xref: /openbmc/linux/fs/btrfs/send.c (revision 1fd02f66)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 #include "xattr.h"
27 #include "print-tree.h"
28 
29 /*
30  * Maximum number of references an extent can have in order for us to attempt to
31  * issue clone operations instead of write operations. This currently exists to
32  * avoid hitting limitations of the backreference walking code (taking a lot of
33  * time and using too much memory for extents with large number of references).
34  */
35 #define SEND_MAX_EXTENT_REFS	64
36 
37 /*
38  * A fs_path is a helper to dynamically build path names with unknown size.
39  * It reallocates the internal buffer on demand.
40  * It allows fast adding of path elements on the right side (normal path) and
41  * fast adding to the left side (reversed path). A reversed path can also be
42  * unreversed if needed.
43  */
44 struct fs_path {
45 	union {
46 		struct {
47 			char *start;
48 			char *end;
49 
50 			char *buf;
51 			unsigned short buf_len:15;
52 			unsigned short reversed:1;
53 			char inline_buf[];
54 		};
55 		/*
56 		 * Average path length does not exceed 200 bytes, we'll have
57 		 * better packing in the slab and higher chance to satisfy
58 		 * a allocation later during send.
59 		 */
60 		char pad[256];
61 	};
62 };
63 #define FS_PATH_INLINE_SIZE \
64 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
65 
66 
67 /* reused for each extent */
68 struct clone_root {
69 	struct btrfs_root *root;
70 	u64 ino;
71 	u64 offset;
72 
73 	u64 found_refs;
74 };
75 
76 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
77 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
78 
79 struct send_ctx {
80 	struct file *send_filp;
81 	loff_t send_off;
82 	char *send_buf;
83 	u32 send_size;
84 	u32 send_max_size;
85 	u64 total_send_size;
86 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
87 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
88 	/* Protocol version compatibility requested */
89 	u32 proto;
90 
91 	struct btrfs_root *send_root;
92 	struct btrfs_root *parent_root;
93 	struct clone_root *clone_roots;
94 	int clone_roots_cnt;
95 
96 	/* current state of the compare_tree call */
97 	struct btrfs_path *left_path;
98 	struct btrfs_path *right_path;
99 	struct btrfs_key *cmp_key;
100 
101 	/*
102 	 * Keep track of the generation of the last transaction that was used
103 	 * for relocating a block group. This is periodically checked in order
104 	 * to detect if a relocation happened since the last check, so that we
105 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
106 	 * stale disk_bytenr values of file extent items.
107 	 */
108 	u64 last_reloc_trans;
109 
110 	/*
111 	 * infos of the currently processed inode. In case of deleted inodes,
112 	 * these are the values from the deleted inode.
113 	 */
114 	u64 cur_ino;
115 	u64 cur_inode_gen;
116 	int cur_inode_new;
117 	int cur_inode_new_gen;
118 	int cur_inode_deleted;
119 	u64 cur_inode_size;
120 	u64 cur_inode_mode;
121 	u64 cur_inode_rdev;
122 	u64 cur_inode_last_extent;
123 	u64 cur_inode_next_write_offset;
124 	bool ignore_cur_inode;
125 
126 	u64 send_progress;
127 
128 	struct list_head new_refs;
129 	struct list_head deleted_refs;
130 
131 	struct radix_tree_root name_cache;
132 	struct list_head name_cache_list;
133 	int name_cache_size;
134 
135 	struct file_ra_state ra;
136 
137 	/*
138 	 * We process inodes by their increasing order, so if before an
139 	 * incremental send we reverse the parent/child relationship of
140 	 * directories such that a directory with a lower inode number was
141 	 * the parent of a directory with a higher inode number, and the one
142 	 * becoming the new parent got renamed too, we can't rename/move the
143 	 * directory with lower inode number when we finish processing it - we
144 	 * must process the directory with higher inode number first, then
145 	 * rename/move it and then rename/move the directory with lower inode
146 	 * number. Example follows.
147 	 *
148 	 * Tree state when the first send was performed:
149 	 *
150 	 * .
151 	 * |-- a                   (ino 257)
152 	 *     |-- b               (ino 258)
153 	 *         |
154 	 *         |
155 	 *         |-- c           (ino 259)
156 	 *         |   |-- d       (ino 260)
157 	 *         |
158 	 *         |-- c2          (ino 261)
159 	 *
160 	 * Tree state when the second (incremental) send is performed:
161 	 *
162 	 * .
163 	 * |-- a                   (ino 257)
164 	 *     |-- b               (ino 258)
165 	 *         |-- c2          (ino 261)
166 	 *             |-- d2      (ino 260)
167 	 *                 |-- cc  (ino 259)
168 	 *
169 	 * The sequence of steps that lead to the second state was:
170 	 *
171 	 * mv /a/b/c/d /a/b/c2/d2
172 	 * mv /a/b/c /a/b/c2/d2/cc
173 	 *
174 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
175 	 * before we move "d", which has higher inode number.
176 	 *
177 	 * So we just memorize which move/rename operations must be performed
178 	 * later when their respective parent is processed and moved/renamed.
179 	 */
180 
181 	/* Indexed by parent directory inode number. */
182 	struct rb_root pending_dir_moves;
183 
184 	/*
185 	 * Reverse index, indexed by the inode number of a directory that
186 	 * is waiting for the move/rename of its immediate parent before its
187 	 * own move/rename can be performed.
188 	 */
189 	struct rb_root waiting_dir_moves;
190 
191 	/*
192 	 * A directory that is going to be rm'ed might have a child directory
193 	 * which is in the pending directory moves index above. In this case,
194 	 * the directory can only be removed after the move/rename of its child
195 	 * is performed. Example:
196 	 *
197 	 * Parent snapshot:
198 	 *
199 	 * .                        (ino 256)
200 	 * |-- a/                   (ino 257)
201 	 *     |-- b/               (ino 258)
202 	 *         |-- c/           (ino 259)
203 	 *         |   |-- x/       (ino 260)
204 	 *         |
205 	 *         |-- y/           (ino 261)
206 	 *
207 	 * Send snapshot:
208 	 *
209 	 * .                        (ino 256)
210 	 * |-- a/                   (ino 257)
211 	 *     |-- b/               (ino 258)
212 	 *         |-- YY/          (ino 261)
213 	 *              |-- x/      (ino 260)
214 	 *
215 	 * Sequence of steps that lead to the send snapshot:
216 	 * rm -f /a/b/c/foo.txt
217 	 * mv /a/b/y /a/b/YY
218 	 * mv /a/b/c/x /a/b/YY
219 	 * rmdir /a/b/c
220 	 *
221 	 * When the child is processed, its move/rename is delayed until its
222 	 * parent is processed (as explained above), but all other operations
223 	 * like update utimes, chown, chgrp, etc, are performed and the paths
224 	 * that it uses for those operations must use the orphanized name of
225 	 * its parent (the directory we're going to rm later), so we need to
226 	 * memorize that name.
227 	 *
228 	 * Indexed by the inode number of the directory to be deleted.
229 	 */
230 	struct rb_root orphan_dirs;
231 };
232 
233 struct pending_dir_move {
234 	struct rb_node node;
235 	struct list_head list;
236 	u64 parent_ino;
237 	u64 ino;
238 	u64 gen;
239 	struct list_head update_refs;
240 };
241 
242 struct waiting_dir_move {
243 	struct rb_node node;
244 	u64 ino;
245 	/*
246 	 * There might be some directory that could not be removed because it
247 	 * was waiting for this directory inode to be moved first. Therefore
248 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
249 	 */
250 	u64 rmdir_ino;
251 	u64 rmdir_gen;
252 	bool orphanized;
253 };
254 
255 struct orphan_dir_info {
256 	struct rb_node node;
257 	u64 ino;
258 	u64 gen;
259 	u64 last_dir_index_offset;
260 };
261 
262 struct name_cache_entry {
263 	struct list_head list;
264 	/*
265 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
266 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
267 	 * more then one inum would fall into the same entry, we use radix_list
268 	 * to store the additional entries. radix_list is also used to store
269 	 * entries where two entries have the same inum but different
270 	 * generations.
271 	 */
272 	struct list_head radix_list;
273 	u64 ino;
274 	u64 gen;
275 	u64 parent_ino;
276 	u64 parent_gen;
277 	int ret;
278 	int need_later_update;
279 	int name_len;
280 	char name[];
281 };
282 
283 #define ADVANCE							1
284 #define ADVANCE_ONLY_NEXT					-1
285 
286 enum btrfs_compare_tree_result {
287 	BTRFS_COMPARE_TREE_NEW,
288 	BTRFS_COMPARE_TREE_DELETED,
289 	BTRFS_COMPARE_TREE_CHANGED,
290 	BTRFS_COMPARE_TREE_SAME,
291 };
292 
293 __cold
294 static void inconsistent_snapshot_error(struct send_ctx *sctx,
295 					enum btrfs_compare_tree_result result,
296 					const char *what)
297 {
298 	const char *result_string;
299 
300 	switch (result) {
301 	case BTRFS_COMPARE_TREE_NEW:
302 		result_string = "new";
303 		break;
304 	case BTRFS_COMPARE_TREE_DELETED:
305 		result_string = "deleted";
306 		break;
307 	case BTRFS_COMPARE_TREE_CHANGED:
308 		result_string = "updated";
309 		break;
310 	case BTRFS_COMPARE_TREE_SAME:
311 		ASSERT(0);
312 		result_string = "unchanged";
313 		break;
314 	default:
315 		ASSERT(0);
316 		result_string = "unexpected";
317 	}
318 
319 	btrfs_err(sctx->send_root->fs_info,
320 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
321 		  result_string, what, sctx->cmp_key->objectid,
322 		  sctx->send_root->root_key.objectid,
323 		  (sctx->parent_root ?
324 		   sctx->parent_root->root_key.objectid : 0));
325 }
326 
327 __maybe_unused
328 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
329 {
330 	switch (sctx->proto) {
331 	case 1:	 return cmd < __BTRFS_SEND_C_MAX_V1;
332 	case 2:	 return cmd < __BTRFS_SEND_C_MAX_V2;
333 	default: return false;
334 	}
335 }
336 
337 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
338 
339 static struct waiting_dir_move *
340 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
341 
342 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
343 
344 static int need_send_hole(struct send_ctx *sctx)
345 {
346 	return (sctx->parent_root && !sctx->cur_inode_new &&
347 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
348 		S_ISREG(sctx->cur_inode_mode));
349 }
350 
351 static void fs_path_reset(struct fs_path *p)
352 {
353 	if (p->reversed) {
354 		p->start = p->buf + p->buf_len - 1;
355 		p->end = p->start;
356 		*p->start = 0;
357 	} else {
358 		p->start = p->buf;
359 		p->end = p->start;
360 		*p->start = 0;
361 	}
362 }
363 
364 static struct fs_path *fs_path_alloc(void)
365 {
366 	struct fs_path *p;
367 
368 	p = kmalloc(sizeof(*p), GFP_KERNEL);
369 	if (!p)
370 		return NULL;
371 	p->reversed = 0;
372 	p->buf = p->inline_buf;
373 	p->buf_len = FS_PATH_INLINE_SIZE;
374 	fs_path_reset(p);
375 	return p;
376 }
377 
378 static struct fs_path *fs_path_alloc_reversed(void)
379 {
380 	struct fs_path *p;
381 
382 	p = fs_path_alloc();
383 	if (!p)
384 		return NULL;
385 	p->reversed = 1;
386 	fs_path_reset(p);
387 	return p;
388 }
389 
390 static void fs_path_free(struct fs_path *p)
391 {
392 	if (!p)
393 		return;
394 	if (p->buf != p->inline_buf)
395 		kfree(p->buf);
396 	kfree(p);
397 }
398 
399 static int fs_path_len(struct fs_path *p)
400 {
401 	return p->end - p->start;
402 }
403 
404 static int fs_path_ensure_buf(struct fs_path *p, int len)
405 {
406 	char *tmp_buf;
407 	int path_len;
408 	int old_buf_len;
409 
410 	len++;
411 
412 	if (p->buf_len >= len)
413 		return 0;
414 
415 	if (len > PATH_MAX) {
416 		WARN_ON(1);
417 		return -ENOMEM;
418 	}
419 
420 	path_len = p->end - p->start;
421 	old_buf_len = p->buf_len;
422 
423 	/*
424 	 * First time the inline_buf does not suffice
425 	 */
426 	if (p->buf == p->inline_buf) {
427 		tmp_buf = kmalloc(len, GFP_KERNEL);
428 		if (tmp_buf)
429 			memcpy(tmp_buf, p->buf, old_buf_len);
430 	} else {
431 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
432 	}
433 	if (!tmp_buf)
434 		return -ENOMEM;
435 	p->buf = tmp_buf;
436 	/*
437 	 * The real size of the buffer is bigger, this will let the fast path
438 	 * happen most of the time
439 	 */
440 	p->buf_len = ksize(p->buf);
441 
442 	if (p->reversed) {
443 		tmp_buf = p->buf + old_buf_len - path_len - 1;
444 		p->end = p->buf + p->buf_len - 1;
445 		p->start = p->end - path_len;
446 		memmove(p->start, tmp_buf, path_len + 1);
447 	} else {
448 		p->start = p->buf;
449 		p->end = p->start + path_len;
450 	}
451 	return 0;
452 }
453 
454 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
455 				   char **prepared)
456 {
457 	int ret;
458 	int new_len;
459 
460 	new_len = p->end - p->start + name_len;
461 	if (p->start != p->end)
462 		new_len++;
463 	ret = fs_path_ensure_buf(p, new_len);
464 	if (ret < 0)
465 		goto out;
466 
467 	if (p->reversed) {
468 		if (p->start != p->end)
469 			*--p->start = '/';
470 		p->start -= name_len;
471 		*prepared = p->start;
472 	} else {
473 		if (p->start != p->end)
474 			*p->end++ = '/';
475 		*prepared = p->end;
476 		p->end += name_len;
477 		*p->end = 0;
478 	}
479 
480 out:
481 	return ret;
482 }
483 
484 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
485 {
486 	int ret;
487 	char *prepared;
488 
489 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
490 	if (ret < 0)
491 		goto out;
492 	memcpy(prepared, name, name_len);
493 
494 out:
495 	return ret;
496 }
497 
498 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
499 {
500 	int ret;
501 	char *prepared;
502 
503 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
504 	if (ret < 0)
505 		goto out;
506 	memcpy(prepared, p2->start, p2->end - p2->start);
507 
508 out:
509 	return ret;
510 }
511 
512 static int fs_path_add_from_extent_buffer(struct fs_path *p,
513 					  struct extent_buffer *eb,
514 					  unsigned long off, int len)
515 {
516 	int ret;
517 	char *prepared;
518 
519 	ret = fs_path_prepare_for_add(p, len, &prepared);
520 	if (ret < 0)
521 		goto out;
522 
523 	read_extent_buffer(eb, prepared, off, len);
524 
525 out:
526 	return ret;
527 }
528 
529 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
530 {
531 	p->reversed = from->reversed;
532 	fs_path_reset(p);
533 
534 	return fs_path_add_path(p, from);
535 }
536 
537 static void fs_path_unreverse(struct fs_path *p)
538 {
539 	char *tmp;
540 	int len;
541 
542 	if (!p->reversed)
543 		return;
544 
545 	tmp = p->start;
546 	len = p->end - p->start;
547 	p->start = p->buf;
548 	p->end = p->start + len;
549 	memmove(p->start, tmp, len + 1);
550 	p->reversed = 0;
551 }
552 
553 static struct btrfs_path *alloc_path_for_send(void)
554 {
555 	struct btrfs_path *path;
556 
557 	path = btrfs_alloc_path();
558 	if (!path)
559 		return NULL;
560 	path->search_commit_root = 1;
561 	path->skip_locking = 1;
562 	path->need_commit_sem = 1;
563 	return path;
564 }
565 
566 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
567 {
568 	int ret;
569 	u32 pos = 0;
570 
571 	while (pos < len) {
572 		ret = kernel_write(filp, buf + pos, len - pos, off);
573 		/* TODO handle that correctly */
574 		/*if (ret == -ERESTARTSYS) {
575 			continue;
576 		}*/
577 		if (ret < 0)
578 			return ret;
579 		if (ret == 0) {
580 			return -EIO;
581 		}
582 		pos += ret;
583 	}
584 
585 	return 0;
586 }
587 
588 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
589 {
590 	struct btrfs_tlv_header *hdr;
591 	int total_len = sizeof(*hdr) + len;
592 	int left = sctx->send_max_size - sctx->send_size;
593 
594 	if (unlikely(left < total_len))
595 		return -EOVERFLOW;
596 
597 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
598 	put_unaligned_le16(attr, &hdr->tlv_type);
599 	put_unaligned_le16(len, &hdr->tlv_len);
600 	memcpy(hdr + 1, data, len);
601 	sctx->send_size += total_len;
602 
603 	return 0;
604 }
605 
606 #define TLV_PUT_DEFINE_INT(bits) \
607 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
608 			u##bits attr, u##bits value)			\
609 	{								\
610 		__le##bits __tmp = cpu_to_le##bits(value);		\
611 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
612 	}
613 
614 TLV_PUT_DEFINE_INT(64)
615 
616 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
617 			  const char *str, int len)
618 {
619 	if (len == -1)
620 		len = strlen(str);
621 	return tlv_put(sctx, attr, str, len);
622 }
623 
624 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
625 			const u8 *uuid)
626 {
627 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
628 }
629 
630 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
631 				  struct extent_buffer *eb,
632 				  struct btrfs_timespec *ts)
633 {
634 	struct btrfs_timespec bts;
635 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
636 	return tlv_put(sctx, attr, &bts, sizeof(bts));
637 }
638 
639 
640 #define TLV_PUT(sctx, attrtype, data, attrlen) \
641 	do { \
642 		ret = tlv_put(sctx, attrtype, data, attrlen); \
643 		if (ret < 0) \
644 			goto tlv_put_failure; \
645 	} while (0)
646 
647 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
648 	do { \
649 		ret = tlv_put_u##bits(sctx, attrtype, value); \
650 		if (ret < 0) \
651 			goto tlv_put_failure; \
652 	} while (0)
653 
654 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
655 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
656 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
657 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
658 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
659 	do { \
660 		ret = tlv_put_string(sctx, attrtype, str, len); \
661 		if (ret < 0) \
662 			goto tlv_put_failure; \
663 	} while (0)
664 #define TLV_PUT_PATH(sctx, attrtype, p) \
665 	do { \
666 		ret = tlv_put_string(sctx, attrtype, p->start, \
667 			p->end - p->start); \
668 		if (ret < 0) \
669 			goto tlv_put_failure; \
670 	} while(0)
671 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
672 	do { \
673 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
674 		if (ret < 0) \
675 			goto tlv_put_failure; \
676 	} while (0)
677 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
678 	do { \
679 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
680 		if (ret < 0) \
681 			goto tlv_put_failure; \
682 	} while (0)
683 
684 static int send_header(struct send_ctx *sctx)
685 {
686 	struct btrfs_stream_header hdr;
687 
688 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
689 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
690 
691 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
692 					&sctx->send_off);
693 }
694 
695 /*
696  * For each command/item we want to send to userspace, we call this function.
