1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/vmalloc.h> 28 #include <linux/string.h> 29 #include <linux/compat.h> 30 31 #include "send.h" 32 #include "backref.h" 33 #include "hash.h" 34 #include "locking.h" 35 #include "disk-io.h" 36 #include "btrfs_inode.h" 37 #include "transaction.h" 38 #include "compression.h" 39 40 /* 41 * A fs_path is a helper to dynamically build path names with unknown size. 42 * It reallocates the internal buffer on demand. 43 * It allows fast adding of path elements on the right side (normal path) and 44 * fast adding to the left side (reversed path). A reversed path can also be 45 * unreversed if needed. 46 */ 47 struct fs_path { 48 union { 49 struct { 50 char *start; 51 char *end; 52 53 char *buf; 54 unsigned short buf_len:15; 55 unsigned short reversed:1; 56 char inline_buf[]; 57 }; 58 /* 59 * Average path length does not exceed 200 bytes, we'll have 60 * better packing in the slab and higher chance to satisfy 61 * a allocation later during send. 62 */ 63 char pad[256]; 64 }; 65 }; 66 #define FS_PATH_INLINE_SIZE \ 67 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 68 69 70 /* reused for each extent */ 71 struct clone_root { 72 struct btrfs_root *root; 73 u64 ino; 74 u64 offset; 75 76 u64 found_refs; 77 }; 78 79 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 80 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 81 82 struct send_ctx { 83 struct file *send_filp; 84 loff_t send_off; 85 char *send_buf; 86 u32 send_size; 87 u32 send_max_size; 88 u64 total_send_size; 89 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 90 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 91 92 struct btrfs_root *send_root; 93 struct btrfs_root *parent_root; 94 struct clone_root *clone_roots; 95 int clone_roots_cnt; 96 97 /* current state of the compare_tree call */ 98 struct btrfs_path *left_path; 99 struct btrfs_path *right_path; 100 struct btrfs_key *cmp_key; 101 102 /* 103 * infos of the currently processed inode. In case of deleted inodes, 104 * these are the values from the deleted inode. 105 */ 106 u64 cur_ino; 107 u64 cur_inode_gen; 108 int cur_inode_new; 109 int cur_inode_new_gen; 110 int cur_inode_deleted; 111 u64 cur_inode_size; 112 u64 cur_inode_mode; 113 u64 cur_inode_rdev; 114 u64 cur_inode_last_extent; 115 116 u64 send_progress; 117 118 struct list_head new_refs; 119 struct list_head deleted_refs; 120 121 struct radix_tree_root name_cache; 122 struct list_head name_cache_list; 123 int name_cache_size; 124 125 struct file_ra_state ra; 126 127 char *read_buf; 128 129 /* 130 * We process inodes by their increasing order, so if before an 131 * incremental send we reverse the parent/child relationship of 132 * directories such that a directory with a lower inode number was 133 * the parent of a directory with a higher inode number, and the one 134 * becoming the new parent got renamed too, we can't rename/move the 135 * directory with lower inode number when we finish processing it - we 136 * must process the directory with higher inode number first, then 137 * rename/move it and then rename/move the directory with lower inode 138 * number. Example follows. 139 * 140 * Tree state when the first send was performed: 141 * 142 * . 143 * |-- a (ino 257) 144 * |-- b (ino 258) 145 * | 146 * | 147 * |-- c (ino 259) 148 * | |-- d (ino 260) 149 * | 150 * |-- c2 (ino 261) 151 * 152 * Tree state when the second (incremental) send is performed: 153 * 154 * . 155 * |-- a (ino 257) 156 * |-- b (ino 258) 157 * |-- c2 (ino 261) 158 * |-- d2 (ino 260) 159 * |-- cc (ino 259) 160 * 161 * The sequence of steps that lead to the second state was: 162 * 163 * mv /a/b/c/d /a/b/c2/d2 164 * mv /a/b/c /a/b/c2/d2/cc 165 * 166 * "c" has lower inode number, but we can't move it (2nd mv operation) 167 * before we move "d", which has higher inode number. 168 * 169 * So we just memorize which move/rename operations must be performed 170 * later when their respective parent is processed and moved/renamed. 171 */ 172 173 /* Indexed by parent directory inode number. */ 174 struct rb_root pending_dir_moves; 175 176 /* 177 * Reverse index, indexed by the inode number of a directory that 178 * is waiting for the move/rename of its immediate parent before its 179 * own move/rename can be performed. 180 */ 181 struct rb_root waiting_dir_moves; 182 183 /* 184 * A directory that is going to be rm'ed might have a child directory 185 * which is in the pending directory moves index above. In this case, 186 * the directory can only be removed after the move/rename of its child 187 * is performed. Example: 188 * 189 * Parent snapshot: 190 * 191 * . (ino 256) 192 * |-- a/ (ino 257) 193 * |-- b/ (ino 258) 194 * |-- c/ (ino 259) 195 * | |-- x/ (ino 260) 196 * | 197 * |-- y/ (ino 261) 198 * 199 * Send snapshot: 200 * 201 * . (ino 256) 202 * |-- a/ (ino 257) 203 * |-- b/ (ino 258) 204 * |-- YY/ (ino 261) 205 * |-- x/ (ino 260) 206 * 207 * Sequence of steps that lead to the send snapshot: 208 * rm -f /a/b/c/foo.txt 209 * mv /a/b/y /a/b/YY 210 * mv /a/b/c/x /a/b/YY 211 * rmdir /a/b/c 212 * 213 * When the child is processed, its move/rename is delayed until its 214 * parent is processed (as explained above), but all other operations 215 * like update utimes, chown, chgrp, etc, are performed and the paths 216 * that it uses for those operations must use the orphanized name of 217 * its parent (the directory we're going to rm later), so we need to 218 * memorize that name. 219 * 220 * Indexed by the inode number of the directory to be deleted. 221 */ 222 struct rb_root orphan_dirs; 223 }; 224 225 struct pending_dir_move { 226 struct rb_node node; 227 struct list_head list; 228 u64 parent_ino; 229 u64 ino; 230 u64 gen; 231 struct list_head update_refs; 232 }; 233 234 struct waiting_dir_move { 235 struct rb_node node; 236 u64 ino; 237 /* 238 * There might be some directory that could not be removed because it 239 * was waiting for this directory inode to be moved first. Therefore 240 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 241 */ 242 u64 rmdir_ino; 243 bool orphanized; 244 }; 245 246 struct orphan_dir_info { 247 struct rb_node node; 248 u64 ino; 249 u64 gen; 250 }; 251 252 struct name_cache_entry { 253 struct list_head list; 254 /* 255 * radix_tree has only 32bit entries but we need to handle 64bit inums. 256 * We use the lower 32bit of the 64bit inum to store it in the tree. If 257 * more then one inum would fall into the same entry, we use radix_list 258 * to store the additional entries. radix_list is also used to store 259 * entries where two entries have the same inum but different 260 * generations. 261 */ 262 struct list_head radix_list; 263 u64 ino; 264 u64 gen; 265 u64 parent_ino; 266 u64 parent_gen; 267 int ret; 268 int need_later_update; 269 int name_len; 270 char name[]; 271 }; 272 273 static void inconsistent_snapshot_error(struct send_ctx *sctx, 274 enum btrfs_compare_tree_result result, 275 const char *what) 276 { 277 const char *result_string; 278 279 switch (result) { 280 case BTRFS_COMPARE_TREE_NEW: 281 result_string = "new"; 282 break; 283 case BTRFS_COMPARE_TREE_DELETED: 284 result_string = "deleted"; 285 break; 286 case BTRFS_COMPARE_TREE_CHANGED: 287 result_string = "updated"; 288 break; 289 case BTRFS_COMPARE_TREE_SAME: 290 ASSERT(0); 291 result_string = "unchanged"; 292 break; 293 default: 294 ASSERT(0); 295 result_string = "unexpected"; 296 } 297 298 btrfs_err(sctx->send_root->fs_info, 299 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 300 result_string, what, sctx->cmp_key->objectid, 301 sctx->send_root->root_key.objectid, 302 (sctx->parent_root ? 303 sctx->parent_root->root_key.objectid : 0)); 304 } 305 306 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 307 308 static struct waiting_dir_move * 309 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 310 311 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 312 313 static int need_send_hole(struct send_ctx *sctx) 314 { 315 return (sctx->parent_root && !sctx->cur_inode_new && 316 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 317 S_ISREG(sctx->cur_inode_mode)); 318 } 319 320 static void fs_path_reset(struct fs_path *p) 321 { 322 if (p->reversed) { 323 p->start = p->buf + p->buf_len - 1; 324 p->end = p->start; 325 *p->start = 0; 326 } else { 327 p->start = p->buf; 328 p->end = p->start; 329 *p->start = 0; 330 } 331 } 332 333 static struct fs_path *fs_path_alloc(void) 334 { 335 struct fs_path *p; 336 337 p = kmalloc(sizeof(*p), GFP_KERNEL); 338 if (!p) 339 return NULL; 340 p->reversed = 0; 341 p->buf = p->inline_buf; 342 p->buf_len = FS_PATH_INLINE_SIZE; 343 fs_path_reset(p); 344 return p; 345 } 346 347 static struct fs_path *fs_path_alloc_reversed(void) 348 { 349 struct fs_path *p; 350 351 p = fs_path_alloc(); 352 if (!p) 353 return NULL; 354 p->reversed = 1; 355 fs_path_reset(p); 356 return p; 357 } 358 359 static void fs_path_free(struct fs_path *p) 360 { 361 if (!p) 362 return; 363 if (p->buf != p->inline_buf) 364 kfree(p->buf); 365 kfree(p); 366 } 367 368 static int fs_path_len(struct fs_path *p) 369 { 370 return p->end - p->start; 371 } 372 373 static int fs_path_ensure_buf(struct fs_path *p, int len) 374 { 375 char *tmp_buf; 376 int path_len; 377 int old_buf_len; 378 379 len++; 380 381 if (p->buf_len >= len) 382 return 0; 383 384 if (len > PATH_MAX) { 385 WARN_ON(1); 386 return -ENOMEM; 387 } 388 389 path_len = p->end - p->start; 390 old_buf_len = p->buf_len; 391 392 /* 393 * First time the inline_buf does not suffice 394 */ 395 if (p->buf == p->inline_buf) { 396 tmp_buf = kmalloc(len, GFP_KERNEL); 397 if (tmp_buf) 398 memcpy(tmp_buf, p->buf, old_buf_len); 399 } else { 400 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 401 } 402 if (!tmp_buf) 403 return -ENOMEM; 404 p->buf = tmp_buf; 405 /* 406 * The real size of the buffer is bigger, this will let the fast path 407 * happen most of the time 408 */ 409 p->buf_len = ksize(p->buf); 410 411 if (p->reversed) { 412 tmp_buf = p->buf + old_buf_len - path_len - 1; 413 p->end = p->buf + p->buf_len - 1; 414 p->start = p->end - path_len; 415 memmove(p->start, tmp_buf, path_len + 1); 416 } else { 417 p->start = p->buf; 418 p->end = p->start + path_len; 419 } 420 return 0; 421 } 422 423 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 424 char **prepared) 425 { 426 int ret; 427 int new_len; 428 429 new_len = p->end - p->start + name_len; 430 if (p->start != p->end) 431 new_len++; 432 ret = fs_path_ensure_buf(p, new_len); 433 if (ret < 0) 434 goto out; 435 436 if (p->reversed) { 437 if (p->start != p->end) 438 *--p->start = '/'; 439 p->start -= name_len; 440 *prepared = p->start; 441 } else { 442 if (p->start != p->end) 443 *p->end++ = '/'; 444 *prepared = p->end; 445 p->end += name_len; 446 *p->end = 0; 447 } 448 449 out: 450 return ret; 451 } 452 453 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 454 { 455 int ret; 456 char *prepared; 457 458 ret = fs_path_prepare_for_add(p, name_len, &prepared); 459 if (ret < 0) 460 goto out; 461 memcpy(prepared, name, name_len); 462 463 out: 464 return ret; 465 } 466 467 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 468 { 469 int ret; 470 char *prepared; 471 472 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 473 if (ret < 0) 474 goto out; 475 memcpy(prepared, p2->start, p2->end - p2->start); 476 477 out: 478 return ret; 479 } 480 481 static int fs_path_add_from_extent_buffer(struct fs_path *p, 482 struct extent_buffer *eb, 483 unsigned long off, int len) 484 { 485 int ret; 486 char *prepared; 487 488 ret = fs_path_prepare_for_add(p, len, &prepared); 489 if (ret < 0) 490 goto out; 491 492 read_extent_buffer(eb, prepared, off, len); 493 494 out: 495 return ret; 496 } 497 498 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 499 { 500 int ret; 501 502 p->reversed = from->reversed; 503 fs_path_reset(p); 504 505 ret = fs_path_add_path(p, from); 506 507 return ret; 508 } 509 510 511 static void fs_path_unreverse(struct fs_path *p) 512 { 513 char *tmp; 514 int len; 515 516 if (!p->reversed) 517 return; 518 519 tmp = p->start; 520 len = p->end - p->start; 521 p->start = p->buf; 522 p->end = p->start + len; 523 memmove(p->start, tmp, len + 1); 524 p->reversed = 0; 525 } 526 527 static struct btrfs_path *alloc_path_for_send(void) 528 { 529 struct btrfs_path *path; 530 531 path = btrfs_alloc_path(); 532 if (!path) 533 return NULL; 534 path->search_commit_root = 1; 535 path->skip_locking = 1; 536 path->need_commit_sem = 1; 537 return path; 538 } 539 540 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 541 { 542 int ret; 543 u32 pos = 0; 544 545 while (pos < len) { 546 ret = kernel_write(filp, buf + pos, len - pos, off); 547 /* TODO handle that correctly */ 548 /*if (ret == -ERESTARTSYS) { 549 continue; 550 }*/ 551 if (ret < 0) 552 return ret; 553 if (ret == 0) { 554 return -EIO; 555 } 556 pos += ret; 557 } 558 559 return 0; 560 } 561 562 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 563 { 564 struct btrfs_tlv_header *hdr; 565 int total_len = sizeof(*hdr) + len; 566 int left = sctx->send_max_size - sctx->send_size; 567 568 if (unlikely(left < total_len)) 569 return -EOVERFLOW; 570 571 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 572 hdr->tlv_type = cpu_to_le16(attr); 573 hdr->tlv_len = cpu_to_le16(len); 574 memcpy(hdr + 1, data, len); 575 sctx->send_size += total_len; 576 577 return 0; 578 } 579 580 #define TLV_PUT_DEFINE_INT(bits) \ 581 static int tlv_put_u##bits(struct send_ctx *sctx, \ 582 u##bits attr, u##bits value) \ 583 { \ 584 __le##bits __tmp = cpu_to_le##bits(value); \ 585 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 586 } 587 588 TLV_PUT_DEFINE_INT(64) 589 590 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 591 const char *str, int len) 592 { 593 if (len == -1) 594 len = strlen(str); 595 return tlv_put(sctx, attr, str, len); 596 } 597 598 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 599 const u8 *uuid) 600 { 601 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 602 } 603 604 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 605 struct extent_buffer *eb, 606 struct btrfs_timespec *ts) 607 { 608 struct btrfs_timespec bts; 609 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 610 return tlv_put(sctx, attr, &bts, sizeof(bts)); 611 } 612 613 614 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 615 do { \ 616 ret = tlv_put(sctx, attrtype, attrlen, data); \ 617 if (ret < 0) \ 618 goto tlv_put_failure; \ 619 } while (0) 620 621 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 622 do { \ 623 ret = tlv_put_u##bits(sctx, attrtype, value); \ 624 if (ret < 0) \ 625 goto tlv_put_failure; \ 626 } while (0) 627 628 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 629 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 630 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 631 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 632 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 633 do { \ 634 ret = tlv_put_string(sctx, attrtype, str, len); \ 635 if (ret < 0) \ 636 goto tlv_put_failure; \ 637 } while (0) 638 #define TLV_PUT_PATH(sctx, attrtype, p) \ 639 do { \ 640 ret = tlv_put_string(sctx, attrtype, p->start, \ 641 p->end - p->start); \ 642 if (ret < 0) \ 643 goto tlv_put_failure; \ 644 } while(0) 645 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 646 do { \ 647 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 648 if (ret < 0) \ 649 goto tlv_put_failure; \ 650 } while (0) 651 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 652 do { \ 653 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 654 if (ret < 0) \ 655 goto tlv_put_failure; \ 656 } while (0) 657 658 static int send_header(struct send_ctx *sctx) 659 { 660 struct btrfs_stream_header hdr; 661 662 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 663 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 664 665 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 666 &sctx->send_off); 667 } 668 669 /* 670 * For each command/item we want to send to userspace, we call this function. 671 */ 672 static int begin_cmd(struct send_ctx *sctx, int cmd) 673 { 674 struct btrfs_cmd_header *hdr; 675 676 if (WARN_ON(!sctx->send_buf)) 677 return -EINVAL; 678 679 BUG_ON(sctx->send_size); 680 681 sctx->send_size += sizeof(*hdr); 682 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 683 hdr->cmd = cpu_to_le16(cmd); 684 685 return 0; 686 } 687 688 static int send_cmd(struct send_ctx *sctx) 689 { 690 int ret; 691 struct btrfs_cmd_header *hdr; 692 u32 crc; 693 694 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 695 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 696 hdr->crc = 0; 697 698 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 699 hdr->crc = cpu_to_le32(crc); 700 701 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 702 &sctx->send_off); 703 704 sctx->total_send_size += sctx->send_size; 705 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 706 sctx->send_size = 0; 707 708 return ret; 709 } 710 711 /* 712 * Sends a move instruction to user space 713 */ 714 static int send_rename(struct send_ctx *sctx, 715 struct fs_path *from, struct fs_path *to) 716 { 717 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 718 int ret; 719 720 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 721 722 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 723 if (ret < 0) 724 goto out; 725 726 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 727 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 728 729 ret = send_cmd(sctx); 730 731 tlv_put_failure: 732 out: 733 return ret; 734 } 735 736 /* 737 * Sends a link instruction to user space 738 */ 739 static int send_link(struct send_ctx *sctx, 740 struct fs_path *path, struct fs_path *lnk) 741 { 742 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 743 int ret; 744 745 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 746 747 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 748 if (ret < 0) 749 goto out; 750 751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 753 754 ret = send_cmd(sctx); 755 756 tlv_put_failure: 757 out: 758 return ret; 759 } 760 761 /* 762 * Sends an unlink instruction to user space 763 */ 764 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 765 { 766 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 767 int ret; 768 769 btrfs_debug(fs_info, "send_unlink %s", path->start); 770 771 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 772 if (ret < 0) 773 goto out; 774 775 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 776 777 ret = send_cmd(sctx); 778 779 tlv_put_failure: 780 out: 781 return ret; 782 } 783 784 /* 785 * Sends a rmdir instruction to user space 786 */ 787 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 788 { 789 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 790 int ret; 791 792 btrfs_debug(fs_info, "send_rmdir %s", path->start); 793 794 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 795 if (ret < 0) 796 goto out; 797 798 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 799 800 ret = send_cmd(sctx); 801 802 tlv_put_failure: 803 out: 804 return ret; 805 } 806 807 /* 808 * Helper function to retrieve some fields from an inode item. 809 */ 810 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 811 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 812 u64 *gid, u64 *rdev) 813 { 814 int ret; 815 struct btrfs_inode_item *ii; 816 struct btrfs_key key; 817 818 key.objectid = ino; 819 key.type = BTRFS_INODE_ITEM_KEY; 820 key.offset = 0; 821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 822 if (ret) { 823 if (ret > 0) 824 ret = -ENOENT; 825 return ret; 826 } 827 828 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 829 struct btrfs_inode_item); 830 if (size) 831 *size = btrfs_inode_size(path->nodes[0], ii); 832 if (gen) 833 *gen = btrfs_inode_generation(path->nodes[0], ii); 834 if (mode) 835 *mode = btrfs_inode_mode(path->nodes[0], ii); 836 if (uid) 837 *uid = btrfs_inode_uid(path->nodes[0], ii); 838 if (gid) 839 *gid = btrfs_inode_gid(path->nodes[0], ii); 840 if (rdev) 841 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 842 843 return ret; 844 } 845 846 static int get_inode_info(struct btrfs_root *root, 847 u64 ino, u64 *size, u64 *gen, 848 u64 *mode, u64 *uid, u64 *gid, 849 u64 *rdev) 850 { 851 struct btrfs_path *path; 852 int ret; 853 854 path = alloc_path_for_send(); 855 if (!path) 856 return -ENOMEM; 857 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 858 rdev); 859 btrfs_free_path(path); 860 return ret; 861 } 862 863 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 864 struct fs_path *p, 865 void *ctx); 866 867 /* 868 * Helper function to iterate the entries in ONE btrfs_inode_ref or 869 * btrfs_inode_extref. 870 * The iterate callback may return a non zero value to stop iteration. This can 871 * be a negative value for error codes or 1 to simply stop it. 872 * 873 * path must point to the INODE_REF or INODE_EXTREF when called. 