} else {
7487 		ret = tree_move_down(path, level, reada_min_gen);
7488 	}
7489 
7490 	/*
7491 	 * Even if we have reached the end of a tree, ret is -1, update the key
7492 	 * anyway, so that in case we need to restart due to a block group
7493 	 * relocation, we can assert that the last key of the root node still
7494 	 * exists in the tree.
7495 	 */
7496 	if (*level == 0)
7497 		btrfs_item_key_to_cpu(path->nodes[*level], key,
7498 				      path->slots[*level]);
7499 	else
7500 		btrfs_node_key_to_cpu(path->nodes[*level], key,
7501 				      path->slots[*level]);
7502 
7503 	return ret;
7504 }
7505 
7506 static int tree_compare_item(struct btrfs_path *left_path,
7507 			     struct btrfs_path *right_path,
7508 			     char *tmp_buf)
7509 {
7510 	int cmp;
7511 	int len1, len2;
7512 	unsigned long off1, off2;
7513 
7514 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7515 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7516 	if (len1 != len2)
7517 		return 1;
7518 
7519 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7520 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7521 				right_path->slots[0]);
7522 
7523 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7524 
7525 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7526 	if (cmp)
7527 		return 1;
7528 	return 0;
7529 }
7530 
7531 /*
7532  * A transaction used for relocating a block group was committed or is about to
7533  * finish its commit. Release our paths and restart the search, so that we are
7534  * not using stale extent buffers:
7535  *
7536  * 1) For levels > 0, we are only holding references of extent buffers, without
7537  *    any locks on them, which does not prevent them from having been relocated
7538  *    and reallocated after the last time we released the commit root semaphore.
7539  *    The exception are the root nodes, for which we always have a clone, see
7540  *    the comment at btrfs_compare_trees();
7541  *
7542  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7543  *    we are safe from the concurrent relocation and reallocation. However they
7544  *    can have file extent items with a pre relocation disk_bytenr value, so we
7545  *    restart the start from the current commit roots and clone the new leaves so
7546  *    that we get the post relocation disk_bytenr values. Not doing so, could
7547  *    make us clone the wrong data in case there are new extents using the old
7548  *    disk_bytenr that happen to be shared.
7549  */
7550 static int restart_after_relocation(struct btrfs_path *left_path,
7551 				    struct btrfs_path *right_path,
7552 				    const struct btrfs_key *left_key,
7553 				    const struct btrfs_key *right_key,
7554 				    int left_level,
7555 				    int right_level,
7556 				    const struct send_ctx *sctx)
7557 {
7558 	int root_level;
7559 	int ret;
7560 
7561 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7562 
7563 	btrfs_release_path(left_path);
7564 	btrfs_release_path(right_path);
7565 
7566 	/*
7567 	 * Since keys can not be added or removed to/from our roots because they
7568 	 * are readonly and we do not allow deduplication to run in parallel
7569 	 * (which can add, remove or change keys), the layout of the trees should
7570 	 * not change.
7571 	 */
7572 	left_path->lowest_level = left_level;
7573 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7574 	if (ret < 0)
7575 		return ret;
7576 
7577 	right_path->lowest_level = right_level;
7578 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7579 	if (ret < 0)
7580 		return ret;
7581 
7582 	/*
7583 	 * If the lowest level nodes are leaves, clone them so that they can be
7584 	 * safely used by changed_cb() while not under the protection of the
7585 	 * commit root semaphore, even if relocation and reallocation happens in
7586 	 * parallel.
