xref: /openbmc/linux/fs/btrfs/send.c (revision 37d838de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/vmalloc.h>
14 #include <linux/string.h>
15 #include <linux/compat.h>
16 #include <linux/crc32c.h>
17 
18 #include "send.h"
19 #include "backref.h"
20 #include "locking.h"
21 #include "disk-io.h"
22 #include "btrfs_inode.h"
23 #include "transaction.h"
24 #include "compression.h"
25 #include "xattr.h"
26 #include "print-tree.h"
27 
28 /*
29  * Maximum number of references an extent can have in order for us to attempt to
30  * issue clone operations instead of write operations. This currently exists to
31  * avoid hitting limitations of the backreference walking code (taking a lot of
32  * time and using too much memory for extents with large number of references).
33  */
34 #define SEND_MAX_EXTENT_REFS	64
35 
36 /*
37  * A fs_path is a helper to dynamically build path names with unknown size.
38  * It reallocates the internal buffer on demand.
39  * It allows fast adding of path elements on the right side (normal path) and
40  * fast adding to the left side (reversed path). A reversed path can also be
41  * unreversed if needed.
42  */
43 struct fs_path {
44 	union {
45 		struct {
46 			char *start;
47 			char *end;
48 
49 			char *buf;
50 			unsigned short buf_len:15;
51 			unsigned short reversed:1;
52 			char inline_buf[];
53 		};
54 		/*
55 		 * Average path length does not exceed 200 bytes, we'll have
56 		 * better packing in the slab and higher chance to satisfy
57 		 * a allocation later during send.
58 		 */
59 		char pad[256];
60 	};
61 };
62 #define FS_PATH_INLINE_SIZE \
63 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
64 
65 
66 /* reused for each extent */
67 struct clone_root {
68 	struct btrfs_root *root;
69 	u64 ino;
70 	u64 offset;
71 
72 	u64 found_refs;
73 };
74 
75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
77 
78 struct send_ctx {
79 	struct file *send_filp;
80 	loff_t send_off;
81 	char *send_buf;
82 	u32 send_size;
83 	u32 send_max_size;
84 	u64 total_send_size;
85 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
87 	/* Protocol version compatibility requested */
88 	u32 proto;
89 
90 	struct btrfs_root *send_root;
91 	struct btrfs_root *parent_root;
92 	struct clone_root *clone_roots;
93 	int clone_roots_cnt;
94 
95 	/* current state of the compare_tree call */
96 	struct btrfs_path *left_path;
97 	struct btrfs_path *right_path;
98 	struct btrfs_key *cmp_key;
99 
100 	/*
101 	 * Keep track of the generation of the last transaction that was used
102 	 * for relocating a block group. This is periodically checked in order
103 	 * to detect if a relocation happened since the last check, so that we
104 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
105 	 * stale disk_bytenr values of file extent items.
106 	 */
107 	u64 last_reloc_trans;
108 
109 	/*
110 	 * infos of the currently processed inode. In case of deleted inodes,
111 	 * these are the values from the deleted inode.
112 	 */
113 	u64 cur_ino;
114 	u64 cur_inode_gen;
115 	int cur_inode_new;
116 	int cur_inode_new_gen;
117 	int cur_inode_deleted;
118 	u64 cur_inode_size;
119 	u64 cur_inode_mode;
120 	u64 cur_inode_rdev;
121 	u64 cur_inode_last_extent;
122 	u64 cur_inode_next_write_offset;
123 	bool ignore_cur_inode;
124 
125 	u64 send_progress;
126 
127 	struct list_head new_refs;
128 	struct list_head deleted_refs;
129 
130 	struct xarray name_cache;
131 	struct list_head name_cache_list;
132 	int name_cache_size;
133 
134 	/*
135 	 * The inode we are currently processing. It's not NULL only when we
136 	 * need to issue write commands for data extents from this inode.
137 	 */
138 	struct inode *cur_inode;
139 	struct file_ra_state ra;
140 	u64 page_cache_clear_start;
141 	bool clean_page_cache;
142 
143 	/*
144 	 * We process inodes by their increasing order, so if before an
145 	 * incremental send we reverse the parent/child relationship of
146 	 * directories such that a directory with a lower inode number was
147 	 * the parent of a directory with a higher inode number, and the one
148 	 * becoming the new parent got renamed too, we can't rename/move the
149 	 * directory with lower inode number when we finish processing it - we
150 	 * must process the directory with higher inode number first, then
151 	 * rename/move it and then rename/move the directory with lower inode
152 	 * number. Example follows.
153 	 *
154 	 * Tree state when the first send was performed:
155 	 *
156 	 * .
157 	 * |-- a                   (ino 257)
158 	 *     |-- b               (ino 258)
159 	 *         |
160 	 *         |
161 	 *         |-- c           (ino 259)
162 	 *         |   |-- d       (ino 260)
163 	 *         |
164 	 *         |-- c2          (ino 261)
165 	 *
166 	 * Tree state when the second (incremental) send is performed:
167 	 *
168 	 * .
169 	 * |-- a                   (ino 257)
170 	 *     |-- b               (ino 258)
171 	 *         |-- c2          (ino 261)
172 	 *             |-- d2      (ino 260)
173 	 *                 |-- cc  (ino 259)
174 	 *
175 	 * The sequence of steps that lead to the second state was:
176 	 *
177 	 * mv /a/b/c/d /a/b/c2/d2
178 	 * mv /a/b/c /a/b/c2/d2/cc
179 	 *
180 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
181 	 * before we move "d", which has higher inode number.
182 	 *
183 	 * So we just memorize which move/rename operations must be performed
184 	 * later when their respective parent is processed and moved/renamed.
185 	 */
186 
187 	/* Indexed by parent directory inode number. */
188 	struct rb_root pending_dir_moves;
189 
190 	/*
191 	 * Reverse index, indexed by the inode number of a directory that
192 	 * is waiting for the move/rename of its immediate parent before its
193 	 * own move/rename can be performed.
194 	 */
195 	struct rb_root waiting_dir_moves;
196 
197 	/*
198 	 * A directory that is going to be rm'ed might have a child directory
199 	 * which is in the pending directory moves index above. In this case,
200 	 * the directory can only be removed after the move/rename of its child
201 	 * is performed. Example:
202 	 *
203 	 * Parent snapshot:
204 	 *
205 	 * .                        (ino 256)
206 	 * |-- a/                   (ino 257)
207 	 *     |-- b/               (ino 258)
208 	 *         |-- c/           (ino 259)
209 	 *         |   |-- x/       (ino 260)
210 	 *         |
211 	 *         |-- y/           (ino 261)
212 	 *
213 	 * Send snapshot:
214 	 *
215 	 * .                        (ino 256)
216 	 * |-- a/                   (ino 257)
217 	 *     |-- b/               (ino 258)
218 	 *         |-- YY/          (ino 261)
219 	 *              |-- x/      (ino 260)
220 	 *
221 	 * Sequence of steps that lead to the send snapshot:
222 	 * rm -f /a/b/c/foo.txt
223 	 * mv /a/b/y /a/b/YY
224 	 * mv /a/b/c/x /a/b/YY
225 	 * rmdir /a/b/c
226 	 *
227 	 * When the child is processed, its move/rename is delayed until its
228 	 * parent is processed (as explained above), but all other operations
229 	 * like update utimes, chown, chgrp, etc, are performed and the paths
230 	 * that it uses for those operations must use the orphanized name of
231 	 * its parent (the directory we're going to rm later), so we need to
232 	 * memorize that name.
233 	 *
234 	 * Indexed by the inode number of the directory to be deleted.
235 	 */
236 	struct rb_root orphan_dirs;
237 };
238 
239 struct pending_dir_move {
240 	struct rb_node node;
241 	struct list_head list;
242 	u64 parent_ino;
243 	u64 ino;
244 	u64 gen;
245 	struct list_head update_refs;
246 };
247 
248 struct waiting_dir_move {
249 	struct rb_node node;
250 	u64 ino;
251 	/*
252 	 * There might be some directory that could not be removed because it
253 	 * was waiting for this directory inode to be moved first. Therefore
254 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
255 	 */
256 	u64 rmdir_ino;
257 	u64 rmdir_gen;
258 	bool orphanized;
259 };
260 
261 struct orphan_dir_info {
262 	struct rb_node node;
263 	u64 ino;
264 	u64 gen;
265 	u64 last_dir_index_offset;
266 };
267 
268 struct name_cache_entry {
269 	struct list_head list;
270 	/*
271 	 * On 32bit kernels, xarray has only 32bit indices, but we need to
272 	 * handle 64bit inums. We use the lower 32bit of the 64bit inum to store
273 	 * it in the tree. If more than one inum would fall into the same entry,
274 	 * we use inum_aliases to store the additional entries. inum_aliases is
275 	 * also used to store entries with the same inum but different generations.
276 	 */
277 	struct list_head inum_aliases;
278 	u64 ino;
279 	u64 gen;
280 	u64 parent_ino;
281 	u64 parent_gen;
282 	int ret;
283 	int need_later_update;
284 	int name_len;
285 	char name[];
286 };
287 
288 #define ADVANCE							1
289 #define ADVANCE_ONLY_NEXT					-1
290 
291 enum btrfs_compare_tree_result {
292 	BTRFS_COMPARE_TREE_NEW,
293 	BTRFS_COMPARE_TREE_DELETED,
294 	BTRFS_COMPARE_TREE_CHANGED,
295 	BTRFS_COMPARE_TREE_SAME,
296 };
297 
298 __cold
299 static void inconsistent_snapshot_error(struct send_ctx *sctx,
300 					enum btrfs_compare_tree_result result,
301 					const char *what)
302 {
303 	const char *result_string;
304 
305 	switch (result) {
306 	case BTRFS_COMPARE_TREE_NEW:
307 		result_string = "new";
308 		break;
309 	case BTRFS_COMPARE_TREE_DELETED:
310 		result_string = "deleted";
311 		break;
312 	case BTRFS_COMPARE_TREE_CHANGED:
313 		result_string = "updated";
314 		break;
315 	case BTRFS_COMPARE_TREE_SAME:
316 		ASSERT(0);
317 		result_string = "unchanged";
318 		break;
319 	default:
320 		ASSERT(0);
321 		result_string = "unexpected";
322 	}
323 
324 	btrfs_err(sctx->send_root->fs_info,
325 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
326 		  result_string, what, sctx->cmp_key->objectid,
327 		  sctx->send_root->root_key.objectid,
328 		  (sctx->parent_root ?
329 		   sctx->parent_root->root_key.objectid : 0));
330 }
331 
332 __maybe_unused
333 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
334 {
335 	switch (sctx->proto) {
336 	case 1:	 return cmd < __BTRFS_SEND_C_MAX_V1;
337 	case 2:	 return cmd < __BTRFS_SEND_C_MAX_V2;
338 	default: return false;
339 	}
340 }
341 
342 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
343 
344 static struct waiting_dir_move *
345 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
346 
347 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
348 
349 static int need_send_hole(struct send_ctx *sctx)
350 {
351 	return (sctx->parent_root && !sctx->cur_inode_new &&
352 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
353 		S_ISREG(sctx->cur_inode_mode));
354 }
355 
356 static void fs_path_reset(struct fs_path *p)
357 {
358 	if (p->reversed) {
359 		p->start = p->buf + p->buf_len - 1;
360 		p->end = p->start;
361 		*p->start = 0;
362 	} else {
363 		p->start = p->buf;
364 		p->end = p->start;
365 		*p->start = 0;
366 	}
367 }
368 
369 static struct fs_path *fs_path_alloc(void)
370 {
371 	struct fs_path *p;
372 
373 	p = kmalloc(sizeof(*p), GFP_KERNEL);
374 	if (!p)
375 		return NULL;
376 	p->reversed = 0;
377 	p->buf = p->inline_buf;
378 	p->buf_len = FS_PATH_INLINE_SIZE;
379 	fs_path_reset(p);
380 	return p;
381 }
382 
383 static struct fs_path *fs_path_alloc_reversed(void)
384 {
385 	struct fs_path *p;
386 
387 	p = fs_path_alloc();
388 	if (!p)
389 		return NULL;
390 	p->reversed = 1;
391 	fs_path_reset(p);
392 	return p;
393 }
394 
395 static void fs_path_free(struct fs_path *p)
396 {
397 	if (!p)
398 		return;
399 	if (p->buf != p->inline_buf)
400 		kfree(p->buf);
401 	kfree(p);
402 }
403 
404 static int fs_path_len(struct fs_path *p)
405 {
406 	return p->end - p->start;
407 }
408 
409 static int fs_path_ensure_buf(struct fs_path *p, int len)
410 {
411 	char *tmp_buf;
412 	int path_len;
413 	int old_buf_len;
414 
415 	len++;
416 
417 	if (p->buf_len >= len)
418 		return 0;
419 
420 	if (len > PATH_MAX) {
421 		WARN_ON(1);
422 		return -ENOMEM;
423 	}
424 
425 	path_len = p->end - p->start;
426 	old_buf_len = p->buf_len;
427 
428 	/*
429 	 * First time the inline_buf does not suffice
430 	 */
431 	if (p->buf == p->inline_buf) {
432 		tmp_buf = kmalloc(len, GFP_KERNEL);
433 		if (tmp_buf)
434 			memcpy(tmp_buf, p->buf, old_buf_len);
435 	} else {
436 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
437 	}
438 	if (!tmp_buf)
439 		return -ENOMEM;
440 	p->buf = tmp_buf;
441 	/*
442 	 * The real size of the buffer is bigger, this will let the fast path
443 	 * happen most of the time
444 	 */
445 	p->buf_len = ksize(p->buf);
446 
447 	if (p->reversed) {
448 		tmp_buf = p->buf + old_buf_len - path_len - 1;
449 		p->end = p->buf + p->buf_len - 1;
450 		p->start = p->end - path_len;
451 		memmove(p->start, tmp_buf, path_len + 1);
452 	} else {
453 		p->start = p->buf;
454 		p->end = p->start + path_len;
455 	}
456 	return 0;
457 }
458 
459 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
460 				   char **prepared)
461 {
462 	int ret;
463 	int new_len;
464 
465 	new_len = p->end - p->start + name_len;
466 	if (p->start != p->end)
467 		new_len++;
468 	ret = fs_path_ensure_buf(p, new_len);
469 	if (ret < 0)
470 		goto out;
471 
472 	if (p->reversed) {
473 		if (p->start != p->end)
474 			*--p->start = '/';
475 		p->start -= name_len;
476 		*prepared = p->start;
477 	} else {
478 		if (p->start != p->end)
479 			*p->end++ = '/';
480 		*prepared = p->end;
481 		p->end += name_len;
482 		*p->end = 0;
483 	}
484 
485 out:
486 	return ret;
487 }
488 
489 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
490 {
491 	int ret;
492 	char *prepared;
493 
494 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
495 	if (ret < 0)
496 		goto out;
497 	memcpy(prepared, name, name_len);
498 
499 out:
500 	return ret;
501 }
502 
503 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
504 {
505 	int ret;
506 	char *prepared;
507 
508 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
509 	if (ret < 0)
510 		goto out;
511 	memcpy(prepared, p2->start, p2->end - p2->start);
512 
513 out:
514 	return ret;
515 }
516 
517 static int fs_path_add_from_extent_buffer(struct fs_path *p,
518 					  struct extent_buffer *eb,
519 					  unsigned long off, int len)
520 {
521 	int ret;
522 	char *prepared;
523 
524 	ret = fs_path_prepare_for_add(p, len, &prepared);
525 	if (ret < 0)
526 		goto out;
527 
528 	read_extent_buffer(eb, prepared, off, len);
529 
530 out:
531 	return ret;
532 }
533 
534 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
535 {
536 	p->reversed = from->reversed;
537 	fs_path_reset(p);
538 
539 	return fs_path_add_path(p, from);
540 }
541 
542 static void fs_path_unreverse(struct fs_path *p)
543 {
544 	char *tmp;
545 	int len;
546 
547 	if (!p->reversed)
548 		return;
549 
550 	tmp = p->start;
551 	len = p->end - p->start;
552 	p->start = p->buf;
553 	p->end = p->start + len;
554 	memmove(p->start, tmp, len + 1);
555 	p->reversed = 0;
556 }
557 
558 static struct btrfs_path *alloc_path_for_send(void)
559 {
560 	struct btrfs_path *path;
561 
562 	path = btrfs_alloc_path();
563 	if (!path)
564 		return NULL;
565 	path->search_commit_root = 1;
566 	path->skip_locking = 1;
567 	path->need_commit_sem = 1;
568 	return path;
569 }
570 
571 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
572 {
573 	int ret;
574 	u32 pos = 0;
575 
576 	while (pos < len) {
577 		ret = kernel_write(filp, buf + pos, len - pos, off);
578 		/* TODO handle that correctly */
579 		/*if (ret == -ERESTARTSYS) {
580 			continue;
581 		}*/
582 		if (ret < 0)
583 			return ret;
584 		if (ret == 0) {
585 			return -EIO;
586 		}
587 		pos += ret;
588 	}
589 
590 	return 0;
591 }
592 
593 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
594 {
595 	struct btrfs_tlv_header *hdr;
596 	int total_len = sizeof(*hdr) + len;
597 	int left = sctx->send_max_size - sctx->send_size;
598 
599 	if (unlikely(left < total_len))
600 		return -EOVERFLOW;
601 
602 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
603 	put_unaligned_le16(attr, &hdr->tlv_type);
604 	put_unaligned_le16(len, &hdr->tlv_len);
605 	memcpy(hdr + 1, data, len);
606 	sctx->send_size += total_len;
607 
608 	return 0;
609 }
610 
611 #define TLV_PUT_DEFINE_INT(bits) \
612 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
613 			u##bits attr, u##bits value)			\
614 	{								\
615 		__le##bits __tmp = cpu_to_le##bits(value);		\
616 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
617 	}
618 
619 TLV_PUT_DEFINE_INT(64)
620 
621 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
622 			  const char *str, int len)
623 {
624 	if (len == -1)
625 		len = strlen(str);
626 	return tlv_put(sctx, attr, str, len);
627 }
628 
629 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
630 			const u8 *uuid)
631 {
632 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
633 }
634 
635 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
636 				  struct extent_buffer *eb,
637 				  struct btrfs_timespec *ts)
638 {
639 	struct btrfs_timespec bts;
640 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
641 	return tlv_put(sctx, attr, &bts, sizeof(bts));
642 }
643 
644 
645 #define TLV_PUT(sctx, attrtype, data, attrlen) \
646 	do { \
647 		ret = tlv_put(sctx, attrtype, data, attrlen); \
648 		if (ret < 0) \
649 			goto tlv_put_failure; \
650 	} while (0)
651 
652 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
653 	do { \
654 		ret = tlv_put_u##bits(sctx, attrtype, value); \
655 		if (ret < 0) \
656 			goto tlv_put_failure; \
657 	} while (0)
658 
659 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
660 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
661 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
662 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
663 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
664 	do { \
665 		ret = tlv_put_string(sctx, attrtype, str, len); \
666 		if (ret < 0) \
667 			goto tlv_put_failure; \
668 	} while (0)
669 #define TLV_PUT_PATH(sctx, attrtype, p) \
670 	do { \
671 		ret = tlv_put_string(sctx, attrtype, p->start, \
672 			p->end - p->start); \
673 		if (ret < 0) \
674 			goto tlv_put_failure; \
675 	} while(0)
676 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
677 	do { \
678 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
679 		if (ret < 0) \
680 			goto tlv_put_failure; \
681 	} while (0)
682 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
683 	do { \
684 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
685 		if (ret < 0) \
686 			goto tlv_put_failure; \
687 	} while (0)
688 
689 static int send_header(struct send_ctx *sctx)
690 {
691 	struct btrfs_stream_header hdr;
692 
693 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
694 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
695 
696 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
697 					&sctx->send_off);
698 }
699 
700 /*
701  * For each command/item we want to send to userspace, we call this function.
702  */
703 static int begin_cmd(struct send_ctx *sctx, int cmd)
704 {
705 	struct btrfs_cmd_header *hdr;
706 
707 	if (WARN_ON(!sctx->send_buf))
708 		return -EINVAL;
709 
710 	BUG_ON(sctx->send_size);
711 
712 	sctx->send_size += sizeof(*hdr);
713 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
714 	put_unaligned_le16(cmd, &hdr->cmd);
715 
716 	return 0;
717 }
718 
719 static int send_cmd(struct send_ctx *sctx)
720 {
721 	int ret;
722 	struct btrfs_cmd_header *hdr;
723 	u32 crc;
724 
725 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
726 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
727 	put_unaligned_le32(0, &hdr->crc);
728 
729 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
730 	put_unaligned_le32(crc, &hdr->crc);
731 
732 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
733 					&sctx->send_off);
734 
735 	sctx->total_send_size += sctx->send_size;
736 	sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
737 	sctx->send_size = 0;
738 
739 	return ret;
740 }
741 
742 /*
743  * Sends a move instruction to user space
744  */
745 static int send_rename(struct send_ctx *sctx,
746 		     struct fs_path *from, struct fs_path *to)
747 {
748 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
749 	int ret;
750 
751 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
752 
753 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
754 	if (ret < 0)
755 		goto out;
756 
757 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
758 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
759 
760 	ret = send_cmd(sctx);
761 
762 tlv_put_failure:
763 out:
764 	return ret;
765 }
766 
767 /*
768  * Sends a link instruction to user space
769  */
770 static int send_link(struct send_ctx *sctx,
771 		     struct fs_path *path, struct fs_path *lnk)
772 {
773 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
774 	int ret;
775 
776 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
777 
778 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
779 	if (ret < 0)
780 		goto out;
781 
782 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
783 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
784 
785 	ret = send_cmd(sctx);
786 
787 tlv_put_failure:
788 out:
789 	return ret;
790 }
791 
792 /*
793  * Sends an unlink instruction to user space
794  */
795 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
796 {
797 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
798 	int ret;
799 
800 	btrfs_debug(fs_info, "send_unlink %s", path->start);
801 
802 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
803 	if (ret < 0)
804 		goto out;
805 
806 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
807 
808 	ret = send_cmd(sctx);
809 
810 tlv_put_failure:
811 out:
812 	return ret;
813 }
814 
815 /*
816  * Sends a rmdir instruction to user space
817  */
818 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
819 {
820 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
821 	int ret;
822 
823 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
824 
825 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
826 	if (ret < 0)
827 		goto out;
828 
829 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
830 
831 	ret = send_cmd(sctx);
832 
833 tlv_put_failure:
834 out:
835 	return ret;
836 }
837 
838 /*
839  * Helper function to retrieve some fields from an inode item.
840  */
841 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
842 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
843 			  u64 *gid, u64 *rdev)
844 {
845 	int ret;
846 	struct btrfs_inode_item *ii;
847 	struct btrfs_key key;
848 
849 	key.objectid = ino;
850 	key.type = BTRFS_INODE_ITEM_KEY;
851 	key.offset = 0;
852 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
853 	if (ret) {
854 		if (ret > 0)
855 			ret = -ENOENT;
856 		return ret;
857 	}
858 
859 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
860 			struct btrfs_inode_item);
861 	if (size)
862 		*size = btrfs_inode_size(path->nodes[0], ii);
863 	if (gen)
864 		*gen = btrfs_inode_generation(path->nodes[0], ii);
865 	if (mode)
866 		*mode = btrfs_inode_mode(path->nodes[0], ii);
867 	if (uid)
868 		*uid = btrfs_inode_uid(path->nodes[0], ii);
869 	if (gid)
870 		*gid = btrfs_inode_gid(path->nodes[0], ii);
871 	if (rdev)
872 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
873 
874 	return ret;
875 }
876 
877 static int get_inode_info(struct btrfs_root *root,
878 			  u64 ino, u64 *size, u64 *gen,
879 			  u64 *mode, u64 *uid, u64 *gid,
880 			  u64 *rdev)
881 {
882 	struct btrfs_path *path;
883 	int ret;
884 
885 	path = alloc_path_for_send();
886 	if (!path)
887 		return -ENOMEM;
888 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
889 			       rdev);
890 	btrfs_free_path(path);
891 	return ret;
892 }
893 
894 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
895 				   struct fs_path *p,
896 				   void *ctx);
897 
898 /*
899  * Helper function to iterate the entries in ONE btrfs_inode_ref or
900  * btrfs_inode_extref.
901  * The iterate callback may return a non zero value to stop iteration. This can
902  * be a negative value for error codes or 1 to simply stop it.
903  *
904  * path must point to the INODE_REF or INODE_EXTREF when called.
905  */
906 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
907 			     struct btrfs_key *found_key, int resolve,
908 			     iterate_inode_ref_t iterate, void *ctx)
909 {
910 	struct extent_buffer *eb = path->nodes[0];
911 	struct btrfs_inode_ref *iref;
912 	struct btrfs_inode_extref *extref;
913 	struct btrfs_path *tmp_path;
914 	struct fs_path *p;
915 	u32 cur = 0;
916 	u32 total;
917 	int slot = path->slots[0];
918 	u32 name_len;
919 	char *start;
920 	int ret = 0;
921 	int num = 0;
922 	int index;
923 	u64 dir;
924 	unsigned long name_off;
925 	unsigned long elem_size;
926 	unsigned long ptr;
927 
928 	p = fs_path_alloc_reversed();
929 	if (!p)
930 		return -ENOMEM;
931 
932 	tmp_path = alloc_path_for_send();
933 	if (!tmp_path) {
934 		fs_path_free(p);
935 		return -ENOMEM;
936 	}
937 
938 
939 	if (found_key->type == BTRFS_INODE_REF_KEY) {
940 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
941 						    struct btrfs_inode_ref);
942 		total = btrfs_item_size(eb, slot);
943 		elem_size = sizeof(*iref);
944 	} else {
945 		ptr = btrfs_item_ptr_offset(eb, slot);
946 		total = btrfs_item_size(eb, slot);
947 		elem_size = sizeof(*extref);
948 	}
949 
950 	while (cur < total) {
951 		fs_path_reset(p);
952 
953 		if (found_key->type == BTRFS_INODE_REF_KEY) {
954 			iref = (struct btrfs_inode_ref *)(ptr + cur);
955 			name_len = btrfs_inode_ref_name_len(eb, iref);
956 			name_off = (unsigned long)(iref + 1);
957 			index = btrfs_inode_ref_index(eb, iref);
958 			dir = found_key->offset;
959 		} else {
960 			extref = (struct btrfs_inode_extref *)(ptr + cur);
961 			name_len = btrfs_inode_extref_name_len(eb, extref);
962 			name_off = (unsigned long)&extref->name;
963 			index = btrfs_inode_extref_index(eb, extref);
964 			dir = btrfs_inode_extref_parent(eb, extref);
965 		}
966 
967 		if (resolve) {
968 			start = btrfs_ref_to_path(root, tmp_path, name_len,
969 						  name_off, eb, dir,
970 						  p->buf, p->buf_len);
971 			if (IS_ERR(start)) {
972 				ret = PTR_ERR(start);
973 				goto out;
974 			}
975 			if (start < p->buf) {
976 				/* overflow , try again with larger buffer */
977 				ret = fs_path_ensure_buf(p,
978 						p->buf_len + p->buf - start);
979 				if (ret < 0)
980 					goto out;
981 				start = btrfs_ref_to_path(root, tmp_path,
982 							  name_len, name_off,
983 							  eb, dir,
984 							  p->buf, p->buf_len);
985 				if (IS_ERR(start)) {
986 					ret = PTR_ERR(start);
987 					goto out;
988 				}
989 				BUG_ON(start < p->buf);
990 			}
991 			p->start = start;
992 		} else {
993 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
994 							     name_len);
995 			if (ret < 0)
996 				goto out;
997 		}
998 
999 		cur += elem_size + name_len;
1000 		ret = iterate(num, dir, index, p, ctx);
1001 		if (ret)
1002 			goto out;
1003 		num++;
1004 	}
1005 
1006 out:
1007 	btrfs_free_path(tmp_path);
1008 	fs_path_free(p);
1009 	return ret;
1010 }
1011 
1012 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1013 				  const char *name, int name_len,
1014 				  const char *data, int data_len,
1015 				  void *ctx);
1016 
1017 /*
1018  * Helper function to iterate the entries in ONE btrfs_dir_item.
1019  * The iterate callback may return a non zero value to stop iteration. This can
1020  * be a negative value for error codes or 1 to simply stop it.
1021  *
1022  * path must point to the dir item when called.
1023  */
1024 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1025 			    iterate_dir_item_t iterate, void *ctx)
1026 {
1027 	int ret = 0;
1028 	struct extent_buffer *eb;
1029 	struct btrfs_dir_item *di;
1030 	struct btrfs_key di_key;
1031 	char *buf = NULL;
1032 	int buf_len;
1033 	u32 name_len;
1034 	u32 data_len;
1035 	u32 cur;
1036 	u32 len;
1037 	u32 total;
1038 	int slot;
1039 	int num;
1040 
1041 	/*
1042 	 * Start with a small buffer (1 page). If later we end up needing more
1043 	 * space, which can happen for xattrs on a fs with a leaf size greater
1044 	 * then the page size, attempt to increase the buffer. Typically xattr
1045 	 * values are small.