874 */ 875 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 876 struct btrfs_key *found_key, int resolve, 877 iterate_inode_ref_t iterate, void *ctx) 878 { 879 struct extent_buffer *eb = path->nodes[0]; 880 struct btrfs_item *item; 881 struct btrfs_inode_ref *iref; 882 struct btrfs_inode_extref *extref; 883 struct btrfs_path *tmp_path; 884 struct fs_path *p; 885 u32 cur = 0; 886 u32 total; 887 int slot = path->slots[0]; 888 u32 name_len; 889 char *start; 890 int ret = 0; 891 int num = 0; 892 int index; 893 u64 dir; 894 unsigned long name_off; 895 unsigned long elem_size; 896 unsigned long ptr; 897 898 p = fs_path_alloc_reversed(); 899 if (!p) 900 return -ENOMEM; 901 902 tmp_path = alloc_path_for_send(); 903 if (!tmp_path) { 904 fs_path_free(p); 905 return -ENOMEM; 906 } 907 908 909 if (found_key->type == BTRFS_INODE_REF_KEY) { 910 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 911 struct btrfs_inode_ref); 912 item = btrfs_item_nr(slot); 913 total = btrfs_item_size(eb, item); 914 elem_size = sizeof(*iref); 915 } else { 916 ptr = btrfs_item_ptr_offset(eb, slot); 917 total = btrfs_item_size_nr(eb, slot); 918 elem_size = sizeof(*extref); 919 } 920 921 while (cur < total) { 922 fs_path_reset(p); 923 924 if (found_key->type == BTRFS_INODE_REF_KEY) { 925 iref = (struct btrfs_inode_ref *)(ptr + cur); 926 name_len = btrfs_inode_ref_name_len(eb, iref); 927 name_off = (unsigned long)(iref + 1); 928 index = btrfs_inode_ref_index(eb, iref); 929 dir = found_key->offset; 930 } else { 931 extref = (struct btrfs_inode_extref *)(ptr + cur); 932 name_len = btrfs_inode_extref_name_len(eb, extref); 933 name_off = (unsigned long)&extref->name; 934 index = btrfs_inode_extref_index(eb, extref); 935 dir = btrfs_inode_extref_parent(eb, extref); 936 } 937 938 if (resolve) { 939 start = btrfs_ref_to_path(root, tmp_path, name_len, 940 name_off, eb, dir, 941 p->buf, p->buf_len); 942 if (IS_ERR(start)) { 943 ret = PTR_ERR(start); 944 goto out; 945 } 946 if (start < p->buf) { 947 /* overflow , try again with larger buffer */ 948 ret = fs_path_ensure_buf(p, 949 p->buf_len + p->buf - start); 950 if (ret < 0) 951 goto out; 952 start = btrfs_ref_to_path(root, tmp_path, 953 name_len, name_off, 954 eb, dir, 955 p->buf, p->buf_len); 956 if (IS_ERR(start)) { 957 ret = PTR_ERR(start); 958 goto out; 959 } 960 BUG_ON(start < p->buf); 961 } 962 p->start = start; 963 } else { 964 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 965 name_len); 966 if (ret < 0) 967 goto out; 968 } 969 970 cur += elem_size + name_len; 971 ret = iterate(num, dir, index, p, ctx); 972 if (ret) 973 goto out; 974 num++; 975 } 976 977 out: 978 btrfs_free_path(tmp_path); 979 fs_path_free(p); 980 return ret; 981 } 982 983 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 984 const char *name, int name_len, 985 const char *data, int data_len, 986 u8 type, void *ctx); 987 988 /* 989 * Helper function to iterate the entries in ONE btrfs_dir_item. 990 * The iterate callback may return a non zero value to stop iteration. This can 991 * be a negative value for error codes or 1 to simply stop it. 992 * 993 * path must point to the dir item when called. 994 */ 995 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 996 iterate_dir_item_t iterate, void *ctx) 997 { 998 int ret = 0; 999 struct extent_buffer *eb; 1000 struct btrfs_item *item; 1001 struct btrfs_dir_item *di; 1002 struct btrfs_key di_key; 1003 char *buf = NULL; 1004 int buf_len; 1005 u32 name_len; 1006 u32 data_len; 1007 u32 cur; 1008 u32 len; 1009 u32 total; 1010 int slot; 1011 int num; 1012 u8 type; 1013 1014 /* 1015 * Start with a small buffer (1 page). If later we end up needing more 1016 * space, which can happen for xattrs on a fs with a leaf size greater 1017 * then the page size, attempt to increase the buffer. Typically xattr 1018 * values are small. 1019 */ 1020 buf_len = PATH_MAX; 1021 buf = kmalloc(buf_len, GFP_KERNEL); 1022 if (!buf) { 1023 ret = -ENOMEM; 1024 goto out; 1025 } 1026 1027 eb = path->nodes[0]; 1028 slot = path->slots[0]; 1029 item = btrfs_item_nr(slot); 1030 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1031 cur = 0; 1032 len = 0; 1033 total = btrfs_item_size(eb, item); 1034 1035 num = 0; 1036 while (cur < total) { 1037 name_len = btrfs_dir_name_len(eb, di); 1038 data_len = btrfs_dir_data_len(eb, di); 1039 type = btrfs_dir_type(eb, di); 1040 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1041 1042 if (type == BTRFS_FT_XATTR) { 1043 if (name_len > XATTR_NAME_MAX) { 1044 ret = -ENAMETOOLONG; 1045 goto out; 1046 } 1047 if (name_len + data_len > 1048 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1049 ret = -E2BIG; 1050 goto out; 1051 } 1052 } else { 1053 /* 1054 * Path too long 1055 */ 1056 if (name_len + data_len > PATH_MAX) { 1057 ret = -ENAMETOOLONG; 1058 goto out; 1059 } 1060 } 1061 1062 ret = btrfs_is_name_len_valid(eb, path->slots[0], 1063 (unsigned long)(di + 1), name_len + data_len); 1064 if (!ret) { 1065 ret = -EIO; 1066 goto out; 1067 } 1068 if (name_len + data_len > buf_len) { 1069 buf_len = name_len + data_len; 1070 if (is_vmalloc_addr(buf)) { 1071 vfree(buf); 1072 buf = NULL; 1073 } else { 1074 char *tmp = krealloc(buf, buf_len, 1075 GFP_KERNEL | __GFP_NOWARN); 1076 1077 if (!tmp) 1078 kfree(buf); 1079 buf = tmp; 1080 } 1081 if (!buf) { 1082 buf = kvmalloc(buf_len, GFP_KERNEL); 1083 if (!buf) { 1084 ret = -ENOMEM; 1085 goto out; 1086 } 1087 } 1088 } 1089 1090 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1091 name_len + data_len); 1092 1093 len = sizeof(*di) + name_len + data_len; 1094 di = (struct btrfs_dir_item *)((char *)di + len); 1095 cur += len; 1096 1097 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1098 data_len, type, ctx); 1099 if (ret < 0) 1100 goto out; 1101 if (ret) { 1102 ret = 0; 1103 goto out; 1104 } 1105 1106 num++; 1107 } 1108 1109 out: 1110 kvfree(buf); 1111 return ret; 1112 } 1113 1114 static int __copy_first_ref(int num, u64 dir, int index, 1115 struct fs_path *p, void *ctx) 1116 { 1117 int ret; 1118 struct fs_path *pt = ctx; 1119 1120 ret = fs_path_copy(pt, p); 1121 if (ret < 0) 1122 return ret; 1123 1124 /* we want the first only */ 1125 return 1; 1126 } 1127 1128 /* 1129 * Retrieve the first path of an inode. If an inode has more then one 1130 * ref/hardlink, this is ignored. 1131 */ 1132 static int get_inode_path(struct btrfs_root *root, 1133 u64 ino, struct fs_path *path) 1134 { 1135 int ret; 1136 struct btrfs_key key, found_key; 1137 struct btrfs_path *p; 1138 1139 p = alloc_path_for_send(); 1140 if (!p) 1141 return -ENOMEM; 1142 1143 fs_path_reset(path); 1144 1145 key.objectid = ino; 1146 key.type = BTRFS_INODE_REF_KEY; 1147 key.offset = 0; 1148 1149 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1150 if (ret < 0) 1151 goto out; 1152 if (ret) { 1153 ret = 1; 1154 goto out; 1155 } 1156 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1157 if (found_key.objectid != ino || 1158 (found_key.type != BTRFS_INODE_REF_KEY && 1159 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1160 ret = -ENOENT; 1161 goto out; 1162 } 1163 1164 ret = iterate_inode_ref(root, p, &found_key, 1, 1165 __copy_first_ref, path); 1166 if (ret < 0) 1167 goto out; 1168 ret = 0; 1169 1170 out: 1171 btrfs_free_path(p); 1172 return ret; 1173 } 1174 1175 struct backref_ctx { 1176 struct send_ctx *sctx; 1177 1178 struct btrfs_path *path; 1179 /* number of total found references */ 1180 u64 found; 1181 1182 /* 1183 * used for clones found in send_root. clones found behind cur_objectid 1184 * and cur_offset are not considered as allowed clones. 1185 */ 1186 u64 cur_objectid; 1187 u64 cur_offset; 1188 1189 /* may be truncated in case it's the last extent in a file */ 1190 u64 extent_len; 1191 1192 /* data offset in the file extent item */ 1193 u64 data_offset; 1194 1195 /* Just to check for bugs in backref resolving */ 1196 int found_itself; 1197 }; 1198 1199 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1200 { 1201 u64 root = (u64)(uintptr_t)key; 1202 struct clone_root *cr = (struct clone_root *)elt; 1203 1204 if (root < cr->root->objectid) 1205 return -1; 1206 if (root > cr->root->objectid) 1207 return 1; 1208 return 0; 1209 } 1210 1211 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1212 { 1213 struct clone_root *cr1 = (struct clone_root *)e1; 1214 struct clone_root *cr2 = (struct clone_root *)e2; 1215 1216 if (cr1->root->objectid < cr2->root->objectid) 1217 return -1; 1218 if (cr1->root->objectid > cr2->root->objectid) 1219 return 1; 1220 return 0; 1221 } 1222 1223 /* 1224 * Called for every backref that is found for the current extent. 1225 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1226 */ 1227 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1228 { 1229 struct backref_ctx *bctx = ctx_; 1230 struct clone_root *found; 1231 int ret; 1232 u64 i_size; 1233 1234 /* First check if the root is in the list of accepted clone sources */ 1235 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1236 bctx->sctx->clone_roots_cnt, 1237 sizeof(struct clone_root), 1238 __clone_root_cmp_bsearch); 1239 if (!found) 1240 return 0; 1241 1242 if (found->root == bctx->sctx->send_root && 1243 ino == bctx->cur_objectid && 1244 offset == bctx->cur_offset) { 1245 bctx->found_itself = 1; 1246 } 1247 1248 /* 1249 * There are inodes that have extents that lie behind its i_size. Don't 1250 * accept clones from these extents. 1251 */ 1252 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1253 NULL, NULL, NULL); 1254 btrfs_release_path(bctx->path); 1255 if (ret < 0) 1256 return ret; 1257 1258 if (offset + bctx->data_offset + bctx->extent_len > i_size) 1259 return 0; 1260 1261 /* 1262 * Make sure we don't consider clones from send_root that are 1263 * behind the current inode/offset. 1264 */ 1265 if (found->root == bctx->sctx->send_root) { 1266 /* 1267 * TODO for the moment we don't accept clones from the inode 1268 * that is currently send. We may change this when 1269 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1270 * file. 1271 */ 1272 if (ino >= bctx->cur_objectid) 1273 return 0; 1274 } 1275 1276 bctx->found++; 1277 found->found_refs++; 1278 if (ino < found->ino) { 1279 found->ino = ino; 1280 found->offset = offset; 1281 } else if (found->ino == ino) { 1282 /* 1283 * same extent found more then once in the same file. 1284 */ 1285 if (found->offset > offset + bctx->extent_len) 1286 found->offset = offset; 1287 } 1288 1289 return 0; 1290 } 1291 1292 /* 1293 * Given an inode, offset and extent item, it finds a good clone for a clone 1294 * instruction. Returns -ENOENT when none could be found. The function makes 1295 * sure that the returned clone is usable at the point where sending is at the 1296 * moment. This means, that no clones are accepted which lie behind the current 1297 * inode+offset. 1298 * 1299 * path must point to the extent item when called. 1300 */ 1301 static int find_extent_clone(struct send_ctx *sctx, 1302 struct btrfs_path *path, 1303 u64 ino, u64 data_offset, 1304 u64 ino_size, 1305 struct clone_root **found) 1306 { 1307 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1308 int ret; 1309 int extent_type; 1310 u64 logical; 1311 u64 disk_byte; 1312 u64 num_bytes; 1313 u64 extent_item_pos; 1314 u64 flags = 0; 1315 struct btrfs_file_extent_item *fi; 1316 struct extent_buffer *eb = path->nodes[0]; 1317 struct backref_ctx *backref_ctx = NULL; 1318 struct clone_root *cur_clone_root; 1319 struct btrfs_key found_key; 1320 struct btrfs_path *tmp_path; 1321 int compressed; 1322 u32 i; 1323 1324 tmp_path = alloc_path_for_send(); 1325 if (!tmp_path) 1326 return -ENOMEM; 1327 1328 /* We only use this path under the commit sem */ 1329 tmp_path->need_commit_sem = 0; 1330 1331 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1332 if (!backref_ctx) { 1333 ret = -ENOMEM; 1334 goto out; 1335 } 1336 1337 backref_ctx->path = tmp_path; 1338 1339 if (data_offset >= ino_size) { 1340 /* 1341 * There may be extents that lie behind the file's size. 1342 * I at least had this in combination with snapshotting while 1343 * writing large files. 1344 */ 1345 ret = 0; 1346 goto out; 1347 } 1348 1349 fi = btrfs_item_ptr(eb, path->slots[0], 1350 struct btrfs_file_extent_item); 1351 extent_type = btrfs_file_extent_type(eb, fi); 1352 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1353 ret = -ENOENT; 1354 goto out; 1355 } 1356 compressed = btrfs_file_extent_compression(eb, fi); 1357 1358 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1359 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1360 if (disk_byte == 0) { 1361 ret = -ENOENT; 1362 goto out; 1363 } 1364 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1365 1366 down_read(&fs_info->commit_root_sem); 1367 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1368 &found_key, &flags); 1369 up_read(&fs_info->commit_root_sem); 1370 btrfs_release_path(tmp_path); 1371 1372 if (ret < 0) 1373 goto out; 1374 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1375 ret = -EIO; 1376 goto out; 1377 } 1378 1379 /* 1380 * Setup the clone roots. 1381 */ 1382 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1383 cur_clone_root = sctx->clone_roots + i; 1384 cur_clone_root->ino = (u64)-1; 1385 cur_clone_root->offset = 0; 1386 cur_clone_root->found_refs = 0; 1387 } 1388 1389 backref_ctx->sctx = sctx; 1390 backref_ctx->found = 0; 1391 backref_ctx->cur_objectid = ino; 1392 backref_ctx->cur_offset = data_offset; 1393 backref_ctx->found_itself = 0; 1394 backref_ctx->extent_len = num_bytes; 1395 /* 1396 * For non-compressed extents iterate_extent_inodes() gives us extent 1397 * offsets that already take into account the data offset, but not for 1398 * compressed extents, since the offset is logical and not relative to 1399 * the physical extent locations. We must take this into account to 1400 * avoid sending clone offsets that go beyond the source file's size, 1401 * which would result in the clone ioctl failing with -EINVAL on the 1402 * receiving end. 1403 */ 1404 if (compressed == BTRFS_COMPRESS_NONE) 1405 backref_ctx->data_offset = 0; 1406 else 1407 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1408 1409 /* 1410 * The last extent of a file may be too large due to page alignment. 1411 * We need to adjust extent_len in this case so that the checks in 1412 * __iterate_backrefs work. 1413 */ 1414 if (data_offset + num_bytes >= ino_size) 1415 backref_ctx->extent_len = ino_size - data_offset; 1416 1417 /* 1418 * Now collect all backrefs. 1419 */ 1420 if (compressed == BTRFS_COMPRESS_NONE) 1421 extent_item_pos = logical - found_key.objectid; 1422 else 1423 extent_item_pos = 0; 1424 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1425 extent_item_pos, 1, __iterate_backrefs, 1426 backref_ctx, false); 1427 1428 if (ret < 0) 1429 goto out; 1430 1431 if (!backref_ctx->found_itself) { 1432 /* found a bug in backref code? */ 1433 ret = -EIO; 1434 btrfs_err(fs_info, 1435 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1436 ino, data_offset, disk_byte, found_key.objectid); 1437 goto out; 1438 } 1439 1440 btrfs_debug(fs_info, 1441 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1442 data_offset, ino, num_bytes, logical); 1443 1444 if (!backref_ctx->found) 1445 btrfs_debug(fs_info, "no clones found"); 1446 1447 cur_clone_root = NULL; 1448 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1449 if (sctx->clone_roots[i].found_refs) { 1450 if (!cur_clone_root) 1451 cur_clone_root = sctx->clone_roots + i; 1452 else if (sctx->clone_roots[i].root == sctx->send_root) 1453 /* prefer clones from send_root over others */ 1454 cur_clone_root = sctx->clone_roots + i; 1455 } 1456 1457 } 1458 1459 if (cur_clone_root) { 1460 *found = cur_clone_root; 1461 ret = 0; 1462 } else { 1463 ret = -ENOENT; 1464 } 1465 1466 out: 1467 btrfs_free_path(tmp_path); 1468 kfree(backref_ctx); 1469 return ret; 1470 } 1471 1472 static int read_symlink(struct btrfs_root *root, 1473 u64 ino, 1474 struct fs_path *dest) 1475 { 1476 int ret; 1477 struct btrfs_path *path; 1478 struct btrfs_key key; 1479 struct btrfs_file_extent_item *ei; 1480 u8 type; 1481 u8 compression; 1482 unsigned long off; 1483 int len; 1484 1485 path = alloc_path_for_send(); 1486 if (!path) 1487 return -ENOMEM; 1488 1489 key.objectid = ino; 1490 key.type = BTRFS_EXTENT_DATA_KEY; 1491 key.offset = 0; 1492 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1493 if (ret < 0) 1494 goto out; 1495 if (ret) { 1496 /* 1497 * An empty symlink inode. Can happen in rare error paths when 1498 * creating a symlink (transaction committed before the inode 1499 * eviction handler removed the symlink inode items and a crash 1500 * happened in between or the subvol was snapshoted in between). 1501 * Print an informative message to dmesg/syslog so that the user 1502 * can delete the symlink. 1503 */ 1504 btrfs_err(root->fs_info, 1505 "Found empty symlink inode %llu at root %llu", 1506 ino, root->root_key.objectid); 1507 ret = -EIO; 1508 goto out; 1509 } 1510 1511 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1512 struct btrfs_file_extent_item); 1513 type = btrfs_file_extent_type(path->nodes[0], ei); 1514 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1515 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1516 BUG_ON(compression); 1517 1518 off = btrfs_file_extent_inline_start(ei); 1519 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1520 1521 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1522 1523 out: 1524 btrfs_free_path(path); 1525 return ret; 1526 } 1527 1528 /* 1529 * Helper function to generate a file name that is unique in the root of 1530 * send_root and parent_root. This is used to generate names for orphan inodes. 1531 */ 1532 static int gen_unique_name(struct send_ctx *sctx, 1533 u64 ino, u64 gen, 1534 struct fs_path *dest) 1535 { 1536 int ret = 0; 1537 struct btrfs_path *path; 1538 struct btrfs_dir_item *di; 1539 char tmp[64]; 1540 int len; 1541 u64 idx = 0; 1542 1543 path = alloc_path_for_send(); 1544 if (!path) 1545 return -ENOMEM; 1546 1547 while (1) { 1548 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1549 ino, gen, idx); 1550 ASSERT(len < sizeof(tmp)); 1551 1552 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1553 path, BTRFS_FIRST_FREE_OBJECTID, 1554 tmp, strlen(tmp), 0); 1555 btrfs_release_path(path); 1556 if (IS_ERR(di)) { 1557 ret = PTR_ERR(di); 1558 goto out; 1559 } 1560 if (di) { 1561 /* not unique, try again */ 1562 idx++; 1563 continue; 1564 } 1565 1566 if (!sctx->parent_root) { 1567 /* unique */ 1568 ret = 0; 1569 break; 1570 } 1571 1572 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1573 path, BTRFS_FIRST_FREE_OBJECTID, 1574 tmp, strlen(tmp), 0); 1575 btrfs_release_path(path); 1576 if (IS_ERR(di)) { 1577 ret = PTR_ERR(di); 1578 goto out; 1579 } 1580 if (di) { 1581 /* not unique, try again */ 1582 idx++; 1583 continue; 1584 } 1585 /* unique */ 1586 break; 1587 } 1588 1589 ret = fs_path_add(dest, tmp, strlen(tmp)); 1590 1591 out: 1592 btrfs_free_path(path); 1593 return ret; 1594 } 1595 1596 enum inode_state { 1597 inode_state_no_change, 1598 inode_state_will_create, 1599 inode_state_did_create, 1600 inode_state_will_delete, 1601 inode_state_did_delete, 1602 }; 1603 1604 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1605 { 1606 int ret; 1607 int left_ret; 1608 int right_ret; 1609 u64 left_gen; 1610 u64 right_gen; 1611 1612 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1613 NULL, NULL); 1614 if (ret < 0 && ret != -ENOENT) 1615 goto out; 1616 left_ret = ret; 1617 1618 if (!sctx->parent_root) { 1619 right_ret = -ENOENT; 1620 } else { 1621 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1622 NULL, NULL, NULL, NULL); 1623 if (ret < 0 && ret != -ENOENT) 1624 goto out; 1625 right_ret = ret; 1626 } 1627 1628 if (!left_ret && !right_ret) { 1629 if (left_gen == gen && right_gen == gen) { 1630 ret = inode_state_no_change; 1631 } else if (left_gen == gen) { 1632 if (ino < sctx->send_progress) 1633 ret = inode_state_did_create; 1634 else 1635 ret = inode_state_will_create; 1636 } else if (right_gen == gen) { 1637 if (ino < sctx->send_progress) 1638 ret = inode_state_did_delete; 1639 else 1640 ret = inode_state_will_delete; 1641 } else { 1642 ret = -ENOENT; 1643 } 1644 } else if (!left_ret) { 1645 if (left_gen == gen) { 1646 if (ino < sctx->send_progress) 1647 ret = inode_state_did_create; 1648 else 1649 ret = inode_state_will_create; 1650 } else { 1651 ret = -ENOENT; 1652 } 1653 } else if (!right_ret) { 1654 if (right_gen == gen) { 1655 if (ino < sctx->send_progress) 1656 ret = inode_state_did_delete; 1657 else 1658 ret = inode_state_will_delete; 1659 } else { 1660 ret = -ENOENT; 1661 } 1662 } else { 1663 ret = -ENOENT; 1664 } 1665 1666 out: 1667 return ret; 1668 } 1669 1670 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1671 { 1672 int ret; 1673 1674 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1675 return 1; 1676 1677 ret = get_cur_inode_state(sctx, ino, gen); 1678 if (ret < 0) 1679 goto out; 1680 1681 if (ret == inode_state_no_change || 1682 ret == inode_state_did_create || 1683 ret == inode_state_will_delete) 1684 ret = 1; 1685 else 1686 ret = 0; 1687 1688 out: 1689 return ret; 1690 } 1691 1692 /* 1693 * Helper function to lookup a dir item in a dir. 1694 */ 1695 static int lookup_dir_item_inode(struct btrfs_root *root, 1696 u64 dir, const char *name, int name_len, 1697 u64 *found_inode, 1698 u8 *found_type) 1699 { 1700 int ret = 0; 1701 struct btrfs_dir_item *di; 1702 struct btrfs_key key; 1703 struct btrfs_path *path; 1704 1705 path = alloc_path_for_send(); 1706 if (!path) 1707 return -ENOMEM; 1708 1709 di = btrfs_lookup_dir_item(NULL, root, path, 1710 dir, name, name_len, 0); 1711 if (!di) { 1712 ret = -ENOENT; 1713 goto out; 1714 } 1715 if (IS_ERR(di)) { 1716 ret = PTR_ERR(di); 1717 goto out; 1718 } 1719 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1720 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1721 ret = -ENOENT; 1722 goto out; 1723 } 1724 *found_inode = key.objectid; 1725 *found_type = btrfs_dir_type(path->nodes[0], di); 1726 1727 out: 1728 btrfs_free_path(path); 1729 return ret; 1730 } 1731 1732 /* 1733 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1734 * generation of the parent dir and the name of the dir entry. 1735 */ 1736 static int get_first_ref(struct btrfs_root *root, u64 ino, 1737 u64 *dir, u64 *dir_gen, struct fs_path *name) 1738 { 1739 int ret; 1740 struct btrfs_key key; 1741 struct btrfs_key found_key; 1742 struct btrfs_path *path; 1743 int len; 1744 u64 parent_dir; 1745 1746 path = alloc_path_for_send(); 1747 if (!path) 1748 return -ENOMEM; 1749 1750 key.objectid = ino; 1751 key.type = BTRFS_INODE_REF_KEY; 1752 key.offset = 0; 1753 1754 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1755 if (ret < 0) 1756 goto out; 1757 if (!ret) 1758 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1759 path->slots[0]); 1760 if (ret || found_key.objectid != ino || 1761 (found_key.type != BTRFS_INODE_REF_KEY && 1762 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1763 ret = -ENOENT; 1764 goto out; 1765 } 1766 1767 if (found_key.type == BTRFS_INODE_REF_KEY) { 1768 struct btrfs_inode_ref *iref; 1769 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1770 struct btrfs_inode_ref); 1771 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1772 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1773 (unsigned long)(iref + 1), 1774 len); 1775 parent_dir = found_key.offset; 1776 } else { 1777 struct btrfs_inode_extref *extref; 1778 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1779 struct btrfs_inode_extref); 1780 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1781 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1782 (unsigned long)&extref->name, len); 1783 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1784 } 1785 if (ret < 0) 1786 goto out; 1787 btrfs_release_path(path); 1788 1789 if (dir_gen) { 1790 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1791 NULL, NULL, NULL); 1792 if (ret < 0) 1793 goto out; 1794 } 1795 1796 *dir = parent_dir; 1797 1798 out: 1799 btrfs_free_path(path); 1800 return ret; 1801 } 1802 1803 static int is_first_ref(struct btrfs_root *root, 1804 u64 ino, u64 dir, 1805 const char *name, int name_len) 1806 { 1807 int ret; 1808 struct fs_path *tmp_name; 1809 u64 tmp_dir; 1810 1811 tmp_name = fs_path_alloc(); 1812 if (!tmp_name) 1813 return -ENOMEM; 1814 1815 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1816 if (ret < 0) 1817 goto out; 1818 1819 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1820 ret = 0; 1821 goto out; 1822 } 1823 1824 ret = !memcmp(tmp_name->start, name, name_len); 1825 1826 out: 1827 fs_path_free(tmp_name); 1828 return ret; 1829 } 1830 1831 /* 1832 * Used by process_recorded_refs to determine if a new ref would overwrite an 1833 * already existing ref. In case it detects an overwrite, it returns the 1834 * inode/gen in who_ino/who_gen. 1835 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1836 * to make sure later references to the overwritten inode are possible. 