7587 	 */
7588 	if (left_level == 0) {
7589 		ret = replace_node_with_clone(left_path, 0);
7590 		if (ret < 0)
7591 			return ret;
7592 	}
7593 
7594 	if (right_level == 0) {
7595 		ret = replace_node_with_clone(right_path, 0);
7596 		if (ret < 0)
7597 			return ret;
7598 	}
7599 
7600 	/*
7601 	 * Now clone the root nodes (unless they happen to be the leaves we have
7602 	 * already cloned). This is to protect against concurrent snapshotting of
7603 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7604 	 */
7605 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7606 	if (root_level > 0) {
7607 		ret = replace_node_with_clone(left_path, root_level);
7608 		if (ret < 0)
7609 			return ret;
7610 	}
7611 
7612 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7613 	if (root_level > 0) {
7614 		ret = replace_node_with_clone(right_path, root_level);
7615 		if (ret < 0)
7616 			return ret;
7617 	}
7618 
7619 	return 0;
7620 }
7621 
7622 /*
7623  * This function compares two trees and calls the provided callback for
7624  * every changed/new/deleted item it finds.
7625  * If shared tree blocks are encountered, whole subtrees are skipped, making
7626  * the compare pretty fast on snapshotted subvolumes.
7627  *
7628  * This currently works on commit roots only. As commit roots are read only,
7629  * we don't do any locking. The commit roots are protected with transactions.
7630  * Transactions are ended and rejoined when a commit is tried in between.
7631  *
7632  * This function checks for modifications done to the trees while comparing.
7633  * If it detects a change, it aborts immediately.
7634  */
7635 static int btrfs_compare_trees(struct btrfs_root *left_root,
7636 			struct btrfs_root *right_root, struct send_ctx *sctx)
7637 {
7638 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7639 	int ret;
7640 	int cmp;
7641 	struct btrfs_path *left_path = NULL;
7642 	struct btrfs_path *right_path = NULL;
7643 	struct btrfs_key left_key;
7644 	struct btrfs_key right_key;
7645 	char *tmp_buf = NULL;
7646 	int left_root_level;
7647 	int right_root_level;
7648 	int left_level;
7649 	int right_level;
7650 	int left_end_reached = 0;
7651 	int right_end_reached = 0;
7652 	int advance_left = 0;
7653 	int advance_right = 0;
7654 	u64 left_blockptr;
7655 	u64 right_blockptr;
7656 	u64 left_gen;
7657 	u64 right_gen;
7658 	u64 reada_min_gen;
7659 
7660 	left_path = btrfs_alloc_path();
7661 	if (!left_path) {
7662 		ret = -ENOMEM;
7663 		goto out;
7664 	}
7665 	right_path = btrfs_alloc_path();
7666 	if (!right_path) {
7667 		ret = -ENOMEM;
7668 		goto out;
7669 	}
7670 
7671 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7672 	if (!tmp_buf) {
7673 		ret = -ENOMEM;
7674 		goto out;
7675 	}
7676 
7677 	left_path->search_commit_root = 1;
7678 	left_path->skip_locking = 1;
7679 	right_path->search_commit_root = 1;
7680 	right_path->skip_locking = 1;
7681 
7682 	/*
7683 	 * Strategy: Go to the first items of both trees. Then do
7684 	 *
7685 	 * If both trees are at level 0
7686 	 *   Compare keys of current items
7687 	 *     If left < right treat left item as new, advance left tree
7688 	 *       and repeat
7689 	 *     If left > right treat right item as deleted, advance right tree
7690 	 *       and repeat
7691 	 *     If left == right do deep compare of items, treat as changed if
7692 	 *       needed, advance both trees and repeat
7693 	 * If both trees are at the same level but not at level 0
7694 	 *   Compare keys of current nodes/leafs
7695 	 *     If left < right advance left tree and repeat
7696 	 *     If left > right advance right tree and repeat
7697 	 *     If left == right compare blockptrs of the next nodes/leafs
7698 	 *       If they match advance both trees but stay at the same level
7699 	 *         and repeat
7700 	 *       If they don't match advance both trees while allowing to go
7701 	 *         deeper and repeat
7702 	 * If tree levels are different
7703 	 *   Advance the tree that needs it and repeat
7704 	 *
7705 	 * Advancing a tree means:
7706 	 *   If we are at level 0, try to go to the next slot. If that's not
7707 	 *   possible, go one level up and repeat. Stop when we found a level
7708 	 *   where we could go to the next slot. We may at this point be on a
7709 	 *   node or a leaf.