1046 	 */
1047 	buf_len = PATH_MAX;
1048 	buf = kmalloc(buf_len, GFP_KERNEL);
1049 	if (!buf) {
1050 		ret = -ENOMEM;
1051 		goto out;
1052 	}
1053 
1054 	eb = path->nodes[0];
1055 	slot = path->slots[0];
1056 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1057 	cur = 0;
1058 	len = 0;
1059 	total = btrfs_item_size(eb, slot);
1060 
1061 	num = 0;
1062 	while (cur < total) {
1063 		name_len = btrfs_dir_name_len(eb, di);
1064 		data_len = btrfs_dir_data_len(eb, di);
1065 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1066 
1067 		if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) {
1068 			if (name_len > XATTR_NAME_MAX) {
1069 				ret = -ENAMETOOLONG;
1070 				goto out;
1071 			}
1072 			if (name_len + data_len >
1073 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1074 				ret = -E2BIG;
1075 				goto out;
1076 			}
1077 		} else {
1078 			/*
1079 			 * Path too long
1080 			 */
1081 			if (name_len + data_len > PATH_MAX) {
1082 				ret = -ENAMETOOLONG;
1083 				goto out;
1084 			}
1085 		}
1086 
1087 		if (name_len + data_len > buf_len) {
1088 			buf_len = name_len + data_len;
1089 			if (is_vmalloc_addr(buf)) {
1090 				vfree(buf);
1091 				buf = NULL;
1092 			} else {
1093 				char *tmp = krealloc(buf, buf_len,
1094 						GFP_KERNEL | __GFP_NOWARN);
1095 
1096 				if (!tmp)
1097 					kfree(buf);
1098 				buf = tmp;
1099 			}
1100 			if (!buf) {
1101 				buf = kvmalloc(buf_len, GFP_KERNEL);
1102 				if (!buf) {
1103 					ret = -ENOMEM;
1104 					goto out;
1105 				}
1106 			}
1107 		}
1108 
1109 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1110 				name_len + data_len);
1111 
1112 		len = sizeof(*di) + name_len + data_len;
1113 		di = (struct btrfs_dir_item *)((char *)di + len);
1114 		cur += len;
1115 
1116 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1117 			      data_len, ctx);
1118 		if (ret < 0)
1119 			goto out;
1120 		if (ret) {
1121 			ret = 0;
1122 			goto out;
1123 		}
1124 
1125 		num++;
1126 	}
1127 
1128 out:
1129 	kvfree(buf);
1130 	return ret;
1131 }
1132 
1133 static int __copy_first_ref(int num, u64 dir, int index,
1134 			    struct fs_path *p, void *ctx)
1135 {
1136 	int ret;
1137 	struct fs_path *pt = ctx;
1138 
1139 	ret = fs_path_copy(pt, p);
1140 	if (ret < 0)
1141 		return ret;
1142 
1143 	/* we want the first only */
1144 	return 1;
1145 }
1146 
1147 /*
1148  * Retrieve the first path of an inode. If an inode has more then one
1149  * ref/hardlink, this is ignored.
1150  */
1151 static int get_inode_path(struct btrfs_root *root,
1152 			  u64 ino, struct fs_path *path)
1153 {
1154 	int ret;
1155 	struct btrfs_key key, found_key;
1156 	struct btrfs_path *p;
1157 
1158 	p = alloc_path_for_send();
1159 	if (!p)
1160 		return -ENOMEM;
1161 
1162 	fs_path_reset(path);
1163 
1164 	key.objectid = ino;
1165 	key.type = BTRFS_INODE_REF_KEY;
1166 	key.offset = 0;
1167 
1168 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1169 	if (ret < 0)
1170 		goto out;
1171 	if (ret) {
1172 		ret = 1;
1173 		goto out;
1174 	}
1175 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1176 	if (found_key.objectid != ino ||
1177 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1178 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1179 		ret = -ENOENT;
1180 		goto out;
1181 	}
1182 
1183 	ret = iterate_inode_ref(root, p, &found_key, 1,
1184 				__copy_first_ref, path);
1185 	if (ret < 0)
1186 		goto out;
1187 	ret = 0;
1188 
1189 out:
1190 	btrfs_free_path(p);
1191 	return ret;
1192 }
1193 
1194 struct backref_ctx {
1195 	struct send_ctx *sctx;
1196 
1197 	/* number of total found references */
1198 	u64 found;
1199 
1200 	/*
1201 	 * used for clones found in send_root. clones found behind cur_objectid
1202 	 * and cur_offset are not considered as allowed clones.
1203 	 */
1204 	u64 cur_objectid;
1205 	u64 cur_offset;
1206 
1207 	/* may be truncated in case it's the last extent in a file */
1208 	u64 extent_len;
1209 
1210 	/* Just to check for bugs in backref resolving */
1211 	int found_itself;
1212 };
1213 
1214 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1215 {
1216 	u64 root = (u64)(uintptr_t)key;
1217 	const struct clone_root *cr = elt;
1218 
1219 	if (root < cr->root->root_key.objectid)
1220 		return -1;
1221 	if (root > cr->root->root_key.objectid)
1222 		return 1;
1223 	return 0;
1224 }
1225 
1226 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1227 {
1228 	const struct clone_root *cr1 = e1;
1229 	const struct clone_root *cr2 = e2;
1230 
1231 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1232 		return -1;
1233 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1234 		return 1;
1235 	return 0;
1236 }
1237 
1238 /*
1239  * Called for every backref that is found for the current extent.
1240  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1241  */
1242 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1243 {
1244 	struct backref_ctx *bctx = ctx_;
1245 	struct clone_root *found;
1246 
1247 	/* First check if the root is in the list of accepted clone sources */
1248 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1249 			bctx->sctx->clone_roots_cnt,
1250 			sizeof(struct clone_root),
1251 			__clone_root_cmp_bsearch);
1252 	if (!found)
1253 		return 0;
1254 
1255 	if (found->root == bctx->sctx->send_root &&
1256 	    ino == bctx->cur_objectid &&
1257 	    offset == bctx->cur_offset) {
1258 		bctx->found_itself = 1;
1259 	}
1260 
1261 	/*
1262 	 * Make sure we don't consider clones from send_root that are
1263 	 * behind the current inode/offset.
1264 	 */
1265 	if (found->root == bctx->sctx->send_root) {
1266 		/*
1267 		 * If the source inode was not yet processed we can't issue a
1268 		 * clone operation, as the source extent does not exist yet at
1269 		 * the destination of the stream.
1270 		 */
1271 		if (ino > bctx->cur_objectid)
1272 			return 0;
1273 		/*
1274 		 * We clone from the inode currently being sent as long as the
1275 		 * source extent is already processed, otherwise we could try
1276 		 * to clone from an extent that does not exist yet at the
1277 		 * destination of the stream.
1278 		 */
1279 		if (ino == bctx->cur_objectid &&
1280 		    offset + bctx->extent_len >
1281 		    bctx->sctx->cur_inode_next_write_offset)
1282 			return 0;
1283 	}
1284 
1285 	bctx->found++;
1286 	found->found_refs++;
1287 	if (ino < found->ino) {
1288 		found->ino = ino;
1289 		found->offset = offset;
1290 	} else if (found->ino == ino) {
1291 		/*
1292 		 * same extent found more then once in the same file.
1293 		 */
1294 		if (found->offset > offset + bctx->extent_len)
1295 			found->offset = offset;
1296 	}
1297 
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Given an inode, offset and extent item, it finds a good clone for a clone
1303  * instruction. Returns -ENOENT when none could be found. The function makes
1304  * sure that the returned clone is usable at the point where sending is at the
1305  * moment. This means, that no clones are accepted which lie behind the current
1306  * inode+offset.
1307  *
1308  * path must point to the extent item when called.
1309  */
1310 static int find_extent_clone(struct send_ctx *sctx,
1311 			     struct btrfs_path *path,
1312 			     u64 ino, u64 data_offset,
1313 			     u64 ino_size,
1314 			     struct clone_root **found)
1315 {
1316 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1317 	int ret;
1318 	int extent_type;
1319 	u64 logical;
1320 	u64 disk_byte;
1321 	u64 num_bytes;
1322 	u64 extent_item_pos;
1323 	u64 flags = 0;
1324 	struct btrfs_file_extent_item *fi;
1325 	struct extent_buffer *eb = path->nodes[0];
1326 	struct backref_ctx backref_ctx = {0};
1327 	struct clone_root *cur_clone_root;
1328 	struct btrfs_key found_key;
1329 	struct btrfs_path *tmp_path;
1330 	struct btrfs_extent_item *ei;
1331 	int compressed;
1332 	u32 i;
1333 
1334 	tmp_path = alloc_path_for_send();
1335 	if (!tmp_path)
1336 		return -ENOMEM;
1337 
1338 	/* We only use this path under the commit sem */
1339 	tmp_path->need_commit_sem = 0;
1340 
1341 	if (data_offset >= ino_size) {
1342 		/*
1343 		 * There may be extents that lie behind the file's size.
1344 		 * I at least had this in combination with snapshotting while
1345 		 * writing large files.
1346 		 */
1347 		ret = 0;
1348 		goto out;
1349 	}
1350 
1351 	fi = btrfs_item_ptr(eb, path->slots[0],
1352 			struct btrfs_file_extent_item);
1353 	extent_type = btrfs_file_extent_type(eb, fi);
1354 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1355 		ret = -ENOENT;
1356 		goto out;
1357 	}
1358 	compressed = btrfs_file_extent_compression(eb, fi);
1359 
1360 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1361 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1362 	if (disk_byte == 0) {
1363 		ret = -ENOENT;
1364 		goto out;
1365 	}
1366 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1367 
1368 	down_read(&fs_info->commit_root_sem);
1369 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1370 				  &found_key, &flags);
1371 	up_read(&fs_info->commit_root_sem);
1372 
1373 	if (ret < 0)
1374 		goto out;
1375 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1376 		ret = -EIO;
1377 		goto out;
1378 	}
1379 
1380 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1381 			    struct btrfs_extent_item);
1382 	/*
1383 	 * Backreference walking (iterate_extent_inodes() below) is currently
1384 	 * too expensive when an extent has a large number of references, both
1385 	 * in time spent and used memory. So for now just fallback to write
1386 	 * operations instead of clone operations when an extent has more than
1387 	 * a certain amount of references.
1388 	 */
1389 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1390 		ret = -ENOENT;
1391 		goto out;
1392 	}
1393 	btrfs_release_path(tmp_path);
1394 
1395 	/*
1396 	 * Setup the clone roots.
1397 	 */
1398 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1399 		cur_clone_root = sctx->clone_roots + i;
1400 		cur_clone_root->ino = (u64)-1;
1401 		cur_clone_root->offset = 0;
1402 		cur_clone_root->found_refs = 0;
1403 	}
1404 
1405 	backref_ctx.sctx = sctx;
1406 	backref_ctx.found = 0;
1407 	backref_ctx.cur_objectid = ino;
1408 	backref_ctx.cur_offset = data_offset;
1409 	backref_ctx.found_itself = 0;
1410 	backref_ctx.extent_len = num_bytes;
1411 
1412 	/*
1413 	 * The last extent of a file may be too large due to page alignment.
1414 	 * We need to adjust extent_len in this case so that the checks in
1415 	 * __iterate_backrefs work.
1416 	 */
1417 	if (data_offset + num_bytes >= ino_size)
1418 		backref_ctx.extent_len = ino_size - data_offset;
1419 
1420 	/*
1421 	 * Now collect all backrefs.
1422 	 */
1423 	if (compressed == BTRFS_COMPRESS_NONE)
1424 		extent_item_pos = logical - found_key.objectid;
1425 	else
1426 		extent_item_pos = 0;
1427 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1428 				    extent_item_pos, 1, __iterate_backrefs,
1429 				    &backref_ctx, false);
1430 
1431 	if (ret < 0)
1432 		goto out;
1433 
1434 	down_read(&fs_info->commit_root_sem);
1435 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1436 		/*
1437 		 * A transaction commit for a transaction in which block group
1438 		 * relocation was done just happened.
1439 		 * The disk_bytenr of the file extent item we processed is
1440 		 * possibly stale, referring to the extent's location before
1441 		 * relocation. So act as if we haven't found any clone sources
1442 		 * and fallback to write commands, which will read the correct
1443 		 * data from the new extent location. Otherwise we will fail
1444 		 * below because we haven't found our own back reference or we
1445 		 * could be getting incorrect sources in case the old extent
1446 		 * was already reallocated after the relocation.
1447 		 */
1448 		up_read(&fs_info->commit_root_sem);
1449 		ret = -ENOENT;
1450 		goto out;
1451 	}
1452 	up_read(&fs_info->commit_root_sem);
1453 
1454 	if (!backref_ctx.found_itself) {
1455 		/* found a bug in backref code? */
1456 		ret = -EIO;
1457 		btrfs_err(fs_info,
1458 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1459 			  ino, data_offset, disk_byte, found_key.objectid);
1460 		goto out;
1461 	}
1462 
1463 	btrfs_debug(fs_info,
1464 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1465 		    data_offset, ino, num_bytes, logical);
1466 
1467 	if (!backref_ctx.found)
1468 		btrfs_debug(fs_info, "no clones found");
1469 
1470 	cur_clone_root = NULL;
1471 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1472 		if (sctx->clone_roots[i].found_refs) {
1473 			if (!cur_clone_root)
1474 				cur_clone_root = sctx->clone_roots + i;
1475 			else if (sctx->clone_roots[i].root == sctx->send_root)
1476 				/* prefer clones from send_root over others */
1477 				cur_clone_root = sctx->clone_roots + i;
1478 		}
1479 
1480 	}
1481 
1482 	if (cur_clone_root) {
1483 		*found = cur_clone_root;
1484 		ret = 0;
1485 	} else {
1486 		ret = -ENOENT;
1487 	}
1488 
1489 out:
1490 	btrfs_free_path(tmp_path);
1491 	return ret;
1492 }
1493 
1494 static int read_symlink(struct btrfs_root *root,
1495 			u64 ino,
1496 			struct fs_path *dest)
1497 {
1498 	int ret;
1499 	struct btrfs_path *path;
1500 	struct btrfs_key key;
1501 	struct btrfs_file_extent_item *ei;
1502 	u8 type;
1503 	u8 compression;
1504 	unsigned long off;
1505 	int len;
1506 
1507 	path = alloc_path_for_send();
1508 	if (!path)
1509 		return -ENOMEM;
1510 
1511 	key.objectid = ino;
1512 	key.type = BTRFS_EXTENT_DATA_KEY;
1513 	key.offset = 0;
1514 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1515 	if (ret < 0)
1516 		goto out;
1517 	if (ret) {
1518 		/*
1519 		 * An empty symlink inode. Can happen in rare error paths when
1520 		 * creating a symlink (transaction committed before the inode
1521 		 * eviction handler removed the symlink inode items and a crash
1522 		 * happened in between or the subvol was snapshoted in between).
1523 		 * Print an informative message to dmesg/syslog so that the user
1524 		 * can delete the symlink.
1525 		 */
1526 		btrfs_err(root->fs_info,
1527 			  "Found empty symlink inode %llu at root %llu",
1528 			  ino, root->root_key.objectid);
1529 		ret = -EIO;
1530 		goto out;
1531 	}
1532 
1533 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1534 			struct btrfs_file_extent_item);
1535 	type = btrfs_file_extent_type(path->nodes[0], ei);
1536 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1537 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1538 	BUG_ON(compression);
1539 
1540 	off = btrfs_file_extent_inline_start(ei);
1541 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1542 
1543 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1544 
1545 out:
1546 	btrfs_free_path(path);
1547 	return ret;
1548 }
1549 
1550 /*
1551  * Helper function to generate a file name that is unique in the root of
1552  * send_root and parent_root. This is used to generate names for orphan inodes.
1553  */
1554 static int gen_unique_name(struct send_ctx *sctx,
1555 			   u64 ino, u64 gen,
1556 			   struct fs_path *dest)
1557 {
1558 	int ret = 0;
1559 	struct btrfs_path *path;
1560 	struct btrfs_dir_item *di;
1561 	char tmp[64];
1562 	int len;
1563 	u64 idx = 0;
1564 
1565 	path = alloc_path_for_send();
1566 	if (!path)
1567 		return -ENOMEM;
1568 
1569 	while (1) {
1570 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1571 				ino, gen, idx);
1572 		ASSERT(len < sizeof(tmp));
1573 
1574 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1575 				path, BTRFS_FIRST_FREE_OBJECTID,
1576 				tmp, strlen(tmp), 0);
1577 		btrfs_release_path(path);
1578 		if (IS_ERR(di)) {
1579 			ret = PTR_ERR(di);
1580 			goto out;
1581 		}
1582 		if (di) {
1583 			/* not unique, try again */
1584 			idx++;
1585 			continue;
1586 		}
1587 
1588 		if (!sctx->parent_root) {
1589 			/* unique */
1590 			ret = 0;
1591 			break;
1592 		}
1593 
1594 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1595 				path, BTRFS_FIRST_FREE_OBJECTID,
1596 				tmp, strlen(tmp), 0);
1597 		btrfs_release_path(path);
1598 		if (IS_ERR(di)) {
1599 			ret = PTR_ERR(di);
1600 			goto out;
1601 		}
1602 		if (di) {
1603 			/* not unique, try again */
1604 			idx++;
1605 			continue;
1606 		}
1607 		/* unique */
1608 		break;
1609 	}
1610 
1611 	ret = fs_path_add(dest, tmp, strlen(tmp));
1612 
1613 out:
1614 	btrfs_free_path(path);
1615 	return ret;
1616 }
1617 
1618 enum inode_state {
1619 	inode_state_no_change,
1620 	inode_state_will_create,
1621 	inode_state_did_create,
1622 	inode_state_will_delete,
1623 	inode_state_did_delete,
1624 };
1625 
1626 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1627 {
1628 	int ret;
1629 	int left_ret;
1630 	int right_ret;
1631 	u64 left_gen;
1632 	u64 right_gen;
1633 
1634 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1635 			NULL, NULL);
1636 	if (ret < 0 && ret != -ENOENT)
1637 		goto out;
1638 	left_ret = ret;
1639 
1640 	if (!sctx->parent_root) {
1641 		right_ret = -ENOENT;
1642 	} else {
1643 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1644 				NULL, NULL, NULL, NULL);
1645 		if (ret < 0 && ret != -ENOENT)
1646 			goto out;
1647 		right_ret = ret;
1648 	}
1649 
1650 	if (!left_ret && !right_ret) {
1651 		if (left_gen == gen && right_gen == gen) {
1652 			ret = inode_state_no_change;
1653 		} else if (left_gen == gen) {
1654 			if (ino < sctx->send_progress)
1655 				ret = inode_state_did_create;
1656 			else
1657 				ret = inode_state_will_create;
1658 		} else if (right_gen == gen) {
1659 			if (ino < sctx->send_progress)
1660 				ret = inode_state_did_delete;
1661 			else
1662 				ret = inode_state_will_delete;
1663 		} else  {
1664 			ret = -ENOENT;
1665 		}
1666 	} else if (!left_ret) {
1667 		if (left_gen == gen) {
1668 			if (ino < sctx->send_progress)
1669 				ret = inode_state_did_create;
1670 			else
1671 				ret = inode_state_will_create;
1672 		} else {
1673 			ret = -ENOENT;
1674 		}
1675 	} else if (!right_ret) {
1676 		if (right_gen == gen) {
1677 			if (ino < sctx->send_progress)
1678 				ret = inode_state_did_delete;
1679 			else
1680 				ret = inode_state_will_delete;
1681 		} else {
1682 			ret = -ENOENT;
1683 		}
1684 	} else {
1685 		ret = -ENOENT;
1686 	}
1687 
1688 out:
1689 	return ret;
1690 }
1691 
1692 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1693 {
1694 	int ret;
1695 
1696 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1697 		return 1;
1698 
1699 	ret = get_cur_inode_state(sctx, ino, gen);
1700 	if (ret < 0)
1701 		goto out;
1702 
1703 	if (ret == inode_state_no_change ||
1704 	    ret == inode_state_did_create ||
1705 	    ret == inode_state_will_delete)
1706 		ret = 1;
1707 	else
1708 		ret = 0;
1709 
1710 out:
1711 	return ret;
1712 }
1713 
1714 /*
1715  * Helper function to lookup a dir item in a dir.
1716  */
1717 static int lookup_dir_item_inode(struct btrfs_root *root,
1718 				 u64 dir, const char *name, int name_len,
1719 				 u64 *found_inode)
1720 {
1721 	int ret = 0;
1722 	struct btrfs_dir_item *di;
1723 	struct btrfs_key key;
1724 	struct btrfs_path *path;
1725 
1726 	path = alloc_path_for_send();
1727 	if (!path)
1728 		return -ENOMEM;
1729 
1730 	di = btrfs_lookup_dir_item(NULL, root, path,
1731 			dir, name, name_len, 0);
1732 	if (IS_ERR_OR_NULL(di)) {
1733 		ret = di ? PTR_ERR(di) : -ENOENT;
1734 		goto out;
1735 	}
1736 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1737 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1738 		ret = -ENOENT;
1739 		goto out;
1740 	}
1741 	*found_inode = key.objectid;
1742 
1743 out:
1744 	btrfs_free_path(path);
1745 	return ret;
1746 }
1747 
1748 /*
1749  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1750  * generation of the parent dir and the name of the dir entry.
1751  */
1752 static int get_first_ref(struct btrfs_root *root, u64 ino,
1753 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1754 {
1755 	int ret;
1756 	struct btrfs_key key;
1757 	struct btrfs_key found_key;
1758 	struct btrfs_path *path;
1759 	int len;
1760 	u64 parent_dir;
1761 
1762 	path = alloc_path_for_send();
1763 	if (!path)
1764 		return -ENOMEM;
1765 
1766 	key.objectid = ino;
1767 	key.type = BTRFS_INODE_REF_KEY;
1768 	key.offset = 0;
1769 
1770 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1771 	if (ret < 0)
1772 		goto out;
1773 	if (!ret)
1774 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1775 				path->slots[0]);
1776 	if (ret || found_key.objectid != ino ||
1777 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1778 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1779 		ret = -ENOENT;
1780 		goto out;
1781 	}
1782 
1783 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1784 		struct btrfs_inode_ref *iref;
1785 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 				      struct btrfs_inode_ref);
1787 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1788 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1789 						     (unsigned long)(iref + 1),
1790 						     len);
1791 		parent_dir = found_key.offset;
1792 	} else {
1793 		struct btrfs_inode_extref *extref;
1794 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1795 					struct btrfs_inode_extref);
1796 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1797 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1798 					(unsigned long)&extref->name, len);
1799 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1800 	}
1801 	if (ret < 0)
1802 		goto out;
1803 	btrfs_release_path(path);
1804 
1805 	if (dir_gen) {
1806 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1807 				     NULL, NULL, NULL);
1808 		if (ret < 0)
1809 			goto out;
1810 	}
1811 
1812 	*dir = parent_dir;
1813 
1814 out:
1815 	btrfs_free_path(path);
1816 	return ret;
1817 }
1818 
1819 static int is_first_ref(struct btrfs_root *root,
1820 			u64 ino, u64 dir,
1821 			const char *name, int name_len)
1822 {
1823 	int ret;
1824 	struct fs_path *tmp_name;
1825 	u64 tmp_dir;
1826 
1827 	tmp_name = fs_path_alloc();
1828 	if (!tmp_name)
1829 		return -ENOMEM;
1830 
1831 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1832 	if (ret < 0)
1833 		goto out;
1834 
1835 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1836 		ret = 0;
1837 		goto out;
1838 	}
1839 
1840 	ret = !memcmp(tmp_name->start, name, name_len);
1841 
1842 out:
1843 	fs_path_free(tmp_name);
1844 	return ret;
1845 }
1846 
1847 /*
1848  * Used by process_recorded_refs to determine if a new ref would overwrite an
1849  * already existing ref. In case it detects an overwrite, it returns the
1850  * inode/gen in who_ino/who_gen.
1851  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1852  * to make sure later references to the overwritten inode are possible.
1853  * Orphanizing is however only required for the first ref of an inode.
1854  * process_recorded_refs does an additional is_first_ref check to see if
1855  * orphanizing is really required.
1856  */
1857 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1858 			      const char *name, int name_len,
1859 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1860 {
1861 	int ret = 0;
1862 	u64 gen;
1863 	u64 other_inode = 0;
1864 
1865 	if (!sctx->parent_root)
1866 		goto out;
1867 
1868 	ret = is_inode_existent(sctx, dir, dir_gen);
1869 	if (ret <= 0)
1870 		goto out;
1871 
1872 	/*
1873 	 * If we have a parent root we need to verify that the parent dir was
1874 	 * not deleted and then re-created, if it was then we have no overwrite
1875 	 * and we can just unlink this entry.
1876 	 */
1877 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1878 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1879 				     NULL, NULL, NULL);
1880 		if (ret < 0 && ret != -ENOENT)
1881 			goto out;
1882 		if (ret) {
1883 			ret = 0;
1884 			goto out;
1885 		}
1886 		if (gen != dir_gen)
1887 			goto out;
1888 	}
1889 
1890 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1891 				    &other_inode);
1892 	if (ret < 0 && ret != -ENOENT)
1893 		goto out;
1894 	if (ret) {
1895 		ret = 0;
1896 		goto out;
1897 	}
1898 
1899 	/*
1900 	 * Check if the overwritten ref was already processed. If yes, the ref
1901 	 * was already unlinked/moved, so we can safely assume that we will not
1902 	 * overwrite anything at this point in time.
1903 	 */
1904 	if (other_inode > sctx->send_progress ||
1905 	    is_waiting_for_move(sctx, other_inode)) {
1906 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1907 				who_gen, who_mode, NULL, NULL, NULL);
1908 		if (ret < 0)
1909 			goto out;
1910 
1911 		ret = 1;
1912 		*who_ino = other_inode;
1913 	} else {
1914 		ret = 0;
1915 	}
1916 
1917 out:
1918 	return ret;
1919 }
1920 
1921 /*
1922  * Checks if the ref was overwritten by an already processed inode. This is
1923  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1924  * thus the orphan name needs be used.
1925  * process_recorded_refs also uses it to avoid unlinking of refs that were
1926  * overwritten.
1927  */
1928 static int did_overwrite_ref(struct send_ctx *sctx,
1929 			    u64 dir, u64 dir_gen,
1930 			    u64 ino, u64 ino_gen,
1931 			    const char *name, int name_len)
1932 {
1933 	int ret = 0;
1934 	u64 gen;
1935 	u64 ow_inode;
1936 
1937 	if (!sctx->parent_root)
1938 		goto out;
1939 
1940 	ret = is_inode_existent(sctx, dir, dir_gen);
1941 	if (ret <= 0)
1942 		goto out;
1943 
1944 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1945 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1946 				     NULL, NULL, NULL);
1947 		if (ret < 0 && ret != -ENOENT)
1948 			goto out;
1949 		if (ret) {
1950 			ret = 0;
1951 			goto out;
1952 		}
1953 		if (gen != dir_gen)
1954 			goto out;
1955 	}
1956 
1957 	/* check if the ref was overwritten by another ref */
1958 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1959 				    &ow_inode);
1960 	if (ret < 0 && ret != -ENOENT)
1961 		goto out;
1962 	if (ret) {
1963 		/* was never and will never be overwritten */
1964 		ret = 0;
1965 		goto out;
1966 	}
1967 
1968 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1969 			NULL, NULL);
1970 	if (ret < 0)
1971 		goto out;
1972 
1973 	if (ow_inode == ino && gen == ino_gen) {
1974 		ret = 0;
1975 		goto out;
1976 	}
1977 
1978 	/*
1979 	 * We know that it is or will be overwritten. Check this now.
1980 	 * The current inode being processed might have been the one that caused
1981 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1982 	 * the current inode being processed.
1983 	 */
1984 	if ((ow_inode < sctx->send_progress) ||
1985 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1986 	     gen == sctx->cur_inode_gen))
1987 		ret = 1;
1988 	else
1989 		ret = 0;
1990 
1991 out:
1992 	return ret;
1993 }
1994 
1995 /*
1996  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1997  * that got overwritten. This is used by process_recorded_refs to determine
1998  * if it has to use the path as returned by get_cur_path or the orphan name.
1999  */
2000 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2001 {
2002 	int ret = 0;
2003 	struct fs_path *name = NULL;
2004 	u64 dir;
2005 	u64 dir_gen;
2006 
2007 	if (!sctx->parent_root)
2008 		goto out;
2009 
2010 	name = fs_path_alloc();
2011 	if (!name)
2012 		return -ENOMEM;
2013 
2014 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2015 	if (ret < 0)
2016 		goto out;
2017 
2018 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2019 			name->start, fs_path_len(name));
2020 
2021 out:
2022 	fs_path_free(name);
2023 	return ret;
2024 }
2025 
2026 /*
2027  * Insert a name cache entry. On 32bit kernels the xarray index is 32bit,
2028  * so we need to do some special handling in case we have clashes. This function
2029  * takes care of this with the help of name_cache_entry::inum_aliases.
2030  * In case of error, nce is kfreed.