1837 * Orphanizing is however only required for the first ref of an inode. 1838 * process_recorded_refs does an additional is_first_ref check to see if 1839 * orphanizing is really required. 1840 */ 1841 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1842 const char *name, int name_len, 1843 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1844 { 1845 int ret = 0; 1846 u64 gen; 1847 u64 other_inode = 0; 1848 u8 other_type = 0; 1849 1850 if (!sctx->parent_root) 1851 goto out; 1852 1853 ret = is_inode_existent(sctx, dir, dir_gen); 1854 if (ret <= 0) 1855 goto out; 1856 1857 /* 1858 * If we have a parent root we need to verify that the parent dir was 1859 * not deleted and then re-created, if it was then we have no overwrite 1860 * and we can just unlink this entry. 1861 */ 1862 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1863 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1864 NULL, NULL, NULL); 1865 if (ret < 0 && ret != -ENOENT) 1866 goto out; 1867 if (ret) { 1868 ret = 0; 1869 goto out; 1870 } 1871 if (gen != dir_gen) 1872 goto out; 1873 } 1874 1875 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1876 &other_inode, &other_type); 1877 if (ret < 0 && ret != -ENOENT) 1878 goto out; 1879 if (ret) { 1880 ret = 0; 1881 goto out; 1882 } 1883 1884 /* 1885 * Check if the overwritten ref was already processed. If yes, the ref 1886 * was already unlinked/moved, so we can safely assume that we will not 1887 * overwrite anything at this point in time. 1888 */ 1889 if (other_inode > sctx->send_progress || 1890 is_waiting_for_move(sctx, other_inode)) { 1891 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1892 who_gen, who_mode, NULL, NULL, NULL); 1893 if (ret < 0) 1894 goto out; 1895 1896 ret = 1; 1897 *who_ino = other_inode; 1898 } else { 1899 ret = 0; 1900 } 1901 1902 out: 1903 return ret; 1904 } 1905 1906 /* 1907 * Checks if the ref was overwritten by an already processed inode. This is 1908 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1909 * thus the orphan name needs be used. 1910 * process_recorded_refs also uses it to avoid unlinking of refs that were 1911 * overwritten. 1912 */ 1913 static int did_overwrite_ref(struct send_ctx *sctx, 1914 u64 dir, u64 dir_gen, 1915 u64 ino, u64 ino_gen, 1916 const char *name, int name_len) 1917 { 1918 int ret = 0; 1919 u64 gen; 1920 u64 ow_inode; 1921 u8 other_type; 1922 1923 if (!sctx->parent_root) 1924 goto out; 1925 1926 ret = is_inode_existent(sctx, dir, dir_gen); 1927 if (ret <= 0) 1928 goto out; 1929 1930 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1931 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1932 NULL, NULL, NULL); 1933 if (ret < 0 && ret != -ENOENT) 1934 goto out; 1935 if (ret) { 1936 ret = 0; 1937 goto out; 1938 } 1939 if (gen != dir_gen) 1940 goto out; 1941 } 1942 1943 /* check if the ref was overwritten by another ref */ 1944 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1945 &ow_inode, &other_type); 1946 if (ret < 0 && ret != -ENOENT) 1947 goto out; 1948 if (ret) { 1949 /* was never and will never be overwritten */ 1950 ret = 0; 1951 goto out; 1952 } 1953 1954 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1955 NULL, NULL); 1956 if (ret < 0) 1957 goto out; 1958 1959 if (ow_inode == ino && gen == ino_gen) { 1960 ret = 0; 1961 goto out; 1962 } 1963 1964 /* 1965 * We know that it is or will be overwritten. Check this now. 1966 * The current inode being processed might have been the one that caused 1967 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1968 * the current inode being processed. 1969 */ 1970 if ((ow_inode < sctx->send_progress) || 1971 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1972 gen == sctx->cur_inode_gen)) 1973 ret = 1; 1974 else 1975 ret = 0; 1976 1977 out: 1978 return ret; 1979 } 1980 1981 /* 1982 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1983 * that got overwritten. This is used by process_recorded_refs to determine 1984 * if it has to use the path as returned by get_cur_path or the orphan name. 1985 */ 1986 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1987 { 1988 int ret = 0; 1989 struct fs_path *name = NULL; 1990 u64 dir; 1991 u64 dir_gen; 1992 1993 if (!sctx->parent_root) 1994 goto out; 1995 1996 name = fs_path_alloc(); 1997 if (!name) 1998 return -ENOMEM; 1999 2000 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2001 if (ret < 0) 2002 goto out; 2003 2004 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2005 name->start, fs_path_len(name)); 2006 2007 out: 2008 fs_path_free(name); 2009 return ret; 2010 } 2011 2012 /* 2013 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2014 * so we need to do some special handling in case we have clashes. This function 2015 * takes care of this with the help of name_cache_entry::radix_list. 2016 * In case of error, nce is kfreed. 2017 */ 2018 static int name_cache_insert(struct send_ctx *sctx, 2019 struct name_cache_entry *nce) 2020 { 2021 int ret = 0; 2022 struct list_head *nce_head; 2023 2024 nce_head = radix_tree_lookup(&sctx->name_cache, 2025 (unsigned long)nce->ino); 2026 if (!nce_head) { 2027 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2028 if (!nce_head) { 2029 kfree(nce); 2030 return -ENOMEM; 2031 } 2032 INIT_LIST_HEAD(nce_head); 2033 2034 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2035 if (ret < 0) { 2036 kfree(nce_head); 2037 kfree(nce); 2038 return ret; 2039 } 2040 } 2041 list_add_tail(&nce->radix_list, nce_head); 2042 list_add_tail(&nce->list, &sctx->name_cache_list); 2043 sctx->name_cache_size++; 2044 2045 return ret; 2046 } 2047 2048 static void name_cache_delete(struct send_ctx *sctx, 2049 struct name_cache_entry *nce) 2050 { 2051 struct list_head *nce_head; 2052 2053 nce_head = radix_tree_lookup(&sctx->name_cache, 2054 (unsigned long)nce->ino); 2055 if (!nce_head) { 2056 btrfs_err(sctx->send_root->fs_info, 2057 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2058 nce->ino, sctx->name_cache_size); 2059 } 2060 2061 list_del(&nce->radix_list); 2062 list_del(&nce->list); 2063 sctx->name_cache_size--; 2064 2065 /* 2066 * We may not get to the final release of nce_head if the lookup fails 2067 */ 2068 if (nce_head && list_empty(nce_head)) { 2069 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2070 kfree(nce_head); 2071 } 2072 } 2073 2074 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2075 u64 ino, u64 gen) 2076 { 2077 struct list_head *nce_head; 2078 struct name_cache_entry *cur; 2079 2080 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2081 if (!nce_head) 2082 return NULL; 2083 2084 list_for_each_entry(cur, nce_head, radix_list) { 2085 if (cur->ino == ino && cur->gen == gen) 2086 return cur; 2087 } 2088 return NULL; 2089 } 2090 2091 /* 2092 * Removes the entry from the list and adds it back to the end. This marks the 2093 * entry as recently used so that name_cache_clean_unused does not remove it. 2094 */ 2095 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2096 { 2097 list_del(&nce->list); 2098 list_add_tail(&nce->list, &sctx->name_cache_list); 2099 } 2100 2101 /* 2102 * Remove some entries from the beginning of name_cache_list. 2103 */ 2104 static void name_cache_clean_unused(struct send_ctx *sctx) 2105 { 2106 struct name_cache_entry *nce; 2107 2108 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2109 return; 2110 2111 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2112 nce = list_entry(sctx->name_cache_list.next, 2113 struct name_cache_entry, list); 2114 name_cache_delete(sctx, nce); 2115 kfree(nce); 2116 } 2117 } 2118 2119 static void name_cache_free(struct send_ctx *sctx) 2120 { 2121 struct name_cache_entry *nce; 2122 2123 while (!list_empty(&sctx->name_cache_list)) { 2124 nce = list_entry(sctx->name_cache_list.next, 2125 struct name_cache_entry, list); 2126 name_cache_delete(sctx, nce); 2127 kfree(nce); 2128 } 2129 } 2130 2131 /* 2132 * Used by get_cur_path for each ref up to the root. 2133 * Returns 0 if it succeeded. 2134 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2135 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2136 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2137 * Returns <0 in case of error. 2138 */ 2139 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2140 u64 ino, u64 gen, 2141 u64 *parent_ino, 2142 u64 *parent_gen, 2143 struct fs_path *dest) 2144 { 2145 int ret; 2146 int nce_ret; 2147 struct name_cache_entry *nce = NULL; 2148 2149 /* 2150 * First check if we already did a call to this function with the same 2151 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2152 * return the cached result. 2153 */ 2154 nce = name_cache_search(sctx, ino, gen); 2155 if (nce) { 2156 if (ino < sctx->send_progress && nce->need_later_update) { 2157 name_cache_delete(sctx, nce); 2158 kfree(nce); 2159 nce = NULL; 2160 } else { 2161 name_cache_used(sctx, nce); 2162 *parent_ino = nce->parent_ino; 2163 *parent_gen = nce->parent_gen; 2164 ret = fs_path_add(dest, nce->name, nce->name_len); 2165 if (ret < 0) 2166 goto out; 2167 ret = nce->ret; 2168 goto out; 2169 } 2170 } 2171 2172 /* 2173 * If the inode is not existent yet, add the orphan name and return 1. 2174 * This should only happen for the parent dir that we determine in 2175 * __record_new_ref 2176 */ 2177 ret = is_inode_existent(sctx, ino, gen); 2178 if (ret < 0) 2179 goto out; 2180 2181 if (!ret) { 2182 ret = gen_unique_name(sctx, ino, gen, dest); 2183 if (ret < 0) 2184 goto out; 2185 ret = 1; 2186 goto out_cache; 2187 } 2188 2189 /* 2190 * Depending on whether the inode was already processed or not, use 2191 * send_root or parent_root for ref lookup. 2192 */ 2193 if (ino < sctx->send_progress) 2194 ret = get_first_ref(sctx->send_root, ino, 2195 parent_ino, parent_gen, dest); 2196 else 2197 ret = get_first_ref(sctx->parent_root, ino, 2198 parent_ino, parent_gen, dest); 2199 if (ret < 0) 2200 goto out; 2201 2202 /* 2203 * Check if the ref was overwritten by an inode's ref that was processed 2204 * earlier. If yes, treat as orphan and return 1. 2205 */ 2206 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2207 dest->start, dest->end - dest->start); 2208 if (ret < 0) 2209 goto out; 2210 if (ret) { 2211 fs_path_reset(dest); 2212 ret = gen_unique_name(sctx, ino, gen, dest); 2213 if (ret < 0) 2214 goto out; 2215 ret = 1; 2216 } 2217 2218 out_cache: 2219 /* 2220 * Store the result of the lookup in the name cache. 2221 */ 2222 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2223 if (!nce) { 2224 ret = -ENOMEM; 2225 goto out; 2226 } 2227 2228 nce->ino = ino; 2229 nce->gen = gen; 2230 nce->parent_ino = *parent_ino; 2231 nce->parent_gen = *parent_gen; 2232 nce->name_len = fs_path_len(dest); 2233 nce->ret = ret; 2234 strcpy(nce->name, dest->start); 2235 2236 if (ino < sctx->send_progress) 2237 nce->need_later_update = 0; 2238 else 2239 nce->need_later_update = 1; 2240 2241 nce_ret = name_cache_insert(sctx, nce); 2242 if (nce_ret < 0) 2243 ret = nce_ret; 2244 name_cache_clean_unused(sctx); 2245 2246 out: 2247 return ret; 2248 } 2249 2250 /* 2251 * Magic happens here. This function returns the first ref to an inode as it 2252 * would look like while receiving the stream at this point in time. 2253 * We walk the path up to the root. For every inode in between, we check if it 2254 * was already processed/sent. If yes, we continue with the parent as found 2255 * in send_root. If not, we continue with the parent as found in parent_root. 2256 * If we encounter an inode that was deleted at this point in time, we use the 2257 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2258 * that were not created yet and overwritten inodes/refs. 2259 * 2260 * When do we have have orphan inodes: 2261 * 1. When an inode is freshly created and thus no valid refs are available yet 2262 * 2. When a directory lost all it's refs (deleted) but still has dir items 2263 * inside which were not processed yet (pending for move/delete). If anyone 2264 * tried to get the path to the dir items, it would get a path inside that 2265 * orphan directory. 2266 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2267 * of an unprocessed inode. If in that case the first ref would be 2268 * overwritten, the overwritten inode gets "orphanized". Later when we 2269 * process this overwritten inode, it is restored at a new place by moving 2270 * the orphan inode. 2271 * 2272 * sctx->send_progress tells this function at which point in time receiving 2273 * would be. 2274 */ 2275 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2276 struct fs_path *dest) 2277 { 2278 int ret = 0; 2279 struct fs_path *name = NULL; 2280 u64 parent_inode = 0; 2281 u64 parent_gen = 0; 2282 int stop = 0; 2283 2284 name = fs_path_alloc(); 2285 if (!name) { 2286 ret = -ENOMEM; 2287 goto out; 2288 } 2289 2290 dest->reversed = 1; 2291 fs_path_reset(dest); 2292 2293 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2294 struct waiting_dir_move *wdm; 2295 2296 fs_path_reset(name); 2297 2298 if (is_waiting_for_rm(sctx, ino)) { 2299 ret = gen_unique_name(sctx, ino, gen, name); 2300 if (ret < 0) 2301 goto out; 2302 ret = fs_path_add_path(dest, name); 2303 break; 2304 } 2305 2306 wdm = get_waiting_dir_move(sctx, ino); 2307 if (wdm && wdm->orphanized) { 2308 ret = gen_unique_name(sctx, ino, gen, name); 2309 stop = 1; 2310 } else if (wdm) { 2311 ret = get_first_ref(sctx->parent_root, ino, 2312 &parent_inode, &parent_gen, name); 2313 } else { 2314 ret = __get_cur_name_and_parent(sctx, ino, gen, 2315 &parent_inode, 2316 &parent_gen, name); 2317 if (ret) 2318 stop = 1; 2319 } 2320 2321 if (ret < 0) 2322 goto out; 2323 2324 ret = fs_path_add_path(dest, name); 2325 if (ret < 0) 2326 goto out; 2327 2328 ino = parent_inode; 2329 gen = parent_gen; 2330 } 2331 2332 out: 2333 fs_path_free(name); 2334 if (!ret) 2335 fs_path_unreverse(dest); 2336 return ret; 2337 } 2338 2339 /* 2340 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2341 */ 2342 static int send_subvol_begin(struct send_ctx *sctx) 2343 { 2344 int ret; 2345 struct btrfs_root *send_root = sctx->send_root; 2346 struct btrfs_root *parent_root = sctx->parent_root; 2347 struct btrfs_path *path; 2348 struct btrfs_key key; 2349 struct btrfs_root_ref *ref; 2350 struct extent_buffer *leaf; 2351 char *name = NULL; 2352 int namelen; 2353 2354 path = btrfs_alloc_path(); 2355 if (!path) 2356 return -ENOMEM; 2357 2358 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2359 if (!name) { 2360 btrfs_free_path(path); 2361 return -ENOMEM; 2362 } 2363 2364 key.objectid = send_root->objectid; 2365 key.type = BTRFS_ROOT_BACKREF_KEY; 2366 key.offset = 0; 2367 2368 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2369 &key, path, 1, 0); 2370 if (ret < 0) 2371 goto out; 2372 if (ret) { 2373 ret = -ENOENT; 2374 goto out; 2375 } 2376 2377 leaf = path->nodes[0]; 2378 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2379 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2380 key.objectid != send_root->objectid) { 2381 ret = -ENOENT; 2382 goto out; 2383 } 2384 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2385 namelen = btrfs_root_ref_name_len(leaf, ref); 2386 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2387 btrfs_release_path(path); 2388 2389 if (parent_root) { 2390 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2391 if (ret < 0) 2392 goto out; 2393 } else { 2394 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2395 if (ret < 0) 2396 goto out; 2397 } 2398 2399 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2400 2401 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2402 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2403 sctx->send_root->root_item.received_uuid); 2404 else 2405 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2406 sctx->send_root->root_item.uuid); 2407 2408 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2409 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2410 if (parent_root) { 2411 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2412 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2413 parent_root->root_item.received_uuid); 2414 else 2415 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2416 parent_root->root_item.uuid); 2417 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2418 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2419 } 2420 2421 ret = send_cmd(sctx); 2422 2423 tlv_put_failure: 2424 out: 2425 btrfs_free_path(path); 2426 kfree(name); 2427 return ret; 2428 } 2429 2430 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2431 { 2432 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2433 int ret = 0; 2434 struct fs_path *p; 2435 2436 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2437 2438 p = fs_path_alloc(); 2439 if (!p) 2440 return -ENOMEM; 2441 2442 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2443 if (ret < 0) 2444 goto out; 2445 2446 ret = get_cur_path(sctx, ino, gen, p); 2447 if (ret < 0) 2448 goto out; 2449 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2450 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2451 2452 ret = send_cmd(sctx); 2453 2454 tlv_put_failure: 2455 out: 2456 fs_path_free(p); 2457 return ret; 2458 } 2459 2460 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2461 { 2462 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2463 int ret = 0; 2464 struct fs_path *p; 2465 2466 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2467 2468 p = fs_path_alloc(); 2469 if (!p) 2470 return -ENOMEM; 2471 2472 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2473 if (ret < 0) 2474 goto out; 2475 2476 ret = get_cur_path(sctx, ino, gen, p); 2477 if (ret < 0) 2478 goto out; 2479 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2480 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2481 2482 ret = send_cmd(sctx); 2483 2484 tlv_put_failure: 2485 out: 2486 fs_path_free(p); 2487 return ret; 2488 } 2489 2490 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2491 { 2492 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2493 int ret = 0; 2494 struct fs_path *p; 2495 2496 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2497 ino, uid, gid); 2498 2499 p = fs_path_alloc(); 2500 if (!p) 2501 return -ENOMEM; 2502 2503 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2504 if (ret < 0) 2505 goto out; 2506 2507 ret = get_cur_path(sctx, ino, gen, p); 2508 if (ret < 0) 2509 goto out; 2510 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2511 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2512 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2513 2514 ret = send_cmd(sctx); 2515 2516 tlv_put_failure: 2517 out: 2518 fs_path_free(p); 2519 return ret; 2520 } 2521 2522 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2523 { 2524 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2525 int ret = 0; 2526 struct fs_path *p = NULL; 2527 struct btrfs_inode_item *ii; 2528 struct btrfs_path *path = NULL; 2529 struct extent_buffer *eb; 2530 struct btrfs_key key; 2531 int slot; 2532 2533 btrfs_debug(fs_info, "send_utimes %llu", ino); 2534 2535 p = fs_path_alloc(); 2536 if (!p) 2537 return -ENOMEM; 2538 2539 path = alloc_path_for_send(); 2540 if (!path) { 2541 ret = -ENOMEM; 2542 goto out; 2543 } 2544 2545 key.objectid = ino; 2546 key.type = BTRFS_INODE_ITEM_KEY; 2547 key.offset = 0; 2548 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2549 if (ret > 0) 2550 ret = -ENOENT; 2551 if (ret < 0) 2552 goto out; 2553 2554 eb = path->nodes[0]; 2555 slot = path->slots[0]; 2556 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2557 2558 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2559 if (ret < 0) 2560 goto out; 2561 2562 ret = get_cur_path(sctx, ino, gen, p); 2563 if (ret < 0) 2564 goto out; 2565 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2566 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2567 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2568 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2569 /* TODO Add otime support when the otime patches get into upstream */ 2570 2571 ret = send_cmd(sctx); 2572 2573 tlv_put_failure: 2574 out: 2575 fs_path_free(p); 2576 btrfs_free_path(path); 2577 return ret; 2578 } 2579 2580 /* 2581 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2582 * a valid path yet because we did not process the refs yet. So, the inode 2583 * is created as orphan. 