1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/vmalloc.h> 28 #include <linux/string.h> 29 30 #include "send.h" 31 #include "backref.h" 32 #include "hash.h" 33 #include "locking.h" 34 #include "disk-io.h" 35 #include "btrfs_inode.h" 36 #include "transaction.h" 37 #include "compression.h" 38 39 /* 40 * A fs_path is a helper to dynamically build path names with unknown size. 41 * It reallocates the internal buffer on demand. 42 * It allows fast adding of path elements on the right side (normal path) and 43 * fast adding to the left side (reversed path). A reversed path can also be 44 * unreversed if needed. 45 */ 46 struct fs_path { 47 union { 48 struct { 49 char *start; 50 char *end; 51 52 char *buf; 53 unsigned short buf_len:15; 54 unsigned short reversed:1; 55 char inline_buf[]; 56 }; 57 /* 58 * Average path length does not exceed 200 bytes, we'll have 59 * better packing in the slab and higher chance to satisfy 60 * a allocation later during send. 61 */ 62 char pad[256]; 63 }; 64 }; 65 #define FS_PATH_INLINE_SIZE \ 66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 67 68 69 /* reused for each extent */ 70 struct clone_root { 71 struct btrfs_root *root; 72 u64 ino; 73 u64 offset; 74 75 u64 found_refs; 76 }; 77 78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 80 81 struct send_ctx { 82 struct file *send_filp; 83 loff_t send_off; 84 char *send_buf; 85 u32 send_size; 86 u32 send_max_size; 87 u64 total_send_size; 88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 90 91 struct btrfs_root *send_root; 92 struct btrfs_root *parent_root; 93 struct clone_root *clone_roots; 94 int clone_roots_cnt; 95 96 /* current state of the compare_tree call */ 97 struct btrfs_path *left_path; 98 struct btrfs_path *right_path; 99 struct btrfs_key *cmp_key; 100 101 /* 102 * infos of the currently processed inode. In case of deleted inodes, 103 * these are the values from the deleted inode. 104 */ 105 u64 cur_ino; 106 u64 cur_inode_gen; 107 int cur_inode_new; 108 int cur_inode_new_gen; 109 int cur_inode_deleted; 110 u64 cur_inode_size; 111 u64 cur_inode_mode; 112 u64 cur_inode_rdev; 113 u64 cur_inode_last_extent; 114 115 u64 send_progress; 116 117 struct list_head new_refs; 118 struct list_head deleted_refs; 119 120 struct radix_tree_root name_cache; 121 struct list_head name_cache_list; 122 int name_cache_size; 123 124 struct file_ra_state ra; 125 126 char *read_buf; 127 128 /* 129 * We process inodes by their increasing order, so if before an 130 * incremental send we reverse the parent/child relationship of 131 * directories such that a directory with a lower inode number was 132 * the parent of a directory with a higher inode number, and the one 133 * becoming the new parent got renamed too, we can't rename/move the 134 * directory with lower inode number when we finish processing it - we 135 * must process the directory with higher inode number first, then 136 * rename/move it and then rename/move the directory with lower inode 137 * number. Example follows. 138 * 139 * Tree state when the first send was performed: 140 * 141 * . 142 * |-- a (ino 257) 143 * |-- b (ino 258) 144 * | 145 * | 146 * |-- c (ino 259) 147 * | |-- d (ino 260) 148 * | 149 * |-- c2 (ino 261) 150 * 151 * Tree state when the second (incremental) send is performed: 152 * 153 * . 154 * |-- a (ino 257) 155 * |-- b (ino 258) 156 * |-- c2 (ino 261) 157 * |-- d2 (ino 260) 158 * |-- cc (ino 259) 159 * 160 * The sequence of steps that lead to the second state was: 161 * 162 * mv /a/b/c/d /a/b/c2/d2 163 * mv /a/b/c /a/b/c2/d2/cc 164 * 165 * "c" has lower inode number, but we can't move it (2nd mv operation) 166 * before we move "d", which has higher inode number. 167 * 168 * So we just memorize which move/rename operations must be performed 169 * later when their respective parent is processed and moved/renamed. 170 */ 171 172 /* Indexed by parent directory inode number. */ 173 struct rb_root pending_dir_moves; 174 175 /* 176 * Reverse index, indexed by the inode number of a directory that 177 * is waiting for the move/rename of its immediate parent before its 178 * own move/rename can be performed. 179 */ 180 struct rb_root waiting_dir_moves; 181 182 /* 183 * A directory that is going to be rm'ed might have a child directory 184 * which is in the pending directory moves index above. In this case, 185 * the directory can only be removed after the move/rename of its child 186 * is performed. Example: 187 * 188 * Parent snapshot: 189 * 190 * . (ino 256) 191 * |-- a/ (ino 257) 192 * |-- b/ (ino 258) 193 * |-- c/ (ino 259) 194 * | |-- x/ (ino 260) 195 * | 196 * |-- y/ (ino 261) 197 * 198 * Send snapshot: 199 * 200 * . (ino 256) 201 * |-- a/ (ino 257) 202 * |-- b/ (ino 258) 203 * |-- YY/ (ino 261) 204 * |-- x/ (ino 260) 205 * 206 * Sequence of steps that lead to the send snapshot: 207 * rm -f /a/b/c/foo.txt 208 * mv /a/b/y /a/b/YY 209 * mv /a/b/c/x /a/b/YY 210 * rmdir /a/b/c 211 * 212 * When the child is processed, its move/rename is delayed until its 213 * parent is processed (as explained above), but all other operations 214 * like update utimes, chown, chgrp, etc, are performed and the paths 215 * that it uses for those operations must use the orphanized name of 216 * its parent (the directory we're going to rm later), so we need to 217 * memorize that name. 218 * 219 * Indexed by the inode number of the directory to be deleted. 220 */ 221 struct rb_root orphan_dirs; 222 }; 223 224 struct pending_dir_move { 225 struct rb_node node; 226 struct list_head list; 227 u64 parent_ino; 228 u64 ino; 229 u64 gen; 230 struct list_head update_refs; 231 }; 232 233 struct waiting_dir_move { 234 struct rb_node node; 235 u64 ino; 236 /* 237 * There might be some directory that could not be removed because it 238 * was waiting for this directory inode to be moved first. Therefore 239 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 240 */ 241 u64 rmdir_ino; 242 bool orphanized; 243 }; 244 245 struct orphan_dir_info { 246 struct rb_node node; 247 u64 ino; 248 u64 gen; 249 }; 250 251 struct name_cache_entry { 252 struct list_head list; 253 /* 254 * radix_tree has only 32bit entries but we need to handle 64bit inums. 255 * We use the lower 32bit of the 64bit inum to store it in the tree. If 256 * more then one inum would fall into the same entry, we use radix_list 257 * to store the additional entries. radix_list is also used to store 258 * entries where two entries have the same inum but different 259 * generations. 260 */ 261 struct list_head radix_list; 262 u64 ino; 263 u64 gen; 264 u64 parent_ino; 265 u64 parent_gen; 266 int ret; 267 int need_later_update; 268 int name_len; 269 char name[]; 270 }; 271 272 static void inconsistent_snapshot_error(struct send_ctx *sctx, 273 enum btrfs_compare_tree_result result, 274 const char *what) 275 { 276 const char *result_string; 277 278 switch (result) { 279 case BTRFS_COMPARE_TREE_NEW: 280 result_string = "new"; 281 break; 282 case BTRFS_COMPARE_TREE_DELETED: 283 result_string = "deleted"; 284 break; 285 case BTRFS_COMPARE_TREE_CHANGED: 286 result_string = "updated"; 287 break; 288 case BTRFS_COMPARE_TREE_SAME: 289 ASSERT(0); 290 result_string = "unchanged"; 291 break; 292 default: 293 ASSERT(0); 294 result_string = "unexpected"; 295 } 296 297 btrfs_err(sctx->send_root->fs_info, 298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 299 result_string, what, sctx->cmp_key->objectid, 300 sctx->send_root->root_key.objectid, 301 (sctx->parent_root ? 302 sctx->parent_root->root_key.objectid : 0)); 303 } 304 305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 306 307 static struct waiting_dir_move * 308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 309 310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 311 312 static int need_send_hole(struct send_ctx *sctx) 313 { 314 return (sctx->parent_root && !sctx->cur_inode_new && 315 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 316 S_ISREG(sctx->cur_inode_mode)); 317 } 318 319 static void fs_path_reset(struct fs_path *p) 320 { 321 if (p->reversed) { 322 p->start = p->buf + p->buf_len - 1; 323 p->end = p->start; 324 *p->start = 0; 325 } else { 326 p->start = p->buf; 327 p->end = p->start; 328 *p->start = 0; 329 } 330 } 331 332 static struct fs_path *fs_path_alloc(void) 333 { 334 struct fs_path *p; 335 336 p = kmalloc(sizeof(*p), GFP_KERNEL); 337 if (!p) 338 return NULL; 339 p->reversed = 0; 340 p->buf = p->inline_buf; 341 p->buf_len = FS_PATH_INLINE_SIZE; 342 fs_path_reset(p); 343 return p; 344 } 345 346 static struct fs_path *fs_path_alloc_reversed(void) 347 { 348 struct fs_path *p; 349 350 p = fs_path_alloc(); 351 if (!p) 352 return NULL; 353 p->reversed = 1; 354 fs_path_reset(p); 355 return p; 356 } 357 358 static void fs_path_free(struct fs_path *p) 359 { 360 if (!p) 361 return; 362 if (p->buf != p->inline_buf) 363 kfree(p->buf); 364 kfree(p); 365 } 366 367 static int fs_path_len(struct fs_path *p) 368 { 369 return p->end - p->start; 370 } 371 372 static int fs_path_ensure_buf(struct fs_path *p, int len) 373 { 374 char *tmp_buf; 375 int path_len; 376 int old_buf_len; 377 378 len++; 379 380 if (p->buf_len >= len) 381 return 0; 382 383 if (len > PATH_MAX) { 384 WARN_ON(1); 385 return -ENOMEM; 386 } 387 388 path_len = p->end - p->start; 389 old_buf_len = p->buf_len; 390 391 /* 392 * First time the inline_buf does not suffice 393 */ 394 if (p->buf == p->inline_buf) { 395 tmp_buf = kmalloc(len, GFP_KERNEL); 396 if (tmp_buf) 397 memcpy(tmp_buf, p->buf, old_buf_len); 398 } else { 399 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 400 } 401 if (!tmp_buf) 402 return -ENOMEM; 403 p->buf = tmp_buf; 404 /* 405 * The real size of the buffer is bigger, this will let the fast path 406 * happen most of the time 407 */ 408 p->buf_len = ksize(p->buf); 409 410 if (p->reversed) { 411 tmp_buf = p->buf + old_buf_len - path_len - 1; 412 p->end = p->buf + p->buf_len - 1; 413 p->start = p->end - path_len; 414 memmove(p->start, tmp_buf, path_len + 1); 415 } else { 416 p->start = p->buf; 417 p->end = p->start + path_len; 418 } 419 return 0; 420 } 421 422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 423 char **prepared) 424 { 425 int ret; 426 int new_len; 427 428 new_len = p->end - p->start + name_len; 429 if (p->start != p->end) 430 new_len++; 431 ret = fs_path_ensure_buf(p, new_len); 432 if (ret < 0) 433 goto out; 434 435 if (p->reversed) { 436 if (p->start != p->end) 437 *--p->start = '/'; 438 p->start -= name_len; 439 *prepared = p->start; 440 } else { 441 if (p->start != p->end) 442 *p->end++ = '/'; 443 *prepared = p->end; 444 p->end += name_len; 445 *p->end = 0; 446 } 447 448 out: 449 return ret; 450 } 451 452 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 453 { 454 int ret; 455 char *prepared; 456 457 ret = fs_path_prepare_for_add(p, name_len, &prepared); 458 if (ret < 0) 459 goto out; 460 memcpy(prepared, name, name_len); 461 462 out: 463 return ret; 464 } 465 466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 467 { 468 int ret; 469 char *prepared; 470 471 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 472 if (ret < 0) 473 goto out; 474 memcpy(prepared, p2->start, p2->end - p2->start); 475 476 out: 477 return ret; 478 } 479 480 static int fs_path_add_from_extent_buffer(struct fs_path *p, 481 struct extent_buffer *eb, 482 unsigned long off, int len) 483 { 484 int ret; 485 char *prepared; 486 487 ret = fs_path_prepare_for_add(p, len, &prepared); 488 if (ret < 0) 489 goto out; 490 491 read_extent_buffer(eb, prepared, off, len); 492 493 out: 494 return ret; 495 } 496 497 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 498 { 499 int ret; 500 501 p->reversed = from->reversed; 502 fs_path_reset(p); 503 504 ret = fs_path_add_path(p, from); 505 506 return ret; 507 } 508 509 510 static void fs_path_unreverse(struct fs_path *p) 511 { 512 char *tmp; 513 int len; 514 515 if (!p->reversed) 516 return; 517 518 tmp = p->start; 519 len = p->end - p->start; 520 p->start = p->buf; 521 p->end = p->start + len; 522 memmove(p->start, tmp, len + 1); 523 p->reversed = 0; 524 } 525 526 static struct btrfs_path *alloc_path_for_send(void) 527 { 528 struct btrfs_path *path; 529 530 path = btrfs_alloc_path(); 531 if (!path) 532 return NULL; 533 path->search_commit_root = 1; 534 path->skip_locking = 1; 535 path->need_commit_sem = 1; 536 return path; 537 } 538 539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 540 { 541 int ret; 542 mm_segment_t old_fs; 543 u32 pos = 0; 544 545 old_fs = get_fs(); 546 set_fs(KERNEL_DS); 547 548 while (pos < len) { 549 ret = vfs_write(filp, (__force const char __user *)buf + pos, 550 len - pos, off); 551 /* TODO handle that correctly */ 552 /*if (ret == -ERESTARTSYS) { 553 continue; 554 }*/ 555 if (ret < 0) 556 goto out; 557 if (ret == 0) { 558 ret = -EIO; 559 goto out; 560 } 561 pos += ret; 562 } 563 564 ret = 0; 565 566 out: 567 set_fs(old_fs); 568 return ret; 569 } 570 571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 572 { 573 struct btrfs_tlv_header *hdr; 574 int total_len = sizeof(*hdr) + len; 575 int left = sctx->send_max_size - sctx->send_size; 576 577 if (unlikely(left < total_len)) 578 return -EOVERFLOW; 579 580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 581 hdr->tlv_type = cpu_to_le16(attr); 582 hdr->tlv_len = cpu_to_le16(len); 583 memcpy(hdr + 1, data, len); 584 sctx->send_size += total_len; 585 586 return 0; 587 } 588 589 #define TLV_PUT_DEFINE_INT(bits) \ 590 static int tlv_put_u##bits(struct send_ctx *sctx, \ 591 u##bits attr, u##bits value) \ 592 { \ 593 __le##bits __tmp = cpu_to_le##bits(value); \ 594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 595 } 596 597 TLV_PUT_DEFINE_INT(64) 598 599 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 600 const char *str, int len) 601 { 602 if (len == -1) 603 len = strlen(str); 604 return tlv_put(sctx, attr, str, len); 605 } 606 607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 608 const u8 *uuid) 609 { 610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 611 } 612 613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 614 struct extent_buffer *eb, 615 struct btrfs_timespec *ts) 616 { 617 struct btrfs_timespec bts; 618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 619 return tlv_put(sctx, attr, &bts, sizeof(bts)); 620 } 621 622 623 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 624 do { \ 625 ret = tlv_put(sctx, attrtype, attrlen, data); \ 626 if (ret < 0) \ 627 goto tlv_put_failure; \ 628 } while (0) 629 630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 631 do { \ 632 ret = tlv_put_u##bits(sctx, attrtype, value); \ 633 if (ret < 0) \ 634 goto tlv_put_failure; \ 635 } while (0) 636 637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 642 do { \ 643 ret = tlv_put_string(sctx, attrtype, str, len); \ 644 if (ret < 0) \ 645 goto tlv_put_failure; \ 646 } while (0) 647 #define TLV_PUT_PATH(sctx, attrtype, p) \ 648 do { \ 649 ret = tlv_put_string(sctx, attrtype, p->start, \ 650 p->end - p->start); \ 651 if (ret < 0) \ 652 goto tlv_put_failure; \ 653 } while(0) 654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 655 do { \ 656 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 657 if (ret < 0) \ 658 goto tlv_put_failure; \ 659 } while (0) 660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 661 do { \ 662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 663 if (ret < 0) \ 664 goto tlv_put_failure; \ 665 } while (0) 666 667 static int send_header(struct send_ctx *sctx) 668 { 669 struct btrfs_stream_header hdr; 670 671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 673 674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 675 &sctx->send_off); 676 } 677 678 /* 679 * For each command/item we want to send to userspace, we call this function. 680 */ 681 static int begin_cmd(struct send_ctx *sctx, int cmd) 682 { 683 struct btrfs_cmd_header *hdr; 684 685 if (WARN_ON(!sctx->send_buf)) 686 return -EINVAL; 687 688 BUG_ON(sctx->send_size); 689 690 sctx->send_size += sizeof(*hdr); 691 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 692 hdr->cmd = cpu_to_le16(cmd); 693 694 return 0; 695 } 696 697 static int send_cmd(struct send_ctx *sctx) 698 { 699 int ret; 700 struct btrfs_cmd_header *hdr; 701 u32 crc; 702 703 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 704 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 705 hdr->crc = 0; 706 707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 708 hdr->crc = cpu_to_le32(crc); 709 710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 711 &sctx->send_off); 712 713 sctx->total_send_size += sctx->send_size; 714 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 715 sctx->send_size = 0; 716 717 return ret; 718 } 719 720 /* 721 * Sends a move instruction to user space 722 */ 723 static int send_rename(struct send_ctx *sctx, 724 struct fs_path *from, struct fs_path *to) 725 { 726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 727 int ret; 728 729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 730 731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 732 if (ret < 0) 733 goto out; 734 735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 737 738 ret = send_cmd(sctx); 739 740 tlv_put_failure: 741 out: 742 return ret; 743 } 744 745 /* 746 * Sends a link instruction to user space 747 */ 748 static int send_link(struct send_ctx *sctx, 749 struct fs_path *path, struct fs_path *lnk) 750 { 751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 752 int ret; 753 754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 755 756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 757 if (ret < 0) 758 goto out; 759 760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 762 763 ret = send_cmd(sctx); 764 765 tlv_put_failure: 766 out: 767 return ret; 768 } 769 770 /* 771 * Sends an unlink instruction to user space 772 */ 773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 774 { 775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 776 int ret; 777 778 btrfs_debug(fs_info, "send_unlink %s", path->start); 779 780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 781 if (ret < 0) 782 goto out; 783 784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 785 786 ret = send_cmd(sctx); 787 788 tlv_put_failure: 789 out: 790 return ret; 791 } 792 793 /* 794 * Sends a rmdir instruction to user space 795 */ 796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 797 { 798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 799 int ret; 800 801 btrfs_debug(fs_info, "send_rmdir %s", path->start); 802 803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 804 if (ret < 0) 805 goto out; 806 807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 808 809 ret = send_cmd(sctx); 810 811 tlv_put_failure: 812 out: 813 return ret; 814 } 815 816 /* 817 * Helper function to retrieve some fields from an inode item. 818 */ 819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 821 u64 *gid, u64 *rdev) 822 { 823 int ret; 824 struct btrfs_inode_item *ii; 825 struct btrfs_key key; 826 827 key.objectid = ino; 828 key.type = BTRFS_INODE_ITEM_KEY; 829 key.offset = 0; 830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 831 if (ret) { 832 if (ret > 0) 833 ret = -ENOENT; 834 return ret; 835 } 836 837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 838 struct btrfs_inode_item); 839 if (size) 840 *size = btrfs_inode_size(path->nodes[0], ii); 841 if (gen) 842 *gen = btrfs_inode_generation(path->nodes[0], ii); 843 if (mode) 844 *mode = btrfs_inode_mode(path->nodes[0], ii); 845 if (uid) 846 *uid = btrfs_inode_uid(path->nodes[0], ii); 847 if (gid) 848 *gid = btrfs_inode_gid(path->nodes[0], ii); 849 if (rdev) 850 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 851 852 return ret; 853 } 854 855 static int get_inode_info(struct btrfs_root *root, 856 u64 ino, u64 *size, u64 *gen, 857 u64 *mode, u64 *uid, u64 *gid, 858 u64 *rdev) 859 { 860 struct btrfs_path *path; 861 int ret; 862 863 path = alloc_path_for_send(); 864 if (!path) 865 return -ENOMEM; 866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 867 rdev); 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 873 struct fs_path *p, 874 void *ctx); 875 876 /* 877 * Helper function to iterate the entries in ONE btrfs_inode_ref or 878 * btrfs_inode_extref. 879 * The iterate callback may return a non zero value to stop iteration. This can 880 * be a negative value for error codes or 1 to simply stop it. 881 * 882 * path must point to the INODE_REF or INODE_EXTREF when called. 