xref: /openbmc/linux/fs/btrfs/send.c (revision 240e6d25)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 #include "xattr.h"
27 
28 /*
29  * Maximum number of references an extent can have in order for us to attempt to
30  * issue clone operations instead of write operations. This currently exists to
31  * avoid hitting limitations of the backreference walking code (taking a lot of
32  * time and using too much memory for extents with large number of references).
33  */
34 #define SEND_MAX_EXTENT_REFS	64
35 
36 /*
37  * A fs_path is a helper to dynamically build path names with unknown size.
38  * It reallocates the internal buffer on demand.
39  * It allows fast adding of path elements on the right side (normal path) and
40  * fast adding to the left side (reversed path). A reversed path can also be
41  * unreversed if needed.
42  */
43 struct fs_path {
44 	union {
45 		struct {
46 			char *start;
47 			char *end;
48 
49 			char *buf;
50 			unsigned short buf_len:15;
51 			unsigned short reversed:1;
52 			char inline_buf[];
53 		};
54 		/*
55 		 * Average path length does not exceed 200 bytes, we'll have
56 		 * better packing in the slab and higher chance to satisfy
57 		 * a allocation later during send.
58 		 */
59 		char pad[256];
60 	};
61 };
62 #define FS_PATH_INLINE_SIZE \
63 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
64 
65 
66 /* reused for each extent */
67 struct clone_root {
68 	struct btrfs_root *root;
69 	u64 ino;
70 	u64 offset;
71 
72 	u64 found_refs;
73 };
74 
75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
77 
78 struct send_ctx {
79 	struct file *send_filp;
80 	loff_t send_off;
81 	char *send_buf;
82 	u32 send_size;
83 	u32 send_max_size;
84 	u64 total_send_size;
85 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
87 	/* Protocol version compatibility requested */
88 	u32 proto;
89 
90 	struct btrfs_root *send_root;
91 	struct btrfs_root *parent_root;
92 	struct clone_root *clone_roots;
93 	int clone_roots_cnt;
94 
95 	/* current state of the compare_tree call */
96 	struct btrfs_path *left_path;
97 	struct btrfs_path *right_path;
98 	struct btrfs_key *cmp_key;
99 
100 	/*
101 	 * infos of the currently processed inode. In case of deleted inodes,
102 	 * these are the values from the deleted inode.
103 	 */
104 	u64 cur_ino;
105 	u64 cur_inode_gen;
106 	int cur_inode_new;
107 	int cur_inode_new_gen;
108 	int cur_inode_deleted;
109 	u64 cur_inode_size;
110 	u64 cur_inode_mode;
111 	u64 cur_inode_rdev;
112 	u64 cur_inode_last_extent;
113 	u64 cur_inode_next_write_offset;
114 	bool ignore_cur_inode;
115 
116 	u64 send_progress;
117 
118 	struct list_head new_refs;
119 	struct list_head deleted_refs;
120 
121 	struct radix_tree_root name_cache;
122 	struct list_head name_cache_list;
123 	int name_cache_size;
124 
125 	struct file_ra_state ra;
126 
127 	/*
128 	 * We process inodes by their increasing order, so if before an
129 	 * incremental send we reverse the parent/child relationship of
130 	 * directories such that a directory with a lower inode number was
131 	 * the parent of a directory with a higher inode number, and the one
132 	 * becoming the new parent got renamed too, we can't rename/move the
133 	 * directory with lower inode number when we finish processing it - we
134 	 * must process the directory with higher inode number first, then
135 	 * rename/move it and then rename/move the directory with lower inode
136 	 * number. Example follows.
137 	 *
138 	 * Tree state when the first send was performed:
139 	 *
140 	 * .
141 	 * |-- a                   (ino 257)
142 	 *     |-- b               (ino 258)
143 	 *         |
144 	 *         |
145 	 *         |-- c           (ino 259)
146 	 *         |   |-- d       (ino 260)
147 	 *         |
148 	 *         |-- c2          (ino 261)
149 	 *
150 	 * Tree state when the second (incremental) send is performed:
151 	 *
152 	 * .
153 	 * |-- a                   (ino 257)
154 	 *     |-- b               (ino 258)
155 	 *         |-- c2          (ino 261)
156 	 *             |-- d2      (ino 260)
157 	 *                 |-- cc  (ino 259)
158 	 *
159 	 * The sequence of steps that lead to the second state was:
160 	 *
161 	 * mv /a/b/c/d /a/b/c2/d2
162 	 * mv /a/b/c /a/b/c2/d2/cc
163 	 *
164 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
165 	 * before we move "d", which has higher inode number.
166 	 *
167 	 * So we just memorize which move/rename operations must be performed
168 	 * later when their respective parent is processed and moved/renamed.
169 	 */
170 
171 	/* Indexed by parent directory inode number. */
172 	struct rb_root pending_dir_moves;
173 
174 	/*
175 	 * Reverse index, indexed by the inode number of a directory that
176 	 * is waiting for the move/rename of its immediate parent before its
177 	 * own move/rename can be performed.
178 	 */
179 	struct rb_root waiting_dir_moves;
180 
181 	/*
182 	 * A directory that is going to be rm'ed might have a child directory
183 	 * which is in the pending directory moves index above. In this case,
184 	 * the directory can only be removed after the move/rename of its child
185 	 * is performed. Example:
186 	 *
187 	 * Parent snapshot:
188 	 *
189 	 * .                        (ino 256)
190 	 * |-- a/                   (ino 257)
191 	 *     |-- b/               (ino 258)
192 	 *         |-- c/           (ino 259)
193 	 *         |   |-- x/       (ino 260)
194 	 *         |
195 	 *         |-- y/           (ino 261)
196 	 *
197 	 * Send snapshot:
198 	 *
199 	 * .                        (ino 256)
200 	 * |-- a/                   (ino 257)
201 	 *     |-- b/               (ino 258)
202 	 *         |-- YY/          (ino 261)
203 	 *              |-- x/      (ino 260)
204 	 *
205 	 * Sequence of steps that lead to the send snapshot:
206 	 * rm -f /a/b/c/foo.txt
207 	 * mv /a/b/y /a/b/YY
208 	 * mv /a/b/c/x /a/b/YY
209 	 * rmdir /a/b/c
210 	 *
211 	 * When the child is processed, its move/rename is delayed until its
212 	 * parent is processed (as explained above), but all other operations
213 	 * like update utimes, chown, chgrp, etc, are performed and the paths
214 	 * that it uses for those operations must use the orphanized name of
215 	 * its parent (the directory we're going to rm later), so we need to
216 	 * memorize that name.
217 	 *
218 	 * Indexed by the inode number of the directory to be deleted.
219 	 */
220 	struct rb_root orphan_dirs;
221 };
222 
223 struct pending_dir_move {
224 	struct rb_node node;
225 	struct list_head list;
226 	u64 parent_ino;
227 	u64 ino;
228 	u64 gen;
229 	struct list_head update_refs;
230 };
231 
232 struct waiting_dir_move {
233 	struct rb_node node;
234 	u64 ino;
235 	/*
236 	 * There might be some directory that could not be removed because it
237 	 * was waiting for this directory inode to be moved first. Therefore
238 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
239 	 */
240 	u64 rmdir_ino;
241 	u64 rmdir_gen;
242 	bool orphanized;
243 };
244 
245 struct orphan_dir_info {
246 	struct rb_node node;
247 	u64 ino;
248 	u64 gen;
249 	u64 last_dir_index_offset;
250 };
251 
252 struct name_cache_entry {
253 	struct list_head list;
254 	/*
255 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
256 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
257 	 * more then one inum would fall into the same entry, we use radix_list
258 	 * to store the additional entries. radix_list is also used to store
259 	 * entries where two entries have the same inum but different
260 	 * generations.
261 	 */
262 	struct list_head radix_list;
263 	u64 ino;
264 	u64 gen;
265 	u64 parent_ino;
266 	u64 parent_gen;
267 	int ret;
268 	int need_later_update;
269 	int name_len;
270 	char name[];
271 };
272 
273 #define ADVANCE							1
274 #define ADVANCE_ONLY_NEXT					-1
275 
276 enum btrfs_compare_tree_result {
277 	BTRFS_COMPARE_TREE_NEW,
278 	BTRFS_COMPARE_TREE_DELETED,
279 	BTRFS_COMPARE_TREE_CHANGED,
280 	BTRFS_COMPARE_TREE_SAME,
281 };
282 
283 __cold
284 static void inconsistent_snapshot_error(struct send_ctx *sctx,
285 					enum btrfs_compare_tree_result result,
286 					const char *what)
287 {
288 	const char *result_string;
289 
290 	switch (result) {
291 	case BTRFS_COMPARE_TREE_NEW:
292 		result_string = "new";
293 		break;
294 	case BTRFS_COMPARE_TREE_DELETED:
295 		result_string = "deleted";
296 		break;
297 	case BTRFS_COMPARE_TREE_CHANGED:
298 		result_string = "updated";
299 		break;
300 	case BTRFS_COMPARE_TREE_SAME:
301 		ASSERT(0);
302 		result_string = "unchanged";
303 		break;
304 	default:
305 		ASSERT(0);
306 		result_string = "unexpected";
307 	}
308 
309 	btrfs_err(sctx->send_root->fs_info,
310 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
311 		  result_string, what, sctx->cmp_key->objectid,
312 		  sctx->send_root->root_key.objectid,
313 		  (sctx->parent_root ?
314 		   sctx->parent_root->root_key.objectid : 0));
315 }
316 
317 __maybe_unused
318 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
319 {
320 	switch (sctx->proto) {
321 	case 1:	 return cmd < __BTRFS_SEND_C_MAX_V1;
322 	case 2:	 return cmd < __BTRFS_SEND_C_MAX_V2;
323 	default: return false;
324 	}
325 }
326 
327 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
328 
329 static struct waiting_dir_move *
330 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
331 
332 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
333 
334 static int need_send_hole(struct send_ctx *sctx)
335 {
336 	return (sctx->parent_root && !sctx->cur_inode_new &&
337 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
338 		S_ISREG(sctx->cur_inode_mode));
339 }
340 
341 static void fs_path_reset(struct fs_path *p)
342 {
343 	if (p->reversed) {
344 		p->start = p->buf + p->buf_len - 1;
345 		p->end = p->start;
346 		*p->start = 0;
347 	} else {
348 		p->start = p->buf;
349 		p->end = p->start;
350 		*p->start = 0;
351 	}
352 }
353 
354 static struct fs_path *fs_path_alloc(void)
355 {
356 	struct fs_path *p;
357 
358 	p = kmalloc(sizeof(*p), GFP_KERNEL);
359 	if (!p)
360 		return NULL;
361 	p->reversed = 0;
362 	p->buf = p->inline_buf;
363 	p->buf_len = FS_PATH_INLINE_SIZE;
364 	fs_path_reset(p);
365 	return p;
366 }
367 
368 static struct fs_path *fs_path_alloc_reversed(void)
369 {
370 	struct fs_path *p;
371 
372 	p = fs_path_alloc();
373 	if (!p)
374 		return NULL;
375 	p->reversed = 1;
376 	fs_path_reset(p);
377 	return p;
378 }
379 
380 static void fs_path_free(struct fs_path *p)
381 {
382 	if (!p)
383 		return;
384 	if (p->buf != p->inline_buf)
385 		kfree(p->buf);
386 	kfree(p);
387 }
388 
389 static int fs_path_len(struct fs_path *p)
390 {
391 	return p->end - p->start;
392 }
393 
394 static int fs_path_ensure_buf(struct fs_path *p, int len)
395 {
396 	char *tmp_buf;
397 	int path_len;
398 	int old_buf_len;
399 
400 	len++;
401 
402 	if (p->buf_len >= len)
403 		return 0;
404 
405 	if (len > PATH_MAX) {
406 		WARN_ON(1);
407 		return -ENOMEM;
408 	}
409 
410 	path_len = p->end - p->start;
411 	old_buf_len = p->buf_len;
412 
413 	/*
414 	 * First time the inline_buf does not suffice
415 	 */
416 	if (p->buf == p->inline_buf) {
417 		tmp_buf = kmalloc(len, GFP_KERNEL);
418 		if (tmp_buf)
419 			memcpy(tmp_buf, p->buf, old_buf_len);
420 	} else {
421 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
422 	}
423 	if (!tmp_buf)
424 		return -ENOMEM;
425 	p->buf = tmp_buf;
426 	/*
427 	 * The real size of the buffer is bigger, this will let the fast path
428 	 * happen most of the time
429 	 */
430 	p->buf_len = ksize(p->buf);
431 
432 	if (p->reversed) {
433 		tmp_buf = p->buf + old_buf_len - path_len - 1;
434 		p->end = p->buf + p->buf_len - 1;
435 		p->start = p->end - path_len;
436 		memmove(p->start, tmp_buf, path_len + 1);
437 	} else {
438 		p->start = p->buf;
439 		p->end = p->start + path_len;
440 	}
441 	return 0;
442 }
443 
444 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
445 				   char **prepared)
446 {
447 	int ret;
448 	int new_len;
449 
450 	new_len = p->end - p->start + name_len;
451 	if (p->start != p->end)
452 		new_len++;
453 	ret = fs_path_ensure_buf(p, new_len);
454 	if (ret < 0)
455 		goto out;
456 
457 	if (p->reversed) {
458 		if (p->start != p->end)
459 			*--p->start = '/';
460 		p->start -= name_len;
461 		*prepared = p->start;
462 	} else {
463 		if (p->start != p->end)
464 			*p->end++ = '/';
465 		*prepared = p->end;
466 		p->end += name_len;
467 		*p->end = 0;
468 	}
469 
470 out:
471 	return ret;
472 }
473 
474 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
475 {
476 	int ret;
477 	char *prepared;
478 
479 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
480 	if (ret < 0)
481 		goto out;
482 	memcpy(prepared, name, name_len);
483 
484 out:
485 	return ret;
486 }
487 
488 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
489 {
490 	int ret;
491 	char *prepared;
492 
493 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
494 	if (ret < 0)
495 		goto out;
496 	memcpy(prepared, p2->start, p2->end - p2->start);
497 
498 out:
499 	return ret;
500 }
501 
502 static int fs_path_add_from_extent_buffer(struct fs_path *p,
503 					  struct extent_buffer *eb,
504 					  unsigned long off, int len)
505 {
506 	int ret;
507 	char *prepared;
508 
509 	ret = fs_path_prepare_for_add(p, len, &prepared);
510 	if (ret < 0)
511 		goto out;
512 
513 	read_extent_buffer(eb, prepared, off, len);
514 
515 out:
516 	return ret;
517 }
518 
519 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
520 {
521 	int ret;
522 
523 	p->reversed = from->reversed;
524 	fs_path_reset(p);
525 
526 	ret = fs_path_add_path(p, from);
527 
528 	return ret;
529 }
530 
531 
532 static void fs_path_unreverse(struct fs_path *p)
533 {
534 	char *tmp;
535 	int len;
536 
537 	if (!p->reversed)
538 		return;
539 
540 	tmp = p->start;
541 	len = p->end - p->start;
542 	p->start = p->buf;
543 	p->end = p->start + len;
544 	memmove(p->start, tmp, len + 1);
545 	p->reversed = 0;
546 }
547 
548 static struct btrfs_path *alloc_path_for_send(void)
549 {
550 	struct btrfs_path *path;
551 
552 	path = btrfs_alloc_path();
553 	if (!path)
554 		return NULL;
555 	path->search_commit_root = 1;
556 	path->skip_locking = 1;
557 	path->need_commit_sem = 1;
558 	return path;
559 }
560 
561 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
562 {
563 	int ret;
564 	u32 pos = 0;
565 
566 	while (pos < len) {
567 		ret = kernel_write(filp, buf + pos, len - pos, off);
568 		/* TODO handle that correctly */
569 		/*if (ret == -ERESTARTSYS) {
570 			continue;
571 		}*/
572 		if (ret < 0)
573 			return ret;
574 		if (ret == 0) {
575 			return -EIO;
576 		}
577 		pos += ret;
578 	}
579 
580 	return 0;
581 }
582 
583 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
584 {
585 	struct btrfs_tlv_header *hdr;
586 	int total_len = sizeof(*hdr) + len;
587 	int left = sctx->send_max_size - sctx->send_size;
588 
589 	if (unlikely(left < total_len))
590 		return -EOVERFLOW;
591 
592 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
593 	put_unaligned_le16(attr, &hdr->tlv_type);
594 	put_unaligned_le16(len, &hdr->tlv_len);
595 	memcpy(hdr + 1, data, len);
596 	sctx->send_size += total_len;
597 
598 	return 0;
599 }
600 
601 #define TLV_PUT_DEFINE_INT(bits) \
602 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
603 			u##bits attr, u##bits value)			\
604 	{								\
605 		__le##bits __tmp = cpu_to_le##bits(value);		\
606 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
607 	}
608 
609 TLV_PUT_DEFINE_INT(64)
610 
611 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
612 			  const char *str, int len)
613 {
614 	if (len == -1)
615 		len = strlen(str);
616 	return tlv_put(sctx, attr, str, len);
617 }
618 
619 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
620 			const u8 *uuid)
621 {
622 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
623 }
624 
625 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
626 				  struct extent_buffer *eb,
627 				  struct btrfs_timespec *ts)
628 {
629 	struct btrfs_timespec bts;
630 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
631 	return tlv_put(sctx, attr, &bts, sizeof(bts));
632 }
633 
634 
635 #define TLV_PUT(sctx, attrtype, data, attrlen) \
636 	do { \
637 		ret = tlv_put(sctx, attrtype, data, attrlen); \
638 		if (ret < 0) \
639 			goto tlv_put_failure; \
640 	} while (0)
641 
642 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
643 	do { \
644 		ret = tlv_put_u##bits(sctx, attrtype, value); \
645 		if (ret < 0) \
646 			goto tlv_put_failure; \
647 	} while (0)
648 
649 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
650 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
651 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
652 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
653 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
654 	do { \
655 		ret = tlv_put_string(sctx, attrtype, str, len); \
656 		if (ret < 0) \
657 			goto tlv_put_failure; \
658 	} while (0)
659 #define TLV_PUT_PATH(sctx, attrtype, p) \
660 	do { \
661 		ret = tlv_put_string(sctx, attrtype, p->start, \
662 			p->end - p->start); \
663 		if (ret < 0) \
664 			goto tlv_put_failure; \
665 	} while(0)
666 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
667 	do { \
668 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
669 		if (ret < 0) \
670 			goto tlv_put_failure; \
671 	} while (0)
672 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
673 	do { \
674 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
675 		if (ret < 0) \
676 			goto tlv_put_failure; \
677 	} while (0)
678 
679 static int send_header(struct send_ctx *sctx)
680 {
681 	struct btrfs_stream_header hdr;
682 
683 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
684 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
685 
686 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
687 					&sctx->send_off);
688 }
689 
690 /*
691  * For each command/item we want to send to userspace, we call this function.
692  */
693 static int begin_cmd(struct send_ctx *sctx, int cmd)
694 {
695 	struct btrfs_cmd_header *hdr;
696 
697 	if (WARN_ON(!sctx->send_buf))
698 		return -EINVAL;
699 
700 	BUG_ON(sctx->send_size);
701 
702 	sctx->send_size += sizeof(*hdr);
703 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 	put_unaligned_le16(cmd, &hdr->cmd);
705 
706 	return 0;
707 }
708 
709 static int send_cmd(struct send_ctx *sctx)
710 {
711 	int ret;
712 	struct btrfs_cmd_header *hdr;
713 	u32 crc;
714 
715 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
716 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
717 	put_unaligned_le32(0, &hdr->crc);
718 
719 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
720 	put_unaligned_le32(crc, &hdr->crc);
721 
722 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
723 					&sctx->send_off);
724 
725 	sctx->total_send_size += sctx->send_size;
726 	sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
727 	sctx->send_size = 0;
728 
729 	return ret;
730 }
731 
732 /*
733  * Sends a move instruction to user space
734  */
735 static int send_rename(struct send_ctx *sctx,
736 		     struct fs_path *from, struct fs_path *to)
737 {
738 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
739 	int ret;
740 
741 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
742 
743 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
744 	if (ret < 0)
745 		goto out;
746 
747 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
748 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
749 
750 	ret = send_cmd(sctx);
751 
752 tlv_put_failure:
753 out:
754 	return ret;
755 }
756 
757 /*
758  * Sends a link instruction to user space
759  */
760 static int send_link(struct send_ctx *sctx,
761 		     struct fs_path *path, struct fs_path *lnk)
762 {
763 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
764 	int ret;
765 
766 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
767 
768 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
769 	if (ret < 0)
770 		goto out;
771 
772 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
773 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
774 
775 	ret = send_cmd(sctx);
776 
777 tlv_put_failure:
778 out:
779 	return ret;
780 }
781 
782 /*
783  * Sends an unlink instruction to user space
784  */
785 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
786 {
787 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
788 	int ret;
789 
790 	btrfs_debug(fs_info, "send_unlink %s", path->start);
791 
792 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
793 	if (ret < 0)
794 		goto out;
795 
796 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
797 
798 	ret = send_cmd(sctx);
799 
800 tlv_put_failure:
801 out:
802 	return ret;
803 }
804 
805 /*
806  * Sends a rmdir instruction to user space
807  */
808 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
809 {
810 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
811 	int ret;
812 
813 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
814 
815 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
816 	if (ret < 0)
817 		goto out;
818 
819 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
820 
821 	ret = send_cmd(sctx);
822 
823 tlv_put_failure:
824 out:
825 	return ret;
826 }
827 
828 /*
829  * Helper function to retrieve some fields from an inode item.
830  */
831 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
832 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
833 			  u64 *gid, u64 *rdev)
834 {
835 	int ret;
836 	struct btrfs_inode_item *ii;
837 	struct btrfs_key key;
838 
839 	key.objectid = ino;
840 	key.type = BTRFS_INODE_ITEM_KEY;
841 	key.offset = 0;
842 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
843 	if (ret) {
844 		if (ret > 0)
845 			ret = -ENOENT;
846 		return ret;
847 	}
848 
849 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
850 			struct btrfs_inode_item);
851 	if (size)
852 		*size = btrfs_inode_size(path->nodes[0], ii);
853 	if (gen)
854 		*gen = btrfs_inode_generation(path->nodes[0], ii);
855 	if (mode)
856 		*mode = btrfs_inode_mode(path->nodes[0], ii);
857 	if (uid)
858 		*uid = btrfs_inode_uid(path->nodes[0], ii);
859 	if (gid)
860 		*gid = btrfs_inode_gid(path->nodes[0], ii);
861 	if (rdev)
862 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
863 
864 	return ret;
865 }
866 
867 static int get_inode_info(struct btrfs_root *root,
868 			  u64 ino, u64 *size, u64 *gen,
869 			  u64 *mode, u64 *uid, u64 *gid,
870 			  u64 *rdev)
871 {
872 	struct btrfs_path *path;
873 	int ret;
874 
875 	path = alloc_path_for_send();
876 	if (!path)
877 		return -ENOMEM;
878 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
879 			       rdev);
880 	btrfs_free_path(path);
881 	return ret;
882 }
883 
884 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
885 				   struct fs_path *p,
886 				   void *ctx);
887 
888 /*
889  * Helper function to iterate the entries in ONE btrfs_inode_ref or
890  * btrfs_inode_extref.
891  * The iterate callback may return a non zero value to stop iteration. This can
892  * be a negative value for error codes or 1 to simply stop it.
893  *
894  * path must point to the INODE_REF or INODE_EXTREF when called.
895  */
896 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
897 			     struct btrfs_key *found_key, int resolve,
898 			     iterate_inode_ref_t iterate, void *ctx)
899 {
900 	struct extent_buffer *eb = path->nodes[0];
901 	struct btrfs_item *item;
902 	struct btrfs_inode_ref *iref;
903 	struct btrfs_inode_extref *extref;
904 	struct btrfs_path *tmp_path;
905 	struct fs_path *p;
906 	u32 cur = 0;
907 	u32 total;
908 	int slot = path->slots[0];
909 	u32 name_len;
910 	char *start;
911 	int ret = 0;
912 	int num = 0;
913 	int index;
914 	u64 dir;
915 	unsigned long name_off;
916 	unsigned long elem_size;
917 	unsigned long ptr;
918 
919 	p = fs_path_alloc_reversed();
920 	if (!p)
921 		return -ENOMEM;
922 
923 	tmp_path = alloc_path_for_send();
924 	if (!tmp_path) {
925 		fs_path_free(p);
926 		return -ENOMEM;
927 	}
928 
929 
930 	if (found_key->type == BTRFS_INODE_REF_KEY) {
931 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
932 						    struct btrfs_inode_ref);
933 		item = btrfs_item_nr(slot);
934 		total = btrfs_item_size(eb, item);
935 		elem_size = sizeof(*iref);
936 	} else {
937 		ptr = btrfs_item_ptr_offset(eb, slot);
938 		total = btrfs_item_size_nr(eb, slot);
939 		elem_size = sizeof(*extref);
940 	}
941 
942 	while (cur < total) {
943 		fs_path_reset(p);
944 
945 		if (found_key->type == BTRFS_INODE_REF_KEY) {
946 			iref = (struct btrfs_inode_ref *)(ptr + cur);
947 			name_len = btrfs_inode_ref_name_len(eb, iref);
948 			name_off = (unsigned long)(iref + 1);
949 			index = btrfs_inode_ref_index(eb, iref);
950 			dir = found_key->offset;
951 		} else {
952 			extref = (struct btrfs_inode_extref *)(ptr + cur);
953 			name_len = btrfs_inode_extref_name_len(eb, extref);
954 			name_off = (unsigned long)&extref->name;
955 			index = btrfs_inode_extref_index(eb, extref);
956 			dir = btrfs_inode_extref_parent(eb, extref);
957 		}
958 
959 		if (resolve) {
960 			start = btrfs_ref_to_path(root, tmp_path, name_len,
961 						  name_off, eb, dir,
962 						  p->buf, p->buf_len);
963 			if (IS_ERR(start)) {
964 				ret = PTR_ERR(start);
965 				goto out;
966 			}
967 			if (start < p->buf) {
968 				/* overflow , try again with larger buffer */
969 				ret = fs_path_ensure_buf(p,
970 						p->buf_len + p->buf - start);
971 				if (ret < 0)
972 					goto out;
973 				start = btrfs_ref_to_path(root, tmp_path,
974 							  name_len, name_off,
975 							  eb, dir,
976 							  p->buf, p->buf_len);
977 				if (IS_ERR(start)) {
978 					ret = PTR_ERR(start);
979 					goto out;
980 				}
981 				BUG_ON(start < p->buf);
982 			}
983 			p->start = start;
984 		} else {
985 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
986 							     name_len);
987 			if (ret < 0)
988 				goto out;
989 		}
990 
991 		cur += elem_size + name_len;
992 		ret = iterate(num, dir, index, p, ctx);
993 		if (ret)
994 			goto out;
995 		num++;
996 	}
997 
998 out:
999 	btrfs_free_path(tmp_path);
1000 	fs_path_free(p);
1001 	return ret;
1002 }
1003 
1004 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1005 				  const char *name, int name_len,
1006 				  const char *data, int data_len,
1007 				  u8 type, void *ctx);
1008 
1009 /*
1010  * Helper function to iterate the entries in ONE btrfs_dir_item.
1011  * The iterate callback may return a non zero value to stop iteration. This can
1012  * be a negative value for error codes or 1 to simply stop it.
1013  *
1014  * path must point to the dir item when called.
1015  */
1016 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1017 			    iterate_dir_item_t iterate, void *ctx)
1018 {
1019 	int ret = 0;
1020 	struct extent_buffer *eb;
1021 	struct btrfs_item *item;
1022 	struct btrfs_dir_item *di;
1023 	struct btrfs_key di_key;
1024 	char *buf = NULL;
1025 	int buf_len;
1026 	u32 name_len;
1027 	u32 data_len;
1028 	u32 cur;
1029 	u32 len;
1030 	u32 total;
1031 	int slot;
1032 	int num;
1033 	u8 type;
1034 
1035 	/*
1036 	 * Start with a small buffer (1 page). If later we end up needing more
1037 	 * space, which can happen for xattrs on a fs with a leaf size greater
1038 	 * then the page size, attempt to increase the buffer. Typically xattr
1039 	 * values are small.