2584 */ 2585 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2586 { 2587 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2588 int ret = 0; 2589 struct fs_path *p; 2590 int cmd; 2591 u64 gen; 2592 u64 mode; 2593 u64 rdev; 2594 2595 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2596 2597 p = fs_path_alloc(); 2598 if (!p) 2599 return -ENOMEM; 2600 2601 if (ino != sctx->cur_ino) { 2602 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2603 NULL, NULL, &rdev); 2604 if (ret < 0) 2605 goto out; 2606 } else { 2607 gen = sctx->cur_inode_gen; 2608 mode = sctx->cur_inode_mode; 2609 rdev = sctx->cur_inode_rdev; 2610 } 2611 2612 if (S_ISREG(mode)) { 2613 cmd = BTRFS_SEND_C_MKFILE; 2614 } else if (S_ISDIR(mode)) { 2615 cmd = BTRFS_SEND_C_MKDIR; 2616 } else if (S_ISLNK(mode)) { 2617 cmd = BTRFS_SEND_C_SYMLINK; 2618 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2619 cmd = BTRFS_SEND_C_MKNOD; 2620 } else if (S_ISFIFO(mode)) { 2621 cmd = BTRFS_SEND_C_MKFIFO; 2622 } else if (S_ISSOCK(mode)) { 2623 cmd = BTRFS_SEND_C_MKSOCK; 2624 } else { 2625 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2626 (int)(mode & S_IFMT)); 2627 ret = -EOPNOTSUPP; 2628 goto out; 2629 } 2630 2631 ret = begin_cmd(sctx, cmd); 2632 if (ret < 0) 2633 goto out; 2634 2635 ret = gen_unique_name(sctx, ino, gen, p); 2636 if (ret < 0) 2637 goto out; 2638 2639 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2640 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2641 2642 if (S_ISLNK(mode)) { 2643 fs_path_reset(p); 2644 ret = read_symlink(sctx->send_root, ino, p); 2645 if (ret < 0) 2646 goto out; 2647 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2648 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2649 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2650 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2651 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2652 } 2653 2654 ret = send_cmd(sctx); 2655 if (ret < 0) 2656 goto out; 2657 2658 2659 tlv_put_failure: 2660 out: 2661 fs_path_free(p); 2662 return ret; 2663 } 2664 2665 /* 2666 * We need some special handling for inodes that get processed before the parent 2667 * directory got created. See process_recorded_refs for details. 2668 * This function does the check if we already created the dir out of order. 2669 */ 2670 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2671 { 2672 int ret = 0; 2673 struct btrfs_path *path = NULL; 2674 struct btrfs_key key; 2675 struct btrfs_key found_key; 2676 struct btrfs_key di_key; 2677 struct extent_buffer *eb; 2678 struct btrfs_dir_item *di; 2679 int slot; 2680 2681 path = alloc_path_for_send(); 2682 if (!path) { 2683 ret = -ENOMEM; 2684 goto out; 2685 } 2686 2687 key.objectid = dir; 2688 key.type = BTRFS_DIR_INDEX_KEY; 2689 key.offset = 0; 2690 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2691 if (ret < 0) 2692 goto out; 2693 2694 while (1) { 2695 eb = path->nodes[0]; 2696 slot = path->slots[0]; 2697 if (slot >= btrfs_header_nritems(eb)) { 2698 ret = btrfs_next_leaf(sctx->send_root, path); 2699 if (ret < 0) { 2700 goto out; 2701 } else if (ret > 0) { 2702 ret = 0; 2703 break; 2704 } 2705 continue; 2706 } 2707 2708 btrfs_item_key_to_cpu(eb, &found_key, slot); 2709 if (found_key.objectid != key.objectid || 2710 found_key.type != key.type) { 2711 ret = 0; 2712 goto out; 2713 } 2714 2715 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2716 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2717 2718 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2719 di_key.objectid < sctx->send_progress) { 2720 ret = 1; 2721 goto out; 2722 } 2723 2724 path->slots[0]++; 2725 } 2726 2727 out: 2728 btrfs_free_path(path); 2729 return ret; 2730 } 2731 2732 /* 2733 * Only creates the inode if it is: 2734 * 1. Not a directory 2735 * 2. Or a directory which was not created already due to out of order 2736 * directories. See did_create_dir and process_recorded_refs for details. 2737 */ 2738 static int send_create_inode_if_needed(struct send_ctx *sctx) 2739 { 2740 int ret; 2741 2742 if (S_ISDIR(sctx->cur_inode_mode)) { 2743 ret = did_create_dir(sctx, sctx->cur_ino); 2744 if (ret < 0) 2745 goto out; 2746 if (ret) { 2747 ret = 0; 2748 goto out; 2749 } 2750 } 2751 2752 ret = send_create_inode(sctx, sctx->cur_ino); 2753 if (ret < 0) 2754 goto out; 2755 2756 out: 2757 return ret; 2758 } 2759 2760 struct recorded_ref { 2761 struct list_head list; 2762 char *name; 2763 struct fs_path *full_path; 2764 u64 dir; 2765 u64 dir_gen; 2766 int name_len; 2767 }; 2768 2769 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2770 { 2771 ref->full_path = path; 2772 ref->name = (char *)kbasename(ref->full_path->start); 2773 ref->name_len = ref->full_path->end - ref->name; 2774 } 2775 2776 /* 2777 * We need to process new refs before deleted refs, but compare_tree gives us 2778 * everything mixed. So we first record all refs and later process them. 2779 * This function is a helper to record one ref. 2780 */ 2781 static int __record_ref(struct list_head *head, u64 dir, 2782 u64 dir_gen, struct fs_path *path) 2783 { 2784 struct recorded_ref *ref; 2785 2786 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2787 if (!ref) 2788 return -ENOMEM; 2789 2790 ref->dir = dir; 2791 ref->dir_gen = dir_gen; 2792 set_ref_path(ref, path); 2793 list_add_tail(&ref->list, head); 2794 return 0; 2795 } 2796 2797 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2798 { 2799 struct recorded_ref *new; 2800 2801 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2802 if (!new) 2803 return -ENOMEM; 2804 2805 new->dir = ref->dir; 2806 new->dir_gen = ref->dir_gen; 2807 new->full_path = NULL; 2808 INIT_LIST_HEAD(&new->list); 2809 list_add_tail(&new->list, list); 2810 return 0; 2811 } 2812 2813 static void __free_recorded_refs(struct list_head *head) 2814 { 2815 struct recorded_ref *cur; 2816 2817 while (!list_empty(head)) { 2818 cur = list_entry(head->next, struct recorded_ref, list); 2819 fs_path_free(cur->full_path); 2820 list_del(&cur->list); 2821 kfree(cur); 2822 } 2823 } 2824 2825 static void free_recorded_refs(struct send_ctx *sctx) 2826 { 2827 __free_recorded_refs(&sctx->new_refs); 2828 __free_recorded_refs(&sctx->deleted_refs); 2829 } 2830 2831 /* 2832 * Renames/moves a file/dir to its orphan name. Used when the first 2833 * ref of an unprocessed inode gets overwritten and for all non empty 2834 * directories. 2835 */ 2836 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2837 struct fs_path *path) 2838 { 2839 int ret; 2840 struct fs_path *orphan; 2841 2842 orphan = fs_path_alloc(); 2843 if (!orphan) 2844 return -ENOMEM; 2845 2846 ret = gen_unique_name(sctx, ino, gen, orphan); 2847 if (ret < 0) 2848 goto out; 2849 2850 ret = send_rename(sctx, path, orphan); 2851 2852 out: 2853 fs_path_free(orphan); 2854 return ret; 2855 } 2856 2857 static struct orphan_dir_info * 2858 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2859 { 2860 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2861 struct rb_node *parent = NULL; 2862 struct orphan_dir_info *entry, *odi; 2863 2864 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2865 if (!odi) 2866 return ERR_PTR(-ENOMEM); 2867 odi->ino = dir_ino; 2868 odi->gen = 0; 2869 2870 while (*p) { 2871 parent = *p; 2872 entry = rb_entry(parent, struct orphan_dir_info, node); 2873 if (dir_ino < entry->ino) { 2874 p = &(*p)->rb_left; 2875 } else if (dir_ino > entry->ino) { 2876 p = &(*p)->rb_right; 2877 } else { 2878 kfree(odi); 2879 return entry; 2880 } 2881 } 2882 2883 rb_link_node(&odi->node, parent, p); 2884 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2885 return odi; 2886 } 2887 2888 static struct orphan_dir_info * 2889 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2890 { 2891 struct rb_node *n = sctx->orphan_dirs.rb_node; 2892 struct orphan_dir_info *entry; 2893 2894 while (n) { 2895 entry = rb_entry(n, struct orphan_dir_info, node); 2896 if (dir_ino < entry->ino) 2897 n = n->rb_left; 2898 else if (dir_ino > entry->ino) 2899 n = n->rb_right; 2900 else 2901 return entry; 2902 } 2903 return NULL; 2904 } 2905 2906 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2907 { 2908 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2909 2910 return odi != NULL; 2911 } 2912 2913 static void free_orphan_dir_info(struct send_ctx *sctx, 2914 struct orphan_dir_info *odi) 2915 { 2916 if (!odi) 2917 return; 2918 rb_erase(&odi->node, &sctx->orphan_dirs); 2919 kfree(odi); 2920 } 2921 2922 /* 2923 * Returns 1 if a directory can be removed at this point in time. 2924 * We check this by iterating all dir items and checking if the inode behind 2925 * the dir item was already processed. 2926 */ 2927 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2928 u64 send_progress) 2929 { 2930 int ret = 0; 2931 struct btrfs_root *root = sctx->parent_root; 2932 struct btrfs_path *path; 2933 struct btrfs_key key; 2934 struct btrfs_key found_key; 2935 struct btrfs_key loc; 2936 struct btrfs_dir_item *di; 2937 2938 /* 2939 * Don't try to rmdir the top/root subvolume dir. 2940 */ 2941 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2942 return 0; 2943 2944 path = alloc_path_for_send(); 2945 if (!path) 2946 return -ENOMEM; 2947 2948 key.objectid = dir; 2949 key.type = BTRFS_DIR_INDEX_KEY; 2950 key.offset = 0; 2951 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2952 if (ret < 0) 2953 goto out; 2954 2955 while (1) { 2956 struct waiting_dir_move *dm; 2957 2958 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2959 ret = btrfs_next_leaf(root, path); 2960 if (ret < 0) 2961 goto out; 2962 else if (ret > 0) 2963 break; 2964 continue; 2965 } 2966 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2967 path->slots[0]); 2968 if (found_key.objectid != key.objectid || 2969 found_key.type != key.type) 2970 break; 2971 2972 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2973 struct btrfs_dir_item); 2974 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2975 2976 dm = get_waiting_dir_move(sctx, loc.objectid); 2977 if (dm) { 2978 struct orphan_dir_info *odi; 2979 2980 odi = add_orphan_dir_info(sctx, dir); 2981 if (IS_ERR(odi)) { 2982 ret = PTR_ERR(odi); 2983 goto out; 2984 } 2985 odi->gen = dir_gen; 2986 dm->rmdir_ino = dir; 2987 ret = 0; 2988 goto out; 2989 } 2990 2991 if (loc.objectid > send_progress) { 2992 struct orphan_dir_info *odi; 2993 2994 odi = get_orphan_dir_info(sctx, dir); 2995 free_orphan_dir_info(sctx, odi); 2996 ret = 0; 2997 goto out; 2998 } 2999 3000 path->slots[0]++; 3001 } 3002 3003 ret = 1; 3004 3005 out: 3006 btrfs_free_path(path); 3007 return ret; 3008 } 3009 3010 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3011 { 3012 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3013 3014 return entry != NULL; 3015 } 3016 3017 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3018 { 3019 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3020 struct rb_node *parent = NULL; 3021 struct waiting_dir_move *entry, *dm; 3022 3023 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3024 if (!dm) 3025 return -ENOMEM; 3026 dm->ino = ino; 3027 dm->rmdir_ino = 0; 3028 dm->orphanized = orphanized; 3029 3030 while (*p) { 3031 parent = *p; 3032 entry = rb_entry(parent, struct waiting_dir_move, node); 3033 if (ino < entry->ino) { 3034 p = &(*p)->rb_left; 3035 } else if (ino > entry->ino) { 3036 p = &(*p)->rb_right; 3037 } else { 3038 kfree(dm); 3039 return -EEXIST; 3040 } 3041 } 3042 3043 rb_link_node(&dm->node, parent, p); 3044 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3045 return 0; 3046 } 3047 3048 static struct waiting_dir_move * 3049 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3050 { 3051 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3052 struct waiting_dir_move *entry; 3053 3054 while (n) { 3055 entry = rb_entry(n, struct waiting_dir_move, node); 3056 if (ino < entry->ino) 3057 n = n->rb_left; 3058 else if (ino > entry->ino) 3059 n = n->rb_right; 3060 else 3061 return entry; 3062 } 3063 return NULL; 3064 } 3065 3066 static void free_waiting_dir_move(struct send_ctx *sctx, 3067 struct waiting_dir_move *dm) 3068 { 3069 if (!dm) 3070 return; 3071 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3072 kfree(dm); 3073 } 3074 3075 static int add_pending_dir_move(struct send_ctx *sctx, 3076 u64 ino, 3077 u64 ino_gen, 3078 u64 parent_ino, 3079 struct list_head *new_refs, 3080 struct list_head *deleted_refs, 3081 const bool is_orphan) 3082 { 3083 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3084 struct rb_node *parent = NULL; 3085 struct pending_dir_move *entry = NULL, *pm; 3086 struct recorded_ref *cur; 3087 int exists = 0; 3088 int ret; 3089 3090 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3091 if (!pm) 3092 return -ENOMEM; 3093 pm->parent_ino = parent_ino; 3094 pm->ino = ino; 3095 pm->gen = ino_gen; 3096 INIT_LIST_HEAD(&pm->list); 3097 INIT_LIST_HEAD(&pm->update_refs); 3098 RB_CLEAR_NODE(&pm->node); 3099 3100 while (*p) { 3101 parent = *p; 3102 entry = rb_entry(parent, struct pending_dir_move, node); 3103 if (parent_ino < entry->parent_ino) { 3104 p = &(*p)->rb_left; 3105 } else if (parent_ino > entry->parent_ino) { 3106 p = &(*p)->rb_right; 3107 } else { 3108 exists = 1; 3109 break; 3110 } 3111 } 3112 3113 list_for_each_entry(cur, deleted_refs, list) { 3114 ret = dup_ref(cur, &pm->update_refs); 3115 if (ret < 0) 3116 goto out; 3117 } 3118 list_for_each_entry(cur, new_refs, list) { 3119 ret = dup_ref(cur, &pm->update_refs); 3120 if (ret < 0) 3121 goto out; 3122 } 3123 3124 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3125 if (ret) 3126 goto out; 3127 3128 if (exists) { 3129 list_add_tail(&pm->list, &entry->list); 3130 } else { 3131 rb_link_node(&pm->node, parent, p); 3132 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3133 } 3134 ret = 0; 3135 out: 3136 if (ret) { 3137 __free_recorded_refs(&pm->update_refs); 3138 kfree(pm); 3139 } 3140 return ret; 3141 } 3142 3143 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3144 u64 parent_ino) 3145 { 3146 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3147 struct pending_dir_move *entry; 3148 3149 while (n) { 3150 entry = rb_entry(n, struct pending_dir_move, node); 3151 if (parent_ino < entry->parent_ino) 3152 n = n->rb_left; 3153 else if (parent_ino > entry->parent_ino) 3154 n = n->rb_right; 3155 else 3156 return entry; 3157 } 3158 return NULL; 3159 } 3160 3161 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3162 u64 ino, u64 gen, u64 *ancestor_ino) 3163 { 3164 int ret = 0; 3165 u64 parent_inode = 0; 3166 u64 parent_gen = 0; 3167 u64 start_ino = ino; 3168 3169 *ancestor_ino = 0; 3170 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3171 fs_path_reset(name); 3172 3173 if (is_waiting_for_rm(sctx, ino)) 3174 break; 3175 if (is_waiting_for_move(sctx, ino)) { 3176 if (*ancestor_ino == 0) 3177 *ancestor_ino = ino; 3178 ret = get_first_ref(sctx->parent_root, ino, 3179 &parent_inode, &parent_gen, name); 3180 } else { 3181 ret = __get_cur_name_and_parent(sctx, ino, gen, 3182 &parent_inode, 3183 &parent_gen, name); 3184 if (ret > 0) { 3185 ret = 0; 3186 break; 3187 } 3188 } 3189 if (ret < 0) 3190 break; 3191 if (parent_inode == start_ino) { 3192 ret = 1; 3193 if (*ancestor_ino == 0) 3194 *ancestor_ino = ino; 3195 break; 3196 } 3197 ino = parent_inode; 3198 gen = parent_gen; 3199 } 3200 return ret; 3201 } 3202 3203 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3204 { 3205 struct fs_path *from_path = NULL; 3206 struct fs_path *to_path = NULL; 3207 struct fs_path *name = NULL; 3208 u64 orig_progress = sctx->send_progress; 3209 struct recorded_ref *cur; 3210 u64 parent_ino, parent_gen; 3211 struct waiting_dir_move *dm = NULL; 3212 u64 rmdir_ino = 0; 3213 u64 ancestor; 3214 bool is_orphan; 3215 int ret; 3216 3217 name = fs_path_alloc(); 3218 from_path = fs_path_alloc(); 3219 if (!name || !from_path) { 3220 ret = -ENOMEM; 3221 goto out; 3222 } 3223 3224 dm = get_waiting_dir_move(sctx, pm->ino); 3225 ASSERT(dm); 3226 rmdir_ino = dm->rmdir_ino; 3227 is_orphan = dm->orphanized; 3228 free_waiting_dir_move(sctx, dm); 3229 3230 if (is_orphan) { 3231 ret = gen_unique_name(sctx, pm->ino, 3232 pm->gen, from_path); 3233 } else { 3234 ret = get_first_ref(sctx->parent_root, pm->ino, 3235 &parent_ino, &parent_gen, name); 3236 if (ret < 0) 3237 goto out; 3238 ret = get_cur_path(sctx, parent_ino, parent_gen, 3239 from_path); 3240 if (ret < 0) 3241 goto out; 3242 ret = fs_path_add_path(from_path, name); 3243 } 3244 if (ret < 0) 3245 goto out; 3246 3247 sctx->send_progress = sctx->cur_ino + 1; 3248 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3249 if (ret < 0) 3250 goto out; 3251 if (ret) { 3252 LIST_HEAD(deleted_refs); 3253 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3254 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3255 &pm->update_refs, &deleted_refs, 3256 is_orphan); 3257 if (ret < 0) 3258 goto out; 3259 if (rmdir_ino) { 3260 dm = get_waiting_dir_move(sctx, pm->ino); 3261 ASSERT(dm); 3262 dm->rmdir_ino = rmdir_ino; 3263 } 3264 goto out; 3265 } 3266 fs_path_reset(name); 3267 to_path = name; 3268 name = NULL; 3269 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3270 if (ret < 0) 3271 goto out; 3272 3273 ret = send_rename(sctx, from_path, to_path); 3274 if (ret < 0) 3275 goto out; 3276 3277 if (rmdir_ino) { 3278 struct orphan_dir_info *odi; 3279 3280 odi = get_orphan_dir_info(sctx, rmdir_ino); 3281 if (!odi) { 3282 /* already deleted */ 3283 goto finish; 3284 } 3285 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino); 3286 if (ret < 0) 3287 goto out; 3288 if (!ret) 3289 goto finish; 3290 3291 name = fs_path_alloc(); 3292 if (!name) { 3293 ret = -ENOMEM; 3294 goto out; 3295 } 3296 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3297 if (ret < 0) 3298 goto out; 3299 ret = send_rmdir(sctx, name); 3300 if (ret < 0) 3301 goto out; 3302 free_orphan_dir_info(sctx, odi); 3303 } 3304 3305 finish: 3306 ret = send_utimes(sctx, pm->ino, pm->gen); 3307 if (ret < 0) 3308 goto out; 3309 3310 /* 3311 * After rename/move, need to update the utimes of both new parent(s) 3312 * and old parent(s). 3313 */ 3314 list_for_each_entry(cur, &pm->update_refs, list) { 3315 /* 3316 * The parent inode might have been deleted in the send snapshot 3317 */ 3318 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3319 NULL, NULL, NULL, NULL, NULL); 3320 if (ret == -ENOENT) { 3321 ret = 0; 3322 continue; 3323 } 3324 if (ret < 0) 3325 goto out; 3326 3327 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3328 if (ret < 0) 3329 goto out; 3330 } 3331 3332 out: 3333 fs_path_free(name); 3334 fs_path_free(from_path); 3335 fs_path_free(to_path); 3336 sctx->send_progress = orig_progress; 3337 3338 return ret; 3339 } 3340 3341 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3342 { 3343 if (!list_empty(&m->list)) 3344 list_del(&m->list); 3345 if (!RB_EMPTY_NODE(&m->node)) 3346 rb_erase(&m->node, &sctx->pending_dir_moves); 3347 __free_recorded_refs(&m->update_refs); 3348 kfree(m); 3349 } 3350 3351 static void tail_append_pending_moves(struct pending_dir_move *moves, 3352 struct list_head *stack) 3353 { 3354 if (list_empty(&moves->list)) { 3355 list_add_tail(&moves->list, stack); 3356 } else { 3357 LIST_HEAD(list); 3358 list_splice_init(&moves->list, &list); 3359 list_add_tail(&moves->list, stack); 3360 list_splice_tail(&list, stack); 3361 } 3362 } 3363 3364 static int apply_children_dir_moves(struct send_ctx *sctx) 3365 { 3366 struct pending_dir_move *pm; 3367 struct list_head stack; 3368 u64 parent_ino = sctx->cur_ino; 3369 int ret = 0; 3370 3371 pm = get_pending_dir_moves(sctx, parent_ino); 3372 if (!pm) 3373 return 0; 3374 3375 INIT_LIST_HEAD(&stack); 3376 tail_append_pending_moves(pm, &stack); 3377 3378 while (!list_empty(&stack)) { 3379 pm = list_first_entry(&stack, struct pending_dir_move, list); 3380 parent_ino = pm->ino; 3381 ret = apply_dir_move(sctx, pm); 3382 free_pending_move(sctx, pm); 3383 if (ret) 3384 goto out; 3385 pm = get_pending_dir_moves(sctx, parent_ino); 3386 if (pm) 3387 tail_append_pending_moves(pm, &stack); 3388 } 3389 return 0; 3390 3391 out: 3392 while (!list_empty(&stack)) { 3393 pm = list_first_entry(&stack, struct pending_dir_move, list); 3394 free_pending_move(sctx, pm); 3395 } 3396 return ret; 3397 } 3398 3399 /* 3400 * We might need to delay a directory rename even when no ancestor directory 3401 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3402 * renamed. This happens when we rename a directory to the old name (the name 3403 * in the parent root) of some other unrelated directory that got its rename 3404 * delayed due to some ancestor with higher number that got renamed. 3405 * 3406 * Example: 3407 * 3408 * Parent snapshot: 3409 * . (ino 256) 3410 * |---- a/ (ino 257) 3411 * | |---- file (ino 260) 3412 * | 3413 * |---- b/ (ino 258) 3414 * |---- c/ (ino 259) 3415 * 3416 * Send snapshot: 3417 * . (ino 256) 3418 * |---- a/ (ino 258) 3419 * |---- x/ (ino 259) 3420 * |---- y/ (ino 257) 3421 * |----- file (ino 260) 3422 * 3423 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3424 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3425 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3426 * must issue is: 3427 * 3428 * 1 - rename 259 from 'c' to 'x' 3429 * 2 - rename 257 from 'a' to 'x/y' 3430 * 3 - rename 258 from 'b' to 'a' 3431 * 3432 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3433 * be done right away and < 0 on error. 3434 */ 3435 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3436 struct recorded_ref *parent_ref, 3437 const bool is_orphan) 3438 { 3439 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3440 struct btrfs_path *path; 3441 struct btrfs_key key; 3442 struct btrfs_key di_key; 3443 struct btrfs_dir_item *di; 3444 u64 left_gen; 3445 u64 right_gen; 3446 int ret = 0; 3447 struct waiting_dir_move *wdm; 3448 3449 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3450 return 0; 3451 3452 path = alloc_path_for_send(); 3453 if (!path) 3454 return -ENOMEM; 3455 3456 key.objectid = parent_ref->dir; 3457 key.type = BTRFS_DIR_ITEM_KEY; 3458 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3459 3460 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3461 if (ret < 0) { 3462 goto out; 3463 } else if (ret > 0) { 3464 ret = 0; 3465 goto out; 3466 } 3467 3468 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3469 parent_ref->name_len); 3470 if (!di) { 3471 ret = 0; 3472 goto out; 3473 } 3474 /* 3475 * di_key.objectid has the number of the inode that has a dentry in the 3476 * parent directory with the same name that sctx->cur_ino is being 3477 * renamed to. We need to check if that inode is in the send root as 3478 * well and if it is currently marked as an inode with a pending rename, 3479 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3480 * that it happens after that other inode is renamed. 3481 */ 3482 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3483 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3484 ret = 0; 3485 goto out; 3486 } 3487 3488 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3489 &left_gen, NULL, NULL, NULL, NULL); 3490 if (ret < 0) 3491 goto out; 3492 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3493 &right_gen, NULL, NULL, NULL, NULL); 3494 if (ret < 0) { 3495 if (ret == -ENOENT) 3496 ret = 0; 3497 goto out; 3498 } 3499 3500 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3501 if (right_gen != left_gen) { 3502 ret = 0; 3503 goto out; 3504 } 3505 3506 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3507 if (wdm && !wdm->orphanized) { 3508 ret = add_pending_dir_move(sctx, 3509 sctx->cur_ino, 3510 sctx->cur_inode_gen, 3511 di_key.objectid, 3512 &sctx->new_refs, 3513 &sctx->deleted_refs, 3514 is_orphan); 3515 if (!ret) 3516 ret = 1; 3517 } 3518 out: 3519 btrfs_free_path(path); 3520 return ret; 3521 } 3522 3523 /* 3524 * Check if inode ino2, or any of its ancestors, is inode ino1. 