xref: /openbmc/linux/fs/btrfs/send.c (revision 20a2742e)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 #include <linux/compat.h>
30 
31 #include "send.h"
32 #include "backref.h"
33 #include "hash.h"
34 #include "locking.h"
35 #include "disk-io.h"
36 #include "btrfs_inode.h"
37 #include "transaction.h"
38 #include "compression.h"
39 
40 /*
41  * A fs_path is a helper to dynamically build path names with unknown size.
42  * It reallocates the internal buffer on demand.
43  * It allows fast adding of path elements on the right side (normal path) and
44  * fast adding to the left side (reversed path). A reversed path can also be
45  * unreversed if needed.
46  */
47 struct fs_path {
48 	union {
49 		struct {
50 			char *start;
51 			char *end;
52 
53 			char *buf;
54 			unsigned short buf_len:15;
55 			unsigned short reversed:1;
56 			char inline_buf[];
57 		};
58 		/*
59 		 * Average path length does not exceed 200 bytes, we'll have
60 		 * better packing in the slab and higher chance to satisfy
61 		 * a allocation later during send.
62 		 */
63 		char pad[256];
64 	};
65 };
66 #define FS_PATH_INLINE_SIZE \
67 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
68 
69 
70 /* reused for each extent */
71 struct clone_root {
72 	struct btrfs_root *root;
73 	u64 ino;
74 	u64 offset;
75 
76 	u64 found_refs;
77 };
78 
79 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
80 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
81 
82 struct send_ctx {
83 	struct file *send_filp;
84 	loff_t send_off;
85 	char *send_buf;
86 	u32 send_size;
87 	u32 send_max_size;
88 	u64 total_send_size;
89 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
90 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
91 
92 	struct btrfs_root *send_root;
93 	struct btrfs_root *parent_root;
94 	struct clone_root *clone_roots;
95 	int clone_roots_cnt;
96 
97 	/* current state of the compare_tree call */
98 	struct btrfs_path *left_path;
99 	struct btrfs_path *right_path;
100 	struct btrfs_key *cmp_key;
101 
102 	/*
103 	 * infos of the currently processed inode. In case of deleted inodes,
104 	 * these are the values from the deleted inode.
105 	 */
106 	u64 cur_ino;
107 	u64 cur_inode_gen;
108 	int cur_inode_new;
109 	int cur_inode_new_gen;
110 	int cur_inode_deleted;
111 	u64 cur_inode_size;
112 	u64 cur_inode_mode;
113 	u64 cur_inode_rdev;
114 	u64 cur_inode_last_extent;
115 
116 	u64 send_progress;
117 
118 	struct list_head new_refs;
119 	struct list_head deleted_refs;
120 
121 	struct radix_tree_root name_cache;
122 	struct list_head name_cache_list;
123 	int name_cache_size;
124 
125 	struct file_ra_state ra;
126 
127 	char *read_buf;
128 
129 	/*
130 	 * We process inodes by their increasing order, so if before an
131 	 * incremental send we reverse the parent/child relationship of
132 	 * directories such that a directory with a lower inode number was
133 	 * the parent of a directory with a higher inode number, and the one
134 	 * becoming the new parent got renamed too, we can't rename/move the
135 	 * directory with lower inode number when we finish processing it - we
136 	 * must process the directory with higher inode number first, then
137 	 * rename/move it and then rename/move the directory with lower inode
138 	 * number. Example follows.
139 	 *
140 	 * Tree state when the first send was performed:
141 	 *
142 	 * .
143 	 * |-- a                   (ino 257)
144 	 *     |-- b               (ino 258)
145 	 *         |
146 	 *         |
147 	 *         |-- c           (ino 259)
148 	 *         |   |-- d       (ino 260)
149 	 *         |
150 	 *         |-- c2          (ino 261)
151 	 *
152 	 * Tree state when the second (incremental) send is performed:
153 	 *
154 	 * .
155 	 * |-- a                   (ino 257)
156 	 *     |-- b               (ino 258)
157 	 *         |-- c2          (ino 261)
158 	 *             |-- d2      (ino 260)
159 	 *                 |-- cc  (ino 259)
160 	 *
161 	 * The sequence of steps that lead to the second state was:
162 	 *
163 	 * mv /a/b/c/d /a/b/c2/d2
164 	 * mv /a/b/c /a/b/c2/d2/cc
165 	 *
166 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
167 	 * before we move "d", which has higher inode number.
168 	 *
169 	 * So we just memorize which move/rename operations must be performed
170 	 * later when their respective parent is processed and moved/renamed.
171 	 */
172 
173 	/* Indexed by parent directory inode number. */
174 	struct rb_root pending_dir_moves;
175 
176 	/*
177 	 * Reverse index, indexed by the inode number of a directory that
178 	 * is waiting for the move/rename of its immediate parent before its
179 	 * own move/rename can be performed.
180 	 */
181 	struct rb_root waiting_dir_moves;
182 
183 	/*
184 	 * A directory that is going to be rm'ed might have a child directory
185 	 * which is in the pending directory moves index above. In this case,
186 	 * the directory can only be removed after the move/rename of its child
187 	 * is performed. Example:
188 	 *
189 	 * Parent snapshot:
190 	 *
191 	 * .                        (ino 256)
192 	 * |-- a/                   (ino 257)
193 	 *     |-- b/               (ino 258)
194 	 *         |-- c/           (ino 259)
195 	 *         |   |-- x/       (ino 260)
196 	 *         |
197 	 *         |-- y/           (ino 261)
198 	 *
199 	 * Send snapshot:
200 	 *
201 	 * .                        (ino 256)
202 	 * |-- a/                   (ino 257)
203 	 *     |-- b/               (ino 258)
204 	 *         |-- YY/          (ino 261)
205 	 *              |-- x/      (ino 260)
206 	 *
207 	 * Sequence of steps that lead to the send snapshot:
208 	 * rm -f /a/b/c/foo.txt
209 	 * mv /a/b/y /a/b/YY
210 	 * mv /a/b/c/x /a/b/YY
211 	 * rmdir /a/b/c
212 	 *
213 	 * When the child is processed, its move/rename is delayed until its
214 	 * parent is processed (as explained above), but all other operations
215 	 * like update utimes, chown, chgrp, etc, are performed and the paths
216 	 * that it uses for those operations must use the orphanized name of
217 	 * its parent (the directory we're going to rm later), so we need to
218 	 * memorize that name.
219 	 *
220 	 * Indexed by the inode number of the directory to be deleted.
221 	 */
222 	struct rb_root orphan_dirs;
223 };
224 
225 struct pending_dir_move {
226 	struct rb_node node;
227 	struct list_head list;
228 	u64 parent_ino;
229 	u64 ino;
230 	u64 gen;
231 	struct list_head update_refs;
232 };
233 
234 struct waiting_dir_move {
235 	struct rb_node node;
236 	u64 ino;
237 	/*
238 	 * There might be some directory that could not be removed because it
239 	 * was waiting for this directory inode to be moved first. Therefore
240 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
241 	 */
242 	u64 rmdir_ino;
243 	bool orphanized;
244 };
245 
246 struct orphan_dir_info {
247 	struct rb_node node;
248 	u64 ino;
249 	u64 gen;
250 };
251 
252 struct name_cache_entry {
253 	struct list_head list;
254 	/*
255 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
256 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
257 	 * more then one inum would fall into the same entry, we use radix_list
258 	 * to store the additional entries. radix_list is also used to store
259 	 * entries where two entries have the same inum but different
260 	 * generations.
261 	 */
262 	struct list_head radix_list;
263 	u64 ino;
264 	u64 gen;
265 	u64 parent_ino;
266 	u64 parent_gen;
267 	int ret;
268 	int need_later_update;
269 	int name_len;
270 	char name[];
271 };
272 
273 static void inconsistent_snapshot_error(struct send_ctx *sctx,
274 					enum btrfs_compare_tree_result result,
275 					const char *what)
276 {
277 	const char *result_string;
278 
279 	switch (result) {
280 	case BTRFS_COMPARE_TREE_NEW:
281 		result_string = "new";
282 		break;
283 	case BTRFS_COMPARE_TREE_DELETED:
284 		result_string = "deleted";
285 		break;
286 	case BTRFS_COMPARE_TREE_CHANGED:
287 		result_string = "updated";
288 		break;
289 	case BTRFS_COMPARE_TREE_SAME:
290 		ASSERT(0);
291 		result_string = "unchanged";
292 		break;
293 	default:
294 		ASSERT(0);
295 		result_string = "unexpected";
296 	}
297 
298 	btrfs_err(sctx->send_root->fs_info,
299 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
300 		  result_string, what, sctx->cmp_key->objectid,
301 		  sctx->send_root->root_key.objectid,
302 		  (sctx->parent_root ?
303 		   sctx->parent_root->root_key.objectid : 0));
304 }
305 
306 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
307 
308 static struct waiting_dir_move *
309 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
310 
311 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
312 
313 static int need_send_hole(struct send_ctx *sctx)
314 {
315 	return (sctx->parent_root && !sctx->cur_inode_new &&
316 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
317 		S_ISREG(sctx->cur_inode_mode));
318 }
319 
320 static void fs_path_reset(struct fs_path *p)
321 {
322 	if (p->reversed) {
323 		p->start = p->buf + p->buf_len - 1;
324 		p->end = p->start;
325 		*p->start = 0;
326 	} else {
327 		p->start = p->buf;
328 		p->end = p->start;
329 		*p->start = 0;
330 	}
331 }
332 
333 static struct fs_path *fs_path_alloc(void)
334 {
335 	struct fs_path *p;
336 
337 	p = kmalloc(sizeof(*p), GFP_KERNEL);
338 	if (!p)
339 		return NULL;
340 	p->reversed = 0;
341 	p->buf = p->inline_buf;
342 	p->buf_len = FS_PATH_INLINE_SIZE;
343 	fs_path_reset(p);
344 	return p;
345 }
346 
347 static struct fs_path *fs_path_alloc_reversed(void)
348 {
349 	struct fs_path *p;
350 
351 	p = fs_path_alloc();
352 	if (!p)
353 		return NULL;
354 	p->reversed = 1;
355 	fs_path_reset(p);
356 	return p;
357 }
358 
359 static void fs_path_free(struct fs_path *p)
360 {
361 	if (!p)
362 		return;
363 	if (p->buf != p->inline_buf)
364 		kfree(p->buf);
365 	kfree(p);
366 }
367 
368 static int fs_path_len(struct fs_path *p)
369 {
370 	return p->end - p->start;
371 }
372 
373 static int fs_path_ensure_buf(struct fs_path *p, int len)
374 {
375 	char *tmp_buf;
376 	int path_len;
377 	int old_buf_len;
378 
379 	len++;
380 
381 	if (p->buf_len >= len)
382 		return 0;
383 
384 	if (len > PATH_MAX) {
385 		WARN_ON(1);
386 		return -ENOMEM;
387 	}
388 
389 	path_len = p->end - p->start;
390 	old_buf_len = p->buf_len;
391 
392 	/*
393 	 * First time the inline_buf does not suffice
394 	 */
395 	if (p->buf == p->inline_buf) {
396 		tmp_buf = kmalloc(len, GFP_KERNEL);
397 		if (tmp_buf)
398 			memcpy(tmp_buf, p->buf, old_buf_len);
399 	} else {
400 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
401 	}
402 	if (!tmp_buf)
403 		return -ENOMEM;
404 	p->buf = tmp_buf;
405 	/*
406 	 * The real size of the buffer is bigger, this will let the fast path
407 	 * happen most of the time
408 	 */
409 	p->buf_len = ksize(p->buf);
410 
411 	if (p->reversed) {
412 		tmp_buf = p->buf + old_buf_len - path_len - 1;
413 		p->end = p->buf + p->buf_len - 1;
414 		p->start = p->end - path_len;
415 		memmove(p->start, tmp_buf, path_len + 1);
416 	} else {
417 		p->start = p->buf;
418 		p->end = p->start + path_len;
419 	}
420 	return 0;
421 }
422 
423 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
424 				   char **prepared)
425 {
426 	int ret;
427 	int new_len;
428 
429 	new_len = p->end - p->start + name_len;
430 	if (p->start != p->end)
431 		new_len++;
432 	ret = fs_path_ensure_buf(p, new_len);
433 	if (ret < 0)
434 		goto out;
435 
436 	if (p->reversed) {
437 		if (p->start != p->end)
438 			*--p->start = '/';
439 		p->start -= name_len;
440 		*prepared = p->start;
441 	} else {
442 		if (p->start != p->end)
443 			*p->end++ = '/';
444 		*prepared = p->end;
445 		p->end += name_len;
446 		*p->end = 0;
447 	}
448 
449 out:
450 	return ret;
451 }
452 
453 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
454 {
455 	int ret;
456 	char *prepared;
457 
458 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
459 	if (ret < 0)
460 		goto out;
461 	memcpy(prepared, name, name_len);
462 
463 out:
464 	return ret;
465 }
466 
467 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
468 {
469 	int ret;
470 	char *prepared;
471 
472 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
473 	if (ret < 0)
474 		goto out;
475 	memcpy(prepared, p2->start, p2->end - p2->start);
476 
477 out:
478 	return ret;
479 }
480 
481 static int fs_path_add_from_extent_buffer(struct fs_path *p,
482 					  struct extent_buffer *eb,
483 					  unsigned long off, int len)
484 {
485 	int ret;
486 	char *prepared;
487 
488 	ret = fs_path_prepare_for_add(p, len, &prepared);
489 	if (ret < 0)
490 		goto out;
491 
492 	read_extent_buffer(eb, prepared, off, len);
493 
494 out:
495 	return ret;
496 }
497 
498 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
499 {
500 	int ret;
501 
502 	p->reversed = from->reversed;
503 	fs_path_reset(p);
504 
505 	ret = fs_path_add_path(p, from);
506 
507 	return ret;
508 }
509 
510 
511 static void fs_path_unreverse(struct fs_path *p)
512 {
513 	char *tmp;
514 	int len;
515 
516 	if (!p->reversed)
517 		return;
518 
519 	tmp = p->start;
520 	len = p->end - p->start;
521 	p->start = p->buf;
522 	p->end = p->start + len;
523 	memmove(p->start, tmp, len + 1);
524 	p->reversed = 0;
525 }
526 
527 static struct btrfs_path *alloc_path_for_send(void)
528 {
529 	struct btrfs_path *path;
530 
531 	path = btrfs_alloc_path();
532 	if (!path)
533 		return NULL;
534 	path->search_commit_root = 1;
535 	path->skip_locking = 1;
536 	path->need_commit_sem = 1;
537 	return path;
538 }
539 
540 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
541 {
542 	int ret;
543 	u32 pos = 0;
544 
545 	while (pos < len) {
546 		ret = kernel_write(filp, buf + pos, len - pos, off);
547 		/* TODO handle that correctly */
548 		/*if (ret == -ERESTARTSYS) {
549 			continue;
550 		}*/
551 		if (ret < 0)
552 			return ret;
553 		if (ret == 0) {
554 			return -EIO;
555 		}
556 		pos += ret;
557 	}
558 
559 	return 0;
560 }
561 
562 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
563 {
564 	struct btrfs_tlv_header *hdr;
565 	int total_len = sizeof(*hdr) + len;
566 	int left = sctx->send_max_size - sctx->send_size;
567 
568 	if (unlikely(left < total_len))
569 		return -EOVERFLOW;
570 
571 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
572 	hdr->tlv_type = cpu_to_le16(attr);
573 	hdr->tlv_len = cpu_to_le16(len);
574 	memcpy(hdr + 1, data, len);
575 	sctx->send_size += total_len;
576 
577 	return 0;
578 }
579 
580 #define TLV_PUT_DEFINE_INT(bits) \
581 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
582 			u##bits attr, u##bits value)			\
583 	{								\
584 		__le##bits __tmp = cpu_to_le##bits(value);		\
585 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
586 	}
587 
588 TLV_PUT_DEFINE_INT(64)
589 
590 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
591 			  const char *str, int len)
592 {
593 	if (len == -1)
594 		len = strlen(str);
595 	return tlv_put(sctx, attr, str, len);
596 }
597 
598 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
599 			const u8 *uuid)
600 {
601 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
602 }
603 
604 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
605 				  struct extent_buffer *eb,
606 				  struct btrfs_timespec *ts)
607 {
608 	struct btrfs_timespec bts;
609 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
610 	return tlv_put(sctx, attr, &bts, sizeof(bts));
611 }
612 
613 
614 #define TLV_PUT(sctx, attrtype, attrlen, data) \
615 	do { \
616 		ret = tlv_put(sctx, attrtype, attrlen, data); \
617 		if (ret < 0) \
618 			goto tlv_put_failure; \
619 	} while (0)
620 
621 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
622 	do { \
623 		ret = tlv_put_u##bits(sctx, attrtype, value); \
624 		if (ret < 0) \
625 			goto tlv_put_failure; \
626 	} while (0)
627 
628 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
629 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
630 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
631 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
632 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
633 	do { \
634 		ret = tlv_put_string(sctx, attrtype, str, len); \
635 		if (ret < 0) \
636 			goto tlv_put_failure; \
637 	} while (0)
638 #define TLV_PUT_PATH(sctx, attrtype, p) \
639 	do { \
640 		ret = tlv_put_string(sctx, attrtype, p->start, \
641 			p->end - p->start); \
642 		if (ret < 0) \
643 			goto tlv_put_failure; \
644 	} while(0)
645 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
646 	do { \
647 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
648 		if (ret < 0) \
649 			goto tlv_put_failure; \
650 	} while (0)
651 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
652 	do { \
653 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
654 		if (ret < 0) \
655 			goto tlv_put_failure; \
656 	} while (0)
657 
658 static int send_header(struct send_ctx *sctx)
659 {
660 	struct btrfs_stream_header hdr;
661 
662 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
663 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
664 
665 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
666 					&sctx->send_off);
667 }
668 
669 /*
670  * For each command/item we want to send to userspace, we call this function.
671  */
672 static int begin_cmd(struct send_ctx *sctx, int cmd)
673 {
674 	struct btrfs_cmd_header *hdr;
675 
676 	if (WARN_ON(!sctx->send_buf))
677 		return -EINVAL;
678 
679 	BUG_ON(sctx->send_size);
680 
681 	sctx->send_size += sizeof(*hdr);
682 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
683 	hdr->cmd = cpu_to_le16(cmd);
684 
685 	return 0;
686 }
687 
688 static int send_cmd(struct send_ctx *sctx)
689 {
690 	int ret;
691 	struct btrfs_cmd_header *hdr;
692 	u32 crc;
693 
694 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
695 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
696 	hdr->crc = 0;
697 
698 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
699 	hdr->crc = cpu_to_le32(crc);
700 
701 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
702 					&sctx->send_off);
703 
704 	sctx->total_send_size += sctx->send_size;
705 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
706 	sctx->send_size = 0;
707 
708 	return ret;
709 }
710 
711 /*
712  * Sends a move instruction to user space
713  */
714 static int send_rename(struct send_ctx *sctx,
715 		     struct fs_path *from, struct fs_path *to)
716 {
717 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
718 	int ret;
719 
720 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
721 
722 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
723 	if (ret < 0)
724 		goto out;
725 
726 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
727 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
728 
729 	ret = send_cmd(sctx);
730 
731 tlv_put_failure:
732 out:
733 	return ret;
734 }
735 
736 /*
737  * Sends a link instruction to user space
738  */
739 static int send_link(struct send_ctx *sctx,
740 		     struct fs_path *path, struct fs_path *lnk)
741 {
742 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
743 	int ret;
744 
745 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
746 
747 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
748 	if (ret < 0)
749 		goto out;
750 
751 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
752 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
753 
754 	ret = send_cmd(sctx);
755 
756 tlv_put_failure:
757 out:
758 	return ret;
759 }
760 
761 /*
762  * Sends an unlink instruction to user space
763  */
764 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
765 {
766 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
767 	int ret;
768 
769 	btrfs_debug(fs_info, "send_unlink %s", path->start);
770 
771 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
772 	if (ret < 0)
773 		goto out;
774 
775 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
776 
777 	ret = send_cmd(sctx);
778 
779 tlv_put_failure:
780 out:
781 	return ret;
782 }
783 
784 /*
785  * Sends a rmdir instruction to user space
786  */
787 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
788 {
789 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
790 	int ret;
791 
792 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
793 
794 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
795 	if (ret < 0)
796 		goto out;
797 
798 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
799 
800 	ret = send_cmd(sctx);
801 
802 tlv_put_failure:
803 out:
804 	return ret;
805 }
806 
807 /*
808  * Helper function to retrieve some fields from an inode item.
809  */
810 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
811 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
812 			  u64 *gid, u64 *rdev)
813 {
814 	int ret;
815 	struct btrfs_inode_item *ii;
816 	struct btrfs_key key;
817 
818 	key.objectid = ino;
819 	key.type = BTRFS_INODE_ITEM_KEY;
820 	key.offset = 0;
821 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
822 	if (ret) {
823 		if (ret > 0)
824 			ret = -ENOENT;
825 		return ret;
826 	}
827 
828 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
829 			struct btrfs_inode_item);
830 	if (size)
831 		*size = btrfs_inode_size(path->nodes[0], ii);
832 	if (gen)
833 		*gen = btrfs_inode_generation(path->nodes[0], ii);
834 	if (mode)
835 		*mode = btrfs_inode_mode(path->nodes[0], ii);
836 	if (uid)
837 		*uid = btrfs_inode_uid(path->nodes[0], ii);
838 	if (gid)
839 		*gid = btrfs_inode_gid(path->nodes[0], ii);
840 	if (rdev)
841 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
842 
843 	return ret;
844 }
845 
846 static int get_inode_info(struct btrfs_root *root,
847 			  u64 ino, u64 *size, u64 *gen,
848 			  u64 *mode, u64 *uid, u64 *gid,
849 			  u64 *rdev)
850 {
851 	struct btrfs_path *path;
852 	int ret;
853 
854 	path = alloc_path_for_send();
855 	if (!path)
856 		return -ENOMEM;
857 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
858 			       rdev);
859 	btrfs_free_path(path);
860 	return ret;
861 }
862 
863 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
864 				   struct fs_path *p,
865 				   void *ctx);
866 
867 /*
868  * Helper function to iterate the entries in ONE btrfs_inode_ref or
869  * btrfs_inode_extref.
870  * The iterate callback may return a non zero value to stop iteration. This can
871  * be a negative value for error codes or 1 to simply stop it.
872  *
873  * path must point to the INODE_REF or INODE_EXTREF when called.
874  */
875 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
876 			     struct btrfs_key *found_key, int resolve,
877 			     iterate_inode_ref_t iterate, void *ctx)
878 {
879 	struct extent_buffer *eb = path->nodes[0];
880 	struct btrfs_item *item;
881 	struct btrfs_inode_ref *iref;
882 	struct btrfs_inode_extref *extref;
883 	struct btrfs_path *tmp_path;
884 	struct fs_path *p;
885 	u32 cur = 0;
886 	u32 total;
887 	int slot = path->slots[0];
888 	u32 name_len;
889 	char *start;
890 	int ret = 0;
891 	int num = 0;
892 	int index;
893 	u64 dir;
894 	unsigned long name_off;
895 	unsigned long elem_size;
896 	unsigned long ptr;
897 
898 	p = fs_path_alloc_reversed();
899 	if (!p)
900 		return -ENOMEM;
901 
902 	tmp_path = alloc_path_for_send();
903 	if (!tmp_path) {
904 		fs_path_free(p);
905 		return -ENOMEM;
906 	}
907 
908 
909 	if (found_key->type == BTRFS_INODE_REF_KEY) {
910 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
911 						    struct btrfs_inode_ref);
912 		item = btrfs_item_nr(slot);
913 		total = btrfs_item_size(eb, item);
914 		elem_size = sizeof(*iref);
915 	} else {
916 		ptr = btrfs_item_ptr_offset(eb, slot);
917 		total = btrfs_item_size_nr(eb, slot);
918 		elem_size = sizeof(*extref);
919 	}
920 
921 	while (cur < total) {
922 		fs_path_reset(p);
923 
924 		if (found_key->type == BTRFS_INODE_REF_KEY) {
925 			iref = (struct btrfs_inode_ref *)(ptr + cur);
926 			name_len = btrfs_inode_ref_name_len(eb, iref);
927 			name_off = (unsigned long)(iref + 1);
928 			index = btrfs_inode_ref_index(eb, iref);
929 			dir = found_key->offset;
930 		} else {
931 			extref = (struct btrfs_inode_extref *)(ptr + cur);
932 			name_len = btrfs_inode_extref_name_len(eb, extref);
933 			name_off = (unsigned long)&extref->name;
934 			index = btrfs_inode_extref_index(eb, extref);
935 			dir = btrfs_inode_extref_parent(eb, extref);
936 		}
937 
938 		if (resolve) {
939 			start = btrfs_ref_to_path(root, tmp_path, name_len,
940 						  name_off, eb, dir,
941 						  p->buf, p->buf_len);
942 			if (IS_ERR(start)) {
943 				ret = PTR_ERR(start);
944 				goto out;
945 			}
946 			if (start < p->buf) {
947 				/* overflow , try again with larger buffer */
948 				ret = fs_path_ensure_buf(p,
949 						p->buf_len + p->buf - start);
950 				if (ret < 0)
951 					goto out;
952 				start = btrfs_ref_to_path(root, tmp_path,
953 							  name_len, name_off,
954 							  eb, dir,
955 							  p->buf, p->buf_len);
956 				if (IS_ERR(start)) {
957 					ret = PTR_ERR(start);
958 					goto out;
959 				}
960 				BUG_ON(start < p->buf);
961 			}
962 			p->start = start;
963 		} else {
964 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
965 							     name_len);
966 			if (ret < 0)
967 				goto out;
968 		}
969 
970 		cur += elem_size + name_len;
971 		ret = iterate(num, dir, index, p, ctx);
972 		if (ret)
973 			goto out;
974 		num++;
975 	}
976 
977 out:
978 	btrfs_free_path(tmp_path);
979 	fs_path_free(p);
980 	return ret;
981 }
982 
983 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
984 				  const char *name, int name_len,
985 				  const char *data, int data_len,
986 				  u8 type, void *ctx);
987 
988 /*
989  * Helper function to iterate the entries in ONE btrfs_dir_item.