1040 	 */
1041 	buf_len = PATH_MAX;
1042 	buf = kmalloc(buf_len, GFP_KERNEL);
1043 	if (!buf) {
1044 		ret = -ENOMEM;
1045 		goto out;
1046 	}
1047 
1048 	eb = path->nodes[0];
1049 	slot = path->slots[0];
1050 	item = btrfs_item_nr(slot);
1051 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1052 	cur = 0;
1053 	len = 0;
1054 	total = btrfs_item_size(eb, item);
1055 
1056 	num = 0;
1057 	while (cur < total) {
1058 		name_len = btrfs_dir_name_len(eb, di);
1059 		data_len = btrfs_dir_data_len(eb, di);
1060 		type = btrfs_dir_type(eb, di);
1061 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1062 
1063 		if (type == BTRFS_FT_XATTR) {
1064 			if (name_len > XATTR_NAME_MAX) {
1065 				ret = -ENAMETOOLONG;
1066 				goto out;
1067 			}
1068 			if (name_len + data_len >
1069 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1070 				ret = -E2BIG;
1071 				goto out;
1072 			}
1073 		} else {
1074 			/*
1075 			 * Path too long
1076 			 */
1077 			if (name_len + data_len > PATH_MAX) {
1078 				ret = -ENAMETOOLONG;
1079 				goto out;
1080 			}
1081 		}
1082 
1083 		if (name_len + data_len > buf_len) {
1084 			buf_len = name_len + data_len;
1085 			if (is_vmalloc_addr(buf)) {
1086 				vfree(buf);
1087 				buf = NULL;
1088 			} else {
1089 				char *tmp = krealloc(buf, buf_len,
1090 						GFP_KERNEL | __GFP_NOWARN);
1091 
1092 				if (!tmp)
1093 					kfree(buf);
1094 				buf = tmp;
1095 			}
1096 			if (!buf) {
1097 				buf = kvmalloc(buf_len, GFP_KERNEL);
1098 				if (!buf) {
1099 					ret = -ENOMEM;
1100 					goto out;
1101 				}
1102 			}
1103 		}
1104 
1105 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1106 				name_len + data_len);
1107 
1108 		len = sizeof(*di) + name_len + data_len;
1109 		di = (struct btrfs_dir_item *)((char *)di + len);
1110 		cur += len;
1111 
1112 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1113 				data_len, type, ctx);
1114 		if (ret < 0)
1115 			goto out;
1116 		if (ret) {
1117 			ret = 0;
1118 			goto out;
1119 		}
1120 
1121 		num++;
1122 	}
1123 
1124 out:
1125 	kvfree(buf);
1126 	return ret;
1127 }
1128 
1129 static int __copy_first_ref(int num, u64 dir, int index,
1130 			    struct fs_path *p, void *ctx)
1131 {
1132 	int ret;
1133 	struct fs_path *pt = ctx;
1134 
1135 	ret = fs_path_copy(pt, p);
1136 	if (ret < 0)
1137 		return ret;
1138 
1139 	/* we want the first only */
1140 	return 1;
1141 }
1142 
1143 /*
1144  * Retrieve the first path of an inode. If an inode has more then one
1145  * ref/hardlink, this is ignored.
1146  */
1147 static int get_inode_path(struct btrfs_root *root,
1148 			  u64 ino, struct fs_path *path)
1149 {
1150 	int ret;
1151 	struct btrfs_key key, found_key;
1152 	struct btrfs_path *p;
1153 
1154 	p = alloc_path_for_send();
1155 	if (!p)
1156 		return -ENOMEM;
1157 
1158 	fs_path_reset(path);
1159 
1160 	key.objectid = ino;
1161 	key.type = BTRFS_INODE_REF_KEY;
1162 	key.offset = 0;
1163 
1164 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1165 	if (ret < 0)
1166 		goto out;
1167 	if (ret) {
1168 		ret = 1;
1169 		goto out;
1170 	}
1171 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1172 	if (found_key.objectid != ino ||
1173 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1174 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1175 		ret = -ENOENT;
1176 		goto out;
1177 	}
1178 
1179 	ret = iterate_inode_ref(root, p, &found_key, 1,
1180 				__copy_first_ref, path);
1181 	if (ret < 0)
1182 		goto out;
1183 	ret = 0;
1184 
1185 out:
1186 	btrfs_free_path(p);
1187 	return ret;
1188 }
1189 
1190 struct backref_ctx {
1191 	struct send_ctx *sctx;
1192 
1193 	/* number of total found references */
1194 	u64 found;
1195 
1196 	/*
1197 	 * used for clones found in send_root. clones found behind cur_objectid
1198 	 * and cur_offset are not considered as allowed clones.
1199 	 */
1200 	u64 cur_objectid;
1201 	u64 cur_offset;
1202 
1203 	/* may be truncated in case it's the last extent in a file */
1204 	u64 extent_len;
1205 
1206 	/* Just to check for bugs in backref resolving */
1207 	int found_itself;
1208 };
1209 
1210 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1211 {
1212 	u64 root = (u64)(uintptr_t)key;
1213 	const struct clone_root *cr = elt;
1214 
1215 	if (root < cr->root->root_key.objectid)
1216 		return -1;
1217 	if (root > cr->root->root_key.objectid)
1218 		return 1;
1219 	return 0;
1220 }
1221 
1222 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1223 {
1224 	const struct clone_root *cr1 = e1;
1225 	const struct clone_root *cr2 = e2;
1226 
1227 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1228 		return -1;
1229 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1230 		return 1;
1231 	return 0;
1232 }
1233 
1234 /*
1235  * Called for every backref that is found for the current extent.
1236  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1237  */
1238 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1239 {
1240 	struct backref_ctx *bctx = ctx_;
1241 	struct clone_root *found;
1242 
1243 	/* First check if the root is in the list of accepted clone sources */
1244 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1245 			bctx->sctx->clone_roots_cnt,
1246 			sizeof(struct clone_root),
1247 			__clone_root_cmp_bsearch);
1248 	if (!found)
1249 		return 0;
1250 
1251 	if (found->root == bctx->sctx->send_root &&
1252 	    ino == bctx->cur_objectid &&
1253 	    offset == bctx->cur_offset) {
1254 		bctx->found_itself = 1;
1255 	}
1256 
1257 	/*
1258 	 * Make sure we don't consider clones from send_root that are
1259 	 * behind the current inode/offset.
1260 	 */
1261 	if (found->root == bctx->sctx->send_root) {
1262 		/*
1263 		 * If the source inode was not yet processed we can't issue a
1264 		 * clone operation, as the source extent does not exist yet at
1265 		 * the destination of the stream.
1266 		 */
1267 		if (ino > bctx->cur_objectid)
1268 			return 0;
1269 		/*
1270 		 * We clone from the inode currently being sent as long as the
1271 		 * source extent is already processed, otherwise we could try
1272 		 * to clone from an extent that does not exist yet at the
1273 		 * destination of the stream.
1274 		 */
1275 		if (ino == bctx->cur_objectid &&
1276 		    offset + bctx->extent_len >
1277 		    bctx->sctx->cur_inode_next_write_offset)
1278 			return 0;
1279 	}
1280 
1281 	bctx->found++;
1282 	found->found_refs++;
1283 	if (ino < found->ino) {
1284 		found->ino = ino;
1285 		found->offset = offset;
1286 	} else if (found->ino == ino) {
1287 		/*
1288 		 * same extent found more then once in the same file.
1289 		 */
1290 		if (found->offset > offset + bctx->extent_len)
1291 			found->offset = offset;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Given an inode, offset and extent item, it finds a good clone for a clone
1299  * instruction. Returns -ENOENT when none could be found. The function makes
1300  * sure that the returned clone is usable at the point where sending is at the
1301  * moment. This means, that no clones are accepted which lie behind the current
1302  * inode+offset.
1303  *
1304  * path must point to the extent item when called.
1305  */
1306 static int find_extent_clone(struct send_ctx *sctx,
1307 			     struct btrfs_path *path,
1308 			     u64 ino, u64 data_offset,
1309 			     u64 ino_size,
1310 			     struct clone_root **found)
1311 {
1312 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1313 	int ret;
1314 	int extent_type;
1315 	u64 logical;
1316 	u64 disk_byte;
1317 	u64 num_bytes;
1318 	u64 extent_item_pos;
1319 	u64 flags = 0;
1320 	struct btrfs_file_extent_item *fi;
1321 	struct extent_buffer *eb = path->nodes[0];
1322 	struct backref_ctx backref_ctx = {0};
1323 	struct clone_root *cur_clone_root;
1324 	struct btrfs_key found_key;
1325 	struct btrfs_path *tmp_path;
1326 	struct btrfs_extent_item *ei;
1327 	int compressed;
1328 	u32 i;
1329 
1330 	tmp_path = alloc_path_for_send();
1331 	if (!tmp_path)
1332 		return -ENOMEM;
1333 
1334 	/* We only use this path under the commit sem */
1335 	tmp_path->need_commit_sem = 0;
1336 
1337 	if (data_offset >= ino_size) {
1338 		/*
1339 		 * There may be extents that lie behind the file's size.
1340 		 * I at least had this in combination with snapshotting while
1341 		 * writing large files.
1342 		 */
1343 		ret = 0;
1344 		goto out;
1345 	}
1346 
1347 	fi = btrfs_item_ptr(eb, path->slots[0],
1348 			struct btrfs_file_extent_item);
1349 	extent_type = btrfs_file_extent_type(eb, fi);
1350 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1351 		ret = -ENOENT;
1352 		goto out;
1353 	}
1354 	compressed = btrfs_file_extent_compression(eb, fi);
1355 
1356 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1357 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1358 	if (disk_byte == 0) {
1359 		ret = -ENOENT;
1360 		goto out;
1361 	}
1362 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1363 
1364 	down_read(&fs_info->commit_root_sem);
1365 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1366 				  &found_key, &flags);
1367 	up_read(&fs_info->commit_root_sem);
1368 
1369 	if (ret < 0)
1370 		goto out;
1371 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1372 		ret = -EIO;
1373 		goto out;
1374 	}
1375 
1376 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1377 			    struct btrfs_extent_item);
1378 	/*
1379 	 * Backreference walking (iterate_extent_inodes() below) is currently
1380 	 * too expensive when an extent has a large number of references, both
1381 	 * in time spent and used memory. So for now just fallback to write
1382 	 * operations instead of clone operations when an extent has more than
1383 	 * a certain amount of references.
1384 	 */
1385 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1386 		ret = -ENOENT;
1387 		goto out;
1388 	}
1389 	btrfs_release_path(tmp_path);
1390 
1391 	/*
1392 	 * Setup the clone roots.
1393 	 */
1394 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1395 		cur_clone_root = sctx->clone_roots + i;
1396 		cur_clone_root->ino = (u64)-1;
1397 		cur_clone_root->offset = 0;
1398 		cur_clone_root->found_refs = 0;
1399 	}
1400 
1401 	backref_ctx.sctx = sctx;
1402 	backref_ctx.found = 0;
1403 	backref_ctx.cur_objectid = ino;
1404 	backref_ctx.cur_offset = data_offset;
1405 	backref_ctx.found_itself = 0;
1406 	backref_ctx.extent_len = num_bytes;
1407 
1408 	/*
1409 	 * The last extent of a file may be too large due to page alignment.
1410 	 * We need to adjust extent_len in this case so that the checks in
1411 	 * __iterate_backrefs work.
1412 	 */
1413 	if (data_offset + num_bytes >= ino_size)
1414 		backref_ctx.extent_len = ino_size - data_offset;
1415 
1416 	/*
1417 	 * Now collect all backrefs.
1418 	 */
1419 	if (compressed == BTRFS_COMPRESS_NONE)
1420 		extent_item_pos = logical - found_key.objectid;
1421 	else
1422 		extent_item_pos = 0;
1423 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1424 				    extent_item_pos, 1, __iterate_backrefs,
1425 				    &backref_ctx, false);
1426 
1427 	if (ret < 0)
1428 		goto out;
1429 
1430 	if (!backref_ctx.found_itself) {
1431 		/* found a bug in backref code? */
1432 		ret = -EIO;
1433 		btrfs_err(fs_info,
1434 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1435 			  ino, data_offset, disk_byte, found_key.objectid);
1436 		goto out;
1437 	}
1438 
1439 	btrfs_debug(fs_info,
1440 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1441 		    data_offset, ino, num_bytes, logical);
1442 
1443 	if (!backref_ctx.found)
1444 		btrfs_debug(fs_info, "no clones found");
1445 
1446 	cur_clone_root = NULL;
1447 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1448 		if (sctx->clone_roots[i].found_refs) {
1449 			if (!cur_clone_root)
1450 				cur_clone_root = sctx->clone_roots + i;
1451 			else if (sctx->clone_roots[i].root == sctx->send_root)
1452 				/* prefer clones from send_root over others */
1453 				cur_clone_root = sctx->clone_roots + i;
1454 		}
1455 
1456 	}
1457 
1458 	if (cur_clone_root) {
1459 		*found = cur_clone_root;
1460 		ret = 0;
1461 	} else {
1462 		ret = -ENOENT;
1463 	}
1464 
1465 out:
1466 	btrfs_free_path(tmp_path);
1467 	return ret;
1468 }
1469 
1470 static int read_symlink(struct btrfs_root *root,
1471 			u64 ino,
1472 			struct fs_path *dest)
1473 {
1474 	int ret;
1475 	struct btrfs_path *path;
1476 	struct btrfs_key key;
1477 	struct btrfs_file_extent_item *ei;
1478 	u8 type;
1479 	u8 compression;
1480 	unsigned long off;
1481 	int len;
1482 
1483 	path = alloc_path_for_send();
1484 	if (!path)
1485 		return -ENOMEM;
1486 
1487 	key.objectid = ino;
1488 	key.type = BTRFS_EXTENT_DATA_KEY;
1489 	key.offset = 0;
1490 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1491 	if (ret < 0)
1492 		goto out;
1493 	if (ret) {
1494 		/*
1495 		 * An empty symlink inode. Can happen in rare error paths when
1496 		 * creating a symlink (transaction committed before the inode
1497 		 * eviction handler removed the symlink inode items and a crash
1498 		 * happened in between or the subvol was snapshoted in between).
1499 		 * Print an informative message to dmesg/syslog so that the user
1500 		 * can delete the symlink.
1501 		 */
1502 		btrfs_err(root->fs_info,
1503 			  "Found empty symlink inode %llu at root %llu",
1504 			  ino, root->root_key.objectid);
1505 		ret = -EIO;
1506 		goto out;
1507 	}
1508 
1509 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1510 			struct btrfs_file_extent_item);
1511 	type = btrfs_file_extent_type(path->nodes[0], ei);
1512 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1513 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1514 	BUG_ON(compression);
1515 
1516 	off = btrfs_file_extent_inline_start(ei);
1517 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1518 
1519 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1520 
1521 out:
1522 	btrfs_free_path(path);
1523 	return ret;
1524 }
1525 
1526 /*
1527  * Helper function to generate a file name that is unique in the root of
1528  * send_root and parent_root. This is used to generate names for orphan inodes.
1529  */
1530 static int gen_unique_name(struct send_ctx *sctx,
1531 			   u64 ino, u64 gen,
1532 			   struct fs_path *dest)
1533 {
1534 	int ret = 0;
1535 	struct btrfs_path *path;
1536 	struct btrfs_dir_item *di;
1537 	char tmp[64];
1538 	int len;
1539 	u64 idx = 0;
1540 
1541 	path = alloc_path_for_send();
1542 	if (!path)
1543 		return -ENOMEM;
1544 
1545 	while (1) {
1546 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1547 				ino, gen, idx);
1548 		ASSERT(len < sizeof(tmp));
1549 
1550 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1551 				path, BTRFS_FIRST_FREE_OBJECTID,
1552 				tmp, strlen(tmp), 0);
1553 		btrfs_release_path(path);
1554 		if (IS_ERR(di)) {
1555 			ret = PTR_ERR(di);
1556 			goto out;
1557 		}
1558 		if (di) {
1559 			/* not unique, try again */
1560 			idx++;
1561 			continue;
1562 		}
1563 
1564 		if (!sctx->parent_root) {
1565 			/* unique */
1566 			ret = 0;
1567 			break;
1568 		}
1569 
1570 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1571 				path, BTRFS_FIRST_FREE_OBJECTID,
1572 				tmp, strlen(tmp), 0);
1573 		btrfs_release_path(path);
1574 		if (IS_ERR(di)) {
1575 			ret = PTR_ERR(di);
1576 			goto out;
1577 		}
1578 		if (di) {
1579 			/* not unique, try again */
1580 			idx++;
1581 			continue;
1582 		}
1583 		/* unique */
1584 		break;
1585 	}
1586 
1587 	ret = fs_path_add(dest, tmp, strlen(tmp));
1588 
1589 out:
1590 	btrfs_free_path(path);
1591 	return ret;
1592 }
1593 
1594 enum inode_state {
1595 	inode_state_no_change,
1596 	inode_state_will_create,
1597 	inode_state_did_create,
1598 	inode_state_will_delete,
1599 	inode_state_did_delete,
1600 };
1601 
1602 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1603 {
1604 	int ret;
1605 	int left_ret;
1606 	int right_ret;
1607 	u64 left_gen;
1608 	u64 right_gen;
1609 
1610 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1611 			NULL, NULL);
1612 	if (ret < 0 && ret != -ENOENT)
1613 		goto out;
1614 	left_ret = ret;
1615 
1616 	if (!sctx->parent_root) {
1617 		right_ret = -ENOENT;
1618 	} else {
1619 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1620 				NULL, NULL, NULL, NULL);
1621 		if (ret < 0 && ret != -ENOENT)
1622 			goto out;
1623 		right_ret = ret;
1624 	}
1625 
1626 	if (!left_ret && !right_ret) {
1627 		if (left_gen == gen && right_gen == gen) {
1628 			ret = inode_state_no_change;
1629 		} else if (left_gen == gen) {
1630 			if (ino < sctx->send_progress)
1631 				ret = inode_state_did_create;
1632 			else
1633 				ret = inode_state_will_create;
1634 		} else if (right_gen == gen) {
1635 			if (ino < sctx->send_progress)
1636 				ret = inode_state_did_delete;
1637 			else
1638 				ret = inode_state_will_delete;
1639 		} else  {
1640 			ret = -ENOENT;
1641 		}
1642 	} else if (!left_ret) {
1643 		if (left_gen == gen) {
1644 			if (ino < sctx->send_progress)
1645 				ret = inode_state_did_create;
1646 			else
1647 				ret = inode_state_will_create;
1648 		} else {
1649 			ret = -ENOENT;
1650 		}
1651 	} else if (!right_ret) {
1652 		if (right_gen == gen) {
1653 			if (ino < sctx->send_progress)
1654 				ret = inode_state_did_delete;
1655 			else
1656 				ret = inode_state_will_delete;
1657 		} else {
1658 			ret = -ENOENT;
1659 		}
1660 	} else {
1661 		ret = -ENOENT;
1662 	}
1663 
1664 out:
1665 	return ret;
1666 }
1667 
1668 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1669 {
1670 	int ret;
1671 
1672 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1673 		return 1;
1674 
1675 	ret = get_cur_inode_state(sctx, ino, gen);
1676 	if (ret < 0)
1677 		goto out;
1678 
1679 	if (ret == inode_state_no_change ||
1680 	    ret == inode_state_did_create ||
1681 	    ret == inode_state_will_delete)
1682 		ret = 1;
1683 	else
1684 		ret = 0;
1685 
1686 out:
1687 	return ret;
1688 }
1689 
1690 /*
1691  * Helper function to lookup a dir item in a dir.
1692  */
1693 static int lookup_dir_item_inode(struct btrfs_root *root,
1694 				 u64 dir, const char *name, int name_len,
1695 				 u64 *found_inode,
1696 				 u8 *found_type)
1697 {
1698 	int ret = 0;
1699 	struct btrfs_dir_item *di;
1700 	struct btrfs_key key;
1701 	struct btrfs_path *path;
1702 
1703 	path = alloc_path_for_send();
1704 	if (!path)
1705 		return -ENOMEM;
1706 
1707 	di = btrfs_lookup_dir_item(NULL, root, path,
1708 			dir, name, name_len, 0);
1709 	if (IS_ERR_OR_NULL(di)) {
1710 		ret = di ? PTR_ERR(di) : -ENOENT;
1711 		goto out;
1712 	}
1713 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1714 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1715 		ret = -ENOENT;
1716 		goto out;
1717 	}
1718 	*found_inode = key.objectid;
1719 	*found_type = btrfs_dir_type(path->nodes[0], di);
1720 
1721 out:
1722 	btrfs_free_path(path);
1723 	return ret;
1724 }
1725 
1726 /*
1727  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1728  * generation of the parent dir and the name of the dir entry.
1729  */
1730 static int get_first_ref(struct btrfs_root *root, u64 ino,
1731 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1732 {
1733 	int ret;
1734 	struct btrfs_key key;
1735 	struct btrfs_key found_key;
1736 	struct btrfs_path *path;
1737 	int len;
1738 	u64 parent_dir;
1739 
1740 	path = alloc_path_for_send();
1741 	if (!path)
1742 		return -ENOMEM;
1743 
1744 	key.objectid = ino;
1745 	key.type = BTRFS_INODE_REF_KEY;
1746 	key.offset = 0;
1747 
1748 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1749 	if (ret < 0)
1750 		goto out;
1751 	if (!ret)
1752 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1753 				path->slots[0]);
1754 	if (ret || found_key.objectid != ino ||
1755 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1756 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1757 		ret = -ENOENT;
1758 		goto out;
1759 	}
1760 
1761 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1762 		struct btrfs_inode_ref *iref;
1763 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1764 				      struct btrfs_inode_ref);
1765 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1766 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1767 						     (unsigned long)(iref + 1),
1768 						     len);
1769 		parent_dir = found_key.offset;
1770 	} else {
1771 		struct btrfs_inode_extref *extref;
1772 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1773 					struct btrfs_inode_extref);
1774 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1775 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1776 					(unsigned long)&extref->name, len);
1777 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1778 	}
1779 	if (ret < 0)
1780 		goto out;
1781 	btrfs_release_path(path);
1782 
1783 	if (dir_gen) {
1784 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1785 				     NULL, NULL, NULL);
1786 		if (ret < 0)
1787 			goto out;
1788 	}
1789 
1790 	*dir = parent_dir;
1791 
1792 out:
1793 	btrfs_free_path(path);
1794 	return ret;
1795 }
1796 
1797 static int is_first_ref(struct btrfs_root *root,
1798 			u64 ino, u64 dir,
1799 			const char *name, int name_len)
1800 {
1801 	int ret;
1802 	struct fs_path *tmp_name;
1803 	u64 tmp_dir;
1804 
1805 	tmp_name = fs_path_alloc();
1806 	if (!tmp_name)
1807 		return -ENOMEM;
1808 
1809 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1810 	if (ret < 0)
1811 		goto out;
1812 
1813 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1814 		ret = 0;
1815 		goto out;
1816 	}
1817 
1818 	ret = !memcmp(tmp_name->start, name, name_len);
1819 
1820 out:
1821 	fs_path_free(tmp_name);
1822 	return ret;
1823 }
1824 
1825 /*
1826  * Used by process_recorded_refs to determine if a new ref would overwrite an
1827  * already existing ref. In case it detects an overwrite, it returns the
1828  * inode/gen in who_ino/who_gen.
1829  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1830  * to make sure later references to the overwritten inode are possible.
1831  * Orphanizing is however only required for the first ref of an inode.
1832  * process_recorded_refs does an additional is_first_ref check to see if
1833  * orphanizing is really required.
1834  */
1835 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1836 			      const char *name, int name_len,
1837 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1838 {
1839 	int ret = 0;
1840 	u64 gen;
1841 	u64 other_inode = 0;
1842 	u8 other_type = 0;
1843 
1844 	if (!sctx->parent_root)
1845 		goto out;
1846 
1847 	ret = is_inode_existent(sctx, dir, dir_gen);
1848 	if (ret <= 0)
1849 		goto out;
1850 
1851 	/*
1852 	 * If we have a parent root we need to verify that the parent dir was
1853 	 * not deleted and then re-created, if it was then we have no overwrite
1854 	 * and we can just unlink this entry.
1855 	 */
1856 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1857 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1858 				     NULL, NULL, NULL);
1859 		if (ret < 0 && ret != -ENOENT)
1860 			goto out;
1861 		if (ret) {
1862 			ret = 0;
1863 			goto out;
1864 		}
1865 		if (gen != dir_gen)
1866 			goto out;
1867 	}
1868 
1869 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1870 			&other_inode, &other_type);
1871 	if (ret < 0 && ret != -ENOENT)
1872 		goto out;
1873 	if (ret) {
1874 		ret = 0;
1875 		goto out;
1876 	}
1877 
1878 	/*
1879 	 * Check if the overwritten ref was already processed. If yes, the ref
1880 	 * was already unlinked/moved, so we can safely assume that we will not
1881 	 * overwrite anything at this point in time.
1882 	 */
1883 	if (other_inode > sctx->send_progress ||
1884 	    is_waiting_for_move(sctx, other_inode)) {
1885 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1886 				who_gen, who_mode, NULL, NULL, NULL);
1887 		if (ret < 0)
1888 			goto out;
1889 
1890 		ret = 1;
1891 		*who_ino = other_inode;
1892 	} else {
1893 		ret = 0;
1894 	}
1895 
1896 out:
1897 	return ret;
1898 }
1899 
1900 /*
1901  * Checks if the ref was overwritten by an already processed inode. This is
1902  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1903  * thus the orphan name needs be used.
1904  * process_recorded_refs also uses it to avoid unlinking of refs that were
1905  * overwritten.
1906  */
1907 static int did_overwrite_ref(struct send_ctx *sctx,
1908 			    u64 dir, u64 dir_gen,
1909 			    u64 ino, u64 ino_gen,
1910 			    const char *name, int name_len)
1911 {
1912 	int ret = 0;
1913 	u64 gen;
1914 	u64 ow_inode;
1915 	u8 other_type;
1916 
1917 	if (!sctx->parent_root)
1918 		goto out;
1919 
1920 	ret = is_inode_existent(sctx, dir, dir_gen);
1921 	if (ret <= 0)
1922 		goto out;
1923 
1924 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1925 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1926 				     NULL, NULL, NULL);
1927 		if (ret < 0 && ret != -ENOENT)
1928 			goto out;
1929 		if (ret) {
1930 			ret = 0;
1931 			goto out;
1932 		}
1933 		if (gen != dir_gen)
1934 			goto out;
1935 	}
1936 
1937 	/* check if the ref was overwritten by another ref */
1938 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1939 			&ow_inode, &other_type);
1940 	if (ret < 0 && ret != -ENOENT)
1941 		goto out;
1942 	if (ret) {
1943 		/* was never and will never be overwritten */
1944 		ret = 0;
1945 		goto out;
1946 	}
1947 
1948 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1949 			NULL, NULL);
1950 	if (ret < 0)
1951 		goto out;
1952 
1953 	if (ow_inode == ino && gen == ino_gen) {
1954 		ret = 0;
1955 		goto out;
1956 	}
1957 
1958 	/*
1959 	 * We know that it is or will be overwritten. Check this now.
1960 	 * The current inode being processed might have been the one that caused
1961 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1962 	 * the current inode being processed.
1963 	 */
1964 	if ((ow_inode < sctx->send_progress) ||
1965 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1966 	     gen == sctx->cur_inode_gen))
1967 		ret = 1;
1968 	else
1969 		ret = 0;
1970 
1971 out:
1972 	return ret;
1973 }
1974 
1975 /*
1976  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1977  * that got overwritten. This is used by process_recorded_refs to determine
1978  * if it has to use the path as returned by get_cur_path or the orphan name.
1979  */
1980 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1981 {
1982 	int ret = 0;
1983 	struct fs_path *name = NULL;
1984 	u64 dir;
1985 	u64 dir_gen;
1986 
1987 	if (!sctx->parent_root)
1988 		goto out;
1989 
1990 	name = fs_path_alloc();
1991 	if (!name)
1992 		return -ENOMEM;
1993 
1994 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1995 	if (ret < 0)
1996 		goto out;
1997 
1998 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1999 			name->start, fs_path_len(name));
2000 
2001 out:
2002 	fs_path_free(name);
2003 	return ret;
2004 }
2005 
2006 /*
2007  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2008  * so we need to do some special handling in case we have clashes. This function
2009  * takes care of this with the help of name_cache_entry::radix_list.
