xref: /openbmc/linux/fs/btrfs/send.c (revision 4f205687)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
38 
39 static int g_verbose = 0;
40 
41 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
42 
43 /*
44  * A fs_path is a helper to dynamically build path names with unknown size.
45  * It reallocates the internal buffer on demand.
46  * It allows fast adding of path elements on the right side (normal path) and
47  * fast adding to the left side (reversed path). A reversed path can also be
48  * unreversed if needed.
49  */
50 struct fs_path {
51 	union {
52 		struct {
53 			char *start;
54 			char *end;
55 
56 			char *buf;
57 			unsigned short buf_len:15;
58 			unsigned short reversed:1;
59 			char inline_buf[];
60 		};
61 		/*
62 		 * Average path length does not exceed 200 bytes, we'll have
63 		 * better packing in the slab and higher chance to satisfy
64 		 * a allocation later during send.
65 		 */
66 		char pad[256];
67 	};
68 };
69 #define FS_PATH_INLINE_SIZE \
70 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
71 
72 
73 /* reused for each extent */
74 struct clone_root {
75 	struct btrfs_root *root;
76 	u64 ino;
77 	u64 offset;
78 
79 	u64 found_refs;
80 };
81 
82 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
83 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
84 
85 struct send_ctx {
86 	struct file *send_filp;
87 	loff_t send_off;
88 	char *send_buf;
89 	u32 send_size;
90 	u32 send_max_size;
91 	u64 total_send_size;
92 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
93 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
94 
95 	struct btrfs_root *send_root;
96 	struct btrfs_root *parent_root;
97 	struct clone_root *clone_roots;
98 	int clone_roots_cnt;
99 
100 	/* current state of the compare_tree call */
101 	struct btrfs_path *left_path;
102 	struct btrfs_path *right_path;
103 	struct btrfs_key *cmp_key;
104 
105 	/*
106 	 * infos of the currently processed inode. In case of deleted inodes,
107 	 * these are the values from the deleted inode.
108 	 */
109 	u64 cur_ino;
110 	u64 cur_inode_gen;
111 	int cur_inode_new;
112 	int cur_inode_new_gen;
113 	int cur_inode_deleted;
114 	u64 cur_inode_size;
115 	u64 cur_inode_mode;
116 	u64 cur_inode_rdev;
117 	u64 cur_inode_last_extent;
118 
119 	u64 send_progress;
120 
121 	struct list_head new_refs;
122 	struct list_head deleted_refs;
123 
124 	struct radix_tree_root name_cache;
125 	struct list_head name_cache_list;
126 	int name_cache_size;
127 
128 	struct file_ra_state ra;
129 
130 	char *read_buf;
131 
132 	/*
133 	 * We process inodes by their increasing order, so if before an
134 	 * incremental send we reverse the parent/child relationship of
135 	 * directories such that a directory with a lower inode number was
136 	 * the parent of a directory with a higher inode number, and the one
137 	 * becoming the new parent got renamed too, we can't rename/move the
138 	 * directory with lower inode number when we finish processing it - we
139 	 * must process the directory with higher inode number first, then
140 	 * rename/move it and then rename/move the directory with lower inode
141 	 * number. Example follows.
142 	 *
143 	 * Tree state when the first send was performed:
144 	 *
145 	 * .
146 	 * |-- a                   (ino 257)
147 	 *     |-- b               (ino 258)
148 	 *         |
149 	 *         |
150 	 *         |-- c           (ino 259)
151 	 *         |   |-- d       (ino 260)
152 	 *         |
153 	 *         |-- c2          (ino 261)
154 	 *
155 	 * Tree state when the second (incremental) send is performed:
156 	 *
157 	 * .
158 	 * |-- a                   (ino 257)
159 	 *     |-- b               (ino 258)
160 	 *         |-- c2          (ino 261)
161 	 *             |-- d2      (ino 260)
162 	 *                 |-- cc  (ino 259)
163 	 *
164 	 * The sequence of steps that lead to the second state was:
165 	 *
166 	 * mv /a/b/c/d /a/b/c2/d2
167 	 * mv /a/b/c /a/b/c2/d2/cc
168 	 *
169 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
170 	 * before we move "d", which has higher inode number.
171 	 *
172 	 * So we just memorize which move/rename operations must be performed
173 	 * later when their respective parent is processed and moved/renamed.
174 	 */
175 
176 	/* Indexed by parent directory inode number. */
177 	struct rb_root pending_dir_moves;
178 
179 	/*
180 	 * Reverse index, indexed by the inode number of a directory that
181 	 * is waiting for the move/rename of its immediate parent before its
182 	 * own move/rename can be performed.
183 	 */
184 	struct rb_root waiting_dir_moves;
185 
186 	/*
187 	 * A directory that is going to be rm'ed might have a child directory
188 	 * which is in the pending directory moves index above. In this case,
189 	 * the directory can only be removed after the move/rename of its child
190 	 * is performed. Example:
191 	 *
192 	 * Parent snapshot:
193 	 *
194 	 * .                        (ino 256)
195 	 * |-- a/                   (ino 257)
196 	 *     |-- b/               (ino 258)
197 	 *         |-- c/           (ino 259)
198 	 *         |   |-- x/       (ino 260)
199 	 *         |
200 	 *         |-- y/           (ino 261)
201 	 *
202 	 * Send snapshot:
203 	 *
204 	 * .                        (ino 256)
205 	 * |-- a/                   (ino 257)
206 	 *     |-- b/               (ino 258)
207 	 *         |-- YY/          (ino 261)
208 	 *              |-- x/      (ino 260)
209 	 *
210 	 * Sequence of steps that lead to the send snapshot:
211 	 * rm -f /a/b/c/foo.txt
212 	 * mv /a/b/y /a/b/YY
213 	 * mv /a/b/c/x /a/b/YY
214 	 * rmdir /a/b/c
215 	 *
216 	 * When the child is processed, its move/rename is delayed until its
217 	 * parent is processed (as explained above), but all other operations
218 	 * like update utimes, chown, chgrp, etc, are performed and the paths
219 	 * that it uses for those operations must use the orphanized name of
220 	 * its parent (the directory we're going to rm later), so we need to
221 	 * memorize that name.
222 	 *
223 	 * Indexed by the inode number of the directory to be deleted.
224 	 */
225 	struct rb_root orphan_dirs;
226 };
227 
228 struct pending_dir_move {
229 	struct rb_node node;
230 	struct list_head list;
231 	u64 parent_ino;
232 	u64 ino;
233 	u64 gen;
234 	bool is_orphan;
235 	struct list_head update_refs;
236 };
237 
238 struct waiting_dir_move {
239 	struct rb_node node;
240 	u64 ino;
241 	/*
242 	 * There might be some directory that could not be removed because it
243 	 * was waiting for this directory inode to be moved first. Therefore
244 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
245 	 */
246 	u64 rmdir_ino;
247 	bool orphanized;
248 };
249 
250 struct orphan_dir_info {
251 	struct rb_node node;
252 	u64 ino;
253 	u64 gen;
254 };
255 
256 struct name_cache_entry {
257 	struct list_head list;
258 	/*
259 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
260 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
261 	 * more then one inum would fall into the same entry, we use radix_list
262 	 * to store the additional entries. radix_list is also used to store
263 	 * entries where two entries have the same inum but different
264 	 * generations.
265 	 */
266 	struct list_head radix_list;
267 	u64 ino;
268 	u64 gen;
269 	u64 parent_ino;
270 	u64 parent_gen;
271 	int ret;
272 	int need_later_update;
273 	int name_len;
274 	char name[];
275 };
276 
277 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
278 
279 static struct waiting_dir_move *
280 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
281 
282 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
283 
284 static int need_send_hole(struct send_ctx *sctx)
285 {
286 	return (sctx->parent_root && !sctx->cur_inode_new &&
287 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
288 		S_ISREG(sctx->cur_inode_mode));
289 }
290 
291 static void fs_path_reset(struct fs_path *p)
292 {
293 	if (p->reversed) {
294 		p->start = p->buf + p->buf_len - 1;
295 		p->end = p->start;
296 		*p->start = 0;
297 	} else {
298 		p->start = p->buf;
299 		p->end = p->start;
300 		*p->start = 0;
301 	}
302 }
303 
304 static struct fs_path *fs_path_alloc(void)
305 {
306 	struct fs_path *p;
307 
308 	p = kmalloc(sizeof(*p), GFP_KERNEL);
309 	if (!p)
310 		return NULL;
311 	p->reversed = 0;
312 	p->buf = p->inline_buf;
313 	p->buf_len = FS_PATH_INLINE_SIZE;
314 	fs_path_reset(p);
315 	return p;
316 }
317 
318 static struct fs_path *fs_path_alloc_reversed(void)
319 {
320 	struct fs_path *p;
321 
322 	p = fs_path_alloc();
323 	if (!p)
324 		return NULL;
325 	p->reversed = 1;
326 	fs_path_reset(p);
327 	return p;
328 }
329 
330 static void fs_path_free(struct fs_path *p)
331 {
332 	if (!p)
333 		return;
334 	if (p->buf != p->inline_buf)
335 		kfree(p->buf);
336 	kfree(p);
337 }
338 
339 static int fs_path_len(struct fs_path *p)
340 {
341 	return p->end - p->start;
342 }
343 
344 static int fs_path_ensure_buf(struct fs_path *p, int len)
345 {
346 	char *tmp_buf;
347 	int path_len;
348 	int old_buf_len;
349 
350 	len++;
351 
352 	if (p->buf_len >= len)
353 		return 0;
354 
355 	if (len > PATH_MAX) {
356 		WARN_ON(1);
357 		return -ENOMEM;
358 	}
359 
360 	path_len = p->end - p->start;
361 	old_buf_len = p->buf_len;
362 
363 	/*
364 	 * First time the inline_buf does not suffice
365 	 */
366 	if (p->buf == p->inline_buf) {
367 		tmp_buf = kmalloc(len, GFP_KERNEL);
368 		if (tmp_buf)
369 			memcpy(tmp_buf, p->buf, old_buf_len);
370 	} else {
371 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
372 	}
373 	if (!tmp_buf)
374 		return -ENOMEM;
375 	p->buf = tmp_buf;
376 	/*
377 	 * The real size of the buffer is bigger, this will let the fast path
378 	 * happen most of the time
379 	 */
380 	p->buf_len = ksize(p->buf);
381 
382 	if (p->reversed) {
383 		tmp_buf = p->buf + old_buf_len - path_len - 1;
384 		p->end = p->buf + p->buf_len - 1;
385 		p->start = p->end - path_len;
386 		memmove(p->start, tmp_buf, path_len + 1);
387 	} else {
388 		p->start = p->buf;
389 		p->end = p->start + path_len;
390 	}
391 	return 0;
392 }
393 
394 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
395 				   char **prepared)
396 {
397 	int ret;
398 	int new_len;
399 
400 	new_len = p->end - p->start + name_len;
401 	if (p->start != p->end)
402 		new_len++;
403 	ret = fs_path_ensure_buf(p, new_len);
404 	if (ret < 0)
405 		goto out;
406 
407 	if (p->reversed) {
408 		if (p->start != p->end)
409 			*--p->start = '/';
410 		p->start -= name_len;
411 		*prepared = p->start;
412 	} else {
413 		if (p->start != p->end)
414 			*p->end++ = '/';
415 		*prepared = p->end;
416 		p->end += name_len;
417 		*p->end = 0;
418 	}
419 
420 out:
421 	return ret;
422 }
423 
424 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
425 {
426 	int ret;
427 	char *prepared;
428 
429 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
430 	if (ret < 0)
431 		goto out;
432 	memcpy(prepared, name, name_len);
433 
434 out:
435 	return ret;
436 }
437 
438 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
439 {
440 	int ret;
441 	char *prepared;
442 
443 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
444 	if (ret < 0)
445 		goto out;
446 	memcpy(prepared, p2->start, p2->end - p2->start);
447 
448 out:
449 	return ret;
450 }
451 
452 static int fs_path_add_from_extent_buffer(struct fs_path *p,
453 					  struct extent_buffer *eb,
454 					  unsigned long off, int len)
455 {
456 	int ret;
457 	char *prepared;
458 
459 	ret = fs_path_prepare_for_add(p, len, &prepared);
460 	if (ret < 0)
461 		goto out;
462 
463 	read_extent_buffer(eb, prepared, off, len);
464 
465 out:
466 	return ret;
467 }
468 
469 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
470 {
471 	int ret;
472 
473 	p->reversed = from->reversed;
474 	fs_path_reset(p);
475 
476 	ret = fs_path_add_path(p, from);
477 
478 	return ret;
479 }
480 
481 
482 static void fs_path_unreverse(struct fs_path *p)
483 {
484 	char *tmp;
485 	int len;
486 
487 	if (!p->reversed)
488 		return;
489 
490 	tmp = p->start;
491 	len = p->end - p->start;
492 	p->start = p->buf;
493 	p->end = p->start + len;
494 	memmove(p->start, tmp, len + 1);
495 	p->reversed = 0;
496 }
497 
498 static struct btrfs_path *alloc_path_for_send(void)
499 {
500 	struct btrfs_path *path;
501 
502 	path = btrfs_alloc_path();
503 	if (!path)
504 		return NULL;
505 	path->search_commit_root = 1;
506 	path->skip_locking = 1;
507 	path->need_commit_sem = 1;
508 	return path;
509 }
510 
511 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
512 {
513 	int ret;
514 	mm_segment_t old_fs;
515 	u32 pos = 0;
516 
517 	old_fs = get_fs();
518 	set_fs(KERNEL_DS);
519 
520 	while (pos < len) {
521 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
522 				len - pos, off);
523 		/* TODO handle that correctly */
524 		/*if (ret == -ERESTARTSYS) {
525 			continue;
526 		}*/
527 		if (ret < 0)
528 			goto out;
529 		if (ret == 0) {
530 			ret = -EIO;
531 			goto out;
532 		}
533 		pos += ret;
534 	}
535 
536 	ret = 0;
537 
538 out:
539 	set_fs(old_fs);
540 	return ret;
541 }
542 
543 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
544 {
545 	struct btrfs_tlv_header *hdr;
546 	int total_len = sizeof(*hdr) + len;
547 	int left = sctx->send_max_size - sctx->send_size;
548 
549 	if (unlikely(left < total_len))
550 		return -EOVERFLOW;
551 
552 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
553 	hdr->tlv_type = cpu_to_le16(attr);
554 	hdr->tlv_len = cpu_to_le16(len);
555 	memcpy(hdr + 1, data, len);
556 	sctx->send_size += total_len;
557 
558 	return 0;
559 }
560 
561 #define TLV_PUT_DEFINE_INT(bits) \
562 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
563 			u##bits attr, u##bits value)			\
564 	{								\
565 		__le##bits __tmp = cpu_to_le##bits(value);		\
566 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
567 	}
568 
569 TLV_PUT_DEFINE_INT(64)
570 
571 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
572 			  const char *str, int len)
573 {
574 	if (len == -1)
575 		len = strlen(str);
576 	return tlv_put(sctx, attr, str, len);
577 }
578 
579 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
580 			const u8 *uuid)
581 {
582 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
583 }
584 
585 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
586 				  struct extent_buffer *eb,
587 				  struct btrfs_timespec *ts)
588 {
589 	struct btrfs_timespec bts;
590 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
591 	return tlv_put(sctx, attr, &bts, sizeof(bts));
592 }
593 
594 
595 #define TLV_PUT(sctx, attrtype, attrlen, data) \
596 	do { \
597 		ret = tlv_put(sctx, attrtype, attrlen, data); \
598 		if (ret < 0) \
599 			goto tlv_put_failure; \
600 	} while (0)
601 
602 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
603 	do { \
604 		ret = tlv_put_u##bits(sctx, attrtype, value); \
605 		if (ret < 0) \
606 			goto tlv_put_failure; \
607 	} while (0)
608 
609 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
610 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
611 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
612 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
613 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
614 	do { \
615 		ret = tlv_put_string(sctx, attrtype, str, len); \
616 		if (ret < 0) \
617 			goto tlv_put_failure; \
618 	} while (0)
619 #define TLV_PUT_PATH(sctx, attrtype, p) \
620 	do { \
621 		ret = tlv_put_string(sctx, attrtype, p->start, \
622 			p->end - p->start); \
623 		if (ret < 0) \
624 			goto tlv_put_failure; \
625 	} while(0)
626 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
627 	do { \
628 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
629 		if (ret < 0) \
630 			goto tlv_put_failure; \
631 	} while (0)
632 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
633 	do { \
634 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
635 		if (ret < 0) \
636 			goto tlv_put_failure; \
637 	} while (0)
638 
639 static int send_header(struct send_ctx *sctx)
640 {
641 	struct btrfs_stream_header hdr;
642 
643 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
644 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
645 
646 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
647 					&sctx->send_off);
648 }
649 
650 /*
651  * For each command/item we want to send to userspace, we call this function.
652  */
653 static int begin_cmd(struct send_ctx *sctx, int cmd)
654 {
655 	struct btrfs_cmd_header *hdr;
656 
657 	if (WARN_ON(!sctx->send_buf))
658 		return -EINVAL;
659 
660 	BUG_ON(sctx->send_size);
661 
662 	sctx->send_size += sizeof(*hdr);
663 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
664 	hdr->cmd = cpu_to_le16(cmd);
665 
666 	return 0;
667 }
668 
669 static int send_cmd(struct send_ctx *sctx)
670 {
671 	int ret;
672 	struct btrfs_cmd_header *hdr;
673 	u32 crc;
674 
675 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
676 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
677 	hdr->crc = 0;
678 
679 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
680 	hdr->crc = cpu_to_le32(crc);
681 
682 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
683 					&sctx->send_off);
684 
685 	sctx->total_send_size += sctx->send_size;
686 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
687 	sctx->send_size = 0;
688 
689 	return ret;
690 }
691 
692 /*
693  * Sends a move instruction to user space
694  */
695 static int send_rename(struct send_ctx *sctx,
696 		     struct fs_path *from, struct fs_path *to)
697 {
698 	int ret;
699 
700 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
701 
702 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
703 	if (ret < 0)
704 		goto out;
705 
706 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
707 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
708 
709 	ret = send_cmd(sctx);
710 
711 tlv_put_failure:
712 out:
713 	return ret;
714 }
715 
716 /*
717  * Sends a link instruction to user space
718  */
719 static int send_link(struct send_ctx *sctx,
720 		     struct fs_path *path, struct fs_path *lnk)
721 {
722 	int ret;
723 
724 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
725 
726 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
727 	if (ret < 0)
728 		goto out;
729 
730 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
731 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
732 
733 	ret = send_cmd(sctx);
734 
735 tlv_put_failure:
736 out:
737 	return ret;
738 }
739 
740 /*
741  * Sends an unlink instruction to user space
742  */
743 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
744 {
745 	int ret;
746 
747 verbose_printk("btrfs: send_unlink %s\n", path->start);
748 
749 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
750 	if (ret < 0)
751 		goto out;
752 
753 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
754 
755 	ret = send_cmd(sctx);
756 
757 tlv_put_failure:
758 out:
759 	return ret;
760 }
761 
762 /*
763  * Sends a rmdir instruction to user space
764  */
765 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
766 {
767 	int ret;
768 
769 verbose_printk("btrfs: send_rmdir %s\n", path->start);
770 
771 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
772 	if (ret < 0)
773 		goto out;
774 
775 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
776 
777 	ret = send_cmd(sctx);
778 
779 tlv_put_failure:
780 out:
781 	return ret;
782 }
783 
784 /*
785  * Helper function to retrieve some fields from an inode item.
786  */
787 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
788 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
789 			  u64 *gid, u64 *rdev)
790 {
791 	int ret;
792 	struct btrfs_inode_item *ii;
793 	struct btrfs_key key;
794 
795 	key.objectid = ino;
796 	key.type = BTRFS_INODE_ITEM_KEY;
797 	key.offset = 0;
798 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
799 	if (ret) {
800 		if (ret > 0)
801 			ret = -ENOENT;
802 		return ret;
803 	}
804 
805 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
806 			struct btrfs_inode_item);
807 	if (size)
808 		*size = btrfs_inode_size(path->nodes[0], ii);
809 	if (gen)
810 		*gen = btrfs_inode_generation(path->nodes[0], ii);
811 	if (mode)
812 		*mode = btrfs_inode_mode(path->nodes[0], ii);
813 	if (uid)
814 		*uid = btrfs_inode_uid(path->nodes[0], ii);
815 	if (gid)
816 		*gid = btrfs_inode_gid(path->nodes[0], ii);
817 	if (rdev)
818 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
819 
820 	return ret;
821 }
822 
823 static int get_inode_info(struct btrfs_root *root,
824 			  u64 ino, u64 *size, u64 *gen,
825 			  u64 *mode, u64 *uid, u64 *gid,
826 			  u64 *rdev)
827 {
828 	struct btrfs_path *path;
829 	int ret;
830 
831 	path = alloc_path_for_send();
832 	if (!path)
833 		return -ENOMEM;
834 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
835 			       rdev);
836 	btrfs_free_path(path);
837 	return ret;
838 }
839 
840 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
841 				   struct fs_path *p,
842 				   void *ctx);
843 
844 /*
845  * Helper function to iterate the entries in ONE btrfs_inode_ref or
846  * btrfs_inode_extref.
847  * The iterate callback may return a non zero value to stop iteration. This can
848  * be a negative value for error codes or 1 to simply stop it.
849  *
850  * path must point to the INODE_REF or INODE_EXTREF when called.