990  * The iterate callback may return a non zero value to stop iteration. This can
991  * be a negative value for error codes or 1 to simply stop it.
992  *
993  * path must point to the dir item when called.
994  */
995 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
996 			    iterate_dir_item_t iterate, void *ctx)
997 {
998 	int ret = 0;
999 	struct extent_buffer *eb;
1000 	struct btrfs_item *item;
1001 	struct btrfs_dir_item *di;
1002 	struct btrfs_key di_key;
1003 	char *buf = NULL;
1004 	int buf_len;
1005 	u32 name_len;
1006 	u32 data_len;
1007 	u32 cur;
1008 	u32 len;
1009 	u32 total;
1010 	int slot;
1011 	int num;
1012 	u8 type;
1013 
1014 	/*
1015 	 * Start with a small buffer (1 page). If later we end up needing more
1016 	 * space, which can happen for xattrs on a fs with a leaf size greater
1017 	 * then the page size, attempt to increase the buffer. Typically xattr
1018 	 * values are small.
1019 	 */
1020 	buf_len = PATH_MAX;
1021 	buf = kmalloc(buf_len, GFP_KERNEL);
1022 	if (!buf) {
1023 		ret = -ENOMEM;
1024 		goto out;
1025 	}
1026 
1027 	eb = path->nodes[0];
1028 	slot = path->slots[0];
1029 	item = btrfs_item_nr(slot);
1030 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1031 	cur = 0;
1032 	len = 0;
1033 	total = btrfs_item_size(eb, item);
1034 
1035 	num = 0;
1036 	while (cur < total) {
1037 		name_len = btrfs_dir_name_len(eb, di);
1038 		data_len = btrfs_dir_data_len(eb, di);
1039 		type = btrfs_dir_type(eb, di);
1040 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1041 
1042 		if (type == BTRFS_FT_XATTR) {
1043 			if (name_len > XATTR_NAME_MAX) {
1044 				ret = -ENAMETOOLONG;
1045 				goto out;
1046 			}
1047 			if (name_len + data_len >
1048 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1049 				ret = -E2BIG;
1050 				goto out;
1051 			}
1052 		} else {
1053 			/*
1054 			 * Path too long
1055 			 */
1056 			if (name_len + data_len > PATH_MAX) {
1057 				ret = -ENAMETOOLONG;
1058 				goto out;
1059 			}
1060 		}
1061 
1062 		ret = btrfs_is_name_len_valid(eb, path->slots[0],
1063 			  (unsigned long)(di + 1), name_len + data_len);
1064 		if (!ret) {
1065 			ret = -EIO;
1066 			goto out;
1067 		}
1068 		if (name_len + data_len > buf_len) {
1069 			buf_len = name_len + data_len;
1070 			if (is_vmalloc_addr(buf)) {
1071 				vfree(buf);
1072 				buf = NULL;
1073 			} else {
1074 				char *tmp = krealloc(buf, buf_len,
1075 						GFP_KERNEL | __GFP_NOWARN);
1076 
1077 				if (!tmp)
1078 					kfree(buf);
1079 				buf = tmp;
1080 			}
1081 			if (!buf) {
1082 				buf = kvmalloc(buf_len, GFP_KERNEL);
1083 				if (!buf) {
1084 					ret = -ENOMEM;
1085 					goto out;
1086 				}
1087 			}
1088 		}
1089 
1090 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1091 				name_len + data_len);
1092 
1093 		len = sizeof(*di) + name_len + data_len;
1094 		di = (struct btrfs_dir_item *)((char *)di + len);
1095 		cur += len;
1096 
1097 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1098 				data_len, type, ctx);
1099 		if (ret < 0)
1100 			goto out;
1101 		if (ret) {
1102 			ret = 0;
1103 			goto out;
1104 		}
1105 
1106 		num++;
1107 	}
1108 
1109 out:
1110 	kvfree(buf);
1111 	return ret;
1112 }
1113 
1114 static int __copy_first_ref(int num, u64 dir, int index,
1115 			    struct fs_path *p, void *ctx)
1116 {
1117 	int ret;
1118 	struct fs_path *pt = ctx;
1119 
1120 	ret = fs_path_copy(pt, p);
1121 	if (ret < 0)
1122 		return ret;
1123 
1124 	/* we want the first only */
1125 	return 1;
1126 }
1127 
1128 /*
1129  * Retrieve the first path of an inode. If an inode has more then one
1130  * ref/hardlink, this is ignored.
1131  */
1132 static int get_inode_path(struct btrfs_root *root,
1133 			  u64 ino, struct fs_path *path)
1134 {
1135 	int ret;
1136 	struct btrfs_key key, found_key;
1137 	struct btrfs_path *p;
1138 
1139 	p = alloc_path_for_send();
1140 	if (!p)
1141 		return -ENOMEM;
1142 
1143 	fs_path_reset(path);
1144 
1145 	key.objectid = ino;
1146 	key.type = BTRFS_INODE_REF_KEY;
1147 	key.offset = 0;
1148 
1149 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1150 	if (ret < 0)
1151 		goto out;
1152 	if (ret) {
1153 		ret = 1;
1154 		goto out;
1155 	}
1156 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1157 	if (found_key.objectid != ino ||
1158 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1159 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1160 		ret = -ENOENT;
1161 		goto out;
1162 	}
1163 
1164 	ret = iterate_inode_ref(root, p, &found_key, 1,
1165 				__copy_first_ref, path);
1166 	if (ret < 0)
1167 		goto out;
1168 	ret = 0;
1169 
1170 out:
1171 	btrfs_free_path(p);
1172 	return ret;
1173 }
1174 
1175 struct backref_ctx {
1176 	struct send_ctx *sctx;
1177 
1178 	struct btrfs_path *path;
1179 	/* number of total found references */
1180 	u64 found;
1181 
1182 	/*
1183 	 * used for clones found in send_root. clones found behind cur_objectid
1184 	 * and cur_offset are not considered as allowed clones.
1185 	 */
1186 	u64 cur_objectid;
1187 	u64 cur_offset;
1188 
1189 	/* may be truncated in case it's the last extent in a file */
1190 	u64 extent_len;
1191 
1192 	/* data offset in the file extent item */
1193 	u64 data_offset;
1194 
1195 	/* Just to check for bugs in backref resolving */
1196 	int found_itself;
1197 };
1198 
1199 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1200 {
1201 	u64 root = (u64)(uintptr_t)key;
1202 	struct clone_root *cr = (struct clone_root *)elt;
1203 
1204 	if (root < cr->root->objectid)
1205 		return -1;
1206 	if (root > cr->root->objectid)
1207 		return 1;
1208 	return 0;
1209 }
1210 
1211 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1212 {
1213 	struct clone_root *cr1 = (struct clone_root *)e1;
1214 	struct clone_root *cr2 = (struct clone_root *)e2;
1215 
1216 	if (cr1->root->objectid < cr2->root->objectid)
1217 		return -1;
1218 	if (cr1->root->objectid > cr2->root->objectid)
1219 		return 1;
1220 	return 0;
1221 }
1222 
1223 /*
1224  * Called for every backref that is found for the current extent.
1225  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1226  */
1227 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1228 {
1229 	struct backref_ctx *bctx = ctx_;
1230 	struct clone_root *found;
1231 	int ret;
1232 	u64 i_size;
1233 
1234 	/* First check if the root is in the list of accepted clone sources */
1235 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236 			bctx->sctx->clone_roots_cnt,
1237 			sizeof(struct clone_root),
1238 			__clone_root_cmp_bsearch);
1239 	if (!found)
1240 		return 0;
1241 
1242 	if (found->root == bctx->sctx->send_root &&
1243 	    ino == bctx->cur_objectid &&
1244 	    offset == bctx->cur_offset) {
1245 		bctx->found_itself = 1;
1246 	}
1247 
1248 	/*
1249 	 * There are inodes that have extents that lie behind its i_size. Don't
1250 	 * accept clones from these extents.
1251 	 */
1252 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1253 			       NULL, NULL, NULL);
1254 	btrfs_release_path(bctx->path);
1255 	if (ret < 0)
1256 		return ret;
1257 
1258 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1259 		return 0;
1260 
1261 	/*
1262 	 * Make sure we don't consider clones from send_root that are
1263 	 * behind the current inode/offset.
1264 	 */
1265 	if (found->root == bctx->sctx->send_root) {
1266 		/*
1267 		 * TODO for the moment we don't accept clones from the inode
1268 		 * that is currently send. We may change this when
1269 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1270 		 * file.
1271 		 */
1272 		if (ino >= bctx->cur_objectid)
1273 			return 0;
1274 	}
1275 
1276 	bctx->found++;
1277 	found->found_refs++;
1278 	if (ino < found->ino) {
1279 		found->ino = ino;
1280 		found->offset = offset;
1281 	} else if (found->ino == ino) {
1282 		/*
1283 		 * same extent found more then once in the same file.
1284 		 */
1285 		if (found->offset > offset + bctx->extent_len)
1286 			found->offset = offset;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 /*
1293  * Given an inode, offset and extent item, it finds a good clone for a clone
1294  * instruction. Returns -ENOENT when none could be found. The function makes
1295  * sure that the returned clone is usable at the point where sending is at the
1296  * moment. This means, that no clones are accepted which lie behind the current
1297  * inode+offset.
1298  *
1299  * path must point to the extent item when called.
1300  */
1301 static int find_extent_clone(struct send_ctx *sctx,
1302 			     struct btrfs_path *path,
1303 			     u64 ino, u64 data_offset,
1304 			     u64 ino_size,
1305 			     struct clone_root **found)
1306 {
1307 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1308 	int ret;
1309 	int extent_type;
1310 	u64 logical;
1311 	u64 disk_byte;
1312 	u64 num_bytes;
1313 	u64 extent_item_pos;
1314 	u64 flags = 0;
1315 	struct btrfs_file_extent_item *fi;
1316 	struct extent_buffer *eb = path->nodes[0];
1317 	struct backref_ctx *backref_ctx = NULL;
1318 	struct clone_root *cur_clone_root;
1319 	struct btrfs_key found_key;
1320 	struct btrfs_path *tmp_path;
1321 	int compressed;
1322 	u32 i;
1323 
1324 	tmp_path = alloc_path_for_send();
1325 	if (!tmp_path)
1326 		return -ENOMEM;
1327 
1328 	/* We only use this path under the commit sem */
1329 	tmp_path->need_commit_sem = 0;
1330 
1331 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1332 	if (!backref_ctx) {
1333 		ret = -ENOMEM;
1334 		goto out;
1335 	}
1336 
1337 	backref_ctx->path = tmp_path;
1338 
1339 	if (data_offset >= ino_size) {
1340 		/*
1341 		 * There may be extents that lie behind the file's size.
1342 		 * I at least had this in combination with snapshotting while
1343 		 * writing large files.
1344 		 */
1345 		ret = 0;
1346 		goto out;
1347 	}
1348 
1349 	fi = btrfs_item_ptr(eb, path->slots[0],
1350 			struct btrfs_file_extent_item);
1351 	extent_type = btrfs_file_extent_type(eb, fi);
1352 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353 		ret = -ENOENT;
1354 		goto out;
1355 	}
1356 	compressed = btrfs_file_extent_compression(eb, fi);
1357 
1358 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1359 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1360 	if (disk_byte == 0) {
1361 		ret = -ENOENT;
1362 		goto out;
1363 	}
1364 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1365 
1366 	down_read(&fs_info->commit_root_sem);
1367 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1368 				  &found_key, &flags);
1369 	up_read(&fs_info->commit_root_sem);
1370 	btrfs_release_path(tmp_path);
1371 
1372 	if (ret < 0)
1373 		goto out;
1374 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1375 		ret = -EIO;
1376 		goto out;
1377 	}
1378 
1379 	/*
1380 	 * Setup the clone roots.
1381 	 */
1382 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1383 		cur_clone_root = sctx->clone_roots + i;
1384 		cur_clone_root->ino = (u64)-1;
1385 		cur_clone_root->offset = 0;
1386 		cur_clone_root->found_refs = 0;
1387 	}
1388 
1389 	backref_ctx->sctx = sctx;
1390 	backref_ctx->found = 0;
1391 	backref_ctx->cur_objectid = ino;
1392 	backref_ctx->cur_offset = data_offset;
1393 	backref_ctx->found_itself = 0;
1394 	backref_ctx->extent_len = num_bytes;
1395 	/*
1396 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1397 	 * offsets that already take into account the data offset, but not for
1398 	 * compressed extents, since the offset is logical and not relative to
1399 	 * the physical extent locations. We must take this into account to
1400 	 * avoid sending clone offsets that go beyond the source file's size,
1401 	 * which would result in the clone ioctl failing with -EINVAL on the
1402 	 * receiving end.
1403 	 */
1404 	if (compressed == BTRFS_COMPRESS_NONE)
1405 		backref_ctx->data_offset = 0;
1406 	else
1407 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1408 
1409 	/*
1410 	 * The last extent of a file may be too large due to page alignment.
1411 	 * We need to adjust extent_len in this case so that the checks in
1412 	 * __iterate_backrefs work.
1413 	 */
1414 	if (data_offset + num_bytes >= ino_size)
1415 		backref_ctx->extent_len = ino_size - data_offset;
1416 
1417 	/*
1418 	 * Now collect all backrefs.
1419 	 */
1420 	if (compressed == BTRFS_COMPRESS_NONE)
1421 		extent_item_pos = logical - found_key.objectid;
1422 	else
1423 		extent_item_pos = 0;
1424 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1425 				    extent_item_pos, 1, __iterate_backrefs,
1426 				    backref_ctx, false);
1427 
1428 	if (ret < 0)
1429 		goto out;
1430 
1431 	if (!backref_ctx->found_itself) {
1432 		/* found a bug in backref code? */
1433 		ret = -EIO;
1434 		btrfs_err(fs_info,
1435 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1436 			  ino, data_offset, disk_byte, found_key.objectid);
1437 		goto out;
1438 	}
1439 
1440 	btrfs_debug(fs_info,
1441 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1442 		    data_offset, ino, num_bytes, logical);
1443 
1444 	if (!backref_ctx->found)
1445 		btrfs_debug(fs_info, "no clones found");
1446 
1447 	cur_clone_root = NULL;
1448 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1449 		if (sctx->clone_roots[i].found_refs) {
1450 			if (!cur_clone_root)
1451 				cur_clone_root = sctx->clone_roots + i;
1452 			else if (sctx->clone_roots[i].root == sctx->send_root)
1453 				/* prefer clones from send_root over others */
1454 				cur_clone_root = sctx->clone_roots + i;
1455 		}
1456 
1457 	}
1458 
1459 	if (cur_clone_root) {
1460 		*found = cur_clone_root;
1461 		ret = 0;
1462 	} else {
1463 		ret = -ENOENT;
1464 	}
1465 
1466 out:
1467 	btrfs_free_path(tmp_path);
1468 	kfree(backref_ctx);
1469 	return ret;
1470 }
1471 
1472 static int read_symlink(struct btrfs_root *root,
1473 			u64 ino,
1474 			struct fs_path *dest)
1475 {
1476 	int ret;
1477 	struct btrfs_path *path;
1478 	struct btrfs_key key;
1479 	struct btrfs_file_extent_item *ei;
1480 	u8 type;
1481 	u8 compression;
1482 	unsigned long off;
1483 	int len;
1484 
1485 	path = alloc_path_for_send();
1486 	if (!path)
1487 		return -ENOMEM;
1488 
1489 	key.objectid = ino;
1490 	key.type = BTRFS_EXTENT_DATA_KEY;
1491 	key.offset = 0;
1492 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1493 	if (ret < 0)
1494 		goto out;
1495 	if (ret) {
1496 		/*
1497 		 * An empty symlink inode. Can happen in rare error paths when
1498 		 * creating a symlink (transaction committed before the inode
1499 		 * eviction handler removed the symlink inode items and a crash
1500 		 * happened in between or the subvol was snapshoted in between).
1501 		 * Print an informative message to dmesg/syslog so that the user
1502 		 * can delete the symlink.
1503 		 */
1504 		btrfs_err(root->fs_info,
1505 			  "Found empty symlink inode %llu at root %llu",
1506 			  ino, root->root_key.objectid);
1507 		ret = -EIO;
1508 		goto out;
1509 	}
1510 
1511 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1512 			struct btrfs_file_extent_item);
1513 	type = btrfs_file_extent_type(path->nodes[0], ei);
1514 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1515 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1516 	BUG_ON(compression);
1517 
1518 	off = btrfs_file_extent_inline_start(ei);
1519 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1520 
1521 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1522 
1523 out:
1524 	btrfs_free_path(path);
1525 	return ret;
1526 }
1527 
1528 /*
1529  * Helper function to generate a file name that is unique in the root of
1530  * send_root and parent_root. This is used to generate names for orphan inodes.
1531  */
1532 static int gen_unique_name(struct send_ctx *sctx,
1533 			   u64 ino, u64 gen,
1534 			   struct fs_path *dest)
1535 {
1536 	int ret = 0;
1537 	struct btrfs_path *path;
1538 	struct btrfs_dir_item *di;
1539 	char tmp[64];
1540 	int len;
1541 	u64 idx = 0;
1542 
1543 	path = alloc_path_for_send();
1544 	if (!path)
1545 		return -ENOMEM;
1546 
1547 	while (1) {
1548 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1549 				ino, gen, idx);
1550 		ASSERT(len < sizeof(tmp));
1551 
1552 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1553 				path, BTRFS_FIRST_FREE_OBJECTID,
1554 				tmp, strlen(tmp), 0);
1555 		btrfs_release_path(path);
1556 		if (IS_ERR(di)) {
1557 			ret = PTR_ERR(di);
1558 			goto out;
1559 		}
1560 		if (di) {
1561 			/* not unique, try again */
1562 			idx++;
1563 			continue;
1564 		}
1565 
1566 		if (!sctx->parent_root) {
1567 			/* unique */
1568 			ret = 0;
1569 			break;
1570 		}
1571 
1572 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1573 				path, BTRFS_FIRST_FREE_OBJECTID,
1574 				tmp, strlen(tmp), 0);
1575 		btrfs_release_path(path);
1576 		if (IS_ERR(di)) {
1577 			ret = PTR_ERR(di);
1578 			goto out;
1579 		}
1580 		if (di) {
1581 			/* not unique, try again */
1582 			idx++;
1583 			continue;
1584 		}
1585 		/* unique */
1586 		break;
1587 	}
1588 
1589 	ret = fs_path_add(dest, tmp, strlen(tmp));
1590 
1591 out:
1592 	btrfs_free_path(path);
1593 	return ret;
1594 }
1595 
1596 enum inode_state {
1597 	inode_state_no_change,
1598 	inode_state_will_create,
1599 	inode_state_did_create,
1600 	inode_state_will_delete,
1601 	inode_state_did_delete,
1602 };
1603 
1604 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1605 {
1606 	int ret;
1607 	int left_ret;
1608 	int right_ret;
1609 	u64 left_gen;
1610 	u64 right_gen;
1611 
1612 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1613 			NULL, NULL);
1614 	if (ret < 0 && ret != -ENOENT)
1615 		goto out;
1616 	left_ret = ret;
1617 
1618 	if (!sctx->parent_root) {
1619 		right_ret = -ENOENT;
1620 	} else {
1621 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1622 				NULL, NULL, NULL, NULL);
1623 		if (ret < 0 && ret != -ENOENT)
1624 			goto out;
1625 		right_ret = ret;
1626 	}
1627 
1628 	if (!left_ret && !right_ret) {
1629 		if (left_gen == gen && right_gen == gen) {
1630 			ret = inode_state_no_change;
1631 		} else if (left_gen == gen) {
1632 			if (ino < sctx->send_progress)
1633 				ret = inode_state_did_create;
1634 			else
1635 				ret = inode_state_will_create;
1636 		} else if (right_gen == gen) {
1637 			if (ino < sctx->send_progress)
1638 				ret = inode_state_did_delete;
1639 			else
1640 				ret = inode_state_will_delete;
1641 		} else  {
1642 			ret = -ENOENT;
1643 		}
1644 	} else if (!left_ret) {
1645 		if (left_gen == gen) {
1646 			if (ino < sctx->send_progress)
1647 				ret = inode_state_did_create;
1648 			else
1649 				ret = inode_state_will_create;
1650 		} else {
1651 			ret = -ENOENT;
1652 		}
1653 	} else if (!right_ret) {
1654 		if (right_gen == gen) {
1655 			if (ino < sctx->send_progress)
1656 				ret = inode_state_did_delete;
1657 			else
1658 				ret = inode_state_will_delete;
1659 		} else {
1660 			ret = -ENOENT;
1661 		}
1662 	} else {
1663 		ret = -ENOENT;
1664 	}
1665 
1666 out:
1667 	return ret;
1668 }
1669 
1670 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1671 {
1672 	int ret;
1673 
1674 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1675 		return 1;
1676 
1677 	ret = get_cur_inode_state(sctx, ino, gen);
1678 	if (ret < 0)
1679 		goto out;
1680 
1681 	if (ret == inode_state_no_change ||
1682 	    ret == inode_state_did_create ||
1683 	    ret == inode_state_will_delete)
1684 		ret = 1;
1685 	else
1686 		ret = 0;
1687 
1688 out:
1689 	return ret;
1690 }
1691 
1692 /*
1693  * Helper function to lookup a dir item in a dir.
1694  */
1695 static int lookup_dir_item_inode(struct btrfs_root *root,
1696 				 u64 dir, const char *name, int name_len,
1697 				 u64 *found_inode,
1698 				 u8 *found_type)
1699 {
1700 	int ret = 0;
1701 	struct btrfs_dir_item *di;
1702 	struct btrfs_key key;
1703 	struct btrfs_path *path;
1704 
1705 	path = alloc_path_for_send();
1706 	if (!path)
1707 		return -ENOMEM;
1708 
1709 	di = btrfs_lookup_dir_item(NULL, root, path,
1710 			dir, name, name_len, 0);
1711 	if (!di) {
1712 		ret = -ENOENT;
1713 		goto out;
1714 	}
1715 	if (IS_ERR(di)) {
1716 		ret = PTR_ERR(di);
1717 		goto out;
1718 	}
1719 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1720 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1721 		ret = -ENOENT;
1722 		goto out;
1723 	}
1724 	*found_inode = key.objectid;
1725 	*found_type = btrfs_dir_type(path->nodes[0], di);
1726 
1727 out:
1728 	btrfs_free_path(path);
1729 	return ret;
1730 }
1731 
1732 /*
1733  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1734  * generation of the parent dir and the name of the dir entry.