697  */
698 static int begin_cmd(struct send_ctx *sctx, int cmd)
699 {
700 	struct btrfs_cmd_header *hdr;
701 
702 	if (WARN_ON(!sctx->send_buf))
703 		return -EINVAL;
704 
705 	BUG_ON(sctx->send_size);
706 
707 	sctx->send_size += sizeof(*hdr);
708 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
709 	put_unaligned_le16(cmd, &hdr->cmd);
710 
711 	return 0;
712 }
713 
714 static int send_cmd(struct send_ctx *sctx)
715 {
716 	int ret;
717 	struct btrfs_cmd_header *hdr;
718 	u32 crc;
719 
720 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
721 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
722 	put_unaligned_le32(0, &hdr->crc);
723 
724 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
725 	put_unaligned_le32(crc, &hdr->crc);
726 
727 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
728 					&sctx->send_off);
729 
730 	sctx->total_send_size += sctx->send_size;
731 	sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
732 	sctx->send_size = 0;
733 
734 	return ret;
735 }
736 
737 /*
738  * Sends a move instruction to user space
739  */
740 static int send_rename(struct send_ctx *sctx,
741 		     struct fs_path *from, struct fs_path *to)
742 {
743 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
744 	int ret;
745 
746 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
747 
748 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
749 	if (ret < 0)
750 		goto out;
751 
752 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
753 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
754 
755 	ret = send_cmd(sctx);
756 
757 tlv_put_failure:
758 out:
759 	return ret;
760 }
761 
762 /*
763  * Sends a link instruction to user space
764  */
765 static int send_link(struct send_ctx *sctx,
766 		     struct fs_path *path, struct fs_path *lnk)
767 {
768 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
769 	int ret;
770 
771 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
772 
773 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
774 	if (ret < 0)
775 		goto out;
776 
777 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
778 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
779 
780 	ret = send_cmd(sctx);
781 
782 tlv_put_failure:
783 out:
784 	return ret;
785 }
786 
787 /*
788  * Sends an unlink instruction to user space
789  */
790 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
791 {
792 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
793 	int ret;
794 
795 	btrfs_debug(fs_info, "send_unlink %s", path->start);
796 
797 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
798 	if (ret < 0)
799 		goto out;
800 
801 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
802 
803 	ret = send_cmd(sctx);
804 
805 tlv_put_failure:
806 out:
807 	return ret;
808 }
809 
810 /*
811  * Sends a rmdir instruction to user space
812  */
813 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
814 {
815 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
816 	int ret;
817 
818 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
819 
820 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
821 	if (ret < 0)
822 		goto out;
823 
824 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
825 
826 	ret = send_cmd(sctx);
827 
828 tlv_put_failure:
829 out:
830 	return ret;
831 }
832 
833 /*
834  * Helper function to retrieve some fields from an inode item.
835  */
836 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
837 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
838 			  u64 *gid, u64 *rdev)
839 {
840 	int ret;
841 	struct btrfs_inode_item *ii;
842 	struct btrfs_key key;
843 
844 	key.objectid = ino;
845 	key.type = BTRFS_INODE_ITEM_KEY;
846 	key.offset = 0;
847 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
848 	if (ret) {
849 		if (ret > 0)
850 			ret = -ENOENT;
851 		return ret;
852 	}
853 
854 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
855 			struct btrfs_inode_item);
856 	if (size)
857 		*size = btrfs_inode_size(path->nodes[0], ii);
858 	if (gen)
859 		*gen = btrfs_inode_generation(path->nodes[0], ii);
860 	if (mode)
861 		*mode = btrfs_inode_mode(path->nodes[0], ii);
862 	if (uid)
863 		*uid = btrfs_inode_uid(path->nodes[0], ii);
864 	if (gid)
865 		*gid = btrfs_inode_gid(path->nodes[0], ii);
866 	if (rdev)
867 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
868 
869 	return ret;
870 }
871 
872 static int get_inode_info(struct btrfs_root *root,
873 			  u64 ino, u64 *size, u64 *gen,
874 			  u64 *mode, u64 *uid, u64 *gid,
875 			  u64 *rdev)
876 {
877 	struct btrfs_path *path;
878 	int ret;
879 
880 	path = alloc_path_for_send();
881 	if (!path)
882 		return -ENOMEM;
883 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
884 			       rdev);
885 	btrfs_free_path(path);
886 	return ret;
887 }
888 
889 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
890 				   struct fs_path *p,
891 				   void *ctx);
892 
893 /*
894  * Helper function to iterate the entries in ONE btrfs_inode_ref or
895  * btrfs_inode_extref.
896  * The iterate callback may return a non zero value to stop iteration. This can
897  * be a negative value for error codes or 1 to simply stop it.
898  *
899  * path must point to the INODE_REF or INODE_EXTREF when called.
900  */
901 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
902 			     struct btrfs_key *found_key, int resolve,
903 			     iterate_inode_ref_t iterate, void *ctx)
904 {
905 	struct extent_buffer *eb = path->nodes[0];
906 	struct btrfs_inode_ref *iref;
907 	struct btrfs_inode_extref *extref;
908 	struct btrfs_path *tmp_path;
909 	struct fs_path *p;
910 	u32 cur = 0;
911 	u32 total;
912 	int slot = path->slots[0];
913 	u32 name_len;
914 	char *start;
915 	int ret = 0;
916 	int num = 0;
917 	int index;
918 	u64 dir;
919 	unsigned long name_off;
920 	unsigned long elem_size;
921 	unsigned long ptr;
922 
923 	p = fs_path_alloc_reversed();
924 	if (!p)
925 		return -ENOMEM;
926 
927 	tmp_path = alloc_path_for_send();
928 	if (!tmp_path) {
929 		fs_path_free(p);
930 		return -ENOMEM;
931 	}
932 
933 
934 	if (found_key->type == BTRFS_INODE_REF_KEY) {
935 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
936 						    struct btrfs_inode_ref);
937 		total = btrfs_item_size(eb, slot);
938 		elem_size = sizeof(*iref);
939 	} else {
940 		ptr = btrfs_item_ptr_offset(eb, slot);
941 		total = btrfs_item_size(eb, slot);
942 		elem_size = sizeof(*extref);
943 	}
944 
945 	while (cur < total) {
946 		fs_path_reset(p);
947 
948 		if (found_key->type == BTRFS_INODE_REF_KEY) {
949 			iref = (struct btrfs_inode_ref *)(ptr + cur);
950 			name_len = btrfs_inode_ref_name_len(eb, iref);
951 			name_off = (unsigned long)(iref + 1);
952 			index = btrfs_inode_ref_index(eb, iref);
953 			dir = found_key->offset;
954 		} else {
955 			extref = (struct btrfs_inode_extref *)(ptr + cur);
956 			name_len = btrfs_inode_extref_name_len(eb, extref);
957 			name_off = (unsigned long)&extref->name;
958 			index = btrfs_inode_extref_index(eb, extref);
959 			dir = btrfs_inode_extref_parent(eb, extref);
960 		}
961 
962 		if (resolve) {
963 			start = btrfs_ref_to_path(root, tmp_path, name_len,
964 						  name_off, eb, dir,
965 						  p->buf, p->buf_len);
966 			if (IS_ERR(start)) {
967 				ret = PTR_ERR(start);
968 				goto out;
969 			}
970 			if (start < p->buf) {
971 				/* overflow , try again with larger buffer */
972 				ret = fs_path_ensure_buf(p,
973 						p->buf_len + p->buf - start);
974 				if (ret < 0)
975 					goto out;
976 				start = btrfs_ref_to_path(root, tmp_path,
977 							  name_len, name_off,
978 							  eb, dir,
979 							  p->buf, p->buf_len);
980 				if (IS_ERR(start)) {
981 					ret = PTR_ERR(start);
982 					goto out;
983 				}
984 				BUG_ON(start < p->buf);
985 			}
986 			p->start = start;
987 		} else {
988 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
989 							     name_len);
990 			if (ret < 0)
991 				goto out;
992 		}
993 
994 		cur += elem_size + name_len;
995 		ret = iterate(num, dir, index, p, ctx);
996 		if (ret)
997 			goto out;
998 		num++;
999 	}
1000 
1001 out:
1002 	btrfs_free_path(tmp_path);
1003 	fs_path_free(p);
1004 	return ret;
1005 }
1006 
1007 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1008 				  const char *name, int name_len,
1009 				  const char *data, int data_len,
1010 				  void *ctx);
1011 
1012 /*
1013  * Helper function to iterate the entries in ONE btrfs_dir_item.
1014  * The iterate callback may return a non zero value to stop iteration. This can
1015  * be a negative value for error codes or 1 to simply stop it.
1016  *
1017  * path must point to the dir item when called.
1018  */
1019 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1020 			    iterate_dir_item_t iterate, void *ctx)
1021 {
1022 	int ret = 0;
1023 	struct extent_buffer *eb;
1024 	struct btrfs_dir_item *di;
1025 	struct btrfs_key di_key;
1026 	char *buf = NULL;
1027 	int buf_len;
1028 	u32 name_len;
1029 	u32 data_len;
1030 	u32 cur;
1031 	u32 len;
1032 	u32 total;
1033 	int slot;
1034 	int num;
1035 
1036 	/*
1037 	 * Start with a small buffer (1 page). If later we end up needing more
1038 	 * space, which can happen for xattrs on a fs with a leaf size greater
1039 	 * then the page size, attempt to increase the buffer. Typically xattr
1040 	 * values are small.
1041 	 */
1042 	buf_len = PATH_MAX;
1043 	buf = kmalloc(buf_len, GFP_KERNEL);
1044 	if (!buf) {
1045 		ret = -ENOMEM;
1046 		goto out;
1047 	}
1048 
1049 	eb = path->nodes[0];
1050 	slot = path->slots[0];
1051 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1052 	cur = 0;
1053 	len = 0;
1054 	total = btrfs_item_size(eb, slot);
1055 
1056 	num = 0;
1057 	while (cur < total) {
1058 		name_len = btrfs_dir_name_len(eb, di);
1059 		data_len = btrfs_dir_data_len(eb, di);
1060 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1061 
1062 		if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) {
1063 			if (name_len > XATTR_NAME_MAX) {
1064 				ret = -ENAMETOOLONG;
1065 				goto out;
1066 			}
1067 			if (name_len + data_len >
1068 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1069 				ret = -E2BIG;
1070 				goto out;
1071 			}
1072 		} else {
1073 			/*
1074 			 * Path too long
1075 			 */
1076 			if (name_len + data_len > PATH_MAX) {
1077 				ret = -ENAMETOOLONG;
1078 				goto out;
1079 			}
1080 		}
1081 
1082 		if (name_len + data_len > buf_len) {
1083 			buf_len = name_len + data_len;
1084 			if (is_vmalloc_addr(buf)) {
1085 				vfree(buf);
1086 				buf = NULL;
1087 			} else {
1088 				char *tmp = krealloc(buf, buf_len,
1089 						GFP_KERNEL | __GFP_NOWARN);
1090 
1091 				if (!tmp)
1092 					kfree(buf);
1093 				buf = tmp;
1094 			}
1095 			if (!buf) {
1096 				buf = kvmalloc(buf_len, GFP_KERNEL);
1097 				if (!buf) {
1098 					ret = -ENOMEM;
1099 					goto out;
1100 				}
1101 			}
1102 		}
1103 
1104 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1105 				name_len + data_len);
1106 
1107 		len = sizeof(*di) + name_len + data_len;
1108 		di = (struct btrfs_dir_item *)((char *)di + len);
1109 		cur += len;
1110 
1111 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1112 			      data_len, ctx);
1113 		if (ret < 0)
1114 			goto out;
1115 		if (ret) {
1116 			ret = 0;
1117 			goto out;
1118 		}
1119 
1120 		num++;
1121 	}
1122 
1123 out:
1124 	kvfree(buf);
1125 	return ret;
1126 }
1127 
1128 static int __copy_first_ref(int num, u64 dir, int index,
1129 			    struct fs_path *p, void *ctx)
1130 {
1131 	int ret;
1132 	struct fs_path *pt = ctx;
1133 
1134 	ret = fs_path_copy(pt, p);
1135 	if (ret < 0)
1136 		return ret;
1137 
1138 	/* we want the first only */
1139 	return 1;
1140 }
1141 
1142 /*
1143  * Retrieve the first path of an inode. If an inode has more then one
1144  * ref/hardlink, this is ignored.
1145  */
1146 static int get_inode_path(struct btrfs_root *root,
1147 			  u64 ino, struct fs_path *path)
1148 {
1149 	int ret;
1150 	struct btrfs_key key, found_key;
1151 	struct btrfs_path *p;
1152 
1153 	p = alloc_path_for_send();
1154 	if (!p)
1155 		return -ENOMEM;
1156 
1157 	fs_path_reset(path);
1158 
1159 	key.objectid = ino;
1160 	key.type = BTRFS_INODE_REF_KEY;
1161 	key.offset = 0;
1162 
1163 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1164 	if (ret < 0)
1165 		goto out;
1166 	if (ret) {
1167 		ret = 1;
1168 		goto out;
1169 	}
1170 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1171 	if (found_key.objectid != ino ||
1172 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1173 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1174 		ret = -ENOENT;
1175 		goto out;
1176 	}
1177 
1178 	ret = iterate_inode_ref(root, p, &found_key, 1,
1179 				__copy_first_ref, path);
1180 	if (ret < 0)
1181 		goto out;
1182 	ret = 0;
1183 
1184 out:
1185 	btrfs_free_path(p);
1186 	return ret;
1187 }
1188 
1189 struct backref_ctx {
1190 	struct send_ctx *sctx;
1191 
1192 	/* number of total found references */
1193 	u64 found;
1194 
1195 	/*
1196 	 * used for clones found in send_root. clones found behind cur_objectid
1197 	 * and cur_offset are not considered as allowed clones.
1198 	 */
1199 	u64 cur_objectid;
1200 	u64 cur_offset;
1201 
1202 	/* may be truncated in case it's the last extent in a file */
1203 	u64 extent_len;
1204 
1205 	/* Just to check for bugs in backref resolving */
1206 	int found_itself;
1207 };
1208 
1209 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1210 {
1211 	u64 root = (u64)(uintptr_t)key;
1212 	const struct clone_root *cr = elt;
1213 
1214 	if (root < cr->root->root_key.objectid)
1215 		return -1;
1216 	if (root > cr->root->root_key.objectid)
1217 		return 1;
1218 	return 0;
1219 }
1220 
1221 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1222 {
1223 	const struct clone_root *cr1 = e1;
1224 	const struct clone_root *cr2 = e2;
1225 
1226 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1227 		return -1;
1228 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1229 		return 1;
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Called for every backref that is found for the current extent.
1235  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1236  */
1237 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1238 {
1239 	struct backref_ctx *bctx = ctx_;
1240 	struct clone_root *found;
1241 
1242 	/* First check if the root is in the list of accepted clone sources */
1243 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1244 			bctx->sctx->clone_roots_cnt,
1245 			sizeof(struct clone_root),
1246 			__clone_root_cmp_bsearch);
1247 	if (!found)
1248 		return 0;
1249 
1250 	if (found->root == bctx->sctx->send_root &&
1251 	    ino == bctx->cur_objectid &&
1252 	    offset == bctx->cur_offset) {
1253 		bctx->found_itself = 1;
1254 	}
1255 
1256 	/*
1257 	 * Make sure we don't consider clones from send_root that are
1258 	 * behind the current inode/offset.
1259 	 */
1260 	if (found->root == bctx->sctx->send_root) {
1261 		/*
1262 		 * If the source inode was not yet processed we can't issue a
1263 		 * clone operation, as the source extent does not exist yet at
1264 		 * the destination of the stream.
1265 		 */
1266 		if (ino > bctx->cur_objectid)
1267 			return 0;
1268 		/*
1269 		 * We clone from the inode currently being sent as long as the
1270 		 * source extent is already processed, otherwise we could try
1271 		 * to clone from an extent that does not exist yet at the
1272 		 * destination of the stream.
1273 		 */
1274 		if (ino == bctx->cur_objectid &&
1275 		    offset + bctx->extent_len >
1276 		    bctx->sctx->cur_inode_next_write_offset)
1277 			return 0;
1278 	}
1279 
1280 	bctx->found++;
1281 	found->found_refs++;
1282 	if (ino < found->ino) {
1283 		found->ino = ino;
1284 		found->offset = offset;
1285 	} else if (found->ino == ino) {
1286 		/*
1287 		 * same extent found more then once in the same file.
1288 		 */
1289 		if (found->offset > offset + bctx->extent_len)
1290 			found->offset = offset;
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Given an inode, offset and extent item, it finds a good clone for a clone
1298  * instruction. Returns -ENOENT when none could be found. The function makes
1299  * sure that the returned clone is usable at the point where sending is at the
1300  * moment. This means, that no clones are accepted which lie behind the current
1301  * inode+offset.
1302  *
1303  * path must point to the extent item when called.
1304  */
1305 static int find_extent_clone(struct send_ctx *sctx,
1306 			     struct btrfs_path *path,
1307 			     u64 ino, u64 data_offset,
1308 			     u64 ino_size,
1309 			     struct clone_root **found)
1310 {
1311 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1312 	int ret;
1313 	int extent_type;
1314 	u64 logical;
1315 	u64 disk_byte;
1316 	u64 num_bytes;
1317 	u64 extent_item_pos;
1318 	u64 flags = 0;
1319 	struct btrfs_file_extent_item *fi;
1320 	struct extent_buffer *eb = path->nodes[0];
1321 	struct backref_ctx backref_ctx = {0};
1322 	struct clone_root *cur_clone_root;
1323 	struct btrfs_key found_key;
1324 	struct btrfs_path *tmp_path;
1325 	struct btrfs_extent_item *ei;
1326 	int compressed;
1327 	u32 i;
1328 
1329 	tmp_path = alloc_path_for_send();
1330 	if (!tmp_path)
1331 		return -ENOMEM;
1332 
1333 	/* We only use this path under the commit sem */
1334 	tmp_path->need_commit_sem = 0;
1335 
1336 	if (data_offset >= ino_size) {
1337 		/*
1338 		 * There may be extents that lie behind the file's size.