851  */
852 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
853 			     struct btrfs_key *found_key, int resolve,
854 			     iterate_inode_ref_t iterate, void *ctx)
855 {
856 	struct extent_buffer *eb = path->nodes[0];
857 	struct btrfs_item *item;
858 	struct btrfs_inode_ref *iref;
859 	struct btrfs_inode_extref *extref;
860 	struct btrfs_path *tmp_path;
861 	struct fs_path *p;
862 	u32 cur = 0;
863 	u32 total;
864 	int slot = path->slots[0];
865 	u32 name_len;
866 	char *start;
867 	int ret = 0;
868 	int num = 0;
869 	int index;
870 	u64 dir;
871 	unsigned long name_off;
872 	unsigned long elem_size;
873 	unsigned long ptr;
874 
875 	p = fs_path_alloc_reversed();
876 	if (!p)
877 		return -ENOMEM;
878 
879 	tmp_path = alloc_path_for_send();
880 	if (!tmp_path) {
881 		fs_path_free(p);
882 		return -ENOMEM;
883 	}
884 
885 
886 	if (found_key->type == BTRFS_INODE_REF_KEY) {
887 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
888 						    struct btrfs_inode_ref);
889 		item = btrfs_item_nr(slot);
890 		total = btrfs_item_size(eb, item);
891 		elem_size = sizeof(*iref);
892 	} else {
893 		ptr = btrfs_item_ptr_offset(eb, slot);
894 		total = btrfs_item_size_nr(eb, slot);
895 		elem_size = sizeof(*extref);
896 	}
897 
898 	while (cur < total) {
899 		fs_path_reset(p);
900 
901 		if (found_key->type == BTRFS_INODE_REF_KEY) {
902 			iref = (struct btrfs_inode_ref *)(ptr + cur);
903 			name_len = btrfs_inode_ref_name_len(eb, iref);
904 			name_off = (unsigned long)(iref + 1);
905 			index = btrfs_inode_ref_index(eb, iref);
906 			dir = found_key->offset;
907 		} else {
908 			extref = (struct btrfs_inode_extref *)(ptr + cur);
909 			name_len = btrfs_inode_extref_name_len(eb, extref);
910 			name_off = (unsigned long)&extref->name;
911 			index = btrfs_inode_extref_index(eb, extref);
912 			dir = btrfs_inode_extref_parent(eb, extref);
913 		}
914 
915 		if (resolve) {
916 			start = btrfs_ref_to_path(root, tmp_path, name_len,
917 						  name_off, eb, dir,
918 						  p->buf, p->buf_len);
919 			if (IS_ERR(start)) {
920 				ret = PTR_ERR(start);
921 				goto out;
922 			}
923 			if (start < p->buf) {
924 				/* overflow , try again with larger buffer */
925 				ret = fs_path_ensure_buf(p,
926 						p->buf_len + p->buf - start);
927 				if (ret < 0)
928 					goto out;
929 				start = btrfs_ref_to_path(root, tmp_path,
930 							  name_len, name_off,
931 							  eb, dir,
932 							  p->buf, p->buf_len);
933 				if (IS_ERR(start)) {
934 					ret = PTR_ERR(start);
935 					goto out;
936 				}
937 				BUG_ON(start < p->buf);
938 			}
939 			p->start = start;
940 		} else {
941 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
942 							     name_len);
943 			if (ret < 0)
944 				goto out;
945 		}
946 
947 		cur += elem_size + name_len;
948 		ret = iterate(num, dir, index, p, ctx);
949 		if (ret)
950 			goto out;
951 		num++;
952 	}
953 
954 out:
955 	btrfs_free_path(tmp_path);
956 	fs_path_free(p);
957 	return ret;
958 }
959 
960 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
961 				  const char *name, int name_len,
962 				  const char *data, int data_len,
963 				  u8 type, void *ctx);
964 
965 /*
966  * Helper function to iterate the entries in ONE btrfs_dir_item.
967  * The iterate callback may return a non zero value to stop iteration. This can
968  * be a negative value for error codes or 1 to simply stop it.
969  *
970  * path must point to the dir item when called.
971  */
972 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
973 			    struct btrfs_key *found_key,
974 			    iterate_dir_item_t iterate, void *ctx)
975 {
976 	int ret = 0;
977 	struct extent_buffer *eb;
978 	struct btrfs_item *item;
979 	struct btrfs_dir_item *di;
980 	struct btrfs_key di_key;
981 	char *buf = NULL;
982 	int buf_len;
983 	u32 name_len;
984 	u32 data_len;
985 	u32 cur;
986 	u32 len;
987 	u32 total;
988 	int slot;
989 	int num;
990 	u8 type;
991 
992 	/*
993 	 * Start with a small buffer (1 page). If later we end up needing more
994 	 * space, which can happen for xattrs on a fs with a leaf size greater
995 	 * then the page size, attempt to increase the buffer. Typically xattr
996 	 * values are small.
997 	 */
998 	buf_len = PATH_MAX;
999 	buf = kmalloc(buf_len, GFP_KERNEL);
1000 	if (!buf) {
1001 		ret = -ENOMEM;
1002 		goto out;
1003 	}
1004 
1005 	eb = path->nodes[0];
1006 	slot = path->slots[0];
1007 	item = btrfs_item_nr(slot);
1008 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1009 	cur = 0;
1010 	len = 0;
1011 	total = btrfs_item_size(eb, item);
1012 
1013 	num = 0;
1014 	while (cur < total) {
1015 		name_len = btrfs_dir_name_len(eb, di);
1016 		data_len = btrfs_dir_data_len(eb, di);
1017 		type = btrfs_dir_type(eb, di);
1018 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1019 
1020 		if (type == BTRFS_FT_XATTR) {
1021 			if (name_len > XATTR_NAME_MAX) {
1022 				ret = -ENAMETOOLONG;
1023 				goto out;
1024 			}
1025 			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1026 				ret = -E2BIG;
1027 				goto out;
1028 			}
1029 		} else {
1030 			/*
1031 			 * Path too long
1032 			 */
1033 			if (name_len + data_len > PATH_MAX) {
1034 				ret = -ENAMETOOLONG;
1035 				goto out;
1036 			}
1037 		}
1038 
1039 		if (name_len + data_len > buf_len) {
1040 			buf_len = name_len + data_len;
1041 			if (is_vmalloc_addr(buf)) {
1042 				vfree(buf);
1043 				buf = NULL;
1044 			} else {
1045 				char *tmp = krealloc(buf, buf_len,
1046 						GFP_KERNEL | __GFP_NOWARN);
1047 
1048 				if (!tmp)
1049 					kfree(buf);
1050 				buf = tmp;
1051 			}
1052 			if (!buf) {
1053 				buf = vmalloc(buf_len);
1054 				if (!buf) {
1055 					ret = -ENOMEM;
1056 					goto out;
1057 				}
1058 			}
1059 		}
1060 
1061 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1062 				name_len + data_len);
1063 
1064 		len = sizeof(*di) + name_len + data_len;
1065 		di = (struct btrfs_dir_item *)((char *)di + len);
1066 		cur += len;
1067 
1068 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1069 				data_len, type, ctx);
1070 		if (ret < 0)
1071 			goto out;
1072 		if (ret) {
1073 			ret = 0;
1074 			goto out;
1075 		}
1076 
1077 		num++;
1078 	}
1079 
1080 out:
1081 	kvfree(buf);
1082 	return ret;
1083 }
1084 
1085 static int __copy_first_ref(int num, u64 dir, int index,
1086 			    struct fs_path *p, void *ctx)
1087 {
1088 	int ret;
1089 	struct fs_path *pt = ctx;
1090 
1091 	ret = fs_path_copy(pt, p);
1092 	if (ret < 0)
1093 		return ret;
1094 
1095 	/* we want the first only */
1096 	return 1;
1097 }
1098 
1099 /*
1100  * Retrieve the first path of an inode. If an inode has more then one
1101  * ref/hardlink, this is ignored.
1102  */
1103 static int get_inode_path(struct btrfs_root *root,
1104 			  u64 ino, struct fs_path *path)
1105 {
1106 	int ret;
1107 	struct btrfs_key key, found_key;
1108 	struct btrfs_path *p;
1109 
1110 	p = alloc_path_for_send();
1111 	if (!p)
1112 		return -ENOMEM;
1113 
1114 	fs_path_reset(path);
1115 
1116 	key.objectid = ino;
1117 	key.type = BTRFS_INODE_REF_KEY;
1118 	key.offset = 0;
1119 
1120 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1121 	if (ret < 0)
1122 		goto out;
1123 	if (ret) {
1124 		ret = 1;
1125 		goto out;
1126 	}
1127 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1128 	if (found_key.objectid != ino ||
1129 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1130 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1131 		ret = -ENOENT;
1132 		goto out;
1133 	}
1134 
1135 	ret = iterate_inode_ref(root, p, &found_key, 1,
1136 				__copy_first_ref, path);
1137 	if (ret < 0)
1138 		goto out;
1139 	ret = 0;
1140 
1141 out:
1142 	btrfs_free_path(p);
1143 	return ret;
1144 }
1145 
1146 struct backref_ctx {
1147 	struct send_ctx *sctx;
1148 
1149 	struct btrfs_path *path;
1150 	/* number of total found references */
1151 	u64 found;
1152 
1153 	/*
1154 	 * used for clones found in send_root. clones found behind cur_objectid
1155 	 * and cur_offset are not considered as allowed clones.
1156 	 */
1157 	u64 cur_objectid;
1158 	u64 cur_offset;
1159 
1160 	/* may be truncated in case it's the last extent in a file */
1161 	u64 extent_len;
1162 
1163 	/* data offset in the file extent item */
1164 	u64 data_offset;
1165 
1166 	/* Just to check for bugs in backref resolving */
1167 	int found_itself;
1168 };
1169 
1170 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1171 {
1172 	u64 root = (u64)(uintptr_t)key;
1173 	struct clone_root *cr = (struct clone_root *)elt;
1174 
1175 	if (root < cr->root->objectid)
1176 		return -1;
1177 	if (root > cr->root->objectid)
1178 		return 1;
1179 	return 0;
1180 }
1181 
1182 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1183 {
1184 	struct clone_root *cr1 = (struct clone_root *)e1;
1185 	struct clone_root *cr2 = (struct clone_root *)e2;
1186 
1187 	if (cr1->root->objectid < cr2->root->objectid)
1188 		return -1;
1189 	if (cr1->root->objectid > cr2->root->objectid)
1190 		return 1;
1191 	return 0;
1192 }
1193 
1194 /*
1195  * Called for every backref that is found for the current extent.
1196  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1197  */
1198 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1199 {
1200 	struct backref_ctx *bctx = ctx_;
1201 	struct clone_root *found;
1202 	int ret;
1203 	u64 i_size;
1204 
1205 	/* First check if the root is in the list of accepted clone sources */
1206 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1207 			bctx->sctx->clone_roots_cnt,
1208 			sizeof(struct clone_root),
1209 			__clone_root_cmp_bsearch);
1210 	if (!found)
1211 		return 0;
1212 
1213 	if (found->root == bctx->sctx->send_root &&
1214 	    ino == bctx->cur_objectid &&
1215 	    offset == bctx->cur_offset) {
1216 		bctx->found_itself = 1;
1217 	}
1218 
1219 	/*
1220 	 * There are inodes that have extents that lie behind its i_size. Don't
1221 	 * accept clones from these extents.
1222 	 */
1223 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1224 			       NULL, NULL, NULL);
1225 	btrfs_release_path(bctx->path);
1226 	if (ret < 0)
1227 		return ret;
1228 
1229 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1230 		return 0;
1231 
1232 	/*
1233 	 * Make sure we don't consider clones from send_root that are
1234 	 * behind the current inode/offset.
1235 	 */
1236 	if (found->root == bctx->sctx->send_root) {
1237 		/*
1238 		 * TODO for the moment we don't accept clones from the inode
1239 		 * that is currently send. We may change this when
1240 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1241 		 * file.
1242 		 */
1243 		if (ino >= bctx->cur_objectid)
1244 			return 0;
1245 #if 0
1246 		if (ino > bctx->cur_objectid)
1247 			return 0;
1248 		if (offset + bctx->extent_len > bctx->cur_offset)
1249 			return 0;
1250 #endif
1251 	}
1252 
1253 	bctx->found++;
1254 	found->found_refs++;
1255 	if (ino < found->ino) {
1256 		found->ino = ino;
1257 		found->offset = offset;
1258 	} else if (found->ino == ino) {
1259 		/*
1260 		 * same extent found more then once in the same file.
1261 		 */
1262 		if (found->offset > offset + bctx->extent_len)
1263 			found->offset = offset;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 /*
1270  * Given an inode, offset and extent item, it finds a good clone for a clone
1271  * instruction. Returns -ENOENT when none could be found. The function makes
1272  * sure that the returned clone is usable at the point where sending is at the
1273  * moment. This means, that no clones are accepted which lie behind the current
1274  * inode+offset.
1275  *
1276  * path must point to the extent item when called.
1277  */
1278 static int find_extent_clone(struct send_ctx *sctx,
1279 			     struct btrfs_path *path,
1280 			     u64 ino, u64 data_offset,
1281 			     u64 ino_size,
1282 			     struct clone_root **found)
1283 {
1284 	int ret;
1285 	int extent_type;
1286 	u64 logical;
1287 	u64 disk_byte;
1288 	u64 num_bytes;
1289 	u64 extent_item_pos;
1290 	u64 flags = 0;
1291 	struct btrfs_file_extent_item *fi;
1292 	struct extent_buffer *eb = path->nodes[0];
1293 	struct backref_ctx *backref_ctx = NULL;
1294 	struct clone_root *cur_clone_root;
1295 	struct btrfs_key found_key;
1296 	struct btrfs_path *tmp_path;
1297 	int compressed;
1298 	u32 i;
1299 
1300 	tmp_path = alloc_path_for_send();
1301 	if (!tmp_path)
1302 		return -ENOMEM;
1303 
1304 	/* We only use this path under the commit sem */
1305 	tmp_path->need_commit_sem = 0;
1306 
1307 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1308 	if (!backref_ctx) {
1309 		ret = -ENOMEM;
1310 		goto out;
1311 	}
1312 
1313 	backref_ctx->path = tmp_path;
1314 
1315 	if (data_offset >= ino_size) {
1316 		/*
1317 		 * There may be extents that lie behind the file's size.
1318 		 * I at least had this in combination with snapshotting while
1319 		 * writing large files.
1320 		 */
1321 		ret = 0;
1322 		goto out;
1323 	}
1324 
1325 	fi = btrfs_item_ptr(eb, path->slots[0],
1326 			struct btrfs_file_extent_item);
1327 	extent_type = btrfs_file_extent_type(eb, fi);
1328 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1329 		ret = -ENOENT;
1330 		goto out;
1331 	}
1332 	compressed = btrfs_file_extent_compression(eb, fi);
1333 
1334 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1335 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1336 	if (disk_byte == 0) {
1337 		ret = -ENOENT;
1338 		goto out;
1339 	}
1340 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1341 
1342 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1343 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1344 				  &found_key, &flags);
1345 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1346 	btrfs_release_path(tmp_path);
1347 
1348 	if (ret < 0)
1349 		goto out;
1350 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1351 		ret = -EIO;
1352 		goto out;
1353 	}
1354 
1355 	/*
1356 	 * Setup the clone roots.
1357 	 */
1358 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1359 		cur_clone_root = sctx->clone_roots + i;
1360 		cur_clone_root->ino = (u64)-1;
1361 		cur_clone_root->offset = 0;
1362 		cur_clone_root->found_refs = 0;
1363 	}
1364 
1365 	backref_ctx->sctx = sctx;
1366 	backref_ctx->found = 0;
1367 	backref_ctx->cur_objectid = ino;
1368 	backref_ctx->cur_offset = data_offset;
1369 	backref_ctx->found_itself = 0;
1370 	backref_ctx->extent_len = num_bytes;
1371 	/*
1372 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1373 	 * offsets that already take into account the data offset, but not for
1374 	 * compressed extents, since the offset is logical and not relative to
1375 	 * the physical extent locations. We must take this into account to
1376 	 * avoid sending clone offsets that go beyond the source file's size,
1377 	 * which would result in the clone ioctl failing with -EINVAL on the
1378 	 * receiving end.
1379 	 */
1380 	if (compressed == BTRFS_COMPRESS_NONE)
1381 		backref_ctx->data_offset = 0;
1382 	else
1383 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1384 
1385 	/*
1386 	 * The last extent of a file may be too large due to page alignment.
1387 	 * We need to adjust extent_len in this case so that the checks in
1388 	 * __iterate_backrefs work.
1389 	 */
1390 	if (data_offset + num_bytes >= ino_size)
1391 		backref_ctx->extent_len = ino_size - data_offset;
1392 
1393 	/*
1394 	 * Now collect all backrefs.
1395 	 */
1396 	if (compressed == BTRFS_COMPRESS_NONE)
1397 		extent_item_pos = logical - found_key.objectid;
1398 	else
1399 		extent_item_pos = 0;
1400 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1401 					found_key.objectid, extent_item_pos, 1,
1402 					__iterate_backrefs, backref_ctx);
1403 
1404 	if (ret < 0)
1405 		goto out;
1406 
1407 	if (!backref_ctx->found_itself) {
1408 		/* found a bug in backref code? */
1409 		ret = -EIO;
1410 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1411 				"send_root. inode=%llu, offset=%llu, "
1412 				"disk_byte=%llu found extent=%llu",
1413 				ino, data_offset, disk_byte, found_key.objectid);
1414 		goto out;
1415 	}
1416 
1417 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1418 		"ino=%llu, "
1419 		"num_bytes=%llu, logical=%llu\n",
1420 		data_offset, ino, num_bytes, logical);
1421 
1422 	if (!backref_ctx->found)
1423 		verbose_printk("btrfs:    no clones found\n");
1424 
1425 	cur_clone_root = NULL;
1426 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1427 		if (sctx->clone_roots[i].found_refs) {
1428 			if (!cur_clone_root)
1429 				cur_clone_root = sctx->clone_roots + i;
1430 			else if (sctx->clone_roots[i].root == sctx->send_root)
1431 				/* prefer clones from send_root over others */
1432 				cur_clone_root = sctx->clone_roots + i;
1433 		}
1434 
1435 	}
1436 
1437 	if (cur_clone_root) {
1438 		*found = cur_clone_root;
1439 		ret = 0;
1440 	} else {
1441 		ret = -ENOENT;
1442 	}
1443 
1444 out:
1445 	btrfs_free_path(tmp_path);
1446 	kfree(backref_ctx);
1447 	return ret;
1448 }
1449 
1450 static int read_symlink(struct btrfs_root *root,
1451 			u64 ino,
1452 			struct fs_path *dest)
1453 {
1454 	int ret;
1455 	struct btrfs_path *path;
1456 	struct btrfs_key key;
1457 	struct btrfs_file_extent_item *ei;
1458 	u8 type;
1459 	u8 compression;
1460 	unsigned long off;
1461 	int len;
1462 
1463 	path = alloc_path_for_send();
1464 	if (!path)
1465 		return -ENOMEM;
1466 
1467 	key.objectid = ino;
1468 	key.type = BTRFS_EXTENT_DATA_KEY;
1469 	key.offset = 0;
1470 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1471 	if (ret < 0)
1472 		goto out;
1473 	if (ret) {
1474 		/*
1475 		 * An empty symlink inode. Can happen in rare error paths when
1476 		 * creating a symlink (transaction committed before the inode
1477 		 * eviction handler removed the symlink inode items and a crash
1478 		 * happened in between or the subvol was snapshoted in between).
1479 		 * Print an informative message to dmesg/syslog so that the user
1480 		 * can delete the symlink.
1481 		 */
1482 		btrfs_err(root->fs_info,
1483 			  "Found empty symlink inode %llu at root %llu",
1484 			  ino, root->root_key.objectid);
1485 		ret = -EIO;
1486 		goto out;
1487 	}
1488 
1489 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1490 			struct btrfs_file_extent_item);
1491 	type = btrfs_file_extent_type(path->nodes[0], ei);
1492 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1493 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1494 	BUG_ON(compression);
1495 
1496 	off = btrfs_file_extent_inline_start(ei);
1497 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1498 
1499 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1500 
1501 out:
1502 	btrfs_free_path(path);
1503 	return ret;
1504 }
1505 
1506 /*
1507  * Helper function to generate a file name that is unique in the root of
1508  * send_root and parent_root. This is used to generate names for orphan inodes.
1509  */
1510 static int gen_unique_name(struct send_ctx *sctx,
1511 			   u64 ino, u64 gen,
1512 			   struct fs_path *dest)
1513 {
1514 	int ret = 0;
1515 	struct btrfs_path *path;
1516 	struct btrfs_dir_item *di;
1517 	char tmp[64];
1518 	int len;
1519 	u64 idx = 0;
1520 
1521 	path = alloc_path_for_send();
1522 	if (!path)
1523 		return -ENOMEM;
1524 
1525 	while (1) {
1526 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1527 				ino, gen, idx);
1528 		ASSERT(len < sizeof(tmp));
1529 
1530 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1531 				path, BTRFS_FIRST_FREE_OBJECTID,
1532 				tmp, strlen(tmp), 0);
1533 		btrfs_release_path(path);
1534 		if (IS_ERR(di)) {
1535 			ret = PTR_ERR(di);
1536 			goto out;
1537 		}
1538 		if (di) {
1539 			/* not unique, try again */
1540 			idx++;
1541 			continue;
1542 		}
1543 
1544 		if (!sctx->parent_root) {
1545 			/* unique */
1546 			ret = 0;
1547 			break;
1548 		}
1549 
1550 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1551 				path, BTRFS_FIRST_FREE_OBJECTID,
1552 				tmp, strlen(tmp), 0);
1553 		btrfs_release_path(path);
1554 		if (IS_ERR(di)) {
1555 			ret = PTR_ERR(di);
1556 			goto out;
1557 		}
1558 		if (di) {
1559 			/* not unique, try again */
1560 			idx++;
1561 			continue;
1562 		}
1563 		/* unique */
1564 		break;
1565 	}
1566 
1567 	ret = fs_path_add(dest, tmp, strlen(tmp));
1568 
1569 out:
1570 	btrfs_free_path(path);
1571 	return ret;
1572 }
1573 
1574 enum inode_state {
1575 	inode_state_no_change,
1576 	inode_state_will_create,
1577 	inode_state_did_create,
1578 	inode_state_will_delete,
1579 	inode_state_did_delete,
1580 };
1581 
1582 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1583 {
1584 	int ret;
1585 	int left_ret;
1586 	int right_ret;
1587 	u64 left_gen;
1588 	u64 right_gen;
1589 
1590 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1591 			NULL, NULL);
1592 	if (ret < 0 && ret != -ENOENT)
1593 		goto out;
1594 	left_ret = ret;
1595 
1596 	if (!sctx->parent_root) {
1597 		right_ret = -ENOENT;
1598 	} else {
1599 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1600 				NULL, NULL, NULL, NULL);
1601 		if (ret < 0 && ret != -ENOENT)
1602 			goto out;
1603 		right_ret = ret;
1604 	}
1605 
1606 	if (!left_ret && !right_ret) {
1607 		if (left_gen == gen && right_gen == gen) {
1608 			ret = inode_state_no_change;
1609 		} else if (left_gen == gen) {
1610 			if (ino < sctx->send_progress)
1611 				ret = inode_state_did_create;
1612 			else
1613 				ret = inode_state_will_create;
1614 		} else if (right_gen == gen) {
1615 			if (ino < sctx->send_progress)
1616 				ret = inode_state_did_delete;
1617 			else
1618 				ret = inode_state_will_delete;
1619 		} else  {
1620 			ret = -ENOENT;
1621 		}
1622 	} else if (!left_ret) {
1623 		if (left_gen == gen) {
1624 			if (ino < sctx->send_progress)
1625 				ret = inode_state_did_create;
1626 			else
1627 				ret = inode_state_will_create;
1628 		} else {
1629 			ret = -ENOENT;
1630 		}
1631 	} else if (!right_ret) {
1632 		if (right_gen == gen) {
1633 			if (ino < sctx->send_progress)
1634 				ret = inode_state_did_delete;
1635 			else
1636 				ret = inode_state_will_delete;
1637 		} else {
1638 			ret = -ENOENT;
1639 		}
1640 	} else {
1641 		ret = -ENOENT;
1642 	}
1643 
1644 out:
1645 	return ret;
1646 }
1647 
1648 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1649 {
1650 	int ret;
1651 
1652 	ret = get_cur_inode_state(sctx, ino, gen);
1653 	if (ret < 0)
1654 		goto out;
1655 
1656 	if (ret == inode_state_no_change ||
1657 	    ret == inode_state_did_create ||
1658 	    ret == inode_state_will_delete)
1659 		ret = 1;
1660 	else
1661 		ret = 0;
1662 
1663 out:
1664 	return ret;
1665 }
1666 
1667 /*
1668  * Helper function to lookup a dir item in a dir.
