xref: /openbmc/linux/fs/btrfs/send.c (revision 2d972b6a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 
27 /*
28  * A fs_path is a helper to dynamically build path names with unknown size.
29  * It reallocates the internal buffer on demand.
30  * It allows fast adding of path elements on the right side (normal path) and
31  * fast adding to the left side (reversed path). A reversed path can also be
32  * unreversed if needed.
33  */
34 struct fs_path {
35 	union {
36 		struct {
37 			char *start;
38 			char *end;
39 
40 			char *buf;
41 			unsigned short buf_len:15;
42 			unsigned short reversed:1;
43 			char inline_buf[];
44 		};
45 		/*
46 		 * Average path length does not exceed 200 bytes, we'll have
47 		 * better packing in the slab and higher chance to satisfy
48 		 * a allocation later during send.
49 		 */
50 		char pad[256];
51 	};
52 };
53 #define FS_PATH_INLINE_SIZE \
54 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
55 
56 
57 /* reused for each extent */
58 struct clone_root {
59 	struct btrfs_root *root;
60 	u64 ino;
61 	u64 offset;
62 
63 	u64 found_refs;
64 };
65 
66 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
67 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
68 
69 struct send_ctx {
70 	struct file *send_filp;
71 	loff_t send_off;
72 	char *send_buf;
73 	u32 send_size;
74 	u32 send_max_size;
75 	u64 total_send_size;
76 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
77 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
78 
79 	struct btrfs_root *send_root;
80 	struct btrfs_root *parent_root;
81 	struct clone_root *clone_roots;
82 	int clone_roots_cnt;
83 
84 	/* current state of the compare_tree call */
85 	struct btrfs_path *left_path;
86 	struct btrfs_path *right_path;
87 	struct btrfs_key *cmp_key;
88 
89 	/*
90 	 * infos of the currently processed inode. In case of deleted inodes,
91 	 * these are the values from the deleted inode.
92 	 */
93 	u64 cur_ino;
94 	u64 cur_inode_gen;
95 	int cur_inode_new;
96 	int cur_inode_new_gen;
97 	int cur_inode_deleted;
98 	u64 cur_inode_size;
99 	u64 cur_inode_mode;
100 	u64 cur_inode_rdev;
101 	u64 cur_inode_last_extent;
102 	u64 cur_inode_next_write_offset;
103 
104 	u64 send_progress;
105 
106 	struct list_head new_refs;
107 	struct list_head deleted_refs;
108 
109 	struct radix_tree_root name_cache;
110 	struct list_head name_cache_list;
111 	int name_cache_size;
112 
113 	struct file_ra_state ra;
114 
115 	char *read_buf;
116 
117 	/*
118 	 * We process inodes by their increasing order, so if before an
119 	 * incremental send we reverse the parent/child relationship of
120 	 * directories such that a directory with a lower inode number was
121 	 * the parent of a directory with a higher inode number, and the one
122 	 * becoming the new parent got renamed too, we can't rename/move the
123 	 * directory with lower inode number when we finish processing it - we
124 	 * must process the directory with higher inode number first, then
125 	 * rename/move it and then rename/move the directory with lower inode
126 	 * number. Example follows.
127 	 *
128 	 * Tree state when the first send was performed:
129 	 *
130 	 * .
131 	 * |-- a                   (ino 257)
132 	 *     |-- b               (ino 258)
133 	 *         |
134 	 *         |
135 	 *         |-- c           (ino 259)
136 	 *         |   |-- d       (ino 260)
137 	 *         |
138 	 *         |-- c2          (ino 261)
139 	 *
140 	 * Tree state when the second (incremental) send is performed:
141 	 *
142 	 * .
143 	 * |-- a                   (ino 257)
144 	 *     |-- b               (ino 258)
145 	 *         |-- c2          (ino 261)
146 	 *             |-- d2      (ino 260)
147 	 *                 |-- cc  (ino 259)
148 	 *
149 	 * The sequence of steps that lead to the second state was:
150 	 *
151 	 * mv /a/b/c/d /a/b/c2/d2
152 	 * mv /a/b/c /a/b/c2/d2/cc
153 	 *
154 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
155 	 * before we move "d", which has higher inode number.
156 	 *
157 	 * So we just memorize which move/rename operations must be performed
158 	 * later when their respective parent is processed and moved/renamed.
159 	 */
160 
161 	/* Indexed by parent directory inode number. */
162 	struct rb_root pending_dir_moves;
163 
164 	/*
165 	 * Reverse index, indexed by the inode number of a directory that
166 	 * is waiting for the move/rename of its immediate parent before its
167 	 * own move/rename can be performed.
168 	 */
169 	struct rb_root waiting_dir_moves;
170 
171 	/*
172 	 * A directory that is going to be rm'ed might have a child directory
173 	 * which is in the pending directory moves index above. In this case,
174 	 * the directory can only be removed after the move/rename of its child
175 	 * is performed. Example:
176 	 *
177 	 * Parent snapshot:
178 	 *
179 	 * .                        (ino 256)
180 	 * |-- a/                   (ino 257)
181 	 *     |-- b/               (ino 258)
182 	 *         |-- c/           (ino 259)
183 	 *         |   |-- x/       (ino 260)
184 	 *         |
185 	 *         |-- y/           (ino 261)
186 	 *
187 	 * Send snapshot:
188 	 *
189 	 * .                        (ino 256)
190 	 * |-- a/                   (ino 257)
191 	 *     |-- b/               (ino 258)
192 	 *         |-- YY/          (ino 261)
193 	 *              |-- x/      (ino 260)
194 	 *
195 	 * Sequence of steps that lead to the send snapshot:
196 	 * rm -f /a/b/c/foo.txt
197 	 * mv /a/b/y /a/b/YY
198 	 * mv /a/b/c/x /a/b/YY
199 	 * rmdir /a/b/c
200 	 *
201 	 * When the child is processed, its move/rename is delayed until its
202 	 * parent is processed (as explained above), but all other operations
203 	 * like update utimes, chown, chgrp, etc, are performed and the paths
204 	 * that it uses for those operations must use the orphanized name of
205 	 * its parent (the directory we're going to rm later), so we need to
206 	 * memorize that name.
207 	 *
208 	 * Indexed by the inode number of the directory to be deleted.
209 	 */
210 	struct rb_root orphan_dirs;
211 };
212 
213 struct pending_dir_move {
214 	struct rb_node node;
215 	struct list_head list;
216 	u64 parent_ino;
217 	u64 ino;
218 	u64 gen;
219 	struct list_head update_refs;
220 };
221 
222 struct waiting_dir_move {
223 	struct rb_node node;
224 	u64 ino;
225 	/*
226 	 * There might be some directory that could not be removed because it
227 	 * was waiting for this directory inode to be moved first. Therefore
228 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
229 	 */
230 	u64 rmdir_ino;
231 	bool orphanized;
232 };
233 
234 struct orphan_dir_info {
235 	struct rb_node node;
236 	u64 ino;
237 	u64 gen;
238 };
239 
240 struct name_cache_entry {
241 	struct list_head list;
242 	/*
243 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
244 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
245 	 * more then one inum would fall into the same entry, we use radix_list
246 	 * to store the additional entries. radix_list is also used to store
247 	 * entries where two entries have the same inum but different
248 	 * generations.
249 	 */
250 	struct list_head radix_list;
251 	u64 ino;
252 	u64 gen;
253 	u64 parent_ino;
254 	u64 parent_gen;
255 	int ret;
256 	int need_later_update;
257 	int name_len;
258 	char name[];
259 };
260 
261 __cold
262 static void inconsistent_snapshot_error(struct send_ctx *sctx,
263 					enum btrfs_compare_tree_result result,
264 					const char *what)
265 {
266 	const char *result_string;
267 
268 	switch (result) {
269 	case BTRFS_COMPARE_TREE_NEW:
270 		result_string = "new";
271 		break;
272 	case BTRFS_COMPARE_TREE_DELETED:
273 		result_string = "deleted";
274 		break;
275 	case BTRFS_COMPARE_TREE_CHANGED:
276 		result_string = "updated";
277 		break;
278 	case BTRFS_COMPARE_TREE_SAME:
279 		ASSERT(0);
280 		result_string = "unchanged";
281 		break;
282 	default:
283 		ASSERT(0);
284 		result_string = "unexpected";
285 	}
286 
287 	btrfs_err(sctx->send_root->fs_info,
288 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
289 		  result_string, what, sctx->cmp_key->objectid,
290 		  sctx->send_root->root_key.objectid,
291 		  (sctx->parent_root ?
292 		   sctx->parent_root->root_key.objectid : 0));
293 }
294 
295 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
296 
297 static struct waiting_dir_move *
298 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
299 
300 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
301 
302 static int need_send_hole(struct send_ctx *sctx)
303 {
304 	return (sctx->parent_root && !sctx->cur_inode_new &&
305 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
306 		S_ISREG(sctx->cur_inode_mode));
307 }
308 
309 static void fs_path_reset(struct fs_path *p)
310 {
311 	if (p->reversed) {
312 		p->start = p->buf + p->buf_len - 1;
313 		p->end = p->start;
314 		*p->start = 0;
315 	} else {
316 		p->start = p->buf;
317 		p->end = p->start;
318 		*p->start = 0;
319 	}
320 }
321 
322 static struct fs_path *fs_path_alloc(void)
323 {
324 	struct fs_path *p;
325 
326 	p = kmalloc(sizeof(*p), GFP_KERNEL);
327 	if (!p)
328 		return NULL;
329 	p->reversed = 0;
330 	p->buf = p->inline_buf;
331 	p->buf_len = FS_PATH_INLINE_SIZE;
332 	fs_path_reset(p);
333 	return p;
334 }
335 
336 static struct fs_path *fs_path_alloc_reversed(void)
337 {
338 	struct fs_path *p;
339 
340 	p = fs_path_alloc();
341 	if (!p)
342 		return NULL;
343 	p->reversed = 1;
344 	fs_path_reset(p);
345 	return p;
346 }
347 
348 static void fs_path_free(struct fs_path *p)
349 {
350 	if (!p)
351 		return;
352 	if (p->buf != p->inline_buf)
353 		kfree(p->buf);
354 	kfree(p);
355 }
356 
357 static int fs_path_len(struct fs_path *p)
358 {
359 	return p->end - p->start;
360 }
361 
362 static int fs_path_ensure_buf(struct fs_path *p, int len)
363 {
364 	char *tmp_buf;
365 	int path_len;
366 	int old_buf_len;
367 
368 	len++;
369 
370 	if (p->buf_len >= len)
371 		return 0;
372 
373 	if (len > PATH_MAX) {
374 		WARN_ON(1);
375 		return -ENOMEM;
376 	}
377 
378 	path_len = p->end - p->start;
379 	old_buf_len = p->buf_len;
380 
381 	/*
382 	 * First time the inline_buf does not suffice
383 	 */
384 	if (p->buf == p->inline_buf) {
385 		tmp_buf = kmalloc(len, GFP_KERNEL);
386 		if (tmp_buf)
387 			memcpy(tmp_buf, p->buf, old_buf_len);
388 	} else {
389 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
390 	}
391 	if (!tmp_buf)
392 		return -ENOMEM;
393 	p->buf = tmp_buf;
394 	/*
395 	 * The real size of the buffer is bigger, this will let the fast path
396 	 * happen most of the time
397 	 */
398 	p->buf_len = ksize(p->buf);
399 
400 	if (p->reversed) {
401 		tmp_buf = p->buf + old_buf_len - path_len - 1;
402 		p->end = p->buf + p->buf_len - 1;
403 		p->start = p->end - path_len;
404 		memmove(p->start, tmp_buf, path_len + 1);
405 	} else {
406 		p->start = p->buf;
407 		p->end = p->start + path_len;
408 	}
409 	return 0;
410 }
411 
412 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
413 				   char **prepared)
414 {
415 	int ret;
416 	int new_len;
417 
418 	new_len = p->end - p->start + name_len;
419 	if (p->start != p->end)
420 		new_len++;
421 	ret = fs_path_ensure_buf(p, new_len);
422 	if (ret < 0)
423 		goto out;
424 
425 	if (p->reversed) {
426 		if (p->start != p->end)
427 			*--p->start = '/';
428 		p->start -= name_len;
429 		*prepared = p->start;
430 	} else {
431 		if (p->start != p->end)
432 			*p->end++ = '/';
433 		*prepared = p->end;
434 		p->end += name_len;
435 		*p->end = 0;
436 	}
437 
438 out:
439 	return ret;
440 }
441 
442 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
443 {
444 	int ret;
445 	char *prepared;
446 
447 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
448 	if (ret < 0)
449 		goto out;
450 	memcpy(prepared, name, name_len);
451 
452 out:
453 	return ret;
454 }
455 
456 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
457 {
458 	int ret;
459 	char *prepared;
460 
461 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
462 	if (ret < 0)
463 		goto out;
464 	memcpy(prepared, p2->start, p2->end - p2->start);
465 
466 out:
467 	return ret;
468 }
469 
470 static int fs_path_add_from_extent_buffer(struct fs_path *p,
471 					  struct extent_buffer *eb,
472 					  unsigned long off, int len)
473 {
474 	int ret;
475 	char *prepared;
476 
477 	ret = fs_path_prepare_for_add(p, len, &prepared);
478 	if (ret < 0)
479 		goto out;
480 
481 	read_extent_buffer(eb, prepared, off, len);
482 
483 out:
484 	return ret;
485 }
486 
487 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
488 {
489 	int ret;
490 
491 	p->reversed = from->reversed;
492 	fs_path_reset(p);
493 
494 	ret = fs_path_add_path(p, from);
495 
496 	return ret;
497 }
498 
499 
500 static void fs_path_unreverse(struct fs_path *p)
501 {
502 	char *tmp;
503 	int len;
504 
505 	if (!p->reversed)
506 		return;
507 
508 	tmp = p->start;
509 	len = p->end - p->start;
510 	p->start = p->buf;
511 	p->end = p->start + len;
512 	memmove(p->start, tmp, len + 1);
513 	p->reversed = 0;
514 }
515 
516 static struct btrfs_path *alloc_path_for_send(void)
517 {
518 	struct btrfs_path *path;
519 
520 	path = btrfs_alloc_path();
521 	if (!path)
522 		return NULL;
523 	path->search_commit_root = 1;
524 	path->skip_locking = 1;
525 	path->need_commit_sem = 1;
526 	return path;
527 }
528 
529 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
530 {
531 	int ret;
532 	u32 pos = 0;
533 
534 	while (pos < len) {
535 		ret = kernel_write(filp, buf + pos, len - pos, off);
536 		/* TODO handle that correctly */
537 		/*if (ret == -ERESTARTSYS) {
538 			continue;
539 		}*/
540 		if (ret < 0)
541 			return ret;
542 		if (ret == 0) {
543 			return -EIO;
544 		}
545 		pos += ret;
546 	}
547 
548 	return 0;
549 }
550 
551 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
552 {
553 	struct btrfs_tlv_header *hdr;
554 	int total_len = sizeof(*hdr) + len;
555 	int left = sctx->send_max_size - sctx->send_size;
556 
557 	if (unlikely(left < total_len))
558 		return -EOVERFLOW;
559 
560 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
561 	hdr->tlv_type = cpu_to_le16(attr);
562 	hdr->tlv_len = cpu_to_le16(len);
563 	memcpy(hdr + 1, data, len);
564 	sctx->send_size += total_len;
565 
566 	return 0;
567 }
568 
569 #define TLV_PUT_DEFINE_INT(bits) \
570 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
571 			u##bits attr, u##bits value)			\
572 	{								\
573 		__le##bits __tmp = cpu_to_le##bits(value);		\
574 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
575 	}
576 
577 TLV_PUT_DEFINE_INT(64)
578 
579 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
580 			  const char *str, int len)
581 {
582 	if (len == -1)
583 		len = strlen(str);
584 	return tlv_put(sctx, attr, str, len);
585 }
586 
587 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
588 			const u8 *uuid)
589 {
590 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
591 }
592 
593 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
594 				  struct extent_buffer *eb,
595 				  struct btrfs_timespec *ts)
596 {
597 	struct btrfs_timespec bts;
598 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
599 	return tlv_put(sctx, attr, &bts, sizeof(bts));
600 }
601 
602 
603 #define TLV_PUT(sctx, attrtype, data, attrlen) \
604 	do { \
605 		ret = tlv_put(sctx, attrtype, data, attrlen); \
606 		if (ret < 0) \
607 			goto tlv_put_failure; \
608 	} while (0)
609 
610 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
611 	do { \
612 		ret = tlv_put_u##bits(sctx, attrtype, value); \
613 		if (ret < 0) \
614 			goto tlv_put_failure; \
615 	} while (0)
616 
617 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
618 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
619 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
620 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
621 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
622 	do { \
623 		ret = tlv_put_string(sctx, attrtype, str, len); \
624 		if (ret < 0) \
625 			goto tlv_put_failure; \
626 	} while (0)
627 #define TLV_PUT_PATH(sctx, attrtype, p) \
628 	do { \
629 		ret = tlv_put_string(sctx, attrtype, p->start, \
630 			p->end - p->start); \
631 		if (ret < 0) \
632 			goto tlv_put_failure; \
633 	} while(0)
634 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
635 	do { \
636 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
637 		if (ret < 0) \
638 			goto tlv_put_failure; \
639 	} while (0)
640 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
641 	do { \
642 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
643 		if (ret < 0) \
644 			goto tlv_put_failure; \
645 	} while (0)
646 
647 static int send_header(struct send_ctx *sctx)
648 {
649 	struct btrfs_stream_header hdr;
650 
651 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
652 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
653 
654 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
655 					&sctx->send_off);
656 }
657 
658 /*
659  * For each command/item we want to send to userspace, we call this function.
660  */
661 static int begin_cmd(struct send_ctx *sctx, int cmd)
662 {
663 	struct btrfs_cmd_header *hdr;
664 
665 	if (WARN_ON(!sctx->send_buf))
666 		return -EINVAL;
667 
668 	BUG_ON(sctx->send_size);
669 
670 	sctx->send_size += sizeof(*hdr);
671 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
672 	hdr->cmd = cpu_to_le16(cmd);
673 
674 	return 0;
675 }
676 
677 static int send_cmd(struct send_ctx *sctx)
678 {
679 	int ret;
680 	struct btrfs_cmd_header *hdr;
681 	u32 crc;
682 
683 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
684 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
685 	hdr->crc = 0;
686 
687 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
688 	hdr->crc = cpu_to_le32(crc);
689 
690 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
691 					&sctx->send_off);
692 
693 	sctx->total_send_size += sctx->send_size;
694 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
695 	sctx->send_size = 0;
696 
697 	return ret;
698 }
699 
700 /*
701  * Sends a move instruction to user space
702  */
703 static int send_rename(struct send_ctx *sctx,
704 		     struct fs_path *from, struct fs_path *to)
705 {
706 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
707 	int ret;
708 
709 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
710 
711 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
712 	if (ret < 0)
713 		goto out;
714 
715 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
716 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
717 
718 	ret = send_cmd(sctx);
719 
720 tlv_put_failure:
721 out:
722 	return ret;
723 }
724 
725 /*
726  * Sends a link instruction to user space
727  */
728 static int send_link(struct send_ctx *sctx,
729 		     struct fs_path *path, struct fs_path *lnk)
730 {
731 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
732 	int ret;
733 
734 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
735 
736 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
737 	if (ret < 0)
738 		goto out;
739 
740 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
741 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
742 
743 	ret = send_cmd(sctx);
744 
745 tlv_put_failure:
746 out:
747 	return ret;
748 }
749 
750 /*
751  * Sends an unlink instruction to user space
752  */
753 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
754 {
755 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
756 	int ret;
757 
758 	btrfs_debug(fs_info, "send_unlink %s", path->start);
759 
760 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
761 	if (ret < 0)
762 		goto out;
763 
764 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
765 
766 	ret = send_cmd(sctx);
767 
768 tlv_put_failure:
769 out:
770 	return ret;
771 }
772 
773 /*
774  * Sends a rmdir instruction to user space
775  */
776 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
777 {
778 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
779 	int ret;
780 
781 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
782 
783 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
784 	if (ret < 0)
785 		goto out;
786 
787 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
788 
789 	ret = send_cmd(sctx);
790 
791 tlv_put_failure:
792 out:
793 	return ret;
794 }
795 
796 /*
797  * Helper function to retrieve some fields from an inode item.
798  */
799 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
800 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
801 			  u64 *gid, u64 *rdev)
802 {
803 	int ret;
804 	struct btrfs_inode_item *ii;
805 	struct btrfs_key key;
806 
807 	key.objectid = ino;
808 	key.type = BTRFS_INODE_ITEM_KEY;
809 	key.offset = 0;
810 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
811 	if (ret) {
812 		if (ret > 0)
813 			ret = -ENOENT;
814 		return ret;
815 	}
816 
817 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
818 			struct btrfs_inode_item);
819 	if (size)
820 		*size = btrfs_inode_size(path->nodes[0], ii);
821 	if (gen)
822 		*gen = btrfs_inode_generation(path->nodes[0], ii);
823 	if (mode)
824 		*mode = btrfs_inode_mode(path->nodes[0], ii);
825 	if (uid)
826 		*uid = btrfs_inode_uid(path->nodes[0], ii);
827 	if (gid)
828 		*gid = btrfs_inode_gid(path->nodes[0], ii);
829 	if (rdev)
830 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
831 
832 	return ret;
833 }
834 
835 static int get_inode_info(struct btrfs_root *root,
836 			  u64 ino, u64 *size, u64 *gen,
837 			  u64 *mode, u64 *uid, u64 *gid,
838 			  u64 *rdev)
839 {
840 	struct btrfs_path *path;
841 	int ret;
842 
843 	path = alloc_path_for_send();
844 	if (!path)
845 		return -ENOMEM;
846 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
847 			       rdev);
848 	btrfs_free_path(path);
849 	return ret;
850 }
851 
852 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
853 				   struct fs_path *p,
854 				   void *ctx);
855 
856 /*
857  * Helper function to iterate the entries in ONE btrfs_inode_ref or
858  * btrfs_inode_extref.
859  * The iterate callback may return a non zero value to stop iteration. This can
860  * be a negative value for error codes or 1 to simply stop it.
861  *
862  * path must point to the INODE_REF or INODE_EXTREF when called.
863  */
864 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
865 			     struct btrfs_key *found_key, int resolve,
866 			     iterate_inode_ref_t iterate, void *ctx)
867 {
868 	struct extent_buffer *eb = path->nodes[0];
869 	struct btrfs_item *item;
870 	struct btrfs_inode_ref *iref;
871 	struct btrfs_inode_extref *extref;
872 	struct btrfs_path *tmp_path;
873 	struct fs_path *p;
874 	u32 cur = 0;
875 	u32 total;
876 	int slot = path->slots[0];
877 	u32 name_len;
878 	char *start;
879 	int ret = 0;
880 	int num = 0;
881 	int index;
882 	u64 dir;
883 	unsigned long name_off;
884 	unsigned long elem_size;
885 	unsigned long ptr;
886 
887 	p = fs_path_alloc_reversed();
888 	if (!p)
889 		return -ENOMEM;
890 
891 	tmp_path = alloc_path_for_send();
892 	if (!tmp_path) {
893 		fs_path_free(p);
894 		return -ENOMEM;
895 	}
896 
897 
898 	if (found_key->type == BTRFS_INODE_REF_KEY) {
899 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
900 						    struct btrfs_inode_ref);
901 		item = btrfs_item_nr(slot);
902 		total = btrfs_item_size(eb, item);
903 		elem_size = sizeof(*iref);
904 	} else {
905 		ptr = btrfs_item_ptr_offset(eb, slot);
906 		total = btrfs_item_size_nr(eb, slot);
907 		elem_size = sizeof(*extref);
908 	}
909 
910 	while (cur < total) {
911 		fs_path_reset(p);
912 
913 		if (found_key->type == BTRFS_INODE_REF_KEY) {
914 			iref = (struct btrfs_inode_ref *)(ptr + cur);
915 			name_len = btrfs_inode_ref_name_len(eb, iref);
916 			name_off = (unsigned long)(iref + 1);
917 			index = btrfs_inode_ref_index(eb, iref);
918 			dir = found_key->offset;
919 		} else {
920 			extref = (struct btrfs_inode_extref *)(ptr + cur);
921 			name_len = btrfs_inode_extref_name_len(eb, extref);
922 			name_off = (unsigned long)&extref->name;
923 			index = btrfs_inode_extref_index(eb, extref);
924 			dir = btrfs_inode_extref_parent(eb, extref);
925 		}
926 
927 		if (resolve) {
928 			start = btrfs_ref_to_path(root, tmp_path, name_len,
929 						  name_off, eb, dir,
930 						  p->buf, p->buf_len);
931 			if (IS_ERR(start)) {
932 				ret = PTR_ERR(start);
933 				goto out;
934 			}
935 			if (start < p->buf) {
936 				/* overflow , try again with larger buffer */
937 				ret = fs_path_ensure_buf(p,
938 						p->buf_len + p->buf - start);
939 				if (ret < 0)
940 					goto out;
941 				start = btrfs_ref_to_path(root, tmp_path,
942 							  name_len, name_off,
943 							  eb, dir,
944 							  p->buf, p->buf_len);
945 				if (IS_ERR(start)) {
946 					ret = PTR_ERR(start);
947 					goto out;
948 				}
949 				BUG_ON(start < p->buf);
950 			}
951 			p->start = start;
952 		} else {
953 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
954 							     name_len);
955 			if (ret < 0)
956 				goto out;
957 		}
958 
959 		cur += elem_size + name_len;
960 		ret = iterate(num, dir, index, p, ctx);
961 		if (ret)
962 			goto out;
963 		num++;
964 	}
965 
966 out:
967 	btrfs_free_path(tmp_path);
968 	fs_path_free(p);
969 	return ret;
970 }
971 
972 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
973 				  const char *name, int name_len,
974 				  const char *data, int data_len,
975 				  u8 type, void *ctx);
976 
977 /*
978  * Helper function to iterate the entries in ONE btrfs_dir_item.