1339 		 * I at least had this in combination with snapshotting while
1340 		 * writing large files.
1341 		 */
1342 		ret = 0;
1343 		goto out;
1344 	}
1345 
1346 	fi = btrfs_item_ptr(eb, path->slots[0],
1347 			struct btrfs_file_extent_item);
1348 	extent_type = btrfs_file_extent_type(eb, fi);
1349 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1350 		ret = -ENOENT;
1351 		goto out;
1352 	}
1353 	compressed = btrfs_file_extent_compression(eb, fi);
1354 
1355 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1356 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1357 	if (disk_byte == 0) {
1358 		ret = -ENOENT;
1359 		goto out;
1360 	}
1361 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1362 
1363 	down_read(&fs_info->commit_root_sem);
1364 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1365 				  &found_key, &flags);
1366 	up_read(&fs_info->commit_root_sem);
1367 
1368 	if (ret < 0)
1369 		goto out;
1370 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1371 		ret = -EIO;
1372 		goto out;
1373 	}
1374 
1375 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1376 			    struct btrfs_extent_item);
1377 	/*
1378 	 * Backreference walking (iterate_extent_inodes() below) is currently
1379 	 * too expensive when an extent has a large number of references, both
1380 	 * in time spent and used memory. So for now just fallback to write
1381 	 * operations instead of clone operations when an extent has more than
1382 	 * a certain amount of references.
1383 	 */
1384 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1385 		ret = -ENOENT;
1386 		goto out;
1387 	}
1388 	btrfs_release_path(tmp_path);
1389 
1390 	/*
1391 	 * Setup the clone roots.
1392 	 */
1393 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1394 		cur_clone_root = sctx->clone_roots + i;
1395 		cur_clone_root->ino = (u64)-1;
1396 		cur_clone_root->offset = 0;
1397 		cur_clone_root->found_refs = 0;
1398 	}
1399 
1400 	backref_ctx.sctx = sctx;
1401 	backref_ctx.found = 0;
1402 	backref_ctx.cur_objectid = ino;
1403 	backref_ctx.cur_offset = data_offset;
1404 	backref_ctx.found_itself = 0;
1405 	backref_ctx.extent_len = num_bytes;
1406 
1407 	/*
1408 	 * The last extent of a file may be too large due to page alignment.
1409 	 * We need to adjust extent_len in this case so that the checks in
1410 	 * __iterate_backrefs work.
1411 	 */
1412 	if (data_offset + num_bytes >= ino_size)
1413 		backref_ctx.extent_len = ino_size - data_offset;
1414 
1415 	/*
1416 	 * Now collect all backrefs.
1417 	 */
1418 	if (compressed == BTRFS_COMPRESS_NONE)
1419 		extent_item_pos = logical - found_key.objectid;
1420 	else
1421 		extent_item_pos = 0;
1422 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1423 				    extent_item_pos, 1, __iterate_backrefs,
1424 				    &backref_ctx, false);
1425 
1426 	if (ret < 0)
1427 		goto out;
1428 
1429 	down_read(&fs_info->commit_root_sem);
1430 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1431 		/*
1432 		 * A transaction commit for a transaction in which block group
1433 		 * relocation was done just happened.
1434 		 * The disk_bytenr of the file extent item we processed is
1435 		 * possibly stale, referring to the extent's location before
1436 		 * relocation. So act as if we haven't found any clone sources
1437 		 * and fallback to write commands, which will read the correct
1438 		 * data from the new extent location. Otherwise we will fail
1439 		 * below because we haven't found our own back reference or we
1440 		 * could be getting incorrect sources in case the old extent
1441 		 * was already reallocated after the relocation.
1442 		 */
1443 		up_read(&fs_info->commit_root_sem);
1444 		ret = -ENOENT;
1445 		goto out;
1446 	}
1447 	up_read(&fs_info->commit_root_sem);
1448 
1449 	if (!backref_ctx.found_itself) {
1450 		/* found a bug in backref code? */
1451 		ret = -EIO;
1452 		btrfs_err(fs_info,
1453 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1454 			  ino, data_offset, disk_byte, found_key.objectid);
1455 		goto out;
1456 	}
1457 
1458 	btrfs_debug(fs_info,
1459 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1460 		    data_offset, ino, num_bytes, logical);
1461 
1462 	if (!backref_ctx.found)
1463 		btrfs_debug(fs_info, "no clones found");
1464 
1465 	cur_clone_root = NULL;
1466 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1467 		if (sctx->clone_roots[i].found_refs) {
1468 			if (!cur_clone_root)
1469 				cur_clone_root = sctx->clone_roots + i;
1470 			else if (sctx->clone_roots[i].root == sctx->send_root)
1471 				/* prefer clones from send_root over others */
1472 				cur_clone_root = sctx->clone_roots + i;
1473 		}
1474 
1475 	}
1476 
1477 	if (cur_clone_root) {
1478 		*found = cur_clone_root;
1479 		ret = 0;
1480 	} else {
1481 		ret = -ENOENT;
1482 	}
1483 
1484 out:
1485 	btrfs_free_path(tmp_path);
1486 	return ret;
1487 }
1488 
1489 static int read_symlink(struct btrfs_root *root,
1490 			u64 ino,
1491 			struct fs_path *dest)
1492 {
1493 	int ret;
1494 	struct btrfs_path *path;
1495 	struct btrfs_key key;
1496 	struct btrfs_file_extent_item *ei;
1497 	u8 type;
1498 	u8 compression;
1499 	unsigned long off;
1500 	int len;
1501 
1502 	path = alloc_path_for_send();
1503 	if (!path)
1504 		return -ENOMEM;
1505 
1506 	key.objectid = ino;
1507 	key.type = BTRFS_EXTENT_DATA_KEY;
1508 	key.offset = 0;
1509 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1510 	if (ret < 0)
1511 		goto out;
1512 	if (ret) {
1513 		/*
1514 		 * An empty symlink inode. Can happen in rare error paths when
1515 		 * creating a symlink (transaction committed before the inode
1516 		 * eviction handler removed the symlink inode items and a crash
1517 		 * happened in between or the subvol was snapshoted in between).
1518 		 * Print an informative message to dmesg/syslog so that the user
1519 		 * can delete the symlink.
1520 		 */
1521 		btrfs_err(root->fs_info,
1522 			  "Found empty symlink inode %llu at root %llu",
1523 			  ino, root->root_key.objectid);
1524 		ret = -EIO;
1525 		goto out;
1526 	}
1527 
1528 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1529 			struct btrfs_file_extent_item);
1530 	type = btrfs_file_extent_type(path->nodes[0], ei);
1531 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1532 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1533 	BUG_ON(compression);
1534 
1535 	off = btrfs_file_extent_inline_start(ei);
1536 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1537 
1538 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1539 
1540 out:
1541 	btrfs_free_path(path);
1542 	return ret;
1543 }
1544 
1545 /*
1546  * Helper function to generate a file name that is unique in the root of
1547  * send_root and parent_root. This is used to generate names for orphan inodes.
1548  */
1549 static int gen_unique_name(struct send_ctx *sctx,
1550 			   u64 ino, u64 gen,
1551 			   struct fs_path *dest)
1552 {
1553 	int ret = 0;
1554 	struct btrfs_path *path;
1555 	struct btrfs_dir_item *di;
1556 	char tmp[64];
1557 	int len;
1558 	u64 idx = 0;
1559 
1560 	path = alloc_path_for_send();
1561 	if (!path)
1562 		return -ENOMEM;
1563 
1564 	while (1) {
1565 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1566 				ino, gen, idx);
1567 		ASSERT(len < sizeof(tmp));
1568 
1569 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1570 				path, BTRFS_FIRST_FREE_OBJECTID,
1571 				tmp, strlen(tmp), 0);
1572 		btrfs_release_path(path);
1573 		if (IS_ERR(di)) {
1574 			ret = PTR_ERR(di);
1575 			goto out;
1576 		}
1577 		if (di) {
1578 			/* not unique, try again */
1579 			idx++;
1580 			continue;
1581 		}
1582 
1583 		if (!sctx->parent_root) {
1584 			/* unique */
1585 			ret = 0;
1586 			break;
1587 		}
1588 
1589 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1590 				path, BTRFS_FIRST_FREE_OBJECTID,
1591 				tmp, strlen(tmp), 0);
1592 		btrfs_release_path(path);
1593 		if (IS_ERR(di)) {
1594 			ret = PTR_ERR(di);
1595 			goto out;
1596 		}
1597 		if (di) {
1598 			/* not unique, try again */
1599 			idx++;
1600 			continue;
1601 		}
1602 		/* unique */
1603 		break;
1604 	}
1605 
1606 	ret = fs_path_add(dest, tmp, strlen(tmp));
1607 
1608 out:
1609 	btrfs_free_path(path);
1610 	return ret;
1611 }
1612 
1613 enum inode_state {
1614 	inode_state_no_change,
1615 	inode_state_will_create,
1616 	inode_state_did_create,
1617 	inode_state_will_delete,
1618 	inode_state_did_delete,
1619 };
1620 
1621 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1622 {
1623 	int ret;
1624 	int left_ret;
1625 	int right_ret;
1626 	u64 left_gen;
1627 	u64 right_gen;
1628 
1629 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1630 			NULL, NULL);
1631 	if (ret < 0 && ret != -ENOENT)
1632 		goto out;
1633 	left_ret = ret;
1634 
1635 	if (!sctx->parent_root) {
1636 		right_ret = -ENOENT;
1637 	} else {
1638 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1639 				NULL, NULL, NULL, NULL);
1640 		if (ret < 0 && ret != -ENOENT)
1641 			goto out;
1642 		right_ret = ret;
1643 	}
1644 
1645 	if (!left_ret && !right_ret) {
1646 		if (left_gen == gen && right_gen == gen) {
1647 			ret = inode_state_no_change;
1648 		} else if (left_gen == gen) {
1649 			if (ino < sctx->send_progress)
1650 				ret = inode_state_did_create;
1651 			else
1652 				ret = inode_state_will_create;
1653 		} else if (right_gen == gen) {
1654 			if (ino < sctx->send_progress)
1655 				ret = inode_state_did_delete;
1656 			else
1657 				ret = inode_state_will_delete;
1658 		} else  {
1659 			ret = -ENOENT;
1660 		}
1661 	} else if (!left_ret) {
1662 		if (left_gen == gen) {
1663 			if (ino < sctx->send_progress)
1664 				ret = inode_state_did_create;
1665 			else
1666 				ret = inode_state_will_create;
1667 		} else {
1668 			ret = -ENOENT;
1669 		}
1670 	} else if (!right_ret) {
1671 		if (right_gen == gen) {
1672 			if (ino < sctx->send_progress)
1673 				ret = inode_state_did_delete;
1674 			else
1675 				ret = inode_state_will_delete;
1676 		} else {
1677 			ret = -ENOENT;
1678 		}
1679 	} else {
1680 		ret = -ENOENT;
1681 	}
1682 
1683 out:
1684 	return ret;
1685 }
1686 
1687 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1688 {
1689 	int ret;
1690 
1691 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1692 		return 1;
1693 
1694 	ret = get_cur_inode_state(sctx, ino, gen);
1695 	if (ret < 0)
1696 		goto out;
1697 
1698 	if (ret == inode_state_no_change ||
1699 	    ret == inode_state_did_create ||
1700 	    ret == inode_state_will_delete)
1701 		ret = 1;
1702 	else
1703 		ret = 0;
1704 
1705 out:
1706 	return ret;
1707 }
1708 
1709 /*
1710  * Helper function to lookup a dir item in a dir.
1711  */
1712 static int lookup_dir_item_inode(struct btrfs_root *root,
1713 				 u64 dir, const char *name, int name_len,
1714 				 u64 *found_inode)
1715 {
1716 	int ret = 0;
1717 	struct btrfs_dir_item *di;
1718 	struct btrfs_key key;
1719 	struct btrfs_path *path;
1720 
1721 	path = alloc_path_for_send();
1722 	if (!path)
1723 		return -ENOMEM;
1724 
1725 	di = btrfs_lookup_dir_item(NULL, root, path,
1726 			dir, name, name_len, 0);
1727 	if (IS_ERR_OR_NULL(di)) {
1728 		ret = di ? PTR_ERR(di) : -ENOENT;
1729 		goto out;
1730 	}
1731 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1732 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1733 		ret = -ENOENT;
1734 		goto out;
1735 	}
1736 	*found_inode = key.objectid;
1737 
1738 out:
1739 	btrfs_free_path(path);
1740 	return ret;
1741 }
1742 
1743 /*
1744  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1745  * generation of the parent dir and the name of the dir entry.
1746  */
1747 static int get_first_ref(struct btrfs_root *root, u64 ino,
1748 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1749 {
1750 	int ret;
1751 	struct btrfs_key key;
1752 	struct btrfs_key found_key;
1753 	struct btrfs_path *path;
1754 	int len;
1755 	u64 parent_dir;
1756 
1757 	path = alloc_path_for_send();
1758 	if (!path)
1759 		return -ENOMEM;
1760 
1761 	key.objectid = ino;
1762 	key.type = BTRFS_INODE_REF_KEY;
1763 	key.offset = 0;
1764 
1765 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1766 	if (ret < 0)
1767 		goto out;
1768 	if (!ret)
1769 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1770 				path->slots[0]);
1771 	if (ret || found_key.objectid != ino ||
1772 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1773 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1774 		ret = -ENOENT;
1775 		goto out;
1776 	}
1777 
1778 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1779 		struct btrfs_inode_ref *iref;
1780 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1781 				      struct btrfs_inode_ref);
1782 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1783 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1784 						     (unsigned long)(iref + 1),
1785 						     len);
1786 		parent_dir = found_key.offset;
1787 	} else {
1788 		struct btrfs_inode_extref *extref;
1789 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1790 					struct btrfs_inode_extref);
1791 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1792 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1793 					(unsigned long)&extref->name, len);
1794 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1795 	}
1796 	if (ret < 0)
1797 		goto out;
1798 	btrfs_release_path(path);
1799 
1800 	if (dir_gen) {
1801 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1802 				     NULL, NULL, NULL);
1803 		if (ret < 0)
1804 			goto out;
1805 	}
1806 
1807 	*dir = parent_dir;
1808 
1809 out:
1810 	btrfs_free_path(path);
1811 	return ret;
1812 }
1813 
1814 static int is_first_ref(struct btrfs_root *root,
1815 			u64 ino, u64 dir,
1816 			const char *name, int name_len)
1817 {
1818 	int ret;
1819 	struct fs_path *tmp_name;
1820 	u64 tmp_dir;
1821 
1822 	tmp_name = fs_path_alloc();
1823 	if (!tmp_name)
1824 		return -ENOMEM;
1825 
1826 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1827 	if (ret < 0)
1828 		goto out;
1829 
1830 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1831 		ret = 0;
1832 		goto out;
1833 	}
1834 
1835 	ret = !memcmp(tmp_name->start, name, name_len);
1836 
1837 out:
1838 	fs_path_free(tmp_name);
1839 	return ret;
1840 }
1841 
1842 /*
1843  * Used by process_recorded_refs to determine if a new ref would overwrite an
1844  * already existing ref. In case it detects an overwrite, it returns the
1845  * inode/gen in who_ino/who_gen.
1846  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1847  * to make sure later references to the overwritten inode are possible.
1848  * Orphanizing is however only required for the first ref of an inode.
1849  * process_recorded_refs does an additional is_first_ref check to see if
1850  * orphanizing is really required.
1851  */
1852 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1853 			      const char *name, int name_len,
1854 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1855 {
1856 	int ret = 0;
1857 	u64 gen;
1858 	u64 other_inode = 0;
1859 
1860 	if (!sctx->parent_root)
1861 		goto out;
1862 
1863 	ret = is_inode_existent(sctx, dir, dir_gen);
1864 	if (ret <= 0)
1865 		goto out;
1866 
1867 	/*
1868 	 * If we have a parent root we need to verify that the parent dir was
1869 	 * not deleted and then re-created, if it was then we have no overwrite
1870 	 * and we can just unlink this entry.
1871 	 */
1872 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1873 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1874 				     NULL, NULL, NULL);
1875 		if (ret < 0 && ret != -ENOENT)
1876 			goto out;
1877 		if (ret) {
1878 			ret = 0;
1879 			goto out;
1880 		}
1881 		if (gen != dir_gen)
1882 			goto out;
1883 	}
1884 
1885 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1886 				    &other_inode);
1887 	if (ret < 0 && ret != -ENOENT)
1888 		goto out;
1889 	if (ret) {
1890 		ret = 0;
1891 		goto out;
1892 	}
1893 
1894 	/*
1895 	 * Check if the overwritten ref was already processed. If yes, the ref
1896 	 * was already unlinked/moved, so we can safely assume that we will not
1897 	 * overwrite anything at this point in time.
1898 	 */
1899 	if (other_inode > sctx->send_progress ||
1900 	    is_waiting_for_move(sctx, other_inode)) {
1901 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1902 				who_gen, who_mode, NULL, NULL, NULL);
1903 		if (ret < 0)
1904 			goto out;
1905 
1906 		ret = 1;
1907 		*who_ino = other_inode;
1908 	} else {
1909 		ret = 0;
1910 	}
1911 
1912 out:
1913 	return ret;
1914 }
1915 
1916 /*
1917  * Checks if the ref was overwritten by an already processed inode. This is
1918  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1919  * thus the orphan name needs be used.
1920  * process_recorded_refs also uses it to avoid unlinking of refs that were
1921  * overwritten.
1922  */
1923 static int did_overwrite_ref(struct send_ctx *sctx,
1924 			    u64 dir, u64 dir_gen,
1925 			    u64 ino, u64 ino_gen,
1926 			    const char *name, int name_len)
1927 {
1928 	int ret = 0;
1929 	u64 gen;
1930 	u64 ow_inode;
1931 
1932 	if (!sctx->parent_root)
1933 		goto out;
1934 
1935 	ret = is_inode_existent(sctx, dir, dir_gen);
1936 	if (ret <= 0)
1937 		goto out;
1938 
1939 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1940 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1941 				     NULL, NULL, NULL);
1942 		if (ret < 0 && ret != -ENOENT)
1943 			goto out;
1944 		if (ret) {
1945 			ret = 0;
1946 			goto out;
1947 		}
1948 		if (gen != dir_gen)
1949 			goto out;
1950 	}
1951 
1952 	/* check if the ref was overwritten by another ref */
1953 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1954 				    &ow_inode);
1955 	if (ret < 0 && ret != -ENOENT)
1956 		goto out;
1957 	if (ret) {
1958 		/* was never and will never be overwritten */
1959 		ret = 0;
1960 		goto out;
1961 	}
1962 
1963 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1964 			NULL, NULL);
1965 	if (ret < 0)
1966 		goto out;
1967 
1968 	if (ow_inode == ino && gen == ino_gen) {
1969 		ret = 0;
1970 		goto out;
1971 	}
1972 
1973 	/*
1974 	 * We know that it is or will be overwritten. Check this now.