2010  * In case of error, nce is kfreed.
2011  */
2012 static int name_cache_insert(struct send_ctx *sctx,
2013 			     struct name_cache_entry *nce)
2014 {
2015 	int ret = 0;
2016 	struct list_head *nce_head;
2017 
2018 	nce_head = radix_tree_lookup(&sctx->name_cache,
2019 			(unsigned long)nce->ino);
2020 	if (!nce_head) {
2021 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2022 		if (!nce_head) {
2023 			kfree(nce);
2024 			return -ENOMEM;
2025 		}
2026 		INIT_LIST_HEAD(nce_head);
2027 
2028 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2029 		if (ret < 0) {
2030 			kfree(nce_head);
2031 			kfree(nce);
2032 			return ret;
2033 		}
2034 	}
2035 	list_add_tail(&nce->radix_list, nce_head);
2036 	list_add_tail(&nce->list, &sctx->name_cache_list);
2037 	sctx->name_cache_size++;
2038 
2039 	return ret;
2040 }
2041 
2042 static void name_cache_delete(struct send_ctx *sctx,
2043 			      struct name_cache_entry *nce)
2044 {
2045 	struct list_head *nce_head;
2046 
2047 	nce_head = radix_tree_lookup(&sctx->name_cache,
2048 			(unsigned long)nce->ino);
2049 	if (!nce_head) {
2050 		btrfs_err(sctx->send_root->fs_info,
2051 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2052 			nce->ino, sctx->name_cache_size);
2053 	}
2054 
2055 	list_del(&nce->radix_list);
2056 	list_del(&nce->list);
2057 	sctx->name_cache_size--;
2058 
2059 	/*
2060 	 * We may not get to the final release of nce_head if the lookup fails
2061 	 */
2062 	if (nce_head && list_empty(nce_head)) {
2063 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2064 		kfree(nce_head);
2065 	}
2066 }
2067 
2068 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2069 						    u64 ino, u64 gen)
2070 {
2071 	struct list_head *nce_head;
2072 	struct name_cache_entry *cur;
2073 
2074 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2075 	if (!nce_head)
2076 		return NULL;
2077 
2078 	list_for_each_entry(cur, nce_head, radix_list) {
2079 		if (cur->ino == ino && cur->gen == gen)
2080 			return cur;
2081 	}
2082 	return NULL;
2083 }
2084 
2085 /*
2086  * Remove some entries from the beginning of name_cache_list.
2087  */
2088 static void name_cache_clean_unused(struct send_ctx *sctx)
2089 {
2090 	struct name_cache_entry *nce;
2091 
2092 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2093 		return;
2094 
2095 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2096 		nce = list_entry(sctx->name_cache_list.next,
2097 				struct name_cache_entry, list);
2098 		name_cache_delete(sctx, nce);
2099 		kfree(nce);
2100 	}
2101 }
2102 
2103 static void name_cache_free(struct send_ctx *sctx)
2104 {
2105 	struct name_cache_entry *nce;
2106 
2107 	while (!list_empty(&sctx->name_cache_list)) {
2108 		nce = list_entry(sctx->name_cache_list.next,
2109 				struct name_cache_entry, list);
2110 		name_cache_delete(sctx, nce);
2111 		kfree(nce);
2112 	}
2113 }
2114 
2115 /*
2116  * Used by get_cur_path for each ref up to the root.
2117  * Returns 0 if it succeeded.
2118  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2119  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2120  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2121  * Returns <0 in case of error.
2122  */
2123 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2124 				     u64 ino, u64 gen,
2125 				     u64 *parent_ino,
2126 				     u64 *parent_gen,
2127 				     struct fs_path *dest)
2128 {
2129 	int ret;
2130 	int nce_ret;
2131 	struct name_cache_entry *nce = NULL;
2132 
2133 	/*
2134 	 * First check if we already did a call to this function with the same
2135 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2136 	 * return the cached result.
2137 	 */
2138 	nce = name_cache_search(sctx, ino, gen);
2139 	if (nce) {
2140 		if (ino < sctx->send_progress && nce->need_later_update) {
2141 			name_cache_delete(sctx, nce);
2142 			kfree(nce);
2143 			nce = NULL;
2144 		} else {
2145 			/*
2146 			 * Removes the entry from the list and adds it back to
2147 			 * the end.  This marks the entry as recently used so
2148 			 * that name_cache_clean_unused does not remove it.
2149 			 */
2150 			list_move_tail(&nce->list, &sctx->name_cache_list);
2151 
2152 			*parent_ino = nce->parent_ino;
2153 			*parent_gen = nce->parent_gen;
2154 			ret = fs_path_add(dest, nce->name, nce->name_len);
2155 			if (ret < 0)
2156 				goto out;
2157 			ret = nce->ret;
2158 			goto out;
2159 		}
2160 	}
2161 
2162 	/*
2163 	 * If the inode is not existent yet, add the orphan name and return 1.
2164 	 * This should only happen for the parent dir that we determine in
2165 	 * __record_new_ref
2166 	 */
2167 	ret = is_inode_existent(sctx, ino, gen);
2168 	if (ret < 0)
2169 		goto out;
2170 
2171 	if (!ret) {
2172 		ret = gen_unique_name(sctx, ino, gen, dest);
2173 		if (ret < 0)
2174 			goto out;
2175 		ret = 1;
2176 		goto out_cache;
2177 	}
2178 
2179 	/*
2180 	 * Depending on whether the inode was already processed or not, use
2181 	 * send_root or parent_root for ref lookup.
2182 	 */
2183 	if (ino < sctx->send_progress)
2184 		ret = get_first_ref(sctx->send_root, ino,
2185 				    parent_ino, parent_gen, dest);
2186 	else
2187 		ret = get_first_ref(sctx->parent_root, ino,
2188 				    parent_ino, parent_gen, dest);
2189 	if (ret < 0)
2190 		goto out;
2191 
2192 	/*
2193 	 * Check if the ref was overwritten by an inode's ref that was processed
2194 	 * earlier. If yes, treat as orphan and return 1.
2195 	 */
2196 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2197 			dest->start, dest->end - dest->start);
2198 	if (ret < 0)
2199 		goto out;
2200 	if (ret) {
2201 		fs_path_reset(dest);
2202 		ret = gen_unique_name(sctx, ino, gen, dest);
2203 		if (ret < 0)
2204 			goto out;
2205 		ret = 1;
2206 	}
2207 
2208 out_cache:
2209 	/*
2210 	 * Store the result of the lookup in the name cache.
2211 	 */
2212 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2213 	if (!nce) {
2214 		ret = -ENOMEM;
2215 		goto out;
2216 	}
2217 
2218 	nce->ino = ino;
2219 	nce->gen = gen;
2220 	nce->parent_ino = *parent_ino;
2221 	nce->parent_gen = *parent_gen;
2222 	nce->name_len = fs_path_len(dest);
2223 	nce->ret = ret;
2224 	strcpy(nce->name, dest->start);
2225 
2226 	if (ino < sctx->send_progress)
2227 		nce->need_later_update = 0;
2228 	else
2229 		nce->need_later_update = 1;
2230 
2231 	nce_ret = name_cache_insert(sctx, nce);
2232 	if (nce_ret < 0)
2233 		ret = nce_ret;
2234 	name_cache_clean_unused(sctx);
2235 
2236 out:
2237 	return ret;
2238 }
2239 
2240 /*
2241  * Magic happens here. This function returns the first ref to an inode as it
2242  * would look like while receiving the stream at this point in time.
2243  * We walk the path up to the root. For every inode in between, we check if it
2244  * was already processed/sent. If yes, we continue with the parent as found
2245  * in send_root. If not, we continue with the parent as found in parent_root.
2246  * If we encounter an inode that was deleted at this point in time, we use the
2247  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2248  * that were not created yet and overwritten inodes/refs.
2249  *
2250  * When do we have orphan inodes:
2251  * 1. When an inode is freshly created and thus no valid refs are available yet
2252  * 2. When a directory lost all it's refs (deleted) but still has dir items
2253  *    inside which were not processed yet (pending for move/delete). If anyone
2254  *    tried to get the path to the dir items, it would get a path inside that
2255  *    orphan directory.
2256  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2257  *    of an unprocessed inode. If in that case the first ref would be
2258  *    overwritten, the overwritten inode gets "orphanized". Later when we
2259  *    process this overwritten inode, it is restored at a new place by moving
2260  *    the orphan inode.
2261  *
2262  * sctx->send_progress tells this function at which point in time receiving
2263  * would be.
2264  */
2265 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2266 			struct fs_path *dest)
2267 {
2268 	int ret = 0;
2269 	struct fs_path *name = NULL;
2270 	u64 parent_inode = 0;
2271 	u64 parent_gen = 0;
2272 	int stop = 0;
2273 
2274 	name = fs_path_alloc();
2275 	if (!name) {
2276 		ret = -ENOMEM;
2277 		goto out;
2278 	}
2279 
2280 	dest->reversed = 1;
2281 	fs_path_reset(dest);
2282 
2283 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2284 		struct waiting_dir_move *wdm;
2285 
2286 		fs_path_reset(name);
2287 
2288 		if (is_waiting_for_rm(sctx, ino, gen)) {
2289 			ret = gen_unique_name(sctx, ino, gen, name);
2290 			if (ret < 0)
2291 				goto out;
2292 			ret = fs_path_add_path(dest, name);
2293 			break;
2294 		}
2295 
2296 		wdm = get_waiting_dir_move(sctx, ino);
2297 		if (wdm && wdm->orphanized) {
2298 			ret = gen_unique_name(sctx, ino, gen, name);
2299 			stop = 1;
2300 		} else if (wdm) {
2301 			ret = get_first_ref(sctx->parent_root, ino,
2302 					    &parent_inode, &parent_gen, name);
2303 		} else {
2304 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2305 							&parent_inode,
2306 							&parent_gen, name);
2307 			if (ret)
2308 				stop = 1;
2309 		}
2310 
2311 		if (ret < 0)
2312 			goto out;
2313 
2314 		ret = fs_path_add_path(dest, name);
2315 		if (ret < 0)
2316 			goto out;
2317 
2318 		ino = parent_inode;
2319 		gen = parent_gen;
2320 	}
2321 
2322 out:
2323 	fs_path_free(name);
2324 	if (!ret)
2325 		fs_path_unreverse(dest);
2326 	return ret;
2327 }
2328 
2329 /*
2330  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2331  */
2332 static int send_subvol_begin(struct send_ctx *sctx)
2333 {
2334 	int ret;
2335 	struct btrfs_root *send_root = sctx->send_root;
2336 	struct btrfs_root *parent_root = sctx->parent_root;
2337 	struct btrfs_path *path;
2338 	struct btrfs_key key;
2339 	struct btrfs_root_ref *ref;
2340 	struct extent_buffer *leaf;
2341 	char *name = NULL;
2342 	int namelen;
2343 
2344 	path = btrfs_alloc_path();
2345 	if (!path)
2346 		return -ENOMEM;
2347 
2348 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2349 	if (!name) {
2350 		btrfs_free_path(path);
2351 		return -ENOMEM;
2352 	}
2353 
2354 	key.objectid = send_root->root_key.objectid;
2355 	key.type = BTRFS_ROOT_BACKREF_KEY;
2356 	key.offset = 0;
2357 
2358 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2359 				&key, path, 1, 0);
2360 	if (ret < 0)
2361 		goto out;
2362 	if (ret) {
2363 		ret = -ENOENT;
2364 		goto out;
2365 	}
2366 
2367 	leaf = path->nodes[0];
2368 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2369 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2370 	    key.objectid != send_root->root_key.objectid) {
2371 		ret = -ENOENT;
2372 		goto out;
2373 	}
2374 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2375 	namelen = btrfs_root_ref_name_len(leaf, ref);
2376 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2377 	btrfs_release_path(path);
2378 
2379 	if (parent_root) {
2380 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2381 		if (ret < 0)
2382 			goto out;
2383 	} else {
2384 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2385 		if (ret < 0)
2386 			goto out;
2387 	}
2388 
2389 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2390 
2391 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2392 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2393 			    sctx->send_root->root_item.received_uuid);
2394 	else
2395 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2396 			    sctx->send_root->root_item.uuid);
2397 
2398 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2399 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2400 	if (parent_root) {
2401 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2402 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2403 				     parent_root->root_item.received_uuid);
2404 		else
2405 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2406 				     parent_root->root_item.uuid);
2407 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2408 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2409 	}
2410 
2411 	ret = send_cmd(sctx);
2412 
2413 tlv_put_failure:
2414 out:
2415 	btrfs_free_path(path);
2416 	kfree(name);
2417 	return ret;
2418 }
2419 
2420 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2421 {
2422 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2423 	int ret = 0;
2424 	struct fs_path *p;
2425 
2426 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2427 
2428 	p = fs_path_alloc();
2429 	if (!p)
2430 		return -ENOMEM;
2431 
2432 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2433 	if (ret < 0)
2434 		goto out;
2435 
2436 	ret = get_cur_path(sctx, ino, gen, p);
2437 	if (ret < 0)
2438 		goto out;
2439 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2440 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2441 
2442 	ret = send_cmd(sctx);
2443 
2444 tlv_put_failure:
2445 out:
2446 	fs_path_free(p);
2447 	return ret;
2448 }
2449 
2450 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2451 {
2452 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2453 	int ret = 0;
2454 	struct fs_path *p;
2455 
2456 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2457 
2458 	p = fs_path_alloc();
2459 	if (!p)
2460 		return -ENOMEM;
2461 
2462 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2463 	if (ret < 0)
2464 		goto out;
2465 
2466 	ret = get_cur_path(sctx, ino, gen, p);
2467 	if (ret < 0)
2468 		goto out;
2469 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2470 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2471 
2472 	ret = send_cmd(sctx);
2473 
2474 tlv_put_failure:
2475 out:
2476 	fs_path_free(p);
2477 	return ret;
2478 }
2479 
2480 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2481 {
2482 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2483 	int ret = 0;
2484 	struct fs_path *p;
2485 
2486 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2487 		    ino, uid, gid);
2488 
2489 	p = fs_path_alloc();
2490 	if (!p)
2491 		return -ENOMEM;
2492 
2493 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2494 	if (ret < 0)
2495 		goto out;
2496 
2497 	ret = get_cur_path(sctx, ino, gen, p);
2498 	if (ret < 0)
2499 		goto out;
2500 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2501 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2502 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2503 
2504 	ret = send_cmd(sctx);
2505 
2506 tlv_put_failure:
2507 out:
2508 	fs_path_free(p);
2509 	return ret;
2510 }
2511 
2512 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2513 {
2514 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2515 	int ret = 0;
2516 	struct fs_path *p = NULL;
2517 	struct btrfs_inode_item *ii;
2518 	struct btrfs_path *path = NULL;
2519 	struct extent_buffer *eb;
2520 	struct btrfs_key key;
2521 	int slot;
2522 
2523 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2524 
2525 	p = fs_path_alloc();
2526 	if (!p)
2527 		return -ENOMEM;
2528 
2529 	path = alloc_path_for_send();
2530 	if (!path) {
2531 		ret = -ENOMEM;
2532 		goto out;
2533 	}
2534 
2535 	key.objectid = ino;
2536 	key.type = BTRFS_INODE_ITEM_KEY;
2537 	key.offset = 0;
2538 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2539 	if (ret > 0)
2540 		ret = -ENOENT;
2541 	if (ret < 0)
2542 		goto out;
2543 
2544 	eb = path->nodes[0];
2545 	slot = path->slots[0];
2546 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2547 
2548 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2549 	if (ret < 0)
2550 		goto out;
2551 
2552 	ret = get_cur_path(sctx, ino, gen, p);
2553 	if (ret < 0)
2554 		goto out;
2555 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2556 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2557 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2558 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2559 	/* TODO Add otime support when the otime patches get into upstream */
2560 
2561 	ret = send_cmd(sctx);
2562 
2563 tlv_put_failure:
2564 out:
2565 	fs_path_free(p);
2566 	btrfs_free_path(path);
2567 	return ret;
2568 }
2569 
2570 /*
2571  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2572  * a valid path yet because we did not process the refs yet. So, the inode
2573  * is created as orphan.
2574  */
2575 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2576 {
2577 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2578 	int ret = 0;
2579 	struct fs_path *p;
2580 	int cmd;
2581 	u64 gen;
2582 	u64 mode;
2583 	u64 rdev;
2584 
2585 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2586 
2587 	p = fs_path_alloc();
2588 	if (!p)
2589 		return -ENOMEM;
2590 
2591 	if (ino != sctx->cur_ino) {
2592 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2593 				     NULL, NULL, &rdev);
2594 		if (ret < 0)
2595 			goto out;
2596 	} else {
2597 		gen = sctx->cur_inode_gen;
2598 		mode = sctx->cur_inode_mode;
2599 		rdev = sctx->cur_inode_rdev;
2600 	}
2601 
2602 	if (S_ISREG(mode)) {
2603 		cmd = BTRFS_SEND_C_MKFILE;
2604 	} else if (S_ISDIR(mode)) {
2605 		cmd = BTRFS_SEND_C_MKDIR;
2606 	} else if (S_ISLNK(mode)) {
2607 		cmd = BTRFS_SEND_C_SYMLINK;
2608 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2609 		cmd = BTRFS_SEND_C_MKNOD;
2610 	} else if (S_ISFIFO(mode)) {
2611 		cmd = BTRFS_SEND_C_MKFIFO;
2612 	} else if (S_ISSOCK(mode)) {
2613 		cmd = BTRFS_SEND_C_MKSOCK;
2614 	} else {
2615 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2616 				(int)(mode & S_IFMT));
2617 		ret = -EOPNOTSUPP;
2618 		goto out;
2619 	}
2620 
2621 	ret = begin_cmd(sctx, cmd);
2622 	if (ret < 0)
2623 		goto out;
2624 
2625 	ret = gen_unique_name(sctx, ino, gen, p);
2626 	if (ret < 0)
2627 		goto out;
2628 
2629 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2630 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2631 
2632 	if (S_ISLNK(mode)) {
2633 		fs_path_reset(p);
2634 		ret = read_symlink(sctx->send_root, ino, p);
2635 		if (ret < 0)
2636 			goto out;
2637 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2638 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2639 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2640 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2641 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2642 	}
2643 
2644 	ret = send_cmd(sctx);
2645 	if (ret < 0)
2646 		goto out;
2647 
2648 
2649 tlv_put_failure:
2650 out:
2651 	fs_path_free(p);
2652 	return ret;
2653 }
2654 
2655 /*
2656  * We need some special handling for inodes that get processed before the parent
2657  * directory got created. See process_recorded_refs for details.
2658  * This function does the check if we already created the dir out of order.
2659  */
2660 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2661 {
2662 	int ret = 0;
2663 	struct btrfs_path *path = NULL;
2664 	struct btrfs_key key;
2665 	struct btrfs_key found_key;
2666 	struct btrfs_key di_key;
2667 	struct extent_buffer *eb;
2668 	struct btrfs_dir_item *di;
2669 	int slot;
2670 
2671 	path = alloc_path_for_send();
2672 	if (!path) {
2673 		ret = -ENOMEM;
2674 		goto out;
2675 	}
2676 
2677 	key.objectid = dir;
2678 	key.type = BTRFS_DIR_INDEX_KEY;
2679 	key.offset = 0;
2680 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2681 	if (ret < 0)
2682 		goto out;
2683 
2684 	while (1) {
2685 		eb = path->nodes[0];
2686 		slot = path->slots[0];
2687 		if (slot >= btrfs_header_nritems(eb)) {
2688 			ret = btrfs_next_leaf(sctx->send_root, path);
2689 			if (ret < 0) {
2690 				goto out;
2691 			} else if (ret > 0) {
2692 				ret = 0;
2693 				break;
2694 			}
2695 			continue;
2696 		}
2697 
2698 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2699 		if (found_key.objectid != key.objectid ||
2700 		    found_key.type != key.type) {
2701 			ret = 0;
2702 			goto out;
2703 		}
2704 
2705 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2706 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2707 
2708 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2709 		    di_key.objectid < sctx->send_progress) {
2710 			ret = 1;
2711 			goto out;
2712 		}
2713 
2714 		path->slots[0]++;
2715 	}
2716 
2717 out:
2718 	btrfs_free_path(path);
2719 	return ret;
2720 }
2721 
2722 /*
2723  * Only creates the inode if it is:
2724  * 1. Not a directory
2725  * 2. Or a directory which was not created already due to out of order
2726  *    directories. See did_create_dir and process_recorded_refs for details.
2727  */
2728 static int send_create_inode_if_needed(struct send_ctx *sctx)
2729 {
2730 	int ret;
2731 
2732 	if (S_ISDIR(sctx->cur_inode_mode)) {
2733 		ret = did_create_dir(sctx, sctx->cur_ino);
2734 		if (ret < 0)
2735 			return ret;
2736 		else if (ret > 0)
2737 			return 0;
2738 	}
2739 
2740 	return send_create_inode(sctx, sctx->cur_ino);
2741 }
2742 
2743 struct recorded_ref {
2744 	struct list_head list;
2745 	char *name;
2746 	struct fs_path *full_path;
2747 	u64 dir;
2748 	u64 dir_gen;
2749 	int name_len;
2750 };
2751 
2752 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2753 {
2754 	ref->full_path = path;
2755 	ref->name = (char *)kbasename(ref->full_path->start);
2756 	ref->name_len = ref->full_path->end - ref->name;
2757 }
2758 
2759 /*
2760  * We need to process new refs before deleted refs, but compare_tree gives us
2761  * everything mixed. So we first record all refs and later process them.
2762  * This function is a helper to record one ref.
2763  */
2764 static int __record_ref(struct list_head *head, u64 dir,
2765 		      u64 dir_gen, struct fs_path *path)
2766 {
2767 	struct recorded_ref *ref;
2768 
2769 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2770 	if (!ref)
2771 		return -ENOMEM;
2772 
2773 	ref->dir = dir;
2774 	ref->dir_gen = dir_gen;
2775 	set_ref_path(ref, path);
2776 	list_add_tail(&ref->list, head);
2777 	return 0;
2778 }
2779 
2780 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2781 {
2782 	struct recorded_ref *new;
2783 
2784 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2785 	if (!new)
2786 		return -ENOMEM;
2787 
2788 	new->dir = ref->dir;
2789 	new->dir_gen = ref->dir_gen;
2790 	new->full_path = NULL;
2791 	INIT_LIST_HEAD(&new->list);
2792 	list_add_tail(&new->list, list);
2793 	return 0;
2794 }
2795 
2796 static void __free_recorded_refs(struct list_head *head)
2797 {
2798 	struct recorded_ref *cur;
2799 
2800 	while (!list_empty(head)) {
2801 		cur = list_entry(head->next, struct recorded_ref, list);
2802 		fs_path_free(cur->full_path);
2803 		list_del(&cur->list);
2804 		kfree(cur);
2805 	}
2806 }
2807 
2808 static void free_recorded_refs(struct send_ctx *sctx)
2809 {
2810 	__free_recorded_refs(&sctx->new_refs);
2811 	__free_recorded_refs(&sctx->deleted_refs);
2812 }
2813 
2814 /*
2815  * Renames/moves a file/dir to its orphan name. Used when the first
2816  * ref of an unprocessed inode gets overwritten and for all non empty
2817  * directories.
2818  */
2819 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2820 			  struct fs_path *path)
2821 {
2822 	int ret;
2823 	struct fs_path *orphan;
2824 
2825 	orphan = fs_path_alloc();
2826 	if (!orphan)
2827 		return -ENOMEM;
2828 
2829 	ret = gen_unique_name(sctx, ino, gen, orphan);
2830 	if (ret < 0)
2831 		goto out;
2832 
2833 	ret = send_rename(sctx, path, orphan);
2834 
2835 out:
2836 	fs_path_free(orphan);
2837 	return ret;
2838 }
2839 
2840 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2841 						   u64 dir_ino, u64 dir_gen)
2842 {
2843 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2844 	struct rb_node *parent = NULL;
2845 	struct orphan_dir_info *entry, *odi;
2846 
2847 	while (*p) {
2848 		parent = *p;
2849 		entry = rb_entry(parent, struct orphan_dir_info, node);
2850 		if (dir_ino < entry->ino)
2851 			p = &(*p)->rb_left;
2852 		else if (dir_ino > entry->ino)
2853 			p = &(*p)->rb_right;
2854 		else if (dir_gen < entry->gen)
2855 			p = &(*p)->rb_left;
2856 		else if (dir_gen > entry->gen)
2857 			p = &(*p)->rb_right;
2858 		else
2859 			return entry;
2860 	}
2861 
2862 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2863 	if (!odi)
2864 		return ERR_PTR(-ENOMEM);
2865 	odi->ino = dir_ino;
2866 	odi->gen = dir_gen;
2867 	odi->last_dir_index_offset = 0;
2868 
2869 	rb_link_node(&odi->node, parent, p);
2870 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2871 	return odi;
2872 }
2873 
2874 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2875 						   u64 dir_ino, u64 gen)
2876 {
2877 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2878 	struct orphan_dir_info *entry;
2879 
2880 	while (n) {
2881 		entry = rb_entry(n, struct orphan_dir_info, node);
2882 		if (dir_ino < entry->ino)
2883 			n = n->rb_left;
2884 		else if (dir_ino > entry->ino)
2885 			n = n->rb_right;
2886 		else if (gen < entry->gen)
2887 			n = n->rb_left;
2888 		else if (gen > entry->gen)
2889 			n = n->rb_right;
2890 		else
2891 			return entry;
2892 	}
2893 	return NULL;
2894 }
2895 
2896 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2897 {
2898 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2899 
2900 	return odi != NULL;
2901 }
2902 
2903 static void free_orphan_dir_info(struct send_ctx *sctx,
2904 				 struct orphan_dir_info *odi)
2905 {
2906 	if (!odi)
2907 		return;
2908 	rb_erase(&odi->node, &sctx->orphan_dirs);
2909 	kfree(odi);
2910 }
2911 
2912 /*
2913  * Returns 1 if a directory can be removed at this point in time.
2914  * We check this by iterating all dir items and checking if the inode behind
2915  * the dir item was already processed.
2916  */
2917 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2918 		     u64 send_progress)
2919 {
2920 	int ret = 0;
2921 	struct btrfs_root *root = sctx->parent_root;
2922 	struct btrfs_path *path;
2923 	struct btrfs_key key;
2924 	struct btrfs_key found_key;
2925 	struct btrfs_key loc;
2926 	struct btrfs_dir_item *di;
2927 	struct orphan_dir_info *odi = NULL;
2928 
2929 	/*
2930 	 * Don't try to rmdir the top/root subvolume dir.