1669  */
1670 static int lookup_dir_item_inode(struct btrfs_root *root,
1671 				 u64 dir, const char *name, int name_len,
1672 				 u64 *found_inode,
1673 				 u8 *found_type)
1674 {
1675 	int ret = 0;
1676 	struct btrfs_dir_item *di;
1677 	struct btrfs_key key;
1678 	struct btrfs_path *path;
1679 
1680 	path = alloc_path_for_send();
1681 	if (!path)
1682 		return -ENOMEM;
1683 
1684 	di = btrfs_lookup_dir_item(NULL, root, path,
1685 			dir, name, name_len, 0);
1686 	if (!di) {
1687 		ret = -ENOENT;
1688 		goto out;
1689 	}
1690 	if (IS_ERR(di)) {
1691 		ret = PTR_ERR(di);
1692 		goto out;
1693 	}
1694 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1695 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1696 		ret = -ENOENT;
1697 		goto out;
1698 	}
1699 	*found_inode = key.objectid;
1700 	*found_type = btrfs_dir_type(path->nodes[0], di);
1701 
1702 out:
1703 	btrfs_free_path(path);
1704 	return ret;
1705 }
1706 
1707 /*
1708  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1709  * generation of the parent dir and the name of the dir entry.
1710  */
1711 static int get_first_ref(struct btrfs_root *root, u64 ino,
1712 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1713 {
1714 	int ret;
1715 	struct btrfs_key key;
1716 	struct btrfs_key found_key;
1717 	struct btrfs_path *path;
1718 	int len;
1719 	u64 parent_dir;
1720 
1721 	path = alloc_path_for_send();
1722 	if (!path)
1723 		return -ENOMEM;
1724 
1725 	key.objectid = ino;
1726 	key.type = BTRFS_INODE_REF_KEY;
1727 	key.offset = 0;
1728 
1729 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1730 	if (ret < 0)
1731 		goto out;
1732 	if (!ret)
1733 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1734 				path->slots[0]);
1735 	if (ret || found_key.objectid != ino ||
1736 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1737 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1738 		ret = -ENOENT;
1739 		goto out;
1740 	}
1741 
1742 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1743 		struct btrfs_inode_ref *iref;
1744 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1745 				      struct btrfs_inode_ref);
1746 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1747 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1748 						     (unsigned long)(iref + 1),
1749 						     len);
1750 		parent_dir = found_key.offset;
1751 	} else {
1752 		struct btrfs_inode_extref *extref;
1753 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1754 					struct btrfs_inode_extref);
1755 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1756 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1757 					(unsigned long)&extref->name, len);
1758 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1759 	}
1760 	if (ret < 0)
1761 		goto out;
1762 	btrfs_release_path(path);
1763 
1764 	if (dir_gen) {
1765 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1766 				     NULL, NULL, NULL);
1767 		if (ret < 0)
1768 			goto out;
1769 	}
1770 
1771 	*dir = parent_dir;
1772 
1773 out:
1774 	btrfs_free_path(path);
1775 	return ret;
1776 }
1777 
1778 static int is_first_ref(struct btrfs_root *root,
1779 			u64 ino, u64 dir,
1780 			const char *name, int name_len)
1781 {
1782 	int ret;
1783 	struct fs_path *tmp_name;
1784 	u64 tmp_dir;
1785 
1786 	tmp_name = fs_path_alloc();
1787 	if (!tmp_name)
1788 		return -ENOMEM;
1789 
1790 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1791 	if (ret < 0)
1792 		goto out;
1793 
1794 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1795 		ret = 0;
1796 		goto out;
1797 	}
1798 
1799 	ret = !memcmp(tmp_name->start, name, name_len);
1800 
1801 out:
1802 	fs_path_free(tmp_name);
1803 	return ret;
1804 }
1805 
1806 /*
1807  * Used by process_recorded_refs to determine if a new ref would overwrite an
1808  * already existing ref. In case it detects an overwrite, it returns the
1809  * inode/gen in who_ino/who_gen.
1810  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1811  * to make sure later references to the overwritten inode are possible.
1812  * Orphanizing is however only required for the first ref of an inode.
1813  * process_recorded_refs does an additional is_first_ref check to see if
1814  * orphanizing is really required.
1815  */
1816 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1817 			      const char *name, int name_len,
1818 			      u64 *who_ino, u64 *who_gen)
1819 {
1820 	int ret = 0;
1821 	u64 gen;
1822 	u64 other_inode = 0;
1823 	u8 other_type = 0;
1824 
1825 	if (!sctx->parent_root)
1826 		goto out;
1827 
1828 	ret = is_inode_existent(sctx, dir, dir_gen);
1829 	if (ret <= 0)
1830 		goto out;
1831 
1832 	/*
1833 	 * If we have a parent root we need to verify that the parent dir was
1834 	 * not deleted and then re-created, if it was then we have no overwrite
1835 	 * and we can just unlink this entry.
1836 	 */
1837 	if (sctx->parent_root) {
1838 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1839 				     NULL, NULL, NULL);
1840 		if (ret < 0 && ret != -ENOENT)
1841 			goto out;
1842 		if (ret) {
1843 			ret = 0;
1844 			goto out;
1845 		}
1846 		if (gen != dir_gen)
1847 			goto out;
1848 	}
1849 
1850 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1851 			&other_inode, &other_type);
1852 	if (ret < 0 && ret != -ENOENT)
1853 		goto out;
1854 	if (ret) {
1855 		ret = 0;
1856 		goto out;
1857 	}
1858 
1859 	/*
1860 	 * Check if the overwritten ref was already processed. If yes, the ref
1861 	 * was already unlinked/moved, so we can safely assume that we will not
1862 	 * overwrite anything at this point in time.
1863 	 */
1864 	if (other_inode > sctx->send_progress) {
1865 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1866 				who_gen, NULL, NULL, NULL, NULL);
1867 		if (ret < 0)
1868 			goto out;
1869 
1870 		ret = 1;
1871 		*who_ino = other_inode;
1872 	} else {
1873 		ret = 0;
1874 	}
1875 
1876 out:
1877 	return ret;
1878 }
1879 
1880 /*
1881  * Checks if the ref was overwritten by an already processed inode. This is
1882  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1883  * thus the orphan name needs be used.
1884  * process_recorded_refs also uses it to avoid unlinking of refs that were
1885  * overwritten.
1886  */
1887 static int did_overwrite_ref(struct send_ctx *sctx,
1888 			    u64 dir, u64 dir_gen,
1889 			    u64 ino, u64 ino_gen,
1890 			    const char *name, int name_len)
1891 {
1892 	int ret = 0;
1893 	u64 gen;
1894 	u64 ow_inode;
1895 	u8 other_type;
1896 
1897 	if (!sctx->parent_root)
1898 		goto out;
1899 
1900 	ret = is_inode_existent(sctx, dir, dir_gen);
1901 	if (ret <= 0)
1902 		goto out;
1903 
1904 	/* check if the ref was overwritten by another ref */
1905 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1906 			&ow_inode, &other_type);
1907 	if (ret < 0 && ret != -ENOENT)
1908 		goto out;
1909 	if (ret) {
1910 		/* was never and will never be overwritten */
1911 		ret = 0;
1912 		goto out;
1913 	}
1914 
1915 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1916 			NULL, NULL);
1917 	if (ret < 0)
1918 		goto out;
1919 
1920 	if (ow_inode == ino && gen == ino_gen) {
1921 		ret = 0;
1922 		goto out;
1923 	}
1924 
1925 	/*
1926 	 * We know that it is or will be overwritten. Check this now.
1927 	 * The current inode being processed might have been the one that caused
1928 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1929 	 * the current inode being processed.
1930 	 */
1931 	if ((ow_inode < sctx->send_progress) ||
1932 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1933 	     gen == sctx->cur_inode_gen))
1934 		ret = 1;
1935 	else
1936 		ret = 0;
1937 
1938 out:
1939 	return ret;
1940 }
1941 
1942 /*
1943  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1944  * that got overwritten. This is used by process_recorded_refs to determine
1945  * if it has to use the path as returned by get_cur_path or the orphan name.
1946  */
1947 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1948 {
1949 	int ret = 0;
1950 	struct fs_path *name = NULL;
1951 	u64 dir;
1952 	u64 dir_gen;
1953 
1954 	if (!sctx->parent_root)
1955 		goto out;
1956 
1957 	name = fs_path_alloc();
1958 	if (!name)
1959 		return -ENOMEM;
1960 
1961 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1962 	if (ret < 0)
1963 		goto out;
1964 
1965 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1966 			name->start, fs_path_len(name));
1967 
1968 out:
1969 	fs_path_free(name);
1970 	return ret;
1971 }
1972 
1973 /*
1974  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1975  * so we need to do some special handling in case we have clashes. This function
1976  * takes care of this with the help of name_cache_entry::radix_list.
1977  * In case of error, nce is kfreed.
1978  */
1979 static int name_cache_insert(struct send_ctx *sctx,
1980 			     struct name_cache_entry *nce)
1981 {
1982 	int ret = 0;
1983 	struct list_head *nce_head;
1984 
1985 	nce_head = radix_tree_lookup(&sctx->name_cache,
1986 			(unsigned long)nce->ino);
1987 	if (!nce_head) {
1988 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
1989 		if (!nce_head) {
1990 			kfree(nce);
1991 			return -ENOMEM;
1992 		}
1993 		INIT_LIST_HEAD(nce_head);
1994 
1995 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1996 		if (ret < 0) {
1997 			kfree(nce_head);
1998 			kfree(nce);
1999 			return ret;
2000 		}
2001 	}
2002 	list_add_tail(&nce->radix_list, nce_head);
2003 	list_add_tail(&nce->list, &sctx->name_cache_list);
2004 	sctx->name_cache_size++;
2005 
2006 	return ret;
2007 }
2008 
2009 static void name_cache_delete(struct send_ctx *sctx,
2010 			      struct name_cache_entry *nce)
2011 {
2012 	struct list_head *nce_head;
2013 
2014 	nce_head = radix_tree_lookup(&sctx->name_cache,
2015 			(unsigned long)nce->ino);
2016 	if (!nce_head) {
2017 		btrfs_err(sctx->send_root->fs_info,
2018 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2019 			nce->ino, sctx->name_cache_size);
2020 	}
2021 
2022 	list_del(&nce->radix_list);
2023 	list_del(&nce->list);
2024 	sctx->name_cache_size--;
2025 
2026 	/*
2027 	 * We may not get to the final release of nce_head if the lookup fails
2028 	 */
2029 	if (nce_head && list_empty(nce_head)) {
2030 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2031 		kfree(nce_head);
2032 	}
2033 }
2034 
2035 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2036 						    u64 ino, u64 gen)
2037 {
2038 	struct list_head *nce_head;
2039 	struct name_cache_entry *cur;
2040 
2041 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2042 	if (!nce_head)
2043 		return NULL;
2044 
2045 	list_for_each_entry(cur, nce_head, radix_list) {
2046 		if (cur->ino == ino && cur->gen == gen)
2047 			return cur;
2048 	}
2049 	return NULL;
2050 }
2051 
2052 /*
2053  * Removes the entry from the list and adds it back to the end. This marks the
2054  * entry as recently used so that name_cache_clean_unused does not remove it.
2055  */
2056 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2057 {
2058 	list_del(&nce->list);
2059 	list_add_tail(&nce->list, &sctx->name_cache_list);
2060 }
2061 
2062 /*
2063  * Remove some entries from the beginning of name_cache_list.
2064  */
2065 static void name_cache_clean_unused(struct send_ctx *sctx)
2066 {
2067 	struct name_cache_entry *nce;
2068 
2069 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2070 		return;
2071 
2072 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2073 		nce = list_entry(sctx->name_cache_list.next,
2074 				struct name_cache_entry, list);
2075 		name_cache_delete(sctx, nce);
2076 		kfree(nce);
2077 	}
2078 }
2079 
2080 static void name_cache_free(struct send_ctx *sctx)
2081 {
2082 	struct name_cache_entry *nce;
2083 
2084 	while (!list_empty(&sctx->name_cache_list)) {
2085 		nce = list_entry(sctx->name_cache_list.next,
2086 				struct name_cache_entry, list);
2087 		name_cache_delete(sctx, nce);
2088 		kfree(nce);
2089 	}
2090 }
2091 
2092 /*
2093  * Used by get_cur_path for each ref up to the root.
2094  * Returns 0 if it succeeded.
2095  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2096  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2097  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2098  * Returns <0 in case of error.
2099  */
2100 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2101 				     u64 ino, u64 gen,
2102 				     u64 *parent_ino,
2103 				     u64 *parent_gen,
2104 				     struct fs_path *dest)
2105 {
2106 	int ret;
2107 	int nce_ret;
2108 	struct name_cache_entry *nce = NULL;
2109 
2110 	/*
2111 	 * First check if we already did a call to this function with the same
2112 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2113 	 * return the cached result.
2114 	 */
2115 	nce = name_cache_search(sctx, ino, gen);
2116 	if (nce) {
2117 		if (ino < sctx->send_progress && nce->need_later_update) {
2118 			name_cache_delete(sctx, nce);
2119 			kfree(nce);
2120 			nce = NULL;
2121 		} else {
2122 			name_cache_used(sctx, nce);
2123 			*parent_ino = nce->parent_ino;
2124 			*parent_gen = nce->parent_gen;
2125 			ret = fs_path_add(dest, nce->name, nce->name_len);
2126 			if (ret < 0)
2127 				goto out;
2128 			ret = nce->ret;
2129 			goto out;
2130 		}
2131 	}
2132 
2133 	/*
2134 	 * If the inode is not existent yet, add the orphan name and return 1.
2135 	 * This should only happen for the parent dir that we determine in
2136 	 * __record_new_ref
2137 	 */
2138 	ret = is_inode_existent(sctx, ino, gen);
2139 	if (ret < 0)
2140 		goto out;
2141 
2142 	if (!ret) {
2143 		ret = gen_unique_name(sctx, ino, gen, dest);
2144 		if (ret < 0)
2145 			goto out;
2146 		ret = 1;
2147 		goto out_cache;
2148 	}
2149 
2150 	/*
2151 	 * Depending on whether the inode was already processed or not, use
2152 	 * send_root or parent_root for ref lookup.
2153 	 */
2154 	if (ino < sctx->send_progress)
2155 		ret = get_first_ref(sctx->send_root, ino,
2156 				    parent_ino, parent_gen, dest);
2157 	else
2158 		ret = get_first_ref(sctx->parent_root, ino,
2159 				    parent_ino, parent_gen, dest);
2160 	if (ret < 0)
2161 		goto out;
2162 
2163 	/*
2164 	 * Check if the ref was overwritten by an inode's ref that was processed
2165 	 * earlier. If yes, treat as orphan and return 1.
2166 	 */
2167 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2168 			dest->start, dest->end - dest->start);
2169 	if (ret < 0)
2170 		goto out;
2171 	if (ret) {
2172 		fs_path_reset(dest);
2173 		ret = gen_unique_name(sctx, ino, gen, dest);
2174 		if (ret < 0)
2175 			goto out;
2176 		ret = 1;
2177 	}
2178 
2179 out_cache:
2180 	/*
2181 	 * Store the result of the lookup in the name cache.
2182 	 */
2183 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2184 	if (!nce) {
2185 		ret = -ENOMEM;
2186 		goto out;
2187 	}
2188 
2189 	nce->ino = ino;
2190 	nce->gen = gen;
2191 	nce->parent_ino = *parent_ino;
2192 	nce->parent_gen = *parent_gen;
2193 	nce->name_len = fs_path_len(dest);
2194 	nce->ret = ret;
2195 	strcpy(nce->name, dest->start);
2196 
2197 	if (ino < sctx->send_progress)
2198 		nce->need_later_update = 0;
2199 	else
2200 		nce->need_later_update = 1;
2201 
2202 	nce_ret = name_cache_insert(sctx, nce);
2203 	if (nce_ret < 0)
2204 		ret = nce_ret;
2205 	name_cache_clean_unused(sctx);
2206 
2207 out:
2208 	return ret;
2209 }
2210 
2211 /*
2212  * Magic happens here. This function returns the first ref to an inode as it
2213  * would look like while receiving the stream at this point in time.
2214  * We walk the path up to the root. For every inode in between, we check if it
2215  * was already processed/sent. If yes, we continue with the parent as found
2216  * in send_root. If not, we continue with the parent as found in parent_root.
2217  * If we encounter an inode that was deleted at this point in time, we use the
2218  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2219  * that were not created yet and overwritten inodes/refs.
2220  *
2221  * When do we have have orphan inodes:
2222  * 1. When an inode is freshly created and thus no valid refs are available yet
2223  * 2. When a directory lost all it's refs (deleted) but still has dir items
2224  *    inside which were not processed yet (pending for move/delete). If anyone
2225  *    tried to get the path to the dir items, it would get a path inside that
2226  *    orphan directory.
2227  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2228  *    of an unprocessed inode. If in that case the first ref would be
2229  *    overwritten, the overwritten inode gets "orphanized". Later when we
2230  *    process this overwritten inode, it is restored at a new place by moving
2231  *    the orphan inode.
2232  *
2233  * sctx->send_progress tells this function at which point in time receiving
2234  * would be.
2235  */
2236 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2237 			struct fs_path *dest)
2238 {
2239 	int ret = 0;
2240 	struct fs_path *name = NULL;
2241 	u64 parent_inode = 0;
2242 	u64 parent_gen = 0;
2243 	int stop = 0;
2244 
2245 	name = fs_path_alloc();
2246 	if (!name) {
2247 		ret = -ENOMEM;
2248 		goto out;
2249 	}
2250 
2251 	dest->reversed = 1;
2252 	fs_path_reset(dest);
2253 
2254 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2255 		struct waiting_dir_move *wdm;
2256 
2257 		fs_path_reset(name);
2258 
2259 		if (is_waiting_for_rm(sctx, ino)) {
2260 			ret = gen_unique_name(sctx, ino, gen, name);
2261 			if (ret < 0)
2262 				goto out;
2263 			ret = fs_path_add_path(dest, name);
2264 			break;
2265 		}
2266 
2267 		wdm = get_waiting_dir_move(sctx, ino);
2268 		if (wdm && wdm->orphanized) {
2269 			ret = gen_unique_name(sctx, ino, gen, name);
2270 			stop = 1;
2271 		} else if (wdm) {
2272 			ret = get_first_ref(sctx->parent_root, ino,
2273 					    &parent_inode, &parent_gen, name);
2274 		} else {
2275 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2276 							&parent_inode,
2277 							&parent_gen, name);
2278 			if (ret)
2279 				stop = 1;
2280 		}
2281 
2282 		if (ret < 0)
2283 			goto out;
2284 
2285 		ret = fs_path_add_path(dest, name);
2286 		if (ret < 0)
2287 			goto out;
2288 
2289 		ino = parent_inode;
2290 		gen = parent_gen;
2291 	}
2292 
2293 out:
2294 	fs_path_free(name);
2295 	if (!ret)
2296 		fs_path_unreverse(dest);
2297 	return ret;
2298 }
2299 
2300 /*
2301  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2302  */
2303 static int send_subvol_begin(struct send_ctx *sctx)
2304 {
2305 	int ret;
2306 	struct btrfs_root *send_root = sctx->send_root;
2307 	struct btrfs_root *parent_root = sctx->parent_root;
2308 	struct btrfs_path *path;
2309 	struct btrfs_key key;
2310 	struct btrfs_root_ref *ref;
2311 	struct extent_buffer *leaf;
2312 	char *name = NULL;
2313 	int namelen;
2314 
2315 	path = btrfs_alloc_path();
2316 	if (!path)
2317 		return -ENOMEM;
2318 
2319 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2320 	if (!name) {
2321 		btrfs_free_path(path);
2322 		return -ENOMEM;
2323 	}
2324 
2325 	key.objectid = send_root->objectid;
2326 	key.type = BTRFS_ROOT_BACKREF_KEY;
2327 	key.offset = 0;
2328 
2329 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2330 				&key, path, 1, 0);
2331 	if (ret < 0)
2332 		goto out;
2333 	if (ret) {
2334 		ret = -ENOENT;
2335 		goto out;
2336 	}
2337 
2338 	leaf = path->nodes[0];
2339 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2340 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2341 	    key.objectid != send_root->objectid) {
2342 		ret = -ENOENT;
2343 		goto out;
2344 	}
2345 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2346 	namelen = btrfs_root_ref_name_len(leaf, ref);
2347 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2348 	btrfs_release_path(path);
2349 
2350 	if (parent_root) {
2351 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2352 		if (ret < 0)
2353 			goto out;
2354 	} else {
2355 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2356 		if (ret < 0)
2357 			goto out;
2358 	}
2359 
2360 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2361 
2362 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2363 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2364 			    sctx->send_root->root_item.received_uuid);
2365 	else
2366 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2367 			    sctx->send_root->root_item.uuid);
2368 
2369 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2370 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2371 	if (parent_root) {
2372 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2373 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2374 				     parent_root->root_item.received_uuid);
2375 		else
2376 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2377 				     parent_root->root_item.uuid);
2378 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2379 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2380 	}
2381 
2382 	ret = send_cmd(sctx);
2383 
2384 tlv_put_failure:
2385 out:
2386 	btrfs_free_path(path);
2387 	kfree(name);
2388 	return ret;
2389 }
2390 
2391 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2392 {
2393 	int ret = 0;
2394 	struct fs_path *p;
2395 
2396 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2397 
2398 	p = fs_path_alloc();
2399 	if (!p)
2400 		return -ENOMEM;
2401 
2402 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2403 	if (ret < 0)
2404 		goto out;
2405 
2406 	ret = get_cur_path(sctx, ino, gen, p);
2407 	if (ret < 0)
2408 		goto out;
2409 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2410 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2411 
2412 	ret = send_cmd(sctx);
2413 
2414 tlv_put_failure:
2415 out:
2416 	fs_path_free(p);
2417 	return ret;
2418 }
2419 
2420 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2421 {
2422 	int ret = 0;
2423 	struct fs_path *p;
2424 
2425 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2426 
2427 	p = fs_path_alloc();
2428 	if (!p)
2429 		return -ENOMEM;
2430 
2431 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2432 	if (ret < 0)
2433 		goto out;
2434 
2435 	ret = get_cur_path(sctx, ino, gen, p);
2436 	if (ret < 0)
2437 		goto out;
2438 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2439 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2440 
2441 	ret = send_cmd(sctx);
2442 
2443 tlv_put_failure:
2444 out:
2445 	fs_path_free(p);
2446 	return ret;
2447 }
2448 
2449 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2450 {
2451 	int ret = 0;
2452 	struct fs_path *p;
2453 
2454 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2455 
2456 	p = fs_path_alloc();
2457 	if (!p)
2458 		return -ENOMEM;
2459 
2460 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2461 	if (ret < 0)
2462 		goto out;
2463 
2464 	ret = get_cur_path(sctx, ino, gen, p);
2465 	if (ret < 0)
2466 		goto out;
2467 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2468 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2469 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2470 
2471 	ret = send_cmd(sctx);
2472 
2473 tlv_put_failure:
2474 out:
2475 	fs_path_free(p);
2476 	return ret;
2477 }
2478 
2479 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2480 {
2481 	int ret = 0;
2482 	struct fs_path *p = NULL;
2483 	struct btrfs_inode_item *ii;
2484 	struct btrfs_path *path = NULL;
2485 	struct extent_buffer *eb;
2486 	struct btrfs_key key;
2487 	int slot;
2488 
2489 verbose_printk("btrfs: send_utimes %llu\n", ino);
2490 
2491 	p = fs_path_alloc();
2492 	if (!p)
2493 		return -ENOMEM;
2494 
2495 	path = alloc_path_for_send();
2496 	if (!path) {
2497 		ret = -ENOMEM;
2498 		goto out;
2499 	}
2500 
2501 	key.objectid = ino;
2502 	key.type = BTRFS_INODE_ITEM_KEY;
2503 	key.offset = 0;
2504 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2505 	if (ret < 0)
2506 		goto out;
2507 
2508 	eb = path->nodes[0];
2509 	slot = path->slots[0];
2510 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2511 
2512 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2513 	if (ret < 0)
2514 		goto out;
2515 
2516 	ret = get_cur_path(sctx, ino, gen, p);
2517 	if (ret < 0)
2518 		goto out;
2519 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2520 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2521 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2522 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2523 	/* TODO Add otime support when the otime patches get into upstream */
2524 
2525 	ret = send_cmd(sctx);
2526 
2527 tlv_put_failure:
2528 out:
2529 	fs_path_free(p);
2530 	btrfs_free_path(path);
2531 	return ret;
2532 }
2533 
2534 /*
2535  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2536  * a valid path yet because we did not process the refs yet. So, the inode
2537  * is created as orphan.