979  * The iterate callback may return a non zero value to stop iteration. This can
980  * be a negative value for error codes or 1 to simply stop it.
981  *
982  * path must point to the dir item when called.
983  */
984 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
985 			    iterate_dir_item_t iterate, void *ctx)
986 {
987 	int ret = 0;
988 	struct extent_buffer *eb;
989 	struct btrfs_item *item;
990 	struct btrfs_dir_item *di;
991 	struct btrfs_key di_key;
992 	char *buf = NULL;
993 	int buf_len;
994 	u32 name_len;
995 	u32 data_len;
996 	u32 cur;
997 	u32 len;
998 	u32 total;
999 	int slot;
1000 	int num;
1001 	u8 type;
1002 
1003 	/*
1004 	 * Start with a small buffer (1 page). If later we end up needing more
1005 	 * space, which can happen for xattrs on a fs with a leaf size greater
1006 	 * then the page size, attempt to increase the buffer. Typically xattr
1007 	 * values are small.
1008 	 */
1009 	buf_len = PATH_MAX;
1010 	buf = kmalloc(buf_len, GFP_KERNEL);
1011 	if (!buf) {
1012 		ret = -ENOMEM;
1013 		goto out;
1014 	}
1015 
1016 	eb = path->nodes[0];
1017 	slot = path->slots[0];
1018 	item = btrfs_item_nr(slot);
1019 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1020 	cur = 0;
1021 	len = 0;
1022 	total = btrfs_item_size(eb, item);
1023 
1024 	num = 0;
1025 	while (cur < total) {
1026 		name_len = btrfs_dir_name_len(eb, di);
1027 		data_len = btrfs_dir_data_len(eb, di);
1028 		type = btrfs_dir_type(eb, di);
1029 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1030 
1031 		if (type == BTRFS_FT_XATTR) {
1032 			if (name_len > XATTR_NAME_MAX) {
1033 				ret = -ENAMETOOLONG;
1034 				goto out;
1035 			}
1036 			if (name_len + data_len >
1037 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1038 				ret = -E2BIG;
1039 				goto out;
1040 			}
1041 		} else {
1042 			/*
1043 			 * Path too long
1044 			 */
1045 			if (name_len + data_len > PATH_MAX) {
1046 				ret = -ENAMETOOLONG;
1047 				goto out;
1048 			}
1049 		}
1050 
1051 		if (name_len + data_len > buf_len) {
1052 			buf_len = name_len + data_len;
1053 			if (is_vmalloc_addr(buf)) {
1054 				vfree(buf);
1055 				buf = NULL;
1056 			} else {
1057 				char *tmp = krealloc(buf, buf_len,
1058 						GFP_KERNEL | __GFP_NOWARN);
1059 
1060 				if (!tmp)
1061 					kfree(buf);
1062 				buf = tmp;
1063 			}
1064 			if (!buf) {
1065 				buf = kvmalloc(buf_len, GFP_KERNEL);
1066 				if (!buf) {
1067 					ret = -ENOMEM;
1068 					goto out;
1069 				}
1070 			}
1071 		}
1072 
1073 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1074 				name_len + data_len);
1075 
1076 		len = sizeof(*di) + name_len + data_len;
1077 		di = (struct btrfs_dir_item *)((char *)di + len);
1078 		cur += len;
1079 
1080 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1081 				data_len, type, ctx);
1082 		if (ret < 0)
1083 			goto out;
1084 		if (ret) {
1085 			ret = 0;
1086 			goto out;
1087 		}
1088 
1089 		num++;
1090 	}
1091 
1092 out:
1093 	kvfree(buf);
1094 	return ret;
1095 }
1096 
1097 static int __copy_first_ref(int num, u64 dir, int index,
1098 			    struct fs_path *p, void *ctx)
1099 {
1100 	int ret;
1101 	struct fs_path *pt = ctx;
1102 
1103 	ret = fs_path_copy(pt, p);
1104 	if (ret < 0)
1105 		return ret;
1106 
1107 	/* we want the first only */
1108 	return 1;
1109 }
1110 
1111 /*
1112  * Retrieve the first path of an inode. If an inode has more then one
1113  * ref/hardlink, this is ignored.
1114  */
1115 static int get_inode_path(struct btrfs_root *root,
1116 			  u64 ino, struct fs_path *path)
1117 {
1118 	int ret;
1119 	struct btrfs_key key, found_key;
1120 	struct btrfs_path *p;
1121 
1122 	p = alloc_path_for_send();
1123 	if (!p)
1124 		return -ENOMEM;
1125 
1126 	fs_path_reset(path);
1127 
1128 	key.objectid = ino;
1129 	key.type = BTRFS_INODE_REF_KEY;
1130 	key.offset = 0;
1131 
1132 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1133 	if (ret < 0)
1134 		goto out;
1135 	if (ret) {
1136 		ret = 1;
1137 		goto out;
1138 	}
1139 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1140 	if (found_key.objectid != ino ||
1141 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1142 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1143 		ret = -ENOENT;
1144 		goto out;
1145 	}
1146 
1147 	ret = iterate_inode_ref(root, p, &found_key, 1,
1148 				__copy_first_ref, path);
1149 	if (ret < 0)
1150 		goto out;
1151 	ret = 0;
1152 
1153 out:
1154 	btrfs_free_path(p);
1155 	return ret;
1156 }
1157 
1158 struct backref_ctx {
1159 	struct send_ctx *sctx;
1160 
1161 	struct btrfs_path *path;
1162 	/* number of total found references */
1163 	u64 found;
1164 
1165 	/*
1166 	 * used for clones found in send_root. clones found behind cur_objectid
1167 	 * and cur_offset are not considered as allowed clones.
1168 	 */
1169 	u64 cur_objectid;
1170 	u64 cur_offset;
1171 
1172 	/* may be truncated in case it's the last extent in a file */
1173 	u64 extent_len;
1174 
1175 	/* data offset in the file extent item */
1176 	u64 data_offset;
1177 
1178 	/* Just to check for bugs in backref resolving */
1179 	int found_itself;
1180 };
1181 
1182 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1183 {
1184 	u64 root = (u64)(uintptr_t)key;
1185 	struct clone_root *cr = (struct clone_root *)elt;
1186 
1187 	if (root < cr->root->objectid)
1188 		return -1;
1189 	if (root > cr->root->objectid)
1190 		return 1;
1191 	return 0;
1192 }
1193 
1194 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1195 {
1196 	struct clone_root *cr1 = (struct clone_root *)e1;
1197 	struct clone_root *cr2 = (struct clone_root *)e2;
1198 
1199 	if (cr1->root->objectid < cr2->root->objectid)
1200 		return -1;
1201 	if (cr1->root->objectid > cr2->root->objectid)
1202 		return 1;
1203 	return 0;
1204 }
1205 
1206 /*
1207  * Called for every backref that is found for the current extent.
1208  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1209  */
1210 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1211 {
1212 	struct backref_ctx *bctx = ctx_;
1213 	struct clone_root *found;
1214 	int ret;
1215 	u64 i_size;
1216 
1217 	/* First check if the root is in the list of accepted clone sources */
1218 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1219 			bctx->sctx->clone_roots_cnt,
1220 			sizeof(struct clone_root),
1221 			__clone_root_cmp_bsearch);
1222 	if (!found)
1223 		return 0;
1224 
1225 	if (found->root == bctx->sctx->send_root &&
1226 	    ino == bctx->cur_objectid &&
1227 	    offset == bctx->cur_offset) {
1228 		bctx->found_itself = 1;
1229 	}
1230 
1231 	/*
1232 	 * There are inodes that have extents that lie behind its i_size. Don't
1233 	 * accept clones from these extents.
1234 	 */
1235 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1236 			       NULL, NULL, NULL);
1237 	btrfs_release_path(bctx->path);
1238 	if (ret < 0)
1239 		return ret;
1240 
1241 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1242 		return 0;
1243 
1244 	/*
1245 	 * Make sure we don't consider clones from send_root that are
1246 	 * behind the current inode/offset.
1247 	 */
1248 	if (found->root == bctx->sctx->send_root) {
1249 		/*
1250 		 * TODO for the moment we don't accept clones from the inode
1251 		 * that is currently send. We may change this when
1252 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1253 		 * file.
1254 		 */
1255 		if (ino >= bctx->cur_objectid)
1256 			return 0;
1257 	}
1258 
1259 	bctx->found++;
1260 	found->found_refs++;
1261 	if (ino < found->ino) {
1262 		found->ino = ino;
1263 		found->offset = offset;
1264 	} else if (found->ino == ino) {
1265 		/*
1266 		 * same extent found more then once in the same file.
1267 		 */
1268 		if (found->offset > offset + bctx->extent_len)
1269 			found->offset = offset;
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 /*
1276  * Given an inode, offset and extent item, it finds a good clone for a clone
1277  * instruction. Returns -ENOENT when none could be found. The function makes
1278  * sure that the returned clone is usable at the point where sending is at the
1279  * moment. This means, that no clones are accepted which lie behind the current
1280  * inode+offset.
1281  *
1282  * path must point to the extent item when called.
1283  */
1284 static int find_extent_clone(struct send_ctx *sctx,
1285 			     struct btrfs_path *path,
1286 			     u64 ino, u64 data_offset,
1287 			     u64 ino_size,
1288 			     struct clone_root **found)
1289 {
1290 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1291 	int ret;
1292 	int extent_type;
1293 	u64 logical;
1294 	u64 disk_byte;
1295 	u64 num_bytes;
1296 	u64 extent_item_pos;
1297 	u64 flags = 0;
1298 	struct btrfs_file_extent_item *fi;
1299 	struct extent_buffer *eb = path->nodes[0];
1300 	struct backref_ctx *backref_ctx = NULL;
1301 	struct clone_root *cur_clone_root;
1302 	struct btrfs_key found_key;
1303 	struct btrfs_path *tmp_path;
1304 	int compressed;
1305 	u32 i;
1306 
1307 	tmp_path = alloc_path_for_send();
1308 	if (!tmp_path)
1309 		return -ENOMEM;
1310 
1311 	/* We only use this path under the commit sem */
1312 	tmp_path->need_commit_sem = 0;
1313 
1314 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1315 	if (!backref_ctx) {
1316 		ret = -ENOMEM;
1317 		goto out;
1318 	}
1319 
1320 	backref_ctx->path = tmp_path;
1321 
1322 	if (data_offset >= ino_size) {
1323 		/*
1324 		 * There may be extents that lie behind the file's size.
1325 		 * I at least had this in combination with snapshotting while
1326 		 * writing large files.
1327 		 */
1328 		ret = 0;
1329 		goto out;
1330 	}
1331 
1332 	fi = btrfs_item_ptr(eb, path->slots[0],
1333 			struct btrfs_file_extent_item);
1334 	extent_type = btrfs_file_extent_type(eb, fi);
1335 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1336 		ret = -ENOENT;
1337 		goto out;
1338 	}
1339 	compressed = btrfs_file_extent_compression(eb, fi);
1340 
1341 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1342 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1343 	if (disk_byte == 0) {
1344 		ret = -ENOENT;
1345 		goto out;
1346 	}
1347 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1348 
1349 	down_read(&fs_info->commit_root_sem);
1350 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1351 				  &found_key, &flags);
1352 	up_read(&fs_info->commit_root_sem);
1353 	btrfs_release_path(tmp_path);
1354 
1355 	if (ret < 0)
1356 		goto out;
1357 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1358 		ret = -EIO;
1359 		goto out;
1360 	}
1361 
1362 	/*
1363 	 * Setup the clone roots.
1364 	 */
1365 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1366 		cur_clone_root = sctx->clone_roots + i;
1367 		cur_clone_root->ino = (u64)-1;
1368 		cur_clone_root->offset = 0;
1369 		cur_clone_root->found_refs = 0;
1370 	}
1371 
1372 	backref_ctx->sctx = sctx;
1373 	backref_ctx->found = 0;
1374 	backref_ctx->cur_objectid = ino;
1375 	backref_ctx->cur_offset = data_offset;
1376 	backref_ctx->found_itself = 0;
1377 	backref_ctx->extent_len = num_bytes;
1378 	/*
1379 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1380 	 * offsets that already take into account the data offset, but not for
1381 	 * compressed extents, since the offset is logical and not relative to
1382 	 * the physical extent locations. We must take this into account to
1383 	 * avoid sending clone offsets that go beyond the source file's size,
1384 	 * which would result in the clone ioctl failing with -EINVAL on the
1385 	 * receiving end.
1386 	 */
1387 	if (compressed == BTRFS_COMPRESS_NONE)
1388 		backref_ctx->data_offset = 0;
1389 	else
1390 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1391 
1392 	/*
1393 	 * The last extent of a file may be too large due to page alignment.
1394 	 * We need to adjust extent_len in this case so that the checks in
1395 	 * __iterate_backrefs work.
1396 	 */
1397 	if (data_offset + num_bytes >= ino_size)
1398 		backref_ctx->extent_len = ino_size - data_offset;
1399 
1400 	/*
1401 	 * Now collect all backrefs.
1402 	 */
1403 	if (compressed == BTRFS_COMPRESS_NONE)
1404 		extent_item_pos = logical - found_key.objectid;
1405 	else
1406 		extent_item_pos = 0;
1407 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1408 				    extent_item_pos, 1, __iterate_backrefs,
1409 				    backref_ctx, false);
1410 
1411 	if (ret < 0)
1412 		goto out;
1413 
1414 	if (!backref_ctx->found_itself) {
1415 		/* found a bug in backref code? */
1416 		ret = -EIO;
1417 		btrfs_err(fs_info,
1418 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1419 			  ino, data_offset, disk_byte, found_key.objectid);
1420 		goto out;
1421 	}
1422 
1423 	btrfs_debug(fs_info,
1424 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1425 		    data_offset, ino, num_bytes, logical);
1426 
1427 	if (!backref_ctx->found)
1428 		btrfs_debug(fs_info, "no clones found");
1429 
1430 	cur_clone_root = NULL;
1431 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1432 		if (sctx->clone_roots[i].found_refs) {
1433 			if (!cur_clone_root)
1434 				cur_clone_root = sctx->clone_roots + i;
1435 			else if (sctx->clone_roots[i].root == sctx->send_root)
1436 				/* prefer clones from send_root over others */
1437 				cur_clone_root = sctx->clone_roots + i;
1438 		}
1439 
1440 	}
1441 
1442 	if (cur_clone_root) {
1443 		*found = cur_clone_root;
1444 		ret = 0;
1445 	} else {
1446 		ret = -ENOENT;
1447 	}
1448 
1449 out:
1450 	btrfs_free_path(tmp_path);
1451 	kfree(backref_ctx);
1452 	return ret;
1453 }
1454 
1455 static int read_symlink(struct btrfs_root *root,
1456 			u64 ino,
1457 			struct fs_path *dest)
1458 {
1459 	int ret;
1460 	struct btrfs_path *path;
1461 	struct btrfs_key key;
1462 	struct btrfs_file_extent_item *ei;
1463 	u8 type;
1464 	u8 compression;
1465 	unsigned long off;
1466 	int len;
1467 
1468 	path = alloc_path_for_send();
1469 	if (!path)
1470 		return -ENOMEM;
1471 
1472 	key.objectid = ino;
1473 	key.type = BTRFS_EXTENT_DATA_KEY;
1474 	key.offset = 0;
1475 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1476 	if (ret < 0)
1477 		goto out;
1478 	if (ret) {
1479 		/*
1480 		 * An empty symlink inode. Can happen in rare error paths when
1481 		 * creating a symlink (transaction committed before the inode
1482 		 * eviction handler removed the symlink inode items and a crash
1483 		 * happened in between or the subvol was snapshoted in between).
1484 		 * Print an informative message to dmesg/syslog so that the user
1485 		 * can delete the symlink.
1486 		 */
1487 		btrfs_err(root->fs_info,
1488 			  "Found empty symlink inode %llu at root %llu",
1489 			  ino, root->root_key.objectid);
1490 		ret = -EIO;
1491 		goto out;
1492 	}
1493 
1494 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1495 			struct btrfs_file_extent_item);
1496 	type = btrfs_file_extent_type(path->nodes[0], ei);
1497 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1498 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1499 	BUG_ON(compression);
1500 
1501 	off = btrfs_file_extent_inline_start(ei);
1502 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1503 
1504 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1505 
1506 out:
1507 	btrfs_free_path(path);
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Helper function to generate a file name that is unique in the root of
1513  * send_root and parent_root. This is used to generate names for orphan inodes.
1514  */
1515 static int gen_unique_name(struct send_ctx *sctx,
1516 			   u64 ino, u64 gen,
1517 			   struct fs_path *dest)
1518 {
1519 	int ret = 0;
1520 	struct btrfs_path *path;
1521 	struct btrfs_dir_item *di;
1522 	char tmp[64];
1523 	int len;
1524 	u64 idx = 0;
1525 
1526 	path = alloc_path_for_send();
1527 	if (!path)
1528 		return -ENOMEM;
1529 
1530 	while (1) {
1531 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1532 				ino, gen, idx);
1533 		ASSERT(len < sizeof(tmp));
1534 
1535 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1536 				path, BTRFS_FIRST_FREE_OBJECTID,
1537 				tmp, strlen(tmp), 0);
1538 		btrfs_release_path(path);
1539 		if (IS_ERR(di)) {
1540 			ret = PTR_ERR(di);
1541 			goto out;
1542 		}
1543 		if (di) {
1544 			/* not unique, try again */
1545 			idx++;
1546 			continue;
1547 		}
1548 
1549 		if (!sctx->parent_root) {
1550 			/* unique */
1551 			ret = 0;
1552 			break;
1553 		}
1554 
1555 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1556 				path, BTRFS_FIRST_FREE_OBJECTID,
1557 				tmp, strlen(tmp), 0);
1558 		btrfs_release_path(path);
1559 		if (IS_ERR(di)) {
1560 			ret = PTR_ERR(di);
1561 			goto out;
1562 		}
1563 		if (di) {
1564 			/* not unique, try again */
1565 			idx++;
1566 			continue;
1567 		}
1568 		/* unique */
1569 		break;
1570 	}
1571 
1572 	ret = fs_path_add(dest, tmp, strlen(tmp));
1573 
1574 out:
1575 	btrfs_free_path(path);
1576 	return ret;
1577 }
1578 
1579 enum inode_state {
1580 	inode_state_no_change,
1581 	inode_state_will_create,
1582 	inode_state_did_create,
1583 	inode_state_will_delete,
1584 	inode_state_did_delete,
1585 };
1586 
1587 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1588 {
1589 	int ret;
1590 	int left_ret;
1591 	int right_ret;
1592 	u64 left_gen;
1593 	u64 right_gen;
1594 
1595 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1596 			NULL, NULL);
1597 	if (ret < 0 && ret != -ENOENT)
1598 		goto out;
1599 	left_ret = ret;
1600 
1601 	if (!sctx->parent_root) {
1602 		right_ret = -ENOENT;
1603 	} else {
1604 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1605 				NULL, NULL, NULL, NULL);
1606 		if (ret < 0 && ret != -ENOENT)
1607 			goto out;
1608 		right_ret = ret;
1609 	}
1610 
1611 	if (!left_ret && !right_ret) {
1612 		if (left_gen == gen && right_gen == gen) {
1613 			ret = inode_state_no_change;
1614 		} else if (left_gen == gen) {
1615 			if (ino < sctx->send_progress)
1616 				ret = inode_state_did_create;
1617 			else
1618 				ret = inode_state_will_create;
1619 		} else if (right_gen == gen) {
1620 			if (ino < sctx->send_progress)
1621 				ret = inode_state_did_delete;
1622 			else
1623 				ret = inode_state_will_delete;
1624 		} else  {
1625 			ret = -ENOENT;
1626 		}
1627 	} else if (!left_ret) {
1628 		if (left_gen == gen) {
1629 			if (ino < sctx->send_progress)
1630 				ret = inode_state_did_create;
1631 			else
1632 				ret = inode_state_will_create;
1633 		} else {
1634 			ret = -ENOENT;
1635 		}
1636 	} else if (!right_ret) {
1637 		if (right_gen == gen) {
1638 			if (ino < sctx->send_progress)
1639 				ret = inode_state_did_delete;
1640 			else
1641 				ret = inode_state_will_delete;
1642 		} else {
1643 			ret = -ENOENT;
1644 		}
1645 	} else {
1646 		ret = -ENOENT;
1647 	}
1648 
1649 out:
1650 	return ret;
1651 }
1652 
1653 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1654 {
1655 	int ret;
1656 
1657 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1658 		return 1;
1659 
1660 	ret = get_cur_inode_state(sctx, ino, gen);
1661 	if (ret < 0)
1662 		goto out;
1663 
1664 	if (ret == inode_state_no_change ||
1665 	    ret == inode_state_did_create ||
1666 	    ret == inode_state_will_delete)
1667 		ret = 1;
1668 	else
1669 		ret = 0;
1670 
1671 out:
1672 	return ret;
1673 }
1674 
1675 /*
1676  * Helper function to lookup a dir item in a dir.
1677  */
1678 static int lookup_dir_item_inode(struct btrfs_root *root,
1679 				 u64 dir, const char *name, int name_len,
1680 				 u64 *found_inode,
1681 				 u8 *found_type)
1682 {
1683 	int ret = 0;
1684 	struct btrfs_dir_item *di;
1685 	struct btrfs_key key;
1686 	struct btrfs_path *path;
1687 
1688 	path = alloc_path_for_send();
1689 	if (!path)
1690 		return -ENOMEM;
1691 
1692 	di = btrfs_lookup_dir_item(NULL, root, path,
1693 			dir, name, name_len, 0);
1694 	if (!di) {
1695 		ret = -ENOENT;
1696 		goto out;
1697 	}
1698 	if (IS_ERR(di)) {
1699 		ret = PTR_ERR(di);
1700 		goto out;
1701 	}
1702 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1703 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1704 		ret = -ENOENT;
1705 		goto out;
1706 	}
1707 	*found_inode = key.objectid;
1708 	*found_type = btrfs_dir_type(path->nodes[0], di);
1709 
1710 out:
1711 	btrfs_free_path(path);
1712 	return ret;
1713 }
1714 
1715 /*
1716  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1717  * generation of the parent dir and the name of the dir entry.
1718  */
1719 static int get_first_ref(struct btrfs_root *root, u64 ino,
1720 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1721 {
1722 	int ret;
1723 	struct btrfs_key key;
1724 	struct btrfs_key found_key;
1725 	struct btrfs_path *path;
1726 	int len;
1727 	u64 parent_dir;
1728 
1729 	path = alloc_path_for_send();
1730 	if (!path)
1731 		return -ENOMEM;
1732 
1733 	key.objectid = ino;
1734 	key.type = BTRFS_INODE_REF_KEY;
1735 	key.offset = 0;
1736 
1737 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1738 	if (ret < 0)
1739 		goto out;
1740 	if (!ret)
1741 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1742 				path->slots[0]);
1743 	if (ret || found_key.objectid != ino ||
1744 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1745 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1746 		ret = -ENOENT;
1747 		goto out;
1748 	}
1749 
1750 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1751 		struct btrfs_inode_ref *iref;
1752 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1753 				      struct btrfs_inode_ref);
1754 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1755 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1756 						     (unsigned long)(iref + 1),
1757 						     len);
1758 		parent_dir = found_key.offset;
1759 	} else {
1760 		struct btrfs_inode_extref *extref;
1761 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1762 					struct btrfs_inode_extref);
1763 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1764 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1765 					(unsigned long)&extref->name, len);
1766 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1767 	}
1768 	if (ret < 0)
1769 		goto out;
1770 	btrfs_release_path(path);
1771 
1772 	if (dir_gen) {
1773 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1774 				     NULL, NULL, NULL);
1775 		if (ret < 0)
1776 			goto out;
1777 	}
1778 
1779 	*dir = parent_dir;
1780 
1781 out:
1782 	btrfs_free_path(path);
1783 	return ret;
1784 }
1785 
1786 static int is_first_ref(struct btrfs_root *root,
1787 			u64 ino, u64 dir,
1788 			const char *name, int name_len)
1789 {
1790 	int ret;
1791 	struct fs_path *tmp_name;
1792 	u64 tmp_dir;
1793 
1794 	tmp_name = fs_path_alloc();
1795 	if (!tmp_name)
1796 		return -ENOMEM;
1797 
1798 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1799 	if (ret < 0)
1800 		goto out;
1801 
1802 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1803 		ret = 0;
1804 		goto out;
1805 	}
1806 
1807 	ret = !memcmp(tmp_name->start, name, name_len);
1808 
1809 out:
1810 	fs_path_free(tmp_name);
1811 	return ret;
1812 }
1813 
1814 /*
1815  * Used by process_recorded_refs to determine if a new ref would overwrite an
1816  * already existing ref. In case it detects an overwrite, it returns the
1817  * inode/gen in who_ino/who_gen.
