1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/vmalloc.h> 28 #include <linux/string.h> 29 #include <linux/compat.h> 30 #include <linux/crc32c.h> 31 32 #include "send.h" 33 #include "backref.h" 34 #include "locking.h" 35 #include "disk-io.h" 36 #include "btrfs_inode.h" 37 #include "transaction.h" 38 #include "compression.h" 39 40 /* 41 * A fs_path is a helper to dynamically build path names with unknown size. 42 * It reallocates the internal buffer on demand. 43 * It allows fast adding of path elements on the right side (normal path) and 44 * fast adding to the left side (reversed path). A reversed path can also be 45 * unreversed if needed. 46 */ 47 struct fs_path { 48 union { 49 struct { 50 char *start; 51 char *end; 52 53 char *buf; 54 unsigned short buf_len:15; 55 unsigned short reversed:1; 56 char inline_buf[]; 57 }; 58 /* 59 * Average path length does not exceed 200 bytes, we'll have 60 * better packing in the slab and higher chance to satisfy 61 * a allocation later during send. 62 */ 63 char pad[256]; 64 }; 65 }; 66 #define FS_PATH_INLINE_SIZE \ 67 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 68 69 70 /* reused for each extent */ 71 struct clone_root { 72 struct btrfs_root *root; 73 u64 ino; 74 u64 offset; 75 76 u64 found_refs; 77 }; 78 79 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 80 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 81 82 struct send_ctx { 83 struct file *send_filp; 84 loff_t send_off; 85 char *send_buf; 86 u32 send_size; 87 u32 send_max_size; 88 u64 total_send_size; 89 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 90 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 91 92 struct btrfs_root *send_root; 93 struct btrfs_root *parent_root; 94 struct clone_root *clone_roots; 95 int clone_roots_cnt; 96 97 /* current state of the compare_tree call */ 98 struct btrfs_path *left_path; 99 struct btrfs_path *right_path; 100 struct btrfs_key *cmp_key; 101 102 /* 103 * infos of the currently processed inode. In case of deleted inodes, 104 * these are the values from the deleted inode. 105 */ 106 u64 cur_ino; 107 u64 cur_inode_gen; 108 int cur_inode_new; 109 int cur_inode_new_gen; 110 int cur_inode_deleted; 111 u64 cur_inode_size; 112 u64 cur_inode_mode; 113 u64 cur_inode_rdev; 114 u64 cur_inode_last_extent; 115 u64 cur_inode_next_write_offset; 116 117 u64 send_progress; 118 119 struct list_head new_refs; 120 struct list_head deleted_refs; 121 122 struct radix_tree_root name_cache; 123 struct list_head name_cache_list; 124 int name_cache_size; 125 126 struct file_ra_state ra; 127 128 char *read_buf; 129 130 /* 131 * We process inodes by their increasing order, so if before an 132 * incremental send we reverse the parent/child relationship of 133 * directories such that a directory with a lower inode number was 134 * the parent of a directory with a higher inode number, and the one 135 * becoming the new parent got renamed too, we can't rename/move the 136 * directory with lower inode number when we finish processing it - we 137 * must process the directory with higher inode number first, then 138 * rename/move it and then rename/move the directory with lower inode 139 * number. Example follows. 140 * 141 * Tree state when the first send was performed: 142 * 143 * . 144 * |-- a (ino 257) 145 * |-- b (ino 258) 146 * | 147 * | 148 * |-- c (ino 259) 149 * | |-- d (ino 260) 150 * | 151 * |-- c2 (ino 261) 152 * 153 * Tree state when the second (incremental) send is performed: 154 * 155 * . 156 * |-- a (ino 257) 157 * |-- b (ino 258) 158 * |-- c2 (ino 261) 159 * |-- d2 (ino 260) 160 * |-- cc (ino 259) 161 * 162 * The sequence of steps that lead to the second state was: 163 * 164 * mv /a/b/c/d /a/b/c2/d2 165 * mv /a/b/c /a/b/c2/d2/cc 166 * 167 * "c" has lower inode number, but we can't move it (2nd mv operation) 168 * before we move "d", which has higher inode number. 169 * 170 * So we just memorize which move/rename operations must be performed 171 * later when their respective parent is processed and moved/renamed. 172 */ 173 174 /* Indexed by parent directory inode number. */ 175 struct rb_root pending_dir_moves; 176 177 /* 178 * Reverse index, indexed by the inode number of a directory that 179 * is waiting for the move/rename of its immediate parent before its 180 * own move/rename can be performed. 181 */ 182 struct rb_root waiting_dir_moves; 183 184 /* 185 * A directory that is going to be rm'ed might have a child directory 186 * which is in the pending directory moves index above. In this case, 187 * the directory can only be removed after the move/rename of its child 188 * is performed. Example: 189 * 190 * Parent snapshot: 191 * 192 * . (ino 256) 193 * |-- a/ (ino 257) 194 * |-- b/ (ino 258) 195 * |-- c/ (ino 259) 196 * | |-- x/ (ino 260) 197 * | 198 * |-- y/ (ino 261) 199 * 200 * Send snapshot: 201 * 202 * . (ino 256) 203 * |-- a/ (ino 257) 204 * |-- b/ (ino 258) 205 * |-- YY/ (ino 261) 206 * |-- x/ (ino 260) 207 * 208 * Sequence of steps that lead to the send snapshot: 209 * rm -f /a/b/c/foo.txt 210 * mv /a/b/y /a/b/YY 211 * mv /a/b/c/x /a/b/YY 212 * rmdir /a/b/c 213 * 214 * When the child is processed, its move/rename is delayed until its 215 * parent is processed (as explained above), but all other operations 216 * like update utimes, chown, chgrp, etc, are performed and the paths 217 * that it uses for those operations must use the orphanized name of 218 * its parent (the directory we're going to rm later), so we need to 219 * memorize that name. 220 * 221 * Indexed by the inode number of the directory to be deleted. 222 */ 223 struct rb_root orphan_dirs; 224 }; 225 226 struct pending_dir_move { 227 struct rb_node node; 228 struct list_head list; 229 u64 parent_ino; 230 u64 ino; 231 u64 gen; 232 struct list_head update_refs; 233 }; 234 235 struct waiting_dir_move { 236 struct rb_node node; 237 u64 ino; 238 /* 239 * There might be some directory that could not be removed because it 240 * was waiting for this directory inode to be moved first. Therefore 241 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 242 */ 243 u64 rmdir_ino; 244 bool orphanized; 245 }; 246 247 struct orphan_dir_info { 248 struct rb_node node; 249 u64 ino; 250 u64 gen; 251 }; 252 253 struct name_cache_entry { 254 struct list_head list; 255 /* 256 * radix_tree has only 32bit entries but we need to handle 64bit inums. 257 * We use the lower 32bit of the 64bit inum to store it in the tree. If 258 * more then one inum would fall into the same entry, we use radix_list 259 * to store the additional entries. radix_list is also used to store 260 * entries where two entries have the same inum but different 261 * generations. 262 */ 263 struct list_head radix_list; 264 u64 ino; 265 u64 gen; 266 u64 parent_ino; 267 u64 parent_gen; 268 int ret; 269 int need_later_update; 270 int name_len; 271 char name[]; 272 }; 273 274 __cold 275 static void inconsistent_snapshot_error(struct send_ctx *sctx, 276 enum btrfs_compare_tree_result result, 277 const char *what) 278 { 279 const char *result_string; 280 281 switch (result) { 282 case BTRFS_COMPARE_TREE_NEW: 283 result_string = "new"; 284 break; 285 case BTRFS_COMPARE_TREE_DELETED: 286 result_string = "deleted"; 287 break; 288 case BTRFS_COMPARE_TREE_CHANGED: 289 result_string = "updated"; 290 break; 291 case BTRFS_COMPARE_TREE_SAME: 292 ASSERT(0); 293 result_string = "unchanged"; 294 break; 295 default: 296 ASSERT(0); 297 result_string = "unexpected"; 298 } 299 300 btrfs_err(sctx->send_root->fs_info, 301 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 302 result_string, what, sctx->cmp_key->objectid, 303 sctx->send_root->root_key.objectid, 304 (sctx->parent_root ? 305 sctx->parent_root->root_key.objectid : 0)); 306 } 307 308 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 309 310 static struct waiting_dir_move * 311 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 312 313 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 314 315 static int need_send_hole(struct send_ctx *sctx) 316 { 317 return (sctx->parent_root && !sctx->cur_inode_new && 318 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 319 S_ISREG(sctx->cur_inode_mode)); 320 } 321 322 static void fs_path_reset(struct fs_path *p) 323 { 324 if (p->reversed) { 325 p->start = p->buf + p->buf_len - 1; 326 p->end = p->start; 327 *p->start = 0; 328 } else { 329 p->start = p->buf; 330 p->end = p->start; 331 *p->start = 0; 332 } 333 } 334 335 static struct fs_path *fs_path_alloc(void) 336 { 337 struct fs_path *p; 338 339 p = kmalloc(sizeof(*p), GFP_KERNEL); 340 if (!p) 341 return NULL; 342 p->reversed = 0; 343 p->buf = p->inline_buf; 344 p->buf_len = FS_PATH_INLINE_SIZE; 345 fs_path_reset(p); 346 return p; 347 } 348 349 static struct fs_path *fs_path_alloc_reversed(void) 350 { 351 struct fs_path *p; 352 353 p = fs_path_alloc(); 354 if (!p) 355 return NULL; 356 p->reversed = 1; 357 fs_path_reset(p); 358 return p; 359 } 360 361 static void fs_path_free(struct fs_path *p) 362 { 363 if (!p) 364 return; 365 if (p->buf != p->inline_buf) 366 kfree(p->buf); 367 kfree(p); 368 } 369 370 static int fs_path_len(struct fs_path *p) 371 { 372 return p->end - p->start; 373 } 374 375 static int fs_path_ensure_buf(struct fs_path *p, int len) 376 { 377 char *tmp_buf; 378 int path_len; 379 int old_buf_len; 380 381 len++; 382 383 if (p->buf_len >= len) 384 return 0; 385 386 if (len > PATH_MAX) { 387 WARN_ON(1); 388 return -ENOMEM; 389 } 390 391 path_len = p->end - p->start; 392 old_buf_len = p->buf_len; 393 394 /* 395 * First time the inline_buf does not suffice 396 */ 397 if (p->buf == p->inline_buf) { 398 tmp_buf = kmalloc(len, GFP_KERNEL); 399 if (tmp_buf) 400 memcpy(tmp_buf, p->buf, old_buf_len); 401 } else { 402 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 403 } 404 if (!tmp_buf) 405 return -ENOMEM; 406 p->buf = tmp_buf; 407 /* 408 * The real size of the buffer is bigger, this will let the fast path 409 * happen most of the time 410 */ 411 p->buf_len = ksize(p->buf); 412 413 if (p->reversed) { 414 tmp_buf = p->buf + old_buf_len - path_len - 1; 415 p->end = p->buf + p->buf_len - 1; 416 p->start = p->end - path_len; 417 memmove(p->start, tmp_buf, path_len + 1); 418 } else { 419 p->start = p->buf; 420 p->end = p->start + path_len; 421 } 422 return 0; 423 } 424 425 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 426 char **prepared) 427 { 428 int ret; 429 int new_len; 430 431 new_len = p->end - p->start + name_len; 432 if (p->start != p->end) 433 new_len++; 434 ret = fs_path_ensure_buf(p, new_len); 435 if (ret < 0) 436 goto out; 437 438 if (p->reversed) { 439 if (p->start != p->end) 440 *--p->start = '/'; 441 p->start -= name_len; 442 *prepared = p->start; 443 } else { 444 if (p->start != p->end) 445 *p->end++ = '/'; 446 *prepared = p->end; 447 p->end += name_len; 448 *p->end = 0; 449 } 450 451 out: 452 return ret; 453 } 454 455 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 456 { 457 int ret; 458 char *prepared; 459 460 ret = fs_path_prepare_for_add(p, name_len, &prepared); 461 if (ret < 0) 462 goto out; 463 memcpy(prepared, name, name_len); 464 465 out: 466 return ret; 467 } 468 469 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 470 { 471 int ret; 472 char *prepared; 473 474 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 475 if (ret < 0) 476 goto out; 477 memcpy(prepared, p2->start, p2->end - p2->start); 478 479 out: 480 return ret; 481 } 482 483 static int fs_path_add_from_extent_buffer(struct fs_path *p, 484 struct extent_buffer *eb, 485 unsigned long off, int len) 486 { 487 int ret; 488 char *prepared; 489 490 ret = fs_path_prepare_for_add(p, len, &prepared); 491 if (ret < 0) 492 goto out; 493 494 read_extent_buffer(eb, prepared, off, len); 495 496 out: 497 return ret; 498 } 499 500 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 501 { 502 int ret; 503 504 p->reversed = from->reversed; 505 fs_path_reset(p); 506 507 ret = fs_path_add_path(p, from); 508 509 return ret; 510 } 511 512 513 static void fs_path_unreverse(struct fs_path *p) 514 { 515 char *tmp; 516 int len; 517 518 if (!p->reversed) 519 return; 520 521 tmp = p->start; 522 len = p->end - p->start; 523 p->start = p->buf; 524 p->end = p->start + len; 525 memmove(p->start, tmp, len + 1); 526 p->reversed = 0; 527 } 528 529 static struct btrfs_path *alloc_path_for_send(void) 530 { 531 struct btrfs_path *path; 532 533 path = btrfs_alloc_path(); 534 if (!path) 535 return NULL; 536 path->search_commit_root = 1; 537 path->skip_locking = 1; 538 path->need_commit_sem = 1; 539 return path; 540 } 541 542 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 543 { 544 int ret; 545 u32 pos = 0; 546 547 while (pos < len) { 548 ret = kernel_write(filp, buf + pos, len - pos, off); 549 /* TODO handle that correctly */ 550 /*if (ret == -ERESTARTSYS) { 551 continue; 552 }*/ 553 if (ret < 0) 554 return ret; 555 if (ret == 0) { 556 return -EIO; 557 } 558 pos += ret; 559 } 560 561 return 0; 562 } 563 564 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 565 { 566 struct btrfs_tlv_header *hdr; 567 int total_len = sizeof(*hdr) + len; 568 int left = sctx->send_max_size - sctx->send_size; 569 570 if (unlikely(left < total_len)) 571 return -EOVERFLOW; 572 573 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 574 hdr->tlv_type = cpu_to_le16(attr); 575 hdr->tlv_len = cpu_to_le16(len); 576 memcpy(hdr + 1, data, len); 577 sctx->send_size += total_len; 578 579 return 0; 580 } 581 582 #define TLV_PUT_DEFINE_INT(bits) \ 583 static int tlv_put_u##bits(struct send_ctx *sctx, \ 584 u##bits attr, u##bits value) \ 585 { \ 586 __le##bits __tmp = cpu_to_le##bits(value); \ 587 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 588 } 589 590 TLV_PUT_DEFINE_INT(64) 591 592 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 593 const char *str, int len) 594 { 595 if (len == -1) 596 len = strlen(str); 597 return tlv_put(sctx, attr, str, len); 598 } 599 600 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 601 const u8 *uuid) 602 { 603 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 604 } 605 606 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 607 struct extent_buffer *eb, 608 struct btrfs_timespec *ts) 609 { 610 struct btrfs_timespec bts; 611 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 612 return tlv_put(sctx, attr, &bts, sizeof(bts)); 613 } 614 615 616 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 617 do { \ 618 ret = tlv_put(sctx, attrtype, data, attrlen); \ 619 if (ret < 0) \ 620 goto tlv_put_failure; \ 621 } while (0) 622 623 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 624 do { \ 625 ret = tlv_put_u##bits(sctx, attrtype, value); \ 626 if (ret < 0) \ 627 goto tlv_put_failure; \ 628 } while (0) 629 630 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 631 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 632 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 633 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 634 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 635 do { \ 636 ret = tlv_put_string(sctx, attrtype, str, len); \ 637 if (ret < 0) \ 638 goto tlv_put_failure; \ 639 } while (0) 640 #define TLV_PUT_PATH(sctx, attrtype, p) \ 641 do { \ 642 ret = tlv_put_string(sctx, attrtype, p->start, \ 643 p->end - p->start); \ 644 if (ret < 0) \ 645 goto tlv_put_failure; \ 646 } while(0) 647 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 648 do { \ 649 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 650 if (ret < 0) \ 651 goto tlv_put_failure; \ 652 } while (0) 653 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 654 do { \ 655 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 656 if (ret < 0) \ 657 goto tlv_put_failure; \ 658 } while (0) 659 660 static int send_header(struct send_ctx *sctx) 661 { 662 struct btrfs_stream_header hdr; 663 664 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 665 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 666 667 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 668 &sctx->send_off); 669 } 670 671 /* 672 * For each command/item we want to send to userspace, we call this function. 673 */ 674 static int begin_cmd(struct send_ctx *sctx, int cmd) 675 { 676 struct btrfs_cmd_header *hdr; 677 678 if (WARN_ON(!sctx->send_buf)) 679 return -EINVAL; 680 681 BUG_ON(sctx->send_size); 682 683 sctx->send_size += sizeof(*hdr); 684 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 685 hdr->cmd = cpu_to_le16(cmd); 686 687 return 0; 688 } 689 690 static int send_cmd(struct send_ctx *sctx) 691 { 692 int ret; 693 struct btrfs_cmd_header *hdr; 694 u32 crc; 695 696 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 697 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 698 hdr->crc = 0; 699 700 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 701 hdr->crc = cpu_to_le32(crc); 702 703 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 704 &sctx->send_off); 705 706 sctx->total_send_size += sctx->send_size; 707 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 708 sctx->send_size = 0; 709 710 return ret; 711 } 712 713 /* 714 * Sends a move instruction to user space 715 */ 716 static int send_rename(struct send_ctx *sctx, 717 struct fs_path *from, struct fs_path *to) 718 { 719 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 720 int ret; 721 722 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 723 724 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 725 if (ret < 0) 726 goto out; 727 728 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 730 731 ret = send_cmd(sctx); 732 733 tlv_put_failure: 734 out: 735 return ret; 736 } 737 738 /* 739 * Sends a link instruction to user space 740 */ 741 static int send_link(struct send_ctx *sctx, 742 struct fs_path *path, struct fs_path *lnk) 743 { 744 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 745 int ret; 746 747 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 748 749 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 750 if (ret < 0) 751 goto out; 752 753 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 754 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 755 756 ret = send_cmd(sctx); 757 758 tlv_put_failure: 759 out: 760 return ret; 761 } 762 763 /* 764 * Sends an unlink instruction to user space 765 */ 766 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 767 { 768 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 769 int ret; 770 771 btrfs_debug(fs_info, "send_unlink %s", path->start); 772 773 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 774 if (ret < 0) 775 goto out; 776 777 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 778 779 ret = send_cmd(sctx); 780 781 tlv_put_failure: 782 out: 783 return ret; 784 } 785 786 /* 787 * Sends a rmdir instruction to user space 788 */ 789 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 790 { 791 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 792 int ret; 793 794 btrfs_debug(fs_info, "send_rmdir %s", path->start); 795 796 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 797 if (ret < 0) 798 goto out; 799 800 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 801 802 ret = send_cmd(sctx); 803 804 tlv_put_failure: 805 out: 806 return ret; 807 } 808 809 /* 810 * Helper function to retrieve some fields from an inode item. 811 */ 812 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 813 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 814 u64 *gid, u64 *rdev) 815 { 816 int ret; 817 struct btrfs_inode_item *ii; 818 struct btrfs_key key; 819 820 key.objectid = ino; 821 key.type = BTRFS_INODE_ITEM_KEY; 822 key.offset = 0; 823 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 824 if (ret) { 825 if (ret > 0) 826 ret = -ENOENT; 827 return ret; 828 } 829 830 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 831 struct btrfs_inode_item); 832 if (size) 833 *size = btrfs_inode_size(path->nodes[0], ii); 834 if (gen) 835 *gen = btrfs_inode_generation(path->nodes[0], ii); 836 if (mode) 837 *mode = btrfs_inode_mode(path->nodes[0], ii); 838 if (uid) 839 *uid = btrfs_inode_uid(path->nodes[0], ii); 840 if (gid) 841 *gid = btrfs_inode_gid(path->nodes[0], ii); 842 if (rdev) 843 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 844 845 return ret; 846 } 847 848 static int get_inode_info(struct btrfs_root *root, 849 u64 ino, u64 *size, u64 *gen, 850 u64 *mode, u64 *uid, u64 *gid, 851 u64 *rdev) 852 { 853 struct btrfs_path *path; 854 int ret; 855 856 path = alloc_path_for_send(); 857 if (!path) 858 return -ENOMEM; 859 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 860 rdev); 861 btrfs_free_path(path); 862 return ret; 863 } 864 865 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 866 struct fs_path *p, 867 void *ctx); 868 869 /* 870 * Helper function to iterate the entries in ONE btrfs_inode_ref or 871 * btrfs_inode_extref. 872 * The iterate callback may return a non zero value to stop iteration. This can 873 * be a negative value for error codes or 1 to simply stop it. 874 * 875 * path must point to the INODE_REF or INODE_EXTREF when called. 