1735  */
1736 static int get_first_ref(struct btrfs_root *root, u64 ino,
1737 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1738 {
1739 	int ret;
1740 	struct btrfs_key key;
1741 	struct btrfs_key found_key;
1742 	struct btrfs_path *path;
1743 	int len;
1744 	u64 parent_dir;
1745 
1746 	path = alloc_path_for_send();
1747 	if (!path)
1748 		return -ENOMEM;
1749 
1750 	key.objectid = ino;
1751 	key.type = BTRFS_INODE_REF_KEY;
1752 	key.offset = 0;
1753 
1754 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1755 	if (ret < 0)
1756 		goto out;
1757 	if (!ret)
1758 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1759 				path->slots[0]);
1760 	if (ret || found_key.objectid != ino ||
1761 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1762 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1763 		ret = -ENOENT;
1764 		goto out;
1765 	}
1766 
1767 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1768 		struct btrfs_inode_ref *iref;
1769 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1770 				      struct btrfs_inode_ref);
1771 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1772 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1773 						     (unsigned long)(iref + 1),
1774 						     len);
1775 		parent_dir = found_key.offset;
1776 	} else {
1777 		struct btrfs_inode_extref *extref;
1778 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1779 					struct btrfs_inode_extref);
1780 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1781 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1782 					(unsigned long)&extref->name, len);
1783 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1784 	}
1785 	if (ret < 0)
1786 		goto out;
1787 	btrfs_release_path(path);
1788 
1789 	if (dir_gen) {
1790 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1791 				     NULL, NULL, NULL);
1792 		if (ret < 0)
1793 			goto out;
1794 	}
1795 
1796 	*dir = parent_dir;
1797 
1798 out:
1799 	btrfs_free_path(path);
1800 	return ret;
1801 }
1802 
1803 static int is_first_ref(struct btrfs_root *root,
1804 			u64 ino, u64 dir,
1805 			const char *name, int name_len)
1806 {
1807 	int ret;
1808 	struct fs_path *tmp_name;
1809 	u64 tmp_dir;
1810 
1811 	tmp_name = fs_path_alloc();
1812 	if (!tmp_name)
1813 		return -ENOMEM;
1814 
1815 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1816 	if (ret < 0)
1817 		goto out;
1818 
1819 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1820 		ret = 0;
1821 		goto out;
1822 	}
1823 
1824 	ret = !memcmp(tmp_name->start, name, name_len);
1825 
1826 out:
1827 	fs_path_free(tmp_name);
1828 	return ret;
1829 }
1830 
1831 /*
1832  * Used by process_recorded_refs to determine if a new ref would overwrite an
1833  * already existing ref. In case it detects an overwrite, it returns the
1834  * inode/gen in who_ino/who_gen.
1835  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1836  * to make sure later references to the overwritten inode are possible.
1837  * Orphanizing is however only required for the first ref of an inode.
1838  * process_recorded_refs does an additional is_first_ref check to see if
1839  * orphanizing is really required.
1840  */
1841 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1842 			      const char *name, int name_len,
1843 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1844 {
1845 	int ret = 0;
1846 	u64 gen;
1847 	u64 other_inode = 0;
1848 	u8 other_type = 0;
1849 
1850 	if (!sctx->parent_root)
1851 		goto out;
1852 
1853 	ret = is_inode_existent(sctx, dir, dir_gen);
1854 	if (ret <= 0)
1855 		goto out;
1856 
1857 	/*
1858 	 * If we have a parent root we need to verify that the parent dir was
1859 	 * not deleted and then re-created, if it was then we have no overwrite
1860 	 * and we can just unlink this entry.
1861 	 */
1862 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1863 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1864 				     NULL, NULL, NULL);
1865 		if (ret < 0 && ret != -ENOENT)
1866 			goto out;
1867 		if (ret) {
1868 			ret = 0;
1869 			goto out;
1870 		}
1871 		if (gen != dir_gen)
1872 			goto out;
1873 	}
1874 
1875 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1876 			&other_inode, &other_type);
1877 	if (ret < 0 && ret != -ENOENT)
1878 		goto out;
1879 	if (ret) {
1880 		ret = 0;
1881 		goto out;
1882 	}
1883 
1884 	/*
1885 	 * Check if the overwritten ref was already processed. If yes, the ref
1886 	 * was already unlinked/moved, so we can safely assume that we will not
1887 	 * overwrite anything at this point in time.
1888 	 */
1889 	if (other_inode > sctx->send_progress ||
1890 	    is_waiting_for_move(sctx, other_inode)) {
1891 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1892 				who_gen, who_mode, NULL, NULL, NULL);
1893 		if (ret < 0)
1894 			goto out;
1895 
1896 		ret = 1;
1897 		*who_ino = other_inode;
1898 	} else {
1899 		ret = 0;
1900 	}
1901 
1902 out:
1903 	return ret;
1904 }
1905 
1906 /*
1907  * Checks if the ref was overwritten by an already processed inode. This is
1908  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1909  * thus the orphan name needs be used.
1910  * process_recorded_refs also uses it to avoid unlinking of refs that were
1911  * overwritten.
1912  */
1913 static int did_overwrite_ref(struct send_ctx *sctx,
1914 			    u64 dir, u64 dir_gen,
1915 			    u64 ino, u64 ino_gen,
1916 			    const char *name, int name_len)
1917 {
1918 	int ret = 0;
1919 	u64 gen;
1920 	u64 ow_inode;
1921 	u8 other_type;
1922 
1923 	if (!sctx->parent_root)
1924 		goto out;
1925 
1926 	ret = is_inode_existent(sctx, dir, dir_gen);
1927 	if (ret <= 0)
1928 		goto out;
1929 
1930 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1931 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1932 				     NULL, NULL, NULL);
1933 		if (ret < 0 && ret != -ENOENT)
1934 			goto out;
1935 		if (ret) {
1936 			ret = 0;
1937 			goto out;
1938 		}
1939 		if (gen != dir_gen)
1940 			goto out;
1941 	}
1942 
1943 	/* check if the ref was overwritten by another ref */
1944 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1945 			&ow_inode, &other_type);
1946 	if (ret < 0 && ret != -ENOENT)
1947 		goto out;
1948 	if (ret) {
1949 		/* was never and will never be overwritten */
1950 		ret = 0;
1951 		goto out;
1952 	}
1953 
1954 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1955 			NULL, NULL);
1956 	if (ret < 0)
1957 		goto out;
1958 
1959 	if (ow_inode == ino && gen == ino_gen) {
1960 		ret = 0;
1961 		goto out;
1962 	}
1963 
1964 	/*
1965 	 * We know that it is or will be overwritten. Check this now.
1966 	 * The current inode being processed might have been the one that caused
1967 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1968 	 * the current inode being processed.
1969 	 */
1970 	if ((ow_inode < sctx->send_progress) ||
1971 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1972 	     gen == sctx->cur_inode_gen))
1973 		ret = 1;
1974 	else
1975 		ret = 0;
1976 
1977 out:
1978 	return ret;
1979 }
1980 
1981 /*
1982  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1983  * that got overwritten. This is used by process_recorded_refs to determine
1984  * if it has to use the path as returned by get_cur_path or the orphan name.
1985  */
1986 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1987 {
1988 	int ret = 0;
1989 	struct fs_path *name = NULL;
1990 	u64 dir;
1991 	u64 dir_gen;
1992 
1993 	if (!sctx->parent_root)
1994 		goto out;
1995 
1996 	name = fs_path_alloc();
1997 	if (!name)
1998 		return -ENOMEM;
1999 
2000 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2001 	if (ret < 0)
2002 		goto out;
2003 
2004 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2005 			name->start, fs_path_len(name));
2006 
2007 out:
2008 	fs_path_free(name);
2009 	return ret;
2010 }
2011 
2012 /*
2013  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2014  * so we need to do some special handling in case we have clashes. This function
2015  * takes care of this with the help of name_cache_entry::radix_list.
2016  * In case of error, nce is kfreed.
2017  */
2018 static int name_cache_insert(struct send_ctx *sctx,
2019 			     struct name_cache_entry *nce)
2020 {
2021 	int ret = 0;
2022 	struct list_head *nce_head;
2023 
2024 	nce_head = radix_tree_lookup(&sctx->name_cache,
2025 			(unsigned long)nce->ino);
2026 	if (!nce_head) {
2027 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2028 		if (!nce_head) {
2029 			kfree(nce);
2030 			return -ENOMEM;
2031 		}
2032 		INIT_LIST_HEAD(nce_head);
2033 
2034 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2035 		if (ret < 0) {
2036 			kfree(nce_head);
2037 			kfree(nce);
2038 			return ret;
2039 		}
2040 	}
2041 	list_add_tail(&nce->radix_list, nce_head);
2042 	list_add_tail(&nce->list, &sctx->name_cache_list);
2043 	sctx->name_cache_size++;
2044 
2045 	return ret;
2046 }
2047 
2048 static void name_cache_delete(struct send_ctx *sctx,
2049 			      struct name_cache_entry *nce)
2050 {
2051 	struct list_head *nce_head;
2052 
2053 	nce_head = radix_tree_lookup(&sctx->name_cache,
2054 			(unsigned long)nce->ino);
2055 	if (!nce_head) {
2056 		btrfs_err(sctx->send_root->fs_info,
2057 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2058 			nce->ino, sctx->name_cache_size);
2059 	}
2060 
2061 	list_del(&nce->radix_list);
2062 	list_del(&nce->list);
2063 	sctx->name_cache_size--;
2064 
2065 	/*
2066 	 * We may not get to the final release of nce_head if the lookup fails
2067 	 */
2068 	if (nce_head && list_empty(nce_head)) {
2069 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2070 		kfree(nce_head);
2071 	}
2072 }
2073 
2074 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2075 						    u64 ino, u64 gen)
2076 {
2077 	struct list_head *nce_head;
2078 	struct name_cache_entry *cur;
2079 
2080 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2081 	if (!nce_head)
2082 		return NULL;
2083 
2084 	list_for_each_entry(cur, nce_head, radix_list) {
2085 		if (cur->ino == ino && cur->gen == gen)
2086 			return cur;
2087 	}
2088 	return NULL;
2089 }
2090 
2091 /*
2092  * Removes the entry from the list and adds it back to the end. This marks the
2093  * entry as recently used so that name_cache_clean_unused does not remove it.
2094  */
2095 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2096 {
2097 	list_del(&nce->list);
2098 	list_add_tail(&nce->list, &sctx->name_cache_list);
2099 }
2100 
2101 /*
2102  * Remove some entries from the beginning of name_cache_list.
2103  */
2104 static void name_cache_clean_unused(struct send_ctx *sctx)
2105 {
2106 	struct name_cache_entry *nce;
2107 
2108 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2109 		return;
2110 
2111 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2112 		nce = list_entry(sctx->name_cache_list.next,
2113 				struct name_cache_entry, list);
2114 		name_cache_delete(sctx, nce);
2115 		kfree(nce);
2116 	}
2117 }
2118 
2119 static void name_cache_free(struct send_ctx *sctx)
2120 {
2121 	struct name_cache_entry *nce;
2122 
2123 	while (!list_empty(&sctx->name_cache_list)) {
2124 		nce = list_entry(sctx->name_cache_list.next,
2125 				struct name_cache_entry, list);
2126 		name_cache_delete(sctx, nce);
2127 		kfree(nce);
2128 	}
2129 }
2130 
2131 /*
2132  * Used by get_cur_path for each ref up to the root.
2133  * Returns 0 if it succeeded.
2134  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2135  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2136  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2137  * Returns <0 in case of error.
2138  */
2139 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2140 				     u64 ino, u64 gen,
2141 				     u64 *parent_ino,
2142 				     u64 *parent_gen,
2143 				     struct fs_path *dest)
2144 {
2145 	int ret;
2146 	int nce_ret;
2147 	struct name_cache_entry *nce = NULL;
2148 
2149 	/*
2150 	 * First check if we already did a call to this function with the same
2151 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2152 	 * return the cached result.
2153 	 */
2154 	nce = name_cache_search(sctx, ino, gen);
2155 	if (nce) {
2156 		if (ino < sctx->send_progress && nce->need_later_update) {
2157 			name_cache_delete(sctx, nce);
2158 			kfree(nce);
2159 			nce = NULL;
2160 		} else {
2161 			name_cache_used(sctx, nce);
2162 			*parent_ino = nce->parent_ino;
2163 			*parent_gen = nce->parent_gen;
2164 			ret = fs_path_add(dest, nce->name, nce->name_len);
2165 			if (ret < 0)
2166 				goto out;
2167 			ret = nce->ret;
2168 			goto out;
2169 		}
2170 	}
2171 
2172 	/*
2173 	 * If the inode is not existent yet, add the orphan name and return 1.
2174 	 * This should only happen for the parent dir that we determine in
2175 	 * __record_new_ref
2176 	 */
2177 	ret = is_inode_existent(sctx, ino, gen);
2178 	if (ret < 0)
2179 		goto out;
2180 
2181 	if (!ret) {
2182 		ret = gen_unique_name(sctx, ino, gen, dest);
2183 		if (ret < 0)
2184 			goto out;
2185 		ret = 1;
2186 		goto out_cache;
2187 	}
2188 
2189 	/*
2190 	 * Depending on whether the inode was already processed or not, use
2191 	 * send_root or parent_root for ref lookup.
2192 	 */
2193 	if (ino < sctx->send_progress)
2194 		ret = get_first_ref(sctx->send_root, ino,
2195 				    parent_ino, parent_gen, dest);
2196 	else
2197 		ret = get_first_ref(sctx->parent_root, ino,
2198 				    parent_ino, parent_gen, dest);
2199 	if (ret < 0)
2200 		goto out;
2201 
2202 	/*
2203 	 * Check if the ref was overwritten by an inode's ref that was processed
2204 	 * earlier. If yes, treat as orphan and return 1.
2205 	 */
2206 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2207 			dest->start, dest->end - dest->start);
2208 	if (ret < 0)
2209 		goto out;
2210 	if (ret) {
2211 		fs_path_reset(dest);
2212 		ret = gen_unique_name(sctx, ino, gen, dest);
2213 		if (ret < 0)
2214 			goto out;
2215 		ret = 1;
2216 	}
2217 
2218 out_cache:
2219 	/*
2220 	 * Store the result of the lookup in the name cache.
2221 	 */
2222 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2223 	if (!nce) {
2224 		ret = -ENOMEM;
2225 		goto out;
2226 	}
2227 
2228 	nce->ino = ino;
2229 	nce->gen = gen;
2230 	nce->parent_ino = *parent_ino;
2231 	nce->parent_gen = *parent_gen;
2232 	nce->name_len = fs_path_len(dest);
2233 	nce->ret = ret;
2234 	strcpy(nce->name, dest->start);
2235 
2236 	if (ino < sctx->send_progress)
2237 		nce->need_later_update = 0;
2238 	else
2239 		nce->need_later_update = 1;
2240 
2241 	nce_ret = name_cache_insert(sctx, nce);
2242 	if (nce_ret < 0)
2243 		ret = nce_ret;
2244 	name_cache_clean_unused(sctx);
2245 
2246 out:
2247 	return ret;
2248 }
2249 
2250 /*
2251  * Magic happens here. This function returns the first ref to an inode as it
2252  * would look like while receiving the stream at this point in time.
2253  * We walk the path up to the root. For every inode in between, we check if it
2254  * was already processed/sent. If yes, we continue with the parent as found
2255  * in send_root. If not, we continue with the parent as found in parent_root.
2256  * If we encounter an inode that was deleted at this point in time, we use the
2257  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2258  * that were not created yet and overwritten inodes/refs.
2259  *
2260  * When do we have have orphan inodes:
2261  * 1. When an inode is freshly created and thus no valid refs are available yet
2262  * 2. When a directory lost all it's refs (deleted) but still has dir items
2263  *    inside which were not processed yet (pending for move/delete). If anyone
2264  *    tried to get the path to the dir items, it would get a path inside that
2265  *    orphan directory.
2266  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2267  *    of an unprocessed inode. If in that case the first ref would be
2268  *    overwritten, the overwritten inode gets "orphanized". Later when we
2269  *    process this overwritten inode, it is restored at a new place by moving
2270  *    the orphan inode.
2271  *
2272  * sctx->send_progress tells this function at which point in time receiving
2273  * would be.
2274  */
2275 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2276 			struct fs_path *dest)
2277 {
2278 	int ret = 0;
2279 	struct fs_path *name = NULL;
2280 	u64 parent_inode = 0;
2281 	u64 parent_gen = 0;
2282 	int stop = 0;
2283 
2284 	name = fs_path_alloc();
2285 	if (!name) {
2286 		ret = -ENOMEM;
2287 		goto out;
2288 	}
2289 
2290 	dest->reversed = 1;
2291 	fs_path_reset(dest);
2292 
2293 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2294 		struct waiting_dir_move *wdm;
2295 
2296 		fs_path_reset(name);
2297 
2298 		if (is_waiting_for_rm(sctx, ino)) {
2299 			ret = gen_unique_name(sctx, ino, gen, name);
2300 			if (ret < 0)
2301 				goto out;
2302 			ret = fs_path_add_path(dest, name);
2303 			break;
2304 		}
2305 
2306 		wdm = get_waiting_dir_move(sctx, ino);
2307 		if (wdm && wdm->orphanized) {
2308 			ret = gen_unique_name(sctx, ino, gen, name);
2309 			stop = 1;
2310 		} else if (wdm) {
2311 			ret = get_first_ref(sctx->parent_root, ino,
2312 					    &parent_inode, &parent_gen, name);
2313 		} else {
2314 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2315 							&parent_inode,
2316 							&parent_gen, name);
2317 			if (ret)
2318 				stop = 1;
2319 		}
2320 
2321 		if (ret < 0)
2322 			goto out;
2323 
2324 		ret = fs_path_add_path(dest, name);
2325 		if (ret < 0)
2326 			goto out;
2327 
2328 		ino = parent_inode;
2329 		gen = parent_gen;
2330 	}
2331 
2332 out:
2333 	fs_path_free(name);
2334 	if (!ret)
2335 		fs_path_unreverse(dest);
2336 	return ret;
2337 }
2338 
2339 /*
2340  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2341  */
2342 static int send_subvol_begin(struct send_ctx *sctx)
2343 {
2344 	int ret;
2345 	struct btrfs_root *send_root = sctx->send_root;
2346 	struct btrfs_root *parent_root = sctx->parent_root;
2347 	struct btrfs_path *path;
2348 	struct btrfs_key key;
2349 	struct btrfs_root_ref *ref;
2350 	struct extent_buffer *leaf;
2351 	char *name = NULL;
2352 	int namelen;
2353 
2354 	path = btrfs_alloc_path();
2355 	if (!path)
2356 		return -ENOMEM;
2357 
2358 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2359 	if (!name) {
2360 		btrfs_free_path(path);
2361 		return -ENOMEM;
2362 	}
2363 
2364 	key.objectid = send_root->objectid;
2365 	key.type = BTRFS_ROOT_BACKREF_KEY;
2366 	key.offset = 0;
2367 
2368 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2369 				&key, path, 1, 0);
2370 	if (ret < 0)
2371 		goto out;
2372 	if (ret) {
2373 		ret = -ENOENT;
2374 		goto out;
2375 	}
2376 
2377 	leaf = path->nodes[0];
2378 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2379 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2380 	    key.objectid != send_root->objectid) {
2381 		ret = -ENOENT;
2382 		goto out;
2383 	}
2384 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2385 	namelen = btrfs_root_ref_name_len(leaf, ref);
2386 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2387 	btrfs_release_path(path);
2388 
2389 	if (parent_root) {
2390 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2391 		if (ret < 0)
2392 			goto out;
2393 	} else {
2394 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2395 		if (ret < 0)
2396 			goto out;
2397 	}
2398 
2399 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2400 
2401 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2402 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2403 			    sctx->send_root->root_item.received_uuid);
2404 	else
2405 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2406 			    sctx->send_root->root_item.uuid);
2407 
2408 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2409 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2410 	if (parent_root) {
2411 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2412 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2413 				     parent_root->root_item.received_uuid);
2414 		else
2415 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2416 				     parent_root->root_item.uuid);
2417 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2418 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2419 	}
2420 
2421 	ret = send_cmd(sctx);
2422 
2423 tlv_put_failure:
2424 out:
2425 	btrfs_free_path(path);
2426 	kfree(name);
2427 	return ret;
2428 }
2429 
2430 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2431 {
2432 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2433 	int ret = 0;
2434 	struct fs_path *p;
2435 
2436 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2437 
2438 	p = fs_path_alloc();
2439 	if (!p)
2440 		return -ENOMEM;
2441 
2442 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2443 	if (ret < 0)
2444 		goto out;
2445 
2446 	ret = get_cur_path(sctx, ino, gen, p);
2447 	if (ret < 0)
2448 		goto out;
2449 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2450 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2451 
2452 	ret = send_cmd(sctx);
2453 
2454 tlv_put_failure:
2455 out:
2456 	fs_path_free(p);
2457 	return ret;
2458 }
2459 
2460 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2461 {
2462 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2463 	int ret = 0;
2464 	struct fs_path *p;
2465 
2466 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2467 
2468 	p = fs_path_alloc();
2469 	if (!p)
2470 		return -ENOMEM;
2471 
2472 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2473 	if (ret < 0)
2474 		goto out;
2475 
2476 	ret = get_cur_path(sctx, ino, gen, p);
2477 	if (ret < 0)
2478 		goto out;
2479 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2480 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2481 
2482 	ret = send_cmd(sctx);
2483 
2484 tlv_put_failure:
2485 out:
2486 	fs_path_free(p);
2487 	return ret;
2488 }
2489 
2490 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2491 {
2492 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2493 	int ret = 0;
2494 	struct fs_path *p;
2495 
2496 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2497 		    ino, uid, gid);
2498 
2499 	p = fs_path_alloc();
2500 	if (!p)
2501 		return -ENOMEM;
2502 
2503 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2504 	if (ret < 0)
2505 		goto out;
2506 
2507 	ret = get_cur_path(sctx, ino, gen, p);
2508 	if (ret < 0)
2509 		goto out;
2510 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2511 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2512 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2513 
2514 	ret = send_cmd(sctx);
2515 
2516 tlv_put_failure:
2517 out:
2518 	fs_path_free(p);
2519 	return ret;
2520 }
2521 
2522 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2523 {
2524 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2525 	int ret = 0;
2526 	struct fs_path *p = NULL;
2527 	struct btrfs_inode_item *ii;
2528 	struct btrfs_path *path = NULL;
2529 	struct extent_buffer *eb;
2530 	struct btrfs_key key;
2531 	int slot;
2532 
2533 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2534 
2535 	p = fs_path_alloc();
2536 	if (!p)
2537 		return -ENOMEM;
2538 
2539 	path = alloc_path_for_send();
2540 	if (!path) {
2541 		ret = -ENOMEM;
2542 		goto out;
2543 	}
2544 
2545 	key.objectid = ino;
2546 	key.type = BTRFS_INODE_ITEM_KEY;
2547 	key.offset = 0;
2548 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2549 	if (ret > 0)
2550 		ret = -ENOENT;
2551 	if (ret < 0)
2552 		goto out;
2553 
2554 	eb = path->nodes[0];
2555 	slot = path->slots[0];
2556 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2557 
2558 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2559 	if (ret < 0)
2560 		goto out;
2561 
2562 	ret = get_cur_path(sctx, ino, gen, p);
2563 	if (ret < 0)
2564 		goto out;
2565 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2566 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2567 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2568 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2569 	/* TODO Add otime support when the otime patches get into upstream */
2570 
2571 	ret = send_cmd(sctx);
2572 
2573 tlv_put_failure:
2574 out:
2575 	fs_path_free(p);
2576 	btrfs_free_path(path);
2577 	return ret;
2578 }
2579 
2580 /*
2581  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2582  * a valid path yet because we did not process the refs yet. So, the inode
2583  * is created as orphan.