1818  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1819  * to make sure later references to the overwritten inode are possible.
1820  * Orphanizing is however only required for the first ref of an inode.
1821  * process_recorded_refs does an additional is_first_ref check to see if
1822  * orphanizing is really required.
1823  */
1824 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1825 			      const char *name, int name_len,
1826 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1827 {
1828 	int ret = 0;
1829 	u64 gen;
1830 	u64 other_inode = 0;
1831 	u8 other_type = 0;
1832 
1833 	if (!sctx->parent_root)
1834 		goto out;
1835 
1836 	ret = is_inode_existent(sctx, dir, dir_gen);
1837 	if (ret <= 0)
1838 		goto out;
1839 
1840 	/*
1841 	 * If we have a parent root we need to verify that the parent dir was
1842 	 * not deleted and then re-created, if it was then we have no overwrite
1843 	 * and we can just unlink this entry.
1844 	 */
1845 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1846 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1847 				     NULL, NULL, NULL);
1848 		if (ret < 0 && ret != -ENOENT)
1849 			goto out;
1850 		if (ret) {
1851 			ret = 0;
1852 			goto out;
1853 		}
1854 		if (gen != dir_gen)
1855 			goto out;
1856 	}
1857 
1858 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1859 			&other_inode, &other_type);
1860 	if (ret < 0 && ret != -ENOENT)
1861 		goto out;
1862 	if (ret) {
1863 		ret = 0;
1864 		goto out;
1865 	}
1866 
1867 	/*
1868 	 * Check if the overwritten ref was already processed. If yes, the ref
1869 	 * was already unlinked/moved, so we can safely assume that we will not
1870 	 * overwrite anything at this point in time.
1871 	 */
1872 	if (other_inode > sctx->send_progress ||
1873 	    is_waiting_for_move(sctx, other_inode)) {
1874 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1875 				who_gen, who_mode, NULL, NULL, NULL);
1876 		if (ret < 0)
1877 			goto out;
1878 
1879 		ret = 1;
1880 		*who_ino = other_inode;
1881 	} else {
1882 		ret = 0;
1883 	}
1884 
1885 out:
1886 	return ret;
1887 }
1888 
1889 /*
1890  * Checks if the ref was overwritten by an already processed inode. This is
1891  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1892  * thus the orphan name needs be used.
1893  * process_recorded_refs also uses it to avoid unlinking of refs that were
1894  * overwritten.
1895  */
1896 static int did_overwrite_ref(struct send_ctx *sctx,
1897 			    u64 dir, u64 dir_gen,
1898 			    u64 ino, u64 ino_gen,
1899 			    const char *name, int name_len)
1900 {
1901 	int ret = 0;
1902 	u64 gen;
1903 	u64 ow_inode;
1904 	u8 other_type;
1905 
1906 	if (!sctx->parent_root)
1907 		goto out;
1908 
1909 	ret = is_inode_existent(sctx, dir, dir_gen);
1910 	if (ret <= 0)
1911 		goto out;
1912 
1913 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1914 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1915 				     NULL, NULL, NULL);
1916 		if (ret < 0 && ret != -ENOENT)
1917 			goto out;
1918 		if (ret) {
1919 			ret = 0;
1920 			goto out;
1921 		}
1922 		if (gen != dir_gen)
1923 			goto out;
1924 	}
1925 
1926 	/* check if the ref was overwritten by another ref */
1927 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1928 			&ow_inode, &other_type);
1929 	if (ret < 0 && ret != -ENOENT)
1930 		goto out;
1931 	if (ret) {
1932 		/* was never and will never be overwritten */
1933 		ret = 0;
1934 		goto out;
1935 	}
1936 
1937 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1938 			NULL, NULL);
1939 	if (ret < 0)
1940 		goto out;
1941 
1942 	if (ow_inode == ino && gen == ino_gen) {
1943 		ret = 0;
1944 		goto out;
1945 	}
1946 
1947 	/*
1948 	 * We know that it is or will be overwritten. Check this now.
1949 	 * The current inode being processed might have been the one that caused
1950 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1951 	 * the current inode being processed.
1952 	 */
1953 	if ((ow_inode < sctx->send_progress) ||
1954 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1955 	     gen == sctx->cur_inode_gen))
1956 		ret = 1;
1957 	else
1958 		ret = 0;
1959 
1960 out:
1961 	return ret;
1962 }
1963 
1964 /*
1965  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1966  * that got overwritten. This is used by process_recorded_refs to determine
1967  * if it has to use the path as returned by get_cur_path or the orphan name.
1968  */
1969 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1970 {
1971 	int ret = 0;
1972 	struct fs_path *name = NULL;
1973 	u64 dir;
1974 	u64 dir_gen;
1975 
1976 	if (!sctx->parent_root)
1977 		goto out;
1978 
1979 	name = fs_path_alloc();
1980 	if (!name)
1981 		return -ENOMEM;
1982 
1983 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1984 	if (ret < 0)
1985 		goto out;
1986 
1987 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1988 			name->start, fs_path_len(name));
1989 
1990 out:
1991 	fs_path_free(name);
1992 	return ret;
1993 }
1994 
1995 /*
1996  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1997  * so we need to do some special handling in case we have clashes. This function
1998  * takes care of this with the help of name_cache_entry::radix_list.
1999  * In case of error, nce is kfreed.
2000  */
2001 static int name_cache_insert(struct send_ctx *sctx,
2002 			     struct name_cache_entry *nce)
2003 {
2004 	int ret = 0;
2005 	struct list_head *nce_head;
2006 
2007 	nce_head = radix_tree_lookup(&sctx->name_cache,
2008 			(unsigned long)nce->ino);
2009 	if (!nce_head) {
2010 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2011 		if (!nce_head) {
2012 			kfree(nce);
2013 			return -ENOMEM;
2014 		}
2015 		INIT_LIST_HEAD(nce_head);
2016 
2017 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2018 		if (ret < 0) {
2019 			kfree(nce_head);
2020 			kfree(nce);
2021 			return ret;
2022 		}
2023 	}
2024 	list_add_tail(&nce->radix_list, nce_head);
2025 	list_add_tail(&nce->list, &sctx->name_cache_list);
2026 	sctx->name_cache_size++;
2027 
2028 	return ret;
2029 }
2030 
2031 static void name_cache_delete(struct send_ctx *sctx,
2032 			      struct name_cache_entry *nce)
2033 {
2034 	struct list_head *nce_head;
2035 
2036 	nce_head = radix_tree_lookup(&sctx->name_cache,
2037 			(unsigned long)nce->ino);
2038 	if (!nce_head) {
2039 		btrfs_err(sctx->send_root->fs_info,
2040 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2041 			nce->ino, sctx->name_cache_size);
2042 	}
2043 
2044 	list_del(&nce->radix_list);
2045 	list_del(&nce->list);
2046 	sctx->name_cache_size--;
2047 
2048 	/*
2049 	 * We may not get to the final release of nce_head if the lookup fails
2050 	 */
2051 	if (nce_head && list_empty(nce_head)) {
2052 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2053 		kfree(nce_head);
2054 	}
2055 }
2056 
2057 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2058 						    u64 ino, u64 gen)
2059 {
2060 	struct list_head *nce_head;
2061 	struct name_cache_entry *cur;
2062 
2063 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2064 	if (!nce_head)
2065 		return NULL;
2066 
2067 	list_for_each_entry(cur, nce_head, radix_list) {
2068 		if (cur->ino == ino && cur->gen == gen)
2069 			return cur;
2070 	}
2071 	return NULL;
2072 }
2073 
2074 /*
2075  * Removes the entry from the list and adds it back to the end. This marks the
2076  * entry as recently used so that name_cache_clean_unused does not remove it.
2077  */
2078 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2079 {
2080 	list_del(&nce->list);
2081 	list_add_tail(&nce->list, &sctx->name_cache_list);
2082 }
2083 
2084 /*
2085  * Remove some entries from the beginning of name_cache_list.
2086  */
2087 static void name_cache_clean_unused(struct send_ctx *sctx)
2088 {
2089 	struct name_cache_entry *nce;
2090 
2091 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2092 		return;
2093 
2094 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2095 		nce = list_entry(sctx->name_cache_list.next,
2096 				struct name_cache_entry, list);
2097 		name_cache_delete(sctx, nce);
2098 		kfree(nce);
2099 	}
2100 }
2101 
2102 static void name_cache_free(struct send_ctx *sctx)
2103 {
2104 	struct name_cache_entry *nce;
2105 
2106 	while (!list_empty(&sctx->name_cache_list)) {
2107 		nce = list_entry(sctx->name_cache_list.next,
2108 				struct name_cache_entry, list);
2109 		name_cache_delete(sctx, nce);
2110 		kfree(nce);
2111 	}
2112 }
2113 
2114 /*
2115  * Used by get_cur_path for each ref up to the root.
2116  * Returns 0 if it succeeded.
2117  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2118  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2119  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2120  * Returns <0 in case of error.
2121  */
2122 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2123 				     u64 ino, u64 gen,
2124 				     u64 *parent_ino,
2125 				     u64 *parent_gen,
2126 				     struct fs_path *dest)
2127 {
2128 	int ret;
2129 	int nce_ret;
2130 	struct name_cache_entry *nce = NULL;
2131 
2132 	/*
2133 	 * First check if we already did a call to this function with the same
2134 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2135 	 * return the cached result.
2136 	 */
2137 	nce = name_cache_search(sctx, ino, gen);
2138 	if (nce) {
2139 		if (ino < sctx->send_progress && nce->need_later_update) {
2140 			name_cache_delete(sctx, nce);
2141 			kfree(nce);
2142 			nce = NULL;
2143 		} else {
2144 			name_cache_used(sctx, nce);
2145 			*parent_ino = nce->parent_ino;
2146 			*parent_gen = nce->parent_gen;
2147 			ret = fs_path_add(dest, nce->name, nce->name_len);
2148 			if (ret < 0)
2149 				goto out;
2150 			ret = nce->ret;
2151 			goto out;
2152 		}
2153 	}
2154 
2155 	/*
2156 	 * If the inode is not existent yet, add the orphan name and return 1.
2157 	 * This should only happen for the parent dir that we determine in
2158 	 * __record_new_ref
2159 	 */
2160 	ret = is_inode_existent(sctx, ino, gen);
2161 	if (ret < 0)
2162 		goto out;
2163 
2164 	if (!ret) {
2165 		ret = gen_unique_name(sctx, ino, gen, dest);
2166 		if (ret < 0)
2167 			goto out;
2168 		ret = 1;
2169 		goto out_cache;
2170 	}
2171 
2172 	/*
2173 	 * Depending on whether the inode was already processed or not, use
2174 	 * send_root or parent_root for ref lookup.
2175 	 */
2176 	if (ino < sctx->send_progress)
2177 		ret = get_first_ref(sctx->send_root, ino,
2178 				    parent_ino, parent_gen, dest);
2179 	else
2180 		ret = get_first_ref(sctx->parent_root, ino,
2181 				    parent_ino, parent_gen, dest);
2182 	if (ret < 0)
2183 		goto out;
2184 
2185 	/*
2186 	 * Check if the ref was overwritten by an inode's ref that was processed
2187 	 * earlier. If yes, treat as orphan and return 1.
2188 	 */
2189 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2190 			dest->start, dest->end - dest->start);
2191 	if (ret < 0)
2192 		goto out;
2193 	if (ret) {
2194 		fs_path_reset(dest);
2195 		ret = gen_unique_name(sctx, ino, gen, dest);
2196 		if (ret < 0)
2197 			goto out;
2198 		ret = 1;
2199 	}
2200 
2201 out_cache:
2202 	/*
2203 	 * Store the result of the lookup in the name cache.
2204 	 */
2205 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2206 	if (!nce) {
2207 		ret = -ENOMEM;
2208 		goto out;
2209 	}
2210 
2211 	nce->ino = ino;
2212 	nce->gen = gen;
2213 	nce->parent_ino = *parent_ino;
2214 	nce->parent_gen = *parent_gen;
2215 	nce->name_len = fs_path_len(dest);
2216 	nce->ret = ret;
2217 	strcpy(nce->name, dest->start);
2218 
2219 	if (ino < sctx->send_progress)
2220 		nce->need_later_update = 0;
2221 	else
2222 		nce->need_later_update = 1;
2223 
2224 	nce_ret = name_cache_insert(sctx, nce);
2225 	if (nce_ret < 0)
2226 		ret = nce_ret;
2227 	name_cache_clean_unused(sctx);
2228 
2229 out:
2230 	return ret;
2231 }
2232 
2233 /*
2234  * Magic happens here. This function returns the first ref to an inode as it
2235  * would look like while receiving the stream at this point in time.
2236  * We walk the path up to the root. For every inode in between, we check if it
2237  * was already processed/sent. If yes, we continue with the parent as found
2238  * in send_root. If not, we continue with the parent as found in parent_root.
2239  * If we encounter an inode that was deleted at this point in time, we use the
2240  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2241  * that were not created yet and overwritten inodes/refs.
2242  *
2243  * When do we have have orphan inodes:
2244  * 1. When an inode is freshly created and thus no valid refs are available yet
2245  * 2. When a directory lost all it's refs (deleted) but still has dir items
2246  *    inside which were not processed yet (pending for move/delete). If anyone
2247  *    tried to get the path to the dir items, it would get a path inside that
2248  *    orphan directory.
2249  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2250  *    of an unprocessed inode. If in that case the first ref would be
2251  *    overwritten, the overwritten inode gets "orphanized". Later when we
2252  *    process this overwritten inode, it is restored at a new place by moving
2253  *    the orphan inode.
2254  *
2255  * sctx->send_progress tells this function at which point in time receiving
2256  * would be.
2257  */
2258 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2259 			struct fs_path *dest)
2260 {
2261 	int ret = 0;
2262 	struct fs_path *name = NULL;
2263 	u64 parent_inode = 0;
2264 	u64 parent_gen = 0;
2265 	int stop = 0;
2266 
2267 	name = fs_path_alloc();
2268 	if (!name) {
2269 		ret = -ENOMEM;
2270 		goto out;
2271 	}
2272 
2273 	dest->reversed = 1;
2274 	fs_path_reset(dest);
2275 
2276 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2277 		struct waiting_dir_move *wdm;
2278 
2279 		fs_path_reset(name);
2280 
2281 		if (is_waiting_for_rm(sctx, ino)) {
2282 			ret = gen_unique_name(sctx, ino, gen, name);
2283 			if (ret < 0)
2284 				goto out;
2285 			ret = fs_path_add_path(dest, name);
2286 			break;
2287 		}
2288 
2289 		wdm = get_waiting_dir_move(sctx, ino);
2290 		if (wdm && wdm->orphanized) {
2291 			ret = gen_unique_name(sctx, ino, gen, name);
2292 			stop = 1;
2293 		} else if (wdm) {
2294 			ret = get_first_ref(sctx->parent_root, ino,
2295 					    &parent_inode, &parent_gen, name);
2296 		} else {
2297 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2298 							&parent_inode,
2299 							&parent_gen, name);
2300 			if (ret)
2301 				stop = 1;
2302 		}
2303 
2304 		if (ret < 0)
2305 			goto out;
2306 
2307 		ret = fs_path_add_path(dest, name);
2308 		if (ret < 0)
2309 			goto out;
2310 
2311 		ino = parent_inode;
2312 		gen = parent_gen;
2313 	}
2314 
2315 out:
2316 	fs_path_free(name);
2317 	if (!ret)
2318 		fs_path_unreverse(dest);
2319 	return ret;
2320 }
2321 
2322 /*
2323  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2324  */
2325 static int send_subvol_begin(struct send_ctx *sctx)
2326 {
2327 	int ret;
2328 	struct btrfs_root *send_root = sctx->send_root;
2329 	struct btrfs_root *parent_root = sctx->parent_root;
2330 	struct btrfs_path *path;
2331 	struct btrfs_key key;
2332 	struct btrfs_root_ref *ref;
2333 	struct extent_buffer *leaf;
2334 	char *name = NULL;
2335 	int namelen;
2336 
2337 	path = btrfs_alloc_path();
2338 	if (!path)
2339 		return -ENOMEM;
2340 
2341 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2342 	if (!name) {
2343 		btrfs_free_path(path);
2344 		return -ENOMEM;
2345 	}
2346 
2347 	key.objectid = send_root->objectid;
2348 	key.type = BTRFS_ROOT_BACKREF_KEY;
2349 	key.offset = 0;
2350 
2351 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2352 				&key, path, 1, 0);
2353 	if (ret < 0)
2354 		goto out;
2355 	if (ret) {
2356 		ret = -ENOENT;
2357 		goto out;
2358 	}
2359 
2360 	leaf = path->nodes[0];
2361 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2362 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2363 	    key.objectid != send_root->objectid) {
2364 		ret = -ENOENT;
2365 		goto out;
2366 	}
2367 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2368 	namelen = btrfs_root_ref_name_len(leaf, ref);
2369 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2370 	btrfs_release_path(path);
2371 
2372 	if (parent_root) {
2373 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2374 		if (ret < 0)
2375 			goto out;
2376 	} else {
2377 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2378 		if (ret < 0)
2379 			goto out;
2380 	}
2381 
2382 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2383 
2384 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2385 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2386 			    sctx->send_root->root_item.received_uuid);
2387 	else
2388 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2389 			    sctx->send_root->root_item.uuid);
2390 
2391 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2392 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2393 	if (parent_root) {
2394 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2395 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2396 				     parent_root->root_item.received_uuid);
2397 		else
2398 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2399 				     parent_root->root_item.uuid);
2400 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2401 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2402 	}
2403 
2404 	ret = send_cmd(sctx);
2405 
2406 tlv_put_failure:
2407 out:
2408 	btrfs_free_path(path);
2409 	kfree(name);
2410 	return ret;
2411 }
2412 
2413 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2414 {
2415 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2416 	int ret = 0;
2417 	struct fs_path *p;
2418 
2419 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2420 
2421 	p = fs_path_alloc();
2422 	if (!p)
2423 		return -ENOMEM;
2424 
2425 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2426 	if (ret < 0)
2427 		goto out;
2428 
2429 	ret = get_cur_path(sctx, ino, gen, p);
2430 	if (ret < 0)
2431 		goto out;
2432 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2433 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2434 
2435 	ret = send_cmd(sctx);
2436 
2437 tlv_put_failure:
2438 out:
2439 	fs_path_free(p);
2440 	return ret;
2441 }
2442 
2443 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2444 {
2445 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2446 	int ret = 0;
2447 	struct fs_path *p;
2448 
2449 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2450 
2451 	p = fs_path_alloc();
2452 	if (!p)
2453 		return -ENOMEM;
2454 
2455 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2456 	if (ret < 0)
2457 		goto out;
2458 
2459 	ret = get_cur_path(sctx, ino, gen, p);
2460 	if (ret < 0)
2461 		goto out;
2462 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2463 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2464 
2465 	ret = send_cmd(sctx);
2466 
2467 tlv_put_failure:
2468 out:
2469 	fs_path_free(p);
2470 	return ret;
2471 }
2472 
2473 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2474 {
2475 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2476 	int ret = 0;
2477 	struct fs_path *p;
2478 
2479 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2480 		    ino, uid, gid);
2481 
2482 	p = fs_path_alloc();
2483 	if (!p)
2484 		return -ENOMEM;
2485 
2486 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2487 	if (ret < 0)
2488 		goto out;
2489 
2490 	ret = get_cur_path(sctx, ino, gen, p);
2491 	if (ret < 0)
2492 		goto out;
2493 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2494 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2495 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2496 
2497 	ret = send_cmd(sctx);
2498 
2499 tlv_put_failure:
2500 out:
2501 	fs_path_free(p);
2502 	return ret;
2503 }
2504 
2505 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2506 {
2507 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2508 	int ret = 0;
2509 	struct fs_path *p = NULL;
2510 	struct btrfs_inode_item *ii;
2511 	struct btrfs_path *path = NULL;
2512 	struct extent_buffer *eb;
2513 	struct btrfs_key key;
2514 	int slot;
2515 
2516 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2517 
2518 	p = fs_path_alloc();
2519 	if (!p)
2520 		return -ENOMEM;
2521 
2522 	path = alloc_path_for_send();
2523 	if (!path) {
2524 		ret = -ENOMEM;
2525 		goto out;
2526 	}
2527 
2528 	key.objectid = ino;
2529 	key.type = BTRFS_INODE_ITEM_KEY;
2530 	key.offset = 0;
2531 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2532 	if (ret > 0)
2533 		ret = -ENOENT;
2534 	if (ret < 0)
2535 		goto out;
2536 
2537 	eb = path->nodes[0];
2538 	slot = path->slots[0];
2539 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2540 
2541 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2542 	if (ret < 0)
2543 		goto out;
2544 
2545 	ret = get_cur_path(sctx, ino, gen, p);
2546 	if (ret < 0)
2547 		goto out;
2548 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2549 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2550 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2551 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2552 	/* TODO Add otime support when the otime patches get into upstream */
2553 
2554 	ret = send_cmd(sctx);
2555 
2556 tlv_put_failure:
2557 out:
2558 	fs_path_free(p);
2559 	btrfs_free_path(path);
2560 	return ret;
2561 }
2562 
2563 /*
2564  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2565  * a valid path yet because we did not process the refs yet. So, the inode
2566  * is created as orphan.
2567  */
2568 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2569 {
2570 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2571 	int ret = 0;
2572 	struct fs_path *p;
2573 	int cmd;
2574 	u64 gen;
2575 	u64 mode;
2576 	u64 rdev;
2577 
2578 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2579 
2580 	p = fs_path_alloc();
2581 	if (!p)
2582 		return -ENOMEM;
2583 
2584 	if (ino != sctx->cur_ino) {
2585 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2586 				     NULL, NULL, &rdev);
2587 		if (ret < 0)
2588 			goto out;
2589 	} else {
2590 		gen = sctx->cur_inode_gen;
2591 		mode = sctx->cur_inode_mode;
2592 		rdev = sctx->cur_inode_rdev;
2593 	}
2594 
2595 	if (S_ISREG(mode)) {
2596 		cmd = BTRFS_SEND_C_MKFILE;
2597 	} else if (S_ISDIR(mode)) {
2598 		cmd = BTRFS_SEND_C_MKDIR;
2599 	} else if (S_ISLNK(mode)) {
2600 		cmd = BTRFS_SEND_C_SYMLINK;
2601 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2602 		cmd = BTRFS_SEND_C_MKNOD;
2603 	} else if (S_ISFIFO(mode)) {
2604 		cmd = BTRFS_SEND_C_MKFIFO;
2605 	} else if (S_ISSOCK(mode)) {
2606 		cmd = BTRFS_SEND_C_MKSOCK;
2607 	} else {
2608 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2609 				(int)(mode & S_IFMT));
2610 		ret = -EOPNOTSUPP;
2611 		goto out;
2612 	}
2613 
2614 	ret = begin_cmd(sctx, cmd);
2615 	if (ret < 0)
2616 		goto out;
2617 
2618 	ret = gen_unique_name(sctx, ino, gen, p);
2619 	if (ret < 0)
2620 		goto out;
2621 
2622 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2623 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2624 
2625 	if (S_ISLNK(mode)) {
2626 		fs_path_reset(p);
2627 		ret = read_symlink(sctx->send_root, ino, p);
2628 		if (ret < 0)
2629 			goto out;
2630 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2631 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2632 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2633 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2634 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2635 	}
2636 
2637 	ret = send_cmd(sctx);
2638 	if (ret < 0)
2639 		goto out;
2640 
2641 
2642 tlv_put_failure:
2643 out:
2644 	fs_path_free(p);
2645 	return ret;
2646 }
2647 
2648 /*
2649  * We need some special handling for inodes that get processed before the parent
2650  * directory got created. See process_recorded_refs for details.
2651  * This function does the check if we already created the dir out of order.