7710 	 *
7711 	 *   If we are not at level 0 and not on shared tree blocks, go one
7712 	 *   level deeper.
7713 	 *
7714 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7715 	 *   the right if possible or go up and right.
7716 	 */
7717 
7718 	down_read(&fs_info->commit_root_sem);
7719 	left_level = btrfs_header_level(left_root->commit_root);
7720 	left_root_level = left_level;
7721 	/*
7722 	 * We clone the root node of the send and parent roots to prevent races
7723 	 * with snapshot creation of these roots. Snapshot creation COWs the
7724 	 * root node of a tree, so after the transaction is committed the old
7725 	 * extent can be reallocated while this send operation is still ongoing.
7726 	 * So we clone them, under the commit root semaphore, to be race free.
7727 	 */
7728 	left_path->nodes[left_level] =
7729 			btrfs_clone_extent_buffer(left_root->commit_root);
7730 	if (!left_path->nodes[left_level]) {
7731 		ret = -ENOMEM;
7732 		goto out_unlock;
7733 	}
7734 
7735 	right_level = btrfs_header_level(right_root->commit_root);
7736 	right_root_level = right_level;
7737 	right_path->nodes[right_level] =
7738 			btrfs_clone_extent_buffer(right_root->commit_root);
7739 	if (!right_path->nodes[right_level]) {
7740 		ret = -ENOMEM;
7741 		goto out_unlock;
7742 	}
7743 	/*
7744 	 * Our right root is the parent root, while the left root is the "send"
7745 	 * root. We know that all new nodes/leaves in the left root must have
7746 	 * a generation greater than the right root's generation, so we trigger
7747 	 * readahead for those nodes and leaves of the left root, as we know we
7748 	 * will need to read them at some point.
7749 	 */
7750 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7751 
7752 	if (left_level == 0)
7753 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7754 				&left_key, left_path->slots[left_level]);
7755 	else
7756 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7757 				&left_key, left_path->slots[left_level]);
7758 	if (right_level == 0)
7759 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7760 				&right_key, right_path->slots[right_level]);
7761 	else
7762 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7763 				&right_key, right_path->slots[right_level]);
7764 
7765 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7766 
7767 	while (1) {
7768 		if (need_resched() ||
7769 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7770 			up_read(&fs_info->commit_root_sem);
7771 			cond_resched();
7772 			down_read(&fs_info->commit_root_sem);
7773 		}
7774 
7775 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7776 			ret = restart_after_relocation(left_path, right_path,
7777 						       &left_key, &right_key,
7778 						       left_level, right_level,
7779 						       sctx);
7780 			if (ret < 0)
7781 				goto out_unlock;
7782 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7783 		}
7784 
7785 		if (advance_left && !left_end_reached) {
7786 			ret = tree_advance(left_path, &left_level,
7787 					left_root_level,
7788 					advance_left != ADVANCE_ONLY_NEXT,
7789 					&left_key, reada_min_gen);
7790 			if (ret == -1)
7791 				left_end_reached = ADVANCE;
7792 			else if (ret < 0)
7793 				goto out_unlock;
7794 			advance_left = 0;
7795 		}
7796 		if (advance_right && !right_end_reached) {