2538  */
2539 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2540 {
2541 	int ret = 0;
2542 	struct fs_path *p;
2543 	int cmd;
2544 	u64 gen;
2545 	u64 mode;
2546 	u64 rdev;
2547 
2548 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2549 
2550 	p = fs_path_alloc();
2551 	if (!p)
2552 		return -ENOMEM;
2553 
2554 	if (ino != sctx->cur_ino) {
2555 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2556 				     NULL, NULL, &rdev);
2557 		if (ret < 0)
2558 			goto out;
2559 	} else {
2560 		gen = sctx->cur_inode_gen;
2561 		mode = sctx->cur_inode_mode;
2562 		rdev = sctx->cur_inode_rdev;
2563 	}
2564 
2565 	if (S_ISREG(mode)) {
2566 		cmd = BTRFS_SEND_C_MKFILE;
2567 	} else if (S_ISDIR(mode)) {
2568 		cmd = BTRFS_SEND_C_MKDIR;
2569 	} else if (S_ISLNK(mode)) {
2570 		cmd = BTRFS_SEND_C_SYMLINK;
2571 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2572 		cmd = BTRFS_SEND_C_MKNOD;
2573 	} else if (S_ISFIFO(mode)) {
2574 		cmd = BTRFS_SEND_C_MKFIFO;
2575 	} else if (S_ISSOCK(mode)) {
2576 		cmd = BTRFS_SEND_C_MKSOCK;
2577 	} else {
2578 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2579 				(int)(mode & S_IFMT));
2580 		ret = -ENOTSUPP;
2581 		goto out;
2582 	}
2583 
2584 	ret = begin_cmd(sctx, cmd);
2585 	if (ret < 0)
2586 		goto out;
2587 
2588 	ret = gen_unique_name(sctx, ino, gen, p);
2589 	if (ret < 0)
2590 		goto out;
2591 
2592 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2593 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2594 
2595 	if (S_ISLNK(mode)) {
2596 		fs_path_reset(p);
2597 		ret = read_symlink(sctx->send_root, ino, p);
2598 		if (ret < 0)
2599 			goto out;
2600 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2601 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2602 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2603 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2604 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2605 	}
2606 
2607 	ret = send_cmd(sctx);
2608 	if (ret < 0)
2609 		goto out;
2610 
2611 
2612 tlv_put_failure:
2613 out:
2614 	fs_path_free(p);
2615 	return ret;
2616 }
2617 
2618 /*
2619  * We need some special handling for inodes that get processed before the parent
2620  * directory got created. See process_recorded_refs for details.
2621  * This function does the check if we already created the dir out of order.
2622  */
2623 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2624 {
2625 	int ret = 0;
2626 	struct btrfs_path *path = NULL;
2627 	struct btrfs_key key;
2628 	struct btrfs_key found_key;
2629 	struct btrfs_key di_key;
2630 	struct extent_buffer *eb;
2631 	struct btrfs_dir_item *di;
2632 	int slot;
2633 
2634 	path = alloc_path_for_send();
2635 	if (!path) {
2636 		ret = -ENOMEM;
2637 		goto out;
2638 	}
2639 
2640 	key.objectid = dir;
2641 	key.type = BTRFS_DIR_INDEX_KEY;
2642 	key.offset = 0;
2643 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2644 	if (ret < 0)
2645 		goto out;
2646 
2647 	while (1) {
2648 		eb = path->nodes[0];
2649 		slot = path->slots[0];
2650 		if (slot >= btrfs_header_nritems(eb)) {
2651 			ret = btrfs_next_leaf(sctx->send_root, path);
2652 			if (ret < 0) {
2653 				goto out;
2654 			} else if (ret > 0) {
2655 				ret = 0;
2656 				break;
2657 			}
2658 			continue;
2659 		}
2660 
2661 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2662 		if (found_key.objectid != key.objectid ||
2663 		    found_key.type != key.type) {
2664 			ret = 0;
2665 			goto out;
2666 		}
2667 
2668 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2669 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2670 
2671 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2672 		    di_key.objectid < sctx->send_progress) {
2673 			ret = 1;
2674 			goto out;
2675 		}
2676 
2677 		path->slots[0]++;
2678 	}
2679 
2680 out:
2681 	btrfs_free_path(path);
2682 	return ret;
2683 }
2684 
2685 /*
2686  * Only creates the inode if it is:
2687  * 1. Not a directory
2688  * 2. Or a directory which was not created already due to out of order
2689  *    directories. See did_create_dir and process_recorded_refs for details.
2690  */
2691 static int send_create_inode_if_needed(struct send_ctx *sctx)
2692 {
2693 	int ret;
2694 
2695 	if (S_ISDIR(sctx->cur_inode_mode)) {
2696 		ret = did_create_dir(sctx, sctx->cur_ino);
2697 		if (ret < 0)
2698 			goto out;
2699 		if (ret) {
2700 			ret = 0;
2701 			goto out;
2702 		}
2703 	}
2704 
2705 	ret = send_create_inode(sctx, sctx->cur_ino);
2706 	if (ret < 0)
2707 		goto out;
2708 
2709 out:
2710 	return ret;
2711 }
2712 
2713 struct recorded_ref {
2714 	struct list_head list;
2715 	char *dir_path;
2716 	char *name;
2717 	struct fs_path *full_path;
2718 	u64 dir;
2719 	u64 dir_gen;
2720 	int dir_path_len;
2721 	int name_len;
2722 };
2723 
2724 /*
2725  * We need to process new refs before deleted refs, but compare_tree gives us
2726  * everything mixed. So we first record all refs and later process them.
2727  * This function is a helper to record one ref.
2728  */
2729 static int __record_ref(struct list_head *head, u64 dir,
2730 		      u64 dir_gen, struct fs_path *path)
2731 {
2732 	struct recorded_ref *ref;
2733 
2734 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2735 	if (!ref)
2736 		return -ENOMEM;
2737 
2738 	ref->dir = dir;
2739 	ref->dir_gen = dir_gen;
2740 	ref->full_path = path;
2741 
2742 	ref->name = (char *)kbasename(ref->full_path->start);
2743 	ref->name_len = ref->full_path->end - ref->name;
2744 	ref->dir_path = ref->full_path->start;
2745 	if (ref->name == ref->full_path->start)
2746 		ref->dir_path_len = 0;
2747 	else
2748 		ref->dir_path_len = ref->full_path->end -
2749 				ref->full_path->start - 1 - ref->name_len;
2750 
2751 	list_add_tail(&ref->list, head);
2752 	return 0;
2753 }
2754 
2755 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2756 {
2757 	struct recorded_ref *new;
2758 
2759 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2760 	if (!new)
2761 		return -ENOMEM;
2762 
2763 	new->dir = ref->dir;
2764 	new->dir_gen = ref->dir_gen;
2765 	new->full_path = NULL;
2766 	INIT_LIST_HEAD(&new->list);
2767 	list_add_tail(&new->list, list);
2768 	return 0;
2769 }
2770 
2771 static void __free_recorded_refs(struct list_head *head)
2772 {
2773 	struct recorded_ref *cur;
2774 
2775 	while (!list_empty(head)) {
2776 		cur = list_entry(head->next, struct recorded_ref, list);
2777 		fs_path_free(cur->full_path);
2778 		list_del(&cur->list);
2779 		kfree(cur);
2780 	}
2781 }
2782 
2783 static void free_recorded_refs(struct send_ctx *sctx)
2784 {
2785 	__free_recorded_refs(&sctx->new_refs);
2786 	__free_recorded_refs(&sctx->deleted_refs);
2787 }
2788 
2789 /*
2790  * Renames/moves a file/dir to its orphan name. Used when the first
2791  * ref of an unprocessed inode gets overwritten and for all non empty
2792  * directories.
2793  */
2794 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2795 			  struct fs_path *path)
2796 {
2797 	int ret;
2798 	struct fs_path *orphan;
2799 
2800 	orphan = fs_path_alloc();
2801 	if (!orphan)
2802 		return -ENOMEM;
2803 
2804 	ret = gen_unique_name(sctx, ino, gen, orphan);
2805 	if (ret < 0)
2806 		goto out;
2807 
2808 	ret = send_rename(sctx, path, orphan);
2809 
2810 out:
2811 	fs_path_free(orphan);
2812 	return ret;
2813 }
2814 
2815 static struct orphan_dir_info *
2816 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2817 {
2818 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2819 	struct rb_node *parent = NULL;
2820 	struct orphan_dir_info *entry, *odi;
2821 
2822 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2823 	if (!odi)
2824 		return ERR_PTR(-ENOMEM);
2825 	odi->ino = dir_ino;
2826 	odi->gen = 0;
2827 
2828 	while (*p) {
2829 		parent = *p;
2830 		entry = rb_entry(parent, struct orphan_dir_info, node);
2831 		if (dir_ino < entry->ino) {
2832 			p = &(*p)->rb_left;
2833 		} else if (dir_ino > entry->ino) {
2834 			p = &(*p)->rb_right;
2835 		} else {
2836 			kfree(odi);
2837 			return entry;
2838 		}
2839 	}
2840 
2841 	rb_link_node(&odi->node, parent, p);
2842 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2843 	return odi;
2844 }
2845 
2846 static struct orphan_dir_info *
2847 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2848 {
2849 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2850 	struct orphan_dir_info *entry;
2851 
2852 	while (n) {
2853 		entry = rb_entry(n, struct orphan_dir_info, node);
2854 		if (dir_ino < entry->ino)
2855 			n = n->rb_left;
2856 		else if (dir_ino > entry->ino)
2857 			n = n->rb_right;
2858 		else
2859 			return entry;
2860 	}
2861 	return NULL;
2862 }
2863 
2864 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2865 {
2866 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2867 
2868 	return odi != NULL;
2869 }
2870 
2871 static void free_orphan_dir_info(struct send_ctx *sctx,
2872 				 struct orphan_dir_info *odi)
2873 {
2874 	if (!odi)
2875 		return;
2876 	rb_erase(&odi->node, &sctx->orphan_dirs);
2877 	kfree(odi);
2878 }
2879 
2880 /*
2881  * Returns 1 if a directory can be removed at this point in time.
2882  * We check this by iterating all dir items and checking if the inode behind
2883  * the dir item was already processed.
2884  */
2885 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2886 		     u64 send_progress)
2887 {
2888 	int ret = 0;
2889 	struct btrfs_root *root = sctx->parent_root;
2890 	struct btrfs_path *path;
2891 	struct btrfs_key key;
2892 	struct btrfs_key found_key;
2893 	struct btrfs_key loc;
2894 	struct btrfs_dir_item *di;
2895 
2896 	/*
2897 	 * Don't try to rmdir the top/root subvolume dir.
2898 	 */
2899 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2900 		return 0;
2901 
2902 	path = alloc_path_for_send();
2903 	if (!path)
2904 		return -ENOMEM;
2905 
2906 	key.objectid = dir;
2907 	key.type = BTRFS_DIR_INDEX_KEY;
2908 	key.offset = 0;
2909 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2910 	if (ret < 0)
2911 		goto out;
2912 
2913 	while (1) {
2914 		struct waiting_dir_move *dm;
2915 
2916 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2917 			ret = btrfs_next_leaf(root, path);
2918 			if (ret < 0)
2919 				goto out;
2920 			else if (ret > 0)
2921 				break;
2922 			continue;
2923 		}
2924 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2925 				      path->slots[0]);
2926 		if (found_key.objectid != key.objectid ||
2927 		    found_key.type != key.type)
2928 			break;
2929 
2930 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2931 				struct btrfs_dir_item);
2932 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2933 
2934 		dm = get_waiting_dir_move(sctx, loc.objectid);
2935 		if (dm) {
2936 			struct orphan_dir_info *odi;
2937 
2938 			odi = add_orphan_dir_info(sctx, dir);
2939 			if (IS_ERR(odi)) {
2940 				ret = PTR_ERR(odi);
2941 				goto out;
2942 			}
2943 			odi->gen = dir_gen;
2944 			dm->rmdir_ino = dir;
2945 			ret = 0;
2946 			goto out;
2947 		}
2948 
2949 		if (loc.objectid > send_progress) {
2950 			ret = 0;
2951 			goto out;
2952 		}
2953 
2954 		path->slots[0]++;
2955 	}
2956 
2957 	ret = 1;
2958 
2959 out:
2960 	btrfs_free_path(path);
2961 	return ret;
2962 }
2963 
2964 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2965 {
2966 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2967 
2968 	return entry != NULL;
2969 }
2970 
2971 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2972 {
2973 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2974 	struct rb_node *parent = NULL;
2975 	struct waiting_dir_move *entry, *dm;
2976 
2977 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
2978 	if (!dm)
2979 		return -ENOMEM;
2980 	dm->ino = ino;
2981 	dm->rmdir_ino = 0;
2982 	dm->orphanized = orphanized;
2983 
2984 	while (*p) {
2985 		parent = *p;
2986 		entry = rb_entry(parent, struct waiting_dir_move, node);
2987 		if (ino < entry->ino) {
2988 			p = &(*p)->rb_left;
2989 		} else if (ino > entry->ino) {
2990 			p = &(*p)->rb_right;
2991 		} else {
2992 			kfree(dm);
2993 			return -EEXIST;
2994 		}
2995 	}
2996 
2997 	rb_link_node(&dm->node, parent, p);
2998 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2999 	return 0;
3000 }
3001 
3002 static struct waiting_dir_move *
3003 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3004 {
3005 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3006 	struct waiting_dir_move *entry;
3007 
3008 	while (n) {
3009 		entry = rb_entry(n, struct waiting_dir_move, node);
3010 		if (ino < entry->ino)
3011 			n = n->rb_left;
3012 		else if (ino > entry->ino)
3013 			n = n->rb_right;
3014 		else
3015 			return entry;
3016 	}
3017 	return NULL;
3018 }
3019 
3020 static void free_waiting_dir_move(struct send_ctx *sctx,
3021 				  struct waiting_dir_move *dm)
3022 {
3023 	if (!dm)
3024 		return;
3025 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3026 	kfree(dm);
3027 }
3028 
3029 static int add_pending_dir_move(struct send_ctx *sctx,
3030 				u64 ino,
3031 				u64 ino_gen,
3032 				u64 parent_ino,
3033 				struct list_head *new_refs,
3034 				struct list_head *deleted_refs,
3035 				const bool is_orphan)
3036 {
3037 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3038 	struct rb_node *parent = NULL;
3039 	struct pending_dir_move *entry = NULL, *pm;
3040 	struct recorded_ref *cur;
3041 	int exists = 0;
3042 	int ret;
3043 
3044 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3045 	if (!pm)
3046 		return -ENOMEM;
3047 	pm->parent_ino = parent_ino;
3048 	pm->ino = ino;
3049 	pm->gen = ino_gen;
3050 	pm->is_orphan = is_orphan;
3051 	INIT_LIST_HEAD(&pm->list);
3052 	INIT_LIST_HEAD(&pm->update_refs);
3053 	RB_CLEAR_NODE(&pm->node);
3054 
3055 	while (*p) {
3056 		parent = *p;
3057 		entry = rb_entry(parent, struct pending_dir_move, node);
3058 		if (parent_ino < entry->parent_ino) {
3059 			p = &(*p)->rb_left;
3060 		} else if (parent_ino > entry->parent_ino) {
3061 			p = &(*p)->rb_right;
3062 		} else {
3063 			exists = 1;
3064 			break;
3065 		}
3066 	}
3067 
3068 	list_for_each_entry(cur, deleted_refs, list) {
3069 		ret = dup_ref(cur, &pm->update_refs);
3070 		if (ret < 0)
3071 			goto out;
3072 	}
3073 	list_for_each_entry(cur, new_refs, list) {
3074 		ret = dup_ref(cur, &pm->update_refs);
3075 		if (ret < 0)
3076 			goto out;
3077 	}
3078 
3079 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3080 	if (ret)
3081 		goto out;
3082 
3083 	if (exists) {
3084 		list_add_tail(&pm->list, &entry->list);
3085 	} else {
3086 		rb_link_node(&pm->node, parent, p);
3087 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3088 	}
3089 	ret = 0;
3090 out:
3091 	if (ret) {
3092 		__free_recorded_refs(&pm->update_refs);
3093 		kfree(pm);
3094 	}
3095 	return ret;
3096 }
3097 
3098 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3099 						      u64 parent_ino)
3100 {
3101 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3102 	struct pending_dir_move *entry;
3103 
3104 	while (n) {
3105 		entry = rb_entry(n, struct pending_dir_move, node);
3106 		if (parent_ino < entry->parent_ino)
3107 			n = n->rb_left;
3108 		else if (parent_ino > entry->parent_ino)
3109 			n = n->rb_right;
3110 		else
3111 			return entry;
3112 	}
3113 	return NULL;
3114 }
3115 
3116 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3117 {
3118 	struct fs_path *from_path = NULL;
3119 	struct fs_path *to_path = NULL;
3120 	struct fs_path *name = NULL;
3121 	u64 orig_progress = sctx->send_progress;
3122 	struct recorded_ref *cur;
3123 	u64 parent_ino, parent_gen;
3124 	struct waiting_dir_move *dm = NULL;
3125 	u64 rmdir_ino = 0;
3126 	int ret;
3127 
3128 	name = fs_path_alloc();
3129 	from_path = fs_path_alloc();
3130 	if (!name || !from_path) {
3131 		ret = -ENOMEM;
3132 		goto out;
3133 	}
3134 
3135 	dm = get_waiting_dir_move(sctx, pm->ino);
3136 	ASSERT(dm);
3137 	rmdir_ino = dm->rmdir_ino;
3138 	free_waiting_dir_move(sctx, dm);
3139 
3140 	if (pm->is_orphan) {
3141 		ret = gen_unique_name(sctx, pm->ino,
3142 				      pm->gen, from_path);
3143 	} else {
3144 		ret = get_first_ref(sctx->parent_root, pm->ino,
3145 				    &parent_ino, &parent_gen, name);
3146 		if (ret < 0)
3147 			goto out;
3148 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3149 				   from_path);
3150 		if (ret < 0)
3151 			goto out;
3152 		ret = fs_path_add_path(from_path, name);
3153 	}
3154 	if (ret < 0)
3155 		goto out;
3156 
3157 	sctx->send_progress = sctx->cur_ino + 1;
3158 	fs_path_reset(name);
3159 	to_path = name;
3160 	name = NULL;
3161 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3162 	if (ret < 0)
3163 		goto out;
3164 
3165 	ret = send_rename(sctx, from_path, to_path);
3166 	if (ret < 0)
3167 		goto out;
3168 
3169 	if (rmdir_ino) {
3170 		struct orphan_dir_info *odi;
3171 
3172 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3173 		if (!odi) {
3174 			/* already deleted */
3175 			goto finish;
3176 		}
3177 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3178 		if (ret < 0)
3179 			goto out;
3180 		if (!ret)
3181 			goto finish;
3182 
3183 		name = fs_path_alloc();
3184 		if (!name) {
3185 			ret = -ENOMEM;
3186 			goto out;
3187 		}
3188 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3189 		if (ret < 0)
3190 			goto out;
3191 		ret = send_rmdir(sctx, name);
3192 		if (ret < 0)
3193 			goto out;
3194 		free_orphan_dir_info(sctx, odi);
3195 	}
3196 
3197 finish:
3198 	ret = send_utimes(sctx, pm->ino, pm->gen);
3199 	if (ret < 0)
3200 		goto out;
3201 
3202 	/*
3203 	 * After rename/move, need to update the utimes of both new parent(s)
3204 	 * and old parent(s).