2652  */
2653 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2654 {
2655 	int ret = 0;
2656 	struct btrfs_path *path = NULL;
2657 	struct btrfs_key key;
2658 	struct btrfs_key found_key;
2659 	struct btrfs_key di_key;
2660 	struct extent_buffer *eb;
2661 	struct btrfs_dir_item *di;
2662 	int slot;
2663 
2664 	path = alloc_path_for_send();
2665 	if (!path) {
2666 		ret = -ENOMEM;
2667 		goto out;
2668 	}
2669 
2670 	key.objectid = dir;
2671 	key.type = BTRFS_DIR_INDEX_KEY;
2672 	key.offset = 0;
2673 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2674 	if (ret < 0)
2675 		goto out;
2676 
2677 	while (1) {
2678 		eb = path->nodes[0];
2679 		slot = path->slots[0];
2680 		if (slot >= btrfs_header_nritems(eb)) {
2681 			ret = btrfs_next_leaf(sctx->send_root, path);
2682 			if (ret < 0) {
2683 				goto out;
2684 			} else if (ret > 0) {
2685 				ret = 0;
2686 				break;
2687 			}
2688 			continue;
2689 		}
2690 
2691 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2692 		if (found_key.objectid != key.objectid ||
2693 		    found_key.type != key.type) {
2694 			ret = 0;
2695 			goto out;
2696 		}
2697 
2698 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2699 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2700 
2701 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2702 		    di_key.objectid < sctx->send_progress) {
2703 			ret = 1;
2704 			goto out;
2705 		}
2706 
2707 		path->slots[0]++;
2708 	}
2709 
2710 out:
2711 	btrfs_free_path(path);
2712 	return ret;
2713 }
2714 
2715 /*
2716  * Only creates the inode if it is:
2717  * 1. Not a directory
2718  * 2. Or a directory which was not created already due to out of order
2719  *    directories. See did_create_dir and process_recorded_refs for details.
2720  */
2721 static int send_create_inode_if_needed(struct send_ctx *sctx)
2722 {
2723 	int ret;
2724 
2725 	if (S_ISDIR(sctx->cur_inode_mode)) {
2726 		ret = did_create_dir(sctx, sctx->cur_ino);
2727 		if (ret < 0)
2728 			goto out;
2729 		if (ret) {
2730 			ret = 0;
2731 			goto out;
2732 		}
2733 	}
2734 
2735 	ret = send_create_inode(sctx, sctx->cur_ino);
2736 	if (ret < 0)
2737 		goto out;
2738 
2739 out:
2740 	return ret;
2741 }
2742 
2743 struct recorded_ref {
2744 	struct list_head list;
2745 	char *name;
2746 	struct fs_path *full_path;
2747 	u64 dir;
2748 	u64 dir_gen;
2749 	int name_len;
2750 };
2751 
2752 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2753 {
2754 	ref->full_path = path;
2755 	ref->name = (char *)kbasename(ref->full_path->start);
2756 	ref->name_len = ref->full_path->end - ref->name;
2757 }
2758 
2759 /*
2760  * We need to process new refs before deleted refs, but compare_tree gives us
2761  * everything mixed. So we first record all refs and later process them.
2762  * This function is a helper to record one ref.
2763  */
2764 static int __record_ref(struct list_head *head, u64 dir,
2765 		      u64 dir_gen, struct fs_path *path)
2766 {
2767 	struct recorded_ref *ref;
2768 
2769 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2770 	if (!ref)
2771 		return -ENOMEM;
2772 
2773 	ref->dir = dir;
2774 	ref->dir_gen = dir_gen;
2775 	set_ref_path(ref, path);
2776 	list_add_tail(&ref->list, head);
2777 	return 0;
2778 }
2779 
2780 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2781 {
2782 	struct recorded_ref *new;
2783 
2784 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2785 	if (!new)
2786 		return -ENOMEM;
2787 
2788 	new->dir = ref->dir;
2789 	new->dir_gen = ref->dir_gen;
2790 	new->full_path = NULL;
2791 	INIT_LIST_HEAD(&new->list);
2792 	list_add_tail(&new->list, list);
2793 	return 0;
2794 }
2795 
2796 static void __free_recorded_refs(struct list_head *head)
2797 {
2798 	struct recorded_ref *cur;
2799 
2800 	while (!list_empty(head)) {
2801 		cur = list_entry(head->next, struct recorded_ref, list);
2802 		fs_path_free(cur->full_path);
2803 		list_del(&cur->list);
2804 		kfree(cur);
2805 	}
2806 }
2807 
2808 static void free_recorded_refs(struct send_ctx *sctx)
2809 {
2810 	__free_recorded_refs(&sctx->new_refs);
2811 	__free_recorded_refs(&sctx->deleted_refs);
2812 }
2813 
2814 /*
2815  * Renames/moves a file/dir to its orphan name. Used when the first
2816  * ref of an unprocessed inode gets overwritten and for all non empty
2817  * directories.
2818  */
2819 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2820 			  struct fs_path *path)
2821 {
2822 	int ret;
2823 	struct fs_path *orphan;
2824 
2825 	orphan = fs_path_alloc();
2826 	if (!orphan)
2827 		return -ENOMEM;
2828 
2829 	ret = gen_unique_name(sctx, ino, gen, orphan);
2830 	if (ret < 0)
2831 		goto out;
2832 
2833 	ret = send_rename(sctx, path, orphan);
2834 
2835 out:
2836 	fs_path_free(orphan);
2837 	return ret;
2838 }
2839 
2840 static struct orphan_dir_info *
2841 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2842 {
2843 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2844 	struct rb_node *parent = NULL;
2845 	struct orphan_dir_info *entry, *odi;
2846 
2847 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2848 	if (!odi)
2849 		return ERR_PTR(-ENOMEM);
2850 	odi->ino = dir_ino;
2851 	odi->gen = 0;
2852 
2853 	while (*p) {
2854 		parent = *p;
2855 		entry = rb_entry(parent, struct orphan_dir_info, node);
2856 		if (dir_ino < entry->ino) {
2857 			p = &(*p)->rb_left;
2858 		} else if (dir_ino > entry->ino) {
2859 			p = &(*p)->rb_right;
2860 		} else {
2861 			kfree(odi);
2862 			return entry;
2863 		}
2864 	}
2865 
2866 	rb_link_node(&odi->node, parent, p);
2867 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2868 	return odi;
2869 }
2870 
2871 static struct orphan_dir_info *
2872 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2873 {
2874 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2875 	struct orphan_dir_info *entry;
2876 
2877 	while (n) {
2878 		entry = rb_entry(n, struct orphan_dir_info, node);
2879 		if (dir_ino < entry->ino)
2880 			n = n->rb_left;
2881 		else if (dir_ino > entry->ino)
2882 			n = n->rb_right;
2883 		else
2884 			return entry;
2885 	}
2886 	return NULL;
2887 }
2888 
2889 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2890 {
2891 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2892 
2893 	return odi != NULL;
2894 }
2895 
2896 static void free_orphan_dir_info(struct send_ctx *sctx,
2897 				 struct orphan_dir_info *odi)
2898 {
2899 	if (!odi)
2900 		return;
2901 	rb_erase(&odi->node, &sctx->orphan_dirs);
2902 	kfree(odi);
2903 }
2904 
2905 /*
2906  * Returns 1 if a directory can be removed at this point in time.
2907  * We check this by iterating all dir items and checking if the inode behind
2908  * the dir item was already processed.
2909  */
2910 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2911 		     u64 send_progress)
2912 {
2913 	int ret = 0;
2914 	struct btrfs_root *root = sctx->parent_root;
2915 	struct btrfs_path *path;
2916 	struct btrfs_key key;
2917 	struct btrfs_key found_key;
2918 	struct btrfs_key loc;
2919 	struct btrfs_dir_item *di;
2920 
2921 	/*
2922 	 * Don't try to rmdir the top/root subvolume dir.
2923 	 */
2924 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2925 		return 0;
2926 
2927 	path = alloc_path_for_send();
2928 	if (!path)
2929 		return -ENOMEM;
2930 
2931 	key.objectid = dir;
2932 	key.type = BTRFS_DIR_INDEX_KEY;
2933 	key.offset = 0;
2934 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2935 	if (ret < 0)
2936 		goto out;
2937 
2938 	while (1) {
2939 		struct waiting_dir_move *dm;
2940 
2941 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2942 			ret = btrfs_next_leaf(root, path);
2943 			if (ret < 0)
2944 				goto out;
2945 			else if (ret > 0)
2946 				break;
2947 			continue;
2948 		}
2949 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2950 				      path->slots[0]);
2951 		if (found_key.objectid != key.objectid ||
2952 		    found_key.type != key.type)
2953 			break;
2954 
2955 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2956 				struct btrfs_dir_item);
2957 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2958 
2959 		dm = get_waiting_dir_move(sctx, loc.objectid);
2960 		if (dm) {
2961 			struct orphan_dir_info *odi;
2962 
2963 			odi = add_orphan_dir_info(sctx, dir);
2964 			if (IS_ERR(odi)) {
2965 				ret = PTR_ERR(odi);
2966 				goto out;
2967 			}
2968 			odi->gen = dir_gen;
2969 			dm->rmdir_ino = dir;
2970 			ret = 0;
2971 			goto out;
2972 		}
2973 
2974 		if (loc.objectid > send_progress) {
2975 			struct orphan_dir_info *odi;
2976 
2977 			odi = get_orphan_dir_info(sctx, dir);
2978 			free_orphan_dir_info(sctx, odi);
2979 			ret = 0;
2980 			goto out;
2981 		}
2982 
2983 		path->slots[0]++;
2984 	}
2985 
2986 	ret = 1;
2987 
2988 out:
2989 	btrfs_free_path(path);
2990 	return ret;
2991 }
2992 
2993 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2994 {
2995 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2996 
2997 	return entry != NULL;
2998 }
2999 
3000 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3001 {
3002 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3003 	struct rb_node *parent = NULL;
3004 	struct waiting_dir_move *entry, *dm;
3005 
3006 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3007 	if (!dm)
3008 		return -ENOMEM;
3009 	dm->ino = ino;
3010 	dm->rmdir_ino = 0;
3011 	dm->orphanized = orphanized;
3012 
3013 	while (*p) {
3014 		parent = *p;
3015 		entry = rb_entry(parent, struct waiting_dir_move, node);
3016 		if (ino < entry->ino) {
3017 			p = &(*p)->rb_left;
3018 		} else if (ino > entry->ino) {
3019 			p = &(*p)->rb_right;
3020 		} else {
3021 			kfree(dm);
3022 			return -EEXIST;
3023 		}
3024 	}
3025 
3026 	rb_link_node(&dm->node, parent, p);
3027 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3028 	return 0;
3029 }
3030 
3031 static struct waiting_dir_move *
3032 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3033 {
3034 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3035 	struct waiting_dir_move *entry;
3036 
3037 	while (n) {
3038 		entry = rb_entry(n, struct waiting_dir_move, node);
3039 		if (ino < entry->ino)
3040 			n = n->rb_left;
3041 		else if (ino > entry->ino)
3042 			n = n->rb_right;
3043 		else
3044 			return entry;
3045 	}
3046 	return NULL;
3047 }
3048 
3049 static void free_waiting_dir_move(struct send_ctx *sctx,
3050 				  struct waiting_dir_move *dm)
3051 {
3052 	if (!dm)
3053 		return;
3054 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3055 	kfree(dm);
3056 }
3057 
3058 static int add_pending_dir_move(struct send_ctx *sctx,
3059 				u64 ino,
3060 				u64 ino_gen,
3061 				u64 parent_ino,
3062 				struct list_head *new_refs,
3063 				struct list_head *deleted_refs,
3064 				const bool is_orphan)
3065 {
3066 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3067 	struct rb_node *parent = NULL;
3068 	struct pending_dir_move *entry = NULL, *pm;
3069 	struct recorded_ref *cur;
3070 	int exists = 0;
3071 	int ret;
3072 
3073 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3074 	if (!pm)
3075 		return -ENOMEM;
3076 	pm->parent_ino = parent_ino;
3077 	pm->ino = ino;
3078 	pm->gen = ino_gen;
3079 	INIT_LIST_HEAD(&pm->list);
3080 	INIT_LIST_HEAD(&pm->update_refs);
3081 	RB_CLEAR_NODE(&pm->node);
3082 
3083 	while (*p) {
3084 		parent = *p;
3085 		entry = rb_entry(parent, struct pending_dir_move, node);
3086 		if (parent_ino < entry->parent_ino) {
3087 			p = &(*p)->rb_left;
3088 		} else if (parent_ino > entry->parent_ino) {
3089 			p = &(*p)->rb_right;
3090 		} else {
3091 			exists = 1;
3092 			break;
3093 		}
3094 	}
3095 
3096 	list_for_each_entry(cur, deleted_refs, list) {
3097 		ret = dup_ref(cur, &pm->update_refs);
3098 		if (ret < 0)
3099 			goto out;
3100 	}
3101 	list_for_each_entry(cur, new_refs, list) {
3102 		ret = dup_ref(cur, &pm->update_refs);
3103 		if (ret < 0)
3104 			goto out;
3105 	}
3106 
3107 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3108 	if (ret)
3109 		goto out;
3110 
3111 	if (exists) {
3112 		list_add_tail(&pm->list, &entry->list);
3113 	} else {
3114 		rb_link_node(&pm->node, parent, p);
3115 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3116 	}
3117 	ret = 0;
3118 out:
3119 	if (ret) {
3120 		__free_recorded_refs(&pm->update_refs);
3121 		kfree(pm);
3122 	}
3123 	return ret;
3124 }
3125 
3126 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3127 						      u64 parent_ino)
3128 {
3129 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3130 	struct pending_dir_move *entry;
3131 
3132 	while (n) {
3133 		entry = rb_entry(n, struct pending_dir_move, node);
3134 		if (parent_ino < entry->parent_ino)
3135 			n = n->rb_left;
3136 		else if (parent_ino > entry->parent_ino)
3137 			n = n->rb_right;
3138 		else
3139 			return entry;
3140 	}
3141 	return NULL;
3142 }
3143 
3144 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3145 		     u64 ino, u64 gen, u64 *ancestor_ino)
3146 {
3147 	int ret = 0;
3148 	u64 parent_inode = 0;
3149 	u64 parent_gen = 0;
3150 	u64 start_ino = ino;
3151 
3152 	*ancestor_ino = 0;
3153 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3154 		fs_path_reset(name);
3155 
3156 		if (is_waiting_for_rm(sctx, ino))
3157 			break;
3158 		if (is_waiting_for_move(sctx, ino)) {
3159 			if (*ancestor_ino == 0)
3160 				*ancestor_ino = ino;
3161 			ret = get_first_ref(sctx->parent_root, ino,
3162 					    &parent_inode, &parent_gen, name);
3163 		} else {
3164 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3165 							&parent_inode,
3166 							&parent_gen, name);
3167 			if (ret > 0) {
3168 				ret = 0;
3169 				break;
3170 			}
3171 		}
3172 		if (ret < 0)
3173 			break;
3174 		if (parent_inode == start_ino) {
3175 			ret = 1;
3176 			if (*ancestor_ino == 0)
3177 				*ancestor_ino = ino;
3178 			break;
3179 		}
3180 		ino = parent_inode;
3181 		gen = parent_gen;
3182 	}
3183 	return ret;
3184 }
3185 
3186 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3187 {
3188 	struct fs_path *from_path = NULL;
3189 	struct fs_path *to_path = NULL;
3190 	struct fs_path *name = NULL;
3191 	u64 orig_progress = sctx->send_progress;
3192 	struct recorded_ref *cur;
3193 	u64 parent_ino, parent_gen;
3194 	struct waiting_dir_move *dm = NULL;
3195 	u64 rmdir_ino = 0;
3196 	u64 ancestor;
3197 	bool is_orphan;
3198 	int ret;
3199 
3200 	name = fs_path_alloc();
3201 	from_path = fs_path_alloc();
3202 	if (!name || !from_path) {
3203 		ret = -ENOMEM;
3204 		goto out;
3205 	}
3206 
3207 	dm = get_waiting_dir_move(sctx, pm->ino);
3208 	ASSERT(dm);
3209 	rmdir_ino = dm->rmdir_ino;
3210 	is_orphan = dm->orphanized;
3211 	free_waiting_dir_move(sctx, dm);
3212 
3213 	if (is_orphan) {
3214 		ret = gen_unique_name(sctx, pm->ino,
3215 				      pm->gen, from_path);
3216 	} else {
3217 		ret = get_first_ref(sctx->parent_root, pm->ino,
3218 				    &parent_ino, &parent_gen, name);
3219 		if (ret < 0)
3220 			goto out;
3221 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3222 				   from_path);
3223 		if (ret < 0)
3224 			goto out;
3225 		ret = fs_path_add_path(from_path, name);
3226 	}
3227 	if (ret < 0)
3228 		goto out;
3229 
3230 	sctx->send_progress = sctx->cur_ino + 1;
3231 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3232 	if (ret < 0)
3233 		goto out;
3234 	if (ret) {
3235 		LIST_HEAD(deleted_refs);
3236 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3237 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3238 					   &pm->update_refs, &deleted_refs,
3239 					   is_orphan);
3240 		if (ret < 0)
3241 			goto out;
3242 		if (rmdir_ino) {
3243 			dm = get_waiting_dir_move(sctx, pm->ino);
3244 			ASSERT(dm);
3245 			dm->rmdir_ino = rmdir_ino;
3246 		}
3247 		goto out;
3248 	}
3249 	fs_path_reset(name);
3250 	to_path = name;
3251 	name = NULL;
3252 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3253 	if (ret < 0)
3254 		goto out;
3255 
3256 	ret = send_rename(sctx, from_path, to_path);
3257 	if (ret < 0)
3258 		goto out;
3259 
3260 	if (rmdir_ino) {
3261 		struct orphan_dir_info *odi;
3262 
3263 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3264 		if (!odi) {
3265 			/* already deleted */
3266 			goto finish;
3267 		}
3268 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3269 		if (ret < 0)
3270 			goto out;
3271 		if (!ret)
3272 			goto finish;
3273 
3274 		name = fs_path_alloc();
3275 		if (!name) {
3276 			ret = -ENOMEM;
3277 			goto out;
3278 		}
3279 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3280 		if (ret < 0)
3281 			goto out;
3282 		ret = send_rmdir(sctx, name);
3283 		if (ret < 0)
3284 			goto out;
3285 		free_orphan_dir_info(sctx, odi);
3286 	}
3287 
3288 finish:
3289 	ret = send_utimes(sctx, pm->ino, pm->gen);
3290 	if (ret < 0)
3291 		goto out;
3292 
3293 	/*
3294 	 * After rename/move, need to update the utimes of both new parent(s)
3295 	 * and old parent(s).
3296 	 */
3297 	list_for_each_entry(cur, &pm->update_refs, list) {
3298 		/*
3299 		 * The parent inode might have been deleted in the send snapshot
3300 		 */
3301 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3302 				     NULL, NULL, NULL, NULL, NULL);
3303 		if (ret == -ENOENT) {
3304 			ret = 0;
3305 			continue;
3306 		}
3307 		if (ret < 0)
3308 			goto out;
3309 
3310 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3311 		if (ret < 0)
3312 			goto out;
3313 	}
3314 
3315 out:
3316 	fs_path_free(name);
3317 	fs_path_free(from_path);
3318 	fs_path_free(to_path);
3319 	sctx->send_progress = orig_progress;
3320 
3321 	return ret;
3322 }
3323 
3324 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3325 {
3326 	if (!list_empty(&m->list))
3327 		list_del(&m->list);
3328 	if (!RB_EMPTY_NODE(&m->node))
3329 		rb_erase(&m->node, &sctx->pending_dir_moves);
3330 	__free_recorded_refs(&m->update_refs);
3331 	kfree(m);
3332 }
3333 
3334 static void tail_append_pending_moves(struct pending_dir_move *moves,
3335 				      struct list_head *stack)
3336 {
3337 	if (list_empty(&moves->list)) {
3338 		list_add_tail(&moves->list, stack);
3339 	} else {
3340 		LIST_HEAD(list);
3341 		list_splice_init(&moves->list, &list);
3342 		list_add_tail(&moves->list, stack);
3343 		list_splice_tail(&list, stack);
3344 	}
3345 }
3346 
3347 static int apply_children_dir_moves(struct send_ctx *sctx)
3348 {
3349 	struct pending_dir_move *pm;
3350 	struct list_head stack;
3351 	u64 parent_ino = sctx->cur_ino;
3352 	int ret = 0;
3353 
3354 	pm = get_pending_dir_moves(sctx, parent_ino);
3355 	if (!pm)
3356 		return 0;
3357 
3358 	INIT_LIST_HEAD(&stack);
3359 	tail_append_pending_moves(pm, &stack);
3360 
3361 	while (!list_empty(&stack)) {
3362 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3363 		parent_ino = pm->ino;
3364 		ret = apply_dir_move(sctx, pm);
3365 		free_pending_move(sctx, pm);
3366 		if (ret)
3367 			goto out;
3368 		pm = get_pending_dir_moves(sctx, parent_ino);
3369 		if (pm)
3370 			tail_append_pending_moves(pm, &stack);
3371 	}
3372 	return 0;
3373 
3374 out:
3375 	while (!list_empty(&stack)) {
3376 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3377 		free_pending_move(sctx, pm);
3378 	}
3379 	return ret;
3380 }
3381 
3382 /*
3383  * We might need to delay a directory rename even when no ancestor directory
3384  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3385  * renamed. This happens when we rename a directory to the old name (the name
3386  * in the parent root) of some other unrelated directory that got its rename
3387  * delayed due to some ancestor with higher number that got renamed.
3388  *
3389  * Example:
3390  *
3391  * Parent snapshot:
3392  * .                                       (ino 256)
3393  * |---- a/                                (ino 257)
3394  * |     |---- file                        (ino 260)
3395  * |
3396  * |---- b/                                (ino 258)
3397  * |---- c/                                (ino 259)
3398  *
3399  * Send snapshot:
3400  * .                                       (ino 256)
3401  * |---- a/                                (ino 258)
3402  * |---- x/                                (ino 259)
3403  *       |---- y/                          (ino 257)
3404  *             |----- file                 (ino 260)
3405  *
3406  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3407  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3408  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3409  * must issue is:
3410  *
3411  * 1 - rename 259 from 'c' to 'x'
3412  * 2 - rename 257 from 'a' to 'x/y'
3413  * 3 - rename 258 from 'b' to 'a'
3414  *
3415  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3416  * be done right away and < 0 on error.
3417  */
3418 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3419 				  struct recorded_ref *parent_ref,
3420 				  const bool is_orphan)
3421 {
3422 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3423 	struct btrfs_path *path;
3424 	struct btrfs_key key;
3425 	struct btrfs_key di_key;
3426 	struct btrfs_dir_item *di;
3427 	u64 left_gen;
3428 	u64 right_gen;
3429 	int ret = 0;
3430 	struct waiting_dir_move *wdm;
3431 
3432 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3433 		return 0;
3434 
3435 	path = alloc_path_for_send();
3436 	if (!path)
3437 		return -ENOMEM;
3438 
3439 	key.objectid = parent_ref->dir;
3440 	key.type = BTRFS_DIR_ITEM_KEY;
3441 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3442 
3443 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3444 	if (ret < 0) {
3445 		goto out;
3446 	} else if (ret > 0) {
3447 		ret = 0;
3448 		goto out;
3449 	}
3450 
3451 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3452 				       parent_ref->name_len);
3453 	if (!di) {
3454 		ret = 0;
3455 		goto out;
3456 	}
3457 	/*
3458 	 * di_key.objectid has the number of the inode that has a dentry in the
3459 	 * parent directory with the same name that sctx->cur_ino is being
3460 	 * renamed to. We need to check if that inode is in the send root as
3461 	 * well and if it is currently marked as an inode with a pending rename,
3462 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3463 	 * that it happens after that other inode is renamed.
3464 	 */
3465 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3466 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3467 		ret = 0;
3468 		goto out;
3469 	}
3470 
3471 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3472 			     &left_gen, NULL, NULL, NULL, NULL);
3473 	if (ret < 0)
3474 		goto out;
3475 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3476 			     &right_gen, NULL, NULL, NULL, NULL);
3477 	if (ret < 0) {
3478 		if (ret == -ENOENT)
3479 			ret = 0;
3480 		goto out;
3481 	}
3482 
3483 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3484 	if (right_gen != left_gen) {
3485 		ret = 0;
3486 		goto out;
3487 	}
3488 
3489 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3490 	if (wdm && !wdm->orphanized) {
3491 		ret = add_pending_dir_move(sctx,
3492 					   sctx->cur_ino,
3493 					   sctx->cur_inode_gen,
3494 					   di_key.objectid,
3495 					   &sctx->new_refs,
3496 					   &sctx->deleted_refs,
3497 					   is_orphan);
3498 		if (!ret)
3499 			ret = 1;
3500 	}
3501 out:
3502 	btrfs_free_path(path);
3503 	return ret;
3504 }
3505 
3506 /*
3507  * Check if inode ino2, or any of its ancestors, is inode ino1.