7797 			ret = tree_advance(right_path, &right_level,
7798 					right_root_level,
7799 					advance_right != ADVANCE_ONLY_NEXT,
7800 					&right_key, reada_min_gen);
7801 			if (ret == -1)
7802 				right_end_reached = ADVANCE;
7803 			else if (ret < 0)
7804 				goto out_unlock;
7805 			advance_right = 0;
7806 		}
7807 
7808 		if (left_end_reached && right_end_reached) {
7809 			ret = 0;
7810 			goto out_unlock;
7811 		} else if (left_end_reached) {
7812 			if (right_level == 0) {
7813 				up_read(&fs_info->commit_root_sem);
7814 				ret = changed_cb(left_path, right_path,
7815 						&right_key,
7816 						BTRFS_COMPARE_TREE_DELETED,
7817 						sctx);
7818 				if (ret < 0)
7819 					goto out;
7820 				down_read(&fs_info->commit_root_sem);
7821 			}
7822 			advance_right = ADVANCE;
7823 			continue;
7824 		} else if (right_end_reached) {
7825 			if (left_level == 0) {
7826 				up_read(&fs_info->commit_root_sem);
7827 				ret = changed_cb(left_path, right_path,
7828 						&left_key,
7829 						BTRFS_COMPARE_TREE_NEW,
7830 						sctx);
7831 				if (ret < 0)
7832 					goto out;
7833 				down_read(&fs_info->commit_root_sem);
7834 			}
7835 			advance_left = ADVANCE;
7836 			continue;
7837 		}
7838 
7839 		if (left_level == 0 && right_level == 0) {
7840 			up_read(&fs_info->commit_root_sem);
7841 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7842 			if (cmp < 0) {
7843 				ret = changed_cb(left_path, right_path,
7844 						&left_key,
7845 						BTRFS_COMPARE_TREE_NEW,
7846 						sctx);
7847 				advance_left = ADVANCE;
7848 			} else if (cmp > 0) {
7849 				ret = changed_cb(left_path, right_path,
7850 						&right_key,
7851 						BTRFS_COMPARE_TREE_DELETED,
7852 						sctx);
7853 				advance_right = ADVANCE;
7854 			} else {
7855 				enum btrfs_compare_tree_result result;
7856 
7857 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7858 				ret = tree_compare_item(left_path, right_path,
7859 							tmp_buf);
7860 				if (ret)
7861 					result = BTRFS_COMPARE_TREE_CHANGED;
7862 				else
7863 					result = BTRFS_COMPARE_TREE_SAME;
7864 				ret = changed_cb(left_path, right_path,
7865 						 &left_key, result, sctx);
7866 				advance_left = ADVANCE;
7867 				advance_right = ADVANCE;
7868 			}
7869 
7870 			if (ret < 0)
7871 				goto out;
7872 			down_read(&fs_info->commit_root_sem);
7873 		} else if (left_level == right_level) {
7874 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7875 			if (cmp < 0) {
7876 				advance_left = ADVANCE;
7877 			} else if (cmp > 0) {
7878 				advance_right = ADVANCE;
7879 			} else {
7880 				left_blockptr = btrfs_node_blockptr(
7881 						left_path->nodes[left_level],
7882 						left_path->slots[left_level]);
7883 				right_blockptr = btrfs_node_blockptr(
7884 						right_path->nodes[right_level],
7885 						right_path->slots[right_level]);
7886 				left_gen = btrfs_node_ptr_generation(
7887 						left_path->nodes[left_level],
7888 						left_path->slots[left_level]);
7889 				right_gen = btrfs_node_ptr_generation(
7890 						right_path->nodes[right_level],
7891 						right_path->slots[right_level]);
7892 				if (left_blockptr == right_blockptr &&
7893 				    left_gen == right_gen) {
7894 					/*
7895 					 * As we're on a shared block, don't
7896 					 * allow to go deeper.