3205 	 */
3206 	list_for_each_entry(cur, &pm->update_refs, list) {
3207 		if (cur->dir == rmdir_ino)
3208 			continue;
3209 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3210 		if (ret < 0)
3211 			goto out;
3212 	}
3213 
3214 out:
3215 	fs_path_free(name);
3216 	fs_path_free(from_path);
3217 	fs_path_free(to_path);
3218 	sctx->send_progress = orig_progress;
3219 
3220 	return ret;
3221 }
3222 
3223 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3224 {
3225 	if (!list_empty(&m->list))
3226 		list_del(&m->list);
3227 	if (!RB_EMPTY_NODE(&m->node))
3228 		rb_erase(&m->node, &sctx->pending_dir_moves);
3229 	__free_recorded_refs(&m->update_refs);
3230 	kfree(m);
3231 }
3232 
3233 static void tail_append_pending_moves(struct pending_dir_move *moves,
3234 				      struct list_head *stack)
3235 {
3236 	if (list_empty(&moves->list)) {
3237 		list_add_tail(&moves->list, stack);
3238 	} else {
3239 		LIST_HEAD(list);
3240 		list_splice_init(&moves->list, &list);
3241 		list_add_tail(&moves->list, stack);
3242 		list_splice_tail(&list, stack);
3243 	}
3244 }
3245 
3246 static int apply_children_dir_moves(struct send_ctx *sctx)
3247 {
3248 	struct pending_dir_move *pm;
3249 	struct list_head stack;
3250 	u64 parent_ino = sctx->cur_ino;
3251 	int ret = 0;
3252 
3253 	pm = get_pending_dir_moves(sctx, parent_ino);
3254 	if (!pm)
3255 		return 0;
3256 
3257 	INIT_LIST_HEAD(&stack);
3258 	tail_append_pending_moves(pm, &stack);
3259 
3260 	while (!list_empty(&stack)) {
3261 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3262 		parent_ino = pm->ino;
3263 		ret = apply_dir_move(sctx, pm);
3264 		free_pending_move(sctx, pm);
3265 		if (ret)
3266 			goto out;
3267 		pm = get_pending_dir_moves(sctx, parent_ino);
3268 		if (pm)
3269 			tail_append_pending_moves(pm, &stack);
3270 	}
3271 	return 0;
3272 
3273 out:
3274 	while (!list_empty(&stack)) {
3275 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3276 		free_pending_move(sctx, pm);
3277 	}
3278 	return ret;
3279 }
3280 
3281 /*
3282  * We might need to delay a directory rename even when no ancestor directory
3283  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3284  * renamed. This happens when we rename a directory to the old name (the name
3285  * in the parent root) of some other unrelated directory that got its rename
3286  * delayed due to some ancestor with higher number that got renamed.
3287  *
3288  * Example:
3289  *
3290  * Parent snapshot:
3291  * .                                       (ino 256)
3292  * |---- a/                                (ino 257)
3293  * |     |---- file                        (ino 260)
3294  * |
3295  * |---- b/                                (ino 258)
3296  * |---- c/                                (ino 259)
3297  *
3298  * Send snapshot:
3299  * .                                       (ino 256)
3300  * |---- a/                                (ino 258)
3301  * |---- x/                                (ino 259)
3302  *       |---- y/                          (ino 257)
3303  *             |----- file                 (ino 260)
3304  *
3305  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3306  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3307  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3308  * must issue is:
3309  *
3310  * 1 - rename 259 from 'c' to 'x'
3311  * 2 - rename 257 from 'a' to 'x/y'
3312  * 3 - rename 258 from 'b' to 'a'
3313  *
3314  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3315  * be done right away and < 0 on error.
3316  */
3317 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3318 				  struct recorded_ref *parent_ref,
3319 				  const bool is_orphan)
3320 {
3321 	struct btrfs_path *path;
3322 	struct btrfs_key key;
3323 	struct btrfs_key di_key;
3324 	struct btrfs_dir_item *di;
3325 	u64 left_gen;
3326 	u64 right_gen;
3327 	int ret = 0;
3328 
3329 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3330 		return 0;
3331 
3332 	path = alloc_path_for_send();
3333 	if (!path)
3334 		return -ENOMEM;
3335 
3336 	key.objectid = parent_ref->dir;
3337 	key.type = BTRFS_DIR_ITEM_KEY;
3338 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3339 
3340 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3341 	if (ret < 0) {
3342 		goto out;
3343 	} else if (ret > 0) {
3344 		ret = 0;
3345 		goto out;
3346 	}
3347 
3348 	di = btrfs_match_dir_item_name(sctx->parent_root, path,
3349 				       parent_ref->name, parent_ref->name_len);
3350 	if (!di) {
3351 		ret = 0;
3352 		goto out;
3353 	}
3354 	/*
3355 	 * di_key.objectid has the number of the inode that has a dentry in the
3356 	 * parent directory with the same name that sctx->cur_ino is being
3357 	 * renamed to. We need to check if that inode is in the send root as
3358 	 * well and if it is currently marked as an inode with a pending rename,
3359 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3360 	 * that it happens after that other inode is renamed.
3361 	 */
3362 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3363 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3364 		ret = 0;
3365 		goto out;
3366 	}
3367 
3368 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3369 			     &left_gen, NULL, NULL, NULL, NULL);
3370 	if (ret < 0)
3371 		goto out;
3372 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3373 			     &right_gen, NULL, NULL, NULL, NULL);
3374 	if (ret < 0) {
3375 		if (ret == -ENOENT)
3376 			ret = 0;
3377 		goto out;
3378 	}
3379 
3380 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3381 	if (right_gen != left_gen) {
3382 		ret = 0;
3383 		goto out;
3384 	}
3385 
3386 	if (is_waiting_for_move(sctx, di_key.objectid)) {
3387 		ret = add_pending_dir_move(sctx,
3388 					   sctx->cur_ino,
3389 					   sctx->cur_inode_gen,
3390 					   di_key.objectid,
3391 					   &sctx->new_refs,
3392 					   &sctx->deleted_refs,
3393 					   is_orphan);
3394 		if (!ret)
3395 			ret = 1;
3396 	}
3397 out:
3398 	btrfs_free_path(path);
3399 	return ret;
3400 }
3401 
3402 /*
3403  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3404  * Return 1 if true, 0 if false and < 0 on error.
3405  */
3406 static int is_ancestor(struct btrfs_root *root,
3407 		       const u64 ino1,
3408 		       const u64 ino1_gen,
3409 		       const u64 ino2,
3410 		       struct fs_path *fs_path)
3411 {
3412 	u64 ino = ino2;
3413 
3414 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3415 		int ret;
3416 		u64 parent;
3417 		u64 parent_gen;
3418 
3419 		fs_path_reset(fs_path);
3420 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3421 		if (ret < 0) {
3422 			if (ret == -ENOENT && ino == ino2)
3423 				ret = 0;
3424 			return ret;
3425 		}
3426 		if (parent == ino1)
3427 			return parent_gen == ino1_gen ? 1 : 0;
3428 		ino = parent;
3429 	}
3430 	return 0;
3431 }
3432 
3433 static int wait_for_parent_move(struct send_ctx *sctx,
3434 				struct recorded_ref *parent_ref,
3435 				const bool is_orphan)
3436 {
3437 	int ret = 0;
3438 	u64 ino = parent_ref->dir;
3439 	u64 parent_ino_before, parent_ino_after;
3440 	struct fs_path *path_before = NULL;
3441 	struct fs_path *path_after = NULL;
3442 	int len1, len2;
3443 
3444 	path_after = fs_path_alloc();
3445 	path_before = fs_path_alloc();
3446 	if (!path_after || !path_before) {
3447 		ret = -ENOMEM;
3448 		goto out;
3449 	}
3450 
3451 	/*
3452 	 * Our current directory inode may not yet be renamed/moved because some
3453 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3454 	 * such ancestor exists and make sure our own rename/move happens after
3455 	 * that ancestor is processed to avoid path build infinite loops (done
3456 	 * at get_cur_path()).
3457 	 */
3458 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3459 		if (is_waiting_for_move(sctx, ino)) {
3460 			/*
3461 			 * If the current inode is an ancestor of ino in the
3462 			 * parent root, we need to delay the rename of the
3463 			 * current inode, otherwise don't delayed the rename
3464 			 * because we can end up with a circular dependency
3465 			 * of renames, resulting in some directories never
3466 			 * getting the respective rename operations issued in
3467 			 * the send stream or getting into infinite path build
3468 			 * loops.
3469 			 */
3470 			ret = is_ancestor(sctx->parent_root,
3471 					  sctx->cur_ino, sctx->cur_inode_gen,
3472 					  ino, path_before);
3473 			break;
3474 		}
3475 
3476 		fs_path_reset(path_before);
3477 		fs_path_reset(path_after);
3478 
3479 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3480 				    NULL, path_after);
3481 		if (ret < 0)
3482 			goto out;
3483 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3484 				    NULL, path_before);
3485 		if (ret < 0 && ret != -ENOENT) {
3486 			goto out;
3487 		} else if (ret == -ENOENT) {
3488 			ret = 0;
3489 			break;
3490 		}
3491 
3492 		len1 = fs_path_len(path_before);
3493 		len2 = fs_path_len(path_after);
3494 		if (ino > sctx->cur_ino &&
3495 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3496 		     memcmp(path_before->start, path_after->start, len1))) {
3497 			ret = 1;
3498 			break;
3499 		}
3500 		ino = parent_ino_after;
3501 	}
3502 
3503 out:
3504 	fs_path_free(path_before);
3505 	fs_path_free(path_after);
3506 
3507 	if (ret == 1) {
3508 		ret = add_pending_dir_move(sctx,
3509 					   sctx->cur_ino,
3510 					   sctx->cur_inode_gen,
3511 					   ino,
3512 					   &sctx->new_refs,
3513 					   &sctx->deleted_refs,
3514 					   is_orphan);
3515 		if (!ret)
3516 			ret = 1;
3517 	}
3518 
3519 	return ret;
3520 }
3521 
3522 /*
3523  * This does all the move/link/unlink/rmdir magic.
3524  */
3525 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3526 {
3527 	int ret = 0;
3528 	struct recorded_ref *cur;
3529 	struct recorded_ref *cur2;
3530 	struct list_head check_dirs;
3531 	struct fs_path *valid_path = NULL;
3532 	u64 ow_inode = 0;
3533 	u64 ow_gen;
3534 	int did_overwrite = 0;
3535 	int is_orphan = 0;
3536 	u64 last_dir_ino_rm = 0;
3537 	bool can_rename = true;
3538 
3539 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3540 
3541 	/*
3542 	 * This should never happen as the root dir always has the same ref
3543 	 * which is always '..'
3544 	 */
3545 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3546 	INIT_LIST_HEAD(&check_dirs);
3547 
3548 	valid_path = fs_path_alloc();
3549 	if (!valid_path) {
3550 		ret = -ENOMEM;
3551 		goto out;
3552 	}
3553 
3554 	/*
3555 	 * First, check if the first ref of the current inode was overwritten
3556 	 * before. If yes, we know that the current inode was already orphanized
3557 	 * and thus use the orphan name. If not, we can use get_cur_path to
3558 	 * get the path of the first ref as it would like while receiving at
3559 	 * this point in time.
3560 	 * New inodes are always orphan at the beginning, so force to use the
3561 	 * orphan name in this case.
3562 	 * The first ref is stored in valid_path and will be updated if it
3563 	 * gets moved around.
3564 	 */
3565 	if (!sctx->cur_inode_new) {
3566 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3567 				sctx->cur_inode_gen);
3568 		if (ret < 0)
3569 			goto out;
3570 		if (ret)
3571 			did_overwrite = 1;
3572 	}
3573 	if (sctx->cur_inode_new || did_overwrite) {
3574 		ret = gen_unique_name(sctx, sctx->cur_ino,
3575 				sctx->cur_inode_gen, valid_path);
3576 		if (ret < 0)
3577 			goto out;
3578 		is_orphan = 1;
3579 	} else {
3580 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3581 				valid_path);
3582 		if (ret < 0)
3583 			goto out;
3584 	}
3585 
3586 	list_for_each_entry(cur, &sctx->new_refs, list) {
3587 		/*
3588 		 * We may have refs where the parent directory does not exist
3589 		 * yet. This happens if the parent directories inum is higher
3590 		 * the the current inum. To handle this case, we create the
3591 		 * parent directory out of order. But we need to check if this
3592 		 * did already happen before due to other refs in the same dir.
3593 		 */
3594 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3595 		if (ret < 0)
3596 			goto out;
3597 		if (ret == inode_state_will_create) {
3598 			ret = 0;
3599 			/*
3600 			 * First check if any of the current inodes refs did
3601 			 * already create the dir.
3602 			 */
3603 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3604 				if (cur == cur2)
3605 					break;
3606 				if (cur2->dir == cur->dir) {
3607 					ret = 1;
3608 					break;
3609 				}
3610 			}
3611 
3612 			/*
3613 			 * If that did not happen, check if a previous inode
3614 			 * did already create the dir.
3615 			 */
3616 			if (!ret)
3617 				ret = did_create_dir(sctx, cur->dir);
3618 			if (ret < 0)
3619 				goto out;
3620 			if (!ret) {
3621 				ret = send_create_inode(sctx, cur->dir);
3622 				if (ret < 0)
3623 					goto out;
3624 			}
3625 		}
3626 
3627 		/*
3628 		 * Check if this new ref would overwrite the first ref of
3629 		 * another unprocessed inode. If yes, orphanize the
3630 		 * overwritten inode. If we find an overwritten ref that is
3631 		 * not the first ref, simply unlink it.
3632 		 */
3633 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3634 				cur->name, cur->name_len,
3635 				&ow_inode, &ow_gen);
3636 		if (ret < 0)
3637 			goto out;
3638 		if (ret) {
3639 			ret = is_first_ref(sctx->parent_root,
3640 					   ow_inode, cur->dir, cur->name,
3641 					   cur->name_len);
3642 			if (ret < 0)
3643 				goto out;
3644 			if (ret) {
3645 				struct name_cache_entry *nce;
3646 
3647 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3648 						cur->full_path);
3649 				if (ret < 0)
3650 					goto out;
3651 				/*
3652 				 * Make sure we clear our orphanized inode's
3653 				 * name from the name cache. This is because the
3654 				 * inode ow_inode might be an ancestor of some
3655 				 * other inode that will be orphanized as well
3656 				 * later and has an inode number greater than
3657 				 * sctx->send_progress. We need to prevent
3658 				 * future name lookups from using the old name
3659 				 * and get instead the orphan name.
3660 				 */
3661 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3662 				if (nce) {
3663 					name_cache_delete(sctx, nce);
3664 					kfree(nce);
3665 				}
3666 			} else {
3667 				ret = send_unlink(sctx, cur->full_path);
3668 				if (ret < 0)
3669 					goto out;
3670 			}
3671 		}
3672 
3673 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3674 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3675 			if (ret < 0)
3676 				goto out;
3677 			if (ret == 1) {
3678 				can_rename = false;
3679 				*pending_move = 1;
3680 			}
3681 		}
3682 
3683 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3684 		    can_rename) {
3685 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3686 			if (ret < 0)
3687 				goto out;
3688 			if (ret == 1) {
3689 				can_rename = false;
3690 				*pending_move = 1;
3691 			}
3692 		}
3693 
3694 		/*
3695 		 * link/move the ref to the new place. If we have an orphan
3696 		 * inode, move it and update valid_path. If not, link or move
3697 		 * it depending on the inode mode.
3698 		 */
3699 		if (is_orphan && can_rename) {
3700 			ret = send_rename(sctx, valid_path, cur->full_path);
3701 			if (ret < 0)
3702 				goto out;
3703 			is_orphan = 0;
3704 			ret = fs_path_copy(valid_path, cur->full_path);
3705 			if (ret < 0)
3706 				goto out;
3707 		} else if (can_rename) {
3708 			if (S_ISDIR(sctx->cur_inode_mode)) {
3709 				/*
3710 				 * Dirs can't be linked, so move it. For moved
3711 				 * dirs, we always have one new and one deleted
3712 				 * ref. The deleted ref is ignored later.
3713 				 */
3714 				ret = send_rename(sctx, valid_path,
3715 						  cur->full_path);
3716 				if (!ret)
3717 					ret = fs_path_copy(valid_path,
3718 							   cur->full_path);
3719 				if (ret < 0)
3720 					goto out;
3721 			} else {
3722 				ret = send_link(sctx, cur->full_path,
3723 						valid_path);
3724 				if (ret < 0)
3725 					goto out;
3726 			}
3727 		}
3728 		ret = dup_ref(cur, &check_dirs);
3729 		if (ret < 0)
3730 			goto out;
3731 	}
3732 
3733 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3734 		/*
3735 		 * Check if we can already rmdir the directory. If not,
3736 		 * orphanize it. For every dir item inside that gets deleted
3737 		 * later, we do this check again and rmdir it then if possible.
3738 		 * See the use of check_dirs for more details.
3739 		 */
3740 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3741 				sctx->cur_ino);
3742 		if (ret < 0)
3743 			goto out;
3744 		if (ret) {
3745 			ret = send_rmdir(sctx, valid_path);
3746 			if (ret < 0)
3747 				goto out;
3748 		} else if (!is_orphan) {
3749 			ret = orphanize_inode(sctx, sctx->cur_ino,
3750 					sctx->cur_inode_gen, valid_path);
3751 			if (ret < 0)
3752 				goto out;
3753 			is_orphan = 1;
3754 		}
3755 
3756 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3757 			ret = dup_ref(cur, &check_dirs);
3758 			if (ret < 0)
3759 				goto out;
3760 		}
3761 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3762 		   !list_empty(&sctx->deleted_refs)) {
3763 		/*
3764 		 * We have a moved dir. Add the old parent to check_dirs
3765 		 */
3766 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3767 				list);
3768 		ret = dup_ref(cur, &check_dirs);
3769 		if (ret < 0)
3770 			goto out;
3771 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3772 		/*
3773 		 * We have a non dir inode. Go through all deleted refs and
3774 		 * unlink them if they were not already overwritten by other
3775 		 * inodes.
3776 		 */
3777 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3778 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3779 					sctx->cur_ino, sctx->cur_inode_gen,
3780 					cur->name, cur->name_len);
3781 			if (ret < 0)
3782 				goto out;
3783 			if (!ret) {
3784 				ret = send_unlink(sctx, cur->full_path);
3785 				if (ret < 0)
3786 					goto out;
3787 			}
3788 			ret = dup_ref(cur, &check_dirs);
3789 			if (ret < 0)
3790 				goto out;
3791 		}
3792 		/*
3793 		 * If the inode is still orphan, unlink the orphan. This may
3794 		 * happen when a previous inode did overwrite the first ref
3795 		 * of this inode and no new refs were added for the current
3796 		 * inode. Unlinking does not mean that the inode is deleted in
3797 		 * all cases. There may still be links to this inode in other
3798 		 * places.
3799 		 */
3800 		if (is_orphan) {
3801 			ret = send_unlink(sctx, valid_path);
3802 			if (ret < 0)
3803 				goto out;
3804 		}
3805 	}
3806 
3807 	/*
3808 	 * We did collect all parent dirs where cur_inode was once located. We
3809 	 * now go through all these dirs and check if they are pending for
3810 	 * deletion and if it's finally possible to perform the rmdir now.
3811 	 * We also update the inode stats of the parent dirs here.
3812 	 */
3813 	list_for_each_entry(cur, &check_dirs, list) {
3814 		/*
3815 		 * In case we had refs into dirs that were not processed yet,
3816 		 * we don't need to do the utime and rmdir logic for these dirs.
3817 		 * The dir will be processed later.
3818 		 */
3819 		if (cur->dir > sctx->cur_ino)
3820 			continue;
3821 
3822 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3823 		if (ret < 0)
3824 			goto out;
3825 
3826 		if (ret == inode_state_did_create ||
3827 		    ret == inode_state_no_change) {
3828 			/* TODO delayed utimes */
3829 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3830 			if (ret < 0)
3831 				goto out;
3832 		} else if (ret == inode_state_did_delete &&
3833 			   cur->dir != last_dir_ino_rm) {
3834 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3835 					sctx->cur_ino);
3836 			if (ret < 0)
3837 				goto out;
3838 			if (ret) {
3839 				ret = get_cur_path(sctx, cur->dir,
3840 						   cur->dir_gen, valid_path);
3841 				if (ret < 0)
3842 					goto out;
3843 				ret = send_rmdir(sctx, valid_path);
3844 				if (ret < 0)
3845 					goto out;
3846 				last_dir_ino_rm = cur->dir;
3847 			}
3848 		}
3849 	}
3850 
3851 	ret = 0;
3852 
3853 out:
3854 	__free_recorded_refs(&check_dirs);
3855 	free_recorded_refs(sctx);
3856 	fs_path_free(valid_path);
3857 	return ret;
3858 }
3859 
3860 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3861 		      struct fs_path *name, void *ctx, struct list_head *refs)
3862 {
3863 	int ret = 0;
3864 	struct send_ctx *sctx = ctx;
3865 	struct fs_path *p;
3866 	u64 gen;
3867 
3868 	p = fs_path_alloc();
3869 	if (!p)
3870 		return -ENOMEM;
3871 
3872 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3873 			NULL, NULL);
3874 	if (ret < 0)
3875 		goto out;
3876 
3877 	ret = get_cur_path(sctx, dir, gen, p);
3878 	if (ret < 0)
3879 		goto out;
3880 	ret = fs_path_add_path(p, name);
3881 	if (ret < 0)
3882 		goto out;
3883 
3884 	ret = __record_ref(refs, dir, gen, p);
3885 
3886 out:
3887 	if (ret)
3888 		fs_path_free(p);
3889 	return ret;
3890 }
3891 
3892 static int __record_new_ref(int num, u64 dir, int index,
3893 			    struct fs_path *name,
3894 			    void *ctx)
3895 {
3896 	struct send_ctx *sctx = ctx;
3897 	return record_ref(sctx->send_root, num, dir, index, name,
3898 			  ctx, &sctx->new_refs);
3899 }
3900 
3901 
3902 static int __record_deleted_ref(int num, u64 dir, int index,
3903 				struct fs_path *name,
3904 				void *ctx)
3905 {
3906 	struct send_ctx *sctx = ctx;
3907 	return record_ref(sctx->parent_root, num, dir, index, name,
3908 			  ctx, &sctx->deleted_refs);
3909 }
3910 
3911 static int record_new_ref(struct send_ctx *sctx)
3912 {
3913 	int ret;
3914 
3915 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3916 				sctx->cmp_key, 0, __record_new_ref, sctx);
3917 	if (ret < 0)
3918 		goto out;
3919 	ret = 0;
3920 
3921 out:
3922 	return ret;
3923 }
3924 
3925 static int record_deleted_ref(struct send_ctx *sctx)
3926 {
3927 	int ret;
3928 
3929 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3930 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3931 	if (ret < 0)
3932 		goto out;
3933 	ret = 0;
3934 
3935 out:
3936 	return ret;
3937 }
3938 
3939 struct find_ref_ctx {
3940 	u64 dir;
3941 	u64 dir_gen;
3942 	struct btrfs_root *root;
3943 	struct fs_path *name;
3944 	int found_idx;
3945 };
3946 
3947 static int __find_iref(int num, u64 dir, int index,
3948 		       struct fs_path *name,
3949 		       void *ctx_)
3950 {
3951 	struct find_ref_ctx *ctx = ctx_;
3952 	u64 dir_gen;
3953 	int ret;
3954 
3955 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3956 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3957 		/*
3958 		 * To avoid doing extra lookups we'll only do this if everything
3959 		 * else matches.