2031  */
2032 static int name_cache_insert(struct send_ctx *sctx,
2033 			     struct name_cache_entry *nce)
2034 {
2035 	int ret = 0;
2036 	struct list_head *nce_head;
2037 
2038 	nce_head = xa_load(&sctx->name_cache, (unsigned long)nce->ino);
2039 	if (!nce_head) {
2040 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2041 		if (!nce_head) {
2042 			kfree(nce);
2043 			return -ENOMEM;
2044 		}
2045 		INIT_LIST_HEAD(nce_head);
2046 
2047 		ret = xa_insert(&sctx->name_cache, nce->ino, nce_head, GFP_KERNEL);
2048 		if (ret < 0) {
2049 			kfree(nce_head);
2050 			kfree(nce);
2051 			return ret;
2052 		}
2053 	}
2054 	list_add_tail(&nce->inum_aliases, nce_head);
2055 	list_add_tail(&nce->list, &sctx->name_cache_list);
2056 	sctx->name_cache_size++;
2057 
2058 	return ret;
2059 }
2060 
2061 static void name_cache_delete(struct send_ctx *sctx,
2062 			      struct name_cache_entry *nce)
2063 {
2064 	struct list_head *nce_head;
2065 
2066 	nce_head = xa_load(&sctx->name_cache, (unsigned long)nce->ino);
2067 	if (!nce_head) {
2068 		btrfs_err(sctx->send_root->fs_info,
2069 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2070 			nce->ino, sctx->name_cache_size);
2071 	}
2072 
2073 	list_del(&nce->inum_aliases);
2074 	list_del(&nce->list);
2075 	sctx->name_cache_size--;
2076 
2077 	/*
2078 	 * We may not get to the final release of nce_head if the lookup fails
2079 	 */
2080 	if (nce_head && list_empty(nce_head)) {
2081 		xa_erase(&sctx->name_cache, (unsigned long)nce->ino);
2082 		kfree(nce_head);
2083 	}
2084 }
2085 
2086 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2087 						    u64 ino, u64 gen)
2088 {
2089 	struct list_head *nce_head;
2090 	struct name_cache_entry *cur;
2091 
2092 	nce_head = xa_load(&sctx->name_cache, (unsigned long)ino);
2093 	if (!nce_head)
2094 		return NULL;
2095 
2096 	list_for_each_entry(cur, nce_head, inum_aliases) {
2097 		if (cur->ino == ino && cur->gen == gen)
2098 			return cur;
2099 	}
2100 	return NULL;
2101 }
2102 
2103 /*
2104  * Remove some entries from the beginning of name_cache_list.
2105  */
2106 static void name_cache_clean_unused(struct send_ctx *sctx)
2107 {
2108 	struct name_cache_entry *nce;
2109 
2110 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2111 		return;
2112 
2113 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2114 		nce = list_entry(sctx->name_cache_list.next,
2115 				struct name_cache_entry, list);
2116 		name_cache_delete(sctx, nce);
2117 		kfree(nce);
2118 	}
2119 }
2120 
2121 static void name_cache_free(struct send_ctx *sctx)
2122 {
2123 	struct name_cache_entry *nce;
2124 
2125 	while (!list_empty(&sctx->name_cache_list)) {
2126 		nce = list_entry(sctx->name_cache_list.next,
2127 				struct name_cache_entry, list);
2128 		name_cache_delete(sctx, nce);
2129 		kfree(nce);
2130 	}
2131 }
2132 
2133 /*
2134  * Used by get_cur_path for each ref up to the root.
2135  * Returns 0 if it succeeded.
2136  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2137  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2138  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2139  * Returns <0 in case of error.
2140  */
2141 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2142 				     u64 ino, u64 gen,
2143 				     u64 *parent_ino,
2144 				     u64 *parent_gen,
2145 				     struct fs_path *dest)
2146 {
2147 	int ret;
2148 	int nce_ret;
2149 	struct name_cache_entry *nce = NULL;
2150 
2151 	/*
2152 	 * First check if we already did a call to this function with the same
2153 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2154 	 * return the cached result.
2155 	 */
2156 	nce = name_cache_search(sctx, ino, gen);
2157 	if (nce) {
2158 		if (ino < sctx->send_progress && nce->need_later_update) {
2159 			name_cache_delete(sctx, nce);
2160 			kfree(nce);
2161 			nce = NULL;
2162 		} else {
2163 			/*
2164 			 * Removes the entry from the list and adds it back to
2165 			 * the end.  This marks the entry as recently used so
2166 			 * that name_cache_clean_unused does not remove it.
2167 			 */
2168 			list_move_tail(&nce->list, &sctx->name_cache_list);
2169 
2170 			*parent_ino = nce->parent_ino;
2171 			*parent_gen = nce->parent_gen;
2172 			ret = fs_path_add(dest, nce->name, nce->name_len);
2173 			if (ret < 0)
2174 				goto out;
2175 			ret = nce->ret;
2176 			goto out;
2177 		}
2178 	}
2179 
2180 	/*
2181 	 * If the inode is not existent yet, add the orphan name and return 1.
2182 	 * This should only happen for the parent dir that we determine in
2183 	 * __record_new_ref
2184 	 */
2185 	ret = is_inode_existent(sctx, ino, gen);
2186 	if (ret < 0)
2187 		goto out;
2188 
2189 	if (!ret) {
2190 		ret = gen_unique_name(sctx, ino, gen, dest);
2191 		if (ret < 0)
2192 			goto out;
2193 		ret = 1;
2194 		goto out_cache;
2195 	}
2196 
2197 	/*
2198 	 * Depending on whether the inode was already processed or not, use
2199 	 * send_root or parent_root for ref lookup.
2200 	 */
2201 	if (ino < sctx->send_progress)
2202 		ret = get_first_ref(sctx->send_root, ino,
2203 				    parent_ino, parent_gen, dest);
2204 	else
2205 		ret = get_first_ref(sctx->parent_root, ino,
2206 				    parent_ino, parent_gen, dest);
2207 	if (ret < 0)
2208 		goto out;
2209 
2210 	/*
2211 	 * Check if the ref was overwritten by an inode's ref that was processed
2212 	 * earlier. If yes, treat as orphan and return 1.
2213 	 */
2214 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2215 			dest->start, dest->end - dest->start);
2216 	if (ret < 0)
2217 		goto out;
2218 	if (ret) {
2219 		fs_path_reset(dest);
2220 		ret = gen_unique_name(sctx, ino, gen, dest);
2221 		if (ret < 0)
2222 			goto out;
2223 		ret = 1;
2224 	}
2225 
2226 out_cache:
2227 	/*
2228 	 * Store the result of the lookup in the name cache.
2229 	 */
2230 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2231 	if (!nce) {
2232 		ret = -ENOMEM;
2233 		goto out;
2234 	}
2235 
2236 	nce->ino = ino;
2237 	nce->gen = gen;
2238 	nce->parent_ino = *parent_ino;
2239 	nce->parent_gen = *parent_gen;
2240 	nce->name_len = fs_path_len(dest);
2241 	nce->ret = ret;
2242 	strcpy(nce->name, dest->start);
2243 
2244 	if (ino < sctx->send_progress)
2245 		nce->need_later_update = 0;
2246 	else
2247 		nce->need_later_update = 1;
2248 
2249 	nce_ret = name_cache_insert(sctx, nce);
2250 	if (nce_ret < 0)
2251 		ret = nce_ret;
2252 	name_cache_clean_unused(sctx);
2253 
2254 out:
2255 	return ret;
2256 }
2257 
2258 /*
2259  * Magic happens here. This function returns the first ref to an inode as it
2260  * would look like while receiving the stream at this point in time.
2261  * We walk the path up to the root. For every inode in between, we check if it
2262  * was already processed/sent. If yes, we continue with the parent as found
2263  * in send_root. If not, we continue with the parent as found in parent_root.
2264  * If we encounter an inode that was deleted at this point in time, we use the
2265  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2266  * that were not created yet and overwritten inodes/refs.
2267  *
2268  * When do we have orphan inodes:
2269  * 1. When an inode is freshly created and thus no valid refs are available yet
2270  * 2. When a directory lost all it's refs (deleted) but still has dir items
2271  *    inside which were not processed yet (pending for move/delete). If anyone
2272  *    tried to get the path to the dir items, it would get a path inside that
2273  *    orphan directory.
2274  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2275  *    of an unprocessed inode. If in that case the first ref would be
2276  *    overwritten, the overwritten inode gets "orphanized". Later when we
2277  *    process this overwritten inode, it is restored at a new place by moving
2278  *    the orphan inode.
2279  *
2280  * sctx->send_progress tells this function at which point in time receiving
2281  * would be.
2282  */
2283 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2284 			struct fs_path *dest)
2285 {
2286 	int ret = 0;
2287 	struct fs_path *name = NULL;
2288 	u64 parent_inode = 0;
2289 	u64 parent_gen = 0;
2290 	int stop = 0;
2291 
2292 	name = fs_path_alloc();
2293 	if (!name) {
2294 		ret = -ENOMEM;
2295 		goto out;
2296 	}
2297 
2298 	dest->reversed = 1;
2299 	fs_path_reset(dest);
2300 
2301 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2302 		struct waiting_dir_move *wdm;
2303 
2304 		fs_path_reset(name);
2305 
2306 		if (is_waiting_for_rm(sctx, ino, gen)) {
2307 			ret = gen_unique_name(sctx, ino, gen, name);
2308 			if (ret < 0)
2309 				goto out;
2310 			ret = fs_path_add_path(dest, name);
2311 			break;
2312 		}
2313 
2314 		wdm = get_waiting_dir_move(sctx, ino);
2315 		if (wdm && wdm->orphanized) {
2316 			ret = gen_unique_name(sctx, ino, gen, name);
2317 			stop = 1;
2318 		} else if (wdm) {
2319 			ret = get_first_ref(sctx->parent_root, ino,
2320 					    &parent_inode, &parent_gen, name);
2321 		} else {
2322 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2323 							&parent_inode,
2324 							&parent_gen, name);
2325 			if (ret)
2326 				stop = 1;
2327 		}
2328 
2329 		if (ret < 0)
2330 			goto out;
2331 
2332 		ret = fs_path_add_path(dest, name);
2333 		if (ret < 0)
2334 			goto out;
2335 
2336 		ino = parent_inode;
2337 		gen = parent_gen;
2338 	}
2339 
2340 out:
2341 	fs_path_free(name);
2342 	if (!ret)
2343 		fs_path_unreverse(dest);
2344 	return ret;
2345 }
2346 
2347 /*
2348  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2349  */
2350 static int send_subvol_begin(struct send_ctx *sctx)
2351 {
2352 	int ret;
2353 	struct btrfs_root *send_root = sctx->send_root;
2354 	struct btrfs_root *parent_root = sctx->parent_root;
2355 	struct btrfs_path *path;
2356 	struct btrfs_key key;
2357 	struct btrfs_root_ref *ref;
2358 	struct extent_buffer *leaf;
2359 	char *name = NULL;
2360 	int namelen;
2361 
2362 	path = btrfs_alloc_path();
2363 	if (!path)
2364 		return -ENOMEM;
2365 
2366 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2367 	if (!name) {
2368 		btrfs_free_path(path);
2369 		return -ENOMEM;
2370 	}
2371 
2372 	key.objectid = send_root->root_key.objectid;
2373 	key.type = BTRFS_ROOT_BACKREF_KEY;
2374 	key.offset = 0;
2375 
2376 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2377 				&key, path, 1, 0);
2378 	if (ret < 0)
2379 		goto out;
2380 	if (ret) {
2381 		ret = -ENOENT;
2382 		goto out;
2383 	}
2384 
2385 	leaf = path->nodes[0];
2386 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2387 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2388 	    key.objectid != send_root->root_key.objectid) {
2389 		ret = -ENOENT;
2390 		goto out;
2391 	}
2392 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2393 	namelen = btrfs_root_ref_name_len(leaf, ref);
2394 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2395 	btrfs_release_path(path);
2396 
2397 	if (parent_root) {
2398 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2399 		if (ret < 0)
2400 			goto out;
2401 	} else {
2402 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2403 		if (ret < 0)
2404 			goto out;
2405 	}
2406 
2407 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2408 
2409 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2410 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2411 			    sctx->send_root->root_item.received_uuid);
2412 	else
2413 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2414 			    sctx->send_root->root_item.uuid);
2415 
2416 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2417 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2418 	if (parent_root) {
2419 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2420 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2421 				     parent_root->root_item.received_uuid);
2422 		else
2423 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2424 				     parent_root->root_item.uuid);
2425 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2426 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2427 	}
2428 
2429 	ret = send_cmd(sctx);
2430 
2431 tlv_put_failure:
2432 out:
2433 	btrfs_free_path(path);
2434 	kfree(name);
2435 	return ret;
2436 }
2437 
2438 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2439 {
2440 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2441 	int ret = 0;
2442 	struct fs_path *p;
2443 
2444 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2445 
2446 	p = fs_path_alloc();
2447 	if (!p)
2448 		return -ENOMEM;
2449 
2450 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2451 	if (ret < 0)
2452 		goto out;
2453 
2454 	ret = get_cur_path(sctx, ino, gen, p);
2455 	if (ret < 0)
2456 		goto out;
2457 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2458 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2459 
2460 	ret = send_cmd(sctx);
2461 
2462 tlv_put_failure:
2463 out:
2464 	fs_path_free(p);
2465 	return ret;
2466 }
2467 
2468 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2469 {
2470 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2471 	int ret = 0;
2472 	struct fs_path *p;
2473 
2474 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2475 
2476 	p = fs_path_alloc();
2477 	if (!p)
2478 		return -ENOMEM;
2479 
2480 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2481 	if (ret < 0)
2482 		goto out;
2483 
2484 	ret = get_cur_path(sctx, ino, gen, p);
2485 	if (ret < 0)
2486 		goto out;
2487 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2488 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2489 
2490 	ret = send_cmd(sctx);
2491 
2492 tlv_put_failure:
2493 out:
2494 	fs_path_free(p);
2495 	return ret;
2496 }
2497 
2498 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2499 {
2500 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2501 	int ret = 0;
2502 	struct fs_path *p;
2503 
2504 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2505 		    ino, uid, gid);
2506 
2507 	p = fs_path_alloc();
2508 	if (!p)
2509 		return -ENOMEM;
2510 
2511 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2512 	if (ret < 0)
2513 		goto out;
2514 
2515 	ret = get_cur_path(sctx, ino, gen, p);
2516 	if (ret < 0)
2517 		goto out;
2518 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2519 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2520 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2521 
2522 	ret = send_cmd(sctx);
2523 
2524 tlv_put_failure:
2525 out:
2526 	fs_path_free(p);
2527 	return ret;
2528 }
2529 
2530 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2531 {
2532 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2533 	int ret = 0;
2534 	struct fs_path *p = NULL;
2535 	struct btrfs_inode_item *ii;
2536 	struct btrfs_path *path = NULL;
2537 	struct extent_buffer *eb;
2538 	struct btrfs_key key;
2539 	int slot;
2540 
2541 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2542 
2543 	p = fs_path_alloc();
2544 	if (!p)
2545 		return -ENOMEM;
2546 
2547 	path = alloc_path_for_send();
2548 	if (!path) {
2549 		ret = -ENOMEM;
2550 		goto out;
2551 	}
2552 
2553 	key.objectid = ino;
2554 	key.type = BTRFS_INODE_ITEM_KEY;
2555 	key.offset = 0;
2556 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2557 	if (ret > 0)
2558 		ret = -ENOENT;
2559 	if (ret < 0)
2560 		goto out;
2561 
2562 	eb = path->nodes[0];
2563 	slot = path->slots[0];
2564 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2565 
2566 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2567 	if (ret < 0)
2568 		goto out;
2569 
2570 	ret = get_cur_path(sctx, ino, gen, p);
2571 	if (ret < 0)
2572 		goto out;
2573 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2574 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2575 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2576 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2577 	/* TODO Add otime support when the otime patches get into upstream */
2578 
2579 	ret = send_cmd(sctx);
2580 
2581 tlv_put_failure:
2582 out:
2583 	fs_path_free(p);
2584 	btrfs_free_path(path);
2585 	return ret;
2586 }
2587 
2588 /*
2589  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2590  * a valid path yet because we did not process the refs yet. So, the inode
2591  * is created as orphan.
2592  */
2593 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2594 {
2595 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2596 	int ret = 0;
2597 	struct fs_path *p;
2598 	int cmd;
2599 	u64 gen;
2600 	u64 mode;
2601 	u64 rdev;
2602 
2603 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2604 
2605 	p = fs_path_alloc();
2606 	if (!p)
2607 		return -ENOMEM;
2608 
2609 	if (ino != sctx->cur_ino) {
2610 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2611 				     NULL, NULL, &rdev);
2612 		if (ret < 0)
2613 			goto out;
2614 	} else {
2615 		gen = sctx->cur_inode_gen;
2616 		mode = sctx->cur_inode_mode;
2617 		rdev = sctx->cur_inode_rdev;
2618 	}
2619 
2620 	if (S_ISREG(mode)) {
2621 		cmd = BTRFS_SEND_C_MKFILE;
2622 	} else if (S_ISDIR(mode)) {
2623 		cmd = BTRFS_SEND_C_MKDIR;
2624 	} else if (S_ISLNK(mode)) {
2625 		cmd = BTRFS_SEND_C_SYMLINK;
2626 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2627 		cmd = BTRFS_SEND_C_MKNOD;
2628 	} else if (S_ISFIFO(mode)) {
2629 		cmd = BTRFS_SEND_C_MKFIFO;
2630 	} else if (S_ISSOCK(mode)) {
2631 		cmd = BTRFS_SEND_C_MKSOCK;
2632 	} else {
2633 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2634 				(int)(mode & S_IFMT));
2635 		ret = -EOPNOTSUPP;
2636 		goto out;
2637 	}
2638 
2639 	ret = begin_cmd(sctx, cmd);
2640 	if (ret < 0)
2641 		goto out;
2642 
2643 	ret = gen_unique_name(sctx, ino, gen, p);
2644 	if (ret < 0)
2645 		goto out;
2646 
2647 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2648 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2649 
2650 	if (S_ISLNK(mode)) {
2651 		fs_path_reset(p);
2652 		ret = read_symlink(sctx->send_root, ino, p);
2653 		if (ret < 0)
2654 			goto out;
2655 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2656 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2657 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2658 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2659 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2660 	}
2661 
2662 	ret = send_cmd(sctx);
2663 	if (ret < 0)
2664 		goto out;
2665 
2666 
2667 tlv_put_failure:
2668 out:
2669 	fs_path_free(p);
2670 	return ret;
2671 }
2672 
2673 /*
2674  * We need some special handling for inodes that get processed before the parent
2675  * directory got created. See process_recorded_refs for details.
2676  * This function does the check if we already created the dir out of order.
2677  */
2678 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2679 {
2680 	int ret = 0;
2681 	int iter_ret = 0;
2682 	struct btrfs_path *path = NULL;
2683 	struct btrfs_key key;
2684 	struct btrfs_key found_key;
2685 	struct btrfs_key di_key;
2686 	struct btrfs_dir_item *di;
2687 
2688 	path = alloc_path_for_send();
2689 	if (!path)
2690 		return -ENOMEM;
2691 
2692 	key.objectid = dir;
2693 	key.type = BTRFS_DIR_INDEX_KEY;
2694 	key.offset = 0;
2695 
2696 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2697 		struct extent_buffer *eb = path->nodes[0];
2698 
2699 		if (found_key.objectid != key.objectid ||
2700 		    found_key.type != key.type) {
2701 			ret = 0;
2702 			break;
2703 		}
2704 
2705 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2706 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2707 
2708 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2709 		    di_key.objectid < sctx->send_progress) {
2710 			ret = 1;
2711 			break;
2712 		}
2713 	}
2714 	/* Catch error found during iteration */
2715 	if (iter_ret < 0)
2716 		ret = iter_ret;
2717 
2718 	btrfs_free_path(path);
2719 	return ret;
2720 }
2721 
2722 /*
2723  * Only creates the inode if it is:
2724  * 1. Not a directory
2725  * 2. Or a directory which was not created already due to out of order
2726  *    directories. See did_create_dir and process_recorded_refs for details.
2727  */
2728 static int send_create_inode_if_needed(struct send_ctx *sctx)
2729 {
2730 	int ret;
2731 
2732 	if (S_ISDIR(sctx->cur_inode_mode)) {
2733 		ret = did_create_dir(sctx, sctx->cur_ino);
2734 		if (ret < 0)
2735 			return ret;
2736 		else if (ret > 0)
2737 			return 0;
2738 	}
2739 
2740 	return send_create_inode(sctx, sctx->cur_ino);
2741 }
2742 
2743 struct recorded_ref {
2744 	struct list_head list;
2745 	char *name;
2746 	struct fs_path *full_path;
2747 	u64 dir;
2748 	u64 dir_gen;
2749 	int name_len;
2750 };
2751 
2752 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2753 {
2754 	ref->full_path = path;
2755 	ref->name = (char *)kbasename(ref->full_path->start);
2756 	ref->name_len = ref->full_path->end - ref->name;
2757 }
2758 
2759 /*
2760  * We need to process new refs before deleted refs, but compare_tree gives us
2761  * everything mixed. So we first record all refs and later process them.
2762  * This function is a helper to record one ref.
2763  */
2764 static int __record_ref(struct list_head *head, u64 dir,
2765 		      u64 dir_gen, struct fs_path *path)
2766 {
2767 	struct recorded_ref *ref;
2768 
2769 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2770 	if (!ref)
2771 		return -ENOMEM;
2772 
2773 	ref->dir = dir;
2774 	ref->dir_gen = dir_gen;
2775 	set_ref_path(ref, path);
2776 	list_add_tail(&ref->list, head);
2777 	return 0;
2778 }
2779 
2780 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2781 {
2782 	struct recorded_ref *new;
2783 
2784 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2785 	if (!new)
2786 		return -ENOMEM;
2787 
2788 	new->dir = ref->dir;
2789 	new->dir_gen = ref->dir_gen;
2790 	new->full_path = NULL;
2791 	INIT_LIST_HEAD(&new->list);
2792 	list_add_tail(&new->list, list);
2793 	return 0;
2794 }
2795 
2796 static void __free_recorded_refs(struct list_head *head)
2797 {
2798 	struct recorded_ref *cur;
2799 
2800 	while (!list_empty(head)) {
2801 		cur = list_entry(head->next, struct recorded_ref, list);
2802 		fs_path_free(cur->full_path);
2803 		list_del(&cur->list);
2804 		kfree(cur);
2805 	}
2806 }
2807 
2808 static void free_recorded_refs(struct send_ctx *sctx)
2809 {
2810 	__free_recorded_refs(&sctx->new_refs);
2811 	__free_recorded_refs(&sctx->deleted_refs);
2812 }
2813 
2814 /*
2815  * Renames/moves a file/dir to its orphan name. Used when the first
2816  * ref of an unprocessed inode gets overwritten and for all non empty
2817  * directories.
2818  */
2819 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2820 			  struct fs_path *path)
2821 {
2822 	int ret;
2823 	struct fs_path *orphan;
2824 
2825 	orphan = fs_path_alloc();
2826 	if (!orphan)
2827 		return -ENOMEM;
2828 
2829 	ret = gen_unique_name(sctx, ino, gen, orphan);
2830 	if (ret < 0)
2831 		goto out;
2832 
2833 	ret = send_rename(sctx, path, orphan);
2834 
2835 out:
2836 	fs_path_free(orphan);
2837 	return ret;
2838 }
2839 
2840 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2841 						   u64 dir_ino, u64 dir_gen)
2842 {
2843 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2844 	struct rb_node *parent = NULL;
2845 	struct orphan_dir_info *entry, *odi;
2846 
2847 	while (*p) {
2848 		parent = *p;
2849 		entry = rb_entry(parent, struct orphan_dir_info, node);
2850 		if (dir_ino < entry->ino)
2851 			p = &(*p)->rb_left;
2852 		else if (dir_ino > entry->ino)
2853 			p = &(*p)->rb_right;
2854 		else if (dir_gen < entry->gen)
2855 			p = &(*p)->rb_left;
2856 		else if (dir_gen > entry->gen)
2857 			p = &(*p)->rb_right;
2858 		else
2859 			return entry;
2860 	}
2861 
2862 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2863 	if (!odi)
2864 		return ERR_PTR(-ENOMEM);
2865 	odi->ino = dir_ino;
2866 	odi->gen = dir_gen;
2867 	odi->last_dir_index_offset = 0;
2868 
2869 	rb_link_node(&odi->node, parent, p);
2870 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2871 	return odi;
2872 }
2873 
2874 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2875 						   u64 dir_ino, u64 gen)
2876 {
2877 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2878 	struct orphan_dir_info *entry;
2879 
2880 	while (n) {
2881 		entry = rb_entry(n, struct orphan_dir_info, node);
2882 		if (dir_ino < entry->ino)
2883 			n = n->rb_left;
2884 		else if (dir_ino > entry->ino)
2885 			n = n->rb_right;
2886 		else if (gen < entry->gen)
2887 			n = n->rb_left;
2888 		else if (gen > entry->gen)
2889 			n = n->rb_right;
2890 		else
2891 			return entry;
2892 	}
2893 	return NULL;
2894 }
2895 
2896 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2897 {
2898 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2899 
2900 	return odi != NULL;
2901 }
2902 
2903 static void free_orphan_dir_info(struct send_ctx *sctx,
2904 				 struct orphan_dir_info *odi)
2905 {
2906 	if (!odi)
2907 		return;
2908 	rb_erase(&odi->node, &sctx->orphan_dirs);
2909 	kfree(odi);
2910 }
2911 
2912 /*
2913  * Returns 1 if a directory can be removed at this point in time.
2914  * We check this by iterating all dir items and checking if the inode behind
2915  * the dir item was already processed.
2916  */
2917 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2918 		     u64 send_progress)
2919 {
2920 	int ret = 0;
2921 	int iter_ret = 0;
2922 	struct btrfs_root *root = sctx->parent_root;
2923 	struct btrfs_path *path;
2924 	struct btrfs_key key;
2925 	struct btrfs_key found_key;
2926 	struct btrfs_key loc;
2927 	struct btrfs_dir_item *di;
2928 	struct orphan_dir_info *odi = NULL;
2929 
2930 	/*
2931 	 * Don't try to rmdir the top/root subvolume dir.