2931 	 */
2932 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2933 		return 0;
2934 
2935 	path = alloc_path_for_send();
2936 	if (!path)
2937 		return -ENOMEM;
2938 
2939 	key.objectid = dir;
2940 	key.type = BTRFS_DIR_INDEX_KEY;
2941 	key.offset = 0;
2942 
2943 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
2944 	if (odi)
2945 		key.offset = odi->last_dir_index_offset;
2946 
2947 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2948 	if (ret < 0)
2949 		goto out;
2950 
2951 	while (1) {
2952 		struct waiting_dir_move *dm;
2953 
2954 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2955 			ret = btrfs_next_leaf(root, path);
2956 			if (ret < 0)
2957 				goto out;
2958 			else if (ret > 0)
2959 				break;
2960 			continue;
2961 		}
2962 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2963 				      path->slots[0]);
2964 		if (found_key.objectid != key.objectid ||
2965 		    found_key.type != key.type)
2966 			break;
2967 
2968 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2969 				struct btrfs_dir_item);
2970 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2971 
2972 		dm = get_waiting_dir_move(sctx, loc.objectid);
2973 		if (dm) {
2974 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2975 			if (IS_ERR(odi)) {
2976 				ret = PTR_ERR(odi);
2977 				goto out;
2978 			}
2979 			odi->gen = dir_gen;
2980 			odi->last_dir_index_offset = found_key.offset;
2981 			dm->rmdir_ino = dir;
2982 			dm->rmdir_gen = dir_gen;
2983 			ret = 0;
2984 			goto out;
2985 		}
2986 
2987 		if (loc.objectid > send_progress) {
2988 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2989 			if (IS_ERR(odi)) {
2990 				ret = PTR_ERR(odi);
2991 				goto out;
2992 			}
2993 			odi->gen = dir_gen;
2994 			odi->last_dir_index_offset = found_key.offset;
2995 			ret = 0;
2996 			goto out;
2997 		}
2998 
2999 		path->slots[0]++;
3000 	}
3001 	free_orphan_dir_info(sctx, odi);
3002 
3003 	ret = 1;
3004 
3005 out:
3006 	btrfs_free_path(path);
3007 	return ret;
3008 }
3009 
3010 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3011 {
3012 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3013 
3014 	return entry != NULL;
3015 }
3016 
3017 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3018 {
3019 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3020 	struct rb_node *parent = NULL;
3021 	struct waiting_dir_move *entry, *dm;
3022 
3023 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3024 	if (!dm)
3025 		return -ENOMEM;
3026 	dm->ino = ino;
3027 	dm->rmdir_ino = 0;
3028 	dm->rmdir_gen = 0;
3029 	dm->orphanized = orphanized;
3030 
3031 	while (*p) {
3032 		parent = *p;
3033 		entry = rb_entry(parent, struct waiting_dir_move, node);
3034 		if (ino < entry->ino) {
3035 			p = &(*p)->rb_left;
3036 		} else if (ino > entry->ino) {
3037 			p = &(*p)->rb_right;
3038 		} else {
3039 			kfree(dm);
3040 			return -EEXIST;
3041 		}
3042 	}
3043 
3044 	rb_link_node(&dm->node, parent, p);
3045 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3046 	return 0;
3047 }
3048 
3049 static struct waiting_dir_move *
3050 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3051 {
3052 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3053 	struct waiting_dir_move *entry;
3054 
3055 	while (n) {
3056 		entry = rb_entry(n, struct waiting_dir_move, node);
3057 		if (ino < entry->ino)
3058 			n = n->rb_left;
3059 		else if (ino > entry->ino)
3060 			n = n->rb_right;
3061 		else
3062 			return entry;
3063 	}
3064 	return NULL;
3065 }
3066 
3067 static void free_waiting_dir_move(struct send_ctx *sctx,
3068 				  struct waiting_dir_move *dm)
3069 {
3070 	if (!dm)
3071 		return;
3072 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3073 	kfree(dm);
3074 }
3075 
3076 static int add_pending_dir_move(struct send_ctx *sctx,
3077 				u64 ino,
3078 				u64 ino_gen,
3079 				u64 parent_ino,
3080 				struct list_head *new_refs,
3081 				struct list_head *deleted_refs,
3082 				const bool is_orphan)
3083 {
3084 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3085 	struct rb_node *parent = NULL;
3086 	struct pending_dir_move *entry = NULL, *pm;
3087 	struct recorded_ref *cur;
3088 	int exists = 0;
3089 	int ret;
3090 
3091 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3092 	if (!pm)
3093 		return -ENOMEM;
3094 	pm->parent_ino = parent_ino;
3095 	pm->ino = ino;
3096 	pm->gen = ino_gen;
3097 	INIT_LIST_HEAD(&pm->list);
3098 	INIT_LIST_HEAD(&pm->update_refs);
3099 	RB_CLEAR_NODE(&pm->node);
3100 
3101 	while (*p) {
3102 		parent = *p;
3103 		entry = rb_entry(parent, struct pending_dir_move, node);
3104 		if (parent_ino < entry->parent_ino) {
3105 			p = &(*p)->rb_left;
3106 		} else if (parent_ino > entry->parent_ino) {
3107 			p = &(*p)->rb_right;
3108 		} else {
3109 			exists = 1;
3110 			break;
3111 		}
3112 	}
3113 
3114 	list_for_each_entry(cur, deleted_refs, list) {
3115 		ret = dup_ref(cur, &pm->update_refs);
3116 		if (ret < 0)
3117 			goto out;
3118 	}
3119 	list_for_each_entry(cur, new_refs, list) {
3120 		ret = dup_ref(cur, &pm->update_refs);
3121 		if (ret < 0)
3122 			goto out;
3123 	}
3124 
3125 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3126 	if (ret)
3127 		goto out;
3128 
3129 	if (exists) {
3130 		list_add_tail(&pm->list, &entry->list);
3131 	} else {
3132 		rb_link_node(&pm->node, parent, p);
3133 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3134 	}
3135 	ret = 0;
3136 out:
3137 	if (ret) {
3138 		__free_recorded_refs(&pm->update_refs);
3139 		kfree(pm);
3140 	}
3141 	return ret;
3142 }
3143 
3144 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3145 						      u64 parent_ino)
3146 {
3147 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3148 	struct pending_dir_move *entry;
3149 
3150 	while (n) {
3151 		entry = rb_entry(n, struct pending_dir_move, node);
3152 		if (parent_ino < entry->parent_ino)
3153 			n = n->rb_left;
3154 		else if (parent_ino > entry->parent_ino)
3155 			n = n->rb_right;
3156 		else
3157 			return entry;
3158 	}
3159 	return NULL;
3160 }
3161 
3162 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3163 		     u64 ino, u64 gen, u64 *ancestor_ino)
3164 {
3165 	int ret = 0;
3166 	u64 parent_inode = 0;
3167 	u64 parent_gen = 0;
3168 	u64 start_ino = ino;
3169 
3170 	*ancestor_ino = 0;
3171 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3172 		fs_path_reset(name);
3173 
3174 		if (is_waiting_for_rm(sctx, ino, gen))
3175 			break;
3176 		if (is_waiting_for_move(sctx, ino)) {
3177 			if (*ancestor_ino == 0)
3178 				*ancestor_ino = ino;
3179 			ret = get_first_ref(sctx->parent_root, ino,
3180 					    &parent_inode, &parent_gen, name);
3181 		} else {
3182 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3183 							&parent_inode,
3184 							&parent_gen, name);
3185 			if (ret > 0) {
3186 				ret = 0;
3187 				break;
3188 			}
3189 		}
3190 		if (ret < 0)
3191 			break;
3192 		if (parent_inode == start_ino) {
3193 			ret = 1;
3194 			if (*ancestor_ino == 0)
3195 				*ancestor_ino = ino;
3196 			break;
3197 		}
3198 		ino = parent_inode;
3199 		gen = parent_gen;
3200 	}
3201 	return ret;
3202 }
3203 
3204 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3205 {
3206 	struct fs_path *from_path = NULL;
3207 	struct fs_path *to_path = NULL;
3208 	struct fs_path *name = NULL;
3209 	u64 orig_progress = sctx->send_progress;
3210 	struct recorded_ref *cur;
3211 	u64 parent_ino, parent_gen;
3212 	struct waiting_dir_move *dm = NULL;
3213 	u64 rmdir_ino = 0;
3214 	u64 rmdir_gen;
3215 	u64 ancestor;
3216 	bool is_orphan;
3217 	int ret;
3218 
3219 	name = fs_path_alloc();
3220 	from_path = fs_path_alloc();
3221 	if (!name || !from_path) {
3222 		ret = -ENOMEM;
3223 		goto out;
3224 	}
3225 
3226 	dm = get_waiting_dir_move(sctx, pm->ino);
3227 	ASSERT(dm);
3228 	rmdir_ino = dm->rmdir_ino;
3229 	rmdir_gen = dm->rmdir_gen;
3230 	is_orphan = dm->orphanized;
3231 	free_waiting_dir_move(sctx, dm);
3232 
3233 	if (is_orphan) {
3234 		ret = gen_unique_name(sctx, pm->ino,
3235 				      pm->gen, from_path);
3236 	} else {
3237 		ret = get_first_ref(sctx->parent_root, pm->ino,
3238 				    &parent_ino, &parent_gen, name);
3239 		if (ret < 0)
3240 			goto out;
3241 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3242 				   from_path);
3243 		if (ret < 0)
3244 			goto out;
3245 		ret = fs_path_add_path(from_path, name);
3246 	}
3247 	if (ret < 0)
3248 		goto out;
3249 
3250 	sctx->send_progress = sctx->cur_ino + 1;
3251 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3252 	if (ret < 0)
3253 		goto out;
3254 	if (ret) {
3255 		LIST_HEAD(deleted_refs);
3256 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3257 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3258 					   &pm->update_refs, &deleted_refs,
3259 					   is_orphan);
3260 		if (ret < 0)
3261 			goto out;
3262 		if (rmdir_ino) {
3263 			dm = get_waiting_dir_move(sctx, pm->ino);
3264 			ASSERT(dm);
3265 			dm->rmdir_ino = rmdir_ino;
3266 			dm->rmdir_gen = rmdir_gen;
3267 		}
3268 		goto out;
3269 	}
3270 	fs_path_reset(name);
3271 	to_path = name;
3272 	name = NULL;
3273 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3274 	if (ret < 0)
3275 		goto out;
3276 
3277 	ret = send_rename(sctx, from_path, to_path);
3278 	if (ret < 0)
3279 		goto out;
3280 
3281 	if (rmdir_ino) {
3282 		struct orphan_dir_info *odi;
3283 		u64 gen;
3284 
3285 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3286 		if (!odi) {
3287 			/* already deleted */
3288 			goto finish;
3289 		}
3290 		gen = odi->gen;
3291 
3292 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3293 		if (ret < 0)
3294 			goto out;
3295 		if (!ret)
3296 			goto finish;
3297 
3298 		name = fs_path_alloc();
3299 		if (!name) {
3300 			ret = -ENOMEM;
3301 			goto out;
3302 		}
3303 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3304 		if (ret < 0)
3305 			goto out;
3306 		ret = send_rmdir(sctx, name);
3307 		if (ret < 0)
3308 			goto out;
3309 	}
3310 
3311 finish:
3312 	ret = send_utimes(sctx, pm->ino, pm->gen);
3313 	if (ret < 0)
3314 		goto out;
3315 
3316 	/*
3317 	 * After rename/move, need to update the utimes of both new parent(s)
3318 	 * and old parent(s).
3319 	 */
3320 	list_for_each_entry(cur, &pm->update_refs, list) {
3321 		/*
3322 		 * The parent inode might have been deleted in the send snapshot
3323 		 */
3324 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3325 				     NULL, NULL, NULL, NULL, NULL);
3326 		if (ret == -ENOENT) {
3327 			ret = 0;
3328 			continue;
3329 		}
3330 		if (ret < 0)
3331 			goto out;
3332 
3333 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3334 		if (ret < 0)
3335 			goto out;
3336 	}
3337 
3338 out:
3339 	fs_path_free(name);
3340 	fs_path_free(from_path);
3341 	fs_path_free(to_path);
3342 	sctx->send_progress = orig_progress;
3343 
3344 	return ret;
3345 }
3346 
3347 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3348 {
3349 	if (!list_empty(&m->list))
3350 		list_del(&m->list);
3351 	if (!RB_EMPTY_NODE(&m->node))
3352 		rb_erase(&m->node, &sctx->pending_dir_moves);
3353 	__free_recorded_refs(&m->update_refs);
3354 	kfree(m);
3355 }
3356 
3357 static void tail_append_pending_moves(struct send_ctx *sctx,
3358 				      struct pending_dir_move *moves,
3359 				      struct list_head *stack)
3360 {
3361 	if (list_empty(&moves->list)) {
3362 		list_add_tail(&moves->list, stack);
3363 	} else {
3364 		LIST_HEAD(list);
3365 		list_splice_init(&moves->list, &list);
3366 		list_add_tail(&moves->list, stack);
3367 		list_splice_tail(&list, stack);
3368 	}
3369 	if (!RB_EMPTY_NODE(&moves->node)) {
3370 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3371 		RB_CLEAR_NODE(&moves->node);
3372 	}
3373 }
3374 
3375 static int apply_children_dir_moves(struct send_ctx *sctx)
3376 {
3377 	struct pending_dir_move *pm;
3378 	struct list_head stack;
3379 	u64 parent_ino = sctx->cur_ino;
3380 	int ret = 0;
3381 
3382 	pm = get_pending_dir_moves(sctx, parent_ino);
3383 	if (!pm)
3384 		return 0;
3385 
3386 	INIT_LIST_HEAD(&stack);
3387 	tail_append_pending_moves(sctx, pm, &stack);
3388 
3389 	while (!list_empty(&stack)) {
3390 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3391 		parent_ino = pm->ino;
3392 		ret = apply_dir_move(sctx, pm);
3393 		free_pending_move(sctx, pm);
3394 		if (ret)
3395 			goto out;
3396 		pm = get_pending_dir_moves(sctx, parent_ino);
3397 		if (pm)
3398 			tail_append_pending_moves(sctx, pm, &stack);
3399 	}
3400 	return 0;
3401 
3402 out:
3403 	while (!list_empty(&stack)) {
3404 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3405 		free_pending_move(sctx, pm);
3406 	}
3407 	return ret;
3408 }
3409 
3410 /*
3411  * We might need to delay a directory rename even when no ancestor directory
3412  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3413  * renamed. This happens when we rename a directory to the old name (the name
3414  * in the parent root) of some other unrelated directory that got its rename
3415  * delayed due to some ancestor with higher number that got renamed.
3416  *
3417  * Example:
3418  *
3419  * Parent snapshot:
3420  * .                                       (ino 256)
3421  * |---- a/                                (ino 257)
3422  * |     |---- file                        (ino 260)
3423  * |
3424  * |---- b/                                (ino 258)
3425  * |---- c/                                (ino 259)
3426  *
3427  * Send snapshot:
3428  * .                                       (ino 256)
3429  * |---- a/                                (ino 258)
3430  * |---- x/                                (ino 259)
3431  *       |---- y/                          (ino 257)
3432  *             |----- file                 (ino 260)
3433  *
3434  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3435  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3436  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3437  * must issue is:
3438  *
3439  * 1 - rename 259 from 'c' to 'x'
3440  * 2 - rename 257 from 'a' to 'x/y'
3441  * 3 - rename 258 from 'b' to 'a'
3442  *
3443  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3444  * be done right away and < 0 on error.
3445  */
3446 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3447 				  struct recorded_ref *parent_ref,
3448 				  const bool is_orphan)
3449 {
3450 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3451 	struct btrfs_path *path;
3452 	struct btrfs_key key;
3453 	struct btrfs_key di_key;
3454 	struct btrfs_dir_item *di;
3455 	u64 left_gen;
3456 	u64 right_gen;
3457 	int ret = 0;
3458 	struct waiting_dir_move *wdm;
3459 
3460 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3461 		return 0;
3462 
3463 	path = alloc_path_for_send();
3464 	if (!path)
3465 		return -ENOMEM;
3466 
3467 	key.objectid = parent_ref->dir;
3468 	key.type = BTRFS_DIR_ITEM_KEY;
3469 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3470 
3471 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3472 	if (ret < 0) {
3473 		goto out;
3474 	} else if (ret > 0) {
3475 		ret = 0;
3476 		goto out;
3477 	}
3478 
3479 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3480 				       parent_ref->name_len);
3481 	if (!di) {
3482 		ret = 0;
3483 		goto out;
3484 	}
3485 	/*
3486 	 * di_key.objectid has the number of the inode that has a dentry in the
3487 	 * parent directory with the same name that sctx->cur_ino is being
3488 	 * renamed to. We need to check if that inode is in the send root as
3489 	 * well and if it is currently marked as an inode with a pending rename,
3490 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3491 	 * that it happens after that other inode is renamed.
3492 	 */
3493 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3494 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3495 		ret = 0;
3496 		goto out;
3497 	}
3498 
3499 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3500 			     &left_gen, NULL, NULL, NULL, NULL);
3501 	if (ret < 0)
3502 		goto out;
3503 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3504 			     &right_gen, NULL, NULL, NULL, NULL);
3505 	if (ret < 0) {
3506 		if (ret == -ENOENT)
3507 			ret = 0;
3508 		goto out;
3509 	}
3510 
3511 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3512 	if (right_gen != left_gen) {
3513 		ret = 0;
3514 		goto out;
3515 	}
3516 
3517 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3518 	if (wdm && !wdm->orphanized) {
3519 		ret = add_pending_dir_move(sctx,
3520 					   sctx->cur_ino,
3521 					   sctx->cur_inode_gen,
3522 					   di_key.objectid,
3523 					   &sctx->new_refs,
3524 					   &sctx->deleted_refs,
3525 					   is_orphan);
3526 		if (!ret)
3527 			ret = 1;
3528 	}
3529 out:
3530 	btrfs_free_path(path);
3531 	return ret;
3532 }
3533 
3534 /*
3535  * Check if inode ino2, or any of its ancestors, is inode ino1.
3536  * Return 1 if true, 0 if false and < 0 on error.
3537  */
3538 static int check_ino_in_path(struct btrfs_root *root,
3539 			     const u64 ino1,
3540 			     const u64 ino1_gen,
3541 			     const u64 ino2,
3542 			     const u64 ino2_gen,
3543 			     struct fs_path *fs_path)
3544 {
3545 	u64 ino = ino2;
3546 
3547 	if (ino1 == ino2)
3548 		return ino1_gen == ino2_gen;
3549 
3550 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3551 		u64 parent;
3552 		u64 parent_gen;
3553 		int ret;
3554 
3555 		fs_path_reset(fs_path);
3556 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3557 		if (ret < 0)
3558 			return ret;
3559 		if (parent == ino1)
3560 			return parent_gen == ino1_gen;
3561 		ino = parent;
3562 	}
3563 	return 0;
3564 }
3565 
3566 /*
3567  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3568  * possible path (in case ino2 is not a directory and has multiple hard links).
3569  * Return 1 if true, 0 if false and < 0 on error.
3570  */
3571 static int is_ancestor(struct btrfs_root *root,
3572 		       const u64 ino1,
3573 		       const u64 ino1_gen,
3574 		       const u64 ino2,
3575 		       struct fs_path *fs_path)
3576 {
3577 	bool free_fs_path = false;
3578 	int ret = 0;
3579 	struct btrfs_path *path = NULL;
3580 	struct btrfs_key key;
3581 
3582 	if (!fs_path) {
3583 		fs_path = fs_path_alloc();
3584 		if (!fs_path)
3585 			return -ENOMEM;
3586 		free_fs_path = true;
3587 	}
3588 
3589 	path = alloc_path_for_send();
3590 	if (!path) {
3591 		ret = -ENOMEM;
3592 		goto out;
3593 	}
3594 
3595 	key.objectid = ino2;
3596 	key.type = BTRFS_INODE_REF_KEY;
3597 	key.offset = 0;
3598 
3599 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3600 	if (ret < 0)
3601 		goto out;
3602 
3603 	while (true) {
3604 		struct extent_buffer *leaf = path->nodes[0];
3605 		int slot = path->slots[0];
3606 		u32 cur_offset = 0;
3607 		u32 item_size;
3608 
3609 		if (slot >= btrfs_header_nritems(leaf)) {
3610 			ret = btrfs_next_leaf(root, path);
3611 			if (ret < 0)
3612 				goto out;
3613 			if (ret > 0)
3614 				break;
3615 			continue;
3616 		}
3617 
3618 		btrfs_item_key_to_cpu(leaf, &key, slot);
3619 		if (key.objectid != ino2)
3620 			break;
3621 		if (key.type != BTRFS_INODE_REF_KEY &&
3622 		    key.type != BTRFS_INODE_EXTREF_KEY)
3623 			break;
3624 
3625 		item_size = btrfs_item_size_nr(leaf, slot);
3626 		while (cur_offset < item_size) {
3627 			u64 parent;
3628 			u64 parent_gen;
3629 
3630 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3631 				unsigned long ptr;
3632 				struct btrfs_inode_extref *extref;
3633 
3634 				ptr = btrfs_item_ptr_offset(leaf, slot);
3635 				extref = (struct btrfs_inode_extref *)
3636 					(ptr + cur_offset);
3637 				parent = btrfs_inode_extref_parent(leaf,
3638 								   extref);
3639 				cur_offset += sizeof(*extref);
3640 				cur_offset += btrfs_inode_extref_name_len(leaf,
3641 								  extref);
3642 			} else {
3643 				parent = key.offset;
3644 				cur_offset = item_size;
3645 			}
3646 
3647 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3648 					     NULL, NULL, NULL, NULL);
3649 			if (ret < 0)
3650 				goto out;
3651 			ret = check_ino_in_path(root, ino1, ino1_gen,
3652 						parent, parent_gen, fs_path);
3653 			if (ret)
3654 				goto out;
3655 		}
3656 		path->slots[0]++;
3657 	}
3658 	ret = 0;
3659  out:
3660 	btrfs_free_path(path);
3661 	if (free_fs_path)
3662 		fs_path_free(fs_path);
3663 	return ret;
3664 }
3665 
3666 static int wait_for_parent_move(struct send_ctx *sctx,
3667 				struct recorded_ref *parent_ref,
3668 				const bool is_orphan)
3669 {
3670 	int ret = 0;
3671 	u64 ino = parent_ref->dir;
3672 	u64 ino_gen = parent_ref->dir_gen;
3673 	u64 parent_ino_before, parent_ino_after;
3674 	struct fs_path *path_before = NULL;
3675 	struct fs_path *path_after = NULL;
3676 	int len1, len2;
3677 
3678 	path_after = fs_path_alloc();
3679 	path_before = fs_path_alloc();
3680 	if (!path_after || !path_before) {
3681 		ret = -ENOMEM;
3682 		goto out;
3683 	}
3684 
3685 	/*
3686 	 * Our current directory inode may not yet be renamed/moved because some
3687 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3688 	 * such ancestor exists and make sure our own rename/move happens after
3689 	 * that ancestor is processed to avoid path build infinite loops (done
3690 	 * at get_cur_path()).
3691 	 */
3692 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3693 		u64 parent_ino_after_gen;
3694 
3695 		if (is_waiting_for_move(sctx, ino)) {
3696 			/*
3697 			 * If the current inode is an ancestor of ino in the
3698 			 * parent root, we need to delay the rename of the
3699 			 * current inode, otherwise don't delayed the rename
3700 			 * because we can end up with a circular dependency
3701 			 * of renames, resulting in some directories never
3702 			 * getting the respective rename operations issued in
3703 			 * the send stream or getting into infinite path build
3704 			 * loops.
3705 			 */
3706 			ret = is_ancestor(sctx->parent_root,
3707 					  sctx->cur_ino, sctx->cur_inode_gen,
3708 					  ino, path_before);
3709 			if (ret)
3710 				break;
3711 		}
3712 
3713 		fs_path_reset(path_before);
3714 		fs_path_reset(path_after);
3715 
3716 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3717 				    &parent_ino_after_gen, path_after);
3718 		if (ret < 0)
3719 			goto out;
3720 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3721 				    NULL, path_before);
3722 		if (ret < 0 && ret != -ENOENT) {
3723 			goto out;
3724 		} else if (ret == -ENOENT) {
3725 			ret = 0;
3726 			break;
3727 		}
3728 
3729 		len1 = fs_path_len(path_before);
3730 		len2 = fs_path_len(path_after);
3731 		if (ino > sctx->cur_ino &&
3732 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3733 		     memcmp(path_before->start, path_after->start, len1))) {
3734 			u64 parent_ino_gen;
3735 
3736 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3737 					     &parent_ino_gen, NULL, NULL, NULL,
3738 					     NULL);
3739 			if (ret < 0)
3740 				goto out;
3741 			if (ino_gen == parent_ino_gen) {
3742 				ret = 1;
3743 				break;
3744 			}
3745 		}
3746 		ino = parent_ino_after;
3747 		ino_gen = parent_ino_after_gen;
3748 	}
3749 
3750 out:
3751 	fs_path_free(path_before);
3752 	fs_path_free(path_after);
3753 
3754 	if (ret == 1) {
3755 		ret = add_pending_dir_move(sctx,
3756 					   sctx->cur_ino,
3757 					   sctx->cur_inode_gen,
3758 					   ino,
3759 					   &sctx->new_refs,
3760 					   &sctx->deleted_refs,
3761 					   is_orphan);
3762 		if (!ret)
3763 			ret = 1;
3764 	}
3765 
3766 	return ret;
3767 }
3768 
3769 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3770 {
3771 	int ret;
3772 	struct fs_path *new_path;
3773 
3774 	/*
3775 	 * Our reference's name member points to its full_path member string, so
3776 	 * we use here a new path.
3777 	 */
3778 	new_path = fs_path_alloc();
3779 	if (!new_path)
3780 		return -ENOMEM;
3781 
3782 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3783 	if (ret < 0) {
3784 		fs_path_free(new_path);
3785 		return ret;
3786 	}
3787 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3788 	if (ret < 0) {
3789 		fs_path_free(new_path);
3790 		return ret;
3791 	}
3792 
3793 	fs_path_free(ref->full_path);
3794 	set_ref_path(ref, new_path);
3795 
3796 	return 0;
3797 }
3798 
3799 /*
3800  * When processing the new references for an inode we may orphanize an existing
3801  * directory inode because its old name conflicts with one of the new references
3802  * of the current inode. Later, when processing another new reference of our
3803  * inode, we might need to orphanize another inode, but the path we have in the
3804  * reference reflects the pre-orphanization name of the directory we previously
3805  * orphanized. For example:
3806  *
3807  * parent snapshot looks like:
3808  *
3809  * .                                     (ino 256)
3810  * |----- f1                             (ino 257)
3811  * |----- f2                             (ino 258)
3812  * |----- d1/                            (ino 259)
3813  *        |----- d2/                     (ino 260)
3814  *
3815  * send snapshot looks like:
3816  *
3817  * .                                     (ino 256)
3818  * |----- d1                             (ino 258)
3819  * |----- f2/                            (ino 259)
3820  *        |----- f2_link/                (ino 260)
3821  *        |       |----- f1              (ino 257)
3822  *        |
3823  *        |----- d2                      (ino 258)
3824  *
3825  * When processing inode 257 we compute the name for inode 259 as "d1", and we
3826  * cache it in the name cache. Later when we start processing inode 258, when
3827  * collecting all its new references we set a full path of "d1/d2" for its new
3828  * reference with name "d2". When we start processing the new references we
3829  * start by processing the new reference with name "d1", and this results in
3830  * orphanizing inode 259, since its old reference causes a conflict. Then we
3831  * move on the next new reference, with name "d2", and we find out we must
3832  * orphanize inode 260, as its old reference conflicts with ours - but for the
3833  * orphanization we use a source path corresponding to the path we stored in the
3834  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3835  * receiver fail since the path component "d1/" no longer exists, it was renamed
3836  * to "o259-6-0/" when processing the previous new reference. So in this case we
3837  * must recompute the path in the new reference and use it for the new
3838  * orphanization operation.
3839  */
3840 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3841 {
3842 	char *name;
3843 	int ret;
3844 
3845 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3846 	if (!name)
3847 		return -ENOMEM;
3848 
3849 	fs_path_reset(ref->full_path);
3850 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3851 	if (ret < 0)
3852 		goto out;
3853 
3854 	ret = fs_path_add(ref->full_path, name, ref->name_len);
3855 	if (ret < 0)
3856 		goto out;
3857 
3858 	/* Update the reference's base name pointer. */
3859 	set_ref_path(ref, ref->full_path);
3860 out:
3861 	kfree(name);
3862 	return ret;
3863 }
3864 
3865 /*
3866  * This does all the move/link/unlink/rmdir magic.
3867  */
3868 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3869 {
3870 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3871 	int ret = 0;
3872 	struct recorded_ref *cur;
3873 	struct recorded_ref *cur2;
3874 	struct list_head check_dirs;
3875 	struct fs_path *valid_path = NULL;
3876 	u64 ow_inode = 0;
3877 	u64 ow_gen;
3878 	u64 ow_mode;
3879 	int did_overwrite = 0;
3880 	int is_orphan = 0;
3881 	u64 last_dir_ino_rm = 0;
3882 	bool can_rename = true;
3883 	bool orphanized_dir = false;
3884 	bool orphanized_ancestor = false;
3885 
3886 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3887 
3888 	/*
3889 	 * This should never happen as the root dir always has the same ref
3890 	 * which is always '..'
3891 	 */
3892 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3893 	INIT_LIST_HEAD(&check_dirs);
3894 
3895 	valid_path = fs_path_alloc();
3896 	if (!valid_path) {
3897 		ret = -ENOMEM;
3898 		goto out;
3899 	}
3900 
3901 	/*
3902 	 * First, check if the first ref of the current inode was overwritten
3903 	 * before. If yes, we know that the current inode was already orphanized
3904 	 * and thus use the orphan name. If not, we can use get_cur_path to
3905 	 * get the path of the first ref as it would like while receiving at
3906 	 * this point in time.