3960 		 */
3961 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3962 				     NULL, NULL, NULL);
3963 		if (ret)
3964 			return ret;
3965 		if (dir_gen != ctx->dir_gen)
3966 			return 0;
3967 		ctx->found_idx = num;
3968 		return 1;
3969 	}
3970 	return 0;
3971 }
3972 
3973 static int find_iref(struct btrfs_root *root,
3974 		     struct btrfs_path *path,
3975 		     struct btrfs_key *key,
3976 		     u64 dir, u64 dir_gen, struct fs_path *name)
3977 {
3978 	int ret;
3979 	struct find_ref_ctx ctx;
3980 
3981 	ctx.dir = dir;
3982 	ctx.name = name;
3983 	ctx.dir_gen = dir_gen;
3984 	ctx.found_idx = -1;
3985 	ctx.root = root;
3986 
3987 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3988 	if (ret < 0)
3989 		return ret;
3990 
3991 	if (ctx.found_idx == -1)
3992 		return -ENOENT;
3993 
3994 	return ctx.found_idx;
3995 }
3996 
3997 static int __record_changed_new_ref(int num, u64 dir, int index,
3998 				    struct fs_path *name,
3999 				    void *ctx)
4000 {
4001 	u64 dir_gen;
4002 	int ret;
4003 	struct send_ctx *sctx = ctx;
4004 
4005 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4006 			     NULL, NULL, NULL);
4007 	if (ret)
4008 		return ret;
4009 
4010 	ret = find_iref(sctx->parent_root, sctx->right_path,
4011 			sctx->cmp_key, dir, dir_gen, name);
4012 	if (ret == -ENOENT)
4013 		ret = __record_new_ref(num, dir, index, name, sctx);
4014 	else if (ret > 0)
4015 		ret = 0;
4016 
4017 	return ret;
4018 }
4019 
4020 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4021 					struct fs_path *name,
4022 					void *ctx)
4023 {
4024 	u64 dir_gen;
4025 	int ret;
4026 	struct send_ctx *sctx = ctx;
4027 
4028 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4029 			     NULL, NULL, NULL);
4030 	if (ret)
4031 		return ret;
4032 
4033 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4034 			dir, dir_gen, name);
4035 	if (ret == -ENOENT)
4036 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4037 	else if (ret > 0)
4038 		ret = 0;
4039 
4040 	return ret;
4041 }
4042 
4043 static int record_changed_ref(struct send_ctx *sctx)
4044 {
4045 	int ret = 0;
4046 
4047 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4048 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4049 	if (ret < 0)
4050 		goto out;
4051 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4052 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4053 	if (ret < 0)
4054 		goto out;
4055 	ret = 0;
4056 
4057 out:
4058 	return ret;
4059 }
4060 
4061 /*
4062  * Record and process all refs at once. Needed when an inode changes the
4063  * generation number, which means that it was deleted and recreated.
4064  */
4065 static int process_all_refs(struct send_ctx *sctx,
4066 			    enum btrfs_compare_tree_result cmd)
4067 {
4068 	int ret;
4069 	struct btrfs_root *root;
4070 	struct btrfs_path *path;
4071 	struct btrfs_key key;
4072 	struct btrfs_key found_key;
4073 	struct extent_buffer *eb;
4074 	int slot;
4075 	iterate_inode_ref_t cb;
4076 	int pending_move = 0;
4077 
4078 	path = alloc_path_for_send();
4079 	if (!path)
4080 		return -ENOMEM;
4081 
4082 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4083 		root = sctx->send_root;
4084 		cb = __record_new_ref;
4085 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4086 		root = sctx->parent_root;
4087 		cb = __record_deleted_ref;
4088 	} else {
4089 		btrfs_err(sctx->send_root->fs_info,
4090 				"Wrong command %d in process_all_refs", cmd);
4091 		ret = -EINVAL;
4092 		goto out;
4093 	}
4094 
4095 	key.objectid = sctx->cmp_key->objectid;
4096 	key.type = BTRFS_INODE_REF_KEY;
4097 	key.offset = 0;
4098 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4099 	if (ret < 0)
4100 		goto out;
4101 
4102 	while (1) {
4103 		eb = path->nodes[0];
4104 		slot = path->slots[0];
4105 		if (slot >= btrfs_header_nritems(eb)) {
4106 			ret = btrfs_next_leaf(root, path);
4107 			if (ret < 0)
4108 				goto out;
4109 			else if (ret > 0)
4110 				break;
4111 			continue;
4112 		}
4113 
4114 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4115 
4116 		if (found_key.objectid != key.objectid ||
4117 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4118 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4119 			break;
4120 
4121 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4122 		if (ret < 0)
4123 			goto out;
4124 
4125 		path->slots[0]++;
4126 	}
4127 	btrfs_release_path(path);
4128 
4129 	ret = process_recorded_refs(sctx, &pending_move);
4130 	/* Only applicable to an incremental send. */
4131 	ASSERT(pending_move == 0);
4132 
4133 out:
4134 	btrfs_free_path(path);
4135 	return ret;
4136 }
4137 
4138 static int send_set_xattr(struct send_ctx *sctx,
4139 			  struct fs_path *path,
4140 			  const char *name, int name_len,
4141 			  const char *data, int data_len)
4142 {
4143 	int ret = 0;
4144 
4145 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4146 	if (ret < 0)
4147 		goto out;
4148 
4149 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4150 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4151 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4152 
4153 	ret = send_cmd(sctx);
4154 
4155 tlv_put_failure:
4156 out:
4157 	return ret;
4158 }
4159 
4160 static int send_remove_xattr(struct send_ctx *sctx,
4161 			  struct fs_path *path,
4162 			  const char *name, int name_len)
4163 {
4164 	int ret = 0;
4165 
4166 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4167 	if (ret < 0)
4168 		goto out;
4169 
4170 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4171 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4172 
4173 	ret = send_cmd(sctx);
4174 
4175 tlv_put_failure:
4176 out:
4177 	return ret;
4178 }
4179 
4180 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4181 			       const char *name, int name_len,
4182 			       const char *data, int data_len,
4183 			       u8 type, void *ctx)
4184 {
4185 	int ret;
4186 	struct send_ctx *sctx = ctx;
4187 	struct fs_path *p;
4188 	posix_acl_xattr_header dummy_acl;
4189 
4190 	p = fs_path_alloc();
4191 	if (!p)
4192 		return -ENOMEM;
4193 
4194 	/*
4195 	 * This hack is needed because empty acls are stored as zero byte
4196 	 * data in xattrs. Problem with that is, that receiving these zero byte
4197 	 * acls will fail later. To fix this, we send a dummy acl list that
4198 	 * only contains the version number and no entries.
4199 	 */
4200 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4201 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4202 		if (data_len == 0) {
4203 			dummy_acl.a_version =
4204 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4205 			data = (char *)&dummy_acl;
4206 			data_len = sizeof(dummy_acl);
4207 		}
4208 	}
4209 
4210 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4211 	if (ret < 0)
4212 		goto out;
4213 
4214 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4215 
4216 out:
4217 	fs_path_free(p);
4218 	return ret;
4219 }
4220 
4221 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4222 				   const char *name, int name_len,
4223 				   const char *data, int data_len,
4224 				   u8 type, void *ctx)
4225 {
4226 	int ret;
4227 	struct send_ctx *sctx = ctx;
4228 	struct fs_path *p;
4229 
4230 	p = fs_path_alloc();
4231 	if (!p)
4232 		return -ENOMEM;
4233 
4234 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4235 	if (ret < 0)
4236 		goto out;
4237 
4238 	ret = send_remove_xattr(sctx, p, name, name_len);
4239 
4240 out:
4241 	fs_path_free(p);
4242 	return ret;
4243 }
4244 
4245 static int process_new_xattr(struct send_ctx *sctx)
4246 {
4247 	int ret = 0;
4248 
4249 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4250 			       sctx->cmp_key, __process_new_xattr, sctx);
4251 
4252 	return ret;
4253 }
4254 
4255 static int process_deleted_xattr(struct send_ctx *sctx)
4256 {
4257 	int ret;
4258 
4259 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4260 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4261 
4262 	return ret;
4263 }
4264 
4265 struct find_xattr_ctx {
4266 	const char *name;
4267 	int name_len;
4268 	int found_idx;
4269 	char *found_data;
4270 	int found_data_len;
4271 };
4272 
4273 static int __find_xattr(int num, struct btrfs_key *di_key,
4274 			const char *name, int name_len,
4275 			const char *data, int data_len,
4276 			u8 type, void *vctx)
4277 {
4278 	struct find_xattr_ctx *ctx = vctx;
4279 
4280 	if (name_len == ctx->name_len &&
4281 	    strncmp(name, ctx->name, name_len) == 0) {
4282 		ctx->found_idx = num;
4283 		ctx->found_data_len = data_len;
4284 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4285 		if (!ctx->found_data)
4286 			return -ENOMEM;
4287 		return 1;
4288 	}
4289 	return 0;
4290 }
4291 
4292 static int find_xattr(struct btrfs_root *root,
4293 		      struct btrfs_path *path,
4294 		      struct btrfs_key *key,
4295 		      const char *name, int name_len,
4296 		      char **data, int *data_len)
4297 {
4298 	int ret;
4299 	struct find_xattr_ctx ctx;
4300 
4301 	ctx.name = name;
4302 	ctx.name_len = name_len;
4303 	ctx.found_idx = -1;
4304 	ctx.found_data = NULL;
4305 	ctx.found_data_len = 0;
4306 
4307 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4308 	if (ret < 0)
4309 		return ret;
4310 
4311 	if (ctx.found_idx == -1)
4312 		return -ENOENT;
4313 	if (data) {
4314 		*data = ctx.found_data;
4315 		*data_len = ctx.found_data_len;
4316 	} else {
4317 		kfree(ctx.found_data);
4318 	}
4319 	return ctx.found_idx;
4320 }
4321 
4322 
4323 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4324 				       const char *name, int name_len,
4325 				       const char *data, int data_len,
4326 				       u8 type, void *ctx)
4327 {
4328 	int ret;
4329 	struct send_ctx *sctx = ctx;
4330 	char *found_data = NULL;
4331 	int found_data_len  = 0;
4332 
4333 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4334 			 sctx->cmp_key, name, name_len, &found_data,
4335 			 &found_data_len);
4336 	if (ret == -ENOENT) {
4337 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4338 				data_len, type, ctx);
4339 	} else if (ret >= 0) {
4340 		if (data_len != found_data_len ||
4341 		    memcmp(data, found_data, data_len)) {
4342 			ret = __process_new_xattr(num, di_key, name, name_len,
4343 					data, data_len, type, ctx);
4344 		} else {
4345 			ret = 0;
4346 		}
4347 	}
4348 
4349 	kfree(found_data);
4350 	return ret;
4351 }
4352 
4353 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4354 					   const char *name, int name_len,
4355 					   const char *data, int data_len,
4356 					   u8 type, void *ctx)
4357 {
4358 	int ret;
4359 	struct send_ctx *sctx = ctx;
4360 
4361 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4362 			 name, name_len, NULL, NULL);
4363 	if (ret == -ENOENT)
4364 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4365 				data_len, type, ctx);
4366 	else if (ret >= 0)
4367 		ret = 0;
4368 
4369 	return ret;
4370 }
4371 
4372 static int process_changed_xattr(struct send_ctx *sctx)
4373 {
4374 	int ret = 0;
4375 
4376 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4377 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4378 	if (ret < 0)
4379 		goto out;
4380 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4381 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4382 
4383 out:
4384 	return ret;
4385 }
4386 
4387 static int process_all_new_xattrs(struct send_ctx *sctx)
4388 {
4389 	int ret;
4390 	struct btrfs_root *root;
4391 	struct btrfs_path *path;
4392 	struct btrfs_key key;
4393 	struct btrfs_key found_key;
4394 	struct extent_buffer *eb;
4395 	int slot;
4396 
4397 	path = alloc_path_for_send();
4398 	if (!path)
4399 		return -ENOMEM;
4400 
4401 	root = sctx->send_root;
4402 
4403 	key.objectid = sctx->cmp_key->objectid;
4404 	key.type = BTRFS_XATTR_ITEM_KEY;
4405 	key.offset = 0;
4406 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4407 	if (ret < 0)
4408 		goto out;
4409 
4410 	while (1) {
4411 		eb = path->nodes[0];
4412 		slot = path->slots[0];
4413 		if (slot >= btrfs_header_nritems(eb)) {
4414 			ret = btrfs_next_leaf(root, path);
4415 			if (ret < 0) {
4416 				goto out;
4417 			} else if (ret > 0) {
4418 				ret = 0;
4419 				break;
4420 			}
4421 			continue;
4422 		}
4423 
4424 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4425 		if (found_key.objectid != key.objectid ||
4426 		    found_key.type != key.type) {
4427 			ret = 0;
4428 			goto out;
4429 		}
4430 
4431 		ret = iterate_dir_item(root, path, &found_key,
4432 				       __process_new_xattr, sctx);
4433 		if (ret < 0)
4434 			goto out;
4435 
4436 		path->slots[0]++;
4437 	}
4438 
4439 out:
4440 	btrfs_free_path(path);
4441 	return ret;
4442 }
4443 
4444 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4445 {
4446 	struct btrfs_root *root = sctx->send_root;
4447 	struct btrfs_fs_info *fs_info = root->fs_info;
4448 	struct inode *inode;
4449 	struct page *page;
4450 	char *addr;
4451 	struct btrfs_key key;
4452 	pgoff_t index = offset >> PAGE_SHIFT;
4453 	pgoff_t last_index;
4454 	unsigned pg_offset = offset & ~PAGE_MASK;
4455 	ssize_t ret = 0;
4456 
4457 	key.objectid = sctx->cur_ino;
4458 	key.type = BTRFS_INODE_ITEM_KEY;
4459 	key.offset = 0;
4460 
4461 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4462 	if (IS_ERR(inode))
4463 		return PTR_ERR(inode);
4464 
4465 	if (offset + len > i_size_read(inode)) {
4466 		if (offset > i_size_read(inode))
4467 			len = 0;
4468 		else
4469 			len = offset - i_size_read(inode);
4470 	}
4471 	if (len == 0)
4472 		goto out;
4473 
4474 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4475 
4476 	/* initial readahead */
4477 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4478 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4479 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4480 		       last_index - index + 1);
4481 
4482 	while (index <= last_index) {
4483 		unsigned cur_len = min_t(unsigned, len,
4484 					 PAGE_SIZE - pg_offset);
4485 		page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4486 		if (!page) {
4487 			ret = -ENOMEM;
4488 			break;
4489 		}
4490 
4491 		if (!PageUptodate(page)) {
4492 			btrfs_readpage(NULL, page);
4493 			lock_page(page);
4494 			if (!PageUptodate(page)) {
4495 				unlock_page(page);
4496 				put_page(page);
4497 				ret = -EIO;
4498 				break;
4499 			}
4500 		}
4501 
4502 		addr = kmap(page);
4503 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4504 		kunmap(page);
4505 		unlock_page(page);
4506 		put_page(page);
4507 		index++;
4508 		pg_offset = 0;
4509 		len -= cur_len;
4510 		ret += cur_len;
4511 	}
4512 out:
4513 	iput(inode);
4514 	return ret;
4515 }
4516 
4517 /*
4518  * Read some bytes from the current inode/file and send a write command to
4519  * user space.
4520  */
4521 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4522 {
4523 	int ret = 0;
4524 	struct fs_path *p;
4525 	ssize_t num_read = 0;
4526 
4527 	p = fs_path_alloc();
4528 	if (!p)
4529 		return -ENOMEM;
4530 
4531 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4532 
4533 	num_read = fill_read_buf(sctx, offset, len);
4534 	if (num_read <= 0) {
4535 		if (num_read < 0)
4536 			ret = num_read;
4537 		goto out;
4538 	}
4539 
4540 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4541 	if (ret < 0)
4542 		goto out;
4543 
4544 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4545 	if (ret < 0)
4546 		goto out;
4547 
4548 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4549 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4550 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4551 
4552 	ret = send_cmd(sctx);
4553 
4554 tlv_put_failure:
4555 out:
4556 	fs_path_free(p);
4557 	if (ret < 0)
4558 		return ret;
4559 	return num_read;
4560 }
4561 
4562 /*
4563  * Send a clone command to user space.
4564  */
4565 static int send_clone(struct send_ctx *sctx,
4566 		      u64 offset, u32 len,
4567 		      struct clone_root *clone_root)
4568 {
4569 	int ret = 0;
4570 	struct fs_path *p;
4571 	u64 gen;
4572 
4573 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4574 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4575 		clone_root->root->objectid, clone_root->ino,
4576 		clone_root->offset);
4577 
4578 	p = fs_path_alloc();
4579 	if (!p)
4580 		return -ENOMEM;
4581 
4582 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4583 	if (ret < 0)
4584 		goto out;
4585 
4586 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4587 	if (ret < 0)
4588 		goto out;
4589 
4590 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4591 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4592 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4593 
4594 	if (clone_root->root == sctx->send_root) {
4595 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4596 				&gen, NULL, NULL, NULL, NULL);
4597 		if (ret < 0)
4598 			goto out;
4599 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4600 	} else {
4601 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4602 	}
4603 	if (ret < 0)
4604 		goto out;
4605 
4606 	/*
4607 	 * If the parent we're using has a received_uuid set then use that as
4608 	 * our clone source as that is what we will look for when doing a
4609 	 * receive.
4610 	 *
4611 	 * This covers the case that we create a snapshot off of a received
4612 	 * subvolume and then use that as the parent and try to receive on a
4613 	 * different host.
4614 	 */
4615 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4616 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4617 			     clone_root->root->root_item.received_uuid);
4618 	else
4619 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4620 			     clone_root->root->root_item.uuid);
4621 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4622 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4623 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4624 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4625 			clone_root->offset);
4626 
4627 	ret = send_cmd(sctx);
4628 
4629 tlv_put_failure:
4630 out:
4631 	fs_path_free(p);
4632 	return ret;
4633 }
4634 
4635 /*
4636  * Send an update extent command to user space.
4637  */
4638 static int send_update_extent(struct send_ctx *sctx,
4639 			      u64 offset, u32 len)
4640 {
4641 	int ret = 0;
4642 	struct fs_path *p;
4643 
4644 	p = fs_path_alloc();
4645 	if (!p)
4646 		return -ENOMEM;
4647 
4648 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4649 	if (ret < 0)
4650 		goto out;
4651 
4652 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4653 	if (ret < 0)
4654 		goto out;
4655 
4656 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4657 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4658 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4659 
4660 	ret = send_cmd(sctx);
4661 
4662 tlv_put_failure:
4663 out:
4664 	fs_path_free(p);
4665 	return ret;
4666 }
4667 
4668 static int send_hole(struct send_ctx *sctx, u64 end)
4669 {
4670 	struct fs_path *p = NULL;
4671 	u64 offset = sctx->cur_inode_last_extent;
4672 	u64 len;
4673 	int ret = 0;
4674 
4675 	p = fs_path_alloc();
4676 	if (!p)
4677 		return -ENOMEM;
4678 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4679 	if (ret < 0)
4680 		goto tlv_put_failure;
4681 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4682 	while (offset < end) {
4683 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4684 
4685 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4686 		if (ret < 0)
4687 			break;
4688 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4689 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4690 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4691 		ret = send_cmd(sctx);
4692 		if (ret < 0)
4693 			break;
4694 		offset += len;
4695 	}
4696 tlv_put_failure:
4697 	fs_path_free(p);
4698 	return ret;
4699 }
4700 
4701 static int send_extent_data(struct send_ctx *sctx,
4702 			    const u64 offset,
4703 			    const u64 len)
4704 {
4705 	u64 sent = 0;
4706 
4707 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4708 		return send_update_extent(sctx, offset, len);
4709 
4710 	while (sent < len) {
4711 		u64 size = len - sent;
4712 		int ret;
4713 
4714 		if (size > BTRFS_SEND_READ_SIZE)
4715 			size = BTRFS_SEND_READ_SIZE;
4716 		ret = send_write(sctx, offset + sent, size);
4717 		if (ret < 0)
4718 			return ret;
4719 		if (!ret)
4720 			break;
4721 		sent += ret;
4722 	}
4723 	return 0;
4724 }
4725 
4726 static int clone_range(struct send_ctx *sctx,
4727 		       struct clone_root *clone_root,
4728 		       const u64 disk_byte,
4729 		       u64 data_offset,
4730 		       u64 offset,
4731 		       u64 len)
4732 {
4733 	struct btrfs_path *path;
4734 	struct btrfs_key key;
4735 	int ret;
4736 
4737 	path = alloc_path_for_send();
4738 	if (!path)
4739 		return -ENOMEM;
4740 
4741 	/*
4742 	 * We can't send a clone operation for the entire range if we find
4743 	 * extent items in the respective range in the source file that
4744 	 * refer to different extents or if we find holes.
4745 	 * So check for that and do a mix of clone and regular write/copy
4746 	 * operations if needed.
4747 	 *
4748 	 * Example:
4749 	 *
4750 	 * mkfs.btrfs -f /dev/sda
4751 	 * mount /dev/sda /mnt
4752 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4753 	 * cp --reflink=always /mnt/foo /mnt/bar
4754 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4755 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
4756 	 *
4757 	 * If when we send the snapshot and we are processing file bar (which
4758 	 * has a higher inode number than foo) we blindly send a clone operation
4759 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4760 	 * a file bar that matches the content of file foo - iow, doesn't match
4761 	 * the content from bar in the original filesystem.
4762 	 */
4763 	key.objectid = clone_root->ino;
4764 	key.type = BTRFS_EXTENT_DATA_KEY;
4765 	key.offset = clone_root->offset;
4766 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4767 	if (ret < 0)
4768 		goto out;
4769 	if (ret > 0 && path->slots[0] > 0) {
4770 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4771 		if (key.objectid == clone_root->ino &&
4772 		    key.type == BTRFS_EXTENT_DATA_KEY)
4773 			path->slots[0]--;
4774 	}
4775 
4776 	while (true) {
4777 		struct extent_buffer *leaf = path->nodes[0];
4778 		int slot = path->slots[0];
4779 		struct btrfs_file_extent_item *ei;
4780 		u8 type;
4781 		u64 ext_len;
4782 		u64 clone_len;
4783 
4784 		if (slot >= btrfs_header_nritems(leaf)) {
4785 			ret = btrfs_next_leaf(clone_root->root, path);
4786 			if (ret < 0)
4787 				goto out;
4788 			else if (ret > 0)
4789 				break;
4790 			continue;
4791 		}
4792 
4793 		btrfs_item_key_to_cpu(leaf, &key, slot);
4794 
4795 		/*
4796 		 * We might have an implicit trailing hole (NO_HOLES feature
4797 		 * enabled). We deal with it after leaving this loop.