3508  * Return 1 if true, 0 if false and < 0 on error.
3509  */
3510 static int check_ino_in_path(struct btrfs_root *root,
3511 			     const u64 ino1,
3512 			     const u64 ino1_gen,
3513 			     const u64 ino2,
3514 			     const u64 ino2_gen,
3515 			     struct fs_path *fs_path)
3516 {
3517 	u64 ino = ino2;
3518 
3519 	if (ino1 == ino2)
3520 		return ino1_gen == ino2_gen;
3521 
3522 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3523 		u64 parent;
3524 		u64 parent_gen;
3525 		int ret;
3526 
3527 		fs_path_reset(fs_path);
3528 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3529 		if (ret < 0)
3530 			return ret;
3531 		if (parent == ino1)
3532 			return parent_gen == ino1_gen;
3533 		ino = parent;
3534 	}
3535 	return 0;
3536 }
3537 
3538 /*
3539  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3540  * possible path (in case ino2 is not a directory and has multiple hard links).
3541  * Return 1 if true, 0 if false and < 0 on error.
3542  */
3543 static int is_ancestor(struct btrfs_root *root,
3544 		       const u64 ino1,
3545 		       const u64 ino1_gen,
3546 		       const u64 ino2,
3547 		       struct fs_path *fs_path)
3548 {
3549 	bool free_fs_path = false;
3550 	int ret = 0;
3551 	struct btrfs_path *path = NULL;
3552 	struct btrfs_key key;
3553 
3554 	if (!fs_path) {
3555 		fs_path = fs_path_alloc();
3556 		if (!fs_path)
3557 			return -ENOMEM;
3558 		free_fs_path = true;
3559 	}
3560 
3561 	path = alloc_path_for_send();
3562 	if (!path) {
3563 		ret = -ENOMEM;
3564 		goto out;
3565 	}
3566 
3567 	key.objectid = ino2;
3568 	key.type = BTRFS_INODE_REF_KEY;
3569 	key.offset = 0;
3570 
3571 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3572 	if (ret < 0)
3573 		goto out;
3574 
3575 	while (true) {
3576 		struct extent_buffer *leaf = path->nodes[0];
3577 		int slot = path->slots[0];
3578 		u32 cur_offset = 0;
3579 		u32 item_size;
3580 
3581 		if (slot >= btrfs_header_nritems(leaf)) {
3582 			ret = btrfs_next_leaf(root, path);
3583 			if (ret < 0)
3584 				goto out;
3585 			if (ret > 0)
3586 				break;
3587 			continue;
3588 		}
3589 
3590 		btrfs_item_key_to_cpu(leaf, &key, slot);
3591 		if (key.objectid != ino2)
3592 			break;
3593 		if (key.type != BTRFS_INODE_REF_KEY &&
3594 		    key.type != BTRFS_INODE_EXTREF_KEY)
3595 			break;
3596 
3597 		item_size = btrfs_item_size_nr(leaf, slot);
3598 		while (cur_offset < item_size) {
3599 			u64 parent;
3600 			u64 parent_gen;
3601 
3602 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3603 				unsigned long ptr;
3604 				struct btrfs_inode_extref *extref;
3605 
3606 				ptr = btrfs_item_ptr_offset(leaf, slot);
3607 				extref = (struct btrfs_inode_extref *)
3608 					(ptr + cur_offset);
3609 				parent = btrfs_inode_extref_parent(leaf,
3610 								   extref);
3611 				cur_offset += sizeof(*extref);
3612 				cur_offset += btrfs_inode_extref_name_len(leaf,
3613 								  extref);
3614 			} else {
3615 				parent = key.offset;
3616 				cur_offset = item_size;
3617 			}
3618 
3619 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3620 					     NULL, NULL, NULL, NULL);
3621 			if (ret < 0)
3622 				goto out;
3623 			ret = check_ino_in_path(root, ino1, ino1_gen,
3624 						parent, parent_gen, fs_path);
3625 			if (ret)
3626 				goto out;
3627 		}
3628 		path->slots[0]++;
3629 	}
3630 	ret = 0;
3631  out:
3632 	btrfs_free_path(path);
3633 	if (free_fs_path)
3634 		fs_path_free(fs_path);
3635 	return ret;
3636 }
3637 
3638 static int wait_for_parent_move(struct send_ctx *sctx,
3639 				struct recorded_ref *parent_ref,
3640 				const bool is_orphan)
3641 {
3642 	int ret = 0;
3643 	u64 ino = parent_ref->dir;
3644 	u64 ino_gen = parent_ref->dir_gen;
3645 	u64 parent_ino_before, parent_ino_after;
3646 	struct fs_path *path_before = NULL;
3647 	struct fs_path *path_after = NULL;
3648 	int len1, len2;
3649 
3650 	path_after = fs_path_alloc();
3651 	path_before = fs_path_alloc();
3652 	if (!path_after || !path_before) {
3653 		ret = -ENOMEM;
3654 		goto out;
3655 	}
3656 
3657 	/*
3658 	 * Our current directory inode may not yet be renamed/moved because some
3659 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3660 	 * such ancestor exists and make sure our own rename/move happens after
3661 	 * that ancestor is processed to avoid path build infinite loops (done
3662 	 * at get_cur_path()).
3663 	 */
3664 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3665 		u64 parent_ino_after_gen;
3666 
3667 		if (is_waiting_for_move(sctx, ino)) {
3668 			/*
3669 			 * If the current inode is an ancestor of ino in the
3670 			 * parent root, we need to delay the rename of the
3671 			 * current inode, otherwise don't delayed the rename
3672 			 * because we can end up with a circular dependency
3673 			 * of renames, resulting in some directories never
3674 			 * getting the respective rename operations issued in
3675 			 * the send stream or getting into infinite path build
3676 			 * loops.
3677 			 */
3678 			ret = is_ancestor(sctx->parent_root,
3679 					  sctx->cur_ino, sctx->cur_inode_gen,
3680 					  ino, path_before);
3681 			if (ret)
3682 				break;
3683 		}
3684 
3685 		fs_path_reset(path_before);
3686 		fs_path_reset(path_after);
3687 
3688 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3689 				    &parent_ino_after_gen, path_after);
3690 		if (ret < 0)
3691 			goto out;
3692 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3693 				    NULL, path_before);
3694 		if (ret < 0 && ret != -ENOENT) {
3695 			goto out;
3696 		} else if (ret == -ENOENT) {
3697 			ret = 0;
3698 			break;
3699 		}
3700 
3701 		len1 = fs_path_len(path_before);
3702 		len2 = fs_path_len(path_after);
3703 		if (ino > sctx->cur_ino &&
3704 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3705 		     memcmp(path_before->start, path_after->start, len1))) {
3706 			u64 parent_ino_gen;
3707 
3708 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3709 					     &parent_ino_gen, NULL, NULL, NULL,
3710 					     NULL);
3711 			if (ret < 0)
3712 				goto out;
3713 			if (ino_gen == parent_ino_gen) {
3714 				ret = 1;
3715 				break;
3716 			}
3717 		}
3718 		ino = parent_ino_after;
3719 		ino_gen = parent_ino_after_gen;
3720 	}
3721 
3722 out:
3723 	fs_path_free(path_before);
3724 	fs_path_free(path_after);
3725 
3726 	if (ret == 1) {
3727 		ret = add_pending_dir_move(sctx,
3728 					   sctx->cur_ino,
3729 					   sctx->cur_inode_gen,
3730 					   ino,
3731 					   &sctx->new_refs,
3732 					   &sctx->deleted_refs,
3733 					   is_orphan);
3734 		if (!ret)
3735 			ret = 1;
3736 	}
3737 
3738 	return ret;
3739 }
3740 
3741 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3742 {
3743 	int ret;
3744 	struct fs_path *new_path;
3745 
3746 	/*
3747 	 * Our reference's name member points to its full_path member string, so
3748 	 * we use here a new path.
3749 	 */
3750 	new_path = fs_path_alloc();
3751 	if (!new_path)
3752 		return -ENOMEM;
3753 
3754 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3755 	if (ret < 0) {
3756 		fs_path_free(new_path);
3757 		return ret;
3758 	}
3759 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3760 	if (ret < 0) {
3761 		fs_path_free(new_path);
3762 		return ret;
3763 	}
3764 
3765 	fs_path_free(ref->full_path);
3766 	set_ref_path(ref, new_path);
3767 
3768 	return 0;
3769 }
3770 
3771 /*
3772  * This does all the move/link/unlink/rmdir magic.
3773  */
3774 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3775 {
3776 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3777 	int ret = 0;
3778 	struct recorded_ref *cur;
3779 	struct recorded_ref *cur2;
3780 	struct list_head check_dirs;
3781 	struct fs_path *valid_path = NULL;
3782 	u64 ow_inode = 0;
3783 	u64 ow_gen;
3784 	u64 ow_mode;
3785 	int did_overwrite = 0;
3786 	int is_orphan = 0;
3787 	u64 last_dir_ino_rm = 0;
3788 	bool can_rename = true;
3789 	bool orphanized_dir = false;
3790 	bool orphanized_ancestor = false;
3791 
3792 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3793 
3794 	/*
3795 	 * This should never happen as the root dir always has the same ref
3796 	 * which is always '..'
3797 	 */
3798 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3799 	INIT_LIST_HEAD(&check_dirs);
3800 
3801 	valid_path = fs_path_alloc();
3802 	if (!valid_path) {
3803 		ret = -ENOMEM;
3804 		goto out;
3805 	}
3806 
3807 	/*
3808 	 * First, check if the first ref of the current inode was overwritten
3809 	 * before. If yes, we know that the current inode was already orphanized
3810 	 * and thus use the orphan name. If not, we can use get_cur_path to
3811 	 * get the path of the first ref as it would like while receiving at
3812 	 * this point in time.
3813 	 * New inodes are always orphan at the beginning, so force to use the
3814 	 * orphan name in this case.
3815 	 * The first ref is stored in valid_path and will be updated if it
3816 	 * gets moved around.
3817 	 */
3818 	if (!sctx->cur_inode_new) {
3819 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3820 				sctx->cur_inode_gen);
3821 		if (ret < 0)
3822 			goto out;
3823 		if (ret)
3824 			did_overwrite = 1;
3825 	}
3826 	if (sctx->cur_inode_new || did_overwrite) {
3827 		ret = gen_unique_name(sctx, sctx->cur_ino,
3828 				sctx->cur_inode_gen, valid_path);
3829 		if (ret < 0)
3830 			goto out;
3831 		is_orphan = 1;
3832 	} else {
3833 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3834 				valid_path);
3835 		if (ret < 0)
3836 			goto out;
3837 	}
3838 
3839 	list_for_each_entry(cur, &sctx->new_refs, list) {
3840 		/*
3841 		 * We may have refs where the parent directory does not exist
3842 		 * yet. This happens if the parent directories inum is higher
3843 		 * the the current inum. To handle this case, we create the
3844 		 * parent directory out of order. But we need to check if this
3845 		 * did already happen before due to other refs in the same dir.
3846 		 */
3847 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3848 		if (ret < 0)
3849 			goto out;
3850 		if (ret == inode_state_will_create) {
3851 			ret = 0;
3852 			/*
3853 			 * First check if any of the current inodes refs did
3854 			 * already create the dir.
3855 			 */
3856 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3857 				if (cur == cur2)
3858 					break;
3859 				if (cur2->dir == cur->dir) {
3860 					ret = 1;
3861 					break;
3862 				}
3863 			}
3864 
3865 			/*
3866 			 * If that did not happen, check if a previous inode
3867 			 * did already create the dir.
3868 			 */
3869 			if (!ret)
3870 				ret = did_create_dir(sctx, cur->dir);
3871 			if (ret < 0)
3872 				goto out;
3873 			if (!ret) {
3874 				ret = send_create_inode(sctx, cur->dir);
3875 				if (ret < 0)
3876 					goto out;
3877 			}
3878 		}
3879 
3880 		/*
3881 		 * Check if this new ref would overwrite the first ref of
3882 		 * another unprocessed inode. If yes, orphanize the
3883 		 * overwritten inode. If we find an overwritten ref that is
3884 		 * not the first ref, simply unlink it.
3885 		 */
3886 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3887 				cur->name, cur->name_len,
3888 				&ow_inode, &ow_gen, &ow_mode);
3889 		if (ret < 0)
3890 			goto out;
3891 		if (ret) {
3892 			ret = is_first_ref(sctx->parent_root,
3893 					   ow_inode, cur->dir, cur->name,
3894 					   cur->name_len);
3895 			if (ret < 0)
3896 				goto out;
3897 			if (ret) {
3898 				struct name_cache_entry *nce;
3899 				struct waiting_dir_move *wdm;
3900 
3901 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3902 						cur->full_path);
3903 				if (ret < 0)
3904 					goto out;
3905 				if (S_ISDIR(ow_mode))
3906 					orphanized_dir = true;
3907 
3908 				/*
3909 				 * If ow_inode has its rename operation delayed
3910 				 * make sure that its orphanized name is used in
3911 				 * the source path when performing its rename
3912 				 * operation.
3913 				 */
3914 				if (is_waiting_for_move(sctx, ow_inode)) {
3915 					wdm = get_waiting_dir_move(sctx,
3916 								   ow_inode);
3917 					ASSERT(wdm);
3918 					wdm->orphanized = true;
3919 				}
3920 
3921 				/*
3922 				 * Make sure we clear our orphanized inode's
3923 				 * name from the name cache. This is because the
3924 				 * inode ow_inode might be an ancestor of some
3925 				 * other inode that will be orphanized as well
3926 				 * later and has an inode number greater than
3927 				 * sctx->send_progress. We need to prevent
3928 				 * future name lookups from using the old name
3929 				 * and get instead the orphan name.
3930 				 */
3931 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3932 				if (nce) {
3933 					name_cache_delete(sctx, nce);
3934 					kfree(nce);
3935 				}
3936 
3937 				/*
3938 				 * ow_inode might currently be an ancestor of
3939 				 * cur_ino, therefore compute valid_path (the
3940 				 * current path of cur_ino) again because it
3941 				 * might contain the pre-orphanization name of
3942 				 * ow_inode, which is no longer valid.
3943 				 */
3944 				ret = is_ancestor(sctx->parent_root,
3945 						  ow_inode, ow_gen,
3946 						  sctx->cur_ino, NULL);
3947 				if (ret > 0) {
3948 					orphanized_ancestor = true;
3949 					fs_path_reset(valid_path);
3950 					ret = get_cur_path(sctx, sctx->cur_ino,
3951 							   sctx->cur_inode_gen,
3952 							   valid_path);
3953 				}
3954 				if (ret < 0)
3955 					goto out;
3956 			} else {
3957 				ret = send_unlink(sctx, cur->full_path);
3958 				if (ret < 0)
3959 					goto out;
3960 			}
3961 		}
3962 
3963 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3964 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3965 			if (ret < 0)
3966 				goto out;
3967 			if (ret == 1) {
3968 				can_rename = false;
3969 				*pending_move = 1;
3970 			}
3971 		}
3972 
3973 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3974 		    can_rename) {
3975 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3976 			if (ret < 0)
3977 				goto out;
3978 			if (ret == 1) {
3979 				can_rename = false;
3980 				*pending_move = 1;
3981 			}
3982 		}
3983 
3984 		/*
3985 		 * link/move the ref to the new place. If we have an orphan
3986 		 * inode, move it and update valid_path. If not, link or move
3987 		 * it depending on the inode mode.
3988 		 */
3989 		if (is_orphan && can_rename) {
3990 			ret = send_rename(sctx, valid_path, cur->full_path);
3991 			if (ret < 0)
3992 				goto out;
3993 			is_orphan = 0;
3994 			ret = fs_path_copy(valid_path, cur->full_path);
3995 			if (ret < 0)
3996 				goto out;
3997 		} else if (can_rename) {
3998 			if (S_ISDIR(sctx->cur_inode_mode)) {
3999 				/*
4000 				 * Dirs can't be linked, so move it. For moved
4001 				 * dirs, we always have one new and one deleted
4002 				 * ref. The deleted ref is ignored later.
4003 				 */
4004 				ret = send_rename(sctx, valid_path,
4005 						  cur->full_path);
4006 				if (!ret)
4007 					ret = fs_path_copy(valid_path,
4008 							   cur->full_path);
4009 				if (ret < 0)
4010 					goto out;
4011 			} else {
4012 				/*
4013 				 * We might have previously orphanized an inode
4014 				 * which is an ancestor of our current inode,
4015 				 * so our reference's full path, which was
4016 				 * computed before any such orphanizations, must
4017 				 * be updated.
4018 				 */
4019 				if (orphanized_dir) {
4020 					ret = update_ref_path(sctx, cur);
4021 					if (ret < 0)
4022 						goto out;
4023 				}
4024 				ret = send_link(sctx, cur->full_path,
4025 						valid_path);
4026 				if (ret < 0)
4027 					goto out;
4028 			}
4029 		}
4030 		ret = dup_ref(cur, &check_dirs);
4031 		if (ret < 0)
4032 			goto out;
4033 	}
4034 
4035 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4036 		/*
4037 		 * Check if we can already rmdir the directory. If not,
4038 		 * orphanize it. For every dir item inside that gets deleted
4039 		 * later, we do this check again and rmdir it then if possible.
4040 		 * See the use of check_dirs for more details.
4041 		 */
4042 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4043 				sctx->cur_ino);
4044 		if (ret < 0)
4045 			goto out;
4046 		if (ret) {
4047 			ret = send_rmdir(sctx, valid_path);
4048 			if (ret < 0)
4049 				goto out;
4050 		} else if (!is_orphan) {
4051 			ret = orphanize_inode(sctx, sctx->cur_ino,
4052 					sctx->cur_inode_gen, valid_path);
4053 			if (ret < 0)
4054 				goto out;
4055 			is_orphan = 1;
4056 		}
4057 
4058 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4059 			ret = dup_ref(cur, &check_dirs);
4060 			if (ret < 0)
4061 				goto out;
4062 		}
4063 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4064 		   !list_empty(&sctx->deleted_refs)) {
4065 		/*
4066 		 * We have a moved dir. Add the old parent to check_dirs
4067 		 */
4068 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4069 				list);
4070 		ret = dup_ref(cur, &check_dirs);
4071 		if (ret < 0)
4072 			goto out;
4073 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4074 		/*
4075 		 * We have a non dir inode. Go through all deleted refs and
4076 		 * unlink them if they were not already overwritten by other
4077 		 * inodes.
4078 		 */
4079 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4080 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4081 					sctx->cur_ino, sctx->cur_inode_gen,
4082 					cur->name, cur->name_len);
4083 			if (ret < 0)
4084 				goto out;
4085 			if (!ret) {
4086 				/*
4087 				 * If we orphanized any ancestor before, we need
4088 				 * to recompute the full path for deleted names,
4089 				 * since any such path was computed before we
4090 				 * processed any references and orphanized any
4091 				 * ancestor inode.
4092 				 */
4093 				if (orphanized_ancestor) {
4094 					ret = update_ref_path(sctx, cur);
4095 					if (ret < 0)
4096 						goto out;
4097 				}
4098 				ret = send_unlink(sctx, cur->full_path);
4099 				if (ret < 0)
4100 					goto out;
4101 			}
4102 			ret = dup_ref(cur, &check_dirs);
4103 			if (ret < 0)
4104 				goto out;
4105 		}
4106 		/*
4107 		 * If the inode is still orphan, unlink the orphan. This may
4108 		 * happen when a previous inode did overwrite the first ref
4109 		 * of this inode and no new refs were added for the current
4110 		 * inode. Unlinking does not mean that the inode is deleted in
4111 		 * all cases. There may still be links to this inode in other
4112 		 * places.
4113 		 */
4114 		if (is_orphan) {
4115 			ret = send_unlink(sctx, valid_path);
4116 			if (ret < 0)
4117 				goto out;
4118 		}
4119 	}
4120 
4121 	/*
4122 	 * We did collect all parent dirs where cur_inode was once located. We
4123 	 * now go through all these dirs and check if they are pending for
4124 	 * deletion and if it's finally possible to perform the rmdir now.
4125 	 * We also update the inode stats of the parent dirs here.
4126 	 */
4127 	list_for_each_entry(cur, &check_dirs, list) {
4128 		/*
4129 		 * In case we had refs into dirs that were not processed yet,
4130 		 * we don't need to do the utime and rmdir logic for these dirs.
4131 		 * The dir will be processed later.
4132 		 */
4133 		if (cur->dir > sctx->cur_ino)
4134 			continue;
4135 
4136 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4137 		if (ret < 0)
4138 			goto out;
4139 
4140 		if (ret == inode_state_did_create ||
4141 		    ret == inode_state_no_change) {
4142 			/* TODO delayed utimes */
4143 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4144 			if (ret < 0)
4145 				goto out;
4146 		} else if (ret == inode_state_did_delete &&
4147 			   cur->dir != last_dir_ino_rm) {
4148 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4149 					sctx->cur_ino);
4150 			if (ret < 0)
4151 				goto out;
4152 			if (ret) {
4153 				ret = get_cur_path(sctx, cur->dir,
4154 						   cur->dir_gen, valid_path);
4155 				if (ret < 0)
4156 					goto out;
4157 				ret = send_rmdir(sctx, valid_path);
4158 				if (ret < 0)
4159 					goto out;
4160 				last_dir_ino_rm = cur->dir;
4161 			}
4162 		}
4163 	}
4164 
4165 	ret = 0;
4166 
4167 out:
4168 	__free_recorded_refs(&check_dirs);
4169 	free_recorded_refs(sctx);
4170 	fs_path_free(valid_path);
4171 	return ret;
4172 }
4173 
4174 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4175 		      void *ctx, struct list_head *refs)
4176 {
4177 	int ret = 0;
4178 	struct send_ctx *sctx = ctx;
4179 	struct fs_path *p;
4180 	u64 gen;
4181 
4182 	p = fs_path_alloc();
4183 	if (!p)
4184 		return -ENOMEM;
4185 
4186 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4187 			NULL, NULL);
4188 	if (ret < 0)
4189 		goto out;
4190 
4191 	ret = get_cur_path(sctx, dir, gen, p);
4192 	if (ret < 0)
4193 		goto out;
4194 	ret = fs_path_add_path(p, name);
4195 	if (ret < 0)
4196 		goto out;
4197 
4198 	ret = __record_ref(refs, dir, gen, p);
4199 
4200 out:
4201 	if (ret)
4202 		fs_path_free(p);
4203 	return ret;
4204 }
4205 
4206 static int __record_new_ref(int num, u64 dir, int index,
4207 			    struct fs_path *name,
4208 			    void *ctx)
4209 {
4210 	struct send_ctx *sctx = ctx;
4211 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4212 }
4213 
4214 
4215 static int __record_deleted_ref(int num, u64 dir, int index,
4216 				struct fs_path *name,
4217 				void *ctx)
4218 {
4219 	struct send_ctx *sctx = ctx;
4220 	return record_ref(sctx->parent_root, dir, name, ctx,
4221 			  &sctx->deleted_refs);
4222 }
4223 
4224 static int record_new_ref(struct send_ctx *sctx)
4225 {
4226 	int ret;
4227 
4228 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4229 				sctx->cmp_key, 0, __record_new_ref, sctx);
4230 	if (ret < 0)
4231 		goto out;
4232 	ret = 0;
4233 
4234 out:
4235 	return ret;
4236 }
4237 
4238 static int record_deleted_ref(struct send_ctx *sctx)
4239 {
4240 	int ret;
4241 
4242 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4243 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4244 	if (ret < 0)
4245 		goto out;
4246 	ret = 0;
4247 
4248 out:
4249 	return ret;
4250 }
4251 
4252 struct find_ref_ctx {
4253 	u64 dir;
4254 	u64 dir_gen;
4255 	struct btrfs_root *root;
4256 	struct fs_path *name;
4257 	int found_idx;
4258 };
4259 
4260 static int __find_iref(int num, u64 dir, int index,
4261 		       struct fs_path *name,
4262 		       void *ctx_)
4263 {
4264 	struct find_ref_ctx *ctx = ctx_;
4265 	u64 dir_gen;
4266 	int ret;
4267 
4268 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4269 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4270 		/*
4271 		 * To avoid doing extra lookups we'll only do this if everything
4272 		 * else matches.