883 */ 884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 885 struct btrfs_key *found_key, int resolve, 886 iterate_inode_ref_t iterate, void *ctx) 887 { 888 struct extent_buffer *eb = path->nodes[0]; 889 struct btrfs_item *item; 890 struct btrfs_inode_ref *iref; 891 struct btrfs_inode_extref *extref; 892 struct btrfs_path *tmp_path; 893 struct fs_path *p; 894 u32 cur = 0; 895 u32 total; 896 int slot = path->slots[0]; 897 u32 name_len; 898 char *start; 899 int ret = 0; 900 int num = 0; 901 int index; 902 u64 dir; 903 unsigned long name_off; 904 unsigned long elem_size; 905 unsigned long ptr; 906 907 p = fs_path_alloc_reversed(); 908 if (!p) 909 return -ENOMEM; 910 911 tmp_path = alloc_path_for_send(); 912 if (!tmp_path) { 913 fs_path_free(p); 914 return -ENOMEM; 915 } 916 917 918 if (found_key->type == BTRFS_INODE_REF_KEY) { 919 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 920 struct btrfs_inode_ref); 921 item = btrfs_item_nr(slot); 922 total = btrfs_item_size(eb, item); 923 elem_size = sizeof(*iref); 924 } else { 925 ptr = btrfs_item_ptr_offset(eb, slot); 926 total = btrfs_item_size_nr(eb, slot); 927 elem_size = sizeof(*extref); 928 } 929 930 while (cur < total) { 931 fs_path_reset(p); 932 933 if (found_key->type == BTRFS_INODE_REF_KEY) { 934 iref = (struct btrfs_inode_ref *)(ptr + cur); 935 name_len = btrfs_inode_ref_name_len(eb, iref); 936 name_off = (unsigned long)(iref + 1); 937 index = btrfs_inode_ref_index(eb, iref); 938 dir = found_key->offset; 939 } else { 940 extref = (struct btrfs_inode_extref *)(ptr + cur); 941 name_len = btrfs_inode_extref_name_len(eb, extref); 942 name_off = (unsigned long)&extref->name; 943 index = btrfs_inode_extref_index(eb, extref); 944 dir = btrfs_inode_extref_parent(eb, extref); 945 } 946 947 if (resolve) { 948 start = btrfs_ref_to_path(root, tmp_path, name_len, 949 name_off, eb, dir, 950 p->buf, p->buf_len); 951 if (IS_ERR(start)) { 952 ret = PTR_ERR(start); 953 goto out; 954 } 955 if (start < p->buf) { 956 /* overflow , try again with larger buffer */ 957 ret = fs_path_ensure_buf(p, 958 p->buf_len + p->buf - start); 959 if (ret < 0) 960 goto out; 961 start = btrfs_ref_to_path(root, tmp_path, 962 name_len, name_off, 963 eb, dir, 964 p->buf, p->buf_len); 965 if (IS_ERR(start)) { 966 ret = PTR_ERR(start); 967 goto out; 968 } 969 BUG_ON(start < p->buf); 970 } 971 p->start = start; 972 } else { 973 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 974 name_len); 975 if (ret < 0) 976 goto out; 977 } 978 979 cur += elem_size + name_len; 980 ret = iterate(num, dir, index, p, ctx); 981 if (ret) 982 goto out; 983 num++; 984 } 985 986 out: 987 btrfs_free_path(tmp_path); 988 fs_path_free(p); 989 return ret; 990 } 991 992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 993 const char *name, int name_len, 994 const char *data, int data_len, 995 u8 type, void *ctx); 996 997 /* 998 * Helper function to iterate the entries in ONE btrfs_dir_item. 999 * The iterate callback may return a non zero value to stop iteration. This can 1000 * be a negative value for error codes or 1 to simply stop it. 1001 * 1002 * path must point to the dir item when called. 1003 */ 1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1005 struct btrfs_key *found_key, 1006 iterate_dir_item_t iterate, void *ctx) 1007 { 1008 int ret = 0; 1009 struct extent_buffer *eb; 1010 struct btrfs_item *item; 1011 struct btrfs_dir_item *di; 1012 struct btrfs_key di_key; 1013 char *buf = NULL; 1014 int buf_len; 1015 u32 name_len; 1016 u32 data_len; 1017 u32 cur; 1018 u32 len; 1019 u32 total; 1020 int slot; 1021 int num; 1022 u8 type; 1023 1024 /* 1025 * Start with a small buffer (1 page). If later we end up needing more 1026 * space, which can happen for xattrs on a fs with a leaf size greater 1027 * then the page size, attempt to increase the buffer. Typically xattr 1028 * values are small. 1029 */ 1030 buf_len = PATH_MAX; 1031 buf = kmalloc(buf_len, GFP_KERNEL); 1032 if (!buf) { 1033 ret = -ENOMEM; 1034 goto out; 1035 } 1036 1037 eb = path->nodes[0]; 1038 slot = path->slots[0]; 1039 item = btrfs_item_nr(slot); 1040 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1041 cur = 0; 1042 len = 0; 1043 total = btrfs_item_size(eb, item); 1044 1045 num = 0; 1046 while (cur < total) { 1047 name_len = btrfs_dir_name_len(eb, di); 1048 data_len = btrfs_dir_data_len(eb, di); 1049 type = btrfs_dir_type(eb, di); 1050 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1051 1052 if (type == BTRFS_FT_XATTR) { 1053 if (name_len > XATTR_NAME_MAX) { 1054 ret = -ENAMETOOLONG; 1055 goto out; 1056 } 1057 if (name_len + data_len > 1058 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1059 ret = -E2BIG; 1060 goto out; 1061 } 1062 } else { 1063 /* 1064 * Path too long 1065 */ 1066 if (name_len + data_len > PATH_MAX) { 1067 ret = -ENAMETOOLONG; 1068 goto out; 1069 } 1070 } 1071 1072 if (name_len + data_len > buf_len) { 1073 buf_len = name_len + data_len; 1074 if (is_vmalloc_addr(buf)) { 1075 vfree(buf); 1076 buf = NULL; 1077 } else { 1078 char *tmp = krealloc(buf, buf_len, 1079 GFP_KERNEL | __GFP_NOWARN); 1080 1081 if (!tmp) 1082 kfree(buf); 1083 buf = tmp; 1084 } 1085 if (!buf) { 1086 buf = vmalloc(buf_len); 1087 if (!buf) { 1088 ret = -ENOMEM; 1089 goto out; 1090 } 1091 } 1092 } 1093 1094 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1095 name_len + data_len); 1096 1097 len = sizeof(*di) + name_len + data_len; 1098 di = (struct btrfs_dir_item *)((char *)di + len); 1099 cur += len; 1100 1101 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1102 data_len, type, ctx); 1103 if (ret < 0) 1104 goto out; 1105 if (ret) { 1106 ret = 0; 1107 goto out; 1108 } 1109 1110 num++; 1111 } 1112 1113 out: 1114 kvfree(buf); 1115 return ret; 1116 } 1117 1118 static int __copy_first_ref(int num, u64 dir, int index, 1119 struct fs_path *p, void *ctx) 1120 { 1121 int ret; 1122 struct fs_path *pt = ctx; 1123 1124 ret = fs_path_copy(pt, p); 1125 if (ret < 0) 1126 return ret; 1127 1128 /* we want the first only */ 1129 return 1; 1130 } 1131 1132 /* 1133 * Retrieve the first path of an inode. If an inode has more then one 1134 * ref/hardlink, this is ignored. 1135 */ 1136 static int get_inode_path(struct btrfs_root *root, 1137 u64 ino, struct fs_path *path) 1138 { 1139 int ret; 1140 struct btrfs_key key, found_key; 1141 struct btrfs_path *p; 1142 1143 p = alloc_path_for_send(); 1144 if (!p) 1145 return -ENOMEM; 1146 1147 fs_path_reset(path); 1148 1149 key.objectid = ino; 1150 key.type = BTRFS_INODE_REF_KEY; 1151 key.offset = 0; 1152 1153 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1154 if (ret < 0) 1155 goto out; 1156 if (ret) { 1157 ret = 1; 1158 goto out; 1159 } 1160 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1161 if (found_key.objectid != ino || 1162 (found_key.type != BTRFS_INODE_REF_KEY && 1163 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1164 ret = -ENOENT; 1165 goto out; 1166 } 1167 1168 ret = iterate_inode_ref(root, p, &found_key, 1, 1169 __copy_first_ref, path); 1170 if (ret < 0) 1171 goto out; 1172 ret = 0; 1173 1174 out: 1175 btrfs_free_path(p); 1176 return ret; 1177 } 1178 1179 struct backref_ctx { 1180 struct send_ctx *sctx; 1181 1182 struct btrfs_path *path; 1183 /* number of total found references */ 1184 u64 found; 1185 1186 /* 1187 * used for clones found in send_root. clones found behind cur_objectid 1188 * and cur_offset are not considered as allowed clones. 1189 */ 1190 u64 cur_objectid; 1191 u64 cur_offset; 1192 1193 /* may be truncated in case it's the last extent in a file */ 1194 u64 extent_len; 1195 1196 /* data offset in the file extent item */ 1197 u64 data_offset; 1198 1199 /* Just to check for bugs in backref resolving */ 1200 int found_itself; 1201 }; 1202 1203 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1204 { 1205 u64 root = (u64)(uintptr_t)key; 1206 struct clone_root *cr = (struct clone_root *)elt; 1207 1208 if (root < cr->root->objectid) 1209 return -1; 1210 if (root > cr->root->objectid) 1211 return 1; 1212 return 0; 1213 } 1214 1215 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1216 { 1217 struct clone_root *cr1 = (struct clone_root *)e1; 1218 struct clone_root *cr2 = (struct clone_root *)e2; 1219 1220 if (cr1->root->objectid < cr2->root->objectid) 1221 return -1; 1222 if (cr1->root->objectid > cr2->root->objectid) 1223 return 1; 1224 return 0; 1225 } 1226 1227 /* 1228 * Called for every backref that is found for the current extent. 1229 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1230 */ 1231 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1232 { 1233 struct backref_ctx *bctx = ctx_; 1234 struct clone_root *found; 1235 int ret; 1236 u64 i_size; 1237 1238 /* First check if the root is in the list of accepted clone sources */ 1239 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1240 bctx->sctx->clone_roots_cnt, 1241 sizeof(struct clone_root), 1242 __clone_root_cmp_bsearch); 1243 if (!found) 1244 return 0; 1245 1246 if (found->root == bctx->sctx->send_root && 1247 ino == bctx->cur_objectid && 1248 offset == bctx->cur_offset) { 1249 bctx->found_itself = 1; 1250 } 1251 1252 /* 1253 * There are inodes that have extents that lie behind its i_size. Don't 1254 * accept clones from these extents. 1255 */ 1256 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1257 NULL, NULL, NULL); 1258 btrfs_release_path(bctx->path); 1259 if (ret < 0) 1260 return ret; 1261 1262 if (offset + bctx->data_offset + bctx->extent_len > i_size) 1263 return 0; 1264 1265 /* 1266 * Make sure we don't consider clones from send_root that are 1267 * behind the current inode/offset. 1268 */ 1269 if (found->root == bctx->sctx->send_root) { 1270 /* 1271 * TODO for the moment we don't accept clones from the inode 1272 * that is currently send. We may change this when 1273 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1274 * file. 1275 */ 1276 if (ino >= bctx->cur_objectid) 1277 return 0; 1278 #if 0 1279 if (ino > bctx->cur_objectid) 1280 return 0; 1281 if (offset + bctx->extent_len > bctx->cur_offset) 1282 return 0; 1283 #endif 1284 } 1285 1286 bctx->found++; 1287 found->found_refs++; 1288 if (ino < found->ino) { 1289 found->ino = ino; 1290 found->offset = offset; 1291 } else if (found->ino == ino) { 1292 /* 1293 * same extent found more then once in the same file. 1294 */ 1295 if (found->offset > offset + bctx->extent_len) 1296 found->offset = offset; 1297 } 1298 1299 return 0; 1300 } 1301 1302 /* 1303 * Given an inode, offset and extent item, it finds a good clone for a clone 1304 * instruction. Returns -ENOENT when none could be found. The function makes 1305 * sure that the returned clone is usable at the point where sending is at the 1306 * moment. This means, that no clones are accepted which lie behind the current 1307 * inode+offset. 1308 * 1309 * path must point to the extent item when called. 1310 */ 1311 static int find_extent_clone(struct send_ctx *sctx, 1312 struct btrfs_path *path, 1313 u64 ino, u64 data_offset, 1314 u64 ino_size, 1315 struct clone_root **found) 1316 { 1317 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1318 int ret; 1319 int extent_type; 1320 u64 logical; 1321 u64 disk_byte; 1322 u64 num_bytes; 1323 u64 extent_item_pos; 1324 u64 flags = 0; 1325 struct btrfs_file_extent_item *fi; 1326 struct extent_buffer *eb = path->nodes[0]; 1327 struct backref_ctx *backref_ctx = NULL; 1328 struct clone_root *cur_clone_root; 1329 struct btrfs_key found_key; 1330 struct btrfs_path *tmp_path; 1331 int compressed; 1332 u32 i; 1333 1334 tmp_path = alloc_path_for_send(); 1335 if (!tmp_path) 1336 return -ENOMEM; 1337 1338 /* We only use this path under the commit sem */ 1339 tmp_path->need_commit_sem = 0; 1340 1341 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1342 if (!backref_ctx) { 1343 ret = -ENOMEM; 1344 goto out; 1345 } 1346 1347 backref_ctx->path = tmp_path; 1348 1349 if (data_offset >= ino_size) { 1350 /* 1351 * There may be extents that lie behind the file's size. 1352 * I at least had this in combination with snapshotting while 1353 * writing large files. 1354 */ 1355 ret = 0; 1356 goto out; 1357 } 1358 1359 fi = btrfs_item_ptr(eb, path->slots[0], 1360 struct btrfs_file_extent_item); 1361 extent_type = btrfs_file_extent_type(eb, fi); 1362 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1363 ret = -ENOENT; 1364 goto out; 1365 } 1366 compressed = btrfs_file_extent_compression(eb, fi); 1367 1368 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1369 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1370 if (disk_byte == 0) { 1371 ret = -ENOENT; 1372 goto out; 1373 } 1374 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1375 1376 down_read(&fs_info->commit_root_sem); 1377 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1378 &found_key, &flags); 1379 up_read(&fs_info->commit_root_sem); 1380 btrfs_release_path(tmp_path); 1381 1382 if (ret < 0) 1383 goto out; 1384 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1385 ret = -EIO; 1386 goto out; 1387 } 1388 1389 /* 1390 * Setup the clone roots. 1391 */ 1392 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1393 cur_clone_root = sctx->clone_roots + i; 1394 cur_clone_root->ino = (u64)-1; 1395 cur_clone_root->offset = 0; 1396 cur_clone_root->found_refs = 0; 1397 } 1398 1399 backref_ctx->sctx = sctx; 1400 backref_ctx->found = 0; 1401 backref_ctx->cur_objectid = ino; 1402 backref_ctx->cur_offset = data_offset; 1403 backref_ctx->found_itself = 0; 1404 backref_ctx->extent_len = num_bytes; 1405 /* 1406 * For non-compressed extents iterate_extent_inodes() gives us extent 1407 * offsets that already take into account the data offset, but not for 1408 * compressed extents, since the offset is logical and not relative to 1409 * the physical extent locations. We must take this into account to 1410 * avoid sending clone offsets that go beyond the source file's size, 1411 * which would result in the clone ioctl failing with -EINVAL on the 1412 * receiving end. 1413 */ 1414 if (compressed == BTRFS_COMPRESS_NONE) 1415 backref_ctx->data_offset = 0; 1416 else 1417 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1418 1419 /* 1420 * The last extent of a file may be too large due to page alignment. 1421 * We need to adjust extent_len in this case so that the checks in 1422 * __iterate_backrefs work. 1423 */ 1424 if (data_offset + num_bytes >= ino_size) 1425 backref_ctx->extent_len = ino_size - data_offset; 1426 1427 /* 1428 * Now collect all backrefs. 1429 */ 1430 if (compressed == BTRFS_COMPRESS_NONE) 1431 extent_item_pos = logical - found_key.objectid; 1432 else 1433 extent_item_pos = 0; 1434 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1435 extent_item_pos, 1, __iterate_backrefs, 1436 backref_ctx); 1437 1438 if (ret < 0) 1439 goto out; 1440 1441 if (!backref_ctx->found_itself) { 1442 /* found a bug in backref code? */ 1443 ret = -EIO; 1444 btrfs_err(fs_info, 1445 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1446 ino, data_offset, disk_byte, found_key.objectid); 1447 goto out; 1448 } 1449 1450 btrfs_debug(fs_info, 1451 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1452 data_offset, ino, num_bytes, logical); 1453 1454 if (!backref_ctx->found) 1455 btrfs_debug(fs_info, "no clones found"); 1456 1457 cur_clone_root = NULL; 1458 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1459 if (sctx->clone_roots[i].found_refs) { 1460 if (!cur_clone_root) 1461 cur_clone_root = sctx->clone_roots + i; 1462 else if (sctx->clone_roots[i].root == sctx->send_root) 1463 /* prefer clones from send_root over others */ 1464 cur_clone_root = sctx->clone_roots + i; 1465 } 1466 1467 } 1468 1469 if (cur_clone_root) { 1470 *found = cur_clone_root; 1471 ret = 0; 1472 } else { 1473 ret = -ENOENT; 1474 } 1475 1476 out: 1477 btrfs_free_path(tmp_path); 1478 kfree(backref_ctx); 1479 return ret; 1480 } 1481 1482 static int read_symlink(struct btrfs_root *root, 1483 u64 ino, 1484 struct fs_path *dest) 1485 { 1486 int ret; 1487 struct btrfs_path *path; 1488 struct btrfs_key key; 1489 struct btrfs_file_extent_item *ei; 1490 u8 type; 1491 u8 compression; 1492 unsigned long off; 1493 int len; 1494 1495 path = alloc_path_for_send(); 1496 if (!path) 1497 return -ENOMEM; 1498 1499 key.objectid = ino; 1500 key.type = BTRFS_EXTENT_DATA_KEY; 1501 key.offset = 0; 1502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1503 if (ret < 0) 1504 goto out; 1505 if (ret) { 1506 /* 1507 * An empty symlink inode. Can happen in rare error paths when 1508 * creating a symlink (transaction committed before the inode 1509 * eviction handler removed the symlink inode items and a crash 1510 * happened in between or the subvol was snapshoted in between). 1511 * Print an informative message to dmesg/syslog so that the user 1512 * can delete the symlink. 1513 */ 1514 btrfs_err(root->fs_info, 1515 "Found empty symlink inode %llu at root %llu", 1516 ino, root->root_key.objectid); 1517 ret = -EIO; 1518 goto out; 1519 } 1520 1521 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1522 struct btrfs_file_extent_item); 1523 type = btrfs_file_extent_type(path->nodes[0], ei); 1524 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1525 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1526 BUG_ON(compression); 1527 1528 off = btrfs_file_extent_inline_start(ei); 1529 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1530 1531 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1532 1533 out: 1534 btrfs_free_path(path); 1535 return ret; 1536 } 1537 1538 /* 1539 * Helper function to generate a file name that is unique in the root of 1540 * send_root and parent_root. This is used to generate names for orphan inodes. 1541 */ 1542 static int gen_unique_name(struct send_ctx *sctx, 1543 u64 ino, u64 gen, 1544 struct fs_path *dest) 1545 { 1546 int ret = 0; 1547 struct btrfs_path *path; 1548 struct btrfs_dir_item *di; 1549 char tmp[64]; 1550 int len; 1551 u64 idx = 0; 1552 1553 path = alloc_path_for_send(); 1554 if (!path) 1555 return -ENOMEM; 1556 1557 while (1) { 1558 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1559 ino, gen, idx); 1560 ASSERT(len < sizeof(tmp)); 1561 1562 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1563 path, BTRFS_FIRST_FREE_OBJECTID, 1564 tmp, strlen(tmp), 0); 1565 btrfs_release_path(path); 1566 if (IS_ERR(di)) { 1567 ret = PTR_ERR(di); 1568 goto out; 1569 } 1570 if (di) { 1571 /* not unique, try again */ 1572 idx++; 1573 continue; 1574 } 1575 1576 if (!sctx->parent_root) { 1577 /* unique */ 1578 ret = 0; 1579 break; 1580 } 1581 1582 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1583 path, BTRFS_FIRST_FREE_OBJECTID, 1584 tmp, strlen(tmp), 0); 1585 btrfs_release_path(path); 1586 if (IS_ERR(di)) { 1587 ret = PTR_ERR(di); 1588 goto out; 1589 } 1590 if (di) { 1591 /* not unique, try again */ 1592 idx++; 1593 continue; 1594 } 1595 /* unique */ 1596 break; 1597 } 1598 1599 ret = fs_path_add(dest, tmp, strlen(tmp)); 1600 1601 out: 1602 btrfs_free_path(path); 1603 return ret; 1604 } 1605 1606 enum inode_state { 1607 inode_state_no_change, 1608 inode_state_will_create, 1609 inode_state_did_create, 1610 inode_state_will_delete, 1611 inode_state_did_delete, 1612 }; 1613 1614 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1615 { 1616 int ret; 1617 int left_ret; 1618 int right_ret; 1619 u64 left_gen; 1620 u64 right_gen; 1621 1622 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1623 NULL, NULL); 1624 if (ret < 0 && ret != -ENOENT) 1625 goto out; 1626 left_ret = ret; 1627 1628 if (!sctx->parent_root) { 1629 right_ret = -ENOENT; 1630 } else { 1631 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1632 NULL, NULL, NULL, NULL); 1633 if (ret < 0 && ret != -ENOENT) 1634 goto out; 1635 right_ret = ret; 1636 } 1637 1638 if (!left_ret && !right_ret) { 1639 if (left_gen == gen && right_gen == gen) { 1640 ret = inode_state_no_change; 1641 } else if (left_gen == gen) { 1642 if (ino < sctx->send_progress) 1643 ret = inode_state_did_create; 1644 else 1645 ret = inode_state_will_create; 1646 } else if (right_gen == gen) { 1647 if (ino < sctx->send_progress) 1648 ret = inode_state_did_delete; 1649 else 1650 ret = inode_state_will_delete; 1651 } else { 1652 ret = -ENOENT; 1653 } 1654 } else if (!left_ret) { 1655 if (left_gen == gen) { 1656 if (ino < sctx->send_progress) 1657 ret = inode_state_did_create; 1658 else 1659 ret = inode_state_will_create; 1660 } else { 1661 ret = -ENOENT; 1662 } 1663 } else if (!right_ret) { 1664 if (right_gen == gen) { 1665 if (ino < sctx->send_progress) 1666 ret = inode_state_did_delete; 1667 else 1668 ret = inode_state_will_delete; 1669 } else { 1670 ret = -ENOENT; 1671 } 1672 } else { 1673 ret = -ENOENT; 1674 } 1675 1676 out: 1677 return ret; 1678 } 1679 1680 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1681 { 1682 int ret; 1683 1684 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1685 return 1; 1686 1687 ret = get_cur_inode_state(sctx, ino, gen); 1688 if (ret < 0) 1689 goto out; 1690 1691 if (ret == inode_state_no_change || 1692 ret == inode_state_did_create || 1693 ret == inode_state_will_delete) 1694 ret = 1; 1695 else 1696 ret = 0; 1697 1698 out: 1699 return ret; 1700 } 1701 1702 /* 1703 * Helper function to lookup a dir item in a dir. 1704 */ 1705 static int lookup_dir_item_inode(struct btrfs_root *root, 1706 u64 dir, const char *name, int name_len, 1707 u64 *found_inode, 1708 u8 *found_type) 1709 { 1710 int ret = 0; 1711 struct btrfs_dir_item *di; 1712 struct btrfs_key key; 1713 struct btrfs_path *path; 1714 1715 path = alloc_path_for_send(); 1716 if (!path) 1717 return -ENOMEM; 1718 1719 di = btrfs_lookup_dir_item(NULL, root, path, 1720 dir, name, name_len, 0); 1721 if (!di) { 1722 ret = -ENOENT; 1723 goto out; 1724 } 1725 if (IS_ERR(di)) { 1726 ret = PTR_ERR(di); 1727 goto out; 1728 } 1729 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1730 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1731 ret = -ENOENT; 1732 goto out; 1733 } 1734 *found_inode = key.objectid; 1735 *found_type = btrfs_dir_type(path->nodes[0], di); 1736 1737 out: 1738 btrfs_free_path(path); 1739 return ret; 1740 } 1741 1742 /* 1743 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1744 * generation of the parent dir and the name of the dir entry. 