876 */ 877 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 878 struct btrfs_key *found_key, int resolve, 879 iterate_inode_ref_t iterate, void *ctx) 880 { 881 struct extent_buffer *eb = path->nodes[0]; 882 struct btrfs_item *item; 883 struct btrfs_inode_ref *iref; 884 struct btrfs_inode_extref *extref; 885 struct btrfs_path *tmp_path; 886 struct fs_path *p; 887 u32 cur = 0; 888 u32 total; 889 int slot = path->slots[0]; 890 u32 name_len; 891 char *start; 892 int ret = 0; 893 int num = 0; 894 int index; 895 u64 dir; 896 unsigned long name_off; 897 unsigned long elem_size; 898 unsigned long ptr; 899 900 p = fs_path_alloc_reversed(); 901 if (!p) 902 return -ENOMEM; 903 904 tmp_path = alloc_path_for_send(); 905 if (!tmp_path) { 906 fs_path_free(p); 907 return -ENOMEM; 908 } 909 910 911 if (found_key->type == BTRFS_INODE_REF_KEY) { 912 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 913 struct btrfs_inode_ref); 914 item = btrfs_item_nr(slot); 915 total = btrfs_item_size(eb, item); 916 elem_size = sizeof(*iref); 917 } else { 918 ptr = btrfs_item_ptr_offset(eb, slot); 919 total = btrfs_item_size_nr(eb, slot); 920 elem_size = sizeof(*extref); 921 } 922 923 while (cur < total) { 924 fs_path_reset(p); 925 926 if (found_key->type == BTRFS_INODE_REF_KEY) { 927 iref = (struct btrfs_inode_ref *)(ptr + cur); 928 name_len = btrfs_inode_ref_name_len(eb, iref); 929 name_off = (unsigned long)(iref + 1); 930 index = btrfs_inode_ref_index(eb, iref); 931 dir = found_key->offset; 932 } else { 933 extref = (struct btrfs_inode_extref *)(ptr + cur); 934 name_len = btrfs_inode_extref_name_len(eb, extref); 935 name_off = (unsigned long)&extref->name; 936 index = btrfs_inode_extref_index(eb, extref); 937 dir = btrfs_inode_extref_parent(eb, extref); 938 } 939 940 if (resolve) { 941 start = btrfs_ref_to_path(root, tmp_path, name_len, 942 name_off, eb, dir, 943 p->buf, p->buf_len); 944 if (IS_ERR(start)) { 945 ret = PTR_ERR(start); 946 goto out; 947 } 948 if (start < p->buf) { 949 /* overflow , try again with larger buffer */ 950 ret = fs_path_ensure_buf(p, 951 p->buf_len + p->buf - start); 952 if (ret < 0) 953 goto out; 954 start = btrfs_ref_to_path(root, tmp_path, 955 name_len, name_off, 956 eb, dir, 957 p->buf, p->buf_len); 958 if (IS_ERR(start)) { 959 ret = PTR_ERR(start); 960 goto out; 961 } 962 BUG_ON(start < p->buf); 963 } 964 p->start = start; 965 } else { 966 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 967 name_len); 968 if (ret < 0) 969 goto out; 970 } 971 972 cur += elem_size + name_len; 973 ret = iterate(num, dir, index, p, ctx); 974 if (ret) 975 goto out; 976 num++; 977 } 978 979 out: 980 btrfs_free_path(tmp_path); 981 fs_path_free(p); 982 return ret; 983 } 984 985 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 986 const char *name, int name_len, 987 const char *data, int data_len, 988 u8 type, void *ctx); 989 990 /* 991 * Helper function to iterate the entries in ONE btrfs_dir_item. 992 * The iterate callback may return a non zero value to stop iteration. This can 993 * be a negative value for error codes or 1 to simply stop it. 994 * 995 * path must point to the dir item when called. 996 */ 997 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 998 iterate_dir_item_t iterate, void *ctx) 999 { 1000 int ret = 0; 1001 struct extent_buffer *eb; 1002 struct btrfs_item *item; 1003 struct btrfs_dir_item *di; 1004 struct btrfs_key di_key; 1005 char *buf = NULL; 1006 int buf_len; 1007 u32 name_len; 1008 u32 data_len; 1009 u32 cur; 1010 u32 len; 1011 u32 total; 1012 int slot; 1013 int num; 1014 u8 type; 1015 1016 /* 1017 * Start with a small buffer (1 page). If later we end up needing more 1018 * space, which can happen for xattrs on a fs with a leaf size greater 1019 * then the page size, attempt to increase the buffer. Typically xattr 1020 * values are small. 1021 */ 1022 buf_len = PATH_MAX; 1023 buf = kmalloc(buf_len, GFP_KERNEL); 1024 if (!buf) { 1025 ret = -ENOMEM; 1026 goto out; 1027 } 1028 1029 eb = path->nodes[0]; 1030 slot = path->slots[0]; 1031 item = btrfs_item_nr(slot); 1032 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1033 cur = 0; 1034 len = 0; 1035 total = btrfs_item_size(eb, item); 1036 1037 num = 0; 1038 while (cur < total) { 1039 name_len = btrfs_dir_name_len(eb, di); 1040 data_len = btrfs_dir_data_len(eb, di); 1041 type = btrfs_dir_type(eb, di); 1042 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1043 1044 if (type == BTRFS_FT_XATTR) { 1045 if (name_len > XATTR_NAME_MAX) { 1046 ret = -ENAMETOOLONG; 1047 goto out; 1048 } 1049 if (name_len + data_len > 1050 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1051 ret = -E2BIG; 1052 goto out; 1053 } 1054 } else { 1055 /* 1056 * Path too long 1057 */ 1058 if (name_len + data_len > PATH_MAX) { 1059 ret = -ENAMETOOLONG; 1060 goto out; 1061 } 1062 } 1063 1064 if (name_len + data_len > buf_len) { 1065 buf_len = name_len + data_len; 1066 if (is_vmalloc_addr(buf)) { 1067 vfree(buf); 1068 buf = NULL; 1069 } else { 1070 char *tmp = krealloc(buf, buf_len, 1071 GFP_KERNEL | __GFP_NOWARN); 1072 1073 if (!tmp) 1074 kfree(buf); 1075 buf = tmp; 1076 } 1077 if (!buf) { 1078 buf = kvmalloc(buf_len, GFP_KERNEL); 1079 if (!buf) { 1080 ret = -ENOMEM; 1081 goto out; 1082 } 1083 } 1084 } 1085 1086 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1087 name_len + data_len); 1088 1089 len = sizeof(*di) + name_len + data_len; 1090 di = (struct btrfs_dir_item *)((char *)di + len); 1091 cur += len; 1092 1093 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1094 data_len, type, ctx); 1095 if (ret < 0) 1096 goto out; 1097 if (ret) { 1098 ret = 0; 1099 goto out; 1100 } 1101 1102 num++; 1103 } 1104 1105 out: 1106 kvfree(buf); 1107 return ret; 1108 } 1109 1110 static int __copy_first_ref(int num, u64 dir, int index, 1111 struct fs_path *p, void *ctx) 1112 { 1113 int ret; 1114 struct fs_path *pt = ctx; 1115 1116 ret = fs_path_copy(pt, p); 1117 if (ret < 0) 1118 return ret; 1119 1120 /* we want the first only */ 1121 return 1; 1122 } 1123 1124 /* 1125 * Retrieve the first path of an inode. If an inode has more then one 1126 * ref/hardlink, this is ignored. 1127 */ 1128 static int get_inode_path(struct btrfs_root *root, 1129 u64 ino, struct fs_path *path) 1130 { 1131 int ret; 1132 struct btrfs_key key, found_key; 1133 struct btrfs_path *p; 1134 1135 p = alloc_path_for_send(); 1136 if (!p) 1137 return -ENOMEM; 1138 1139 fs_path_reset(path); 1140 1141 key.objectid = ino; 1142 key.type = BTRFS_INODE_REF_KEY; 1143 key.offset = 0; 1144 1145 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1146 if (ret < 0) 1147 goto out; 1148 if (ret) { 1149 ret = 1; 1150 goto out; 1151 } 1152 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1153 if (found_key.objectid != ino || 1154 (found_key.type != BTRFS_INODE_REF_KEY && 1155 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1156 ret = -ENOENT; 1157 goto out; 1158 } 1159 1160 ret = iterate_inode_ref(root, p, &found_key, 1, 1161 __copy_first_ref, path); 1162 if (ret < 0) 1163 goto out; 1164 ret = 0; 1165 1166 out: 1167 btrfs_free_path(p); 1168 return ret; 1169 } 1170 1171 struct backref_ctx { 1172 struct send_ctx *sctx; 1173 1174 struct btrfs_path *path; 1175 /* number of total found references */ 1176 u64 found; 1177 1178 /* 1179 * used for clones found in send_root. clones found behind cur_objectid 1180 * and cur_offset are not considered as allowed clones. 1181 */ 1182 u64 cur_objectid; 1183 u64 cur_offset; 1184 1185 /* may be truncated in case it's the last extent in a file */ 1186 u64 extent_len; 1187 1188 /* data offset in the file extent item */ 1189 u64 data_offset; 1190 1191 /* Just to check for bugs in backref resolving */ 1192 int found_itself; 1193 }; 1194 1195 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1196 { 1197 u64 root = (u64)(uintptr_t)key; 1198 struct clone_root *cr = (struct clone_root *)elt; 1199 1200 if (root < cr->root->objectid) 1201 return -1; 1202 if (root > cr->root->objectid) 1203 return 1; 1204 return 0; 1205 } 1206 1207 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1208 { 1209 struct clone_root *cr1 = (struct clone_root *)e1; 1210 struct clone_root *cr2 = (struct clone_root *)e2; 1211 1212 if (cr1->root->objectid < cr2->root->objectid) 1213 return -1; 1214 if (cr1->root->objectid > cr2->root->objectid) 1215 return 1; 1216 return 0; 1217 } 1218 1219 /* 1220 * Called for every backref that is found for the current extent. 1221 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1222 */ 1223 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1224 { 1225 struct backref_ctx *bctx = ctx_; 1226 struct clone_root *found; 1227 int ret; 1228 u64 i_size; 1229 1230 /* First check if the root is in the list of accepted clone sources */ 1231 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1232 bctx->sctx->clone_roots_cnt, 1233 sizeof(struct clone_root), 1234 __clone_root_cmp_bsearch); 1235 if (!found) 1236 return 0; 1237 1238 if (found->root == bctx->sctx->send_root && 1239 ino == bctx->cur_objectid && 1240 offset == bctx->cur_offset) { 1241 bctx->found_itself = 1; 1242 } 1243 1244 /* 1245 * There are inodes that have extents that lie behind its i_size. Don't 1246 * accept clones from these extents. 1247 */ 1248 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1249 NULL, NULL, NULL); 1250 btrfs_release_path(bctx->path); 1251 if (ret < 0) 1252 return ret; 1253 1254 if (offset + bctx->data_offset + bctx->extent_len > i_size) 1255 return 0; 1256 1257 /* 1258 * Make sure we don't consider clones from send_root that are 1259 * behind the current inode/offset. 1260 */ 1261 if (found->root == bctx->sctx->send_root) { 1262 /* 1263 * TODO for the moment we don't accept clones from the inode 1264 * that is currently send. We may change this when 1265 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1266 * file. 1267 */ 1268 if (ino >= bctx->cur_objectid) 1269 return 0; 1270 } 1271 1272 bctx->found++; 1273 found->found_refs++; 1274 if (ino < found->ino) { 1275 found->ino = ino; 1276 found->offset = offset; 1277 } else if (found->ino == ino) { 1278 /* 1279 * same extent found more then once in the same file. 1280 */ 1281 if (found->offset > offset + bctx->extent_len) 1282 found->offset = offset; 1283 } 1284 1285 return 0; 1286 } 1287 1288 /* 1289 * Given an inode, offset and extent item, it finds a good clone for a clone 1290 * instruction. Returns -ENOENT when none could be found. The function makes 1291 * sure that the returned clone is usable at the point where sending is at the 1292 * moment. This means, that no clones are accepted which lie behind the current 1293 * inode+offset. 1294 * 1295 * path must point to the extent item when called. 1296 */ 1297 static int find_extent_clone(struct send_ctx *sctx, 1298 struct btrfs_path *path, 1299 u64 ino, u64 data_offset, 1300 u64 ino_size, 1301 struct clone_root **found) 1302 { 1303 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1304 int ret; 1305 int extent_type; 1306 u64 logical; 1307 u64 disk_byte; 1308 u64 num_bytes; 1309 u64 extent_item_pos; 1310 u64 flags = 0; 1311 struct btrfs_file_extent_item *fi; 1312 struct extent_buffer *eb = path->nodes[0]; 1313 struct backref_ctx *backref_ctx = NULL; 1314 struct clone_root *cur_clone_root; 1315 struct btrfs_key found_key; 1316 struct btrfs_path *tmp_path; 1317 int compressed; 1318 u32 i; 1319 1320 tmp_path = alloc_path_for_send(); 1321 if (!tmp_path) 1322 return -ENOMEM; 1323 1324 /* We only use this path under the commit sem */ 1325 tmp_path->need_commit_sem = 0; 1326 1327 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1328 if (!backref_ctx) { 1329 ret = -ENOMEM; 1330 goto out; 1331 } 1332 1333 backref_ctx->path = tmp_path; 1334 1335 if (data_offset >= ino_size) { 1336 /* 1337 * There may be extents that lie behind the file's size. 1338 * I at least had this in combination with snapshotting while 1339 * writing large files. 1340 */ 1341 ret = 0; 1342 goto out; 1343 } 1344 1345 fi = btrfs_item_ptr(eb, path->slots[0], 1346 struct btrfs_file_extent_item); 1347 extent_type = btrfs_file_extent_type(eb, fi); 1348 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1349 ret = -ENOENT; 1350 goto out; 1351 } 1352 compressed = btrfs_file_extent_compression(eb, fi); 1353 1354 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1355 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1356 if (disk_byte == 0) { 1357 ret = -ENOENT; 1358 goto out; 1359 } 1360 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1361 1362 down_read(&fs_info->commit_root_sem); 1363 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1364 &found_key, &flags); 1365 up_read(&fs_info->commit_root_sem); 1366 btrfs_release_path(tmp_path); 1367 1368 if (ret < 0) 1369 goto out; 1370 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1371 ret = -EIO; 1372 goto out; 1373 } 1374 1375 /* 1376 * Setup the clone roots. 1377 */ 1378 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1379 cur_clone_root = sctx->clone_roots + i; 1380 cur_clone_root->ino = (u64)-1; 1381 cur_clone_root->offset = 0; 1382 cur_clone_root->found_refs = 0; 1383 } 1384 1385 backref_ctx->sctx = sctx; 1386 backref_ctx->found = 0; 1387 backref_ctx->cur_objectid = ino; 1388 backref_ctx->cur_offset = data_offset; 1389 backref_ctx->found_itself = 0; 1390 backref_ctx->extent_len = num_bytes; 1391 /* 1392 * For non-compressed extents iterate_extent_inodes() gives us extent 1393 * offsets that already take into account the data offset, but not for 1394 * compressed extents, since the offset is logical and not relative to 1395 * the physical extent locations. We must take this into account to 1396 * avoid sending clone offsets that go beyond the source file's size, 1397 * which would result in the clone ioctl failing with -EINVAL on the 1398 * receiving end. 1399 */ 1400 if (compressed == BTRFS_COMPRESS_NONE) 1401 backref_ctx->data_offset = 0; 1402 else 1403 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1404 1405 /* 1406 * The last extent of a file may be too large due to page alignment. 1407 * We need to adjust extent_len in this case so that the checks in 1408 * __iterate_backrefs work. 1409 */ 1410 if (data_offset + num_bytes >= ino_size) 1411 backref_ctx->extent_len = ino_size - data_offset; 1412 1413 /* 1414 * Now collect all backrefs. 1415 */ 1416 if (compressed == BTRFS_COMPRESS_NONE) 1417 extent_item_pos = logical - found_key.objectid; 1418 else 1419 extent_item_pos = 0; 1420 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1421 extent_item_pos, 1, __iterate_backrefs, 1422 backref_ctx, false); 1423 1424 if (ret < 0) 1425 goto out; 1426 1427 if (!backref_ctx->found_itself) { 1428 /* found a bug in backref code? */ 1429 ret = -EIO; 1430 btrfs_err(fs_info, 1431 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1432 ino, data_offset, disk_byte, found_key.objectid); 1433 goto out; 1434 } 1435 1436 btrfs_debug(fs_info, 1437 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1438 data_offset, ino, num_bytes, logical); 1439 1440 if (!backref_ctx->found) 1441 btrfs_debug(fs_info, "no clones found"); 1442 1443 cur_clone_root = NULL; 1444 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1445 if (sctx->clone_roots[i].found_refs) { 1446 if (!cur_clone_root) 1447 cur_clone_root = sctx->clone_roots + i; 1448 else if (sctx->clone_roots[i].root == sctx->send_root) 1449 /* prefer clones from send_root over others */ 1450 cur_clone_root = sctx->clone_roots + i; 1451 } 1452 1453 } 1454 1455 if (cur_clone_root) { 1456 *found = cur_clone_root; 1457 ret = 0; 1458 } else { 1459 ret = -ENOENT; 1460 } 1461 1462 out: 1463 btrfs_free_path(tmp_path); 1464 kfree(backref_ctx); 1465 return ret; 1466 } 1467 1468 static int read_symlink(struct btrfs_root *root, 1469 u64 ino, 1470 struct fs_path *dest) 1471 { 1472 int ret; 1473 struct btrfs_path *path; 1474 struct btrfs_key key; 1475 struct btrfs_file_extent_item *ei; 1476 u8 type; 1477 u8 compression; 1478 unsigned long off; 1479 int len; 1480 1481 path = alloc_path_for_send(); 1482 if (!path) 1483 return -ENOMEM; 1484 1485 key.objectid = ino; 1486 key.type = BTRFS_EXTENT_DATA_KEY; 1487 key.offset = 0; 1488 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1489 if (ret < 0) 1490 goto out; 1491 if (ret) { 1492 /* 1493 * An empty symlink inode. Can happen in rare error paths when 1494 * creating a symlink (transaction committed before the inode 1495 * eviction handler removed the symlink inode items and a crash 1496 * happened in between or the subvol was snapshoted in between). 1497 * Print an informative message to dmesg/syslog so that the user 1498 * can delete the symlink. 1499 */ 1500 btrfs_err(root->fs_info, 1501 "Found empty symlink inode %llu at root %llu", 1502 ino, root->root_key.objectid); 1503 ret = -EIO; 1504 goto out; 1505 } 1506 1507 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1508 struct btrfs_file_extent_item); 1509 type = btrfs_file_extent_type(path->nodes[0], ei); 1510 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1511 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1512 BUG_ON(compression); 1513 1514 off = btrfs_file_extent_inline_start(ei); 1515 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1516 1517 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1518 1519 out: 1520 btrfs_free_path(path); 1521 return ret; 1522 } 1523 1524 /* 1525 * Helper function to generate a file name that is unique in the root of 1526 * send_root and parent_root. This is used to generate names for orphan inodes. 1527 */ 1528 static int gen_unique_name(struct send_ctx *sctx, 1529 u64 ino, u64 gen, 1530 struct fs_path *dest) 1531 { 1532 int ret = 0; 1533 struct btrfs_path *path; 1534 struct btrfs_dir_item *di; 1535 char tmp[64]; 1536 int len; 1537 u64 idx = 0; 1538 1539 path = alloc_path_for_send(); 1540 if (!path) 1541 return -ENOMEM; 1542 1543 while (1) { 1544 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1545 ino, gen, idx); 1546 ASSERT(len < sizeof(tmp)); 1547 1548 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1549 path, BTRFS_FIRST_FREE_OBJECTID, 1550 tmp, strlen(tmp), 0); 1551 btrfs_release_path(path); 1552 if (IS_ERR(di)) { 1553 ret = PTR_ERR(di); 1554 goto out; 1555 } 1556 if (di) { 1557 /* not unique, try again */ 1558 idx++; 1559 continue; 1560 } 1561 1562 if (!sctx->parent_root) { 1563 /* unique */ 1564 ret = 0; 1565 break; 1566 } 1567 1568 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1569 path, BTRFS_FIRST_FREE_OBJECTID, 1570 tmp, strlen(tmp), 0); 1571 btrfs_release_path(path); 1572 if (IS_ERR(di)) { 1573 ret = PTR_ERR(di); 1574 goto out; 1575 } 1576 if (di) { 1577 /* not unique, try again */ 1578 idx++; 1579 continue; 1580 } 1581 /* unique */ 1582 break; 1583 } 1584 1585 ret = fs_path_add(dest, tmp, strlen(tmp)); 1586 1587 out: 1588 btrfs_free_path(path); 1589 return ret; 1590 } 1591 1592 enum inode_state { 1593 inode_state_no_change, 1594 inode_state_will_create, 1595 inode_state_did_create, 1596 inode_state_will_delete, 1597 inode_state_did_delete, 1598 }; 1599 1600 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1601 { 1602 int ret; 1603 int left_ret; 1604 int right_ret; 1605 u64 left_gen; 1606 u64 right_gen; 1607 1608 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1609 NULL, NULL); 1610 if (ret < 0 && ret != -ENOENT) 1611 goto out; 1612 left_ret = ret; 1613 1614 if (!sctx->parent_root) { 1615 right_ret = -ENOENT; 1616 } else { 1617 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1618 NULL, NULL, NULL, NULL); 1619 if (ret < 0 && ret != -ENOENT) 1620 goto out; 1621 right_ret = ret; 1622 } 1623 1624 if (!left_ret && !right_ret) { 1625 if (left_gen == gen && right_gen == gen) { 1626 ret = inode_state_no_change; 1627 } else if (left_gen == gen) { 1628 if (ino < sctx->send_progress) 1629 ret = inode_state_did_create; 1630 else 1631 ret = inode_state_will_create; 1632 } else if (right_gen == gen) { 1633 if (ino < sctx->send_progress) 1634 ret = inode_state_did_delete; 1635 else 1636 ret = inode_state_will_delete; 1637 } else { 1638 ret = -ENOENT; 1639 } 1640 } else if (!left_ret) { 1641 if (left_gen == gen) { 1642 if (ino < sctx->send_progress) 1643 ret = inode_state_did_create; 1644 else 1645 ret = inode_state_will_create; 1646 } else { 1647 ret = -ENOENT; 1648 } 1649 } else if (!right_ret) { 1650 if (right_gen == gen) { 1651 if (ino < sctx->send_progress) 1652 ret = inode_state_did_delete; 1653 else 1654 ret = inode_state_will_delete; 1655 } else { 1656 ret = -ENOENT; 1657 } 1658 } else { 1659 ret = -ENOENT; 1660 } 1661 1662 out: 1663 return ret; 1664 } 1665 1666 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1667 { 1668 int ret; 1669 1670 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1671 return 1; 1672 1673 ret = get_cur_inode_state(sctx, ino, gen); 1674 if (ret < 0) 1675 goto out; 1676 1677 if (ret == inode_state_no_change || 1678 ret == inode_state_did_create || 1679 ret == inode_state_will_delete) 1680 ret = 1; 1681 else 1682 ret = 0; 1683 1684 out: 1685 return ret; 1686 } 1687 1688 /* 1689 * Helper function to lookup a dir item in a dir. 1690 */ 1691 static int lookup_dir_item_inode(struct btrfs_root *root, 1692 u64 dir, const char *name, int name_len, 1693 u64 *found_inode, 1694 u8 *found_type) 1695 { 1696 int ret = 0; 1697 struct btrfs_dir_item *di; 1698 struct btrfs_key key; 1699 struct btrfs_path *path; 1700 1701 path = alloc_path_for_send(); 1702 if (!path) 1703 return -ENOMEM; 1704 1705 di = btrfs_lookup_dir_item(NULL, root, path, 1706 dir, name, name_len, 0); 1707 if (!di) { 1708 ret = -ENOENT; 1709 goto out; 1710 } 1711 if (IS_ERR(di)) { 1712 ret = PTR_ERR(di); 1713 goto out; 1714 } 1715 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1716 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1717 ret = -ENOENT; 1718 goto out; 1719 } 1720 *found_inode = key.objectid; 1721 *found_type = btrfs_dir_type(path->nodes[0], di); 1722 1723 out: 1724 btrfs_free_path(path); 1725 return ret; 1726 } 1727 1728 /* 1729 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1730 * generation of the parent dir and the name of the dir entry. 1731 */ 1732 static int get_first_ref(struct btrfs_root *root, u64 ino, 1733 u64 *dir, u64 *dir_gen, struct fs_path *name) 1734 { 1735 int ret; 1736 struct btrfs_key key; 1737 struct btrfs_key found_key; 1738 struct btrfs_path *path; 1739 int len; 1740 u64 parent_dir; 1741 1742 path = alloc_path_for_send(); 1743 if (!path) 1744 return -ENOMEM; 1745 1746 key.objectid = ino; 1747 key.type = BTRFS_INODE_REF_KEY; 1748 key.offset = 0; 1749 1750 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1751 if (ret < 0) 1752 goto out; 1753 if (!ret) 1754 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1755 path->slots[0]); 1756 if (ret || found_key.objectid != ino || 1757 (found_key.type != BTRFS_INODE_REF_KEY && 1758 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1759 ret = -ENOENT; 1760 goto out; 1761 } 1762 1763 if (found_key.type == BTRFS_INODE_REF_KEY) { 1764 struct btrfs_inode_ref *iref; 1765 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1766 struct btrfs_inode_ref); 1767 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1768 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1769 (unsigned long)(iref + 1), 1770 len); 1771 parent_dir = found_key.offset; 1772 } else { 1773 struct btrfs_inode_extref *extref; 1774 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1775 struct btrfs_inode_extref); 1776 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1777 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1778 (unsigned long)&extref->name, len); 1779 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1780 } 1781 if (ret < 0) 1782 goto out; 1783 btrfs_release_path(path); 1784 1785 if (dir_gen) { 1786 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1787 NULL, NULL, NULL); 1788 if (ret < 0) 1789 goto out; 1790 } 1791 1792 *dir = parent_dir; 1793 1794 out: 1795 btrfs_free_path(path); 1796 return ret; 1797 } 1798 1799 static int is_first_ref(struct btrfs_root *root, 1800 u64 ino, u64 dir, 1801 const char *name, int name_len) 1802 { 1803 int ret; 1804 struct fs_path *tmp_name; 1805 u64 tmp_dir; 1806 1807 tmp_name = fs_path_alloc(); 1808 if (!tmp_name) 1809 return -ENOMEM; 1810 1811 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1812 if (ret < 0) 1813 goto out; 1814 1815 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1816 ret = 0; 1817 goto out; 1818 } 1819 1820 ret = !memcmp(tmp_name->start, name, name_len); 1821 1822 out: 1823 fs_path_free(tmp_name); 1824 return ret; 1825 } 1826 1827 /* 1828 * Used by process_recorded_refs to determine if a new ref would overwrite an 1829 * already existing ref. In case it detects an overwrite, it returns the 1830 * inode/gen in who_ino/who_gen. 1831 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1832 * to make sure later references to the overwritten inode are possible. 