7897 					 */
7898 					advance_left = ADVANCE_ONLY_NEXT;
7899 					advance_right = ADVANCE_ONLY_NEXT;
7900 				} else {
7901 					advance_left = ADVANCE;
7902 					advance_right = ADVANCE;
7903 				}
7904 			}
7905 		} else if (left_level < right_level) {
7906 			advance_right = ADVANCE;
7907 		} else {
7908 			advance_left = ADVANCE;
7909 		}
7910 	}
7911 
7912 out_unlock:
7913 	up_read(&fs_info->commit_root_sem);
7914 out:
7915 	btrfs_free_path(left_path);
7916 	btrfs_free_path(right_path);
7917 	kvfree(tmp_buf);
7918 	return ret;
7919 }
7920 
7921 static int send_subvol(struct send_ctx *sctx)
7922 {
7923 	int ret;
7924 
7925 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7926 		ret = send_header(sctx);
7927 		if (ret < 0)
7928 			goto out;
7929 	}
7930 
7931 	ret = send_subvol_begin(sctx);
7932 	if (ret < 0)
7933 		goto out;
7934 
7935 	if (sctx->parent_root) {
7936 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7937 		if (ret < 0)
7938 			goto out;
7939 		ret = finish_inode_if_needed(sctx, 1);
7940 		if (ret < 0)
7941 			goto out;
7942 	} else {
7943 		ret = full_send_tree(sctx);
7944 		if (ret < 0)
7945 			goto out;
7946 	}
7947 
7948 out:
7949 	free_recorded_refs(sctx);
7950 	return ret;
7951 }
7952 
7953 /*
7954  * If orphan cleanup did remove any orphans from a root, it means the tree
7955  * was modified and therefore the commit root is not the same as the current
7956  * root anymore. This is a problem, because send uses the commit root and
7957  * therefore can see inode items that don't exist in the current root anymore,
7958  * and for example make calls to btrfs_iget, which will do tree lookups based
7959  * on the current root and not on the commit root. Those lookups will fail,
7960  * returning a -ESTALE error, and making send fail with that error. So make
7961  * sure a send does not see any orphans we have just removed, and that it will
7962  * see the same inodes regardless of whether a transaction commit happened
7963  * before it started (meaning that the commit root will be the same as the
7964  * current root) or not.
7965  */
7966 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7967 {
7968 	int i;
7969 	struct btrfs_trans_handle *trans = NULL;
7970 
7971 again:
7972 	if (sctx->parent_root &&
7973 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7974 		goto commit_trans;
7975 
7976 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7977 		if (sctx->clone_roots[i].root->node !=
7978 		    sctx->clone_roots[i].root->commit_root)
7979 			goto commit_trans;
7980 
7981 	if (trans)
7982 		return btrfs_end_transaction(trans);
7983 
7984 	return 0;
7985 
7986 commit_trans:
7987 	/* Use any root, all fs roots will get their commit roots updated. */
7988 	if (!trans) {
7989 		trans = btrfs_join_transaction(sctx->send_root);
7990 		if (IS_ERR(trans))
7991 			return PTR_ERR(trans);
7992 		goto again;
7993 	}
7994 
7995 	return btrfs_commit_transaction(trans);
7996 }
7997 
7998 /*
7999  * Make sure any existing dellaloc is flushed for any root used by a send
8000  * operation so that we do not miss any data and we do not race with writeback
8001  * finishing and changing a tree while send is using the tree. This could
8002  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8003  * a send operation then uses the subvolume.
8004  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8005  */
8006 static int flush_delalloc_roots(struct send_ctx *sctx)
8007 {
8008 	struct btrfs_root *root = sctx->parent_root;
8009 	int ret;
8010 	int i;
8011 
8012 	if (root) {
8013 		ret = btrfs_start_delalloc_snapshot(root, false);
8014 		if (ret)
8015 			return ret;
8016 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8017 	}
8018 
8019 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8020 		root = sctx->clone_roots[i].root;
8021 		ret = btrfs_start_delalloc_snapshot(root, false);
8022 		if (ret)
8023 			return ret;
8024 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8025 	}
8026 
8027 	return 0;
8028 }
8029 
8030 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8031 {
8032 	spin_lock(&root->root_item_lock);
8033 	root->send_in_progress--;
8034 	/*
8035 	 * Not much left to do, we don't know why it's unbalanced and
8036 	 * can't blindly reset it to 0.