1745 */ 1746 static int get_first_ref(struct btrfs_root *root, u64 ino, 1747 u64 *dir, u64 *dir_gen, struct fs_path *name) 1748 { 1749 int ret; 1750 struct btrfs_key key; 1751 struct btrfs_key found_key; 1752 struct btrfs_path *path; 1753 int len; 1754 u64 parent_dir; 1755 1756 path = alloc_path_for_send(); 1757 if (!path) 1758 return -ENOMEM; 1759 1760 key.objectid = ino; 1761 key.type = BTRFS_INODE_REF_KEY; 1762 key.offset = 0; 1763 1764 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1765 if (ret < 0) 1766 goto out; 1767 if (!ret) 1768 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1769 path->slots[0]); 1770 if (ret || found_key.objectid != ino || 1771 (found_key.type != BTRFS_INODE_REF_KEY && 1772 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1773 ret = -ENOENT; 1774 goto out; 1775 } 1776 1777 if (found_key.type == BTRFS_INODE_REF_KEY) { 1778 struct btrfs_inode_ref *iref; 1779 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1780 struct btrfs_inode_ref); 1781 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1782 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1783 (unsigned long)(iref + 1), 1784 len); 1785 parent_dir = found_key.offset; 1786 } else { 1787 struct btrfs_inode_extref *extref; 1788 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1789 struct btrfs_inode_extref); 1790 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1791 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1792 (unsigned long)&extref->name, len); 1793 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1794 } 1795 if (ret < 0) 1796 goto out; 1797 btrfs_release_path(path); 1798 1799 if (dir_gen) { 1800 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1801 NULL, NULL, NULL); 1802 if (ret < 0) 1803 goto out; 1804 } 1805 1806 *dir = parent_dir; 1807 1808 out: 1809 btrfs_free_path(path); 1810 return ret; 1811 } 1812 1813 static int is_first_ref(struct btrfs_root *root, 1814 u64 ino, u64 dir, 1815 const char *name, int name_len) 1816 { 1817 int ret; 1818 struct fs_path *tmp_name; 1819 u64 tmp_dir; 1820 1821 tmp_name = fs_path_alloc(); 1822 if (!tmp_name) 1823 return -ENOMEM; 1824 1825 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1826 if (ret < 0) 1827 goto out; 1828 1829 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1830 ret = 0; 1831 goto out; 1832 } 1833 1834 ret = !memcmp(tmp_name->start, name, name_len); 1835 1836 out: 1837 fs_path_free(tmp_name); 1838 return ret; 1839 } 1840 1841 /* 1842 * Used by process_recorded_refs to determine if a new ref would overwrite an 1843 * already existing ref. In case it detects an overwrite, it returns the 1844 * inode/gen in who_ino/who_gen. 1845 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1846 * to make sure later references to the overwritten inode are possible. 1847 * Orphanizing is however only required for the first ref of an inode. 1848 * process_recorded_refs does an additional is_first_ref check to see if 1849 * orphanizing is really required. 1850 */ 1851 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1852 const char *name, int name_len, 1853 u64 *who_ino, u64 *who_gen) 1854 { 1855 int ret = 0; 1856 u64 gen; 1857 u64 other_inode = 0; 1858 u8 other_type = 0; 1859 1860 if (!sctx->parent_root) 1861 goto out; 1862 1863 ret = is_inode_existent(sctx, dir, dir_gen); 1864 if (ret <= 0) 1865 goto out; 1866 1867 /* 1868 * If we have a parent root we need to verify that the parent dir was 1869 * not deleted and then re-created, if it was then we have no overwrite 1870 * and we can just unlink this entry. 1871 */ 1872 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1873 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1874 NULL, NULL, NULL); 1875 if (ret < 0 && ret != -ENOENT) 1876 goto out; 1877 if (ret) { 1878 ret = 0; 1879 goto out; 1880 } 1881 if (gen != dir_gen) 1882 goto out; 1883 } 1884 1885 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1886 &other_inode, &other_type); 1887 if (ret < 0 && ret != -ENOENT) 1888 goto out; 1889 if (ret) { 1890 ret = 0; 1891 goto out; 1892 } 1893 1894 /* 1895 * Check if the overwritten ref was already processed. If yes, the ref 1896 * was already unlinked/moved, so we can safely assume that we will not 1897 * overwrite anything at this point in time. 1898 */ 1899 if (other_inode > sctx->send_progress || 1900 is_waiting_for_move(sctx, other_inode)) { 1901 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1902 who_gen, NULL, NULL, NULL, NULL); 1903 if (ret < 0) 1904 goto out; 1905 1906 ret = 1; 1907 *who_ino = other_inode; 1908 } else { 1909 ret = 0; 1910 } 1911 1912 out: 1913 return ret; 1914 } 1915 1916 /* 1917 * Checks if the ref was overwritten by an already processed inode. This is 1918 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1919 * thus the orphan name needs be used. 1920 * process_recorded_refs also uses it to avoid unlinking of refs that were 1921 * overwritten. 1922 */ 1923 static int did_overwrite_ref(struct send_ctx *sctx, 1924 u64 dir, u64 dir_gen, 1925 u64 ino, u64 ino_gen, 1926 const char *name, int name_len) 1927 { 1928 int ret = 0; 1929 u64 gen; 1930 u64 ow_inode; 1931 u8 other_type; 1932 1933 if (!sctx->parent_root) 1934 goto out; 1935 1936 ret = is_inode_existent(sctx, dir, dir_gen); 1937 if (ret <= 0) 1938 goto out; 1939 1940 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1941 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1942 NULL, NULL, NULL); 1943 if (ret < 0 && ret != -ENOENT) 1944 goto out; 1945 if (ret) { 1946 ret = 0; 1947 goto out; 1948 } 1949 if (gen != dir_gen) 1950 goto out; 1951 } 1952 1953 /* check if the ref was overwritten by another ref */ 1954 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1955 &ow_inode, &other_type); 1956 if (ret < 0 && ret != -ENOENT) 1957 goto out; 1958 if (ret) { 1959 /* was never and will never be overwritten */ 1960 ret = 0; 1961 goto out; 1962 } 1963 1964 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1965 NULL, NULL); 1966 if (ret < 0) 1967 goto out; 1968 1969 if (ow_inode == ino && gen == ino_gen) { 1970 ret = 0; 1971 goto out; 1972 } 1973 1974 /* 1975 * We know that it is or will be overwritten. Check this now. 1976 * The current inode being processed might have been the one that caused 1977 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1978 * the current inode being processed. 1979 */ 1980 if ((ow_inode < sctx->send_progress) || 1981 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1982 gen == sctx->cur_inode_gen)) 1983 ret = 1; 1984 else 1985 ret = 0; 1986 1987 out: 1988 return ret; 1989 } 1990 1991 /* 1992 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1993 * that got overwritten. This is used by process_recorded_refs to determine 1994 * if it has to use the path as returned by get_cur_path or the orphan name. 1995 */ 1996 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1997 { 1998 int ret = 0; 1999 struct fs_path *name = NULL; 2000 u64 dir; 2001 u64 dir_gen; 2002 2003 if (!sctx->parent_root) 2004 goto out; 2005 2006 name = fs_path_alloc(); 2007 if (!name) 2008 return -ENOMEM; 2009 2010 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2011 if (ret < 0) 2012 goto out; 2013 2014 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2015 name->start, fs_path_len(name)); 2016 2017 out: 2018 fs_path_free(name); 2019 return ret; 2020 } 2021 2022 /* 2023 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2024 * so we need to do some special handling in case we have clashes. This function 2025 * takes care of this with the help of name_cache_entry::radix_list. 2026 * In case of error, nce is kfreed. 2027 */ 2028 static int name_cache_insert(struct send_ctx *sctx, 2029 struct name_cache_entry *nce) 2030 { 2031 int ret = 0; 2032 struct list_head *nce_head; 2033 2034 nce_head = radix_tree_lookup(&sctx->name_cache, 2035 (unsigned long)nce->ino); 2036 if (!nce_head) { 2037 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2038 if (!nce_head) { 2039 kfree(nce); 2040 return -ENOMEM; 2041 } 2042 INIT_LIST_HEAD(nce_head); 2043 2044 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2045 if (ret < 0) { 2046 kfree(nce_head); 2047 kfree(nce); 2048 return ret; 2049 } 2050 } 2051 list_add_tail(&nce->radix_list, nce_head); 2052 list_add_tail(&nce->list, &sctx->name_cache_list); 2053 sctx->name_cache_size++; 2054 2055 return ret; 2056 } 2057 2058 static void name_cache_delete(struct send_ctx *sctx, 2059 struct name_cache_entry *nce) 2060 { 2061 struct list_head *nce_head; 2062 2063 nce_head = radix_tree_lookup(&sctx->name_cache, 2064 (unsigned long)nce->ino); 2065 if (!nce_head) { 2066 btrfs_err(sctx->send_root->fs_info, 2067 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2068 nce->ino, sctx->name_cache_size); 2069 } 2070 2071 list_del(&nce->radix_list); 2072 list_del(&nce->list); 2073 sctx->name_cache_size--; 2074 2075 /* 2076 * We may not get to the final release of nce_head if the lookup fails 2077 */ 2078 if (nce_head && list_empty(nce_head)) { 2079 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2080 kfree(nce_head); 2081 } 2082 } 2083 2084 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2085 u64 ino, u64 gen) 2086 { 2087 struct list_head *nce_head; 2088 struct name_cache_entry *cur; 2089 2090 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2091 if (!nce_head) 2092 return NULL; 2093 2094 list_for_each_entry(cur, nce_head, radix_list) { 2095 if (cur->ino == ino && cur->gen == gen) 2096 return cur; 2097 } 2098 return NULL; 2099 } 2100 2101 /* 2102 * Removes the entry from the list and adds it back to the end. This marks the 2103 * entry as recently used so that name_cache_clean_unused does not remove it. 2104 */ 2105 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2106 { 2107 list_del(&nce->list); 2108 list_add_tail(&nce->list, &sctx->name_cache_list); 2109 } 2110 2111 /* 2112 * Remove some entries from the beginning of name_cache_list. 2113 */ 2114 static void name_cache_clean_unused(struct send_ctx *sctx) 2115 { 2116 struct name_cache_entry *nce; 2117 2118 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2119 return; 2120 2121 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2122 nce = list_entry(sctx->name_cache_list.next, 2123 struct name_cache_entry, list); 2124 name_cache_delete(sctx, nce); 2125 kfree(nce); 2126 } 2127 } 2128 2129 static void name_cache_free(struct send_ctx *sctx) 2130 { 2131 struct name_cache_entry *nce; 2132 2133 while (!list_empty(&sctx->name_cache_list)) { 2134 nce = list_entry(sctx->name_cache_list.next, 2135 struct name_cache_entry, list); 2136 name_cache_delete(sctx, nce); 2137 kfree(nce); 2138 } 2139 } 2140 2141 /* 2142 * Used by get_cur_path for each ref up to the root. 2143 * Returns 0 if it succeeded. 2144 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2145 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2146 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2147 * Returns <0 in case of error. 2148 */ 2149 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2150 u64 ino, u64 gen, 2151 u64 *parent_ino, 2152 u64 *parent_gen, 2153 struct fs_path *dest) 2154 { 2155 int ret; 2156 int nce_ret; 2157 struct name_cache_entry *nce = NULL; 2158 2159 /* 2160 * First check if we already did a call to this function with the same 2161 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2162 * return the cached result. 2163 */ 2164 nce = name_cache_search(sctx, ino, gen); 2165 if (nce) { 2166 if (ino < sctx->send_progress && nce->need_later_update) { 2167 name_cache_delete(sctx, nce); 2168 kfree(nce); 2169 nce = NULL; 2170 } else { 2171 name_cache_used(sctx, nce); 2172 *parent_ino = nce->parent_ino; 2173 *parent_gen = nce->parent_gen; 2174 ret = fs_path_add(dest, nce->name, nce->name_len); 2175 if (ret < 0) 2176 goto out; 2177 ret = nce->ret; 2178 goto out; 2179 } 2180 } 2181 2182 /* 2183 * If the inode is not existent yet, add the orphan name and return 1. 2184 * This should only happen for the parent dir that we determine in 2185 * __record_new_ref 2186 */ 2187 ret = is_inode_existent(sctx, ino, gen); 2188 if (ret < 0) 2189 goto out; 2190 2191 if (!ret) { 2192 ret = gen_unique_name(sctx, ino, gen, dest); 2193 if (ret < 0) 2194 goto out; 2195 ret = 1; 2196 goto out_cache; 2197 } 2198 2199 /* 2200 * Depending on whether the inode was already processed or not, use 2201 * send_root or parent_root for ref lookup. 2202 */ 2203 if (ino < sctx->send_progress) 2204 ret = get_first_ref(sctx->send_root, ino, 2205 parent_ino, parent_gen, dest); 2206 else 2207 ret = get_first_ref(sctx->parent_root, ino, 2208 parent_ino, parent_gen, dest); 2209 if (ret < 0) 2210 goto out; 2211 2212 /* 2213 * Check if the ref was overwritten by an inode's ref that was processed 2214 * earlier. If yes, treat as orphan and return 1. 2215 */ 2216 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2217 dest->start, dest->end - dest->start); 2218 if (ret < 0) 2219 goto out; 2220 if (ret) { 2221 fs_path_reset(dest); 2222 ret = gen_unique_name(sctx, ino, gen, dest); 2223 if (ret < 0) 2224 goto out; 2225 ret = 1; 2226 } 2227 2228 out_cache: 2229 /* 2230 * Store the result of the lookup in the name cache. 2231 */ 2232 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2233 if (!nce) { 2234 ret = -ENOMEM; 2235 goto out; 2236 } 2237 2238 nce->ino = ino; 2239 nce->gen = gen; 2240 nce->parent_ino = *parent_ino; 2241 nce->parent_gen = *parent_gen; 2242 nce->name_len = fs_path_len(dest); 2243 nce->ret = ret; 2244 strcpy(nce->name, dest->start); 2245 2246 if (ino < sctx->send_progress) 2247 nce->need_later_update = 0; 2248 else 2249 nce->need_later_update = 1; 2250 2251 nce_ret = name_cache_insert(sctx, nce); 2252 if (nce_ret < 0) 2253 ret = nce_ret; 2254 name_cache_clean_unused(sctx); 2255 2256 out: 2257 return ret; 2258 } 2259 2260 /* 2261 * Magic happens here. This function returns the first ref to an inode as it 2262 * would look like while receiving the stream at this point in time. 2263 * We walk the path up to the root. For every inode in between, we check if it 2264 * was already processed/sent. If yes, we continue with the parent as found 2265 * in send_root. If not, we continue with the parent as found in parent_root. 2266 * If we encounter an inode that was deleted at this point in time, we use the 2267 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2268 * that were not created yet and overwritten inodes/refs. 2269 * 2270 * When do we have have orphan inodes: 2271 * 1. When an inode is freshly created and thus no valid refs are available yet 2272 * 2. When a directory lost all it's refs (deleted) but still has dir items 2273 * inside which were not processed yet (pending for move/delete). If anyone 2274 * tried to get the path to the dir items, it would get a path inside that 2275 * orphan directory. 2276 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2277 * of an unprocessed inode. If in that case the first ref would be 2278 * overwritten, the overwritten inode gets "orphanized". Later when we 2279 * process this overwritten inode, it is restored at a new place by moving 2280 * the orphan inode. 2281 * 2282 * sctx->send_progress tells this function at which point in time receiving 2283 * would be. 2284 */ 2285 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2286 struct fs_path *dest) 2287 { 2288 int ret = 0; 2289 struct fs_path *name = NULL; 2290 u64 parent_inode = 0; 2291 u64 parent_gen = 0; 2292 int stop = 0; 2293 2294 name = fs_path_alloc(); 2295 if (!name) { 2296 ret = -ENOMEM; 2297 goto out; 2298 } 2299 2300 dest->reversed = 1; 2301 fs_path_reset(dest); 2302 2303 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2304 struct waiting_dir_move *wdm; 2305 2306 fs_path_reset(name); 2307 2308 if (is_waiting_for_rm(sctx, ino)) { 2309 ret = gen_unique_name(sctx, ino, gen, name); 2310 if (ret < 0) 2311 goto out; 2312 ret = fs_path_add_path(dest, name); 2313 break; 2314 } 2315 2316 wdm = get_waiting_dir_move(sctx, ino); 2317 if (wdm && wdm->orphanized) { 2318 ret = gen_unique_name(sctx, ino, gen, name); 2319 stop = 1; 2320 } else if (wdm) { 2321 ret = get_first_ref(sctx->parent_root, ino, 2322 &parent_inode, &parent_gen, name); 2323 } else { 2324 ret = __get_cur_name_and_parent(sctx, ino, gen, 2325 &parent_inode, 2326 &parent_gen, name); 2327 if (ret) 2328 stop = 1; 2329 } 2330 2331 if (ret < 0) 2332 goto out; 2333 2334 ret = fs_path_add_path(dest, name); 2335 if (ret < 0) 2336 goto out; 2337 2338 ino = parent_inode; 2339 gen = parent_gen; 2340 } 2341 2342 out: 2343 fs_path_free(name); 2344 if (!ret) 2345 fs_path_unreverse(dest); 2346 return ret; 2347 } 2348 2349 /* 2350 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2351 */ 2352 static int send_subvol_begin(struct send_ctx *sctx) 2353 { 2354 int ret; 2355 struct btrfs_root *send_root = sctx->send_root; 2356 struct btrfs_root *parent_root = sctx->parent_root; 2357 struct btrfs_path *path; 2358 struct btrfs_key key; 2359 struct btrfs_root_ref *ref; 2360 struct extent_buffer *leaf; 2361 char *name = NULL; 2362 int namelen; 2363 2364 path = btrfs_alloc_path(); 2365 if (!path) 2366 return -ENOMEM; 2367 2368 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2369 if (!name) { 2370 btrfs_free_path(path); 2371 return -ENOMEM; 2372 } 2373 2374 key.objectid = send_root->objectid; 2375 key.type = BTRFS_ROOT_BACKREF_KEY; 2376 key.offset = 0; 2377 2378 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2379 &key, path, 1, 0); 2380 if (ret < 0) 2381 goto out; 2382 if (ret) { 2383 ret = -ENOENT; 2384 goto out; 2385 } 2386 2387 leaf = path->nodes[0]; 2388 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2389 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2390 key.objectid != send_root->objectid) { 2391 ret = -ENOENT; 2392 goto out; 2393 } 2394 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2395 namelen = btrfs_root_ref_name_len(leaf, ref); 2396 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2397 btrfs_release_path(path); 2398 2399 if (parent_root) { 2400 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2401 if (ret < 0) 2402 goto out; 2403 } else { 2404 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2405 if (ret < 0) 2406 goto out; 2407 } 2408 2409 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2410 2411 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2412 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2413 sctx->send_root->root_item.received_uuid); 2414 else 2415 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2416 sctx->send_root->root_item.uuid); 2417 2418 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2419 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2420 if (parent_root) { 2421 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2422 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2423 parent_root->root_item.received_uuid); 2424 else 2425 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2426 parent_root->root_item.uuid); 2427 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2428 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2429 } 2430 2431 ret = send_cmd(sctx); 2432 2433 tlv_put_failure: 2434 out: 2435 btrfs_free_path(path); 2436 kfree(name); 2437 return ret; 2438 } 2439 2440 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2441 { 2442 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2443 int ret = 0; 2444 struct fs_path *p; 2445 2446 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2447 2448 p = fs_path_alloc(); 2449 if (!p) 2450 return -ENOMEM; 2451 2452 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2453 if (ret < 0) 2454 goto out; 2455 2456 ret = get_cur_path(sctx, ino, gen, p); 2457 if (ret < 0) 2458 goto out; 2459 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2460 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2461 2462 ret = send_cmd(sctx); 2463 2464 tlv_put_failure: 2465 out: 2466 fs_path_free(p); 2467 return ret; 2468 } 2469 2470 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2471 { 2472 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2473 int ret = 0; 2474 struct fs_path *p; 2475 2476 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2477 2478 p = fs_path_alloc(); 2479 if (!p) 2480 return -ENOMEM; 2481 2482 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2483 if (ret < 0) 2484 goto out; 2485 2486 ret = get_cur_path(sctx, ino, gen, p); 2487 if (ret < 0) 2488 goto out; 2489 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2490 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2491 2492 ret = send_cmd(sctx); 2493 2494 tlv_put_failure: 2495 out: 2496 fs_path_free(p); 2497 return ret; 2498 } 2499 2500 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2501 { 2502 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2503 int ret = 0; 2504 struct fs_path *p; 2505 2506 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2507 ino, uid, gid); 2508 2509 p = fs_path_alloc(); 2510 if (!p) 2511 return -ENOMEM; 2512 2513 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2514 if (ret < 0) 2515 goto out; 2516 2517 ret = get_cur_path(sctx, ino, gen, p); 2518 if (ret < 0) 2519 goto out; 2520 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2521 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2522 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2523 2524 ret = send_cmd(sctx); 2525 2526 tlv_put_failure: 2527 out: 2528 fs_path_free(p); 2529 return ret; 2530 } 2531 2532 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2533 { 2534 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2535 int ret = 0; 2536 struct fs_path *p = NULL; 2537 struct btrfs_inode_item *ii; 2538 struct btrfs_path *path = NULL; 2539 struct extent_buffer *eb; 2540 struct btrfs_key key; 2541 int slot; 2542 2543 btrfs_debug(fs_info, "send_utimes %llu", ino); 2544 2545 p = fs_path_alloc(); 2546 if (!p) 2547 return -ENOMEM; 2548 2549 path = alloc_path_for_send(); 2550 if (!path) { 2551 ret = -ENOMEM; 2552 goto out; 2553 } 2554 2555 key.objectid = ino; 2556 key.type = BTRFS_INODE_ITEM_KEY; 2557 key.offset = 0; 2558 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2559 if (ret > 0) 2560 ret = -ENOENT; 2561 if (ret < 0) 2562 goto out; 2563 2564 eb = path->nodes[0]; 2565 slot = path->slots[0]; 2566 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2567 2568 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2569 if (ret < 0) 2570 goto out; 2571 2572 ret = get_cur_path(sctx, ino, gen, p); 2573 if (ret < 0) 2574 goto out; 2575 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2576 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2577 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2578 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2579 /* TODO Add otime support when the otime patches get into upstream */ 2580 2581 ret = send_cmd(sctx); 2582 2583 tlv_put_failure: 2584 out: 2585 fs_path_free(p); 2586 btrfs_free_path(path); 2587 return ret; 2588 } 2589 2590 /* 2591 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2592 * a valid path yet because we did not process the refs yet. So, the inode 2593 * is created as orphan. 