1833 * Orphanizing is however only required for the first ref of an inode. 1834 * process_recorded_refs does an additional is_first_ref check to see if 1835 * orphanizing is really required. 1836 */ 1837 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1838 const char *name, int name_len, 1839 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1840 { 1841 int ret = 0; 1842 u64 gen; 1843 u64 other_inode = 0; 1844 u8 other_type = 0; 1845 1846 if (!sctx->parent_root) 1847 goto out; 1848 1849 ret = is_inode_existent(sctx, dir, dir_gen); 1850 if (ret <= 0) 1851 goto out; 1852 1853 /* 1854 * If we have a parent root we need to verify that the parent dir was 1855 * not deleted and then re-created, if it was then we have no overwrite 1856 * and we can just unlink this entry. 1857 */ 1858 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1859 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1860 NULL, NULL, NULL); 1861 if (ret < 0 && ret != -ENOENT) 1862 goto out; 1863 if (ret) { 1864 ret = 0; 1865 goto out; 1866 } 1867 if (gen != dir_gen) 1868 goto out; 1869 } 1870 1871 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1872 &other_inode, &other_type); 1873 if (ret < 0 && ret != -ENOENT) 1874 goto out; 1875 if (ret) { 1876 ret = 0; 1877 goto out; 1878 } 1879 1880 /* 1881 * Check if the overwritten ref was already processed. If yes, the ref 1882 * was already unlinked/moved, so we can safely assume that we will not 1883 * overwrite anything at this point in time. 1884 */ 1885 if (other_inode > sctx->send_progress || 1886 is_waiting_for_move(sctx, other_inode)) { 1887 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1888 who_gen, who_mode, NULL, NULL, NULL); 1889 if (ret < 0) 1890 goto out; 1891 1892 ret = 1; 1893 *who_ino = other_inode; 1894 } else { 1895 ret = 0; 1896 } 1897 1898 out: 1899 return ret; 1900 } 1901 1902 /* 1903 * Checks if the ref was overwritten by an already processed inode. This is 1904 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1905 * thus the orphan name needs be used. 1906 * process_recorded_refs also uses it to avoid unlinking of refs that were 1907 * overwritten. 1908 */ 1909 static int did_overwrite_ref(struct send_ctx *sctx, 1910 u64 dir, u64 dir_gen, 1911 u64 ino, u64 ino_gen, 1912 const char *name, int name_len) 1913 { 1914 int ret = 0; 1915 u64 gen; 1916 u64 ow_inode; 1917 u8 other_type; 1918 1919 if (!sctx->parent_root) 1920 goto out; 1921 1922 ret = is_inode_existent(sctx, dir, dir_gen); 1923 if (ret <= 0) 1924 goto out; 1925 1926 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1927 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1928 NULL, NULL, NULL); 1929 if (ret < 0 && ret != -ENOENT) 1930 goto out; 1931 if (ret) { 1932 ret = 0; 1933 goto out; 1934 } 1935 if (gen != dir_gen) 1936 goto out; 1937 } 1938 1939 /* check if the ref was overwritten by another ref */ 1940 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1941 &ow_inode, &other_type); 1942 if (ret < 0 && ret != -ENOENT) 1943 goto out; 1944 if (ret) { 1945 /* was never and will never be overwritten */ 1946 ret = 0; 1947 goto out; 1948 } 1949 1950 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1951 NULL, NULL); 1952 if (ret < 0) 1953 goto out; 1954 1955 if (ow_inode == ino && gen == ino_gen) { 1956 ret = 0; 1957 goto out; 1958 } 1959 1960 /* 1961 * We know that it is or will be overwritten. Check this now. 1962 * The current inode being processed might have been the one that caused 1963 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1964 * the current inode being processed. 1965 */ 1966 if ((ow_inode < sctx->send_progress) || 1967 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1968 gen == sctx->cur_inode_gen)) 1969 ret = 1; 1970 else 1971 ret = 0; 1972 1973 out: 1974 return ret; 1975 } 1976 1977 /* 1978 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1979 * that got overwritten. This is used by process_recorded_refs to determine 1980 * if it has to use the path as returned by get_cur_path or the orphan name. 1981 */ 1982 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1983 { 1984 int ret = 0; 1985 struct fs_path *name = NULL; 1986 u64 dir; 1987 u64 dir_gen; 1988 1989 if (!sctx->parent_root) 1990 goto out; 1991 1992 name = fs_path_alloc(); 1993 if (!name) 1994 return -ENOMEM; 1995 1996 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1997 if (ret < 0) 1998 goto out; 1999 2000 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2001 name->start, fs_path_len(name)); 2002 2003 out: 2004 fs_path_free(name); 2005 return ret; 2006 } 2007 2008 /* 2009 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2010 * so we need to do some special handling in case we have clashes. This function 2011 * takes care of this with the help of name_cache_entry::radix_list. 2012 * In case of error, nce is kfreed. 2013 */ 2014 static int name_cache_insert(struct send_ctx *sctx, 2015 struct name_cache_entry *nce) 2016 { 2017 int ret = 0; 2018 struct list_head *nce_head; 2019 2020 nce_head = radix_tree_lookup(&sctx->name_cache, 2021 (unsigned long)nce->ino); 2022 if (!nce_head) { 2023 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2024 if (!nce_head) { 2025 kfree(nce); 2026 return -ENOMEM; 2027 } 2028 INIT_LIST_HEAD(nce_head); 2029 2030 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2031 if (ret < 0) { 2032 kfree(nce_head); 2033 kfree(nce); 2034 return ret; 2035 } 2036 } 2037 list_add_tail(&nce->radix_list, nce_head); 2038 list_add_tail(&nce->list, &sctx->name_cache_list); 2039 sctx->name_cache_size++; 2040 2041 return ret; 2042 } 2043 2044 static void name_cache_delete(struct send_ctx *sctx, 2045 struct name_cache_entry *nce) 2046 { 2047 struct list_head *nce_head; 2048 2049 nce_head = radix_tree_lookup(&sctx->name_cache, 2050 (unsigned long)nce->ino); 2051 if (!nce_head) { 2052 btrfs_err(sctx->send_root->fs_info, 2053 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2054 nce->ino, sctx->name_cache_size); 2055 } 2056 2057 list_del(&nce->radix_list); 2058 list_del(&nce->list); 2059 sctx->name_cache_size--; 2060 2061 /* 2062 * We may not get to the final release of nce_head if the lookup fails 2063 */ 2064 if (nce_head && list_empty(nce_head)) { 2065 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2066 kfree(nce_head); 2067 } 2068 } 2069 2070 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2071 u64 ino, u64 gen) 2072 { 2073 struct list_head *nce_head; 2074 struct name_cache_entry *cur; 2075 2076 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2077 if (!nce_head) 2078 return NULL; 2079 2080 list_for_each_entry(cur, nce_head, radix_list) { 2081 if (cur->ino == ino && cur->gen == gen) 2082 return cur; 2083 } 2084 return NULL; 2085 } 2086 2087 /* 2088 * Removes the entry from the list and adds it back to the end. This marks the 2089 * entry as recently used so that name_cache_clean_unused does not remove it. 2090 */ 2091 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2092 { 2093 list_del(&nce->list); 2094 list_add_tail(&nce->list, &sctx->name_cache_list); 2095 } 2096 2097 /* 2098 * Remove some entries from the beginning of name_cache_list. 2099 */ 2100 static void name_cache_clean_unused(struct send_ctx *sctx) 2101 { 2102 struct name_cache_entry *nce; 2103 2104 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2105 return; 2106 2107 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2108 nce = list_entry(sctx->name_cache_list.next, 2109 struct name_cache_entry, list); 2110 name_cache_delete(sctx, nce); 2111 kfree(nce); 2112 } 2113 } 2114 2115 static void name_cache_free(struct send_ctx *sctx) 2116 { 2117 struct name_cache_entry *nce; 2118 2119 while (!list_empty(&sctx->name_cache_list)) { 2120 nce = list_entry(sctx->name_cache_list.next, 2121 struct name_cache_entry, list); 2122 name_cache_delete(sctx, nce); 2123 kfree(nce); 2124 } 2125 } 2126 2127 /* 2128 * Used by get_cur_path for each ref up to the root. 2129 * Returns 0 if it succeeded. 2130 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2131 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2132 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2133 * Returns <0 in case of error. 2134 */ 2135 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2136 u64 ino, u64 gen, 2137 u64 *parent_ino, 2138 u64 *parent_gen, 2139 struct fs_path *dest) 2140 { 2141 int ret; 2142 int nce_ret; 2143 struct name_cache_entry *nce = NULL; 2144 2145 /* 2146 * First check if we already did a call to this function with the same 2147 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2148 * return the cached result. 2149 */ 2150 nce = name_cache_search(sctx, ino, gen); 2151 if (nce) { 2152 if (ino < sctx->send_progress && nce->need_later_update) { 2153 name_cache_delete(sctx, nce); 2154 kfree(nce); 2155 nce = NULL; 2156 } else { 2157 name_cache_used(sctx, nce); 2158 *parent_ino = nce->parent_ino; 2159 *parent_gen = nce->parent_gen; 2160 ret = fs_path_add(dest, nce->name, nce->name_len); 2161 if (ret < 0) 2162 goto out; 2163 ret = nce->ret; 2164 goto out; 2165 } 2166 } 2167 2168 /* 2169 * If the inode is not existent yet, add the orphan name and return 1. 2170 * This should only happen for the parent dir that we determine in 2171 * __record_new_ref 2172 */ 2173 ret = is_inode_existent(sctx, ino, gen); 2174 if (ret < 0) 2175 goto out; 2176 2177 if (!ret) { 2178 ret = gen_unique_name(sctx, ino, gen, dest); 2179 if (ret < 0) 2180 goto out; 2181 ret = 1; 2182 goto out_cache; 2183 } 2184 2185 /* 2186 * Depending on whether the inode was already processed or not, use 2187 * send_root or parent_root for ref lookup. 2188 */ 2189 if (ino < sctx->send_progress) 2190 ret = get_first_ref(sctx->send_root, ino, 2191 parent_ino, parent_gen, dest); 2192 else 2193 ret = get_first_ref(sctx->parent_root, ino, 2194 parent_ino, parent_gen, dest); 2195 if (ret < 0) 2196 goto out; 2197 2198 /* 2199 * Check if the ref was overwritten by an inode's ref that was processed 2200 * earlier. If yes, treat as orphan and return 1. 2201 */ 2202 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2203 dest->start, dest->end - dest->start); 2204 if (ret < 0) 2205 goto out; 2206 if (ret) { 2207 fs_path_reset(dest); 2208 ret = gen_unique_name(sctx, ino, gen, dest); 2209 if (ret < 0) 2210 goto out; 2211 ret = 1; 2212 } 2213 2214 out_cache: 2215 /* 2216 * Store the result of the lookup in the name cache. 2217 */ 2218 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2219 if (!nce) { 2220 ret = -ENOMEM; 2221 goto out; 2222 } 2223 2224 nce->ino = ino; 2225 nce->gen = gen; 2226 nce->parent_ino = *parent_ino; 2227 nce->parent_gen = *parent_gen; 2228 nce->name_len = fs_path_len(dest); 2229 nce->ret = ret; 2230 strcpy(nce->name, dest->start); 2231 2232 if (ino < sctx->send_progress) 2233 nce->need_later_update = 0; 2234 else 2235 nce->need_later_update = 1; 2236 2237 nce_ret = name_cache_insert(sctx, nce); 2238 if (nce_ret < 0) 2239 ret = nce_ret; 2240 name_cache_clean_unused(sctx); 2241 2242 out: 2243 return ret; 2244 } 2245 2246 /* 2247 * Magic happens here. This function returns the first ref to an inode as it 2248 * would look like while receiving the stream at this point in time. 2249 * We walk the path up to the root. For every inode in between, we check if it 2250 * was already processed/sent. If yes, we continue with the parent as found 2251 * in send_root. If not, we continue with the parent as found in parent_root. 2252 * If we encounter an inode that was deleted at this point in time, we use the 2253 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2254 * that were not created yet and overwritten inodes/refs. 2255 * 2256 * When do we have have orphan inodes: 2257 * 1. When an inode is freshly created and thus no valid refs are available yet 2258 * 2. When a directory lost all it's refs (deleted) but still has dir items 2259 * inside which were not processed yet (pending for move/delete). If anyone 2260 * tried to get the path to the dir items, it would get a path inside that 2261 * orphan directory. 2262 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2263 * of an unprocessed inode. If in that case the first ref would be 2264 * overwritten, the overwritten inode gets "orphanized". Later when we 2265 * process this overwritten inode, it is restored at a new place by moving 2266 * the orphan inode. 2267 * 2268 * sctx->send_progress tells this function at which point in time receiving 2269 * would be. 2270 */ 2271 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2272 struct fs_path *dest) 2273 { 2274 int ret = 0; 2275 struct fs_path *name = NULL; 2276 u64 parent_inode = 0; 2277 u64 parent_gen = 0; 2278 int stop = 0; 2279 2280 name = fs_path_alloc(); 2281 if (!name) { 2282 ret = -ENOMEM; 2283 goto out; 2284 } 2285 2286 dest->reversed = 1; 2287 fs_path_reset(dest); 2288 2289 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2290 struct waiting_dir_move *wdm; 2291 2292 fs_path_reset(name); 2293 2294 if (is_waiting_for_rm(sctx, ino)) { 2295 ret = gen_unique_name(sctx, ino, gen, name); 2296 if (ret < 0) 2297 goto out; 2298 ret = fs_path_add_path(dest, name); 2299 break; 2300 } 2301 2302 wdm = get_waiting_dir_move(sctx, ino); 2303 if (wdm && wdm->orphanized) { 2304 ret = gen_unique_name(sctx, ino, gen, name); 2305 stop = 1; 2306 } else if (wdm) { 2307 ret = get_first_ref(sctx->parent_root, ino, 2308 &parent_inode, &parent_gen, name); 2309 } else { 2310 ret = __get_cur_name_and_parent(sctx, ino, gen, 2311 &parent_inode, 2312 &parent_gen, name); 2313 if (ret) 2314 stop = 1; 2315 } 2316 2317 if (ret < 0) 2318 goto out; 2319 2320 ret = fs_path_add_path(dest, name); 2321 if (ret < 0) 2322 goto out; 2323 2324 ino = parent_inode; 2325 gen = parent_gen; 2326 } 2327 2328 out: 2329 fs_path_free(name); 2330 if (!ret) 2331 fs_path_unreverse(dest); 2332 return ret; 2333 } 2334 2335 /* 2336 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2337 */ 2338 static int send_subvol_begin(struct send_ctx *sctx) 2339 { 2340 int ret; 2341 struct btrfs_root *send_root = sctx->send_root; 2342 struct btrfs_root *parent_root = sctx->parent_root; 2343 struct btrfs_path *path; 2344 struct btrfs_key key; 2345 struct btrfs_root_ref *ref; 2346 struct extent_buffer *leaf; 2347 char *name = NULL; 2348 int namelen; 2349 2350 path = btrfs_alloc_path(); 2351 if (!path) 2352 return -ENOMEM; 2353 2354 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2355 if (!name) { 2356 btrfs_free_path(path); 2357 return -ENOMEM; 2358 } 2359 2360 key.objectid = send_root->objectid; 2361 key.type = BTRFS_ROOT_BACKREF_KEY; 2362 key.offset = 0; 2363 2364 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2365 &key, path, 1, 0); 2366 if (ret < 0) 2367 goto out; 2368 if (ret) { 2369 ret = -ENOENT; 2370 goto out; 2371 } 2372 2373 leaf = path->nodes[0]; 2374 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2375 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2376 key.objectid != send_root->objectid) { 2377 ret = -ENOENT; 2378 goto out; 2379 } 2380 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2381 namelen = btrfs_root_ref_name_len(leaf, ref); 2382 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2383 btrfs_release_path(path); 2384 2385 if (parent_root) { 2386 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2387 if (ret < 0) 2388 goto out; 2389 } else { 2390 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2391 if (ret < 0) 2392 goto out; 2393 } 2394 2395 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2396 2397 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2398 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2399 sctx->send_root->root_item.received_uuid); 2400 else 2401 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2402 sctx->send_root->root_item.uuid); 2403 2404 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2405 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2406 if (parent_root) { 2407 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2408 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2409 parent_root->root_item.received_uuid); 2410 else 2411 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2412 parent_root->root_item.uuid); 2413 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2414 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2415 } 2416 2417 ret = send_cmd(sctx); 2418 2419 tlv_put_failure: 2420 out: 2421 btrfs_free_path(path); 2422 kfree(name); 2423 return ret; 2424 } 2425 2426 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2427 { 2428 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2429 int ret = 0; 2430 struct fs_path *p; 2431 2432 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2433 2434 p = fs_path_alloc(); 2435 if (!p) 2436 return -ENOMEM; 2437 2438 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2439 if (ret < 0) 2440 goto out; 2441 2442 ret = get_cur_path(sctx, ino, gen, p); 2443 if (ret < 0) 2444 goto out; 2445 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2446 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2447 2448 ret = send_cmd(sctx); 2449 2450 tlv_put_failure: 2451 out: 2452 fs_path_free(p); 2453 return ret; 2454 } 2455 2456 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2457 { 2458 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2459 int ret = 0; 2460 struct fs_path *p; 2461 2462 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2463 2464 p = fs_path_alloc(); 2465 if (!p) 2466 return -ENOMEM; 2467 2468 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2469 if (ret < 0) 2470 goto out; 2471 2472 ret = get_cur_path(sctx, ino, gen, p); 2473 if (ret < 0) 2474 goto out; 2475 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2476 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2477 2478 ret = send_cmd(sctx); 2479 2480 tlv_put_failure: 2481 out: 2482 fs_path_free(p); 2483 return ret; 2484 } 2485 2486 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2487 { 2488 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2489 int ret = 0; 2490 struct fs_path *p; 2491 2492 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2493 ino, uid, gid); 2494 2495 p = fs_path_alloc(); 2496 if (!p) 2497 return -ENOMEM; 2498 2499 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2500 if (ret < 0) 2501 goto out; 2502 2503 ret = get_cur_path(sctx, ino, gen, p); 2504 if (ret < 0) 2505 goto out; 2506 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2507 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2508 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2509 2510 ret = send_cmd(sctx); 2511 2512 tlv_put_failure: 2513 out: 2514 fs_path_free(p); 2515 return ret; 2516 } 2517 2518 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2519 { 2520 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2521 int ret = 0; 2522 struct fs_path *p = NULL; 2523 struct btrfs_inode_item *ii; 2524 struct btrfs_path *path = NULL; 2525 struct extent_buffer *eb; 2526 struct btrfs_key key; 2527 int slot; 2528 2529 btrfs_debug(fs_info, "send_utimes %llu", ino); 2530 2531 p = fs_path_alloc(); 2532 if (!p) 2533 return -ENOMEM; 2534 2535 path = alloc_path_for_send(); 2536 if (!path) { 2537 ret = -ENOMEM; 2538 goto out; 2539 } 2540 2541 key.objectid = ino; 2542 key.type = BTRFS_INODE_ITEM_KEY; 2543 key.offset = 0; 2544 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2545 if (ret > 0) 2546 ret = -ENOENT; 2547 if (ret < 0) 2548 goto out; 2549 2550 eb = path->nodes[0]; 2551 slot = path->slots[0]; 2552 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2553 2554 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2555 if (ret < 0) 2556 goto out; 2557 2558 ret = get_cur_path(sctx, ino, gen, p); 2559 if (ret < 0) 2560 goto out; 2561 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2562 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2563 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2564 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2565 /* TODO Add otime support when the otime patches get into upstream */ 2566 2567 ret = send_cmd(sctx); 2568 2569 tlv_put_failure: 2570 out: 2571 fs_path_free(p); 2572 btrfs_free_path(path); 2573 return ret; 2574 } 2575 2576 /* 2577 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2578 * a valid path yet because we did not process the refs yet. So, the inode 2579 * is created as orphan. 2580 */ 2581 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2582 { 2583 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2584 int ret = 0; 2585 struct fs_path *p; 2586 int cmd; 2587 u64 gen; 2588 u64 mode; 2589 u64 rdev; 2590 2591 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2592 2593 p = fs_path_alloc(); 2594 if (!p) 2595 return -ENOMEM; 2596 2597 if (ino != sctx->cur_ino) { 2598 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2599 NULL, NULL, &rdev); 2600 if (ret < 0) 2601 goto out; 2602 } else { 2603 gen = sctx->cur_inode_gen; 2604 mode = sctx->cur_inode_mode; 2605 rdev = sctx->cur_inode_rdev; 2606 } 2607 2608 if (S_ISREG(mode)) { 2609 cmd = BTRFS_SEND_C_MKFILE; 2610 } else if (S_ISDIR(mode)) { 2611 cmd = BTRFS_SEND_C_MKDIR; 2612 } else if (S_ISLNK(mode)) { 2613 cmd = BTRFS_SEND_C_SYMLINK; 2614 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2615 cmd = BTRFS_SEND_C_MKNOD; 2616 } else if (S_ISFIFO(mode)) { 2617 cmd = BTRFS_SEND_C_MKFIFO; 2618 } else if (S_ISSOCK(mode)) { 2619 cmd = BTRFS_SEND_C_MKSOCK; 2620 } else { 2621 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2622 (int)(mode & S_IFMT)); 2623 ret = -EOPNOTSUPP; 2624 goto out; 2625 } 2626 2627 ret = begin_cmd(sctx, cmd); 2628 if (ret < 0) 2629 goto out; 2630 2631 ret = gen_unique_name(sctx, ino, gen, p); 2632 if (ret < 0) 2633 goto out; 2634 2635 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2636 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2637 2638 if (S_ISLNK(mode)) { 2639 fs_path_reset(p); 2640 ret = read_symlink(sctx->send_root, ino, p); 2641 if (ret < 0) 2642 goto out; 2643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2644 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2645 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2646 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2647 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2648 } 2649 2650 ret = send_cmd(sctx); 2651 if (ret < 0) 2652 goto out; 2653 2654 2655 tlv_put_failure: 2656 out: 2657 fs_path_free(p); 2658 return ret; 2659 } 2660 2661 /* 2662 * We need some special handling for inodes that get processed before the parent 2663 * directory got created. See process_recorded_refs for details. 