1975 	 * The current inode being processed might have been the one that caused
1976 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1977 	 * the current inode being processed.
1978 	 */
1979 	if ((ow_inode < sctx->send_progress) ||
1980 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1981 	     gen == sctx->cur_inode_gen))
1982 		ret = 1;
1983 	else
1984 		ret = 0;
1985 
1986 out:
1987 	return ret;
1988 }
1989 
1990 /*
1991  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1992  * that got overwritten. This is used by process_recorded_refs to determine
1993  * if it has to use the path as returned by get_cur_path or the orphan name.
1994  */
1995 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1996 {
1997 	int ret = 0;
1998 	struct fs_path *name = NULL;
1999 	u64 dir;
2000 	u64 dir_gen;
2001 
2002 	if (!sctx->parent_root)
2003 		goto out;
2004 
2005 	name = fs_path_alloc();
2006 	if (!name)
2007 		return -ENOMEM;
2008 
2009 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2010 	if (ret < 0)
2011 		goto out;
2012 
2013 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2014 			name->start, fs_path_len(name));
2015 
2016 out:
2017 	fs_path_free(name);
2018 	return ret;
2019 }
2020 
2021 /*
2022  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2023  * so we need to do some special handling in case we have clashes. This function
2024  * takes care of this with the help of name_cache_entry::radix_list.
2025  * In case of error, nce is kfreed.
2026  */
2027 static int name_cache_insert(struct send_ctx *sctx,
2028 			     struct name_cache_entry *nce)
2029 {
2030 	int ret = 0;
2031 	struct list_head *nce_head;
2032 
2033 	nce_head = radix_tree_lookup(&sctx->name_cache,
2034 			(unsigned long)nce->ino);
2035 	if (!nce_head) {
2036 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2037 		if (!nce_head) {
2038 			kfree(nce);
2039 			return -ENOMEM;
2040 		}
2041 		INIT_LIST_HEAD(nce_head);
2042 
2043 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2044 		if (ret < 0) {
2045 			kfree(nce_head);
2046 			kfree(nce);
2047 			return ret;
2048 		}
2049 	}
2050 	list_add_tail(&nce->radix_list, nce_head);
2051 	list_add_tail(&nce->list, &sctx->name_cache_list);
2052 	sctx->name_cache_size++;
2053 
2054 	return ret;
2055 }
2056 
2057 static void name_cache_delete(struct send_ctx *sctx,
2058 			      struct name_cache_entry *nce)
2059 {
2060 	struct list_head *nce_head;
2061 
2062 	nce_head = radix_tree_lookup(&sctx->name_cache,
2063 			(unsigned long)nce->ino);
2064 	if (!nce_head) {
2065 		btrfs_err(sctx->send_root->fs_info,
2066 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2067 			nce->ino, sctx->name_cache_size);
2068 	}
2069 
2070 	list_del(&nce->radix_list);
2071 	list_del(&nce->list);
2072 	sctx->name_cache_size--;
2073 
2074 	/*
2075 	 * We may not get to the final release of nce_head if the lookup fails
2076 	 */
2077 	if (nce_head && list_empty(nce_head)) {
2078 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2079 		kfree(nce_head);
2080 	}
2081 }
2082 
2083 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2084 						    u64 ino, u64 gen)
2085 {
2086 	struct list_head *nce_head;
2087 	struct name_cache_entry *cur;
2088 
2089 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2090 	if (!nce_head)
2091 		return NULL;
2092 
2093 	list_for_each_entry(cur, nce_head, radix_list) {
2094 		if (cur->ino == ino && cur->gen == gen)
2095 			return cur;
2096 	}
2097 	return NULL;
2098 }
2099 
2100 /*
2101  * Remove some entries from the beginning of name_cache_list.
2102  */
2103 static void name_cache_clean_unused(struct send_ctx *sctx)
2104 {
2105 	struct name_cache_entry *nce;
2106 
2107 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2108 		return;
2109 
2110 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2111 		nce = list_entry(sctx->name_cache_list.next,
2112 				struct name_cache_entry, list);
2113 		name_cache_delete(sctx, nce);
2114 		kfree(nce);
2115 	}
2116 }
2117 
2118 static void name_cache_free(struct send_ctx *sctx)
2119 {
2120 	struct name_cache_entry *nce;
2121 
2122 	while (!list_empty(&sctx->name_cache_list)) {
2123 		nce = list_entry(sctx->name_cache_list.next,
2124 				struct name_cache_entry, list);
2125 		name_cache_delete(sctx, nce);
2126 		kfree(nce);
2127 	}
2128 }
2129 
2130 /*
2131  * Used by get_cur_path for each ref up to the root.
2132  * Returns 0 if it succeeded.
2133  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2134  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2135  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2136  * Returns <0 in case of error.
2137  */
2138 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2139 				     u64 ino, u64 gen,
2140 				     u64 *parent_ino,
2141 				     u64 *parent_gen,
2142 				     struct fs_path *dest)
2143 {
2144 	int ret;
2145 	int nce_ret;
2146 	struct name_cache_entry *nce = NULL;
2147 
2148 	/*
2149 	 * First check if we already did a call to this function with the same
2150 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2151 	 * return the cached result.
2152 	 */
2153 	nce = name_cache_search(sctx, ino, gen);
2154 	if (nce) {
2155 		if (ino < sctx->send_progress && nce->need_later_update) {
2156 			name_cache_delete(sctx, nce);
2157 			kfree(nce);
2158 			nce = NULL;
2159 		} else {
2160 			/*
2161 			 * Removes the entry from the list and adds it back to
2162 			 * the end.  This marks the entry as recently used so
2163 			 * that name_cache_clean_unused does not remove it.
2164 			 */
2165 			list_move_tail(&nce->list, &sctx->name_cache_list);
2166 
2167 			*parent_ino = nce->parent_ino;
2168 			*parent_gen = nce->parent_gen;
2169 			ret = fs_path_add(dest, nce->name, nce->name_len);
2170 			if (ret < 0)
2171 				goto out;
2172 			ret = nce->ret;
2173 			goto out;
2174 		}
2175 	}
2176 
2177 	/*
2178 	 * If the inode is not existent yet, add the orphan name and return 1.
2179 	 * This should only happen for the parent dir that we determine in
2180 	 * __record_new_ref
2181 	 */
2182 	ret = is_inode_existent(sctx, ino, gen);
2183 	if (ret < 0)
2184 		goto out;
2185 
2186 	if (!ret) {
2187 		ret = gen_unique_name(sctx, ino, gen, dest);
2188 		if (ret < 0)
2189 			goto out;
2190 		ret = 1;
2191 		goto out_cache;
2192 	}
2193 
2194 	/*
2195 	 * Depending on whether the inode was already processed or not, use
2196 	 * send_root or parent_root for ref lookup.
2197 	 */
2198 	if (ino < sctx->send_progress)
2199 		ret = get_first_ref(sctx->send_root, ino,
2200 				    parent_ino, parent_gen, dest);
2201 	else
2202 		ret = get_first_ref(sctx->parent_root, ino,
2203 				    parent_ino, parent_gen, dest);
2204 	if (ret < 0)
2205 		goto out;
2206 
2207 	/*
2208 	 * Check if the ref was overwritten by an inode's ref that was processed
2209 	 * earlier. If yes, treat as orphan and return 1.
2210 	 */
2211 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2212 			dest->start, dest->end - dest->start);
2213 	if (ret < 0)
2214 		goto out;
2215 	if (ret) {
2216 		fs_path_reset(dest);
2217 		ret = gen_unique_name(sctx, ino, gen, dest);
2218 		if (ret < 0)
2219 			goto out;
2220 		ret = 1;
2221 	}
2222 
2223 out_cache:
2224 	/*
2225 	 * Store the result of the lookup in the name cache.
2226 	 */
2227 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2228 	if (!nce) {
2229 		ret = -ENOMEM;
2230 		goto out;
2231 	}
2232 
2233 	nce->ino = ino;
2234 	nce->gen = gen;
2235 	nce->parent_ino = *parent_ino;
2236 	nce->parent_gen = *parent_gen;
2237 	nce->name_len = fs_path_len(dest);
2238 	nce->ret = ret;
2239 	strcpy(nce->name, dest->start);
2240 
2241 	if (ino < sctx->send_progress)
2242 		nce->need_later_update = 0;
2243 	else
2244 		nce->need_later_update = 1;
2245 
2246 	nce_ret = name_cache_insert(sctx, nce);
2247 	if (nce_ret < 0)
2248 		ret = nce_ret;
2249 	name_cache_clean_unused(sctx);
2250 
2251 out:
2252 	return ret;
2253 }
2254 
2255 /*
2256  * Magic happens here. This function returns the first ref to an inode as it
2257  * would look like while receiving the stream at this point in time.
2258  * We walk the path up to the root. For every inode in between, we check if it
2259  * was already processed/sent. If yes, we continue with the parent as found
2260  * in send_root. If not, we continue with the parent as found in parent_root.
2261  * If we encounter an inode that was deleted at this point in time, we use the
2262  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2263  * that were not created yet and overwritten inodes/refs.
2264  *
2265  * When do we have orphan inodes:
2266  * 1. When an inode is freshly created and thus no valid refs are available yet
2267  * 2. When a directory lost all it's refs (deleted) but still has dir items
2268  *    inside which were not processed yet (pending for move/delete). If anyone
2269  *    tried to get the path to the dir items, it would get a path inside that
2270  *    orphan directory.
2271  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2272  *    of an unprocessed inode. If in that case the first ref would be
2273  *    overwritten, the overwritten inode gets "orphanized". Later when we
2274  *    process this overwritten inode, it is restored at a new place by moving
2275  *    the orphan inode.
2276  *
2277  * sctx->send_progress tells this function at which point in time receiving
2278  * would be.
2279  */
2280 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2281 			struct fs_path *dest)
2282 {
2283 	int ret = 0;
2284 	struct fs_path *name = NULL;
2285 	u64 parent_inode = 0;
2286 	u64 parent_gen = 0;
2287 	int stop = 0;
2288 
2289 	name = fs_path_alloc();
2290 	if (!name) {
2291 		ret = -ENOMEM;
2292 		goto out;
2293 	}
2294 
2295 	dest->reversed = 1;
2296 	fs_path_reset(dest);
2297 
2298 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2299 		struct waiting_dir_move *wdm;
2300 
2301 		fs_path_reset(name);
2302 
2303 		if (is_waiting_for_rm(sctx, ino, gen)) {
2304 			ret = gen_unique_name(sctx, ino, gen, name);
2305 			if (ret < 0)
2306 				goto out;
2307 			ret = fs_path_add_path(dest, name);
2308 			break;
2309 		}
2310 
2311 		wdm = get_waiting_dir_move(sctx, ino);
2312 		if (wdm && wdm->orphanized) {
2313 			ret = gen_unique_name(sctx, ino, gen, name);
2314 			stop = 1;
2315 		} else if (wdm) {
2316 			ret = get_first_ref(sctx->parent_root, ino,
2317 					    &parent_inode, &parent_gen, name);
2318 		} else {
2319 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2320 							&parent_inode,
2321 							&parent_gen, name);
2322 			if (ret)
2323 				stop = 1;
2324 		}
2325 
2326 		if (ret < 0)
2327 			goto out;
2328 
2329 		ret = fs_path_add_path(dest, name);
2330 		if (ret < 0)
2331 			goto out;
2332 
2333 		ino = parent_inode;
2334 		gen = parent_gen;
2335 	}
2336 
2337 out:
2338 	fs_path_free(name);
2339 	if (!ret)
2340 		fs_path_unreverse(dest);
2341 	return ret;
2342 }
2343 
2344 /*
2345  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2346  */
2347 static int send_subvol_begin(struct send_ctx *sctx)
2348 {
2349 	int ret;
2350 	struct btrfs_root *send_root = sctx->send_root;
2351 	struct btrfs_root *parent_root = sctx->parent_root;
2352 	struct btrfs_path *path;
2353 	struct btrfs_key key;
2354 	struct btrfs_root_ref *ref;
2355 	struct extent_buffer *leaf;
2356 	char *name = NULL;
2357 	int namelen;
2358 
2359 	path = btrfs_alloc_path();
2360 	if (!path)
2361 		return -ENOMEM;
2362 
2363 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2364 	if (!name) {
2365 		btrfs_free_path(path);
2366 		return -ENOMEM;
2367 	}
2368 
2369 	key.objectid = send_root->root_key.objectid;
2370 	key.type = BTRFS_ROOT_BACKREF_KEY;
2371 	key.offset = 0;
2372 
2373 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2374 				&key, path, 1, 0);
2375 	if (ret < 0)
2376 		goto out;
2377 	if (ret) {
2378 		ret = -ENOENT;
2379 		goto out;
2380 	}
2381 
2382 	leaf = path->nodes[0];
2383 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2384 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2385 	    key.objectid != send_root->root_key.objectid) {
2386 		ret = -ENOENT;
2387 		goto out;
2388 	}
2389 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2390 	namelen = btrfs_root_ref_name_len(leaf, ref);
2391 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2392 	btrfs_release_path(path);
2393 
2394 	if (parent_root) {
2395 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2396 		if (ret < 0)
2397 			goto out;
2398 	} else {
2399 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2400 		if (ret < 0)
2401 			goto out;
2402 	}
2403 
2404 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2405 
2406 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2407 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2408 			    sctx->send_root->root_item.received_uuid);
2409 	else
2410 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2411 			    sctx->send_root->root_item.uuid);
2412 
2413 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2414 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2415 	if (parent_root) {
2416 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2417 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2418 				     parent_root->root_item.received_uuid);
2419 		else
2420 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2421 				     parent_root->root_item.uuid);
2422 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2423 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2424 	}
2425 
2426 	ret = send_cmd(sctx);
2427 
2428 tlv_put_failure:
2429 out:
2430 	btrfs_free_path(path);
2431 	kfree(name);
2432 	return ret;
2433 }
2434 
2435 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2436 {
2437 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2438 	int ret = 0;
2439 	struct fs_path *p;
2440 
2441 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2442 
2443 	p = fs_path_alloc();
2444 	if (!p)
2445 		return -ENOMEM;
2446 
2447 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2448 	if (ret < 0)
2449 		goto out;
2450 
2451 	ret = get_cur_path(sctx, ino, gen, p);
2452 	if (ret < 0)
2453 		goto out;
2454 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2455 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2456 
2457 	ret = send_cmd(sctx);
2458 
2459 tlv_put_failure:
2460 out:
2461 	fs_path_free(p);
2462 	return ret;
2463 }
2464 
2465 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2466 {
2467 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2468 	int ret = 0;
2469 	struct fs_path *p;
2470 
2471 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2472 
2473 	p = fs_path_alloc();
2474 	if (!p)
2475 		return -ENOMEM;
2476 
2477 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2478 	if (ret < 0)
2479 		goto out;
2480 
2481 	ret = get_cur_path(sctx, ino, gen, p);
2482 	if (ret < 0)
2483 		goto out;
2484 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2485 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2486 
2487 	ret = send_cmd(sctx);
2488 
2489 tlv_put_failure:
2490 out:
2491 	fs_path_free(p);
2492 	return ret;
2493 }
2494 
2495 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2496 {
2497 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2498 	int ret = 0;
2499 	struct fs_path *p;
2500 
2501 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2502 		    ino, uid, gid);
2503 
2504 	p = fs_path_alloc();
2505 	if (!p)
2506 		return -ENOMEM;
2507 
2508 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2509 	if (ret < 0)
2510 		goto out;
2511 
2512 	ret = get_cur_path(sctx, ino, gen, p);
2513 	if (ret < 0)
2514 		goto out;
2515 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2516 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2517 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2518 
2519 	ret = send_cmd(sctx);
2520 
2521 tlv_put_failure:
2522 out:
2523 	fs_path_free(p);
2524 	return ret;
2525 }
2526 
2527 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2528 {
2529 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2530 	int ret = 0;
2531 	struct fs_path *p = NULL;
2532 	struct btrfs_inode_item *ii;
2533 	struct btrfs_path *path = NULL;
2534 	struct extent_buffer *eb;
2535 	struct btrfs_key key;
2536 	int slot;
2537 
2538 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2539 
2540 	p = fs_path_alloc();
2541 	if (!p)
2542 		return -ENOMEM;
2543 
2544 	path = alloc_path_for_send();
2545 	if (!path) {
2546 		ret = -ENOMEM;
2547 		goto out;
2548 	}
2549 
2550 	key.objectid = ino;
2551 	key.type = BTRFS_INODE_ITEM_KEY;
2552 	key.offset = 0;
2553 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2554 	if (ret > 0)
2555 		ret = -ENOENT;
2556 	if (ret < 0)
2557 		goto out;
2558 
2559 	eb = path->nodes[0];
2560 	slot = path->slots[0];
2561 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2562 
2563 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2564 	if (ret < 0)
2565 		goto out;
2566 
2567 	ret = get_cur_path(sctx, ino, gen, p);
2568 	if (ret < 0)
2569 		goto out;
2570 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2571 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2572 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2573 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2574 	/* TODO Add otime support when the otime patches get into upstream */
2575 
2576 	ret = send_cmd(sctx);
2577 
2578 tlv_put_failure:
2579 out:
2580 	fs_path_free(p);
2581 	btrfs_free_path(path);
2582 	return ret;
2583 }
2584 
2585 /*
2586  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2587  * a valid path yet because we did not process the refs yet. So, the inode
2588  * is created as orphan.