8037 	 */
8038 	if (root->send_in_progress < 0)
8039 		btrfs_err(root->fs_info,
8040 			  "send_in_progress unbalanced %d root %llu",
8041 			  root->send_in_progress, root->root_key.objectid);
8042 	spin_unlock(&root->root_item_lock);
8043 }
8044 
8045 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8046 {
8047 	btrfs_warn_rl(root->fs_info,
8048 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8049 		      root->root_key.objectid, root->dedupe_in_progress);
8050 }
8051 
8052 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8053 {
8054 	int ret = 0;
8055 	struct btrfs_root *send_root = BTRFS_I(inode)->root;
8056 	struct btrfs_fs_info *fs_info = send_root->fs_info;
8057 	struct btrfs_root *clone_root;
8058 	struct send_ctx *sctx = NULL;
8059 	u32 i;
8060 	u64 *clone_sources_tmp = NULL;
8061 	int clone_sources_to_rollback = 0;
8062 	size_t alloc_size;
8063 	int sort_clone_roots = 0;
8064 	struct btrfs_lru_cache_entry *entry;
8065 	struct btrfs_lru_cache_entry *tmp;
8066 
8067 	if (!capable(CAP_SYS_ADMIN))
8068 		return -EPERM;
8069 
8070 	/*
8071 	 * The subvolume must remain read-only during send, protect against
8072 	 * making it RW. This also protects against deletion.
8073 	 */
8074 	spin_lock(&send_root->root_item_lock);
8075 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8076 		dedupe_in_progress_warn(send_root);
8077 		spin_unlock(&send_root->root_item_lock);
8078 		return -EAGAIN;
8079 	}
8080 	send_root->send_in_progress++;
8081 	spin_unlock(&send_root->root_item_lock);
8082 
8083 	/*
8084 	 * Userspace tools do the checks and warn the user if it's
8085 	 * not RO.
8086 	 */
8087 	if (!btrfs_root_readonly(send_root)) {
8088 		ret = -EPERM;
8089 		goto out;
8090 	}
8091 
8092 	/*
8093 	 * Check that we don't overflow at later allocations, we request
8094 	 * clone_sources_count + 1 items, and compare to unsigned long inside
8095 	 * access_ok. Also set an upper limit for allocation size so this can't
8096 	 * easily exhaust memory. Max number of clone sources is about 200K.
8097 	 */
8098 	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8099 		ret = -EINVAL;
8100 		goto out;
8101 	}
8102 
8103 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8104 		ret = -EINVAL;
8105 		goto out;
8106 	}
8107 
8108 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8109 	if (!sctx) {
8110 		ret = -ENOMEM;
8111 		goto out;
8112 	}
8113 
8114 	INIT_LIST_HEAD(&sctx->new_refs);
8115 	INIT_LIST_HEAD(&sctx->deleted_refs);
8116 
8117 	btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8118 	btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8119 	btrfs_lru_cache_init(&sctx->dir_created_cache,
8120 			     SEND_MAX_DIR_CREATED_CACHE_SIZE);
8121 	/*
8122 	 * This cache is periodically trimmed to a fixed size elsewhere, see
8123 	 * cache_dir_utimes() and trim_dir_utimes_cache().
8124 	 */
8125 	btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8126 
8127 	sctx->pending_dir_moves = RB_ROOT;
8128 	sctx->waiting_dir_moves = RB_ROOT;
8129 	sctx->orphan_dirs = RB_ROOT;
8130 	sctx->rbtree_new_refs = RB_ROOT;
8131 	sctx->rbtree_deleted_refs = RB_ROOT;
8132 
8133 	sctx->flags = arg->flags;
8134 
8135 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8136 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8137 			ret = -EPROTO;
8138 			goto out;
8139 		}
8140 		/* Zero means "use the highest version" */
8141 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8142 	} else {
8143 		sctx->proto = 1;
8144 	}
8145 	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8146 		ret = -EINVAL;
8147 		goto out;
8148 	}
8149 
8150 	sctx->send_filp = fget(arg->send_fd);
8151 	if (!sctx->send_filp) {
8152 		ret = -EBADF;
8153 		goto out;
8154 	}
8155 
8156 	sctx->send_root = send_root;
8157 	/*
8158 	 * Unlikely but possible, if the subvolume is marked for deletion but