2664 * This function does the check if we already created the dir out of order. 2665 */ 2666 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2667 { 2668 int ret = 0; 2669 struct btrfs_path *path = NULL; 2670 struct btrfs_key key; 2671 struct btrfs_key found_key; 2672 struct btrfs_key di_key; 2673 struct extent_buffer *eb; 2674 struct btrfs_dir_item *di; 2675 int slot; 2676 2677 path = alloc_path_for_send(); 2678 if (!path) { 2679 ret = -ENOMEM; 2680 goto out; 2681 } 2682 2683 key.objectid = dir; 2684 key.type = BTRFS_DIR_INDEX_KEY; 2685 key.offset = 0; 2686 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2687 if (ret < 0) 2688 goto out; 2689 2690 while (1) { 2691 eb = path->nodes[0]; 2692 slot = path->slots[0]; 2693 if (slot >= btrfs_header_nritems(eb)) { 2694 ret = btrfs_next_leaf(sctx->send_root, path); 2695 if (ret < 0) { 2696 goto out; 2697 } else if (ret > 0) { 2698 ret = 0; 2699 break; 2700 } 2701 continue; 2702 } 2703 2704 btrfs_item_key_to_cpu(eb, &found_key, slot); 2705 if (found_key.objectid != key.objectid || 2706 found_key.type != key.type) { 2707 ret = 0; 2708 goto out; 2709 } 2710 2711 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2712 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2713 2714 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2715 di_key.objectid < sctx->send_progress) { 2716 ret = 1; 2717 goto out; 2718 } 2719 2720 path->slots[0]++; 2721 } 2722 2723 out: 2724 btrfs_free_path(path); 2725 return ret; 2726 } 2727 2728 /* 2729 * Only creates the inode if it is: 2730 * 1. Not a directory 2731 * 2. Or a directory which was not created already due to out of order 2732 * directories. See did_create_dir and process_recorded_refs for details. 2733 */ 2734 static int send_create_inode_if_needed(struct send_ctx *sctx) 2735 { 2736 int ret; 2737 2738 if (S_ISDIR(sctx->cur_inode_mode)) { 2739 ret = did_create_dir(sctx, sctx->cur_ino); 2740 if (ret < 0) 2741 goto out; 2742 if (ret) { 2743 ret = 0; 2744 goto out; 2745 } 2746 } 2747 2748 ret = send_create_inode(sctx, sctx->cur_ino); 2749 if (ret < 0) 2750 goto out; 2751 2752 out: 2753 return ret; 2754 } 2755 2756 struct recorded_ref { 2757 struct list_head list; 2758 char *name; 2759 struct fs_path *full_path; 2760 u64 dir; 2761 u64 dir_gen; 2762 int name_len; 2763 }; 2764 2765 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2766 { 2767 ref->full_path = path; 2768 ref->name = (char *)kbasename(ref->full_path->start); 2769 ref->name_len = ref->full_path->end - ref->name; 2770 } 2771 2772 /* 2773 * We need to process new refs before deleted refs, but compare_tree gives us 2774 * everything mixed. So we first record all refs and later process them. 2775 * This function is a helper to record one ref. 2776 */ 2777 static int __record_ref(struct list_head *head, u64 dir, 2778 u64 dir_gen, struct fs_path *path) 2779 { 2780 struct recorded_ref *ref; 2781 2782 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2783 if (!ref) 2784 return -ENOMEM; 2785 2786 ref->dir = dir; 2787 ref->dir_gen = dir_gen; 2788 set_ref_path(ref, path); 2789 list_add_tail(&ref->list, head); 2790 return 0; 2791 } 2792 2793 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2794 { 2795 struct recorded_ref *new; 2796 2797 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2798 if (!new) 2799 return -ENOMEM; 2800 2801 new->dir = ref->dir; 2802 new->dir_gen = ref->dir_gen; 2803 new->full_path = NULL; 2804 INIT_LIST_HEAD(&new->list); 2805 list_add_tail(&new->list, list); 2806 return 0; 2807 } 2808 2809 static void __free_recorded_refs(struct list_head *head) 2810 { 2811 struct recorded_ref *cur; 2812 2813 while (!list_empty(head)) { 2814 cur = list_entry(head->next, struct recorded_ref, list); 2815 fs_path_free(cur->full_path); 2816 list_del(&cur->list); 2817 kfree(cur); 2818 } 2819 } 2820 2821 static void free_recorded_refs(struct send_ctx *sctx) 2822 { 2823 __free_recorded_refs(&sctx->new_refs); 2824 __free_recorded_refs(&sctx->deleted_refs); 2825 } 2826 2827 /* 2828 * Renames/moves a file/dir to its orphan name. Used when the first 2829 * ref of an unprocessed inode gets overwritten and for all non empty 2830 * directories. 2831 */ 2832 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2833 struct fs_path *path) 2834 { 2835 int ret; 2836 struct fs_path *orphan; 2837 2838 orphan = fs_path_alloc(); 2839 if (!orphan) 2840 return -ENOMEM; 2841 2842 ret = gen_unique_name(sctx, ino, gen, orphan); 2843 if (ret < 0) 2844 goto out; 2845 2846 ret = send_rename(sctx, path, orphan); 2847 2848 out: 2849 fs_path_free(orphan); 2850 return ret; 2851 } 2852 2853 static struct orphan_dir_info * 2854 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2855 { 2856 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2857 struct rb_node *parent = NULL; 2858 struct orphan_dir_info *entry, *odi; 2859 2860 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2861 if (!odi) 2862 return ERR_PTR(-ENOMEM); 2863 odi->ino = dir_ino; 2864 odi->gen = 0; 2865 2866 while (*p) { 2867 parent = *p; 2868 entry = rb_entry(parent, struct orphan_dir_info, node); 2869 if (dir_ino < entry->ino) { 2870 p = &(*p)->rb_left; 2871 } else if (dir_ino > entry->ino) { 2872 p = &(*p)->rb_right; 2873 } else { 2874 kfree(odi); 2875 return entry; 2876 } 2877 } 2878 2879 rb_link_node(&odi->node, parent, p); 2880 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2881 return odi; 2882 } 2883 2884 static struct orphan_dir_info * 2885 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2886 { 2887 struct rb_node *n = sctx->orphan_dirs.rb_node; 2888 struct orphan_dir_info *entry; 2889 2890 while (n) { 2891 entry = rb_entry(n, struct orphan_dir_info, node); 2892 if (dir_ino < entry->ino) 2893 n = n->rb_left; 2894 else if (dir_ino > entry->ino) 2895 n = n->rb_right; 2896 else 2897 return entry; 2898 } 2899 return NULL; 2900 } 2901 2902 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2903 { 2904 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2905 2906 return odi != NULL; 2907 } 2908 2909 static void free_orphan_dir_info(struct send_ctx *sctx, 2910 struct orphan_dir_info *odi) 2911 { 2912 if (!odi) 2913 return; 2914 rb_erase(&odi->node, &sctx->orphan_dirs); 2915 kfree(odi); 2916 } 2917 2918 /* 2919 * Returns 1 if a directory can be removed at this point in time. 2920 * We check this by iterating all dir items and checking if the inode behind 2921 * the dir item was already processed. 2922 */ 2923 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2924 u64 send_progress) 2925 { 2926 int ret = 0; 2927 struct btrfs_root *root = sctx->parent_root; 2928 struct btrfs_path *path; 2929 struct btrfs_key key; 2930 struct btrfs_key found_key; 2931 struct btrfs_key loc; 2932 struct btrfs_dir_item *di; 2933 2934 /* 2935 * Don't try to rmdir the top/root subvolume dir. 2936 */ 2937 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2938 return 0; 2939 2940 path = alloc_path_for_send(); 2941 if (!path) 2942 return -ENOMEM; 2943 2944 key.objectid = dir; 2945 key.type = BTRFS_DIR_INDEX_KEY; 2946 key.offset = 0; 2947 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2948 if (ret < 0) 2949 goto out; 2950 2951 while (1) { 2952 struct waiting_dir_move *dm; 2953 2954 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2955 ret = btrfs_next_leaf(root, path); 2956 if (ret < 0) 2957 goto out; 2958 else if (ret > 0) 2959 break; 2960 continue; 2961 } 2962 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2963 path->slots[0]); 2964 if (found_key.objectid != key.objectid || 2965 found_key.type != key.type) 2966 break; 2967 2968 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2969 struct btrfs_dir_item); 2970 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2971 2972 dm = get_waiting_dir_move(sctx, loc.objectid); 2973 if (dm) { 2974 struct orphan_dir_info *odi; 2975 2976 odi = add_orphan_dir_info(sctx, dir); 2977 if (IS_ERR(odi)) { 2978 ret = PTR_ERR(odi); 2979 goto out; 2980 } 2981 odi->gen = dir_gen; 2982 dm->rmdir_ino = dir; 2983 ret = 0; 2984 goto out; 2985 } 2986 2987 if (loc.objectid > send_progress) { 2988 struct orphan_dir_info *odi; 2989 2990 odi = get_orphan_dir_info(sctx, dir); 2991 free_orphan_dir_info(sctx, odi); 2992 ret = 0; 2993 goto out; 2994 } 2995 2996 path->slots[0]++; 2997 } 2998 2999 ret = 1; 3000 3001 out: 3002 btrfs_free_path(path); 3003 return ret; 3004 } 3005 3006 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3007 { 3008 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3009 3010 return entry != NULL; 3011 } 3012 3013 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3014 { 3015 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3016 struct rb_node *parent = NULL; 3017 struct waiting_dir_move *entry, *dm; 3018 3019 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3020 if (!dm) 3021 return -ENOMEM; 3022 dm->ino = ino; 3023 dm->rmdir_ino = 0; 3024 dm->orphanized = orphanized; 3025 3026 while (*p) { 3027 parent = *p; 3028 entry = rb_entry(parent, struct waiting_dir_move, node); 3029 if (ino < entry->ino) { 3030 p = &(*p)->rb_left; 3031 } else if (ino > entry->ino) { 3032 p = &(*p)->rb_right; 3033 } else { 3034 kfree(dm); 3035 return -EEXIST; 3036 } 3037 } 3038 3039 rb_link_node(&dm->node, parent, p); 3040 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3041 return 0; 3042 } 3043 3044 static struct waiting_dir_move * 3045 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3046 { 3047 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3048 struct waiting_dir_move *entry; 3049 3050 while (n) { 3051 entry = rb_entry(n, struct waiting_dir_move, node); 3052 if (ino < entry->ino) 3053 n = n->rb_left; 3054 else if (ino > entry->ino) 3055 n = n->rb_right; 3056 else 3057 return entry; 3058 } 3059 return NULL; 3060 } 3061 3062 static void free_waiting_dir_move(struct send_ctx *sctx, 3063 struct waiting_dir_move *dm) 3064 { 3065 if (!dm) 3066 return; 3067 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3068 kfree(dm); 3069 } 3070 3071 static int add_pending_dir_move(struct send_ctx *sctx, 3072 u64 ino, 3073 u64 ino_gen, 3074 u64 parent_ino, 3075 struct list_head *new_refs, 3076 struct list_head *deleted_refs, 3077 const bool is_orphan) 3078 { 3079 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3080 struct rb_node *parent = NULL; 3081 struct pending_dir_move *entry = NULL, *pm; 3082 struct recorded_ref *cur; 3083 int exists = 0; 3084 int ret; 3085 3086 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3087 if (!pm) 3088 return -ENOMEM; 3089 pm->parent_ino = parent_ino; 3090 pm->ino = ino; 3091 pm->gen = ino_gen; 3092 INIT_LIST_HEAD(&pm->list); 3093 INIT_LIST_HEAD(&pm->update_refs); 3094 RB_CLEAR_NODE(&pm->node); 3095 3096 while (*p) { 3097 parent = *p; 3098 entry = rb_entry(parent, struct pending_dir_move, node); 3099 if (parent_ino < entry->parent_ino) { 3100 p = &(*p)->rb_left; 3101 } else if (parent_ino > entry->parent_ino) { 3102 p = &(*p)->rb_right; 3103 } else { 3104 exists = 1; 3105 break; 3106 } 3107 } 3108 3109 list_for_each_entry(cur, deleted_refs, list) { 3110 ret = dup_ref(cur, &pm->update_refs); 3111 if (ret < 0) 3112 goto out; 3113 } 3114 list_for_each_entry(cur, new_refs, list) { 3115 ret = dup_ref(cur, &pm->update_refs); 3116 if (ret < 0) 3117 goto out; 3118 } 3119 3120 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3121 if (ret) 3122 goto out; 3123 3124 if (exists) { 3125 list_add_tail(&pm->list, &entry->list); 3126 } else { 3127 rb_link_node(&pm->node, parent, p); 3128 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3129 } 3130 ret = 0; 3131 out: 3132 if (ret) { 3133 __free_recorded_refs(&pm->update_refs); 3134 kfree(pm); 3135 } 3136 return ret; 3137 } 3138 3139 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3140 u64 parent_ino) 3141 { 3142 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3143 struct pending_dir_move *entry; 3144 3145 while (n) { 3146 entry = rb_entry(n, struct pending_dir_move, node); 3147 if (parent_ino < entry->parent_ino) 3148 n = n->rb_left; 3149 else if (parent_ino > entry->parent_ino) 3150 n = n->rb_right; 3151 else 3152 return entry; 3153 } 3154 return NULL; 3155 } 3156 3157 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3158 u64 ino, u64 gen, u64 *ancestor_ino) 3159 { 3160 int ret = 0; 3161 u64 parent_inode = 0; 3162 u64 parent_gen = 0; 3163 u64 start_ino = ino; 3164 3165 *ancestor_ino = 0; 3166 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3167 fs_path_reset(name); 3168 3169 if (is_waiting_for_rm(sctx, ino)) 3170 break; 3171 if (is_waiting_for_move(sctx, ino)) { 3172 if (*ancestor_ino == 0) 3173 *ancestor_ino = ino; 3174 ret = get_first_ref(sctx->parent_root, ino, 3175 &parent_inode, &parent_gen, name); 3176 } else { 3177 ret = __get_cur_name_and_parent(sctx, ino, gen, 3178 &parent_inode, 3179 &parent_gen, name); 3180 if (ret > 0) { 3181 ret = 0; 3182 break; 3183 } 3184 } 3185 if (ret < 0) 3186 break; 3187 if (parent_inode == start_ino) { 3188 ret = 1; 3189 if (*ancestor_ino == 0) 3190 *ancestor_ino = ino; 3191 break; 3192 } 3193 ino = parent_inode; 3194 gen = parent_gen; 3195 } 3196 return ret; 3197 } 3198 3199 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3200 { 3201 struct fs_path *from_path = NULL; 3202 struct fs_path *to_path = NULL; 3203 struct fs_path *name = NULL; 3204 u64 orig_progress = sctx->send_progress; 3205 struct recorded_ref *cur; 3206 u64 parent_ino, parent_gen; 3207 struct waiting_dir_move *dm = NULL; 3208 u64 rmdir_ino = 0; 3209 u64 ancestor; 3210 bool is_orphan; 3211 int ret; 3212 3213 name = fs_path_alloc(); 3214 from_path = fs_path_alloc(); 3215 if (!name || !from_path) { 3216 ret = -ENOMEM; 3217 goto out; 3218 } 3219 3220 dm = get_waiting_dir_move(sctx, pm->ino); 3221 ASSERT(dm); 3222 rmdir_ino = dm->rmdir_ino; 3223 is_orphan = dm->orphanized; 3224 free_waiting_dir_move(sctx, dm); 3225 3226 if (is_orphan) { 3227 ret = gen_unique_name(sctx, pm->ino, 3228 pm->gen, from_path); 3229 } else { 3230 ret = get_first_ref(sctx->parent_root, pm->ino, 3231 &parent_ino, &parent_gen, name); 3232 if (ret < 0) 3233 goto out; 3234 ret = get_cur_path(sctx, parent_ino, parent_gen, 3235 from_path); 3236 if (ret < 0) 3237 goto out; 3238 ret = fs_path_add_path(from_path, name); 3239 } 3240 if (ret < 0) 3241 goto out; 3242 3243 sctx->send_progress = sctx->cur_ino + 1; 3244 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3245 if (ret < 0) 3246 goto out; 3247 if (ret) { 3248 LIST_HEAD(deleted_refs); 3249 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3250 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3251 &pm->update_refs, &deleted_refs, 3252 is_orphan); 3253 if (ret < 0) 3254 goto out; 3255 if (rmdir_ino) { 3256 dm = get_waiting_dir_move(sctx, pm->ino); 3257 ASSERT(dm); 3258 dm->rmdir_ino = rmdir_ino; 3259 } 3260 goto out; 3261 } 3262 fs_path_reset(name); 3263 to_path = name; 3264 name = NULL; 3265 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3266 if (ret < 0) 3267 goto out; 3268 3269 ret = send_rename(sctx, from_path, to_path); 3270 if (ret < 0) 3271 goto out; 3272 3273 if (rmdir_ino) { 3274 struct orphan_dir_info *odi; 3275 3276 odi = get_orphan_dir_info(sctx, rmdir_ino); 3277 if (!odi) { 3278 /* already deleted */ 3279 goto finish; 3280 } 3281 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino); 3282 if (ret < 0) 3283 goto out; 3284 if (!ret) 3285 goto finish; 3286 3287 name = fs_path_alloc(); 3288 if (!name) { 3289 ret = -ENOMEM; 3290 goto out; 3291 } 3292 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3293 if (ret < 0) 3294 goto out; 3295 ret = send_rmdir(sctx, name); 3296 if (ret < 0) 3297 goto out; 3298 free_orphan_dir_info(sctx, odi); 3299 } 3300 3301 finish: 3302 ret = send_utimes(sctx, pm->ino, pm->gen); 3303 if (ret < 0) 3304 goto out; 3305 3306 /* 3307 * After rename/move, need to update the utimes of both new parent(s) 3308 * and old parent(s). 3309 */ 3310 list_for_each_entry(cur, &pm->update_refs, list) { 3311 /* 3312 * The parent inode might have been deleted in the send snapshot 3313 */ 3314 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3315 NULL, NULL, NULL, NULL, NULL); 3316 if (ret == -ENOENT) { 3317 ret = 0; 3318 continue; 3319 } 3320 if (ret < 0) 3321 goto out; 3322 3323 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3324 if (ret < 0) 3325 goto out; 3326 } 3327 3328 out: 3329 fs_path_free(name); 3330 fs_path_free(from_path); 3331 fs_path_free(to_path); 3332 sctx->send_progress = orig_progress; 3333 3334 return ret; 3335 } 3336 3337 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3338 { 3339 if (!list_empty(&m->list)) 3340 list_del(&m->list); 3341 if (!RB_EMPTY_NODE(&m->node)) 3342 rb_erase(&m->node, &sctx->pending_dir_moves); 3343 __free_recorded_refs(&m->update_refs); 3344 kfree(m); 3345 } 3346 3347 static void tail_append_pending_moves(struct pending_dir_move *moves, 3348 struct list_head *stack) 3349 { 3350 if (list_empty(&moves->list)) { 3351 list_add_tail(&moves->list, stack); 3352 } else { 3353 LIST_HEAD(list); 3354 list_splice_init(&moves->list, &list); 3355 list_add_tail(&moves->list, stack); 3356 list_splice_tail(&list, stack); 3357 } 3358 } 3359 3360 static int apply_children_dir_moves(struct send_ctx *sctx) 3361 { 3362 struct pending_dir_move *pm; 3363 struct list_head stack; 3364 u64 parent_ino = sctx->cur_ino; 3365 int ret = 0; 3366 3367 pm = get_pending_dir_moves(sctx, parent_ino); 3368 if (!pm) 3369 return 0; 3370 3371 INIT_LIST_HEAD(&stack); 3372 tail_append_pending_moves(pm, &stack); 3373 3374 while (!list_empty(&stack)) { 3375 pm = list_first_entry(&stack, struct pending_dir_move, list); 3376 parent_ino = pm->ino; 3377 ret = apply_dir_move(sctx, pm); 3378 free_pending_move(sctx, pm); 3379 if (ret) 3380 goto out; 3381 pm = get_pending_dir_moves(sctx, parent_ino); 3382 if (pm) 3383 tail_append_pending_moves(pm, &stack); 3384 } 3385 return 0; 3386 3387 out: 3388 while (!list_empty(&stack)) { 3389 pm = list_first_entry(&stack, struct pending_dir_move, list); 3390 free_pending_move(sctx, pm); 3391 } 3392 return ret; 3393 } 3394 3395 /* 3396 * We might need to delay a directory rename even when no ancestor directory 3397 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3398 * renamed. This happens when we rename a directory to the old name (the name 3399 * in the parent root) of some other unrelated directory that got its rename 3400 * delayed due to some ancestor with higher number that got renamed. 3401 * 3402 * Example: 3403 * 3404 * Parent snapshot: 3405 * . (ino 256) 3406 * |---- a/ (ino 257) 3407 * | |---- file (ino 260) 3408 * | 3409 * |---- b/ (ino 258) 3410 * |---- c/ (ino 259) 3411 * 3412 * Send snapshot: 3413 * . (ino 256) 3414 * |---- a/ (ino 258) 3415 * |---- x/ (ino 259) 3416 * |---- y/ (ino 257) 3417 * |----- file (ino 260) 3418 * 3419 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3420 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3421 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3422 * must issue is: 3423 * 3424 * 1 - rename 259 from 'c' to 'x' 3425 * 2 - rename 257 from 'a' to 'x/y' 3426 * 3 - rename 258 from 'b' to 'a' 3427 * 3428 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3429 * be done right away and < 0 on error. 3430 */ 3431 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3432 struct recorded_ref *parent_ref, 3433 const bool is_orphan) 3434 { 3435 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3436 struct btrfs_path *path; 3437 struct btrfs_key key; 3438 struct btrfs_key di_key; 3439 struct btrfs_dir_item *di; 3440 u64 left_gen; 3441 u64 right_gen; 3442 int ret = 0; 3443 struct waiting_dir_move *wdm; 3444 3445 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3446 return 0; 3447 3448 path = alloc_path_for_send(); 3449 if (!path) 3450 return -ENOMEM; 3451 3452 key.objectid = parent_ref->dir; 3453 key.type = BTRFS_DIR_ITEM_KEY; 3454 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3455 3456 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3457 if (ret < 0) { 3458 goto out; 3459 } else if (ret > 0) { 3460 ret = 0; 3461 goto out; 3462 } 3463 3464 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3465 parent_ref->name_len); 3466 if (!di) { 3467 ret = 0; 3468 goto out; 3469 } 3470 /* 3471 * di_key.objectid has the number of the inode that has a dentry in the 3472 * parent directory with the same name that sctx->cur_ino is being 3473 * renamed to. We need to check if that inode is in the send root as 3474 * well and if it is currently marked as an inode with a pending rename, 3475 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3476 * that it happens after that other inode is renamed. 3477 */ 3478 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3479 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3480 ret = 0; 3481 goto out; 3482 } 3483 3484 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3485 &left_gen, NULL, NULL, NULL, NULL); 3486 if (ret < 0) 3487 goto out; 3488 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3489 &right_gen, NULL, NULL, NULL, NULL); 3490 if (ret < 0) { 3491 if (ret == -ENOENT) 3492 ret = 0; 3493 goto out; 3494 } 3495 3496 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3497 if (right_gen != left_gen) { 3498 ret = 0; 3499 goto out; 3500 } 3501 3502 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3503 if (wdm && !wdm->orphanized) { 3504 ret = add_pending_dir_move(sctx, 3505 sctx->cur_ino, 3506 sctx->cur_inode_gen, 3507 di_key.objectid, 3508 &sctx->new_refs, 3509 &sctx->deleted_refs, 3510 is_orphan); 3511 if (!ret) 3512 ret = 1; 3513 } 3514 out: 3515 btrfs_free_path(path); 3516 return ret; 3517 } 3518 3519 /* 3520 * Check if inode ino2, or any of its ancestors, is inode ino1. 