2594 */ 2595 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2596 { 2597 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2598 int ret = 0; 2599 struct fs_path *p; 2600 int cmd; 2601 u64 gen; 2602 u64 mode; 2603 u64 rdev; 2604 2605 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2606 2607 p = fs_path_alloc(); 2608 if (!p) 2609 return -ENOMEM; 2610 2611 if (ino != sctx->cur_ino) { 2612 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2613 NULL, NULL, &rdev); 2614 if (ret < 0) 2615 goto out; 2616 } else { 2617 gen = sctx->cur_inode_gen; 2618 mode = sctx->cur_inode_mode; 2619 rdev = sctx->cur_inode_rdev; 2620 } 2621 2622 if (S_ISREG(mode)) { 2623 cmd = BTRFS_SEND_C_MKFILE; 2624 } else if (S_ISDIR(mode)) { 2625 cmd = BTRFS_SEND_C_MKDIR; 2626 } else if (S_ISLNK(mode)) { 2627 cmd = BTRFS_SEND_C_SYMLINK; 2628 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2629 cmd = BTRFS_SEND_C_MKNOD; 2630 } else if (S_ISFIFO(mode)) { 2631 cmd = BTRFS_SEND_C_MKFIFO; 2632 } else if (S_ISSOCK(mode)) { 2633 cmd = BTRFS_SEND_C_MKSOCK; 2634 } else { 2635 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2636 (int)(mode & S_IFMT)); 2637 ret = -ENOTSUPP; 2638 goto out; 2639 } 2640 2641 ret = begin_cmd(sctx, cmd); 2642 if (ret < 0) 2643 goto out; 2644 2645 ret = gen_unique_name(sctx, ino, gen, p); 2646 if (ret < 0) 2647 goto out; 2648 2649 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2650 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2651 2652 if (S_ISLNK(mode)) { 2653 fs_path_reset(p); 2654 ret = read_symlink(sctx->send_root, ino, p); 2655 if (ret < 0) 2656 goto out; 2657 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2658 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2659 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2660 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2661 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2662 } 2663 2664 ret = send_cmd(sctx); 2665 if (ret < 0) 2666 goto out; 2667 2668 2669 tlv_put_failure: 2670 out: 2671 fs_path_free(p); 2672 return ret; 2673 } 2674 2675 /* 2676 * We need some special handling for inodes that get processed before the parent 2677 * directory got created. See process_recorded_refs for details. 2678 * This function does the check if we already created the dir out of order. 2679 */ 2680 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2681 { 2682 int ret = 0; 2683 struct btrfs_path *path = NULL; 2684 struct btrfs_key key; 2685 struct btrfs_key found_key; 2686 struct btrfs_key di_key; 2687 struct extent_buffer *eb; 2688 struct btrfs_dir_item *di; 2689 int slot; 2690 2691 path = alloc_path_for_send(); 2692 if (!path) { 2693 ret = -ENOMEM; 2694 goto out; 2695 } 2696 2697 key.objectid = dir; 2698 key.type = BTRFS_DIR_INDEX_KEY; 2699 key.offset = 0; 2700 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2701 if (ret < 0) 2702 goto out; 2703 2704 while (1) { 2705 eb = path->nodes[0]; 2706 slot = path->slots[0]; 2707 if (slot >= btrfs_header_nritems(eb)) { 2708 ret = btrfs_next_leaf(sctx->send_root, path); 2709 if (ret < 0) { 2710 goto out; 2711 } else if (ret > 0) { 2712 ret = 0; 2713 break; 2714 } 2715 continue; 2716 } 2717 2718 btrfs_item_key_to_cpu(eb, &found_key, slot); 2719 if (found_key.objectid != key.objectid || 2720 found_key.type != key.type) { 2721 ret = 0; 2722 goto out; 2723 } 2724 2725 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2726 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2727 2728 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2729 di_key.objectid < sctx->send_progress) { 2730 ret = 1; 2731 goto out; 2732 } 2733 2734 path->slots[0]++; 2735 } 2736 2737 out: 2738 btrfs_free_path(path); 2739 return ret; 2740 } 2741 2742 /* 2743 * Only creates the inode if it is: 2744 * 1. Not a directory 2745 * 2. Or a directory which was not created already due to out of order 2746 * directories. See did_create_dir and process_recorded_refs for details. 2747 */ 2748 static int send_create_inode_if_needed(struct send_ctx *sctx) 2749 { 2750 int ret; 2751 2752 if (S_ISDIR(sctx->cur_inode_mode)) { 2753 ret = did_create_dir(sctx, sctx->cur_ino); 2754 if (ret < 0) 2755 goto out; 2756 if (ret) { 2757 ret = 0; 2758 goto out; 2759 } 2760 } 2761 2762 ret = send_create_inode(sctx, sctx->cur_ino); 2763 if (ret < 0) 2764 goto out; 2765 2766 out: 2767 return ret; 2768 } 2769 2770 struct recorded_ref { 2771 struct list_head list; 2772 char *dir_path; 2773 char *name; 2774 struct fs_path *full_path; 2775 u64 dir; 2776 u64 dir_gen; 2777 int dir_path_len; 2778 int name_len; 2779 }; 2780 2781 /* 2782 * We need to process new refs before deleted refs, but compare_tree gives us 2783 * everything mixed. So we first record all refs and later process them. 2784 * This function is a helper to record one ref. 2785 */ 2786 static int __record_ref(struct list_head *head, u64 dir, 2787 u64 dir_gen, struct fs_path *path) 2788 { 2789 struct recorded_ref *ref; 2790 2791 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2792 if (!ref) 2793 return -ENOMEM; 2794 2795 ref->dir = dir; 2796 ref->dir_gen = dir_gen; 2797 ref->full_path = path; 2798 2799 ref->name = (char *)kbasename(ref->full_path->start); 2800 ref->name_len = ref->full_path->end - ref->name; 2801 ref->dir_path = ref->full_path->start; 2802 if (ref->name == ref->full_path->start) 2803 ref->dir_path_len = 0; 2804 else 2805 ref->dir_path_len = ref->full_path->end - 2806 ref->full_path->start - 1 - ref->name_len; 2807 2808 list_add_tail(&ref->list, head); 2809 return 0; 2810 } 2811 2812 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2813 { 2814 struct recorded_ref *new; 2815 2816 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2817 if (!new) 2818 return -ENOMEM; 2819 2820 new->dir = ref->dir; 2821 new->dir_gen = ref->dir_gen; 2822 new->full_path = NULL; 2823 INIT_LIST_HEAD(&new->list); 2824 list_add_tail(&new->list, list); 2825 return 0; 2826 } 2827 2828 static void __free_recorded_refs(struct list_head *head) 2829 { 2830 struct recorded_ref *cur; 2831 2832 while (!list_empty(head)) { 2833 cur = list_entry(head->next, struct recorded_ref, list); 2834 fs_path_free(cur->full_path); 2835 list_del(&cur->list); 2836 kfree(cur); 2837 } 2838 } 2839 2840 static void free_recorded_refs(struct send_ctx *sctx) 2841 { 2842 __free_recorded_refs(&sctx->new_refs); 2843 __free_recorded_refs(&sctx->deleted_refs); 2844 } 2845 2846 /* 2847 * Renames/moves a file/dir to its orphan name. Used when the first 2848 * ref of an unprocessed inode gets overwritten and for all non empty 2849 * directories. 2850 */ 2851 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2852 struct fs_path *path) 2853 { 2854 int ret; 2855 struct fs_path *orphan; 2856 2857 orphan = fs_path_alloc(); 2858 if (!orphan) 2859 return -ENOMEM; 2860 2861 ret = gen_unique_name(sctx, ino, gen, orphan); 2862 if (ret < 0) 2863 goto out; 2864 2865 ret = send_rename(sctx, path, orphan); 2866 2867 out: 2868 fs_path_free(orphan); 2869 return ret; 2870 } 2871 2872 static struct orphan_dir_info * 2873 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2874 { 2875 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2876 struct rb_node *parent = NULL; 2877 struct orphan_dir_info *entry, *odi; 2878 2879 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2880 if (!odi) 2881 return ERR_PTR(-ENOMEM); 2882 odi->ino = dir_ino; 2883 odi->gen = 0; 2884 2885 while (*p) { 2886 parent = *p; 2887 entry = rb_entry(parent, struct orphan_dir_info, node); 2888 if (dir_ino < entry->ino) { 2889 p = &(*p)->rb_left; 2890 } else if (dir_ino > entry->ino) { 2891 p = &(*p)->rb_right; 2892 } else { 2893 kfree(odi); 2894 return entry; 2895 } 2896 } 2897 2898 rb_link_node(&odi->node, parent, p); 2899 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2900 return odi; 2901 } 2902 2903 static struct orphan_dir_info * 2904 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2905 { 2906 struct rb_node *n = sctx->orphan_dirs.rb_node; 2907 struct orphan_dir_info *entry; 2908 2909 while (n) { 2910 entry = rb_entry(n, struct orphan_dir_info, node); 2911 if (dir_ino < entry->ino) 2912 n = n->rb_left; 2913 else if (dir_ino > entry->ino) 2914 n = n->rb_right; 2915 else 2916 return entry; 2917 } 2918 return NULL; 2919 } 2920 2921 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2922 { 2923 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2924 2925 return odi != NULL; 2926 } 2927 2928 static void free_orphan_dir_info(struct send_ctx *sctx, 2929 struct orphan_dir_info *odi) 2930 { 2931 if (!odi) 2932 return; 2933 rb_erase(&odi->node, &sctx->orphan_dirs); 2934 kfree(odi); 2935 } 2936 2937 /* 2938 * Returns 1 if a directory can be removed at this point in time. 2939 * We check this by iterating all dir items and checking if the inode behind 2940 * the dir item was already processed. 2941 */ 2942 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2943 u64 send_progress) 2944 { 2945 int ret = 0; 2946 struct btrfs_root *root = sctx->parent_root; 2947 struct btrfs_path *path; 2948 struct btrfs_key key; 2949 struct btrfs_key found_key; 2950 struct btrfs_key loc; 2951 struct btrfs_dir_item *di; 2952 2953 /* 2954 * Don't try to rmdir the top/root subvolume dir. 2955 */ 2956 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2957 return 0; 2958 2959 path = alloc_path_for_send(); 2960 if (!path) 2961 return -ENOMEM; 2962 2963 key.objectid = dir; 2964 key.type = BTRFS_DIR_INDEX_KEY; 2965 key.offset = 0; 2966 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2967 if (ret < 0) 2968 goto out; 2969 2970 while (1) { 2971 struct waiting_dir_move *dm; 2972 2973 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2974 ret = btrfs_next_leaf(root, path); 2975 if (ret < 0) 2976 goto out; 2977 else if (ret > 0) 2978 break; 2979 continue; 2980 } 2981 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2982 path->slots[0]); 2983 if (found_key.objectid != key.objectid || 2984 found_key.type != key.type) 2985 break; 2986 2987 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2988 struct btrfs_dir_item); 2989 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2990 2991 dm = get_waiting_dir_move(sctx, loc.objectid); 2992 if (dm) { 2993 struct orphan_dir_info *odi; 2994 2995 odi = add_orphan_dir_info(sctx, dir); 2996 if (IS_ERR(odi)) { 2997 ret = PTR_ERR(odi); 2998 goto out; 2999 } 3000 odi->gen = dir_gen; 3001 dm->rmdir_ino = dir; 3002 ret = 0; 3003 goto out; 3004 } 3005 3006 if (loc.objectid > send_progress) { 3007 struct orphan_dir_info *odi; 3008 3009 odi = get_orphan_dir_info(sctx, dir); 3010 free_orphan_dir_info(sctx, odi); 3011 ret = 0; 3012 goto out; 3013 } 3014 3015 path->slots[0]++; 3016 } 3017 3018 ret = 1; 3019 3020 out: 3021 btrfs_free_path(path); 3022 return ret; 3023 } 3024 3025 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3026 { 3027 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3028 3029 return entry != NULL; 3030 } 3031 3032 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3033 { 3034 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3035 struct rb_node *parent = NULL; 3036 struct waiting_dir_move *entry, *dm; 3037 3038 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3039 if (!dm) 3040 return -ENOMEM; 3041 dm->ino = ino; 3042 dm->rmdir_ino = 0; 3043 dm->orphanized = orphanized; 3044 3045 while (*p) { 3046 parent = *p; 3047 entry = rb_entry(parent, struct waiting_dir_move, node); 3048 if (ino < entry->ino) { 3049 p = &(*p)->rb_left; 3050 } else if (ino > entry->ino) { 3051 p = &(*p)->rb_right; 3052 } else { 3053 kfree(dm); 3054 return -EEXIST; 3055 } 3056 } 3057 3058 rb_link_node(&dm->node, parent, p); 3059 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3060 return 0; 3061 } 3062 3063 static struct waiting_dir_move * 3064 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3065 { 3066 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3067 struct waiting_dir_move *entry; 3068 3069 while (n) { 3070 entry = rb_entry(n, struct waiting_dir_move, node); 3071 if (ino < entry->ino) 3072 n = n->rb_left; 3073 else if (ino > entry->ino) 3074 n = n->rb_right; 3075 else 3076 return entry; 3077 } 3078 return NULL; 3079 } 3080 3081 static void free_waiting_dir_move(struct send_ctx *sctx, 3082 struct waiting_dir_move *dm) 3083 { 3084 if (!dm) 3085 return; 3086 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3087 kfree(dm); 3088 } 3089 3090 static int add_pending_dir_move(struct send_ctx *sctx, 3091 u64 ino, 3092 u64 ino_gen, 3093 u64 parent_ino, 3094 struct list_head *new_refs, 3095 struct list_head *deleted_refs, 3096 const bool is_orphan) 3097 { 3098 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3099 struct rb_node *parent = NULL; 3100 struct pending_dir_move *entry = NULL, *pm; 3101 struct recorded_ref *cur; 3102 int exists = 0; 3103 int ret; 3104 3105 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3106 if (!pm) 3107 return -ENOMEM; 3108 pm->parent_ino = parent_ino; 3109 pm->ino = ino; 3110 pm->gen = ino_gen; 3111 INIT_LIST_HEAD(&pm->list); 3112 INIT_LIST_HEAD(&pm->update_refs); 3113 RB_CLEAR_NODE(&pm->node); 3114 3115 while (*p) { 3116 parent = *p; 3117 entry = rb_entry(parent, struct pending_dir_move, node); 3118 if (parent_ino < entry->parent_ino) { 3119 p = &(*p)->rb_left; 3120 } else if (parent_ino > entry->parent_ino) { 3121 p = &(*p)->rb_right; 3122 } else { 3123 exists = 1; 3124 break; 3125 } 3126 } 3127 3128 list_for_each_entry(cur, deleted_refs, list) { 3129 ret = dup_ref(cur, &pm->update_refs); 3130 if (ret < 0) 3131 goto out; 3132 } 3133 list_for_each_entry(cur, new_refs, list) { 3134 ret = dup_ref(cur, &pm->update_refs); 3135 if (ret < 0) 3136 goto out; 3137 } 3138 3139 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3140 if (ret) 3141 goto out; 3142 3143 if (exists) { 3144 list_add_tail(&pm->list, &entry->list); 3145 } else { 3146 rb_link_node(&pm->node, parent, p); 3147 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3148 } 3149 ret = 0; 3150 out: 3151 if (ret) { 3152 __free_recorded_refs(&pm->update_refs); 3153 kfree(pm); 3154 } 3155 return ret; 3156 } 3157 3158 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3159 u64 parent_ino) 3160 { 3161 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3162 struct pending_dir_move *entry; 3163 3164 while (n) { 3165 entry = rb_entry(n, struct pending_dir_move, node); 3166 if (parent_ino < entry->parent_ino) 3167 n = n->rb_left; 3168 else if (parent_ino > entry->parent_ino) 3169 n = n->rb_right; 3170 else 3171 return entry; 3172 } 3173 return NULL; 3174 } 3175 3176 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3177 u64 ino, u64 gen, u64 *ancestor_ino) 3178 { 3179 int ret = 0; 3180 u64 parent_inode = 0; 3181 u64 parent_gen = 0; 3182 u64 start_ino = ino; 3183 3184 *ancestor_ino = 0; 3185 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3186 fs_path_reset(name); 3187 3188 if (is_waiting_for_rm(sctx, ino)) 3189 break; 3190 if (is_waiting_for_move(sctx, ino)) { 3191 if (*ancestor_ino == 0) 3192 *ancestor_ino = ino; 3193 ret = get_first_ref(sctx->parent_root, ino, 3194 &parent_inode, &parent_gen, name); 3195 } else { 3196 ret = __get_cur_name_and_parent(sctx, ino, gen, 3197 &parent_inode, 3198 &parent_gen, name); 3199 if (ret > 0) { 3200 ret = 0; 3201 break; 3202 } 3203 } 3204 if (ret < 0) 3205 break; 3206 if (parent_inode == start_ino) { 3207 ret = 1; 3208 if (*ancestor_ino == 0) 3209 *ancestor_ino = ino; 3210 break; 3211 } 3212 ino = parent_inode; 3213 gen = parent_gen; 3214 } 3215 return ret; 3216 } 3217 3218 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3219 { 3220 struct fs_path *from_path = NULL; 3221 struct fs_path *to_path = NULL; 3222 struct fs_path *name = NULL; 3223 u64 orig_progress = sctx->send_progress; 3224 struct recorded_ref *cur; 3225 u64 parent_ino, parent_gen; 3226 struct waiting_dir_move *dm = NULL; 3227 u64 rmdir_ino = 0; 3228 u64 ancestor; 3229 bool is_orphan; 3230 int ret; 3231 3232 name = fs_path_alloc(); 3233 from_path = fs_path_alloc(); 3234 if (!name || !from_path) { 3235 ret = -ENOMEM; 3236 goto out; 3237 } 3238 3239 dm = get_waiting_dir_move(sctx, pm->ino); 3240 ASSERT(dm); 3241 rmdir_ino = dm->rmdir_ino; 3242 is_orphan = dm->orphanized; 3243 free_waiting_dir_move(sctx, dm); 3244 3245 if (is_orphan) { 3246 ret = gen_unique_name(sctx, pm->ino, 3247 pm->gen, from_path); 3248 } else { 3249 ret = get_first_ref(sctx->parent_root, pm->ino, 3250 &parent_ino, &parent_gen, name); 3251 if (ret < 0) 3252 goto out; 3253 ret = get_cur_path(sctx, parent_ino, parent_gen, 3254 from_path); 3255 if (ret < 0) 3256 goto out; 3257 ret = fs_path_add_path(from_path, name); 3258 } 3259 if (ret < 0) 3260 goto out; 3261 3262 sctx->send_progress = sctx->cur_ino + 1; 3263 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3264 if (ret < 0) 3265 goto out; 3266 if (ret) { 3267 LIST_HEAD(deleted_refs); 3268 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3269 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3270 &pm->update_refs, &deleted_refs, 3271 is_orphan); 3272 if (ret < 0) 3273 goto out; 3274 if (rmdir_ino) { 3275 dm = get_waiting_dir_move(sctx, pm->ino); 3276 ASSERT(dm); 3277 dm->rmdir_ino = rmdir_ino; 3278 } 3279 goto out; 3280 } 3281 fs_path_reset(name); 3282 to_path = name; 3283 name = NULL; 3284 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3285 if (ret < 0) 3286 goto out; 3287 3288 ret = send_rename(sctx, from_path, to_path); 3289 if (ret < 0) 3290 goto out; 3291 3292 if (rmdir_ino) { 3293 struct orphan_dir_info *odi; 3294 3295 odi = get_orphan_dir_info(sctx, rmdir_ino); 3296 if (!odi) { 3297 /* already deleted */ 3298 goto finish; 3299 } 3300 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino); 3301 if (ret < 0) 3302 goto out; 3303 if (!ret) 3304 goto finish; 3305 3306 name = fs_path_alloc(); 3307 if (!name) { 3308 ret = -ENOMEM; 3309 goto out; 3310 } 3311 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3312 if (ret < 0) 3313 goto out; 3314 ret = send_rmdir(sctx, name); 3315 if (ret < 0) 3316 goto out; 3317 free_orphan_dir_info(sctx, odi); 3318 } 3319 3320 finish: 3321 ret = send_utimes(sctx, pm->ino, pm->gen); 3322 if (ret < 0) 3323 goto out; 3324 3325 /* 3326 * After rename/move, need to update the utimes of both new parent(s) 3327 * and old parent(s). 3328 */ 3329 list_for_each_entry(cur, &pm->update_refs, list) { 3330 /* 3331 * The parent inode might have been deleted in the send snapshot 3332 */ 3333 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3334 NULL, NULL, NULL, NULL, NULL); 3335 if (ret == -ENOENT) { 3336 ret = 0; 3337 continue; 3338 } 3339 if (ret < 0) 3340 goto out; 3341 3342 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3343 if (ret < 0) 3344 goto out; 3345 } 3346 3347 out: 3348 fs_path_free(name); 3349 fs_path_free(from_path); 3350 fs_path_free(to_path); 3351 sctx->send_progress = orig_progress; 3352 3353 return ret; 3354 } 3355 3356 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3357 { 3358 if (!list_empty(&m->list)) 3359 list_del(&m->list); 3360 if (!RB_EMPTY_NODE(&m->node)) 3361 rb_erase(&m->node, &sctx->pending_dir_moves); 3362 __free_recorded_refs(&m->update_refs); 3363 kfree(m); 3364 } 3365 3366 static void tail_append_pending_moves(struct pending_dir_move *moves, 3367 struct list_head *stack) 3368 { 3369 if (list_empty(&moves->list)) { 3370 list_add_tail(&moves->list, stack); 3371 } else { 3372 LIST_HEAD(list); 3373 list_splice_init(&moves->list, &list); 3374 list_add_tail(&moves->list, stack); 3375 list_splice_tail(&list, stack); 3376 } 3377 } 3378 3379 static int apply_children_dir_moves(struct send_ctx *sctx) 3380 { 3381 struct pending_dir_move *pm; 3382 struct list_head stack; 3383 u64 parent_ino = sctx->cur_ino; 3384 int ret = 0; 3385 3386 pm = get_pending_dir_moves(sctx, parent_ino); 3387 if (!pm) 3388 return 0; 3389 3390 INIT_LIST_HEAD(&stack); 3391 tail_append_pending_moves(pm, &stack); 3392 3393 while (!list_empty(&stack)) { 3394 pm = list_first_entry(&stack, struct pending_dir_move, list); 3395 parent_ino = pm->ino; 3396 ret = apply_dir_move(sctx, pm); 3397 free_pending_move(sctx, pm); 3398 if (ret) 3399 goto out; 3400 pm = get_pending_dir_moves(sctx, parent_ino); 3401 if (pm) 3402 tail_append_pending_moves(pm, &stack); 3403 } 3404 return 0; 3405 3406 out: 3407 while (!list_empty(&stack)) { 3408 pm = list_first_entry(&stack, struct pending_dir_move, list); 3409 free_pending_move(sctx, pm); 3410 } 3411 return ret; 3412 } 3413 3414 /* 3415 * We might need to delay a directory rename even when no ancestor directory 3416 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3417 * renamed. This happens when we rename a directory to the old name (the name 3418 * in the parent root) of some other unrelated directory that got its rename 3419 * delayed due to some ancestor with higher number that got renamed. 3420 * 3421 * Example: 3422 * 3423 * Parent snapshot: 3424 * . (ino 256) 3425 * |---- a/ (ino 257) 3426 * | |---- file (ino 260) 3427 * | 3428 * |---- b/ (ino 258) 3429 * |---- c/ (ino 259) 3430 * 3431 * Send snapshot: 3432 * . (ino 256) 3433 * |---- a/ (ino 258) 3434 * |---- x/ (ino 259) 3435 * |---- y/ (ino 257) 3436 * |----- file (ino 260) 3437 * 3438 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3439 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3440 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3441 * must issue is: 3442 * 3443 * 1 - rename 259 from 'c' to 'x' 3444 * 2 - rename 257 from 'a' to 'x/y' 3445 * 3 - rename 258 from 'b' to 'a' 3446 * 3447 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3448 * be done right away and < 0 on error. 