3525 * Return 1 if true, 0 if false and < 0 on error. 3526 */ 3527 static int check_ino_in_path(struct btrfs_root *root, 3528 const u64 ino1, 3529 const u64 ino1_gen, 3530 const u64 ino2, 3531 const u64 ino2_gen, 3532 struct fs_path *fs_path) 3533 { 3534 u64 ino = ino2; 3535 3536 if (ino1 == ino2) 3537 return ino1_gen == ino2_gen; 3538 3539 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3540 u64 parent; 3541 u64 parent_gen; 3542 int ret; 3543 3544 fs_path_reset(fs_path); 3545 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3546 if (ret < 0) 3547 return ret; 3548 if (parent == ino1) 3549 return parent_gen == ino1_gen; 3550 ino = parent; 3551 } 3552 return 0; 3553 } 3554 3555 /* 3556 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3557 * possible path (in case ino2 is not a directory and has multiple hard links). 3558 * Return 1 if true, 0 if false and < 0 on error. 3559 */ 3560 static int is_ancestor(struct btrfs_root *root, 3561 const u64 ino1, 3562 const u64 ino1_gen, 3563 const u64 ino2, 3564 struct fs_path *fs_path) 3565 { 3566 bool free_fs_path = false; 3567 int ret = 0; 3568 struct btrfs_path *path = NULL; 3569 struct btrfs_key key; 3570 3571 if (!fs_path) { 3572 fs_path = fs_path_alloc(); 3573 if (!fs_path) 3574 return -ENOMEM; 3575 free_fs_path = true; 3576 } 3577 3578 path = alloc_path_for_send(); 3579 if (!path) { 3580 ret = -ENOMEM; 3581 goto out; 3582 } 3583 3584 key.objectid = ino2; 3585 key.type = BTRFS_INODE_REF_KEY; 3586 key.offset = 0; 3587 3588 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3589 if (ret < 0) 3590 goto out; 3591 3592 while (true) { 3593 struct extent_buffer *leaf = path->nodes[0]; 3594 int slot = path->slots[0]; 3595 u32 cur_offset = 0; 3596 u32 item_size; 3597 3598 if (slot >= btrfs_header_nritems(leaf)) { 3599 ret = btrfs_next_leaf(root, path); 3600 if (ret < 0) 3601 goto out; 3602 if (ret > 0) 3603 break; 3604 continue; 3605 } 3606 3607 btrfs_item_key_to_cpu(leaf, &key, slot); 3608 if (key.objectid != ino2) 3609 break; 3610 if (key.type != BTRFS_INODE_REF_KEY && 3611 key.type != BTRFS_INODE_EXTREF_KEY) 3612 break; 3613 3614 item_size = btrfs_item_size_nr(leaf, slot); 3615 while (cur_offset < item_size) { 3616 u64 parent; 3617 u64 parent_gen; 3618 3619 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3620 unsigned long ptr; 3621 struct btrfs_inode_extref *extref; 3622 3623 ptr = btrfs_item_ptr_offset(leaf, slot); 3624 extref = (struct btrfs_inode_extref *) 3625 (ptr + cur_offset); 3626 parent = btrfs_inode_extref_parent(leaf, 3627 extref); 3628 cur_offset += sizeof(*extref); 3629 cur_offset += btrfs_inode_extref_name_len(leaf, 3630 extref); 3631 } else { 3632 parent = key.offset; 3633 cur_offset = item_size; 3634 } 3635 3636 ret = get_inode_info(root, parent, NULL, &parent_gen, 3637 NULL, NULL, NULL, NULL); 3638 if (ret < 0) 3639 goto out; 3640 ret = check_ino_in_path(root, ino1, ino1_gen, 3641 parent, parent_gen, fs_path); 3642 if (ret) 3643 goto out; 3644 } 3645 path->slots[0]++; 3646 } 3647 ret = 0; 3648 out: 3649 btrfs_free_path(path); 3650 if (free_fs_path) 3651 fs_path_free(fs_path); 3652 return ret; 3653 } 3654 3655 static int wait_for_parent_move(struct send_ctx *sctx, 3656 struct recorded_ref *parent_ref, 3657 const bool is_orphan) 3658 { 3659 int ret = 0; 3660 u64 ino = parent_ref->dir; 3661 u64 ino_gen = parent_ref->dir_gen; 3662 u64 parent_ino_before, parent_ino_after; 3663 struct fs_path *path_before = NULL; 3664 struct fs_path *path_after = NULL; 3665 int len1, len2; 3666 3667 path_after = fs_path_alloc(); 3668 path_before = fs_path_alloc(); 3669 if (!path_after || !path_before) { 3670 ret = -ENOMEM; 3671 goto out; 3672 } 3673 3674 /* 3675 * Our current directory inode may not yet be renamed/moved because some 3676 * ancestor (immediate or not) has to be renamed/moved first. So find if 3677 * such ancestor exists and make sure our own rename/move happens after 3678 * that ancestor is processed to avoid path build infinite loops (done 3679 * at get_cur_path()). 3680 */ 3681 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3682 u64 parent_ino_after_gen; 3683 3684 if (is_waiting_for_move(sctx, ino)) { 3685 /* 3686 * If the current inode is an ancestor of ino in the 3687 * parent root, we need to delay the rename of the 3688 * current inode, otherwise don't delayed the rename 3689 * because we can end up with a circular dependency 3690 * of renames, resulting in some directories never 3691 * getting the respective rename operations issued in 3692 * the send stream or getting into infinite path build 3693 * loops. 3694 */ 3695 ret = is_ancestor(sctx->parent_root, 3696 sctx->cur_ino, sctx->cur_inode_gen, 3697 ino, path_before); 3698 if (ret) 3699 break; 3700 } 3701 3702 fs_path_reset(path_before); 3703 fs_path_reset(path_after); 3704 3705 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3706 &parent_ino_after_gen, path_after); 3707 if (ret < 0) 3708 goto out; 3709 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3710 NULL, path_before); 3711 if (ret < 0 && ret != -ENOENT) { 3712 goto out; 3713 } else if (ret == -ENOENT) { 3714 ret = 0; 3715 break; 3716 } 3717 3718 len1 = fs_path_len(path_before); 3719 len2 = fs_path_len(path_after); 3720 if (ino > sctx->cur_ino && 3721 (parent_ino_before != parent_ino_after || len1 != len2 || 3722 memcmp(path_before->start, path_after->start, len1))) { 3723 u64 parent_ino_gen; 3724 3725 ret = get_inode_info(sctx->parent_root, ino, NULL, 3726 &parent_ino_gen, NULL, NULL, NULL, 3727 NULL); 3728 if (ret < 0) 3729 goto out; 3730 if (ino_gen == parent_ino_gen) { 3731 ret = 1; 3732 break; 3733 } 3734 } 3735 ino = parent_ino_after; 3736 ino_gen = parent_ino_after_gen; 3737 } 3738 3739 out: 3740 fs_path_free(path_before); 3741 fs_path_free(path_after); 3742 3743 if (ret == 1) { 3744 ret = add_pending_dir_move(sctx, 3745 sctx->cur_ino, 3746 sctx->cur_inode_gen, 3747 ino, 3748 &sctx->new_refs, 3749 &sctx->deleted_refs, 3750 is_orphan); 3751 if (!ret) 3752 ret = 1; 3753 } 3754 3755 return ret; 3756 } 3757 3758 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3759 { 3760 int ret; 3761 struct fs_path *new_path; 3762 3763 /* 3764 * Our reference's name member points to its full_path member string, so 3765 * we use here a new path. 3766 */ 3767 new_path = fs_path_alloc(); 3768 if (!new_path) 3769 return -ENOMEM; 3770 3771 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3772 if (ret < 0) { 3773 fs_path_free(new_path); 3774 return ret; 3775 } 3776 ret = fs_path_add(new_path, ref->name, ref->name_len); 3777 if (ret < 0) { 3778 fs_path_free(new_path); 3779 return ret; 3780 } 3781 3782 fs_path_free(ref->full_path); 3783 set_ref_path(ref, new_path); 3784 3785 return 0; 3786 } 3787 3788 /* 3789 * This does all the move/link/unlink/rmdir magic. 3790 */ 3791 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3792 { 3793 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3794 int ret = 0; 3795 struct recorded_ref *cur; 3796 struct recorded_ref *cur2; 3797 struct list_head check_dirs; 3798 struct fs_path *valid_path = NULL; 3799 u64 ow_inode = 0; 3800 u64 ow_gen; 3801 u64 ow_mode; 3802 int did_overwrite = 0; 3803 int is_orphan = 0; 3804 u64 last_dir_ino_rm = 0; 3805 bool can_rename = true; 3806 bool orphanized_dir = false; 3807 bool orphanized_ancestor = false; 3808 3809 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3810 3811 /* 3812 * This should never happen as the root dir always has the same ref 3813 * which is always '..' 3814 */ 3815 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3816 INIT_LIST_HEAD(&check_dirs); 3817 3818 valid_path = fs_path_alloc(); 3819 if (!valid_path) { 3820 ret = -ENOMEM; 3821 goto out; 3822 } 3823 3824 /* 3825 * First, check if the first ref of the current inode was overwritten 3826 * before. If yes, we know that the current inode was already orphanized 3827 * and thus use the orphan name. If not, we can use get_cur_path to 3828 * get the path of the first ref as it would like while receiving at 3829 * this point in time. 3830 * New inodes are always orphan at the beginning, so force to use the 3831 * orphan name in this case. 3832 * The first ref is stored in valid_path and will be updated if it 3833 * gets moved around. 3834 */ 3835 if (!sctx->cur_inode_new) { 3836 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3837 sctx->cur_inode_gen); 3838 if (ret < 0) 3839 goto out; 3840 if (ret) 3841 did_overwrite = 1; 3842 } 3843 if (sctx->cur_inode_new || did_overwrite) { 3844 ret = gen_unique_name(sctx, sctx->cur_ino, 3845 sctx->cur_inode_gen, valid_path); 3846 if (ret < 0) 3847 goto out; 3848 is_orphan = 1; 3849 } else { 3850 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3851 valid_path); 3852 if (ret < 0) 3853 goto out; 3854 } 3855 3856 list_for_each_entry(cur, &sctx->new_refs, list) { 3857 /* 3858 * We may have refs where the parent directory does not exist 3859 * yet. This happens if the parent directories inum is higher 3860 * the the current inum. To handle this case, we create the 3861 * parent directory out of order. But we need to check if this 3862 * did already happen before due to other refs in the same dir. 3863 */ 3864 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3865 if (ret < 0) 3866 goto out; 3867 if (ret == inode_state_will_create) { 3868 ret = 0; 3869 /* 3870 * First check if any of the current inodes refs did 3871 * already create the dir. 3872 */ 3873 list_for_each_entry(cur2, &sctx->new_refs, list) { 3874 if (cur == cur2) 3875 break; 3876 if (cur2->dir == cur->dir) { 3877 ret = 1; 3878 break; 3879 } 3880 } 3881 3882 /* 3883 * If that did not happen, check if a previous inode 3884 * did already create the dir. 3885 */ 3886 if (!ret) 3887 ret = did_create_dir(sctx, cur->dir); 3888 if (ret < 0) 3889 goto out; 3890 if (!ret) { 3891 ret = send_create_inode(sctx, cur->dir); 3892 if (ret < 0) 3893 goto out; 3894 } 3895 } 3896 3897 /* 3898 * Check if this new ref would overwrite the first ref of 3899 * another unprocessed inode. If yes, orphanize the 3900 * overwritten inode. If we find an overwritten ref that is 3901 * not the first ref, simply unlink it. 3902 */ 3903 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3904 cur->name, cur->name_len, 3905 &ow_inode, &ow_gen, &ow_mode); 3906 if (ret < 0) 3907 goto out; 3908 if (ret) { 3909 ret = is_first_ref(sctx->parent_root, 3910 ow_inode, cur->dir, cur->name, 3911 cur->name_len); 3912 if (ret < 0) 3913 goto out; 3914 if (ret) { 3915 struct name_cache_entry *nce; 3916 struct waiting_dir_move *wdm; 3917 3918 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3919 cur->full_path); 3920 if (ret < 0) 3921 goto out; 3922 if (S_ISDIR(ow_mode)) 3923 orphanized_dir = true; 3924 3925 /* 3926 * If ow_inode has its rename operation delayed 3927 * make sure that its orphanized name is used in 3928 * the source path when performing its rename 3929 * operation. 3930 */ 3931 if (is_waiting_for_move(sctx, ow_inode)) { 3932 wdm = get_waiting_dir_move(sctx, 3933 ow_inode); 3934 ASSERT(wdm); 3935 wdm->orphanized = true; 3936 } 3937 3938 /* 3939 * Make sure we clear our orphanized inode's 3940 * name from the name cache. This is because the 3941 * inode ow_inode might be an ancestor of some 3942 * other inode that will be orphanized as well 3943 * later and has an inode number greater than 3944 * sctx->send_progress. We need to prevent 3945 * future name lookups from using the old name 3946 * and get instead the orphan name. 3947 */ 3948 nce = name_cache_search(sctx, ow_inode, ow_gen); 3949 if (nce) { 3950 name_cache_delete(sctx, nce); 3951 kfree(nce); 3952 } 3953 3954 /* 3955 * ow_inode might currently be an ancestor of 3956 * cur_ino, therefore compute valid_path (the 3957 * current path of cur_ino) again because it 3958 * might contain the pre-orphanization name of 3959 * ow_inode, which is no longer valid. 3960 */ 3961 ret = is_ancestor(sctx->parent_root, 3962 ow_inode, ow_gen, 3963 sctx->cur_ino, NULL); 3964 if (ret > 0) { 3965 orphanized_ancestor = true; 3966 fs_path_reset(valid_path); 3967 ret = get_cur_path(sctx, sctx->cur_ino, 3968 sctx->cur_inode_gen, 3969 valid_path); 3970 } 3971 if (ret < 0) 3972 goto out; 3973 } else { 3974 ret = send_unlink(sctx, cur->full_path); 3975 if (ret < 0) 3976 goto out; 3977 } 3978 } 3979 3980 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3981 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3982 if (ret < 0) 3983 goto out; 3984 if (ret == 1) { 3985 can_rename = false; 3986 *pending_move = 1; 3987 } 3988 } 3989 3990 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 3991 can_rename) { 3992 ret = wait_for_parent_move(sctx, cur, is_orphan); 3993 if (ret < 0) 3994 goto out; 3995 if (ret == 1) { 3996 can_rename = false; 3997 *pending_move = 1; 3998 } 3999 } 4000 4001 /* 4002 * link/move the ref to the new place. If we have an orphan 4003 * inode, move it and update valid_path. If not, link or move 4004 * it depending on the inode mode. 4005 */ 4006 if (is_orphan && can_rename) { 4007 ret = send_rename(sctx, valid_path, cur->full_path); 4008 if (ret < 0) 4009 goto out; 4010 is_orphan = 0; 4011 ret = fs_path_copy(valid_path, cur->full_path); 4012 if (ret < 0) 4013 goto out; 4014 } else if (can_rename) { 4015 if (S_ISDIR(sctx->cur_inode_mode)) { 4016 /* 4017 * Dirs can't be linked, so move it. For moved 4018 * dirs, we always have one new and one deleted 4019 * ref. The deleted ref is ignored later. 4020 */ 4021 ret = send_rename(sctx, valid_path, 4022 cur->full_path); 4023 if (!ret) 4024 ret = fs_path_copy(valid_path, 4025 cur->full_path); 4026 if (ret < 0) 4027 goto out; 4028 } else { 4029 /* 4030 * We might have previously orphanized an inode 4031 * which is an ancestor of our current inode, 4032 * so our reference's full path, which was 4033 * computed before any such orphanizations, must 4034 * be updated. 4035 */ 4036 if (orphanized_dir) { 4037 ret = update_ref_path(sctx, cur); 4038 if (ret < 0) 4039 goto out; 4040 } 4041 ret = send_link(sctx, cur->full_path, 4042 valid_path); 4043 if (ret < 0) 4044 goto out; 4045 } 4046 } 4047 ret = dup_ref(cur, &check_dirs); 4048 if (ret < 0) 4049 goto out; 4050 } 4051 4052 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4053 /* 4054 * Check if we can already rmdir the directory. If not, 4055 * orphanize it. For every dir item inside that gets deleted 4056 * later, we do this check again and rmdir it then if possible. 4057 * See the use of check_dirs for more details. 4058 */ 4059 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4060 sctx->cur_ino); 4061 if (ret < 0) 4062 goto out; 4063 if (ret) { 4064 ret = send_rmdir(sctx, valid_path); 4065 if (ret < 0) 4066 goto out; 4067 } else if (!is_orphan) { 4068 ret = orphanize_inode(sctx, sctx->cur_ino, 4069 sctx->cur_inode_gen, valid_path); 4070 if (ret < 0) 4071 goto out; 4072 is_orphan = 1; 4073 } 4074 4075 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4076 ret = dup_ref(cur, &check_dirs); 4077 if (ret < 0) 4078 goto out; 4079 } 4080 } else if (S_ISDIR(sctx->cur_inode_mode) && 4081 !list_empty(&sctx->deleted_refs)) { 4082 /* 4083 * We have a moved dir. Add the old parent to check_dirs 4084 */ 4085 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4086 list); 4087 ret = dup_ref(cur, &check_dirs); 4088 if (ret < 0) 4089 goto out; 4090 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4091 /* 4092 * We have a non dir inode. Go through all deleted refs and 4093 * unlink them if they were not already overwritten by other 4094 * inodes. 4095 */ 4096 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4097 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4098 sctx->cur_ino, sctx->cur_inode_gen, 4099 cur->name, cur->name_len); 4100 if (ret < 0) 4101 goto out; 4102 if (!ret) { 4103 /* 4104 * If we orphanized any ancestor before, we need 4105 * to recompute the full path for deleted names, 4106 * since any such path was computed before we 4107 * processed any references and orphanized any 4108 * ancestor inode. 4109 */ 4110 if (orphanized_ancestor) { 4111 ret = update_ref_path(sctx, cur); 4112 if (ret < 0) 4113 goto out; 4114 } 4115 ret = send_unlink(sctx, cur->full_path); 4116 if (ret < 0) 4117 goto out; 4118 } 4119 ret = dup_ref(cur, &check_dirs); 4120 if (ret < 0) 4121 goto out; 4122 } 4123 /* 4124 * If the inode is still orphan, unlink the orphan. This may 4125 * happen when a previous inode did overwrite the first ref 4126 * of this inode and no new refs were added for the current 4127 * inode. Unlinking does not mean that the inode is deleted in 4128 * all cases. There may still be links to this inode in other 4129 * places. 4130 */ 4131 if (is_orphan) { 4132 ret = send_unlink(sctx, valid_path); 4133 if (ret < 0) 4134 goto out; 4135 } 4136 } 4137 4138 /* 4139 * We did collect all parent dirs where cur_inode was once located. We 4140 * now go through all these dirs and check if they are pending for 4141 * deletion and if it's finally possible to perform the rmdir now. 4142 * We also update the inode stats of the parent dirs here. 4143 */ 4144 list_for_each_entry(cur, &check_dirs, list) { 4145 /* 4146 * In case we had refs into dirs that were not processed yet, 4147 * we don't need to do the utime and rmdir logic for these dirs. 4148 * The dir will be processed later. 4149 */ 4150 if (cur->dir > sctx->cur_ino) 4151 continue; 4152 4153 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4154 if (ret < 0) 4155 goto out; 4156 4157 if (ret == inode_state_did_create || 4158 ret == inode_state_no_change) { 4159 /* TODO delayed utimes */ 4160 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4161 if (ret < 0) 4162 goto out; 4163 } else if (ret == inode_state_did_delete && 4164 cur->dir != last_dir_ino_rm) { 4165 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4166 sctx->cur_ino); 4167 if (ret < 0) 4168 goto out; 4169 if (ret) { 4170 ret = get_cur_path(sctx, cur->dir, 4171 cur->dir_gen, valid_path); 4172 if (ret < 0) 4173 goto out; 4174 ret = send_rmdir(sctx, valid_path); 4175 if (ret < 0) 4176 goto out; 4177 last_dir_ino_rm = cur->dir; 4178 } 4179 } 4180 } 4181 4182 ret = 0; 4183 4184 out: 4185 __free_recorded_refs(&check_dirs); 4186 free_recorded_refs(sctx); 4187 fs_path_free(valid_path); 4188 return ret; 4189 } 4190 4191 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4192 void *ctx, struct list_head *refs) 4193 { 4194 int ret = 0; 4195 struct send_ctx *sctx = ctx; 4196 struct fs_path *p; 4197 u64 gen; 4198 4199 p = fs_path_alloc(); 4200 if (!p) 4201 return -ENOMEM; 4202 4203 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4204 NULL, NULL); 4205 if (ret < 0) 4206 goto out; 4207 4208 ret = get_cur_path(sctx, dir, gen, p); 4209 if (ret < 0) 4210 goto out; 4211 ret = fs_path_add_path(p, name); 4212 if (ret < 0) 4213 goto out; 4214 4215 ret = __record_ref(refs, dir, gen, p); 4216 4217 out: 4218 if (ret) 4219 fs_path_free(p); 4220 return ret; 4221 } 4222 4223 static int __record_new_ref(int num, u64 dir, int index, 4224 struct fs_path *name, 4225 void *ctx) 4226 { 4227 struct send_ctx *sctx = ctx; 4228 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4229 } 4230 4231 4232 static int __record_deleted_ref(int num, u64 dir, int index, 4233 struct fs_path *name, 4234 void *ctx) 4235 { 4236 struct send_ctx *sctx = ctx; 4237 return record_ref(sctx->parent_root, dir, name, ctx, 4238 &sctx->deleted_refs); 4239 } 4240 4241 static int record_new_ref(struct send_ctx *sctx) 4242 { 4243 int ret; 4244 4245 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4246 sctx->cmp_key, 0, __record_new_ref, sctx); 4247 if (ret < 0) 4248 goto out; 4249 ret = 0; 4250 4251 out: 4252 return ret; 4253 } 4254 4255 static int record_deleted_ref(struct send_ctx *sctx) 4256 { 4257 int ret; 4258 4259 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4260 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4261 if (ret < 0) 4262 goto out; 4263 ret = 0; 4264 4265 out: 4266 return ret; 4267 } 4268 4269 struct find_ref_ctx { 4270 u64 dir; 4271 u64 dir_gen; 4272 struct btrfs_root *root; 4273 struct fs_path *name; 4274 int found_idx; 4275 }; 4276 4277 static int __find_iref(int num, u64 dir, int index, 4278 struct fs_path *name, 4279 void *ctx_) 4280 { 4281 struct find_ref_ctx *ctx = ctx_; 4282 u64 dir_gen; 4283 int ret; 4284 4285 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4286 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4287 /* 4288 * To avoid doing extra lookups we'll only do this if everything 4289 * else matches. 4290 */ 4291 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4292 NULL, NULL, NULL); 4293 if (ret) 4294 return ret; 4295 if (dir_gen != ctx->dir_gen) 4296 return 0; 4297 ctx->found_idx = num; 4298 return 1; 4299 } 4300 return 0; 4301 } 4302 4303 static int find_iref(struct btrfs_root *root, 4304 struct btrfs_path *path, 4305 struct btrfs_key *key, 4306 u64 dir, u64 dir_gen, struct fs_path *name) 4307 { 4308 int ret; 4309 struct find_ref_ctx ctx; 4310 4311 ctx.dir = dir; 4312 ctx.name = name; 4313 ctx.dir_gen = dir_gen; 4314 ctx.found_idx = -1; 4315 ctx.root = root; 4316 4317 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4318 if (ret < 0) 4319 return ret; 4320 4321 if (ctx.found_idx == -1) 4322 return -ENOENT; 4323 4324 return ctx.found_idx; 4325 } 4326 4327 static int __record_changed_new_ref(int num, u64 dir, int index, 4328 struct fs_path *name, 4329 void *ctx) 4330 { 4331 u64 dir_gen; 4332 int ret; 4333 struct send_ctx *sctx = ctx; 4334 4335 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4336 NULL, NULL, NULL); 4337 if (ret) 4338 return ret; 4339 4340 ret = find_iref(sctx->parent_root, sctx->right_path, 4341 sctx->cmp_key, dir, dir_gen, name); 4342 if (ret == -ENOENT) 4343 ret = __record_new_ref(num, dir, index, name, sctx); 4344 else if (ret > 0) 4345 ret = 0; 4346 4347 return ret; 4348 } 4349 4350 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4351 struct fs_path *name, 4352 void *ctx) 4353 { 4354 u64 dir_gen; 4355 int ret; 4356 struct send_ctx *sctx = ctx; 4357 4358 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4359 NULL, NULL, NULL); 4360 if (ret) 4361 return ret; 4362 4363 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4364 dir, dir_gen, name); 4365 if (ret == -ENOENT) 4366 ret = __record_deleted_ref(num, dir, index, name, sctx); 4367 else if (ret > 0) 4368 ret = 0; 4369 4370 return ret; 4371 } 4372 4373 static int record_changed_ref(struct send_ctx *sctx) 4374 { 4375 int ret = 0; 4376 4377 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4378 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4379 if (ret < 0) 4380 goto out; 4381 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4382 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4383 if (ret < 0) 4384 goto out; 4385 ret = 0; 4386 4387 out: 4388 return ret; 4389 } 4390 4391 /* 4392 * Record and process all refs at once. Needed when an inode changes the 4393 * generation number, which means that it was deleted and recreated. 