2584  */
2585 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2586 {
2587 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2588 	int ret = 0;
2589 	struct fs_path *p;
2590 	int cmd;
2591 	u64 gen;
2592 	u64 mode;
2593 	u64 rdev;
2594 
2595 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2596 
2597 	p = fs_path_alloc();
2598 	if (!p)
2599 		return -ENOMEM;
2600 
2601 	if (ino != sctx->cur_ino) {
2602 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2603 				     NULL, NULL, &rdev);
2604 		if (ret < 0)
2605 			goto out;
2606 	} else {
2607 		gen = sctx->cur_inode_gen;
2608 		mode = sctx->cur_inode_mode;
2609 		rdev = sctx->cur_inode_rdev;
2610 	}
2611 
2612 	if (S_ISREG(mode)) {
2613 		cmd = BTRFS_SEND_C_MKFILE;
2614 	} else if (S_ISDIR(mode)) {
2615 		cmd = BTRFS_SEND_C_MKDIR;
2616 	} else if (S_ISLNK(mode)) {
2617 		cmd = BTRFS_SEND_C_SYMLINK;
2618 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2619 		cmd = BTRFS_SEND_C_MKNOD;
2620 	} else if (S_ISFIFO(mode)) {
2621 		cmd = BTRFS_SEND_C_MKFIFO;
2622 	} else if (S_ISSOCK(mode)) {
2623 		cmd = BTRFS_SEND_C_MKSOCK;
2624 	} else {
2625 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2626 				(int)(mode & S_IFMT));
2627 		ret = -EOPNOTSUPP;
2628 		goto out;
2629 	}
2630 
2631 	ret = begin_cmd(sctx, cmd);
2632 	if (ret < 0)
2633 		goto out;
2634 
2635 	ret = gen_unique_name(sctx, ino, gen, p);
2636 	if (ret < 0)
2637 		goto out;
2638 
2639 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2640 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2641 
2642 	if (S_ISLNK(mode)) {
2643 		fs_path_reset(p);
2644 		ret = read_symlink(sctx->send_root, ino, p);
2645 		if (ret < 0)
2646 			goto out;
2647 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2648 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2649 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2650 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2651 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2652 	}
2653 
2654 	ret = send_cmd(sctx);
2655 	if (ret < 0)
2656 		goto out;
2657 
2658 
2659 tlv_put_failure:
2660 out:
2661 	fs_path_free(p);
2662 	return ret;
2663 }
2664 
2665 /*
2666  * We need some special handling for inodes that get processed before the parent
2667  * directory got created. See process_recorded_refs for details.
2668  * This function does the check if we already created the dir out of order.
2669  */
2670 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2671 {
2672 	int ret = 0;
2673 	struct btrfs_path *path = NULL;
2674 	struct btrfs_key key;
2675 	struct btrfs_key found_key;
2676 	struct btrfs_key di_key;
2677 	struct extent_buffer *eb;
2678 	struct btrfs_dir_item *di;
2679 	int slot;
2680 
2681 	path = alloc_path_for_send();
2682 	if (!path) {
2683 		ret = -ENOMEM;
2684 		goto out;
2685 	}
2686 
2687 	key.objectid = dir;
2688 	key.type = BTRFS_DIR_INDEX_KEY;
2689 	key.offset = 0;
2690 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2691 	if (ret < 0)
2692 		goto out;
2693 
2694 	while (1) {
2695 		eb = path->nodes[0];
2696 		slot = path->slots[0];
2697 		if (slot >= btrfs_header_nritems(eb)) {
2698 			ret = btrfs_next_leaf(sctx->send_root, path);
2699 			if (ret < 0) {
2700 				goto out;
2701 			} else if (ret > 0) {
2702 				ret = 0;
2703 				break;
2704 			}
2705 			continue;
2706 		}
2707 
2708 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2709 		if (found_key.objectid != key.objectid ||
2710 		    found_key.type != key.type) {
2711 			ret = 0;
2712 			goto out;
2713 		}
2714 
2715 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2716 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2717 
2718 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2719 		    di_key.objectid < sctx->send_progress) {
2720 			ret = 1;
2721 			goto out;
2722 		}
2723 
2724 		path->slots[0]++;
2725 	}
2726 
2727 out:
2728 	btrfs_free_path(path);
2729 	return ret;
2730 }
2731 
2732 /*
2733  * Only creates the inode if it is:
2734  * 1. Not a directory
2735  * 2. Or a directory which was not created already due to out of order
2736  *    directories. See did_create_dir and process_recorded_refs for details.
2737  */
2738 static int send_create_inode_if_needed(struct send_ctx *sctx)
2739 {
2740 	int ret;
2741 
2742 	if (S_ISDIR(sctx->cur_inode_mode)) {
2743 		ret = did_create_dir(sctx, sctx->cur_ino);
2744 		if (ret < 0)
2745 			goto out;
2746 		if (ret) {
2747 			ret = 0;
2748 			goto out;
2749 		}
2750 	}
2751 
2752 	ret = send_create_inode(sctx, sctx->cur_ino);
2753 	if (ret < 0)
2754 		goto out;
2755 
2756 out:
2757 	return ret;
2758 }
2759 
2760 struct recorded_ref {
2761 	struct list_head list;
2762 	char *name;
2763 	struct fs_path *full_path;
2764 	u64 dir;
2765 	u64 dir_gen;
2766 	int name_len;
2767 };
2768 
2769 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2770 {
2771 	ref->full_path = path;
2772 	ref->name = (char *)kbasename(ref->full_path->start);
2773 	ref->name_len = ref->full_path->end - ref->name;
2774 }
2775 
2776 /*
2777  * We need to process new refs before deleted refs, but compare_tree gives us
2778  * everything mixed. So we first record all refs and later process them.
2779  * This function is a helper to record one ref.
2780  */
2781 static int __record_ref(struct list_head *head, u64 dir,
2782 		      u64 dir_gen, struct fs_path *path)
2783 {
2784 	struct recorded_ref *ref;
2785 
2786 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2787 	if (!ref)
2788 		return -ENOMEM;
2789 
2790 	ref->dir = dir;
2791 	ref->dir_gen = dir_gen;
2792 	set_ref_path(ref, path);
2793 	list_add_tail(&ref->list, head);
2794 	return 0;
2795 }
2796 
2797 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2798 {
2799 	struct recorded_ref *new;
2800 
2801 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2802 	if (!new)
2803 		return -ENOMEM;
2804 
2805 	new->dir = ref->dir;
2806 	new->dir_gen = ref->dir_gen;
2807 	new->full_path = NULL;
2808 	INIT_LIST_HEAD(&new->list);
2809 	list_add_tail(&new->list, list);
2810 	return 0;
2811 }
2812 
2813 static void __free_recorded_refs(struct list_head *head)
2814 {
2815 	struct recorded_ref *cur;
2816 
2817 	while (!list_empty(head)) {
2818 		cur = list_entry(head->next, struct recorded_ref, list);
2819 		fs_path_free(cur->full_path);
2820 		list_del(&cur->list);
2821 		kfree(cur);
2822 	}
2823 }
2824 
2825 static void free_recorded_refs(struct send_ctx *sctx)
2826 {
2827 	__free_recorded_refs(&sctx->new_refs);
2828 	__free_recorded_refs(&sctx->deleted_refs);
2829 }
2830 
2831 /*
2832  * Renames/moves a file/dir to its orphan name. Used when the first
2833  * ref of an unprocessed inode gets overwritten and for all non empty
2834  * directories.
2835  */
2836 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2837 			  struct fs_path *path)
2838 {
2839 	int ret;
2840 	struct fs_path *orphan;
2841 
2842 	orphan = fs_path_alloc();
2843 	if (!orphan)
2844 		return -ENOMEM;
2845 
2846 	ret = gen_unique_name(sctx, ino, gen, orphan);
2847 	if (ret < 0)
2848 		goto out;
2849 
2850 	ret = send_rename(sctx, path, orphan);
2851 
2852 out:
2853 	fs_path_free(orphan);
2854 	return ret;
2855 }
2856 
2857 static struct orphan_dir_info *
2858 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2859 {
2860 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2861 	struct rb_node *parent = NULL;
2862 	struct orphan_dir_info *entry, *odi;
2863 
2864 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2865 	if (!odi)
2866 		return ERR_PTR(-ENOMEM);
2867 	odi->ino = dir_ino;
2868 	odi->gen = 0;
2869 
2870 	while (*p) {
2871 		parent = *p;
2872 		entry = rb_entry(parent, struct orphan_dir_info, node);
2873 		if (dir_ino < entry->ino) {
2874 			p = &(*p)->rb_left;
2875 		} else if (dir_ino > entry->ino) {
2876 			p = &(*p)->rb_right;
2877 		} else {
2878 			kfree(odi);
2879 			return entry;
2880 		}
2881 	}
2882 
2883 	rb_link_node(&odi->node, parent, p);
2884 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2885 	return odi;
2886 }
2887 
2888 static struct orphan_dir_info *
2889 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2890 {
2891 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2892 	struct orphan_dir_info *entry;
2893 
2894 	while (n) {
2895 		entry = rb_entry(n, struct orphan_dir_info, node);
2896 		if (dir_ino < entry->ino)
2897 			n = n->rb_left;
2898 		else if (dir_ino > entry->ino)
2899 			n = n->rb_right;
2900 		else
2901 			return entry;
2902 	}
2903 	return NULL;
2904 }
2905 
2906 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2907 {
2908 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2909 
2910 	return odi != NULL;
2911 }
2912 
2913 static void free_orphan_dir_info(struct send_ctx *sctx,
2914 				 struct orphan_dir_info *odi)
2915 {
2916 	if (!odi)
2917 		return;
2918 	rb_erase(&odi->node, &sctx->orphan_dirs);
2919 	kfree(odi);
2920 }
2921 
2922 /*
2923  * Returns 1 if a directory can be removed at this point in time.
2924  * We check this by iterating all dir items and checking if the inode behind
2925  * the dir item was already processed.
2926  */
2927 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2928 		     u64 send_progress)
2929 {
2930 	int ret = 0;
2931 	struct btrfs_root *root = sctx->parent_root;
2932 	struct btrfs_path *path;
2933 	struct btrfs_key key;
2934 	struct btrfs_key found_key;
2935 	struct btrfs_key loc;
2936 	struct btrfs_dir_item *di;
2937 
2938 	/*
2939 	 * Don't try to rmdir the top/root subvolume dir.
2940 	 */
2941 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2942 		return 0;
2943 
2944 	path = alloc_path_for_send();
2945 	if (!path)
2946 		return -ENOMEM;
2947 
2948 	key.objectid = dir;
2949 	key.type = BTRFS_DIR_INDEX_KEY;
2950 	key.offset = 0;
2951 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2952 	if (ret < 0)
2953 		goto out;
2954 
2955 	while (1) {
2956 		struct waiting_dir_move *dm;
2957 
2958 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2959 			ret = btrfs_next_leaf(root, path);
2960 			if (ret < 0)
2961 				goto out;
2962 			else if (ret > 0)
2963 				break;
2964 			continue;
2965 		}
2966 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2967 				      path->slots[0]);
2968 		if (found_key.objectid != key.objectid ||
2969 		    found_key.type != key.type)
2970 			break;
2971 
2972 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2973 				struct btrfs_dir_item);
2974 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2975 
2976 		dm = get_waiting_dir_move(sctx, loc.objectid);
2977 		if (dm) {
2978 			struct orphan_dir_info *odi;
2979 
2980 			odi = add_orphan_dir_info(sctx, dir);
2981 			if (IS_ERR(odi)) {
2982 				ret = PTR_ERR(odi);
2983 				goto out;
2984 			}
2985 			odi->gen = dir_gen;
2986 			dm->rmdir_ino = dir;
2987 			ret = 0;
2988 			goto out;
2989 		}
2990 
2991 		if (loc.objectid > send_progress) {
2992 			struct orphan_dir_info *odi;
2993 
2994 			odi = get_orphan_dir_info(sctx, dir);
2995 			free_orphan_dir_info(sctx, odi);
2996 			ret = 0;
2997 			goto out;
2998 		}
2999 
3000 		path->slots[0]++;
3001 	}
3002 
3003 	ret = 1;
3004 
3005 out:
3006 	btrfs_free_path(path);
3007 	return ret;
3008 }
3009 
3010 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3011 {
3012 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3013 
3014 	return entry != NULL;
3015 }
3016 
3017 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3018 {
3019 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3020 	struct rb_node *parent = NULL;
3021 	struct waiting_dir_move *entry, *dm;
3022 
3023 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3024 	if (!dm)
3025 		return -ENOMEM;
3026 	dm->ino = ino;
3027 	dm->rmdir_ino = 0;
3028 	dm->orphanized = orphanized;
3029 
3030 	while (*p) {
3031 		parent = *p;
3032 		entry = rb_entry(parent, struct waiting_dir_move, node);
3033 		if (ino < entry->ino) {
3034 			p = &(*p)->rb_left;
3035 		} else if (ino > entry->ino) {
3036 			p = &(*p)->rb_right;
3037 		} else {
3038 			kfree(dm);
3039 			return -EEXIST;
3040 		}
3041 	}
3042 
3043 	rb_link_node(&dm->node, parent, p);
3044 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3045 	return 0;
3046 }
3047 
3048 static struct waiting_dir_move *
3049 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3050 {
3051 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3052 	struct waiting_dir_move *entry;
3053 
3054 	while (n) {
3055 		entry = rb_entry(n, struct waiting_dir_move, node);
3056 		if (ino < entry->ino)
3057 			n = n->rb_left;
3058 		else if (ino > entry->ino)
3059 			n = n->rb_right;
3060 		else
3061 			return entry;
3062 	}
3063 	return NULL;
3064 }
3065 
3066 static void free_waiting_dir_move(struct send_ctx *sctx,
3067 				  struct waiting_dir_move *dm)
3068 {
3069 	if (!dm)
3070 		return;
3071 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3072 	kfree(dm);
3073 }
3074 
3075 static int add_pending_dir_move(struct send_ctx *sctx,
3076 				u64 ino,
3077 				u64 ino_gen,
3078 				u64 parent_ino,
3079 				struct list_head *new_refs,
3080 				struct list_head *deleted_refs,
3081 				const bool is_orphan)
3082 {
3083 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3084 	struct rb_node *parent = NULL;
3085 	struct pending_dir_move *entry = NULL, *pm;
3086 	struct recorded_ref *cur;
3087 	int exists = 0;
3088 	int ret;
3089 
3090 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3091 	if (!pm)
3092 		return -ENOMEM;
3093 	pm->parent_ino = parent_ino;
3094 	pm->ino = ino;
3095 	pm->gen = ino_gen;
3096 	INIT_LIST_HEAD(&pm->list);
3097 	INIT_LIST_HEAD(&pm->update_refs);
3098 	RB_CLEAR_NODE(&pm->node);
3099 
3100 	while (*p) {
3101 		parent = *p;
3102 		entry = rb_entry(parent, struct pending_dir_move, node);
3103 		if (parent_ino < entry->parent_ino) {
3104 			p = &(*p)->rb_left;
3105 		} else if (parent_ino > entry->parent_ino) {
3106 			p = &(*p)->rb_right;
3107 		} else {
3108 			exists = 1;
3109 			break;
3110 		}
3111 	}
3112 
3113 	list_for_each_entry(cur, deleted_refs, list) {
3114 		ret = dup_ref(cur, &pm->update_refs);
3115 		if (ret < 0)
3116 			goto out;
3117 	}
3118 	list_for_each_entry(cur, new_refs, list) {
3119 		ret = dup_ref(cur, &pm->update_refs);
3120 		if (ret < 0)
3121 			goto out;
3122 	}
3123 
3124 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3125 	if (ret)
3126 		goto out;
3127 
3128 	if (exists) {
3129 		list_add_tail(&pm->list, &entry->list);
3130 	} else {
3131 		rb_link_node(&pm->node, parent, p);
3132 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3133 	}
3134 	ret = 0;
3135 out:
3136 	if (ret) {
3137 		__free_recorded_refs(&pm->update_refs);
3138 		kfree(pm);
3139 	}
3140 	return ret;
3141 }
3142 
3143 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3144 						      u64 parent_ino)
3145 {
3146 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3147 	struct pending_dir_move *entry;
3148 
3149 	while (n) {
3150 		entry = rb_entry(n, struct pending_dir_move, node);
3151 		if (parent_ino < entry->parent_ino)
3152 			n = n->rb_left;
3153 		else if (parent_ino > entry->parent_ino)
3154 			n = n->rb_right;
3155 		else
3156 			return entry;
3157 	}
3158 	return NULL;
3159 }
3160 
3161 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3162 		     u64 ino, u64 gen, u64 *ancestor_ino)
3163 {
3164 	int ret = 0;
3165 	u64 parent_inode = 0;
3166 	u64 parent_gen = 0;
3167 	u64 start_ino = ino;
3168 
3169 	*ancestor_ino = 0;
3170 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3171 		fs_path_reset(name);
3172 
3173 		if (is_waiting_for_rm(sctx, ino))
3174 			break;
3175 		if (is_waiting_for_move(sctx, ino)) {
3176 			if (*ancestor_ino == 0)
3177 				*ancestor_ino = ino;
3178 			ret = get_first_ref(sctx->parent_root, ino,
3179 					    &parent_inode, &parent_gen, name);
3180 		} else {
3181 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3182 							&parent_inode,
3183 							&parent_gen, name);
3184 			if (ret > 0) {
3185 				ret = 0;
3186 				break;
3187 			}
3188 		}
3189 		if (ret < 0)
3190 			break;
3191 		if (parent_inode == start_ino) {
3192 			ret = 1;
3193 			if (*ancestor_ino == 0)
3194 				*ancestor_ino = ino;
3195 			break;
3196 		}
3197 		ino = parent_inode;
3198 		gen = parent_gen;
3199 	}
3200 	return ret;
3201 }
3202 
3203 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3204 {
3205 	struct fs_path *from_path = NULL;
3206 	struct fs_path *to_path = NULL;
3207 	struct fs_path *name = NULL;
3208 	u64 orig_progress = sctx->send_progress;
3209 	struct recorded_ref *cur;
3210 	u64 parent_ino, parent_gen;
3211 	struct waiting_dir_move *dm = NULL;
3212 	u64 rmdir_ino = 0;
3213 	u64 ancestor;
3214 	bool is_orphan;
3215 	int ret;
3216 
3217 	name = fs_path_alloc();
3218 	from_path = fs_path_alloc();
3219 	if (!name || !from_path) {
3220 		ret = -ENOMEM;
3221 		goto out;
3222 	}
3223 
3224 	dm = get_waiting_dir_move(sctx, pm->ino);
3225 	ASSERT(dm);
3226 	rmdir_ino = dm->rmdir_ino;
3227 	is_orphan = dm->orphanized;
3228 	free_waiting_dir_move(sctx, dm);
3229 
3230 	if (is_orphan) {
3231 		ret = gen_unique_name(sctx, pm->ino,
3232 				      pm->gen, from_path);
3233 	} else {
3234 		ret = get_first_ref(sctx->parent_root, pm->ino,
3235 				    &parent_ino, &parent_gen, name);
3236 		if (ret < 0)
3237 			goto out;
3238 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3239 				   from_path);
3240 		if (ret < 0)
3241 			goto out;
3242 		ret = fs_path_add_path(from_path, name);
3243 	}
3244 	if (ret < 0)
3245 		goto out;
3246 
3247 	sctx->send_progress = sctx->cur_ino + 1;
3248 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3249 	if (ret < 0)
3250 		goto out;
3251 	if (ret) {
3252 		LIST_HEAD(deleted_refs);
3253 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3254 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3255 					   &pm->update_refs, &deleted_refs,
3256 					   is_orphan);
3257 		if (ret < 0)
3258 			goto out;
3259 		if (rmdir_ino) {
3260 			dm = get_waiting_dir_move(sctx, pm->ino);
3261 			ASSERT(dm);
3262 			dm->rmdir_ino = rmdir_ino;
3263 		}
3264 		goto out;
3265 	}
3266 	fs_path_reset(name);
3267 	to_path = name;
3268 	name = NULL;
3269 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3270 	if (ret < 0)
3271 		goto out;
3272 
3273 	ret = send_rename(sctx, from_path, to_path);
3274 	if (ret < 0)
3275 		goto out;
3276 
3277 	if (rmdir_ino) {
3278 		struct orphan_dir_info *odi;
3279 
3280 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3281 		if (!odi) {
3282 			/* already deleted */
3283 			goto finish;
3284 		}
3285 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3286 		if (ret < 0)
3287 			goto out;
3288 		if (!ret)
3289 			goto finish;
3290 
3291 		name = fs_path_alloc();
3292 		if (!name) {
3293 			ret = -ENOMEM;
3294 			goto out;
3295 		}
3296 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3297 		if (ret < 0)
3298 			goto out;
3299 		ret = send_rmdir(sctx, name);
3300 		if (ret < 0)
3301 			goto out;
3302 		free_orphan_dir_info(sctx, odi);
3303 	}
3304 
3305 finish:
3306 	ret = send_utimes(sctx, pm->ino, pm->gen);
3307 	if (ret < 0)
3308 		goto out;
3309 
3310 	/*
3311 	 * After rename/move, need to update the utimes of both new parent(s)
3312 	 * and old parent(s).
3313 	 */
3314 	list_for_each_entry(cur, &pm->update_refs, list) {
3315 		/*
3316 		 * The parent inode might have been deleted in the send snapshot
3317 		 */
3318 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3319 				     NULL, NULL, NULL, NULL, NULL);
3320 		if (ret == -ENOENT) {
3321 			ret = 0;
3322 			continue;
3323 		}
3324 		if (ret < 0)
3325 			goto out;
3326 
3327 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3328 		if (ret < 0)
3329 			goto out;
3330 	}
3331 
3332 out:
3333 	fs_path_free(name);
3334 	fs_path_free(from_path);
3335 	fs_path_free(to_path);
3336 	sctx->send_progress = orig_progress;
3337 
3338 	return ret;
3339 }
3340 
3341 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3342 {
3343 	if (!list_empty(&m->list))
3344 		list_del(&m->list);
3345 	if (!RB_EMPTY_NODE(&m->node))
3346 		rb_erase(&m->node, &sctx->pending_dir_moves);
3347 	__free_recorded_refs(&m->update_refs);
3348 	kfree(m);
3349 }
3350 
3351 static void tail_append_pending_moves(struct pending_dir_move *moves,
3352 				      struct list_head *stack)
3353 {
3354 	if (list_empty(&moves->list)) {
3355 		list_add_tail(&moves->list, stack);
3356 	} else {
3357 		LIST_HEAD(list);
3358 		list_splice_init(&moves->list, &list);
3359 		list_add_tail(&moves->list, stack);
3360 		list_splice_tail(&list, stack);
3361 	}
3362 }
3363 
3364 static int apply_children_dir_moves(struct send_ctx *sctx)
3365 {
3366 	struct pending_dir_move *pm;
3367 	struct list_head stack;
3368 	u64 parent_ino = sctx->cur_ino;
3369 	int ret = 0;
3370 
3371 	pm = get_pending_dir_moves(sctx, parent_ino);
3372 	if (!pm)
3373 		return 0;
3374 
3375 	INIT_LIST_HEAD(&stack);
3376 	tail_append_pending_moves(pm, &stack);
3377 
3378 	while (!list_empty(&stack)) {
3379 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3380 		parent_ino = pm->ino;
3381 		ret = apply_dir_move(sctx, pm);
3382 		free_pending_move(sctx, pm);
3383 		if (ret)
3384 			goto out;
3385 		pm = get_pending_dir_moves(sctx, parent_ino);
3386 		if (pm)
3387 			tail_append_pending_moves(pm, &stack);
3388 	}
3389 	return 0;
3390 
3391 out:
3392 	while (!list_empty(&stack)) {
3393 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3394 		free_pending_move(sctx, pm);
3395 	}
3396 	return ret;
3397 }
3398 
3399 /*
3400  * We might need to delay a directory rename even when no ancestor directory
3401  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3402  * renamed. This happens when we rename a directory to the old name (the name
3403  * in the parent root) of some other unrelated directory that got its rename
3404  * delayed due to some ancestor with higher number that got renamed.
3405  *
3406  * Example:
3407  *
3408  * Parent snapshot:
3409  * .                                       (ino 256)
3410  * |---- a/                                (ino 257)
3411  * |     |---- file                        (ino 260)
3412  * |
3413  * |---- b/                                (ino 258)
3414  * |---- c/                                (ino 259)
3415  *
3416  * Send snapshot:
3417  * .                                       (ino 256)
3418  * |---- a/                                (ino 258)
3419  * |---- x/                                (ino 259)
3420  *       |---- y/                          (ino 257)
3421  *             |----- file                 (ino 260)
3422  *
3423  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3424  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3425  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3426  * must issue is:
3427  *
3428  * 1 - rename 259 from 'c' to 'x'
3429  * 2 - rename 257 from 'a' to 'x/y'
3430  * 3 - rename 258 from 'b' to 'a'
3431  *
3432  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3433  * be done right away and < 0 on error.