2932 	 */
2933 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2934 		return 0;
2935 
2936 	path = alloc_path_for_send();
2937 	if (!path)
2938 		return -ENOMEM;
2939 
2940 	key.objectid = dir;
2941 	key.type = BTRFS_DIR_INDEX_KEY;
2942 	key.offset = 0;
2943 
2944 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
2945 	if (odi)
2946 		key.offset = odi->last_dir_index_offset;
2947 
2948 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
2949 		struct waiting_dir_move *dm;
2950 
2951 		if (found_key.objectid != key.objectid ||
2952 		    found_key.type != key.type)
2953 			break;
2954 
2955 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2956 				struct btrfs_dir_item);
2957 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2958 
2959 		dm = get_waiting_dir_move(sctx, loc.objectid);
2960 		if (dm) {
2961 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2962 			if (IS_ERR(odi)) {
2963 				ret = PTR_ERR(odi);
2964 				goto out;
2965 			}
2966 			odi->gen = dir_gen;
2967 			odi->last_dir_index_offset = found_key.offset;
2968 			dm->rmdir_ino = dir;
2969 			dm->rmdir_gen = dir_gen;
2970 			ret = 0;
2971 			goto out;
2972 		}
2973 
2974 		if (loc.objectid > send_progress) {
2975 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2976 			if (IS_ERR(odi)) {
2977 				ret = PTR_ERR(odi);
2978 				goto out;
2979 			}
2980 			odi->gen = dir_gen;
2981 			odi->last_dir_index_offset = found_key.offset;
2982 			ret = 0;
2983 			goto out;
2984 		}
2985 	}
2986 	if (iter_ret < 0) {
2987 		ret = iter_ret;
2988 		goto out;
2989 	}
2990 	free_orphan_dir_info(sctx, odi);
2991 
2992 	ret = 1;
2993 
2994 out:
2995 	btrfs_free_path(path);
2996 	return ret;
2997 }
2998 
2999 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3000 {
3001 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3002 
3003 	return entry != NULL;
3004 }
3005 
3006 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3007 {
3008 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3009 	struct rb_node *parent = NULL;
3010 	struct waiting_dir_move *entry, *dm;
3011 
3012 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3013 	if (!dm)
3014 		return -ENOMEM;
3015 	dm->ino = ino;
3016 	dm->rmdir_ino = 0;
3017 	dm->rmdir_gen = 0;
3018 	dm->orphanized = orphanized;
3019 
3020 	while (*p) {
3021 		parent = *p;
3022 		entry = rb_entry(parent, struct waiting_dir_move, node);
3023 		if (ino < entry->ino) {
3024 			p = &(*p)->rb_left;
3025 		} else if (ino > entry->ino) {
3026 			p = &(*p)->rb_right;
3027 		} else {
3028 			kfree(dm);
3029 			return -EEXIST;
3030 		}
3031 	}
3032 
3033 	rb_link_node(&dm->node, parent, p);
3034 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3035 	return 0;
3036 }
3037 
3038 static struct waiting_dir_move *
3039 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3040 {
3041 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3042 	struct waiting_dir_move *entry;
3043 
3044 	while (n) {
3045 		entry = rb_entry(n, struct waiting_dir_move, node);
3046 		if (ino < entry->ino)
3047 			n = n->rb_left;
3048 		else if (ino > entry->ino)
3049 			n = n->rb_right;
3050 		else
3051 			return entry;
3052 	}
3053 	return NULL;
3054 }
3055 
3056 static void free_waiting_dir_move(struct send_ctx *sctx,
3057 				  struct waiting_dir_move *dm)
3058 {
3059 	if (!dm)
3060 		return;
3061 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3062 	kfree(dm);
3063 }
3064 
3065 static int add_pending_dir_move(struct send_ctx *sctx,
3066 				u64 ino,
3067 				u64 ino_gen,
3068 				u64 parent_ino,
3069 				struct list_head *new_refs,
3070 				struct list_head *deleted_refs,
3071 				const bool is_orphan)
3072 {
3073 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3074 	struct rb_node *parent = NULL;
3075 	struct pending_dir_move *entry = NULL, *pm;
3076 	struct recorded_ref *cur;
3077 	int exists = 0;
3078 	int ret;
3079 
3080 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3081 	if (!pm)
3082 		return -ENOMEM;
3083 	pm->parent_ino = parent_ino;
3084 	pm->ino = ino;
3085 	pm->gen = ino_gen;
3086 	INIT_LIST_HEAD(&pm->list);
3087 	INIT_LIST_HEAD(&pm->update_refs);
3088 	RB_CLEAR_NODE(&pm->node);
3089 
3090 	while (*p) {
3091 		parent = *p;
3092 		entry = rb_entry(parent, struct pending_dir_move, node);
3093 		if (parent_ino < entry->parent_ino) {
3094 			p = &(*p)->rb_left;
3095 		} else if (parent_ino > entry->parent_ino) {
3096 			p = &(*p)->rb_right;
3097 		} else {
3098 			exists = 1;
3099 			break;
3100 		}
3101 	}
3102 
3103 	list_for_each_entry(cur, deleted_refs, list) {
3104 		ret = dup_ref(cur, &pm->update_refs);
3105 		if (ret < 0)
3106 			goto out;
3107 	}
3108 	list_for_each_entry(cur, new_refs, list) {
3109 		ret = dup_ref(cur, &pm->update_refs);
3110 		if (ret < 0)
3111 			goto out;
3112 	}
3113 
3114 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3115 	if (ret)
3116 		goto out;
3117 
3118 	if (exists) {
3119 		list_add_tail(&pm->list, &entry->list);
3120 	} else {
3121 		rb_link_node(&pm->node, parent, p);
3122 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3123 	}
3124 	ret = 0;
3125 out:
3126 	if (ret) {
3127 		__free_recorded_refs(&pm->update_refs);
3128 		kfree(pm);
3129 	}
3130 	return ret;
3131 }
3132 
3133 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3134 						      u64 parent_ino)
3135 {
3136 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3137 	struct pending_dir_move *entry;
3138 
3139 	while (n) {
3140 		entry = rb_entry(n, struct pending_dir_move, node);
3141 		if (parent_ino < entry->parent_ino)
3142 			n = n->rb_left;
3143 		else if (parent_ino > entry->parent_ino)
3144 			n = n->rb_right;
3145 		else
3146 			return entry;
3147 	}
3148 	return NULL;
3149 }
3150 
3151 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3152 		     u64 ino, u64 gen, u64 *ancestor_ino)
3153 {
3154 	int ret = 0;
3155 	u64 parent_inode = 0;
3156 	u64 parent_gen = 0;
3157 	u64 start_ino = ino;
3158 
3159 	*ancestor_ino = 0;
3160 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3161 		fs_path_reset(name);
3162 
3163 		if (is_waiting_for_rm(sctx, ino, gen))
3164 			break;
3165 		if (is_waiting_for_move(sctx, ino)) {
3166 			if (*ancestor_ino == 0)
3167 				*ancestor_ino = ino;
3168 			ret = get_first_ref(sctx->parent_root, ino,
3169 					    &parent_inode, &parent_gen, name);
3170 		} else {
3171 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3172 							&parent_inode,
3173 							&parent_gen, name);
3174 			if (ret > 0) {
3175 				ret = 0;
3176 				break;
3177 			}
3178 		}
3179 		if (ret < 0)
3180 			break;
3181 		if (parent_inode == start_ino) {
3182 			ret = 1;
3183 			if (*ancestor_ino == 0)
3184 				*ancestor_ino = ino;
3185 			break;
3186 		}
3187 		ino = parent_inode;
3188 		gen = parent_gen;
3189 	}
3190 	return ret;
3191 }
3192 
3193 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3194 {
3195 	struct fs_path *from_path = NULL;
3196 	struct fs_path *to_path = NULL;
3197 	struct fs_path *name = NULL;
3198 	u64 orig_progress = sctx->send_progress;
3199 	struct recorded_ref *cur;
3200 	u64 parent_ino, parent_gen;
3201 	struct waiting_dir_move *dm = NULL;
3202 	u64 rmdir_ino = 0;
3203 	u64 rmdir_gen;
3204 	u64 ancestor;
3205 	bool is_orphan;
3206 	int ret;
3207 
3208 	name = fs_path_alloc();
3209 	from_path = fs_path_alloc();
3210 	if (!name || !from_path) {
3211 		ret = -ENOMEM;
3212 		goto out;
3213 	}
3214 
3215 	dm = get_waiting_dir_move(sctx, pm->ino);
3216 	ASSERT(dm);
3217 	rmdir_ino = dm->rmdir_ino;
3218 	rmdir_gen = dm->rmdir_gen;
3219 	is_orphan = dm->orphanized;
3220 	free_waiting_dir_move(sctx, dm);
3221 
3222 	if (is_orphan) {
3223 		ret = gen_unique_name(sctx, pm->ino,
3224 				      pm->gen, from_path);
3225 	} else {
3226 		ret = get_first_ref(sctx->parent_root, pm->ino,
3227 				    &parent_ino, &parent_gen, name);
3228 		if (ret < 0)
3229 			goto out;
3230 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3231 				   from_path);
3232 		if (ret < 0)
3233 			goto out;
3234 		ret = fs_path_add_path(from_path, name);
3235 	}
3236 	if (ret < 0)
3237 		goto out;
3238 
3239 	sctx->send_progress = sctx->cur_ino + 1;
3240 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3241 	if (ret < 0)
3242 		goto out;
3243 	if (ret) {
3244 		LIST_HEAD(deleted_refs);
3245 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3246 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3247 					   &pm->update_refs, &deleted_refs,
3248 					   is_orphan);
3249 		if (ret < 0)
3250 			goto out;
3251 		if (rmdir_ino) {
3252 			dm = get_waiting_dir_move(sctx, pm->ino);
3253 			ASSERT(dm);
3254 			dm->rmdir_ino = rmdir_ino;
3255 			dm->rmdir_gen = rmdir_gen;
3256 		}
3257 		goto out;
3258 	}
3259 	fs_path_reset(name);
3260 	to_path = name;
3261 	name = NULL;
3262 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3263 	if (ret < 0)
3264 		goto out;
3265 
3266 	ret = send_rename(sctx, from_path, to_path);
3267 	if (ret < 0)
3268 		goto out;
3269 
3270 	if (rmdir_ino) {
3271 		struct orphan_dir_info *odi;
3272 		u64 gen;
3273 
3274 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3275 		if (!odi) {
3276 			/* already deleted */
3277 			goto finish;
3278 		}
3279 		gen = odi->gen;
3280 
3281 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3282 		if (ret < 0)
3283 			goto out;
3284 		if (!ret)
3285 			goto finish;
3286 
3287 		name = fs_path_alloc();
3288 		if (!name) {
3289 			ret = -ENOMEM;
3290 			goto out;
3291 		}
3292 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3293 		if (ret < 0)
3294 			goto out;
3295 		ret = send_rmdir(sctx, name);
3296 		if (ret < 0)
3297 			goto out;
3298 	}
3299 
3300 finish:
3301 	ret = send_utimes(sctx, pm->ino, pm->gen);
3302 	if (ret < 0)
3303 		goto out;
3304 
3305 	/*
3306 	 * After rename/move, need to update the utimes of both new parent(s)
3307 	 * and old parent(s).
3308 	 */
3309 	list_for_each_entry(cur, &pm->update_refs, list) {
3310 		/*
3311 		 * The parent inode might have been deleted in the send snapshot
3312 		 */
3313 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3314 				     NULL, NULL, NULL, NULL, NULL);
3315 		if (ret == -ENOENT) {
3316 			ret = 0;
3317 			continue;
3318 		}
3319 		if (ret < 0)
3320 			goto out;
3321 
3322 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3323 		if (ret < 0)
3324 			goto out;
3325 	}
3326 
3327 out:
3328 	fs_path_free(name);
3329 	fs_path_free(from_path);
3330 	fs_path_free(to_path);
3331 	sctx->send_progress = orig_progress;
3332 
3333 	return ret;
3334 }
3335 
3336 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3337 {
3338 	if (!list_empty(&m->list))
3339 		list_del(&m->list);
3340 	if (!RB_EMPTY_NODE(&m->node))
3341 		rb_erase(&m->node, &sctx->pending_dir_moves);
3342 	__free_recorded_refs(&m->update_refs);
3343 	kfree(m);
3344 }
3345 
3346 static void tail_append_pending_moves(struct send_ctx *sctx,
3347 				      struct pending_dir_move *moves,
3348 				      struct list_head *stack)
3349 {
3350 	if (list_empty(&moves->list)) {
3351 		list_add_tail(&moves->list, stack);
3352 	} else {
3353 		LIST_HEAD(list);
3354 		list_splice_init(&moves->list, &list);
3355 		list_add_tail(&moves->list, stack);
3356 		list_splice_tail(&list, stack);
3357 	}
3358 	if (!RB_EMPTY_NODE(&moves->node)) {
3359 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3360 		RB_CLEAR_NODE(&moves->node);
3361 	}
3362 }
3363 
3364 static int apply_children_dir_moves(struct send_ctx *sctx)
3365 {
3366 	struct pending_dir_move *pm;
3367 	struct list_head stack;
3368 	u64 parent_ino = sctx->cur_ino;
3369 	int ret = 0;
3370 
3371 	pm = get_pending_dir_moves(sctx, parent_ino);
3372 	if (!pm)
3373 		return 0;
3374 
3375 	INIT_LIST_HEAD(&stack);
3376 	tail_append_pending_moves(sctx, pm, &stack);
3377 
3378 	while (!list_empty(&stack)) {
3379 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3380 		parent_ino = pm->ino;
3381 		ret = apply_dir_move(sctx, pm);
3382 		free_pending_move(sctx, pm);
3383 		if (ret)
3384 			goto out;
3385 		pm = get_pending_dir_moves(sctx, parent_ino);
3386 		if (pm)
3387 			tail_append_pending_moves(sctx, pm, &stack);
3388 	}
3389 	return 0;
3390 
3391 out:
3392 	while (!list_empty(&stack)) {
3393 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3394 		free_pending_move(sctx, pm);
3395 	}
3396 	return ret;
3397 }
3398 
3399 /*
3400  * We might need to delay a directory rename even when no ancestor directory
3401  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3402  * renamed. This happens when we rename a directory to the old name (the name
3403  * in the parent root) of some other unrelated directory that got its rename
3404  * delayed due to some ancestor with higher number that got renamed.
3405  *
3406  * Example:
3407  *
3408  * Parent snapshot:
3409  * .                                       (ino 256)
3410  * |---- a/                                (ino 257)
3411  * |     |---- file                        (ino 260)
3412  * |
3413  * |---- b/                                (ino 258)
3414  * |---- c/                                (ino 259)
3415  *
3416  * Send snapshot:
3417  * .                                       (ino 256)
3418  * |---- a/                                (ino 258)
3419  * |---- x/                                (ino 259)
3420  *       |---- y/                          (ino 257)
3421  *             |----- file                 (ino 260)
3422  *
3423  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3424  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3425  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3426  * must issue is:
3427  *
3428  * 1 - rename 259 from 'c' to 'x'
3429  * 2 - rename 257 from 'a' to 'x/y'
3430  * 3 - rename 258 from 'b' to 'a'
3431  *
3432  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3433  * be done right away and < 0 on error.
3434  */
3435 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3436 				  struct recorded_ref *parent_ref,
3437 				  const bool is_orphan)
3438 {
3439 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3440 	struct btrfs_path *path;
3441 	struct btrfs_key key;
3442 	struct btrfs_key di_key;
3443 	struct btrfs_dir_item *di;
3444 	u64 left_gen;
3445 	u64 right_gen;
3446 	int ret = 0;
3447 	struct waiting_dir_move *wdm;
3448 
3449 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3450 		return 0;
3451 
3452 	path = alloc_path_for_send();
3453 	if (!path)
3454 		return -ENOMEM;
3455 
3456 	key.objectid = parent_ref->dir;
3457 	key.type = BTRFS_DIR_ITEM_KEY;
3458 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3459 
3460 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3461 	if (ret < 0) {
3462 		goto out;
3463 	} else if (ret > 0) {
3464 		ret = 0;
3465 		goto out;
3466 	}
3467 
3468 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3469 				       parent_ref->name_len);
3470 	if (!di) {
3471 		ret = 0;
3472 		goto out;
3473 	}
3474 	/*
3475 	 * di_key.objectid has the number of the inode that has a dentry in the
3476 	 * parent directory with the same name that sctx->cur_ino is being
3477 	 * renamed to. We need to check if that inode is in the send root as
3478 	 * well and if it is currently marked as an inode with a pending rename,
3479 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3480 	 * that it happens after that other inode is renamed.
3481 	 */
3482 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3483 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3484 		ret = 0;
3485 		goto out;
3486 	}
3487 
3488 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3489 			     &left_gen, NULL, NULL, NULL, NULL);
3490 	if (ret < 0)
3491 		goto out;
3492 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3493 			     &right_gen, NULL, NULL, NULL, NULL);
3494 	if (ret < 0) {
3495 		if (ret == -ENOENT)
3496 			ret = 0;
3497 		goto out;
3498 	}
3499 
3500 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3501 	if (right_gen != left_gen) {
3502 		ret = 0;
3503 		goto out;
3504 	}
3505 
3506 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3507 	if (wdm && !wdm->orphanized) {
3508 		ret = add_pending_dir_move(sctx,
3509 					   sctx->cur_ino,
3510 					   sctx->cur_inode_gen,
3511 					   di_key.objectid,
3512 					   &sctx->new_refs,
3513 					   &sctx->deleted_refs,
3514 					   is_orphan);
3515 		if (!ret)
3516 			ret = 1;
3517 	}
3518 out:
3519 	btrfs_free_path(path);
3520 	return ret;
3521 }
3522 
3523 /*
3524  * Check if inode ino2, or any of its ancestors, is inode ino1.
3525  * Return 1 if true, 0 if false and < 0 on error.
3526  */
3527 static int check_ino_in_path(struct btrfs_root *root,
3528 			     const u64 ino1,
3529 			     const u64 ino1_gen,
3530 			     const u64 ino2,
3531 			     const u64 ino2_gen,
3532 			     struct fs_path *fs_path)
3533 {
3534 	u64 ino = ino2;
3535 
3536 	if (ino1 == ino2)
3537 		return ino1_gen == ino2_gen;
3538 
3539 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3540 		u64 parent;
3541 		u64 parent_gen;
3542 		int ret;
3543 
3544 		fs_path_reset(fs_path);
3545 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3546 		if (ret < 0)
3547 			return ret;
3548 		if (parent == ino1)
3549 			return parent_gen == ino1_gen;
3550 		ino = parent;
3551 	}
3552 	return 0;
3553 }
3554 
3555 /*
3556  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3557  * possible path (in case ino2 is not a directory and has multiple hard links).
3558  * Return 1 if true, 0 if false and < 0 on error.
3559  */
3560 static int is_ancestor(struct btrfs_root *root,
3561 		       const u64 ino1,
3562 		       const u64 ino1_gen,
3563 		       const u64 ino2,
3564 		       struct fs_path *fs_path)
3565 {
3566 	bool free_fs_path = false;
3567 	int ret = 0;
3568 	int iter_ret = 0;
3569 	struct btrfs_path *path = NULL;
3570 	struct btrfs_key key;
3571 
3572 	if (!fs_path) {
3573 		fs_path = fs_path_alloc();
3574 		if (!fs_path)
3575 			return -ENOMEM;
3576 		free_fs_path = true;
3577 	}
3578 
3579 	path = alloc_path_for_send();
3580 	if (!path) {
3581 		ret = -ENOMEM;
3582 		goto out;
3583 	}
3584 
3585 	key.objectid = ino2;
3586 	key.type = BTRFS_INODE_REF_KEY;
3587 	key.offset = 0;
3588 
3589 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3590 		struct extent_buffer *leaf = path->nodes[0];
3591 		int slot = path->slots[0];
3592 		u32 cur_offset = 0;
3593 		u32 item_size;
3594 
3595 		if (key.objectid != ino2)
3596 			break;
3597 		if (key.type != BTRFS_INODE_REF_KEY &&
3598 		    key.type != BTRFS_INODE_EXTREF_KEY)
3599 			break;
3600 
3601 		item_size = btrfs_item_size(leaf, slot);
3602 		while (cur_offset < item_size) {
3603 			u64 parent;
3604 			u64 parent_gen;
3605 
3606 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3607 				unsigned long ptr;
3608 				struct btrfs_inode_extref *extref;
3609 
3610 				ptr = btrfs_item_ptr_offset(leaf, slot);
3611 				extref = (struct btrfs_inode_extref *)
3612 					(ptr + cur_offset);
3613 				parent = btrfs_inode_extref_parent(leaf,
3614 								   extref);
3615 				cur_offset += sizeof(*extref);
3616 				cur_offset += btrfs_inode_extref_name_len(leaf,
3617 								  extref);
3618 			} else {
3619 				parent = key.offset;
3620 				cur_offset = item_size;
3621 			}
3622 
3623 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3624 					     NULL, NULL, NULL, NULL);
3625 			if (ret < 0)
3626 				goto out;
3627 			ret = check_ino_in_path(root, ino1, ino1_gen,
3628 						parent, parent_gen, fs_path);
3629 			if (ret)
3630 				goto out;
3631 		}
3632 	}
3633 	ret = 0;
3634 	if (iter_ret < 0)
3635 		ret = iter_ret;
3636 
3637 out:
3638 	btrfs_free_path(path);
3639 	if (free_fs_path)
3640 		fs_path_free(fs_path);
3641 	return ret;
3642 }
3643 
3644 static int wait_for_parent_move(struct send_ctx *sctx,
3645 				struct recorded_ref *parent_ref,
3646 				const bool is_orphan)
3647 {
3648 	int ret = 0;
3649 	u64 ino = parent_ref->dir;
3650 	u64 ino_gen = parent_ref->dir_gen;
3651 	u64 parent_ino_before, parent_ino_after;
3652 	struct fs_path *path_before = NULL;
3653 	struct fs_path *path_after = NULL;
3654 	int len1, len2;
3655 
3656 	path_after = fs_path_alloc();
3657 	path_before = fs_path_alloc();
3658 	if (!path_after || !path_before) {
3659 		ret = -ENOMEM;
3660 		goto out;
3661 	}
3662 
3663 	/*
3664 	 * Our current directory inode may not yet be renamed/moved because some
3665 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3666 	 * such ancestor exists and make sure our own rename/move happens after
3667 	 * that ancestor is processed to avoid path build infinite loops (done
3668 	 * at get_cur_path()).
3669 	 */
3670 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3671 		u64 parent_ino_after_gen;
3672 
3673 		if (is_waiting_for_move(sctx, ino)) {
3674 			/*
3675 			 * If the current inode is an ancestor of ino in the
3676 			 * parent root, we need to delay the rename of the
3677 			 * current inode, otherwise don't delayed the rename
3678 			 * because we can end up with a circular dependency
3679 			 * of renames, resulting in some directories never
3680 			 * getting the respective rename operations issued in
3681 			 * the send stream or getting into infinite path build
3682 			 * loops.
3683 			 */
3684 			ret = is_ancestor(sctx->parent_root,
3685 					  sctx->cur_ino, sctx->cur_inode_gen,
3686 					  ino, path_before);
3687 			if (ret)
3688 				break;
3689 		}
3690 
3691 		fs_path_reset(path_before);
3692 		fs_path_reset(path_after);
3693 
3694 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3695 				    &parent_ino_after_gen, path_after);
3696 		if (ret < 0)
3697 			goto out;
3698 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3699 				    NULL, path_before);
3700 		if (ret < 0 && ret != -ENOENT) {
3701 			goto out;
3702 		} else if (ret == -ENOENT) {
3703 			ret = 0;
3704 			break;
3705 		}
3706 
3707 		len1 = fs_path_len(path_before);
3708 		len2 = fs_path_len(path_after);
3709 		if (ino > sctx->cur_ino &&
3710 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3711 		     memcmp(path_before->start, path_after->start, len1))) {
3712 			u64 parent_ino_gen;
3713 
3714 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3715 					     &parent_ino_gen, NULL, NULL, NULL,
3716 					     NULL);
3717 			if (ret < 0)
3718 				goto out;
3719 			if (ino_gen == parent_ino_gen) {
3720 				ret = 1;
3721 				break;
3722 			}
3723 		}
3724 		ino = parent_ino_after;
3725 		ino_gen = parent_ino_after_gen;
3726 	}
3727 
3728 out:
3729 	fs_path_free(path_before);
3730 	fs_path_free(path_after);
3731 
3732 	if (ret == 1) {
3733 		ret = add_pending_dir_move(sctx,
3734 					   sctx->cur_ino,
3735 					   sctx->cur_inode_gen,
3736 					   ino,
3737 					   &sctx->new_refs,
3738 					   &sctx->deleted_refs,
3739 					   is_orphan);
3740 		if (!ret)
3741 			ret = 1;
3742 	}
3743 
3744 	return ret;
3745 }
3746 
3747 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3748 {
3749 	int ret;
3750 	struct fs_path *new_path;
3751 
3752 	/*
3753 	 * Our reference's name member points to its full_path member string, so
3754 	 * we use here a new path.
3755 	 */
3756 	new_path = fs_path_alloc();
3757 	if (!new_path)
3758 		return -ENOMEM;
3759 
3760 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3761 	if (ret < 0) {
3762 		fs_path_free(new_path);
3763 		return ret;
3764 	}
3765 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3766 	if (ret < 0) {
3767 		fs_path_free(new_path);
3768 		return ret;
3769 	}
3770 
3771 	fs_path_free(ref->full_path);
3772 	set_ref_path(ref, new_path);
3773 
3774 	return 0;
3775 }
3776 
3777 /*
3778  * When processing the new references for an inode we may orphanize an existing
3779  * directory inode because its old name conflicts with one of the new references
3780  * of the current inode. Later, when processing another new reference of our
3781  * inode, we might need to orphanize another inode, but the path we have in the
3782  * reference reflects the pre-orphanization name of the directory we previously
3783  * orphanized. For example:
3784  *
3785  * parent snapshot looks like:
3786  *
3787  * .                                     (ino 256)
3788  * |----- f1                             (ino 257)
3789  * |----- f2                             (ino 258)
3790  * |----- d1/                            (ino 259)
3791  *        |----- d2/                     (ino 260)
3792  *
3793  * send snapshot looks like:
3794  *
3795  * .                                     (ino 256)
3796  * |----- d1                             (ino 258)
3797  * |----- f2/                            (ino 259)
3798  *        |----- f2_link/                (ino 260)
3799  *        |       |----- f1              (ino 257)
3800  *        |
3801  *        |----- d2                      (ino 258)
3802  *
3803  * When processing inode 257 we compute the name for inode 259 as "d1", and we
3804  * cache it in the name cache. Later when we start processing inode 258, when
3805  * collecting all its new references we set a full path of "d1/d2" for its new
3806  * reference with name "d2". When we start processing the new references we
3807  * start by processing the new reference with name "d1", and this results in
3808  * orphanizing inode 259, since its old reference causes a conflict. Then we
3809  * move on the next new reference, with name "d2", and we find out we must
3810  * orphanize inode 260, as its old reference conflicts with ours - but for the
3811  * orphanization we use a source path corresponding to the path we stored in the
3812  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3813  * receiver fail since the path component "d1/" no longer exists, it was renamed
3814  * to "o259-6-0/" when processing the previous new reference. So in this case we
3815  * must recompute the path in the new reference and use it for the new
3816  * orphanization operation.
3817  */
3818 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3819 {
3820 	char *name;
3821 	int ret;
3822 
3823 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3824 	if (!name)
3825 		return -ENOMEM;
3826 
3827 	fs_path_reset(ref->full_path);
3828 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3829 	if (ret < 0)
3830 		goto out;
3831 
3832 	ret = fs_path_add(ref->full_path, name, ref->name_len);
3833 	if (ret < 0)
3834 		goto out;
3835 
3836 	/* Update the reference's base name pointer. */
3837 	set_ref_path(ref, ref->full_path);
3838 out:
3839 	kfree(name);
3840 	return ret;
3841 }
3842 
3843 /*
3844  * This does all the move/link/unlink/rmdir magic.
3845  */
3846 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3847 {
3848 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3849 	int ret = 0;
3850 	struct recorded_ref *cur;
3851 	struct recorded_ref *cur2;
3852 	struct list_head check_dirs;
3853 	struct fs_path *valid_path = NULL;
3854 	u64 ow_inode = 0;
3855 	u64 ow_gen;
3856 	u64 ow_mode;
3857 	int did_overwrite = 0;
3858 	int is_orphan = 0;
3859 	u64 last_dir_ino_rm = 0;
3860 	bool can_rename = true;
3861 	bool orphanized_dir = false;
3862 	bool orphanized_ancestor = false;
3863 
3864 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3865 
3866 	/*
3867 	 * This should never happen as the root dir always has the same ref
3868 	 * which is always '..'
3869 	 */
3870 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3871 	INIT_LIST_HEAD(&check_dirs);
3872 
3873 	valid_path = fs_path_alloc();
3874 	if (!valid_path) {
3875 		ret = -ENOMEM;
3876 		goto out;
3877 	}
3878 
3879 	/*
3880 	 * First, check if the first ref of the current inode was overwritten
3881 	 * before. If yes, we know that the current inode was already orphanized
3882 	 * and thus use the orphan name. If not, we can use get_cur_path to
3883 	 * get the path of the first ref as it would like while receiving at
3884 	 * this point in time.
3885 	 * New inodes are always orphan at the beginning, so force to use the
3886 	 * orphan name in this case.
3887 	 * The first ref is stored in valid_path and will be updated if it
3888 	 * gets moved around.
3889 	 */
3890 	if (!sctx->cur_inode_new) {
3891 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3892 				sctx->cur_inode_gen);
3893 		if (ret < 0)
3894 			goto out;
3895 		if (ret)
3896 			did_overwrite = 1;
3897 	}
3898 	if (sctx->cur_inode_new || did_overwrite) {
3899 		ret = gen_unique_name(sctx, sctx->cur_ino,
3900 				sctx->cur_inode_gen, valid_path);
3901 		if (ret < 0)
3902 			goto out;
3903 		is_orphan = 1;
3904 	} else {
3905 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3906 				valid_path);
3907 		if (ret < 0)
3908 			goto out;
3909 	}
3910 
3911 	/*
3912 	 * Before doing any rename and link operations, do a first pass on the
3913 	 * new references to orphanize any unprocessed inodes that may have a
3914 	 * reference that conflicts with one of the new references of the current
3915 	 * inode. This needs to happen first because a new reference may conflict
3916 	 * with the old reference of a parent directory, so we must make sure
3917 	 * that the path used for link and rename commands don't use an
3918 	 * orphanized name when an ancestor was not yet orphanized.
3919 	 *
3920 	 * Example:
3921 	 *
3922 	 * Parent snapshot:
3923 	 *
3924 	 * .                                                      (ino 256)
3925 	 * |----- testdir/                                        (ino 259)
3926 	 * |          |----- a                                    (ino 257)
3927 	 * |
3928 	 * |----- b                                               (ino 258)
3929 	 *
3930 	 * Send snapshot:
3931 	 *
3932 	 * .                                                      (ino 256)
3933 	 * |----- testdir_2/                                      (ino 259)
3934 	 * |          |----- a                                    (ino 260)
3935 	 * |
3936 	 * |----- testdir                                         (ino 257)
3937 	 * |----- b                                               (ino 257)
3938 	 * |----- b2                                              (ino 258)
3939 	 *
3940 	 * Processing the new reference for inode 257 with name "b" may happen
3941 	 * before processing the new reference with name "testdir". If so, we
3942 	 * must make sure that by the time we send a link command to create the
3943 	 * hard link "b", inode 259 was already orphanized, since the generated
3944 	 * path in "valid_path" already contains the orphanized name for 259.
3945 	 * We are processing inode 257, so only later when processing 259 we do
3946 	 * the rename operation to change its temporary (orphanized) name to
3947 	 * "testdir_2".
3948 	 */
3949 	list_for_each_entry(cur, &sctx->new_refs, list) {
3950 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3951 		if (ret < 0)
3952 			goto out;
3953 		if (ret == inode_state_will_create)
3954 			continue;
3955 
3956 		/*
3957 		 * Check if this new ref would overwrite the first ref of another
3958 		 * unprocessed inode. If yes, orphanize the overwritten inode.
3959 		 * If we find an overwritten ref that is not the first ref,
3960 		 * simply unlink it.
3961 		 */
3962 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3963 				cur->name, cur->name_len,
3964 				&ow_inode, &ow_gen, &ow_mode);
3965 		if (ret < 0)
3966 			goto out;
3967 		if (ret) {
3968 			ret = is_first_ref(sctx->parent_root,
3969 					   ow_inode, cur->dir, cur->name,
3970 					   cur->name_len);
3971 			if (ret < 0)
3972 				goto out;
3973 			if (ret) {
3974 				struct name_cache_entry *nce;
3975 				struct waiting_dir_move *wdm;
3976 
3977 				if (orphanized_dir) {
3978 					ret = refresh_ref_path(sctx, cur);
3979 					if (ret < 0)
3980 						goto out;
3981 				}
3982 
3983 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3984 						cur->full_path);
3985 				if (ret < 0)
3986 					goto out;
3987 				if (S_ISDIR(ow_mode))
3988 					orphanized_dir = true;
3989 
3990 				/*
3991 				 * If ow_inode has its rename operation delayed
3992 				 * make sure that its orphanized name is used in
3993 				 * the source path when performing its rename
3994 				 * operation.
3995 				 */
3996 				if (is_waiting_for_move(sctx, ow_inode)) {
3997 					wdm = get_waiting_dir_move(sctx,
3998 								   ow_inode);
3999 					ASSERT(wdm);
4000 					wdm->orphanized = true;
4001 				}
4002 
4003 				/*
4004 				 * Make sure we clear our orphanized inode's
4005 				 * name from the name cache. This is because the
4006 				 * inode ow_inode might be an ancestor of some
4007 				 * other inode that will be orphanized as well
4008 				 * later and has an inode number greater than
4009 				 * sctx->send_progress. We need to prevent
4010 				 * future name lookups from using the old name
4011 				 * and get instead the orphan name.