3521 * Return 1 if true, 0 if false and < 0 on error. 3522 */ 3523 static int check_ino_in_path(struct btrfs_root *root, 3524 const u64 ino1, 3525 const u64 ino1_gen, 3526 const u64 ino2, 3527 const u64 ino2_gen, 3528 struct fs_path *fs_path) 3529 { 3530 u64 ino = ino2; 3531 3532 if (ino1 == ino2) 3533 return ino1_gen == ino2_gen; 3534 3535 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3536 u64 parent; 3537 u64 parent_gen; 3538 int ret; 3539 3540 fs_path_reset(fs_path); 3541 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3542 if (ret < 0) 3543 return ret; 3544 if (parent == ino1) 3545 return parent_gen == ino1_gen; 3546 ino = parent; 3547 } 3548 return 0; 3549 } 3550 3551 /* 3552 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3553 * possible path (in case ino2 is not a directory and has multiple hard links). 3554 * Return 1 if true, 0 if false and < 0 on error. 3555 */ 3556 static int is_ancestor(struct btrfs_root *root, 3557 const u64 ino1, 3558 const u64 ino1_gen, 3559 const u64 ino2, 3560 struct fs_path *fs_path) 3561 { 3562 bool free_fs_path = false; 3563 int ret = 0; 3564 struct btrfs_path *path = NULL; 3565 struct btrfs_key key; 3566 3567 if (!fs_path) { 3568 fs_path = fs_path_alloc(); 3569 if (!fs_path) 3570 return -ENOMEM; 3571 free_fs_path = true; 3572 } 3573 3574 path = alloc_path_for_send(); 3575 if (!path) { 3576 ret = -ENOMEM; 3577 goto out; 3578 } 3579 3580 key.objectid = ino2; 3581 key.type = BTRFS_INODE_REF_KEY; 3582 key.offset = 0; 3583 3584 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3585 if (ret < 0) 3586 goto out; 3587 3588 while (true) { 3589 struct extent_buffer *leaf = path->nodes[0]; 3590 int slot = path->slots[0]; 3591 u32 cur_offset = 0; 3592 u32 item_size; 3593 3594 if (slot >= btrfs_header_nritems(leaf)) { 3595 ret = btrfs_next_leaf(root, path); 3596 if (ret < 0) 3597 goto out; 3598 if (ret > 0) 3599 break; 3600 continue; 3601 } 3602 3603 btrfs_item_key_to_cpu(leaf, &key, slot); 3604 if (key.objectid != ino2) 3605 break; 3606 if (key.type != BTRFS_INODE_REF_KEY && 3607 key.type != BTRFS_INODE_EXTREF_KEY) 3608 break; 3609 3610 item_size = btrfs_item_size_nr(leaf, slot); 3611 while (cur_offset < item_size) { 3612 u64 parent; 3613 u64 parent_gen; 3614 3615 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3616 unsigned long ptr; 3617 struct btrfs_inode_extref *extref; 3618 3619 ptr = btrfs_item_ptr_offset(leaf, slot); 3620 extref = (struct btrfs_inode_extref *) 3621 (ptr + cur_offset); 3622 parent = btrfs_inode_extref_parent(leaf, 3623 extref); 3624 cur_offset += sizeof(*extref); 3625 cur_offset += btrfs_inode_extref_name_len(leaf, 3626 extref); 3627 } else { 3628 parent = key.offset; 3629 cur_offset = item_size; 3630 } 3631 3632 ret = get_inode_info(root, parent, NULL, &parent_gen, 3633 NULL, NULL, NULL, NULL); 3634 if (ret < 0) 3635 goto out; 3636 ret = check_ino_in_path(root, ino1, ino1_gen, 3637 parent, parent_gen, fs_path); 3638 if (ret) 3639 goto out; 3640 } 3641 path->slots[0]++; 3642 } 3643 ret = 0; 3644 out: 3645 btrfs_free_path(path); 3646 if (free_fs_path) 3647 fs_path_free(fs_path); 3648 return ret; 3649 } 3650 3651 static int wait_for_parent_move(struct send_ctx *sctx, 3652 struct recorded_ref *parent_ref, 3653 const bool is_orphan) 3654 { 3655 int ret = 0; 3656 u64 ino = parent_ref->dir; 3657 u64 ino_gen = parent_ref->dir_gen; 3658 u64 parent_ino_before, parent_ino_after; 3659 struct fs_path *path_before = NULL; 3660 struct fs_path *path_after = NULL; 3661 int len1, len2; 3662 3663 path_after = fs_path_alloc(); 3664 path_before = fs_path_alloc(); 3665 if (!path_after || !path_before) { 3666 ret = -ENOMEM; 3667 goto out; 3668 } 3669 3670 /* 3671 * Our current directory inode may not yet be renamed/moved because some 3672 * ancestor (immediate or not) has to be renamed/moved first. So find if 3673 * such ancestor exists and make sure our own rename/move happens after 3674 * that ancestor is processed to avoid path build infinite loops (done 3675 * at get_cur_path()). 3676 */ 3677 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3678 u64 parent_ino_after_gen; 3679 3680 if (is_waiting_for_move(sctx, ino)) { 3681 /* 3682 * If the current inode is an ancestor of ino in the 3683 * parent root, we need to delay the rename of the 3684 * current inode, otherwise don't delayed the rename 3685 * because we can end up with a circular dependency 3686 * of renames, resulting in some directories never 3687 * getting the respective rename operations issued in 3688 * the send stream or getting into infinite path build 3689 * loops. 3690 */ 3691 ret = is_ancestor(sctx->parent_root, 3692 sctx->cur_ino, sctx->cur_inode_gen, 3693 ino, path_before); 3694 if (ret) 3695 break; 3696 } 3697 3698 fs_path_reset(path_before); 3699 fs_path_reset(path_after); 3700 3701 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3702 &parent_ino_after_gen, path_after); 3703 if (ret < 0) 3704 goto out; 3705 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3706 NULL, path_before); 3707 if (ret < 0 && ret != -ENOENT) { 3708 goto out; 3709 } else if (ret == -ENOENT) { 3710 ret = 0; 3711 break; 3712 } 3713 3714 len1 = fs_path_len(path_before); 3715 len2 = fs_path_len(path_after); 3716 if (ino > sctx->cur_ino && 3717 (parent_ino_before != parent_ino_after || len1 != len2 || 3718 memcmp(path_before->start, path_after->start, len1))) { 3719 u64 parent_ino_gen; 3720 3721 ret = get_inode_info(sctx->parent_root, ino, NULL, 3722 &parent_ino_gen, NULL, NULL, NULL, 3723 NULL); 3724 if (ret < 0) 3725 goto out; 3726 if (ino_gen == parent_ino_gen) { 3727 ret = 1; 3728 break; 3729 } 3730 } 3731 ino = parent_ino_after; 3732 ino_gen = parent_ino_after_gen; 3733 } 3734 3735 out: 3736 fs_path_free(path_before); 3737 fs_path_free(path_after); 3738 3739 if (ret == 1) { 3740 ret = add_pending_dir_move(sctx, 3741 sctx->cur_ino, 3742 sctx->cur_inode_gen, 3743 ino, 3744 &sctx->new_refs, 3745 &sctx->deleted_refs, 3746 is_orphan); 3747 if (!ret) 3748 ret = 1; 3749 } 3750 3751 return ret; 3752 } 3753 3754 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3755 { 3756 int ret; 3757 struct fs_path *new_path; 3758 3759 /* 3760 * Our reference's name member points to its full_path member string, so 3761 * we use here a new path. 3762 */ 3763 new_path = fs_path_alloc(); 3764 if (!new_path) 3765 return -ENOMEM; 3766 3767 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3768 if (ret < 0) { 3769 fs_path_free(new_path); 3770 return ret; 3771 } 3772 ret = fs_path_add(new_path, ref->name, ref->name_len); 3773 if (ret < 0) { 3774 fs_path_free(new_path); 3775 return ret; 3776 } 3777 3778 fs_path_free(ref->full_path); 3779 set_ref_path(ref, new_path); 3780 3781 return 0; 3782 } 3783 3784 /* 3785 * This does all the move/link/unlink/rmdir magic. 3786 */ 3787 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3788 { 3789 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3790 int ret = 0; 3791 struct recorded_ref *cur; 3792 struct recorded_ref *cur2; 3793 struct list_head check_dirs; 3794 struct fs_path *valid_path = NULL; 3795 u64 ow_inode = 0; 3796 u64 ow_gen; 3797 u64 ow_mode; 3798 int did_overwrite = 0; 3799 int is_orphan = 0; 3800 u64 last_dir_ino_rm = 0; 3801 bool can_rename = true; 3802 bool orphanized_dir = false; 3803 bool orphanized_ancestor = false; 3804 3805 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3806 3807 /* 3808 * This should never happen as the root dir always has the same ref 3809 * which is always '..' 3810 */ 3811 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3812 INIT_LIST_HEAD(&check_dirs); 3813 3814 valid_path = fs_path_alloc(); 3815 if (!valid_path) { 3816 ret = -ENOMEM; 3817 goto out; 3818 } 3819 3820 /* 3821 * First, check if the first ref of the current inode was overwritten 3822 * before. If yes, we know that the current inode was already orphanized 3823 * and thus use the orphan name. If not, we can use get_cur_path to 3824 * get the path of the first ref as it would like while receiving at 3825 * this point in time. 3826 * New inodes are always orphan at the beginning, so force to use the 3827 * orphan name in this case. 3828 * The first ref is stored in valid_path and will be updated if it 3829 * gets moved around. 3830 */ 3831 if (!sctx->cur_inode_new) { 3832 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3833 sctx->cur_inode_gen); 3834 if (ret < 0) 3835 goto out; 3836 if (ret) 3837 did_overwrite = 1; 3838 } 3839 if (sctx->cur_inode_new || did_overwrite) { 3840 ret = gen_unique_name(sctx, sctx->cur_ino, 3841 sctx->cur_inode_gen, valid_path); 3842 if (ret < 0) 3843 goto out; 3844 is_orphan = 1; 3845 } else { 3846 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3847 valid_path); 3848 if (ret < 0) 3849 goto out; 3850 } 3851 3852 list_for_each_entry(cur, &sctx->new_refs, list) { 3853 /* 3854 * We may have refs where the parent directory does not exist 3855 * yet. This happens if the parent directories inum is higher 3856 * the the current inum. To handle this case, we create the 3857 * parent directory out of order. But we need to check if this 3858 * did already happen before due to other refs in the same dir. 3859 */ 3860 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3861 if (ret < 0) 3862 goto out; 3863 if (ret == inode_state_will_create) { 3864 ret = 0; 3865 /* 3866 * First check if any of the current inodes refs did 3867 * already create the dir. 3868 */ 3869 list_for_each_entry(cur2, &sctx->new_refs, list) { 3870 if (cur == cur2) 3871 break; 3872 if (cur2->dir == cur->dir) { 3873 ret = 1; 3874 break; 3875 } 3876 } 3877 3878 /* 3879 * If that did not happen, check if a previous inode 3880 * did already create the dir. 3881 */ 3882 if (!ret) 3883 ret = did_create_dir(sctx, cur->dir); 3884 if (ret < 0) 3885 goto out; 3886 if (!ret) { 3887 ret = send_create_inode(sctx, cur->dir); 3888 if (ret < 0) 3889 goto out; 3890 } 3891 } 3892 3893 /* 3894 * Check if this new ref would overwrite the first ref of 3895 * another unprocessed inode. If yes, orphanize the 3896 * overwritten inode. If we find an overwritten ref that is 3897 * not the first ref, simply unlink it. 3898 */ 3899 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3900 cur->name, cur->name_len, 3901 &ow_inode, &ow_gen, &ow_mode); 3902 if (ret < 0) 3903 goto out; 3904 if (ret) { 3905 ret = is_first_ref(sctx->parent_root, 3906 ow_inode, cur->dir, cur->name, 3907 cur->name_len); 3908 if (ret < 0) 3909 goto out; 3910 if (ret) { 3911 struct name_cache_entry *nce; 3912 struct waiting_dir_move *wdm; 3913 3914 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3915 cur->full_path); 3916 if (ret < 0) 3917 goto out; 3918 if (S_ISDIR(ow_mode)) 3919 orphanized_dir = true; 3920 3921 /* 3922 * If ow_inode has its rename operation delayed 3923 * make sure that its orphanized name is used in 3924 * the source path when performing its rename 3925 * operation. 3926 */ 3927 if (is_waiting_for_move(sctx, ow_inode)) { 3928 wdm = get_waiting_dir_move(sctx, 3929 ow_inode); 3930 ASSERT(wdm); 3931 wdm->orphanized = true; 3932 } 3933 3934 /* 3935 * Make sure we clear our orphanized inode's 3936 * name from the name cache. This is because the 3937 * inode ow_inode might be an ancestor of some 3938 * other inode that will be orphanized as well 3939 * later and has an inode number greater than 3940 * sctx->send_progress. We need to prevent 3941 * future name lookups from using the old name 3942 * and get instead the orphan name. 3943 */ 3944 nce = name_cache_search(sctx, ow_inode, ow_gen); 3945 if (nce) { 3946 name_cache_delete(sctx, nce); 3947 kfree(nce); 3948 } 3949 3950 /* 3951 * ow_inode might currently be an ancestor of 3952 * cur_ino, therefore compute valid_path (the 3953 * current path of cur_ino) again because it 3954 * might contain the pre-orphanization name of 3955 * ow_inode, which is no longer valid. 3956 */ 3957 ret = is_ancestor(sctx->parent_root, 3958 ow_inode, ow_gen, 3959 sctx->cur_ino, NULL); 3960 if (ret > 0) { 3961 orphanized_ancestor = true; 3962 fs_path_reset(valid_path); 3963 ret = get_cur_path(sctx, sctx->cur_ino, 3964 sctx->cur_inode_gen, 3965 valid_path); 3966 } 3967 if (ret < 0) 3968 goto out; 3969 } else { 3970 ret = send_unlink(sctx, cur->full_path); 3971 if (ret < 0) 3972 goto out; 3973 } 3974 } 3975 3976 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3977 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3978 if (ret < 0) 3979 goto out; 3980 if (ret == 1) { 3981 can_rename = false; 3982 *pending_move = 1; 3983 } 3984 } 3985 3986 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 3987 can_rename) { 3988 ret = wait_for_parent_move(sctx, cur, is_orphan); 3989 if (ret < 0) 3990 goto out; 3991 if (ret == 1) { 3992 can_rename = false; 3993 *pending_move = 1; 3994 } 3995 } 3996 3997 /* 3998 * link/move the ref to the new place. If we have an orphan 3999 * inode, move it and update valid_path. If not, link or move 4000 * it depending on the inode mode. 4001 */ 4002 if (is_orphan && can_rename) { 4003 ret = send_rename(sctx, valid_path, cur->full_path); 4004 if (ret < 0) 4005 goto out; 4006 is_orphan = 0; 4007 ret = fs_path_copy(valid_path, cur->full_path); 4008 if (ret < 0) 4009 goto out; 4010 } else if (can_rename) { 4011 if (S_ISDIR(sctx->cur_inode_mode)) { 4012 /* 4013 * Dirs can't be linked, so move it. For moved 4014 * dirs, we always have one new and one deleted 4015 * ref. The deleted ref is ignored later. 4016 */ 4017 ret = send_rename(sctx, valid_path, 4018 cur->full_path); 4019 if (!ret) 4020 ret = fs_path_copy(valid_path, 4021 cur->full_path); 4022 if (ret < 0) 4023 goto out; 4024 } else { 4025 /* 4026 * We might have previously orphanized an inode 4027 * which is an ancestor of our current inode, 4028 * so our reference's full path, which was 4029 * computed before any such orphanizations, must 4030 * be updated. 4031 */ 4032 if (orphanized_dir) { 4033 ret = update_ref_path(sctx, cur); 4034 if (ret < 0) 4035 goto out; 4036 } 4037 ret = send_link(sctx, cur->full_path, 4038 valid_path); 4039 if (ret < 0) 4040 goto out; 4041 } 4042 } 4043 ret = dup_ref(cur, &check_dirs); 4044 if (ret < 0) 4045 goto out; 4046 } 4047 4048 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4049 /* 4050 * Check if we can already rmdir the directory. If not, 4051 * orphanize it. For every dir item inside that gets deleted 4052 * later, we do this check again and rmdir it then if possible. 4053 * See the use of check_dirs for more details. 4054 */ 4055 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4056 sctx->cur_ino); 4057 if (ret < 0) 4058 goto out; 4059 if (ret) { 4060 ret = send_rmdir(sctx, valid_path); 4061 if (ret < 0) 4062 goto out; 4063 } else if (!is_orphan) { 4064 ret = orphanize_inode(sctx, sctx->cur_ino, 4065 sctx->cur_inode_gen, valid_path); 4066 if (ret < 0) 4067 goto out; 4068 is_orphan = 1; 4069 } 4070 4071 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4072 ret = dup_ref(cur, &check_dirs); 4073 if (ret < 0) 4074 goto out; 4075 } 4076 } else if (S_ISDIR(sctx->cur_inode_mode) && 4077 !list_empty(&sctx->deleted_refs)) { 4078 /* 4079 * We have a moved dir. Add the old parent to check_dirs 4080 */ 4081 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4082 list); 4083 ret = dup_ref(cur, &check_dirs); 4084 if (ret < 0) 4085 goto out; 4086 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4087 /* 4088 * We have a non dir inode. Go through all deleted refs and 4089 * unlink them if they were not already overwritten by other 4090 * inodes. 4091 */ 4092 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4093 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4094 sctx->cur_ino, sctx->cur_inode_gen, 4095 cur->name, cur->name_len); 4096 if (ret < 0) 4097 goto out; 4098 if (!ret) { 4099 /* 4100 * If we orphanized any ancestor before, we need 4101 * to recompute the full path for deleted names, 4102 * since any such path was computed before we 4103 * processed any references and orphanized any 4104 * ancestor inode. 4105 */ 4106 if (orphanized_ancestor) { 4107 ret = update_ref_path(sctx, cur); 4108 if (ret < 0) 4109 goto out; 4110 } 4111 ret = send_unlink(sctx, cur->full_path); 4112 if (ret < 0) 4113 goto out; 4114 } 4115 ret = dup_ref(cur, &check_dirs); 4116 if (ret < 0) 4117 goto out; 4118 } 4119 /* 4120 * If the inode is still orphan, unlink the orphan. This may 4121 * happen when a previous inode did overwrite the first ref 4122 * of this inode and no new refs were added for the current 4123 * inode. Unlinking does not mean that the inode is deleted in 4124 * all cases. There may still be links to this inode in other 4125 * places. 4126 */ 4127 if (is_orphan) { 4128 ret = send_unlink(sctx, valid_path); 4129 if (ret < 0) 4130 goto out; 4131 } 4132 } 4133 4134 /* 4135 * We did collect all parent dirs where cur_inode was once located. We 4136 * now go through all these dirs and check if they are pending for 4137 * deletion and if it's finally possible to perform the rmdir now. 4138 * We also update the inode stats of the parent dirs here. 4139 */ 4140 list_for_each_entry(cur, &check_dirs, list) { 4141 /* 4142 * In case we had refs into dirs that were not processed yet, 4143 * we don't need to do the utime and rmdir logic for these dirs. 4144 * The dir will be processed later. 4145 */ 4146 if (cur->dir > sctx->cur_ino) 4147 continue; 4148 4149 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4150 if (ret < 0) 4151 goto out; 4152 4153 if (ret == inode_state_did_create || 4154 ret == inode_state_no_change) { 4155 /* TODO delayed utimes */ 4156 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4157 if (ret < 0) 4158 goto out; 4159 } else if (ret == inode_state_did_delete && 4160 cur->dir != last_dir_ino_rm) { 4161 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4162 sctx->cur_ino); 4163 if (ret < 0) 4164 goto out; 4165 if (ret) { 4166 ret = get_cur_path(sctx, cur->dir, 4167 cur->dir_gen, valid_path); 4168 if (ret < 0) 4169 goto out; 4170 ret = send_rmdir(sctx, valid_path); 4171 if (ret < 0) 4172 goto out; 4173 last_dir_ino_rm = cur->dir; 4174 } 4175 } 4176 } 4177 4178 ret = 0; 4179 4180 out: 4181 __free_recorded_refs(&check_dirs); 4182 free_recorded_refs(sctx); 4183 fs_path_free(valid_path); 4184 return ret; 4185 } 4186 4187 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4188 void *ctx, struct list_head *refs) 4189 { 4190 int ret = 0; 4191 struct send_ctx *sctx = ctx; 4192 struct fs_path *p; 4193 u64 gen; 4194 4195 p = fs_path_alloc(); 4196 if (!p) 4197 return -ENOMEM; 4198 4199 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4200 NULL, NULL); 4201 if (ret < 0) 4202 goto out; 4203 4204 ret = get_cur_path(sctx, dir, gen, p); 4205 if (ret < 0) 4206 goto out; 4207 ret = fs_path_add_path(p, name); 4208 if (ret < 0) 4209 goto out; 4210 4211 ret = __record_ref(refs, dir, gen, p); 4212 4213 out: 4214 if (ret) 4215 fs_path_free(p); 4216 return ret; 4217 } 4218 4219 static int __record_new_ref(int num, u64 dir, int index, 4220 struct fs_path *name, 4221 void *ctx) 4222 { 4223 struct send_ctx *sctx = ctx; 4224 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4225 } 4226 4227 4228 static int __record_deleted_ref(int num, u64 dir, int index, 4229 struct fs_path *name, 4230 void *ctx) 4231 { 4232 struct send_ctx *sctx = ctx; 4233 return record_ref(sctx->parent_root, dir, name, ctx, 4234 &sctx->deleted_refs); 4235 } 4236 4237 static int record_new_ref(struct send_ctx *sctx) 4238 { 4239 int ret; 4240 4241 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4242 sctx->cmp_key, 0, __record_new_ref, sctx); 4243 if (ret < 0) 4244 goto out; 4245 ret = 0; 4246 4247 out: 4248 return ret; 4249 } 4250 4251 static int record_deleted_ref(struct send_ctx *sctx) 4252 { 4253 int ret; 4254 4255 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4256 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4257 if (ret < 0) 4258 goto out; 4259 ret = 0; 4260 4261 out: 4262 return ret; 4263 } 4264 4265 struct find_ref_ctx { 4266 u64 dir; 4267 u64 dir_gen; 4268 struct btrfs_root *root; 4269 struct fs_path *name; 4270 int found_idx; 4271 }; 4272 4273 static int __find_iref(int num, u64 dir, int index, 4274 struct fs_path *name, 4275 void *ctx_) 4276 { 4277 struct find_ref_ctx *ctx = ctx_; 4278 u64 dir_gen; 4279 int ret; 4280 4281 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4282 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4283 /* 4284 * To avoid doing extra lookups we'll only do this if everything 4285 * else matches. 4286 */ 4287 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4288 NULL, NULL, NULL); 4289 if (ret) 4290 return ret; 4291 if (dir_gen != ctx->dir_gen) 4292 return 0; 4293 ctx->found_idx = num; 4294 return 1; 4295 } 4296 return 0; 4297 } 4298 4299 static int find_iref(struct btrfs_root *root, 4300 struct btrfs_path *path, 4301 struct btrfs_key *key, 4302 u64 dir, u64 dir_gen, struct fs_path *name) 4303 { 4304 int ret; 4305 struct find_ref_ctx ctx; 4306 4307 ctx.dir = dir; 4308 ctx.name = name; 4309 ctx.dir_gen = dir_gen; 4310 ctx.found_idx = -1; 4311 ctx.root = root; 4312 4313 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4314 if (ret < 0) 4315 return ret; 4316 4317 if (ctx.found_idx == -1) 4318 return -ENOENT; 4319 4320 return ctx.found_idx; 4321 } 4322 4323 static int __record_changed_new_ref(int num, u64 dir, int index, 4324 struct fs_path *name, 4325 void *ctx) 4326 { 4327 u64 dir_gen; 4328 int ret; 4329 struct send_ctx *sctx = ctx; 4330 4331 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4332 NULL, NULL, NULL); 4333 if (ret) 4334 return ret; 4335 4336 ret = find_iref(sctx->parent_root, sctx->right_path, 4337 sctx->cmp_key, dir, dir_gen, name); 4338 if (ret == -ENOENT) 4339 ret = __record_new_ref(num, dir, index, name, sctx); 4340 else if (ret > 0) 4341 ret = 0; 4342 4343 return ret; 4344 } 4345 4346 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4347 struct fs_path *name, 4348 void *ctx) 4349 { 4350 u64 dir_gen; 4351 int ret; 4352 struct send_ctx *sctx = ctx; 4353 4354 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4355 NULL, NULL, NULL); 4356 if (ret) 4357 return ret; 4358 4359 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4360 dir, dir_gen, name); 4361 if (ret == -ENOENT) 4362 ret = __record_deleted_ref(num, dir, index, name, sctx); 4363 else if (ret > 0) 4364 ret = 0; 4365 4366 return ret; 4367 } 4368 4369 static int record_changed_ref(struct send_ctx *sctx) 4370 { 4371 int ret = 0; 4372 4373 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4374 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4375 if (ret < 0) 4376 goto out; 4377 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4378 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4379 if (ret < 0) 4380 goto out; 4381 ret = 0; 4382 4383 out: 4384 return ret; 4385 } 4386 4387 /* 4388 * Record and process all refs at once. Needed when an inode changes the 4389 * generation number, which means that it was deleted and recreated. 