3907 	 * New inodes are always orphan at the beginning, so force to use the
3908 	 * orphan name in this case.
3909 	 * The first ref is stored in valid_path and will be updated if it
3910 	 * gets moved around.
3911 	 */
3912 	if (!sctx->cur_inode_new) {
3913 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3914 				sctx->cur_inode_gen);
3915 		if (ret < 0)
3916 			goto out;
3917 		if (ret)
3918 			did_overwrite = 1;
3919 	}
3920 	if (sctx->cur_inode_new || did_overwrite) {
3921 		ret = gen_unique_name(sctx, sctx->cur_ino,
3922 				sctx->cur_inode_gen, valid_path);
3923 		if (ret < 0)
3924 			goto out;
3925 		is_orphan = 1;
3926 	} else {
3927 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3928 				valid_path);
3929 		if (ret < 0)
3930 			goto out;
3931 	}
3932 
3933 	/*
3934 	 * Before doing any rename and link operations, do a first pass on the
3935 	 * new references to orphanize any unprocessed inodes that may have a
3936 	 * reference that conflicts with one of the new references of the current
3937 	 * inode. This needs to happen first because a new reference may conflict
3938 	 * with the old reference of a parent directory, so we must make sure
3939 	 * that the path used for link and rename commands don't use an
3940 	 * orphanized name when an ancestor was not yet orphanized.
3941 	 *
3942 	 * Example:
3943 	 *
3944 	 * Parent snapshot:
3945 	 *
3946 	 * .                                                      (ino 256)
3947 	 * |----- testdir/                                        (ino 259)
3948 	 * |          |----- a                                    (ino 257)
3949 	 * |
3950 	 * |----- b                                               (ino 258)
3951 	 *
3952 	 * Send snapshot:
3953 	 *
3954 	 * .                                                      (ino 256)
3955 	 * |----- testdir_2/                                      (ino 259)
3956 	 * |          |----- a                                    (ino 260)
3957 	 * |
3958 	 * |----- testdir                                         (ino 257)
3959 	 * |----- b                                               (ino 257)
3960 	 * |----- b2                                              (ino 258)
3961 	 *
3962 	 * Processing the new reference for inode 257 with name "b" may happen
3963 	 * before processing the new reference with name "testdir". If so, we
3964 	 * must make sure that by the time we send a link command to create the
3965 	 * hard link "b", inode 259 was already orphanized, since the generated
3966 	 * path in "valid_path" already contains the orphanized name for 259.
3967 	 * We are processing inode 257, so only later when processing 259 we do
3968 	 * the rename operation to change its temporary (orphanized) name to
3969 	 * "testdir_2".
3970 	 */
3971 	list_for_each_entry(cur, &sctx->new_refs, list) {
3972 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3973 		if (ret < 0)
3974 			goto out;
3975 		if (ret == inode_state_will_create)
3976 			continue;
3977 
3978 		/*
3979 		 * Check if this new ref would overwrite the first ref of another
3980 		 * unprocessed inode. If yes, orphanize the overwritten inode.
3981 		 * If we find an overwritten ref that is not the first ref,
3982 		 * simply unlink it.
3983 		 */
3984 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3985 				cur->name, cur->name_len,
3986 				&ow_inode, &ow_gen, &ow_mode);
3987 		if (ret < 0)
3988 			goto out;
3989 		if (ret) {
3990 			ret = is_first_ref(sctx->parent_root,
3991 					   ow_inode, cur->dir, cur->name,
3992 					   cur->name_len);
3993 			if (ret < 0)
3994 				goto out;
3995 			if (ret) {
3996 				struct name_cache_entry *nce;
3997 				struct waiting_dir_move *wdm;
3998 
3999 				if (orphanized_dir) {
4000 					ret = refresh_ref_path(sctx, cur);
4001 					if (ret < 0)
4002 						goto out;
4003 				}
4004 
4005 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4006 						cur->full_path);
4007 				if (ret < 0)
4008 					goto out;
4009 				if (S_ISDIR(ow_mode))
4010 					orphanized_dir = true;
4011 
4012 				/*
4013 				 * If ow_inode has its rename operation delayed
4014 				 * make sure that its orphanized name is used in
4015 				 * the source path when performing its rename
4016 				 * operation.
4017 				 */
4018 				if (is_waiting_for_move(sctx, ow_inode)) {
4019 					wdm = get_waiting_dir_move(sctx,
4020 								   ow_inode);
4021 					ASSERT(wdm);
4022 					wdm->orphanized = true;
4023 				}
4024 
4025 				/*
4026 				 * Make sure we clear our orphanized inode's
4027 				 * name from the name cache. This is because the
4028 				 * inode ow_inode might be an ancestor of some
4029 				 * other inode that will be orphanized as well
4030 				 * later and has an inode number greater than
4031 				 * sctx->send_progress. We need to prevent
4032 				 * future name lookups from using the old name
4033 				 * and get instead the orphan name.
4034 				 */
4035 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4036 				if (nce) {
4037 					name_cache_delete(sctx, nce);
4038 					kfree(nce);
4039 				}
4040 
4041 				/*
4042 				 * ow_inode might currently be an ancestor of
4043 				 * cur_ino, therefore compute valid_path (the
4044 				 * current path of cur_ino) again because it
4045 				 * might contain the pre-orphanization name of
4046 				 * ow_inode, which is no longer valid.
4047 				 */
4048 				ret = is_ancestor(sctx->parent_root,
4049 						  ow_inode, ow_gen,
4050 						  sctx->cur_ino, NULL);
4051 				if (ret > 0) {
4052 					orphanized_ancestor = true;
4053 					fs_path_reset(valid_path);
4054 					ret = get_cur_path(sctx, sctx->cur_ino,
4055 							   sctx->cur_inode_gen,
4056 							   valid_path);
4057 				}
4058 				if (ret < 0)
4059 					goto out;
4060 			} else {
4061 				/*
4062 				 * If we previously orphanized a directory that
4063 				 * collided with a new reference that we already
4064 				 * processed, recompute the current path because
4065 				 * that directory may be part of the path.
4066 				 */
4067 				if (orphanized_dir) {
4068 					ret = refresh_ref_path(sctx, cur);
4069 					if (ret < 0)
4070 						goto out;
4071 				}
4072 				ret = send_unlink(sctx, cur->full_path);
4073 				if (ret < 0)
4074 					goto out;
4075 			}
4076 		}
4077 
4078 	}
4079 
4080 	list_for_each_entry(cur, &sctx->new_refs, list) {
4081 		/*
4082 		 * We may have refs where the parent directory does not exist
4083 		 * yet. This happens if the parent directories inum is higher
4084 		 * than the current inum. To handle this case, we create the
4085 		 * parent directory out of order. But we need to check if this
4086 		 * did already happen before due to other refs in the same dir.
4087 		 */
4088 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4089 		if (ret < 0)
4090 			goto out;
4091 		if (ret == inode_state_will_create) {
4092 			ret = 0;
4093 			/*
4094 			 * First check if any of the current inodes refs did
4095 			 * already create the dir.
4096 			 */
4097 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4098 				if (cur == cur2)
4099 					break;
4100 				if (cur2->dir == cur->dir) {
4101 					ret = 1;
4102 					break;
4103 				}
4104 			}
4105 
4106 			/*
4107 			 * If that did not happen, check if a previous inode
4108 			 * did already create the dir.
4109 			 */
4110 			if (!ret)
4111 				ret = did_create_dir(sctx, cur->dir);
4112 			if (ret < 0)
4113 				goto out;
4114 			if (!ret) {
4115 				ret = send_create_inode(sctx, cur->dir);
4116 				if (ret < 0)
4117 					goto out;
4118 			}
4119 		}
4120 
4121 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4122 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4123 			if (ret < 0)
4124 				goto out;
4125 			if (ret == 1) {
4126 				can_rename = false;
4127 				*pending_move = 1;
4128 			}
4129 		}
4130 
4131 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4132 		    can_rename) {
4133 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4134 			if (ret < 0)
4135 				goto out;
4136 			if (ret == 1) {
4137 				can_rename = false;
4138 				*pending_move = 1;
4139 			}
4140 		}
4141 
4142 		/*
4143 		 * link/move the ref to the new place. If we have an orphan
4144 		 * inode, move it and update valid_path. If not, link or move
4145 		 * it depending on the inode mode.
4146 		 */
4147 		if (is_orphan && can_rename) {
4148 			ret = send_rename(sctx, valid_path, cur->full_path);
4149 			if (ret < 0)
4150 				goto out;
4151 			is_orphan = 0;
4152 			ret = fs_path_copy(valid_path, cur->full_path);
4153 			if (ret < 0)
4154 				goto out;
4155 		} else if (can_rename) {
4156 			if (S_ISDIR(sctx->cur_inode_mode)) {
4157 				/*
4158 				 * Dirs can't be linked, so move it. For moved
4159 				 * dirs, we always have one new and one deleted
4160 				 * ref. The deleted ref is ignored later.
4161 				 */
4162 				ret = send_rename(sctx, valid_path,
4163 						  cur->full_path);
4164 				if (!ret)
4165 					ret = fs_path_copy(valid_path,
4166 							   cur->full_path);
4167 				if (ret < 0)
4168 					goto out;
4169 			} else {
4170 				/*
4171 				 * We might have previously orphanized an inode
4172 				 * which is an ancestor of our current inode,
4173 				 * so our reference's full path, which was
4174 				 * computed before any such orphanizations, must
4175 				 * be updated.
4176 				 */
4177 				if (orphanized_dir) {
4178 					ret = update_ref_path(sctx, cur);
4179 					if (ret < 0)
4180 						goto out;
4181 				}
4182 				ret = send_link(sctx, cur->full_path,
4183 						valid_path);
4184 				if (ret < 0)
4185 					goto out;
4186 			}
4187 		}
4188 		ret = dup_ref(cur, &check_dirs);
4189 		if (ret < 0)
4190 			goto out;
4191 	}
4192 
4193 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4194 		/*
4195 		 * Check if we can already rmdir the directory. If not,
4196 		 * orphanize it. For every dir item inside that gets deleted
4197 		 * later, we do this check again and rmdir it then if possible.
4198 		 * See the use of check_dirs for more details.
4199 		 */
4200 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4201 				sctx->cur_ino);
4202 		if (ret < 0)
4203 			goto out;
4204 		if (ret) {
4205 			ret = send_rmdir(sctx, valid_path);
4206 			if (ret < 0)
4207 				goto out;
4208 		} else if (!is_orphan) {
4209 			ret = orphanize_inode(sctx, sctx->cur_ino,
4210 					sctx->cur_inode_gen, valid_path);
4211 			if (ret < 0)
4212 				goto out;
4213 			is_orphan = 1;
4214 		}
4215 
4216 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4217 			ret = dup_ref(cur, &check_dirs);
4218 			if (ret < 0)
4219 				goto out;
4220 		}
4221 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4222 		   !list_empty(&sctx->deleted_refs)) {
4223 		/*
4224 		 * We have a moved dir. Add the old parent to check_dirs
4225 		 */
4226 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4227 				list);
4228 		ret = dup_ref(cur, &check_dirs);
4229 		if (ret < 0)
4230 			goto out;
4231 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4232 		/*
4233 		 * We have a non dir inode. Go through all deleted refs and
4234 		 * unlink them if they were not already overwritten by other
4235 		 * inodes.
4236 		 */
4237 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4238 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4239 					sctx->cur_ino, sctx->cur_inode_gen,
4240 					cur->name, cur->name_len);
4241 			if (ret < 0)
4242 				goto out;
4243 			if (!ret) {
4244 				/*
4245 				 * If we orphanized any ancestor before, we need
4246 				 * to recompute the full path for deleted names,
4247 				 * since any such path was computed before we
4248 				 * processed any references and orphanized any
4249 				 * ancestor inode.
4250 				 */
4251 				if (orphanized_ancestor) {
4252 					ret = update_ref_path(sctx, cur);
4253 					if (ret < 0)
4254 						goto out;
4255 				}
4256 				ret = send_unlink(sctx, cur->full_path);
4257 				if (ret < 0)
4258 					goto out;
4259 			}
4260 			ret = dup_ref(cur, &check_dirs);
4261 			if (ret < 0)
4262 				goto out;
4263 		}
4264 		/*
4265 		 * If the inode is still orphan, unlink the orphan. This may
4266 		 * happen when a previous inode did overwrite the first ref
4267 		 * of this inode and no new refs were added for the current
4268 		 * inode. Unlinking does not mean that the inode is deleted in
4269 		 * all cases. There may still be links to this inode in other
4270 		 * places.
4271 		 */
4272 		if (is_orphan) {
4273 			ret = send_unlink(sctx, valid_path);
4274 			if (ret < 0)
4275 				goto out;
4276 		}
4277 	}
4278 
4279 	/*
4280 	 * We did collect all parent dirs where cur_inode was once located. We
4281 	 * now go through all these dirs and check if they are pending for
4282 	 * deletion and if it's finally possible to perform the rmdir now.
4283 	 * We also update the inode stats of the parent dirs here.
4284 	 */
4285 	list_for_each_entry(cur, &check_dirs, list) {
4286 		/*
4287 		 * In case we had refs into dirs that were not processed yet,
4288 		 * we don't need to do the utime and rmdir logic for these dirs.
4289 		 * The dir will be processed later.
4290 		 */
4291 		if (cur->dir > sctx->cur_ino)
4292 			continue;
4293 
4294 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4295 		if (ret < 0)
4296 			goto out;
4297 
4298 		if (ret == inode_state_did_create ||
4299 		    ret == inode_state_no_change) {
4300 			/* TODO delayed utimes */
4301 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4302 			if (ret < 0)
4303 				goto out;
4304 		} else if (ret == inode_state_did_delete &&
4305 			   cur->dir != last_dir_ino_rm) {
4306 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4307 					sctx->cur_ino);
4308 			if (ret < 0)
4309 				goto out;
4310 			if (ret) {
4311 				ret = get_cur_path(sctx, cur->dir,
4312 						   cur->dir_gen, valid_path);
4313 				if (ret < 0)
4314 					goto out;
4315 				ret = send_rmdir(sctx, valid_path);
4316 				if (ret < 0)
4317 					goto out;
4318 				last_dir_ino_rm = cur->dir;
4319 			}
4320 		}
4321 	}
4322 
4323 	ret = 0;
4324 
4325 out:
4326 	__free_recorded_refs(&check_dirs);
4327 	free_recorded_refs(sctx);
4328 	fs_path_free(valid_path);
4329 	return ret;
4330 }
4331 
4332 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4333 		      void *ctx, struct list_head *refs)
4334 {
4335 	int ret = 0;
4336 	struct send_ctx *sctx = ctx;
4337 	struct fs_path *p;
4338 	u64 gen;
4339 
4340 	p = fs_path_alloc();
4341 	if (!p)
4342 		return -ENOMEM;
4343 
4344 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4345 			NULL, NULL);
4346 	if (ret < 0)
4347 		goto out;
4348 
4349 	ret = get_cur_path(sctx, dir, gen, p);
4350 	if (ret < 0)
4351 		goto out;
4352 	ret = fs_path_add_path(p, name);
4353 	if (ret < 0)
4354 		goto out;
4355 
4356 	ret = __record_ref(refs, dir, gen, p);
4357 
4358 out:
4359 	if (ret)
4360 		fs_path_free(p);
4361 	return ret;
4362 }
4363 
4364 static int __record_new_ref(int num, u64 dir, int index,
4365 			    struct fs_path *name,
4366 			    void *ctx)
4367 {
4368 	struct send_ctx *sctx = ctx;
4369 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4370 }
4371 
4372 
4373 static int __record_deleted_ref(int num, u64 dir, int index,
4374 				struct fs_path *name,
4375 				void *ctx)
4376 {
4377 	struct send_ctx *sctx = ctx;
4378 	return record_ref(sctx->parent_root, dir, name, ctx,
4379 			  &sctx->deleted_refs);
4380 }
4381 
4382 static int record_new_ref(struct send_ctx *sctx)
4383 {
4384 	int ret;
4385 
4386 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4387 				sctx->cmp_key, 0, __record_new_ref, sctx);
4388 	if (ret < 0)
4389 		goto out;
4390 	ret = 0;
4391 
4392 out:
4393 	return ret;
4394 }
4395 
4396 static int record_deleted_ref(struct send_ctx *sctx)
4397 {
4398 	int ret;
4399 
4400 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4401 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4402 	if (ret < 0)
4403 		goto out;
4404 	ret = 0;
4405 
4406 out:
4407 	return ret;
4408 }
4409 
4410 struct find_ref_ctx {
4411 	u64 dir;
4412 	u64 dir_gen;
4413 	struct btrfs_root *root;
4414 	struct fs_path *name;
4415 	int found_idx;
4416 };
4417 
4418 static int __find_iref(int num, u64 dir, int index,
4419 		       struct fs_path *name,
4420 		       void *ctx_)
4421 {
4422 	struct find_ref_ctx *ctx = ctx_;
4423 	u64 dir_gen;
4424 	int ret;
4425 
4426 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4427 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4428 		/*
4429 		 * To avoid doing extra lookups we'll only do this if everything
4430 		 * else matches.
4431 		 */
4432 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4433 				     NULL, NULL, NULL);
4434 		if (ret)
4435 			return ret;
4436 		if (dir_gen != ctx->dir_gen)
4437 			return 0;
4438 		ctx->found_idx = num;
4439 		return 1;
4440 	}
4441 	return 0;
4442 }
4443 
4444 static int find_iref(struct btrfs_root *root,
4445 		     struct btrfs_path *path,
4446 		     struct btrfs_key *key,
4447 		     u64 dir, u64 dir_gen, struct fs_path *name)
4448 {
4449 	int ret;
4450 	struct find_ref_ctx ctx;
4451 
4452 	ctx.dir = dir;
4453 	ctx.name = name;
4454 	ctx.dir_gen = dir_gen;
4455 	ctx.found_idx = -1;
4456 	ctx.root = root;
4457 
4458 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4459 	if (ret < 0)
4460 		return ret;
4461 
4462 	if (ctx.found_idx == -1)
4463 		return -ENOENT;
4464 
4465 	return ctx.found_idx;
4466 }
4467 
4468 static int __record_changed_new_ref(int num, u64 dir, int index,
4469 				    struct fs_path *name,
4470 				    void *ctx)
4471 {
4472 	u64 dir_gen;
4473 	int ret;
4474 	struct send_ctx *sctx = ctx;
4475 
4476 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4477 			     NULL, NULL, NULL);
4478 	if (ret)
4479 		return ret;
4480 
4481 	ret = find_iref(sctx->parent_root, sctx->right_path,
4482 			sctx->cmp_key, dir, dir_gen, name);
4483 	if (ret == -ENOENT)
4484 		ret = __record_new_ref(num, dir, index, name, sctx);
4485 	else if (ret > 0)
4486 		ret = 0;
4487 
4488 	return ret;
4489 }
4490 
4491 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4492 					struct fs_path *name,
4493 					void *ctx)
4494 {
4495 	u64 dir_gen;
4496 	int ret;
4497 	struct send_ctx *sctx = ctx;
4498 
4499 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4500 			     NULL, NULL, NULL);
4501 	if (ret)
4502 		return ret;
4503 
4504 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4505 			dir, dir_gen, name);
4506 	if (ret == -ENOENT)
4507 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4508 	else if (ret > 0)
4509 		ret = 0;
4510 
4511 	return ret;
4512 }
4513 
4514 static int record_changed_ref(struct send_ctx *sctx)
4515 {
4516 	int ret = 0;
4517 
4518 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4519 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4520 	if (ret < 0)
4521 		goto out;
4522 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4523 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4524 	if (ret < 0)
4525 		goto out;
4526 	ret = 0;
4527 
4528 out:
4529 	return ret;
4530 }
4531 
4532 /*
4533  * Record and process all refs at once. Needed when an inode changes the
4534  * generation number, which means that it was deleted and recreated.
4535  */
4536 static int process_all_refs(struct send_ctx *sctx,
4537 			    enum btrfs_compare_tree_result cmd)
4538 {
4539 	int ret;
4540 	struct btrfs_root *root;
4541 	struct btrfs_path *path;
4542 	struct btrfs_key key;
4543 	struct btrfs_key found_key;
4544 	struct extent_buffer *eb;
4545 	int slot;
4546 	iterate_inode_ref_t cb;
4547 	int pending_move = 0;
4548 
4549 	path = alloc_path_for_send();
4550 	if (!path)
4551 		return -ENOMEM;
4552 
4553 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4554 		root = sctx->send_root;
4555 		cb = __record_new_ref;
4556 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4557 		root = sctx->parent_root;
4558 		cb = __record_deleted_ref;
4559 	} else {
4560 		btrfs_err(sctx->send_root->fs_info,
4561 				"Wrong command %d in process_all_refs", cmd);
4562 		ret = -EINVAL;
4563 		goto out;
4564 	}
4565 
4566 	key.objectid = sctx->cmp_key->objectid;
4567 	key.type = BTRFS_INODE_REF_KEY;
4568 	key.offset = 0;
4569 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4570 	if (ret < 0)
4571 		goto out;
4572 
4573 	while (1) {
4574 		eb = path->nodes[0];
4575 		slot = path->slots[0];
4576 		if (slot >= btrfs_header_nritems(eb)) {
4577 			ret = btrfs_next_leaf(root, path);
4578 			if (ret < 0)
4579 				goto out;
4580 			else if (ret > 0)
4581 				break;
4582 			continue;
4583 		}
4584 
4585 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4586 
4587 		if (found_key.objectid != key.objectid ||
4588 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4589 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4590 			break;
4591 
4592 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4593 		if (ret < 0)
4594 			goto out;
4595 
4596 		path->slots[0]++;
4597 	}
4598 	btrfs_release_path(path);
4599 
4600 	/*
4601 	 * We don't actually care about pending_move as we are simply
4602 	 * re-creating this inode and will be rename'ing it into place once we
4603 	 * rename the parent directory.
4604 	 */
4605 	ret = process_recorded_refs(sctx, &pending_move);
4606 out:
4607 	btrfs_free_path(path);
4608 	return ret;
4609 }
4610 
4611 static int send_set_xattr(struct send_ctx *sctx,
4612 			  struct fs_path *path,
4613 			  const char *name, int name_len,
4614 			  const char *data, int data_len)
4615 {
4616 	int ret = 0;
4617 
4618 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4619 	if (ret < 0)
4620 		goto out;
4621 
4622 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4623 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4624 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4625 
4626 	ret = send_cmd(sctx);
4627 
4628 tlv_put_failure:
4629 out:
4630 	return ret;
4631 }
4632 
4633 static int send_remove_xattr(struct send_ctx *sctx,
4634 			  struct fs_path *path,
4635 			  const char *name, int name_len)
4636 {
4637 	int ret = 0;
4638 
4639 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4640 	if (ret < 0)
4641 		goto out;
4642 
4643 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4644 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4645 
4646 	ret = send_cmd(sctx);
4647 
4648 tlv_put_failure:
4649 out:
4650 	return ret;
4651 }
4652 
4653 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4654 			       const char *name, int name_len,
4655 			       const char *data, int data_len,
4656 			       u8 type, void *ctx)
4657 {
4658 	int ret;
4659 	struct send_ctx *sctx = ctx;
4660 	struct fs_path *p;
4661 	struct posix_acl_xattr_header dummy_acl;
4662 
4663 	/* Capabilities are emitted by finish_inode_if_needed */
4664 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4665 		return 0;
4666 
4667 	p = fs_path_alloc();
4668 	if (!p)
4669 		return -ENOMEM;
4670 
4671 	/*
4672 	 * This hack is needed because empty acls are stored as zero byte
4673 	 * data in xattrs. Problem with that is, that receiving these zero byte
4674 	 * acls will fail later. To fix this, we send a dummy acl list that
4675 	 * only contains the version number and no entries.
4676 	 */
4677 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4678 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4679 		if (data_len == 0) {
4680 			dummy_acl.a_version =
4681 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4682 			data = (char *)&dummy_acl;
4683 			data_len = sizeof(dummy_acl);
4684 		}
4685 	}
4686 
4687 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4688 	if (ret < 0)
4689 		goto out;
4690 
4691 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4692 
4693 out:
4694 	fs_path_free(p);
4695 	return ret;
4696 }
4697 
4698 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4699 				   const char *name, int name_len,
4700 				   const char *data, int data_len,
4701 				   u8 type, void *ctx)
4702 {
4703 	int ret;
4704 	struct send_ctx *sctx = ctx;
4705 	struct fs_path *p;
4706 
4707 	p = fs_path_alloc();
4708 	if (!p)
4709 		return -ENOMEM;
4710 
4711 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4712 	if (ret < 0)
4713 		goto out;
4714 
4715 	ret = send_remove_xattr(sctx, p, name, name_len);
4716 
4717 out:
4718 	fs_path_free(p);
4719 	return ret;
4720 }
4721 
4722 static int process_new_xattr(struct send_ctx *sctx)
4723 {
4724 	int ret = 0;
4725 
4726 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4727 			       __process_new_xattr, sctx);
4728 
4729 	return ret;
4730 }
4731 
4732 static int process_deleted_xattr(struct send_ctx *sctx)
4733 {
4734 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4735 				__process_deleted_xattr, sctx);
4736 }
4737 
4738 struct find_xattr_ctx {
4739 	const char *name;
4740 	int name_len;
4741 	int found_idx;
4742 	char *found_data;
4743 	int found_data_len;
4744 };
4745 
4746 static int __find_xattr(int num, struct btrfs_key *di_key,
4747 			const char *name, int name_len,
4748 			const char *data, int data_len,
4749 			u8 type, void *vctx)
4750 {
4751 	struct find_xattr_ctx *ctx = vctx;
4752 
4753 	if (name_len == ctx->name_len &&
4754 	    strncmp(name, ctx->name, name_len) == 0) {
4755 		ctx->found_idx = num;
4756 		ctx->found_data_len = data_len;
4757 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4758 		if (!ctx->found_data)
4759 			return -ENOMEM;
4760 		return 1;
4761 	}
4762 	return 0;
4763 }
4764 
4765 static int find_xattr(struct btrfs_root *root,
4766 		      struct btrfs_path *path,
4767 		      struct btrfs_key *key,
4768 		      const char *name, int name_len,
4769 		      char **data, int *data_len)
4770 {
4771 	int ret;
4772 	struct find_xattr_ctx ctx;
4773 
4774 	ctx.name = name;
4775 	ctx.name_len = name_len;
4776 	ctx.found_idx = -1;
4777 	ctx.found_data = NULL;
4778 	ctx.found_data_len = 0;
4779 
4780 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4781 	if (ret < 0)
4782 		return ret;
4783 
4784 	if (ctx.found_idx == -1)
4785 		return -ENOENT;
4786 	if (data) {
4787 		*data = ctx.found_data;
4788 		*data_len = ctx.found_data_len;
4789 	} else {
4790 		kfree(ctx.found_data);
4791 	}
4792 	return ctx.found_idx;
4793 }
4794 
4795 
4796 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4797 				       const char *name, int name_len,
4798 				       const char *data, int data_len,
4799 				       u8 type, void *ctx)
4800 {
4801 	int ret;
4802 	struct send_ctx *sctx = ctx;
4803 	char *found_data = NULL;
4804 	int found_data_len  = 0;
4805 
4806 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4807 			 sctx->cmp_key, name, name_len, &found_data,
4808 			 &found_data_len);
4809 	if (ret == -ENOENT) {
4810 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4811 				data_len, type, ctx);
4812 	} else if (ret >= 0) {
4813 		if (data_len != found_data_len ||
4814 		    memcmp(data, found_data, data_len)) {
4815 			ret = __process_new_xattr(num, di_key, name, name_len,
4816 					data, data_len, type, ctx);
4817 		} else {
4818 			ret = 0;
4819 		}
4820 	}
4821 
4822 	kfree(found_data);
4823 	return ret;
4824 }
4825 
4826 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4827 					   const char *name, int name_len,
4828 					   const char *data, int data_len,
4829 					   u8 type, void *ctx)
4830 {
4831 	int ret;
4832 	struct send_ctx *sctx = ctx;
4833 
4834 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4835 			 name, name_len, NULL, NULL);
4836 	if (ret == -ENOENT)
4837 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4838 				data_len, type, ctx);
4839 	else if (ret >= 0)
4840 		ret = 0;
4841 
4842 	return ret;
4843 }
4844 
4845 static int process_changed_xattr(struct send_ctx *sctx)
4846 {
4847 	int ret = 0;
4848 
4849 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4850 			__process_changed_new_xattr, sctx);
4851 	if (ret < 0)
4852 		goto out;
4853 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4854 			__process_changed_deleted_xattr, sctx);
4855 
4856 out:
4857 	return ret;
4858 }
4859 
4860 static int process_all_new_xattrs(struct send_ctx *sctx)
4861 {
4862 	int ret;
4863 	struct btrfs_root *root;
4864 	struct btrfs_path *path;
4865 	struct btrfs_key key;
4866 	struct btrfs_key found_key;
4867 	struct extent_buffer *eb;
4868 	int slot;
4869 
4870 	path = alloc_path_for_send();
4871 	if (!path)
4872 		return -ENOMEM;
4873 
4874 	root = sctx->send_root;
4875 
4876 	key.objectid = sctx->cmp_key->objectid;
4877 	key.type = BTRFS_XATTR_ITEM_KEY;
4878 	key.offset = 0;
4879 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4880 	if (ret < 0)
4881 		goto out;
4882 
4883 	while (1) {
4884 		eb = path->nodes[0];
4885 		slot = path->slots[0];
4886 		if (slot >= btrfs_header_nritems(eb)) {
4887 			ret = btrfs_next_leaf(root, path);
4888 			if (ret < 0) {
4889 				goto out;
4890 			} else if (ret > 0) {
4891 				ret = 0;
4892 				break;
4893 			}
4894 			continue;
4895 		}
4896 
4897 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4898 		if (found_key.objectid != key.objectid ||
4899 		    found_key.type != key.type) {
4900 			ret = 0;
4901 			goto out;
4902 		}
4903 
4904 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4905 		if (ret < 0)
4906 			goto out;
4907 
4908 		path->slots[0]++;
4909 	}
4910 
4911 out:
4912 	btrfs_free_path(path);
4913 	return ret;
4914 }
4915 
4916 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4917 {
4918 	return sctx->send_max_size - SZ_16K;
4919 }
4920 
4921 static int put_data_header(struct send_ctx *sctx, u32 len)
4922 {
4923 	struct btrfs_tlv_header *hdr;
4924 
4925 	if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4926 		return -EOVERFLOW;
4927 	hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4928 	put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4929 	put_unaligned_le16(len, &hdr->tlv_len);
4930 	sctx->send_size += sizeof(*hdr);
4931 	return 0;
4932 }
4933 
4934 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4935 {
4936 	struct btrfs_root *root = sctx->send_root;
4937 	struct btrfs_fs_info *fs_info = root->fs_info;
4938 	struct inode *inode;
4939 	struct page *page;
4940 	pgoff_t index = offset >> PAGE_SHIFT;
4941 	pgoff_t last_index;
4942 	unsigned pg_offset = offset_in_page(offset);
4943 	int ret;
4944 
4945 	ret = put_data_header(sctx, len);
4946 	if (ret)
4947 		return ret;
4948 
4949 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4950 	if (IS_ERR(inode))
4951 		return PTR_ERR(inode);
4952 
4953 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4954 
4955 	/* initial readahead */
4956 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4957 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4958 
4959 	while (index <= last_index) {
4960 		unsigned cur_len = min_t(unsigned, len,
4961 					 PAGE_SIZE - pg_offset);
4962 
4963 		page = find_lock_page(inode->i_mapping, index);
4964 		if (!page) {
4965 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4966 				NULL, index, last_index + 1 - index);
4967 
4968 			page = find_or_create_page(inode->i_mapping, index,
4969 					GFP_KERNEL);
4970 			if (!page) {
4971 				ret = -ENOMEM;
4972 				break;
4973 			}
4974 		}
4975 
4976 		if (PageReadahead(page)) {
4977 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4978 				NULL, page, index, last_index + 1 - index);
4979 		}
4980 
4981 		if (!PageUptodate(page)) {
4982 			btrfs_readpage(NULL, page);
4983 			lock_page(page);
4984 			if (!PageUptodate(page)) {
4985 				unlock_page(page);
4986 				put_page(page);
4987 				ret = -EIO;
4988 				break;
4989 			}
4990 		}
4991 
4992 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
4993 				 pg_offset, cur_len);
4994 		unlock_page(page);
4995 		put_page(page);
4996 		index++;
4997 		pg_offset = 0;
4998 		len -= cur_len;
4999 		sctx->send_size += cur_len;
5000 	}
5001 	iput(inode);
5002 	return ret;
5003 }
5004 
5005 /*
5006  * Read some bytes from the current inode/file and send a write command to
5007  * user space.