4012 				 */
4013 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4014 				if (nce) {
4015 					name_cache_delete(sctx, nce);
4016 					kfree(nce);
4017 				}
4018 
4019 				/*
4020 				 * ow_inode might currently be an ancestor of
4021 				 * cur_ino, therefore compute valid_path (the
4022 				 * current path of cur_ino) again because it
4023 				 * might contain the pre-orphanization name of
4024 				 * ow_inode, which is no longer valid.
4025 				 */
4026 				ret = is_ancestor(sctx->parent_root,
4027 						  ow_inode, ow_gen,
4028 						  sctx->cur_ino, NULL);
4029 				if (ret > 0) {
4030 					orphanized_ancestor = true;
4031 					fs_path_reset(valid_path);
4032 					ret = get_cur_path(sctx, sctx->cur_ino,
4033 							   sctx->cur_inode_gen,
4034 							   valid_path);
4035 				}
4036 				if (ret < 0)
4037 					goto out;
4038 			} else {
4039 				/*
4040 				 * If we previously orphanized a directory that
4041 				 * collided with a new reference that we already
4042 				 * processed, recompute the current path because
4043 				 * that directory may be part of the path.
4044 				 */
4045 				if (orphanized_dir) {
4046 					ret = refresh_ref_path(sctx, cur);
4047 					if (ret < 0)
4048 						goto out;
4049 				}
4050 				ret = send_unlink(sctx, cur->full_path);
4051 				if (ret < 0)
4052 					goto out;
4053 			}
4054 		}
4055 
4056 	}
4057 
4058 	list_for_each_entry(cur, &sctx->new_refs, list) {
4059 		/*
4060 		 * We may have refs where the parent directory does not exist
4061 		 * yet. This happens if the parent directories inum is higher
4062 		 * than the current inum. To handle this case, we create the
4063 		 * parent directory out of order. But we need to check if this
4064 		 * did already happen before due to other refs in the same dir.
4065 		 */
4066 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4067 		if (ret < 0)
4068 			goto out;
4069 		if (ret == inode_state_will_create) {
4070 			ret = 0;
4071 			/*
4072 			 * First check if any of the current inodes refs did
4073 			 * already create the dir.
4074 			 */
4075 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4076 				if (cur == cur2)
4077 					break;
4078 				if (cur2->dir == cur->dir) {
4079 					ret = 1;
4080 					break;
4081 				}
4082 			}
4083 
4084 			/*
4085 			 * If that did not happen, check if a previous inode
4086 			 * did already create the dir.
4087 			 */
4088 			if (!ret)
4089 				ret = did_create_dir(sctx, cur->dir);
4090 			if (ret < 0)
4091 				goto out;
4092 			if (!ret) {
4093 				ret = send_create_inode(sctx, cur->dir);
4094 				if (ret < 0)
4095 					goto out;
4096 			}
4097 		}
4098 
4099 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4100 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4101 			if (ret < 0)
4102 				goto out;
4103 			if (ret == 1) {
4104 				can_rename = false;
4105 				*pending_move = 1;
4106 			}
4107 		}
4108 
4109 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4110 		    can_rename) {
4111 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4112 			if (ret < 0)
4113 				goto out;
4114 			if (ret == 1) {
4115 				can_rename = false;
4116 				*pending_move = 1;
4117 			}
4118 		}
4119 
4120 		/*
4121 		 * link/move the ref to the new place. If we have an orphan
4122 		 * inode, move it and update valid_path. If not, link or move
4123 		 * it depending on the inode mode.
4124 		 */
4125 		if (is_orphan && can_rename) {
4126 			ret = send_rename(sctx, valid_path, cur->full_path);
4127 			if (ret < 0)
4128 				goto out;
4129 			is_orphan = 0;
4130 			ret = fs_path_copy(valid_path, cur->full_path);
4131 			if (ret < 0)
4132 				goto out;
4133 		} else if (can_rename) {
4134 			if (S_ISDIR(sctx->cur_inode_mode)) {
4135 				/*
4136 				 * Dirs can't be linked, so move it. For moved
4137 				 * dirs, we always have one new and one deleted
4138 				 * ref. The deleted ref is ignored later.
4139 				 */
4140 				ret = send_rename(sctx, valid_path,
4141 						  cur->full_path);
4142 				if (!ret)
4143 					ret = fs_path_copy(valid_path,
4144 							   cur->full_path);
4145 				if (ret < 0)
4146 					goto out;
4147 			} else {
4148 				/*
4149 				 * We might have previously orphanized an inode
4150 				 * which is an ancestor of our current inode,
4151 				 * so our reference's full path, which was
4152 				 * computed before any such orphanizations, must
4153 				 * be updated.
4154 				 */
4155 				if (orphanized_dir) {
4156 					ret = update_ref_path(sctx, cur);
4157 					if (ret < 0)
4158 						goto out;
4159 				}
4160 				ret = send_link(sctx, cur->full_path,
4161 						valid_path);
4162 				if (ret < 0)
4163 					goto out;
4164 			}
4165 		}
4166 		ret = dup_ref(cur, &check_dirs);
4167 		if (ret < 0)
4168 			goto out;
4169 	}
4170 
4171 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4172 		/*
4173 		 * Check if we can already rmdir the directory. If not,
4174 		 * orphanize it. For every dir item inside that gets deleted
4175 		 * later, we do this check again and rmdir it then if possible.
4176 		 * See the use of check_dirs for more details.
4177 		 */
4178 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4179 				sctx->cur_ino);
4180 		if (ret < 0)
4181 			goto out;
4182 		if (ret) {
4183 			ret = send_rmdir(sctx, valid_path);
4184 			if (ret < 0)
4185 				goto out;
4186 		} else if (!is_orphan) {
4187 			ret = orphanize_inode(sctx, sctx->cur_ino,
4188 					sctx->cur_inode_gen, valid_path);
4189 			if (ret < 0)
4190 				goto out;
4191 			is_orphan = 1;
4192 		}
4193 
4194 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4195 			ret = dup_ref(cur, &check_dirs);
4196 			if (ret < 0)
4197 				goto out;
4198 		}
4199 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4200 		   !list_empty(&sctx->deleted_refs)) {
4201 		/*
4202 		 * We have a moved dir. Add the old parent to check_dirs
4203 		 */
4204 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4205 				list);
4206 		ret = dup_ref(cur, &check_dirs);
4207 		if (ret < 0)
4208 			goto out;
4209 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4210 		/*
4211 		 * We have a non dir inode. Go through all deleted refs and
4212 		 * unlink them if they were not already overwritten by other
4213 		 * inodes.
4214 		 */
4215 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4216 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4217 					sctx->cur_ino, sctx->cur_inode_gen,
4218 					cur->name, cur->name_len);
4219 			if (ret < 0)
4220 				goto out;
4221 			if (!ret) {
4222 				/*
4223 				 * If we orphanized any ancestor before, we need
4224 				 * to recompute the full path for deleted names,
4225 				 * since any such path was computed before we
4226 				 * processed any references and orphanized any
4227 				 * ancestor inode.
4228 				 */
4229 				if (orphanized_ancestor) {
4230 					ret = update_ref_path(sctx, cur);
4231 					if (ret < 0)
4232 						goto out;
4233 				}
4234 				ret = send_unlink(sctx, cur->full_path);
4235 				if (ret < 0)
4236 					goto out;
4237 			}
4238 			ret = dup_ref(cur, &check_dirs);
4239 			if (ret < 0)
4240 				goto out;
4241 		}
4242 		/*
4243 		 * If the inode is still orphan, unlink the orphan. This may
4244 		 * happen when a previous inode did overwrite the first ref
4245 		 * of this inode and no new refs were added for the current
4246 		 * inode. Unlinking does not mean that the inode is deleted in
4247 		 * all cases. There may still be links to this inode in other
4248 		 * places.
4249 		 */
4250 		if (is_orphan) {
4251 			ret = send_unlink(sctx, valid_path);
4252 			if (ret < 0)
4253 				goto out;
4254 		}
4255 	}
4256 
4257 	/*
4258 	 * We did collect all parent dirs where cur_inode was once located. We
4259 	 * now go through all these dirs and check if they are pending for
4260 	 * deletion and if it's finally possible to perform the rmdir now.
4261 	 * We also update the inode stats of the parent dirs here.
4262 	 */
4263 	list_for_each_entry(cur, &check_dirs, list) {
4264 		/*
4265 		 * In case we had refs into dirs that were not processed yet,
4266 		 * we don't need to do the utime and rmdir logic for these dirs.
4267 		 * The dir will be processed later.
4268 		 */
4269 		if (cur->dir > sctx->cur_ino)
4270 			continue;
4271 
4272 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4273 		if (ret < 0)
4274 			goto out;
4275 
4276 		if (ret == inode_state_did_create ||
4277 		    ret == inode_state_no_change) {
4278 			/* TODO delayed utimes */
4279 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4280 			if (ret < 0)
4281 				goto out;
4282 		} else if (ret == inode_state_did_delete &&
4283 			   cur->dir != last_dir_ino_rm) {
4284 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4285 					sctx->cur_ino);
4286 			if (ret < 0)
4287 				goto out;
4288 			if (ret) {
4289 				ret = get_cur_path(sctx, cur->dir,
4290 						   cur->dir_gen, valid_path);
4291 				if (ret < 0)
4292 					goto out;
4293 				ret = send_rmdir(sctx, valid_path);
4294 				if (ret < 0)
4295 					goto out;
4296 				last_dir_ino_rm = cur->dir;
4297 			}
4298 		}
4299 	}
4300 
4301 	ret = 0;
4302 
4303 out:
4304 	__free_recorded_refs(&check_dirs);
4305 	free_recorded_refs(sctx);
4306 	fs_path_free(valid_path);
4307 	return ret;
4308 }
4309 
4310 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4311 		      void *ctx, struct list_head *refs)
4312 {
4313 	int ret = 0;
4314 	struct send_ctx *sctx = ctx;
4315 	struct fs_path *p;
4316 	u64 gen;
4317 
4318 	p = fs_path_alloc();
4319 	if (!p)
4320 		return -ENOMEM;
4321 
4322 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4323 			NULL, NULL);
4324 	if (ret < 0)
4325 		goto out;
4326 
4327 	ret = get_cur_path(sctx, dir, gen, p);
4328 	if (ret < 0)
4329 		goto out;
4330 	ret = fs_path_add_path(p, name);
4331 	if (ret < 0)
4332 		goto out;
4333 
4334 	ret = __record_ref(refs, dir, gen, p);
4335 
4336 out:
4337 	if (ret)
4338 		fs_path_free(p);
4339 	return ret;
4340 }
4341 
4342 static int __record_new_ref(int num, u64 dir, int index,
4343 			    struct fs_path *name,
4344 			    void *ctx)
4345 {
4346 	struct send_ctx *sctx = ctx;
4347 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4348 }
4349 
4350 
4351 static int __record_deleted_ref(int num, u64 dir, int index,
4352 				struct fs_path *name,
4353 				void *ctx)
4354 {
4355 	struct send_ctx *sctx = ctx;
4356 	return record_ref(sctx->parent_root, dir, name, ctx,
4357 			  &sctx->deleted_refs);
4358 }
4359 
4360 static int record_new_ref(struct send_ctx *sctx)
4361 {
4362 	int ret;
4363 
4364 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4365 				sctx->cmp_key, 0, __record_new_ref, sctx);
4366 	if (ret < 0)
4367 		goto out;
4368 	ret = 0;
4369 
4370 out:
4371 	return ret;
4372 }
4373 
4374 static int record_deleted_ref(struct send_ctx *sctx)
4375 {
4376 	int ret;
4377 
4378 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4379 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4380 	if (ret < 0)
4381 		goto out;
4382 	ret = 0;
4383 
4384 out:
4385 	return ret;
4386 }
4387 
4388 struct find_ref_ctx {
4389 	u64 dir;
4390 	u64 dir_gen;
4391 	struct btrfs_root *root;
4392 	struct fs_path *name;
4393 	int found_idx;
4394 };
4395 
4396 static int __find_iref(int num, u64 dir, int index,
4397 		       struct fs_path *name,
4398 		       void *ctx_)
4399 {
4400 	struct find_ref_ctx *ctx = ctx_;
4401 	u64 dir_gen;
4402 	int ret;
4403 
4404 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4405 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4406 		/*
4407 		 * To avoid doing extra lookups we'll only do this if everything
4408 		 * else matches.
4409 		 */
4410 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4411 				     NULL, NULL, NULL);
4412 		if (ret)
4413 			return ret;
4414 		if (dir_gen != ctx->dir_gen)
4415 			return 0;
4416 		ctx->found_idx = num;
4417 		return 1;
4418 	}
4419 	return 0;
4420 }
4421 
4422 static int find_iref(struct btrfs_root *root,
4423 		     struct btrfs_path *path,
4424 		     struct btrfs_key *key,
4425 		     u64 dir, u64 dir_gen, struct fs_path *name)
4426 {
4427 	int ret;
4428 	struct find_ref_ctx ctx;
4429 
4430 	ctx.dir = dir;
4431 	ctx.name = name;
4432 	ctx.dir_gen = dir_gen;
4433 	ctx.found_idx = -1;
4434 	ctx.root = root;
4435 
4436 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4437 	if (ret < 0)
4438 		return ret;
4439 
4440 	if (ctx.found_idx == -1)
4441 		return -ENOENT;
4442 
4443 	return ctx.found_idx;
4444 }
4445 
4446 static int __record_changed_new_ref(int num, u64 dir, int index,
4447 				    struct fs_path *name,
4448 				    void *ctx)
4449 {
4450 	u64 dir_gen;
4451 	int ret;
4452 	struct send_ctx *sctx = ctx;
4453 
4454 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4455 			     NULL, NULL, NULL);
4456 	if (ret)
4457 		return ret;
4458 
4459 	ret = find_iref(sctx->parent_root, sctx->right_path,
4460 			sctx->cmp_key, dir, dir_gen, name);
4461 	if (ret == -ENOENT)
4462 		ret = __record_new_ref(num, dir, index, name, sctx);
4463 	else if (ret > 0)
4464 		ret = 0;
4465 
4466 	return ret;
4467 }
4468 
4469 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4470 					struct fs_path *name,
4471 					void *ctx)
4472 {
4473 	u64 dir_gen;
4474 	int ret;
4475 	struct send_ctx *sctx = ctx;
4476 
4477 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4478 			     NULL, NULL, NULL);
4479 	if (ret)
4480 		return ret;
4481 
4482 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4483 			dir, dir_gen, name);
4484 	if (ret == -ENOENT)
4485 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4486 	else if (ret > 0)
4487 		ret = 0;
4488 
4489 	return ret;
4490 }
4491 
4492 static int record_changed_ref(struct send_ctx *sctx)
4493 {
4494 	int ret = 0;
4495 
4496 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4497 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4498 	if (ret < 0)
4499 		goto out;
4500 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4501 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4502 	if (ret < 0)
4503 		goto out;
4504 	ret = 0;
4505 
4506 out:
4507 	return ret;
4508 }
4509 
4510 /*
4511  * Record and process all refs at once. Needed when an inode changes the
4512  * generation number, which means that it was deleted and recreated.
4513  */
4514 static int process_all_refs(struct send_ctx *sctx,
4515 			    enum btrfs_compare_tree_result cmd)
4516 {
4517 	int ret = 0;
4518 	int iter_ret = 0;
4519 	struct btrfs_root *root;
4520 	struct btrfs_path *path;
4521 	struct btrfs_key key;
4522 	struct btrfs_key found_key;
4523 	iterate_inode_ref_t cb;
4524 	int pending_move = 0;
4525 
4526 	path = alloc_path_for_send();
4527 	if (!path)
4528 		return -ENOMEM;
4529 
4530 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4531 		root = sctx->send_root;
4532 		cb = __record_new_ref;
4533 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4534 		root = sctx->parent_root;
4535 		cb = __record_deleted_ref;
4536 	} else {
4537 		btrfs_err(sctx->send_root->fs_info,
4538 				"Wrong command %d in process_all_refs", cmd);
4539 		ret = -EINVAL;
4540 		goto out;
4541 	}
4542 
4543 	key.objectid = sctx->cmp_key->objectid;
4544 	key.type = BTRFS_INODE_REF_KEY;
4545 	key.offset = 0;
4546 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4547 		if (found_key.objectid != key.objectid ||
4548 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4549 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4550 			break;
4551 
4552 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4553 		if (ret < 0)
4554 			goto out;
4555 	}
4556 	/* Catch error found during iteration */
4557 	if (iter_ret < 0) {
4558 		ret = iter_ret;
4559 		goto out;
4560 	}
4561 	btrfs_release_path(path);
4562 
4563 	/*
4564 	 * We don't actually care about pending_move as we are simply
4565 	 * re-creating this inode and will be rename'ing it into place once we
4566 	 * rename the parent directory.
4567 	 */
4568 	ret = process_recorded_refs(sctx, &pending_move);
4569 out:
4570 	btrfs_free_path(path);
4571 	return ret;
4572 }
4573 
4574 static int send_set_xattr(struct send_ctx *sctx,
4575 			  struct fs_path *path,
4576 			  const char *name, int name_len,
4577 			  const char *data, int data_len)
4578 {
4579 	int ret = 0;
4580 
4581 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4582 	if (ret < 0)
4583 		goto out;
4584 
4585 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4586 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4587 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4588 
4589 	ret = send_cmd(sctx);
4590 
4591 tlv_put_failure:
4592 out:
4593 	return ret;
4594 }
4595 
4596 static int send_remove_xattr(struct send_ctx *sctx,
4597 			  struct fs_path *path,
4598 			  const char *name, int name_len)
4599 {
4600 	int ret = 0;
4601 
4602 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4603 	if (ret < 0)
4604 		goto out;
4605 
4606 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4607 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4608 
4609 	ret = send_cmd(sctx);
4610 
4611 tlv_put_failure:
4612 out:
4613 	return ret;
4614 }
4615 
4616 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4617 			       const char *name, int name_len, const char *data,
4618 			       int data_len, void *ctx)
4619 {
4620 	int ret;
4621 	struct send_ctx *sctx = ctx;
4622 	struct fs_path *p;
4623 	struct posix_acl_xattr_header dummy_acl;
4624 
4625 	/* Capabilities are emitted by finish_inode_if_needed */
4626 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4627 		return 0;
4628 
4629 	p = fs_path_alloc();
4630 	if (!p)
4631 		return -ENOMEM;
4632 
4633 	/*
4634 	 * This hack is needed because empty acls are stored as zero byte
4635 	 * data in xattrs. Problem with that is, that receiving these zero byte
4636 	 * acls will fail later. To fix this, we send a dummy acl list that
4637 	 * only contains the version number and no entries.
4638 	 */
4639 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4640 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4641 		if (data_len == 0) {
4642 			dummy_acl.a_version =
4643 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4644 			data = (char *)&dummy_acl;
4645 			data_len = sizeof(dummy_acl);
4646 		}
4647 	}
4648 
4649 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4650 	if (ret < 0)
4651 		goto out;
4652 
4653 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4654 
4655 out:
4656 	fs_path_free(p);
4657 	return ret;
4658 }
4659 
4660 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4661 				   const char *name, int name_len,
4662 				   const char *data, int data_len, void *ctx)
4663 {
4664 	int ret;
4665 	struct send_ctx *sctx = ctx;
4666 	struct fs_path *p;
4667 
4668 	p = fs_path_alloc();
4669 	if (!p)
4670 		return -ENOMEM;
4671 
4672 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4673 	if (ret < 0)
4674 		goto out;
4675 
4676 	ret = send_remove_xattr(sctx, p, name, name_len);
4677 
4678 out:
4679 	fs_path_free(p);
4680 	return ret;
4681 }
4682 
4683 static int process_new_xattr(struct send_ctx *sctx)
4684 {
4685 	int ret = 0;
4686 
4687 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4688 			       __process_new_xattr, sctx);
4689 
4690 	return ret;
4691 }
4692 
4693 static int process_deleted_xattr(struct send_ctx *sctx)
4694 {
4695 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4696 				__process_deleted_xattr, sctx);
4697 }
4698 
4699 struct find_xattr_ctx {
4700 	const char *name;
4701 	int name_len;
4702 	int found_idx;
4703 	char *found_data;
4704 	int found_data_len;
4705 };
4706 
4707 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4708 			int name_len, const char *data, int data_len, void *vctx)
4709 {
4710 	struct find_xattr_ctx *ctx = vctx;
4711 
4712 	if (name_len == ctx->name_len &&
4713 	    strncmp(name, ctx->name, name_len) == 0) {
4714 		ctx->found_idx = num;
4715 		ctx->found_data_len = data_len;
4716 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4717 		if (!ctx->found_data)
4718 			return -ENOMEM;
4719 		return 1;
4720 	}
4721 	return 0;
4722 }
4723 
4724 static int find_xattr(struct btrfs_root *root,
4725 		      struct btrfs_path *path,
4726 		      struct btrfs_key *key,
4727 		      const char *name, int name_len,
4728 		      char **data, int *data_len)
4729 {
4730 	int ret;
4731 	struct find_xattr_ctx ctx;
4732 
4733 	ctx.name = name;
4734 	ctx.name_len = name_len;
4735 	ctx.found_idx = -1;
4736 	ctx.found_data = NULL;
4737 	ctx.found_data_len = 0;
4738 
4739 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4740 	if (ret < 0)
4741 		return ret;
4742 
4743 	if (ctx.found_idx == -1)
4744 		return -ENOENT;
4745 	if (data) {
4746 		*data = ctx.found_data;
4747 		*data_len = ctx.found_data_len;
4748 	} else {
4749 		kfree(ctx.found_data);
4750 	}
4751 	return ctx.found_idx;
4752 }
4753 
4754 
4755 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4756 				       const char *name, int name_len,
4757 				       const char *data, int data_len,
4758 				       void *ctx)
4759 {
4760 	int ret;
4761 	struct send_ctx *sctx = ctx;
4762 	char *found_data = NULL;
4763 	int found_data_len  = 0;
4764 
4765 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4766 			 sctx->cmp_key, name, name_len, &found_data,
4767 			 &found_data_len);
4768 	if (ret == -ENOENT) {
4769 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4770 					  data_len, ctx);
4771 	} else if (ret >= 0) {
4772 		if (data_len != found_data_len ||
4773 		    memcmp(data, found_data, data_len)) {
4774 			ret = __process_new_xattr(num, di_key, name, name_len,
4775 						  data, data_len, ctx);
4776 		} else {
4777 			ret = 0;
4778 		}
4779 	}
4780 
4781 	kfree(found_data);
4782 	return ret;
4783 }
4784 
4785 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4786 					   const char *name, int name_len,
4787 					   const char *data, int data_len,
4788 					   void *ctx)
4789 {
4790 	int ret;
4791 	struct send_ctx *sctx = ctx;
4792 
4793 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4794 			 name, name_len, NULL, NULL);
4795 	if (ret == -ENOENT)
4796 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4797 					      data_len, ctx);
4798 	else if (ret >= 0)
4799 		ret = 0;
4800 
4801 	return ret;
4802 }
4803 
4804 static int process_changed_xattr(struct send_ctx *sctx)
4805 {
4806 	int ret = 0;
4807 
4808 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4809 			__process_changed_new_xattr, sctx);
4810 	if (ret < 0)
4811 		goto out;
4812 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4813 			__process_changed_deleted_xattr, sctx);
4814 
4815 out:
4816 	return ret;
4817 }
4818 
4819 static int process_all_new_xattrs(struct send_ctx *sctx)
4820 {
4821 	int ret = 0;
4822 	int iter_ret = 0;
4823 	struct btrfs_root *root;
4824 	struct btrfs_path *path;
4825 	struct btrfs_key key;
4826 	struct btrfs_key found_key;
4827 
4828 	path = alloc_path_for_send();
4829 	if (!path)
4830 		return -ENOMEM;
4831 
4832 	root = sctx->send_root;
4833 
4834 	key.objectid = sctx->cmp_key->objectid;
4835 	key.type = BTRFS_XATTR_ITEM_KEY;
4836 	key.offset = 0;
4837 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4838 		if (found_key.objectid != key.objectid ||
4839 		    found_key.type != key.type) {
4840 			ret = 0;
4841 			break;
4842 		}
4843 
4844 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4845 		if (ret < 0)
4846 			break;
4847 	}
4848 	/* Catch error found during iteration */
4849 	if (iter_ret < 0)
4850 		ret = iter_ret;
4851 
4852 	btrfs_free_path(path);
4853 	return ret;
4854 }
4855 
4856 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4857 {
4858 	return sctx->send_max_size - SZ_16K;
4859 }
4860 
4861 static int put_data_header(struct send_ctx *sctx, u32 len)
4862 {
4863 	struct btrfs_tlv_header *hdr;
4864 
4865 	if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4866 		return -EOVERFLOW;
4867 	hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4868 	put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4869 	put_unaligned_le16(len, &hdr->tlv_len);
4870 	sctx->send_size += sizeof(*hdr);
4871 	return 0;
4872 }
4873 
4874 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4875 {
4876 	struct btrfs_root *root = sctx->send_root;
4877 	struct btrfs_fs_info *fs_info = root->fs_info;
4878 	struct page *page;
4879 	pgoff_t index = offset >> PAGE_SHIFT;
4880 	pgoff_t last_index;
4881 	unsigned pg_offset = offset_in_page(offset);
4882 	int ret;
4883 
4884 	ret = put_data_header(sctx, len);
4885 	if (ret)
4886 		return ret;
4887 
4888 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4889 
4890 	while (index <= last_index) {
4891 		unsigned cur_len = min_t(unsigned, len,
4892 					 PAGE_SIZE - pg_offset);
4893 
4894 		page = find_lock_page(sctx->cur_inode->i_mapping, index);
4895 		if (!page) {
4896 			page_cache_sync_readahead(sctx->cur_inode->i_mapping,
4897 						  &sctx->ra, NULL, index,
4898 						  last_index + 1 - index);
4899 
4900 			page = find_or_create_page(sctx->cur_inode->i_mapping,
4901 						   index, GFP_KERNEL);
4902 			if (!page) {
4903 				ret = -ENOMEM;
4904 				break;
4905 			}
4906 		}
4907 
4908 		if (PageReadahead(page))
4909 			page_cache_async_readahead(sctx->cur_inode->i_mapping,
4910 						   &sctx->ra, NULL, page_folio(page),
4911 						   index, last_index + 1 - index);
4912 
4913 		if (!PageUptodate(page)) {
4914 			btrfs_read_folio(NULL, page_folio(page));
4915 			lock_page(page);
4916 			if (!PageUptodate(page)) {
4917 				unlock_page(page);
4918 				btrfs_err(fs_info,
4919 			"send: IO error at offset %llu for inode %llu root %llu",
4920 					page_offset(page), sctx->cur_ino,
4921 					sctx->send_root->root_key.objectid);
4922 				put_page(page);
4923 				ret = -EIO;
4924 				break;
4925 			}
4926 		}
4927 
4928 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
4929 				 pg_offset, cur_len);
4930 		unlock_page(page);
4931 		put_page(page);
4932 		index++;
4933 		pg_offset = 0;
4934 		len -= cur_len;
4935 		sctx->send_size += cur_len;
4936 	}
4937 
4938 	return ret;
4939 }
4940 
4941 /*
4942  * Read some bytes from the current inode/file and send a write command to
4943  * user space.
4944  */
4945 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4946 {
4947 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4948 	int ret = 0;
4949 	struct fs_path *p;
4950 
4951 	p = fs_path_alloc();
4952 	if (!p)
4953 		return -ENOMEM;
4954 
4955 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4956 
4957 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4958 	if (ret < 0)
4959 		goto out;
4960 
4961 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4962 	if (ret < 0)
4963 		goto out;
4964 
4965 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4966 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4967 	ret = put_file_data(sctx, offset, len);
4968 	if (ret < 0)
4969 		goto out;
4970 
4971 	ret = send_cmd(sctx);
4972 
4973 tlv_put_failure:
4974 out:
4975 	fs_path_free(p);
4976 	return ret;
4977 }
4978 
4979 /*
4980  * Send a clone command to user space.
4981  */
4982 static int send_clone(struct send_ctx *sctx,
4983 		      u64 offset, u32 len,
4984 		      struct clone_root *clone_root)
4985 {
4986 	int ret = 0;
4987 	struct fs_path *p;
4988 	u64 gen;
4989 
4990 	btrfs_debug(sctx->send_root->fs_info,
4991 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4992 		    offset, len, clone_root->root->root_key.objectid,
4993 		    clone_root->ino, clone_root->offset);
4994 
4995 	p = fs_path_alloc();
4996 	if (!p)
4997 		return -ENOMEM;
4998 
4999 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5000 	if (ret < 0)
5001 		goto out;
5002 
5003 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5004 	if (ret < 0)
5005 		goto out;
5006 
5007 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5008 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5009 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5010 
5011 	if (clone_root->root == sctx->send_root) {
5012 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5013 				&gen, NULL, NULL, NULL, NULL);
5014 		if (ret < 0)
5015 			goto out;
5016 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5017 	} else {
5018 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5019 	}
5020 	if (ret < 0)
5021 		goto out;
5022 
5023 	/*
5024 	 * If the parent we're using has a received_uuid set then use that as
5025 	 * our clone source as that is what we will look for when doing a
5026 	 * receive.
5027 	 *
5028 	 * This covers the case that we create a snapshot off of a received
5029 	 * subvolume and then use that as the parent and try to receive on a
5030 	 * different host.
5031 	 */
5032 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5033 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5034 			     clone_root->root->root_item.received_uuid);
5035 	else
5036 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5037 			     clone_root->root->root_item.uuid);
5038 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5039 		    btrfs_root_ctransid(&clone_root->root->root_item));
5040 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5041 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5042 			clone_root->offset);
5043 
5044 	ret = send_cmd(sctx);
5045 
5046 tlv_put_failure:
5047 out:
5048 	fs_path_free(p);
5049 	return ret;
5050 }
5051 
5052 /*
5053  * Send an update extent command to user space.