4394 */ 4395 static int process_all_refs(struct send_ctx *sctx, 4396 enum btrfs_compare_tree_result cmd) 4397 { 4398 int ret; 4399 struct btrfs_root *root; 4400 struct btrfs_path *path; 4401 struct btrfs_key key; 4402 struct btrfs_key found_key; 4403 struct extent_buffer *eb; 4404 int slot; 4405 iterate_inode_ref_t cb; 4406 int pending_move = 0; 4407 4408 path = alloc_path_for_send(); 4409 if (!path) 4410 return -ENOMEM; 4411 4412 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4413 root = sctx->send_root; 4414 cb = __record_new_ref; 4415 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4416 root = sctx->parent_root; 4417 cb = __record_deleted_ref; 4418 } else { 4419 btrfs_err(sctx->send_root->fs_info, 4420 "Wrong command %d in process_all_refs", cmd); 4421 ret = -EINVAL; 4422 goto out; 4423 } 4424 4425 key.objectid = sctx->cmp_key->objectid; 4426 key.type = BTRFS_INODE_REF_KEY; 4427 key.offset = 0; 4428 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4429 if (ret < 0) 4430 goto out; 4431 4432 while (1) { 4433 eb = path->nodes[0]; 4434 slot = path->slots[0]; 4435 if (slot >= btrfs_header_nritems(eb)) { 4436 ret = btrfs_next_leaf(root, path); 4437 if (ret < 0) 4438 goto out; 4439 else if (ret > 0) 4440 break; 4441 continue; 4442 } 4443 4444 btrfs_item_key_to_cpu(eb, &found_key, slot); 4445 4446 if (found_key.objectid != key.objectid || 4447 (found_key.type != BTRFS_INODE_REF_KEY && 4448 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4449 break; 4450 4451 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4452 if (ret < 0) 4453 goto out; 4454 4455 path->slots[0]++; 4456 } 4457 btrfs_release_path(path); 4458 4459 /* 4460 * We don't actually care about pending_move as we are simply 4461 * re-creating this inode and will be rename'ing it into place once we 4462 * rename the parent directory. 4463 */ 4464 ret = process_recorded_refs(sctx, &pending_move); 4465 out: 4466 btrfs_free_path(path); 4467 return ret; 4468 } 4469 4470 static int send_set_xattr(struct send_ctx *sctx, 4471 struct fs_path *path, 4472 const char *name, int name_len, 4473 const char *data, int data_len) 4474 { 4475 int ret = 0; 4476 4477 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4478 if (ret < 0) 4479 goto out; 4480 4481 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4482 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4483 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4484 4485 ret = send_cmd(sctx); 4486 4487 tlv_put_failure: 4488 out: 4489 return ret; 4490 } 4491 4492 static int send_remove_xattr(struct send_ctx *sctx, 4493 struct fs_path *path, 4494 const char *name, int name_len) 4495 { 4496 int ret = 0; 4497 4498 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4499 if (ret < 0) 4500 goto out; 4501 4502 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4503 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4504 4505 ret = send_cmd(sctx); 4506 4507 tlv_put_failure: 4508 out: 4509 return ret; 4510 } 4511 4512 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4513 const char *name, int name_len, 4514 const char *data, int data_len, 4515 u8 type, void *ctx) 4516 { 4517 int ret; 4518 struct send_ctx *sctx = ctx; 4519 struct fs_path *p; 4520 struct posix_acl_xattr_header dummy_acl; 4521 4522 p = fs_path_alloc(); 4523 if (!p) 4524 return -ENOMEM; 4525 4526 /* 4527 * This hack is needed because empty acls are stored as zero byte 4528 * data in xattrs. Problem with that is, that receiving these zero byte 4529 * acls will fail later. To fix this, we send a dummy acl list that 4530 * only contains the version number and no entries. 4531 */ 4532 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4533 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4534 if (data_len == 0) { 4535 dummy_acl.a_version = 4536 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4537 data = (char *)&dummy_acl; 4538 data_len = sizeof(dummy_acl); 4539 } 4540 } 4541 4542 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4543 if (ret < 0) 4544 goto out; 4545 4546 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4547 4548 out: 4549 fs_path_free(p); 4550 return ret; 4551 } 4552 4553 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4554 const char *name, int name_len, 4555 const char *data, int data_len, 4556 u8 type, void *ctx) 4557 { 4558 int ret; 4559 struct send_ctx *sctx = ctx; 4560 struct fs_path *p; 4561 4562 p = fs_path_alloc(); 4563 if (!p) 4564 return -ENOMEM; 4565 4566 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4567 if (ret < 0) 4568 goto out; 4569 4570 ret = send_remove_xattr(sctx, p, name, name_len); 4571 4572 out: 4573 fs_path_free(p); 4574 return ret; 4575 } 4576 4577 static int process_new_xattr(struct send_ctx *sctx) 4578 { 4579 int ret = 0; 4580 4581 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4582 __process_new_xattr, sctx); 4583 4584 return ret; 4585 } 4586 4587 static int process_deleted_xattr(struct send_ctx *sctx) 4588 { 4589 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4590 __process_deleted_xattr, sctx); 4591 } 4592 4593 struct find_xattr_ctx { 4594 const char *name; 4595 int name_len; 4596 int found_idx; 4597 char *found_data; 4598 int found_data_len; 4599 }; 4600 4601 static int __find_xattr(int num, struct btrfs_key *di_key, 4602 const char *name, int name_len, 4603 const char *data, int data_len, 4604 u8 type, void *vctx) 4605 { 4606 struct find_xattr_ctx *ctx = vctx; 4607 4608 if (name_len == ctx->name_len && 4609 strncmp(name, ctx->name, name_len) == 0) { 4610 ctx->found_idx = num; 4611 ctx->found_data_len = data_len; 4612 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4613 if (!ctx->found_data) 4614 return -ENOMEM; 4615 return 1; 4616 } 4617 return 0; 4618 } 4619 4620 static int find_xattr(struct btrfs_root *root, 4621 struct btrfs_path *path, 4622 struct btrfs_key *key, 4623 const char *name, int name_len, 4624 char **data, int *data_len) 4625 { 4626 int ret; 4627 struct find_xattr_ctx ctx; 4628 4629 ctx.name = name; 4630 ctx.name_len = name_len; 4631 ctx.found_idx = -1; 4632 ctx.found_data = NULL; 4633 ctx.found_data_len = 0; 4634 4635 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4636 if (ret < 0) 4637 return ret; 4638 4639 if (ctx.found_idx == -1) 4640 return -ENOENT; 4641 if (data) { 4642 *data = ctx.found_data; 4643 *data_len = ctx.found_data_len; 4644 } else { 4645 kfree(ctx.found_data); 4646 } 4647 return ctx.found_idx; 4648 } 4649 4650 4651 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4652 const char *name, int name_len, 4653 const char *data, int data_len, 4654 u8 type, void *ctx) 4655 { 4656 int ret; 4657 struct send_ctx *sctx = ctx; 4658 char *found_data = NULL; 4659 int found_data_len = 0; 4660 4661 ret = find_xattr(sctx->parent_root, sctx->right_path, 4662 sctx->cmp_key, name, name_len, &found_data, 4663 &found_data_len); 4664 if (ret == -ENOENT) { 4665 ret = __process_new_xattr(num, di_key, name, name_len, data, 4666 data_len, type, ctx); 4667 } else if (ret >= 0) { 4668 if (data_len != found_data_len || 4669 memcmp(data, found_data, data_len)) { 4670 ret = __process_new_xattr(num, di_key, name, name_len, 4671 data, data_len, type, ctx); 4672 } else { 4673 ret = 0; 4674 } 4675 } 4676 4677 kfree(found_data); 4678 return ret; 4679 } 4680 4681 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4682 const char *name, int name_len, 4683 const char *data, int data_len, 4684 u8 type, void *ctx) 4685 { 4686 int ret; 4687 struct send_ctx *sctx = ctx; 4688 4689 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4690 name, name_len, NULL, NULL); 4691 if (ret == -ENOENT) 4692 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4693 data_len, type, ctx); 4694 else if (ret >= 0) 4695 ret = 0; 4696 4697 return ret; 4698 } 4699 4700 static int process_changed_xattr(struct send_ctx *sctx) 4701 { 4702 int ret = 0; 4703 4704 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4705 __process_changed_new_xattr, sctx); 4706 if (ret < 0) 4707 goto out; 4708 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4709 __process_changed_deleted_xattr, sctx); 4710 4711 out: 4712 return ret; 4713 } 4714 4715 static int process_all_new_xattrs(struct send_ctx *sctx) 4716 { 4717 int ret; 4718 struct btrfs_root *root; 4719 struct btrfs_path *path; 4720 struct btrfs_key key; 4721 struct btrfs_key found_key; 4722 struct extent_buffer *eb; 4723 int slot; 4724 4725 path = alloc_path_for_send(); 4726 if (!path) 4727 return -ENOMEM; 4728 4729 root = sctx->send_root; 4730 4731 key.objectid = sctx->cmp_key->objectid; 4732 key.type = BTRFS_XATTR_ITEM_KEY; 4733 key.offset = 0; 4734 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4735 if (ret < 0) 4736 goto out; 4737 4738 while (1) { 4739 eb = path->nodes[0]; 4740 slot = path->slots[0]; 4741 if (slot >= btrfs_header_nritems(eb)) { 4742 ret = btrfs_next_leaf(root, path); 4743 if (ret < 0) { 4744 goto out; 4745 } else if (ret > 0) { 4746 ret = 0; 4747 break; 4748 } 4749 continue; 4750 } 4751 4752 btrfs_item_key_to_cpu(eb, &found_key, slot); 4753 if (found_key.objectid != key.objectid || 4754 found_key.type != key.type) { 4755 ret = 0; 4756 goto out; 4757 } 4758 4759 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4760 if (ret < 0) 4761 goto out; 4762 4763 path->slots[0]++; 4764 } 4765 4766 out: 4767 btrfs_free_path(path); 4768 return ret; 4769 } 4770 4771 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4772 { 4773 struct btrfs_root *root = sctx->send_root; 4774 struct btrfs_fs_info *fs_info = root->fs_info; 4775 struct inode *inode; 4776 struct page *page; 4777 char *addr; 4778 struct btrfs_key key; 4779 pgoff_t index = offset >> PAGE_SHIFT; 4780 pgoff_t last_index; 4781 unsigned pg_offset = offset & ~PAGE_MASK; 4782 ssize_t ret = 0; 4783 4784 key.objectid = sctx->cur_ino; 4785 key.type = BTRFS_INODE_ITEM_KEY; 4786 key.offset = 0; 4787 4788 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4789 if (IS_ERR(inode)) 4790 return PTR_ERR(inode); 4791 4792 if (offset + len > i_size_read(inode)) { 4793 if (offset > i_size_read(inode)) 4794 len = 0; 4795 else 4796 len = offset - i_size_read(inode); 4797 } 4798 if (len == 0) 4799 goto out; 4800 4801 last_index = (offset + len - 1) >> PAGE_SHIFT; 4802 4803 /* initial readahead */ 4804 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4805 file_ra_state_init(&sctx->ra, inode->i_mapping); 4806 4807 while (index <= last_index) { 4808 unsigned cur_len = min_t(unsigned, len, 4809 PAGE_SIZE - pg_offset); 4810 4811 page = find_lock_page(inode->i_mapping, index); 4812 if (!page) { 4813 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4814 NULL, index, last_index + 1 - index); 4815 4816 page = find_or_create_page(inode->i_mapping, index, 4817 GFP_KERNEL); 4818 if (!page) { 4819 ret = -ENOMEM; 4820 break; 4821 } 4822 } 4823 4824 if (PageReadahead(page)) { 4825 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4826 NULL, page, index, last_index + 1 - index); 4827 } 4828 4829 if (!PageUptodate(page)) { 4830 btrfs_readpage(NULL, page); 4831 lock_page(page); 4832 if (!PageUptodate(page)) { 4833 unlock_page(page); 4834 put_page(page); 4835 ret = -EIO; 4836 break; 4837 } 4838 } 4839 4840 addr = kmap(page); 4841 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4842 kunmap(page); 4843 unlock_page(page); 4844 put_page(page); 4845 index++; 4846 pg_offset = 0; 4847 len -= cur_len; 4848 ret += cur_len; 4849 } 4850 out: 4851 iput(inode); 4852 return ret; 4853 } 4854 4855 /* 4856 * Read some bytes from the current inode/file and send a write command to 4857 * user space. 4858 */ 4859 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4860 { 4861 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4862 int ret = 0; 4863 struct fs_path *p; 4864 ssize_t num_read = 0; 4865 4866 p = fs_path_alloc(); 4867 if (!p) 4868 return -ENOMEM; 4869 4870 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4871 4872 num_read = fill_read_buf(sctx, offset, len); 4873 if (num_read <= 0) { 4874 if (num_read < 0) 4875 ret = num_read; 4876 goto out; 4877 } 4878 4879 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4880 if (ret < 0) 4881 goto out; 4882 4883 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4884 if (ret < 0) 4885 goto out; 4886 4887 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4888 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4889 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4890 4891 ret = send_cmd(sctx); 4892 4893 tlv_put_failure: 4894 out: 4895 fs_path_free(p); 4896 if (ret < 0) 4897 return ret; 4898 return num_read; 4899 } 4900 4901 /* 4902 * Send a clone command to user space. 4903 */ 4904 static int send_clone(struct send_ctx *sctx, 4905 u64 offset, u32 len, 4906 struct clone_root *clone_root) 4907 { 4908 int ret = 0; 4909 struct fs_path *p; 4910 u64 gen; 4911 4912 btrfs_debug(sctx->send_root->fs_info, 4913 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4914 offset, len, clone_root->root->objectid, clone_root->ino, 4915 clone_root->offset); 4916 4917 p = fs_path_alloc(); 4918 if (!p) 4919 return -ENOMEM; 4920 4921 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4922 if (ret < 0) 4923 goto out; 4924 4925 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4926 if (ret < 0) 4927 goto out; 4928 4929 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4930 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4931 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4932 4933 if (clone_root->root == sctx->send_root) { 4934 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4935 &gen, NULL, NULL, NULL, NULL); 4936 if (ret < 0) 4937 goto out; 4938 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4939 } else { 4940 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4941 } 4942 if (ret < 0) 4943 goto out; 4944 4945 /* 4946 * If the parent we're using has a received_uuid set then use that as 4947 * our clone source as that is what we will look for when doing a 4948 * receive. 4949 * 4950 * This covers the case that we create a snapshot off of a received 4951 * subvolume and then use that as the parent and try to receive on a 4952 * different host. 4953 */ 4954 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4955 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4956 clone_root->root->root_item.received_uuid); 4957 else 4958 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4959 clone_root->root->root_item.uuid); 4960 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4961 le64_to_cpu(clone_root->root->root_item.ctransid)); 4962 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4963 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4964 clone_root->offset); 4965 4966 ret = send_cmd(sctx); 4967 4968 tlv_put_failure: 4969 out: 4970 fs_path_free(p); 4971 return ret; 4972 } 4973 4974 /* 4975 * Send an update extent command to user space. 4976 */ 4977 static int send_update_extent(struct send_ctx *sctx, 4978 u64 offset, u32 len) 4979 { 4980 int ret = 0; 4981 struct fs_path *p; 4982 4983 p = fs_path_alloc(); 4984 if (!p) 4985 return -ENOMEM; 4986 4987 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4988 if (ret < 0) 4989 goto out; 4990 4991 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4992 if (ret < 0) 4993 goto out; 4994 4995 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4996 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4997 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4998 4999 ret = send_cmd(sctx); 5000 5001 tlv_put_failure: 5002 out: 5003 fs_path_free(p); 5004 return ret; 5005 } 5006 5007 static int send_hole(struct send_ctx *sctx, u64 end) 5008 { 5009 struct fs_path *p = NULL; 5010 u64 offset = sctx->cur_inode_last_extent; 5011 u64 len; 5012 int ret = 0; 5013 5014 p = fs_path_alloc(); 5015 if (!p) 5016 return -ENOMEM; 5017 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5018 if (ret < 0) 5019 goto tlv_put_failure; 5020 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 5021 while (offset < end) { 5022 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 5023 5024 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5025 if (ret < 0) 5026 break; 5027 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5028 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5029 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 5030 ret = send_cmd(sctx); 5031 if (ret < 0) 5032 break; 5033 offset += len; 5034 } 5035 tlv_put_failure: 5036 fs_path_free(p); 5037 return ret; 5038 } 5039 5040 static int send_extent_data(struct send_ctx *sctx, 5041 const u64 offset, 5042 const u64 len) 5043 { 5044 u64 sent = 0; 5045 5046 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5047 return send_update_extent(sctx, offset, len); 5048 5049 while (sent < len) { 5050 u64 size = len - sent; 5051 int ret; 5052 5053 if (size > BTRFS_SEND_READ_SIZE) 5054 size = BTRFS_SEND_READ_SIZE; 5055 ret = send_write(sctx, offset + sent, size); 5056 if (ret < 0) 5057 return ret; 5058 if (!ret) 5059 break; 5060 sent += ret; 5061 } 5062 return 0; 5063 } 5064 5065 static int clone_range(struct send_ctx *sctx, 5066 struct clone_root *clone_root, 5067 const u64 disk_byte, 5068 u64 data_offset, 5069 u64 offset, 5070 u64 len) 5071 { 5072 struct btrfs_path *path; 5073 struct btrfs_key key; 5074 int ret; 5075 5076 /* 5077 * Prevent cloning from a zero offset with a length matching the sector 5078 * size because in some scenarios this will make the receiver fail. 5079 * 5080 * For example, if in the source filesystem the extent at offset 0 5081 * has a length of sectorsize and it was written using direct IO, then 5082 * it can never be an inline extent (even if compression is enabled). 5083 * Then this extent can be cloned in the original filesystem to a non 5084 * zero file offset, but it may not be possible to clone in the 5085 * destination filesystem because it can be inlined due to compression 5086 * on the destination filesystem (as the receiver's write operations are 5087 * always done using buffered IO). The same happens when the original 5088 * filesystem does not have compression enabled but the destination 5089 * filesystem has. 5090 */ 5091 if (clone_root->offset == 0 && 5092 len == sctx->send_root->fs_info->sectorsize) 5093 return send_extent_data(sctx, offset, len); 5094 5095 path = alloc_path_for_send(); 5096 if (!path) 5097 return -ENOMEM; 5098 5099 /* 5100 * We can't send a clone operation for the entire range if we find 5101 * extent items in the respective range in the source file that 5102 * refer to different extents or if we find holes. 5103 * So check for that and do a mix of clone and regular write/copy 5104 * operations if needed. 5105 * 5106 * Example: 5107 * 5108 * mkfs.btrfs -f /dev/sda 5109 * mount /dev/sda /mnt 5110 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5111 * cp --reflink=always /mnt/foo /mnt/bar 5112 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5113 * btrfs subvolume snapshot -r /mnt /mnt/snap 5114 * 5115 * If when we send the snapshot and we are processing file bar (which 5116 * has a higher inode number than foo) we blindly send a clone operation 5117 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5118 * a file bar that matches the content of file foo - iow, doesn't match 5119 * the content from bar in the original filesystem. 