4798 		 */
4799 		if (key.objectid != clone_root->ino ||
4800 		    key.type != BTRFS_EXTENT_DATA_KEY)
4801 			break;
4802 
4803 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4804 		type = btrfs_file_extent_type(leaf, ei);
4805 		if (type == BTRFS_FILE_EXTENT_INLINE) {
4806 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4807 			ext_len = PAGE_ALIGN(ext_len);
4808 		} else {
4809 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4810 		}
4811 
4812 		if (key.offset + ext_len <= clone_root->offset)
4813 			goto next;
4814 
4815 		if (key.offset > clone_root->offset) {
4816 			/* Implicit hole, NO_HOLES feature enabled. */
4817 			u64 hole_len = key.offset - clone_root->offset;
4818 
4819 			if (hole_len > len)
4820 				hole_len = len;
4821 			ret = send_extent_data(sctx, offset, hole_len);
4822 			if (ret < 0)
4823 				goto out;
4824 
4825 			len -= hole_len;
4826 			if (len == 0)
4827 				break;
4828 			offset += hole_len;
4829 			clone_root->offset += hole_len;
4830 			data_offset += hole_len;
4831 		}
4832 
4833 		if (key.offset >= clone_root->offset + len)
4834 			break;
4835 
4836 		clone_len = min_t(u64, ext_len, len);
4837 
4838 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4839 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
4840 			ret = send_clone(sctx, offset, clone_len, clone_root);
4841 		else
4842 			ret = send_extent_data(sctx, offset, clone_len);
4843 
4844 		if (ret < 0)
4845 			goto out;
4846 
4847 		len -= clone_len;
4848 		if (len == 0)
4849 			break;
4850 		offset += clone_len;
4851 		clone_root->offset += clone_len;
4852 		data_offset += clone_len;
4853 next:
4854 		path->slots[0]++;
4855 	}
4856 
4857 	if (len > 0)
4858 		ret = send_extent_data(sctx, offset, len);
4859 	else
4860 		ret = 0;
4861 out:
4862 	btrfs_free_path(path);
4863 	return ret;
4864 }
4865 
4866 static int send_write_or_clone(struct send_ctx *sctx,
4867 			       struct btrfs_path *path,
4868 			       struct btrfs_key *key,
4869 			       struct clone_root *clone_root)
4870 {
4871 	int ret = 0;
4872 	struct btrfs_file_extent_item *ei;
4873 	u64 offset = key->offset;
4874 	u64 len;
4875 	u8 type;
4876 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4877 
4878 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4879 			struct btrfs_file_extent_item);
4880 	type = btrfs_file_extent_type(path->nodes[0], ei);
4881 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4882 		len = btrfs_file_extent_inline_len(path->nodes[0],
4883 						   path->slots[0], ei);
4884 		/*
4885 		 * it is possible the inline item won't cover the whole page,
4886 		 * but there may be items after this page.  Make
4887 		 * sure to send the whole thing
4888 		 */
4889 		len = PAGE_ALIGN(len);
4890 	} else {
4891 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4892 	}
4893 
4894 	if (offset + len > sctx->cur_inode_size)
4895 		len = sctx->cur_inode_size - offset;
4896 	if (len == 0) {
4897 		ret = 0;
4898 		goto out;
4899 	}
4900 
4901 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4902 		u64 disk_byte;
4903 		u64 data_offset;
4904 
4905 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
4906 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
4907 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
4908 				  offset, len);
4909 	} else {
4910 		ret = send_extent_data(sctx, offset, len);
4911 	}
4912 out:
4913 	return ret;
4914 }
4915 
4916 static int is_extent_unchanged(struct send_ctx *sctx,
4917 			       struct btrfs_path *left_path,
4918 			       struct btrfs_key *ekey)
4919 {
4920 	int ret = 0;
4921 	struct btrfs_key key;
4922 	struct btrfs_path *path = NULL;
4923 	struct extent_buffer *eb;
4924 	int slot;
4925 	struct btrfs_key found_key;
4926 	struct btrfs_file_extent_item *ei;
4927 	u64 left_disknr;
4928 	u64 right_disknr;
4929 	u64 left_offset;
4930 	u64 right_offset;
4931 	u64 left_offset_fixed;
4932 	u64 left_len;
4933 	u64 right_len;
4934 	u64 left_gen;
4935 	u64 right_gen;
4936 	u8 left_type;
4937 	u8 right_type;
4938 
4939 	path = alloc_path_for_send();
4940 	if (!path)
4941 		return -ENOMEM;
4942 
4943 	eb = left_path->nodes[0];
4944 	slot = left_path->slots[0];
4945 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4946 	left_type = btrfs_file_extent_type(eb, ei);
4947 
4948 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4949 		ret = 0;
4950 		goto out;
4951 	}
4952 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4953 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4954 	left_offset = btrfs_file_extent_offset(eb, ei);
4955 	left_gen = btrfs_file_extent_generation(eb, ei);
4956 
4957 	/*
4958 	 * Following comments will refer to these graphics. L is the left
4959 	 * extents which we are checking at the moment. 1-8 are the right
4960 	 * extents that we iterate.
4961 	 *
4962 	 *       |-----L-----|
4963 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4964 	 *
4965 	 *       |-----L-----|
4966 	 * |--1--|-2b-|...(same as above)
4967 	 *
4968 	 * Alternative situation. Happens on files where extents got split.
4969 	 *       |-----L-----|
4970 	 * |-----------7-----------|-6-|
4971 	 *
4972 	 * Alternative situation. Happens on files which got larger.
4973 	 *       |-----L-----|
4974 	 * |-8-|
4975 	 * Nothing follows after 8.
4976 	 */
4977 
4978 	key.objectid = ekey->objectid;
4979 	key.type = BTRFS_EXTENT_DATA_KEY;
4980 	key.offset = ekey->offset;
4981 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4982 	if (ret < 0)
4983 		goto out;
4984 	if (ret) {
4985 		ret = 0;
4986 		goto out;
4987 	}
4988 
4989 	/*
4990 	 * Handle special case where the right side has no extents at all.
4991 	 */
4992 	eb = path->nodes[0];
4993 	slot = path->slots[0];
4994 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4995 	if (found_key.objectid != key.objectid ||
4996 	    found_key.type != key.type) {
4997 		/* If we're a hole then just pretend nothing changed */
4998 		ret = (left_disknr) ? 0 : 1;
4999 		goto out;
5000 	}
5001 
5002 	/*
5003 	 * We're now on 2a, 2b or 7.
5004 	 */
5005 	key = found_key;
5006 	while (key.offset < ekey->offset + left_len) {
5007 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5008 		right_type = btrfs_file_extent_type(eb, ei);
5009 		if (right_type != BTRFS_FILE_EXTENT_REG) {
5010 			ret = 0;
5011 			goto out;
5012 		}
5013 
5014 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5015 		right_len = btrfs_file_extent_num_bytes(eb, ei);
5016 		right_offset = btrfs_file_extent_offset(eb, ei);
5017 		right_gen = btrfs_file_extent_generation(eb, ei);
5018 
5019 		/*
5020 		 * Are we at extent 8? If yes, we know the extent is changed.
5021 		 * This may only happen on the first iteration.
5022 		 */
5023 		if (found_key.offset + right_len <= ekey->offset) {
5024 			/* If we're a hole just pretend nothing changed */
5025 			ret = (left_disknr) ? 0 : 1;
5026 			goto out;
5027 		}
5028 
5029 		left_offset_fixed = left_offset;
5030 		if (key.offset < ekey->offset) {
5031 			/* Fix the right offset for 2a and 7. */
5032 			right_offset += ekey->offset - key.offset;
5033 		} else {
5034 			/* Fix the left offset for all behind 2a and 2b */
5035 			left_offset_fixed += key.offset - ekey->offset;
5036 		}
5037 
5038 		/*
5039 		 * Check if we have the same extent.
5040 		 */
5041 		if (left_disknr != right_disknr ||
5042 		    left_offset_fixed != right_offset ||
5043 		    left_gen != right_gen) {
5044 			ret = 0;
5045 			goto out;
5046 		}
5047 
5048 		/*
5049 		 * Go to the next extent.
5050 		 */
5051 		ret = btrfs_next_item(sctx->parent_root, path);
5052 		if (ret < 0)
5053 			goto out;
5054 		if (!ret) {
5055 			eb = path->nodes[0];
5056 			slot = path->slots[0];
5057 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5058 		}
5059 		if (ret || found_key.objectid != key.objectid ||
5060 		    found_key.type != key.type) {
5061 			key.offset += right_len;
5062 			break;
5063 		}
5064 		if (found_key.offset != key.offset + right_len) {
5065 			ret = 0;
5066 			goto out;
5067 		}
5068 		key = found_key;
5069 	}
5070 
5071 	/*
5072 	 * We're now behind the left extent (treat as unchanged) or at the end
5073 	 * of the right side (treat as changed).
5074 	 */
5075 	if (key.offset >= ekey->offset + left_len)
5076 		ret = 1;
5077 	else
5078 		ret = 0;
5079 
5080 
5081 out:
5082 	btrfs_free_path(path);
5083 	return ret;
5084 }
5085 
5086 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5087 {
5088 	struct btrfs_path *path;
5089 	struct btrfs_root *root = sctx->send_root;
5090 	struct btrfs_file_extent_item *fi;
5091 	struct btrfs_key key;
5092 	u64 extent_end;
5093 	u8 type;
5094 	int ret;
5095 
5096 	path = alloc_path_for_send();
5097 	if (!path)
5098 		return -ENOMEM;
5099 
5100 	sctx->cur_inode_last_extent = 0;
5101 
5102 	key.objectid = sctx->cur_ino;
5103 	key.type = BTRFS_EXTENT_DATA_KEY;
5104 	key.offset = offset;
5105 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5106 	if (ret < 0)
5107 		goto out;
5108 	ret = 0;
5109 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5110 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5111 		goto out;
5112 
5113 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5114 			    struct btrfs_file_extent_item);
5115 	type = btrfs_file_extent_type(path->nodes[0], fi);
5116 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5117 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5118 							path->slots[0], fi);
5119 		extent_end = ALIGN(key.offset + size,
5120 				   sctx->send_root->sectorsize);
5121 	} else {
5122 		extent_end = key.offset +
5123 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5124 	}
5125 	sctx->cur_inode_last_extent = extent_end;
5126 out:
5127 	btrfs_free_path(path);
5128 	return ret;
5129 }
5130 
5131 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5132 			   struct btrfs_key *key)
5133 {
5134 	struct btrfs_file_extent_item *fi;
5135 	u64 extent_end;
5136 	u8 type;
5137 	int ret = 0;
5138 
5139 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5140 		return 0;
5141 
5142 	if (sctx->cur_inode_last_extent == (u64)-1) {
5143 		ret = get_last_extent(sctx, key->offset - 1);
5144 		if (ret)
5145 			return ret;
5146 	}
5147 
5148 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5149 			    struct btrfs_file_extent_item);
5150 	type = btrfs_file_extent_type(path->nodes[0], fi);
5151 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5152 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5153 							path->slots[0], fi);
5154 		extent_end = ALIGN(key->offset + size,
5155 				   sctx->send_root->sectorsize);
5156 	} else {
5157 		extent_end = key->offset +
5158 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5159 	}
5160 
5161 	if (path->slots[0] == 0 &&
5162 	    sctx->cur_inode_last_extent < key->offset) {
5163 		/*
5164 		 * We might have skipped entire leafs that contained only
5165 		 * file extent items for our current inode. These leafs have
5166 		 * a generation number smaller (older) than the one in the
5167 		 * current leaf and the leaf our last extent came from, and
5168 		 * are located between these 2 leafs.
5169 		 */
5170 		ret = get_last_extent(sctx, key->offset - 1);
5171 		if (ret)
5172 			return ret;
5173 	}
5174 
5175 	if (sctx->cur_inode_last_extent < key->offset)
5176 		ret = send_hole(sctx, key->offset);
5177 	sctx->cur_inode_last_extent = extent_end;
5178 	return ret;
5179 }
5180 
5181 static int process_extent(struct send_ctx *sctx,
5182 			  struct btrfs_path *path,
5183 			  struct btrfs_key *key)
5184 {
5185 	struct clone_root *found_clone = NULL;
5186 	int ret = 0;
5187 
5188 	if (S_ISLNK(sctx->cur_inode_mode))
5189 		return 0;
5190 
5191 	if (sctx->parent_root && !sctx->cur_inode_new) {
5192 		ret = is_extent_unchanged(sctx, path, key);
5193 		if (ret < 0)
5194 			goto out;
5195 		if (ret) {
5196 			ret = 0;
5197 			goto out_hole;
5198 		}
5199 	} else {
5200 		struct btrfs_file_extent_item *ei;
5201 		u8 type;
5202 
5203 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5204 				    struct btrfs_file_extent_item);
5205 		type = btrfs_file_extent_type(path->nodes[0], ei);
5206 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5207 		    type == BTRFS_FILE_EXTENT_REG) {
5208 			/*
5209 			 * The send spec does not have a prealloc command yet,
5210 			 * so just leave a hole for prealloc'ed extents until
5211 			 * we have enough commands queued up to justify rev'ing
5212 			 * the send spec.
5213 			 */
5214 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5215 				ret = 0;
5216 				goto out;
5217 			}
5218 
5219 			/* Have a hole, just skip it. */
5220 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5221 				ret = 0;
5222 				goto out;
5223 			}
5224 		}
5225 	}
5226 
5227 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5228 			sctx->cur_inode_size, &found_clone);
5229 	if (ret != -ENOENT && ret < 0)
5230 		goto out;
5231 
5232 	ret = send_write_or_clone(sctx, path, key, found_clone);
5233 	if (ret)
5234 		goto out;
5235 out_hole:
5236 	ret = maybe_send_hole(sctx, path, key);
5237 out:
5238 	return ret;
5239 }
5240 
5241 static int process_all_extents(struct send_ctx *sctx)
5242 {
5243 	int ret;
5244 	struct btrfs_root *root;
5245 	struct btrfs_path *path;
5246 	struct btrfs_key key;
5247 	struct btrfs_key found_key;
5248 	struct extent_buffer *eb;
5249 	int slot;
5250 
5251 	root = sctx->send_root;
5252 	path = alloc_path_for_send();
5253 	if (!path)
5254 		return -ENOMEM;
5255 
5256 	key.objectid = sctx->cmp_key->objectid;
5257 	key.type = BTRFS_EXTENT_DATA_KEY;
5258 	key.offset = 0;
5259 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5260 	if (ret < 0)
5261 		goto out;
5262 
5263 	while (1) {
5264 		eb = path->nodes[0];
5265 		slot = path->slots[0];
5266 
5267 		if (slot >= btrfs_header_nritems(eb)) {
5268 			ret = btrfs_next_leaf(root, path);
5269 			if (ret < 0) {
5270 				goto out;
5271 			} else if (ret > 0) {
5272 				ret = 0;
5273 				break;
5274 			}
5275 			continue;
5276 		}
5277 
5278 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5279 
5280 		if (found_key.objectid != key.objectid ||
5281 		    found_key.type != key.type) {
5282 			ret = 0;
5283 			goto out;
5284 		}
5285 
5286 		ret = process_extent(sctx, path, &found_key);
5287 		if (ret < 0)
5288 			goto out;
5289 
5290 		path->slots[0]++;
5291 	}
5292 
5293 out:
5294 	btrfs_free_path(path);
5295 	return ret;
5296 }
5297 
5298 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5299 					   int *pending_move,
5300 					   int *refs_processed)
5301 {
5302 	int ret = 0;
5303 
5304 	if (sctx->cur_ino == 0)
5305 		goto out;
5306 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5307 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5308 		goto out;
5309 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5310 		goto out;
5311 
5312 	ret = process_recorded_refs(sctx, pending_move);
5313 	if (ret < 0)
5314 		goto out;
5315 
5316 	*refs_processed = 1;
5317 out:
5318 	return ret;
5319 }
5320 
5321 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5322 {
5323 	int ret = 0;
5324 	u64 left_mode;
5325 	u64 left_uid;
5326 	u64 left_gid;
5327 	u64 right_mode;
5328 	u64 right_uid;
5329 	u64 right_gid;
5330 	int need_chmod = 0;
5331 	int need_chown = 0;
5332 	int pending_move = 0;
5333 	int refs_processed = 0;
5334 
5335 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5336 					      &refs_processed);
5337 	if (ret < 0)
5338 		goto out;
5339 
5340 	/*
5341 	 * We have processed the refs and thus need to advance send_progress.
5342 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5343 	 * inode into account.
5344 	 *
5345 	 * On the other hand, if our current inode is a directory and couldn't
5346 	 * be moved/renamed because its parent was renamed/moved too and it has
5347 	 * a higher inode number, we can only move/rename our current inode
5348 	 * after we moved/renamed its parent. Therefore in this case operate on
5349 	 * the old path (pre move/rename) of our current inode, and the
5350 	 * move/rename will be performed later.
5351 	 */
5352 	if (refs_processed && !pending_move)
5353 		sctx->send_progress = sctx->cur_ino + 1;
5354 
5355 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5356 		goto out;
5357 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5358 		goto out;
5359 
5360 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5361 			&left_mode, &left_uid, &left_gid, NULL);
5362 	if (ret < 0)
5363 		goto out;
5364 
5365 	if (!sctx->parent_root || sctx->cur_inode_new) {
5366 		need_chown = 1;
5367 		if (!S_ISLNK(sctx->cur_inode_mode))
5368 			need_chmod = 1;
5369 	} else {
5370 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5371 				NULL, NULL, &right_mode, &right_uid,
5372 				&right_gid, NULL);
5373 		if (ret < 0)
5374 			goto out;
5375 
5376 		if (left_uid != right_uid || left_gid != right_gid)
5377 			need_chown = 1;
5378 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5379 			need_chmod = 1;
5380 	}
5381 
5382 	if (S_ISREG(sctx->cur_inode_mode)) {
5383 		if (need_send_hole(sctx)) {
5384 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5385 			    sctx->cur_inode_last_extent <
5386 			    sctx->cur_inode_size) {
5387 				ret = get_last_extent(sctx, (u64)-1);
5388 				if (ret)
5389 					goto out;
5390 			}
5391 			if (sctx->cur_inode_last_extent <
5392 			    sctx->cur_inode_size) {
5393 				ret = send_hole(sctx, sctx->cur_inode_size);
5394 				if (ret)
5395 					goto out;
5396 			}
5397 		}
5398 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5399 				sctx->cur_inode_size);
5400 		if (ret < 0)
5401 			goto out;
5402 	}
5403 
5404 	if (need_chown) {
5405 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5406 				left_uid, left_gid);
5407 		if (ret < 0)
5408 			goto out;
5409 	}
5410 	if (need_chmod) {
5411 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5412 				left_mode);
5413 		if (ret < 0)
5414 			goto out;
5415 	}
5416 
5417 	/*
5418 	 * If other directory inodes depended on our current directory
5419 	 * inode's move/rename, now do their move/rename operations.
5420 	 */
5421 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5422 		ret = apply_children_dir_moves(sctx);
5423 		if (ret)
5424 			goto out;
5425 		/*
5426 		 * Need to send that every time, no matter if it actually
5427 		 * changed between the two trees as we have done changes to
5428 		 * the inode before. If our inode is a directory and it's
5429 		 * waiting to be moved/renamed, we will send its utimes when
5430 		 * it's moved/renamed, therefore we don't need to do it here.
5431 		 */
5432 		sctx->send_progress = sctx->cur_ino + 1;
5433 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5434 		if (ret < 0)
5435 			goto out;
5436 	}
5437 
5438 out:
5439 	return ret;
5440 }
5441 
5442 static int changed_inode(struct send_ctx *sctx,
5443 			 enum btrfs_compare_tree_result result)
5444 {
5445 	int ret = 0;
5446 	struct btrfs_key *key = sctx->cmp_key;
5447 	struct btrfs_inode_item *left_ii = NULL;
5448 	struct btrfs_inode_item *right_ii = NULL;
5449 	u64 left_gen = 0;
5450 	u64 right_gen = 0;
5451 
5452 	sctx->cur_ino = key->objectid;
5453 	sctx->cur_inode_new_gen = 0;
5454 	sctx->cur_inode_last_extent = (u64)-1;
5455 
5456 	/*
5457 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5458 	 * functions that the current inode's refs are not updated yet. Later,
5459 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5460 	 */
5461 	sctx->send_progress = sctx->cur_ino;
5462 
5463 	if (result == BTRFS_COMPARE_TREE_NEW ||
5464 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5465 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5466 				sctx->left_path->slots[0],
5467 				struct btrfs_inode_item);
5468 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5469 				left_ii);
5470 	} else {
5471 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5472 				sctx->right_path->slots[0],
5473 				struct btrfs_inode_item);
5474 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5475 				right_ii);
5476 	}
5477 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5478 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5479 				sctx->right_path->slots[0],
5480 				struct btrfs_inode_item);
5481 
5482 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5483 				right_ii);
5484 
5485 		/*
5486 		 * The cur_ino = root dir case is special here. We can't treat
5487 		 * the inode as deleted+reused because it would generate a
5488 		 * stream that tries to delete/mkdir the root dir.
5489 		 */
5490 		if (left_gen != right_gen &&
5491 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5492 			sctx->cur_inode_new_gen = 1;
5493 	}
5494 
5495 	if (result == BTRFS_COMPARE_TREE_NEW) {
5496 		sctx->cur_inode_gen = left_gen;
5497 		sctx->cur_inode_new = 1;
5498 		sctx->cur_inode_deleted = 0;
5499 		sctx->cur_inode_size = btrfs_inode_size(
5500 				sctx->left_path->nodes[0], left_ii);
5501 		sctx->cur_inode_mode = btrfs_inode_mode(
5502 				sctx->left_path->nodes[0], left_ii);
5503 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5504 				sctx->left_path->nodes[0], left_ii);
5505 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5506 			ret = send_create_inode_if_needed(sctx);
5507 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5508 		sctx->cur_inode_gen = right_gen;
5509 		sctx->cur_inode_new = 0;
5510 		sctx->cur_inode_deleted = 1;
5511 		sctx->cur_inode_size = btrfs_inode_size(
5512 				sctx->right_path->nodes[0], right_ii);
5513 		sctx->cur_inode_mode = btrfs_inode_mode(
5514 				sctx->right_path->nodes[0], right_ii);
5515 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5516 		/*
5517 		 * We need to do some special handling in case the inode was
5518 		 * reported as changed with a changed generation number. This
5519 		 * means that the original inode was deleted and new inode
5520 		 * reused the same inum. So we have to treat the old inode as
5521 		 * deleted and the new one as new.
5522 		 */
5523 		if (sctx->cur_inode_new_gen) {
5524 			/*
5525 			 * First, process the inode as if it was deleted.