3449 */ 3450 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3451 struct recorded_ref *parent_ref, 3452 const bool is_orphan) 3453 { 3454 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3455 struct btrfs_path *path; 3456 struct btrfs_key key; 3457 struct btrfs_key di_key; 3458 struct btrfs_dir_item *di; 3459 u64 left_gen; 3460 u64 right_gen; 3461 int ret = 0; 3462 struct waiting_dir_move *wdm; 3463 3464 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3465 return 0; 3466 3467 path = alloc_path_for_send(); 3468 if (!path) 3469 return -ENOMEM; 3470 3471 key.objectid = parent_ref->dir; 3472 key.type = BTRFS_DIR_ITEM_KEY; 3473 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3474 3475 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3476 if (ret < 0) { 3477 goto out; 3478 } else if (ret > 0) { 3479 ret = 0; 3480 goto out; 3481 } 3482 3483 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3484 parent_ref->name_len); 3485 if (!di) { 3486 ret = 0; 3487 goto out; 3488 } 3489 /* 3490 * di_key.objectid has the number of the inode that has a dentry in the 3491 * parent directory with the same name that sctx->cur_ino is being 3492 * renamed to. We need to check if that inode is in the send root as 3493 * well and if it is currently marked as an inode with a pending rename, 3494 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3495 * that it happens after that other inode is renamed. 3496 */ 3497 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3498 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3499 ret = 0; 3500 goto out; 3501 } 3502 3503 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3504 &left_gen, NULL, NULL, NULL, NULL); 3505 if (ret < 0) 3506 goto out; 3507 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3508 &right_gen, NULL, NULL, NULL, NULL); 3509 if (ret < 0) { 3510 if (ret == -ENOENT) 3511 ret = 0; 3512 goto out; 3513 } 3514 3515 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3516 if (right_gen != left_gen) { 3517 ret = 0; 3518 goto out; 3519 } 3520 3521 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3522 if (wdm && !wdm->orphanized) { 3523 ret = add_pending_dir_move(sctx, 3524 sctx->cur_ino, 3525 sctx->cur_inode_gen, 3526 di_key.objectid, 3527 &sctx->new_refs, 3528 &sctx->deleted_refs, 3529 is_orphan); 3530 if (!ret) 3531 ret = 1; 3532 } 3533 out: 3534 btrfs_free_path(path); 3535 return ret; 3536 } 3537 3538 /* 3539 * Check if ino ino1 is an ancestor of inode ino2 in the given root. 3540 * Return 1 if true, 0 if false and < 0 on error. 3541 */ 3542 static int is_ancestor(struct btrfs_root *root, 3543 const u64 ino1, 3544 const u64 ino1_gen, 3545 const u64 ino2, 3546 struct fs_path *fs_path) 3547 { 3548 u64 ino = ino2; 3549 3550 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3551 int ret; 3552 u64 parent; 3553 u64 parent_gen; 3554 3555 fs_path_reset(fs_path); 3556 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3557 if (ret < 0) { 3558 if (ret == -ENOENT && ino == ino2) 3559 ret = 0; 3560 return ret; 3561 } 3562 if (parent == ino1) 3563 return parent_gen == ino1_gen ? 1 : 0; 3564 ino = parent; 3565 } 3566 return 0; 3567 } 3568 3569 static int wait_for_parent_move(struct send_ctx *sctx, 3570 struct recorded_ref *parent_ref, 3571 const bool is_orphan) 3572 { 3573 int ret = 0; 3574 u64 ino = parent_ref->dir; 3575 u64 ino_gen = parent_ref->dir_gen; 3576 u64 parent_ino_before, parent_ino_after; 3577 struct fs_path *path_before = NULL; 3578 struct fs_path *path_after = NULL; 3579 int len1, len2; 3580 3581 path_after = fs_path_alloc(); 3582 path_before = fs_path_alloc(); 3583 if (!path_after || !path_before) { 3584 ret = -ENOMEM; 3585 goto out; 3586 } 3587 3588 /* 3589 * Our current directory inode may not yet be renamed/moved because some 3590 * ancestor (immediate or not) has to be renamed/moved first. So find if 3591 * such ancestor exists and make sure our own rename/move happens after 3592 * that ancestor is processed to avoid path build infinite loops (done 3593 * at get_cur_path()). 3594 */ 3595 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3596 u64 parent_ino_after_gen; 3597 3598 if (is_waiting_for_move(sctx, ino)) { 3599 /* 3600 * If the current inode is an ancestor of ino in the 3601 * parent root, we need to delay the rename of the 3602 * current inode, otherwise don't delayed the rename 3603 * because we can end up with a circular dependency 3604 * of renames, resulting in some directories never 3605 * getting the respective rename operations issued in 3606 * the send stream or getting into infinite path build 3607 * loops. 3608 */ 3609 ret = is_ancestor(sctx->parent_root, 3610 sctx->cur_ino, sctx->cur_inode_gen, 3611 ino, path_before); 3612 if (ret) 3613 break; 3614 } 3615 3616 fs_path_reset(path_before); 3617 fs_path_reset(path_after); 3618 3619 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3620 &parent_ino_after_gen, path_after); 3621 if (ret < 0) 3622 goto out; 3623 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3624 NULL, path_before); 3625 if (ret < 0 && ret != -ENOENT) { 3626 goto out; 3627 } else if (ret == -ENOENT) { 3628 ret = 0; 3629 break; 3630 } 3631 3632 len1 = fs_path_len(path_before); 3633 len2 = fs_path_len(path_after); 3634 if (ino > sctx->cur_ino && 3635 (parent_ino_before != parent_ino_after || len1 != len2 || 3636 memcmp(path_before->start, path_after->start, len1))) { 3637 u64 parent_ino_gen; 3638 3639 ret = get_inode_info(sctx->parent_root, ino, NULL, 3640 &parent_ino_gen, NULL, NULL, NULL, 3641 NULL); 3642 if (ret < 0) 3643 goto out; 3644 if (ino_gen == parent_ino_gen) { 3645 ret = 1; 3646 break; 3647 } 3648 } 3649 ino = parent_ino_after; 3650 ino_gen = parent_ino_after_gen; 3651 } 3652 3653 out: 3654 fs_path_free(path_before); 3655 fs_path_free(path_after); 3656 3657 if (ret == 1) { 3658 ret = add_pending_dir_move(sctx, 3659 sctx->cur_ino, 3660 sctx->cur_inode_gen, 3661 ino, 3662 &sctx->new_refs, 3663 &sctx->deleted_refs, 3664 is_orphan); 3665 if (!ret) 3666 ret = 1; 3667 } 3668 3669 return ret; 3670 } 3671 3672 /* 3673 * This does all the move/link/unlink/rmdir magic. 3674 */ 3675 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3676 { 3677 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3678 int ret = 0; 3679 struct recorded_ref *cur; 3680 struct recorded_ref *cur2; 3681 struct list_head check_dirs; 3682 struct fs_path *valid_path = NULL; 3683 u64 ow_inode = 0; 3684 u64 ow_gen; 3685 int did_overwrite = 0; 3686 int is_orphan = 0; 3687 u64 last_dir_ino_rm = 0; 3688 bool can_rename = true; 3689 3690 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3691 3692 /* 3693 * This should never happen as the root dir always has the same ref 3694 * which is always '..' 3695 */ 3696 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3697 INIT_LIST_HEAD(&check_dirs); 3698 3699 valid_path = fs_path_alloc(); 3700 if (!valid_path) { 3701 ret = -ENOMEM; 3702 goto out; 3703 } 3704 3705 /* 3706 * First, check if the first ref of the current inode was overwritten 3707 * before. If yes, we know that the current inode was already orphanized 3708 * and thus use the orphan name. If not, we can use get_cur_path to 3709 * get the path of the first ref as it would like while receiving at 3710 * this point in time. 3711 * New inodes are always orphan at the beginning, so force to use the 3712 * orphan name in this case. 3713 * The first ref is stored in valid_path and will be updated if it 3714 * gets moved around. 3715 */ 3716 if (!sctx->cur_inode_new) { 3717 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3718 sctx->cur_inode_gen); 3719 if (ret < 0) 3720 goto out; 3721 if (ret) 3722 did_overwrite = 1; 3723 } 3724 if (sctx->cur_inode_new || did_overwrite) { 3725 ret = gen_unique_name(sctx, sctx->cur_ino, 3726 sctx->cur_inode_gen, valid_path); 3727 if (ret < 0) 3728 goto out; 3729 is_orphan = 1; 3730 } else { 3731 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3732 valid_path); 3733 if (ret < 0) 3734 goto out; 3735 } 3736 3737 list_for_each_entry(cur, &sctx->new_refs, list) { 3738 /* 3739 * We may have refs where the parent directory does not exist 3740 * yet. This happens if the parent directories inum is higher 3741 * the the current inum. To handle this case, we create the 3742 * parent directory out of order. But we need to check if this 3743 * did already happen before due to other refs in the same dir. 3744 */ 3745 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3746 if (ret < 0) 3747 goto out; 3748 if (ret == inode_state_will_create) { 3749 ret = 0; 3750 /* 3751 * First check if any of the current inodes refs did 3752 * already create the dir. 3753 */ 3754 list_for_each_entry(cur2, &sctx->new_refs, list) { 3755 if (cur == cur2) 3756 break; 3757 if (cur2->dir == cur->dir) { 3758 ret = 1; 3759 break; 3760 } 3761 } 3762 3763 /* 3764 * If that did not happen, check if a previous inode 3765 * did already create the dir. 3766 */ 3767 if (!ret) 3768 ret = did_create_dir(sctx, cur->dir); 3769 if (ret < 0) 3770 goto out; 3771 if (!ret) { 3772 ret = send_create_inode(sctx, cur->dir); 3773 if (ret < 0) 3774 goto out; 3775 } 3776 } 3777 3778 /* 3779 * Check if this new ref would overwrite the first ref of 3780 * another unprocessed inode. If yes, orphanize the 3781 * overwritten inode. If we find an overwritten ref that is 3782 * not the first ref, simply unlink it. 3783 */ 3784 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3785 cur->name, cur->name_len, 3786 &ow_inode, &ow_gen); 3787 if (ret < 0) 3788 goto out; 3789 if (ret) { 3790 ret = is_first_ref(sctx->parent_root, 3791 ow_inode, cur->dir, cur->name, 3792 cur->name_len); 3793 if (ret < 0) 3794 goto out; 3795 if (ret) { 3796 struct name_cache_entry *nce; 3797 struct waiting_dir_move *wdm; 3798 3799 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3800 cur->full_path); 3801 if (ret < 0) 3802 goto out; 3803 3804 /* 3805 * If ow_inode has its rename operation delayed 3806 * make sure that its orphanized name is used in 3807 * the source path when performing its rename 3808 * operation. 3809 */ 3810 if (is_waiting_for_move(sctx, ow_inode)) { 3811 wdm = get_waiting_dir_move(sctx, 3812 ow_inode); 3813 ASSERT(wdm); 3814 wdm->orphanized = true; 3815 } 3816 3817 /* 3818 * Make sure we clear our orphanized inode's 3819 * name from the name cache. This is because the 3820 * inode ow_inode might be an ancestor of some 3821 * other inode that will be orphanized as well 3822 * later and has an inode number greater than 3823 * sctx->send_progress. We need to prevent 3824 * future name lookups from using the old name 3825 * and get instead the orphan name. 3826 */ 3827 nce = name_cache_search(sctx, ow_inode, ow_gen); 3828 if (nce) { 3829 name_cache_delete(sctx, nce); 3830 kfree(nce); 3831 } 3832 3833 /* 3834 * ow_inode might currently be an ancestor of 3835 * cur_ino, therefore compute valid_path (the 3836 * current path of cur_ino) again because it 3837 * might contain the pre-orphanization name of 3838 * ow_inode, which is no longer valid. 3839 */ 3840 fs_path_reset(valid_path); 3841 ret = get_cur_path(sctx, sctx->cur_ino, 3842 sctx->cur_inode_gen, valid_path); 3843 if (ret < 0) 3844 goto out; 3845 } else { 3846 ret = send_unlink(sctx, cur->full_path); 3847 if (ret < 0) 3848 goto out; 3849 } 3850 } 3851 3852 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3853 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3854 if (ret < 0) 3855 goto out; 3856 if (ret == 1) { 3857 can_rename = false; 3858 *pending_move = 1; 3859 } 3860 } 3861 3862 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 3863 can_rename) { 3864 ret = wait_for_parent_move(sctx, cur, is_orphan); 3865 if (ret < 0) 3866 goto out; 3867 if (ret == 1) { 3868 can_rename = false; 3869 *pending_move = 1; 3870 } 3871 } 3872 3873 /* 3874 * link/move the ref to the new place. If we have an orphan 3875 * inode, move it and update valid_path. If not, link or move 3876 * it depending on the inode mode. 3877 */ 3878 if (is_orphan && can_rename) { 3879 ret = send_rename(sctx, valid_path, cur->full_path); 3880 if (ret < 0) 3881 goto out; 3882 is_orphan = 0; 3883 ret = fs_path_copy(valid_path, cur->full_path); 3884 if (ret < 0) 3885 goto out; 3886 } else if (can_rename) { 3887 if (S_ISDIR(sctx->cur_inode_mode)) { 3888 /* 3889 * Dirs can't be linked, so move it. For moved 3890 * dirs, we always have one new and one deleted 3891 * ref. The deleted ref is ignored later. 3892 */ 3893 ret = send_rename(sctx, valid_path, 3894 cur->full_path); 3895 if (!ret) 3896 ret = fs_path_copy(valid_path, 3897 cur->full_path); 3898 if (ret < 0) 3899 goto out; 3900 } else { 3901 ret = send_link(sctx, cur->full_path, 3902 valid_path); 3903 if (ret < 0) 3904 goto out; 3905 } 3906 } 3907 ret = dup_ref(cur, &check_dirs); 3908 if (ret < 0) 3909 goto out; 3910 } 3911 3912 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 3913 /* 3914 * Check if we can already rmdir the directory. If not, 3915 * orphanize it. For every dir item inside that gets deleted 3916 * later, we do this check again and rmdir it then if possible. 3917 * See the use of check_dirs for more details. 3918 */ 3919 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3920 sctx->cur_ino); 3921 if (ret < 0) 3922 goto out; 3923 if (ret) { 3924 ret = send_rmdir(sctx, valid_path); 3925 if (ret < 0) 3926 goto out; 3927 } else if (!is_orphan) { 3928 ret = orphanize_inode(sctx, sctx->cur_ino, 3929 sctx->cur_inode_gen, valid_path); 3930 if (ret < 0) 3931 goto out; 3932 is_orphan = 1; 3933 } 3934 3935 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3936 ret = dup_ref(cur, &check_dirs); 3937 if (ret < 0) 3938 goto out; 3939 } 3940 } else if (S_ISDIR(sctx->cur_inode_mode) && 3941 !list_empty(&sctx->deleted_refs)) { 3942 /* 3943 * We have a moved dir. Add the old parent to check_dirs 3944 */ 3945 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 3946 list); 3947 ret = dup_ref(cur, &check_dirs); 3948 if (ret < 0) 3949 goto out; 3950 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 3951 /* 3952 * We have a non dir inode. Go through all deleted refs and 3953 * unlink them if they were not already overwritten by other 3954 * inodes. 3955 */ 3956 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3957 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3958 sctx->cur_ino, sctx->cur_inode_gen, 3959 cur->name, cur->name_len); 3960 if (ret < 0) 3961 goto out; 3962 if (!ret) { 3963 ret = send_unlink(sctx, cur->full_path); 3964 if (ret < 0) 3965 goto out; 3966 } 3967 ret = dup_ref(cur, &check_dirs); 3968 if (ret < 0) 3969 goto out; 3970 } 3971 /* 3972 * If the inode is still orphan, unlink the orphan. This may 3973 * happen when a previous inode did overwrite the first ref 3974 * of this inode and no new refs were added for the current 3975 * inode. Unlinking does not mean that the inode is deleted in 3976 * all cases. There may still be links to this inode in other 3977 * places. 3978 */ 3979 if (is_orphan) { 3980 ret = send_unlink(sctx, valid_path); 3981 if (ret < 0) 3982 goto out; 3983 } 3984 } 3985 3986 /* 3987 * We did collect all parent dirs where cur_inode was once located. We 3988 * now go through all these dirs and check if they are pending for 3989 * deletion and if it's finally possible to perform the rmdir now. 3990 * We also update the inode stats of the parent dirs here. 3991 */ 3992 list_for_each_entry(cur, &check_dirs, list) { 3993 /* 3994 * In case we had refs into dirs that were not processed yet, 3995 * we don't need to do the utime and rmdir logic for these dirs. 3996 * The dir will be processed later. 3997 */ 3998 if (cur->dir > sctx->cur_ino) 3999 continue; 4000 4001 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4002 if (ret < 0) 4003 goto out; 4004 4005 if (ret == inode_state_did_create || 4006 ret == inode_state_no_change) { 4007 /* TODO delayed utimes */ 4008 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4009 if (ret < 0) 4010 goto out; 4011 } else if (ret == inode_state_did_delete && 4012 cur->dir != last_dir_ino_rm) { 4013 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4014 sctx->cur_ino); 4015 if (ret < 0) 4016 goto out; 4017 if (ret) { 4018 ret = get_cur_path(sctx, cur->dir, 4019 cur->dir_gen, valid_path); 4020 if (ret < 0) 4021 goto out; 4022 ret = send_rmdir(sctx, valid_path); 4023 if (ret < 0) 4024 goto out; 4025 last_dir_ino_rm = cur->dir; 4026 } 4027 } 4028 } 4029 4030 ret = 0; 4031 4032 out: 4033 __free_recorded_refs(&check_dirs); 4034 free_recorded_refs(sctx); 4035 fs_path_free(valid_path); 4036 return ret; 4037 } 4038 4039 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index, 4040 struct fs_path *name, void *ctx, struct list_head *refs) 4041 { 4042 int ret = 0; 4043 struct send_ctx *sctx = ctx; 4044 struct fs_path *p; 4045 u64 gen; 4046 4047 p = fs_path_alloc(); 4048 if (!p) 4049 return -ENOMEM; 4050 4051 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4052 NULL, NULL); 4053 if (ret < 0) 4054 goto out; 4055 4056 ret = get_cur_path(sctx, dir, gen, p); 4057 if (ret < 0) 4058 goto out; 4059 ret = fs_path_add_path(p, name); 4060 if (ret < 0) 4061 goto out; 4062 4063 ret = __record_ref(refs, dir, gen, p); 4064 4065 out: 4066 if (ret) 4067 fs_path_free(p); 4068 return ret; 4069 } 4070 4071 static int __record_new_ref(int num, u64 dir, int index, 4072 struct fs_path *name, 4073 void *ctx) 4074 { 4075 struct send_ctx *sctx = ctx; 4076 return record_ref(sctx->send_root, num, dir, index, name, 4077 ctx, &sctx->new_refs); 4078 } 4079 4080 4081 static int __record_deleted_ref(int num, u64 dir, int index, 4082 struct fs_path *name, 4083 void *ctx) 4084 { 4085 struct send_ctx *sctx = ctx; 4086 return record_ref(sctx->parent_root, num, dir, index, name, 4087 ctx, &sctx->deleted_refs); 4088 } 4089 4090 static int record_new_ref(struct send_ctx *sctx) 4091 { 4092 int ret; 4093 4094 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4095 sctx->cmp_key, 0, __record_new_ref, sctx); 4096 if (ret < 0) 4097 goto out; 4098 ret = 0; 4099 4100 out: 4101 return ret; 4102 } 4103 4104 static int record_deleted_ref(struct send_ctx *sctx) 4105 { 4106 int ret; 4107 4108 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4109 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4110 if (ret < 0) 4111 goto out; 4112 ret = 0; 4113 4114 out: 4115 return ret; 4116 } 4117 4118 struct find_ref_ctx { 4119 u64 dir; 4120 u64 dir_gen; 4121 struct btrfs_root *root; 4122 struct fs_path *name; 4123 int found_idx; 4124 }; 4125 4126 static int __find_iref(int num, u64 dir, int index, 4127 struct fs_path *name, 4128 void *ctx_) 4129 { 4130 struct find_ref_ctx *ctx = ctx_; 4131 u64 dir_gen; 4132 int ret; 4133 4134 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4135 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4136 /* 4137 * To avoid doing extra lookups we'll only do this if everything 4138 * else matches. 4139 */ 4140 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4141 NULL, NULL, NULL); 4142 if (ret) 4143 return ret; 4144 if (dir_gen != ctx->dir_gen) 4145 return 0; 4146 ctx->found_idx = num; 4147 return 1; 4148 } 4149 return 0; 4150 } 4151 4152 static int find_iref(struct btrfs_root *root, 4153 struct btrfs_path *path, 4154 struct btrfs_key *key, 4155 u64 dir, u64 dir_gen, struct fs_path *name) 4156 { 4157 int ret; 4158 struct find_ref_ctx ctx; 4159 4160 ctx.dir = dir; 4161 ctx.name = name; 4162 ctx.dir_gen = dir_gen; 4163 ctx.found_idx = -1; 4164 ctx.root = root; 4165 4166 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4167 if (ret < 0) 4168 return ret; 4169 4170 if (ctx.found_idx == -1) 4171 return -ENOENT; 4172 4173 return ctx.found_idx; 4174 } 4175 4176 static int __record_changed_new_ref(int num, u64 dir, int index, 4177 struct fs_path *name, 4178 void *ctx) 4179 { 4180 u64 dir_gen; 4181 int ret; 4182 struct send_ctx *sctx = ctx; 4183 4184 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4185 NULL, NULL, NULL); 4186 if (ret) 4187 return ret; 4188 4189 ret = find_iref(sctx->parent_root, sctx->right_path, 4190 sctx->cmp_key, dir, dir_gen, name); 4191 if (ret == -ENOENT) 4192 ret = __record_new_ref(num, dir, index, name, sctx); 4193 else if (ret > 0) 4194 ret = 0; 4195 4196 return ret; 4197 } 4198 4199 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4200 struct fs_path *name, 4201 void *ctx) 4202 { 4203 u64 dir_gen; 4204 int ret; 4205 struct send_ctx *sctx = ctx; 4206 4207 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4208 NULL, NULL, NULL); 4209 if (ret) 4210 return ret; 4211 4212 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4213 dir, dir_gen, name); 4214 if (ret == -ENOENT) 4215 ret = __record_deleted_ref(num, dir, index, name, sctx); 4216 else if (ret > 0) 4217 ret = 0; 4218 4219 return ret; 4220 } 4221 4222 static int record_changed_ref(struct send_ctx *sctx) 4223 { 4224 int ret = 0; 4225 4226 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4227 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4228 if (ret < 0) 4229 goto out; 4230 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4231 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4232 if (ret < 0) 4233 goto out; 4234 ret = 0; 4235 4236 out: 4237 return ret; 4238 } 4239 4240 /* 4241 * Record and process all refs at once. Needed when an inode changes the 4242 * generation number, which means that it was deleted and recreated. 