5120 */ 5121 key.objectid = clone_root->ino; 5122 key.type = BTRFS_EXTENT_DATA_KEY; 5123 key.offset = clone_root->offset; 5124 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5125 if (ret < 0) 5126 goto out; 5127 if (ret > 0 && path->slots[0] > 0) { 5128 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5129 if (key.objectid == clone_root->ino && 5130 key.type == BTRFS_EXTENT_DATA_KEY) 5131 path->slots[0]--; 5132 } 5133 5134 while (true) { 5135 struct extent_buffer *leaf = path->nodes[0]; 5136 int slot = path->slots[0]; 5137 struct btrfs_file_extent_item *ei; 5138 u8 type; 5139 u64 ext_len; 5140 u64 clone_len; 5141 5142 if (slot >= btrfs_header_nritems(leaf)) { 5143 ret = btrfs_next_leaf(clone_root->root, path); 5144 if (ret < 0) 5145 goto out; 5146 else if (ret > 0) 5147 break; 5148 continue; 5149 } 5150 5151 btrfs_item_key_to_cpu(leaf, &key, slot); 5152 5153 /* 5154 * We might have an implicit trailing hole (NO_HOLES feature 5155 * enabled). We deal with it after leaving this loop. 5156 */ 5157 if (key.objectid != clone_root->ino || 5158 key.type != BTRFS_EXTENT_DATA_KEY) 5159 break; 5160 5161 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5162 type = btrfs_file_extent_type(leaf, ei); 5163 if (type == BTRFS_FILE_EXTENT_INLINE) { 5164 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei); 5165 ext_len = PAGE_ALIGN(ext_len); 5166 } else { 5167 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5168 } 5169 5170 if (key.offset + ext_len <= clone_root->offset) 5171 goto next; 5172 5173 if (key.offset > clone_root->offset) { 5174 /* Implicit hole, NO_HOLES feature enabled. */ 5175 u64 hole_len = key.offset - clone_root->offset; 5176 5177 if (hole_len > len) 5178 hole_len = len; 5179 ret = send_extent_data(sctx, offset, hole_len); 5180 if (ret < 0) 5181 goto out; 5182 5183 len -= hole_len; 5184 if (len == 0) 5185 break; 5186 offset += hole_len; 5187 clone_root->offset += hole_len; 5188 data_offset += hole_len; 5189 } 5190 5191 if (key.offset >= clone_root->offset + len) 5192 break; 5193 5194 clone_len = min_t(u64, ext_len, len); 5195 5196 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5197 btrfs_file_extent_offset(leaf, ei) == data_offset) 5198 ret = send_clone(sctx, offset, clone_len, clone_root); 5199 else 5200 ret = send_extent_data(sctx, offset, clone_len); 5201 5202 if (ret < 0) 5203 goto out; 5204 5205 len -= clone_len; 5206 if (len == 0) 5207 break; 5208 offset += clone_len; 5209 clone_root->offset += clone_len; 5210 data_offset += clone_len; 5211 next: 5212 path->slots[0]++; 5213 } 5214 5215 if (len > 0) 5216 ret = send_extent_data(sctx, offset, len); 5217 else 5218 ret = 0; 5219 out: 5220 btrfs_free_path(path); 5221 return ret; 5222 } 5223 5224 static int send_write_or_clone(struct send_ctx *sctx, 5225 struct btrfs_path *path, 5226 struct btrfs_key *key, 5227 struct clone_root *clone_root) 5228 { 5229 int ret = 0; 5230 struct btrfs_file_extent_item *ei; 5231 u64 offset = key->offset; 5232 u64 len; 5233 u8 type; 5234 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5235 5236 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5237 struct btrfs_file_extent_item); 5238 type = btrfs_file_extent_type(path->nodes[0], ei); 5239 if (type == BTRFS_FILE_EXTENT_INLINE) { 5240 len = btrfs_file_extent_inline_len(path->nodes[0], 5241 path->slots[0], ei); 5242 /* 5243 * it is possible the inline item won't cover the whole page, 5244 * but there may be items after this page. Make 5245 * sure to send the whole thing 5246 */ 5247 len = PAGE_ALIGN(len); 5248 } else { 5249 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5250 } 5251 5252 if (offset + len > sctx->cur_inode_size) 5253 len = sctx->cur_inode_size - offset; 5254 if (len == 0) { 5255 ret = 0; 5256 goto out; 5257 } 5258 5259 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5260 u64 disk_byte; 5261 u64 data_offset; 5262 5263 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5264 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5265 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5266 offset, len); 5267 } else { 5268 ret = send_extent_data(sctx, offset, len); 5269 } 5270 out: 5271 return ret; 5272 } 5273 5274 static int is_extent_unchanged(struct send_ctx *sctx, 5275 struct btrfs_path *left_path, 5276 struct btrfs_key *ekey) 5277 { 5278 int ret = 0; 5279 struct btrfs_key key; 5280 struct btrfs_path *path = NULL; 5281 struct extent_buffer *eb; 5282 int slot; 5283 struct btrfs_key found_key; 5284 struct btrfs_file_extent_item *ei; 5285 u64 left_disknr; 5286 u64 right_disknr; 5287 u64 left_offset; 5288 u64 right_offset; 5289 u64 left_offset_fixed; 5290 u64 left_len; 5291 u64 right_len; 5292 u64 left_gen; 5293 u64 right_gen; 5294 u8 left_type; 5295 u8 right_type; 5296 5297 path = alloc_path_for_send(); 5298 if (!path) 5299 return -ENOMEM; 5300 5301 eb = left_path->nodes[0]; 5302 slot = left_path->slots[0]; 5303 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5304 left_type = btrfs_file_extent_type(eb, ei); 5305 5306 if (left_type != BTRFS_FILE_EXTENT_REG) { 5307 ret = 0; 5308 goto out; 5309 } 5310 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5311 left_len = btrfs_file_extent_num_bytes(eb, ei); 5312 left_offset = btrfs_file_extent_offset(eb, ei); 5313 left_gen = btrfs_file_extent_generation(eb, ei); 5314 5315 /* 5316 * Following comments will refer to these graphics. L is the left 5317 * extents which we are checking at the moment. 1-8 are the right 5318 * extents that we iterate. 5319 * 5320 * |-----L-----| 5321 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5322 * 5323 * |-----L-----| 5324 * |--1--|-2b-|...(same as above) 5325 * 5326 * Alternative situation. Happens on files where extents got split. 5327 * |-----L-----| 5328 * |-----------7-----------|-6-| 5329 * 5330 * Alternative situation. Happens on files which got larger. 5331 * |-----L-----| 5332 * |-8-| 5333 * Nothing follows after 8. 5334 */ 5335 5336 key.objectid = ekey->objectid; 5337 key.type = BTRFS_EXTENT_DATA_KEY; 5338 key.offset = ekey->offset; 5339 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5340 if (ret < 0) 5341 goto out; 5342 if (ret) { 5343 ret = 0; 5344 goto out; 5345 } 5346 5347 /* 5348 * Handle special case where the right side has no extents at all. 5349 */ 5350 eb = path->nodes[0]; 5351 slot = path->slots[0]; 5352 btrfs_item_key_to_cpu(eb, &found_key, slot); 5353 if (found_key.objectid != key.objectid || 5354 found_key.type != key.type) { 5355 /* If we're a hole then just pretend nothing changed */ 5356 ret = (left_disknr) ? 0 : 1; 5357 goto out; 5358 } 5359 5360 /* 5361 * We're now on 2a, 2b or 7. 5362 */ 5363 key = found_key; 5364 while (key.offset < ekey->offset + left_len) { 5365 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5366 right_type = btrfs_file_extent_type(eb, ei); 5367 if (right_type != BTRFS_FILE_EXTENT_REG && 5368 right_type != BTRFS_FILE_EXTENT_INLINE) { 5369 ret = 0; 5370 goto out; 5371 } 5372 5373 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5374 right_len = btrfs_file_extent_inline_len(eb, slot, ei); 5375 right_len = PAGE_ALIGN(right_len); 5376 } else { 5377 right_len = btrfs_file_extent_num_bytes(eb, ei); 5378 } 5379 5380 /* 5381 * Are we at extent 8? If yes, we know the extent is changed. 5382 * This may only happen on the first iteration. 5383 */ 5384 if (found_key.offset + right_len <= ekey->offset) { 5385 /* If we're a hole just pretend nothing changed */ 5386 ret = (left_disknr) ? 0 : 1; 5387 goto out; 5388 } 5389 5390 /* 5391 * We just wanted to see if when we have an inline extent, what 5392 * follows it is a regular extent (wanted to check the above 5393 * condition for inline extents too). This should normally not 5394 * happen but it's possible for example when we have an inline 5395 * compressed extent representing data with a size matching 5396 * the page size (currently the same as sector size). 5397 */ 5398 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5399 ret = 0; 5400 goto out; 5401 } 5402 5403 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5404 right_offset = btrfs_file_extent_offset(eb, ei); 5405 right_gen = btrfs_file_extent_generation(eb, ei); 5406 5407 left_offset_fixed = left_offset; 5408 if (key.offset < ekey->offset) { 5409 /* Fix the right offset for 2a and 7. */ 5410 right_offset += ekey->offset - key.offset; 5411 } else { 5412 /* Fix the left offset for all behind 2a and 2b */ 5413 left_offset_fixed += key.offset - ekey->offset; 5414 } 5415 5416 /* 5417 * Check if we have the same extent. 5418 */ 5419 if (left_disknr != right_disknr || 5420 left_offset_fixed != right_offset || 5421 left_gen != right_gen) { 5422 ret = 0; 5423 goto out; 5424 } 5425 5426 /* 5427 * Go to the next extent. 5428 */ 5429 ret = btrfs_next_item(sctx->parent_root, path); 5430 if (ret < 0) 5431 goto out; 5432 if (!ret) { 5433 eb = path->nodes[0]; 5434 slot = path->slots[0]; 5435 btrfs_item_key_to_cpu(eb, &found_key, slot); 5436 } 5437 if (ret || found_key.objectid != key.objectid || 5438 found_key.type != key.type) { 5439 key.offset += right_len; 5440 break; 5441 } 5442 if (found_key.offset != key.offset + right_len) { 5443 ret = 0; 5444 goto out; 5445 } 5446 key = found_key; 5447 } 5448 5449 /* 5450 * We're now behind the left extent (treat as unchanged) or at the end 5451 * of the right side (treat as changed). 5452 */ 5453 if (key.offset >= ekey->offset + left_len) 5454 ret = 1; 5455 else 5456 ret = 0; 5457 5458 5459 out: 5460 btrfs_free_path(path); 5461 return ret; 5462 } 5463 5464 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5465 { 5466 struct btrfs_path *path; 5467 struct btrfs_root *root = sctx->send_root; 5468 struct btrfs_file_extent_item *fi; 5469 struct btrfs_key key; 5470 u64 extent_end; 5471 u8 type; 5472 int ret; 5473 5474 path = alloc_path_for_send(); 5475 if (!path) 5476 return -ENOMEM; 5477 5478 sctx->cur_inode_last_extent = 0; 5479 5480 key.objectid = sctx->cur_ino; 5481 key.type = BTRFS_EXTENT_DATA_KEY; 5482 key.offset = offset; 5483 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5484 if (ret < 0) 5485 goto out; 5486 ret = 0; 5487 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5488 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5489 goto out; 5490 5491 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5492 struct btrfs_file_extent_item); 5493 type = btrfs_file_extent_type(path->nodes[0], fi); 5494 if (type == BTRFS_FILE_EXTENT_INLINE) { 5495 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5496 path->slots[0], fi); 5497 extent_end = ALIGN(key.offset + size, 5498 sctx->send_root->fs_info->sectorsize); 5499 } else { 5500 extent_end = key.offset + 5501 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5502 } 5503 sctx->cur_inode_last_extent = extent_end; 5504 out: 5505 btrfs_free_path(path); 5506 return ret; 5507 } 5508 5509 static int range_is_hole_in_parent(struct send_ctx *sctx, 5510 const u64 start, 5511 const u64 end) 5512 { 5513 struct btrfs_path *path; 5514 struct btrfs_key key; 5515 struct btrfs_root *root = sctx->parent_root; 5516 u64 search_start = start; 5517 int ret; 5518 5519 path = alloc_path_for_send(); 5520 if (!path) 5521 return -ENOMEM; 5522 5523 key.objectid = sctx->cur_ino; 5524 key.type = BTRFS_EXTENT_DATA_KEY; 5525 key.offset = search_start; 5526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5527 if (ret < 0) 5528 goto out; 5529 if (ret > 0 && path->slots[0] > 0) 5530 path->slots[0]--; 5531 5532 while (search_start < end) { 5533 struct extent_buffer *leaf = path->nodes[0]; 5534 int slot = path->slots[0]; 5535 struct btrfs_file_extent_item *fi; 5536 u64 extent_end; 5537 5538 if (slot >= btrfs_header_nritems(leaf)) { 5539 ret = btrfs_next_leaf(root, path); 5540 if (ret < 0) 5541 goto out; 5542 else if (ret > 0) 5543 break; 5544 continue; 5545 } 5546 5547 btrfs_item_key_to_cpu(leaf, &key, slot); 5548 if (key.objectid < sctx->cur_ino || 5549 key.type < BTRFS_EXTENT_DATA_KEY) 5550 goto next; 5551 if (key.objectid > sctx->cur_ino || 5552 key.type > BTRFS_EXTENT_DATA_KEY || 5553 key.offset >= end) 5554 break; 5555 5556 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5557 if (btrfs_file_extent_type(leaf, fi) == 5558 BTRFS_FILE_EXTENT_INLINE) { 5559 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi); 5560 5561 extent_end = ALIGN(key.offset + size, 5562 root->fs_info->sectorsize); 5563 } else { 5564 extent_end = key.offset + 5565 btrfs_file_extent_num_bytes(leaf, fi); 5566 } 5567 if (extent_end <= start) 5568 goto next; 5569 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5570 search_start = extent_end; 5571 goto next; 5572 } 5573 ret = 0; 5574 goto out; 5575 next: 5576 path->slots[0]++; 5577 } 5578 ret = 1; 5579 out: 5580 btrfs_free_path(path); 5581 return ret; 5582 } 5583 5584 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5585 struct btrfs_key *key) 5586 { 5587 struct btrfs_file_extent_item *fi; 5588 u64 extent_end; 5589 u8 type; 5590 int ret = 0; 5591 5592 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5593 return 0; 5594 5595 if (sctx->cur_inode_last_extent == (u64)-1) { 5596 ret = get_last_extent(sctx, key->offset - 1); 5597 if (ret) 5598 return ret; 5599 } 5600 5601 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5602 struct btrfs_file_extent_item); 5603 type = btrfs_file_extent_type(path->nodes[0], fi); 5604 if (type == BTRFS_FILE_EXTENT_INLINE) { 5605 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5606 path->slots[0], fi); 5607 extent_end = ALIGN(key->offset + size, 5608 sctx->send_root->fs_info->sectorsize); 5609 } else { 5610 extent_end = key->offset + 5611 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5612 } 5613 5614 if (path->slots[0] == 0 && 5615 sctx->cur_inode_last_extent < key->offset) { 5616 /* 5617 * We might have skipped entire leafs that contained only 5618 * file extent items for our current inode. These leafs have 5619 * a generation number smaller (older) than the one in the 5620 * current leaf and the leaf our last extent came from, and 5621 * are located between these 2 leafs. 5622 */ 5623 ret = get_last_extent(sctx, key->offset - 1); 5624 if (ret) 5625 return ret; 5626 } 5627 5628 if (sctx->cur_inode_last_extent < key->offset) { 5629 ret = range_is_hole_in_parent(sctx, 5630 sctx->cur_inode_last_extent, 5631 key->offset); 5632 if (ret < 0) 5633 return ret; 5634 else if (ret == 0) 5635 ret = send_hole(sctx, key->offset); 5636 else 5637 ret = 0; 5638 } 5639 sctx->cur_inode_last_extent = extent_end; 5640 return ret; 5641 } 5642 5643 static int process_extent(struct send_ctx *sctx, 5644 struct btrfs_path *path, 5645 struct btrfs_key *key) 5646 { 5647 struct clone_root *found_clone = NULL; 5648 int ret = 0; 5649 5650 if (S_ISLNK(sctx->cur_inode_mode)) 5651 return 0; 5652 5653 if (sctx->parent_root && !sctx->cur_inode_new) { 5654 ret = is_extent_unchanged(sctx, path, key); 5655 if (ret < 0) 5656 goto out; 5657 if (ret) { 5658 ret = 0; 5659 goto out_hole; 5660 } 5661 } else { 5662 struct btrfs_file_extent_item *ei; 5663 u8 type; 5664 5665 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5666 struct btrfs_file_extent_item); 5667 type = btrfs_file_extent_type(path->nodes[0], ei); 5668 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5669 type == BTRFS_FILE_EXTENT_REG) { 5670 /* 5671 * The send spec does not have a prealloc command yet, 5672 * so just leave a hole for prealloc'ed extents until 5673 * we have enough commands queued up to justify rev'ing 5674 * the send spec. 5675 */ 5676 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5677 ret = 0; 5678 goto out; 5679 } 5680 5681 /* Have a hole, just skip it. */ 5682 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5683 ret = 0; 5684 goto out; 5685 } 5686 } 5687 } 5688 5689 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5690 sctx->cur_inode_size, &found_clone); 5691 if (ret != -ENOENT && ret < 0) 5692 goto out; 5693 5694 ret = send_write_or_clone(sctx, path, key, found_clone); 5695 if (ret) 5696 goto out; 5697 out_hole: 5698 ret = maybe_send_hole(sctx, path, key); 5699 out: 5700 return ret; 5701 } 5702 5703 static int process_all_extents(struct send_ctx *sctx) 5704 { 5705 int ret; 5706 struct btrfs_root *root; 5707 struct btrfs_path *path; 5708 struct btrfs_key key; 5709 struct btrfs_key found_key; 5710 struct extent_buffer *eb; 5711 int slot; 5712 5713 root = sctx->send_root; 5714 path = alloc_path_for_send(); 5715 if (!path) 5716 return -ENOMEM; 5717 5718 key.objectid = sctx->cmp_key->objectid; 5719 key.type = BTRFS_EXTENT_DATA_KEY; 5720 key.offset = 0; 5721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5722 if (ret < 0) 5723 goto out; 5724 5725 while (1) { 5726 eb = path->nodes[0]; 5727 slot = path->slots[0]; 5728 5729 if (slot >= btrfs_header_nritems(eb)) { 5730 ret = btrfs_next_leaf(root, path); 5731 if (ret < 0) { 5732 goto out; 5733 } else if (ret > 0) { 5734 ret = 0; 5735 break; 5736 } 5737 continue; 5738 } 5739 5740 btrfs_item_key_to_cpu(eb, &found_key, slot); 5741 5742 if (found_key.objectid != key.objectid || 5743 found_key.type != key.type) { 5744 ret = 0; 5745 goto out; 5746 } 5747 5748 ret = process_extent(sctx, path, &found_key); 5749 if (ret < 0) 5750 goto out; 5751 5752 path->slots[0]++; 5753 } 5754 5755 out: 5756 btrfs_free_path(path); 5757 return ret; 5758 } 5759 5760 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5761 int *pending_move, 5762 int *refs_processed) 5763 { 5764 int ret = 0; 5765 5766 if (sctx->cur_ino == 0) 5767 goto out; 5768 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5769 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5770 goto out; 5771 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5772 goto out; 5773 5774 ret = process_recorded_refs(sctx, pending_move); 5775 if (ret < 0) 5776 goto out; 5777 5778 *refs_processed = 1; 5779 out: 5780 return ret; 5781 } 5782 5783 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5784 { 5785 int ret = 0; 5786 u64 left_mode; 5787 u64 left_uid; 5788 u64 left_gid; 5789 u64 right_mode; 5790 u64 right_uid; 5791 u64 right_gid; 5792 int need_chmod = 0; 5793 int need_chown = 0; 5794 int pending_move = 0; 5795 int refs_processed = 0; 5796 5797 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5798 &refs_processed); 5799 if (ret < 0) 5800 goto out; 5801 5802 /* 5803 * We have processed the refs and thus need to advance send_progress. 5804 * Now, calls to get_cur_xxx will take the updated refs of the current 5805 * inode into account. 5806 * 5807 * On the other hand, if our current inode is a directory and couldn't 5808 * be moved/renamed because its parent was renamed/moved too and it has 5809 * a higher inode number, we can only move/rename our current inode 5810 * after we moved/renamed its parent. Therefore in this case operate on 5811 * the old path (pre move/rename) of our current inode, and the 5812 * move/rename will be performed later. 5813 */ 5814 if (refs_processed && !pending_move) 5815 sctx->send_progress = sctx->cur_ino + 1; 5816 5817 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5818 goto out; 5819 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5820 goto out; 5821 5822 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5823 &left_mode, &left_uid, &left_gid, NULL); 5824 if (ret < 0) 5825 goto out; 5826 5827 if (!sctx->parent_root || sctx->cur_inode_new) { 5828 need_chown = 1; 5829 if (!S_ISLNK(sctx->cur_inode_mode)) 5830 need_chmod = 1; 5831 } else { 5832 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5833 NULL, NULL, &right_mode, &right_uid, 5834 &right_gid, NULL); 5835 if (ret < 0) 5836 goto out; 5837 5838 if (left_uid != right_uid || left_gid != right_gid) 5839 need_chown = 1; 5840 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5841 need_chmod = 1; 5842 } 5843 5844 if (S_ISREG(sctx->cur_inode_mode)) { 5845 if (need_send_hole(sctx)) { 5846 if (sctx->cur_inode_last_extent == (u64)-1 || 5847 sctx->cur_inode_last_extent < 5848 sctx->cur_inode_size) { 5849 ret = get_last_extent(sctx, (u64)-1); 5850 if (ret) 5851 goto out; 5852 } 5853 if (sctx->cur_inode_last_extent < 5854 sctx->cur_inode_size) { 5855 ret = send_hole(sctx, sctx->cur_inode_size); 5856 if (ret) 5857 goto out; 5858 } 5859 } 5860 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5861 sctx->cur_inode_size); 5862 if (ret < 0) 5863 goto out; 5864 } 5865 5866 if (need_chown) { 5867 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5868 left_uid, left_gid); 5869 if (ret < 0) 5870 goto out; 5871 } 5872 if (need_chmod) { 5873 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5874 left_mode); 5875 if (ret < 0) 5876 goto out; 5877 } 5878 5879 /* 5880 * If other directory inodes depended on our current directory 5881 * inode's move/rename, now do their move/rename operations. 5882 */ 5883 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5884 ret = apply_children_dir_moves(sctx); 5885 if (ret) 5886 goto out; 5887 /* 5888 * Need to send that every time, no matter if it actually 5889 * changed between the two trees as we have done changes to 5890 * the inode before. If our inode is a directory and it's 5891 * waiting to be moved/renamed, we will send its utimes when 5892 * it's moved/renamed, therefore we don't need to do it here. 5893 */ 5894 sctx->send_progress = sctx->cur_ino + 1; 5895 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5896 if (ret < 0) 5897 goto out; 5898 } 5899 5900 out: 5901 return ret; 5902 } 5903 5904 static int changed_inode(struct send_ctx *sctx, 5905 enum btrfs_compare_tree_result result) 5906 { 5907 int ret = 0; 5908 struct btrfs_key *key = sctx->cmp_key; 5909 struct btrfs_inode_item *left_ii = NULL; 5910 struct btrfs_inode_item *right_ii = NULL; 5911 u64 left_gen = 0; 5912 u64 right_gen = 0; 5913 5914 sctx->cur_ino = key->objectid; 5915 sctx->cur_inode_new_gen = 0; 5916 sctx->cur_inode_last_extent = (u64)-1; 5917 5918 /* 5919 * Set send_progress to current inode. This will tell all get_cur_xxx 5920 * functions that the current inode's refs are not updated yet. Later, 5921 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5922 */ 5923 sctx->send_progress = sctx->cur_ino; 5924 5925 if (result == BTRFS_COMPARE_TREE_NEW || 5926 result == BTRFS_COMPARE_TREE_CHANGED) { 5927 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5928 sctx->left_path->slots[0], 5929 struct btrfs_inode_item); 5930 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5931 left_ii); 5932 } else { 5933 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5934 sctx->right_path->slots[0], 5935 struct btrfs_inode_item); 5936 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5937 right_ii); 5938 } 5939 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5940 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5941 sctx->right_path->slots[0], 5942 struct btrfs_inode_item); 5943 5944 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5945 right_ii); 5946 5947 /* 5948 * The cur_ino = root dir case is special here. We can't treat 5949 * the inode as deleted+reused because it would generate a 5950 * stream that tries to delete/mkdir the root dir. 5951 */ 5952 if (left_gen != right_gen && 5953 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5954 sctx->cur_inode_new_gen = 1; 5955 } 5956 5957 if (result == BTRFS_COMPARE_TREE_NEW) { 5958 sctx->cur_inode_gen = left_gen; 5959 sctx->cur_inode_new = 1; 5960 sctx->cur_inode_deleted = 0; 5961 sctx->cur_inode_size = btrfs_inode_size( 5962 sctx->left_path->nodes[0], left_ii); 5963 sctx->cur_inode_mode = btrfs_inode_mode( 5964 sctx->left_path->nodes[0], left_ii); 5965 sctx->cur_inode_rdev = btrfs_inode_rdev( 5966 sctx->left_path->nodes[0], left_ii); 5967 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5968 ret = send_create_inode_if_needed(sctx); 5969 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5970 sctx->cur_inode_gen = right_gen; 5971 sctx->cur_inode_new = 0; 5972 sctx->cur_inode_deleted = 1; 5973 sctx->cur_inode_size = btrfs_inode_size( 5974 sctx->right_path->nodes[0], right_ii); 5975 sctx->cur_inode_mode = btrfs_inode_mode( 5976 sctx->right_path->nodes[0], right_ii); 5977 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5978 /* 5979 * We need to do some special handling in case the inode was 5980 * reported as changed with a changed generation number. This 5981 * means that the original inode was deleted and new inode 5982 * reused the same inum. So we have to treat the old inode as 5983 * deleted and the new one as new. 5984 */ 5985 if (sctx->cur_inode_new_gen) { 5986 /* 5987 * First, process the inode as if it was deleted. 