3434  */
3435 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3436 				  struct recorded_ref *parent_ref,
3437 				  const bool is_orphan)
3438 {
3439 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3440 	struct btrfs_path *path;
3441 	struct btrfs_key key;
3442 	struct btrfs_key di_key;
3443 	struct btrfs_dir_item *di;
3444 	u64 left_gen;
3445 	u64 right_gen;
3446 	int ret = 0;
3447 	struct waiting_dir_move *wdm;
3448 
3449 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3450 		return 0;
3451 
3452 	path = alloc_path_for_send();
3453 	if (!path)
3454 		return -ENOMEM;
3455 
3456 	key.objectid = parent_ref->dir;
3457 	key.type = BTRFS_DIR_ITEM_KEY;
3458 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3459 
3460 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3461 	if (ret < 0) {
3462 		goto out;
3463 	} else if (ret > 0) {
3464 		ret = 0;
3465 		goto out;
3466 	}
3467 
3468 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3469 				       parent_ref->name_len);
3470 	if (!di) {
3471 		ret = 0;
3472 		goto out;
3473 	}
3474 	/*
3475 	 * di_key.objectid has the number of the inode that has a dentry in the
3476 	 * parent directory with the same name that sctx->cur_ino is being
3477 	 * renamed to. We need to check if that inode is in the send root as
3478 	 * well and if it is currently marked as an inode with a pending rename,
3479 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3480 	 * that it happens after that other inode is renamed.
3481 	 */
3482 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3483 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3484 		ret = 0;
3485 		goto out;
3486 	}
3487 
3488 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3489 			     &left_gen, NULL, NULL, NULL, NULL);
3490 	if (ret < 0)
3491 		goto out;
3492 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3493 			     &right_gen, NULL, NULL, NULL, NULL);
3494 	if (ret < 0) {
3495 		if (ret == -ENOENT)
3496 			ret = 0;
3497 		goto out;
3498 	}
3499 
3500 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3501 	if (right_gen != left_gen) {
3502 		ret = 0;
3503 		goto out;
3504 	}
3505 
3506 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3507 	if (wdm && !wdm->orphanized) {
3508 		ret = add_pending_dir_move(sctx,
3509 					   sctx->cur_ino,
3510 					   sctx->cur_inode_gen,
3511 					   di_key.objectid,
3512 					   &sctx->new_refs,
3513 					   &sctx->deleted_refs,
3514 					   is_orphan);
3515 		if (!ret)
3516 			ret = 1;
3517 	}
3518 out:
3519 	btrfs_free_path(path);
3520 	return ret;
3521 }
3522 
3523 /*
3524  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3525  * Return 1 if true, 0 if false and < 0 on error.
3526  */
3527 static int is_ancestor(struct btrfs_root *root,
3528 		       const u64 ino1,
3529 		       const u64 ino1_gen,
3530 		       const u64 ino2,
3531 		       struct fs_path *fs_path)
3532 {
3533 	u64 ino = ino2;
3534 	bool free_path = false;
3535 	int ret = 0;
3536 
3537 	if (!fs_path) {
3538 		fs_path = fs_path_alloc();
3539 		if (!fs_path)
3540 			return -ENOMEM;
3541 		free_path = true;
3542 	}
3543 
3544 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3545 		u64 parent;
3546 		u64 parent_gen;
3547 
3548 		fs_path_reset(fs_path);
3549 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3550 		if (ret < 0) {
3551 			if (ret == -ENOENT && ino == ino2)
3552 				ret = 0;
3553 			goto out;
3554 		}
3555 		if (parent == ino1) {
3556 			ret = parent_gen == ino1_gen ? 1 : 0;
3557 			goto out;
3558 		}
3559 		ino = parent;
3560 	}
3561  out:
3562 	if (free_path)
3563 		fs_path_free(fs_path);
3564 	return ret;
3565 }
3566 
3567 static int wait_for_parent_move(struct send_ctx *sctx,
3568 				struct recorded_ref *parent_ref,
3569 				const bool is_orphan)
3570 {
3571 	int ret = 0;
3572 	u64 ino = parent_ref->dir;
3573 	u64 ino_gen = parent_ref->dir_gen;
3574 	u64 parent_ino_before, parent_ino_after;
3575 	struct fs_path *path_before = NULL;
3576 	struct fs_path *path_after = NULL;
3577 	int len1, len2;
3578 
3579 	path_after = fs_path_alloc();
3580 	path_before = fs_path_alloc();
3581 	if (!path_after || !path_before) {
3582 		ret = -ENOMEM;
3583 		goto out;
3584 	}
3585 
3586 	/*
3587 	 * Our current directory inode may not yet be renamed/moved because some
3588 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3589 	 * such ancestor exists and make sure our own rename/move happens after
3590 	 * that ancestor is processed to avoid path build infinite loops (done
3591 	 * at get_cur_path()).
3592 	 */
3593 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3594 		u64 parent_ino_after_gen;
3595 
3596 		if (is_waiting_for_move(sctx, ino)) {
3597 			/*
3598 			 * If the current inode is an ancestor of ino in the
3599 			 * parent root, we need to delay the rename of the
3600 			 * current inode, otherwise don't delayed the rename
3601 			 * because we can end up with a circular dependency
3602 			 * of renames, resulting in some directories never
3603 			 * getting the respective rename operations issued in
3604 			 * the send stream or getting into infinite path build
3605 			 * loops.
3606 			 */
3607 			ret = is_ancestor(sctx->parent_root,
3608 					  sctx->cur_ino, sctx->cur_inode_gen,
3609 					  ino, path_before);
3610 			if (ret)
3611 				break;
3612 		}
3613 
3614 		fs_path_reset(path_before);
3615 		fs_path_reset(path_after);
3616 
3617 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3618 				    &parent_ino_after_gen, path_after);
3619 		if (ret < 0)
3620 			goto out;
3621 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3622 				    NULL, path_before);
3623 		if (ret < 0 && ret != -ENOENT) {
3624 			goto out;
3625 		} else if (ret == -ENOENT) {
3626 			ret = 0;
3627 			break;
3628 		}
3629 
3630 		len1 = fs_path_len(path_before);
3631 		len2 = fs_path_len(path_after);
3632 		if (ino > sctx->cur_ino &&
3633 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3634 		     memcmp(path_before->start, path_after->start, len1))) {
3635 			u64 parent_ino_gen;
3636 
3637 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3638 					     &parent_ino_gen, NULL, NULL, NULL,
3639 					     NULL);
3640 			if (ret < 0)
3641 				goto out;
3642 			if (ino_gen == parent_ino_gen) {
3643 				ret = 1;
3644 				break;
3645 			}
3646 		}
3647 		ino = parent_ino_after;
3648 		ino_gen = parent_ino_after_gen;
3649 	}
3650 
3651 out:
3652 	fs_path_free(path_before);
3653 	fs_path_free(path_after);
3654 
3655 	if (ret == 1) {
3656 		ret = add_pending_dir_move(sctx,
3657 					   sctx->cur_ino,
3658 					   sctx->cur_inode_gen,
3659 					   ino,
3660 					   &sctx->new_refs,
3661 					   &sctx->deleted_refs,
3662 					   is_orphan);
3663 		if (!ret)
3664 			ret = 1;
3665 	}
3666 
3667 	return ret;
3668 }
3669 
3670 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3671 {
3672 	int ret;
3673 	struct fs_path *new_path;
3674 
3675 	/*
3676 	 * Our reference's name member points to its full_path member string, so
3677 	 * we use here a new path.
3678 	 */
3679 	new_path = fs_path_alloc();
3680 	if (!new_path)
3681 		return -ENOMEM;
3682 
3683 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3684 	if (ret < 0) {
3685 		fs_path_free(new_path);
3686 		return ret;
3687 	}
3688 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3689 	if (ret < 0) {
3690 		fs_path_free(new_path);
3691 		return ret;
3692 	}
3693 
3694 	fs_path_free(ref->full_path);
3695 	set_ref_path(ref, new_path);
3696 
3697 	return 0;
3698 }
3699 
3700 /*
3701  * This does all the move/link/unlink/rmdir magic.
3702  */
3703 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3704 {
3705 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3706 	int ret = 0;
3707 	struct recorded_ref *cur;
3708 	struct recorded_ref *cur2;
3709 	struct list_head check_dirs;
3710 	struct fs_path *valid_path = NULL;
3711 	u64 ow_inode = 0;
3712 	u64 ow_gen;
3713 	u64 ow_mode;
3714 	int did_overwrite = 0;
3715 	int is_orphan = 0;
3716 	u64 last_dir_ino_rm = 0;
3717 	bool can_rename = true;
3718 	bool orphanized_dir = false;
3719 	bool orphanized_ancestor = false;
3720 
3721 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3722 
3723 	/*
3724 	 * This should never happen as the root dir always has the same ref
3725 	 * which is always '..'
3726 	 */
3727 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3728 	INIT_LIST_HEAD(&check_dirs);
3729 
3730 	valid_path = fs_path_alloc();
3731 	if (!valid_path) {
3732 		ret = -ENOMEM;
3733 		goto out;
3734 	}
3735 
3736 	/*
3737 	 * First, check if the first ref of the current inode was overwritten
3738 	 * before. If yes, we know that the current inode was already orphanized
3739 	 * and thus use the orphan name. If not, we can use get_cur_path to
3740 	 * get the path of the first ref as it would like while receiving at
3741 	 * this point in time.
3742 	 * New inodes are always orphan at the beginning, so force to use the
3743 	 * orphan name in this case.
3744 	 * The first ref is stored in valid_path and will be updated if it
3745 	 * gets moved around.
3746 	 */
3747 	if (!sctx->cur_inode_new) {
3748 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3749 				sctx->cur_inode_gen);
3750 		if (ret < 0)
3751 			goto out;
3752 		if (ret)
3753 			did_overwrite = 1;
3754 	}
3755 	if (sctx->cur_inode_new || did_overwrite) {
3756 		ret = gen_unique_name(sctx, sctx->cur_ino,
3757 				sctx->cur_inode_gen, valid_path);
3758 		if (ret < 0)
3759 			goto out;
3760 		is_orphan = 1;
3761 	} else {
3762 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3763 				valid_path);
3764 		if (ret < 0)
3765 			goto out;
3766 	}
3767 
3768 	list_for_each_entry(cur, &sctx->new_refs, list) {
3769 		/*
3770 		 * We may have refs where the parent directory does not exist
3771 		 * yet. This happens if the parent directories inum is higher
3772 		 * the the current inum. To handle this case, we create the
3773 		 * parent directory out of order. But we need to check if this
3774 		 * did already happen before due to other refs in the same dir.
3775 		 */
3776 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3777 		if (ret < 0)
3778 			goto out;
3779 		if (ret == inode_state_will_create) {
3780 			ret = 0;
3781 			/*
3782 			 * First check if any of the current inodes refs did
3783 			 * already create the dir.
3784 			 */
3785 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3786 				if (cur == cur2)
3787 					break;
3788 				if (cur2->dir == cur->dir) {
3789 					ret = 1;
3790 					break;
3791 				}
3792 			}
3793 
3794 			/*
3795 			 * If that did not happen, check if a previous inode
3796 			 * did already create the dir.
3797 			 */
3798 			if (!ret)
3799 				ret = did_create_dir(sctx, cur->dir);
3800 			if (ret < 0)
3801 				goto out;
3802 			if (!ret) {
3803 				ret = send_create_inode(sctx, cur->dir);
3804 				if (ret < 0)
3805 					goto out;
3806 			}
3807 		}
3808 
3809 		/*
3810 		 * Check if this new ref would overwrite the first ref of
3811 		 * another unprocessed inode. If yes, orphanize the
3812 		 * overwritten inode. If we find an overwritten ref that is
3813 		 * not the first ref, simply unlink it.
3814 		 */
3815 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3816 				cur->name, cur->name_len,
3817 				&ow_inode, &ow_gen, &ow_mode);
3818 		if (ret < 0)
3819 			goto out;
3820 		if (ret) {
3821 			ret = is_first_ref(sctx->parent_root,
3822 					   ow_inode, cur->dir, cur->name,
3823 					   cur->name_len);
3824 			if (ret < 0)
3825 				goto out;
3826 			if (ret) {
3827 				struct name_cache_entry *nce;
3828 				struct waiting_dir_move *wdm;
3829 
3830 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3831 						cur->full_path);
3832 				if (ret < 0)
3833 					goto out;
3834 				if (S_ISDIR(ow_mode))
3835 					orphanized_dir = true;
3836 
3837 				/*
3838 				 * If ow_inode has its rename operation delayed
3839 				 * make sure that its orphanized name is used in
3840 				 * the source path when performing its rename
3841 				 * operation.
3842 				 */
3843 				if (is_waiting_for_move(sctx, ow_inode)) {
3844 					wdm = get_waiting_dir_move(sctx,
3845 								   ow_inode);
3846 					ASSERT(wdm);
3847 					wdm->orphanized = true;
3848 				}
3849 
3850 				/*
3851 				 * Make sure we clear our orphanized inode's
3852 				 * name from the name cache. This is because the
3853 				 * inode ow_inode might be an ancestor of some
3854 				 * other inode that will be orphanized as well
3855 				 * later and has an inode number greater than
3856 				 * sctx->send_progress. We need to prevent
3857 				 * future name lookups from using the old name
3858 				 * and get instead the orphan name.
3859 				 */
3860 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3861 				if (nce) {
3862 					name_cache_delete(sctx, nce);
3863 					kfree(nce);
3864 				}
3865 
3866 				/*
3867 				 * ow_inode might currently be an ancestor of
3868 				 * cur_ino, therefore compute valid_path (the
3869 				 * current path of cur_ino) again because it
3870 				 * might contain the pre-orphanization name of
3871 				 * ow_inode, which is no longer valid.
3872 				 */
3873 				ret = is_ancestor(sctx->parent_root,
3874 						  ow_inode, ow_gen,
3875 						  sctx->cur_ino, NULL);
3876 				if (ret > 0) {
3877 					orphanized_ancestor = true;
3878 					fs_path_reset(valid_path);
3879 					ret = get_cur_path(sctx, sctx->cur_ino,
3880 							   sctx->cur_inode_gen,
3881 							   valid_path);
3882 				}
3883 				if (ret < 0)
3884 					goto out;
3885 			} else {
3886 				ret = send_unlink(sctx, cur->full_path);
3887 				if (ret < 0)
3888 					goto out;
3889 			}
3890 		}
3891 
3892 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3893 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3894 			if (ret < 0)
3895 				goto out;
3896 			if (ret == 1) {
3897 				can_rename = false;
3898 				*pending_move = 1;
3899 			}
3900 		}
3901 
3902 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3903 		    can_rename) {
3904 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3905 			if (ret < 0)
3906 				goto out;
3907 			if (ret == 1) {
3908 				can_rename = false;
3909 				*pending_move = 1;
3910 			}
3911 		}
3912 
3913 		/*
3914 		 * link/move the ref to the new place. If we have an orphan
3915 		 * inode, move it and update valid_path. If not, link or move
3916 		 * it depending on the inode mode.
3917 		 */
3918 		if (is_orphan && can_rename) {
3919 			ret = send_rename(sctx, valid_path, cur->full_path);
3920 			if (ret < 0)
3921 				goto out;
3922 			is_orphan = 0;
3923 			ret = fs_path_copy(valid_path, cur->full_path);
3924 			if (ret < 0)
3925 				goto out;
3926 		} else if (can_rename) {
3927 			if (S_ISDIR(sctx->cur_inode_mode)) {
3928 				/*
3929 				 * Dirs can't be linked, so move it. For moved
3930 				 * dirs, we always have one new and one deleted
3931 				 * ref. The deleted ref is ignored later.
3932 				 */
3933 				ret = send_rename(sctx, valid_path,
3934 						  cur->full_path);
3935 				if (!ret)
3936 					ret = fs_path_copy(valid_path,
3937 							   cur->full_path);
3938 				if (ret < 0)
3939 					goto out;
3940 			} else {
3941 				/*
3942 				 * We might have previously orphanized an inode
3943 				 * which is an ancestor of our current inode,
3944 				 * so our reference's full path, which was
3945 				 * computed before any such orphanizations, must
3946 				 * be updated.
3947 				 */
3948 				if (orphanized_dir) {
3949 					ret = update_ref_path(sctx, cur);
3950 					if (ret < 0)
3951 						goto out;
3952 				}
3953 				ret = send_link(sctx, cur->full_path,
3954 						valid_path);
3955 				if (ret < 0)
3956 					goto out;
3957 			}
3958 		}
3959 		ret = dup_ref(cur, &check_dirs);
3960 		if (ret < 0)
3961 			goto out;
3962 	}
3963 
3964 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3965 		/*
3966 		 * Check if we can already rmdir the directory. If not,
3967 		 * orphanize it. For every dir item inside that gets deleted
3968 		 * later, we do this check again and rmdir it then if possible.
3969 		 * See the use of check_dirs for more details.
3970 		 */
3971 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3972 				sctx->cur_ino);
3973 		if (ret < 0)
3974 			goto out;
3975 		if (ret) {
3976 			ret = send_rmdir(sctx, valid_path);
3977 			if (ret < 0)
3978 				goto out;
3979 		} else if (!is_orphan) {
3980 			ret = orphanize_inode(sctx, sctx->cur_ino,
3981 					sctx->cur_inode_gen, valid_path);
3982 			if (ret < 0)
3983 				goto out;
3984 			is_orphan = 1;
3985 		}
3986 
3987 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3988 			ret = dup_ref(cur, &check_dirs);
3989 			if (ret < 0)
3990 				goto out;
3991 		}
3992 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3993 		   !list_empty(&sctx->deleted_refs)) {
3994 		/*
3995 		 * We have a moved dir. Add the old parent to check_dirs
3996 		 */
3997 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3998 				list);
3999 		ret = dup_ref(cur, &check_dirs);
4000 		if (ret < 0)
4001 			goto out;
4002 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4003 		/*
4004 		 * We have a non dir inode. Go through all deleted refs and
4005 		 * unlink them if they were not already overwritten by other
4006 		 * inodes.
4007 		 */
4008 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4009 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4010 					sctx->cur_ino, sctx->cur_inode_gen,
4011 					cur->name, cur->name_len);
4012 			if (ret < 0)
4013 				goto out;
4014 			if (!ret) {
4015 				/*
4016 				 * If we orphanized any ancestor before, we need
4017 				 * to recompute the full path for deleted names,
4018 				 * since any such path was computed before we
4019 				 * processed any references and orphanized any
4020 				 * ancestor inode.
4021 				 */
4022 				if (orphanized_ancestor) {
4023 					ret = update_ref_path(sctx, cur);
4024 					if (ret < 0)
4025 						goto out;
4026 				}
4027 				ret = send_unlink(sctx, cur->full_path);
4028 				if (ret < 0)
4029 					goto out;
4030 			}
4031 			ret = dup_ref(cur, &check_dirs);
4032 			if (ret < 0)
4033 				goto out;
4034 		}
4035 		/*
4036 		 * If the inode is still orphan, unlink the orphan. This may
4037 		 * happen when a previous inode did overwrite the first ref
4038 		 * of this inode and no new refs were added for the current
4039 		 * inode. Unlinking does not mean that the inode is deleted in
4040 		 * all cases. There may still be links to this inode in other
4041 		 * places.
4042 		 */
4043 		if (is_orphan) {
4044 			ret = send_unlink(sctx, valid_path);
4045 			if (ret < 0)
4046 				goto out;
4047 		}
4048 	}
4049 
4050 	/*
4051 	 * We did collect all parent dirs where cur_inode was once located. We
4052 	 * now go through all these dirs and check if they are pending for
4053 	 * deletion and if it's finally possible to perform the rmdir now.
4054 	 * We also update the inode stats of the parent dirs here.
4055 	 */
4056 	list_for_each_entry(cur, &check_dirs, list) {
4057 		/*
4058 		 * In case we had refs into dirs that were not processed yet,
4059 		 * we don't need to do the utime and rmdir logic for these dirs.
4060 		 * The dir will be processed later.
4061 		 */
4062 		if (cur->dir > sctx->cur_ino)
4063 			continue;
4064 
4065 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4066 		if (ret < 0)
4067 			goto out;
4068 
4069 		if (ret == inode_state_did_create ||
4070 		    ret == inode_state_no_change) {
4071 			/* TODO delayed utimes */
4072 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4073 			if (ret < 0)
4074 				goto out;
4075 		} else if (ret == inode_state_did_delete &&
4076 			   cur->dir != last_dir_ino_rm) {
4077 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4078 					sctx->cur_ino);
4079 			if (ret < 0)
4080 				goto out;
4081 			if (ret) {
4082 				ret = get_cur_path(sctx, cur->dir,
4083 						   cur->dir_gen, valid_path);
4084 				if (ret < 0)
4085 					goto out;
4086 				ret = send_rmdir(sctx, valid_path);
4087 				if (ret < 0)
4088 					goto out;
4089 				last_dir_ino_rm = cur->dir;
4090 			}
4091 		}
4092 	}
4093 
4094 	ret = 0;
4095 
4096 out:
4097 	__free_recorded_refs(&check_dirs);
4098 	free_recorded_refs(sctx);
4099 	fs_path_free(valid_path);
4100 	return ret;
4101 }
4102 
4103 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4104 		      void *ctx, struct list_head *refs)
4105 {
4106 	int ret = 0;
4107 	struct send_ctx *sctx = ctx;
4108 	struct fs_path *p;
4109 	u64 gen;
4110 
4111 	p = fs_path_alloc();
4112 	if (!p)
4113 		return -ENOMEM;
4114 
4115 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4116 			NULL, NULL);
4117 	if (ret < 0)
4118 		goto out;
4119 
4120 	ret = get_cur_path(sctx, dir, gen, p);
4121 	if (ret < 0)
4122 		goto out;
4123 	ret = fs_path_add_path(p, name);
4124 	if (ret < 0)
4125 		goto out;
4126 
4127 	ret = __record_ref(refs, dir, gen, p);
4128 
4129 out:
4130 	if (ret)
4131 		fs_path_free(p);
4132 	return ret;
4133 }
4134 
4135 static int __record_new_ref(int num, u64 dir, int index,
4136 			    struct fs_path *name,
4137 			    void *ctx)
4138 {
4139 	struct send_ctx *sctx = ctx;
4140 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4141 }
4142 
4143 
4144 static int __record_deleted_ref(int num, u64 dir, int index,
4145 				struct fs_path *name,
4146 				void *ctx)
4147 {
4148 	struct send_ctx *sctx = ctx;
4149 	return record_ref(sctx->parent_root, dir, name, ctx,
4150 			  &sctx->deleted_refs);
4151 }
4152 
4153 static int record_new_ref(struct send_ctx *sctx)
4154 {
4155 	int ret;
4156 
4157 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4158 				sctx->cmp_key, 0, __record_new_ref, sctx);
4159 	if (ret < 0)
4160 		goto out;
4161 	ret = 0;
4162 
4163 out:
4164 	return ret;
4165 }
4166 
4167 static int record_deleted_ref(struct send_ctx *sctx)
4168 {
4169 	int ret;
4170 
4171 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4172 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4173 	if (ret < 0)
4174 		goto out;
4175 	ret = 0;
4176 
4177 out:
4178 	return ret;
4179 }
4180 
4181 struct find_ref_ctx {
4182 	u64 dir;
4183 	u64 dir_gen;
4184 	struct btrfs_root *root;
4185 	struct fs_path *name;
4186 	int found_idx;
4187 };
4188 
4189 static int __find_iref(int num, u64 dir, int index,
4190 		       struct fs_path *name,
4191 		       void *ctx_)
4192 {
4193 	struct find_ref_ctx *ctx = ctx_;
4194 	u64 dir_gen;
4195 	int ret;
4196 
4197 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4198 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4199 		/*
4200 		 * To avoid doing extra lookups we'll only do this if everything
4201 		 * else matches.