5054  */
5055 static int send_update_extent(struct send_ctx *sctx,
5056 			      u64 offset, u32 len)
5057 {
5058 	int ret = 0;
5059 	struct fs_path *p;
5060 
5061 	p = fs_path_alloc();
5062 	if (!p)
5063 		return -ENOMEM;
5064 
5065 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5066 	if (ret < 0)
5067 		goto out;
5068 
5069 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5070 	if (ret < 0)
5071 		goto out;
5072 
5073 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5074 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5075 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5076 
5077 	ret = send_cmd(sctx);
5078 
5079 tlv_put_failure:
5080 out:
5081 	fs_path_free(p);
5082 	return ret;
5083 }
5084 
5085 static int send_hole(struct send_ctx *sctx, u64 end)
5086 {
5087 	struct fs_path *p = NULL;
5088 	u64 read_size = max_send_read_size(sctx);
5089 	u64 offset = sctx->cur_inode_last_extent;
5090 	int ret = 0;
5091 
5092 	/*
5093 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5094 	 * fallocate (for extent preallocation and hole punching), sending a
5095 	 * write of zeroes starting at EOF or beyond would later require issuing
5096 	 * a truncate operation which would undo the write and achieve nothing.
5097 	 */
5098 	if (offset >= sctx->cur_inode_size)
5099 		return 0;
5100 
5101 	/*
5102 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5103 	 * after the i_size.
5104 	 */
5105 	end = min_t(u64, end, sctx->cur_inode_size);
5106 
5107 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5108 		return send_update_extent(sctx, offset, end - offset);
5109 
5110 	p = fs_path_alloc();
5111 	if (!p)
5112 		return -ENOMEM;
5113 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5114 	if (ret < 0)
5115 		goto tlv_put_failure;
5116 	while (offset < end) {
5117 		u64 len = min(end - offset, read_size);
5118 
5119 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5120 		if (ret < 0)
5121 			break;
5122 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5123 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5124 		ret = put_data_header(sctx, len);
5125 		if (ret < 0)
5126 			break;
5127 		memset(sctx->send_buf + sctx->send_size, 0, len);
5128 		sctx->send_size += len;
5129 		ret = send_cmd(sctx);
5130 		if (ret < 0)
5131 			break;
5132 		offset += len;
5133 	}
5134 	sctx->cur_inode_next_write_offset = offset;
5135 tlv_put_failure:
5136 	fs_path_free(p);
5137 	return ret;
5138 }
5139 
5140 static int send_extent_data(struct send_ctx *sctx,
5141 			    const u64 offset,
5142 			    const u64 len)
5143 {
5144 	const u64 end = offset + len;
5145 	u64 read_size = max_send_read_size(sctx);
5146 	u64 sent = 0;
5147 
5148 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5149 		return send_update_extent(sctx, offset, len);
5150 
5151 	if (sctx->cur_inode == NULL) {
5152 		struct btrfs_root *root = sctx->send_root;
5153 
5154 		sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5155 		if (IS_ERR(sctx->cur_inode)) {
5156 			int err = PTR_ERR(sctx->cur_inode);
5157 
5158 			sctx->cur_inode = NULL;
5159 			return err;
5160 		}
5161 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5162 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5163 
5164 		/*
5165 		 * It's very likely there are no pages from this inode in the page
5166 		 * cache, so after reading extents and sending their data, we clean
5167 		 * the page cache to avoid trashing the page cache (adding pressure
5168 		 * to the page cache and forcing eviction of other data more useful
5169 		 * for applications).
5170 		 *
5171 		 * We decide if we should clean the page cache simply by checking
5172 		 * if the inode's mapping nrpages is 0 when we first open it, and
5173 		 * not by using something like filemap_range_has_page() before
5174 		 * reading an extent because when we ask the readahead code to
5175 		 * read a given file range, it may (and almost always does) read
5176 		 * pages from beyond that range (see the documentation for
5177 		 * page_cache_sync_readahead()), so it would not be reliable,
5178 		 * because after reading the first extent future calls to
5179 		 * filemap_range_has_page() would return true because the readahead
5180 		 * on the previous extent resulted in reading pages of the current
5181 		 * extent as well.
5182 		 */
5183 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5184 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5185 	}
5186 
5187 	while (sent < len) {
5188 		u64 size = min(len - sent, read_size);
5189 		int ret;
5190 
5191 		ret = send_write(sctx, offset + sent, size);
5192 		if (ret < 0)
5193 			return ret;
5194 		sent += size;
5195 	}
5196 
5197 	if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) {
5198 		/*
5199 		 * Always operate only on ranges that are a multiple of the page
5200 		 * size. This is not only to prevent zeroing parts of a page in
5201 		 * the case of subpage sector size, but also to guarantee we evict
5202 		 * pages, as passing a range that is smaller than page size does
5203 		 * not evict the respective page (only zeroes part of its content).
5204 		 *
5205 		 * Always start from the end offset of the last range cleared.
5206 		 * This is because the readahead code may (and very often does)
5207 		 * reads pages beyond the range we request for readahead. So if
5208 		 * we have an extent layout like this:
5209 		 *
5210 		 *            [ extent A ] [ extent B ] [ extent C ]
5211 		 *
5212 		 * When we ask page_cache_sync_readahead() to read extent A, it
5213 		 * may also trigger reads for pages of extent B. If we are doing
5214 		 * an incremental send and extent B has not changed between the
5215 		 * parent and send snapshots, some or all of its pages may end
5216 		 * up being read and placed in the page cache. So when truncating
5217 		 * the page cache we always start from the end offset of the
5218 		 * previously processed extent up to the end of the current
5219 		 * extent.
5220 		 */
5221 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5222 					   sctx->page_cache_clear_start,
5223 					   end - 1);
5224 		sctx->page_cache_clear_start = end;
5225 	}
5226 
5227 	return 0;
5228 }
5229 
5230 /*
5231  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5232  * found, call send_set_xattr function to emit it.
5233  *
5234  * Return 0 if there isn't a capability, or when the capability was emitted
5235  * successfully, or < 0 if an error occurred.
5236  */
5237 static int send_capabilities(struct send_ctx *sctx)
5238 {
5239 	struct fs_path *fspath = NULL;
5240 	struct btrfs_path *path;
5241 	struct btrfs_dir_item *di;
5242 	struct extent_buffer *leaf;
5243 	unsigned long data_ptr;
5244 	char *buf = NULL;
5245 	int buf_len;
5246 	int ret = 0;
5247 
5248 	path = alloc_path_for_send();
5249 	if (!path)
5250 		return -ENOMEM;
5251 
5252 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5253 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5254 	if (!di) {
5255 		/* There is no xattr for this inode */
5256 		goto out;
5257 	} else if (IS_ERR(di)) {
5258 		ret = PTR_ERR(di);
5259 		goto out;
5260 	}
5261 
5262 	leaf = path->nodes[0];
5263 	buf_len = btrfs_dir_data_len(leaf, di);
5264 
5265 	fspath = fs_path_alloc();
5266 	buf = kmalloc(buf_len, GFP_KERNEL);
5267 	if (!fspath || !buf) {
5268 		ret = -ENOMEM;
5269 		goto out;
5270 	}
5271 
5272 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5273 	if (ret < 0)
5274 		goto out;
5275 
5276 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5277 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5278 
5279 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5280 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5281 out:
5282 	kfree(buf);
5283 	fs_path_free(fspath);
5284 	btrfs_free_path(path);
5285 	return ret;
5286 }
5287 
5288 static int clone_range(struct send_ctx *sctx,
5289 		       struct clone_root *clone_root,
5290 		       const u64 disk_byte,
5291 		       u64 data_offset,
5292 		       u64 offset,
5293 		       u64 len)
5294 {
5295 	struct btrfs_path *path;
5296 	struct btrfs_key key;
5297 	int ret;
5298 	u64 clone_src_i_size = 0;
5299 
5300 	/*
5301 	 * Prevent cloning from a zero offset with a length matching the sector
5302 	 * size because in some scenarios this will make the receiver fail.
5303 	 *
5304 	 * For example, if in the source filesystem the extent at offset 0
5305 	 * has a length of sectorsize and it was written using direct IO, then
5306 	 * it can never be an inline extent (even if compression is enabled).
5307 	 * Then this extent can be cloned in the original filesystem to a non
5308 	 * zero file offset, but it may not be possible to clone in the
5309 	 * destination filesystem because it can be inlined due to compression
5310 	 * on the destination filesystem (as the receiver's write operations are
5311 	 * always done using buffered IO). The same happens when the original
5312 	 * filesystem does not have compression enabled but the destination
5313 	 * filesystem has.
5314 	 */
5315 	if (clone_root->offset == 0 &&
5316 	    len == sctx->send_root->fs_info->sectorsize)
5317 		return send_extent_data(sctx, offset, len);
5318 
5319 	path = alloc_path_for_send();
5320 	if (!path)
5321 		return -ENOMEM;
5322 
5323 	/*
5324 	 * There are inodes that have extents that lie behind its i_size. Don't
5325 	 * accept clones from these extents.
5326 	 */
5327 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5328 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5329 	btrfs_release_path(path);
5330 	if (ret < 0)
5331 		goto out;
5332 
5333 	/*
5334 	 * We can't send a clone operation for the entire range if we find
5335 	 * extent items in the respective range in the source file that
5336 	 * refer to different extents or if we find holes.
5337 	 * So check for that and do a mix of clone and regular write/copy
5338 	 * operations if needed.
5339 	 *
5340 	 * Example:
5341 	 *
5342 	 * mkfs.btrfs -f /dev/sda
5343 	 * mount /dev/sda /mnt
5344 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5345 	 * cp --reflink=always /mnt/foo /mnt/bar
5346 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5347 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5348 	 *
5349 	 * If when we send the snapshot and we are processing file bar (which
5350 	 * has a higher inode number than foo) we blindly send a clone operation
5351 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5352 	 * a file bar that matches the content of file foo - iow, doesn't match
5353 	 * the content from bar in the original filesystem.
5354 	 */
5355 	key.objectid = clone_root->ino;
5356 	key.type = BTRFS_EXTENT_DATA_KEY;
5357 	key.offset = clone_root->offset;
5358 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5359 	if (ret < 0)
5360 		goto out;
5361 	if (ret > 0 && path->slots[0] > 0) {
5362 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5363 		if (key.objectid == clone_root->ino &&
5364 		    key.type == BTRFS_EXTENT_DATA_KEY)
5365 			path->slots[0]--;
5366 	}
5367 
5368 	while (true) {
5369 		struct extent_buffer *leaf = path->nodes[0];
5370 		int slot = path->slots[0];
5371 		struct btrfs_file_extent_item *ei;
5372 		u8 type;
5373 		u64 ext_len;
5374 		u64 clone_len;
5375 		u64 clone_data_offset;
5376 
5377 		if (slot >= btrfs_header_nritems(leaf)) {
5378 			ret = btrfs_next_leaf(clone_root->root, path);
5379 			if (ret < 0)
5380 				goto out;
5381 			else if (ret > 0)
5382 				break;
5383 			continue;
5384 		}
5385 
5386 		btrfs_item_key_to_cpu(leaf, &key, slot);
5387 
5388 		/*
5389 		 * We might have an implicit trailing hole (NO_HOLES feature
5390 		 * enabled). We deal with it after leaving this loop.
5391 		 */
5392 		if (key.objectid != clone_root->ino ||
5393 		    key.type != BTRFS_EXTENT_DATA_KEY)
5394 			break;
5395 
5396 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5397 		type = btrfs_file_extent_type(leaf, ei);
5398 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5399 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5400 			ext_len = PAGE_ALIGN(ext_len);
5401 		} else {
5402 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5403 		}
5404 
5405 		if (key.offset + ext_len <= clone_root->offset)
5406 			goto next;
5407 
5408 		if (key.offset > clone_root->offset) {
5409 			/* Implicit hole, NO_HOLES feature enabled. */
5410 			u64 hole_len = key.offset - clone_root->offset;
5411 
5412 			if (hole_len > len)
5413 				hole_len = len;
5414 			ret = send_extent_data(sctx, offset, hole_len);
5415 			if (ret < 0)
5416 				goto out;
5417 
5418 			len -= hole_len;
5419 			if (len == 0)
5420 				break;
5421 			offset += hole_len;
5422 			clone_root->offset += hole_len;
5423 			data_offset += hole_len;
5424 		}
5425 
5426 		if (key.offset >= clone_root->offset + len)
5427 			break;
5428 
5429 		if (key.offset >= clone_src_i_size)
5430 			break;
5431 
5432 		if (key.offset + ext_len > clone_src_i_size)
5433 			ext_len = clone_src_i_size - key.offset;
5434 
5435 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5436 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5437 			clone_root->offset = key.offset;
5438 			if (clone_data_offset < data_offset &&
5439 				clone_data_offset + ext_len > data_offset) {
5440 				u64 extent_offset;
5441 
5442 				extent_offset = data_offset - clone_data_offset;
5443 				ext_len -= extent_offset;
5444 				clone_data_offset += extent_offset;
5445 				clone_root->offset += extent_offset;
5446 			}
5447 		}
5448 
5449 		clone_len = min_t(u64, ext_len, len);
5450 
5451 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5452 		    clone_data_offset == data_offset) {
5453 			const u64 src_end = clone_root->offset + clone_len;
5454 			const u64 sectorsize = SZ_64K;
5455 
5456 			/*
5457 			 * We can't clone the last block, when its size is not
5458 			 * sector size aligned, into the middle of a file. If we
5459 			 * do so, the receiver will get a failure (-EINVAL) when
5460 			 * trying to clone or will silently corrupt the data in
5461 			 * the destination file if it's on a kernel without the
5462 			 * fix introduced by commit ac765f83f1397646
5463 			 * ("Btrfs: fix data corruption due to cloning of eof
5464 			 * block).
5465 			 *
5466 			 * So issue a clone of the aligned down range plus a
5467 			 * regular write for the eof block, if we hit that case.
5468 			 *
5469 			 * Also, we use the maximum possible sector size, 64K,
5470 			 * because we don't know what's the sector size of the
5471 			 * filesystem that receives the stream, so we have to
5472 			 * assume the largest possible sector size.
5473 			 */
5474 			if (src_end == clone_src_i_size &&
5475 			    !IS_ALIGNED(src_end, sectorsize) &&
5476 			    offset + clone_len < sctx->cur_inode_size) {
5477 				u64 slen;
5478 
5479 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5480 						  sectorsize);
5481 				if (slen > 0) {
5482 					ret = send_clone(sctx, offset, slen,
5483 							 clone_root);
5484 					if (ret < 0)
5485 						goto out;
5486 				}
5487 				ret = send_extent_data(sctx, offset + slen,
5488 						       clone_len - slen);
5489 			} else {
5490 				ret = send_clone(sctx, offset, clone_len,
5491 						 clone_root);
5492 			}
5493 		} else {
5494 			ret = send_extent_data(sctx, offset, clone_len);
5495 		}
5496 
5497 		if (ret < 0)
5498 			goto out;
5499 
5500 		len -= clone_len;
5501 		if (len == 0)
5502 			break;
5503 		offset += clone_len;
5504 		clone_root->offset += clone_len;
5505 
5506 		/*
5507 		 * If we are cloning from the file we are currently processing,
5508 		 * and using the send root as the clone root, we must stop once
5509 		 * the current clone offset reaches the current eof of the file
5510 		 * at the receiver, otherwise we would issue an invalid clone
5511 		 * operation (source range going beyond eof) and cause the
5512 		 * receiver to fail. So if we reach the current eof, bail out
5513 		 * and fallback to a regular write.
5514 		 */
5515 		if (clone_root->root == sctx->send_root &&
5516 		    clone_root->ino == sctx->cur_ino &&
5517 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
5518 			break;
5519 
5520 		data_offset += clone_len;
5521 next:
5522 		path->slots[0]++;
5523 	}
5524 
5525 	if (len > 0)
5526 		ret = send_extent_data(sctx, offset, len);
5527 	else
5528 		ret = 0;
5529 out:
5530 	btrfs_free_path(path);
5531 	return ret;
5532 }
5533 
5534 static int send_write_or_clone(struct send_ctx *sctx,
5535 			       struct btrfs_path *path,
5536 			       struct btrfs_key *key,
5537 			       struct clone_root *clone_root)
5538 {
5539 	int ret = 0;
5540 	u64 offset = key->offset;
5541 	u64 end;
5542 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5543 
5544 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5545 	if (offset >= end)
5546 		return 0;
5547 
5548 	if (clone_root && IS_ALIGNED(end, bs)) {
5549 		struct btrfs_file_extent_item *ei;
5550 		u64 disk_byte;
5551 		u64 data_offset;
5552 
5553 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5554 				    struct btrfs_file_extent_item);
5555 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5556 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5557 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5558 				  offset, end - offset);
5559 	} else {
5560 		ret = send_extent_data(sctx, offset, end - offset);
5561 	}
5562 	sctx->cur_inode_next_write_offset = end;
5563 	return ret;
5564 }
5565 
5566 static int is_extent_unchanged(struct send_ctx *sctx,
5567 			       struct btrfs_path *left_path,
5568 			       struct btrfs_key *ekey)
5569 {
5570 	int ret = 0;
5571 	struct btrfs_key key;
5572 	struct btrfs_path *path = NULL;
5573 	struct extent_buffer *eb;
5574 	int slot;
5575 	struct btrfs_key found_key;
5576 	struct btrfs_file_extent_item *ei;
5577 	u64 left_disknr;
5578 	u64 right_disknr;
5579 	u64 left_offset;
5580 	u64 right_offset;
5581 	u64 left_offset_fixed;
5582 	u64 left_len;
5583 	u64 right_len;
5584 	u64 left_gen;
5585 	u64 right_gen;
5586 	u8 left_type;
5587 	u8 right_type;
5588 
5589 	path = alloc_path_for_send();
5590 	if (!path)
5591 		return -ENOMEM;
5592 
5593 	eb = left_path->nodes[0];
5594 	slot = left_path->slots[0];
5595 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5596 	left_type = btrfs_file_extent_type(eb, ei);
5597 
5598 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5599 		ret = 0;
5600 		goto out;
5601 	}
5602 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5603 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5604 	left_offset = btrfs_file_extent_offset(eb, ei);
5605 	left_gen = btrfs_file_extent_generation(eb, ei);
5606 
5607 	/*
5608 	 * Following comments will refer to these graphics. L is the left
5609 	 * extents which we are checking at the moment. 1-8 are the right
5610 	 * extents that we iterate.
5611 	 *
5612 	 *       |-----L-----|
5613 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5614 	 *
5615 	 *       |-----L-----|
5616 	 * |--1--|-2b-|...(same as above)
5617 	 *
5618 	 * Alternative situation. Happens on files where extents got split.
5619 	 *       |-----L-----|
5620 	 * |-----------7-----------|-6-|
5621 	 *
5622 	 * Alternative situation. Happens on files which got larger.
5623 	 *       |-----L-----|
5624 	 * |-8-|
5625 	 * Nothing follows after 8.
5626 	 */
5627 
5628 	key.objectid = ekey->objectid;
5629 	key.type = BTRFS_EXTENT_DATA_KEY;
5630 	key.offset = ekey->offset;
5631 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5632 	if (ret < 0)
5633 		goto out;
5634 	if (ret) {
5635 		ret = 0;
5636 		goto out;
5637 	}
5638 
5639 	/*
5640 	 * Handle special case where the right side has no extents at all.
5641 	 */
5642 	eb = path->nodes[0];
5643 	slot = path->slots[0];
5644 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5645 	if (found_key.objectid != key.objectid ||
5646 	    found_key.type != key.type) {
5647 		/* If we're a hole then just pretend nothing changed */
5648 		ret = (left_disknr) ? 0 : 1;
5649 		goto out;
5650 	}
5651 
5652 	/*
5653 	 * We're now on 2a, 2b or 7.
5654 	 */
5655 	key = found_key;
5656 	while (key.offset < ekey->offset + left_len) {
5657 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5658 		right_type = btrfs_file_extent_type(eb, ei);
5659 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5660 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5661 			ret = 0;
5662 			goto out;
5663 		}
5664 
5665 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5666 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5667 			right_len = PAGE_ALIGN(right_len);
5668 		} else {
5669 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5670 		}
5671 
5672 		/*
5673 		 * Are we at extent 8? If yes, we know the extent is changed.
5674 		 * This may only happen on the first iteration.
5675 		 */
5676 		if (found_key.offset + right_len <= ekey->offset) {
5677 			/* If we're a hole just pretend nothing changed */
5678 			ret = (left_disknr) ? 0 : 1;
5679 			goto out;
5680 		}
5681 
5682 		/*
5683 		 * We just wanted to see if when we have an inline extent, what
5684 		 * follows it is a regular extent (wanted to check the above
5685 		 * condition for inline extents too). This should normally not
5686 		 * happen but it's possible for example when we have an inline
5687 		 * compressed extent representing data with a size matching
5688 		 * the page size (currently the same as sector size).
5689 		 */
5690 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5691 			ret = 0;
5692 			goto out;
5693 		}
5694 
5695 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5696 		right_offset = btrfs_file_extent_offset(eb, ei);
5697 		right_gen = btrfs_file_extent_generation(eb, ei);
5698 
5699 		left_offset_fixed = left_offset;
5700 		if (key.offset < ekey->offset) {
5701 			/* Fix the right offset for 2a and 7. */
5702 			right_offset += ekey->offset - key.offset;
5703 		} else {
5704 			/* Fix the left offset for all behind 2a and 2b */
5705 			left_offset_fixed += key.offset - ekey->offset;
5706 		}
5707 
5708 		/*
5709 		 * Check if we have the same extent.
5710 		 */
5711 		if (left_disknr != right_disknr ||
5712 		    left_offset_fixed != right_offset ||
5713 		    left_gen != right_gen) {
5714 			ret = 0;
5715 			goto out;
5716 		}
5717 
5718 		/*
5719 		 * Go to the next extent.
5720 		 */
5721 		ret = btrfs_next_item(sctx->parent_root, path);
5722 		if (ret < 0)
5723 			goto out;
5724 		if (!ret) {
5725 			eb = path->nodes[0];
5726 			slot = path->slots[0];
5727 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5728 		}
5729 		if (ret || found_key.objectid != key.objectid ||
5730 		    found_key.type != key.type) {
5731 			key.offset += right_len;
5732 			break;
5733 		}
5734 		if (found_key.offset != key.offset + right_len) {
5735 			ret = 0;
5736 			goto out;
5737 		}
5738 		key = found_key;
5739 	}
5740 
5741 	/*
5742 	 * We're now behind the left extent (treat as unchanged) or at the end
5743 	 * of the right side (treat as changed).
5744 	 */
5745 	if (key.offset >= ekey->offset + left_len)
5746 		ret = 1;
5747 	else
5748 		ret = 0;
5749 
5750 
5751 out:
5752 	btrfs_free_path(path);
5753 	return ret;
5754 }
5755 
5756 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5757 {
5758 	struct btrfs_path *path;
5759 	struct btrfs_root *root = sctx->send_root;
5760 	struct btrfs_key key;
5761 	int ret;
5762 
5763 	path = alloc_path_for_send();
5764 	if (!path)
5765 		return -ENOMEM;
5766 
5767 	sctx->cur_inode_last_extent = 0;
5768 
5769 	key.objectid = sctx->cur_ino;
5770 	key.type = BTRFS_EXTENT_DATA_KEY;
5771 	key.offset = offset;
5772 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5773 	if (ret < 0)
5774 		goto out;
5775 	ret = 0;
5776 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5777 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5778 		goto out;
5779 
5780 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5781 out:
5782 	btrfs_free_path(path);
5783 	return ret;
5784 }
5785 
5786 static int range_is_hole_in_parent(struct send_ctx *sctx,
5787 				   const u64 start,
5788 				   const u64 end)
5789 {
5790 	struct btrfs_path *path;
5791 	struct btrfs_key key;
5792 	struct btrfs_root *root = sctx->parent_root;
5793 	u64 search_start = start;
5794 	int ret;
5795 
5796 	path = alloc_path_for_send();
5797 	if (!path)
5798 		return -ENOMEM;
5799 
5800 	key.objectid = sctx->cur_ino;
5801 	key.type = BTRFS_EXTENT_DATA_KEY;
5802 	key.offset = search_start;
5803 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5804 	if (ret < 0)
5805 		goto out;
5806 	if (ret > 0 && path->slots[0] > 0)
5807 		path->slots[0]--;
5808 
5809 	while (search_start < end) {
5810 		struct extent_buffer *leaf = path->nodes[0];
5811 		int slot = path->slots[0];
5812 		struct btrfs_file_extent_item *fi;
5813 		u64 extent_end;
5814 
5815 		if (slot >= btrfs_header_nritems(leaf)) {
5816 			ret = btrfs_next_leaf(root, path);
5817 			if (ret < 0)
5818 				goto out;
5819 			else if (ret > 0)
5820 				break;
5821 			continue;
5822 		}
5823 
5824 		btrfs_item_key_to_cpu(leaf, &key, slot);
5825 		if (key.objectid < sctx->cur_ino ||
5826 		    key.type < BTRFS_EXTENT_DATA_KEY)
5827 			goto next;
5828 		if (key.objectid > sctx->cur_ino ||
5829 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5830 		    key.offset >= end)
5831 			break;
5832 
5833 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5834 		extent_end = btrfs_file_extent_end(path);
5835 		if (extent_end <= start)
5836 			goto next;
5837 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5838 			search_start = extent_end;
5839 			goto next;
5840 		}
5841 		ret = 0;
5842 		goto out;
5843 next:
5844 		path->slots[0]++;
5845 	}
5846 	ret = 1;
5847 out:
5848 	btrfs_free_path(path);
5849 	return ret;
5850 }
5851 
5852 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5853 			   struct btrfs_key *key)
5854 {
5855 	int ret = 0;
5856 
5857 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5858 		return 0;
5859 
5860 	if (sctx->cur_inode_last_extent == (u64)-1) {
5861 		ret = get_last_extent(sctx, key->offset - 1);
5862 		if (ret)
5863 			return ret;
5864 	}
5865 
5866 	if (path->slots[0] == 0 &&
5867 	    sctx->cur_inode_last_extent < key->offset) {
5868 		/*
5869 		 * We might have skipped entire leafs that contained only
5870 		 * file extent items for our current inode. These leafs have
5871 		 * a generation number smaller (older) than the one in the
5872 		 * current leaf and the leaf our last extent came from, and
5873 		 * are located between these 2 leafs.
5874 		 */
5875 		ret = get_last_extent(sctx, key->offset - 1);
5876 		if (ret)
5877 			return ret;
5878 	}
5879 
5880 	if (sctx->cur_inode_last_extent < key->offset) {
5881 		ret = range_is_hole_in_parent(sctx,
5882 					      sctx->cur_inode_last_extent,
5883 					      key->offset);
5884 		if (ret < 0)
5885 			return ret;
5886 		else if (ret == 0)
5887 			ret = send_hole(sctx, key->offset);
5888 		else
5889 			ret = 0;
5890 	}
5891 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5892 	return ret;
5893 }
5894 
5895 static int process_extent(struct send_ctx *sctx,
5896 			  struct btrfs_path *path,
5897 			  struct btrfs_key *key)
5898 {
5899 	struct clone_root *found_clone = NULL;
5900 	int ret = 0;
5901 
5902 	if (S_ISLNK(sctx->cur_inode_mode))
5903 		return 0;
5904 
5905 	if (sctx->parent_root && !sctx->cur_inode_new) {
5906 		ret = is_extent_unchanged(sctx, path, key);
5907 		if (ret < 0)
5908 			goto out;
5909 		if (ret) {
5910 			ret = 0;
5911 			goto out_hole;
5912 		}
5913 	} else {
5914 		struct btrfs_file_extent_item *ei;
5915 		u8 type;
5916 
5917 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5918 				    struct btrfs_file_extent_item);
5919 		type = btrfs_file_extent_type(path->nodes[0], ei);
5920 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5921 		    type == BTRFS_FILE_EXTENT_REG) {
5922 			/*
5923 			 * The send spec does not have a prealloc command yet,
5924 			 * so just leave a hole for prealloc'ed extents until
5925 			 * we have enough commands queued up to justify rev'ing
5926 			 * the send spec.