2589  */
2590 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2591 {
2592 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2593 	int ret = 0;
2594 	struct fs_path *p;
2595 	int cmd;
2596 	u64 gen;
2597 	u64 mode;
2598 	u64 rdev;
2599 
2600 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2601 
2602 	p = fs_path_alloc();
2603 	if (!p)
2604 		return -ENOMEM;
2605 
2606 	if (ino != sctx->cur_ino) {
2607 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2608 				     NULL, NULL, &rdev);
2609 		if (ret < 0)
2610 			goto out;
2611 	} else {
2612 		gen = sctx->cur_inode_gen;
2613 		mode = sctx->cur_inode_mode;
2614 		rdev = sctx->cur_inode_rdev;
2615 	}
2616 
2617 	if (S_ISREG(mode)) {
2618 		cmd = BTRFS_SEND_C_MKFILE;
2619 	} else if (S_ISDIR(mode)) {
2620 		cmd = BTRFS_SEND_C_MKDIR;
2621 	} else if (S_ISLNK(mode)) {
2622 		cmd = BTRFS_SEND_C_SYMLINK;
2623 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2624 		cmd = BTRFS_SEND_C_MKNOD;
2625 	} else if (S_ISFIFO(mode)) {
2626 		cmd = BTRFS_SEND_C_MKFIFO;
2627 	} else if (S_ISSOCK(mode)) {
2628 		cmd = BTRFS_SEND_C_MKSOCK;
2629 	} else {
2630 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2631 				(int)(mode & S_IFMT));
2632 		ret = -EOPNOTSUPP;
2633 		goto out;
2634 	}
2635 
2636 	ret = begin_cmd(sctx, cmd);
2637 	if (ret < 0)
2638 		goto out;
2639 
2640 	ret = gen_unique_name(sctx, ino, gen, p);
2641 	if (ret < 0)
2642 		goto out;
2643 
2644 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2645 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2646 
2647 	if (S_ISLNK(mode)) {
2648 		fs_path_reset(p);
2649 		ret = read_symlink(sctx->send_root, ino, p);
2650 		if (ret < 0)
2651 			goto out;
2652 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2653 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2654 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2655 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2656 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2657 	}
2658 
2659 	ret = send_cmd(sctx);
2660 	if (ret < 0)
2661 		goto out;
2662 
2663 
2664 tlv_put_failure:
2665 out:
2666 	fs_path_free(p);
2667 	return ret;
2668 }
2669 
2670 /*
2671  * We need some special handling for inodes that get processed before the parent
2672  * directory got created. See process_recorded_refs for details.
2673  * This function does the check if we already created the dir out of order.
2674  */
2675 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2676 {
2677 	int ret = 0;
2678 	struct btrfs_path *path = NULL;
2679 	struct btrfs_key key;
2680 	struct btrfs_key found_key;
2681 	struct btrfs_key di_key;
2682 	struct extent_buffer *eb;
2683 	struct btrfs_dir_item *di;
2684 	int slot;
2685 
2686 	path = alloc_path_for_send();
2687 	if (!path) {
2688 		ret = -ENOMEM;
2689 		goto out;
2690 	}
2691 
2692 	key.objectid = dir;
2693 	key.type = BTRFS_DIR_INDEX_KEY;
2694 	key.offset = 0;
2695 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2696 	if (ret < 0)
2697 		goto out;
2698 
2699 	while (1) {
2700 		eb = path->nodes[0];
2701 		slot = path->slots[0];
2702 		if (slot >= btrfs_header_nritems(eb)) {
2703 			ret = btrfs_next_leaf(sctx->send_root, path);
2704 			if (ret < 0) {
2705 				goto out;
2706 			} else if (ret > 0) {
2707 				ret = 0;
2708 				break;
2709 			}
2710 			continue;
2711 		}
2712 
2713 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2714 		if (found_key.objectid != key.objectid ||
2715 		    found_key.type != key.type) {
2716 			ret = 0;
2717 			goto out;
2718 		}
2719 
2720 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2721 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2722 
2723 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2724 		    di_key.objectid < sctx->send_progress) {
2725 			ret = 1;
2726 			goto out;
2727 		}
2728 
2729 		path->slots[0]++;
2730 	}
2731 
2732 out:
2733 	btrfs_free_path(path);
2734 	return ret;
2735 }
2736 
2737 /*
2738  * Only creates the inode if it is:
2739  * 1. Not a directory
2740  * 2. Or a directory which was not created already due to out of order
2741  *    directories. See did_create_dir and process_recorded_refs for details.
2742  */
2743 static int send_create_inode_if_needed(struct send_ctx *sctx)
2744 {
2745 	int ret;
2746 
2747 	if (S_ISDIR(sctx->cur_inode_mode)) {
2748 		ret = did_create_dir(sctx, sctx->cur_ino);
2749 		if (ret < 0)
2750 			return ret;
2751 		else if (ret > 0)
2752 			return 0;
2753 	}
2754 
2755 	return send_create_inode(sctx, sctx->cur_ino);
2756 }
2757 
2758 struct recorded_ref {
2759 	struct list_head list;
2760 	char *name;
2761 	struct fs_path *full_path;
2762 	u64 dir;
2763 	u64 dir_gen;
2764 	int name_len;
2765 };
2766 
2767 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2768 {
2769 	ref->full_path = path;
2770 	ref->name = (char *)kbasename(ref->full_path->start);
2771 	ref->name_len = ref->full_path->end - ref->name;
2772 }
2773 
2774 /*
2775  * We need to process new refs before deleted refs, but compare_tree gives us
2776  * everything mixed. So we first record all refs and later process them.
2777  * This function is a helper to record one ref.
2778  */
2779 static int __record_ref(struct list_head *head, u64 dir,
2780 		      u64 dir_gen, struct fs_path *path)
2781 {
2782 	struct recorded_ref *ref;
2783 
2784 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2785 	if (!ref)
2786 		return -ENOMEM;
2787 
2788 	ref->dir = dir;
2789 	ref->dir_gen = dir_gen;
2790 	set_ref_path(ref, path);
2791 	list_add_tail(&ref->list, head);
2792 	return 0;
2793 }
2794 
2795 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2796 {
2797 	struct recorded_ref *new;
2798 
2799 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2800 	if (!new)
2801 		return -ENOMEM;
2802 
2803 	new->dir = ref->dir;
2804 	new->dir_gen = ref->dir_gen;
2805 	new->full_path = NULL;
2806 	INIT_LIST_HEAD(&new->list);
2807 	list_add_tail(&new->list, list);
2808 	return 0;
2809 }
2810 
2811 static void __free_recorded_refs(struct list_head *head)
2812 {
2813 	struct recorded_ref *cur;
2814 
2815 	while (!list_empty(head)) {
2816 		cur = list_entry(head->next, struct recorded_ref, list);
2817 		fs_path_free(cur->full_path);
2818 		list_del(&cur->list);
2819 		kfree(cur);
2820 	}
2821 }
2822 
2823 static void free_recorded_refs(struct send_ctx *sctx)
2824 {
2825 	__free_recorded_refs(&sctx->new_refs);
2826 	__free_recorded_refs(&sctx->deleted_refs);
2827 }
2828 
2829 /*
2830  * Renames/moves a file/dir to its orphan name. Used when the first
2831  * ref of an unprocessed inode gets overwritten and for all non empty
2832  * directories.
2833  */
2834 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2835 			  struct fs_path *path)
2836 {
2837 	int ret;
2838 	struct fs_path *orphan;
2839 
2840 	orphan = fs_path_alloc();
2841 	if (!orphan)
2842 		return -ENOMEM;
2843 
2844 	ret = gen_unique_name(sctx, ino, gen, orphan);
2845 	if (ret < 0)
2846 		goto out;
2847 
2848 	ret = send_rename(sctx, path, orphan);
2849 
2850 out:
2851 	fs_path_free(orphan);
2852 	return ret;
2853 }
2854 
2855 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2856 						   u64 dir_ino, u64 dir_gen)
2857 {
2858 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2859 	struct rb_node *parent = NULL;
2860 	struct orphan_dir_info *entry, *odi;
2861 
2862 	while (*p) {
2863 		parent = *p;
2864 		entry = rb_entry(parent, struct orphan_dir_info, node);
2865 		if (dir_ino < entry->ino)
2866 			p = &(*p)->rb_left;
2867 		else if (dir_ino > entry->ino)
2868 			p = &(*p)->rb_right;
2869 		else if (dir_gen < entry->gen)
2870 			p = &(*p)->rb_left;
2871 		else if (dir_gen > entry->gen)
2872 			p = &(*p)->rb_right;
2873 		else
2874 			return entry;
2875 	}
2876 
2877 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2878 	if (!odi)
2879 		return ERR_PTR(-ENOMEM);
2880 	odi->ino = dir_ino;
2881 	odi->gen = dir_gen;
2882 	odi->last_dir_index_offset = 0;
2883 
2884 	rb_link_node(&odi->node, parent, p);
2885 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2886 	return odi;
2887 }
2888 
2889 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2890 						   u64 dir_ino, u64 gen)
2891 {
2892 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2893 	struct orphan_dir_info *entry;
2894 
2895 	while (n) {
2896 		entry = rb_entry(n, struct orphan_dir_info, node);
2897 		if (dir_ino < entry->ino)
2898 			n = n->rb_left;
2899 		else if (dir_ino > entry->ino)
2900 			n = n->rb_right;
2901 		else if (gen < entry->gen)
2902 			n = n->rb_left;
2903 		else if (gen > entry->gen)
2904 			n = n->rb_right;
2905 		else
2906 			return entry;
2907 	}
2908 	return NULL;
2909 }
2910 
2911 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2912 {
2913 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2914 
2915 	return odi != NULL;
2916 }
2917 
2918 static void free_orphan_dir_info(struct send_ctx *sctx,
2919 				 struct orphan_dir_info *odi)
2920 {
2921 	if (!odi)
2922 		return;
2923 	rb_erase(&odi->node, &sctx->orphan_dirs);
2924 	kfree(odi);
2925 }
2926 
2927 /*
2928  * Returns 1 if a directory can be removed at this point in time.
2929  * We check this by iterating all dir items and checking if the inode behind
2930  * the dir item was already processed.
2931  */
2932 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2933 		     u64 send_progress)
2934 {
2935 	int ret = 0;
2936 	struct btrfs_root *root = sctx->parent_root;
2937 	struct btrfs_path *path;
2938 	struct btrfs_key key;
2939 	struct btrfs_key found_key;
2940 	struct btrfs_key loc;
2941 	struct btrfs_dir_item *di;
2942 	struct orphan_dir_info *odi = NULL;
2943 
2944 	/*
2945 	 * Don't try to rmdir the top/root subvolume dir.
2946 	 */
2947 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2948 		return 0;
2949 
2950 	path = alloc_path_for_send();
2951 	if (!path)
2952 		return -ENOMEM;
2953 
2954 	key.objectid = dir;
2955 	key.type = BTRFS_DIR_INDEX_KEY;
2956 	key.offset = 0;
2957 
2958 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
2959 	if (odi)
2960 		key.offset = odi->last_dir_index_offset;
2961 
2962 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2963 	if (ret < 0)
2964 		goto out;
2965 
2966 	while (1) {
2967 		struct waiting_dir_move *dm;
2968 
2969 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2970 			ret = btrfs_next_leaf(root, path);
2971 			if (ret < 0)
2972 				goto out;
2973 			else if (ret > 0)
2974 				break;
2975 			continue;
2976 		}
2977 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2978 				      path->slots[0]);
2979 		if (found_key.objectid != key.objectid ||
2980 		    found_key.type != key.type)
2981 			break;
2982 
2983 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2984 				struct btrfs_dir_item);
2985 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2986 
2987 		dm = get_waiting_dir_move(sctx, loc.objectid);
2988 		if (dm) {
2989 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2990 			if (IS_ERR(odi)) {
2991 				ret = PTR_ERR(odi);
2992 				goto out;
2993 			}
2994 			odi->gen = dir_gen;
2995 			odi->last_dir_index_offset = found_key.offset;
2996 			dm->rmdir_ino = dir;
2997 			dm->rmdir_gen = dir_gen;
2998 			ret = 0;
2999 			goto out;
3000 		}
3001 
3002 		if (loc.objectid > send_progress) {
3003 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
3004 			if (IS_ERR(odi)) {
3005 				ret = PTR_ERR(odi);
3006 				goto out;
3007 			}
3008 			odi->gen = dir_gen;
3009 			odi->last_dir_index_offset = found_key.offset;
3010 			ret = 0;
3011 			goto out;
3012 		}
3013 
3014 		path->slots[0]++;
3015 	}
3016 	free_orphan_dir_info(sctx, odi);
3017 
3018 	ret = 1;
3019 
3020 out:
3021 	btrfs_free_path(path);
3022 	return ret;
3023 }
3024 
3025 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3026 {
3027 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3028 
3029 	return entry != NULL;
3030 }
3031 
3032 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3033 {
3034 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3035 	struct rb_node *parent = NULL;
3036 	struct waiting_dir_move *entry, *dm;
3037 
3038 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3039 	if (!dm)
3040 		return -ENOMEM;
3041 	dm->ino = ino;
3042 	dm->rmdir_ino = 0;
3043 	dm->rmdir_gen = 0;
3044 	dm->orphanized = orphanized;
3045 
3046 	while (*p) {
3047 		parent = *p;
3048 		entry = rb_entry(parent, struct waiting_dir_move, node);
3049 		if (ino < entry->ino) {
3050 			p = &(*p)->rb_left;
3051 		} else if (ino > entry->ino) {
3052 			p = &(*p)->rb_right;
3053 		} else {
3054 			kfree(dm);
3055 			return -EEXIST;
3056 		}
3057 	}
3058 
3059 	rb_link_node(&dm->node, parent, p);
3060 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3061 	return 0;
3062 }
3063 
3064 static struct waiting_dir_move *
3065 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3066 {
3067 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3068 	struct waiting_dir_move *entry;
3069 
3070 	while (n) {
3071 		entry = rb_entry(n, struct waiting_dir_move, node);
3072 		if (ino < entry->ino)
3073 			n = n->rb_left;
3074 		else if (ino > entry->ino)
3075 			n = n->rb_right;
3076 		else
3077 			return entry;
3078 	}
3079 	return NULL;
3080 }
3081 
3082 static void free_waiting_dir_move(struct send_ctx *sctx,
3083 				  struct waiting_dir_move *dm)
3084 {
3085 	if (!dm)
3086 		return;
3087 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3088 	kfree(dm);
3089 }
3090 
3091 static int add_pending_dir_move(struct send_ctx *sctx,
3092 				u64 ino,
3093 				u64 ino_gen,
3094 				u64 parent_ino,
3095 				struct list_head *new_refs,
3096 				struct list_head *deleted_refs,
3097 				const bool is_orphan)
3098 {
3099 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3100 	struct rb_node *parent = NULL;
3101 	struct pending_dir_move *entry = NULL, *pm;
3102 	struct recorded_ref *cur;
3103 	int exists = 0;
3104 	int ret;
3105 
3106 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3107 	if (!pm)
3108 		return -ENOMEM;
3109 	pm->parent_ino = parent_ino;
3110 	pm->ino = ino;
3111 	pm->gen = ino_gen;
3112 	INIT_LIST_HEAD(&pm->list);
3113 	INIT_LIST_HEAD(&pm->update_refs);
3114 	RB_CLEAR_NODE(&pm->node);
3115 
3116 	while (*p) {
3117 		parent = *p;
3118 		entry = rb_entry(parent, struct pending_dir_move, node);
3119 		if (parent_ino < entry->parent_ino) {
3120 			p = &(*p)->rb_left;
3121 		} else if (parent_ino > entry->parent_ino) {
3122 			p = &(*p)->rb_right;
3123 		} else {
3124 			exists = 1;
3125 			break;
3126 		}
3127 	}
3128 
3129 	list_for_each_entry(cur, deleted_refs, list) {
3130 		ret = dup_ref(cur, &pm->update_refs);
3131 		if (ret < 0)
3132 			goto out;
3133 	}
3134 	list_for_each_entry(cur, new_refs, list) {
3135 		ret = dup_ref(cur, &pm->update_refs);
3136 		if (ret < 0)
3137 			goto out;
3138 	}
3139 
3140 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3141 	if (ret)
3142 		goto out;
3143 
3144 	if (exists) {
3145 		list_add_tail(&pm->list, &entry->list);
3146 	} else {
3147 		rb_link_node(&pm->node, parent, p);
3148 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3149 	}
3150 	ret = 0;
3151 out:
3152 	if (ret) {
3153 		__free_recorded_refs(&pm->update_refs);
3154 		kfree(pm);
3155 	}
3156 	return ret;
3157 }
3158 
3159 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3160 						      u64 parent_ino)
3161 {
3162 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3163 	struct pending_dir_move *entry;
3164 
3165 	while (n) {
3166 		entry = rb_entry(n, struct pending_dir_move, node);
3167 		if (parent_ino < entry->parent_ino)
3168 			n = n->rb_left;
3169 		else if (parent_ino > entry->parent_ino)
3170 			n = n->rb_right;
3171 		else
3172 			return entry;
3173 	}
3174 	return NULL;
3175 }
3176 
3177 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3178 		     u64 ino, u64 gen, u64 *ancestor_ino)
3179 {
3180 	int ret = 0;
3181 	u64 parent_inode = 0;
3182 	u64 parent_gen = 0;
3183 	u64 start_ino = ino;
3184 
3185 	*ancestor_ino = 0;
3186 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3187 		fs_path_reset(name);
3188 
3189 		if (is_waiting_for_rm(sctx, ino, gen))
3190 			break;
3191 		if (is_waiting_for_move(sctx, ino)) {
3192 			if (*ancestor_ino == 0)
3193 				*ancestor_ino = ino;
3194 			ret = get_first_ref(sctx->parent_root, ino,
3195 					    &parent_inode, &parent_gen, name);
3196 		} else {
3197 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3198 							&parent_inode,
3199 							&parent_gen, name);
3200 			if (ret > 0) {
3201 				ret = 0;
3202 				break;
3203 			}
3204 		}
3205 		if (ret < 0)
3206 			break;
3207 		if (parent_inode == start_ino) {
3208 			ret = 1;
3209 			if (*ancestor_ino == 0)
3210 				*ancestor_ino = ino;
3211 			break;
3212 		}
3213 		ino = parent_inode;
3214 		gen = parent_gen;
3215 	}
3216 	return ret;
3217 }
3218 
3219 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3220 {
3221 	struct fs_path *from_path = NULL;
3222 	struct fs_path *to_path = NULL;
3223 	struct fs_path *name = NULL;
3224 	u64 orig_progress = sctx->send_progress;
3225 	struct recorded_ref *cur;
3226 	u64 parent_ino, parent_gen;
3227 	struct waiting_dir_move *dm = NULL;
3228 	u64 rmdir_ino = 0;
3229 	u64 rmdir_gen;
3230 	u64 ancestor;
3231 	bool is_orphan;
3232 	int ret;
3233 
3234 	name = fs_path_alloc();
3235 	from_path = fs_path_alloc();
3236 	if (!name || !from_path) {
3237 		ret = -ENOMEM;
3238 		goto out;
3239 	}
3240 
3241 	dm = get_waiting_dir_move(sctx, pm->ino);
3242 	ASSERT(dm);
3243 	rmdir_ino = dm->rmdir_ino;
3244 	rmdir_gen = dm->rmdir_gen;
3245 	is_orphan = dm->orphanized;
3246 	free_waiting_dir_move(sctx, dm);
3247 
3248 	if (is_orphan) {
3249 		ret = gen_unique_name(sctx, pm->ino,
3250 				      pm->gen, from_path);
3251 	} else {
3252 		ret = get_first_ref(sctx->parent_root, pm->ino,
3253 				    &parent_ino, &parent_gen, name);
3254 		if (ret < 0)
3255 			goto out;
3256 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3257 				   from_path);
3258 		if (ret < 0)
3259 			goto out;
3260 		ret = fs_path_add_path(from_path, name);
3261 	}
3262 	if (ret < 0)
3263 		goto out;
3264 
3265 	sctx->send_progress = sctx->cur_ino + 1;
3266 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3267 	if (ret < 0)
3268 		goto out;
3269 	if (ret) {
3270 		LIST_HEAD(deleted_refs);
3271 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3272 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3273 					   &pm->update_refs, &deleted_refs,
3274 					   is_orphan);
3275 		if (ret < 0)
3276 			goto out;
3277 		if (rmdir_ino) {
3278 			dm = get_waiting_dir_move(sctx, pm->ino);
3279 			ASSERT(dm);
3280 			dm->rmdir_ino = rmdir_ino;
3281 			dm->rmdir_gen = rmdir_gen;
3282 		}
3283 		goto out;
3284 	}
3285 	fs_path_reset(name);
3286 	to_path = name;
3287 	name = NULL;
3288 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3289 	if (ret < 0)
3290 		goto out;
3291 
3292 	ret = send_rename(sctx, from_path, to_path);
3293 	if (ret < 0)
3294 		goto out;
3295 
3296 	if (rmdir_ino) {
3297 		struct orphan_dir_info *odi;
3298 		u64 gen;
3299 
3300 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3301 		if (!odi) {
3302 			/* already deleted */
3303 			goto finish;
3304 		}
3305 		gen = odi->gen;
3306 
3307 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3308 		if (ret < 0)
3309 			goto out;
3310 		if (!ret)
3311 			goto finish;
3312 
3313 		name = fs_path_alloc();
3314 		if (!name) {
3315 			ret = -ENOMEM;
3316 			goto out;
3317 		}
3318 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3319 		if (ret < 0)
3320 			goto out;
3321 		ret = send_rmdir(sctx, name);
3322 		if (ret < 0)
3323 			goto out;
3324 	}
3325 
3326 finish:
3327 	ret = send_utimes(sctx, pm->ino, pm->gen);
3328 	if (ret < 0)
3329 		goto out;
3330 
3331 	/*
3332 	 * After rename/move, need to update the utimes of both new parent(s)
3333 	 * and old parent(s).