4390 */ 4391 static int process_all_refs(struct send_ctx *sctx, 4392 enum btrfs_compare_tree_result cmd) 4393 { 4394 int ret; 4395 struct btrfs_root *root; 4396 struct btrfs_path *path; 4397 struct btrfs_key key; 4398 struct btrfs_key found_key; 4399 struct extent_buffer *eb; 4400 int slot; 4401 iterate_inode_ref_t cb; 4402 int pending_move = 0; 4403 4404 path = alloc_path_for_send(); 4405 if (!path) 4406 return -ENOMEM; 4407 4408 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4409 root = sctx->send_root; 4410 cb = __record_new_ref; 4411 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4412 root = sctx->parent_root; 4413 cb = __record_deleted_ref; 4414 } else { 4415 btrfs_err(sctx->send_root->fs_info, 4416 "Wrong command %d in process_all_refs", cmd); 4417 ret = -EINVAL; 4418 goto out; 4419 } 4420 4421 key.objectid = sctx->cmp_key->objectid; 4422 key.type = BTRFS_INODE_REF_KEY; 4423 key.offset = 0; 4424 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4425 if (ret < 0) 4426 goto out; 4427 4428 while (1) { 4429 eb = path->nodes[0]; 4430 slot = path->slots[0]; 4431 if (slot >= btrfs_header_nritems(eb)) { 4432 ret = btrfs_next_leaf(root, path); 4433 if (ret < 0) 4434 goto out; 4435 else if (ret > 0) 4436 break; 4437 continue; 4438 } 4439 4440 btrfs_item_key_to_cpu(eb, &found_key, slot); 4441 4442 if (found_key.objectid != key.objectid || 4443 (found_key.type != BTRFS_INODE_REF_KEY && 4444 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4445 break; 4446 4447 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4448 if (ret < 0) 4449 goto out; 4450 4451 path->slots[0]++; 4452 } 4453 btrfs_release_path(path); 4454 4455 /* 4456 * We don't actually care about pending_move as we are simply 4457 * re-creating this inode and will be rename'ing it into place once we 4458 * rename the parent directory. 4459 */ 4460 ret = process_recorded_refs(sctx, &pending_move); 4461 out: 4462 btrfs_free_path(path); 4463 return ret; 4464 } 4465 4466 static int send_set_xattr(struct send_ctx *sctx, 4467 struct fs_path *path, 4468 const char *name, int name_len, 4469 const char *data, int data_len) 4470 { 4471 int ret = 0; 4472 4473 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4474 if (ret < 0) 4475 goto out; 4476 4477 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4478 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4479 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4480 4481 ret = send_cmd(sctx); 4482 4483 tlv_put_failure: 4484 out: 4485 return ret; 4486 } 4487 4488 static int send_remove_xattr(struct send_ctx *sctx, 4489 struct fs_path *path, 4490 const char *name, int name_len) 4491 { 4492 int ret = 0; 4493 4494 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4495 if (ret < 0) 4496 goto out; 4497 4498 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4499 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4500 4501 ret = send_cmd(sctx); 4502 4503 tlv_put_failure: 4504 out: 4505 return ret; 4506 } 4507 4508 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4509 const char *name, int name_len, 4510 const char *data, int data_len, 4511 u8 type, void *ctx) 4512 { 4513 int ret; 4514 struct send_ctx *sctx = ctx; 4515 struct fs_path *p; 4516 struct posix_acl_xattr_header dummy_acl; 4517 4518 p = fs_path_alloc(); 4519 if (!p) 4520 return -ENOMEM; 4521 4522 /* 4523 * This hack is needed because empty acls are stored as zero byte 4524 * data in xattrs. Problem with that is, that receiving these zero byte 4525 * acls will fail later. To fix this, we send a dummy acl list that 4526 * only contains the version number and no entries. 4527 */ 4528 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4529 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4530 if (data_len == 0) { 4531 dummy_acl.a_version = 4532 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4533 data = (char *)&dummy_acl; 4534 data_len = sizeof(dummy_acl); 4535 } 4536 } 4537 4538 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4539 if (ret < 0) 4540 goto out; 4541 4542 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4543 4544 out: 4545 fs_path_free(p); 4546 return ret; 4547 } 4548 4549 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4550 const char *name, int name_len, 4551 const char *data, int data_len, 4552 u8 type, void *ctx) 4553 { 4554 int ret; 4555 struct send_ctx *sctx = ctx; 4556 struct fs_path *p; 4557 4558 p = fs_path_alloc(); 4559 if (!p) 4560 return -ENOMEM; 4561 4562 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4563 if (ret < 0) 4564 goto out; 4565 4566 ret = send_remove_xattr(sctx, p, name, name_len); 4567 4568 out: 4569 fs_path_free(p); 4570 return ret; 4571 } 4572 4573 static int process_new_xattr(struct send_ctx *sctx) 4574 { 4575 int ret = 0; 4576 4577 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4578 __process_new_xattr, sctx); 4579 4580 return ret; 4581 } 4582 4583 static int process_deleted_xattr(struct send_ctx *sctx) 4584 { 4585 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4586 __process_deleted_xattr, sctx); 4587 } 4588 4589 struct find_xattr_ctx { 4590 const char *name; 4591 int name_len; 4592 int found_idx; 4593 char *found_data; 4594 int found_data_len; 4595 }; 4596 4597 static int __find_xattr(int num, struct btrfs_key *di_key, 4598 const char *name, int name_len, 4599 const char *data, int data_len, 4600 u8 type, void *vctx) 4601 { 4602 struct find_xattr_ctx *ctx = vctx; 4603 4604 if (name_len == ctx->name_len && 4605 strncmp(name, ctx->name, name_len) == 0) { 4606 ctx->found_idx = num; 4607 ctx->found_data_len = data_len; 4608 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4609 if (!ctx->found_data) 4610 return -ENOMEM; 4611 return 1; 4612 } 4613 return 0; 4614 } 4615 4616 static int find_xattr(struct btrfs_root *root, 4617 struct btrfs_path *path, 4618 struct btrfs_key *key, 4619 const char *name, int name_len, 4620 char **data, int *data_len) 4621 { 4622 int ret; 4623 struct find_xattr_ctx ctx; 4624 4625 ctx.name = name; 4626 ctx.name_len = name_len; 4627 ctx.found_idx = -1; 4628 ctx.found_data = NULL; 4629 ctx.found_data_len = 0; 4630 4631 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4632 if (ret < 0) 4633 return ret; 4634 4635 if (ctx.found_idx == -1) 4636 return -ENOENT; 4637 if (data) { 4638 *data = ctx.found_data; 4639 *data_len = ctx.found_data_len; 4640 } else { 4641 kfree(ctx.found_data); 4642 } 4643 return ctx.found_idx; 4644 } 4645 4646 4647 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4648 const char *name, int name_len, 4649 const char *data, int data_len, 4650 u8 type, void *ctx) 4651 { 4652 int ret; 4653 struct send_ctx *sctx = ctx; 4654 char *found_data = NULL; 4655 int found_data_len = 0; 4656 4657 ret = find_xattr(sctx->parent_root, sctx->right_path, 4658 sctx->cmp_key, name, name_len, &found_data, 4659 &found_data_len); 4660 if (ret == -ENOENT) { 4661 ret = __process_new_xattr(num, di_key, name, name_len, data, 4662 data_len, type, ctx); 4663 } else if (ret >= 0) { 4664 if (data_len != found_data_len || 4665 memcmp(data, found_data, data_len)) { 4666 ret = __process_new_xattr(num, di_key, name, name_len, 4667 data, data_len, type, ctx); 4668 } else { 4669 ret = 0; 4670 } 4671 } 4672 4673 kfree(found_data); 4674 return ret; 4675 } 4676 4677 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4678 const char *name, int name_len, 4679 const char *data, int data_len, 4680 u8 type, void *ctx) 4681 { 4682 int ret; 4683 struct send_ctx *sctx = ctx; 4684 4685 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4686 name, name_len, NULL, NULL); 4687 if (ret == -ENOENT) 4688 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4689 data_len, type, ctx); 4690 else if (ret >= 0) 4691 ret = 0; 4692 4693 return ret; 4694 } 4695 4696 static int process_changed_xattr(struct send_ctx *sctx) 4697 { 4698 int ret = 0; 4699 4700 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4701 __process_changed_new_xattr, sctx); 4702 if (ret < 0) 4703 goto out; 4704 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4705 __process_changed_deleted_xattr, sctx); 4706 4707 out: 4708 return ret; 4709 } 4710 4711 static int process_all_new_xattrs(struct send_ctx *sctx) 4712 { 4713 int ret; 4714 struct btrfs_root *root; 4715 struct btrfs_path *path; 4716 struct btrfs_key key; 4717 struct btrfs_key found_key; 4718 struct extent_buffer *eb; 4719 int slot; 4720 4721 path = alloc_path_for_send(); 4722 if (!path) 4723 return -ENOMEM; 4724 4725 root = sctx->send_root; 4726 4727 key.objectid = sctx->cmp_key->objectid; 4728 key.type = BTRFS_XATTR_ITEM_KEY; 4729 key.offset = 0; 4730 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4731 if (ret < 0) 4732 goto out; 4733 4734 while (1) { 4735 eb = path->nodes[0]; 4736 slot = path->slots[0]; 4737 if (slot >= btrfs_header_nritems(eb)) { 4738 ret = btrfs_next_leaf(root, path); 4739 if (ret < 0) { 4740 goto out; 4741 } else if (ret > 0) { 4742 ret = 0; 4743 break; 4744 } 4745 continue; 4746 } 4747 4748 btrfs_item_key_to_cpu(eb, &found_key, slot); 4749 if (found_key.objectid != key.objectid || 4750 found_key.type != key.type) { 4751 ret = 0; 4752 goto out; 4753 } 4754 4755 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4756 if (ret < 0) 4757 goto out; 4758 4759 path->slots[0]++; 4760 } 4761 4762 out: 4763 btrfs_free_path(path); 4764 return ret; 4765 } 4766 4767 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4768 { 4769 struct btrfs_root *root = sctx->send_root; 4770 struct btrfs_fs_info *fs_info = root->fs_info; 4771 struct inode *inode; 4772 struct page *page; 4773 char *addr; 4774 struct btrfs_key key; 4775 pgoff_t index = offset >> PAGE_SHIFT; 4776 pgoff_t last_index; 4777 unsigned pg_offset = offset & ~PAGE_MASK; 4778 ssize_t ret = 0; 4779 4780 key.objectid = sctx->cur_ino; 4781 key.type = BTRFS_INODE_ITEM_KEY; 4782 key.offset = 0; 4783 4784 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4785 if (IS_ERR(inode)) 4786 return PTR_ERR(inode); 4787 4788 if (offset + len > i_size_read(inode)) { 4789 if (offset > i_size_read(inode)) 4790 len = 0; 4791 else 4792 len = offset - i_size_read(inode); 4793 } 4794 if (len == 0) 4795 goto out; 4796 4797 last_index = (offset + len - 1) >> PAGE_SHIFT; 4798 4799 /* initial readahead */ 4800 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4801 file_ra_state_init(&sctx->ra, inode->i_mapping); 4802 4803 while (index <= last_index) { 4804 unsigned cur_len = min_t(unsigned, len, 4805 PAGE_SIZE - pg_offset); 4806 4807 page = find_lock_page(inode->i_mapping, index); 4808 if (!page) { 4809 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4810 NULL, index, last_index + 1 - index); 4811 4812 page = find_or_create_page(inode->i_mapping, index, 4813 GFP_KERNEL); 4814 if (!page) { 4815 ret = -ENOMEM; 4816 break; 4817 } 4818 } 4819 4820 if (PageReadahead(page)) { 4821 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4822 NULL, page, index, last_index + 1 - index); 4823 } 4824 4825 if (!PageUptodate(page)) { 4826 btrfs_readpage(NULL, page); 4827 lock_page(page); 4828 if (!PageUptodate(page)) { 4829 unlock_page(page); 4830 put_page(page); 4831 ret = -EIO; 4832 break; 4833 } 4834 } 4835 4836 addr = kmap(page); 4837 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4838 kunmap(page); 4839 unlock_page(page); 4840 put_page(page); 4841 index++; 4842 pg_offset = 0; 4843 len -= cur_len; 4844 ret += cur_len; 4845 } 4846 out: 4847 iput(inode); 4848 return ret; 4849 } 4850 4851 /* 4852 * Read some bytes from the current inode/file and send a write command to 4853 * user space. 4854 */ 4855 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4856 { 4857 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4858 int ret = 0; 4859 struct fs_path *p; 4860 ssize_t num_read = 0; 4861 4862 p = fs_path_alloc(); 4863 if (!p) 4864 return -ENOMEM; 4865 4866 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4867 4868 num_read = fill_read_buf(sctx, offset, len); 4869 if (num_read <= 0) { 4870 if (num_read < 0) 4871 ret = num_read; 4872 goto out; 4873 } 4874 4875 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4876 if (ret < 0) 4877 goto out; 4878 4879 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4880 if (ret < 0) 4881 goto out; 4882 4883 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4884 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4885 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4886 4887 ret = send_cmd(sctx); 4888 4889 tlv_put_failure: 4890 out: 4891 fs_path_free(p); 4892 if (ret < 0) 4893 return ret; 4894 return num_read; 4895 } 4896 4897 /* 4898 * Send a clone command to user space. 4899 */ 4900 static int send_clone(struct send_ctx *sctx, 4901 u64 offset, u32 len, 4902 struct clone_root *clone_root) 4903 { 4904 int ret = 0; 4905 struct fs_path *p; 4906 u64 gen; 4907 4908 btrfs_debug(sctx->send_root->fs_info, 4909 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4910 offset, len, clone_root->root->objectid, clone_root->ino, 4911 clone_root->offset); 4912 4913 p = fs_path_alloc(); 4914 if (!p) 4915 return -ENOMEM; 4916 4917 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4918 if (ret < 0) 4919 goto out; 4920 4921 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4922 if (ret < 0) 4923 goto out; 4924 4925 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4926 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4927 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4928 4929 if (clone_root->root == sctx->send_root) { 4930 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4931 &gen, NULL, NULL, NULL, NULL); 4932 if (ret < 0) 4933 goto out; 4934 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4935 } else { 4936 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4937 } 4938 if (ret < 0) 4939 goto out; 4940 4941 /* 4942 * If the parent we're using has a received_uuid set then use that as 4943 * our clone source as that is what we will look for when doing a 4944 * receive. 4945 * 4946 * This covers the case that we create a snapshot off of a received 4947 * subvolume and then use that as the parent and try to receive on a 4948 * different host. 4949 */ 4950 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4951 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4952 clone_root->root->root_item.received_uuid); 4953 else 4954 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4955 clone_root->root->root_item.uuid); 4956 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4957 le64_to_cpu(clone_root->root->root_item.ctransid)); 4958 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4959 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4960 clone_root->offset); 4961 4962 ret = send_cmd(sctx); 4963 4964 tlv_put_failure: 4965 out: 4966 fs_path_free(p); 4967 return ret; 4968 } 4969 4970 /* 4971 * Send an update extent command to user space. 4972 */ 4973 static int send_update_extent(struct send_ctx *sctx, 4974 u64 offset, u32 len) 4975 { 4976 int ret = 0; 4977 struct fs_path *p; 4978 4979 p = fs_path_alloc(); 4980 if (!p) 4981 return -ENOMEM; 4982 4983 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4984 if (ret < 0) 4985 goto out; 4986 4987 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4988 if (ret < 0) 4989 goto out; 4990 4991 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4992 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4993 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4994 4995 ret = send_cmd(sctx); 4996 4997 tlv_put_failure: 4998 out: 4999 fs_path_free(p); 5000 return ret; 5001 } 5002 5003 static int send_hole(struct send_ctx *sctx, u64 end) 5004 { 5005 struct fs_path *p = NULL; 5006 u64 offset = sctx->cur_inode_last_extent; 5007 u64 len; 5008 int ret = 0; 5009 5010 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5011 return send_update_extent(sctx, offset, end - offset); 5012 5013 p = fs_path_alloc(); 5014 if (!p) 5015 return -ENOMEM; 5016 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5017 if (ret < 0) 5018 goto tlv_put_failure; 5019 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 5020 while (offset < end) { 5021 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 5022 5023 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5024 if (ret < 0) 5025 break; 5026 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5027 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5028 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 5029 ret = send_cmd(sctx); 5030 if (ret < 0) 5031 break; 5032 offset += len; 5033 } 5034 sctx->cur_inode_next_write_offset = offset; 5035 tlv_put_failure: 5036 fs_path_free(p); 5037 return ret; 5038 } 5039 5040 static int send_extent_data(struct send_ctx *sctx, 5041 const u64 offset, 5042 const u64 len) 5043 { 5044 u64 sent = 0; 5045 5046 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5047 return send_update_extent(sctx, offset, len); 5048 5049 while (sent < len) { 5050 u64 size = len - sent; 5051 int ret; 5052 5053 if (size > BTRFS_SEND_READ_SIZE) 5054 size = BTRFS_SEND_READ_SIZE; 5055 ret = send_write(sctx, offset + sent, size); 5056 if (ret < 0) 5057 return ret; 5058 if (!ret) 5059 break; 5060 sent += ret; 5061 } 5062 return 0; 5063 } 5064 5065 static int clone_range(struct send_ctx *sctx, 5066 struct clone_root *clone_root, 5067 const u64 disk_byte, 5068 u64 data_offset, 5069 u64 offset, 5070 u64 len) 5071 { 5072 struct btrfs_path *path; 5073 struct btrfs_key key; 5074 int ret; 5075 5076 /* 5077 * Prevent cloning from a zero offset with a length matching the sector 5078 * size because in some scenarios this will make the receiver fail. 5079 * 5080 * For example, if in the source filesystem the extent at offset 0 5081 * has a length of sectorsize and it was written using direct IO, then 5082 * it can never be an inline extent (even if compression is enabled). 5083 * Then this extent can be cloned in the original filesystem to a non 5084 * zero file offset, but it may not be possible to clone in the 5085 * destination filesystem because it can be inlined due to compression 5086 * on the destination filesystem (as the receiver's write operations are 5087 * always done using buffered IO). The same happens when the original 5088 * filesystem does not have compression enabled but the destination 5089 * filesystem has. 5090 */ 5091 if (clone_root->offset == 0 && 5092 len == sctx->send_root->fs_info->sectorsize) 5093 return send_extent_data(sctx, offset, len); 5094 5095 path = alloc_path_for_send(); 5096 if (!path) 5097 return -ENOMEM; 5098 5099 /* 5100 * We can't send a clone operation for the entire range if we find 5101 * extent items in the respective range in the source file that 5102 * refer to different extents or if we find holes. 5103 * So check for that and do a mix of clone and regular write/copy 5104 * operations if needed. 5105 * 5106 * Example: 5107 * 5108 * mkfs.btrfs -f /dev/sda 5109 * mount /dev/sda /mnt 5110 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5111 * cp --reflink=always /mnt/foo /mnt/bar 5112 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5113 * btrfs subvolume snapshot -r /mnt /mnt/snap 5114 * 5115 * If when we send the snapshot and we are processing file bar (which 5116 * has a higher inode number than foo) we blindly send a clone operation 5117 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5118 * a file bar that matches the content of file foo - iow, doesn't match 5119 * the content from bar in the original filesystem. 