5927 			 */
5928 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5929 				ret = 0;
5930 				goto out;
5931 			}
5932 
5933 			/* Have a hole, just skip it. */
5934 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5935 				ret = 0;
5936 				goto out;
5937 			}
5938 		}
5939 	}
5940 
5941 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5942 			sctx->cur_inode_size, &found_clone);
5943 	if (ret != -ENOENT && ret < 0)
5944 		goto out;
5945 
5946 	ret = send_write_or_clone(sctx, path, key, found_clone);
5947 	if (ret)
5948 		goto out;
5949 out_hole:
5950 	ret = maybe_send_hole(sctx, path, key);
5951 out:
5952 	return ret;
5953 }
5954 
5955 static int process_all_extents(struct send_ctx *sctx)
5956 {
5957 	int ret = 0;
5958 	int iter_ret = 0;
5959 	struct btrfs_root *root;
5960 	struct btrfs_path *path;
5961 	struct btrfs_key key;
5962 	struct btrfs_key found_key;
5963 
5964 	root = sctx->send_root;
5965 	path = alloc_path_for_send();
5966 	if (!path)
5967 		return -ENOMEM;
5968 
5969 	key.objectid = sctx->cmp_key->objectid;
5970 	key.type = BTRFS_EXTENT_DATA_KEY;
5971 	key.offset = 0;
5972 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5973 		if (found_key.objectid != key.objectid ||
5974 		    found_key.type != key.type) {
5975 			ret = 0;
5976 			break;
5977 		}
5978 
5979 		ret = process_extent(sctx, path, &found_key);
5980 		if (ret < 0)
5981 			break;
5982 	}
5983 	/* Catch error found during iteration */
5984 	if (iter_ret < 0)
5985 		ret = iter_ret;
5986 
5987 	btrfs_free_path(path);
5988 	return ret;
5989 }
5990 
5991 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5992 					   int *pending_move,
5993 					   int *refs_processed)
5994 {
5995 	int ret = 0;
5996 
5997 	if (sctx->cur_ino == 0)
5998 		goto out;
5999 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6000 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6001 		goto out;
6002 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6003 		goto out;
6004 
6005 	ret = process_recorded_refs(sctx, pending_move);
6006 	if (ret < 0)
6007 		goto out;
6008 
6009 	*refs_processed = 1;
6010 out:
6011 	return ret;
6012 }
6013 
6014 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6015 {
6016 	int ret = 0;
6017 	u64 left_mode;
6018 	u64 left_uid;
6019 	u64 left_gid;
6020 	u64 right_mode;
6021 	u64 right_uid;
6022 	u64 right_gid;
6023 	int need_chmod = 0;
6024 	int need_chown = 0;
6025 	int need_truncate = 1;
6026 	int pending_move = 0;
6027 	int refs_processed = 0;
6028 
6029 	if (sctx->ignore_cur_inode)
6030 		return 0;
6031 
6032 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6033 					      &refs_processed);
6034 	if (ret < 0)
6035 		goto out;
6036 
6037 	/*
6038 	 * We have processed the refs and thus need to advance send_progress.
6039 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6040 	 * inode into account.
6041 	 *
6042 	 * On the other hand, if our current inode is a directory and couldn't
6043 	 * be moved/renamed because its parent was renamed/moved too and it has
6044 	 * a higher inode number, we can only move/rename our current inode
6045 	 * after we moved/renamed its parent. Therefore in this case operate on
6046 	 * the old path (pre move/rename) of our current inode, and the
6047 	 * move/rename will be performed later.
6048 	 */
6049 	if (refs_processed && !pending_move)
6050 		sctx->send_progress = sctx->cur_ino + 1;
6051 
6052 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6053 		goto out;
6054 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6055 		goto out;
6056 
6057 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6058 			&left_mode, &left_uid, &left_gid, NULL);
6059 	if (ret < 0)
6060 		goto out;
6061 
6062 	if (!sctx->parent_root || sctx->cur_inode_new) {
6063 		need_chown = 1;
6064 		if (!S_ISLNK(sctx->cur_inode_mode))
6065 			need_chmod = 1;
6066 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6067 			need_truncate = 0;
6068 	} else {
6069 		u64 old_size;
6070 
6071 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6072 				&old_size, NULL, &right_mode, &right_uid,
6073 				&right_gid, NULL);
6074 		if (ret < 0)
6075 			goto out;
6076 
6077 		if (left_uid != right_uid || left_gid != right_gid)
6078 			need_chown = 1;
6079 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6080 			need_chmod = 1;
6081 		if ((old_size == sctx->cur_inode_size) ||
6082 		    (sctx->cur_inode_size > old_size &&
6083 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6084 			need_truncate = 0;
6085 	}
6086 
6087 	if (S_ISREG(sctx->cur_inode_mode)) {
6088 		if (need_send_hole(sctx)) {
6089 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6090 			    sctx->cur_inode_last_extent <
6091 			    sctx->cur_inode_size) {
6092 				ret = get_last_extent(sctx, (u64)-1);
6093 				if (ret)
6094 					goto out;
6095 			}
6096 			if (sctx->cur_inode_last_extent <
6097 			    sctx->cur_inode_size) {
6098 				ret = send_hole(sctx, sctx->cur_inode_size);
6099 				if (ret)
6100 					goto out;
6101 			}
6102 		}
6103 		if (need_truncate) {
6104 			ret = send_truncate(sctx, sctx->cur_ino,
6105 					    sctx->cur_inode_gen,
6106 					    sctx->cur_inode_size);
6107 			if (ret < 0)
6108 				goto out;
6109 		}
6110 	}
6111 
6112 	if (need_chown) {
6113 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6114 				left_uid, left_gid);
6115 		if (ret < 0)
6116 			goto out;
6117 	}
6118 	if (need_chmod) {
6119 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6120 				left_mode);
6121 		if (ret < 0)
6122 			goto out;
6123 	}
6124 
6125 	ret = send_capabilities(sctx);
6126 	if (ret < 0)
6127 		goto out;
6128 
6129 	/*
6130 	 * If other directory inodes depended on our current directory
6131 	 * inode's move/rename, now do their move/rename operations.
6132 	 */
6133 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6134 		ret = apply_children_dir_moves(sctx);
6135 		if (ret)
6136 			goto out;
6137 		/*
6138 		 * Need to send that every time, no matter if it actually
6139 		 * changed between the two trees as we have done changes to
6140 		 * the inode before. If our inode is a directory and it's
6141 		 * waiting to be moved/renamed, we will send its utimes when
6142 		 * it's moved/renamed, therefore we don't need to do it here.
6143 		 */
6144 		sctx->send_progress = sctx->cur_ino + 1;
6145 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6146 		if (ret < 0)
6147 			goto out;
6148 	}
6149 
6150 out:
6151 	return ret;
6152 }
6153 
6154 struct parent_paths_ctx {
6155 	struct list_head *refs;
6156 	struct send_ctx *sctx;
6157 };
6158 
6159 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6160 			     void *ctx)
6161 {
6162 	struct parent_paths_ctx *ppctx = ctx;
6163 
6164 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6165 			  ppctx->refs);
6166 }
6167 
6168 /*
6169  * Issue unlink operations for all paths of the current inode found in the
6170  * parent snapshot.
6171  */
6172 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6173 {
6174 	LIST_HEAD(deleted_refs);
6175 	struct btrfs_path *path;
6176 	struct btrfs_root *root = sctx->parent_root;
6177 	struct btrfs_key key;
6178 	struct btrfs_key found_key;
6179 	struct parent_paths_ctx ctx;
6180 	int iter_ret = 0;
6181 	int ret;
6182 
6183 	path = alloc_path_for_send();
6184 	if (!path)
6185 		return -ENOMEM;
6186 
6187 	key.objectid = sctx->cur_ino;
6188 	key.type = BTRFS_INODE_REF_KEY;
6189 	key.offset = 0;
6190 
6191 	ctx.refs = &deleted_refs;
6192 	ctx.sctx = sctx;
6193 
6194 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6195 		if (found_key.objectid != key.objectid)
6196 			break;
6197 		if (found_key.type != key.type &&
6198 		    found_key.type != BTRFS_INODE_EXTREF_KEY)
6199 			break;
6200 
6201 		ret = iterate_inode_ref(root, path, &found_key, 1,
6202 					record_parent_ref, &ctx);
6203 		if (ret < 0)
6204 			goto out;
6205 	}
6206 	/* Catch error found during iteration */
6207 	if (iter_ret < 0) {
6208 		ret = iter_ret;
6209 		goto out;
6210 	}
6211 
6212 	while (!list_empty(&deleted_refs)) {
6213 		struct recorded_ref *ref;
6214 
6215 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6216 		ret = send_unlink(sctx, ref->full_path);
6217 		if (ret < 0)
6218 			goto out;
6219 		fs_path_free(ref->full_path);
6220 		list_del(&ref->list);
6221 		kfree(ref);
6222 	}
6223 	ret = 0;
6224 out:
6225 	btrfs_free_path(path);
6226 	if (ret)
6227 		__free_recorded_refs(&deleted_refs);
6228 	return ret;
6229 }
6230 
6231 static void close_current_inode(struct send_ctx *sctx)
6232 {
6233 	u64 i_size;
6234 
6235 	if (sctx->cur_inode == NULL)
6236 		return;
6237 
6238 	i_size = i_size_read(sctx->cur_inode);
6239 
6240 	/*
6241 	 * If we are doing an incremental send, we may have extents between the
6242 	 * last processed extent and the i_size that have not been processed
6243 	 * because they haven't changed but we may have read some of their pages
6244 	 * through readahead, see the comments at send_extent_data().
6245 	 */
6246 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6247 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6248 					   sctx->page_cache_clear_start,
6249 					   round_up(i_size, PAGE_SIZE) - 1);
6250 
6251 	iput(sctx->cur_inode);
6252 	sctx->cur_inode = NULL;
6253 }
6254 
6255 static int changed_inode(struct send_ctx *sctx,
6256 			 enum btrfs_compare_tree_result result)
6257 {
6258 	int ret = 0;
6259 	struct btrfs_key *key = sctx->cmp_key;
6260 	struct btrfs_inode_item *left_ii = NULL;
6261 	struct btrfs_inode_item *right_ii = NULL;
6262 	u64 left_gen = 0;
6263 	u64 right_gen = 0;
6264 
6265 	close_current_inode(sctx);
6266 
6267 	sctx->cur_ino = key->objectid;
6268 	sctx->cur_inode_new_gen = 0;
6269 	sctx->cur_inode_last_extent = (u64)-1;
6270 	sctx->cur_inode_next_write_offset = 0;
6271 	sctx->ignore_cur_inode = false;
6272 
6273 	/*
6274 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6275 	 * functions that the current inode's refs are not updated yet. Later,
6276 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6277 	 */
6278 	sctx->send_progress = sctx->cur_ino;
6279 
6280 	if (result == BTRFS_COMPARE_TREE_NEW ||
6281 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6282 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6283 				sctx->left_path->slots[0],
6284 				struct btrfs_inode_item);
6285 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6286 				left_ii);
6287 	} else {
6288 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6289 				sctx->right_path->slots[0],
6290 				struct btrfs_inode_item);
6291 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6292 				right_ii);
6293 	}
6294 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6295 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6296 				sctx->right_path->slots[0],
6297 				struct btrfs_inode_item);
6298 
6299 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6300 				right_ii);
6301 
6302 		/*
6303 		 * The cur_ino = root dir case is special here. We can't treat
6304 		 * the inode as deleted+reused because it would generate a
6305 		 * stream that tries to delete/mkdir the root dir.
6306 		 */
6307 		if (left_gen != right_gen &&
6308 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6309 			sctx->cur_inode_new_gen = 1;
6310 	}
6311 
6312 	/*
6313 	 * Normally we do not find inodes with a link count of zero (orphans)
6314 	 * because the most common case is to create a snapshot and use it
6315 	 * for a send operation. However other less common use cases involve
6316 	 * using a subvolume and send it after turning it to RO mode just
6317 	 * after deleting all hard links of a file while holding an open
6318 	 * file descriptor against it or turning a RO snapshot into RW mode,
6319 	 * keep an open file descriptor against a file, delete it and then
6320 	 * turn the snapshot back to RO mode before using it for a send
6321 	 * operation. So if we find such cases, ignore the inode and all its
6322 	 * items completely if it's a new inode, or if it's a changed inode
6323 	 * make sure all its previous paths (from the parent snapshot) are all
6324 	 * unlinked and all other the inode items are ignored.
6325 	 */
6326 	if (result == BTRFS_COMPARE_TREE_NEW ||
6327 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6328 		u32 nlinks;
6329 
6330 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6331 		if (nlinks == 0) {
6332 			sctx->ignore_cur_inode = true;
6333 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6334 				ret = btrfs_unlink_all_paths(sctx);
6335 			goto out;
6336 		}
6337 	}
6338 
6339 	if (result == BTRFS_COMPARE_TREE_NEW) {
6340 		sctx->cur_inode_gen = left_gen;
6341 		sctx->cur_inode_new = 1;
6342 		sctx->cur_inode_deleted = 0;
6343 		sctx->cur_inode_size = btrfs_inode_size(
6344 				sctx->left_path->nodes[0], left_ii);
6345 		sctx->cur_inode_mode = btrfs_inode_mode(
6346 				sctx->left_path->nodes[0], left_ii);
6347 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6348 				sctx->left_path->nodes[0], left_ii);
6349 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6350 			ret = send_create_inode_if_needed(sctx);
6351 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6352 		sctx->cur_inode_gen = right_gen;
6353 		sctx->cur_inode_new = 0;
6354 		sctx->cur_inode_deleted = 1;
6355 		sctx->cur_inode_size = btrfs_inode_size(
6356 				sctx->right_path->nodes[0], right_ii);
6357 		sctx->cur_inode_mode = btrfs_inode_mode(
6358 				sctx->right_path->nodes[0], right_ii);
6359 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6360 		/*
6361 		 * We need to do some special handling in case the inode was
6362 		 * reported as changed with a changed generation number. This
6363 		 * means that the original inode was deleted and new inode
6364 		 * reused the same inum. So we have to treat the old inode as
6365 		 * deleted and the new one as new.
6366 		 */
6367 		if (sctx->cur_inode_new_gen) {
6368 			/*
6369 			 * First, process the inode as if it was deleted.
6370 			 */
6371 			sctx->cur_inode_gen = right_gen;
6372 			sctx->cur_inode_new = 0;
6373 			sctx->cur_inode_deleted = 1;
6374 			sctx->cur_inode_size = btrfs_inode_size(
6375 					sctx->right_path->nodes[0], right_ii);
6376 			sctx->cur_inode_mode = btrfs_inode_mode(
6377 					sctx->right_path->nodes[0], right_ii);
6378 			ret = process_all_refs(sctx,
6379 					BTRFS_COMPARE_TREE_DELETED);
6380 			if (ret < 0)
6381 				goto out;
6382 
6383 			/*
6384 			 * Now process the inode as if it was new.
6385 			 */
6386 			sctx->cur_inode_gen = left_gen;
6387 			sctx->cur_inode_new = 1;
6388 			sctx->cur_inode_deleted = 0;
6389 			sctx->cur_inode_size = btrfs_inode_size(
6390 					sctx->left_path->nodes[0], left_ii);
6391 			sctx->cur_inode_mode = btrfs_inode_mode(
6392 					sctx->left_path->nodes[0], left_ii);
6393 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6394 					sctx->left_path->nodes[0], left_ii);
6395 			ret = send_create_inode_if_needed(sctx);
6396 			if (ret < 0)
6397 				goto out;
6398 
6399 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6400 			if (ret < 0)
6401 				goto out;
6402 			/*
6403 			 * Advance send_progress now as we did not get into
6404 			 * process_recorded_refs_if_needed in the new_gen case.
6405 			 */
6406 			sctx->send_progress = sctx->cur_ino + 1;
6407 
6408 			/*
6409 			 * Now process all extents and xattrs of the inode as if
6410 			 * they were all new.
6411 			 */
6412 			ret = process_all_extents(sctx);
6413 			if (ret < 0)
6414 				goto out;
6415 			ret = process_all_new_xattrs(sctx);
6416 			if (ret < 0)
6417 				goto out;
6418 		} else {
6419 			sctx->cur_inode_gen = left_gen;
6420 			sctx->cur_inode_new = 0;
6421 			sctx->cur_inode_new_gen = 0;
6422 			sctx->cur_inode_deleted = 0;
6423 			sctx->cur_inode_size = btrfs_inode_size(
6424 					sctx->left_path->nodes[0], left_ii);
6425 			sctx->cur_inode_mode = btrfs_inode_mode(
6426 					sctx->left_path->nodes[0], left_ii);
6427 		}
6428 	}
6429 
6430 out:
6431 	return ret;
6432 }
6433 
6434 /*
6435  * We have to process new refs before deleted refs, but compare_trees gives us
6436  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6437  * first and later process them in process_recorded_refs.
6438  * For the cur_inode_new_gen case, we skip recording completely because
6439  * changed_inode did already initiate processing of refs. The reason for this is
6440  * that in this case, compare_tree actually compares the refs of 2 different
6441  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6442  * refs of the right tree as deleted and all refs of the left tree as new.
6443  */
6444 static int changed_ref(struct send_ctx *sctx,
6445 		       enum btrfs_compare_tree_result result)
6446 {
6447 	int ret = 0;
6448 
6449 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6450 		inconsistent_snapshot_error(sctx, result, "reference");
6451 		return -EIO;
6452 	}
6453 
6454 	if (!sctx->cur_inode_new_gen &&
6455 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6456 		if (result == BTRFS_COMPARE_TREE_NEW)
6457 			ret = record_new_ref(sctx);
6458 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6459 			ret = record_deleted_ref(sctx);
6460 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6461 			ret = record_changed_ref(sctx);
6462 	}
6463 
6464 	return ret;
6465 }
6466 
6467 /*
6468  * Process new/deleted/changed xattrs. We skip processing in the
6469  * cur_inode_new_gen case because changed_inode did already initiate processing
6470  * of xattrs. The reason is the same as in changed_ref
6471  */
6472 static int changed_xattr(struct send_ctx *sctx,
6473 			 enum btrfs_compare_tree_result result)
6474 {
6475 	int ret = 0;
6476 
6477 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6478 		inconsistent_snapshot_error(sctx, result, "xattr");
6479 		return -EIO;
6480 	}
6481 
6482 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6483 		if (result == BTRFS_COMPARE_TREE_NEW)
6484 			ret = process_new_xattr(sctx);
6485 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6486 			ret = process_deleted_xattr(sctx);
6487 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6488 			ret = process_changed_xattr(sctx);
6489 	}
6490 
6491 	return ret;
6492 }
6493 
6494 /*
6495  * Process new/deleted/changed extents. We skip processing in the
6496  * cur_inode_new_gen case because changed_inode did already initiate processing
6497  * of extents. The reason is the same as in changed_ref
6498  */
6499 static int changed_extent(struct send_ctx *sctx,
6500 			  enum btrfs_compare_tree_result result)
6501 {
6502 	int ret = 0;
6503 
6504 	/*
6505 	 * We have found an extent item that changed without the inode item
6506 	 * having changed. This can happen either after relocation (where the
6507 	 * disk_bytenr of an extent item is replaced at
6508 	 * relocation.c:replace_file_extents()) or after deduplication into a
6509 	 * file in both the parent and send snapshots (where an extent item can
6510 	 * get modified or replaced with a new one). Note that deduplication
6511 	 * updates the inode item, but it only changes the iversion (sequence
6512 	 * field in the inode item) of the inode, so if a file is deduplicated
6513 	 * the same amount of times in both the parent and send snapshots, its
6514 	 * iversion becomes the same in both snapshots, whence the inode item is
6515 	 * the same on both snapshots.
6516 	 */
6517 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6518 		return 0;
6519 
6520 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6521 		if (result != BTRFS_COMPARE_TREE_DELETED)
6522 			ret = process_extent(sctx, sctx->left_path,
6523 					sctx->cmp_key);
6524 	}
6525 
6526 	return ret;
6527 }
6528 
6529 static int dir_changed(struct send_ctx *sctx, u64 dir)
6530 {
6531 	u64 orig_gen, new_gen;
6532 	int ret;
6533 
6534 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6535 			     NULL, NULL);
6536 	if (ret)
6537 		return ret;
6538 
6539 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6540 			     NULL, NULL, NULL);
6541 	if (ret)
6542 		return ret;
6543 
6544 	return (orig_gen != new_gen) ? 1 : 0;
6545 }
6546 
6547 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6548 			struct btrfs_key *key)
6549 {
6550 	struct btrfs_inode_extref *extref;
6551 	struct extent_buffer *leaf;
6552 	u64 dirid = 0, last_dirid = 0;
6553 	unsigned long ptr;
6554 	u32 item_size;
6555 	u32 cur_offset = 0;
6556 	int ref_name_len;
6557 	int ret = 0;
6558 
6559 	/* Easy case, just check this one dirid */
6560 	if (key->type == BTRFS_INODE_REF_KEY) {
6561 		dirid = key->offset;
6562 
6563 		ret = dir_changed(sctx, dirid);
6564 		goto out;
6565 	}
6566 
6567 	leaf = path->nodes[0];
6568 	item_size = btrfs_item_size(leaf, path->slots[0]);
6569 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6570 	while (cur_offset < item_size) {
6571 		extref = (struct btrfs_inode_extref *)(ptr +
6572 						       cur_offset);
6573 		dirid = btrfs_inode_extref_parent(leaf, extref);
6574 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6575 		cur_offset += ref_name_len + sizeof(*extref);
6576 		if (dirid == last_dirid)
6577 			continue;
6578 		ret = dir_changed(sctx, dirid);
6579 		if (ret)
6580 			break;
6581 		last_dirid = dirid;
6582 	}
6583 out:
6584 	return ret;
6585 }
6586 
6587 /*
6588  * Updates compare related fields in sctx and simply forwards to the actual
6589  * changed_xxx functions.
6590  */
6591 static int changed_cb(struct btrfs_path *left_path,
6592 		      struct btrfs_path *right_path,
6593 		      struct btrfs_key *key,
6594 		      enum btrfs_compare_tree_result result,
6595 		      struct send_ctx *sctx)
6596 {
6597 	int ret = 0;
6598 
6599 	/*
6600 	 * We can not hold the commit root semaphore here. This is because in
6601 	 * the case of sending and receiving to the same filesystem, using a
6602 	 * pipe, could result in a deadlock:
6603 	 *
6604 	 * 1) The task running send blocks on the pipe because it's full;
6605 	 *
6606 	 * 2) The task running receive, which is the only consumer of the pipe,
6607 	 *    is waiting for a transaction commit (for example due to a space
6608 	 *    reservation when doing a write or triggering a transaction commit
6609 	 *    when creating a subvolume);
6610 	 *
6611 	 * 3) The transaction is waiting to write lock the commit root semaphore,
6612 	 *    but can not acquire it since it's being held at 1).
6613 	 *
6614 	 * Down this call chain we write to the pipe through kernel_write().
6615 	 * The same type of problem can also happen when sending to a file that
6616 	 * is stored in the same filesystem - when reserving space for a write
6617 	 * into the file, we can trigger a transaction commit.
6618 	 *
6619 	 * Our caller has supplied us with clones of leaves from the send and
6620 	 * parent roots, so we're safe here from a concurrent relocation and
6621 	 * further reallocation of metadata extents while we are here. Below we
6622 	 * also assert that the leaves are clones.
6623 	 */
6624 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
6625 
6626 	/*
6627 	 * We always have a send root, so left_path is never NULL. We will not
6628 	 * have a leaf when we have reached the end of the send root but have
6629 	 * not yet reached the end of the parent root.
6630 	 */
6631 	if (left_path->nodes[0])
6632 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6633 				&left_path->nodes[0]->bflags));
6634 	/*
6635 	 * When doing a full send we don't have a parent root, so right_path is
6636 	 * NULL. When doing an incremental send, we may have reached the end of
6637 	 * the parent root already, so we don't have a leaf at right_path.
6638 	 */
6639 	if (right_path && right_path->nodes[0])
6640 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6641 				&right_path->nodes[0]->bflags));
6642 
6643 	if (result == BTRFS_COMPARE_TREE_SAME) {
6644 		if (key->type == BTRFS_INODE_REF_KEY ||
6645 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6646 			ret = compare_refs(sctx, left_path, key);
6647 			if (!ret)
6648 				return 0;
6649 			if (ret < 0)
6650 				return ret;
6651 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6652 			return maybe_send_hole(sctx, left_path, key);
6653 		} else {
6654 			return 0;
6655 		}
6656 		result = BTRFS_COMPARE_TREE_CHANGED;
6657 		ret = 0;
6658 	}
6659 
6660 	sctx->left_path = left_path;
6661 	sctx->right_path = right_path;
6662 	sctx->cmp_key = key;
6663 
6664 	ret = finish_inode_if_needed(sctx, 0);
6665 	if (ret < 0)
6666 		goto out;
6667 
6668 	/* Ignore non-FS objects */
6669 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6670 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6671 		goto out;
6672 
6673 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6674 		ret = changed_inode(sctx, result);
6675 	} else if (!sctx->ignore_cur_inode) {
6676 		if (key->type == BTRFS_INODE_REF_KEY ||
6677 		    key->type == BTRFS_INODE_EXTREF_KEY)
6678 			ret = changed_ref(sctx, result);
6679 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6680 			ret = changed_xattr(sctx, result);
6681 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6682 			ret = changed_extent(sctx, result);
6683 	}
6684 
6685 out:
6686 	return ret;
6687 }
6688 
6689 static int search_key_again(const struct send_ctx *sctx,
6690 			    struct btrfs_root *root,
6691 			    struct btrfs_path *path,
6692 			    const struct btrfs_key *key)
6693 {
6694 	int ret;
6695 
6696 	if (!path->need_commit_sem)
6697 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
6698 
6699 	/*
6700 	 * Roots used for send operations are readonly and no one can add,
6701 	 * update or remove keys from them, so we should be able to find our
6702 	 * key again. The only exception is deduplication, which can operate on
6703 	 * readonly roots and add, update or remove keys to/from them - but at
6704 	 * the moment we don't allow it to run in parallel with send.
6705 	 */
6706 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6707 	ASSERT(ret <= 0);
6708 	if (ret > 0) {
6709 		btrfs_print_tree(path->nodes[path->lowest_level], false);
6710 		btrfs_err(root->fs_info,
6711 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
6712 			  key->objectid, key->type, key->offset,
6713 			  (root == sctx->parent_root ? "parent" : "send"),
6714 			  root->root_key.objectid, path->lowest_level,
6715 			  path->slots[path->lowest_level]);
6716 		return -EUCLEAN;
6717 	}
6718 
6719 	return ret;
6720 }
6721 
6722 static int full_send_tree(struct send_ctx *sctx)
6723 {
6724 	int ret;
6725 	struct btrfs_root *send_root = sctx->send_root;
6726 	struct btrfs_key key;
6727 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6728 	struct btrfs_path *path;
6729 
6730 	path = alloc_path_for_send();
6731 	if (!path)
6732 		return -ENOMEM;
6733 	path->reada = READA_FORWARD_ALWAYS;
6734 
6735 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6736 	key.type = BTRFS_INODE_ITEM_KEY;
6737 	key.offset = 0;
6738 
6739 	down_read(&fs_info->commit_root_sem);
6740 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
6741 	up_read(&fs_info->commit_root_sem);
6742 
6743 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6744 	if (ret < 0)
6745 		goto out;
6746 	if (ret)
6747 		goto out_finish;
6748 
6749 	while (1) {
6750 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6751 
6752 		ret = changed_cb(path, NULL, &key,
6753 				 BTRFS_COMPARE_TREE_NEW, sctx);
6754 		if (ret < 0)
6755 			goto out;
6756 
6757 		down_read(&fs_info->commit_root_sem);
6758 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
6759 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
6760 			up_read(&fs_info->commit_root_sem);
6761 			/*
6762 			 * A transaction used for relocating a block group was
6763 			 * committed or is about to finish its commit. Release
6764 			 * our path (leaf) and restart the search, so that we
6765 			 * avoid operating on any file extent items that are
6766 			 * stale, with a disk_bytenr that reflects a pre
6767 			 * relocation value. This way we avoid as much as
6768 			 * possible to fallback to regular writes when checking
6769 			 * if we can clone file ranges.
6770 			 */
6771 			btrfs_release_path(path);
6772 			ret = search_key_again(sctx, send_root, path, &key);
6773 			if (ret < 0)
6774 				goto out;
6775 		} else {
6776 			up_read(&fs_info->commit_root_sem);
6777 		}
6778 
6779 		ret = btrfs_next_item(send_root, path);
6780 		if (ret < 0)
6781 			goto out;
6782 		if (ret) {
6783 			ret  = 0;
6784 			break;
6785 		}
6786 	}
6787 
6788 out_finish:
6789 	ret = finish_inode_if_needed(sctx, 1);
6790 
6791 out:
6792 	btrfs_free_path(path);
6793 	return ret;
6794 }
6795 
6796 static int replace_node_with_clone(struct btrfs_path *path, int level)
6797 {
6798 	struct extent_buffer *clone;
6799 
6800 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
6801 	if (!clone)
6802 		return -ENOMEM;
6803 
6804 	free_extent_buffer(path->nodes[level]);
6805 	path->nodes[level] = clone;
6806 
6807 	return 0;
6808 }
6809 
6810 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
6811 {
6812 	struct extent_buffer *eb;
6813 	struct extent_buffer *parent = path->nodes[*level];
6814 	int slot = path->slots[*level];
6815 	const int nritems = btrfs_header_nritems(parent);
6816 	u64 reada_max;
6817 	u64 reada_done = 0;
6818 
6819 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
6820 
6821 	BUG_ON(*level == 0);
6822 	eb = btrfs_read_node_slot(parent, slot);
6823 	if (IS_ERR(eb))
6824 		return PTR_ERR(eb);
6825 
6826 	/*
6827 	 * Trigger readahead for the next leaves we will process, so that it is
6828 	 * very likely that when we need them they are already in memory and we
6829 	 * will not block on disk IO. For nodes we only do readahead for one,
6830 	 * since the time window between processing nodes is typically larger.
6831 	 */
6832 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
6833 
6834 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
6835 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
6836 			btrfs_readahead_node_child(parent, slot);
6837 			reada_done += eb->fs_info->nodesize;
6838 		}
6839 	}
6840 
6841 	path->nodes[*level - 1] = eb;
6842 	path->slots[*level - 1] = 0;
6843 	(*level)--;
6844 
6845 	if (*level == 0)
6846 		return replace_node_with_clone(path, 0);
6847 
6848 	return 0;
6849 }
6850 
6851 static int tree_move_next_or_upnext(struct btrfs_path *path,
6852 				    int *level, int root_level)
6853 {
6854 	int ret = 0;
6855 	int nritems;
6856 	nritems = btrfs_header_nritems(path->nodes[*level]);
6857 
6858 	path->slots[*level]++;
6859 
6860 	while (path->slots[*level] >= nritems) {
6861 		if (*level == root_level) {
6862 			path->slots[*level] = nritems - 1;
6863 			return -1;
6864 		}
6865 
6866 		/* move upnext */
6867 		path->slots[*level] = 0;
6868 		free_extent_buffer(path->nodes[*level]);
6869 		path->nodes[*level] = NULL;
6870 		(*level)++;
6871 		path->slots[*level]++;
6872 
6873 		nritems = btrfs_header_nritems(path->nodes[*level]);
6874 		ret = 1;
6875 	}
6876 	return ret;
6877 }
6878 
6879 /*
6880  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6881  * or down.