8159 	 * is slow to remove the directory entry, send can still be started
8160 	 */
8161 	if (btrfs_root_dead(sctx->send_root)) {
8162 		ret = -EPERM;
8163 		goto out;
8164 	}
8165 
8166 	sctx->clone_roots_cnt = arg->clone_sources_count;
8167 
8168 	if (sctx->proto >= 2) {
8169 		u32 send_buf_num_pages;
8170 
8171 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8172 		sctx->send_buf = vmalloc(sctx->send_max_size);
8173 		if (!sctx->send_buf) {
8174 			ret = -ENOMEM;
8175 			goto out;
8176 		}
8177 		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8178 		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8179 					       sizeof(*sctx->send_buf_pages),
8180 					       GFP_KERNEL);
8181 		if (!sctx->send_buf_pages) {
8182 			ret = -ENOMEM;
8183 			goto out;
8184 		}
8185 		for (i = 0; i < send_buf_num_pages; i++) {
8186 			sctx->send_buf_pages[i] =
8187 				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8188 		}
8189 	} else {
8190 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8191 		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8192 	}
8193 	if (!sctx->send_buf) {
8194 		ret = -ENOMEM;
8195 		goto out;
8196 	}
8197 
8198 	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
8199 				     arg->clone_sources_count + 1,
8200 				     GFP_KERNEL);
8201 	if (!sctx->clone_roots) {
8202 		ret = -ENOMEM;
8203 		goto out;
8204 	}
8205 
8206 	alloc_size = array_size(sizeof(*arg->clone_sources),
8207 				arg->clone_sources_count);
8208 
8209 	if (arg->clone_sources_count) {
8210 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8211 		if (!clone_sources_tmp) {
8212 			ret = -ENOMEM;
8213 			goto out;
8214 		}
8215 
8216 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8217 				alloc_size);
8218 		if (ret) {
8219 			ret = -EFAULT;
8220 			goto out;
8221 		}
8222 
8223 		for (i = 0; i < arg->clone_sources_count; i++) {
8224 			clone_root = btrfs_get_fs_root(fs_info,
8225 						clone_sources_tmp[i], true);
8226 			if (IS_ERR(clone_root)) {
8227 				ret = PTR_ERR(clone_root);
8228 				goto out;
8229 			}
8230 			spin_lock(&clone_root->root_item_lock);
8231 			if (!btrfs_root_readonly(clone_root) ||
8232 			    btrfs_root_dead(clone_root)) {
8233 				spin_unlock(&clone_root->root_item_lock);
8234 				btrfs_put_root(clone_root);
8235 				ret = -EPERM;
8236 				goto out;
8237 			}
8238 			if (clone_root->dedupe_in_progress) {
8239 				dedupe_in_progress_warn(clone_root);
8240 				spin_unlock(&clone_root->root_item_lock);
8241 				btrfs_put_root(clone_root);
8242 				ret = -EAGAIN;
8243 				goto out;
8244 			}
8245 			clone_root->send_in_progress++;
8246 			spin_unlock(&clone_root->root_item_lock);
8247 
8248 			sctx->clone_roots[i].root = clone_root;
8249 			clone_sources_to_rollback = i + 1;
8250 		}
8251 		kvfree(clone_sources_tmp);
8252 		clone_sources_tmp = NULL;
8253 	}
8254 
8255 	if (arg->parent_root) {
8256 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8257 						      true);
8258 		if (IS_ERR(sctx->parent_root)) {
8259 			ret = PTR_ERR(sctx->parent_root);
8260 			goto out;
8261 		}
8262 
8263 		spin_lock(&sctx->parent_root->root_item_lock);
8264 		sctx->parent_root->send_in_progress++;
8265 		if (!btrfs_root_readonly(sctx->parent_root) ||
8266 				btrfs_root_dead(sctx->parent_root)) {
8267 			spin_unlock(&sctx->parent_root->root_item_lock);
8268 			ret = -EPERM;
8269 			goto out;
8270 		}
8271 		if (sctx->parent_root->dedupe_in_progress) {
8272 			dedupe_in_progress_warn(sctx->parent_root);
8273 			spin_unlock(&sctx->parent_root->root_item_lock);
8274 			ret = -EAGAIN;
8275 			goto out;
8276 		}
8277 		spin_unlock(&sctx->parent_root->root_item_lock);
8278 	}
8279 
8280 	/*
8281 	 * Clones from send_root are allowed, but only if the clone source
8282 	 * is behind the current send position. This is checked while searching
8283 	 * for possible clone sources.