4202 		 */
4203 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4204 				     NULL, NULL, NULL);
4205 		if (ret)
4206 			return ret;
4207 		if (dir_gen != ctx->dir_gen)
4208 			return 0;
4209 		ctx->found_idx = num;
4210 		return 1;
4211 	}
4212 	return 0;
4213 }
4214 
4215 static int find_iref(struct btrfs_root *root,
4216 		     struct btrfs_path *path,
4217 		     struct btrfs_key *key,
4218 		     u64 dir, u64 dir_gen, struct fs_path *name)
4219 {
4220 	int ret;
4221 	struct find_ref_ctx ctx;
4222 
4223 	ctx.dir = dir;
4224 	ctx.name = name;
4225 	ctx.dir_gen = dir_gen;
4226 	ctx.found_idx = -1;
4227 	ctx.root = root;
4228 
4229 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4230 	if (ret < 0)
4231 		return ret;
4232 
4233 	if (ctx.found_idx == -1)
4234 		return -ENOENT;
4235 
4236 	return ctx.found_idx;
4237 }
4238 
4239 static int __record_changed_new_ref(int num, u64 dir, int index,
4240 				    struct fs_path *name,
4241 				    void *ctx)
4242 {
4243 	u64 dir_gen;
4244 	int ret;
4245 	struct send_ctx *sctx = ctx;
4246 
4247 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4248 			     NULL, NULL, NULL);
4249 	if (ret)
4250 		return ret;
4251 
4252 	ret = find_iref(sctx->parent_root, sctx->right_path,
4253 			sctx->cmp_key, dir, dir_gen, name);
4254 	if (ret == -ENOENT)
4255 		ret = __record_new_ref(num, dir, index, name, sctx);
4256 	else if (ret > 0)
4257 		ret = 0;
4258 
4259 	return ret;
4260 }
4261 
4262 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4263 					struct fs_path *name,
4264 					void *ctx)
4265 {
4266 	u64 dir_gen;
4267 	int ret;
4268 	struct send_ctx *sctx = ctx;
4269 
4270 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4271 			     NULL, NULL, NULL);
4272 	if (ret)
4273 		return ret;
4274 
4275 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4276 			dir, dir_gen, name);
4277 	if (ret == -ENOENT)
4278 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4279 	else if (ret > 0)
4280 		ret = 0;
4281 
4282 	return ret;
4283 }
4284 
4285 static int record_changed_ref(struct send_ctx *sctx)
4286 {
4287 	int ret = 0;
4288 
4289 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4290 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4291 	if (ret < 0)
4292 		goto out;
4293 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4294 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4295 	if (ret < 0)
4296 		goto out;
4297 	ret = 0;
4298 
4299 out:
4300 	return ret;
4301 }
4302 
4303 /*
4304  * Record and process all refs at once. Needed when an inode changes the
4305  * generation number, which means that it was deleted and recreated.
4306  */
4307 static int process_all_refs(struct send_ctx *sctx,
4308 			    enum btrfs_compare_tree_result cmd)
4309 {
4310 	int ret;
4311 	struct btrfs_root *root;
4312 	struct btrfs_path *path;
4313 	struct btrfs_key key;
4314 	struct btrfs_key found_key;
4315 	struct extent_buffer *eb;
4316 	int slot;
4317 	iterate_inode_ref_t cb;
4318 	int pending_move = 0;
4319 
4320 	path = alloc_path_for_send();
4321 	if (!path)
4322 		return -ENOMEM;
4323 
4324 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4325 		root = sctx->send_root;
4326 		cb = __record_new_ref;
4327 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4328 		root = sctx->parent_root;
4329 		cb = __record_deleted_ref;
4330 	} else {
4331 		btrfs_err(sctx->send_root->fs_info,
4332 				"Wrong command %d in process_all_refs", cmd);
4333 		ret = -EINVAL;
4334 		goto out;
4335 	}
4336 
4337 	key.objectid = sctx->cmp_key->objectid;
4338 	key.type = BTRFS_INODE_REF_KEY;
4339 	key.offset = 0;
4340 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4341 	if (ret < 0)
4342 		goto out;
4343 
4344 	while (1) {
4345 		eb = path->nodes[0];
4346 		slot = path->slots[0];
4347 		if (slot >= btrfs_header_nritems(eb)) {
4348 			ret = btrfs_next_leaf(root, path);
4349 			if (ret < 0)
4350 				goto out;
4351 			else if (ret > 0)
4352 				break;
4353 			continue;
4354 		}
4355 
4356 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4357 
4358 		if (found_key.objectid != key.objectid ||
4359 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4360 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4361 			break;
4362 
4363 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4364 		if (ret < 0)
4365 			goto out;
4366 
4367 		path->slots[0]++;
4368 	}
4369 	btrfs_release_path(path);
4370 
4371 	/*
4372 	 * We don't actually care about pending_move as we are simply
4373 	 * re-creating this inode and will be rename'ing it into place once we
4374 	 * rename the parent directory.
4375 	 */
4376 	ret = process_recorded_refs(sctx, &pending_move);
4377 out:
4378 	btrfs_free_path(path);
4379 	return ret;
4380 }
4381 
4382 static int send_set_xattr(struct send_ctx *sctx,
4383 			  struct fs_path *path,
4384 			  const char *name, int name_len,
4385 			  const char *data, int data_len)
4386 {
4387 	int ret = 0;
4388 
4389 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4390 	if (ret < 0)
4391 		goto out;
4392 
4393 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4394 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4395 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4396 
4397 	ret = send_cmd(sctx);
4398 
4399 tlv_put_failure:
4400 out:
4401 	return ret;
4402 }
4403 
4404 static int send_remove_xattr(struct send_ctx *sctx,
4405 			  struct fs_path *path,
4406 			  const char *name, int name_len)
4407 {
4408 	int ret = 0;
4409 
4410 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4411 	if (ret < 0)
4412 		goto out;
4413 
4414 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4415 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4416 
4417 	ret = send_cmd(sctx);
4418 
4419 tlv_put_failure:
4420 out:
4421 	return ret;
4422 }
4423 
4424 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4425 			       const char *name, int name_len,
4426 			       const char *data, int data_len,
4427 			       u8 type, void *ctx)
4428 {
4429 	int ret;
4430 	struct send_ctx *sctx = ctx;
4431 	struct fs_path *p;
4432 	struct posix_acl_xattr_header dummy_acl;
4433 
4434 	p = fs_path_alloc();
4435 	if (!p)
4436 		return -ENOMEM;
4437 
4438 	/*
4439 	 * This hack is needed because empty acls are stored as zero byte
4440 	 * data in xattrs. Problem with that is, that receiving these zero byte
4441 	 * acls will fail later. To fix this, we send a dummy acl list that
4442 	 * only contains the version number and no entries.
4443 	 */
4444 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4445 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4446 		if (data_len == 0) {
4447 			dummy_acl.a_version =
4448 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4449 			data = (char *)&dummy_acl;
4450 			data_len = sizeof(dummy_acl);
4451 		}
4452 	}
4453 
4454 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4455 	if (ret < 0)
4456 		goto out;
4457 
4458 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4459 
4460 out:
4461 	fs_path_free(p);
4462 	return ret;
4463 }
4464 
4465 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4466 				   const char *name, int name_len,
4467 				   const char *data, int data_len,
4468 				   u8 type, void *ctx)
4469 {
4470 	int ret;
4471 	struct send_ctx *sctx = ctx;
4472 	struct fs_path *p;
4473 
4474 	p = fs_path_alloc();
4475 	if (!p)
4476 		return -ENOMEM;
4477 
4478 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4479 	if (ret < 0)
4480 		goto out;
4481 
4482 	ret = send_remove_xattr(sctx, p, name, name_len);
4483 
4484 out:
4485 	fs_path_free(p);
4486 	return ret;
4487 }
4488 
4489 static int process_new_xattr(struct send_ctx *sctx)
4490 {
4491 	int ret = 0;
4492 
4493 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4494 			       __process_new_xattr, sctx);
4495 
4496 	return ret;
4497 }
4498 
4499 static int process_deleted_xattr(struct send_ctx *sctx)
4500 {
4501 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4502 				__process_deleted_xattr, sctx);
4503 }
4504 
4505 struct find_xattr_ctx {
4506 	const char *name;
4507 	int name_len;
4508 	int found_idx;
4509 	char *found_data;
4510 	int found_data_len;
4511 };
4512 
4513 static int __find_xattr(int num, struct btrfs_key *di_key,
4514 			const char *name, int name_len,
4515 			const char *data, int data_len,
4516 			u8 type, void *vctx)
4517 {
4518 	struct find_xattr_ctx *ctx = vctx;
4519 
4520 	if (name_len == ctx->name_len &&
4521 	    strncmp(name, ctx->name, name_len) == 0) {
4522 		ctx->found_idx = num;
4523 		ctx->found_data_len = data_len;
4524 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4525 		if (!ctx->found_data)
4526 			return -ENOMEM;
4527 		return 1;
4528 	}
4529 	return 0;
4530 }
4531 
4532 static int find_xattr(struct btrfs_root *root,
4533 		      struct btrfs_path *path,
4534 		      struct btrfs_key *key,
4535 		      const char *name, int name_len,
4536 		      char **data, int *data_len)
4537 {
4538 	int ret;
4539 	struct find_xattr_ctx ctx;
4540 
4541 	ctx.name = name;
4542 	ctx.name_len = name_len;
4543 	ctx.found_idx = -1;
4544 	ctx.found_data = NULL;
4545 	ctx.found_data_len = 0;
4546 
4547 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4548 	if (ret < 0)
4549 		return ret;
4550 
4551 	if (ctx.found_idx == -1)
4552 		return -ENOENT;
4553 	if (data) {
4554 		*data = ctx.found_data;
4555 		*data_len = ctx.found_data_len;
4556 	} else {
4557 		kfree(ctx.found_data);
4558 	}
4559 	return ctx.found_idx;
4560 }
4561 
4562 
4563 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4564 				       const char *name, int name_len,
4565 				       const char *data, int data_len,
4566 				       u8 type, void *ctx)
4567 {
4568 	int ret;
4569 	struct send_ctx *sctx = ctx;
4570 	char *found_data = NULL;
4571 	int found_data_len  = 0;
4572 
4573 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4574 			 sctx->cmp_key, name, name_len, &found_data,
4575 			 &found_data_len);
4576 	if (ret == -ENOENT) {
4577 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4578 				data_len, type, ctx);
4579 	} else if (ret >= 0) {
4580 		if (data_len != found_data_len ||
4581 		    memcmp(data, found_data, data_len)) {
4582 			ret = __process_new_xattr(num, di_key, name, name_len,
4583 					data, data_len, type, ctx);
4584 		} else {
4585 			ret = 0;
4586 		}
4587 	}
4588 
4589 	kfree(found_data);
4590 	return ret;
4591 }
4592 
4593 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4594 					   const char *name, int name_len,
4595 					   const char *data, int data_len,
4596 					   u8 type, void *ctx)
4597 {
4598 	int ret;
4599 	struct send_ctx *sctx = ctx;
4600 
4601 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4602 			 name, name_len, NULL, NULL);
4603 	if (ret == -ENOENT)
4604 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4605 				data_len, type, ctx);
4606 	else if (ret >= 0)
4607 		ret = 0;
4608 
4609 	return ret;
4610 }
4611 
4612 static int process_changed_xattr(struct send_ctx *sctx)
4613 {
4614 	int ret = 0;
4615 
4616 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4617 			__process_changed_new_xattr, sctx);
4618 	if (ret < 0)
4619 		goto out;
4620 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4621 			__process_changed_deleted_xattr, sctx);
4622 
4623 out:
4624 	return ret;
4625 }
4626 
4627 static int process_all_new_xattrs(struct send_ctx *sctx)
4628 {
4629 	int ret;
4630 	struct btrfs_root *root;
4631 	struct btrfs_path *path;
4632 	struct btrfs_key key;
4633 	struct btrfs_key found_key;
4634 	struct extent_buffer *eb;
4635 	int slot;
4636 
4637 	path = alloc_path_for_send();
4638 	if (!path)
4639 		return -ENOMEM;
4640 
4641 	root = sctx->send_root;
4642 
4643 	key.objectid = sctx->cmp_key->objectid;
4644 	key.type = BTRFS_XATTR_ITEM_KEY;
4645 	key.offset = 0;
4646 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4647 	if (ret < 0)
4648 		goto out;
4649 
4650 	while (1) {
4651 		eb = path->nodes[0];
4652 		slot = path->slots[0];
4653 		if (slot >= btrfs_header_nritems(eb)) {
4654 			ret = btrfs_next_leaf(root, path);
4655 			if (ret < 0) {
4656 				goto out;
4657 			} else if (ret > 0) {
4658 				ret = 0;
4659 				break;
4660 			}
4661 			continue;
4662 		}
4663 
4664 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4665 		if (found_key.objectid != key.objectid ||
4666 		    found_key.type != key.type) {
4667 			ret = 0;
4668 			goto out;
4669 		}
4670 
4671 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4672 		if (ret < 0)
4673 			goto out;
4674 
4675 		path->slots[0]++;
4676 	}
4677 
4678 out:
4679 	btrfs_free_path(path);
4680 	return ret;
4681 }
4682 
4683 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4684 {
4685 	struct btrfs_root *root = sctx->send_root;
4686 	struct btrfs_fs_info *fs_info = root->fs_info;
4687 	struct inode *inode;
4688 	struct page *page;
4689 	char *addr;
4690 	struct btrfs_key key;
4691 	pgoff_t index = offset >> PAGE_SHIFT;
4692 	pgoff_t last_index;
4693 	unsigned pg_offset = offset & ~PAGE_MASK;
4694 	ssize_t ret = 0;
4695 
4696 	key.objectid = sctx->cur_ino;
4697 	key.type = BTRFS_INODE_ITEM_KEY;
4698 	key.offset = 0;
4699 
4700 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4701 	if (IS_ERR(inode))
4702 		return PTR_ERR(inode);
4703 
4704 	if (offset + len > i_size_read(inode)) {
4705 		if (offset > i_size_read(inode))
4706 			len = 0;
4707 		else
4708 			len = offset - i_size_read(inode);
4709 	}
4710 	if (len == 0)
4711 		goto out;
4712 
4713 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4714 
4715 	/* initial readahead */
4716 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4717 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4718 
4719 	while (index <= last_index) {
4720 		unsigned cur_len = min_t(unsigned, len,
4721 					 PAGE_SIZE - pg_offset);
4722 
4723 		page = find_lock_page(inode->i_mapping, index);
4724 		if (!page) {
4725 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4726 				NULL, index, last_index + 1 - index);
4727 
4728 			page = find_or_create_page(inode->i_mapping, index,
4729 					GFP_KERNEL);
4730 			if (!page) {
4731 				ret = -ENOMEM;
4732 				break;
4733 			}
4734 		}
4735 
4736 		if (PageReadahead(page)) {
4737 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4738 				NULL, page, index, last_index + 1 - index);
4739 		}
4740 
4741 		if (!PageUptodate(page)) {
4742 			btrfs_readpage(NULL, page);
4743 			lock_page(page);
4744 			if (!PageUptodate(page)) {
4745 				unlock_page(page);
4746 				put_page(page);
4747 				ret = -EIO;
4748 				break;
4749 			}
4750 		}
4751 
4752 		addr = kmap(page);
4753 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4754 		kunmap(page);
4755 		unlock_page(page);
4756 		put_page(page);
4757 		index++;
4758 		pg_offset = 0;
4759 		len -= cur_len;
4760 		ret += cur_len;
4761 	}
4762 out:
4763 	iput(inode);
4764 	return ret;
4765 }
4766 
4767 /*
4768  * Read some bytes from the current inode/file and send a write command to
4769  * user space.
4770  */
4771 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4772 {
4773 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4774 	int ret = 0;
4775 	struct fs_path *p;
4776 	ssize_t num_read = 0;
4777 
4778 	p = fs_path_alloc();
4779 	if (!p)
4780 		return -ENOMEM;
4781 
4782 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4783 
4784 	num_read = fill_read_buf(sctx, offset, len);
4785 	if (num_read <= 0) {
4786 		if (num_read < 0)
4787 			ret = num_read;
4788 		goto out;
4789 	}
4790 
4791 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4792 	if (ret < 0)
4793 		goto out;
4794 
4795 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4796 	if (ret < 0)
4797 		goto out;
4798 
4799 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4800 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4801 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4802 
4803 	ret = send_cmd(sctx);
4804 
4805 tlv_put_failure:
4806 out:
4807 	fs_path_free(p);
4808 	if (ret < 0)
4809 		return ret;
4810 	return num_read;
4811 }
4812 
4813 /*
4814  * Send a clone command to user space.
4815  */
4816 static int send_clone(struct send_ctx *sctx,
4817 		      u64 offset, u32 len,
4818 		      struct clone_root *clone_root)
4819 {
4820 	int ret = 0;
4821 	struct fs_path *p;
4822 	u64 gen;
4823 
4824 	btrfs_debug(sctx->send_root->fs_info,
4825 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4826 		    offset, len, clone_root->root->objectid, clone_root->ino,
4827 		    clone_root->offset);
4828 
4829 	p = fs_path_alloc();
4830 	if (!p)
4831 		return -ENOMEM;
4832 
4833 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4834 	if (ret < 0)
4835 		goto out;
4836 
4837 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4838 	if (ret < 0)
4839 		goto out;
4840 
4841 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4842 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4843 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4844 
4845 	if (clone_root->root == sctx->send_root) {
4846 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4847 				&gen, NULL, NULL, NULL, NULL);
4848 		if (ret < 0)
4849 			goto out;
4850 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4851 	} else {
4852 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4853 	}
4854 	if (ret < 0)
4855 		goto out;
4856 
4857 	/*
4858 	 * If the parent we're using has a received_uuid set then use that as
4859 	 * our clone source as that is what we will look for when doing a
4860 	 * receive.
4861 	 *
4862 	 * This covers the case that we create a snapshot off of a received
4863 	 * subvolume and then use that as the parent and try to receive on a
4864 	 * different host.
4865 	 */
4866 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4867 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4868 			     clone_root->root->root_item.received_uuid);
4869 	else
4870 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4871 			     clone_root->root->root_item.uuid);
4872 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4873 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4874 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4875 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4876 			clone_root->offset);
4877 
4878 	ret = send_cmd(sctx);
4879 
4880 tlv_put_failure:
4881 out:
4882 	fs_path_free(p);
4883 	return ret;
4884 }
4885 
4886 /*
4887  * Send an update extent command to user space.
4888  */
4889 static int send_update_extent(struct send_ctx *sctx,
4890 			      u64 offset, u32 len)
4891 {
4892 	int ret = 0;
4893 	struct fs_path *p;
4894 
4895 	p = fs_path_alloc();
4896 	if (!p)
4897 		return -ENOMEM;
4898 
4899 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4900 	if (ret < 0)
4901 		goto out;
4902 
4903 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4904 	if (ret < 0)
4905 		goto out;
4906 
4907 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4908 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4909 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4910 
4911 	ret = send_cmd(sctx);
4912 
4913 tlv_put_failure:
4914 out:
4915 	fs_path_free(p);
4916 	return ret;
4917 }
4918 
4919 static int send_hole(struct send_ctx *sctx, u64 end)
4920 {
4921 	struct fs_path *p = NULL;
4922 	u64 offset = sctx->cur_inode_last_extent;
4923 	u64 len;
4924 	int ret = 0;
4925 
4926 	p = fs_path_alloc();
4927 	if (!p)
4928 		return -ENOMEM;
4929 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4930 	if (ret < 0)
4931 		goto tlv_put_failure;
4932 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4933 	while (offset < end) {
4934 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4935 
4936 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4937 		if (ret < 0)
4938 			break;
4939 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4940 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4941 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4942 		ret = send_cmd(sctx);
4943 		if (ret < 0)
4944 			break;
4945 		offset += len;
4946 	}
4947 tlv_put_failure:
4948 	fs_path_free(p);
4949 	return ret;
4950 }
4951 
4952 static int send_extent_data(struct send_ctx *sctx,
4953 			    const u64 offset,
4954 			    const u64 len)
4955 {
4956 	u64 sent = 0;
4957 
4958 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4959 		return send_update_extent(sctx, offset, len);
4960 
4961 	while (sent < len) {
4962 		u64 size = len - sent;
4963 		int ret;
4964 
4965 		if (size > BTRFS_SEND_READ_SIZE)
4966 			size = BTRFS_SEND_READ_SIZE;
4967 		ret = send_write(sctx, offset + sent, size);
4968 		if (ret < 0)
4969 			return ret;
4970 		if (!ret)
4971 			break;
4972 		sent += ret;
4973 	}
4974 	return 0;
4975 }
4976 
4977 static int clone_range(struct send_ctx *sctx,
4978 		       struct clone_root *clone_root,
4979 		       const u64 disk_byte,
4980 		       u64 data_offset,
4981 		       u64 offset,
4982 		       u64 len)
4983 {
4984 	struct btrfs_path *path;
4985 	struct btrfs_key key;
4986 	int ret;
4987 
4988 	/*
4989 	 * Prevent cloning from a zero offset with a length matching the sector
4990 	 * size because in some scenarios this will make the receiver fail.
4991 	 *
4992 	 * For example, if in the source filesystem the extent at offset 0
4993 	 * has a length of sectorsize and it was written using direct IO, then
4994 	 * it can never be an inline extent (even if compression is enabled).
4995 	 * Then this extent can be cloned in the original filesystem to a non
4996 	 * zero file offset, but it may not be possible to clone in the
4997 	 * destination filesystem because it can be inlined due to compression
4998 	 * on the destination filesystem (as the receiver's write operations are
4999 	 * always done using buffered IO). The same happens when the original
5000 	 * filesystem does not have compression enabled but the destination
5001 	 * filesystem has.
5002 	 */
5003 	if (clone_root->offset == 0 &&
5004 	    len == sctx->send_root->fs_info->sectorsize)
5005 		return send_extent_data(sctx, offset, len);
5006 
5007 	path = alloc_path_for_send();
5008 	if (!path)
5009 		return -ENOMEM;
5010 
5011 	/*
5012 	 * We can't send a clone operation for the entire range if we find
5013 	 * extent items in the respective range in the source file that
5014 	 * refer to different extents or if we find holes.
5015 	 * So check for that and do a mix of clone and regular write/copy
5016 	 * operations if needed.
5017 	 *
5018 	 * Example:
5019 	 *
5020 	 * mkfs.btrfs -f /dev/sda
5021 	 * mount /dev/sda /mnt
5022 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5023 	 * cp --reflink=always /mnt/foo /mnt/bar
5024 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5025 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5026 	 *
5027 	 * If when we send the snapshot and we are processing file bar (which
5028 	 * has a higher inode number than foo) we blindly send a clone operation
5029 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5030 	 * a file bar that matches the content of file foo - iow, doesn't match
5031 	 * the content from bar in the original filesystem.
5032 	 */
5033 	key.objectid = clone_root->ino;
5034 	key.type = BTRFS_EXTENT_DATA_KEY;
5035 	key.offset = clone_root->offset;
5036 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5037 	if (ret < 0)
5038 		goto out;
5039 	if (ret > 0 && path->slots[0] > 0) {
5040 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5041 		if (key.objectid == clone_root->ino &&
5042 		    key.type == BTRFS_EXTENT_DATA_KEY)
5043 			path->slots[0]--;
5044 	}
5045 
5046 	while (true) {
5047 		struct extent_buffer *leaf = path->nodes[0];
5048 		int slot = path->slots[0];
5049 		struct btrfs_file_extent_item *ei;
5050 		u8 type;
5051 		u64 ext_len;
5052 		u64 clone_len;
5053 
5054 		if (slot >= btrfs_header_nritems(leaf)) {
5055 			ret = btrfs_next_leaf(clone_root->root, path);
5056 			if (ret < 0)
5057 				goto out;
5058 			else if (ret > 0)
5059 				break;
5060 			continue;
5061 		}
5062 
5063 		btrfs_item_key_to_cpu(leaf, &key, slot);
5064 
5065 		/*
5066 		 * We might have an implicit trailing hole (NO_HOLES feature
5067 		 * enabled). We deal with it after leaving this loop.