6882  */
6883 static int tree_advance(struct btrfs_path *path,
6884 			int *level, int root_level,
6885 			int allow_down,
6886 			struct btrfs_key *key,
6887 			u64 reada_min_gen)
6888 {
6889 	int ret;
6890 
6891 	if (*level == 0 || !allow_down) {
6892 		ret = tree_move_next_or_upnext(path, level, root_level);
6893 	} else {
6894 		ret = tree_move_down(path, level, reada_min_gen);
6895 	}
6896 
6897 	/*
6898 	 * Even if we have reached the end of a tree, ret is -1, update the key
6899 	 * anyway, so that in case we need to restart due to a block group
6900 	 * relocation, we can assert that the last key of the root node still
6901 	 * exists in the tree.
6902 	 */
6903 	if (*level == 0)
6904 		btrfs_item_key_to_cpu(path->nodes[*level], key,
6905 				      path->slots[*level]);
6906 	else
6907 		btrfs_node_key_to_cpu(path->nodes[*level], key,
6908 				      path->slots[*level]);
6909 
6910 	return ret;
6911 }
6912 
6913 static int tree_compare_item(struct btrfs_path *left_path,
6914 			     struct btrfs_path *right_path,
6915 			     char *tmp_buf)
6916 {
6917 	int cmp;
6918 	int len1, len2;
6919 	unsigned long off1, off2;
6920 
6921 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
6922 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
6923 	if (len1 != len2)
6924 		return 1;
6925 
6926 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6927 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6928 				right_path->slots[0]);
6929 
6930 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6931 
6932 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6933 	if (cmp)
6934 		return 1;
6935 	return 0;
6936 }
6937 
6938 /*
6939  * A transaction used for relocating a block group was committed or is about to
6940  * finish its commit. Release our paths and restart the search, so that we are
6941  * not using stale extent buffers:
6942  *
6943  * 1) For levels > 0, we are only holding references of extent buffers, without
6944  *    any locks on them, which does not prevent them from having been relocated
6945  *    and reallocated after the last time we released the commit root semaphore.
6946  *    The exception are the root nodes, for which we always have a clone, see
6947  *    the comment at btrfs_compare_trees();
6948  *
6949  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
6950  *    we are safe from the concurrent relocation and reallocation. However they
6951  *    can have file extent items with a pre relocation disk_bytenr value, so we
6952  *    restart the start from the current commit roots and clone the new leaves so
6953  *    that we get the post relocation disk_bytenr values. Not doing so, could
6954  *    make us clone the wrong data in case there are new extents using the old
6955  *    disk_bytenr that happen to be shared.
6956  */
6957 static int restart_after_relocation(struct btrfs_path *left_path,
6958 				    struct btrfs_path *right_path,
6959 				    const struct btrfs_key *left_key,
6960 				    const struct btrfs_key *right_key,
6961 				    int left_level,
6962 				    int right_level,
6963 				    const struct send_ctx *sctx)
6964 {
6965 	int root_level;
6966 	int ret;
6967 
6968 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
6969 
6970 	btrfs_release_path(left_path);
6971 	btrfs_release_path(right_path);
6972 
6973 	/*
6974 	 * Since keys can not be added or removed to/from our roots because they
6975 	 * are readonly and we do not allow deduplication to run in parallel
6976 	 * (which can add, remove or change keys), the layout of the trees should
6977 	 * not change.
6978 	 */
6979 	left_path->lowest_level = left_level;
6980 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
6981 	if (ret < 0)
6982 		return ret;
6983 
6984 	right_path->lowest_level = right_level;
6985 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
6986 	if (ret < 0)
6987 		return ret;
6988 
6989 	/*
6990 	 * If the lowest level nodes are leaves, clone them so that they can be
6991 	 * safely used by changed_cb() while not under the protection of the
6992 	 * commit root semaphore, even if relocation and reallocation happens in
6993 	 * parallel.
6994 	 */
6995 	if (left_level == 0) {
6996 		ret = replace_node_with_clone(left_path, 0);
6997 		if (ret < 0)
6998 			return ret;
6999 	}
7000 
7001 	if (right_level == 0) {
7002 		ret = replace_node_with_clone(right_path, 0);
7003 		if (ret < 0)
7004 			return ret;
7005 	}
7006 
7007 	/*
7008 	 * Now clone the root nodes (unless they happen to be the leaves we have
7009 	 * already cloned). This is to protect against concurrent snapshotting of
7010 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7011 	 */
7012 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7013 	if (root_level > 0) {
7014 		ret = replace_node_with_clone(left_path, root_level);
7015 		if (ret < 0)
7016 			return ret;
7017 	}
7018 
7019 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7020 	if (root_level > 0) {
7021 		ret = replace_node_with_clone(right_path, root_level);
7022 		if (ret < 0)
7023 			return ret;
7024 	}
7025 
7026 	return 0;
7027 }
7028 
7029 /*
7030  * This function compares two trees and calls the provided callback for
7031  * every changed/new/deleted item it finds.
7032  * If shared tree blocks are encountered, whole subtrees are skipped, making
7033  * the compare pretty fast on snapshotted subvolumes.
7034  *
7035  * This currently works on commit roots only. As commit roots are read only,
7036  * we don't do any locking. The commit roots are protected with transactions.
7037  * Transactions are ended and rejoined when a commit is tried in between.
7038  *
7039  * This function checks for modifications done to the trees while comparing.
7040  * If it detects a change, it aborts immediately.
7041  */
7042 static int btrfs_compare_trees(struct btrfs_root *left_root,
7043 			struct btrfs_root *right_root, struct send_ctx *sctx)
7044 {
7045 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7046 	int ret;
7047 	int cmp;
7048 	struct btrfs_path *left_path = NULL;
7049 	struct btrfs_path *right_path = NULL;
7050 	struct btrfs_key left_key;
7051 	struct btrfs_key right_key;
7052 	char *tmp_buf = NULL;
7053 	int left_root_level;
7054 	int right_root_level;
7055 	int left_level;
7056 	int right_level;
7057 	int left_end_reached = 0;
7058 	int right_end_reached = 0;
7059 	int advance_left = 0;
7060 	int advance_right = 0;
7061 	u64 left_blockptr;
7062 	u64 right_blockptr;
7063 	u64 left_gen;
7064 	u64 right_gen;
7065 	u64 reada_min_gen;
7066 
7067 	left_path = btrfs_alloc_path();
7068 	if (!left_path) {
7069 		ret = -ENOMEM;
7070 		goto out;
7071 	}
7072 	right_path = btrfs_alloc_path();
7073 	if (!right_path) {
7074 		ret = -ENOMEM;
7075 		goto out;
7076 	}
7077 
7078 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7079 	if (!tmp_buf) {
7080 		ret = -ENOMEM;
7081 		goto out;
7082 	}
7083 
7084 	left_path->search_commit_root = 1;
7085 	left_path->skip_locking = 1;
7086 	right_path->search_commit_root = 1;
7087 	right_path->skip_locking = 1;
7088 
7089 	/*
7090 	 * Strategy: Go to the first items of both trees. Then do
7091 	 *
7092 	 * If both trees are at level 0
7093 	 *   Compare keys of current items
7094 	 *     If left < right treat left item as new, advance left tree
7095 	 *       and repeat
7096 	 *     If left > right treat right item as deleted, advance right tree
7097 	 *       and repeat
7098 	 *     If left == right do deep compare of items, treat as changed if
7099 	 *       needed, advance both trees and repeat
7100 	 * If both trees are at the same level but not at level 0
7101 	 *   Compare keys of current nodes/leafs
7102 	 *     If left < right advance left tree and repeat
7103 	 *     If left > right advance right tree and repeat
7104 	 *     If left == right compare blockptrs of the next nodes/leafs
7105 	 *       If they match advance both trees but stay at the same level
7106 	 *         and repeat
7107 	 *       If they don't match advance both trees while allowing to go
7108 	 *         deeper and repeat
7109 	 * If tree levels are different
7110 	 *   Advance the tree that needs it and repeat
7111 	 *
7112 	 * Advancing a tree means:
7113 	 *   If we are at level 0, try to go to the next slot. If that's not
7114 	 *   possible, go one level up and repeat. Stop when we found a level
7115 	 *   where we could go to the next slot. We may at this point be on a
7116 	 *   node or a leaf.
7117 	 *
7118 	 *   If we are not at level 0 and not on shared tree blocks, go one
7119 	 *   level deeper.
7120 	 *
7121 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7122 	 *   the right if possible or go up and right.
7123 	 */
7124 
7125 	down_read(&fs_info->commit_root_sem);
7126 	left_level = btrfs_header_level(left_root->commit_root);
7127 	left_root_level = left_level;
7128 	/*
7129 	 * We clone the root node of the send and parent roots to prevent races
7130 	 * with snapshot creation of these roots. Snapshot creation COWs the
7131 	 * root node of a tree, so after the transaction is committed the old
7132 	 * extent can be reallocated while this send operation is still ongoing.
7133 	 * So we clone them, under the commit root semaphore, to be race free.
7134 	 */
7135 	left_path->nodes[left_level] =
7136 			btrfs_clone_extent_buffer(left_root->commit_root);
7137 	if (!left_path->nodes[left_level]) {
7138 		ret = -ENOMEM;
7139 		goto out_unlock;
7140 	}
7141 
7142 	right_level = btrfs_header_level(right_root->commit_root);
7143 	right_root_level = right_level;
7144 	right_path->nodes[right_level] =
7145 			btrfs_clone_extent_buffer(right_root->commit_root);
7146 	if (!right_path->nodes[right_level]) {
7147 		ret = -ENOMEM;
7148 		goto out_unlock;
7149 	}
7150 	/*
7151 	 * Our right root is the parent root, while the left root is the "send"
7152 	 * root. We know that all new nodes/leaves in the left root must have
7153 	 * a generation greater than the right root's generation, so we trigger
7154 	 * readahead for those nodes and leaves of the left root, as we know we
7155 	 * will need to read them at some point.
7156 	 */
7157 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7158 
7159 	if (left_level == 0)
7160 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7161 				&left_key, left_path->slots[left_level]);
7162 	else
7163 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7164 				&left_key, left_path->slots[left_level]);
7165 	if (right_level == 0)
7166 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7167 				&right_key, right_path->slots[right_level]);
7168 	else
7169 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7170 				&right_key, right_path->slots[right_level]);
7171 
7172 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7173 
7174 	while (1) {
7175 		if (need_resched() ||
7176 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7177 			up_read(&fs_info->commit_root_sem);
7178 			cond_resched();
7179 			down_read(&fs_info->commit_root_sem);
7180 		}
7181 
7182 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7183 			ret = restart_after_relocation(left_path, right_path,
7184 						       &left_key, &right_key,
7185 						       left_level, right_level,
7186 						       sctx);
7187 			if (ret < 0)
7188 				goto out_unlock;
7189 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7190 		}
7191 
7192 		if (advance_left && !left_end_reached) {
7193 			ret = tree_advance(left_path, &left_level,
7194 					left_root_level,
7195 					advance_left != ADVANCE_ONLY_NEXT,
7196 					&left_key, reada_min_gen);
7197 			if (ret == -1)
7198 				left_end_reached = ADVANCE;
7199 			else if (ret < 0)
7200 				goto out_unlock;
7201 			advance_left = 0;
7202 		}
7203 		if (advance_right && !right_end_reached) {
7204 			ret = tree_advance(right_path, &right_level,
7205 					right_root_level,
7206 					advance_right != ADVANCE_ONLY_NEXT,
7207 					&right_key, reada_min_gen);
7208 			if (ret == -1)
7209 				right_end_reached = ADVANCE;
7210 			else if (ret < 0)
7211 				goto out_unlock;
7212 			advance_right = 0;
7213 		}
7214 
7215 		if (left_end_reached && right_end_reached) {
7216 			ret = 0;
7217 			goto out_unlock;
7218 		} else if (left_end_reached) {
7219 			if (right_level == 0) {
7220 				up_read(&fs_info->commit_root_sem);
7221 				ret = changed_cb(left_path, right_path,
7222 						&right_key,
7223 						BTRFS_COMPARE_TREE_DELETED,
7224 						sctx);
7225 				if (ret < 0)
7226 					goto out;
7227 				down_read(&fs_info->commit_root_sem);
7228 			}
7229 			advance_right = ADVANCE;
7230 			continue;
7231 		} else if (right_end_reached) {
7232 			if (left_level == 0) {
7233 				up_read(&fs_info->commit_root_sem);
7234 				ret = changed_cb(left_path, right_path,
7235 						&left_key,
7236 						BTRFS_COMPARE_TREE_NEW,
7237 						sctx);
7238 				if (ret < 0)
7239 					goto out;
7240 				down_read(&fs_info->commit_root_sem);
7241 			}
7242 			advance_left = ADVANCE;
7243 			continue;
7244 		}
7245 
7246 		if (left_level == 0 && right_level == 0) {
7247 			up_read(&fs_info->commit_root_sem);
7248 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7249 			if (cmp < 0) {
7250 				ret = changed_cb(left_path, right_path,
7251 						&left_key,
7252 						BTRFS_COMPARE_TREE_NEW,
7253 						sctx);
7254 				advance_left = ADVANCE;
7255 			} else if (cmp > 0) {
7256 				ret = changed_cb(left_path, right_path,
7257 						&right_key,
7258 						BTRFS_COMPARE_TREE_DELETED,
7259 						sctx);
7260 				advance_right = ADVANCE;
7261 			} else {
7262 				enum btrfs_compare_tree_result result;
7263 
7264 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7265 				ret = tree_compare_item(left_path, right_path,
7266 							tmp_buf);
7267 				if (ret)
7268 					result = BTRFS_COMPARE_TREE_CHANGED;
7269 				else
7270 					result = BTRFS_COMPARE_TREE_SAME;
7271 				ret = changed_cb(left_path, right_path,
7272 						 &left_key, result, sctx);
7273 				advance_left = ADVANCE;
7274 				advance_right = ADVANCE;
7275 			}
7276 
7277 			if (ret < 0)
7278 				goto out;
7279 			down_read(&fs_info->commit_root_sem);
7280 		} else if (left_level == right_level) {
7281 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7282 			if (cmp < 0) {
7283 				advance_left = ADVANCE;
7284 			} else if (cmp > 0) {
7285 				advance_right = ADVANCE;
7286 			} else {
7287 				left_blockptr = btrfs_node_blockptr(
7288 						left_path->nodes[left_level],
7289 						left_path->slots[left_level]);
7290 				right_blockptr = btrfs_node_blockptr(
7291 						right_path->nodes[right_level],
7292 						right_path->slots[right_level]);
7293 				left_gen = btrfs_node_ptr_generation(
7294 						left_path->nodes[left_level],
7295 						left_path->slots[left_level]);
7296 				right_gen = btrfs_node_ptr_generation(
7297 						right_path->nodes[right_level],
7298 						right_path->slots[right_level]);
7299 				if (left_blockptr == right_blockptr &&
7300 				    left_gen == right_gen) {
7301 					/*
7302 					 * As we're on a shared block, don't
7303 					 * allow to go deeper.
7304 					 */
7305 					advance_left = ADVANCE_ONLY_NEXT;
7306 					advance_right = ADVANCE_ONLY_NEXT;
7307 				} else {
7308 					advance_left = ADVANCE;
7309 					advance_right = ADVANCE;
7310 				}
7311 			}
7312 		} else if (left_level < right_level) {
7313 			advance_right = ADVANCE;
7314 		} else {
7315 			advance_left = ADVANCE;
7316 		}
7317 	}
7318 
7319 out_unlock:
7320 	up_read(&fs_info->commit_root_sem);
7321 out:
7322 	btrfs_free_path(left_path);
7323 	btrfs_free_path(right_path);
7324 	kvfree(tmp_buf);
7325 	return ret;
7326 }
7327 
7328 static int send_subvol(struct send_ctx *sctx)
7329 {
7330 	int ret;
7331 
7332 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7333 		ret = send_header(sctx);
7334 		if (ret < 0)
7335 			goto out;
7336 	}
7337 
7338 	ret = send_subvol_begin(sctx);
7339 	if (ret < 0)
7340 		goto out;
7341 
7342 	if (sctx->parent_root) {
7343 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7344 		if (ret < 0)
7345 			goto out;
7346 		ret = finish_inode_if_needed(sctx, 1);
7347 		if (ret < 0)
7348 			goto out;
7349 	} else {
7350 		ret = full_send_tree(sctx);
7351 		if (ret < 0)
7352 			goto out;
7353 	}
7354 
7355 out:
7356 	free_recorded_refs(sctx);
7357 	return ret;
7358 }
7359 
7360 /*
7361  * If orphan cleanup did remove any orphans from a root, it means the tree
7362  * was modified and therefore the commit root is not the same as the current
7363  * root anymore. This is a problem, because send uses the commit root and
7364  * therefore can see inode items that don't exist in the current root anymore,
7365  * and for example make calls to btrfs_iget, which will do tree lookups based
7366  * on the current root and not on the commit root. Those lookups will fail,
7367  * returning a -ESTALE error, and making send fail with that error. So make
7368  * sure a send does not see any orphans we have just removed, and that it will
7369  * see the same inodes regardless of whether a transaction commit happened
7370  * before it started (meaning that the commit root will be the same as the
7371  * current root) or not.
7372  */
7373 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7374 {
7375 	int i;
7376 	struct btrfs_trans_handle *trans = NULL;
7377 
7378 again:
7379 	if (sctx->parent_root &&
7380 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7381 		goto commit_trans;
7382 
7383 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7384 		if (sctx->clone_roots[i].root->node !=
7385 		    sctx->clone_roots[i].root->commit_root)
7386 			goto commit_trans;
7387 
7388 	if (trans)
7389 		return btrfs_end_transaction(trans);
7390 
7391 	return 0;
7392 
7393 commit_trans:
7394 	/* Use any root, all fs roots will get their commit roots updated. */
7395 	if (!trans) {
7396 		trans = btrfs_join_transaction(sctx->send_root);
7397 		if (IS_ERR(trans))
7398 			return PTR_ERR(trans);
7399 		goto again;
7400 	}
7401 
7402 	return btrfs_commit_transaction(trans);
7403 }
7404 
7405 /*
7406  * Make sure any existing dellaloc is flushed for any root used by a send
7407  * operation so that we do not miss any data and we do not race with writeback
7408  * finishing and changing a tree while send is using the tree. This could
7409  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7410  * a send operation then uses the subvolume.
7411  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7412  */
7413 static int flush_delalloc_roots(struct send_ctx *sctx)
7414 {
7415 	struct btrfs_root *root = sctx->parent_root;
7416 	int ret;
7417 	int i;
7418 
7419 	if (root) {
7420 		ret = btrfs_start_delalloc_snapshot(root, false);
7421 		if (ret)
7422 			return ret;
7423 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7424 	}
7425 
7426 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7427 		root = sctx->clone_roots[i].root;
7428 		ret = btrfs_start_delalloc_snapshot(root, false);
7429 		if (ret)
7430 			return ret;
7431 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7432 	}
7433 
7434 	return 0;
7435 }
7436 
7437 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7438 {
7439 	spin_lock(&root->root_item_lock);
7440 	root->send_in_progress--;
7441 	/*
7442 	 * Not much left to do, we don't know why it's unbalanced and
7443 	 * can't blindly reset it to 0.
7444 	 */
7445 	if (root->send_in_progress < 0)
7446 		btrfs_err(root->fs_info,
7447 			  "send_in_progress unbalanced %d root %llu",
7448 			  root->send_in_progress, root->root_key.objectid);
7449 	spin_unlock(&root->root_item_lock);
7450 }
7451 
7452 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7453 {
7454 	btrfs_warn_rl(root->fs_info,
7455 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7456 		      root->root_key.objectid, root->dedupe_in_progress);
7457 }
7458 
7459 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
7460 {
7461 	int ret = 0;
7462 	struct btrfs_root *send_root = BTRFS_I(inode)->root;
7463 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7464 	struct btrfs_root *clone_root;
7465 	struct send_ctx *sctx = NULL;
7466 	u32 i;
7467 	u64 *clone_sources_tmp = NULL;
7468 	int clone_sources_to_rollback = 0;
7469 	size_t alloc_size;
7470 	int sort_clone_roots = 0;
7471 
7472 	if (!capable(CAP_SYS_ADMIN))
7473 		return -EPERM;
7474 
7475 	/*
7476 	 * The subvolume must remain read-only during send, protect against
7477 	 * making it RW. This also protects against deletion.
7478 	 */
7479 	spin_lock(&send_root->root_item_lock);
7480 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7481 		dedupe_in_progress_warn(send_root);
7482 		spin_unlock(&send_root->root_item_lock);
7483 		return -EAGAIN;
7484 	}
7485 	send_root->send_in_progress++;
7486 	spin_unlock(&send_root->root_item_lock);
7487 
7488 	/*
7489 	 * Userspace tools do the checks and warn the user if it's
7490 	 * not RO.
7491 	 */
7492 	if (!btrfs_root_readonly(send_root)) {
7493 		ret = -EPERM;
7494 		goto out;
7495 	}
7496 
7497 	/*
7498 	 * Check that we don't overflow at later allocations, we request
7499 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7500 	 * access_ok.
7501 	 */
7502 	if (arg->clone_sources_count >
7503 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7504 		ret = -EINVAL;
7505 		goto out;
7506 	}
7507 
7508 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7509 		ret = -EINVAL;
7510 		goto out;
7511 	}
7512 
7513 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7514 	if (!sctx) {
7515 		ret = -ENOMEM;
7516 		goto out;
7517 	}
7518 
7519 	INIT_LIST_HEAD(&sctx->new_refs);
7520 	INIT_LIST_HEAD(&sctx->deleted_refs);
7521 	xa_init_flags(&sctx->name_cache, GFP_KERNEL);
7522 	INIT_LIST_HEAD(&sctx->name_cache_list);
7523 
7524 	sctx->flags = arg->flags;
7525 
7526 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
7527 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
7528 			ret = -EPROTO;
7529 			goto out;
7530 		}
7531 		/* Zero means "use the highest version" */
7532 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
7533 	} else {
7534 		sctx->proto = 1;
7535 	}
7536 
7537 	sctx->send_filp = fget(arg->send_fd);
7538 	if (!sctx->send_filp) {
7539 		ret = -EBADF;
7540 		goto out;
7541 	}
7542 
7543 	sctx->send_root = send_root;
7544 	/*
7545 	 * Unlikely but possible, if the subvolume is marked for deletion but
7546 	 * is slow to remove the directory entry, send can still be started
7547 	 */
7548 	if (btrfs_root_dead(sctx->send_root)) {
7549 		ret = -EPERM;
7550 		goto out;
7551 	}
7552 
7553 	sctx->clone_roots_cnt = arg->clone_sources_count;
7554 
7555 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7556 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7557 	if (!sctx->send_buf) {
7558 		ret = -ENOMEM;
7559 		goto out;
7560 	}
7561 
7562 	sctx->pending_dir_moves = RB_ROOT;
7563 	sctx->waiting_dir_moves = RB_ROOT;
7564 	sctx->orphan_dirs = RB_ROOT;
7565 
7566 	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7567 				     arg->clone_sources_count + 1,
7568 				     GFP_KERNEL);
7569 	if (!sctx->clone_roots) {
7570 		ret = -ENOMEM;
7571 		goto out;
7572 	}
7573 
7574 	alloc_size = array_size(sizeof(*arg->clone_sources),
7575 				arg->clone_sources_count);
7576 
7577 	if (arg->clone_sources_count) {
7578 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7579 		if (!clone_sources_tmp) {
7580 			ret = -ENOMEM;
7581 			goto out;
7582 		}
7583 
7584 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7585 				alloc_size);
7586 		if (ret) {
7587 			ret = -EFAULT;
7588 			goto out;
7589 		}
7590 
7591 		for (i = 0; i < arg->clone_sources_count; i++) {
7592 			clone_root = btrfs_get_fs_root(fs_info,
7593 						clone_sources_tmp[i], true);
7594 			if (IS_ERR(clone_root)) {
7595 				ret = PTR_ERR(clone_root);
7596 				goto out;
7597 			}
7598 			spin_lock(&clone_root->root_item_lock);
7599 			if (!btrfs_root_readonly(clone_root) ||
7600 			    btrfs_root_dead(clone_root)) {
7601 				spin_unlock(&clone_root->root_item_lock);
7602 				btrfs_put_root(clone_root);
7603 				ret = -EPERM;
7604 				goto out;
7605 			}
7606 			if (clone_root->dedupe_in_progress) {
7607 				dedupe_in_progress_warn(clone_root);
7608 				spin_unlock(&clone_root->root_item_lock);
7609 				btrfs_put_root(clone_root);
7610 				ret = -EAGAIN;
7611 				goto out;
7612 			}
7613 			clone_root->send_in_progress++;
7614 			spin_unlock(&clone_root->root_item_lock);
7615 
7616 			sctx->clone_roots[i].root = clone_root;
7617 			clone_sources_to_rollback = i + 1;
7618 		}
7619 		kvfree(clone_sources_tmp);
7620 		clone_sources_tmp = NULL;
7621 	}
7622 
7623 	if (arg->parent_root) {
7624 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7625 						      true);
7626 		if (IS_ERR(sctx->parent_root)) {
7627 			ret = PTR_ERR(sctx->parent_root);
7628 			goto out;
7629 		}
7630 
7631 		spin_lock(&sctx->parent_root->root_item_lock);
7632 		sctx->parent_root->send_in_progress++;
7633 		if (!btrfs_root_readonly(sctx->parent_root) ||
7634 				btrfs_root_dead(sctx->parent_root)) {
7635 			spin_unlock(&sctx->parent_root->root_item_lock);
7636 			ret = -EPERM;
7637 			goto out;
7638 		}
7639 		if (sctx->parent_root->dedupe_in_progress) {
7640 			dedupe_in_progress_warn(sctx->parent_root);
7641 			spin_unlock(&sctx->parent_root->root_item_lock);
7642 			ret = -EAGAIN;
7643 			goto out;
7644 		}
7645 		spin_unlock(&sctx->parent_root->root_item_lock);
7646 	}
7647 
7648 	/*
7649 	 * Clones from send_root are allowed, but only if the clone source
7650 	 * is behind the current send position. This is checked while searching
7651 	 * for possible clone sources.
7652 	 */
7653 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7654 		btrfs_grab_root(sctx->send_root);
7655 
7656 	/* We do a bsearch later */
7657 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7658 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7659 			NULL);
7660 	sort_clone_roots = 1;
7661 
7662 	ret = flush_delalloc_roots(sctx);
7663 	if (ret)
7664 		goto out;
7665 
7666 	ret = ensure_commit_roots_uptodate(sctx);
7667 	if (ret)
7668 		goto out;
7669 
7670 	ret = send_subvol(sctx);
7671 	if (ret < 0)
7672 		goto out;
7673 
7674 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7675 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7676 		if (ret < 0)
7677 			goto out;
7678 		ret = send_cmd(sctx);
7679 		if (ret < 0)
7680 			goto out;
7681 	}
7682 
7683 out:
7684 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7685 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7686 		struct rb_node *n;
7687 		struct pending_dir_move *pm;
7688 
7689 		n = rb_first(&sctx->pending_dir_moves);
7690 		pm = rb_entry(n, struct pending_dir_move, node);
7691 		while (!list_empty(&pm->list)) {
7692 			struct pending_dir_move *pm2;
7693 
7694 			pm2 = list_first_entry(&pm->list,
7695 					       struct pending_dir_move, list);
7696 			free_pending_move(sctx, pm2);
7697 		}
7698 		free_pending_move(sctx, pm);
7699 	}
7700 
7701 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7702 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7703 		struct rb_node *n;
7704 		struct waiting_dir_move *dm;
7705 
7706 		n = rb_first(&sctx->waiting_dir_moves);
7707 		dm = rb_entry(n, struct waiting_dir_move, node);
7708 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7709 		kfree(dm);
7710 	}
7711 
7712 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7713 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7714 		struct rb_node *n;
7715 		struct orphan_dir_info *odi;
7716 
7717 		n = rb_first(&sctx->orphan_dirs);
7718 		odi = rb_entry(n, struct orphan_dir_info, node);
7719 		free_orphan_dir_info(sctx, odi);
7720 	}
7721 
7722 	if (sort_clone_roots) {
7723 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7724 			btrfs_root_dec_send_in_progress(
7725 					sctx->clone_roots[i].root);
7726 			btrfs_put_root(sctx->clone_roots[i].root);
7727 		}
7728 	} else {
7729 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7730 			btrfs_root_dec_send_in_progress(
7731 					sctx->clone_roots[i].root);
7732 			btrfs_put_root(sctx->clone_roots[i].root);
7733 		}
7734 
7735 		btrfs_root_dec_send_in_progress(send_root);
7736 	}
7737 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7738 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7739 		btrfs_put_root(sctx->parent_root);
7740 	}
7741 
7742 	kvfree(clone_sources_tmp);
7743 
7744 	if (sctx) {
7745 		if (sctx->send_filp)
7746 			fput(sctx->send_filp);
7747 
7748 		kvfree(sctx->clone_roots);
7749 		kvfree(sctx->send_buf);
7750 
7751 		name_cache_free(sctx);
7752 
7753 		close_current_inode(sctx);
7754 
7755 		kfree(sctx);
7756 	}
7757 
7758 	return ret;
7759 }
7760