5120 */ 5121 key.objectid = clone_root->ino; 5122 key.type = BTRFS_EXTENT_DATA_KEY; 5123 key.offset = clone_root->offset; 5124 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5125 if (ret < 0) 5126 goto out; 5127 if (ret > 0 && path->slots[0] > 0) { 5128 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5129 if (key.objectid == clone_root->ino && 5130 key.type == BTRFS_EXTENT_DATA_KEY) 5131 path->slots[0]--; 5132 } 5133 5134 while (true) { 5135 struct extent_buffer *leaf = path->nodes[0]; 5136 int slot = path->slots[0]; 5137 struct btrfs_file_extent_item *ei; 5138 u8 type; 5139 u64 ext_len; 5140 u64 clone_len; 5141 5142 if (slot >= btrfs_header_nritems(leaf)) { 5143 ret = btrfs_next_leaf(clone_root->root, path); 5144 if (ret < 0) 5145 goto out; 5146 else if (ret > 0) 5147 break; 5148 continue; 5149 } 5150 5151 btrfs_item_key_to_cpu(leaf, &key, slot); 5152 5153 /* 5154 * We might have an implicit trailing hole (NO_HOLES feature 5155 * enabled). We deal with it after leaving this loop. 5156 */ 5157 if (key.objectid != clone_root->ino || 5158 key.type != BTRFS_EXTENT_DATA_KEY) 5159 break; 5160 5161 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5162 type = btrfs_file_extent_type(leaf, ei); 5163 if (type == BTRFS_FILE_EXTENT_INLINE) { 5164 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei); 5165 ext_len = PAGE_ALIGN(ext_len); 5166 } else { 5167 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5168 } 5169 5170 if (key.offset + ext_len <= clone_root->offset) 5171 goto next; 5172 5173 if (key.offset > clone_root->offset) { 5174 /* Implicit hole, NO_HOLES feature enabled. */ 5175 u64 hole_len = key.offset - clone_root->offset; 5176 5177 if (hole_len > len) 5178 hole_len = len; 5179 ret = send_extent_data(sctx, offset, hole_len); 5180 if (ret < 0) 5181 goto out; 5182 5183 len -= hole_len; 5184 if (len == 0) 5185 break; 5186 offset += hole_len; 5187 clone_root->offset += hole_len; 5188 data_offset += hole_len; 5189 } 5190 5191 if (key.offset >= clone_root->offset + len) 5192 break; 5193 5194 clone_len = min_t(u64, ext_len, len); 5195 5196 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5197 btrfs_file_extent_offset(leaf, ei) == data_offset) 5198 ret = send_clone(sctx, offset, clone_len, clone_root); 5199 else 5200 ret = send_extent_data(sctx, offset, clone_len); 5201 5202 if (ret < 0) 5203 goto out; 5204 5205 len -= clone_len; 5206 if (len == 0) 5207 break; 5208 offset += clone_len; 5209 clone_root->offset += clone_len; 5210 data_offset += clone_len; 5211 next: 5212 path->slots[0]++; 5213 } 5214 5215 if (len > 0) 5216 ret = send_extent_data(sctx, offset, len); 5217 else 5218 ret = 0; 5219 out: 5220 btrfs_free_path(path); 5221 return ret; 5222 } 5223 5224 static int send_write_or_clone(struct send_ctx *sctx, 5225 struct btrfs_path *path, 5226 struct btrfs_key *key, 5227 struct clone_root *clone_root) 5228 { 5229 int ret = 0; 5230 struct btrfs_file_extent_item *ei; 5231 u64 offset = key->offset; 5232 u64 len; 5233 u8 type; 5234 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5235 5236 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5237 struct btrfs_file_extent_item); 5238 type = btrfs_file_extent_type(path->nodes[0], ei); 5239 if (type == BTRFS_FILE_EXTENT_INLINE) { 5240 len = btrfs_file_extent_inline_len(path->nodes[0], 5241 path->slots[0], ei); 5242 /* 5243 * it is possible the inline item won't cover the whole page, 5244 * but there may be items after this page. Make 5245 * sure to send the whole thing 5246 */ 5247 len = PAGE_ALIGN(len); 5248 } else { 5249 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5250 } 5251 5252 if (offset + len > sctx->cur_inode_size) 5253 len = sctx->cur_inode_size - offset; 5254 if (len == 0) { 5255 ret = 0; 5256 goto out; 5257 } 5258 5259 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5260 u64 disk_byte; 5261 u64 data_offset; 5262 5263 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5264 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5265 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5266 offset, len); 5267 } else { 5268 ret = send_extent_data(sctx, offset, len); 5269 } 5270 sctx->cur_inode_next_write_offset = offset + len; 5271 out: 5272 return ret; 5273 } 5274 5275 static int is_extent_unchanged(struct send_ctx *sctx, 5276 struct btrfs_path *left_path, 5277 struct btrfs_key *ekey) 5278 { 5279 int ret = 0; 5280 struct btrfs_key key; 5281 struct btrfs_path *path = NULL; 5282 struct extent_buffer *eb; 5283 int slot; 5284 struct btrfs_key found_key; 5285 struct btrfs_file_extent_item *ei; 5286 u64 left_disknr; 5287 u64 right_disknr; 5288 u64 left_offset; 5289 u64 right_offset; 5290 u64 left_offset_fixed; 5291 u64 left_len; 5292 u64 right_len; 5293 u64 left_gen; 5294 u64 right_gen; 5295 u8 left_type; 5296 u8 right_type; 5297 5298 path = alloc_path_for_send(); 5299 if (!path) 5300 return -ENOMEM; 5301 5302 eb = left_path->nodes[0]; 5303 slot = left_path->slots[0]; 5304 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5305 left_type = btrfs_file_extent_type(eb, ei); 5306 5307 if (left_type != BTRFS_FILE_EXTENT_REG) { 5308 ret = 0; 5309 goto out; 5310 } 5311 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5312 left_len = btrfs_file_extent_num_bytes(eb, ei); 5313 left_offset = btrfs_file_extent_offset(eb, ei); 5314 left_gen = btrfs_file_extent_generation(eb, ei); 5315 5316 /* 5317 * Following comments will refer to these graphics. L is the left 5318 * extents which we are checking at the moment. 1-8 are the right 5319 * extents that we iterate. 5320 * 5321 * |-----L-----| 5322 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5323 * 5324 * |-----L-----| 5325 * |--1--|-2b-|...(same as above) 5326 * 5327 * Alternative situation. Happens on files where extents got split. 5328 * |-----L-----| 5329 * |-----------7-----------|-6-| 5330 * 5331 * Alternative situation. Happens on files which got larger. 5332 * |-----L-----| 5333 * |-8-| 5334 * Nothing follows after 8. 5335 */ 5336 5337 key.objectid = ekey->objectid; 5338 key.type = BTRFS_EXTENT_DATA_KEY; 5339 key.offset = ekey->offset; 5340 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5341 if (ret < 0) 5342 goto out; 5343 if (ret) { 5344 ret = 0; 5345 goto out; 5346 } 5347 5348 /* 5349 * Handle special case where the right side has no extents at all. 5350 */ 5351 eb = path->nodes[0]; 5352 slot = path->slots[0]; 5353 btrfs_item_key_to_cpu(eb, &found_key, slot); 5354 if (found_key.objectid != key.objectid || 5355 found_key.type != key.type) { 5356 /* If we're a hole then just pretend nothing changed */ 5357 ret = (left_disknr) ? 0 : 1; 5358 goto out; 5359 } 5360 5361 /* 5362 * We're now on 2a, 2b or 7. 5363 */ 5364 key = found_key; 5365 while (key.offset < ekey->offset + left_len) { 5366 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5367 right_type = btrfs_file_extent_type(eb, ei); 5368 if (right_type != BTRFS_FILE_EXTENT_REG && 5369 right_type != BTRFS_FILE_EXTENT_INLINE) { 5370 ret = 0; 5371 goto out; 5372 } 5373 5374 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5375 right_len = btrfs_file_extent_inline_len(eb, slot, ei); 5376 right_len = PAGE_ALIGN(right_len); 5377 } else { 5378 right_len = btrfs_file_extent_num_bytes(eb, ei); 5379 } 5380 5381 /* 5382 * Are we at extent 8? If yes, we know the extent is changed. 5383 * This may only happen on the first iteration. 5384 */ 5385 if (found_key.offset + right_len <= ekey->offset) { 5386 /* If we're a hole just pretend nothing changed */ 5387 ret = (left_disknr) ? 0 : 1; 5388 goto out; 5389 } 5390 5391 /* 5392 * We just wanted to see if when we have an inline extent, what 5393 * follows it is a regular extent (wanted to check the above 5394 * condition for inline extents too). This should normally not 5395 * happen but it's possible for example when we have an inline 5396 * compressed extent representing data with a size matching 5397 * the page size (currently the same as sector size). 5398 */ 5399 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5400 ret = 0; 5401 goto out; 5402 } 5403 5404 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5405 right_offset = btrfs_file_extent_offset(eb, ei); 5406 right_gen = btrfs_file_extent_generation(eb, ei); 5407 5408 left_offset_fixed = left_offset; 5409 if (key.offset < ekey->offset) { 5410 /* Fix the right offset for 2a and 7. */ 5411 right_offset += ekey->offset - key.offset; 5412 } else { 5413 /* Fix the left offset for all behind 2a and 2b */ 5414 left_offset_fixed += key.offset - ekey->offset; 5415 } 5416 5417 /* 5418 * Check if we have the same extent. 5419 */ 5420 if (left_disknr != right_disknr || 5421 left_offset_fixed != right_offset || 5422 left_gen != right_gen) { 5423 ret = 0; 5424 goto out; 5425 } 5426 5427 /* 5428 * Go to the next extent. 5429 */ 5430 ret = btrfs_next_item(sctx->parent_root, path); 5431 if (ret < 0) 5432 goto out; 5433 if (!ret) { 5434 eb = path->nodes[0]; 5435 slot = path->slots[0]; 5436 btrfs_item_key_to_cpu(eb, &found_key, slot); 5437 } 5438 if (ret || found_key.objectid != key.objectid || 5439 found_key.type != key.type) { 5440 key.offset += right_len; 5441 break; 5442 } 5443 if (found_key.offset != key.offset + right_len) { 5444 ret = 0; 5445 goto out; 5446 } 5447 key = found_key; 5448 } 5449 5450 /* 5451 * We're now behind the left extent (treat as unchanged) or at the end 5452 * of the right side (treat as changed). 5453 */ 5454 if (key.offset >= ekey->offset + left_len) 5455 ret = 1; 5456 else 5457 ret = 0; 5458 5459 5460 out: 5461 btrfs_free_path(path); 5462 return ret; 5463 } 5464 5465 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5466 { 5467 struct btrfs_path *path; 5468 struct btrfs_root *root = sctx->send_root; 5469 struct btrfs_file_extent_item *fi; 5470 struct btrfs_key key; 5471 u64 extent_end; 5472 u8 type; 5473 int ret; 5474 5475 path = alloc_path_for_send(); 5476 if (!path) 5477 return -ENOMEM; 5478 5479 sctx->cur_inode_last_extent = 0; 5480 5481 key.objectid = sctx->cur_ino; 5482 key.type = BTRFS_EXTENT_DATA_KEY; 5483 key.offset = offset; 5484 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5485 if (ret < 0) 5486 goto out; 5487 ret = 0; 5488 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5489 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5490 goto out; 5491 5492 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5493 struct btrfs_file_extent_item); 5494 type = btrfs_file_extent_type(path->nodes[0], fi); 5495 if (type == BTRFS_FILE_EXTENT_INLINE) { 5496 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5497 path->slots[0], fi); 5498 extent_end = ALIGN(key.offset + size, 5499 sctx->send_root->fs_info->sectorsize); 5500 } else { 5501 extent_end = key.offset + 5502 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5503 } 5504 sctx->cur_inode_last_extent = extent_end; 5505 out: 5506 btrfs_free_path(path); 5507 return ret; 5508 } 5509 5510 static int range_is_hole_in_parent(struct send_ctx *sctx, 5511 const u64 start, 5512 const u64 end) 5513 { 5514 struct btrfs_path *path; 5515 struct btrfs_key key; 5516 struct btrfs_root *root = sctx->parent_root; 5517 u64 search_start = start; 5518 int ret; 5519 5520 path = alloc_path_for_send(); 5521 if (!path) 5522 return -ENOMEM; 5523 5524 key.objectid = sctx->cur_ino; 5525 key.type = BTRFS_EXTENT_DATA_KEY; 5526 key.offset = search_start; 5527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5528 if (ret < 0) 5529 goto out; 5530 if (ret > 0 && path->slots[0] > 0) 5531 path->slots[0]--; 5532 5533 while (search_start < end) { 5534 struct extent_buffer *leaf = path->nodes[0]; 5535 int slot = path->slots[0]; 5536 struct btrfs_file_extent_item *fi; 5537 u64 extent_end; 5538 5539 if (slot >= btrfs_header_nritems(leaf)) { 5540 ret = btrfs_next_leaf(root, path); 5541 if (ret < 0) 5542 goto out; 5543 else if (ret > 0) 5544 break; 5545 continue; 5546 } 5547 5548 btrfs_item_key_to_cpu(leaf, &key, slot); 5549 if (key.objectid < sctx->cur_ino || 5550 key.type < BTRFS_EXTENT_DATA_KEY) 5551 goto next; 5552 if (key.objectid > sctx->cur_ino || 5553 key.type > BTRFS_EXTENT_DATA_KEY || 5554 key.offset >= end) 5555 break; 5556 5557 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5558 if (btrfs_file_extent_type(leaf, fi) == 5559 BTRFS_FILE_EXTENT_INLINE) { 5560 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi); 5561 5562 extent_end = ALIGN(key.offset + size, 5563 root->fs_info->sectorsize); 5564 } else { 5565 extent_end = key.offset + 5566 btrfs_file_extent_num_bytes(leaf, fi); 5567 } 5568 if (extent_end <= start) 5569 goto next; 5570 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5571 search_start = extent_end; 5572 goto next; 5573 } 5574 ret = 0; 5575 goto out; 5576 next: 5577 path->slots[0]++; 5578 } 5579 ret = 1; 5580 out: 5581 btrfs_free_path(path); 5582 return ret; 5583 } 5584 5585 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5586 struct btrfs_key *key) 5587 { 5588 struct btrfs_file_extent_item *fi; 5589 u64 extent_end; 5590 u8 type; 5591 int ret = 0; 5592 5593 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5594 return 0; 5595 5596 if (sctx->cur_inode_last_extent == (u64)-1) { 5597 ret = get_last_extent(sctx, key->offset - 1); 5598 if (ret) 5599 return ret; 5600 } 5601 5602 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5603 struct btrfs_file_extent_item); 5604 type = btrfs_file_extent_type(path->nodes[0], fi); 5605 if (type == BTRFS_FILE_EXTENT_INLINE) { 5606 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5607 path->slots[0], fi); 5608 extent_end = ALIGN(key->offset + size, 5609 sctx->send_root->fs_info->sectorsize); 5610 } else { 5611 extent_end = key->offset + 5612 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5613 } 5614 5615 if (path->slots[0] == 0 && 5616 sctx->cur_inode_last_extent < key->offset) { 5617 /* 5618 * We might have skipped entire leafs that contained only 5619 * file extent items for our current inode. These leafs have 5620 * a generation number smaller (older) than the one in the 5621 * current leaf and the leaf our last extent came from, and 5622 * are located between these 2 leafs. 5623 */ 5624 ret = get_last_extent(sctx, key->offset - 1); 5625 if (ret) 5626 return ret; 5627 } 5628 5629 if (sctx->cur_inode_last_extent < key->offset) { 5630 ret = range_is_hole_in_parent(sctx, 5631 sctx->cur_inode_last_extent, 5632 key->offset); 5633 if (ret < 0) 5634 return ret; 5635 else if (ret == 0) 5636 ret = send_hole(sctx, key->offset); 5637 else 5638 ret = 0; 5639 } 5640 sctx->cur_inode_last_extent = extent_end; 5641 return ret; 5642 } 5643 5644 static int process_extent(struct send_ctx *sctx, 5645 struct btrfs_path *path, 5646 struct btrfs_key *key) 5647 { 5648 struct clone_root *found_clone = NULL; 5649 int ret = 0; 5650 5651 if (S_ISLNK(sctx->cur_inode_mode)) 5652 return 0; 5653 5654 if (sctx->parent_root && !sctx->cur_inode_new) { 5655 ret = is_extent_unchanged(sctx, path, key); 5656 if (ret < 0) 5657 goto out; 5658 if (ret) { 5659 ret = 0; 5660 goto out_hole; 5661 } 5662 } else { 5663 struct btrfs_file_extent_item *ei; 5664 u8 type; 5665 5666 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5667 struct btrfs_file_extent_item); 5668 type = btrfs_file_extent_type(path->nodes[0], ei); 5669 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5670 type == BTRFS_FILE_EXTENT_REG) { 5671 /* 5672 * The send spec does not have a prealloc command yet, 5673 * so just leave a hole for prealloc'ed extents until 5674 * we have enough commands queued up to justify rev'ing 5675 * the send spec. 5676 */ 5677 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5678 ret = 0; 5679 goto out; 5680 } 5681 5682 /* Have a hole, just skip it. */ 5683 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5684 ret = 0; 5685 goto out; 5686 } 5687 } 5688 } 5689 5690 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5691 sctx->cur_inode_size, &found_clone); 5692 if (ret != -ENOENT && ret < 0) 5693 goto out; 5694 5695 ret = send_write_or_clone(sctx, path, key, found_clone); 5696 if (ret) 5697 goto out; 5698 out_hole: 5699 ret = maybe_send_hole(sctx, path, key); 5700 out: 5701 return ret; 5702 } 5703 5704 static int process_all_extents(struct send_ctx *sctx) 5705 { 5706 int ret; 5707 struct btrfs_root *root; 5708 struct btrfs_path *path; 5709 struct btrfs_key key; 5710 struct btrfs_key found_key; 5711 struct extent_buffer *eb; 5712 int slot; 5713 5714 root = sctx->send_root; 5715 path = alloc_path_for_send(); 5716 if (!path) 5717 return -ENOMEM; 5718 5719 key.objectid = sctx->cmp_key->objectid; 5720 key.type = BTRFS_EXTENT_DATA_KEY; 5721 key.offset = 0; 5722 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5723 if (ret < 0) 5724 goto out; 5725 5726 while (1) { 5727 eb = path->nodes[0]; 5728 slot = path->slots[0]; 5729 5730 if (slot >= btrfs_header_nritems(eb)) { 5731 ret = btrfs_next_leaf(root, path); 5732 if (ret < 0) { 5733 goto out; 5734 } else if (ret > 0) { 5735 ret = 0; 5736 break; 5737 } 5738 continue; 5739 } 5740 5741 btrfs_item_key_to_cpu(eb, &found_key, slot); 5742 5743 if (found_key.objectid != key.objectid || 5744 found_key.type != key.type) { 5745 ret = 0; 5746 goto out; 5747 } 5748 5749 ret = process_extent(sctx, path, &found_key); 5750 if (ret < 0) 5751 goto out; 5752 5753 path->slots[0]++; 5754 } 5755 5756 out: 5757 btrfs_free_path(path); 5758 return ret; 5759 } 5760 5761 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5762 int *pending_move, 5763 int *refs_processed) 5764 { 5765 int ret = 0; 5766 5767 if (sctx->cur_ino == 0) 5768 goto out; 5769 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5770 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5771 goto out; 5772 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5773 goto out; 5774 5775 ret = process_recorded_refs(sctx, pending_move); 5776 if (ret < 0) 5777 goto out; 5778 5779 *refs_processed = 1; 5780 out: 5781 return ret; 5782 } 5783 5784 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5785 { 5786 int ret = 0; 5787 u64 left_mode; 5788 u64 left_uid; 5789 u64 left_gid; 5790 u64 right_mode; 5791 u64 right_uid; 5792 u64 right_gid; 5793 int need_chmod = 0; 5794 int need_chown = 0; 5795 int need_truncate = 1; 5796 int pending_move = 0; 5797 int refs_processed = 0; 5798 5799 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5800 &refs_processed); 5801 if (ret < 0) 5802 goto out; 5803 5804 /* 5805 * We have processed the refs and thus need to advance send_progress. 5806 * Now, calls to get_cur_xxx will take the updated refs of the current 5807 * inode into account. 5808 * 5809 * On the other hand, if our current inode is a directory and couldn't 5810 * be moved/renamed because its parent was renamed/moved too and it has 5811 * a higher inode number, we can only move/rename our current inode 5812 * after we moved/renamed its parent. Therefore in this case operate on 5813 * the old path (pre move/rename) of our current inode, and the 5814 * move/rename will be performed later. 5815 */ 5816 if (refs_processed && !pending_move) 5817 sctx->send_progress = sctx->cur_ino + 1; 5818 5819 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5820 goto out; 5821 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5822 goto out; 5823 5824 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5825 &left_mode, &left_uid, &left_gid, NULL); 5826 if (ret < 0) 5827 goto out; 5828 5829 if (!sctx->parent_root || sctx->cur_inode_new) { 5830 need_chown = 1; 5831 if (!S_ISLNK(sctx->cur_inode_mode)) 5832 need_chmod = 1; 5833 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 5834 need_truncate = 0; 5835 } else { 5836 u64 old_size; 5837 5838 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5839 &old_size, NULL, &right_mode, &right_uid, 5840 &right_gid, NULL); 5841 if (ret < 0) 5842 goto out; 5843 5844 if (left_uid != right_uid || left_gid != right_gid) 5845 need_chown = 1; 5846 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5847 need_chmod = 1; 5848 if ((old_size == sctx->cur_inode_size) || 5849 (sctx->cur_inode_size > old_size && 5850 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 5851 need_truncate = 0; 5852 } 5853 5854 if (S_ISREG(sctx->cur_inode_mode)) { 5855 if (need_send_hole(sctx)) { 5856 if (sctx->cur_inode_last_extent == (u64)-1 || 5857 sctx->cur_inode_last_extent < 5858 sctx->cur_inode_size) { 5859 ret = get_last_extent(sctx, (u64)-1); 5860 if (ret) 5861 goto out; 5862 } 5863 if (sctx->cur_inode_last_extent < 5864 sctx->cur_inode_size) { 5865 ret = send_hole(sctx, sctx->cur_inode_size); 5866 if (ret) 5867 goto out; 5868 } 5869 } 5870 if (need_truncate) { 5871 ret = send_truncate(sctx, sctx->cur_ino, 5872 sctx->cur_inode_gen, 5873 sctx->cur_inode_size); 5874 if (ret < 0) 5875 goto out; 5876 } 5877 } 5878 5879 if (need_chown) { 5880 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5881 left_uid, left_gid); 5882 if (ret < 0) 5883 goto out; 5884 } 5885 if (need_chmod) { 5886 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5887 left_mode); 5888 if (ret < 0) 5889 goto out; 5890 } 5891 5892 /* 5893 * If other directory inodes depended on our current directory 5894 * inode's move/rename, now do their move/rename operations. 5895 */ 5896 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5897 ret = apply_children_dir_moves(sctx); 5898 if (ret) 5899 goto out; 5900 /* 5901 * Need to send that every time, no matter if it actually 5902 * changed between the two trees as we have done changes to 5903 * the inode before. If our inode is a directory and it's 5904 * waiting to be moved/renamed, we will send its utimes when 5905 * it's moved/renamed, therefore we don't need to do it here. 5906 */ 5907 sctx->send_progress = sctx->cur_ino + 1; 5908 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5909 if (ret < 0) 5910 goto out; 5911 } 5912 5913 out: 5914 return ret; 5915 } 5916 5917 static int changed_inode(struct send_ctx *sctx, 5918 enum btrfs_compare_tree_result result) 5919 { 5920 int ret = 0; 5921 struct btrfs_key *key = sctx->cmp_key; 5922 struct btrfs_inode_item *left_ii = NULL; 5923 struct btrfs_inode_item *right_ii = NULL; 5924 u64 left_gen = 0; 5925 u64 right_gen = 0; 5926 5927 sctx->cur_ino = key->objectid; 5928 sctx->cur_inode_new_gen = 0; 5929 sctx->cur_inode_last_extent = (u64)-1; 5930 sctx->cur_inode_next_write_offset = 0; 5931 5932 /* 5933 * Set send_progress to current inode. This will tell all get_cur_xxx 5934 * functions that the current inode's refs are not updated yet. Later, 5935 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5936 */ 5937 sctx->send_progress = sctx->cur_ino; 5938 5939 if (result == BTRFS_COMPARE_TREE_NEW || 5940 result == BTRFS_COMPARE_TREE_CHANGED) { 5941 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5942 sctx->left_path->slots[0], 5943 struct btrfs_inode_item); 5944 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5945 left_ii); 5946 } else { 5947 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5948 sctx->right_path->slots[0], 5949 struct btrfs_inode_item); 5950 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5951 right_ii); 5952 } 5953 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5954 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5955 sctx->right_path->slots[0], 5956 struct btrfs_inode_item); 5957 5958 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5959 right_ii); 5960 5961 /* 5962 * The cur_ino = root dir case is special here. We can't treat 5963 * the inode as deleted+reused because it would generate a 5964 * stream that tries to delete/mkdir the root dir. 5965 */ 5966 if (left_gen != right_gen && 5967 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5968 sctx->cur_inode_new_gen = 1; 5969 } 5970 5971 if (result == BTRFS_COMPARE_TREE_NEW) { 5972 sctx->cur_inode_gen = left_gen; 5973 sctx->cur_inode_new = 1; 5974 sctx->cur_inode_deleted = 0; 5975 sctx->cur_inode_size = btrfs_inode_size( 5976 sctx->left_path->nodes[0], left_ii); 5977 sctx->cur_inode_mode = btrfs_inode_mode( 5978 sctx->left_path->nodes[0], left_ii); 5979 sctx->cur_inode_rdev = btrfs_inode_rdev( 5980 sctx->left_path->nodes[0], left_ii); 5981 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5982 ret = send_create_inode_if_needed(sctx); 5983 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5984 sctx->cur_inode_gen = right_gen; 5985 sctx->cur_inode_new = 0; 5986 sctx->cur_inode_deleted = 1; 5987 sctx->cur_inode_size = btrfs_inode_size( 5988 sctx->right_path->nodes[0], right_ii); 5989 sctx->cur_inode_mode = btrfs_inode_mode( 5990 sctx->right_path->nodes[0], right_ii); 5991 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5992 /* 5993 * We need to do some special handling in case the inode was 5994 * reported as changed with a changed generation number. This 5995 * means that the original inode was deleted and new inode 5996 * reused the same inum. So we have to treat the old inode as 5997 * deleted and the new one as new. 5998 */ 5999 if (sctx->cur_inode_new_gen) { 6000 /* 6001 * First, process the inode as if it was deleted. 