5008  */
5009 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5010 {
5011 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5012 	int ret = 0;
5013 	struct fs_path *p;
5014 
5015 	p = fs_path_alloc();
5016 	if (!p)
5017 		return -ENOMEM;
5018 
5019 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5020 
5021 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5022 	if (ret < 0)
5023 		goto out;
5024 
5025 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5026 	if (ret < 0)
5027 		goto out;
5028 
5029 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5030 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5031 	ret = put_file_data(sctx, offset, len);
5032 	if (ret < 0)
5033 		goto out;
5034 
5035 	ret = send_cmd(sctx);
5036 
5037 tlv_put_failure:
5038 out:
5039 	fs_path_free(p);
5040 	return ret;
5041 }
5042 
5043 /*
5044  * Send a clone command to user space.
5045  */
5046 static int send_clone(struct send_ctx *sctx,
5047 		      u64 offset, u32 len,
5048 		      struct clone_root *clone_root)
5049 {
5050 	int ret = 0;
5051 	struct fs_path *p;
5052 	u64 gen;
5053 
5054 	btrfs_debug(sctx->send_root->fs_info,
5055 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5056 		    offset, len, clone_root->root->root_key.objectid,
5057 		    clone_root->ino, clone_root->offset);
5058 
5059 	p = fs_path_alloc();
5060 	if (!p)
5061 		return -ENOMEM;
5062 
5063 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5064 	if (ret < 0)
5065 		goto out;
5066 
5067 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5068 	if (ret < 0)
5069 		goto out;
5070 
5071 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5072 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5073 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5074 
5075 	if (clone_root->root == sctx->send_root) {
5076 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5077 				&gen, NULL, NULL, NULL, NULL);
5078 		if (ret < 0)
5079 			goto out;
5080 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5081 	} else {
5082 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5083 	}
5084 	if (ret < 0)
5085 		goto out;
5086 
5087 	/*
5088 	 * If the parent we're using has a received_uuid set then use that as
5089 	 * our clone source as that is what we will look for when doing a
5090 	 * receive.
5091 	 *
5092 	 * This covers the case that we create a snapshot off of a received
5093 	 * subvolume and then use that as the parent and try to receive on a
5094 	 * different host.
5095 	 */
5096 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5097 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5098 			     clone_root->root->root_item.received_uuid);
5099 	else
5100 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5101 			     clone_root->root->root_item.uuid);
5102 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5103 		    btrfs_root_ctransid(&clone_root->root->root_item));
5104 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5105 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5106 			clone_root->offset);
5107 
5108 	ret = send_cmd(sctx);
5109 
5110 tlv_put_failure:
5111 out:
5112 	fs_path_free(p);
5113 	return ret;
5114 }
5115 
5116 /*
5117  * Send an update extent command to user space.
5118  */
5119 static int send_update_extent(struct send_ctx *sctx,
5120 			      u64 offset, u32 len)
5121 {
5122 	int ret = 0;
5123 	struct fs_path *p;
5124 
5125 	p = fs_path_alloc();
5126 	if (!p)
5127 		return -ENOMEM;
5128 
5129 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5130 	if (ret < 0)
5131 		goto out;
5132 
5133 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5134 	if (ret < 0)
5135 		goto out;
5136 
5137 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5138 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5139 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5140 
5141 	ret = send_cmd(sctx);
5142 
5143 tlv_put_failure:
5144 out:
5145 	fs_path_free(p);
5146 	return ret;
5147 }
5148 
5149 static int send_hole(struct send_ctx *sctx, u64 end)
5150 {
5151 	struct fs_path *p = NULL;
5152 	u64 read_size = max_send_read_size(sctx);
5153 	u64 offset = sctx->cur_inode_last_extent;
5154 	int ret = 0;
5155 
5156 	/*
5157 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5158 	 * fallocate (for extent preallocation and hole punching), sending a
5159 	 * write of zeroes starting at EOF or beyond would later require issuing
5160 	 * a truncate operation which would undo the write and achieve nothing.
5161 	 */
5162 	if (offset >= sctx->cur_inode_size)
5163 		return 0;
5164 
5165 	/*
5166 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5167 	 * after the i_size.
5168 	 */
5169 	end = min_t(u64, end, sctx->cur_inode_size);
5170 
5171 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5172 		return send_update_extent(sctx, offset, end - offset);
5173 
5174 	p = fs_path_alloc();
5175 	if (!p)
5176 		return -ENOMEM;
5177 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5178 	if (ret < 0)
5179 		goto tlv_put_failure;
5180 	while (offset < end) {
5181 		u64 len = min(end - offset, read_size);
5182 
5183 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5184 		if (ret < 0)
5185 			break;
5186 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5187 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5188 		ret = put_data_header(sctx, len);
5189 		if (ret < 0)
5190 			break;
5191 		memset(sctx->send_buf + sctx->send_size, 0, len);
5192 		sctx->send_size += len;
5193 		ret = send_cmd(sctx);
5194 		if (ret < 0)
5195 			break;
5196 		offset += len;
5197 	}
5198 	sctx->cur_inode_next_write_offset = offset;
5199 tlv_put_failure:
5200 	fs_path_free(p);
5201 	return ret;
5202 }
5203 
5204 static int send_extent_data(struct send_ctx *sctx,
5205 			    const u64 offset,
5206 			    const u64 len)
5207 {
5208 	u64 read_size = max_send_read_size(sctx);
5209 	u64 sent = 0;
5210 
5211 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5212 		return send_update_extent(sctx, offset, len);
5213 
5214 	while (sent < len) {
5215 		u64 size = min(len - sent, read_size);
5216 		int ret;
5217 
5218 		ret = send_write(sctx, offset + sent, size);
5219 		if (ret < 0)
5220 			return ret;
5221 		sent += size;
5222 	}
5223 	return 0;
5224 }
5225 
5226 /*
5227  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5228  * found, call send_set_xattr function to emit it.
5229  *
5230  * Return 0 if there isn't a capability, or when the capability was emitted
5231  * successfully, or < 0 if an error occurred.
5232  */
5233 static int send_capabilities(struct send_ctx *sctx)
5234 {
5235 	struct fs_path *fspath = NULL;
5236 	struct btrfs_path *path;
5237 	struct btrfs_dir_item *di;
5238 	struct extent_buffer *leaf;
5239 	unsigned long data_ptr;
5240 	char *buf = NULL;
5241 	int buf_len;
5242 	int ret = 0;
5243 
5244 	path = alloc_path_for_send();
5245 	if (!path)
5246 		return -ENOMEM;
5247 
5248 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5249 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5250 	if (!di) {
5251 		/* There is no xattr for this inode */
5252 		goto out;
5253 	} else if (IS_ERR(di)) {
5254 		ret = PTR_ERR(di);
5255 		goto out;
5256 	}
5257 
5258 	leaf = path->nodes[0];
5259 	buf_len = btrfs_dir_data_len(leaf, di);
5260 
5261 	fspath = fs_path_alloc();
5262 	buf = kmalloc(buf_len, GFP_KERNEL);
5263 	if (!fspath || !buf) {
5264 		ret = -ENOMEM;
5265 		goto out;
5266 	}
5267 
5268 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5269 	if (ret < 0)
5270 		goto out;
5271 
5272 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5273 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5274 
5275 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5276 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5277 out:
5278 	kfree(buf);
5279 	fs_path_free(fspath);
5280 	btrfs_free_path(path);
5281 	return ret;
5282 }
5283 
5284 static int clone_range(struct send_ctx *sctx,
5285 		       struct clone_root *clone_root,
5286 		       const u64 disk_byte,
5287 		       u64 data_offset,
5288 		       u64 offset,
5289 		       u64 len)
5290 {
5291 	struct btrfs_path *path;
5292 	struct btrfs_key key;
5293 	int ret;
5294 	u64 clone_src_i_size = 0;
5295 
5296 	/*
5297 	 * Prevent cloning from a zero offset with a length matching the sector
5298 	 * size because in some scenarios this will make the receiver fail.
5299 	 *
5300 	 * For example, if in the source filesystem the extent at offset 0
5301 	 * has a length of sectorsize and it was written using direct IO, then
5302 	 * it can never be an inline extent (even if compression is enabled).
5303 	 * Then this extent can be cloned in the original filesystem to a non
5304 	 * zero file offset, but it may not be possible to clone in the
5305 	 * destination filesystem because it can be inlined due to compression
5306 	 * on the destination filesystem (as the receiver's write operations are
5307 	 * always done using buffered IO). The same happens when the original
5308 	 * filesystem does not have compression enabled but the destination
5309 	 * filesystem has.
5310 	 */
5311 	if (clone_root->offset == 0 &&
5312 	    len == sctx->send_root->fs_info->sectorsize)
5313 		return send_extent_data(sctx, offset, len);
5314 
5315 	path = alloc_path_for_send();
5316 	if (!path)
5317 		return -ENOMEM;
5318 
5319 	/*
5320 	 * There are inodes that have extents that lie behind its i_size. Don't
5321 	 * accept clones from these extents.
5322 	 */
5323 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5324 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5325 	btrfs_release_path(path);
5326 	if (ret < 0)
5327 		goto out;
5328 
5329 	/*
5330 	 * We can't send a clone operation for the entire range if we find
5331 	 * extent items in the respective range in the source file that
5332 	 * refer to different extents or if we find holes.
5333 	 * So check for that and do a mix of clone and regular write/copy
5334 	 * operations if needed.
5335 	 *
5336 	 * Example:
5337 	 *
5338 	 * mkfs.btrfs -f /dev/sda
5339 	 * mount /dev/sda /mnt
5340 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5341 	 * cp --reflink=always /mnt/foo /mnt/bar
5342 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5343 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5344 	 *
5345 	 * If when we send the snapshot and we are processing file bar (which
5346 	 * has a higher inode number than foo) we blindly send a clone operation
5347 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5348 	 * a file bar that matches the content of file foo - iow, doesn't match
5349 	 * the content from bar in the original filesystem.
5350 	 */
5351 	key.objectid = clone_root->ino;
5352 	key.type = BTRFS_EXTENT_DATA_KEY;
5353 	key.offset = clone_root->offset;
5354 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5355 	if (ret < 0)
5356 		goto out;
5357 	if (ret > 0 && path->slots[0] > 0) {
5358 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5359 		if (key.objectid == clone_root->ino &&
5360 		    key.type == BTRFS_EXTENT_DATA_KEY)
5361 			path->slots[0]--;
5362 	}
5363 
5364 	while (true) {
5365 		struct extent_buffer *leaf = path->nodes[0];
5366 		int slot = path->slots[0];
5367 		struct btrfs_file_extent_item *ei;
5368 		u8 type;
5369 		u64 ext_len;
5370 		u64 clone_len;
5371 		u64 clone_data_offset;
5372 
5373 		if (slot >= btrfs_header_nritems(leaf)) {
5374 			ret = btrfs_next_leaf(clone_root->root, path);
5375 			if (ret < 0)
5376 				goto out;
5377 			else if (ret > 0)
5378 				break;
5379 			continue;
5380 		}
5381 
5382 		btrfs_item_key_to_cpu(leaf, &key, slot);
5383 
5384 		/*
5385 		 * We might have an implicit trailing hole (NO_HOLES feature
5386 		 * enabled). We deal with it after leaving this loop.
5387 		 */
5388 		if (key.objectid != clone_root->ino ||
5389 		    key.type != BTRFS_EXTENT_DATA_KEY)
5390 			break;
5391 
5392 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5393 		type = btrfs_file_extent_type(leaf, ei);
5394 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5395 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5396 			ext_len = PAGE_ALIGN(ext_len);
5397 		} else {
5398 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5399 		}
5400 
5401 		if (key.offset + ext_len <= clone_root->offset)
5402 			goto next;
5403 
5404 		if (key.offset > clone_root->offset) {
5405 			/* Implicit hole, NO_HOLES feature enabled. */
5406 			u64 hole_len = key.offset - clone_root->offset;
5407 
5408 			if (hole_len > len)
5409 				hole_len = len;
5410 			ret = send_extent_data(sctx, offset, hole_len);
5411 			if (ret < 0)
5412 				goto out;
5413 
5414 			len -= hole_len;
5415 			if (len == 0)
5416 				break;
5417 			offset += hole_len;
5418 			clone_root->offset += hole_len;
5419 			data_offset += hole_len;
5420 		}
5421 
5422 		if (key.offset >= clone_root->offset + len)
5423 			break;
5424 
5425 		if (key.offset >= clone_src_i_size)
5426 			break;
5427 
5428 		if (key.offset + ext_len > clone_src_i_size)
5429 			ext_len = clone_src_i_size - key.offset;
5430 
5431 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5432 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5433 			clone_root->offset = key.offset;
5434 			if (clone_data_offset < data_offset &&
5435 				clone_data_offset + ext_len > data_offset) {
5436 				u64 extent_offset;
5437 
5438 				extent_offset = data_offset - clone_data_offset;
5439 				ext_len -= extent_offset;
5440 				clone_data_offset += extent_offset;
5441 				clone_root->offset += extent_offset;
5442 			}
5443 		}
5444 
5445 		clone_len = min_t(u64, ext_len, len);
5446 
5447 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5448 		    clone_data_offset == data_offset) {
5449 			const u64 src_end = clone_root->offset + clone_len;
5450 			const u64 sectorsize = SZ_64K;
5451 
5452 			/*
5453 			 * We can't clone the last block, when its size is not
5454 			 * sector size aligned, into the middle of a file. If we
5455 			 * do so, the receiver will get a failure (-EINVAL) when
5456 			 * trying to clone or will silently corrupt the data in
5457 			 * the destination file if it's on a kernel without the
5458 			 * fix introduced by commit ac765f83f1397646
5459 			 * ("Btrfs: fix data corruption due to cloning of eof
5460 			 * block).
5461 			 *
5462 			 * So issue a clone of the aligned down range plus a
5463 			 * regular write for the eof block, if we hit that case.
5464 			 *
5465 			 * Also, we use the maximum possible sector size, 64K,
5466 			 * because we don't know what's the sector size of the
5467 			 * filesystem that receives the stream, so we have to
5468 			 * assume the largest possible sector size.
5469 			 */
5470 			if (src_end == clone_src_i_size &&
5471 			    !IS_ALIGNED(src_end, sectorsize) &&
5472 			    offset + clone_len < sctx->cur_inode_size) {
5473 				u64 slen;
5474 
5475 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5476 						  sectorsize);
5477 				if (slen > 0) {
5478 					ret = send_clone(sctx, offset, slen,
5479 							 clone_root);
5480 					if (ret < 0)
5481 						goto out;
5482 				}
5483 				ret = send_extent_data(sctx, offset + slen,
5484 						       clone_len - slen);
5485 			} else {
5486 				ret = send_clone(sctx, offset, clone_len,
5487 						 clone_root);
5488 			}
5489 		} else {
5490 			ret = send_extent_data(sctx, offset, clone_len);
5491 		}
5492 
5493 		if (ret < 0)
5494 			goto out;
5495 
5496 		len -= clone_len;
5497 		if (len == 0)
5498 			break;
5499 		offset += clone_len;
5500 		clone_root->offset += clone_len;
5501 
5502 		/*
5503 		 * If we are cloning from the file we are currently processing,
5504 		 * and using the send root as the clone root, we must stop once
5505 		 * the current clone offset reaches the current eof of the file
5506 		 * at the receiver, otherwise we would issue an invalid clone
5507 		 * operation (source range going beyond eof) and cause the
5508 		 * receiver to fail. So if we reach the current eof, bail out
5509 		 * and fallback to a regular write.
5510 		 */
5511 		if (clone_root->root == sctx->send_root &&
5512 		    clone_root->ino == sctx->cur_ino &&
5513 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
5514 			break;
5515 
5516 		data_offset += clone_len;
5517 next:
5518 		path->slots[0]++;
5519 	}
5520 
5521 	if (len > 0)
5522 		ret = send_extent_data(sctx, offset, len);
5523 	else
5524 		ret = 0;
5525 out:
5526 	btrfs_free_path(path);
5527 	return ret;
5528 }
5529 
5530 static int send_write_or_clone(struct send_ctx *sctx,
5531 			       struct btrfs_path *path,
5532 			       struct btrfs_key *key,
5533 			       struct clone_root *clone_root)
5534 {
5535 	int ret = 0;
5536 	u64 offset = key->offset;
5537 	u64 end;
5538 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5539 
5540 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5541 	if (offset >= end)
5542 		return 0;
5543 
5544 	if (clone_root && IS_ALIGNED(end, bs)) {
5545 		struct btrfs_file_extent_item *ei;
5546 		u64 disk_byte;
5547 		u64 data_offset;
5548 
5549 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5550 				    struct btrfs_file_extent_item);
5551 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5552 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5553 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5554 				  offset, end - offset);
5555 	} else {
5556 		ret = send_extent_data(sctx, offset, end - offset);
5557 	}
5558 	sctx->cur_inode_next_write_offset = end;
5559 	return ret;
5560 }
5561 
5562 static int is_extent_unchanged(struct send_ctx *sctx,
5563 			       struct btrfs_path *left_path,
5564 			       struct btrfs_key *ekey)
5565 {
5566 	int ret = 0;
5567 	struct btrfs_key key;
5568 	struct btrfs_path *path = NULL;
5569 	struct extent_buffer *eb;
5570 	int slot;
5571 	struct btrfs_key found_key;
5572 	struct btrfs_file_extent_item *ei;
5573 	u64 left_disknr;
5574 	u64 right_disknr;
5575 	u64 left_offset;
5576 	u64 right_offset;
5577 	u64 left_offset_fixed;
5578 	u64 left_len;
5579 	u64 right_len;
5580 	u64 left_gen;
5581 	u64 right_gen;
5582 	u8 left_type;
5583 	u8 right_type;
5584 
5585 	path = alloc_path_for_send();
5586 	if (!path)
5587 		return -ENOMEM;
5588 
5589 	eb = left_path->nodes[0];
5590 	slot = left_path->slots[0];
5591 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5592 	left_type = btrfs_file_extent_type(eb, ei);
5593 
5594 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5595 		ret = 0;
5596 		goto out;
5597 	}
5598 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5599 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5600 	left_offset = btrfs_file_extent_offset(eb, ei);
5601 	left_gen = btrfs_file_extent_generation(eb, ei);
5602 
5603 	/*
5604 	 * Following comments will refer to these graphics. L is the left
5605 	 * extents which we are checking at the moment. 1-8 are the right
5606 	 * extents that we iterate.
5607 	 *
5608 	 *       |-----L-----|
5609 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5610 	 *
5611 	 *       |-----L-----|
5612 	 * |--1--|-2b-|...(same as above)
5613 	 *
5614 	 * Alternative situation. Happens on files where extents got split.
5615 	 *       |-----L-----|
5616 	 * |-----------7-----------|-6-|
5617 	 *
5618 	 * Alternative situation. Happens on files which got larger.
5619 	 *       |-----L-----|
5620 	 * |-8-|
5621 	 * Nothing follows after 8.
5622 	 */
5623 
5624 	key.objectid = ekey->objectid;
5625 	key.type = BTRFS_EXTENT_DATA_KEY;
5626 	key.offset = ekey->offset;
5627 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5628 	if (ret < 0)
5629 		goto out;
5630 	if (ret) {
5631 		ret = 0;
5632 		goto out;
5633 	}
5634 
5635 	/*
5636 	 * Handle special case where the right side has no extents at all.
5637 	 */
5638 	eb = path->nodes[0];
5639 	slot = path->slots[0];
5640 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5641 	if (found_key.objectid != key.objectid ||
5642 	    found_key.type != key.type) {
5643 		/* If we're a hole then just pretend nothing changed */
5644 		ret = (left_disknr) ? 0 : 1;
5645 		goto out;
5646 	}
5647 
5648 	/*
5649 	 * We're now on 2a, 2b or 7.
5650 	 */
5651 	key = found_key;
5652 	while (key.offset < ekey->offset + left_len) {
5653 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5654 		right_type = btrfs_file_extent_type(eb, ei);
5655 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5656 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5657 			ret = 0;
5658 			goto out;
5659 		}
5660 
5661 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5662 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5663 			right_len = PAGE_ALIGN(right_len);
5664 		} else {
5665 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5666 		}
5667 
5668 		/*
5669 		 * Are we at extent 8? If yes, we know the extent is changed.
5670 		 * This may only happen on the first iteration.
5671 		 */
5672 		if (found_key.offset + right_len <= ekey->offset) {
5673 			/* If we're a hole just pretend nothing changed */
5674 			ret = (left_disknr) ? 0 : 1;
5675 			goto out;
5676 		}
5677 
5678 		/*
5679 		 * We just wanted to see if when we have an inline extent, what
5680 		 * follows it is a regular extent (wanted to check the above
5681 		 * condition for inline extents too). This should normally not
5682 		 * happen but it's possible for example when we have an inline
5683 		 * compressed extent representing data with a size matching
5684 		 * the page size (currently the same as sector size).
5685 		 */
5686 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5687 			ret = 0;
5688 			goto out;
5689 		}
5690 
5691 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5692 		right_offset = btrfs_file_extent_offset(eb, ei);
5693 		right_gen = btrfs_file_extent_generation(eb, ei);
5694 
5695 		left_offset_fixed = left_offset;
5696 		if (key.offset < ekey->offset) {
5697 			/* Fix the right offset for 2a and 7. */
5698 			right_offset += ekey->offset - key.offset;
5699 		} else {
5700 			/* Fix the left offset for all behind 2a and 2b */
5701 			left_offset_fixed += key.offset - ekey->offset;
5702 		}
5703 
5704 		/*
5705 		 * Check if we have the same extent.
5706 		 */
5707 		if (left_disknr != right_disknr ||
5708 		    left_offset_fixed != right_offset ||
5709 		    left_gen != right_gen) {
5710 			ret = 0;
5711 			goto out;
5712 		}
5713 
5714 		/*
5715 		 * Go to the next extent.
5716 		 */
5717 		ret = btrfs_next_item(sctx->parent_root, path);
5718 		if (ret < 0)
5719 			goto out;
5720 		if (!ret) {
5721 			eb = path->nodes[0];
5722 			slot = path->slots[0];
5723 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5724 		}
5725 		if (ret || found_key.objectid != key.objectid ||
5726 		    found_key.type != key.type) {
5727 			key.offset += right_len;
5728 			break;
5729 		}
5730 		if (found_key.offset != key.offset + right_len) {
5731 			ret = 0;
5732 			goto out;
5733 		}
5734 		key = found_key;
5735 	}
5736 
5737 	/*
5738 	 * We're now behind the left extent (treat as unchanged) or at the end
5739 	 * of the right side (treat as changed).