4273 		 */
4274 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4275 				     NULL, NULL, NULL);
4276 		if (ret)
4277 			return ret;
4278 		if (dir_gen != ctx->dir_gen)
4279 			return 0;
4280 		ctx->found_idx = num;
4281 		return 1;
4282 	}
4283 	return 0;
4284 }
4285 
4286 static int find_iref(struct btrfs_root *root,
4287 		     struct btrfs_path *path,
4288 		     struct btrfs_key *key,
4289 		     u64 dir, u64 dir_gen, struct fs_path *name)
4290 {
4291 	int ret;
4292 	struct find_ref_ctx ctx;
4293 
4294 	ctx.dir = dir;
4295 	ctx.name = name;
4296 	ctx.dir_gen = dir_gen;
4297 	ctx.found_idx = -1;
4298 	ctx.root = root;
4299 
4300 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4301 	if (ret < 0)
4302 		return ret;
4303 
4304 	if (ctx.found_idx == -1)
4305 		return -ENOENT;
4306 
4307 	return ctx.found_idx;
4308 }
4309 
4310 static int __record_changed_new_ref(int num, u64 dir, int index,
4311 				    struct fs_path *name,
4312 				    void *ctx)
4313 {
4314 	u64 dir_gen;
4315 	int ret;
4316 	struct send_ctx *sctx = ctx;
4317 
4318 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4319 			     NULL, NULL, NULL);
4320 	if (ret)
4321 		return ret;
4322 
4323 	ret = find_iref(sctx->parent_root, sctx->right_path,
4324 			sctx->cmp_key, dir, dir_gen, name);
4325 	if (ret == -ENOENT)
4326 		ret = __record_new_ref(num, dir, index, name, sctx);
4327 	else if (ret > 0)
4328 		ret = 0;
4329 
4330 	return ret;
4331 }
4332 
4333 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4334 					struct fs_path *name,
4335 					void *ctx)
4336 {
4337 	u64 dir_gen;
4338 	int ret;
4339 	struct send_ctx *sctx = ctx;
4340 
4341 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4342 			     NULL, NULL, NULL);
4343 	if (ret)
4344 		return ret;
4345 
4346 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4347 			dir, dir_gen, name);
4348 	if (ret == -ENOENT)
4349 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4350 	else if (ret > 0)
4351 		ret = 0;
4352 
4353 	return ret;
4354 }
4355 
4356 static int record_changed_ref(struct send_ctx *sctx)
4357 {
4358 	int ret = 0;
4359 
4360 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4361 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4362 	if (ret < 0)
4363 		goto out;
4364 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4365 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4366 	if (ret < 0)
4367 		goto out;
4368 	ret = 0;
4369 
4370 out:
4371 	return ret;
4372 }
4373 
4374 /*
4375  * Record and process all refs at once. Needed when an inode changes the
4376  * generation number, which means that it was deleted and recreated.
4377  */
4378 static int process_all_refs(struct send_ctx *sctx,
4379 			    enum btrfs_compare_tree_result cmd)
4380 {
4381 	int ret;
4382 	struct btrfs_root *root;
4383 	struct btrfs_path *path;
4384 	struct btrfs_key key;
4385 	struct btrfs_key found_key;
4386 	struct extent_buffer *eb;
4387 	int slot;
4388 	iterate_inode_ref_t cb;
4389 	int pending_move = 0;
4390 
4391 	path = alloc_path_for_send();
4392 	if (!path)
4393 		return -ENOMEM;
4394 
4395 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4396 		root = sctx->send_root;
4397 		cb = __record_new_ref;
4398 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4399 		root = sctx->parent_root;
4400 		cb = __record_deleted_ref;
4401 	} else {
4402 		btrfs_err(sctx->send_root->fs_info,
4403 				"Wrong command %d in process_all_refs", cmd);
4404 		ret = -EINVAL;
4405 		goto out;
4406 	}
4407 
4408 	key.objectid = sctx->cmp_key->objectid;
4409 	key.type = BTRFS_INODE_REF_KEY;
4410 	key.offset = 0;
4411 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4412 	if (ret < 0)
4413 		goto out;
4414 
4415 	while (1) {
4416 		eb = path->nodes[0];
4417 		slot = path->slots[0];
4418 		if (slot >= btrfs_header_nritems(eb)) {
4419 			ret = btrfs_next_leaf(root, path);
4420 			if (ret < 0)
4421 				goto out;
4422 			else if (ret > 0)
4423 				break;
4424 			continue;
4425 		}
4426 
4427 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4428 
4429 		if (found_key.objectid != key.objectid ||
4430 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4431 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4432 			break;
4433 
4434 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4435 		if (ret < 0)
4436 			goto out;
4437 
4438 		path->slots[0]++;
4439 	}
4440 	btrfs_release_path(path);
4441 
4442 	/*
4443 	 * We don't actually care about pending_move as we are simply
4444 	 * re-creating this inode and will be rename'ing it into place once we
4445 	 * rename the parent directory.
4446 	 */
4447 	ret = process_recorded_refs(sctx, &pending_move);
4448 out:
4449 	btrfs_free_path(path);
4450 	return ret;
4451 }
4452 
4453 static int send_set_xattr(struct send_ctx *sctx,
4454 			  struct fs_path *path,
4455 			  const char *name, int name_len,
4456 			  const char *data, int data_len)
4457 {
4458 	int ret = 0;
4459 
4460 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4461 	if (ret < 0)
4462 		goto out;
4463 
4464 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4465 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4466 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4467 
4468 	ret = send_cmd(sctx);
4469 
4470 tlv_put_failure:
4471 out:
4472 	return ret;
4473 }
4474 
4475 static int send_remove_xattr(struct send_ctx *sctx,
4476 			  struct fs_path *path,
4477 			  const char *name, int name_len)
4478 {
4479 	int ret = 0;
4480 
4481 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4482 	if (ret < 0)
4483 		goto out;
4484 
4485 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4486 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4487 
4488 	ret = send_cmd(sctx);
4489 
4490 tlv_put_failure:
4491 out:
4492 	return ret;
4493 }
4494 
4495 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4496 			       const char *name, int name_len,
4497 			       const char *data, int data_len,
4498 			       u8 type, void *ctx)
4499 {
4500 	int ret;
4501 	struct send_ctx *sctx = ctx;
4502 	struct fs_path *p;
4503 	struct posix_acl_xattr_header dummy_acl;
4504 
4505 	p = fs_path_alloc();
4506 	if (!p)
4507 		return -ENOMEM;
4508 
4509 	/*
4510 	 * This hack is needed because empty acls are stored as zero byte
4511 	 * data in xattrs. Problem with that is, that receiving these zero byte
4512 	 * acls will fail later. To fix this, we send a dummy acl list that
4513 	 * only contains the version number and no entries.
4514 	 */
4515 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4516 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4517 		if (data_len == 0) {
4518 			dummy_acl.a_version =
4519 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4520 			data = (char *)&dummy_acl;
4521 			data_len = sizeof(dummy_acl);
4522 		}
4523 	}
4524 
4525 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4526 	if (ret < 0)
4527 		goto out;
4528 
4529 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4530 
4531 out:
4532 	fs_path_free(p);
4533 	return ret;
4534 }
4535 
4536 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4537 				   const char *name, int name_len,
4538 				   const char *data, int data_len,
4539 				   u8 type, void *ctx)
4540 {
4541 	int ret;
4542 	struct send_ctx *sctx = ctx;
4543 	struct fs_path *p;
4544 
4545 	p = fs_path_alloc();
4546 	if (!p)
4547 		return -ENOMEM;
4548 
4549 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4550 	if (ret < 0)
4551 		goto out;
4552 
4553 	ret = send_remove_xattr(sctx, p, name, name_len);
4554 
4555 out:
4556 	fs_path_free(p);
4557 	return ret;
4558 }
4559 
4560 static int process_new_xattr(struct send_ctx *sctx)
4561 {
4562 	int ret = 0;
4563 
4564 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4565 			       __process_new_xattr, sctx);
4566 
4567 	return ret;
4568 }
4569 
4570 static int process_deleted_xattr(struct send_ctx *sctx)
4571 {
4572 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4573 				__process_deleted_xattr, sctx);
4574 }
4575 
4576 struct find_xattr_ctx {
4577 	const char *name;
4578 	int name_len;
4579 	int found_idx;
4580 	char *found_data;
4581 	int found_data_len;
4582 };
4583 
4584 static int __find_xattr(int num, struct btrfs_key *di_key,
4585 			const char *name, int name_len,
4586 			const char *data, int data_len,
4587 			u8 type, void *vctx)
4588 {
4589 	struct find_xattr_ctx *ctx = vctx;
4590 
4591 	if (name_len == ctx->name_len &&
4592 	    strncmp(name, ctx->name, name_len) == 0) {
4593 		ctx->found_idx = num;
4594 		ctx->found_data_len = data_len;
4595 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4596 		if (!ctx->found_data)
4597 			return -ENOMEM;
4598 		return 1;
4599 	}
4600 	return 0;
4601 }
4602 
4603 static int find_xattr(struct btrfs_root *root,
4604 		      struct btrfs_path *path,
4605 		      struct btrfs_key *key,
4606 		      const char *name, int name_len,
4607 		      char **data, int *data_len)
4608 {
4609 	int ret;
4610 	struct find_xattr_ctx ctx;
4611 
4612 	ctx.name = name;
4613 	ctx.name_len = name_len;
4614 	ctx.found_idx = -1;
4615 	ctx.found_data = NULL;
4616 	ctx.found_data_len = 0;
4617 
4618 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4619 	if (ret < 0)
4620 		return ret;
4621 
4622 	if (ctx.found_idx == -1)
4623 		return -ENOENT;
4624 	if (data) {
4625 		*data = ctx.found_data;
4626 		*data_len = ctx.found_data_len;
4627 	} else {
4628 		kfree(ctx.found_data);
4629 	}
4630 	return ctx.found_idx;
4631 }
4632 
4633 
4634 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4635 				       const char *name, int name_len,
4636 				       const char *data, int data_len,
4637 				       u8 type, void *ctx)
4638 {
4639 	int ret;
4640 	struct send_ctx *sctx = ctx;
4641 	char *found_data = NULL;
4642 	int found_data_len  = 0;
4643 
4644 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4645 			 sctx->cmp_key, name, name_len, &found_data,
4646 			 &found_data_len);
4647 	if (ret == -ENOENT) {
4648 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4649 				data_len, type, ctx);
4650 	} else if (ret >= 0) {
4651 		if (data_len != found_data_len ||
4652 		    memcmp(data, found_data, data_len)) {
4653 			ret = __process_new_xattr(num, di_key, name, name_len,
4654 					data, data_len, type, ctx);
4655 		} else {
4656 			ret = 0;
4657 		}
4658 	}
4659 
4660 	kfree(found_data);
4661 	return ret;
4662 }
4663 
4664 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4665 					   const char *name, int name_len,
4666 					   const char *data, int data_len,
4667 					   u8 type, void *ctx)
4668 {
4669 	int ret;
4670 	struct send_ctx *sctx = ctx;
4671 
4672 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4673 			 name, name_len, NULL, NULL);
4674 	if (ret == -ENOENT)
4675 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4676 				data_len, type, ctx);
4677 	else if (ret >= 0)
4678 		ret = 0;
4679 
4680 	return ret;
4681 }
4682 
4683 static int process_changed_xattr(struct send_ctx *sctx)
4684 {
4685 	int ret = 0;
4686 
4687 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4688 			__process_changed_new_xattr, sctx);
4689 	if (ret < 0)
4690 		goto out;
4691 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4692 			__process_changed_deleted_xattr, sctx);
4693 
4694 out:
4695 	return ret;
4696 }
4697 
4698 static int process_all_new_xattrs(struct send_ctx *sctx)
4699 {
4700 	int ret;
4701 	struct btrfs_root *root;
4702 	struct btrfs_path *path;
4703 	struct btrfs_key key;
4704 	struct btrfs_key found_key;
4705 	struct extent_buffer *eb;
4706 	int slot;
4707 
4708 	path = alloc_path_for_send();
4709 	if (!path)
4710 		return -ENOMEM;
4711 
4712 	root = sctx->send_root;
4713 
4714 	key.objectid = sctx->cmp_key->objectid;
4715 	key.type = BTRFS_XATTR_ITEM_KEY;
4716 	key.offset = 0;
4717 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4718 	if (ret < 0)
4719 		goto out;
4720 
4721 	while (1) {
4722 		eb = path->nodes[0];
4723 		slot = path->slots[0];
4724 		if (slot >= btrfs_header_nritems(eb)) {
4725 			ret = btrfs_next_leaf(root, path);
4726 			if (ret < 0) {
4727 				goto out;
4728 			} else if (ret > 0) {
4729 				ret = 0;
4730 				break;
4731 			}
4732 			continue;
4733 		}
4734 
4735 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4736 		if (found_key.objectid != key.objectid ||
4737 		    found_key.type != key.type) {
4738 			ret = 0;
4739 			goto out;
4740 		}
4741 
4742 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4743 		if (ret < 0)
4744 			goto out;
4745 
4746 		path->slots[0]++;
4747 	}
4748 
4749 out:
4750 	btrfs_free_path(path);
4751 	return ret;
4752 }
4753 
4754 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4755 {
4756 	struct btrfs_root *root = sctx->send_root;
4757 	struct btrfs_fs_info *fs_info = root->fs_info;
4758 	struct inode *inode;
4759 	struct page *page;
4760 	char *addr;
4761 	struct btrfs_key key;
4762 	pgoff_t index = offset >> PAGE_SHIFT;
4763 	pgoff_t last_index;
4764 	unsigned pg_offset = offset & ~PAGE_MASK;
4765 	ssize_t ret = 0;
4766 
4767 	key.objectid = sctx->cur_ino;
4768 	key.type = BTRFS_INODE_ITEM_KEY;
4769 	key.offset = 0;
4770 
4771 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4772 	if (IS_ERR(inode))
4773 		return PTR_ERR(inode);
4774 
4775 	if (offset + len > i_size_read(inode)) {
4776 		if (offset > i_size_read(inode))
4777 			len = 0;
4778 		else
4779 			len = offset - i_size_read(inode);
4780 	}
4781 	if (len == 0)
4782 		goto out;
4783 
4784 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4785 
4786 	/* initial readahead */
4787 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4788 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4789 
4790 	while (index <= last_index) {
4791 		unsigned cur_len = min_t(unsigned, len,
4792 					 PAGE_SIZE - pg_offset);
4793 
4794 		page = find_lock_page(inode->i_mapping, index);
4795 		if (!page) {
4796 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4797 				NULL, index, last_index + 1 - index);
4798 
4799 			page = find_or_create_page(inode->i_mapping, index,
4800 					GFP_KERNEL);
4801 			if (!page) {
4802 				ret = -ENOMEM;
4803 				break;
4804 			}
4805 		}
4806 
4807 		if (PageReadahead(page)) {
4808 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4809 				NULL, page, index, last_index + 1 - index);
4810 		}
4811 
4812 		if (!PageUptodate(page)) {
4813 			btrfs_readpage(NULL, page);
4814 			lock_page(page);
4815 			if (!PageUptodate(page)) {
4816 				unlock_page(page);
4817 				put_page(page);
4818 				ret = -EIO;
4819 				break;
4820 			}
4821 		}
4822 
4823 		addr = kmap(page);
4824 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4825 		kunmap(page);
4826 		unlock_page(page);
4827 		put_page(page);
4828 		index++;
4829 		pg_offset = 0;
4830 		len -= cur_len;
4831 		ret += cur_len;
4832 	}
4833 out:
4834 	iput(inode);
4835 	return ret;
4836 }
4837 
4838 /*
4839  * Read some bytes from the current inode/file and send a write command to
4840  * user space.
4841  */
4842 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4843 {
4844 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4845 	int ret = 0;
4846 	struct fs_path *p;
4847 	ssize_t num_read = 0;
4848 
4849 	p = fs_path_alloc();
4850 	if (!p)
4851 		return -ENOMEM;
4852 
4853 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4854 
4855 	num_read = fill_read_buf(sctx, offset, len);
4856 	if (num_read <= 0) {
4857 		if (num_read < 0)
4858 			ret = num_read;
4859 		goto out;
4860 	}
4861 
4862 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4863 	if (ret < 0)
4864 		goto out;
4865 
4866 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4867 	if (ret < 0)
4868 		goto out;
4869 
4870 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4871 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4872 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4873 
4874 	ret = send_cmd(sctx);
4875 
4876 tlv_put_failure:
4877 out:
4878 	fs_path_free(p);
4879 	if (ret < 0)
4880 		return ret;
4881 	return num_read;
4882 }
4883 
4884 /*
4885  * Send a clone command to user space.
4886  */
4887 static int send_clone(struct send_ctx *sctx,
4888 		      u64 offset, u32 len,
4889 		      struct clone_root *clone_root)
4890 {
4891 	int ret = 0;
4892 	struct fs_path *p;
4893 	u64 gen;
4894 
4895 	btrfs_debug(sctx->send_root->fs_info,
4896 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4897 		    offset, len, clone_root->root->objectid, clone_root->ino,
4898 		    clone_root->offset);
4899 
4900 	p = fs_path_alloc();
4901 	if (!p)
4902 		return -ENOMEM;
4903 
4904 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4905 	if (ret < 0)
4906 		goto out;
4907 
4908 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4909 	if (ret < 0)
4910 		goto out;
4911 
4912 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4913 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4914 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4915 
4916 	if (clone_root->root == sctx->send_root) {
4917 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4918 				&gen, NULL, NULL, NULL, NULL);
4919 		if (ret < 0)
4920 			goto out;
4921 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4922 	} else {
4923 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4924 	}
4925 	if (ret < 0)
4926 		goto out;
4927 
4928 	/*
4929 	 * If the parent we're using has a received_uuid set then use that as
4930 	 * our clone source as that is what we will look for when doing a
4931 	 * receive.
4932 	 *
4933 	 * This covers the case that we create a snapshot off of a received
4934 	 * subvolume and then use that as the parent and try to receive on a
4935 	 * different host.
4936 	 */
4937 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4938 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4939 			     clone_root->root->root_item.received_uuid);
4940 	else
4941 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4942 			     clone_root->root->root_item.uuid);
4943 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4944 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4945 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4946 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4947 			clone_root->offset);
4948 
4949 	ret = send_cmd(sctx);
4950 
4951 tlv_put_failure:
4952 out:
4953 	fs_path_free(p);
4954 	return ret;
4955 }
4956 
4957 /*
4958  * Send an update extent command to user space.
4959  */
4960 static int send_update_extent(struct send_ctx *sctx,
4961 			      u64 offset, u32 len)
4962 {
4963 	int ret = 0;
4964 	struct fs_path *p;
4965 
4966 	p = fs_path_alloc();
4967 	if (!p)
4968 		return -ENOMEM;
4969 
4970 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4971 	if (ret < 0)
4972 		goto out;
4973 
4974 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4975 	if (ret < 0)
4976 		goto out;
4977 
4978 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4979 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4980 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4981 
4982 	ret = send_cmd(sctx);
4983 
4984 tlv_put_failure:
4985 out:
4986 	fs_path_free(p);
4987 	return ret;
4988 }
4989 
4990 static int send_hole(struct send_ctx *sctx, u64 end)
4991 {
4992 	struct fs_path *p = NULL;
4993 	u64 offset = sctx->cur_inode_last_extent;
4994 	u64 len;
4995 	int ret = 0;
4996 
4997 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4998 		return send_update_extent(sctx, offset, end - offset);
4999 
5000 	p = fs_path_alloc();
5001 	if (!p)
5002 		return -ENOMEM;
5003 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5004 	if (ret < 0)
5005 		goto tlv_put_failure;
5006 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5007 	while (offset < end) {
5008 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5009 
5010 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5011 		if (ret < 0)
5012 			break;
5013 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5014 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5015 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5016 		ret = send_cmd(sctx);
5017 		if (ret < 0)
5018 			break;
5019 		offset += len;
5020 	}
5021 	sctx->cur_inode_next_write_offset = offset;
5022 tlv_put_failure:
5023 	fs_path_free(p);
5024 	return ret;
5025 }
5026 
5027 static int send_extent_data(struct send_ctx *sctx,
5028 			    const u64 offset,
5029 			    const u64 len)
5030 {
5031 	u64 sent = 0;
5032 
5033 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5034 		return send_update_extent(sctx, offset, len);
5035 
5036 	while (sent < len) {
5037 		u64 size = len - sent;
5038 		int ret;
5039 
5040 		if (size > BTRFS_SEND_READ_SIZE)
5041 			size = BTRFS_SEND_READ_SIZE;
5042 		ret = send_write(sctx, offset + sent, size);
5043 		if (ret < 0)
5044 			return ret;
5045 		if (!ret)
5046 			break;
5047 		sent += ret;
5048 	}
5049 	return 0;
5050 }
5051 
5052 static int clone_range(struct send_ctx *sctx,
5053 		       struct clone_root *clone_root,
5054 		       const u64 disk_byte,
5055 		       u64 data_offset,
5056 		       u64 offset,
5057 		       u64 len)
5058 {
5059 	struct btrfs_path *path;
5060 	struct btrfs_key key;
5061 	int ret;
5062 
5063 	/*
5064 	 * Prevent cloning from a zero offset with a length matching the sector
5065 	 * size because in some scenarios this will make the receiver fail.
5066 	 *
5067 	 * For example, if in the source filesystem the extent at offset 0
5068 	 * has a length of sectorsize and it was written using direct IO, then
5069 	 * it can never be an inline extent (even if compression is enabled).
5070 	 * Then this extent can be cloned in the original filesystem to a non
5071 	 * zero file offset, but it may not be possible to clone in the
5072 	 * destination filesystem because it can be inlined due to compression
5073 	 * on the destination filesystem (as the receiver's write operations are
5074 	 * always done using buffered IO). The same happens when the original
5075 	 * filesystem does not have compression enabled but the destination
5076 	 * filesystem has.
5077 	 */
5078 	if (clone_root->offset == 0 &&
5079 	    len == sctx->send_root->fs_info->sectorsize)
5080 		return send_extent_data(sctx, offset, len);
5081 
5082 	path = alloc_path_for_send();
5083 	if (!path)
5084 		return -ENOMEM;
5085 
5086 	/*
5087 	 * We can't send a clone operation for the entire range if we find
5088 	 * extent items in the respective range in the source file that
5089 	 * refer to different extents or if we find holes.
5090 	 * So check for that and do a mix of clone and regular write/copy
5091 	 * operations if needed.
5092 	 *
5093 	 * Example:
5094 	 *
5095 	 * mkfs.btrfs -f /dev/sda
5096 	 * mount /dev/sda /mnt
5097 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5098 	 * cp --reflink=always /mnt/foo /mnt/bar
5099 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5100 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5101 	 *
5102 	 * If when we send the snapshot and we are processing file bar (which
5103 	 * has a higher inode number than foo) we blindly send a clone operation
5104 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5105 	 * a file bar that matches the content of file foo - iow, doesn't match
5106 	 * the content from bar in the original filesystem.
5107 	 */
5108 	key.objectid = clone_root->ino;
5109 	key.type = BTRFS_EXTENT_DATA_KEY;
5110 	key.offset = clone_root->offset;
5111 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5112 	if (ret < 0)
5113 		goto out;
5114 	if (ret > 0 && path->slots[0] > 0) {
5115 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5116 		if (key.objectid == clone_root->ino &&
5117 		    key.type == BTRFS_EXTENT_DATA_KEY)
5118 			path->slots[0]--;
5119 	}
5120 
5121 	while (true) {
5122 		struct extent_buffer *leaf = path->nodes[0];
5123 		int slot = path->slots[0];
5124 		struct btrfs_file_extent_item *ei;
5125 		u8 type;
5126 		u64 ext_len;
5127 		u64 clone_len;
5128 
5129 		if (slot >= btrfs_header_nritems(leaf)) {
5130 			ret = btrfs_next_leaf(clone_root->root, path);
5131 			if (ret < 0)
5132 				goto out;
5133 			else if (ret > 0)
5134 				break;
5135 			continue;
5136 		}
5137 
5138 		btrfs_item_key_to_cpu(leaf, &key, slot);
5139 
5140 		/*
5141 		 * We might have an implicit trailing hole (NO_HOLES feature
5142 		 * enabled). We deal with it after leaving this loop.