3334 	 */
3335 	list_for_each_entry(cur, &pm->update_refs, list) {
3336 		/*
3337 		 * The parent inode might have been deleted in the send snapshot
3338 		 */
3339 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3340 				     NULL, NULL, NULL, NULL, NULL);
3341 		if (ret == -ENOENT) {
3342 			ret = 0;
3343 			continue;
3344 		}
3345 		if (ret < 0)
3346 			goto out;
3347 
3348 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3349 		if (ret < 0)
3350 			goto out;
3351 	}
3352 
3353 out:
3354 	fs_path_free(name);
3355 	fs_path_free(from_path);
3356 	fs_path_free(to_path);
3357 	sctx->send_progress = orig_progress;
3358 
3359 	return ret;
3360 }
3361 
3362 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3363 {
3364 	if (!list_empty(&m->list))
3365 		list_del(&m->list);
3366 	if (!RB_EMPTY_NODE(&m->node))
3367 		rb_erase(&m->node, &sctx->pending_dir_moves);
3368 	__free_recorded_refs(&m->update_refs);
3369 	kfree(m);
3370 }
3371 
3372 static void tail_append_pending_moves(struct send_ctx *sctx,
3373 				      struct pending_dir_move *moves,
3374 				      struct list_head *stack)
3375 {
3376 	if (list_empty(&moves->list)) {
3377 		list_add_tail(&moves->list, stack);
3378 	} else {
3379 		LIST_HEAD(list);
3380 		list_splice_init(&moves->list, &list);
3381 		list_add_tail(&moves->list, stack);
3382 		list_splice_tail(&list, stack);
3383 	}
3384 	if (!RB_EMPTY_NODE(&moves->node)) {
3385 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3386 		RB_CLEAR_NODE(&moves->node);
3387 	}
3388 }
3389 
3390 static int apply_children_dir_moves(struct send_ctx *sctx)
3391 {
3392 	struct pending_dir_move *pm;
3393 	struct list_head stack;
3394 	u64 parent_ino = sctx->cur_ino;
3395 	int ret = 0;
3396 
3397 	pm = get_pending_dir_moves(sctx, parent_ino);
3398 	if (!pm)
3399 		return 0;
3400 
3401 	INIT_LIST_HEAD(&stack);
3402 	tail_append_pending_moves(sctx, pm, &stack);
3403 
3404 	while (!list_empty(&stack)) {
3405 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3406 		parent_ino = pm->ino;
3407 		ret = apply_dir_move(sctx, pm);
3408 		free_pending_move(sctx, pm);
3409 		if (ret)
3410 			goto out;
3411 		pm = get_pending_dir_moves(sctx, parent_ino);
3412 		if (pm)
3413 			tail_append_pending_moves(sctx, pm, &stack);
3414 	}
3415 	return 0;
3416 
3417 out:
3418 	while (!list_empty(&stack)) {
3419 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3420 		free_pending_move(sctx, pm);
3421 	}
3422 	return ret;
3423 }
3424 
3425 /*
3426  * We might need to delay a directory rename even when no ancestor directory
3427  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3428  * renamed. This happens when we rename a directory to the old name (the name
3429  * in the parent root) of some other unrelated directory that got its rename
3430  * delayed due to some ancestor with higher number that got renamed.
3431  *
3432  * Example:
3433  *
3434  * Parent snapshot:
3435  * .                                       (ino 256)
3436  * |---- a/                                (ino 257)
3437  * |     |---- file                        (ino 260)
3438  * |
3439  * |---- b/                                (ino 258)
3440  * |---- c/                                (ino 259)
3441  *
3442  * Send snapshot:
3443  * .                                       (ino 256)
3444  * |---- a/                                (ino 258)
3445  * |---- x/                                (ino 259)
3446  *       |---- y/                          (ino 257)
3447  *             |----- file                 (ino 260)
3448  *
3449  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3450  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3451  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3452  * must issue is:
3453  *
3454  * 1 - rename 259 from 'c' to 'x'
3455  * 2 - rename 257 from 'a' to 'x/y'
3456  * 3 - rename 258 from 'b' to 'a'
3457  *
3458  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3459  * be done right away and < 0 on error.
3460  */
3461 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3462 				  struct recorded_ref *parent_ref,
3463 				  const bool is_orphan)
3464 {
3465 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3466 	struct btrfs_path *path;
3467 	struct btrfs_key key;
3468 	struct btrfs_key di_key;
3469 	struct btrfs_dir_item *di;
3470 	u64 left_gen;
3471 	u64 right_gen;
3472 	int ret = 0;
3473 	struct waiting_dir_move *wdm;
3474 
3475 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3476 		return 0;
3477 
3478 	path = alloc_path_for_send();
3479 	if (!path)
3480 		return -ENOMEM;
3481 
3482 	key.objectid = parent_ref->dir;
3483 	key.type = BTRFS_DIR_ITEM_KEY;
3484 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3485 
3486 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3487 	if (ret < 0) {
3488 		goto out;
3489 	} else if (ret > 0) {
3490 		ret = 0;
3491 		goto out;
3492 	}
3493 
3494 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3495 				       parent_ref->name_len);
3496 	if (!di) {
3497 		ret = 0;
3498 		goto out;
3499 	}
3500 	/*
3501 	 * di_key.objectid has the number of the inode that has a dentry in the
3502 	 * parent directory with the same name that sctx->cur_ino is being
3503 	 * renamed to. We need to check if that inode is in the send root as
3504 	 * well and if it is currently marked as an inode with a pending rename,
3505 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3506 	 * that it happens after that other inode is renamed.
3507 	 */
3508 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3509 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3510 		ret = 0;
3511 		goto out;
3512 	}
3513 
3514 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3515 			     &left_gen, NULL, NULL, NULL, NULL);
3516 	if (ret < 0)
3517 		goto out;
3518 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3519 			     &right_gen, NULL, NULL, NULL, NULL);
3520 	if (ret < 0) {
3521 		if (ret == -ENOENT)
3522 			ret = 0;
3523 		goto out;
3524 	}
3525 
3526 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3527 	if (right_gen != left_gen) {
3528 		ret = 0;
3529 		goto out;
3530 	}
3531 
3532 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3533 	if (wdm && !wdm->orphanized) {
3534 		ret = add_pending_dir_move(sctx,
3535 					   sctx->cur_ino,
3536 					   sctx->cur_inode_gen,
3537 					   di_key.objectid,
3538 					   &sctx->new_refs,
3539 					   &sctx->deleted_refs,
3540 					   is_orphan);
3541 		if (!ret)
3542 			ret = 1;
3543 	}
3544 out:
3545 	btrfs_free_path(path);
3546 	return ret;
3547 }
3548 
3549 /*
3550  * Check if inode ino2, or any of its ancestors, is inode ino1.
3551  * Return 1 if true, 0 if false and < 0 on error.
3552  */
3553 static int check_ino_in_path(struct btrfs_root *root,
3554 			     const u64 ino1,
3555 			     const u64 ino1_gen,
3556 			     const u64 ino2,
3557 			     const u64 ino2_gen,
3558 			     struct fs_path *fs_path)
3559 {
3560 	u64 ino = ino2;
3561 
3562 	if (ino1 == ino2)
3563 		return ino1_gen == ino2_gen;
3564 
3565 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3566 		u64 parent;
3567 		u64 parent_gen;
3568 		int ret;
3569 
3570 		fs_path_reset(fs_path);
3571 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3572 		if (ret < 0)
3573 			return ret;
3574 		if (parent == ino1)
3575 			return parent_gen == ino1_gen;
3576 		ino = parent;
3577 	}
3578 	return 0;
3579 }
3580 
3581 /*
3582  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3583  * possible path (in case ino2 is not a directory and has multiple hard links).
3584  * Return 1 if true, 0 if false and < 0 on error.
3585  */
3586 static int is_ancestor(struct btrfs_root *root,
3587 		       const u64 ino1,
3588 		       const u64 ino1_gen,
3589 		       const u64 ino2,
3590 		       struct fs_path *fs_path)
3591 {
3592 	bool free_fs_path = false;
3593 	int ret = 0;
3594 	struct btrfs_path *path = NULL;
3595 	struct btrfs_key key;
3596 
3597 	if (!fs_path) {
3598 		fs_path = fs_path_alloc();
3599 		if (!fs_path)
3600 			return -ENOMEM;
3601 		free_fs_path = true;
3602 	}
3603 
3604 	path = alloc_path_for_send();
3605 	if (!path) {
3606 		ret = -ENOMEM;
3607 		goto out;
3608 	}
3609 
3610 	key.objectid = ino2;
3611 	key.type = BTRFS_INODE_REF_KEY;
3612 	key.offset = 0;
3613 
3614 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3615 	if (ret < 0)
3616 		goto out;
3617 
3618 	while (true) {
3619 		struct extent_buffer *leaf = path->nodes[0];
3620 		int slot = path->slots[0];
3621 		u32 cur_offset = 0;
3622 		u32 item_size;
3623 
3624 		if (slot >= btrfs_header_nritems(leaf)) {
3625 			ret = btrfs_next_leaf(root, path);
3626 			if (ret < 0)
3627 				goto out;
3628 			if (ret > 0)
3629 				break;
3630 			continue;
3631 		}
3632 
3633 		btrfs_item_key_to_cpu(leaf, &key, slot);
3634 		if (key.objectid != ino2)
3635 			break;
3636 		if (key.type != BTRFS_INODE_REF_KEY &&
3637 		    key.type != BTRFS_INODE_EXTREF_KEY)
3638 			break;
3639 
3640 		item_size = btrfs_item_size(leaf, slot);
3641 		while (cur_offset < item_size) {
3642 			u64 parent;
3643 			u64 parent_gen;
3644 
3645 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3646 				unsigned long ptr;
3647 				struct btrfs_inode_extref *extref;
3648 
3649 				ptr = btrfs_item_ptr_offset(leaf, slot);
3650 				extref = (struct btrfs_inode_extref *)
3651 					(ptr + cur_offset);
3652 				parent = btrfs_inode_extref_parent(leaf,
3653 								   extref);
3654 				cur_offset += sizeof(*extref);
3655 				cur_offset += btrfs_inode_extref_name_len(leaf,
3656 								  extref);
3657 			} else {
3658 				parent = key.offset;
3659 				cur_offset = item_size;
3660 			}
3661 
3662 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3663 					     NULL, NULL, NULL, NULL);
3664 			if (ret < 0)
3665 				goto out;
3666 			ret = check_ino_in_path(root, ino1, ino1_gen,
3667 						parent, parent_gen, fs_path);
3668 			if (ret)
3669 				goto out;
3670 		}
3671 		path->slots[0]++;
3672 	}
3673 	ret = 0;
3674  out:
3675 	btrfs_free_path(path);
3676 	if (free_fs_path)
3677 		fs_path_free(fs_path);
3678 	return ret;
3679 }
3680 
3681 static int wait_for_parent_move(struct send_ctx *sctx,
3682 				struct recorded_ref *parent_ref,
3683 				const bool is_orphan)
3684 {
3685 	int ret = 0;
3686 	u64 ino = parent_ref->dir;
3687 	u64 ino_gen = parent_ref->dir_gen;
3688 	u64 parent_ino_before, parent_ino_after;
3689 	struct fs_path *path_before = NULL;
3690 	struct fs_path *path_after = NULL;
3691 	int len1, len2;
3692 
3693 	path_after = fs_path_alloc();
3694 	path_before = fs_path_alloc();
3695 	if (!path_after || !path_before) {
3696 		ret = -ENOMEM;
3697 		goto out;
3698 	}
3699 
3700 	/*
3701 	 * Our current directory inode may not yet be renamed/moved because some
3702 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3703 	 * such ancestor exists and make sure our own rename/move happens after
3704 	 * that ancestor is processed to avoid path build infinite loops (done
3705 	 * at get_cur_path()).
3706 	 */
3707 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3708 		u64 parent_ino_after_gen;
3709 
3710 		if (is_waiting_for_move(sctx, ino)) {
3711 			/*
3712 			 * If the current inode is an ancestor of ino in the
3713 			 * parent root, we need to delay the rename of the
3714 			 * current inode, otherwise don't delayed the rename
3715 			 * because we can end up with a circular dependency
3716 			 * of renames, resulting in some directories never
3717 			 * getting the respective rename operations issued in
3718 			 * the send stream or getting into infinite path build
3719 			 * loops.
3720 			 */
3721 			ret = is_ancestor(sctx->parent_root,
3722 					  sctx->cur_ino, sctx->cur_inode_gen,
3723 					  ino, path_before);
3724 			if (ret)
3725 				break;
3726 		}
3727 
3728 		fs_path_reset(path_before);
3729 		fs_path_reset(path_after);
3730 
3731 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3732 				    &parent_ino_after_gen, path_after);
3733 		if (ret < 0)
3734 			goto out;
3735 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3736 				    NULL, path_before);
3737 		if (ret < 0 && ret != -ENOENT) {
3738 			goto out;
3739 		} else if (ret == -ENOENT) {
3740 			ret = 0;
3741 			break;
3742 		}
3743 
3744 		len1 = fs_path_len(path_before);
3745 		len2 = fs_path_len(path_after);
3746 		if (ino > sctx->cur_ino &&
3747 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3748 		     memcmp(path_before->start, path_after->start, len1))) {
3749 			u64 parent_ino_gen;
3750 
3751 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3752 					     &parent_ino_gen, NULL, NULL, NULL,
3753 					     NULL);
3754 			if (ret < 0)
3755 				goto out;
3756 			if (ino_gen == parent_ino_gen) {
3757 				ret = 1;
3758 				break;
3759 			}
3760 		}
3761 		ino = parent_ino_after;
3762 		ino_gen = parent_ino_after_gen;
3763 	}
3764 
3765 out:
3766 	fs_path_free(path_before);
3767 	fs_path_free(path_after);
3768 
3769 	if (ret == 1) {
3770 		ret = add_pending_dir_move(sctx,
3771 					   sctx->cur_ino,
3772 					   sctx->cur_inode_gen,
3773 					   ino,
3774 					   &sctx->new_refs,
3775 					   &sctx->deleted_refs,
3776 					   is_orphan);
3777 		if (!ret)
3778 			ret = 1;
3779 	}
3780 
3781 	return ret;
3782 }
3783 
3784 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3785 {
3786 	int ret;
3787 	struct fs_path *new_path;
3788 
3789 	/*
3790 	 * Our reference's name member points to its full_path member string, so
3791 	 * we use here a new path.
3792 	 */
3793 	new_path = fs_path_alloc();
3794 	if (!new_path)
3795 		return -ENOMEM;
3796 
3797 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3798 	if (ret < 0) {
3799 		fs_path_free(new_path);
3800 		return ret;
3801 	}
3802 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3803 	if (ret < 0) {
3804 		fs_path_free(new_path);
3805 		return ret;
3806 	}
3807 
3808 	fs_path_free(ref->full_path);
3809 	set_ref_path(ref, new_path);
3810 
3811 	return 0;
3812 }
3813 
3814 /*
3815  * When processing the new references for an inode we may orphanize an existing
3816  * directory inode because its old name conflicts with one of the new references
3817  * of the current inode. Later, when processing another new reference of our
3818  * inode, we might need to orphanize another inode, but the path we have in the
3819  * reference reflects the pre-orphanization name of the directory we previously
3820  * orphanized. For example:
3821  *
3822  * parent snapshot looks like:
3823  *
3824  * .                                     (ino 256)
3825  * |----- f1                             (ino 257)
3826  * |----- f2                             (ino 258)
3827  * |----- d1/                            (ino 259)
3828  *        |----- d2/                     (ino 260)
3829  *
3830  * send snapshot looks like:
3831  *
3832  * .                                     (ino 256)
3833  * |----- d1                             (ino 258)
3834  * |----- f2/                            (ino 259)
3835  *        |----- f2_link/                (ino 260)
3836  *        |       |----- f1              (ino 257)
3837  *        |
3838  *        |----- d2                      (ino 258)
3839  *
3840  * When processing inode 257 we compute the name for inode 259 as "d1", and we
3841  * cache it in the name cache. Later when we start processing inode 258, when
3842  * collecting all its new references we set a full path of "d1/d2" for its new
3843  * reference with name "d2". When we start processing the new references we
3844  * start by processing the new reference with name "d1", and this results in
3845  * orphanizing inode 259, since its old reference causes a conflict. Then we
3846  * move on the next new reference, with name "d2", and we find out we must
3847  * orphanize inode 260, as its old reference conflicts with ours - but for the
3848  * orphanization we use a source path corresponding to the path we stored in the
3849  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3850  * receiver fail since the path component "d1/" no longer exists, it was renamed
3851  * to "o259-6-0/" when processing the previous new reference. So in this case we
3852  * must recompute the path in the new reference and use it for the new
3853  * orphanization operation.