4243 */ 4244 static int process_all_refs(struct send_ctx *sctx, 4245 enum btrfs_compare_tree_result cmd) 4246 { 4247 int ret; 4248 struct btrfs_root *root; 4249 struct btrfs_path *path; 4250 struct btrfs_key key; 4251 struct btrfs_key found_key; 4252 struct extent_buffer *eb; 4253 int slot; 4254 iterate_inode_ref_t cb; 4255 int pending_move = 0; 4256 4257 path = alloc_path_for_send(); 4258 if (!path) 4259 return -ENOMEM; 4260 4261 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4262 root = sctx->send_root; 4263 cb = __record_new_ref; 4264 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4265 root = sctx->parent_root; 4266 cb = __record_deleted_ref; 4267 } else { 4268 btrfs_err(sctx->send_root->fs_info, 4269 "Wrong command %d in process_all_refs", cmd); 4270 ret = -EINVAL; 4271 goto out; 4272 } 4273 4274 key.objectid = sctx->cmp_key->objectid; 4275 key.type = BTRFS_INODE_REF_KEY; 4276 key.offset = 0; 4277 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4278 if (ret < 0) 4279 goto out; 4280 4281 while (1) { 4282 eb = path->nodes[0]; 4283 slot = path->slots[0]; 4284 if (slot >= btrfs_header_nritems(eb)) { 4285 ret = btrfs_next_leaf(root, path); 4286 if (ret < 0) 4287 goto out; 4288 else if (ret > 0) 4289 break; 4290 continue; 4291 } 4292 4293 btrfs_item_key_to_cpu(eb, &found_key, slot); 4294 4295 if (found_key.objectid != key.objectid || 4296 (found_key.type != BTRFS_INODE_REF_KEY && 4297 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4298 break; 4299 4300 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4301 if (ret < 0) 4302 goto out; 4303 4304 path->slots[0]++; 4305 } 4306 btrfs_release_path(path); 4307 4308 /* 4309 * We don't actually care about pending_move as we are simply 4310 * re-creating this inode and will be rename'ing it into place once we 4311 * rename the parent directory. 4312 */ 4313 ret = process_recorded_refs(sctx, &pending_move); 4314 out: 4315 btrfs_free_path(path); 4316 return ret; 4317 } 4318 4319 static int send_set_xattr(struct send_ctx *sctx, 4320 struct fs_path *path, 4321 const char *name, int name_len, 4322 const char *data, int data_len) 4323 { 4324 int ret = 0; 4325 4326 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4327 if (ret < 0) 4328 goto out; 4329 4330 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4331 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4332 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4333 4334 ret = send_cmd(sctx); 4335 4336 tlv_put_failure: 4337 out: 4338 return ret; 4339 } 4340 4341 static int send_remove_xattr(struct send_ctx *sctx, 4342 struct fs_path *path, 4343 const char *name, int name_len) 4344 { 4345 int ret = 0; 4346 4347 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4348 if (ret < 0) 4349 goto out; 4350 4351 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4352 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4353 4354 ret = send_cmd(sctx); 4355 4356 tlv_put_failure: 4357 out: 4358 return ret; 4359 } 4360 4361 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4362 const char *name, int name_len, 4363 const char *data, int data_len, 4364 u8 type, void *ctx) 4365 { 4366 int ret; 4367 struct send_ctx *sctx = ctx; 4368 struct fs_path *p; 4369 struct posix_acl_xattr_header dummy_acl; 4370 4371 p = fs_path_alloc(); 4372 if (!p) 4373 return -ENOMEM; 4374 4375 /* 4376 * This hack is needed because empty acls are stored as zero byte 4377 * data in xattrs. Problem with that is, that receiving these zero byte 4378 * acls will fail later. To fix this, we send a dummy acl list that 4379 * only contains the version number and no entries. 4380 */ 4381 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4382 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4383 if (data_len == 0) { 4384 dummy_acl.a_version = 4385 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4386 data = (char *)&dummy_acl; 4387 data_len = sizeof(dummy_acl); 4388 } 4389 } 4390 4391 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4392 if (ret < 0) 4393 goto out; 4394 4395 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4396 4397 out: 4398 fs_path_free(p); 4399 return ret; 4400 } 4401 4402 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4403 const char *name, int name_len, 4404 const char *data, int data_len, 4405 u8 type, void *ctx) 4406 { 4407 int ret; 4408 struct send_ctx *sctx = ctx; 4409 struct fs_path *p; 4410 4411 p = fs_path_alloc(); 4412 if (!p) 4413 return -ENOMEM; 4414 4415 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4416 if (ret < 0) 4417 goto out; 4418 4419 ret = send_remove_xattr(sctx, p, name, name_len); 4420 4421 out: 4422 fs_path_free(p); 4423 return ret; 4424 } 4425 4426 static int process_new_xattr(struct send_ctx *sctx) 4427 { 4428 int ret = 0; 4429 4430 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4431 sctx->cmp_key, __process_new_xattr, sctx); 4432 4433 return ret; 4434 } 4435 4436 static int process_deleted_xattr(struct send_ctx *sctx) 4437 { 4438 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4439 sctx->cmp_key, __process_deleted_xattr, sctx); 4440 } 4441 4442 struct find_xattr_ctx { 4443 const char *name; 4444 int name_len; 4445 int found_idx; 4446 char *found_data; 4447 int found_data_len; 4448 }; 4449 4450 static int __find_xattr(int num, struct btrfs_key *di_key, 4451 const char *name, int name_len, 4452 const char *data, int data_len, 4453 u8 type, void *vctx) 4454 { 4455 struct find_xattr_ctx *ctx = vctx; 4456 4457 if (name_len == ctx->name_len && 4458 strncmp(name, ctx->name, name_len) == 0) { 4459 ctx->found_idx = num; 4460 ctx->found_data_len = data_len; 4461 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4462 if (!ctx->found_data) 4463 return -ENOMEM; 4464 return 1; 4465 } 4466 return 0; 4467 } 4468 4469 static int find_xattr(struct btrfs_root *root, 4470 struct btrfs_path *path, 4471 struct btrfs_key *key, 4472 const char *name, int name_len, 4473 char **data, int *data_len) 4474 { 4475 int ret; 4476 struct find_xattr_ctx ctx; 4477 4478 ctx.name = name; 4479 ctx.name_len = name_len; 4480 ctx.found_idx = -1; 4481 ctx.found_data = NULL; 4482 ctx.found_data_len = 0; 4483 4484 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 4485 if (ret < 0) 4486 return ret; 4487 4488 if (ctx.found_idx == -1) 4489 return -ENOENT; 4490 if (data) { 4491 *data = ctx.found_data; 4492 *data_len = ctx.found_data_len; 4493 } else { 4494 kfree(ctx.found_data); 4495 } 4496 return ctx.found_idx; 4497 } 4498 4499 4500 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4501 const char *name, int name_len, 4502 const char *data, int data_len, 4503 u8 type, void *ctx) 4504 { 4505 int ret; 4506 struct send_ctx *sctx = ctx; 4507 char *found_data = NULL; 4508 int found_data_len = 0; 4509 4510 ret = find_xattr(sctx->parent_root, sctx->right_path, 4511 sctx->cmp_key, name, name_len, &found_data, 4512 &found_data_len); 4513 if (ret == -ENOENT) { 4514 ret = __process_new_xattr(num, di_key, name, name_len, data, 4515 data_len, type, ctx); 4516 } else if (ret >= 0) { 4517 if (data_len != found_data_len || 4518 memcmp(data, found_data, data_len)) { 4519 ret = __process_new_xattr(num, di_key, name, name_len, 4520 data, data_len, type, ctx); 4521 } else { 4522 ret = 0; 4523 } 4524 } 4525 4526 kfree(found_data); 4527 return ret; 4528 } 4529 4530 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4531 const char *name, int name_len, 4532 const char *data, int data_len, 4533 u8 type, void *ctx) 4534 { 4535 int ret; 4536 struct send_ctx *sctx = ctx; 4537 4538 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4539 name, name_len, NULL, NULL); 4540 if (ret == -ENOENT) 4541 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4542 data_len, type, ctx); 4543 else if (ret >= 0) 4544 ret = 0; 4545 4546 return ret; 4547 } 4548 4549 static int process_changed_xattr(struct send_ctx *sctx) 4550 { 4551 int ret = 0; 4552 4553 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4554 sctx->cmp_key, __process_changed_new_xattr, sctx); 4555 if (ret < 0) 4556 goto out; 4557 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4558 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 4559 4560 out: 4561 return ret; 4562 } 4563 4564 static int process_all_new_xattrs(struct send_ctx *sctx) 4565 { 4566 int ret; 4567 struct btrfs_root *root; 4568 struct btrfs_path *path; 4569 struct btrfs_key key; 4570 struct btrfs_key found_key; 4571 struct extent_buffer *eb; 4572 int slot; 4573 4574 path = alloc_path_for_send(); 4575 if (!path) 4576 return -ENOMEM; 4577 4578 root = sctx->send_root; 4579 4580 key.objectid = sctx->cmp_key->objectid; 4581 key.type = BTRFS_XATTR_ITEM_KEY; 4582 key.offset = 0; 4583 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4584 if (ret < 0) 4585 goto out; 4586 4587 while (1) { 4588 eb = path->nodes[0]; 4589 slot = path->slots[0]; 4590 if (slot >= btrfs_header_nritems(eb)) { 4591 ret = btrfs_next_leaf(root, path); 4592 if (ret < 0) { 4593 goto out; 4594 } else if (ret > 0) { 4595 ret = 0; 4596 break; 4597 } 4598 continue; 4599 } 4600 4601 btrfs_item_key_to_cpu(eb, &found_key, slot); 4602 if (found_key.objectid != key.objectid || 4603 found_key.type != key.type) { 4604 ret = 0; 4605 goto out; 4606 } 4607 4608 ret = iterate_dir_item(root, path, &found_key, 4609 __process_new_xattr, sctx); 4610 if (ret < 0) 4611 goto out; 4612 4613 path->slots[0]++; 4614 } 4615 4616 out: 4617 btrfs_free_path(path); 4618 return ret; 4619 } 4620 4621 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4622 { 4623 struct btrfs_root *root = sctx->send_root; 4624 struct btrfs_fs_info *fs_info = root->fs_info; 4625 struct inode *inode; 4626 struct page *page; 4627 char *addr; 4628 struct btrfs_key key; 4629 pgoff_t index = offset >> PAGE_SHIFT; 4630 pgoff_t last_index; 4631 unsigned pg_offset = offset & ~PAGE_MASK; 4632 ssize_t ret = 0; 4633 4634 key.objectid = sctx->cur_ino; 4635 key.type = BTRFS_INODE_ITEM_KEY; 4636 key.offset = 0; 4637 4638 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4639 if (IS_ERR(inode)) 4640 return PTR_ERR(inode); 4641 4642 if (offset + len > i_size_read(inode)) { 4643 if (offset > i_size_read(inode)) 4644 len = 0; 4645 else 4646 len = offset - i_size_read(inode); 4647 } 4648 if (len == 0) 4649 goto out; 4650 4651 last_index = (offset + len - 1) >> PAGE_SHIFT; 4652 4653 /* initial readahead */ 4654 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4655 file_ra_state_init(&sctx->ra, inode->i_mapping); 4656 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index, 4657 last_index - index + 1); 4658 4659 while (index <= last_index) { 4660 unsigned cur_len = min_t(unsigned, len, 4661 PAGE_SIZE - pg_offset); 4662 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL); 4663 if (!page) { 4664 ret = -ENOMEM; 4665 break; 4666 } 4667 4668 if (!PageUptodate(page)) { 4669 btrfs_readpage(NULL, page); 4670 lock_page(page); 4671 if (!PageUptodate(page)) { 4672 unlock_page(page); 4673 put_page(page); 4674 ret = -EIO; 4675 break; 4676 } 4677 } 4678 4679 addr = kmap(page); 4680 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4681 kunmap(page); 4682 unlock_page(page); 4683 put_page(page); 4684 index++; 4685 pg_offset = 0; 4686 len -= cur_len; 4687 ret += cur_len; 4688 } 4689 out: 4690 iput(inode); 4691 return ret; 4692 } 4693 4694 /* 4695 * Read some bytes from the current inode/file and send a write command to 4696 * user space. 4697 */ 4698 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4699 { 4700 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4701 int ret = 0; 4702 struct fs_path *p; 4703 ssize_t num_read = 0; 4704 4705 p = fs_path_alloc(); 4706 if (!p) 4707 return -ENOMEM; 4708 4709 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4710 4711 num_read = fill_read_buf(sctx, offset, len); 4712 if (num_read <= 0) { 4713 if (num_read < 0) 4714 ret = num_read; 4715 goto out; 4716 } 4717 4718 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4719 if (ret < 0) 4720 goto out; 4721 4722 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4723 if (ret < 0) 4724 goto out; 4725 4726 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4727 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4728 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4729 4730 ret = send_cmd(sctx); 4731 4732 tlv_put_failure: 4733 out: 4734 fs_path_free(p); 4735 if (ret < 0) 4736 return ret; 4737 return num_read; 4738 } 4739 4740 /* 4741 * Send a clone command to user space. 4742 */ 4743 static int send_clone(struct send_ctx *sctx, 4744 u64 offset, u32 len, 4745 struct clone_root *clone_root) 4746 { 4747 int ret = 0; 4748 struct fs_path *p; 4749 u64 gen; 4750 4751 btrfs_debug(sctx->send_root->fs_info, 4752 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4753 offset, len, clone_root->root->objectid, clone_root->ino, 4754 clone_root->offset); 4755 4756 p = fs_path_alloc(); 4757 if (!p) 4758 return -ENOMEM; 4759 4760 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4761 if (ret < 0) 4762 goto out; 4763 4764 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4765 if (ret < 0) 4766 goto out; 4767 4768 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4769 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4770 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4771 4772 if (clone_root->root == sctx->send_root) { 4773 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4774 &gen, NULL, NULL, NULL, NULL); 4775 if (ret < 0) 4776 goto out; 4777 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4778 } else { 4779 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4780 } 4781 if (ret < 0) 4782 goto out; 4783 4784 /* 4785 * If the parent we're using has a received_uuid set then use that as 4786 * our clone source as that is what we will look for when doing a 4787 * receive. 4788 * 4789 * This covers the case that we create a snapshot off of a received 4790 * subvolume and then use that as the parent and try to receive on a 4791 * different host. 4792 */ 4793 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4794 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4795 clone_root->root->root_item.received_uuid); 4796 else 4797 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4798 clone_root->root->root_item.uuid); 4799 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4800 le64_to_cpu(clone_root->root->root_item.ctransid)); 4801 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4802 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4803 clone_root->offset); 4804 4805 ret = send_cmd(sctx); 4806 4807 tlv_put_failure: 4808 out: 4809 fs_path_free(p); 4810 return ret; 4811 } 4812 4813 /* 4814 * Send an update extent command to user space. 4815 */ 4816 static int send_update_extent(struct send_ctx *sctx, 4817 u64 offset, u32 len) 4818 { 4819 int ret = 0; 4820 struct fs_path *p; 4821 4822 p = fs_path_alloc(); 4823 if (!p) 4824 return -ENOMEM; 4825 4826 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4827 if (ret < 0) 4828 goto out; 4829 4830 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4831 if (ret < 0) 4832 goto out; 4833 4834 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4835 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4836 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4837 4838 ret = send_cmd(sctx); 4839 4840 tlv_put_failure: 4841 out: 4842 fs_path_free(p); 4843 return ret; 4844 } 4845 4846 static int send_hole(struct send_ctx *sctx, u64 end) 4847 { 4848 struct fs_path *p = NULL; 4849 u64 offset = sctx->cur_inode_last_extent; 4850 u64 len; 4851 int ret = 0; 4852 4853 p = fs_path_alloc(); 4854 if (!p) 4855 return -ENOMEM; 4856 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4857 if (ret < 0) 4858 goto tlv_put_failure; 4859 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 4860 while (offset < end) { 4861 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 4862 4863 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4864 if (ret < 0) 4865 break; 4866 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4867 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4868 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 4869 ret = send_cmd(sctx); 4870 if (ret < 0) 4871 break; 4872 offset += len; 4873 } 4874 tlv_put_failure: 4875 fs_path_free(p); 4876 return ret; 4877 } 4878 4879 static int send_extent_data(struct send_ctx *sctx, 4880 const u64 offset, 4881 const u64 len) 4882 { 4883 u64 sent = 0; 4884 4885 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 4886 return send_update_extent(sctx, offset, len); 4887 4888 while (sent < len) { 4889 u64 size = len - sent; 4890 int ret; 4891 4892 if (size > BTRFS_SEND_READ_SIZE) 4893 size = BTRFS_SEND_READ_SIZE; 4894 ret = send_write(sctx, offset + sent, size); 4895 if (ret < 0) 4896 return ret; 4897 if (!ret) 4898 break; 4899 sent += ret; 4900 } 4901 return 0; 4902 } 4903 4904 static int clone_range(struct send_ctx *sctx, 4905 struct clone_root *clone_root, 4906 const u64 disk_byte, 4907 u64 data_offset, 4908 u64 offset, 4909 u64 len) 4910 { 4911 struct btrfs_path *path; 4912 struct btrfs_key key; 4913 int ret; 4914 4915 path = alloc_path_for_send(); 4916 if (!path) 4917 return -ENOMEM; 4918 4919 /* 4920 * We can't send a clone operation for the entire range if we find 4921 * extent items in the respective range in the source file that 4922 * refer to different extents or if we find holes. 4923 * So check for that and do a mix of clone and regular write/copy 4924 * operations if needed. 4925 * 4926 * Example: 4927 * 4928 * mkfs.btrfs -f /dev/sda 4929 * mount /dev/sda /mnt 4930 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 4931 * cp --reflink=always /mnt/foo /mnt/bar 4932 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 4933 * btrfs subvolume snapshot -r /mnt /mnt/snap 4934 * 4935 * If when we send the snapshot and we are processing file bar (which 4936 * has a higher inode number than foo) we blindly send a clone operation 4937 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 4938 * a file bar that matches the content of file foo - iow, doesn't match 4939 * the content from bar in the original filesystem. 4940 */ 4941 key.objectid = clone_root->ino; 4942 key.type = BTRFS_EXTENT_DATA_KEY; 4943 key.offset = clone_root->offset; 4944 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 4945 if (ret < 0) 4946 goto out; 4947 if (ret > 0 && path->slots[0] > 0) { 4948 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 4949 if (key.objectid == clone_root->ino && 4950 key.type == BTRFS_EXTENT_DATA_KEY) 4951 path->slots[0]--; 4952 } 4953 4954 while (true) { 4955 struct extent_buffer *leaf = path->nodes[0]; 4956 int slot = path->slots[0]; 4957 struct btrfs_file_extent_item *ei; 4958 u8 type; 4959 u64 ext_len; 4960 u64 clone_len; 4961 4962 if (slot >= btrfs_header_nritems(leaf)) { 4963 ret = btrfs_next_leaf(clone_root->root, path); 4964 if (ret < 0) 4965 goto out; 4966 else if (ret > 0) 4967 break; 4968 continue; 4969 } 4970 4971 btrfs_item_key_to_cpu(leaf, &key, slot); 4972 4973 /* 4974 * We might have an implicit trailing hole (NO_HOLES feature 4975 * enabled). We deal with it after leaving this loop. 4976 */ 4977 if (key.objectid != clone_root->ino || 4978 key.type != BTRFS_EXTENT_DATA_KEY) 4979 break; 4980 4981 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4982 type = btrfs_file_extent_type(leaf, ei); 4983 if (type == BTRFS_FILE_EXTENT_INLINE) { 4984 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei); 4985 ext_len = PAGE_ALIGN(ext_len); 4986 } else { 4987 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 4988 } 4989 4990 if (key.offset + ext_len <= clone_root->offset) 4991 goto next; 4992 4993 if (key.offset > clone_root->offset) { 4994 /* Implicit hole, NO_HOLES feature enabled. */ 4995 u64 hole_len = key.offset - clone_root->offset; 4996 4997 if (hole_len > len) 4998 hole_len = len; 4999 ret = send_extent_data(sctx, offset, hole_len); 5000 if (ret < 0) 5001 goto out; 5002 5003 len -= hole_len; 5004 if (len == 0) 5005 break; 5006 offset += hole_len; 5007 clone_root->offset += hole_len; 5008 data_offset += hole_len; 5009 } 5010 5011 if (key.offset >= clone_root->offset + len) 5012 break; 5013 5014 clone_len = min_t(u64, ext_len, len); 5015 5016 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5017 btrfs_file_extent_offset(leaf, ei) == data_offset) 5018 ret = send_clone(sctx, offset, clone_len, clone_root); 5019 else 5020 ret = send_extent_data(sctx, offset, clone_len); 5021 5022 if (ret < 0) 5023 goto out; 5024 5025 len -= clone_len; 5026 if (len == 0) 5027 break; 5028 offset += clone_len; 5029 clone_root->offset += clone_len; 5030 data_offset += clone_len; 5031 next: 5032 path->slots[0]++; 5033 } 5034 5035 if (len > 0) 5036 ret = send_extent_data(sctx, offset, len); 5037 else 5038 ret = 0; 5039 out: 5040 btrfs_free_path(path); 5041 return ret; 5042 } 5043 5044 static int send_write_or_clone(struct send_ctx *sctx, 5045 struct btrfs_path *path, 5046 struct btrfs_key *key, 5047 struct clone_root *clone_root) 5048 { 5049 int ret = 0; 5050 struct btrfs_file_extent_item *ei; 5051 u64 offset = key->offset; 5052 u64 len; 5053 u8 type; 5054 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5055 5056 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5057 struct btrfs_file_extent_item); 5058 type = btrfs_file_extent_type(path->nodes[0], ei); 5059 if (type == BTRFS_FILE_EXTENT_INLINE) { 5060 len = btrfs_file_extent_inline_len(path->nodes[0], 5061 path->slots[0], ei); 5062 /* 5063 * it is possible the inline item won't cover the whole page, 5064 * but there may be items after this page. Make 5065 * sure to send the whole thing 5066 */ 5067 len = PAGE_ALIGN(len); 5068 } else { 5069 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5070 } 5071 5072 if (offset + len > sctx->cur_inode_size) 5073 len = sctx->cur_inode_size - offset; 5074 if (len == 0) { 5075 ret = 0; 5076 goto out; 5077 } 5078 5079 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5080 u64 disk_byte; 5081 u64 data_offset; 5082 5083 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5084 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5085 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5086 offset, len); 5087 } else { 5088 ret = send_extent_data(sctx, offset, len); 5089 } 5090 out: 5091 return ret; 5092 } 5093 5094 static int is_extent_unchanged(struct send_ctx *sctx, 5095 struct btrfs_path *left_path, 5096 struct btrfs_key *ekey) 5097 { 5098 int ret = 0; 5099 struct btrfs_key key; 5100 struct btrfs_path *path = NULL; 5101 struct extent_buffer *eb; 5102 int slot; 5103 struct btrfs_key found_key; 5104 struct btrfs_file_extent_item *ei; 5105 u64 left_disknr; 5106 u64 right_disknr; 5107 u64 left_offset; 5108 u64 right_offset; 5109 u64 left_offset_fixed; 5110 u64 left_len; 5111 u64 right_len; 5112 u64 left_gen; 5113 u64 right_gen; 5114 u8 left_type; 5115 u8 right_type; 5116 5117 path = alloc_path_for_send(); 5118 if (!path) 5119 return -ENOMEM; 5120 5121 eb = left_path->nodes[0]; 5122 slot = left_path->slots[0]; 5123 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5124 left_type = btrfs_file_extent_type(eb, ei); 5125 5126 if (left_type != BTRFS_FILE_EXTENT_REG) { 5127 ret = 0; 5128 goto out; 5129 } 5130 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5131 left_len = btrfs_file_extent_num_bytes(eb, ei); 5132 left_offset = btrfs_file_extent_offset(eb, ei); 5133 left_gen = btrfs_file_extent_generation(eb, ei); 5134 5135 /* 5136 * Following comments will refer to these graphics. L is the left 5137 * extents which we are checking at the moment. 