5143 		 */
5144 		if (key.objectid != clone_root->ino ||
5145 		    key.type != BTRFS_EXTENT_DATA_KEY)
5146 			break;
5147 
5148 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5149 		type = btrfs_file_extent_type(leaf, ei);
5150 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5151 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5152 			ext_len = PAGE_ALIGN(ext_len);
5153 		} else {
5154 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5155 		}
5156 
5157 		if (key.offset + ext_len <= clone_root->offset)
5158 			goto next;
5159 
5160 		if (key.offset > clone_root->offset) {
5161 			/* Implicit hole, NO_HOLES feature enabled. */
5162 			u64 hole_len = key.offset - clone_root->offset;
5163 
5164 			if (hole_len > len)
5165 				hole_len = len;
5166 			ret = send_extent_data(sctx, offset, hole_len);
5167 			if (ret < 0)
5168 				goto out;
5169 
5170 			len -= hole_len;
5171 			if (len == 0)
5172 				break;
5173 			offset += hole_len;
5174 			clone_root->offset += hole_len;
5175 			data_offset += hole_len;
5176 		}
5177 
5178 		if (key.offset >= clone_root->offset + len)
5179 			break;
5180 
5181 		clone_len = min_t(u64, ext_len, len);
5182 
5183 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5184 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
5185 			ret = send_clone(sctx, offset, clone_len, clone_root);
5186 		else
5187 			ret = send_extent_data(sctx, offset, clone_len);
5188 
5189 		if (ret < 0)
5190 			goto out;
5191 
5192 		len -= clone_len;
5193 		if (len == 0)
5194 			break;
5195 		offset += clone_len;
5196 		clone_root->offset += clone_len;
5197 		data_offset += clone_len;
5198 next:
5199 		path->slots[0]++;
5200 	}
5201 
5202 	if (len > 0)
5203 		ret = send_extent_data(sctx, offset, len);
5204 	else
5205 		ret = 0;
5206 out:
5207 	btrfs_free_path(path);
5208 	return ret;
5209 }
5210 
5211 static int send_write_or_clone(struct send_ctx *sctx,
5212 			       struct btrfs_path *path,
5213 			       struct btrfs_key *key,
5214 			       struct clone_root *clone_root)
5215 {
5216 	int ret = 0;
5217 	struct btrfs_file_extent_item *ei;
5218 	u64 offset = key->offset;
5219 	u64 len;
5220 	u8 type;
5221 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5222 
5223 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5224 			struct btrfs_file_extent_item);
5225 	type = btrfs_file_extent_type(path->nodes[0], ei);
5226 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5227 		len = btrfs_file_extent_inline_len(path->nodes[0],
5228 						   path->slots[0], ei);
5229 		/*
5230 		 * it is possible the inline item won't cover the whole page,
5231 		 * but there may be items after this page.  Make
5232 		 * sure to send the whole thing
5233 		 */
5234 		len = PAGE_ALIGN(len);
5235 	} else {
5236 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5237 	}
5238 
5239 	if (offset + len > sctx->cur_inode_size)
5240 		len = sctx->cur_inode_size - offset;
5241 	if (len == 0) {
5242 		ret = 0;
5243 		goto out;
5244 	}
5245 
5246 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5247 		u64 disk_byte;
5248 		u64 data_offset;
5249 
5250 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5251 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5252 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5253 				  offset, len);
5254 	} else {
5255 		ret = send_extent_data(sctx, offset, len);
5256 	}
5257 	sctx->cur_inode_next_write_offset = offset + len;
5258 out:
5259 	return ret;
5260 }
5261 
5262 static int is_extent_unchanged(struct send_ctx *sctx,
5263 			       struct btrfs_path *left_path,
5264 			       struct btrfs_key *ekey)
5265 {
5266 	int ret = 0;
5267 	struct btrfs_key key;
5268 	struct btrfs_path *path = NULL;
5269 	struct extent_buffer *eb;
5270 	int slot;
5271 	struct btrfs_key found_key;
5272 	struct btrfs_file_extent_item *ei;
5273 	u64 left_disknr;
5274 	u64 right_disknr;
5275 	u64 left_offset;
5276 	u64 right_offset;
5277 	u64 left_offset_fixed;
5278 	u64 left_len;
5279 	u64 right_len;
5280 	u64 left_gen;
5281 	u64 right_gen;
5282 	u8 left_type;
5283 	u8 right_type;
5284 
5285 	path = alloc_path_for_send();
5286 	if (!path)
5287 		return -ENOMEM;
5288 
5289 	eb = left_path->nodes[0];
5290 	slot = left_path->slots[0];
5291 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5292 	left_type = btrfs_file_extent_type(eb, ei);
5293 
5294 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5295 		ret = 0;
5296 		goto out;
5297 	}
5298 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5299 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5300 	left_offset = btrfs_file_extent_offset(eb, ei);
5301 	left_gen = btrfs_file_extent_generation(eb, ei);
5302 
5303 	/*
5304 	 * Following comments will refer to these graphics. L is the left
5305 	 * extents which we are checking at the moment. 1-8 are the right
5306 	 * extents that we iterate.
5307 	 *
5308 	 *       |-----L-----|
5309 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5310 	 *
5311 	 *       |-----L-----|
5312 	 * |--1--|-2b-|...(same as above)
5313 	 *
5314 	 * Alternative situation. Happens on files where extents got split.
5315 	 *       |-----L-----|
5316 	 * |-----------7-----------|-6-|
5317 	 *
5318 	 * Alternative situation. Happens on files which got larger.
5319 	 *       |-----L-----|
5320 	 * |-8-|
5321 	 * Nothing follows after 8.
5322 	 */
5323 
5324 	key.objectid = ekey->objectid;
5325 	key.type = BTRFS_EXTENT_DATA_KEY;
5326 	key.offset = ekey->offset;
5327 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5328 	if (ret < 0)
5329 		goto out;
5330 	if (ret) {
5331 		ret = 0;
5332 		goto out;
5333 	}
5334 
5335 	/*
5336 	 * Handle special case where the right side has no extents at all.
5337 	 */
5338 	eb = path->nodes[0];
5339 	slot = path->slots[0];
5340 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5341 	if (found_key.objectid != key.objectid ||
5342 	    found_key.type != key.type) {
5343 		/* If we're a hole then just pretend nothing changed */
5344 		ret = (left_disknr) ? 0 : 1;
5345 		goto out;
5346 	}
5347 
5348 	/*
5349 	 * We're now on 2a, 2b or 7.
5350 	 */
5351 	key = found_key;
5352 	while (key.offset < ekey->offset + left_len) {
5353 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5354 		right_type = btrfs_file_extent_type(eb, ei);
5355 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5356 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5357 			ret = 0;
5358 			goto out;
5359 		}
5360 
5361 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5362 			right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5363 			right_len = PAGE_ALIGN(right_len);
5364 		} else {
5365 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5366 		}
5367 
5368 		/*
5369 		 * Are we at extent 8? If yes, we know the extent is changed.
5370 		 * This may only happen on the first iteration.
5371 		 */
5372 		if (found_key.offset + right_len <= ekey->offset) {
5373 			/* If we're a hole just pretend nothing changed */
5374 			ret = (left_disknr) ? 0 : 1;
5375 			goto out;
5376 		}
5377 
5378 		/*
5379 		 * We just wanted to see if when we have an inline extent, what
5380 		 * follows it is a regular extent (wanted to check the above
5381 		 * condition for inline extents too). This should normally not
5382 		 * happen but it's possible for example when we have an inline
5383 		 * compressed extent representing data with a size matching
5384 		 * the page size (currently the same as sector size).
5385 		 */
5386 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5387 			ret = 0;
5388 			goto out;
5389 		}
5390 
5391 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5392 		right_offset = btrfs_file_extent_offset(eb, ei);
5393 		right_gen = btrfs_file_extent_generation(eb, ei);
5394 
5395 		left_offset_fixed = left_offset;
5396 		if (key.offset < ekey->offset) {
5397 			/* Fix the right offset for 2a and 7. */
5398 			right_offset += ekey->offset - key.offset;
5399 		} else {
5400 			/* Fix the left offset for all behind 2a and 2b */
5401 			left_offset_fixed += key.offset - ekey->offset;
5402 		}
5403 
5404 		/*
5405 		 * Check if we have the same extent.
5406 		 */
5407 		if (left_disknr != right_disknr ||
5408 		    left_offset_fixed != right_offset ||
5409 		    left_gen != right_gen) {
5410 			ret = 0;
5411 			goto out;
5412 		}
5413 
5414 		/*
5415 		 * Go to the next extent.
5416 		 */
5417 		ret = btrfs_next_item(sctx->parent_root, path);
5418 		if (ret < 0)
5419 			goto out;
5420 		if (!ret) {
5421 			eb = path->nodes[0];
5422 			slot = path->slots[0];
5423 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5424 		}
5425 		if (ret || found_key.objectid != key.objectid ||
5426 		    found_key.type != key.type) {
5427 			key.offset += right_len;
5428 			break;
5429 		}
5430 		if (found_key.offset != key.offset + right_len) {
5431 			ret = 0;
5432 			goto out;
5433 		}
5434 		key = found_key;
5435 	}
5436 
5437 	/*
5438 	 * We're now behind the left extent (treat as unchanged) or at the end
5439 	 * of the right side (treat as changed).
5440 	 */
5441 	if (key.offset >= ekey->offset + left_len)
5442 		ret = 1;
5443 	else
5444 		ret = 0;
5445 
5446 
5447 out:
5448 	btrfs_free_path(path);
5449 	return ret;
5450 }
5451 
5452 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5453 {
5454 	struct btrfs_path *path;
5455 	struct btrfs_root *root = sctx->send_root;
5456 	struct btrfs_file_extent_item *fi;
5457 	struct btrfs_key key;
5458 	u64 extent_end;
5459 	u8 type;
5460 	int ret;
5461 
5462 	path = alloc_path_for_send();
5463 	if (!path)
5464 		return -ENOMEM;
5465 
5466 	sctx->cur_inode_last_extent = 0;
5467 
5468 	key.objectid = sctx->cur_ino;
5469 	key.type = BTRFS_EXTENT_DATA_KEY;
5470 	key.offset = offset;
5471 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5472 	if (ret < 0)
5473 		goto out;
5474 	ret = 0;
5475 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5476 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5477 		goto out;
5478 
5479 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5480 			    struct btrfs_file_extent_item);
5481 	type = btrfs_file_extent_type(path->nodes[0], fi);
5482 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5483 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5484 							path->slots[0], fi);
5485 		extent_end = ALIGN(key.offset + size,
5486 				   sctx->send_root->fs_info->sectorsize);
5487 	} else {
5488 		extent_end = key.offset +
5489 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5490 	}
5491 	sctx->cur_inode_last_extent = extent_end;
5492 out:
5493 	btrfs_free_path(path);
5494 	return ret;
5495 }
5496 
5497 static int range_is_hole_in_parent(struct send_ctx *sctx,
5498 				   const u64 start,
5499 				   const u64 end)
5500 {
5501 	struct btrfs_path *path;
5502 	struct btrfs_key key;
5503 	struct btrfs_root *root = sctx->parent_root;
5504 	u64 search_start = start;
5505 	int ret;
5506 
5507 	path = alloc_path_for_send();
5508 	if (!path)
5509 		return -ENOMEM;
5510 
5511 	key.objectid = sctx->cur_ino;
5512 	key.type = BTRFS_EXTENT_DATA_KEY;
5513 	key.offset = search_start;
5514 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5515 	if (ret < 0)
5516 		goto out;
5517 	if (ret > 0 && path->slots[0] > 0)
5518 		path->slots[0]--;
5519 
5520 	while (search_start < end) {
5521 		struct extent_buffer *leaf = path->nodes[0];
5522 		int slot = path->slots[0];
5523 		struct btrfs_file_extent_item *fi;
5524 		u64 extent_end;
5525 
5526 		if (slot >= btrfs_header_nritems(leaf)) {
5527 			ret = btrfs_next_leaf(root, path);
5528 			if (ret < 0)
5529 				goto out;
5530 			else if (ret > 0)
5531 				break;
5532 			continue;
5533 		}
5534 
5535 		btrfs_item_key_to_cpu(leaf, &key, slot);
5536 		if (key.objectid < sctx->cur_ino ||
5537 		    key.type < BTRFS_EXTENT_DATA_KEY)
5538 			goto next;
5539 		if (key.objectid > sctx->cur_ino ||
5540 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5541 		    key.offset >= end)
5542 			break;
5543 
5544 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5545 		if (btrfs_file_extent_type(leaf, fi) ==
5546 		    BTRFS_FILE_EXTENT_INLINE) {
5547 			u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5548 
5549 			extent_end = ALIGN(key.offset + size,
5550 					   root->fs_info->sectorsize);
5551 		} else {
5552 			extent_end = key.offset +
5553 				btrfs_file_extent_num_bytes(leaf, fi);
5554 		}
5555 		if (extent_end <= start)
5556 			goto next;
5557 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5558 			search_start = extent_end;
5559 			goto next;
5560 		}
5561 		ret = 0;
5562 		goto out;
5563 next:
5564 		path->slots[0]++;
5565 	}
5566 	ret = 1;
5567 out:
5568 	btrfs_free_path(path);
5569 	return ret;
5570 }
5571 
5572 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5573 			   struct btrfs_key *key)
5574 {
5575 	struct btrfs_file_extent_item *fi;
5576 	u64 extent_end;
5577 	u8 type;
5578 	int ret = 0;
5579 
5580 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5581 		return 0;
5582 
5583 	if (sctx->cur_inode_last_extent == (u64)-1) {
5584 		ret = get_last_extent(sctx, key->offset - 1);
5585 		if (ret)
5586 			return ret;
5587 	}
5588 
5589 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5590 			    struct btrfs_file_extent_item);
5591 	type = btrfs_file_extent_type(path->nodes[0], fi);
5592 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5593 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5594 							path->slots[0], fi);
5595 		extent_end = ALIGN(key->offset + size,
5596 				   sctx->send_root->fs_info->sectorsize);
5597 	} else {
5598 		extent_end = key->offset +
5599 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5600 	}
5601 
5602 	if (path->slots[0] == 0 &&
5603 	    sctx->cur_inode_last_extent < key->offset) {
5604 		/*
5605 		 * We might have skipped entire leafs that contained only
5606 		 * file extent items for our current inode. These leafs have
5607 		 * a generation number smaller (older) than the one in the
5608 		 * current leaf and the leaf our last extent came from, and
5609 		 * are located between these 2 leafs.
5610 		 */
5611 		ret = get_last_extent(sctx, key->offset - 1);
5612 		if (ret)
5613 			return ret;
5614 	}
5615 
5616 	if (sctx->cur_inode_last_extent < key->offset) {
5617 		ret = range_is_hole_in_parent(sctx,
5618 					      sctx->cur_inode_last_extent,
5619 					      key->offset);
5620 		if (ret < 0)
5621 			return ret;
5622 		else if (ret == 0)
5623 			ret = send_hole(sctx, key->offset);
5624 		else
5625 			ret = 0;
5626 	}
5627 	sctx->cur_inode_last_extent = extent_end;
5628 	return ret;
5629 }
5630 
5631 static int process_extent(struct send_ctx *sctx,
5632 			  struct btrfs_path *path,
5633 			  struct btrfs_key *key)
5634 {
5635 	struct clone_root *found_clone = NULL;
5636 	int ret = 0;
5637 
5638 	if (S_ISLNK(sctx->cur_inode_mode))
5639 		return 0;
5640 
5641 	if (sctx->parent_root && !sctx->cur_inode_new) {
5642 		ret = is_extent_unchanged(sctx, path, key);
5643 		if (ret < 0)
5644 			goto out;
5645 		if (ret) {
5646 			ret = 0;
5647 			goto out_hole;
5648 		}
5649 	} else {
5650 		struct btrfs_file_extent_item *ei;
5651 		u8 type;
5652 
5653 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5654 				    struct btrfs_file_extent_item);
5655 		type = btrfs_file_extent_type(path->nodes[0], ei);
5656 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5657 		    type == BTRFS_FILE_EXTENT_REG) {
5658 			/*
5659 			 * The send spec does not have a prealloc command yet,
5660 			 * so just leave a hole for prealloc'ed extents until
5661 			 * we have enough commands queued up to justify rev'ing
5662 			 * the send spec.
5663 			 */
5664 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5665 				ret = 0;
5666 				goto out;
5667 			}
5668 
5669 			/* Have a hole, just skip it. */
5670 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5671 				ret = 0;
5672 				goto out;
5673 			}
5674 		}
5675 	}
5676 
5677 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5678 			sctx->cur_inode_size, &found_clone);
5679 	if (ret != -ENOENT && ret < 0)
5680 		goto out;
5681 
5682 	ret = send_write_or_clone(sctx, path, key, found_clone);
5683 	if (ret)
5684 		goto out;
5685 out_hole:
5686 	ret = maybe_send_hole(sctx, path, key);
5687 out:
5688 	return ret;
5689 }
5690 
5691 static int process_all_extents(struct send_ctx *sctx)
5692 {
5693 	int ret;
5694 	struct btrfs_root *root;
5695 	struct btrfs_path *path;
5696 	struct btrfs_key key;
5697 	struct btrfs_key found_key;
5698 	struct extent_buffer *eb;
5699 	int slot;
5700 
5701 	root = sctx->send_root;
5702 	path = alloc_path_for_send();
5703 	if (!path)
5704 		return -ENOMEM;
5705 
5706 	key.objectid = sctx->cmp_key->objectid;
5707 	key.type = BTRFS_EXTENT_DATA_KEY;
5708 	key.offset = 0;
5709 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5710 	if (ret < 0)
5711 		goto out;
5712 
5713 	while (1) {
5714 		eb = path->nodes[0];
5715 		slot = path->slots[0];
5716 
5717 		if (slot >= btrfs_header_nritems(eb)) {
5718 			ret = btrfs_next_leaf(root, path);
5719 			if (ret < 0) {
5720 				goto out;
5721 			} else if (ret > 0) {
5722 				ret = 0;
5723 				break;
5724 			}
5725 			continue;
5726 		}
5727 
5728 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5729 
5730 		if (found_key.objectid != key.objectid ||
5731 		    found_key.type != key.type) {
5732 			ret = 0;
5733 			goto out;
5734 		}
5735 
5736 		ret = process_extent(sctx, path, &found_key);
5737 		if (ret < 0)
5738 			goto out;
5739 
5740 		path->slots[0]++;
5741 	}
5742 
5743 out:
5744 	btrfs_free_path(path);
5745 	return ret;
5746 }
5747 
5748 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5749 					   int *pending_move,
5750 					   int *refs_processed)
5751 {
5752 	int ret = 0;
5753 
5754 	if (sctx->cur_ino == 0)
5755 		goto out;
5756 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5757 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5758 		goto out;
5759 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5760 		goto out;
5761 
5762 	ret = process_recorded_refs(sctx, pending_move);
5763 	if (ret < 0)
5764 		goto out;
5765 
5766 	*refs_processed = 1;
5767 out:
5768 	return ret;
5769 }
5770 
5771 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5772 {
5773 	int ret = 0;
5774 	u64 left_mode;
5775 	u64 left_uid;
5776 	u64 left_gid;
5777 	u64 right_mode;
5778 	u64 right_uid;
5779 	u64 right_gid;
5780 	int need_chmod = 0;
5781 	int need_chown = 0;
5782 	int need_truncate = 1;
5783 	int pending_move = 0;
5784 	int refs_processed = 0;
5785 
5786 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5787 					      &refs_processed);
5788 	if (ret < 0)
5789 		goto out;
5790 
5791 	/*
5792 	 * We have processed the refs and thus need to advance send_progress.
5793 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5794 	 * inode into account.
5795 	 *
5796 	 * On the other hand, if our current inode is a directory and couldn't
5797 	 * be moved/renamed because its parent was renamed/moved too and it has
5798 	 * a higher inode number, we can only move/rename our current inode
5799 	 * after we moved/renamed its parent. Therefore in this case operate on
5800 	 * the old path (pre move/rename) of our current inode, and the
5801 	 * move/rename will be performed later.
5802 	 */
5803 	if (refs_processed && !pending_move)
5804 		sctx->send_progress = sctx->cur_ino + 1;
5805 
5806 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5807 		goto out;
5808 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5809 		goto out;
5810 
5811 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5812 			&left_mode, &left_uid, &left_gid, NULL);
5813 	if (ret < 0)
5814 		goto out;
5815 
5816 	if (!sctx->parent_root || sctx->cur_inode_new) {
5817 		need_chown = 1;
5818 		if (!S_ISLNK(sctx->cur_inode_mode))
5819 			need_chmod = 1;
5820 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5821 			need_truncate = 0;
5822 	} else {
5823 		u64 old_size;
5824 
5825 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5826 				&old_size, NULL, &right_mode, &right_uid,
5827 				&right_gid, NULL);
5828 		if (ret < 0)
5829 			goto out;
5830 
5831 		if (left_uid != right_uid || left_gid != right_gid)
5832 			need_chown = 1;
5833 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5834 			need_chmod = 1;
5835 		if ((old_size == sctx->cur_inode_size) ||
5836 		    (sctx->cur_inode_size > old_size &&
5837 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5838 			need_truncate = 0;
5839 	}
5840 
5841 	if (S_ISREG(sctx->cur_inode_mode)) {
5842 		if (need_send_hole(sctx)) {
5843 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5844 			    sctx->cur_inode_last_extent <
5845 			    sctx->cur_inode_size) {
5846 				ret = get_last_extent(sctx, (u64)-1);
5847 				if (ret)
5848 					goto out;
5849 			}
5850 			if (sctx->cur_inode_last_extent <
5851 			    sctx->cur_inode_size) {
5852 				ret = send_hole(sctx, sctx->cur_inode_size);
5853 				if (ret)
5854 					goto out;
5855 			}
5856 		}
5857 		if (need_truncate) {
5858 			ret = send_truncate(sctx, sctx->cur_ino,
5859 					    sctx->cur_inode_gen,
5860 					    sctx->cur_inode_size);
5861 			if (ret < 0)
5862 				goto out;
5863 		}
5864 	}
5865 
5866 	if (need_chown) {
5867 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5868 				left_uid, left_gid);
5869 		if (ret < 0)
5870 			goto out;
5871 	}
5872 	if (need_chmod) {
5873 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5874 				left_mode);
5875 		if (ret < 0)
5876 			goto out;
5877 	}
5878 
5879 	/*
5880 	 * If other directory inodes depended on our current directory
5881 	 * inode's move/rename, now do their move/rename operations.
5882 	 */
5883 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5884 		ret = apply_children_dir_moves(sctx);
5885 		if (ret)
5886 			goto out;
5887 		/*
5888 		 * Need to send that every time, no matter if it actually
5889 		 * changed between the two trees as we have done changes to
5890 		 * the inode before. If our inode is a directory and it's
5891 		 * waiting to be moved/renamed, we will send its utimes when
5892 		 * it's moved/renamed, therefore we don't need to do it here.
5893 		 */
5894 		sctx->send_progress = sctx->cur_ino + 1;
5895 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5896 		if (ret < 0)
5897 			goto out;
5898 	}
5899 
5900 out:
5901 	return ret;
5902 }
5903 
5904 static int changed_inode(struct send_ctx *sctx,
5905 			 enum btrfs_compare_tree_result result)
5906 {
5907 	int ret = 0;
5908 	struct btrfs_key *key = sctx->cmp_key;
5909 	struct btrfs_inode_item *left_ii = NULL;
5910 	struct btrfs_inode_item *right_ii = NULL;
5911 	u64 left_gen = 0;
5912 	u64 right_gen = 0;
5913 
5914 	sctx->cur_ino = key->objectid;
5915 	sctx->cur_inode_new_gen = 0;
5916 	sctx->cur_inode_last_extent = (u64)-1;
5917 	sctx->cur_inode_next_write_offset = 0;
5918 
5919 	/*
5920 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5921 	 * functions that the current inode's refs are not updated yet. Later,
5922 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5923 	 */
5924 	sctx->send_progress = sctx->cur_ino;
5925 
5926 	if (result == BTRFS_COMPARE_TREE_NEW ||
5927 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5928 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5929 				sctx->left_path->slots[0],
5930 				struct btrfs_inode_item);
5931 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5932 				left_ii);
5933 	} else {
5934 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5935 				sctx->right_path->slots[0],
5936 				struct btrfs_inode_item);
5937 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5938 				right_ii);
5939 	}
5940 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5941 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5942 				sctx->right_path->slots[0],
5943 				struct btrfs_inode_item);
5944 
5945 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5946 				right_ii);
5947 
5948 		/*
5949 		 * The cur_ino = root dir case is special here. We can't treat
5950 		 * the inode as deleted+reused because it would generate a
5951 		 * stream that tries to delete/mkdir the root dir.
5952 		 */
5953 		if (left_gen != right_gen &&
5954 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5955 			sctx->cur_inode_new_gen = 1;
5956 	}
5957 
5958 	if (result == BTRFS_COMPARE_TREE_NEW) {
5959 		sctx->cur_inode_gen = left_gen;
5960 		sctx->cur_inode_new = 1;
5961 		sctx->cur_inode_deleted = 0;
5962 		sctx->cur_inode_size = btrfs_inode_size(
5963 				sctx->left_path->nodes[0], left_ii);
5964 		sctx->cur_inode_mode = btrfs_inode_mode(
5965 				sctx->left_path->nodes[0], left_ii);
5966 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5967 				sctx->left_path->nodes[0], left_ii);
5968 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5969 			ret = send_create_inode_if_needed(sctx);
5970 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5971 		sctx->cur_inode_gen = right_gen;
5972 		sctx->cur_inode_new = 0;
5973 		sctx->cur_inode_deleted = 1;
5974 		sctx->cur_inode_size = btrfs_inode_size(
5975 				sctx->right_path->nodes[0], right_ii);
5976 		sctx->cur_inode_mode = btrfs_inode_mode(
5977 				sctx->right_path->nodes[0], right_ii);
5978 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5979 		/*
5980 		 * We need to do some special handling in case the inode was
5981 		 * reported as changed with a changed generation number. This
5982 		 * means that the original inode was deleted and new inode
5983 		 * reused the same inum. So we have to treat the old inode as
5984 		 * deleted and the new one as new.