5526 			 */
5527 			sctx->cur_inode_gen = right_gen;
5528 			sctx->cur_inode_new = 0;
5529 			sctx->cur_inode_deleted = 1;
5530 			sctx->cur_inode_size = btrfs_inode_size(
5531 					sctx->right_path->nodes[0], right_ii);
5532 			sctx->cur_inode_mode = btrfs_inode_mode(
5533 					sctx->right_path->nodes[0], right_ii);
5534 			ret = process_all_refs(sctx,
5535 					BTRFS_COMPARE_TREE_DELETED);
5536 			if (ret < 0)
5537 				goto out;
5538 
5539 			/*
5540 			 * Now process the inode as if it was new.
5541 			 */
5542 			sctx->cur_inode_gen = left_gen;
5543 			sctx->cur_inode_new = 1;
5544 			sctx->cur_inode_deleted = 0;
5545 			sctx->cur_inode_size = btrfs_inode_size(
5546 					sctx->left_path->nodes[0], left_ii);
5547 			sctx->cur_inode_mode = btrfs_inode_mode(
5548 					sctx->left_path->nodes[0], left_ii);
5549 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5550 					sctx->left_path->nodes[0], left_ii);
5551 			ret = send_create_inode_if_needed(sctx);
5552 			if (ret < 0)
5553 				goto out;
5554 
5555 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5556 			if (ret < 0)
5557 				goto out;
5558 			/*
5559 			 * Advance send_progress now as we did not get into
5560 			 * process_recorded_refs_if_needed in the new_gen case.
5561 			 */
5562 			sctx->send_progress = sctx->cur_ino + 1;
5563 
5564 			/*
5565 			 * Now process all extents and xattrs of the inode as if
5566 			 * they were all new.
5567 			 */
5568 			ret = process_all_extents(sctx);
5569 			if (ret < 0)
5570 				goto out;
5571 			ret = process_all_new_xattrs(sctx);
5572 			if (ret < 0)
5573 				goto out;
5574 		} else {
5575 			sctx->cur_inode_gen = left_gen;
5576 			sctx->cur_inode_new = 0;
5577 			sctx->cur_inode_new_gen = 0;
5578 			sctx->cur_inode_deleted = 0;
5579 			sctx->cur_inode_size = btrfs_inode_size(
5580 					sctx->left_path->nodes[0], left_ii);
5581 			sctx->cur_inode_mode = btrfs_inode_mode(
5582 					sctx->left_path->nodes[0], left_ii);
5583 		}
5584 	}
5585 
5586 out:
5587 	return ret;
5588 }
5589 
5590 /*
5591  * We have to process new refs before deleted refs, but compare_trees gives us
5592  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5593  * first and later process them in process_recorded_refs.
5594  * For the cur_inode_new_gen case, we skip recording completely because
5595  * changed_inode did already initiate processing of refs. The reason for this is
5596  * that in this case, compare_tree actually compares the refs of 2 different
5597  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5598  * refs of the right tree as deleted and all refs of the left tree as new.
5599  */
5600 static int changed_ref(struct send_ctx *sctx,
5601 		       enum btrfs_compare_tree_result result)
5602 {
5603 	int ret = 0;
5604 
5605 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5606 
5607 	if (!sctx->cur_inode_new_gen &&
5608 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5609 		if (result == BTRFS_COMPARE_TREE_NEW)
5610 			ret = record_new_ref(sctx);
5611 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5612 			ret = record_deleted_ref(sctx);
5613 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5614 			ret = record_changed_ref(sctx);
5615 	}
5616 
5617 	return ret;
5618 }
5619 
5620 /*
5621  * Process new/deleted/changed xattrs. We skip processing in the
5622  * cur_inode_new_gen case because changed_inode did already initiate processing
5623  * of xattrs. The reason is the same as in changed_ref
5624  */
5625 static int changed_xattr(struct send_ctx *sctx,
5626 			 enum btrfs_compare_tree_result result)
5627 {
5628 	int ret = 0;
5629 
5630 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5631 
5632 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5633 		if (result == BTRFS_COMPARE_TREE_NEW)
5634 			ret = process_new_xattr(sctx);
5635 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5636 			ret = process_deleted_xattr(sctx);
5637 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5638 			ret = process_changed_xattr(sctx);
5639 	}
5640 
5641 	return ret;
5642 }
5643 
5644 /*
5645  * Process new/deleted/changed extents. We skip processing in the
5646  * cur_inode_new_gen case because changed_inode did already initiate processing
5647  * of extents. The reason is the same as in changed_ref
5648  */
5649 static int changed_extent(struct send_ctx *sctx,
5650 			  enum btrfs_compare_tree_result result)
5651 {
5652 	int ret = 0;
5653 
5654 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5655 
5656 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5657 		if (result != BTRFS_COMPARE_TREE_DELETED)
5658 			ret = process_extent(sctx, sctx->left_path,
5659 					sctx->cmp_key);
5660 	}
5661 
5662 	return ret;
5663 }
5664 
5665 static int dir_changed(struct send_ctx *sctx, u64 dir)
5666 {
5667 	u64 orig_gen, new_gen;
5668 	int ret;
5669 
5670 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5671 			     NULL, NULL);
5672 	if (ret)
5673 		return ret;
5674 
5675 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5676 			     NULL, NULL, NULL);
5677 	if (ret)
5678 		return ret;
5679 
5680 	return (orig_gen != new_gen) ? 1 : 0;
5681 }
5682 
5683 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5684 			struct btrfs_key *key)
5685 {
5686 	struct btrfs_inode_extref *extref;
5687 	struct extent_buffer *leaf;
5688 	u64 dirid = 0, last_dirid = 0;
5689 	unsigned long ptr;
5690 	u32 item_size;
5691 	u32 cur_offset = 0;
5692 	int ref_name_len;
5693 	int ret = 0;
5694 
5695 	/* Easy case, just check this one dirid */
5696 	if (key->type == BTRFS_INODE_REF_KEY) {
5697 		dirid = key->offset;
5698 
5699 		ret = dir_changed(sctx, dirid);
5700 		goto out;
5701 	}
5702 
5703 	leaf = path->nodes[0];
5704 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5705 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5706 	while (cur_offset < item_size) {
5707 		extref = (struct btrfs_inode_extref *)(ptr +
5708 						       cur_offset);
5709 		dirid = btrfs_inode_extref_parent(leaf, extref);
5710 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5711 		cur_offset += ref_name_len + sizeof(*extref);
5712 		if (dirid == last_dirid)
5713 			continue;
5714 		ret = dir_changed(sctx, dirid);
5715 		if (ret)
5716 			break;
5717 		last_dirid = dirid;
5718 	}
5719 out:
5720 	return ret;
5721 }
5722 
5723 /*
5724  * Updates compare related fields in sctx and simply forwards to the actual
5725  * changed_xxx functions.
5726  */
5727 static int changed_cb(struct btrfs_root *left_root,
5728 		      struct btrfs_root *right_root,
5729 		      struct btrfs_path *left_path,
5730 		      struct btrfs_path *right_path,
5731 		      struct btrfs_key *key,
5732 		      enum btrfs_compare_tree_result result,
5733 		      void *ctx)
5734 {
5735 	int ret = 0;
5736 	struct send_ctx *sctx = ctx;
5737 
5738 	if (result == BTRFS_COMPARE_TREE_SAME) {
5739 		if (key->type == BTRFS_INODE_REF_KEY ||
5740 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5741 			ret = compare_refs(sctx, left_path, key);
5742 			if (!ret)
5743 				return 0;
5744 			if (ret < 0)
5745 				return ret;
5746 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5747 			return maybe_send_hole(sctx, left_path, key);
5748 		} else {
5749 			return 0;
5750 		}
5751 		result = BTRFS_COMPARE_TREE_CHANGED;
5752 		ret = 0;
5753 	}
5754 
5755 	sctx->left_path = left_path;
5756 	sctx->right_path = right_path;
5757 	sctx->cmp_key = key;
5758 
5759 	ret = finish_inode_if_needed(sctx, 0);
5760 	if (ret < 0)
5761 		goto out;
5762 
5763 	/* Ignore non-FS objects */
5764 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5765 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5766 		goto out;
5767 
5768 	if (key->type == BTRFS_INODE_ITEM_KEY)
5769 		ret = changed_inode(sctx, result);
5770 	else if (key->type == BTRFS_INODE_REF_KEY ||
5771 		 key->type == BTRFS_INODE_EXTREF_KEY)
5772 		ret = changed_ref(sctx, result);
5773 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5774 		ret = changed_xattr(sctx, result);
5775 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5776 		ret = changed_extent(sctx, result);
5777 
5778 out:
5779 	return ret;
5780 }
5781 
5782 static int full_send_tree(struct send_ctx *sctx)
5783 {
5784 	int ret;
5785 	struct btrfs_root *send_root = sctx->send_root;
5786 	struct btrfs_key key;
5787 	struct btrfs_key found_key;
5788 	struct btrfs_path *path;
5789 	struct extent_buffer *eb;
5790 	int slot;
5791 
5792 	path = alloc_path_for_send();
5793 	if (!path)
5794 		return -ENOMEM;
5795 
5796 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5797 	key.type = BTRFS_INODE_ITEM_KEY;
5798 	key.offset = 0;
5799 
5800 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5801 	if (ret < 0)
5802 		goto out;
5803 	if (ret)
5804 		goto out_finish;
5805 
5806 	while (1) {
5807 		eb = path->nodes[0];
5808 		slot = path->slots[0];
5809 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5810 
5811 		ret = changed_cb(send_root, NULL, path, NULL,
5812 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5813 		if (ret < 0)
5814 			goto out;
5815 
5816 		key.objectid = found_key.objectid;
5817 		key.type = found_key.type;
5818 		key.offset = found_key.offset + 1;
5819 
5820 		ret = btrfs_next_item(send_root, path);
5821 		if (ret < 0)
5822 			goto out;
5823 		if (ret) {
5824 			ret  = 0;
5825 			break;
5826 		}
5827 	}
5828 
5829 out_finish:
5830 	ret = finish_inode_if_needed(sctx, 1);
5831 
5832 out:
5833 	btrfs_free_path(path);
5834 	return ret;
5835 }
5836 
5837 static int send_subvol(struct send_ctx *sctx)
5838 {
5839 	int ret;
5840 
5841 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5842 		ret = send_header(sctx);
5843 		if (ret < 0)
5844 			goto out;
5845 	}
5846 
5847 	ret = send_subvol_begin(sctx);
5848 	if (ret < 0)
5849 		goto out;
5850 
5851 	if (sctx->parent_root) {
5852 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5853 				changed_cb, sctx);
5854 		if (ret < 0)
5855 			goto out;
5856 		ret = finish_inode_if_needed(sctx, 1);
5857 		if (ret < 0)
5858 			goto out;
5859 	} else {
5860 		ret = full_send_tree(sctx);
5861 		if (ret < 0)
5862 			goto out;
5863 	}
5864 
5865 out:
5866 	free_recorded_refs(sctx);
5867 	return ret;
5868 }
5869 
5870 /*
5871  * If orphan cleanup did remove any orphans from a root, it means the tree
5872  * was modified and therefore the commit root is not the same as the current
5873  * root anymore. This is a problem, because send uses the commit root and
5874  * therefore can see inode items that don't exist in the current root anymore,
5875  * and for example make calls to btrfs_iget, which will do tree lookups based
5876  * on the current root and not on the commit root. Those lookups will fail,
5877  * returning a -ESTALE error, and making send fail with that error. So make
5878  * sure a send does not see any orphans we have just removed, and that it will
5879  * see the same inodes regardless of whether a transaction commit happened
5880  * before it started (meaning that the commit root will be the same as the
5881  * current root) or not.
5882  */
5883 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5884 {
5885 	int i;
5886 	struct btrfs_trans_handle *trans = NULL;
5887 
5888 again:
5889 	if (sctx->parent_root &&
5890 	    sctx->parent_root->node != sctx->parent_root->commit_root)
5891 		goto commit_trans;
5892 
5893 	for (i = 0; i < sctx->clone_roots_cnt; i++)
5894 		if (sctx->clone_roots[i].root->node !=
5895 		    sctx->clone_roots[i].root->commit_root)
5896 			goto commit_trans;
5897 
5898 	if (trans)
5899 		return btrfs_end_transaction(trans, sctx->send_root);
5900 
5901 	return 0;
5902 
5903 commit_trans:
5904 	/* Use any root, all fs roots will get their commit roots updated. */
5905 	if (!trans) {
5906 		trans = btrfs_join_transaction(sctx->send_root);
5907 		if (IS_ERR(trans))
5908 			return PTR_ERR(trans);
5909 		goto again;
5910 	}
5911 
5912 	return btrfs_commit_transaction(trans, sctx->send_root);
5913 }
5914 
5915 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5916 {
5917 	spin_lock(&root->root_item_lock);
5918 	root->send_in_progress--;
5919 	/*
5920 	 * Not much left to do, we don't know why it's unbalanced and
5921 	 * can't blindly reset it to 0.
5922 	 */
5923 	if (root->send_in_progress < 0)
5924 		btrfs_err(root->fs_info,
5925 			"send_in_progres unbalanced %d root %llu",
5926 			root->send_in_progress, root->root_key.objectid);
5927 	spin_unlock(&root->root_item_lock);
5928 }
5929 
5930 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5931 {
5932 	int ret = 0;
5933 	struct btrfs_root *send_root;
5934 	struct btrfs_root *clone_root;
5935 	struct btrfs_fs_info *fs_info;
5936 	struct btrfs_ioctl_send_args *arg = NULL;
5937 	struct btrfs_key key;
5938 	struct send_ctx *sctx = NULL;
5939 	u32 i;
5940 	u64 *clone_sources_tmp = NULL;
5941 	int clone_sources_to_rollback = 0;
5942 	unsigned alloc_size;
5943 	int sort_clone_roots = 0;
5944 	int index;
5945 
5946 	if (!capable(CAP_SYS_ADMIN))
5947 		return -EPERM;
5948 
5949 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5950 	fs_info = send_root->fs_info;
5951 
5952 	/*
5953 	 * The subvolume must remain read-only during send, protect against
5954 	 * making it RW. This also protects against deletion.
5955 	 */
5956 	spin_lock(&send_root->root_item_lock);
5957 	send_root->send_in_progress++;
5958 	spin_unlock(&send_root->root_item_lock);
5959 
5960 	/*
5961 	 * This is done when we lookup the root, it should already be complete
5962 	 * by the time we get here.
5963 	 */
5964 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5965 
5966 	/*
5967 	 * Userspace tools do the checks and warn the user if it's
5968 	 * not RO.
5969 	 */
5970 	if (!btrfs_root_readonly(send_root)) {
5971 		ret = -EPERM;
5972 		goto out;
5973 	}
5974 
5975 	arg = memdup_user(arg_, sizeof(*arg));
5976 	if (IS_ERR(arg)) {
5977 		ret = PTR_ERR(arg);
5978 		arg = NULL;
5979 		goto out;
5980 	}
5981 
5982 	if (arg->clone_sources_count >
5983 	    ULLONG_MAX / sizeof(*arg->clone_sources)) {
5984 		ret = -EINVAL;
5985 		goto out;
5986 	}
5987 
5988 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5989 			sizeof(*arg->clone_sources) *
5990 			arg->clone_sources_count)) {
5991 		ret = -EFAULT;
5992 		goto out;
5993 	}
5994 
5995 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5996 		ret = -EINVAL;
5997 		goto out;
5998 	}
5999 
6000 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6001 	if (!sctx) {
6002 		ret = -ENOMEM;
6003 		goto out;
6004 	}
6005 
6006 	INIT_LIST_HEAD(&sctx->new_refs);
6007 	INIT_LIST_HEAD(&sctx->deleted_refs);
6008 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6009 	INIT_LIST_HEAD(&sctx->name_cache_list);
6010 
6011 	sctx->flags = arg->flags;
6012 
6013 	sctx->send_filp = fget(arg->send_fd);
6014 	if (!sctx->send_filp) {
6015 		ret = -EBADF;
6016 		goto out;
6017 	}
6018 
6019 	sctx->send_root = send_root;
6020 	/*
6021 	 * Unlikely but possible, if the subvolume is marked for deletion but
6022 	 * is slow to remove the directory entry, send can still be started
6023 	 */
6024 	if (btrfs_root_dead(sctx->send_root)) {
6025 		ret = -EPERM;
6026 		goto out;
6027 	}
6028 
6029 	sctx->clone_roots_cnt = arg->clone_sources_count;
6030 
6031 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6032 	sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN);
6033 	if (!sctx->send_buf) {
6034 		sctx->send_buf = vmalloc(sctx->send_max_size);
6035 		if (!sctx->send_buf) {
6036 			ret = -ENOMEM;
6037 			goto out;
6038 		}
6039 	}
6040 
6041 	sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN);
6042 	if (!sctx->read_buf) {
6043 		sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6044 		if (!sctx->read_buf) {
6045 			ret = -ENOMEM;
6046 			goto out;
6047 		}
6048 	}
6049 
6050 	sctx->pending_dir_moves = RB_ROOT;
6051 	sctx->waiting_dir_moves = RB_ROOT;
6052 	sctx->orphan_dirs = RB_ROOT;
6053 
6054 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6055 
6056 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6057 	if (!sctx->clone_roots) {
6058 		sctx->clone_roots = vzalloc(alloc_size);
6059 		if (!sctx->clone_roots) {
6060 			ret = -ENOMEM;
6061 			goto out;
6062 		}
6063 	}
6064 
6065 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6066 
6067 	if (arg->clone_sources_count) {
6068 		clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6069 		if (!clone_sources_tmp) {
6070 			clone_sources_tmp = vmalloc(alloc_size);
6071 			if (!clone_sources_tmp) {
6072 				ret = -ENOMEM;
6073 				goto out;
6074 			}
6075 		}
6076 
6077 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6078 				alloc_size);
6079 		if (ret) {
6080 			ret = -EFAULT;
6081 			goto out;
6082 		}
6083 
6084 		for (i = 0; i < arg->clone_sources_count; i++) {
6085 			key.objectid = clone_sources_tmp[i];
6086 			key.type = BTRFS_ROOT_ITEM_KEY;
6087 			key.offset = (u64)-1;
6088 
6089 			index = srcu_read_lock(&fs_info->subvol_srcu);
6090 
6091 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6092 			if (IS_ERR(clone_root)) {
6093 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6094 				ret = PTR_ERR(clone_root);
6095 				goto out;
6096 			}
6097 			spin_lock(&clone_root->root_item_lock);
6098 			if (!btrfs_root_readonly(clone_root) ||
6099 			    btrfs_root_dead(clone_root)) {
6100 				spin_unlock(&clone_root->root_item_lock);
6101 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6102 				ret = -EPERM;
6103 				goto out;
6104 			}
6105 			clone_root->send_in_progress++;
6106 			spin_unlock(&clone_root->root_item_lock);
6107 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6108 
6109 			sctx->clone_roots[i].root = clone_root;
6110 			clone_sources_to_rollback = i + 1;
6111 		}
6112 		kvfree(clone_sources_tmp);
6113 		clone_sources_tmp = NULL;
6114 	}
6115 
6116 	if (arg->parent_root) {
6117 		key.objectid = arg->parent_root;
6118 		key.type = BTRFS_ROOT_ITEM_KEY;
6119 		key.offset = (u64)-1;
6120 
6121 		index = srcu_read_lock(&fs_info->subvol_srcu);
6122 
6123 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6124 		if (IS_ERR(sctx->parent_root)) {
6125 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6126 			ret = PTR_ERR(sctx->parent_root);
6127 			goto out;
6128 		}
6129 
6130 		spin_lock(&sctx->parent_root->root_item_lock);
6131 		sctx->parent_root->send_in_progress++;
6132 		if (!btrfs_root_readonly(sctx->parent_root) ||
6133 				btrfs_root_dead(sctx->parent_root)) {
6134 			spin_unlock(&sctx->parent_root->root_item_lock);
6135 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6136 			ret = -EPERM;
6137 			goto out;
6138 		}
6139 		spin_unlock(&sctx->parent_root->root_item_lock);
6140 
6141 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6142 	}
6143 
6144 	/*
6145 	 * Clones from send_root are allowed, but only if the clone source
6146 	 * is behind the current send position. This is checked while searching
6147 	 * for possible clone sources.
6148 	 */
6149 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6150 
6151 	/* We do a bsearch later */
6152 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6153 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6154 			NULL);
6155 	sort_clone_roots = 1;
6156 
6157 	ret = ensure_commit_roots_uptodate(sctx);
6158 	if (ret)
6159 		goto out;
6160 
6161 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6162 	ret = send_subvol(sctx);
6163 	current->journal_info = NULL;
6164 	if (ret < 0)
6165 		goto out;
6166 
6167 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6168 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6169 		if (ret < 0)
6170 			goto out;
6171 		ret = send_cmd(sctx);
6172 		if (ret < 0)
6173 			goto out;
6174 	}
6175 
6176 out:
6177 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6178 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6179 		struct rb_node *n;
6180 		struct pending_dir_move *pm;
6181 
6182 		n = rb_first(&sctx->pending_dir_moves);
6183 		pm = rb_entry(n, struct pending_dir_move, node);
6184 		while (!list_empty(&pm->list)) {
6185 			struct pending_dir_move *pm2;
6186 
6187 			pm2 = list_first_entry(&pm->list,
6188 					       struct pending_dir_move, list);
6189 			free_pending_move(sctx, pm2);
6190 		}
6191 		free_pending_move(sctx, pm);
6192 	}
6193 
6194 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6195 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6196 		struct rb_node *n;
6197 		struct waiting_dir_move *dm;
6198 
6199 		n = rb_first(&sctx->waiting_dir_moves);
6200 		dm = rb_entry(n, struct waiting_dir_move, node);
6201 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6202 		kfree(dm);
6203 	}
6204 
6205 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6206 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6207 		struct rb_node *n;
6208 		struct orphan_dir_info *odi;
6209 
6210 		n = rb_first(&sctx->orphan_dirs);
6211 		odi = rb_entry(n, struct orphan_dir_info, node);
6212 		free_orphan_dir_info(sctx, odi);
6213 	}
6214 
6215 	if (sort_clone_roots) {
6216 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6217 			btrfs_root_dec_send_in_progress(
6218 					sctx->clone_roots[i].root);
6219 	} else {
6220 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6221 			btrfs_root_dec_send_in_progress(
6222 					sctx->clone_roots[i].root);
6223 
6224 		btrfs_root_dec_send_in_progress(send_root);
6225 	}
6226 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6227 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6228 
6229 	kfree(arg);
6230 	kvfree(clone_sources_tmp);
6231 
6232 	if (sctx) {
6233 		if (sctx->send_filp)
6234 			fput(sctx->send_filp);
6235 
6236 		kvfree(sctx->clone_roots);
6237 		kvfree(sctx->send_buf);
6238 		kvfree(sctx->read_buf);
6239 
6240 		name_cache_free(sctx);
6241 
6242 		kfree(sctx);
6243 	}
6244 
6245 	return ret;
6246 }
6247