5068 		 */
5069 		if (key.objectid != clone_root->ino ||
5070 		    key.type != BTRFS_EXTENT_DATA_KEY)
5071 			break;
5072 
5073 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5074 		type = btrfs_file_extent_type(leaf, ei);
5075 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5076 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5077 			ext_len = PAGE_ALIGN(ext_len);
5078 		} else {
5079 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5080 		}
5081 
5082 		if (key.offset + ext_len <= clone_root->offset)
5083 			goto next;
5084 
5085 		if (key.offset > clone_root->offset) {
5086 			/* Implicit hole, NO_HOLES feature enabled. */
5087 			u64 hole_len = key.offset - clone_root->offset;
5088 
5089 			if (hole_len > len)
5090 				hole_len = len;
5091 			ret = send_extent_data(sctx, offset, hole_len);
5092 			if (ret < 0)
5093 				goto out;
5094 
5095 			len -= hole_len;
5096 			if (len == 0)
5097 				break;
5098 			offset += hole_len;
5099 			clone_root->offset += hole_len;
5100 			data_offset += hole_len;
5101 		}
5102 
5103 		if (key.offset >= clone_root->offset + len)
5104 			break;
5105 
5106 		clone_len = min_t(u64, ext_len, len);
5107 
5108 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5109 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
5110 			ret = send_clone(sctx, offset, clone_len, clone_root);
5111 		else
5112 			ret = send_extent_data(sctx, offset, clone_len);
5113 
5114 		if (ret < 0)
5115 			goto out;
5116 
5117 		len -= clone_len;
5118 		if (len == 0)
5119 			break;
5120 		offset += clone_len;
5121 		clone_root->offset += clone_len;
5122 		data_offset += clone_len;
5123 next:
5124 		path->slots[0]++;
5125 	}
5126 
5127 	if (len > 0)
5128 		ret = send_extent_data(sctx, offset, len);
5129 	else
5130 		ret = 0;
5131 out:
5132 	btrfs_free_path(path);
5133 	return ret;
5134 }
5135 
5136 static int send_write_or_clone(struct send_ctx *sctx,
5137 			       struct btrfs_path *path,
5138 			       struct btrfs_key *key,
5139 			       struct clone_root *clone_root)
5140 {
5141 	int ret = 0;
5142 	struct btrfs_file_extent_item *ei;
5143 	u64 offset = key->offset;
5144 	u64 len;
5145 	u8 type;
5146 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5147 
5148 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5149 			struct btrfs_file_extent_item);
5150 	type = btrfs_file_extent_type(path->nodes[0], ei);
5151 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5152 		len = btrfs_file_extent_inline_len(path->nodes[0],
5153 						   path->slots[0], ei);
5154 		/*
5155 		 * it is possible the inline item won't cover the whole page,
5156 		 * but there may be items after this page.  Make
5157 		 * sure to send the whole thing
5158 		 */
5159 		len = PAGE_ALIGN(len);
5160 	} else {
5161 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5162 	}
5163 
5164 	if (offset + len > sctx->cur_inode_size)
5165 		len = sctx->cur_inode_size - offset;
5166 	if (len == 0) {
5167 		ret = 0;
5168 		goto out;
5169 	}
5170 
5171 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5172 		u64 disk_byte;
5173 		u64 data_offset;
5174 
5175 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5176 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5177 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5178 				  offset, len);
5179 	} else {
5180 		ret = send_extent_data(sctx, offset, len);
5181 	}
5182 out:
5183 	return ret;
5184 }
5185 
5186 static int is_extent_unchanged(struct send_ctx *sctx,
5187 			       struct btrfs_path *left_path,
5188 			       struct btrfs_key *ekey)
5189 {
5190 	int ret = 0;
5191 	struct btrfs_key key;
5192 	struct btrfs_path *path = NULL;
5193 	struct extent_buffer *eb;
5194 	int slot;
5195 	struct btrfs_key found_key;
5196 	struct btrfs_file_extent_item *ei;
5197 	u64 left_disknr;
5198 	u64 right_disknr;
5199 	u64 left_offset;
5200 	u64 right_offset;
5201 	u64 left_offset_fixed;
5202 	u64 left_len;
5203 	u64 right_len;
5204 	u64 left_gen;
5205 	u64 right_gen;
5206 	u8 left_type;
5207 	u8 right_type;
5208 
5209 	path = alloc_path_for_send();
5210 	if (!path)
5211 		return -ENOMEM;
5212 
5213 	eb = left_path->nodes[0];
5214 	slot = left_path->slots[0];
5215 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5216 	left_type = btrfs_file_extent_type(eb, ei);
5217 
5218 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5219 		ret = 0;
5220 		goto out;
5221 	}
5222 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5223 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5224 	left_offset = btrfs_file_extent_offset(eb, ei);
5225 	left_gen = btrfs_file_extent_generation(eb, ei);
5226 
5227 	/*
5228 	 * Following comments will refer to these graphics. L is the left
5229 	 * extents which we are checking at the moment. 1-8 are the right
5230 	 * extents that we iterate.
5231 	 *
5232 	 *       |-----L-----|
5233 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5234 	 *
5235 	 *       |-----L-----|
5236 	 * |--1--|-2b-|...(same as above)
5237 	 *
5238 	 * Alternative situation. Happens on files where extents got split.
5239 	 *       |-----L-----|
5240 	 * |-----------7-----------|-6-|
5241 	 *
5242 	 * Alternative situation. Happens on files which got larger.
5243 	 *       |-----L-----|
5244 	 * |-8-|
5245 	 * Nothing follows after 8.
5246 	 */
5247 
5248 	key.objectid = ekey->objectid;
5249 	key.type = BTRFS_EXTENT_DATA_KEY;
5250 	key.offset = ekey->offset;
5251 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5252 	if (ret < 0)
5253 		goto out;
5254 	if (ret) {
5255 		ret = 0;
5256 		goto out;
5257 	}
5258 
5259 	/*
5260 	 * Handle special case where the right side has no extents at all.
5261 	 */
5262 	eb = path->nodes[0];
5263 	slot = path->slots[0];
5264 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5265 	if (found_key.objectid != key.objectid ||
5266 	    found_key.type != key.type) {
5267 		/* If we're a hole then just pretend nothing changed */
5268 		ret = (left_disknr) ? 0 : 1;
5269 		goto out;
5270 	}
5271 
5272 	/*
5273 	 * We're now on 2a, 2b or 7.
5274 	 */
5275 	key = found_key;
5276 	while (key.offset < ekey->offset + left_len) {
5277 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5278 		right_type = btrfs_file_extent_type(eb, ei);
5279 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5280 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5281 			ret = 0;
5282 			goto out;
5283 		}
5284 
5285 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5286 			right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5287 			right_len = PAGE_ALIGN(right_len);
5288 		} else {
5289 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5290 		}
5291 
5292 		/*
5293 		 * Are we at extent 8? If yes, we know the extent is changed.
5294 		 * This may only happen on the first iteration.
5295 		 */
5296 		if (found_key.offset + right_len <= ekey->offset) {
5297 			/* If we're a hole just pretend nothing changed */
5298 			ret = (left_disknr) ? 0 : 1;
5299 			goto out;
5300 		}
5301 
5302 		/*
5303 		 * We just wanted to see if when we have an inline extent, what
5304 		 * follows it is a regular extent (wanted to check the above
5305 		 * condition for inline extents too). This should normally not
5306 		 * happen but it's possible for example when we have an inline
5307 		 * compressed extent representing data with a size matching
5308 		 * the page size (currently the same as sector size).
5309 		 */
5310 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5311 			ret = 0;
5312 			goto out;
5313 		}
5314 
5315 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5316 		right_offset = btrfs_file_extent_offset(eb, ei);
5317 		right_gen = btrfs_file_extent_generation(eb, ei);
5318 
5319 		left_offset_fixed = left_offset;
5320 		if (key.offset < ekey->offset) {
5321 			/* Fix the right offset for 2a and 7. */
5322 			right_offset += ekey->offset - key.offset;
5323 		} else {
5324 			/* Fix the left offset for all behind 2a and 2b */
5325 			left_offset_fixed += key.offset - ekey->offset;
5326 		}
5327 
5328 		/*
5329 		 * Check if we have the same extent.
5330 		 */
5331 		if (left_disknr != right_disknr ||
5332 		    left_offset_fixed != right_offset ||
5333 		    left_gen != right_gen) {
5334 			ret = 0;
5335 			goto out;
5336 		}
5337 
5338 		/*
5339 		 * Go to the next extent.
5340 		 */
5341 		ret = btrfs_next_item(sctx->parent_root, path);
5342 		if (ret < 0)
5343 			goto out;
5344 		if (!ret) {
5345 			eb = path->nodes[0];
5346 			slot = path->slots[0];
5347 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5348 		}
5349 		if (ret || found_key.objectid != key.objectid ||
5350 		    found_key.type != key.type) {
5351 			key.offset += right_len;
5352 			break;
5353 		}
5354 		if (found_key.offset != key.offset + right_len) {
5355 			ret = 0;
5356 			goto out;
5357 		}
5358 		key = found_key;
5359 	}
5360 
5361 	/*
5362 	 * We're now behind the left extent (treat as unchanged) or at the end
5363 	 * of the right side (treat as changed).
5364 	 */
5365 	if (key.offset >= ekey->offset + left_len)
5366 		ret = 1;
5367 	else
5368 		ret = 0;
5369 
5370 
5371 out:
5372 	btrfs_free_path(path);
5373 	return ret;
5374 }
5375 
5376 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5377 {
5378 	struct btrfs_path *path;
5379 	struct btrfs_root *root = sctx->send_root;
5380 	struct btrfs_file_extent_item *fi;
5381 	struct btrfs_key key;
5382 	u64 extent_end;
5383 	u8 type;
5384 	int ret;
5385 
5386 	path = alloc_path_for_send();
5387 	if (!path)
5388 		return -ENOMEM;
5389 
5390 	sctx->cur_inode_last_extent = 0;
5391 
5392 	key.objectid = sctx->cur_ino;
5393 	key.type = BTRFS_EXTENT_DATA_KEY;
5394 	key.offset = offset;
5395 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5396 	if (ret < 0)
5397 		goto out;
5398 	ret = 0;
5399 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5400 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5401 		goto out;
5402 
5403 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5404 			    struct btrfs_file_extent_item);
5405 	type = btrfs_file_extent_type(path->nodes[0], fi);
5406 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5407 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5408 							path->slots[0], fi);
5409 		extent_end = ALIGN(key.offset + size,
5410 				   sctx->send_root->fs_info->sectorsize);
5411 	} else {
5412 		extent_end = key.offset +
5413 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5414 	}
5415 	sctx->cur_inode_last_extent = extent_end;
5416 out:
5417 	btrfs_free_path(path);
5418 	return ret;
5419 }
5420 
5421 static int range_is_hole_in_parent(struct send_ctx *sctx,
5422 				   const u64 start,
5423 				   const u64 end)
5424 {
5425 	struct btrfs_path *path;
5426 	struct btrfs_key key;
5427 	struct btrfs_root *root = sctx->parent_root;
5428 	u64 search_start = start;
5429 	int ret;
5430 
5431 	path = alloc_path_for_send();
5432 	if (!path)
5433 		return -ENOMEM;
5434 
5435 	key.objectid = sctx->cur_ino;
5436 	key.type = BTRFS_EXTENT_DATA_KEY;
5437 	key.offset = search_start;
5438 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5439 	if (ret < 0)
5440 		goto out;
5441 	if (ret > 0 && path->slots[0] > 0)
5442 		path->slots[0]--;
5443 
5444 	while (search_start < end) {
5445 		struct extent_buffer *leaf = path->nodes[0];
5446 		int slot = path->slots[0];
5447 		struct btrfs_file_extent_item *fi;
5448 		u64 extent_end;
5449 
5450 		if (slot >= btrfs_header_nritems(leaf)) {
5451 			ret = btrfs_next_leaf(root, path);
5452 			if (ret < 0)
5453 				goto out;
5454 			else if (ret > 0)
5455 				break;
5456 			continue;
5457 		}
5458 
5459 		btrfs_item_key_to_cpu(leaf, &key, slot);
5460 		if (key.objectid < sctx->cur_ino ||
5461 		    key.type < BTRFS_EXTENT_DATA_KEY)
5462 			goto next;
5463 		if (key.objectid > sctx->cur_ino ||
5464 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5465 		    key.offset >= end)
5466 			break;
5467 
5468 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5469 		if (btrfs_file_extent_type(leaf, fi) ==
5470 		    BTRFS_FILE_EXTENT_INLINE) {
5471 			u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5472 
5473 			extent_end = ALIGN(key.offset + size,
5474 					   root->fs_info->sectorsize);
5475 		} else {
5476 			extent_end = key.offset +
5477 				btrfs_file_extent_num_bytes(leaf, fi);
5478 		}
5479 		if (extent_end <= start)
5480 			goto next;
5481 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5482 			search_start = extent_end;
5483 			goto next;
5484 		}
5485 		ret = 0;
5486 		goto out;
5487 next:
5488 		path->slots[0]++;
5489 	}
5490 	ret = 1;
5491 out:
5492 	btrfs_free_path(path);
5493 	return ret;
5494 }
5495 
5496 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5497 			   struct btrfs_key *key)
5498 {
5499 	struct btrfs_file_extent_item *fi;
5500 	u64 extent_end;
5501 	u8 type;
5502 	int ret = 0;
5503 
5504 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5505 		return 0;
5506 
5507 	if (sctx->cur_inode_last_extent == (u64)-1) {
5508 		ret = get_last_extent(sctx, key->offset - 1);
5509 		if (ret)
5510 			return ret;
5511 	}
5512 
5513 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5514 			    struct btrfs_file_extent_item);
5515 	type = btrfs_file_extent_type(path->nodes[0], fi);
5516 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5517 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5518 							path->slots[0], fi);
5519 		extent_end = ALIGN(key->offset + size,
5520 				   sctx->send_root->fs_info->sectorsize);
5521 	} else {
5522 		extent_end = key->offset +
5523 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5524 	}
5525 
5526 	if (path->slots[0] == 0 &&
5527 	    sctx->cur_inode_last_extent < key->offset) {
5528 		/*
5529 		 * We might have skipped entire leafs that contained only
5530 		 * file extent items for our current inode. These leafs have
5531 		 * a generation number smaller (older) than the one in the
5532 		 * current leaf and the leaf our last extent came from, and
5533 		 * are located between these 2 leafs.
5534 		 */
5535 		ret = get_last_extent(sctx, key->offset - 1);
5536 		if (ret)
5537 			return ret;
5538 	}
5539 
5540 	if (sctx->cur_inode_last_extent < key->offset) {
5541 		ret = range_is_hole_in_parent(sctx,
5542 					      sctx->cur_inode_last_extent,
5543 					      key->offset);
5544 		if (ret < 0)
5545 			return ret;
5546 		else if (ret == 0)
5547 			ret = send_hole(sctx, key->offset);
5548 		else
5549 			ret = 0;
5550 	}
5551 	sctx->cur_inode_last_extent = extent_end;
5552 	return ret;
5553 }
5554 
5555 static int process_extent(struct send_ctx *sctx,
5556 			  struct btrfs_path *path,
5557 			  struct btrfs_key *key)
5558 {
5559 	struct clone_root *found_clone = NULL;
5560 	int ret = 0;
5561 
5562 	if (S_ISLNK(sctx->cur_inode_mode))
5563 		return 0;
5564 
5565 	if (sctx->parent_root && !sctx->cur_inode_new) {
5566 		ret = is_extent_unchanged(sctx, path, key);
5567 		if (ret < 0)
5568 			goto out;
5569 		if (ret) {
5570 			ret = 0;
5571 			goto out_hole;
5572 		}
5573 	} else {
5574 		struct btrfs_file_extent_item *ei;
5575 		u8 type;
5576 
5577 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5578 				    struct btrfs_file_extent_item);
5579 		type = btrfs_file_extent_type(path->nodes[0], ei);
5580 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5581 		    type == BTRFS_FILE_EXTENT_REG) {
5582 			/*
5583 			 * The send spec does not have a prealloc command yet,
5584 			 * so just leave a hole for prealloc'ed extents until
5585 			 * we have enough commands queued up to justify rev'ing
5586 			 * the send spec.
5587 			 */
5588 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5589 				ret = 0;
5590 				goto out;
5591 			}
5592 
5593 			/* Have a hole, just skip it. */
5594 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5595 				ret = 0;
5596 				goto out;
5597 			}
5598 		}
5599 	}
5600 
5601 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5602 			sctx->cur_inode_size, &found_clone);
5603 	if (ret != -ENOENT && ret < 0)
5604 		goto out;
5605 
5606 	ret = send_write_or_clone(sctx, path, key, found_clone);
5607 	if (ret)
5608 		goto out;
5609 out_hole:
5610 	ret = maybe_send_hole(sctx, path, key);
5611 out:
5612 	return ret;
5613 }
5614 
5615 static int process_all_extents(struct send_ctx *sctx)
5616 {
5617 	int ret;
5618 	struct btrfs_root *root;
5619 	struct btrfs_path *path;
5620 	struct btrfs_key key;
5621 	struct btrfs_key found_key;
5622 	struct extent_buffer *eb;
5623 	int slot;
5624 
5625 	root = sctx->send_root;
5626 	path = alloc_path_for_send();
5627 	if (!path)
5628 		return -ENOMEM;
5629 
5630 	key.objectid = sctx->cmp_key->objectid;
5631 	key.type = BTRFS_EXTENT_DATA_KEY;
5632 	key.offset = 0;
5633 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5634 	if (ret < 0)
5635 		goto out;
5636 
5637 	while (1) {
5638 		eb = path->nodes[0];
5639 		slot = path->slots[0];
5640 
5641 		if (slot >= btrfs_header_nritems(eb)) {
5642 			ret = btrfs_next_leaf(root, path);
5643 			if (ret < 0) {
5644 				goto out;
5645 			} else if (ret > 0) {
5646 				ret = 0;
5647 				break;
5648 			}
5649 			continue;
5650 		}
5651 
5652 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5653 
5654 		if (found_key.objectid != key.objectid ||
5655 		    found_key.type != key.type) {
5656 			ret = 0;
5657 			goto out;
5658 		}
5659 
5660 		ret = process_extent(sctx, path, &found_key);
5661 		if (ret < 0)
5662 			goto out;
5663 
5664 		path->slots[0]++;
5665 	}
5666 
5667 out:
5668 	btrfs_free_path(path);
5669 	return ret;
5670 }
5671 
5672 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5673 					   int *pending_move,
5674 					   int *refs_processed)
5675 {
5676 	int ret = 0;
5677 
5678 	if (sctx->cur_ino == 0)
5679 		goto out;
5680 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5681 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5682 		goto out;
5683 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5684 		goto out;
5685 
5686 	ret = process_recorded_refs(sctx, pending_move);
5687 	if (ret < 0)
5688 		goto out;
5689 
5690 	*refs_processed = 1;
5691 out:
5692 	return ret;
5693 }
5694 
5695 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5696 {
5697 	int ret = 0;
5698 	u64 left_mode;
5699 	u64 left_uid;
5700 	u64 left_gid;
5701 	u64 right_mode;
5702 	u64 right_uid;
5703 	u64 right_gid;
5704 	int need_chmod = 0;
5705 	int need_chown = 0;
5706 	int pending_move = 0;
5707 	int refs_processed = 0;
5708 
5709 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5710 					      &refs_processed);
5711 	if (ret < 0)
5712 		goto out;
5713 
5714 	/*
5715 	 * We have processed the refs and thus need to advance send_progress.
5716 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5717 	 * inode into account.
5718 	 *
5719 	 * On the other hand, if our current inode is a directory and couldn't
5720 	 * be moved/renamed because its parent was renamed/moved too and it has
5721 	 * a higher inode number, we can only move/rename our current inode
5722 	 * after we moved/renamed its parent. Therefore in this case operate on
5723 	 * the old path (pre move/rename) of our current inode, and the
5724 	 * move/rename will be performed later.
5725 	 */
5726 	if (refs_processed && !pending_move)
5727 		sctx->send_progress = sctx->cur_ino + 1;
5728 
5729 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5730 		goto out;
5731 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5732 		goto out;
5733 
5734 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5735 			&left_mode, &left_uid, &left_gid, NULL);
5736 	if (ret < 0)
5737 		goto out;
5738 
5739 	if (!sctx->parent_root || sctx->cur_inode_new) {
5740 		need_chown = 1;
5741 		if (!S_ISLNK(sctx->cur_inode_mode))
5742 			need_chmod = 1;
5743 	} else {
5744 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5745 				NULL, NULL, &right_mode, &right_uid,
5746 				&right_gid, NULL);
5747 		if (ret < 0)
5748 			goto out;
5749 
5750 		if (left_uid != right_uid || left_gid != right_gid)
5751 			need_chown = 1;
5752 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5753 			need_chmod = 1;
5754 	}
5755 
5756 	if (S_ISREG(sctx->cur_inode_mode)) {
5757 		if (need_send_hole(sctx)) {
5758 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5759 			    sctx->cur_inode_last_extent <
5760 			    sctx->cur_inode_size) {
5761 				ret = get_last_extent(sctx, (u64)-1);
5762 				if (ret)
5763 					goto out;
5764 			}
5765 			if (sctx->cur_inode_last_extent <
5766 			    sctx->cur_inode_size) {
5767 				ret = send_hole(sctx, sctx->cur_inode_size);
5768 				if (ret)
5769 					goto out;
5770 			}
5771 		}
5772 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5773 				sctx->cur_inode_size);
5774 		if (ret < 0)
5775 			goto out;
5776 	}
5777 
5778 	if (need_chown) {
5779 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5780 				left_uid, left_gid);
5781 		if (ret < 0)
5782 			goto out;
5783 	}
5784 	if (need_chmod) {
5785 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5786 				left_mode);
5787 		if (ret < 0)
5788 			goto out;
5789 	}
5790 
5791 	/*
5792 	 * If other directory inodes depended on our current directory
5793 	 * inode's move/rename, now do their move/rename operations.
5794 	 */
5795 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5796 		ret = apply_children_dir_moves(sctx);
5797 		if (ret)
5798 			goto out;
5799 		/*
5800 		 * Need to send that every time, no matter if it actually
5801 		 * changed between the two trees as we have done changes to
5802 		 * the inode before. If our inode is a directory and it's
5803 		 * waiting to be moved/renamed, we will send its utimes when
5804 		 * it's moved/renamed, therefore we don't need to do it here.
5805 		 */
5806 		sctx->send_progress = sctx->cur_ino + 1;
5807 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5808 		if (ret < 0)
5809 			goto out;
5810 	}
5811 
5812 out:
5813 	return ret;
5814 }
5815 
5816 static int changed_inode(struct send_ctx *sctx,
5817 			 enum btrfs_compare_tree_result result)
5818 {
5819 	int ret = 0;
5820 	struct btrfs_key *key = sctx->cmp_key;
5821 	struct btrfs_inode_item *left_ii = NULL;
5822 	struct btrfs_inode_item *right_ii = NULL;
5823 	u64 left_gen = 0;
5824 	u64 right_gen = 0;
5825 
5826 	sctx->cur_ino = key->objectid;
5827 	sctx->cur_inode_new_gen = 0;
5828 	sctx->cur_inode_last_extent = (u64)-1;
5829 
5830 	/*
5831 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5832 	 * functions that the current inode's refs are not updated yet. Later,
5833 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5834 	 */
5835 	sctx->send_progress = sctx->cur_ino;
5836 
5837 	if (result == BTRFS_COMPARE_TREE_NEW ||
5838 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5839 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5840 				sctx->left_path->slots[0],
5841 				struct btrfs_inode_item);
5842 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5843 				left_ii);
5844 	} else {
5845 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5846 				sctx->right_path->slots[0],
5847 				struct btrfs_inode_item);
5848 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5849 				right_ii);
5850 	}
5851 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5852 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5853 				sctx->right_path->slots[0],
5854 				struct btrfs_inode_item);
5855 
5856 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5857 				right_ii);
5858 
5859 		/*
5860 		 * The cur_ino = root dir case is special here. We can't treat
5861 		 * the inode as deleted+reused because it would generate a
5862 		 * stream that tries to delete/mkdir the root dir.
5863 		 */
5864 		if (left_gen != right_gen &&
5865 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5866 			sctx->cur_inode_new_gen = 1;
5867 	}
5868 
5869 	if (result == BTRFS_COMPARE_TREE_NEW) {
5870 		sctx->cur_inode_gen = left_gen;
5871 		sctx->cur_inode_new = 1;
5872 		sctx->cur_inode_deleted = 0;
5873 		sctx->cur_inode_size = btrfs_inode_size(
5874 				sctx->left_path->nodes[0], left_ii);
5875 		sctx->cur_inode_mode = btrfs_inode_mode(
5876 				sctx->left_path->nodes[0], left_ii);
5877 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5878 				sctx->left_path->nodes[0], left_ii);
5879 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5880 			ret = send_create_inode_if_needed(sctx);
5881 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5882 		sctx->cur_inode_gen = right_gen;
5883 		sctx->cur_inode_new = 0;
5884 		sctx->cur_inode_deleted = 1;
5885 		sctx->cur_inode_size = btrfs_inode_size(
5886 				sctx->right_path->nodes[0], right_ii);
5887 		sctx->cur_inode_mode = btrfs_inode_mode(
5888 				sctx->right_path->nodes[0], right_ii);
5889 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5890 		/*
5891 		 * We need to do some special handling in case the inode was
5892 		 * reported as changed with a changed generation number. This
5893 		 * means that the original inode was deleted and new inode
5894 		 * reused the same inum. So we have to treat the old inode as
5895 		 * deleted and the new one as new.
5896 		 */
5897 		if (sctx->cur_inode_new_gen) {
5898 			/*
5899 			 * First, process the inode as if it was deleted.