5985 		 */
5986 		if (sctx->cur_inode_new_gen) {
5987 			/*
5988 			 * First, process the inode as if it was deleted.
5989 			 */
5990 			sctx->cur_inode_gen = right_gen;
5991 			sctx->cur_inode_new = 0;
5992 			sctx->cur_inode_deleted = 1;
5993 			sctx->cur_inode_size = btrfs_inode_size(
5994 					sctx->right_path->nodes[0], right_ii);
5995 			sctx->cur_inode_mode = btrfs_inode_mode(
5996 					sctx->right_path->nodes[0], right_ii);
5997 			ret = process_all_refs(sctx,
5998 					BTRFS_COMPARE_TREE_DELETED);
5999 			if (ret < 0)
6000 				goto out;
6001 
6002 			/*
6003 			 * Now process the inode as if it was new.
6004 			 */
6005 			sctx->cur_inode_gen = left_gen;
6006 			sctx->cur_inode_new = 1;
6007 			sctx->cur_inode_deleted = 0;
6008 			sctx->cur_inode_size = btrfs_inode_size(
6009 					sctx->left_path->nodes[0], left_ii);
6010 			sctx->cur_inode_mode = btrfs_inode_mode(
6011 					sctx->left_path->nodes[0], left_ii);
6012 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6013 					sctx->left_path->nodes[0], left_ii);
6014 			ret = send_create_inode_if_needed(sctx);
6015 			if (ret < 0)
6016 				goto out;
6017 
6018 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6019 			if (ret < 0)
6020 				goto out;
6021 			/*
6022 			 * Advance send_progress now as we did not get into
6023 			 * process_recorded_refs_if_needed in the new_gen case.
6024 			 */
6025 			sctx->send_progress = sctx->cur_ino + 1;
6026 
6027 			/*
6028 			 * Now process all extents and xattrs of the inode as if
6029 			 * they were all new.
6030 			 */
6031 			ret = process_all_extents(sctx);
6032 			if (ret < 0)
6033 				goto out;
6034 			ret = process_all_new_xattrs(sctx);
6035 			if (ret < 0)
6036 				goto out;
6037 		} else {
6038 			sctx->cur_inode_gen = left_gen;
6039 			sctx->cur_inode_new = 0;
6040 			sctx->cur_inode_new_gen = 0;
6041 			sctx->cur_inode_deleted = 0;
6042 			sctx->cur_inode_size = btrfs_inode_size(
6043 					sctx->left_path->nodes[0], left_ii);
6044 			sctx->cur_inode_mode = btrfs_inode_mode(
6045 					sctx->left_path->nodes[0], left_ii);
6046 		}
6047 	}
6048 
6049 out:
6050 	return ret;
6051 }
6052 
6053 /*
6054  * We have to process new refs before deleted refs, but compare_trees gives us
6055  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6056  * first and later process them in process_recorded_refs.
6057  * For the cur_inode_new_gen case, we skip recording completely because
6058  * changed_inode did already initiate processing of refs. The reason for this is
6059  * that in this case, compare_tree actually compares the refs of 2 different
6060  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6061  * refs of the right tree as deleted and all refs of the left tree as new.
6062  */
6063 static int changed_ref(struct send_ctx *sctx,
6064 		       enum btrfs_compare_tree_result result)
6065 {
6066 	int ret = 0;
6067 
6068 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6069 		inconsistent_snapshot_error(sctx, result, "reference");
6070 		return -EIO;
6071 	}
6072 
6073 	if (!sctx->cur_inode_new_gen &&
6074 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6075 		if (result == BTRFS_COMPARE_TREE_NEW)
6076 			ret = record_new_ref(sctx);
6077 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6078 			ret = record_deleted_ref(sctx);
6079 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6080 			ret = record_changed_ref(sctx);
6081 	}
6082 
6083 	return ret;
6084 }
6085 
6086 /*
6087  * Process new/deleted/changed xattrs. We skip processing in the
6088  * cur_inode_new_gen case because changed_inode did already initiate processing
6089  * of xattrs. The reason is the same as in changed_ref
6090  */
6091 static int changed_xattr(struct send_ctx *sctx,
6092 			 enum btrfs_compare_tree_result result)
6093 {
6094 	int ret = 0;
6095 
6096 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6097 		inconsistent_snapshot_error(sctx, result, "xattr");
6098 		return -EIO;
6099 	}
6100 
6101 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6102 		if (result == BTRFS_COMPARE_TREE_NEW)
6103 			ret = process_new_xattr(sctx);
6104 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6105 			ret = process_deleted_xattr(sctx);
6106 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6107 			ret = process_changed_xattr(sctx);
6108 	}
6109 
6110 	return ret;
6111 }
6112 
6113 /*
6114  * Process new/deleted/changed extents. We skip processing in the
6115  * cur_inode_new_gen case because changed_inode did already initiate processing
6116  * of extents. The reason is the same as in changed_ref
6117  */
6118 static int changed_extent(struct send_ctx *sctx,
6119 			  enum btrfs_compare_tree_result result)
6120 {
6121 	int ret = 0;
6122 
6123 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6124 
6125 		if (result == BTRFS_COMPARE_TREE_CHANGED) {
6126 			struct extent_buffer *leaf_l;
6127 			struct extent_buffer *leaf_r;
6128 			struct btrfs_file_extent_item *ei_l;
6129 			struct btrfs_file_extent_item *ei_r;
6130 
6131 			leaf_l = sctx->left_path->nodes[0];
6132 			leaf_r = sctx->right_path->nodes[0];
6133 			ei_l = btrfs_item_ptr(leaf_l,
6134 					      sctx->left_path->slots[0],
6135 					      struct btrfs_file_extent_item);
6136 			ei_r = btrfs_item_ptr(leaf_r,
6137 					      sctx->right_path->slots[0],
6138 					      struct btrfs_file_extent_item);
6139 
6140 			/*
6141 			 * We may have found an extent item that has changed
6142 			 * only its disk_bytenr field and the corresponding
6143 			 * inode item was not updated. This case happens due to
6144 			 * very specific timings during relocation when a leaf
6145 			 * that contains file extent items is COWed while
6146 			 * relocation is ongoing and its in the stage where it
6147 			 * updates data pointers. So when this happens we can
6148 			 * safely ignore it since we know it's the same extent,
6149 			 * but just at different logical and physical locations
6150 			 * (when an extent is fully replaced with a new one, we
6151 			 * know the generation number must have changed too,
6152 			 * since snapshot creation implies committing the current
6153 			 * transaction, and the inode item must have been updated
6154 			 * as well).
6155 			 * This replacement of the disk_bytenr happens at
6156 			 * relocation.c:replace_file_extents() through
6157 			 * relocation.c:btrfs_reloc_cow_block().
6158 			 */
6159 			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6160 			    btrfs_file_extent_generation(leaf_r, ei_r) &&
6161 			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6162 			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6163 			    btrfs_file_extent_compression(leaf_l, ei_l) ==
6164 			    btrfs_file_extent_compression(leaf_r, ei_r) &&
6165 			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
6166 			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
6167 			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6168 			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6169 			    btrfs_file_extent_type(leaf_l, ei_l) ==
6170 			    btrfs_file_extent_type(leaf_r, ei_r) &&
6171 			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6172 			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6173 			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6174 			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6175 			    btrfs_file_extent_offset(leaf_l, ei_l) ==
6176 			    btrfs_file_extent_offset(leaf_r, ei_r) &&
6177 			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6178 			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
6179 				return 0;
6180 		}
6181 
6182 		inconsistent_snapshot_error(sctx, result, "extent");
6183 		return -EIO;
6184 	}
6185 
6186 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6187 		if (result != BTRFS_COMPARE_TREE_DELETED)
6188 			ret = process_extent(sctx, sctx->left_path,
6189 					sctx->cmp_key);
6190 	}
6191 
6192 	return ret;
6193 }
6194 
6195 static int dir_changed(struct send_ctx *sctx, u64 dir)
6196 {
6197 	u64 orig_gen, new_gen;
6198 	int ret;
6199 
6200 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6201 			     NULL, NULL);
6202 	if (ret)
6203 		return ret;
6204 
6205 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6206 			     NULL, NULL, NULL);
6207 	if (ret)
6208 		return ret;
6209 
6210 	return (orig_gen != new_gen) ? 1 : 0;
6211 }
6212 
6213 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6214 			struct btrfs_key *key)
6215 {
6216 	struct btrfs_inode_extref *extref;
6217 	struct extent_buffer *leaf;
6218 	u64 dirid = 0, last_dirid = 0;
6219 	unsigned long ptr;
6220 	u32 item_size;
6221 	u32 cur_offset = 0;
6222 	int ref_name_len;
6223 	int ret = 0;
6224 
6225 	/* Easy case, just check this one dirid */
6226 	if (key->type == BTRFS_INODE_REF_KEY) {
6227 		dirid = key->offset;
6228 
6229 		ret = dir_changed(sctx, dirid);
6230 		goto out;
6231 	}
6232 
6233 	leaf = path->nodes[0];
6234 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6235 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6236 	while (cur_offset < item_size) {
6237 		extref = (struct btrfs_inode_extref *)(ptr +
6238 						       cur_offset);
6239 		dirid = btrfs_inode_extref_parent(leaf, extref);
6240 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6241 		cur_offset += ref_name_len + sizeof(*extref);
6242 		if (dirid == last_dirid)
6243 			continue;
6244 		ret = dir_changed(sctx, dirid);
6245 		if (ret)
6246 			break;
6247 		last_dirid = dirid;
6248 	}
6249 out:
6250 	return ret;
6251 }
6252 
6253 /*
6254  * Updates compare related fields in sctx and simply forwards to the actual
6255  * changed_xxx functions.
6256  */
6257 static int changed_cb(struct btrfs_path *left_path,
6258 		      struct btrfs_path *right_path,
6259 		      struct btrfs_key *key,
6260 		      enum btrfs_compare_tree_result result,
6261 		      void *ctx)
6262 {
6263 	int ret = 0;
6264 	struct send_ctx *sctx = ctx;
6265 
6266 	if (result == BTRFS_COMPARE_TREE_SAME) {
6267 		if (key->type == BTRFS_INODE_REF_KEY ||
6268 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6269 			ret = compare_refs(sctx, left_path, key);
6270 			if (!ret)
6271 				return 0;
6272 			if (ret < 0)
6273 				return ret;
6274 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6275 			return maybe_send_hole(sctx, left_path, key);
6276 		} else {
6277 			return 0;
6278 		}
6279 		result = BTRFS_COMPARE_TREE_CHANGED;
6280 		ret = 0;
6281 	}
6282 
6283 	sctx->left_path = left_path;
6284 	sctx->right_path = right_path;
6285 	sctx->cmp_key = key;
6286 
6287 	ret = finish_inode_if_needed(sctx, 0);
6288 	if (ret < 0)
6289 		goto out;
6290 
6291 	/* Ignore non-FS objects */
6292 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6293 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6294 		goto out;
6295 
6296 	if (key->type == BTRFS_INODE_ITEM_KEY)
6297 		ret = changed_inode(sctx, result);
6298 	else if (key->type == BTRFS_INODE_REF_KEY ||
6299 		 key->type == BTRFS_INODE_EXTREF_KEY)
6300 		ret = changed_ref(sctx, result);
6301 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
6302 		ret = changed_xattr(sctx, result);
6303 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
6304 		ret = changed_extent(sctx, result);
6305 
6306 out:
6307 	return ret;
6308 }
6309 
6310 static int full_send_tree(struct send_ctx *sctx)
6311 {
6312 	int ret;
6313 	struct btrfs_root *send_root = sctx->send_root;
6314 	struct btrfs_key key;
6315 	struct btrfs_key found_key;
6316 	struct btrfs_path *path;
6317 	struct extent_buffer *eb;
6318 	int slot;
6319 
6320 	path = alloc_path_for_send();
6321 	if (!path)
6322 		return -ENOMEM;
6323 
6324 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6325 	key.type = BTRFS_INODE_ITEM_KEY;
6326 	key.offset = 0;
6327 
6328 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6329 	if (ret < 0)
6330 		goto out;
6331 	if (ret)
6332 		goto out_finish;
6333 
6334 	while (1) {
6335 		eb = path->nodes[0];
6336 		slot = path->slots[0];
6337 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6338 
6339 		ret = changed_cb(path, NULL, &found_key,
6340 				 BTRFS_COMPARE_TREE_NEW, sctx);
6341 		if (ret < 0)
6342 			goto out;
6343 
6344 		key.objectid = found_key.objectid;
6345 		key.type = found_key.type;
6346 		key.offset = found_key.offset + 1;
6347 
6348 		ret = btrfs_next_item(send_root, path);
6349 		if (ret < 0)
6350 			goto out;
6351 		if (ret) {
6352 			ret  = 0;
6353 			break;
6354 		}
6355 	}
6356 
6357 out_finish:
6358 	ret = finish_inode_if_needed(sctx, 1);
6359 
6360 out:
6361 	btrfs_free_path(path);
6362 	return ret;
6363 }
6364 
6365 static int send_subvol(struct send_ctx *sctx)
6366 {
6367 	int ret;
6368 
6369 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6370 		ret = send_header(sctx);
6371 		if (ret < 0)
6372 			goto out;
6373 	}
6374 
6375 	ret = send_subvol_begin(sctx);
6376 	if (ret < 0)
6377 		goto out;
6378 
6379 	if (sctx->parent_root) {
6380 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6381 				changed_cb, sctx);
6382 		if (ret < 0)
6383 			goto out;
6384 		ret = finish_inode_if_needed(sctx, 1);
6385 		if (ret < 0)
6386 			goto out;
6387 	} else {
6388 		ret = full_send_tree(sctx);
6389 		if (ret < 0)
6390 			goto out;
6391 	}
6392 
6393 out:
6394 	free_recorded_refs(sctx);
6395 	return ret;
6396 }
6397 
6398 /*
6399  * If orphan cleanup did remove any orphans from a root, it means the tree
6400  * was modified and therefore the commit root is not the same as the current
6401  * root anymore. This is a problem, because send uses the commit root and
6402  * therefore can see inode items that don't exist in the current root anymore,
6403  * and for example make calls to btrfs_iget, which will do tree lookups based
6404  * on the current root and not on the commit root. Those lookups will fail,
6405  * returning a -ESTALE error, and making send fail with that error. So make
6406  * sure a send does not see any orphans we have just removed, and that it will
6407  * see the same inodes regardless of whether a transaction commit happened
6408  * before it started (meaning that the commit root will be the same as the
6409  * current root) or not.
6410  */
6411 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6412 {
6413 	int i;
6414 	struct btrfs_trans_handle *trans = NULL;
6415 
6416 again:
6417 	if (sctx->parent_root &&
6418 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6419 		goto commit_trans;
6420 
6421 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6422 		if (sctx->clone_roots[i].root->node !=
6423 		    sctx->clone_roots[i].root->commit_root)
6424 			goto commit_trans;
6425 
6426 	if (trans)
6427 		return btrfs_end_transaction(trans);
6428 
6429 	return 0;
6430 
6431 commit_trans:
6432 	/* Use any root, all fs roots will get their commit roots updated. */
6433 	if (!trans) {
6434 		trans = btrfs_join_transaction(sctx->send_root);
6435 		if (IS_ERR(trans))
6436 			return PTR_ERR(trans);
6437 		goto again;
6438 	}
6439 
6440 	return btrfs_commit_transaction(trans);
6441 }
6442 
6443 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6444 {
6445 	spin_lock(&root->root_item_lock);
6446 	root->send_in_progress--;
6447 	/*
6448 	 * Not much left to do, we don't know why it's unbalanced and
6449 	 * can't blindly reset it to 0.
6450 	 */
6451 	if (root->send_in_progress < 0)
6452 		btrfs_err(root->fs_info,
6453 			  "send_in_progres unbalanced %d root %llu",
6454 			  root->send_in_progress, root->root_key.objectid);
6455 	spin_unlock(&root->root_item_lock);
6456 }
6457 
6458 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6459 {
6460 	int ret = 0;
6461 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6462 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6463 	struct btrfs_root *clone_root;
6464 	struct btrfs_key key;
6465 	struct send_ctx *sctx = NULL;
6466 	u32 i;
6467 	u64 *clone_sources_tmp = NULL;
6468 	int clone_sources_to_rollback = 0;
6469 	unsigned alloc_size;
6470 	int sort_clone_roots = 0;
6471 	int index;
6472 
6473 	if (!capable(CAP_SYS_ADMIN))
6474 		return -EPERM;
6475 
6476 	/*
6477 	 * The subvolume must remain read-only during send, protect against
6478 	 * making it RW. This also protects against deletion.
6479 	 */
6480 	spin_lock(&send_root->root_item_lock);
6481 	send_root->send_in_progress++;
6482 	spin_unlock(&send_root->root_item_lock);
6483 
6484 	/*
6485 	 * This is done when we lookup the root, it should already be complete
6486 	 * by the time we get here.
6487 	 */
6488 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6489 
6490 	/*
6491 	 * Userspace tools do the checks and warn the user if it's
6492 	 * not RO.
6493 	 */
6494 	if (!btrfs_root_readonly(send_root)) {
6495 		ret = -EPERM;
6496 		goto out;
6497 	}
6498 
6499 	/*
6500 	 * Check that we don't overflow at later allocations, we request
6501 	 * clone_sources_count + 1 items, and compare to unsigned long inside
6502 	 * access_ok.
6503 	 */
6504 	if (arg->clone_sources_count >
6505 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6506 		ret = -EINVAL;
6507 		goto out;
6508 	}
6509 
6510 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6511 			sizeof(*arg->clone_sources) *
6512 			arg->clone_sources_count)) {
6513 		ret = -EFAULT;
6514 		goto out;
6515 	}
6516 
6517 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6518 		ret = -EINVAL;
6519 		goto out;
6520 	}
6521 
6522 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6523 	if (!sctx) {
6524 		ret = -ENOMEM;
6525 		goto out;
6526 	}
6527 
6528 	INIT_LIST_HEAD(&sctx->new_refs);
6529 	INIT_LIST_HEAD(&sctx->deleted_refs);
6530 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6531 	INIT_LIST_HEAD(&sctx->name_cache_list);
6532 
6533 	sctx->flags = arg->flags;
6534 
6535 	sctx->send_filp = fget(arg->send_fd);
6536 	if (!sctx->send_filp) {
6537 		ret = -EBADF;
6538 		goto out;
6539 	}
6540 
6541 	sctx->send_root = send_root;
6542 	/*
6543 	 * Unlikely but possible, if the subvolume is marked for deletion but
6544 	 * is slow to remove the directory entry, send can still be started
6545 	 */
6546 	if (btrfs_root_dead(sctx->send_root)) {
6547 		ret = -EPERM;
6548 		goto out;
6549 	}
6550 
6551 	sctx->clone_roots_cnt = arg->clone_sources_count;
6552 
6553 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6554 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6555 	if (!sctx->send_buf) {
6556 		ret = -ENOMEM;
6557 		goto out;
6558 	}
6559 
6560 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6561 	if (!sctx->read_buf) {
6562 		ret = -ENOMEM;
6563 		goto out;
6564 	}
6565 
6566 	sctx->pending_dir_moves = RB_ROOT;
6567 	sctx->waiting_dir_moves = RB_ROOT;
6568 	sctx->orphan_dirs = RB_ROOT;
6569 
6570 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6571 
6572 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6573 	if (!sctx->clone_roots) {
6574 		ret = -ENOMEM;
6575 		goto out;
6576 	}
6577 
6578 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6579 
6580 	if (arg->clone_sources_count) {
6581 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6582 		if (!clone_sources_tmp) {
6583 			ret = -ENOMEM;
6584 			goto out;
6585 		}
6586 
6587 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6588 				alloc_size);
6589 		if (ret) {
6590 			ret = -EFAULT;
6591 			goto out;
6592 		}
6593 
6594 		for (i = 0; i < arg->clone_sources_count; i++) {
6595 			key.objectid = clone_sources_tmp[i];
6596 			key.type = BTRFS_ROOT_ITEM_KEY;
6597 			key.offset = (u64)-1;
6598 
6599 			index = srcu_read_lock(&fs_info->subvol_srcu);
6600 
6601 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6602 			if (IS_ERR(clone_root)) {
6603 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6604 				ret = PTR_ERR(clone_root);
6605 				goto out;
6606 			}
6607 			spin_lock(&clone_root->root_item_lock);
6608 			if (!btrfs_root_readonly(clone_root) ||
6609 			    btrfs_root_dead(clone_root)) {
6610 				spin_unlock(&clone_root->root_item_lock);
6611 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6612 				ret = -EPERM;
6613 				goto out;
6614 			}
6615 			clone_root->send_in_progress++;
6616 			spin_unlock(&clone_root->root_item_lock);
6617 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6618 
6619 			sctx->clone_roots[i].root = clone_root;
6620 			clone_sources_to_rollback = i + 1;
6621 		}
6622 		kvfree(clone_sources_tmp);
6623 		clone_sources_tmp = NULL;
6624 	}
6625 
6626 	if (arg->parent_root) {
6627 		key.objectid = arg->parent_root;
6628 		key.type = BTRFS_ROOT_ITEM_KEY;
6629 		key.offset = (u64)-1;
6630 
6631 		index = srcu_read_lock(&fs_info->subvol_srcu);
6632 
6633 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6634 		if (IS_ERR(sctx->parent_root)) {
6635 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6636 			ret = PTR_ERR(sctx->parent_root);
6637 			goto out;
6638 		}
6639 
6640 		spin_lock(&sctx->parent_root->root_item_lock);
6641 		sctx->parent_root->send_in_progress++;
6642 		if (!btrfs_root_readonly(sctx->parent_root) ||
6643 				btrfs_root_dead(sctx->parent_root)) {
6644 			spin_unlock(&sctx->parent_root->root_item_lock);
6645 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6646 			ret = -EPERM;
6647 			goto out;
6648 		}
6649 		spin_unlock(&sctx->parent_root->root_item_lock);
6650 
6651 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6652 	}
6653 
6654 	/*
6655 	 * Clones from send_root are allowed, but only if the clone source
6656 	 * is behind the current send position. This is checked while searching
6657 	 * for possible clone sources.
6658 	 */
6659 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6660 
6661 	/* We do a bsearch later */
6662 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6663 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6664 			NULL);
6665 	sort_clone_roots = 1;
6666 
6667 	ret = ensure_commit_roots_uptodate(sctx);
6668 	if (ret)
6669 		goto out;
6670 
6671 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6672 	ret = send_subvol(sctx);
6673 	current->journal_info = NULL;
6674 	if (ret < 0)
6675 		goto out;
6676 
6677 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6678 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6679 		if (ret < 0)
6680 			goto out;
6681 		ret = send_cmd(sctx);
6682 		if (ret < 0)
6683 			goto out;
6684 	}
6685 
6686 out:
6687 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6688 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6689 		struct rb_node *n;
6690 		struct pending_dir_move *pm;
6691 
6692 		n = rb_first(&sctx->pending_dir_moves);
6693 		pm = rb_entry(n, struct pending_dir_move, node);
6694 		while (!list_empty(&pm->list)) {
6695 			struct pending_dir_move *pm2;
6696 
6697 			pm2 = list_first_entry(&pm->list,
6698 					       struct pending_dir_move, list);
6699 			free_pending_move(sctx, pm2);
6700 		}
6701 		free_pending_move(sctx, pm);
6702 	}
6703 
6704 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6705 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6706 		struct rb_node *n;
6707 		struct waiting_dir_move *dm;
6708 
6709 		n = rb_first(&sctx->waiting_dir_moves);
6710 		dm = rb_entry(n, struct waiting_dir_move, node);
6711 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6712 		kfree(dm);
6713 	}
6714 
6715 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6716 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6717 		struct rb_node *n;
6718 		struct orphan_dir_info *odi;
6719 
6720 		n = rb_first(&sctx->orphan_dirs);
6721 		odi = rb_entry(n, struct orphan_dir_info, node);
6722 		free_orphan_dir_info(sctx, odi);
6723 	}
6724 
6725 	if (sort_clone_roots) {
6726 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6727 			btrfs_root_dec_send_in_progress(
6728 					sctx->clone_roots[i].root);
6729 	} else {
6730 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6731 			btrfs_root_dec_send_in_progress(
6732 					sctx->clone_roots[i].root);
6733 
6734 		btrfs_root_dec_send_in_progress(send_root);
6735 	}
6736 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6737 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6738 
6739 	kvfree(clone_sources_tmp);
6740 
6741 	if (sctx) {
6742 		if (sctx->send_filp)
6743 			fput(sctx->send_filp);
6744 
6745 		kvfree(sctx->clone_roots);
6746 		kvfree(sctx->send_buf);
6747 		kvfree(sctx->read_buf);
6748 
6749 		name_cache_free(sctx);
6750 
6751 		kfree(sctx);
6752 	}
6753 
6754 	return ret;
6755 }
6756