8284 	 */
8285 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8286 		btrfs_grab_root(sctx->send_root);
8287 
8288 	/* We do a bsearch later */
8289 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8290 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8291 			NULL);
8292 	sort_clone_roots = 1;
8293 
8294 	ret = flush_delalloc_roots(sctx);
8295 	if (ret)
8296 		goto out;
8297 
8298 	ret = ensure_commit_roots_uptodate(sctx);
8299 	if (ret)
8300 		goto out;
8301 
8302 	ret = send_subvol(sctx);
8303 	if (ret < 0)
8304 		goto out;
8305 
8306 	btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8307 		ret = send_utimes(sctx, entry->key, entry->gen);
8308 		if (ret < 0)
8309 			goto out;
8310 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8311 	}
8312 
8313 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8314 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8315 		if (ret < 0)
8316 			goto out;
8317 		ret = send_cmd(sctx);
8318 		if (ret < 0)
8319 			goto out;
8320 	}
8321 
8322 out:
8323 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8324 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8325 		struct rb_node *n;
8326 		struct pending_dir_move *pm;
8327 
8328 		n = rb_first(&sctx->pending_dir_moves);
8329 		pm = rb_entry(n, struct pending_dir_move, node);
8330 		while (!list_empty(&pm->list)) {
8331 			struct pending_dir_move *pm2;
8332 
8333 			pm2 = list_first_entry(&pm->list,
8334 					       struct pending_dir_move, list);
8335 			free_pending_move(sctx, pm2);
8336 		}
8337 		free_pending_move(sctx, pm);
8338 	}
8339 
8340 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8341 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8342 		struct rb_node *n;
8343 		struct waiting_dir_move *dm;
8344 
8345 		n = rb_first(&sctx->waiting_dir_moves);
8346 		dm = rb_entry(n, struct waiting_dir_move, node);
8347 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8348 		kfree(dm);
8349 	}
8350 
8351 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8352 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8353 		struct rb_node *n;
8354 		struct orphan_dir_info *odi;
8355 
8356 		n = rb_first(&sctx->orphan_dirs);
8357 		odi = rb_entry(n, struct orphan_dir_info, node);
8358 		free_orphan_dir_info(sctx, odi);
8359 	}
8360 
8361 	if (sort_clone_roots) {
8362 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8363 			btrfs_root_dec_send_in_progress(
8364 					sctx->clone_roots[i].root);
8365 			btrfs_put_root(sctx->clone_roots[i].root);
8366 		}
8367 	} else {
8368 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8369 			btrfs_root_dec_send_in_progress(
8370 					sctx->clone_roots[i].root);
8371 			btrfs_put_root(sctx->clone_roots[i].root);
8372 		}
8373 
8374 		btrfs_root_dec_send_in_progress(send_root);
8375 	}
8376 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8377 		btrfs_root_dec_send_in_progress(sctx->parent_root);
8378 		btrfs_put_root(sctx->parent_root);
8379 	}
8380 
8381 	kvfree(clone_sources_tmp);
8382 
8383 	if (sctx) {
8384 		if (sctx->send_filp)
8385 			fput(sctx->send_filp);
8386 
8387 		kvfree(sctx->clone_roots);
8388 		kfree(sctx->send_buf_pages);
8389 		kvfree(sctx->send_buf);
8390 		kvfree(sctx->verity_descriptor);
8391 
8392 		close_current_inode(sctx);
8393 
8394 		btrfs_lru_cache_clear(&sctx->name_cache);
8395 		btrfs_lru_cache_clear(&sctx->backref_cache);
8396 		btrfs_lru_cache_clear(&sctx->dir_created_cache);
8397 		btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8398 
8399 		kfree(sctx);
8400 	}
8401 
8402 	return ret;
8403 }
8404