3854  */
3855 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3856 {
3857 	char *name;
3858 	int ret;
3859 
3860 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3861 	if (!name)
3862 		return -ENOMEM;
3863 
3864 	fs_path_reset(ref->full_path);
3865 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3866 	if (ret < 0)
3867 		goto out;
3868 
3869 	ret = fs_path_add(ref->full_path, name, ref->name_len);
3870 	if (ret < 0)
3871 		goto out;
3872 
3873 	/* Update the reference's base name pointer. */
3874 	set_ref_path(ref, ref->full_path);
3875 out:
3876 	kfree(name);
3877 	return ret;
3878 }
3879 
3880 /*
3881  * This does all the move/link/unlink/rmdir magic.
3882  */
3883 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3884 {
3885 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3886 	int ret = 0;
3887 	struct recorded_ref *cur;
3888 	struct recorded_ref *cur2;
3889 	struct list_head check_dirs;
3890 	struct fs_path *valid_path = NULL;
3891 	u64 ow_inode = 0;
3892 	u64 ow_gen;
3893 	u64 ow_mode;
3894 	int did_overwrite = 0;
3895 	int is_orphan = 0;
3896 	u64 last_dir_ino_rm = 0;
3897 	bool can_rename = true;
3898 	bool orphanized_dir = false;
3899 	bool orphanized_ancestor = false;
3900 
3901 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3902 
3903 	/*
3904 	 * This should never happen as the root dir always has the same ref
3905 	 * which is always '..'
3906 	 */
3907 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3908 	INIT_LIST_HEAD(&check_dirs);
3909 
3910 	valid_path = fs_path_alloc();
3911 	if (!valid_path) {
3912 		ret = -ENOMEM;
3913 		goto out;
3914 	}
3915 
3916 	/*
3917 	 * First, check if the first ref of the current inode was overwritten
3918 	 * before. If yes, we know that the current inode was already orphanized
3919 	 * and thus use the orphan name. If not, we can use get_cur_path to
3920 	 * get the path of the first ref as it would like while receiving at
3921 	 * this point in time.
3922 	 * New inodes are always orphan at the beginning, so force to use the
3923 	 * orphan name in this case.
3924 	 * The first ref is stored in valid_path and will be updated if it
3925 	 * gets moved around.
3926 	 */
3927 	if (!sctx->cur_inode_new) {
3928 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3929 				sctx->cur_inode_gen);
3930 		if (ret < 0)
3931 			goto out;
3932 		if (ret)
3933 			did_overwrite = 1;
3934 	}
3935 	if (sctx->cur_inode_new || did_overwrite) {
3936 		ret = gen_unique_name(sctx, sctx->cur_ino,
3937 				sctx->cur_inode_gen, valid_path);
3938 		if (ret < 0)
3939 			goto out;
3940 		is_orphan = 1;
3941 	} else {
3942 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3943 				valid_path);
3944 		if (ret < 0)
3945 			goto out;
3946 	}
3947 
3948 	/*
3949 	 * Before doing any rename and link operations, do a first pass on the
3950 	 * new references to orphanize any unprocessed inodes that may have a
3951 	 * reference that conflicts with one of the new references of the current
3952 	 * inode. This needs to happen first because a new reference may conflict
3953 	 * with the old reference of a parent directory, so we must make sure
3954 	 * that the path used for link and rename commands don't use an
3955 	 * orphanized name when an ancestor was not yet orphanized.
3956 	 *
3957 	 * Example:
3958 	 *
3959 	 * Parent snapshot:
3960 	 *
3961 	 * .                                                      (ino 256)
3962 	 * |----- testdir/                                        (ino 259)
3963 	 * |          |----- a                                    (ino 257)
3964 	 * |
3965 	 * |----- b                                               (ino 258)
3966 	 *
3967 	 * Send snapshot:
3968 	 *
3969 	 * .                                                      (ino 256)
3970 	 * |----- testdir_2/                                      (ino 259)
3971 	 * |          |----- a                                    (ino 260)
3972 	 * |
3973 	 * |----- testdir                                         (ino 257)
3974 	 * |----- b                                               (ino 257)
3975 	 * |----- b2                                              (ino 258)
3976 	 *
3977 	 * Processing the new reference for inode 257 with name "b" may happen
3978 	 * before processing the new reference with name "testdir". If so, we
3979 	 * must make sure that by the time we send a link command to create the
3980 	 * hard link "b", inode 259 was already orphanized, since the generated
3981 	 * path in "valid_path" already contains the orphanized name for 259.
3982 	 * We are processing inode 257, so only later when processing 259 we do
3983 	 * the rename operation to change its temporary (orphanized) name to
3984 	 * "testdir_2".
3985 	 */
3986 	list_for_each_entry(cur, &sctx->new_refs, list) {
3987 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3988 		if (ret < 0)
3989 			goto out;
3990 		if (ret == inode_state_will_create)
3991 			continue;
3992 
3993 		/*
3994 		 * Check if this new ref would overwrite the first ref of another
3995 		 * unprocessed inode. If yes, orphanize the overwritten inode.
3996 		 * If we find an overwritten ref that is not the first ref,
3997 		 * simply unlink it.
3998 		 */
3999 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4000 				cur->name, cur->name_len,
4001 				&ow_inode, &ow_gen, &ow_mode);
4002 		if (ret < 0)
4003 			goto out;
4004 		if (ret) {
4005 			ret = is_first_ref(sctx->parent_root,
4006 					   ow_inode, cur->dir, cur->name,
4007 					   cur->name_len);
4008 			if (ret < 0)
4009 				goto out;
4010 			if (ret) {
4011 				struct name_cache_entry *nce;
4012 				struct waiting_dir_move *wdm;
4013 
4014 				if (orphanized_dir) {
4015 					ret = refresh_ref_path(sctx, cur);
4016 					if (ret < 0)
4017 						goto out;
4018 				}
4019 
4020 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4021 						cur->full_path);
4022 				if (ret < 0)
4023 					goto out;
4024 				if (S_ISDIR(ow_mode))
4025 					orphanized_dir = true;
4026 
4027 				/*
4028 				 * If ow_inode has its rename operation delayed
4029 				 * make sure that its orphanized name is used in
4030 				 * the source path when performing its rename
4031 				 * operation.
4032 				 */
4033 				if (is_waiting_for_move(sctx, ow_inode)) {
4034 					wdm = get_waiting_dir_move(sctx,
4035 								   ow_inode);
4036 					ASSERT(wdm);
4037 					wdm->orphanized = true;
4038 				}
4039 
4040 				/*
4041 				 * Make sure we clear our orphanized inode's
4042 				 * name from the name cache. This is because the
4043 				 * inode ow_inode might be an ancestor of some
4044 				 * other inode that will be orphanized as well
4045 				 * later and has an inode number greater than
4046 				 * sctx->send_progress. We need to prevent
4047 				 * future name lookups from using the old name
4048 				 * and get instead the orphan name.
4049 				 */
4050 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4051 				if (nce) {
4052 					name_cache_delete(sctx, nce);
4053 					kfree(nce);
4054 				}
4055 
4056 				/*
4057 				 * ow_inode might currently be an ancestor of
4058 				 * cur_ino, therefore compute valid_path (the
4059 				 * current path of cur_ino) again because it
4060 				 * might contain the pre-orphanization name of
4061 				 * ow_inode, which is no longer valid.
4062 				 */
4063 				ret = is_ancestor(sctx->parent_root,
4064 						  ow_inode, ow_gen,
4065 						  sctx->cur_ino, NULL);
4066 				if (ret > 0) {
4067 					orphanized_ancestor = true;
4068 					fs_path_reset(valid_path);
4069 					ret = get_cur_path(sctx, sctx->cur_ino,
4070 							   sctx->cur_inode_gen,
4071 							   valid_path);
4072 				}
4073 				if (ret < 0)
4074 					goto out;
4075 			} else {
4076 				/*
4077 				 * If we previously orphanized a directory that
4078 				 * collided with a new reference that we already
4079 				 * processed, recompute the current path because
4080 				 * that directory may be part of the path.
4081 				 */
4082 				if (orphanized_dir) {
4083 					ret = refresh_ref_path(sctx, cur);
4084 					if (ret < 0)
4085 						goto out;
4086 				}
4087 				ret = send_unlink(sctx, cur->full_path);
4088 				if (ret < 0)
4089 					goto out;
4090 			}
4091 		}
4092 
4093 	}
4094 
4095 	list_for_each_entry(cur, &sctx->new_refs, list) {
4096 		/*
4097 		 * We may have refs where the parent directory does not exist
4098 		 * yet. This happens if the parent directories inum is higher
4099 		 * than the current inum. To handle this case, we create the
4100 		 * parent directory out of order. But we need to check if this
4101 		 * did already happen before due to other refs in the same dir.
4102 		 */
4103 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4104 		if (ret < 0)
4105 			goto out;
4106 		if (ret == inode_state_will_create) {
4107 			ret = 0;
4108 			/*
4109 			 * First check if any of the current inodes refs did
4110 			 * already create the dir.
4111 			 */
4112 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4113 				if (cur == cur2)
4114 					break;
4115 				if (cur2->dir == cur->dir) {
4116 					ret = 1;
4117 					break;
4118 				}
4119 			}
4120 
4121 			/*
4122 			 * If that did not happen, check if a previous inode
4123 			 * did already create the dir.
4124 			 */
4125 			if (!ret)
4126 				ret = did_create_dir(sctx, cur->dir);
4127 			if (ret < 0)
4128 				goto out;
4129 			if (!ret) {
4130 				ret = send_create_inode(sctx, cur->dir);
4131 				if (ret < 0)
4132 					goto out;
4133 			}
4134 		}
4135 
4136 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4137 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4138 			if (ret < 0)
4139 				goto out;
4140 			if (ret == 1) {
4141 				can_rename = false;
4142 				*pending_move = 1;
4143 			}
4144 		}
4145 
4146 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4147 		    can_rename) {
4148 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4149 			if (ret < 0)
4150 				goto out;
4151 			if (ret == 1) {
4152 				can_rename = false;
4153 				*pending_move = 1;
4154 			}
4155 		}
4156 
4157 		/*
4158 		 * link/move the ref to the new place. If we have an orphan
4159 		 * inode, move it and update valid_path. If not, link or move
4160 		 * it depending on the inode mode.
4161 		 */
4162 		if (is_orphan && can_rename) {
4163 			ret = send_rename(sctx, valid_path, cur->full_path);
4164 			if (ret < 0)
4165 				goto out;
4166 			is_orphan = 0;
4167 			ret = fs_path_copy(valid_path, cur->full_path);
4168 			if (ret < 0)
4169 				goto out;
4170 		} else if (can_rename) {
4171 			if (S_ISDIR(sctx->cur_inode_mode)) {
4172 				/*
4173 				 * Dirs can't be linked, so move it. For moved
4174 				 * dirs, we always have one new and one deleted
4175 				 * ref. The deleted ref is ignored later.
4176 				 */
4177 				ret = send_rename(sctx, valid_path,
4178 						  cur->full_path);
4179 				if (!ret)
4180 					ret = fs_path_copy(valid_path,
4181 							   cur->full_path);
4182 				if (ret < 0)
4183 					goto out;
4184 			} else {
4185 				/*
4186 				 * We might have previously orphanized an inode
4187 				 * which is an ancestor of our current inode,
4188 				 * so our reference's full path, which was
4189 				 * computed before any such orphanizations, must
4190 				 * be updated.
4191 				 */
4192 				if (orphanized_dir) {
4193 					ret = update_ref_path(sctx, cur);
4194 					if (ret < 0)
4195 						goto out;
4196 				}
4197 				ret = send_link(sctx, cur->full_path,
4198 						valid_path);
4199 				if (ret < 0)
4200 					goto out;
4201 			}
4202 		}
4203 		ret = dup_ref(cur, &check_dirs);
4204 		if (ret < 0)
4205 			goto out;
4206 	}
4207 
4208 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4209 		/*
4210 		 * Check if we can already rmdir the directory. If not,
4211 		 * orphanize it. For every dir item inside that gets deleted
4212 		 * later, we do this check again and rmdir it then if possible.
4213 		 * See the use of check_dirs for more details.
4214 		 */
4215 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4216 				sctx->cur_ino);
4217 		if (ret < 0)
4218 			goto out;
4219 		if (ret) {
4220 			ret = send_rmdir(sctx, valid_path);
4221 			if (ret < 0)
4222 				goto out;
4223 		} else if (!is_orphan) {
4224 			ret = orphanize_inode(sctx, sctx->cur_ino,
4225 					sctx->cur_inode_gen, valid_path);
4226 			if (ret < 0)
4227 				goto out;
4228 			is_orphan = 1;
4229 		}
4230 
4231 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4232 			ret = dup_ref(cur, &check_dirs);
4233 			if (ret < 0)
4234 				goto out;
4235 		}
4236 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4237 		   !list_empty(&sctx->deleted_refs)) {
4238 		/*
4239 		 * We have a moved dir. Add the old parent to check_dirs
4240 		 */
4241 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4242 				list);
4243 		ret = dup_ref(cur, &check_dirs);
4244 		if (ret < 0)
4245 			goto out;
4246 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4247 		/*
4248 		 * We have a non dir inode. Go through all deleted refs and
4249 		 * unlink them if they were not already overwritten by other
4250 		 * inodes.
4251 		 */
4252 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4253 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4254 					sctx->cur_ino, sctx->cur_inode_gen,
4255 					cur->name, cur->name_len);
4256 			if (ret < 0)
4257 				goto out;
4258 			if (!ret) {
4259 				/*
4260 				 * If we orphanized any ancestor before, we need
4261 				 * to recompute the full path for deleted names,
4262 				 * since any such path was computed before we
4263 				 * processed any references and orphanized any
4264 				 * ancestor inode.
4265 				 */
4266 				if (orphanized_ancestor) {
4267 					ret = update_ref_path(sctx, cur);
4268 					if (ret < 0)
4269 						goto out;
4270 				}
4271 				ret = send_unlink(sctx, cur->full_path);
4272 				if (ret < 0)
4273 					goto out;
4274 			}
4275 			ret = dup_ref(cur, &check_dirs);
4276 			if (ret < 0)
4277 				goto out;
4278 		}
4279 		/*
4280 		 * If the inode is still orphan, unlink the orphan. This may
4281 		 * happen when a previous inode did overwrite the first ref
4282 		 * of this inode and no new refs were added for the current
4283 		 * inode. Unlinking does not mean that the inode is deleted in
4284 		 * all cases. There may still be links to this inode in other
4285 		 * places.
4286 		 */
4287 		if (is_orphan) {
4288 			ret = send_unlink(sctx, valid_path);
4289 			if (ret < 0)
4290 				goto out;
4291 		}
4292 	}
4293 
4294 	/*
4295 	 * We did collect all parent dirs where cur_inode was once located. We
4296 	 * now go through all these dirs and check if they are pending for
4297 	 * deletion and if it's finally possible to perform the rmdir now.
4298 	 * We also update the inode stats of the parent dirs here.
4299 	 */
4300 	list_for_each_entry(cur, &check_dirs, list) {
4301 		/*
4302 		 * In case we had refs into dirs that were not processed yet,
4303 		 * we don't need to do the utime and rmdir logic for these dirs.
4304 		 * The dir will be processed later.
4305 		 */
4306 		if (cur->dir > sctx->cur_ino)
4307 			continue;
4308 
4309 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4310 		if (ret < 0)
4311 			goto out;
4312 
4313 		if (ret == inode_state_did_create ||
4314 		    ret == inode_state_no_change) {
4315 			/* TODO delayed utimes */
4316 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4317 			if (ret < 0)
4318 				goto out;
4319 		} else if (ret == inode_state_did_delete &&
4320 			   cur->dir != last_dir_ino_rm) {
4321 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4322 					sctx->cur_ino);
4323 			if (ret < 0)
4324 				goto out;
4325 			if (ret) {
4326 				ret = get_cur_path(sctx, cur->dir,
4327 						   cur->dir_gen, valid_path);
4328 				if (ret < 0)
4329 					goto out;
4330 				ret = send_rmdir(sctx, valid_path);
4331 				if (ret < 0)
4332 					goto out;
4333 				last_dir_ino_rm = cur->dir;
4334 			}
4335 		}
4336 	}
4337 
4338 	ret = 0;
4339 
4340 out:
4341 	__free_recorded_refs(&check_dirs);
4342 	free_recorded_refs(sctx);
4343 	fs_path_free(valid_path);
4344 	return ret;
4345 }
4346 
4347 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4348 		      void *ctx, struct list_head *refs)
4349 {
4350 	int ret = 0;
4351 	struct send_ctx *sctx = ctx;
4352 	struct fs_path *p;
4353 	u64 gen;
4354 
4355 	p = fs_path_alloc();
4356 	if (!p)
4357 		return -ENOMEM;
4358 
4359 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4360 			NULL, NULL);
4361 	if (ret < 0)
4362 		goto out;
4363 
4364 	ret = get_cur_path(sctx, dir, gen, p);
4365 	if (ret < 0)
4366 		goto out;
4367 	ret = fs_path_add_path(p, name);
4368 	if (ret < 0)
4369 		goto out;
4370 
4371 	ret = __record_ref(refs, dir, gen, p);
4372 
4373 out:
4374 	if (ret)
4375 		fs_path_free(p);
4376 	return ret;
4377 }
4378 
4379 static int __record_new_ref(int num, u64 dir, int index,
4380 			    struct fs_path *name,
4381 			    void *ctx)
4382 {
4383 	struct send_ctx *sctx = ctx;
4384 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4385 }
4386 
4387 
4388 static int __record_deleted_ref(int num, u64 dir, int index,
4389 				struct fs_path *name,
4390 				void *ctx)
4391 {
4392 	struct send_ctx *sctx = ctx;
4393 	return record_ref(sctx->parent_root, dir, name, ctx,
4394 			  &sctx->deleted_refs);
4395 }
4396 
4397 static int record_new_ref(struct send_ctx *sctx)
4398 {
4399 	int ret;
4400 
4401 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4402 				sctx->cmp_key, 0, __record_new_ref, sctx);
4403 	if (ret < 0)
4404 		goto out;
4405 	ret = 0;
4406 
4407 out:
4408 	return ret;
4409 }
4410 
4411 static int record_deleted_ref(struct send_ctx *sctx)
4412 {
4413 	int ret;
4414 
4415 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4416 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4417 	if (ret < 0)
4418 		goto out;
4419 	ret = 0;
4420 
4421 out:
4422 	return ret;
4423 }
4424 
4425 struct find_ref_ctx {
4426 	u64 dir;
4427 	u64 dir_gen;
4428 	struct btrfs_root *root;
4429 	struct fs_path *name;
4430 	int found_idx;
4431 };
4432 
4433 static int __find_iref(int num, u64 dir, int index,
4434 		       struct fs_path *name,
4435 		       void *ctx_)
4436 {
4437 	struct find_ref_ctx *ctx = ctx_;
4438 	u64 dir_gen;
4439 	int ret;
4440 
4441 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4442 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4443 		/*
4444 		 * To avoid doing extra lookups we'll only do this if everything
4445 		 * else matches.