6002 */ 6003 sctx->cur_inode_gen = right_gen; 6004 sctx->cur_inode_new = 0; 6005 sctx->cur_inode_deleted = 1; 6006 sctx->cur_inode_size = btrfs_inode_size( 6007 sctx->right_path->nodes[0], right_ii); 6008 sctx->cur_inode_mode = btrfs_inode_mode( 6009 sctx->right_path->nodes[0], right_ii); 6010 ret = process_all_refs(sctx, 6011 BTRFS_COMPARE_TREE_DELETED); 6012 if (ret < 0) 6013 goto out; 6014 6015 /* 6016 * Now process the inode as if it was new. 6017 */ 6018 sctx->cur_inode_gen = left_gen; 6019 sctx->cur_inode_new = 1; 6020 sctx->cur_inode_deleted = 0; 6021 sctx->cur_inode_size = btrfs_inode_size( 6022 sctx->left_path->nodes[0], left_ii); 6023 sctx->cur_inode_mode = btrfs_inode_mode( 6024 sctx->left_path->nodes[0], left_ii); 6025 sctx->cur_inode_rdev = btrfs_inode_rdev( 6026 sctx->left_path->nodes[0], left_ii); 6027 ret = send_create_inode_if_needed(sctx); 6028 if (ret < 0) 6029 goto out; 6030 6031 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6032 if (ret < 0) 6033 goto out; 6034 /* 6035 * Advance send_progress now as we did not get into 6036 * process_recorded_refs_if_needed in the new_gen case. 6037 */ 6038 sctx->send_progress = sctx->cur_ino + 1; 6039 6040 /* 6041 * Now process all extents and xattrs of the inode as if 6042 * they were all new. 6043 */ 6044 ret = process_all_extents(sctx); 6045 if (ret < 0) 6046 goto out; 6047 ret = process_all_new_xattrs(sctx); 6048 if (ret < 0) 6049 goto out; 6050 } else { 6051 sctx->cur_inode_gen = left_gen; 6052 sctx->cur_inode_new = 0; 6053 sctx->cur_inode_new_gen = 0; 6054 sctx->cur_inode_deleted = 0; 6055 sctx->cur_inode_size = btrfs_inode_size( 6056 sctx->left_path->nodes[0], left_ii); 6057 sctx->cur_inode_mode = btrfs_inode_mode( 6058 sctx->left_path->nodes[0], left_ii); 6059 } 6060 } 6061 6062 out: 6063 return ret; 6064 } 6065 6066 /* 6067 * We have to process new refs before deleted refs, but compare_trees gives us 6068 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6069 * first and later process them in process_recorded_refs. 6070 * For the cur_inode_new_gen case, we skip recording completely because 6071 * changed_inode did already initiate processing of refs. The reason for this is 6072 * that in this case, compare_tree actually compares the refs of 2 different 6073 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6074 * refs of the right tree as deleted and all refs of the left tree as new. 6075 */ 6076 static int changed_ref(struct send_ctx *sctx, 6077 enum btrfs_compare_tree_result result) 6078 { 6079 int ret = 0; 6080 6081 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6082 inconsistent_snapshot_error(sctx, result, "reference"); 6083 return -EIO; 6084 } 6085 6086 if (!sctx->cur_inode_new_gen && 6087 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6088 if (result == BTRFS_COMPARE_TREE_NEW) 6089 ret = record_new_ref(sctx); 6090 else if (result == BTRFS_COMPARE_TREE_DELETED) 6091 ret = record_deleted_ref(sctx); 6092 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6093 ret = record_changed_ref(sctx); 6094 } 6095 6096 return ret; 6097 } 6098 6099 /* 6100 * Process new/deleted/changed xattrs. We skip processing in the 6101 * cur_inode_new_gen case because changed_inode did already initiate processing 6102 * of xattrs. The reason is the same as in changed_ref 6103 */ 6104 static int changed_xattr(struct send_ctx *sctx, 6105 enum btrfs_compare_tree_result result) 6106 { 6107 int ret = 0; 6108 6109 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6110 inconsistent_snapshot_error(sctx, result, "xattr"); 6111 return -EIO; 6112 } 6113 6114 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6115 if (result == BTRFS_COMPARE_TREE_NEW) 6116 ret = process_new_xattr(sctx); 6117 else if (result == BTRFS_COMPARE_TREE_DELETED) 6118 ret = process_deleted_xattr(sctx); 6119 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6120 ret = process_changed_xattr(sctx); 6121 } 6122 6123 return ret; 6124 } 6125 6126 /* 6127 * Process new/deleted/changed extents. We skip processing in the 6128 * cur_inode_new_gen case because changed_inode did already initiate processing 6129 * of extents. The reason is the same as in changed_ref 6130 */ 6131 static int changed_extent(struct send_ctx *sctx, 6132 enum btrfs_compare_tree_result result) 6133 { 6134 int ret = 0; 6135 6136 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6137 6138 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6139 struct extent_buffer *leaf_l; 6140 struct extent_buffer *leaf_r; 6141 struct btrfs_file_extent_item *ei_l; 6142 struct btrfs_file_extent_item *ei_r; 6143 6144 leaf_l = sctx->left_path->nodes[0]; 6145 leaf_r = sctx->right_path->nodes[0]; 6146 ei_l = btrfs_item_ptr(leaf_l, 6147 sctx->left_path->slots[0], 6148 struct btrfs_file_extent_item); 6149 ei_r = btrfs_item_ptr(leaf_r, 6150 sctx->right_path->slots[0], 6151 struct btrfs_file_extent_item); 6152 6153 /* 6154 * We may have found an extent item that has changed 6155 * only its disk_bytenr field and the corresponding 6156 * inode item was not updated. This case happens due to 6157 * very specific timings during relocation when a leaf 6158 * that contains file extent items is COWed while 6159 * relocation is ongoing and its in the stage where it 6160 * updates data pointers. So when this happens we can 6161 * safely ignore it since we know it's the same extent, 6162 * but just at different logical and physical locations 6163 * (when an extent is fully replaced with a new one, we 6164 * know the generation number must have changed too, 6165 * since snapshot creation implies committing the current 6166 * transaction, and the inode item must have been updated 6167 * as well). 6168 * This replacement of the disk_bytenr happens at 6169 * relocation.c:replace_file_extents() through 6170 * relocation.c:btrfs_reloc_cow_block(). 6171 */ 6172 if (btrfs_file_extent_generation(leaf_l, ei_l) == 6173 btrfs_file_extent_generation(leaf_r, ei_r) && 6174 btrfs_file_extent_ram_bytes(leaf_l, ei_l) == 6175 btrfs_file_extent_ram_bytes(leaf_r, ei_r) && 6176 btrfs_file_extent_compression(leaf_l, ei_l) == 6177 btrfs_file_extent_compression(leaf_r, ei_r) && 6178 btrfs_file_extent_encryption(leaf_l, ei_l) == 6179 btrfs_file_extent_encryption(leaf_r, ei_r) && 6180 btrfs_file_extent_other_encoding(leaf_l, ei_l) == 6181 btrfs_file_extent_other_encoding(leaf_r, ei_r) && 6182 btrfs_file_extent_type(leaf_l, ei_l) == 6183 btrfs_file_extent_type(leaf_r, ei_r) && 6184 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) != 6185 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) && 6186 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) == 6187 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) && 6188 btrfs_file_extent_offset(leaf_l, ei_l) == 6189 btrfs_file_extent_offset(leaf_r, ei_r) && 6190 btrfs_file_extent_num_bytes(leaf_l, ei_l) == 6191 btrfs_file_extent_num_bytes(leaf_r, ei_r)) 6192 return 0; 6193 } 6194 6195 inconsistent_snapshot_error(sctx, result, "extent"); 6196 return -EIO; 6197 } 6198 6199 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6200 if (result != BTRFS_COMPARE_TREE_DELETED) 6201 ret = process_extent(sctx, sctx->left_path, 6202 sctx->cmp_key); 6203 } 6204 6205 return ret; 6206 } 6207 6208 static int dir_changed(struct send_ctx *sctx, u64 dir) 6209 { 6210 u64 orig_gen, new_gen; 6211 int ret; 6212 6213 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6214 NULL, NULL); 6215 if (ret) 6216 return ret; 6217 6218 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6219 NULL, NULL, NULL); 6220 if (ret) 6221 return ret; 6222 6223 return (orig_gen != new_gen) ? 1 : 0; 6224 } 6225 6226 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6227 struct btrfs_key *key) 6228 { 6229 struct btrfs_inode_extref *extref; 6230 struct extent_buffer *leaf; 6231 u64 dirid = 0, last_dirid = 0; 6232 unsigned long ptr; 6233 u32 item_size; 6234 u32 cur_offset = 0; 6235 int ref_name_len; 6236 int ret = 0; 6237 6238 /* Easy case, just check this one dirid */ 6239 if (key->type == BTRFS_INODE_REF_KEY) { 6240 dirid = key->offset; 6241 6242 ret = dir_changed(sctx, dirid); 6243 goto out; 6244 } 6245 6246 leaf = path->nodes[0]; 6247 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6248 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6249 while (cur_offset < item_size) { 6250 extref = (struct btrfs_inode_extref *)(ptr + 6251 cur_offset); 6252 dirid = btrfs_inode_extref_parent(leaf, extref); 6253 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6254 cur_offset += ref_name_len + sizeof(*extref); 6255 if (dirid == last_dirid) 6256 continue; 6257 ret = dir_changed(sctx, dirid); 6258 if (ret) 6259 break; 6260 last_dirid = dirid; 6261 } 6262 out: 6263 return ret; 6264 } 6265 6266 /* 6267 * Updates compare related fields in sctx and simply forwards to the actual 6268 * changed_xxx functions. 6269 */ 6270 static int changed_cb(struct btrfs_path *left_path, 6271 struct btrfs_path *right_path, 6272 struct btrfs_key *key, 6273 enum btrfs_compare_tree_result result, 6274 void *ctx) 6275 { 6276 int ret = 0; 6277 struct send_ctx *sctx = ctx; 6278 6279 if (result == BTRFS_COMPARE_TREE_SAME) { 6280 if (key->type == BTRFS_INODE_REF_KEY || 6281 key->type == BTRFS_INODE_EXTREF_KEY) { 6282 ret = compare_refs(sctx, left_path, key); 6283 if (!ret) 6284 return 0; 6285 if (ret < 0) 6286 return ret; 6287 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6288 return maybe_send_hole(sctx, left_path, key); 6289 } else { 6290 return 0; 6291 } 6292 result = BTRFS_COMPARE_TREE_CHANGED; 6293 ret = 0; 6294 } 6295 6296 sctx->left_path = left_path; 6297 sctx->right_path = right_path; 6298 sctx->cmp_key = key; 6299 6300 ret = finish_inode_if_needed(sctx, 0); 6301 if (ret < 0) 6302 goto out; 6303 6304 /* Ignore non-FS objects */ 6305 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6306 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6307 goto out; 6308 6309 if (key->type == BTRFS_INODE_ITEM_KEY) 6310 ret = changed_inode(sctx, result); 6311 else if (key->type == BTRFS_INODE_REF_KEY || 6312 key->type == BTRFS_INODE_EXTREF_KEY) 6313 ret = changed_ref(sctx, result); 6314 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6315 ret = changed_xattr(sctx, result); 6316 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6317 ret = changed_extent(sctx, result); 6318 6319 out: 6320 return ret; 6321 } 6322 6323 static int full_send_tree(struct send_ctx *sctx) 6324 { 6325 int ret; 6326 struct btrfs_root *send_root = sctx->send_root; 6327 struct btrfs_key key; 6328 struct btrfs_key found_key; 6329 struct btrfs_path *path; 6330 struct extent_buffer *eb; 6331 int slot; 6332 6333 path = alloc_path_for_send(); 6334 if (!path) 6335 return -ENOMEM; 6336 6337 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6338 key.type = BTRFS_INODE_ITEM_KEY; 6339 key.offset = 0; 6340 6341 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6342 if (ret < 0) 6343 goto out; 6344 if (ret) 6345 goto out_finish; 6346 6347 while (1) { 6348 eb = path->nodes[0]; 6349 slot = path->slots[0]; 6350 btrfs_item_key_to_cpu(eb, &found_key, slot); 6351 6352 ret = changed_cb(path, NULL, &found_key, 6353 BTRFS_COMPARE_TREE_NEW, sctx); 6354 if (ret < 0) 6355 goto out; 6356 6357 key.objectid = found_key.objectid; 6358 key.type = found_key.type; 6359 key.offset = found_key.offset + 1; 6360 6361 ret = btrfs_next_item(send_root, path); 6362 if (ret < 0) 6363 goto out; 6364 if (ret) { 6365 ret = 0; 6366 break; 6367 } 6368 } 6369 6370 out_finish: 6371 ret = finish_inode_if_needed(sctx, 1); 6372 6373 out: 6374 btrfs_free_path(path); 6375 return ret; 6376 } 6377 6378 static int send_subvol(struct send_ctx *sctx) 6379 { 6380 int ret; 6381 6382 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 6383 ret = send_header(sctx); 6384 if (ret < 0) 6385 goto out; 6386 } 6387 6388 ret = send_subvol_begin(sctx); 6389 if (ret < 0) 6390 goto out; 6391 6392 if (sctx->parent_root) { 6393 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 6394 changed_cb, sctx); 6395 if (ret < 0) 6396 goto out; 6397 ret = finish_inode_if_needed(sctx, 1); 6398 if (ret < 0) 6399 goto out; 6400 } else { 6401 ret = full_send_tree(sctx); 6402 if (ret < 0) 6403 goto out; 6404 } 6405 6406 out: 6407 free_recorded_refs(sctx); 6408 return ret; 6409 } 6410 6411 /* 6412 * If orphan cleanup did remove any orphans from a root, it means the tree 6413 * was modified and therefore the commit root is not the same as the current 6414 * root anymore. This is a problem, because send uses the commit root and 6415 * therefore can see inode items that don't exist in the current root anymore, 6416 * and for example make calls to btrfs_iget, which will do tree lookups based 6417 * on the current root and not on the commit root. Those lookups will fail, 6418 * returning a -ESTALE error, and making send fail with that error. So make 6419 * sure a send does not see any orphans we have just removed, and that it will 6420 * see the same inodes regardless of whether a transaction commit happened 6421 * before it started (meaning that the commit root will be the same as the 6422 * current root) or not. 6423 */ 6424 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 6425 { 6426 int i; 6427 struct btrfs_trans_handle *trans = NULL; 6428 6429 again: 6430 if (sctx->parent_root && 6431 sctx->parent_root->node != sctx->parent_root->commit_root) 6432 goto commit_trans; 6433 6434 for (i = 0; i < sctx->clone_roots_cnt; i++) 6435 if (sctx->clone_roots[i].root->node != 6436 sctx->clone_roots[i].root->commit_root) 6437 goto commit_trans; 6438 6439 if (trans) 6440 return btrfs_end_transaction(trans); 6441 6442 return 0; 6443 6444 commit_trans: 6445 /* Use any root, all fs roots will get their commit roots updated. */ 6446 if (!trans) { 6447 trans = btrfs_join_transaction(sctx->send_root); 6448 if (IS_ERR(trans)) 6449 return PTR_ERR(trans); 6450 goto again; 6451 } 6452 6453 return btrfs_commit_transaction(trans); 6454 } 6455 6456 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 6457 { 6458 spin_lock(&root->root_item_lock); 6459 root->send_in_progress--; 6460 /* 6461 * Not much left to do, we don't know why it's unbalanced and 6462 * can't blindly reset it to 0. 6463 */ 6464 if (root->send_in_progress < 0) 6465 btrfs_err(root->fs_info, 6466 "send_in_progres unbalanced %d root %llu", 6467 root->send_in_progress, root->root_key.objectid); 6468 spin_unlock(&root->root_item_lock); 6469 } 6470 6471 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 6472 { 6473 int ret = 0; 6474 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 6475 struct btrfs_fs_info *fs_info = send_root->fs_info; 6476 struct btrfs_root *clone_root; 6477 struct btrfs_key key; 6478 struct send_ctx *sctx = NULL; 6479 u32 i; 6480 u64 *clone_sources_tmp = NULL; 6481 int clone_sources_to_rollback = 0; 6482 unsigned alloc_size; 6483 int sort_clone_roots = 0; 6484 int index; 6485 6486 if (!capable(CAP_SYS_ADMIN)) 6487 return -EPERM; 6488 6489 /* 6490 * The subvolume must remain read-only during send, protect against 6491 * making it RW. This also protects against deletion. 6492 */ 6493 spin_lock(&send_root->root_item_lock); 6494 send_root->send_in_progress++; 6495 spin_unlock(&send_root->root_item_lock); 6496 6497 /* 6498 * This is done when we lookup the root, it should already be complete 6499 * by the time we get here. 6500 */ 6501 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 6502 6503 /* 6504 * Userspace tools do the checks and warn the user if it's 6505 * not RO. 6506 */ 6507 if (!btrfs_root_readonly(send_root)) { 6508 ret = -EPERM; 6509 goto out; 6510 } 6511 6512 /* 6513 * Check that we don't overflow at later allocations, we request 6514 * clone_sources_count + 1 items, and compare to unsigned long inside 6515 * access_ok. 6516 */ 6517 if (arg->clone_sources_count > 6518 ULONG_MAX / sizeof(struct clone_root) - 1) { 6519 ret = -EINVAL; 6520 goto out; 6521 } 6522 6523 if (!access_ok(VERIFY_READ, arg->clone_sources, 6524 sizeof(*arg->clone_sources) * 6525 arg->clone_sources_count)) { 6526 ret = -EFAULT; 6527 goto out; 6528 } 6529 6530 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 6531 ret = -EINVAL; 6532 goto out; 6533 } 6534 6535 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 6536 if (!sctx) { 6537 ret = -ENOMEM; 6538 goto out; 6539 } 6540 6541 INIT_LIST_HEAD(&sctx->new_refs); 6542 INIT_LIST_HEAD(&sctx->deleted_refs); 6543 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 6544 INIT_LIST_HEAD(&sctx->name_cache_list); 6545 6546 sctx->flags = arg->flags; 6547 6548 sctx->send_filp = fget(arg->send_fd); 6549 if (!sctx->send_filp) { 6550 ret = -EBADF; 6551 goto out; 6552 } 6553 6554 sctx->send_root = send_root; 6555 /* 6556 * Unlikely but possible, if the subvolume is marked for deletion but 6557 * is slow to remove the directory entry, send can still be started 6558 */ 6559 if (btrfs_root_dead(sctx->send_root)) { 6560 ret = -EPERM; 6561 goto out; 6562 } 6563 6564 sctx->clone_roots_cnt = arg->clone_sources_count; 6565 6566 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 6567 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 6568 if (!sctx->send_buf) { 6569 ret = -ENOMEM; 6570 goto out; 6571 } 6572 6573 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL); 6574 if (!sctx->read_buf) { 6575 ret = -ENOMEM; 6576 goto out; 6577 } 6578 6579 sctx->pending_dir_moves = RB_ROOT; 6580 sctx->waiting_dir_moves = RB_ROOT; 6581 sctx->orphan_dirs = RB_ROOT; 6582 6583 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 6584 6585 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL); 6586 if (!sctx->clone_roots) { 6587 ret = -ENOMEM; 6588 goto out; 6589 } 6590 6591 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 6592 6593 if (arg->clone_sources_count) { 6594 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 6595 if (!clone_sources_tmp) { 6596 ret = -ENOMEM; 6597 goto out; 6598 } 6599 6600 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 6601 alloc_size); 6602 if (ret) { 6603 ret = -EFAULT; 6604 goto out; 6605 } 6606 6607 for (i = 0; i < arg->clone_sources_count; i++) { 6608 key.objectid = clone_sources_tmp[i]; 6609 key.type = BTRFS_ROOT_ITEM_KEY; 6610 key.offset = (u64)-1; 6611 6612 index = srcu_read_lock(&fs_info->subvol_srcu); 6613 6614 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 6615 if (IS_ERR(clone_root)) { 6616 srcu_read_unlock(&fs_info->subvol_srcu, index); 6617 ret = PTR_ERR(clone_root); 6618 goto out; 6619 } 6620 spin_lock(&clone_root->root_item_lock); 6621 if (!btrfs_root_readonly(clone_root) || 6622 btrfs_root_dead(clone_root)) { 6623 spin_unlock(&clone_root->root_item_lock); 6624 srcu_read_unlock(&fs_info->subvol_srcu, index); 6625 ret = -EPERM; 6626 goto out; 6627 } 6628 clone_root->send_in_progress++; 6629 spin_unlock(&clone_root->root_item_lock); 6630 srcu_read_unlock(&fs_info->subvol_srcu, index); 6631 6632 sctx->clone_roots[i].root = clone_root; 6633 clone_sources_to_rollback = i + 1; 6634 } 6635 kvfree(clone_sources_tmp); 6636 clone_sources_tmp = NULL; 6637 } 6638 6639 if (arg->parent_root) { 6640 key.objectid = arg->parent_root; 6641 key.type = BTRFS_ROOT_ITEM_KEY; 6642 key.offset = (u64)-1; 6643 6644 index = srcu_read_lock(&fs_info->subvol_srcu); 6645 6646 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 6647 if (IS_ERR(sctx->parent_root)) { 6648 srcu_read_unlock(&fs_info->subvol_srcu, index); 6649 ret = PTR_ERR(sctx->parent_root); 6650 goto out; 6651 } 6652 6653 spin_lock(&sctx->parent_root->root_item_lock); 6654 sctx->parent_root->send_in_progress++; 6655 if (!btrfs_root_readonly(sctx->parent_root) || 6656 btrfs_root_dead(sctx->parent_root)) { 6657 spin_unlock(&sctx->parent_root->root_item_lock); 6658 srcu_read_unlock(&fs_info->subvol_srcu, index); 6659 ret = -EPERM; 6660 goto out; 6661 } 6662 spin_unlock(&sctx->parent_root->root_item_lock); 6663 6664 srcu_read_unlock(&fs_info->subvol_srcu, index); 6665 } 6666 6667 /* 6668 * Clones from send_root are allowed, but only if the clone source 6669 * is behind the current send position. This is checked while searching 6670 * for possible clone sources. 6671 */ 6672 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 6673 6674 /* We do a bsearch later */ 6675 sort(sctx->clone_roots, sctx->clone_roots_cnt, 6676 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 6677 NULL); 6678 sort_clone_roots = 1; 6679 6680 ret = ensure_commit_roots_uptodate(sctx); 6681 if (ret) 6682 goto out; 6683 6684 current->journal_info = BTRFS_SEND_TRANS_STUB; 6685 ret = send_subvol(sctx); 6686 current->journal_info = NULL; 6687 if (ret < 0) 6688 goto out; 6689 6690 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 6691 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 6692 if (ret < 0) 6693 goto out; 6694 ret = send_cmd(sctx); 6695 if (ret < 0) 6696 goto out; 6697 } 6698 6699 out: 6700 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 6701 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 6702 struct rb_node *n; 6703 struct pending_dir_move *pm; 6704 6705 n = rb_first(&sctx->pending_dir_moves); 6706 pm = rb_entry(n, struct pending_dir_move, node); 6707 while (!list_empty(&pm->list)) { 6708 struct pending_dir_move *pm2; 6709 6710 pm2 = list_first_entry(&pm->list, 6711 struct pending_dir_move, list); 6712 free_pending_move(sctx, pm2); 6713 } 6714 free_pending_move(sctx, pm); 6715 } 6716 6717 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 6718 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 6719 struct rb_node *n; 6720 struct waiting_dir_move *dm; 6721 6722 n = rb_first(&sctx->waiting_dir_moves); 6723 dm = rb_entry(n, struct waiting_dir_move, node); 6724 rb_erase(&dm->node, &sctx->waiting_dir_moves); 6725 kfree(dm); 6726 } 6727 6728 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 6729 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 6730 struct rb_node *n; 6731 struct orphan_dir_info *odi; 6732 6733 n = rb_first(&sctx->orphan_dirs); 6734 odi = rb_entry(n, struct orphan_dir_info, node); 6735 free_orphan_dir_info(sctx, odi); 6736 } 6737 6738 if (sort_clone_roots) { 6739 for (i = 0; i < sctx->clone_roots_cnt; i++) 6740 btrfs_root_dec_send_in_progress( 6741 sctx->clone_roots[i].root); 6742 } else { 6743 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 6744 btrfs_root_dec_send_in_progress( 6745 sctx->clone_roots[i].root); 6746 6747 btrfs_root_dec_send_in_progress(send_root); 6748 } 6749 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 6750 btrfs_root_dec_send_in_progress(sctx->parent_root); 6751 6752 kvfree(clone_sources_tmp); 6753 6754 if (sctx) { 6755 if (sctx->send_filp) 6756 fput(sctx->send_filp); 6757 6758 kvfree(sctx->clone_roots); 6759 kvfree(sctx->send_buf); 6760 kvfree(sctx->read_buf); 6761 6762 name_cache_free(sctx); 6763 6764 kfree(sctx); 6765 } 6766 6767 return ret; 6768 } 6769