5740 	 */
5741 	if (key.offset >= ekey->offset + left_len)
5742 		ret = 1;
5743 	else
5744 		ret = 0;
5745 
5746 
5747 out:
5748 	btrfs_free_path(path);
5749 	return ret;
5750 }
5751 
5752 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5753 {
5754 	struct btrfs_path *path;
5755 	struct btrfs_root *root = sctx->send_root;
5756 	struct btrfs_key key;
5757 	int ret;
5758 
5759 	path = alloc_path_for_send();
5760 	if (!path)
5761 		return -ENOMEM;
5762 
5763 	sctx->cur_inode_last_extent = 0;
5764 
5765 	key.objectid = sctx->cur_ino;
5766 	key.type = BTRFS_EXTENT_DATA_KEY;
5767 	key.offset = offset;
5768 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5769 	if (ret < 0)
5770 		goto out;
5771 	ret = 0;
5772 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5773 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5774 		goto out;
5775 
5776 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5777 out:
5778 	btrfs_free_path(path);
5779 	return ret;
5780 }
5781 
5782 static int range_is_hole_in_parent(struct send_ctx *sctx,
5783 				   const u64 start,
5784 				   const u64 end)
5785 {
5786 	struct btrfs_path *path;
5787 	struct btrfs_key key;
5788 	struct btrfs_root *root = sctx->parent_root;
5789 	u64 search_start = start;
5790 	int ret;
5791 
5792 	path = alloc_path_for_send();
5793 	if (!path)
5794 		return -ENOMEM;
5795 
5796 	key.objectid = sctx->cur_ino;
5797 	key.type = BTRFS_EXTENT_DATA_KEY;
5798 	key.offset = search_start;
5799 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5800 	if (ret < 0)
5801 		goto out;
5802 	if (ret > 0 && path->slots[0] > 0)
5803 		path->slots[0]--;
5804 
5805 	while (search_start < end) {
5806 		struct extent_buffer *leaf = path->nodes[0];
5807 		int slot = path->slots[0];
5808 		struct btrfs_file_extent_item *fi;
5809 		u64 extent_end;
5810 
5811 		if (slot >= btrfs_header_nritems(leaf)) {
5812 			ret = btrfs_next_leaf(root, path);
5813 			if (ret < 0)
5814 				goto out;
5815 			else if (ret > 0)
5816 				break;
5817 			continue;
5818 		}
5819 
5820 		btrfs_item_key_to_cpu(leaf, &key, slot);
5821 		if (key.objectid < sctx->cur_ino ||
5822 		    key.type < BTRFS_EXTENT_DATA_KEY)
5823 			goto next;
5824 		if (key.objectid > sctx->cur_ino ||
5825 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5826 		    key.offset >= end)
5827 			break;
5828 
5829 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5830 		extent_end = btrfs_file_extent_end(path);
5831 		if (extent_end <= start)
5832 			goto next;
5833 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5834 			search_start = extent_end;
5835 			goto next;
5836 		}
5837 		ret = 0;
5838 		goto out;
5839 next:
5840 		path->slots[0]++;
5841 	}
5842 	ret = 1;
5843 out:
5844 	btrfs_free_path(path);
5845 	return ret;
5846 }
5847 
5848 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5849 			   struct btrfs_key *key)
5850 {
5851 	int ret = 0;
5852 
5853 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5854 		return 0;
5855 
5856 	if (sctx->cur_inode_last_extent == (u64)-1) {
5857 		ret = get_last_extent(sctx, key->offset - 1);
5858 		if (ret)
5859 			return ret;
5860 	}
5861 
5862 	if (path->slots[0] == 0 &&
5863 	    sctx->cur_inode_last_extent < key->offset) {
5864 		/*
5865 		 * We might have skipped entire leafs that contained only
5866 		 * file extent items for our current inode. These leafs have
5867 		 * a generation number smaller (older) than the one in the
5868 		 * current leaf and the leaf our last extent came from, and
5869 		 * are located between these 2 leafs.
5870 		 */
5871 		ret = get_last_extent(sctx, key->offset - 1);
5872 		if (ret)
5873 			return ret;
5874 	}
5875 
5876 	if (sctx->cur_inode_last_extent < key->offset) {
5877 		ret = range_is_hole_in_parent(sctx,
5878 					      sctx->cur_inode_last_extent,
5879 					      key->offset);
5880 		if (ret < 0)
5881 			return ret;
5882 		else if (ret == 0)
5883 			ret = send_hole(sctx, key->offset);
5884 		else
5885 			ret = 0;
5886 	}
5887 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5888 	return ret;
5889 }
5890 
5891 static int process_extent(struct send_ctx *sctx,
5892 			  struct btrfs_path *path,
5893 			  struct btrfs_key *key)
5894 {
5895 	struct clone_root *found_clone = NULL;
5896 	int ret = 0;
5897 
5898 	if (S_ISLNK(sctx->cur_inode_mode))
5899 		return 0;
5900 
5901 	if (sctx->parent_root && !sctx->cur_inode_new) {
5902 		ret = is_extent_unchanged(sctx, path, key);
5903 		if (ret < 0)
5904 			goto out;
5905 		if (ret) {
5906 			ret = 0;
5907 			goto out_hole;
5908 		}
5909 	} else {
5910 		struct btrfs_file_extent_item *ei;
5911 		u8 type;
5912 
5913 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5914 				    struct btrfs_file_extent_item);
5915 		type = btrfs_file_extent_type(path->nodes[0], ei);
5916 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5917 		    type == BTRFS_FILE_EXTENT_REG) {
5918 			/*
5919 			 * The send spec does not have a prealloc command yet,
5920 			 * so just leave a hole for prealloc'ed extents until
5921 			 * we have enough commands queued up to justify rev'ing
5922 			 * the send spec.
5923 			 */
5924 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5925 				ret = 0;
5926 				goto out;
5927 			}
5928 
5929 			/* Have a hole, just skip it. */
5930 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5931 				ret = 0;
5932 				goto out;
5933 			}
5934 		}
5935 	}
5936 
5937 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5938 			sctx->cur_inode_size, &found_clone);
5939 	if (ret != -ENOENT && ret < 0)
5940 		goto out;
5941 
5942 	ret = send_write_or_clone(sctx, path, key, found_clone);
5943 	if (ret)
5944 		goto out;
5945 out_hole:
5946 	ret = maybe_send_hole(sctx, path, key);
5947 out:
5948 	return ret;
5949 }
5950 
5951 static int process_all_extents(struct send_ctx *sctx)
5952 {
5953 	int ret;
5954 	struct btrfs_root *root;
5955 	struct btrfs_path *path;
5956 	struct btrfs_key key;
5957 	struct btrfs_key found_key;
5958 	struct extent_buffer *eb;
5959 	int slot;
5960 
5961 	root = sctx->send_root;
5962 	path = alloc_path_for_send();
5963 	if (!path)
5964 		return -ENOMEM;
5965 
5966 	key.objectid = sctx->cmp_key->objectid;
5967 	key.type = BTRFS_EXTENT_DATA_KEY;
5968 	key.offset = 0;
5969 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5970 	if (ret < 0)
5971 		goto out;
5972 
5973 	while (1) {
5974 		eb = path->nodes[0];
5975 		slot = path->slots[0];
5976 
5977 		if (slot >= btrfs_header_nritems(eb)) {
5978 			ret = btrfs_next_leaf(root, path);
5979 			if (ret < 0) {
5980 				goto out;
5981 			} else if (ret > 0) {
5982 				ret = 0;
5983 				break;
5984 			}
5985 			continue;
5986 		}
5987 
5988 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5989 
5990 		if (found_key.objectid != key.objectid ||
5991 		    found_key.type != key.type) {
5992 			ret = 0;
5993 			goto out;
5994 		}
5995 
5996 		ret = process_extent(sctx, path, &found_key);
5997 		if (ret < 0)
5998 			goto out;
5999 
6000 		path->slots[0]++;
6001 	}
6002 
6003 out:
6004 	btrfs_free_path(path);
6005 	return ret;
6006 }
6007 
6008 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6009 					   int *pending_move,
6010 					   int *refs_processed)
6011 {
6012 	int ret = 0;
6013 
6014 	if (sctx->cur_ino == 0)
6015 		goto out;
6016 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6017 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6018 		goto out;
6019 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6020 		goto out;
6021 
6022 	ret = process_recorded_refs(sctx, pending_move);
6023 	if (ret < 0)
6024 		goto out;
6025 
6026 	*refs_processed = 1;
6027 out:
6028 	return ret;
6029 }
6030 
6031 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6032 {
6033 	int ret = 0;
6034 	u64 left_mode;
6035 	u64 left_uid;
6036 	u64 left_gid;
6037 	u64 right_mode;
6038 	u64 right_uid;
6039 	u64 right_gid;
6040 	int need_chmod = 0;
6041 	int need_chown = 0;
6042 	int need_truncate = 1;
6043 	int pending_move = 0;
6044 	int refs_processed = 0;
6045 
6046 	if (sctx->ignore_cur_inode)
6047 		return 0;
6048 
6049 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6050 					      &refs_processed);
6051 	if (ret < 0)
6052 		goto out;
6053 
6054 	/*
6055 	 * We have processed the refs and thus need to advance send_progress.
6056 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6057 	 * inode into account.
6058 	 *
6059 	 * On the other hand, if our current inode is a directory and couldn't
6060 	 * be moved/renamed because its parent was renamed/moved too and it has
6061 	 * a higher inode number, we can only move/rename our current inode
6062 	 * after we moved/renamed its parent. Therefore in this case operate on
6063 	 * the old path (pre move/rename) of our current inode, and the
6064 	 * move/rename will be performed later.
6065 	 */
6066 	if (refs_processed && !pending_move)
6067 		sctx->send_progress = sctx->cur_ino + 1;
6068 
6069 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6070 		goto out;
6071 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6072 		goto out;
6073 
6074 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6075 			&left_mode, &left_uid, &left_gid, NULL);
6076 	if (ret < 0)
6077 		goto out;
6078 
6079 	if (!sctx->parent_root || sctx->cur_inode_new) {
6080 		need_chown = 1;
6081 		if (!S_ISLNK(sctx->cur_inode_mode))
6082 			need_chmod = 1;
6083 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6084 			need_truncate = 0;
6085 	} else {
6086 		u64 old_size;
6087 
6088 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6089 				&old_size, NULL, &right_mode, &right_uid,
6090 				&right_gid, NULL);
6091 		if (ret < 0)
6092 			goto out;
6093 
6094 		if (left_uid != right_uid || left_gid != right_gid)
6095 			need_chown = 1;
6096 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6097 			need_chmod = 1;
6098 		if ((old_size == sctx->cur_inode_size) ||
6099 		    (sctx->cur_inode_size > old_size &&
6100 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6101 			need_truncate = 0;
6102 	}
6103 
6104 	if (S_ISREG(sctx->cur_inode_mode)) {
6105 		if (need_send_hole(sctx)) {
6106 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6107 			    sctx->cur_inode_last_extent <
6108 			    sctx->cur_inode_size) {
6109 				ret = get_last_extent(sctx, (u64)-1);
6110 				if (ret)
6111 					goto out;
6112 			}
6113 			if (sctx->cur_inode_last_extent <
6114 			    sctx->cur_inode_size) {
6115 				ret = send_hole(sctx, sctx->cur_inode_size);
6116 				if (ret)
6117 					goto out;
6118 			}
6119 		}
6120 		if (need_truncate) {
6121 			ret = send_truncate(sctx, sctx->cur_ino,
6122 					    sctx->cur_inode_gen,
6123 					    sctx->cur_inode_size);
6124 			if (ret < 0)
6125 				goto out;
6126 		}
6127 	}
6128 
6129 	if (need_chown) {
6130 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6131 				left_uid, left_gid);
6132 		if (ret < 0)
6133 			goto out;
6134 	}
6135 	if (need_chmod) {
6136 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6137 				left_mode);
6138 		if (ret < 0)
6139 			goto out;
6140 	}
6141 
6142 	ret = send_capabilities(sctx);
6143 	if (ret < 0)
6144 		goto out;
6145 
6146 	/*
6147 	 * If other directory inodes depended on our current directory
6148 	 * inode's move/rename, now do their move/rename operations.
6149 	 */
6150 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6151 		ret = apply_children_dir_moves(sctx);
6152 		if (ret)
6153 			goto out;
6154 		/*
6155 		 * Need to send that every time, no matter if it actually
6156 		 * changed between the two trees as we have done changes to
6157 		 * the inode before. If our inode is a directory and it's
6158 		 * waiting to be moved/renamed, we will send its utimes when
6159 		 * it's moved/renamed, therefore we don't need to do it here.
6160 		 */
6161 		sctx->send_progress = sctx->cur_ino + 1;
6162 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6163 		if (ret < 0)
6164 			goto out;
6165 	}
6166 
6167 out:
6168 	return ret;
6169 }
6170 
6171 struct parent_paths_ctx {
6172 	struct list_head *refs;
6173 	struct send_ctx *sctx;
6174 };
6175 
6176 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6177 			     void *ctx)
6178 {
6179 	struct parent_paths_ctx *ppctx = ctx;
6180 
6181 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6182 			  ppctx->refs);
6183 }
6184 
6185 /*
6186  * Issue unlink operations for all paths of the current inode found in the
6187  * parent snapshot.
6188  */
6189 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6190 {
6191 	LIST_HEAD(deleted_refs);
6192 	struct btrfs_path *path;
6193 	struct btrfs_key key;
6194 	struct parent_paths_ctx ctx;
6195 	int ret;
6196 
6197 	path = alloc_path_for_send();
6198 	if (!path)
6199 		return -ENOMEM;
6200 
6201 	key.objectid = sctx->cur_ino;
6202 	key.type = BTRFS_INODE_REF_KEY;
6203 	key.offset = 0;
6204 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6205 	if (ret < 0)
6206 		goto out;
6207 
6208 	ctx.refs = &deleted_refs;
6209 	ctx.sctx = sctx;
6210 
6211 	while (true) {
6212 		struct extent_buffer *eb = path->nodes[0];
6213 		int slot = path->slots[0];
6214 
6215 		if (slot >= btrfs_header_nritems(eb)) {
6216 			ret = btrfs_next_leaf(sctx->parent_root, path);
6217 			if (ret < 0)
6218 				goto out;
6219 			else if (ret > 0)
6220 				break;
6221 			continue;
6222 		}
6223 
6224 		btrfs_item_key_to_cpu(eb, &key, slot);
6225 		if (key.objectid != sctx->cur_ino)
6226 			break;
6227 		if (key.type != BTRFS_INODE_REF_KEY &&
6228 		    key.type != BTRFS_INODE_EXTREF_KEY)
6229 			break;
6230 
6231 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6232 					record_parent_ref, &ctx);
6233 		if (ret < 0)
6234 			goto out;
6235 
6236 		path->slots[0]++;
6237 	}
6238 
6239 	while (!list_empty(&deleted_refs)) {
6240 		struct recorded_ref *ref;
6241 
6242 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6243 		ret = send_unlink(sctx, ref->full_path);
6244 		if (ret < 0)
6245 			goto out;
6246 		fs_path_free(ref->full_path);
6247 		list_del(&ref->list);
6248 		kfree(ref);
6249 	}
6250 	ret = 0;
6251 out:
6252 	btrfs_free_path(path);
6253 	if (ret)
6254 		__free_recorded_refs(&deleted_refs);
6255 	return ret;
6256 }
6257 
6258 static int changed_inode(struct send_ctx *sctx,
6259 			 enum btrfs_compare_tree_result result)
6260 {
6261 	int ret = 0;
6262 	struct btrfs_key *key = sctx->cmp_key;
6263 	struct btrfs_inode_item *left_ii = NULL;
6264 	struct btrfs_inode_item *right_ii = NULL;
6265 	u64 left_gen = 0;
6266 	u64 right_gen = 0;
6267 
6268 	sctx->cur_ino = key->objectid;
6269 	sctx->cur_inode_new_gen = 0;
6270 	sctx->cur_inode_last_extent = (u64)-1;
6271 	sctx->cur_inode_next_write_offset = 0;
6272 	sctx->ignore_cur_inode = false;
6273 
6274 	/*
6275 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6276 	 * functions that the current inode's refs are not updated yet. Later,
6277 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6278 	 */
6279 	sctx->send_progress = sctx->cur_ino;
6280 
6281 	if (result == BTRFS_COMPARE_TREE_NEW ||
6282 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6283 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6284 				sctx->left_path->slots[0],
6285 				struct btrfs_inode_item);
6286 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6287 				left_ii);
6288 	} else {
6289 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6290 				sctx->right_path->slots[0],
6291 				struct btrfs_inode_item);
6292 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6293 				right_ii);
6294 	}
6295 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6296 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6297 				sctx->right_path->slots[0],
6298 				struct btrfs_inode_item);
6299 
6300 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6301 				right_ii);
6302 
6303 		/*
6304 		 * The cur_ino = root dir case is special here. We can't treat
6305 		 * the inode as deleted+reused because it would generate a
6306 		 * stream that tries to delete/mkdir the root dir.
6307 		 */
6308 		if (left_gen != right_gen &&
6309 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6310 			sctx->cur_inode_new_gen = 1;
6311 	}
6312 
6313 	/*
6314 	 * Normally we do not find inodes with a link count of zero (orphans)
6315 	 * because the most common case is to create a snapshot and use it
6316 	 * for a send operation. However other less common use cases involve
6317 	 * using a subvolume and send it after turning it to RO mode just
6318 	 * after deleting all hard links of a file while holding an open
6319 	 * file descriptor against it or turning a RO snapshot into RW mode,
6320 	 * keep an open file descriptor against a file, delete it and then
6321 	 * turn the snapshot back to RO mode before using it for a send
6322 	 * operation. So if we find such cases, ignore the inode and all its
6323 	 * items completely if it's a new inode, or if it's a changed inode
6324 	 * make sure all its previous paths (from the parent snapshot) are all
6325 	 * unlinked and all other the inode items are ignored.
6326 	 */
6327 	if (result == BTRFS_COMPARE_TREE_NEW ||
6328 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6329 		u32 nlinks;
6330 
6331 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6332 		if (nlinks == 0) {
6333 			sctx->ignore_cur_inode = true;
6334 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6335 				ret = btrfs_unlink_all_paths(sctx);
6336 			goto out;
6337 		}
6338 	}
6339 
6340 	if (result == BTRFS_COMPARE_TREE_NEW) {
6341 		sctx->cur_inode_gen = left_gen;
6342 		sctx->cur_inode_new = 1;
6343 		sctx->cur_inode_deleted = 0;
6344 		sctx->cur_inode_size = btrfs_inode_size(
6345 				sctx->left_path->nodes[0], left_ii);
6346 		sctx->cur_inode_mode = btrfs_inode_mode(
6347 				sctx->left_path->nodes[0], left_ii);
6348 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6349 				sctx->left_path->nodes[0], left_ii);
6350 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6351 			ret = send_create_inode_if_needed(sctx);
6352 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6353 		sctx->cur_inode_gen = right_gen;
6354 		sctx->cur_inode_new = 0;
6355 		sctx->cur_inode_deleted = 1;
6356 		sctx->cur_inode_size = btrfs_inode_size(
6357 				sctx->right_path->nodes[0], right_ii);
6358 		sctx->cur_inode_mode = btrfs_inode_mode(
6359 				sctx->right_path->nodes[0], right_ii);
6360 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6361 		/*
6362 		 * We need to do some special handling in case the inode was
6363 		 * reported as changed with a changed generation number. This
6364 		 * means that the original inode was deleted and new inode
6365 		 * reused the same inum. So we have to treat the old inode as
6366 		 * deleted and the new one as new.
6367 		 */
6368 		if (sctx->cur_inode_new_gen) {
6369 			/*
6370 			 * First, process the inode as if it was deleted.
6371 			 */
6372 			sctx->cur_inode_gen = right_gen;
6373 			sctx->cur_inode_new = 0;
6374 			sctx->cur_inode_deleted = 1;
6375 			sctx->cur_inode_size = btrfs_inode_size(
6376 					sctx->right_path->nodes[0], right_ii);
6377 			sctx->cur_inode_mode = btrfs_inode_mode(
6378 					sctx->right_path->nodes[0], right_ii);
6379 			ret = process_all_refs(sctx,
6380 					BTRFS_COMPARE_TREE_DELETED);
6381 			if (ret < 0)
6382 				goto out;
6383 
6384 			/*
6385 			 * Now process the inode as if it was new.
6386 			 */
6387 			sctx->cur_inode_gen = left_gen;
6388 			sctx->cur_inode_new = 1;
6389 			sctx->cur_inode_deleted = 0;
6390 			sctx->cur_inode_size = btrfs_inode_size(
6391 					sctx->left_path->nodes[0], left_ii);
6392 			sctx->cur_inode_mode = btrfs_inode_mode(
6393 					sctx->left_path->nodes[0], left_ii);
6394 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6395 					sctx->left_path->nodes[0], left_ii);
6396 			ret = send_create_inode_if_needed(sctx);
6397 			if (ret < 0)
6398 				goto out;
6399 
6400 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6401 			if (ret < 0)
6402 				goto out;
6403 			/*
6404 			 * Advance send_progress now as we did not get into
6405 			 * process_recorded_refs_if_needed in the new_gen case.
6406 			 */
6407 			sctx->send_progress = sctx->cur_ino + 1;
6408 
6409 			/*
6410 			 * Now process all extents and xattrs of the inode as if
6411 			 * they were all new.
6412 			 */
6413 			ret = process_all_extents(sctx);
6414 			if (ret < 0)
6415 				goto out;
6416 			ret = process_all_new_xattrs(sctx);
6417 			if (ret < 0)
6418 				goto out;
6419 		} else {
6420 			sctx->cur_inode_gen = left_gen;
6421 			sctx->cur_inode_new = 0;
6422 			sctx->cur_inode_new_gen = 0;
6423 			sctx->cur_inode_deleted = 0;
6424 			sctx->cur_inode_size = btrfs_inode_size(
6425 					sctx->left_path->nodes[0], left_ii);
6426 			sctx->cur_inode_mode = btrfs_inode_mode(
6427 					sctx->left_path->nodes[0], left_ii);
6428 		}
6429 	}
6430 
6431 out:
6432 	return ret;
6433 }
6434 
6435 /*
6436  * We have to process new refs before deleted refs, but compare_trees gives us
6437  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6438  * first and later process them in process_recorded_refs.
6439  * For the cur_inode_new_gen case, we skip recording completely because
6440  * changed_inode did already initiate processing of refs. The reason for this is
6441  * that in this case, compare_tree actually compares the refs of 2 different
6442  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6443  * refs of the right tree as deleted and all refs of the left tree as new.
6444  */
6445 static int changed_ref(struct send_ctx *sctx,
6446 		       enum btrfs_compare_tree_result result)
6447 {
6448 	int ret = 0;
6449 
6450 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6451 		inconsistent_snapshot_error(sctx, result, "reference");
6452 		return -EIO;
6453 	}
6454 
6455 	if (!sctx->cur_inode_new_gen &&
6456 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6457 		if (result == BTRFS_COMPARE_TREE_NEW)
6458 			ret = record_new_ref(sctx);
6459 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6460 			ret = record_deleted_ref(sctx);
6461 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6462 			ret = record_changed_ref(sctx);
6463 	}
6464 
6465 	return ret;
6466 }
6467 
6468 /*
6469  * Process new/deleted/changed xattrs. We skip processing in the
6470  * cur_inode_new_gen case because changed_inode did already initiate processing
6471  * of xattrs. The reason is the same as in changed_ref
6472  */
6473 static int changed_xattr(struct send_ctx *sctx,
6474 			 enum btrfs_compare_tree_result result)
6475 {
6476 	int ret = 0;
6477 
6478 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6479 		inconsistent_snapshot_error(sctx, result, "xattr");
6480 		return -EIO;
6481 	}
6482 
6483 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6484 		if (result == BTRFS_COMPARE_TREE_NEW)
6485 			ret = process_new_xattr(sctx);
6486 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6487 			ret = process_deleted_xattr(sctx);
6488 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6489 			ret = process_changed_xattr(sctx);
6490 	}
6491 
6492 	return ret;
6493 }
6494 
6495 /*
6496  * Process new/deleted/changed extents. We skip processing in the
6497  * cur_inode_new_gen case because changed_inode did already initiate processing
6498  * of extents. The reason is the same as in changed_ref
6499  */
6500 static int changed_extent(struct send_ctx *sctx,
6501 			  enum btrfs_compare_tree_result result)
6502 {
6503 	int ret = 0;
6504 
6505 	/*
6506 	 * We have found an extent item that changed without the inode item
6507 	 * having changed. This can happen either after relocation (where the
6508 	 * disk_bytenr of an extent item is replaced at
6509 	 * relocation.c:replace_file_extents()) or after deduplication into a
6510 	 * file in both the parent and send snapshots (where an extent item can
6511 	 * get modified or replaced with a new one). Note that deduplication
6512 	 * updates the inode item, but it only changes the iversion (sequence
6513 	 * field in the inode item) of the inode, so if a file is deduplicated
6514 	 * the same amount of times in both the parent and send snapshots, its
6515 	 * iversion becomes the same in both snapshots, whence the inode item is
6516 	 * the same on both snapshots.
6517 	 */
6518 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6519 		return 0;
6520 
6521 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6522 		if (result != BTRFS_COMPARE_TREE_DELETED)
6523 			ret = process_extent(sctx, sctx->left_path,
6524 					sctx->cmp_key);
6525 	}
6526 
6527 	return ret;
6528 }
6529 
6530 static int dir_changed(struct send_ctx *sctx, u64 dir)
6531 {
6532 	u64 orig_gen, new_gen;
6533 	int ret;
6534 
6535 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6536 			     NULL, NULL);
6537 	if (ret)
6538 		return ret;
6539 
6540 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6541 			     NULL, NULL, NULL);
6542 	if (ret)
6543 		return ret;
6544 
6545 	return (orig_gen != new_gen) ? 1 : 0;
6546 }
6547 
6548 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6549 			struct btrfs_key *key)
6550 {
6551 	struct btrfs_inode_extref *extref;
6552 	struct extent_buffer *leaf;
6553 	u64 dirid = 0, last_dirid = 0;
6554 	unsigned long ptr;
6555 	u32 item_size;
6556 	u32 cur_offset = 0;
6557 	int ref_name_len;
6558 	int ret = 0;
6559 
6560 	/* Easy case, just check this one dirid */
6561 	if (key->type == BTRFS_INODE_REF_KEY) {
6562 		dirid = key->offset;
6563 
6564 		ret = dir_changed(sctx, dirid);
6565 		goto out;
6566 	}
6567 
6568 	leaf = path->nodes[0];
6569 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6570 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6571 	while (cur_offset < item_size) {
6572 		extref = (struct btrfs_inode_extref *)(ptr +
6573 						       cur_offset);
6574 		dirid = btrfs_inode_extref_parent(leaf, extref);
6575 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6576 		cur_offset += ref_name_len + sizeof(*extref);
6577 		if (dirid == last_dirid)
6578 			continue;
6579 		ret = dir_changed(sctx, dirid);
6580 		if (ret)
6581 			break;
6582 		last_dirid = dirid;
6583 	}
6584 out:
6585 	return ret;
6586 }
6587 
6588 /*
6589  * Updates compare related fields in sctx and simply forwards to the actual
6590  * changed_xxx functions.
6591  */
6592 static int changed_cb(struct btrfs_path *left_path,
6593 		      struct btrfs_path *right_path,
6594 		      struct btrfs_key *key,
6595 		      enum btrfs_compare_tree_result result,
6596 		      struct send_ctx *sctx)
6597 {
6598 	int ret = 0;
6599 
6600 	if (result == BTRFS_COMPARE_TREE_SAME) {
6601 		if (key->type == BTRFS_INODE_REF_KEY ||
6602 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6603 			ret = compare_refs(sctx, left_path, key);
6604 			if (!ret)
6605 				return 0;
6606 			if (ret < 0)
6607 				return ret;
6608 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6609 			return maybe_send_hole(sctx, left_path, key);
6610 		} else {
6611 			return 0;
6612 		}
6613 		result = BTRFS_COMPARE_TREE_CHANGED;
6614 		ret = 0;
6615 	}
6616 
6617 	sctx->left_path = left_path;
6618 	sctx->right_path = right_path;
6619 	sctx->cmp_key = key;
6620 
6621 	ret = finish_inode_if_needed(sctx, 0);
6622 	if (ret < 0)
6623 		goto out;
6624 
6625 	/* Ignore non-FS objects */
6626 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6627 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6628 		goto out;
6629 
6630 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6631 		ret = changed_inode(sctx, result);
6632 	} else if (!sctx->ignore_cur_inode) {
6633 		if (key->type == BTRFS_INODE_REF_KEY ||
6634 		    key->type == BTRFS_INODE_EXTREF_KEY)
6635 			ret = changed_ref(sctx, result);
6636 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6637 			ret = changed_xattr(sctx, result);
6638 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6639 			ret = changed_extent(sctx, result);
6640 	}
6641 
6642 out:
6643 	return ret;
6644 }
6645 
6646 static int full_send_tree(struct send_ctx *sctx)
6647 {
6648 	int ret;
6649 	struct btrfs_root *send_root = sctx->send_root;
6650 	struct btrfs_key key;
6651 	struct btrfs_path *path;
6652 	struct extent_buffer *eb;
6653 	int slot;
6654 
6655 	path = alloc_path_for_send();
6656 	if (!path)
6657 		return -ENOMEM;
6658 	path->reada = READA_FORWARD_ALWAYS;
6659 
6660 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6661 	key.type = BTRFS_INODE_ITEM_KEY;
6662 	key.offset = 0;
6663 
6664 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6665 	if (ret < 0)
6666 		goto out;
6667 	if (ret)
6668 		goto out_finish;
6669 
6670 	while (1) {
6671 		eb = path->nodes[0];
6672 		slot = path->slots[0];
6673 		btrfs_item_key_to_cpu(eb, &key, slot);
6674 
6675 		ret = changed_cb(path, NULL, &key,
6676 				 BTRFS_COMPARE_TREE_NEW, sctx);
6677 		if (ret < 0)
6678 			goto out;
6679 
6680 		ret = btrfs_next_item(send_root, path);
6681 		if (ret < 0)
6682 			goto out;
6683 		if (ret) {
6684 			ret  = 0;
6685 			break;
6686 		}
6687 	}
6688 
6689 out_finish:
6690 	ret = finish_inode_if_needed(sctx, 1);
6691 
6692 out:
6693 	btrfs_free_path(path);
6694 	return ret;
6695 }
6696 
6697 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
6698 {
6699 	struct extent_buffer *eb;
6700 	struct extent_buffer *parent = path->nodes[*level];
6701 	int slot = path->slots[*level];
6702 	const int nritems = btrfs_header_nritems(parent);
6703 	u64 reada_max;
6704 	u64 reada_done = 0;
6705 
6706 	BUG_ON(*level == 0);
6707 	eb = btrfs_read_node_slot(parent, slot);
6708 	if (IS_ERR(eb))
6709 		return PTR_ERR(eb);
6710 
6711 	/*
6712 	 * Trigger readahead for the next leaves we will process, so that it is
6713 	 * very likely that when we need them they are already in memory and we
6714 	 * will not block on disk IO. For nodes we only do readahead for one,
6715 	 * since the time window between processing nodes is typically larger.