5988 */ 5989 sctx->cur_inode_gen = right_gen; 5990 sctx->cur_inode_new = 0; 5991 sctx->cur_inode_deleted = 1; 5992 sctx->cur_inode_size = btrfs_inode_size( 5993 sctx->right_path->nodes[0], right_ii); 5994 sctx->cur_inode_mode = btrfs_inode_mode( 5995 sctx->right_path->nodes[0], right_ii); 5996 ret = process_all_refs(sctx, 5997 BTRFS_COMPARE_TREE_DELETED); 5998 if (ret < 0) 5999 goto out; 6000 6001 /* 6002 * Now process the inode as if it was new. 6003 */ 6004 sctx->cur_inode_gen = left_gen; 6005 sctx->cur_inode_new = 1; 6006 sctx->cur_inode_deleted = 0; 6007 sctx->cur_inode_size = btrfs_inode_size( 6008 sctx->left_path->nodes[0], left_ii); 6009 sctx->cur_inode_mode = btrfs_inode_mode( 6010 sctx->left_path->nodes[0], left_ii); 6011 sctx->cur_inode_rdev = btrfs_inode_rdev( 6012 sctx->left_path->nodes[0], left_ii); 6013 ret = send_create_inode_if_needed(sctx); 6014 if (ret < 0) 6015 goto out; 6016 6017 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6018 if (ret < 0) 6019 goto out; 6020 /* 6021 * Advance send_progress now as we did not get into 6022 * process_recorded_refs_if_needed in the new_gen case. 6023 */ 6024 sctx->send_progress = sctx->cur_ino + 1; 6025 6026 /* 6027 * Now process all extents and xattrs of the inode as if 6028 * they were all new. 6029 */ 6030 ret = process_all_extents(sctx); 6031 if (ret < 0) 6032 goto out; 6033 ret = process_all_new_xattrs(sctx); 6034 if (ret < 0) 6035 goto out; 6036 } else { 6037 sctx->cur_inode_gen = left_gen; 6038 sctx->cur_inode_new = 0; 6039 sctx->cur_inode_new_gen = 0; 6040 sctx->cur_inode_deleted = 0; 6041 sctx->cur_inode_size = btrfs_inode_size( 6042 sctx->left_path->nodes[0], left_ii); 6043 sctx->cur_inode_mode = btrfs_inode_mode( 6044 sctx->left_path->nodes[0], left_ii); 6045 } 6046 } 6047 6048 out: 6049 return ret; 6050 } 6051 6052 /* 6053 * We have to process new refs before deleted refs, but compare_trees gives us 6054 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6055 * first and later process them in process_recorded_refs. 6056 * For the cur_inode_new_gen case, we skip recording completely because 6057 * changed_inode did already initiate processing of refs. The reason for this is 6058 * that in this case, compare_tree actually compares the refs of 2 different 6059 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6060 * refs of the right tree as deleted and all refs of the left tree as new. 6061 */ 6062 static int changed_ref(struct send_ctx *sctx, 6063 enum btrfs_compare_tree_result result) 6064 { 6065 int ret = 0; 6066 6067 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6068 inconsistent_snapshot_error(sctx, result, "reference"); 6069 return -EIO; 6070 } 6071 6072 if (!sctx->cur_inode_new_gen && 6073 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6074 if (result == BTRFS_COMPARE_TREE_NEW) 6075 ret = record_new_ref(sctx); 6076 else if (result == BTRFS_COMPARE_TREE_DELETED) 6077 ret = record_deleted_ref(sctx); 6078 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6079 ret = record_changed_ref(sctx); 6080 } 6081 6082 return ret; 6083 } 6084 6085 /* 6086 * Process new/deleted/changed xattrs. We skip processing in the 6087 * cur_inode_new_gen case because changed_inode did already initiate processing 6088 * of xattrs. The reason is the same as in changed_ref 6089 */ 6090 static int changed_xattr(struct send_ctx *sctx, 6091 enum btrfs_compare_tree_result result) 6092 { 6093 int ret = 0; 6094 6095 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6096 inconsistent_snapshot_error(sctx, result, "xattr"); 6097 return -EIO; 6098 } 6099 6100 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6101 if (result == BTRFS_COMPARE_TREE_NEW) 6102 ret = process_new_xattr(sctx); 6103 else if (result == BTRFS_COMPARE_TREE_DELETED) 6104 ret = process_deleted_xattr(sctx); 6105 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6106 ret = process_changed_xattr(sctx); 6107 } 6108 6109 return ret; 6110 } 6111 6112 /* 6113 * Process new/deleted/changed extents. We skip processing in the 6114 * cur_inode_new_gen case because changed_inode did already initiate processing 6115 * of extents. The reason is the same as in changed_ref 6116 */ 6117 static int changed_extent(struct send_ctx *sctx, 6118 enum btrfs_compare_tree_result result) 6119 { 6120 int ret = 0; 6121 6122 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6123 6124 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6125 struct extent_buffer *leaf_l; 6126 struct extent_buffer *leaf_r; 6127 struct btrfs_file_extent_item *ei_l; 6128 struct btrfs_file_extent_item *ei_r; 6129 6130 leaf_l = sctx->left_path->nodes[0]; 6131 leaf_r = sctx->right_path->nodes[0]; 6132 ei_l = btrfs_item_ptr(leaf_l, 6133 sctx->left_path->slots[0], 6134 struct btrfs_file_extent_item); 6135 ei_r = btrfs_item_ptr(leaf_r, 6136 sctx->right_path->slots[0], 6137 struct btrfs_file_extent_item); 6138 6139 /* 6140 * We may have found an extent item that has changed 6141 * only its disk_bytenr field and the corresponding 6142 * inode item was not updated. This case happens due to 6143 * very specific timings during relocation when a leaf 6144 * that contains file extent items is COWed while 6145 * relocation is ongoing and its in the stage where it 6146 * updates data pointers. So when this happens we can 6147 * safely ignore it since we know it's the same extent, 6148 * but just at different logical and physical locations 6149 * (when an extent is fully replaced with a new one, we 6150 * know the generation number must have changed too, 6151 * since snapshot creation implies committing the current 6152 * transaction, and the inode item must have been updated 6153 * as well). 6154 * This replacement of the disk_bytenr happens at 6155 * relocation.c:replace_file_extents() through 6156 * relocation.c:btrfs_reloc_cow_block(). 6157 */ 6158 if (btrfs_file_extent_generation(leaf_l, ei_l) == 6159 btrfs_file_extent_generation(leaf_r, ei_r) && 6160 btrfs_file_extent_ram_bytes(leaf_l, ei_l) == 6161 btrfs_file_extent_ram_bytes(leaf_r, ei_r) && 6162 btrfs_file_extent_compression(leaf_l, ei_l) == 6163 btrfs_file_extent_compression(leaf_r, ei_r) && 6164 btrfs_file_extent_encryption(leaf_l, ei_l) == 6165 btrfs_file_extent_encryption(leaf_r, ei_r) && 6166 btrfs_file_extent_other_encoding(leaf_l, ei_l) == 6167 btrfs_file_extent_other_encoding(leaf_r, ei_r) && 6168 btrfs_file_extent_type(leaf_l, ei_l) == 6169 btrfs_file_extent_type(leaf_r, ei_r) && 6170 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) != 6171 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) && 6172 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) == 6173 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) && 6174 btrfs_file_extent_offset(leaf_l, ei_l) == 6175 btrfs_file_extent_offset(leaf_r, ei_r) && 6176 btrfs_file_extent_num_bytes(leaf_l, ei_l) == 6177 btrfs_file_extent_num_bytes(leaf_r, ei_r)) 6178 return 0; 6179 } 6180 6181 inconsistent_snapshot_error(sctx, result, "extent"); 6182 return -EIO; 6183 } 6184 6185 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6186 if (result != BTRFS_COMPARE_TREE_DELETED) 6187 ret = process_extent(sctx, sctx->left_path, 6188 sctx->cmp_key); 6189 } 6190 6191 return ret; 6192 } 6193 6194 static int dir_changed(struct send_ctx *sctx, u64 dir) 6195 { 6196 u64 orig_gen, new_gen; 6197 int ret; 6198 6199 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6200 NULL, NULL); 6201 if (ret) 6202 return ret; 6203 6204 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6205 NULL, NULL, NULL); 6206 if (ret) 6207 return ret; 6208 6209 return (orig_gen != new_gen) ? 1 : 0; 6210 } 6211 6212 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6213 struct btrfs_key *key) 6214 { 6215 struct btrfs_inode_extref *extref; 6216 struct extent_buffer *leaf; 6217 u64 dirid = 0, last_dirid = 0; 6218 unsigned long ptr; 6219 u32 item_size; 6220 u32 cur_offset = 0; 6221 int ref_name_len; 6222 int ret = 0; 6223 6224 /* Easy case, just check this one dirid */ 6225 if (key->type == BTRFS_INODE_REF_KEY) { 6226 dirid = key->offset; 6227 6228 ret = dir_changed(sctx, dirid); 6229 goto out; 6230 } 6231 6232 leaf = path->nodes[0]; 6233 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6234 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6235 while (cur_offset < item_size) { 6236 extref = (struct btrfs_inode_extref *)(ptr + 6237 cur_offset); 6238 dirid = btrfs_inode_extref_parent(leaf, extref); 6239 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6240 cur_offset += ref_name_len + sizeof(*extref); 6241 if (dirid == last_dirid) 6242 continue; 6243 ret = dir_changed(sctx, dirid); 6244 if (ret) 6245 break; 6246 last_dirid = dirid; 6247 } 6248 out: 6249 return ret; 6250 } 6251 6252 /* 6253 * Updates compare related fields in sctx and simply forwards to the actual 6254 * changed_xxx functions. 6255 */ 6256 static int changed_cb(struct btrfs_path *left_path, 6257 struct btrfs_path *right_path, 6258 struct btrfs_key *key, 6259 enum btrfs_compare_tree_result result, 6260 void *ctx) 6261 { 6262 int ret = 0; 6263 struct send_ctx *sctx = ctx; 6264 6265 if (result == BTRFS_COMPARE_TREE_SAME) { 6266 if (key->type == BTRFS_INODE_REF_KEY || 6267 key->type == BTRFS_INODE_EXTREF_KEY) { 6268 ret = compare_refs(sctx, left_path, key); 6269 if (!ret) 6270 return 0; 6271 if (ret < 0) 6272 return ret; 6273 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6274 return maybe_send_hole(sctx, left_path, key); 6275 } else { 6276 return 0; 6277 } 6278 result = BTRFS_COMPARE_TREE_CHANGED; 6279 ret = 0; 6280 } 6281 6282 sctx->left_path = left_path; 6283 sctx->right_path = right_path; 6284 sctx->cmp_key = key; 6285 6286 ret = finish_inode_if_needed(sctx, 0); 6287 if (ret < 0) 6288 goto out; 6289 6290 /* Ignore non-FS objects */ 6291 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6292 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6293 goto out; 6294 6295 if (key->type == BTRFS_INODE_ITEM_KEY) 6296 ret = changed_inode(sctx, result); 6297 else if (key->type == BTRFS_INODE_REF_KEY || 6298 key->type == BTRFS_INODE_EXTREF_KEY) 6299 ret = changed_ref(sctx, result); 6300 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6301 ret = changed_xattr(sctx, result); 6302 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6303 ret = changed_extent(sctx, result); 6304 6305 out: 6306 return ret; 6307 } 6308 6309 static int full_send_tree(struct send_ctx *sctx) 6310 { 6311 int ret; 6312 struct btrfs_root *send_root = sctx->send_root; 6313 struct btrfs_key key; 6314 struct btrfs_key found_key; 6315 struct btrfs_path *path; 6316 struct extent_buffer *eb; 6317 int slot; 6318 6319 path = alloc_path_for_send(); 6320 if (!path) 6321 return -ENOMEM; 6322 6323 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6324 key.type = BTRFS_INODE_ITEM_KEY; 6325 key.offset = 0; 6326 6327 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6328 if (ret < 0) 6329 goto out; 6330 if (ret) 6331 goto out_finish; 6332 6333 while (1) { 6334 eb = path->nodes[0]; 6335 slot = path->slots[0]; 6336 btrfs_item_key_to_cpu(eb, &found_key, slot); 6337 6338 ret = changed_cb(path, NULL, &found_key, 6339 BTRFS_COMPARE_TREE_NEW, sctx); 6340 if (ret < 0) 6341 goto out; 6342 6343 key.objectid = found_key.objectid; 6344 key.type = found_key.type; 6345 key.offset = found_key.offset + 1; 6346 6347 ret = btrfs_next_item(send_root, path); 6348 if (ret < 0) 6349 goto out; 6350 if (ret) { 6351 ret = 0; 6352 break; 6353 } 6354 } 6355 6356 out_finish: 6357 ret = finish_inode_if_needed(sctx, 1); 6358 6359 out: 6360 btrfs_free_path(path); 6361 return ret; 6362 } 6363 6364 static int send_subvol(struct send_ctx *sctx) 6365 { 6366 int ret; 6367 6368 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 6369 ret = send_header(sctx); 6370 if (ret < 0) 6371 goto out; 6372 } 6373 6374 ret = send_subvol_begin(sctx); 6375 if (ret < 0) 6376 goto out; 6377 6378 if (sctx->parent_root) { 6379 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 6380 changed_cb, sctx); 6381 if (ret < 0) 6382 goto out; 6383 ret = finish_inode_if_needed(sctx, 1); 6384 if (ret < 0) 6385 goto out; 6386 } else { 6387 ret = full_send_tree(sctx); 6388 if (ret < 0) 6389 goto out; 6390 } 6391 6392 out: 6393 free_recorded_refs(sctx); 6394 return ret; 6395 } 6396 6397 /* 6398 * If orphan cleanup did remove any orphans from a root, it means the tree 6399 * was modified and therefore the commit root is not the same as the current 6400 * root anymore. This is a problem, because send uses the commit root and 6401 * therefore can see inode items that don't exist in the current root anymore, 6402 * and for example make calls to btrfs_iget, which will do tree lookups based 6403 * on the current root and not on the commit root. Those lookups will fail, 6404 * returning a -ESTALE error, and making send fail with that error. So make 6405 * sure a send does not see any orphans we have just removed, and that it will 6406 * see the same inodes regardless of whether a transaction commit happened 6407 * before it started (meaning that the commit root will be the same as the 6408 * current root) or not. 6409 */ 6410 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 6411 { 6412 int i; 6413 struct btrfs_trans_handle *trans = NULL; 6414 6415 again: 6416 if (sctx->parent_root && 6417 sctx->parent_root->node != sctx->parent_root->commit_root) 6418 goto commit_trans; 6419 6420 for (i = 0; i < sctx->clone_roots_cnt; i++) 6421 if (sctx->clone_roots[i].root->node != 6422 sctx->clone_roots[i].root->commit_root) 6423 goto commit_trans; 6424 6425 if (trans) 6426 return btrfs_end_transaction(trans); 6427 6428 return 0; 6429 6430 commit_trans: 6431 /* Use any root, all fs roots will get their commit roots updated. */ 6432 if (!trans) { 6433 trans = btrfs_join_transaction(sctx->send_root); 6434 if (IS_ERR(trans)) 6435 return PTR_ERR(trans); 6436 goto again; 6437 } 6438 6439 return btrfs_commit_transaction(trans); 6440 } 6441 6442 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 6443 { 6444 spin_lock(&root->root_item_lock); 6445 root->send_in_progress--; 6446 /* 6447 * Not much left to do, we don't know why it's unbalanced and 6448 * can't blindly reset it to 0. 6449 */ 6450 if (root->send_in_progress < 0) 6451 btrfs_err(root->fs_info, 6452 "send_in_progres unbalanced %d root %llu", 6453 root->send_in_progress, root->root_key.objectid); 6454 spin_unlock(&root->root_item_lock); 6455 } 6456 6457 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 6458 { 6459 int ret = 0; 6460 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 6461 struct btrfs_fs_info *fs_info = send_root->fs_info; 6462 struct btrfs_root *clone_root; 6463 struct btrfs_key key; 6464 struct send_ctx *sctx = NULL; 6465 u32 i; 6466 u64 *clone_sources_tmp = NULL; 6467 int clone_sources_to_rollback = 0; 6468 unsigned alloc_size; 6469 int sort_clone_roots = 0; 6470 int index; 6471 6472 if (!capable(CAP_SYS_ADMIN)) 6473 return -EPERM; 6474 6475 /* 6476 * The subvolume must remain read-only during send, protect against 6477 * making it RW. This also protects against deletion. 6478 */ 6479 spin_lock(&send_root->root_item_lock); 6480 send_root->send_in_progress++; 6481 spin_unlock(&send_root->root_item_lock); 6482 6483 /* 6484 * This is done when we lookup the root, it should already be complete 6485 * by the time we get here. 6486 */ 6487 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 6488 6489 /* 6490 * Userspace tools do the checks and warn the user if it's 6491 * not RO. 6492 */ 6493 if (!btrfs_root_readonly(send_root)) { 6494 ret = -EPERM; 6495 goto out; 6496 } 6497 6498 /* 6499 * Check that we don't overflow at later allocations, we request 6500 * clone_sources_count + 1 items, and compare to unsigned long inside 6501 * access_ok. 6502 */ 6503 if (arg->clone_sources_count > 6504 ULONG_MAX / sizeof(struct clone_root) - 1) { 6505 ret = -EINVAL; 6506 goto out; 6507 } 6508 6509 if (!access_ok(VERIFY_READ, arg->clone_sources, 6510 sizeof(*arg->clone_sources) * 6511 arg->clone_sources_count)) { 6512 ret = -EFAULT; 6513 goto out; 6514 } 6515 6516 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 6517 ret = -EINVAL; 6518 goto out; 6519 } 6520 6521 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 6522 if (!sctx) { 6523 ret = -ENOMEM; 6524 goto out; 6525 } 6526 6527 INIT_LIST_HEAD(&sctx->new_refs); 6528 INIT_LIST_HEAD(&sctx->deleted_refs); 6529 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 6530 INIT_LIST_HEAD(&sctx->name_cache_list); 6531 6532 sctx->flags = arg->flags; 6533 6534 sctx->send_filp = fget(arg->send_fd); 6535 if (!sctx->send_filp) { 6536 ret = -EBADF; 6537 goto out; 6538 } 6539 6540 sctx->send_root = send_root; 6541 /* 6542 * Unlikely but possible, if the subvolume is marked for deletion but 6543 * is slow to remove the directory entry, send can still be started 6544 */ 6545 if (btrfs_root_dead(sctx->send_root)) { 6546 ret = -EPERM; 6547 goto out; 6548 } 6549 6550 sctx->clone_roots_cnt = arg->clone_sources_count; 6551 6552 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 6553 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 6554 if (!sctx->send_buf) { 6555 ret = -ENOMEM; 6556 goto out; 6557 } 6558 6559 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL); 6560 if (!sctx->read_buf) { 6561 ret = -ENOMEM; 6562 goto out; 6563 } 6564 6565 sctx->pending_dir_moves = RB_ROOT; 6566 sctx->waiting_dir_moves = RB_ROOT; 6567 sctx->orphan_dirs = RB_ROOT; 6568 6569 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 6570 6571 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL); 6572 if (!sctx->clone_roots) { 6573 ret = -ENOMEM; 6574 goto out; 6575 } 6576 6577 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 6578 6579 if (arg->clone_sources_count) { 6580 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 6581 if (!clone_sources_tmp) { 6582 ret = -ENOMEM; 6583 goto out; 6584 } 6585 6586 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 6587 alloc_size); 6588 if (ret) { 6589 ret = -EFAULT; 6590 goto out; 6591 } 6592 6593 for (i = 0; i < arg->clone_sources_count; i++) { 6594 key.objectid = clone_sources_tmp[i]; 6595 key.type = BTRFS_ROOT_ITEM_KEY; 6596 key.offset = (u64)-1; 6597 6598 index = srcu_read_lock(&fs_info->subvol_srcu); 6599 6600 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 6601 if (IS_ERR(clone_root)) { 6602 srcu_read_unlock(&fs_info->subvol_srcu, index); 6603 ret = PTR_ERR(clone_root); 6604 goto out; 6605 } 6606 spin_lock(&clone_root->root_item_lock); 6607 if (!btrfs_root_readonly(clone_root) || 6608 btrfs_root_dead(clone_root)) { 6609 spin_unlock(&clone_root->root_item_lock); 6610 srcu_read_unlock(&fs_info->subvol_srcu, index); 6611 ret = -EPERM; 6612 goto out; 6613 } 6614 clone_root->send_in_progress++; 6615 spin_unlock(&clone_root->root_item_lock); 6616 srcu_read_unlock(&fs_info->subvol_srcu, index); 6617 6618 sctx->clone_roots[i].root = clone_root; 6619 clone_sources_to_rollback = i + 1; 6620 } 6621 kvfree(clone_sources_tmp); 6622 clone_sources_tmp = NULL; 6623 } 6624 6625 if (arg->parent_root) { 6626 key.objectid = arg->parent_root; 6627 key.type = BTRFS_ROOT_ITEM_KEY; 6628 key.offset = (u64)-1; 6629 6630 index = srcu_read_lock(&fs_info->subvol_srcu); 6631 6632 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 6633 if (IS_ERR(sctx->parent_root)) { 6634 srcu_read_unlock(&fs_info->subvol_srcu, index); 6635 ret = PTR_ERR(sctx->parent_root); 6636 goto out; 6637 } 6638 6639 spin_lock(&sctx->parent_root->root_item_lock); 6640 sctx->parent_root->send_in_progress++; 6641 if (!btrfs_root_readonly(sctx->parent_root) || 6642 btrfs_root_dead(sctx->parent_root)) { 6643 spin_unlock(&sctx->parent_root->root_item_lock); 6644 srcu_read_unlock(&fs_info->subvol_srcu, index); 6645 ret = -EPERM; 6646 goto out; 6647 } 6648 spin_unlock(&sctx->parent_root->root_item_lock); 6649 6650 srcu_read_unlock(&fs_info->subvol_srcu, index); 6651 } 6652 6653 /* 6654 * Clones from send_root are allowed, but only if the clone source 6655 * is behind the current send position. This is checked while searching 6656 * for possible clone sources. 6657 */ 6658 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 6659 6660 /* We do a bsearch later */ 6661 sort(sctx->clone_roots, sctx->clone_roots_cnt, 6662 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 6663 NULL); 6664 sort_clone_roots = 1; 6665 6666 ret = ensure_commit_roots_uptodate(sctx); 6667 if (ret) 6668 goto out; 6669 6670 current->journal_info = BTRFS_SEND_TRANS_STUB; 6671 ret = send_subvol(sctx); 6672 current->journal_info = NULL; 6673 if (ret < 0) 6674 goto out; 6675 6676 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 6677 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 6678 if (ret < 0) 6679 goto out; 6680 ret = send_cmd(sctx); 6681 if (ret < 0) 6682 goto out; 6683 } 6684 6685 out: 6686 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 6687 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 6688 struct rb_node *n; 6689 struct pending_dir_move *pm; 6690 6691 n = rb_first(&sctx->pending_dir_moves); 6692 pm = rb_entry(n, struct pending_dir_move, node); 6693 while (!list_empty(&pm->list)) { 6694 struct pending_dir_move *pm2; 6695 6696 pm2 = list_first_entry(&pm->list, 6697 struct pending_dir_move, list); 6698 free_pending_move(sctx, pm2); 6699 } 6700 free_pending_move(sctx, pm); 6701 } 6702 6703 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 6704 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 6705 struct rb_node *n; 6706 struct waiting_dir_move *dm; 6707 6708 n = rb_first(&sctx->waiting_dir_moves); 6709 dm = rb_entry(n, struct waiting_dir_move, node); 6710 rb_erase(&dm->node, &sctx->waiting_dir_moves); 6711 kfree(dm); 6712 } 6713 6714 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 6715 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 6716 struct rb_node *n; 6717 struct orphan_dir_info *odi; 6718 6719 n = rb_first(&sctx->orphan_dirs); 6720 odi = rb_entry(n, struct orphan_dir_info, node); 6721 free_orphan_dir_info(sctx, odi); 6722 } 6723 6724 if (sort_clone_roots) { 6725 for (i = 0; i < sctx->clone_roots_cnt; i++) 6726 btrfs_root_dec_send_in_progress( 6727 sctx->clone_roots[i].root); 6728 } else { 6729 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 6730 btrfs_root_dec_send_in_progress( 6731 sctx->clone_roots[i].root); 6732 6733 btrfs_root_dec_send_in_progress(send_root); 6734 } 6735 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 6736 btrfs_root_dec_send_in_progress(sctx->parent_root); 6737 6738 kvfree(clone_sources_tmp); 6739 6740 if (sctx) { 6741 if (sctx->send_filp) 6742 fput(sctx->send_filp); 6743 6744 kvfree(sctx->clone_roots); 6745 kvfree(sctx->send_buf); 6746 kvfree(sctx->read_buf); 6747 6748 name_cache_free(sctx); 6749 6750 kfree(sctx); 6751 } 6752 6753 return ret; 6754 } 6755