1-8 are the right 5138 * extents that we iterate. 5139 * 5140 * |-----L-----| 5141 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5142 * 5143 * |-----L-----| 5144 * |--1--|-2b-|...(same as above) 5145 * 5146 * Alternative situation. Happens on files where extents got split. 5147 * |-----L-----| 5148 * |-----------7-----------|-6-| 5149 * 5150 * Alternative situation. Happens on files which got larger. 5151 * |-----L-----| 5152 * |-8-| 5153 * Nothing follows after 8. 5154 */ 5155 5156 key.objectid = ekey->objectid; 5157 key.type = BTRFS_EXTENT_DATA_KEY; 5158 key.offset = ekey->offset; 5159 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5160 if (ret < 0) 5161 goto out; 5162 if (ret) { 5163 ret = 0; 5164 goto out; 5165 } 5166 5167 /* 5168 * Handle special case where the right side has no extents at all. 5169 */ 5170 eb = path->nodes[0]; 5171 slot = path->slots[0]; 5172 btrfs_item_key_to_cpu(eb, &found_key, slot); 5173 if (found_key.objectid != key.objectid || 5174 found_key.type != key.type) { 5175 /* If we're a hole then just pretend nothing changed */ 5176 ret = (left_disknr) ? 0 : 1; 5177 goto out; 5178 } 5179 5180 /* 5181 * We're now on 2a, 2b or 7. 5182 */ 5183 key = found_key; 5184 while (key.offset < ekey->offset + left_len) { 5185 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5186 right_type = btrfs_file_extent_type(eb, ei); 5187 if (right_type != BTRFS_FILE_EXTENT_REG) { 5188 ret = 0; 5189 goto out; 5190 } 5191 5192 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5193 right_len = btrfs_file_extent_num_bytes(eb, ei); 5194 right_offset = btrfs_file_extent_offset(eb, ei); 5195 right_gen = btrfs_file_extent_generation(eb, ei); 5196 5197 /* 5198 * Are we at extent 8? If yes, we know the extent is changed. 5199 * This may only happen on the first iteration. 5200 */ 5201 if (found_key.offset + right_len <= ekey->offset) { 5202 /* If we're a hole just pretend nothing changed */ 5203 ret = (left_disknr) ? 0 : 1; 5204 goto out; 5205 } 5206 5207 left_offset_fixed = left_offset; 5208 if (key.offset < ekey->offset) { 5209 /* Fix the right offset for 2a and 7. */ 5210 right_offset += ekey->offset - key.offset; 5211 } else { 5212 /* Fix the left offset for all behind 2a and 2b */ 5213 left_offset_fixed += key.offset - ekey->offset; 5214 } 5215 5216 /* 5217 * Check if we have the same extent. 5218 */ 5219 if (left_disknr != right_disknr || 5220 left_offset_fixed != right_offset || 5221 left_gen != right_gen) { 5222 ret = 0; 5223 goto out; 5224 } 5225 5226 /* 5227 * Go to the next extent. 5228 */ 5229 ret = btrfs_next_item(sctx->parent_root, path); 5230 if (ret < 0) 5231 goto out; 5232 if (!ret) { 5233 eb = path->nodes[0]; 5234 slot = path->slots[0]; 5235 btrfs_item_key_to_cpu(eb, &found_key, slot); 5236 } 5237 if (ret || found_key.objectid != key.objectid || 5238 found_key.type != key.type) { 5239 key.offset += right_len; 5240 break; 5241 } 5242 if (found_key.offset != key.offset + right_len) { 5243 ret = 0; 5244 goto out; 5245 } 5246 key = found_key; 5247 } 5248 5249 /* 5250 * We're now behind the left extent (treat as unchanged) or at the end 5251 * of the right side (treat as changed). 5252 */ 5253 if (key.offset >= ekey->offset + left_len) 5254 ret = 1; 5255 else 5256 ret = 0; 5257 5258 5259 out: 5260 btrfs_free_path(path); 5261 return ret; 5262 } 5263 5264 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5265 { 5266 struct btrfs_path *path; 5267 struct btrfs_root *root = sctx->send_root; 5268 struct btrfs_file_extent_item *fi; 5269 struct btrfs_key key; 5270 u64 extent_end; 5271 u8 type; 5272 int ret; 5273 5274 path = alloc_path_for_send(); 5275 if (!path) 5276 return -ENOMEM; 5277 5278 sctx->cur_inode_last_extent = 0; 5279 5280 key.objectid = sctx->cur_ino; 5281 key.type = BTRFS_EXTENT_DATA_KEY; 5282 key.offset = offset; 5283 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5284 if (ret < 0) 5285 goto out; 5286 ret = 0; 5287 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5288 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5289 goto out; 5290 5291 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5292 struct btrfs_file_extent_item); 5293 type = btrfs_file_extent_type(path->nodes[0], fi); 5294 if (type == BTRFS_FILE_EXTENT_INLINE) { 5295 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5296 path->slots[0], fi); 5297 extent_end = ALIGN(key.offset + size, 5298 sctx->send_root->fs_info->sectorsize); 5299 } else { 5300 extent_end = key.offset + 5301 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5302 } 5303 sctx->cur_inode_last_extent = extent_end; 5304 out: 5305 btrfs_free_path(path); 5306 return ret; 5307 } 5308 5309 static int range_is_hole_in_parent(struct send_ctx *sctx, 5310 const u64 start, 5311 const u64 end) 5312 { 5313 struct btrfs_path *path; 5314 struct btrfs_key key; 5315 struct btrfs_root *root = sctx->parent_root; 5316 u64 search_start = start; 5317 int ret; 5318 5319 path = alloc_path_for_send(); 5320 if (!path) 5321 return -ENOMEM; 5322 5323 key.objectid = sctx->cur_ino; 5324 key.type = BTRFS_EXTENT_DATA_KEY; 5325 key.offset = search_start; 5326 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5327 if (ret < 0) 5328 goto out; 5329 if (ret > 0 && path->slots[0] > 0) 5330 path->slots[0]--; 5331 5332 while (search_start < end) { 5333 struct extent_buffer *leaf = path->nodes[0]; 5334 int slot = path->slots[0]; 5335 struct btrfs_file_extent_item *fi; 5336 u64 extent_end; 5337 5338 if (slot >= btrfs_header_nritems(leaf)) { 5339 ret = btrfs_next_leaf(root, path); 5340 if (ret < 0) 5341 goto out; 5342 else if (ret > 0) 5343 break; 5344 continue; 5345 } 5346 5347 btrfs_item_key_to_cpu(leaf, &key, slot); 5348 if (key.objectid < sctx->cur_ino || 5349 key.type < BTRFS_EXTENT_DATA_KEY) 5350 goto next; 5351 if (key.objectid > sctx->cur_ino || 5352 key.type > BTRFS_EXTENT_DATA_KEY || 5353 key.offset >= end) 5354 break; 5355 5356 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5357 if (btrfs_file_extent_type(leaf, fi) == 5358 BTRFS_FILE_EXTENT_INLINE) { 5359 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi); 5360 5361 extent_end = ALIGN(key.offset + size, 5362 root->fs_info->sectorsize); 5363 } else { 5364 extent_end = key.offset + 5365 btrfs_file_extent_num_bytes(leaf, fi); 5366 } 5367 if (extent_end <= start) 5368 goto next; 5369 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5370 search_start = extent_end; 5371 goto next; 5372 } 5373 ret = 0; 5374 goto out; 5375 next: 5376 path->slots[0]++; 5377 } 5378 ret = 1; 5379 out: 5380 btrfs_free_path(path); 5381 return ret; 5382 } 5383 5384 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5385 struct btrfs_key *key) 5386 { 5387 struct btrfs_file_extent_item *fi; 5388 u64 extent_end; 5389 u8 type; 5390 int ret = 0; 5391 5392 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5393 return 0; 5394 5395 if (sctx->cur_inode_last_extent == (u64)-1) { 5396 ret = get_last_extent(sctx, key->offset - 1); 5397 if (ret) 5398 return ret; 5399 } 5400 5401 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5402 struct btrfs_file_extent_item); 5403 type = btrfs_file_extent_type(path->nodes[0], fi); 5404 if (type == BTRFS_FILE_EXTENT_INLINE) { 5405 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5406 path->slots[0], fi); 5407 extent_end = ALIGN(key->offset + size, 5408 sctx->send_root->fs_info->sectorsize); 5409 } else { 5410 extent_end = key->offset + 5411 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5412 } 5413 5414 if (path->slots[0] == 0 && 5415 sctx->cur_inode_last_extent < key->offset) { 5416 /* 5417 * We might have skipped entire leafs that contained only 5418 * file extent items for our current inode. These leafs have 5419 * a generation number smaller (older) than the one in the 5420 * current leaf and the leaf our last extent came from, and 5421 * are located between these 2 leafs. 5422 */ 5423 ret = get_last_extent(sctx, key->offset - 1); 5424 if (ret) 5425 return ret; 5426 } 5427 5428 if (sctx->cur_inode_last_extent < key->offset) { 5429 ret = range_is_hole_in_parent(sctx, 5430 sctx->cur_inode_last_extent, 5431 key->offset); 5432 if (ret < 0) 5433 return ret; 5434 else if (ret == 0) 5435 ret = send_hole(sctx, key->offset); 5436 else 5437 ret = 0; 5438 } 5439 sctx->cur_inode_last_extent = extent_end; 5440 return ret; 5441 } 5442 5443 static int process_extent(struct send_ctx *sctx, 5444 struct btrfs_path *path, 5445 struct btrfs_key *key) 5446 { 5447 struct clone_root *found_clone = NULL; 5448 int ret = 0; 5449 5450 if (S_ISLNK(sctx->cur_inode_mode)) 5451 return 0; 5452 5453 if (sctx->parent_root && !sctx->cur_inode_new) { 5454 ret = is_extent_unchanged(sctx, path, key); 5455 if (ret < 0) 5456 goto out; 5457 if (ret) { 5458 ret = 0; 5459 goto out_hole; 5460 } 5461 } else { 5462 struct btrfs_file_extent_item *ei; 5463 u8 type; 5464 5465 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5466 struct btrfs_file_extent_item); 5467 type = btrfs_file_extent_type(path->nodes[0], ei); 5468 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5469 type == BTRFS_FILE_EXTENT_REG) { 5470 /* 5471 * The send spec does not have a prealloc command yet, 5472 * so just leave a hole for prealloc'ed extents until 5473 * we have enough commands queued up to justify rev'ing 5474 * the send spec. 5475 */ 5476 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5477 ret = 0; 5478 goto out; 5479 } 5480 5481 /* Have a hole, just skip it. */ 5482 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5483 ret = 0; 5484 goto out; 5485 } 5486 } 5487 } 5488 5489 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5490 sctx->cur_inode_size, &found_clone); 5491 if (ret != -ENOENT && ret < 0) 5492 goto out; 5493 5494 ret = send_write_or_clone(sctx, path, key, found_clone); 5495 if (ret) 5496 goto out; 5497 out_hole: 5498 ret = maybe_send_hole(sctx, path, key); 5499 out: 5500 return ret; 5501 } 5502 5503 static int process_all_extents(struct send_ctx *sctx) 5504 { 5505 int ret; 5506 struct btrfs_root *root; 5507 struct btrfs_path *path; 5508 struct btrfs_key key; 5509 struct btrfs_key found_key; 5510 struct extent_buffer *eb; 5511 int slot; 5512 5513 root = sctx->send_root; 5514 path = alloc_path_for_send(); 5515 if (!path) 5516 return -ENOMEM; 5517 5518 key.objectid = sctx->cmp_key->objectid; 5519 key.type = BTRFS_EXTENT_DATA_KEY; 5520 key.offset = 0; 5521 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5522 if (ret < 0) 5523 goto out; 5524 5525 while (1) { 5526 eb = path->nodes[0]; 5527 slot = path->slots[0]; 5528 5529 if (slot >= btrfs_header_nritems(eb)) { 5530 ret = btrfs_next_leaf(root, path); 5531 if (ret < 0) { 5532 goto out; 5533 } else if (ret > 0) { 5534 ret = 0; 5535 break; 5536 } 5537 continue; 5538 } 5539 5540 btrfs_item_key_to_cpu(eb, &found_key, slot); 5541 5542 if (found_key.objectid != key.objectid || 5543 found_key.type != key.type) { 5544 ret = 0; 5545 goto out; 5546 } 5547 5548 ret = process_extent(sctx, path, &found_key); 5549 if (ret < 0) 5550 goto out; 5551 5552 path->slots[0]++; 5553 } 5554 5555 out: 5556 btrfs_free_path(path); 5557 return ret; 5558 } 5559 5560 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5561 int *pending_move, 5562 int *refs_processed) 5563 { 5564 int ret = 0; 5565 5566 if (sctx->cur_ino == 0) 5567 goto out; 5568 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5569 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5570 goto out; 5571 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5572 goto out; 5573 5574 ret = process_recorded_refs(sctx, pending_move); 5575 if (ret < 0) 5576 goto out; 5577 5578 *refs_processed = 1; 5579 out: 5580 return ret; 5581 } 5582 5583 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5584 { 5585 int ret = 0; 5586 u64 left_mode; 5587 u64 left_uid; 5588 u64 left_gid; 5589 u64 right_mode; 5590 u64 right_uid; 5591 u64 right_gid; 5592 int need_chmod = 0; 5593 int need_chown = 0; 5594 int pending_move = 0; 5595 int refs_processed = 0; 5596 5597 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5598 &refs_processed); 5599 if (ret < 0) 5600 goto out; 5601 5602 /* 5603 * We have processed the refs and thus need to advance send_progress. 5604 * Now, calls to get_cur_xxx will take the updated refs of the current 5605 * inode into account. 5606 * 5607 * On the other hand, if our current inode is a directory and couldn't 5608 * be moved/renamed because its parent was renamed/moved too and it has 5609 * a higher inode number, we can only move/rename our current inode 5610 * after we moved/renamed its parent. Therefore in this case operate on 5611 * the old path (pre move/rename) of our current inode, and the 5612 * move/rename will be performed later. 5613 */ 5614 if (refs_processed && !pending_move) 5615 sctx->send_progress = sctx->cur_ino + 1; 5616 5617 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5618 goto out; 5619 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5620 goto out; 5621 5622 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5623 &left_mode, &left_uid, &left_gid, NULL); 5624 if (ret < 0) 5625 goto out; 5626 5627 if (!sctx->parent_root || sctx->cur_inode_new) { 5628 need_chown = 1; 5629 if (!S_ISLNK(sctx->cur_inode_mode)) 5630 need_chmod = 1; 5631 } else { 5632 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5633 NULL, NULL, &right_mode, &right_uid, 5634 &right_gid, NULL); 5635 if (ret < 0) 5636 goto out; 5637 5638 if (left_uid != right_uid || left_gid != right_gid) 5639 need_chown = 1; 5640 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5641 need_chmod = 1; 5642 } 5643 5644 if (S_ISREG(sctx->cur_inode_mode)) { 5645 if (need_send_hole(sctx)) { 5646 if (sctx->cur_inode_last_extent == (u64)-1 || 5647 sctx->cur_inode_last_extent < 5648 sctx->cur_inode_size) { 5649 ret = get_last_extent(sctx, (u64)-1); 5650 if (ret) 5651 goto out; 5652 } 5653 if (sctx->cur_inode_last_extent < 5654 sctx->cur_inode_size) { 5655 ret = send_hole(sctx, sctx->cur_inode_size); 5656 if (ret) 5657 goto out; 5658 } 5659 } 5660 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5661 sctx->cur_inode_size); 5662 if (ret < 0) 5663 goto out; 5664 } 5665 5666 if (need_chown) { 5667 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5668 left_uid, left_gid); 5669 if (ret < 0) 5670 goto out; 5671 } 5672 if (need_chmod) { 5673 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5674 left_mode); 5675 if (ret < 0) 5676 goto out; 5677 } 5678 5679 /* 5680 * If other directory inodes depended on our current directory 5681 * inode's move/rename, now do their move/rename operations. 5682 */ 5683 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5684 ret = apply_children_dir_moves(sctx); 5685 if (ret) 5686 goto out; 5687 /* 5688 * Need to send that every time, no matter if it actually 5689 * changed between the two trees as we have done changes to 5690 * the inode before. If our inode is a directory and it's 5691 * waiting to be moved/renamed, we will send its utimes when 5692 * it's moved/renamed, therefore we don't need to do it here. 5693 */ 5694 sctx->send_progress = sctx->cur_ino + 1; 5695 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5696 if (ret < 0) 5697 goto out; 5698 } 5699 5700 out: 5701 return ret; 5702 } 5703 5704 static int changed_inode(struct send_ctx *sctx, 5705 enum btrfs_compare_tree_result result) 5706 { 5707 int ret = 0; 5708 struct btrfs_key *key = sctx->cmp_key; 5709 struct btrfs_inode_item *left_ii = NULL; 5710 struct btrfs_inode_item *right_ii = NULL; 5711 u64 left_gen = 0; 5712 u64 right_gen = 0; 5713 5714 sctx->cur_ino = key->objectid; 5715 sctx->cur_inode_new_gen = 0; 5716 sctx->cur_inode_last_extent = (u64)-1; 5717 5718 /* 5719 * Set send_progress to current inode. This will tell all get_cur_xxx 5720 * functions that the current inode's refs are not updated yet. Later, 5721 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5722 */ 5723 sctx->send_progress = sctx->cur_ino; 5724 5725 if (result == BTRFS_COMPARE_TREE_NEW || 5726 result == BTRFS_COMPARE_TREE_CHANGED) { 5727 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5728 sctx->left_path->slots[0], 5729 struct btrfs_inode_item); 5730 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5731 left_ii); 5732 } else { 5733 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5734 sctx->right_path->slots[0], 5735 struct btrfs_inode_item); 5736 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5737 right_ii); 5738 } 5739 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5740 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5741 sctx->right_path->slots[0], 5742 struct btrfs_inode_item); 5743 5744 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5745 right_ii); 5746 5747 /* 5748 * The cur_ino = root dir case is special here. We can't treat 5749 * the inode as deleted+reused because it would generate a 5750 * stream that tries to delete/mkdir the root dir. 5751 */ 5752 if (left_gen != right_gen && 5753 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5754 sctx->cur_inode_new_gen = 1; 5755 } 5756 5757 if (result == BTRFS_COMPARE_TREE_NEW) { 5758 sctx->cur_inode_gen = left_gen; 5759 sctx->cur_inode_new = 1; 5760 sctx->cur_inode_deleted = 0; 5761 sctx->cur_inode_size = btrfs_inode_size( 5762 sctx->left_path->nodes[0], left_ii); 5763 sctx->cur_inode_mode = btrfs_inode_mode( 5764 sctx->left_path->nodes[0], left_ii); 5765 sctx->cur_inode_rdev = btrfs_inode_rdev( 5766 sctx->left_path->nodes[0], left_ii); 5767 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5768 ret = send_create_inode_if_needed(sctx); 5769 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5770 sctx->cur_inode_gen = right_gen; 5771 sctx->cur_inode_new = 0; 5772 sctx->cur_inode_deleted = 1; 5773 sctx->cur_inode_size = btrfs_inode_size( 5774 sctx->right_path->nodes[0], right_ii); 5775 sctx->cur_inode_mode = btrfs_inode_mode( 5776 sctx->right_path->nodes[0], right_ii); 5777 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5778 /* 5779 * We need to do some special handling in case the inode was 5780 * reported as changed with a changed generation number. This 5781 * means that the original inode was deleted and new inode 5782 * reused the same inum. So we have to treat the old inode as 5783 * deleted and the new one as new. 5784 */ 5785 if (sctx->cur_inode_new_gen) { 5786 /* 5787 * First, process the inode as if it was deleted. 