6716 	 */
6717 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
6718 
6719 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
6720 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
6721 			btrfs_readahead_node_child(parent, slot);
6722 			reada_done += eb->fs_info->nodesize;
6723 		}
6724 	}
6725 
6726 	path->nodes[*level - 1] = eb;
6727 	path->slots[*level - 1] = 0;
6728 	(*level)--;
6729 	return 0;
6730 }
6731 
6732 static int tree_move_next_or_upnext(struct btrfs_path *path,
6733 				    int *level, int root_level)
6734 {
6735 	int ret = 0;
6736 	int nritems;
6737 	nritems = btrfs_header_nritems(path->nodes[*level]);
6738 
6739 	path->slots[*level]++;
6740 
6741 	while (path->slots[*level] >= nritems) {
6742 		if (*level == root_level)
6743 			return -1;
6744 
6745 		/* move upnext */
6746 		path->slots[*level] = 0;
6747 		free_extent_buffer(path->nodes[*level]);
6748 		path->nodes[*level] = NULL;
6749 		(*level)++;
6750 		path->slots[*level]++;
6751 
6752 		nritems = btrfs_header_nritems(path->nodes[*level]);
6753 		ret = 1;
6754 	}
6755 	return ret;
6756 }
6757 
6758 /*
6759  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6760  * or down.
6761  */
6762 static int tree_advance(struct btrfs_path *path,
6763 			int *level, int root_level,
6764 			int allow_down,
6765 			struct btrfs_key *key,
6766 			u64 reada_min_gen)
6767 {
6768 	int ret;
6769 
6770 	if (*level == 0 || !allow_down) {
6771 		ret = tree_move_next_or_upnext(path, level, root_level);
6772 	} else {
6773 		ret = tree_move_down(path, level, reada_min_gen);
6774 	}
6775 	if (ret >= 0) {
6776 		if (*level == 0)
6777 			btrfs_item_key_to_cpu(path->nodes[*level], key,
6778 					path->slots[*level]);
6779 		else
6780 			btrfs_node_key_to_cpu(path->nodes[*level], key,
6781 					path->slots[*level]);
6782 	}
6783 	return ret;
6784 }
6785 
6786 static int tree_compare_item(struct btrfs_path *left_path,
6787 			     struct btrfs_path *right_path,
6788 			     char *tmp_buf)
6789 {
6790 	int cmp;
6791 	int len1, len2;
6792 	unsigned long off1, off2;
6793 
6794 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6795 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6796 	if (len1 != len2)
6797 		return 1;
6798 
6799 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6800 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6801 				right_path->slots[0]);
6802 
6803 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6804 
6805 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6806 	if (cmp)
6807 		return 1;
6808 	return 0;
6809 }
6810 
6811 /*
6812  * This function compares two trees and calls the provided callback for
6813  * every changed/new/deleted item it finds.
6814  * If shared tree blocks are encountered, whole subtrees are skipped, making
6815  * the compare pretty fast on snapshotted subvolumes.
6816  *
6817  * This currently works on commit roots only. As commit roots are read only,
6818  * we don't do any locking. The commit roots are protected with transactions.
6819  * Transactions are ended and rejoined when a commit is tried in between.
6820  *
6821  * This function checks for modifications done to the trees while comparing.
6822  * If it detects a change, it aborts immediately.
6823  */
6824 static int btrfs_compare_trees(struct btrfs_root *left_root,
6825 			struct btrfs_root *right_root, struct send_ctx *sctx)
6826 {
6827 	struct btrfs_fs_info *fs_info = left_root->fs_info;
6828 	int ret;
6829 	int cmp;
6830 	struct btrfs_path *left_path = NULL;
6831 	struct btrfs_path *right_path = NULL;
6832 	struct btrfs_key left_key;
6833 	struct btrfs_key right_key;
6834 	char *tmp_buf = NULL;
6835 	int left_root_level;
6836 	int right_root_level;
6837 	int left_level;
6838 	int right_level;
6839 	int left_end_reached;
6840 	int right_end_reached;
6841 	int advance_left;
6842 	int advance_right;
6843 	u64 left_blockptr;
6844 	u64 right_blockptr;
6845 	u64 left_gen;
6846 	u64 right_gen;
6847 	u64 reada_min_gen;
6848 
6849 	left_path = btrfs_alloc_path();
6850 	if (!left_path) {
6851 		ret = -ENOMEM;
6852 		goto out;
6853 	}
6854 	right_path = btrfs_alloc_path();
6855 	if (!right_path) {
6856 		ret = -ENOMEM;
6857 		goto out;
6858 	}
6859 
6860 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6861 	if (!tmp_buf) {
6862 		ret = -ENOMEM;
6863 		goto out;
6864 	}
6865 
6866 	left_path->search_commit_root = 1;
6867 	left_path->skip_locking = 1;
6868 	right_path->search_commit_root = 1;
6869 	right_path->skip_locking = 1;
6870 
6871 	/*
6872 	 * Strategy: Go to the first items of both trees. Then do
6873 	 *
6874 	 * If both trees are at level 0
6875 	 *   Compare keys of current items
6876 	 *     If left < right treat left item as new, advance left tree
6877 	 *       and repeat
6878 	 *     If left > right treat right item as deleted, advance right tree
6879 	 *       and repeat
6880 	 *     If left == right do deep compare of items, treat as changed if
6881 	 *       needed, advance both trees and repeat
6882 	 * If both trees are at the same level but not at level 0
6883 	 *   Compare keys of current nodes/leafs
6884 	 *     If left < right advance left tree and repeat
6885 	 *     If left > right advance right tree and repeat
6886 	 *     If left == right compare blockptrs of the next nodes/leafs
6887 	 *       If they match advance both trees but stay at the same level
6888 	 *         and repeat
6889 	 *       If they don't match advance both trees while allowing to go
6890 	 *         deeper and repeat
6891 	 * If tree levels are different
6892 	 *   Advance the tree that needs it and repeat
6893 	 *
6894 	 * Advancing a tree means:
6895 	 *   If we are at level 0, try to go to the next slot. If that's not
6896 	 *   possible, go one level up and repeat. Stop when we found a level
6897 	 *   where we could go to the next slot. We may at this point be on a
6898 	 *   node or a leaf.
6899 	 *
6900 	 *   If we are not at level 0 and not on shared tree blocks, go one
6901 	 *   level deeper.
6902 	 *
6903 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6904 	 *   the right if possible or go up and right.
6905 	 */
6906 
6907 	down_read(&fs_info->commit_root_sem);
6908 	left_level = btrfs_header_level(left_root->commit_root);
6909 	left_root_level = left_level;
6910 	left_path->nodes[left_level] =
6911 			btrfs_clone_extent_buffer(left_root->commit_root);
6912 	if (!left_path->nodes[left_level]) {
6913 		up_read(&fs_info->commit_root_sem);
6914 		ret = -ENOMEM;
6915 		goto out;
6916 	}
6917 
6918 	right_level = btrfs_header_level(right_root->commit_root);
6919 	right_root_level = right_level;
6920 	right_path->nodes[right_level] =
6921 			btrfs_clone_extent_buffer(right_root->commit_root);
6922 	if (!right_path->nodes[right_level]) {
6923 		up_read(&fs_info->commit_root_sem);
6924 		ret = -ENOMEM;
6925 		goto out;
6926 	}
6927 	/*
6928 	 * Our right root is the parent root, while the left root is the "send"
6929 	 * root. We know that all new nodes/leaves in the left root must have
6930 	 * a generation greater than the right root's generation, so we trigger
6931 	 * readahead for those nodes and leaves of the left root, as we know we
6932 	 * will need to read them at some point.
6933 	 */
6934 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
6935 	up_read(&fs_info->commit_root_sem);
6936 
6937 	if (left_level == 0)
6938 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6939 				&left_key, left_path->slots[left_level]);
6940 	else
6941 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6942 				&left_key, left_path->slots[left_level]);
6943 	if (right_level == 0)
6944 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6945 				&right_key, right_path->slots[right_level]);
6946 	else
6947 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6948 				&right_key, right_path->slots[right_level]);
6949 
6950 	left_end_reached = right_end_reached = 0;
6951 	advance_left = advance_right = 0;
6952 
6953 	while (1) {
6954 		cond_resched();
6955 		if (advance_left && !left_end_reached) {
6956 			ret = tree_advance(left_path, &left_level,
6957 					left_root_level,
6958 					advance_left != ADVANCE_ONLY_NEXT,
6959 					&left_key, reada_min_gen);
6960 			if (ret == -1)
6961 				left_end_reached = ADVANCE;
6962 			else if (ret < 0)
6963 				goto out;
6964 			advance_left = 0;
6965 		}
6966 		if (advance_right && !right_end_reached) {
6967 			ret = tree_advance(right_path, &right_level,
6968 					right_root_level,
6969 					advance_right != ADVANCE_ONLY_NEXT,
6970 					&right_key, reada_min_gen);
6971 			if (ret == -1)
6972 				right_end_reached = ADVANCE;
6973 			else if (ret < 0)
6974 				goto out;
6975 			advance_right = 0;
6976 		}
6977 
6978 		if (left_end_reached && right_end_reached) {
6979 			ret = 0;
6980 			goto out;
6981 		} else if (left_end_reached) {
6982 			if (right_level == 0) {
6983 				ret = changed_cb(left_path, right_path,
6984 						&right_key,
6985 						BTRFS_COMPARE_TREE_DELETED,
6986 						sctx);
6987 				if (ret < 0)
6988 					goto out;
6989 			}
6990 			advance_right = ADVANCE;
6991 			continue;
6992 		} else if (right_end_reached) {
6993 			if (left_level == 0) {
6994 				ret = changed_cb(left_path, right_path,
6995 						&left_key,
6996 						BTRFS_COMPARE_TREE_NEW,
6997 						sctx);
6998 				if (ret < 0)
6999 					goto out;
7000 			}
7001 			advance_left = ADVANCE;
7002 			continue;
7003 		}
7004 
7005 		if (left_level == 0 && right_level == 0) {
7006 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7007 			if (cmp < 0) {
7008 				ret = changed_cb(left_path, right_path,
7009 						&left_key,
7010 						BTRFS_COMPARE_TREE_NEW,
7011 						sctx);
7012 				if (ret < 0)
7013 					goto out;
7014 				advance_left = ADVANCE;
7015 			} else if (cmp > 0) {
7016 				ret = changed_cb(left_path, right_path,
7017 						&right_key,
7018 						BTRFS_COMPARE_TREE_DELETED,
7019 						sctx);
7020 				if (ret < 0)
7021 					goto out;
7022 				advance_right = ADVANCE;
7023 			} else {
7024 				enum btrfs_compare_tree_result result;
7025 
7026 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7027 				ret = tree_compare_item(left_path, right_path,
7028 							tmp_buf);
7029 				if (ret)
7030 					result = BTRFS_COMPARE_TREE_CHANGED;
7031 				else
7032 					result = BTRFS_COMPARE_TREE_SAME;
7033 				ret = changed_cb(left_path, right_path,
7034 						 &left_key, result, sctx);
7035 				if (ret < 0)
7036 					goto out;
7037 				advance_left = ADVANCE;
7038 				advance_right = ADVANCE;
7039 			}
7040 		} else if (left_level == right_level) {
7041 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7042 			if (cmp < 0) {
7043 				advance_left = ADVANCE;
7044 			} else if (cmp > 0) {
7045 				advance_right = ADVANCE;
7046 			} else {
7047 				left_blockptr = btrfs_node_blockptr(
7048 						left_path->nodes[left_level],
7049 						left_path->slots[left_level]);
7050 				right_blockptr = btrfs_node_blockptr(
7051 						right_path->nodes[right_level],
7052 						right_path->slots[right_level]);
7053 				left_gen = btrfs_node_ptr_generation(
7054 						left_path->nodes[left_level],
7055 						left_path->slots[left_level]);
7056 				right_gen = btrfs_node_ptr_generation(
7057 						right_path->nodes[right_level],
7058 						right_path->slots[right_level]);
7059 				if (left_blockptr == right_blockptr &&
7060 				    left_gen == right_gen) {
7061 					/*
7062 					 * As we're on a shared block, don't
7063 					 * allow to go deeper.
7064 					 */
7065 					advance_left = ADVANCE_ONLY_NEXT;
7066 					advance_right = ADVANCE_ONLY_NEXT;
7067 				} else {
7068 					advance_left = ADVANCE;
7069 					advance_right = ADVANCE;
7070 				}
7071 			}
7072 		} else if (left_level < right_level) {
7073 			advance_right = ADVANCE;
7074 		} else {
7075 			advance_left = ADVANCE;
7076 		}
7077 	}
7078 
7079 out:
7080 	btrfs_free_path(left_path);
7081 	btrfs_free_path(right_path);
7082 	kvfree(tmp_buf);
7083 	return ret;
7084 }
7085 
7086 static int send_subvol(struct send_ctx *sctx)
7087 {
7088 	int ret;
7089 
7090 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7091 		ret = send_header(sctx);
7092 		if (ret < 0)
7093 			goto out;
7094 	}
7095 
7096 	ret = send_subvol_begin(sctx);
7097 	if (ret < 0)
7098 		goto out;
7099 
7100 	if (sctx->parent_root) {
7101 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7102 		if (ret < 0)
7103 			goto out;
7104 		ret = finish_inode_if_needed(sctx, 1);
7105 		if (ret < 0)
7106 			goto out;
7107 	} else {
7108 		ret = full_send_tree(sctx);
7109 		if (ret < 0)
7110 			goto out;
7111 	}
7112 
7113 out:
7114 	free_recorded_refs(sctx);
7115 	return ret;
7116 }
7117 
7118 /*
7119  * If orphan cleanup did remove any orphans from a root, it means the tree
7120  * was modified and therefore the commit root is not the same as the current
7121  * root anymore. This is a problem, because send uses the commit root and
7122  * therefore can see inode items that don't exist in the current root anymore,
7123  * and for example make calls to btrfs_iget, which will do tree lookups based
7124  * on the current root and not on the commit root. Those lookups will fail,
7125  * returning a -ESTALE error, and making send fail with that error. So make
7126  * sure a send does not see any orphans we have just removed, and that it will
7127  * see the same inodes regardless of whether a transaction commit happened
7128  * before it started (meaning that the commit root will be the same as the
7129  * current root) or not.
7130  */
7131 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7132 {
7133 	int i;
7134 	struct btrfs_trans_handle *trans = NULL;
7135 
7136 again:
7137 	if (sctx->parent_root &&
7138 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7139 		goto commit_trans;
7140 
7141 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7142 		if (sctx->clone_roots[i].root->node !=
7143 		    sctx->clone_roots[i].root->commit_root)
7144 			goto commit_trans;
7145 
7146 	if (trans)
7147 		return btrfs_end_transaction(trans);
7148 
7149 	return 0;
7150 
7151 commit_trans:
7152 	/* Use any root, all fs roots will get their commit roots updated. */
7153 	if (!trans) {
7154 		trans = btrfs_join_transaction(sctx->send_root);
7155 		if (IS_ERR(trans))
7156 			return PTR_ERR(trans);
7157 		goto again;
7158 	}
7159 
7160 	return btrfs_commit_transaction(trans);
7161 }
7162 
7163 /*
7164  * Make sure any existing dellaloc is flushed for any root used by a send
7165  * operation so that we do not miss any data and we do not race with writeback
7166  * finishing and changing a tree while send is using the tree. This could
7167  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7168  * a send operation then uses the subvolume.
7169  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7170  */
7171 static int flush_delalloc_roots(struct send_ctx *sctx)
7172 {
7173 	struct btrfs_root *root = sctx->parent_root;
7174 	int ret;
7175 	int i;
7176 
7177 	if (root) {
7178 		ret = btrfs_start_delalloc_snapshot(root, false);
7179 		if (ret)
7180 			return ret;
7181 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7182 	}
7183 
7184 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7185 		root = sctx->clone_roots[i].root;
7186 		ret = btrfs_start_delalloc_snapshot(root, false);
7187 		if (ret)
7188 			return ret;
7189 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7190 	}
7191 
7192 	return 0;
7193 }
7194 
7195 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7196 {
7197 	spin_lock(&root->root_item_lock);
7198 	root->send_in_progress--;
7199 	/*
7200 	 * Not much left to do, we don't know why it's unbalanced and
7201 	 * can't blindly reset it to 0.
7202 	 */
7203 	if (root->send_in_progress < 0)
7204 		btrfs_err(root->fs_info,
7205 			  "send_in_progress unbalanced %d root %llu",
7206 			  root->send_in_progress, root->root_key.objectid);
7207 	spin_unlock(&root->root_item_lock);
7208 }
7209 
7210 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7211 {
7212 	btrfs_warn_rl(root->fs_info,
7213 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7214 		      root->root_key.objectid, root->dedupe_in_progress);
7215 }
7216 
7217 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7218 {
7219 	int ret = 0;
7220 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7221 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7222 	struct btrfs_root *clone_root;
7223 	struct send_ctx *sctx = NULL;
7224 	u32 i;
7225 	u64 *clone_sources_tmp = NULL;
7226 	int clone_sources_to_rollback = 0;
7227 	size_t alloc_size;
7228 	int sort_clone_roots = 0;
7229 
7230 	if (!capable(CAP_SYS_ADMIN))
7231 		return -EPERM;
7232 
7233 	/*
7234 	 * The subvolume must remain read-only during send, protect against
7235 	 * making it RW. This also protects against deletion.
7236 	 */
7237 	spin_lock(&send_root->root_item_lock);
7238 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7239 		dedupe_in_progress_warn(send_root);
7240 		spin_unlock(&send_root->root_item_lock);
7241 		return -EAGAIN;
7242 	}
7243 	send_root->send_in_progress++;
7244 	spin_unlock(&send_root->root_item_lock);
7245 
7246 	/*
7247 	 * Userspace tools do the checks and warn the user if it's
7248 	 * not RO.
7249 	 */
7250 	if (!btrfs_root_readonly(send_root)) {
7251 		ret = -EPERM;
7252 		goto out;
7253 	}
7254 
7255 	/*
7256 	 * Check that we don't overflow at later allocations, we request
7257 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7258 	 * access_ok.
7259 	 */
7260 	if (arg->clone_sources_count >
7261 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7262 		ret = -EINVAL;
7263 		goto out;
7264 	}
7265 
7266 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7267 		ret = -EINVAL;
7268 		goto out;
7269 	}
7270 
7271 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7272 	if (!sctx) {
7273 		ret = -ENOMEM;
7274 		goto out;
7275 	}
7276 
7277 	INIT_LIST_HEAD(&sctx->new_refs);
7278 	INIT_LIST_HEAD(&sctx->deleted_refs);
7279 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7280 	INIT_LIST_HEAD(&sctx->name_cache_list);
7281 
7282 	sctx->flags = arg->flags;
7283 
7284 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
7285 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
7286 			ret = -EPROTO;
7287 			goto out;
7288 		}
7289 		/* Zero means "use the highest version" */
7290 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
7291 	} else {
7292 		sctx->proto = 1;
7293 	}
7294 
7295 	sctx->send_filp = fget(arg->send_fd);
7296 	if (!sctx->send_filp) {
7297 		ret = -EBADF;
7298 		goto out;
7299 	}
7300 
7301 	sctx->send_root = send_root;
7302 	/*
7303 	 * Unlikely but possible, if the subvolume is marked for deletion but
7304 	 * is slow to remove the directory entry, send can still be started
7305 	 */
7306 	if (btrfs_root_dead(sctx->send_root)) {
7307 		ret = -EPERM;
7308 		goto out;
7309 	}
7310 
7311 	sctx->clone_roots_cnt = arg->clone_sources_count;
7312 
7313 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7314 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7315 	if (!sctx->send_buf) {
7316 		ret = -ENOMEM;
7317 		goto out;
7318 	}
7319 
7320 	sctx->pending_dir_moves = RB_ROOT;
7321 	sctx->waiting_dir_moves = RB_ROOT;
7322 	sctx->orphan_dirs = RB_ROOT;
7323 
7324 	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7325 				     arg->clone_sources_count + 1,
7326 				     GFP_KERNEL);
7327 	if (!sctx->clone_roots) {
7328 		ret = -ENOMEM;
7329 		goto out;
7330 	}
7331 
7332 	alloc_size = array_size(sizeof(*arg->clone_sources),
7333 				arg->clone_sources_count);
7334 
7335 	if (arg->clone_sources_count) {
7336 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7337 		if (!clone_sources_tmp) {
7338 			ret = -ENOMEM;
7339 			goto out;
7340 		}
7341 
7342 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7343 				alloc_size);
7344 		if (ret) {
7345 			ret = -EFAULT;
7346 			goto out;
7347 		}
7348 
7349 		for (i = 0; i < arg->clone_sources_count; i++) {
7350 			clone_root = btrfs_get_fs_root(fs_info,
7351 						clone_sources_tmp[i], true);
7352 			if (IS_ERR(clone_root)) {
7353 				ret = PTR_ERR(clone_root);
7354 				goto out;
7355 			}
7356 			spin_lock(&clone_root->root_item_lock);
7357 			if (!btrfs_root_readonly(clone_root) ||
7358 			    btrfs_root_dead(clone_root)) {
7359 				spin_unlock(&clone_root->root_item_lock);
7360 				btrfs_put_root(clone_root);
7361 				ret = -EPERM;
7362 				goto out;
7363 			}
7364 			if (clone_root->dedupe_in_progress) {
7365 				dedupe_in_progress_warn(clone_root);
7366 				spin_unlock(&clone_root->root_item_lock);
7367 				btrfs_put_root(clone_root);
7368 				ret = -EAGAIN;
7369 				goto out;
7370 			}
7371 			clone_root->send_in_progress++;
7372 			spin_unlock(&clone_root->root_item_lock);
7373 
7374 			sctx->clone_roots[i].root = clone_root;
7375 			clone_sources_to_rollback = i + 1;
7376 		}
7377 		kvfree(clone_sources_tmp);
7378 		clone_sources_tmp = NULL;
7379 	}
7380 
7381 	if (arg->parent_root) {
7382 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7383 						      true);
7384 		if (IS_ERR(sctx->parent_root)) {
7385 			ret = PTR_ERR(sctx->parent_root);
7386 			goto out;
7387 		}
7388 
7389 		spin_lock(&sctx->parent_root->root_item_lock);
7390 		sctx->parent_root->send_in_progress++;
7391 		if (!btrfs_root_readonly(sctx->parent_root) ||
7392 				btrfs_root_dead(sctx->parent_root)) {
7393 			spin_unlock(&sctx->parent_root->root_item_lock);
7394 			ret = -EPERM;
7395 			goto out;
7396 		}
7397 		if (sctx->parent_root->dedupe_in_progress) {
7398 			dedupe_in_progress_warn(sctx->parent_root);
7399 			spin_unlock(&sctx->parent_root->root_item_lock);
7400 			ret = -EAGAIN;
7401 			goto out;
7402 		}
7403 		spin_unlock(&sctx->parent_root->root_item_lock);
7404 	}
7405 
7406 	/*
7407 	 * Clones from send_root are allowed, but only if the clone source
7408 	 * is behind the current send position. This is checked while searching
7409 	 * for possible clone sources.
7410 	 */
7411 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7412 		btrfs_grab_root(sctx->send_root);
7413 
7414 	/* We do a bsearch later */
7415 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7416 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7417 			NULL);
7418 	sort_clone_roots = 1;
7419 
7420 	ret = flush_delalloc_roots(sctx);
7421 	if (ret)
7422 		goto out;
7423 
7424 	ret = ensure_commit_roots_uptodate(sctx);
7425 	if (ret)
7426 		goto out;
7427 
7428 	spin_lock(&fs_info->send_reloc_lock);
7429 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
7430 		spin_unlock(&fs_info->send_reloc_lock);
7431 		btrfs_warn_rl(fs_info,
7432 		"cannot run send because a relocation operation is in progress");
7433 		ret = -EAGAIN;
7434 		goto out;
7435 	}
7436 	fs_info->send_in_progress++;
7437 	spin_unlock(&fs_info->send_reloc_lock);
7438 
7439 	ret = send_subvol(sctx);
7440 	spin_lock(&fs_info->send_reloc_lock);
7441 	fs_info->send_in_progress--;
7442 	spin_unlock(&fs_info->send_reloc_lock);
7443 	if (ret < 0)
7444 		goto out;
7445 
7446 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7447 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7448 		if (ret < 0)
7449 			goto out;
7450 		ret = send_cmd(sctx);
7451 		if (ret < 0)
7452 			goto out;
7453 	}
7454 
7455 out:
7456 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7457 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7458 		struct rb_node *n;
7459 		struct pending_dir_move *pm;
7460 
7461 		n = rb_first(&sctx->pending_dir_moves);
7462 		pm = rb_entry(n, struct pending_dir_move, node);
7463 		while (!list_empty(&pm->list)) {
7464 			struct pending_dir_move *pm2;
7465 
7466 			pm2 = list_first_entry(&pm->list,
7467 					       struct pending_dir_move, list);
7468 			free_pending_move(sctx, pm2);
7469 		}
7470 		free_pending_move(sctx, pm);
7471 	}
7472 
7473 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7474 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7475 		struct rb_node *n;
7476 		struct waiting_dir_move *dm;
7477 
7478 		n = rb_first(&sctx->waiting_dir_moves);
7479 		dm = rb_entry(n, struct waiting_dir_move, node);
7480 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7481 		kfree(dm);
7482 	}
7483 
7484 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7485 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7486 		struct rb_node *n;
7487 		struct orphan_dir_info *odi;
7488 
7489 		n = rb_first(&sctx->orphan_dirs);
7490 		odi = rb_entry(n, struct orphan_dir_info, node);
7491 		free_orphan_dir_info(sctx, odi);
7492 	}
7493 
7494 	if (sort_clone_roots) {
7495 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7496 			btrfs_root_dec_send_in_progress(
7497 					sctx->clone_roots[i].root);
7498 			btrfs_put_root(sctx->clone_roots[i].root);
7499 		}
7500 	} else {
7501 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7502 			btrfs_root_dec_send_in_progress(
7503 					sctx->clone_roots[i].root);
7504 			btrfs_put_root(sctx->clone_roots[i].root);
7505 		}
7506 
7507 		btrfs_root_dec_send_in_progress(send_root);
7508 	}
7509 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7510 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7511 		btrfs_put_root(sctx->parent_root);
7512 	}
7513 
7514 	kvfree(clone_sources_tmp);
7515 
7516 	if (sctx) {
7517 		if (sctx->send_filp)
7518 			fput(sctx->send_filp);
7519 
7520 		kvfree(sctx->clone_roots);
7521 		kvfree(sctx->send_buf);
7522 
7523 		name_cache_free(sctx);
7524 
7525 		kfree(sctx);
7526 	}
7527 
7528 	return ret;
7529 }
7530