5900 			 */
5901 			sctx->cur_inode_gen = right_gen;
5902 			sctx->cur_inode_new = 0;
5903 			sctx->cur_inode_deleted = 1;
5904 			sctx->cur_inode_size = btrfs_inode_size(
5905 					sctx->right_path->nodes[0], right_ii);
5906 			sctx->cur_inode_mode = btrfs_inode_mode(
5907 					sctx->right_path->nodes[0], right_ii);
5908 			ret = process_all_refs(sctx,
5909 					BTRFS_COMPARE_TREE_DELETED);
5910 			if (ret < 0)
5911 				goto out;
5912 
5913 			/*
5914 			 * Now process the inode as if it was new.
5915 			 */
5916 			sctx->cur_inode_gen = left_gen;
5917 			sctx->cur_inode_new = 1;
5918 			sctx->cur_inode_deleted = 0;
5919 			sctx->cur_inode_size = btrfs_inode_size(
5920 					sctx->left_path->nodes[0], left_ii);
5921 			sctx->cur_inode_mode = btrfs_inode_mode(
5922 					sctx->left_path->nodes[0], left_ii);
5923 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5924 					sctx->left_path->nodes[0], left_ii);
5925 			ret = send_create_inode_if_needed(sctx);
5926 			if (ret < 0)
5927 				goto out;
5928 
5929 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5930 			if (ret < 0)
5931 				goto out;
5932 			/*
5933 			 * Advance send_progress now as we did not get into
5934 			 * process_recorded_refs_if_needed in the new_gen case.
5935 			 */
5936 			sctx->send_progress = sctx->cur_ino + 1;
5937 
5938 			/*
5939 			 * Now process all extents and xattrs of the inode as if
5940 			 * they were all new.
5941 			 */
5942 			ret = process_all_extents(sctx);
5943 			if (ret < 0)
5944 				goto out;
5945 			ret = process_all_new_xattrs(sctx);
5946 			if (ret < 0)
5947 				goto out;
5948 		} else {
5949 			sctx->cur_inode_gen = left_gen;
5950 			sctx->cur_inode_new = 0;
5951 			sctx->cur_inode_new_gen = 0;
5952 			sctx->cur_inode_deleted = 0;
5953 			sctx->cur_inode_size = btrfs_inode_size(
5954 					sctx->left_path->nodes[0], left_ii);
5955 			sctx->cur_inode_mode = btrfs_inode_mode(
5956 					sctx->left_path->nodes[0], left_ii);
5957 		}
5958 	}
5959 
5960 out:
5961 	return ret;
5962 }
5963 
5964 /*
5965  * We have to process new refs before deleted refs, but compare_trees gives us
5966  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5967  * first and later process them in process_recorded_refs.
5968  * For the cur_inode_new_gen case, we skip recording completely because
5969  * changed_inode did already initiate processing of refs. The reason for this is
5970  * that in this case, compare_tree actually compares the refs of 2 different
5971  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5972  * refs of the right tree as deleted and all refs of the left tree as new.
5973  */
5974 static int changed_ref(struct send_ctx *sctx,
5975 		       enum btrfs_compare_tree_result result)
5976 {
5977 	int ret = 0;
5978 
5979 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5980 		inconsistent_snapshot_error(sctx, result, "reference");
5981 		return -EIO;
5982 	}
5983 
5984 	if (!sctx->cur_inode_new_gen &&
5985 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5986 		if (result == BTRFS_COMPARE_TREE_NEW)
5987 			ret = record_new_ref(sctx);
5988 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5989 			ret = record_deleted_ref(sctx);
5990 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5991 			ret = record_changed_ref(sctx);
5992 	}
5993 
5994 	return ret;
5995 }
5996 
5997 /*
5998  * Process new/deleted/changed xattrs. We skip processing in the
5999  * cur_inode_new_gen case because changed_inode did already initiate processing
6000  * of xattrs. The reason is the same as in changed_ref
6001  */
6002 static int changed_xattr(struct send_ctx *sctx,
6003 			 enum btrfs_compare_tree_result result)
6004 {
6005 	int ret = 0;
6006 
6007 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6008 		inconsistent_snapshot_error(sctx, result, "xattr");
6009 		return -EIO;
6010 	}
6011 
6012 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6013 		if (result == BTRFS_COMPARE_TREE_NEW)
6014 			ret = process_new_xattr(sctx);
6015 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6016 			ret = process_deleted_xattr(sctx);
6017 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6018 			ret = process_changed_xattr(sctx);
6019 	}
6020 
6021 	return ret;
6022 }
6023 
6024 /*
6025  * Process new/deleted/changed extents. We skip processing in the
6026  * cur_inode_new_gen case because changed_inode did already initiate processing
6027  * of extents. The reason is the same as in changed_ref
6028  */
6029 static int changed_extent(struct send_ctx *sctx,
6030 			  enum btrfs_compare_tree_result result)
6031 {
6032 	int ret = 0;
6033 
6034 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6035 
6036 		if (result == BTRFS_COMPARE_TREE_CHANGED) {
6037 			struct extent_buffer *leaf_l;
6038 			struct extent_buffer *leaf_r;
6039 			struct btrfs_file_extent_item *ei_l;
6040 			struct btrfs_file_extent_item *ei_r;
6041 
6042 			leaf_l = sctx->left_path->nodes[0];
6043 			leaf_r = sctx->right_path->nodes[0];
6044 			ei_l = btrfs_item_ptr(leaf_l,
6045 					      sctx->left_path->slots[0],
6046 					      struct btrfs_file_extent_item);
6047 			ei_r = btrfs_item_ptr(leaf_r,
6048 					      sctx->right_path->slots[0],
6049 					      struct btrfs_file_extent_item);
6050 
6051 			/*
6052 			 * We may have found an extent item that has changed
6053 			 * only its disk_bytenr field and the corresponding
6054 			 * inode item was not updated. This case happens due to
6055 			 * very specific timings during relocation when a leaf
6056 			 * that contains file extent items is COWed while
6057 			 * relocation is ongoing and its in the stage where it
6058 			 * updates data pointers. So when this happens we can
6059 			 * safely ignore it since we know it's the same extent,
6060 			 * but just at different logical and physical locations
6061 			 * (when an extent is fully replaced with a new one, we
6062 			 * know the generation number must have changed too,
6063 			 * since snapshot creation implies committing the current
6064 			 * transaction, and the inode item must have been updated
6065 			 * as well).
6066 			 * This replacement of the disk_bytenr happens at
6067 			 * relocation.c:replace_file_extents() through
6068 			 * relocation.c:btrfs_reloc_cow_block().
6069 			 */
6070 			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6071 			    btrfs_file_extent_generation(leaf_r, ei_r) &&
6072 			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6073 			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6074 			    btrfs_file_extent_compression(leaf_l, ei_l) ==
6075 			    btrfs_file_extent_compression(leaf_r, ei_r) &&
6076 			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
6077 			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
6078 			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6079 			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6080 			    btrfs_file_extent_type(leaf_l, ei_l) ==
6081 			    btrfs_file_extent_type(leaf_r, ei_r) &&
6082 			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6083 			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6084 			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6085 			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6086 			    btrfs_file_extent_offset(leaf_l, ei_l) ==
6087 			    btrfs_file_extent_offset(leaf_r, ei_r) &&
6088 			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6089 			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
6090 				return 0;
6091 		}
6092 
6093 		inconsistent_snapshot_error(sctx, result, "extent");
6094 		return -EIO;
6095 	}
6096 
6097 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6098 		if (result != BTRFS_COMPARE_TREE_DELETED)
6099 			ret = process_extent(sctx, sctx->left_path,
6100 					sctx->cmp_key);
6101 	}
6102 
6103 	return ret;
6104 }
6105 
6106 static int dir_changed(struct send_ctx *sctx, u64 dir)
6107 {
6108 	u64 orig_gen, new_gen;
6109 	int ret;
6110 
6111 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6112 			     NULL, NULL);
6113 	if (ret)
6114 		return ret;
6115 
6116 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6117 			     NULL, NULL, NULL);
6118 	if (ret)
6119 		return ret;
6120 
6121 	return (orig_gen != new_gen) ? 1 : 0;
6122 }
6123 
6124 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6125 			struct btrfs_key *key)
6126 {
6127 	struct btrfs_inode_extref *extref;
6128 	struct extent_buffer *leaf;
6129 	u64 dirid = 0, last_dirid = 0;
6130 	unsigned long ptr;
6131 	u32 item_size;
6132 	u32 cur_offset = 0;
6133 	int ref_name_len;
6134 	int ret = 0;
6135 
6136 	/* Easy case, just check this one dirid */
6137 	if (key->type == BTRFS_INODE_REF_KEY) {
6138 		dirid = key->offset;
6139 
6140 		ret = dir_changed(sctx, dirid);
6141 		goto out;
6142 	}
6143 
6144 	leaf = path->nodes[0];
6145 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6146 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6147 	while (cur_offset < item_size) {
6148 		extref = (struct btrfs_inode_extref *)(ptr +
6149 						       cur_offset);
6150 		dirid = btrfs_inode_extref_parent(leaf, extref);
6151 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6152 		cur_offset += ref_name_len + sizeof(*extref);
6153 		if (dirid == last_dirid)
6154 			continue;
6155 		ret = dir_changed(sctx, dirid);
6156 		if (ret)
6157 			break;
6158 		last_dirid = dirid;
6159 	}
6160 out:
6161 	return ret;
6162 }
6163 
6164 /*
6165  * Updates compare related fields in sctx and simply forwards to the actual
6166  * changed_xxx functions.
6167  */
6168 static int changed_cb(struct btrfs_path *left_path,
6169 		      struct btrfs_path *right_path,
6170 		      struct btrfs_key *key,
6171 		      enum btrfs_compare_tree_result result,
6172 		      void *ctx)
6173 {
6174 	int ret = 0;
6175 	struct send_ctx *sctx = ctx;
6176 
6177 	if (result == BTRFS_COMPARE_TREE_SAME) {
6178 		if (key->type == BTRFS_INODE_REF_KEY ||
6179 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6180 			ret = compare_refs(sctx, left_path, key);
6181 			if (!ret)
6182 				return 0;
6183 			if (ret < 0)
6184 				return ret;
6185 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6186 			return maybe_send_hole(sctx, left_path, key);
6187 		} else {
6188 			return 0;
6189 		}
6190 		result = BTRFS_COMPARE_TREE_CHANGED;
6191 		ret = 0;
6192 	}
6193 
6194 	sctx->left_path = left_path;
6195 	sctx->right_path = right_path;
6196 	sctx->cmp_key = key;
6197 
6198 	ret = finish_inode_if_needed(sctx, 0);
6199 	if (ret < 0)
6200 		goto out;
6201 
6202 	/* Ignore non-FS objects */
6203 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6204 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6205 		goto out;
6206 
6207 	if (key->type == BTRFS_INODE_ITEM_KEY)
6208 		ret = changed_inode(sctx, result);
6209 	else if (key->type == BTRFS_INODE_REF_KEY ||
6210 		 key->type == BTRFS_INODE_EXTREF_KEY)
6211 		ret = changed_ref(sctx, result);
6212 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
6213 		ret = changed_xattr(sctx, result);
6214 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
6215 		ret = changed_extent(sctx, result);
6216 
6217 out:
6218 	return ret;
6219 }
6220 
6221 static int full_send_tree(struct send_ctx *sctx)
6222 {
6223 	int ret;
6224 	struct btrfs_root *send_root = sctx->send_root;
6225 	struct btrfs_key key;
6226 	struct btrfs_key found_key;
6227 	struct btrfs_path *path;
6228 	struct extent_buffer *eb;
6229 	int slot;
6230 
6231 	path = alloc_path_for_send();
6232 	if (!path)
6233 		return -ENOMEM;
6234 
6235 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6236 	key.type = BTRFS_INODE_ITEM_KEY;
6237 	key.offset = 0;
6238 
6239 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6240 	if (ret < 0)
6241 		goto out;
6242 	if (ret)
6243 		goto out_finish;
6244 
6245 	while (1) {
6246 		eb = path->nodes[0];
6247 		slot = path->slots[0];
6248 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6249 
6250 		ret = changed_cb(path, NULL, &found_key,
6251 				 BTRFS_COMPARE_TREE_NEW, sctx);
6252 		if (ret < 0)
6253 			goto out;
6254 
6255 		key.objectid = found_key.objectid;
6256 		key.type = found_key.type;
6257 		key.offset = found_key.offset + 1;
6258 
6259 		ret = btrfs_next_item(send_root, path);
6260 		if (ret < 0)
6261 			goto out;
6262 		if (ret) {
6263 			ret  = 0;
6264 			break;
6265 		}
6266 	}
6267 
6268 out_finish:
6269 	ret = finish_inode_if_needed(sctx, 1);
6270 
6271 out:
6272 	btrfs_free_path(path);
6273 	return ret;
6274 }
6275 
6276 static int send_subvol(struct send_ctx *sctx)
6277 {
6278 	int ret;
6279 
6280 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6281 		ret = send_header(sctx);
6282 		if (ret < 0)
6283 			goto out;
6284 	}
6285 
6286 	ret = send_subvol_begin(sctx);
6287 	if (ret < 0)
6288 		goto out;
6289 
6290 	if (sctx->parent_root) {
6291 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6292 				changed_cb, sctx);
6293 		if (ret < 0)
6294 			goto out;
6295 		ret = finish_inode_if_needed(sctx, 1);
6296 		if (ret < 0)
6297 			goto out;
6298 	} else {
6299 		ret = full_send_tree(sctx);
6300 		if (ret < 0)
6301 			goto out;
6302 	}
6303 
6304 out:
6305 	free_recorded_refs(sctx);
6306 	return ret;
6307 }
6308 
6309 /*
6310  * If orphan cleanup did remove any orphans from a root, it means the tree
6311  * was modified and therefore the commit root is not the same as the current
6312  * root anymore. This is a problem, because send uses the commit root and
6313  * therefore can see inode items that don't exist in the current root anymore,
6314  * and for example make calls to btrfs_iget, which will do tree lookups based
6315  * on the current root and not on the commit root. Those lookups will fail,
6316  * returning a -ESTALE error, and making send fail with that error. So make
6317  * sure a send does not see any orphans we have just removed, and that it will
6318  * see the same inodes regardless of whether a transaction commit happened
6319  * before it started (meaning that the commit root will be the same as the
6320  * current root) or not.
6321  */
6322 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6323 {
6324 	int i;
6325 	struct btrfs_trans_handle *trans = NULL;
6326 
6327 again:
6328 	if (sctx->parent_root &&
6329 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6330 		goto commit_trans;
6331 
6332 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6333 		if (sctx->clone_roots[i].root->node !=
6334 		    sctx->clone_roots[i].root->commit_root)
6335 			goto commit_trans;
6336 
6337 	if (trans)
6338 		return btrfs_end_transaction(trans);
6339 
6340 	return 0;
6341 
6342 commit_trans:
6343 	/* Use any root, all fs roots will get their commit roots updated. */
6344 	if (!trans) {
6345 		trans = btrfs_join_transaction(sctx->send_root);
6346 		if (IS_ERR(trans))
6347 			return PTR_ERR(trans);
6348 		goto again;
6349 	}
6350 
6351 	return btrfs_commit_transaction(trans);
6352 }
6353 
6354 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6355 {
6356 	spin_lock(&root->root_item_lock);
6357 	root->send_in_progress--;
6358 	/*
6359 	 * Not much left to do, we don't know why it's unbalanced and
6360 	 * can't blindly reset it to 0.
6361 	 */
6362 	if (root->send_in_progress < 0)
6363 		btrfs_err(root->fs_info,
6364 			  "send_in_progres unbalanced %d root %llu",
6365 			  root->send_in_progress, root->root_key.objectid);
6366 	spin_unlock(&root->root_item_lock);
6367 }
6368 
6369 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6370 {
6371 	int ret = 0;
6372 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6373 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6374 	struct btrfs_root *clone_root;
6375 	struct btrfs_key key;
6376 	struct send_ctx *sctx = NULL;
6377 	u32 i;
6378 	u64 *clone_sources_tmp = NULL;
6379 	int clone_sources_to_rollback = 0;
6380 	unsigned alloc_size;
6381 	int sort_clone_roots = 0;
6382 	int index;
6383 
6384 	if (!capable(CAP_SYS_ADMIN))
6385 		return -EPERM;
6386 
6387 	/*
6388 	 * The subvolume must remain read-only during send, protect against
6389 	 * making it RW. This also protects against deletion.
6390 	 */
6391 	spin_lock(&send_root->root_item_lock);
6392 	send_root->send_in_progress++;
6393 	spin_unlock(&send_root->root_item_lock);
6394 
6395 	/*
6396 	 * This is done when we lookup the root, it should already be complete
6397 	 * by the time we get here.
6398 	 */
6399 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6400 
6401 	/*
6402 	 * Userspace tools do the checks and warn the user if it's
6403 	 * not RO.
6404 	 */
6405 	if (!btrfs_root_readonly(send_root)) {
6406 		ret = -EPERM;
6407 		goto out;
6408 	}
6409 
6410 	/*
6411 	 * Check that we don't overflow at later allocations, we request
6412 	 * clone_sources_count + 1 items, and compare to unsigned long inside
6413 	 * access_ok.
6414 	 */
6415 	if (arg->clone_sources_count >
6416 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6417 		ret = -EINVAL;
6418 		goto out;
6419 	}
6420 
6421 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6422 			sizeof(*arg->clone_sources) *
6423 			arg->clone_sources_count)) {
6424 		ret = -EFAULT;
6425 		goto out;
6426 	}
6427 
6428 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6429 		ret = -EINVAL;
6430 		goto out;
6431 	}
6432 
6433 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6434 	if (!sctx) {
6435 		ret = -ENOMEM;
6436 		goto out;
6437 	}
6438 
6439 	INIT_LIST_HEAD(&sctx->new_refs);
6440 	INIT_LIST_HEAD(&sctx->deleted_refs);
6441 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6442 	INIT_LIST_HEAD(&sctx->name_cache_list);
6443 
6444 	sctx->flags = arg->flags;
6445 
6446 	sctx->send_filp = fget(arg->send_fd);
6447 	if (!sctx->send_filp) {
6448 		ret = -EBADF;
6449 		goto out;
6450 	}
6451 
6452 	sctx->send_root = send_root;
6453 	/*
6454 	 * Unlikely but possible, if the subvolume is marked for deletion but
6455 	 * is slow to remove the directory entry, send can still be started
6456 	 */
6457 	if (btrfs_root_dead(sctx->send_root)) {
6458 		ret = -EPERM;
6459 		goto out;
6460 	}
6461 
6462 	sctx->clone_roots_cnt = arg->clone_sources_count;
6463 
6464 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6465 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6466 	if (!sctx->send_buf) {
6467 		ret = -ENOMEM;
6468 		goto out;
6469 	}
6470 
6471 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6472 	if (!sctx->read_buf) {
6473 		ret = -ENOMEM;
6474 		goto out;
6475 	}
6476 
6477 	sctx->pending_dir_moves = RB_ROOT;
6478 	sctx->waiting_dir_moves = RB_ROOT;
6479 	sctx->orphan_dirs = RB_ROOT;
6480 
6481 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6482 
6483 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6484 	if (!sctx->clone_roots) {
6485 		ret = -ENOMEM;
6486 		goto out;
6487 	}
6488 
6489 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6490 
6491 	if (arg->clone_sources_count) {
6492 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6493 		if (!clone_sources_tmp) {
6494 			ret = -ENOMEM;
6495 			goto out;
6496 		}
6497 
6498 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6499 				alloc_size);
6500 		if (ret) {
6501 			ret = -EFAULT;
6502 			goto out;
6503 		}
6504 
6505 		for (i = 0; i < arg->clone_sources_count; i++) {
6506 			key.objectid = clone_sources_tmp[i];
6507 			key.type = BTRFS_ROOT_ITEM_KEY;
6508 			key.offset = (u64)-1;
6509 
6510 			index = srcu_read_lock(&fs_info->subvol_srcu);
6511 
6512 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6513 			if (IS_ERR(clone_root)) {
6514 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6515 				ret = PTR_ERR(clone_root);
6516 				goto out;
6517 			}
6518 			spin_lock(&clone_root->root_item_lock);
6519 			if (!btrfs_root_readonly(clone_root) ||
6520 			    btrfs_root_dead(clone_root)) {
6521 				spin_unlock(&clone_root->root_item_lock);
6522 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6523 				ret = -EPERM;
6524 				goto out;
6525 			}
6526 			clone_root->send_in_progress++;
6527 			spin_unlock(&clone_root->root_item_lock);
6528 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6529 
6530 			sctx->clone_roots[i].root = clone_root;
6531 			clone_sources_to_rollback = i + 1;
6532 		}
6533 		kvfree(clone_sources_tmp);
6534 		clone_sources_tmp = NULL;
6535 	}
6536 
6537 	if (arg->parent_root) {
6538 		key.objectid = arg->parent_root;
6539 		key.type = BTRFS_ROOT_ITEM_KEY;
6540 		key.offset = (u64)-1;
6541 
6542 		index = srcu_read_lock(&fs_info->subvol_srcu);
6543 
6544 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6545 		if (IS_ERR(sctx->parent_root)) {
6546 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6547 			ret = PTR_ERR(sctx->parent_root);
6548 			goto out;
6549 		}
6550 
6551 		spin_lock(&sctx->parent_root->root_item_lock);
6552 		sctx->parent_root->send_in_progress++;
6553 		if (!btrfs_root_readonly(sctx->parent_root) ||
6554 				btrfs_root_dead(sctx->parent_root)) {
6555 			spin_unlock(&sctx->parent_root->root_item_lock);
6556 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6557 			ret = -EPERM;
6558 			goto out;
6559 		}
6560 		spin_unlock(&sctx->parent_root->root_item_lock);
6561 
6562 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6563 	}
6564 
6565 	/*
6566 	 * Clones from send_root are allowed, but only if the clone source
6567 	 * is behind the current send position. This is checked while searching
6568 	 * for possible clone sources.
6569 	 */
6570 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6571 
6572 	/* We do a bsearch later */
6573 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6574 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6575 			NULL);
6576 	sort_clone_roots = 1;
6577 
6578 	ret = ensure_commit_roots_uptodate(sctx);
6579 	if (ret)
6580 		goto out;
6581 
6582 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6583 	ret = send_subvol(sctx);
6584 	current->journal_info = NULL;
6585 	if (ret < 0)
6586 		goto out;
6587 
6588 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6589 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6590 		if (ret < 0)
6591 			goto out;
6592 		ret = send_cmd(sctx);
6593 		if (ret < 0)
6594 			goto out;
6595 	}
6596 
6597 out:
6598 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6599 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6600 		struct rb_node *n;
6601 		struct pending_dir_move *pm;
6602 
6603 		n = rb_first(&sctx->pending_dir_moves);
6604 		pm = rb_entry(n, struct pending_dir_move, node);
6605 		while (!list_empty(&pm->list)) {
6606 			struct pending_dir_move *pm2;
6607 
6608 			pm2 = list_first_entry(&pm->list,
6609 					       struct pending_dir_move, list);
6610 			free_pending_move(sctx, pm2);
6611 		}
6612 		free_pending_move(sctx, pm);
6613 	}
6614 
6615 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6616 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6617 		struct rb_node *n;
6618 		struct waiting_dir_move *dm;
6619 
6620 		n = rb_first(&sctx->waiting_dir_moves);
6621 		dm = rb_entry(n, struct waiting_dir_move, node);
6622 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6623 		kfree(dm);
6624 	}
6625 
6626 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6627 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6628 		struct rb_node *n;
6629 		struct orphan_dir_info *odi;
6630 
6631 		n = rb_first(&sctx->orphan_dirs);
6632 		odi = rb_entry(n, struct orphan_dir_info, node);
6633 		free_orphan_dir_info(sctx, odi);
6634 	}
6635 
6636 	if (sort_clone_roots) {
6637 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6638 			btrfs_root_dec_send_in_progress(
6639 					sctx->clone_roots[i].root);
6640 	} else {
6641 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6642 			btrfs_root_dec_send_in_progress(
6643 					sctx->clone_roots[i].root);
6644 
6645 		btrfs_root_dec_send_in_progress(send_root);
6646 	}
6647 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6648 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6649 
6650 	kvfree(clone_sources_tmp);
6651 
6652 	if (sctx) {
6653 		if (sctx->send_filp)
6654 			fput(sctx->send_filp);
6655 
6656 		kvfree(sctx->clone_roots);
6657 		kvfree(sctx->send_buf);
6658 		kvfree(sctx->read_buf);
6659 
6660 		name_cache_free(sctx);
6661 
6662 		kfree(sctx);
6663 	}
6664 
6665 	return ret;
6666 }
6667