5788 */ 5789 sctx->cur_inode_gen = right_gen; 5790 sctx->cur_inode_new = 0; 5791 sctx->cur_inode_deleted = 1; 5792 sctx->cur_inode_size = btrfs_inode_size( 5793 sctx->right_path->nodes[0], right_ii); 5794 sctx->cur_inode_mode = btrfs_inode_mode( 5795 sctx->right_path->nodes[0], right_ii); 5796 ret = process_all_refs(sctx, 5797 BTRFS_COMPARE_TREE_DELETED); 5798 if (ret < 0) 5799 goto out; 5800 5801 /* 5802 * Now process the inode as if it was new. 5803 */ 5804 sctx->cur_inode_gen = left_gen; 5805 sctx->cur_inode_new = 1; 5806 sctx->cur_inode_deleted = 0; 5807 sctx->cur_inode_size = btrfs_inode_size( 5808 sctx->left_path->nodes[0], left_ii); 5809 sctx->cur_inode_mode = btrfs_inode_mode( 5810 sctx->left_path->nodes[0], left_ii); 5811 sctx->cur_inode_rdev = btrfs_inode_rdev( 5812 sctx->left_path->nodes[0], left_ii); 5813 ret = send_create_inode_if_needed(sctx); 5814 if (ret < 0) 5815 goto out; 5816 5817 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 5818 if (ret < 0) 5819 goto out; 5820 /* 5821 * Advance send_progress now as we did not get into 5822 * process_recorded_refs_if_needed in the new_gen case. 5823 */ 5824 sctx->send_progress = sctx->cur_ino + 1; 5825 5826 /* 5827 * Now process all extents and xattrs of the inode as if 5828 * they were all new. 5829 */ 5830 ret = process_all_extents(sctx); 5831 if (ret < 0) 5832 goto out; 5833 ret = process_all_new_xattrs(sctx); 5834 if (ret < 0) 5835 goto out; 5836 } else { 5837 sctx->cur_inode_gen = left_gen; 5838 sctx->cur_inode_new = 0; 5839 sctx->cur_inode_new_gen = 0; 5840 sctx->cur_inode_deleted = 0; 5841 sctx->cur_inode_size = btrfs_inode_size( 5842 sctx->left_path->nodes[0], left_ii); 5843 sctx->cur_inode_mode = btrfs_inode_mode( 5844 sctx->left_path->nodes[0], left_ii); 5845 } 5846 } 5847 5848 out: 5849 return ret; 5850 } 5851 5852 /* 5853 * We have to process new refs before deleted refs, but compare_trees gives us 5854 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 5855 * first and later process them in process_recorded_refs. 5856 * For the cur_inode_new_gen case, we skip recording completely because 5857 * changed_inode did already initiate processing of refs. The reason for this is 5858 * that in this case, compare_tree actually compares the refs of 2 different 5859 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 5860 * refs of the right tree as deleted and all refs of the left tree as new. 5861 */ 5862 static int changed_ref(struct send_ctx *sctx, 5863 enum btrfs_compare_tree_result result) 5864 { 5865 int ret = 0; 5866 5867 if (sctx->cur_ino != sctx->cmp_key->objectid) { 5868 inconsistent_snapshot_error(sctx, result, "reference"); 5869 return -EIO; 5870 } 5871 5872 if (!sctx->cur_inode_new_gen && 5873 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 5874 if (result == BTRFS_COMPARE_TREE_NEW) 5875 ret = record_new_ref(sctx); 5876 else if (result == BTRFS_COMPARE_TREE_DELETED) 5877 ret = record_deleted_ref(sctx); 5878 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5879 ret = record_changed_ref(sctx); 5880 } 5881 5882 return ret; 5883 } 5884 5885 /* 5886 * Process new/deleted/changed xattrs. We skip processing in the 5887 * cur_inode_new_gen case because changed_inode did already initiate processing 5888 * of xattrs. The reason is the same as in changed_ref 5889 */ 5890 static int changed_xattr(struct send_ctx *sctx, 5891 enum btrfs_compare_tree_result result) 5892 { 5893 int ret = 0; 5894 5895 if (sctx->cur_ino != sctx->cmp_key->objectid) { 5896 inconsistent_snapshot_error(sctx, result, "xattr"); 5897 return -EIO; 5898 } 5899 5900 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5901 if (result == BTRFS_COMPARE_TREE_NEW) 5902 ret = process_new_xattr(sctx); 5903 else if (result == BTRFS_COMPARE_TREE_DELETED) 5904 ret = process_deleted_xattr(sctx); 5905 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5906 ret = process_changed_xattr(sctx); 5907 } 5908 5909 return ret; 5910 } 5911 5912 /* 5913 * Process new/deleted/changed extents. We skip processing in the 5914 * cur_inode_new_gen case because changed_inode did already initiate processing 5915 * of extents. The reason is the same as in changed_ref 5916 */ 5917 static int changed_extent(struct send_ctx *sctx, 5918 enum btrfs_compare_tree_result result) 5919 { 5920 int ret = 0; 5921 5922 if (sctx->cur_ino != sctx->cmp_key->objectid) { 5923 5924 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5925 struct extent_buffer *leaf_l; 5926 struct extent_buffer *leaf_r; 5927 struct btrfs_file_extent_item *ei_l; 5928 struct btrfs_file_extent_item *ei_r; 5929 5930 leaf_l = sctx->left_path->nodes[0]; 5931 leaf_r = sctx->right_path->nodes[0]; 5932 ei_l = btrfs_item_ptr(leaf_l, 5933 sctx->left_path->slots[0], 5934 struct btrfs_file_extent_item); 5935 ei_r = btrfs_item_ptr(leaf_r, 5936 sctx->right_path->slots[0], 5937 struct btrfs_file_extent_item); 5938 5939 /* 5940 * We may have found an extent item that has changed 5941 * only its disk_bytenr field and the corresponding 5942 * inode item was not updated. This case happens due to 5943 * very specific timings during relocation when a leaf 5944 * that contains file extent items is COWed while 5945 * relocation is ongoing and its in the stage where it 5946 * updates data pointers. So when this happens we can 5947 * safely ignore it since we know it's the same extent, 5948 * but just at different logical and physical locations 5949 * (when an extent is fully replaced with a new one, we 5950 * know the generation number must have changed too, 5951 * since snapshot creation implies committing the current 5952 * transaction, and the inode item must have been updated 5953 * as well). 5954 * This replacement of the disk_bytenr happens at 5955 * relocation.c:replace_file_extents() through 5956 * relocation.c:btrfs_reloc_cow_block(). 5957 */ 5958 if (btrfs_file_extent_generation(leaf_l, ei_l) == 5959 btrfs_file_extent_generation(leaf_r, ei_r) && 5960 btrfs_file_extent_ram_bytes(leaf_l, ei_l) == 5961 btrfs_file_extent_ram_bytes(leaf_r, ei_r) && 5962 btrfs_file_extent_compression(leaf_l, ei_l) == 5963 btrfs_file_extent_compression(leaf_r, ei_r) && 5964 btrfs_file_extent_encryption(leaf_l, ei_l) == 5965 btrfs_file_extent_encryption(leaf_r, ei_r) && 5966 btrfs_file_extent_other_encoding(leaf_l, ei_l) == 5967 btrfs_file_extent_other_encoding(leaf_r, ei_r) && 5968 btrfs_file_extent_type(leaf_l, ei_l) == 5969 btrfs_file_extent_type(leaf_r, ei_r) && 5970 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) != 5971 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) && 5972 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) == 5973 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) && 5974 btrfs_file_extent_offset(leaf_l, ei_l) == 5975 btrfs_file_extent_offset(leaf_r, ei_r) && 5976 btrfs_file_extent_num_bytes(leaf_l, ei_l) == 5977 btrfs_file_extent_num_bytes(leaf_r, ei_r)) 5978 return 0; 5979 } 5980 5981 inconsistent_snapshot_error(sctx, result, "extent"); 5982 return -EIO; 5983 } 5984 5985 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5986 if (result != BTRFS_COMPARE_TREE_DELETED) 5987 ret = process_extent(sctx, sctx->left_path, 5988 sctx->cmp_key); 5989 } 5990 5991 return ret; 5992 } 5993 5994 static int dir_changed(struct send_ctx *sctx, u64 dir) 5995 { 5996 u64 orig_gen, new_gen; 5997 int ret; 5998 5999 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6000 NULL, NULL); 6001 if (ret) 6002 return ret; 6003 6004 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6005 NULL, NULL, NULL); 6006 if (ret) 6007 return ret; 6008 6009 return (orig_gen != new_gen) ? 1 : 0; 6010 } 6011 6012 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6013 struct btrfs_key *key) 6014 { 6015 struct btrfs_inode_extref *extref; 6016 struct extent_buffer *leaf; 6017 u64 dirid = 0, last_dirid = 0; 6018 unsigned long ptr; 6019 u32 item_size; 6020 u32 cur_offset = 0; 6021 int ref_name_len; 6022 int ret = 0; 6023 6024 /* Easy case, just check this one dirid */ 6025 if (key->type == BTRFS_INODE_REF_KEY) { 6026 dirid = key->offset; 6027 6028 ret = dir_changed(sctx, dirid); 6029 goto out; 6030 } 6031 6032 leaf = path->nodes[0]; 6033 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6034 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6035 while (cur_offset < item_size) { 6036 extref = (struct btrfs_inode_extref *)(ptr + 6037 cur_offset); 6038 dirid = btrfs_inode_extref_parent(leaf, extref); 6039 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6040 cur_offset += ref_name_len + sizeof(*extref); 6041 if (dirid == last_dirid) 6042 continue; 6043 ret = dir_changed(sctx, dirid); 6044 if (ret) 6045 break; 6046 last_dirid = dirid; 6047 } 6048 out: 6049 return ret; 6050 } 6051 6052 /* 6053 * Updates compare related fields in sctx and simply forwards to the actual 6054 * changed_xxx functions. 6055 */ 6056 static int changed_cb(struct btrfs_root *left_root, 6057 struct btrfs_root *right_root, 6058 struct btrfs_path *left_path, 6059 struct btrfs_path *right_path, 6060 struct btrfs_key *key, 6061 enum btrfs_compare_tree_result result, 6062 void *ctx) 6063 { 6064 int ret = 0; 6065 struct send_ctx *sctx = ctx; 6066 6067 if (result == BTRFS_COMPARE_TREE_SAME) { 6068 if (key->type == BTRFS_INODE_REF_KEY || 6069 key->type == BTRFS_INODE_EXTREF_KEY) { 6070 ret = compare_refs(sctx, left_path, key); 6071 if (!ret) 6072 return 0; 6073 if (ret < 0) 6074 return ret; 6075 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6076 return maybe_send_hole(sctx, left_path, key); 6077 } else { 6078 return 0; 6079 } 6080 result = BTRFS_COMPARE_TREE_CHANGED; 6081 ret = 0; 6082 } 6083 6084 sctx->left_path = left_path; 6085 sctx->right_path = right_path; 6086 sctx->cmp_key = key; 6087 6088 ret = finish_inode_if_needed(sctx, 0); 6089 if (ret < 0) 6090 goto out; 6091 6092 /* Ignore non-FS objects */ 6093 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6094 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6095 goto out; 6096 6097 if (key->type == BTRFS_INODE_ITEM_KEY) 6098 ret = changed_inode(sctx, result); 6099 else if (key->type == BTRFS_INODE_REF_KEY || 6100 key->type == BTRFS_INODE_EXTREF_KEY) 6101 ret = changed_ref(sctx, result); 6102 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6103 ret = changed_xattr(sctx, result); 6104 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6105 ret = changed_extent(sctx, result); 6106 6107 out: 6108 return ret; 6109 } 6110 6111 static int full_send_tree(struct send_ctx *sctx) 6112 { 6113 int ret; 6114 struct btrfs_root *send_root = sctx->send_root; 6115 struct btrfs_key key; 6116 struct btrfs_key found_key; 6117 struct btrfs_path *path; 6118 struct extent_buffer *eb; 6119 int slot; 6120 6121 path = alloc_path_for_send(); 6122 if (!path) 6123 return -ENOMEM; 6124 6125 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6126 key.type = BTRFS_INODE_ITEM_KEY; 6127 key.offset = 0; 6128 6129 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6130 if (ret < 0) 6131 goto out; 6132 if (ret) 6133 goto out_finish; 6134 6135 while (1) { 6136 eb = path->nodes[0]; 6137 slot = path->slots[0]; 6138 btrfs_item_key_to_cpu(eb, &found_key, slot); 6139 6140 ret = changed_cb(send_root, NULL, path, NULL, 6141 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 6142 if (ret < 0) 6143 goto out; 6144 6145 key.objectid = found_key.objectid; 6146 key.type = found_key.type; 6147 key.offset = found_key.offset + 1; 6148 6149 ret = btrfs_next_item(send_root, path); 6150 if (ret < 0) 6151 goto out; 6152 if (ret) { 6153 ret = 0; 6154 break; 6155 } 6156 } 6157 6158 out_finish: 6159 ret = finish_inode_if_needed(sctx, 1); 6160 6161 out: 6162 btrfs_free_path(path); 6163 return ret; 6164 } 6165 6166 static int send_subvol(struct send_ctx *sctx) 6167 { 6168 int ret; 6169 6170 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 6171 ret = send_header(sctx); 6172 if (ret < 0) 6173 goto out; 6174 } 6175 6176 ret = send_subvol_begin(sctx); 6177 if (ret < 0) 6178 goto out; 6179 6180 if (sctx->parent_root) { 6181 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 6182 changed_cb, sctx); 6183 if (ret < 0) 6184 goto out; 6185 ret = finish_inode_if_needed(sctx, 1); 6186 if (ret < 0) 6187 goto out; 6188 } else { 6189 ret = full_send_tree(sctx); 6190 if (ret < 0) 6191 goto out; 6192 } 6193 6194 out: 6195 free_recorded_refs(sctx); 6196 return ret; 6197 } 6198 6199 /* 6200 * If orphan cleanup did remove any orphans from a root, it means the tree 6201 * was modified and therefore the commit root is not the same as the current 6202 * root anymore. This is a problem, because send uses the commit root and 6203 * therefore can see inode items that don't exist in the current root anymore, 6204 * and for example make calls to btrfs_iget, which will do tree lookups based 6205 * on the current root and not on the commit root. Those lookups will fail, 6206 * returning a -ESTALE error, and making send fail with that error. So make 6207 * sure a send does not see any orphans we have just removed, and that it will 6208 * see the same inodes regardless of whether a transaction commit happened 6209 * before it started (meaning that the commit root will be the same as the 6210 * current root) or not. 6211 */ 6212 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 6213 { 6214 int i; 6215 struct btrfs_trans_handle *trans = NULL; 6216 6217 again: 6218 if (sctx->parent_root && 6219 sctx->parent_root->node != sctx->parent_root->commit_root) 6220 goto commit_trans; 6221 6222 for (i = 0; i < sctx->clone_roots_cnt; i++) 6223 if (sctx->clone_roots[i].root->node != 6224 sctx->clone_roots[i].root->commit_root) 6225 goto commit_trans; 6226 6227 if (trans) 6228 return btrfs_end_transaction(trans); 6229 6230 return 0; 6231 6232 commit_trans: 6233 /* Use any root, all fs roots will get their commit roots updated. */ 6234 if (!trans) { 6235 trans = btrfs_join_transaction(sctx->send_root); 6236 if (IS_ERR(trans)) 6237 return PTR_ERR(trans); 6238 goto again; 6239 } 6240 6241 return btrfs_commit_transaction(trans); 6242 } 6243 6244 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 6245 { 6246 spin_lock(&root->root_item_lock); 6247 root->send_in_progress--; 6248 /* 6249 * Not much left to do, we don't know why it's unbalanced and 6250 * can't blindly reset it to 0. 6251 */ 6252 if (root->send_in_progress < 0) 6253 btrfs_err(root->fs_info, 6254 "send_in_progres unbalanced %d root %llu", 6255 root->send_in_progress, root->root_key.objectid); 6256 spin_unlock(&root->root_item_lock); 6257 } 6258 6259 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 6260 { 6261 int ret = 0; 6262 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 6263 struct btrfs_fs_info *fs_info = send_root->fs_info; 6264 struct btrfs_root *clone_root; 6265 struct btrfs_ioctl_send_args *arg = NULL; 6266 struct btrfs_key key; 6267 struct send_ctx *sctx = NULL; 6268 u32 i; 6269 u64 *clone_sources_tmp = NULL; 6270 int clone_sources_to_rollback = 0; 6271 unsigned alloc_size; 6272 int sort_clone_roots = 0; 6273 int index; 6274 6275 if (!capable(CAP_SYS_ADMIN)) 6276 return -EPERM; 6277 6278 /* 6279 * The subvolume must remain read-only during send, protect against 6280 * making it RW. This also protects against deletion. 6281 */ 6282 spin_lock(&send_root->root_item_lock); 6283 send_root->send_in_progress++; 6284 spin_unlock(&send_root->root_item_lock); 6285 6286 /* 6287 * This is done when we lookup the root, it should already be complete 6288 * by the time we get here. 6289 */ 6290 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 6291 6292 /* 6293 * Userspace tools do the checks and warn the user if it's 6294 * not RO. 6295 */ 6296 if (!btrfs_root_readonly(send_root)) { 6297 ret = -EPERM; 6298 goto out; 6299 } 6300 6301 arg = memdup_user(arg_, sizeof(*arg)); 6302 if (IS_ERR(arg)) { 6303 ret = PTR_ERR(arg); 6304 arg = NULL; 6305 goto out; 6306 } 6307 6308 /* 6309 * Check that we don't overflow at later allocations, we request 6310 * clone_sources_count + 1 items, and compare to unsigned long inside 6311 * access_ok. 6312 */ 6313 if (arg->clone_sources_count > 6314 ULONG_MAX / sizeof(struct clone_root) - 1) { 6315 ret = -EINVAL; 6316 goto out; 6317 } 6318 6319 if (!access_ok(VERIFY_READ, arg->clone_sources, 6320 sizeof(*arg->clone_sources) * 6321 arg->clone_sources_count)) { 6322 ret = -EFAULT; 6323 goto out; 6324 } 6325 6326 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 6327 ret = -EINVAL; 6328 goto out; 6329 } 6330 6331 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 6332 if (!sctx) { 6333 ret = -ENOMEM; 6334 goto out; 6335 } 6336 6337 INIT_LIST_HEAD(&sctx->new_refs); 6338 INIT_LIST_HEAD(&sctx->deleted_refs); 6339 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 6340 INIT_LIST_HEAD(&sctx->name_cache_list); 6341 6342 sctx->flags = arg->flags; 6343 6344 sctx->send_filp = fget(arg->send_fd); 6345 if (!sctx->send_filp) { 6346 ret = -EBADF; 6347 goto out; 6348 } 6349 6350 sctx->send_root = send_root; 6351 /* 6352 * Unlikely but possible, if the subvolume is marked for deletion but 6353 * is slow to remove the directory entry, send can still be started 6354 */ 6355 if (btrfs_root_dead(sctx->send_root)) { 6356 ret = -EPERM; 6357 goto out; 6358 } 6359 6360 sctx->clone_roots_cnt = arg->clone_sources_count; 6361 6362 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 6363 sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN); 6364 if (!sctx->send_buf) { 6365 sctx->send_buf = vmalloc(sctx->send_max_size); 6366 if (!sctx->send_buf) { 6367 ret = -ENOMEM; 6368 goto out; 6369 } 6370 } 6371 6372 sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN); 6373 if (!sctx->read_buf) { 6374 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 6375 if (!sctx->read_buf) { 6376 ret = -ENOMEM; 6377 goto out; 6378 } 6379 } 6380 6381 sctx->pending_dir_moves = RB_ROOT; 6382 sctx->waiting_dir_moves = RB_ROOT; 6383 sctx->orphan_dirs = RB_ROOT; 6384 6385 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 6386 6387 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN); 6388 if (!sctx->clone_roots) { 6389 sctx->clone_roots = vzalloc(alloc_size); 6390 if (!sctx->clone_roots) { 6391 ret = -ENOMEM; 6392 goto out; 6393 } 6394 } 6395 6396 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 6397 6398 if (arg->clone_sources_count) { 6399 clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN); 6400 if (!clone_sources_tmp) { 6401 clone_sources_tmp = vmalloc(alloc_size); 6402 if (!clone_sources_tmp) { 6403 ret = -ENOMEM; 6404 goto out; 6405 } 6406 } 6407 6408 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 6409 alloc_size); 6410 if (ret) { 6411 ret = -EFAULT; 6412 goto out; 6413 } 6414 6415 for (i = 0; i < arg->clone_sources_count; i++) { 6416 key.objectid = clone_sources_tmp[i]; 6417 key.type = BTRFS_ROOT_ITEM_KEY; 6418 key.offset = (u64)-1; 6419 6420 index = srcu_read_lock(&fs_info->subvol_srcu); 6421 6422 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 6423 if (IS_ERR(clone_root)) { 6424 srcu_read_unlock(&fs_info->subvol_srcu, index); 6425 ret = PTR_ERR(clone_root); 6426 goto out; 6427 } 6428 spin_lock(&clone_root->root_item_lock); 6429 if (!btrfs_root_readonly(clone_root) || 6430 btrfs_root_dead(clone_root)) { 6431 spin_unlock(&clone_root->root_item_lock); 6432 srcu_read_unlock(&fs_info->subvol_srcu, index); 6433 ret = -EPERM; 6434 goto out; 6435 } 6436 clone_root->send_in_progress++; 6437 spin_unlock(&clone_root->root_item_lock); 6438 srcu_read_unlock(&fs_info->subvol_srcu, index); 6439 6440 sctx->clone_roots[i].root = clone_root; 6441 clone_sources_to_rollback = i + 1; 6442 } 6443 kvfree(clone_sources_tmp); 6444 clone_sources_tmp = NULL; 6445 } 6446 6447 if (arg->parent_root) { 6448 key.objectid = arg->parent_root; 6449 key.type = BTRFS_ROOT_ITEM_KEY; 6450 key.offset = (u64)-1; 6451 6452 index = srcu_read_lock(&fs_info->subvol_srcu); 6453 6454 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 6455 if (IS_ERR(sctx->parent_root)) { 6456 srcu_read_unlock(&fs_info->subvol_srcu, index); 6457 ret = PTR_ERR(sctx->parent_root); 6458 goto out; 6459 } 6460 6461 spin_lock(&sctx->parent_root->root_item_lock); 6462 sctx->parent_root->send_in_progress++; 6463 if (!btrfs_root_readonly(sctx->parent_root) || 6464 btrfs_root_dead(sctx->parent_root)) { 6465 spin_unlock(&sctx->parent_root->root_item_lock); 6466 srcu_read_unlock(&fs_info->subvol_srcu, index); 6467 ret = -EPERM; 6468 goto out; 6469 } 6470 spin_unlock(&sctx->parent_root->root_item_lock); 6471 6472 srcu_read_unlock(&fs_info->subvol_srcu, index); 6473 } 6474 6475 /* 6476 * Clones from send_root are allowed, but only if the clone source 6477 * is behind the current send position. This is checked while searching 6478 * for possible clone sources. 6479 */ 6480 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 6481 6482 /* We do a bsearch later */ 6483 sort(sctx->clone_roots, sctx->clone_roots_cnt, 6484 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 6485 NULL); 6486 sort_clone_roots = 1; 6487 6488 ret = ensure_commit_roots_uptodate(sctx); 6489 if (ret) 6490 goto out; 6491 6492 current->journal_info = BTRFS_SEND_TRANS_STUB; 6493 ret = send_subvol(sctx); 6494 current->journal_info = NULL; 6495 if (ret < 0) 6496 goto out; 6497 6498 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 6499 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 6500 if (ret < 0) 6501 goto out; 6502 ret = send_cmd(sctx); 6503 if (ret < 0) 6504 goto out; 6505 } 6506 6507 out: 6508 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 6509 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 6510 struct rb_node *n; 6511 struct pending_dir_move *pm; 6512 6513 n = rb_first(&sctx->pending_dir_moves); 6514 pm = rb_entry(n, struct pending_dir_move, node); 6515 while (!list_empty(&pm->list)) { 6516 struct pending_dir_move *pm2; 6517 6518 pm2 = list_first_entry(&pm->list, 6519 struct pending_dir_move, list); 6520 free_pending_move(sctx, pm2); 6521 } 6522 free_pending_move(sctx, pm); 6523 } 6524 6525 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 6526 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 6527 struct rb_node *n; 6528 struct waiting_dir_move *dm; 6529 6530 n = rb_first(&sctx->waiting_dir_moves); 6531 dm = rb_entry(n, struct waiting_dir_move, node); 6532 rb_erase(&dm->node, &sctx->waiting_dir_moves); 6533 kfree(dm); 6534 } 6535 6536 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 6537 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 6538 struct rb_node *n; 6539 struct orphan_dir_info *odi; 6540 6541 n = rb_first(&sctx->orphan_dirs); 6542 odi = rb_entry(n, struct orphan_dir_info, node); 6543 free_orphan_dir_info(sctx, odi); 6544 } 6545 6546 if (sort_clone_roots) { 6547 for (i = 0; i < sctx->clone_roots_cnt; i++) 6548 btrfs_root_dec_send_in_progress( 6549 sctx->clone_roots[i].root); 6550 } else { 6551 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 6552 btrfs_root_dec_send_in_progress( 6553 sctx->clone_roots[i].root); 6554 6555 btrfs_root_dec_send_in_progress(send_root); 6556 } 6557 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 6558 btrfs_root_dec_send_in_progress(sctx->parent_root); 6559 6560 kfree(arg); 6561 kvfree(clone_sources_tmp); 6562 6563 if (sctx) { 6564 if (sctx->send_filp) 6565 fput(sctx->send_filp); 6566 6567 kvfree(sctx->clone_roots); 6568 kvfree(sctx->send_buf); 6569 kvfree(sctx->read_buf); 6570 6571 name_cache_free(sctx); 6572 6573 kfree(sctx); 6574 } 6575 6576 return ret; 6577 } 6578