4446 		 */
4447 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4448 				     NULL, NULL, NULL);
4449 		if (ret)
4450 			return ret;
4451 		if (dir_gen != ctx->dir_gen)
4452 			return 0;
4453 		ctx->found_idx = num;
4454 		return 1;
4455 	}
4456 	return 0;
4457 }
4458 
4459 static int find_iref(struct btrfs_root *root,
4460 		     struct btrfs_path *path,
4461 		     struct btrfs_key *key,
4462 		     u64 dir, u64 dir_gen, struct fs_path *name)
4463 {
4464 	int ret;
4465 	struct find_ref_ctx ctx;
4466 
4467 	ctx.dir = dir;
4468 	ctx.name = name;
4469 	ctx.dir_gen = dir_gen;
4470 	ctx.found_idx = -1;
4471 	ctx.root = root;
4472 
4473 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4474 	if (ret < 0)
4475 		return ret;
4476 
4477 	if (ctx.found_idx == -1)
4478 		return -ENOENT;
4479 
4480 	return ctx.found_idx;
4481 }
4482 
4483 static int __record_changed_new_ref(int num, u64 dir, int index,
4484 				    struct fs_path *name,
4485 				    void *ctx)
4486 {
4487 	u64 dir_gen;
4488 	int ret;
4489 	struct send_ctx *sctx = ctx;
4490 
4491 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4492 			     NULL, NULL, NULL);
4493 	if (ret)
4494 		return ret;
4495 
4496 	ret = find_iref(sctx->parent_root, sctx->right_path,
4497 			sctx->cmp_key, dir, dir_gen, name);
4498 	if (ret == -ENOENT)
4499 		ret = __record_new_ref(num, dir, index, name, sctx);
4500 	else if (ret > 0)
4501 		ret = 0;
4502 
4503 	return ret;
4504 }
4505 
4506 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4507 					struct fs_path *name,
4508 					void *ctx)
4509 {
4510 	u64 dir_gen;
4511 	int ret;
4512 	struct send_ctx *sctx = ctx;
4513 
4514 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4515 			     NULL, NULL, NULL);
4516 	if (ret)
4517 		return ret;
4518 
4519 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4520 			dir, dir_gen, name);
4521 	if (ret == -ENOENT)
4522 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4523 	else if (ret > 0)
4524 		ret = 0;
4525 
4526 	return ret;
4527 }
4528 
4529 static int record_changed_ref(struct send_ctx *sctx)
4530 {
4531 	int ret = 0;
4532 
4533 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4534 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4535 	if (ret < 0)
4536 		goto out;
4537 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4538 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4539 	if (ret < 0)
4540 		goto out;
4541 	ret = 0;
4542 
4543 out:
4544 	return ret;
4545 }
4546 
4547 /*
4548  * Record and process all refs at once. Needed when an inode changes the
4549  * generation number, which means that it was deleted and recreated.
4550  */
4551 static int process_all_refs(struct send_ctx *sctx,
4552 			    enum btrfs_compare_tree_result cmd)
4553 {
4554 	int ret;
4555 	struct btrfs_root *root;
4556 	struct btrfs_path *path;
4557 	struct btrfs_key key;
4558 	struct btrfs_key found_key;
4559 	struct extent_buffer *eb;
4560 	int slot;
4561 	iterate_inode_ref_t cb;
4562 	int pending_move = 0;
4563 
4564 	path = alloc_path_for_send();
4565 	if (!path)
4566 		return -ENOMEM;
4567 
4568 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4569 		root = sctx->send_root;
4570 		cb = __record_new_ref;
4571 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4572 		root = sctx->parent_root;
4573 		cb = __record_deleted_ref;
4574 	} else {
4575 		btrfs_err(sctx->send_root->fs_info,
4576 				"Wrong command %d in process_all_refs", cmd);
4577 		ret = -EINVAL;
4578 		goto out;
4579 	}
4580 
4581 	key.objectid = sctx->cmp_key->objectid;
4582 	key.type = BTRFS_INODE_REF_KEY;
4583 	key.offset = 0;
4584 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4585 	if (ret < 0)
4586 		goto out;
4587 
4588 	while (1) {
4589 		eb = path->nodes[0];
4590 		slot = path->slots[0];
4591 		if (slot >= btrfs_header_nritems(eb)) {
4592 			ret = btrfs_next_leaf(root, path);
4593 			if (ret < 0)
4594 				goto out;
4595 			else if (ret > 0)
4596 				break;
4597 			continue;
4598 		}
4599 
4600 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4601 
4602 		if (found_key.objectid != key.objectid ||
4603 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4604 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4605 			break;
4606 
4607 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4608 		if (ret < 0)
4609 			goto out;
4610 
4611 		path->slots[0]++;
4612 	}
4613 	btrfs_release_path(path);
4614 
4615 	/*
4616 	 * We don't actually care about pending_move as we are simply
4617 	 * re-creating this inode and will be rename'ing it into place once we
4618 	 * rename the parent directory.
4619 	 */
4620 	ret = process_recorded_refs(sctx, &pending_move);
4621 out:
4622 	btrfs_free_path(path);
4623 	return ret;
4624 }
4625 
4626 static int send_set_xattr(struct send_ctx *sctx,
4627 			  struct fs_path *path,
4628 			  const char *name, int name_len,
4629 			  const char *data, int data_len)
4630 {
4631 	int ret = 0;
4632 
4633 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4634 	if (ret < 0)
4635 		goto out;
4636 
4637 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4638 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4639 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4640 
4641 	ret = send_cmd(sctx);
4642 
4643 tlv_put_failure:
4644 out:
4645 	return ret;
4646 }
4647 
4648 static int send_remove_xattr(struct send_ctx *sctx,
4649 			  struct fs_path *path,
4650 			  const char *name, int name_len)
4651 {
4652 	int ret = 0;
4653 
4654 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4655 	if (ret < 0)
4656 		goto out;
4657 
4658 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4659 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4660 
4661 	ret = send_cmd(sctx);
4662 
4663 tlv_put_failure:
4664 out:
4665 	return ret;
4666 }
4667 
4668 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4669 			       const char *name, int name_len, const char *data,
4670 			       int data_len, void *ctx)
4671 {
4672 	int ret;
4673 	struct send_ctx *sctx = ctx;
4674 	struct fs_path *p;
4675 	struct posix_acl_xattr_header dummy_acl;
4676 
4677 	/* Capabilities are emitted by finish_inode_if_needed */
4678 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4679 		return 0;
4680 
4681 	p = fs_path_alloc();
4682 	if (!p)
4683 		return -ENOMEM;
4684 
4685 	/*
4686 	 * This hack is needed because empty acls are stored as zero byte
4687 	 * data in xattrs. Problem with that is, that receiving these zero byte
4688 	 * acls will fail later. To fix this, we send a dummy acl list that
4689 	 * only contains the version number and no entries.
4690 	 */
4691 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4692 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4693 		if (data_len == 0) {
4694 			dummy_acl.a_version =
4695 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4696 			data = (char *)&dummy_acl;
4697 			data_len = sizeof(dummy_acl);
4698 		}
4699 	}
4700 
4701 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4702 	if (ret < 0)
4703 		goto out;
4704 
4705 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4706 
4707 out:
4708 	fs_path_free(p);
4709 	return ret;
4710 }
4711 
4712 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4713 				   const char *name, int name_len,
4714 				   const char *data, int data_len, void *ctx)
4715 {
4716 	int ret;
4717 	struct send_ctx *sctx = ctx;
4718 	struct fs_path *p;
4719 
4720 	p = fs_path_alloc();
4721 	if (!p)
4722 		return -ENOMEM;
4723 
4724 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4725 	if (ret < 0)
4726 		goto out;
4727 
4728 	ret = send_remove_xattr(sctx, p, name, name_len);
4729 
4730 out:
4731 	fs_path_free(p);
4732 	return ret;
4733 }
4734 
4735 static int process_new_xattr(struct send_ctx *sctx)
4736 {
4737 	int ret = 0;
4738 
4739 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4740 			       __process_new_xattr, sctx);
4741 
4742 	return ret;
4743 }
4744 
4745 static int process_deleted_xattr(struct send_ctx *sctx)
4746 {
4747 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4748 				__process_deleted_xattr, sctx);
4749 }
4750 
4751 struct find_xattr_ctx {
4752 	const char *name;
4753 	int name_len;
4754 	int found_idx;
4755 	char *found_data;
4756 	int found_data_len;
4757 };
4758 
4759 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4760 			int name_len, const char *data, int data_len, void *vctx)
4761 {
4762 	struct find_xattr_ctx *ctx = vctx;
4763 
4764 	if (name_len == ctx->name_len &&
4765 	    strncmp(name, ctx->name, name_len) == 0) {
4766 		ctx->found_idx = num;
4767 		ctx->found_data_len = data_len;
4768 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4769 		if (!ctx->found_data)
4770 			return -ENOMEM;
4771 		return 1;
4772 	}
4773 	return 0;
4774 }
4775 
4776 static int find_xattr(struct btrfs_root *root,
4777 		      struct btrfs_path *path,
4778 		      struct btrfs_key *key,
4779 		      const char *name, int name_len,
4780 		      char **data, int *data_len)
4781 {
4782 	int ret;
4783 	struct find_xattr_ctx ctx;
4784 
4785 	ctx.name = name;
4786 	ctx.name_len = name_len;
4787 	ctx.found_idx = -1;
4788 	ctx.found_data = NULL;
4789 	ctx.found_data_len = 0;
4790 
4791 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4792 	if (ret < 0)
4793 		return ret;
4794 
4795 	if (ctx.found_idx == -1)
4796 		return -ENOENT;
4797 	if (data) {
4798 		*data = ctx.found_data;
4799 		*data_len = ctx.found_data_len;
4800 	} else {
4801 		kfree(ctx.found_data);
4802 	}
4803 	return ctx.found_idx;
4804 }
4805 
4806 
4807 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4808 				       const char *name, int name_len,
4809 				       const char *data, int data_len,
4810 				       void *ctx)
4811 {
4812 	int ret;
4813 	struct send_ctx *sctx = ctx;
4814 	char *found_data = NULL;
4815 	int found_data_len  = 0;
4816 
4817 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4818 			 sctx->cmp_key, name, name_len, &found_data,
4819 			 &found_data_len);
4820 	if (ret == -ENOENT) {
4821 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4822 					  data_len, ctx);
4823 	} else if (ret >= 0) {
4824 		if (data_len != found_data_len ||
4825 		    memcmp(data, found_data, data_len)) {
4826 			ret = __process_new_xattr(num, di_key, name, name_len,
4827 						  data, data_len, ctx);
4828 		} else {
4829 			ret = 0;
4830 		}
4831 	}
4832 
4833 	kfree(found_data);
4834 	return ret;
4835 }
4836 
4837 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4838 					   const char *name, int name_len,
4839 					   const char *data, int data_len,
4840 					   void *ctx)
4841 {
4842 	int ret;
4843 	struct send_ctx *sctx = ctx;
4844 
4845 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4846 			 name, name_len, NULL, NULL);
4847 	if (ret == -ENOENT)
4848 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4849 					      data_len, ctx);
4850 	else if (ret >= 0)
4851 		ret = 0;
4852 
4853 	return ret;
4854 }
4855 
4856 static int process_changed_xattr(struct send_ctx *sctx)
4857 {
4858 	int ret = 0;
4859 
4860 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4861 			__process_changed_new_xattr, sctx);
4862 	if (ret < 0)
4863 		goto out;
4864 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4865 			__process_changed_deleted_xattr, sctx);
4866 
4867 out:
4868 	return ret;
4869 }
4870 
4871 static int process_all_new_xattrs(struct send_ctx *sctx)
4872 {
4873 	int ret;
4874 	struct btrfs_root *root;
4875 	struct btrfs_path *path;
4876 	struct btrfs_key key;
4877 	struct btrfs_key found_key;
4878 	struct extent_buffer *eb;
4879 	int slot;
4880 
4881 	path = alloc_path_for_send();
4882 	if (!path)
4883 		return -ENOMEM;
4884 
4885 	root = sctx->send_root;
4886 
4887 	key.objectid = sctx->cmp_key->objectid;
4888 	key.type = BTRFS_XATTR_ITEM_KEY;
4889 	key.offset = 0;
4890 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4891 	if (ret < 0)
4892 		goto out;
4893 
4894 	while (1) {
4895 		eb = path->nodes[0];
4896 		slot = path->slots[0];
4897 		if (slot >= btrfs_header_nritems(eb)) {
4898 			ret = btrfs_next_leaf(root, path);
4899 			if (ret < 0) {
4900 				goto out;
4901 			} else if (ret > 0) {
4902 				ret = 0;
4903 				break;
4904 			}
4905 			continue;
4906 		}
4907 
4908 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4909 		if (found_key.objectid != key.objectid ||
4910 		    found_key.type != key.type) {
4911 			ret = 0;
4912 			goto out;
4913 		}
4914 
4915 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4916 		if (ret < 0)
4917 			goto out;
4918 
4919 		path->slots[0]++;
4920 	}
4921 
4922 out:
4923 	btrfs_free_path(path);
4924 	return ret;
4925 }
4926 
4927 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4928 {
4929 	return sctx->send_max_size - SZ_16K;
4930 }
4931 
4932 static int put_data_header(struct send_ctx *sctx, u32 len)
4933 {
4934 	struct btrfs_tlv_header *hdr;
4935 
4936 	if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4937 		return -EOVERFLOW;
4938 	hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4939 	put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4940 	put_unaligned_le16(len, &hdr->tlv_len);
4941 	sctx->send_size += sizeof(*hdr);
4942 	return 0;
4943 }
4944 
4945 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4946 {
4947 	struct btrfs_root *root = sctx->send_root;
4948 	struct btrfs_fs_info *fs_info = root->fs_info;
4949 	struct inode *inode;
4950 	struct page *page;
4951 	pgoff_t index = offset >> PAGE_SHIFT;
4952 	pgoff_t last_index;
4953 	unsigned pg_offset = offset_in_page(offset);
4954 	int ret;
4955 
4956 	ret = put_data_header(sctx, len);
4957 	if (ret)
4958 		return ret;
4959 
4960 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4961 	if (IS_ERR(inode))
4962 		return PTR_ERR(inode);
4963 
4964 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4965 
4966 	/* initial readahead */
4967 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4968 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4969 
4970 	while (index <= last_index) {
4971 		unsigned cur_len = min_t(unsigned, len,
4972 					 PAGE_SIZE - pg_offset);
4973 
4974 		page = find_lock_page(inode->i_mapping, index);
4975 		if (!page) {
4976 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4977 				NULL, index, last_index + 1 - index);
4978 
4979 			page = find_or_create_page(inode->i_mapping, index,
4980 					GFP_KERNEL);
4981 			if (!page) {
4982 				ret = -ENOMEM;
4983 				break;
4984 			}
4985 		}
4986 
4987 		if (PageReadahead(page)) {
4988 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4989 				NULL, page, index, last_index + 1 - index);
4990 		}
4991 
4992 		if (!PageUptodate(page)) {
4993 			btrfs_readpage(NULL, page);
4994 			lock_page(page);
4995 			if (!PageUptodate(page)) {
4996 				unlock_page(page);
4997 				btrfs_err(fs_info,
4998 			"send: IO error at offset %llu for inode %llu root %llu",
4999 					page_offset(page), sctx->cur_ino,
5000 					sctx->send_root->root_key.objectid);
5001 				put_page(page);
5002 				ret = -EIO;
5003 				break;
5004 			}
5005 		}
5006 
5007 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5008 				 pg_offset, cur_len);
5009 		unlock_page(page);
5010 		put_page(page);
5011 		index++;
5012 		pg_offset = 0;
5013 		len -= cur_len;
5014 		sctx->send_size += cur_len;
5015 	}
5016 	iput(inode);
5017 	return ret;
5018 }
5019 
5020 /*
5021  * Read some bytes from the current inode/file and send a write command to
5022  * user space.
5023  */
5024 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5025 {
5026 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5027 	int ret = 0;
5028 	struct fs_path *p;
5029 
5030 	p = fs_path_alloc();
5031 	if (!p)
5032 		return -ENOMEM;
5033 
5034 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5035 
5036 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5037 	if (ret < 0)
5038 		goto out;
5039 
5040 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5041 	if (ret < 0)
5042 		goto out;
5043 
5044 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5045 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5046 	ret = put_file_data(sctx, offset, len);
5047 	if (ret < 0)
5048 		goto out;
5049 
5050 	ret = send_cmd(sctx);
5051 
5052 tlv_put_failure:
5053 out:
5054 	fs_path_free(p);
5055 	return ret;
5056 }
5057 
5058 /*
5059  * Send a clone command to user space.
5060  */
5061 static int send_clone(struct send_ctx *sctx,
5062 		      u64 offset, u32 len,
5063 		      struct clone_root *clone_root)
5064 {
5065 	int ret = 0;
5066 	struct fs_path *p;
5067 	u64 gen;
5068 
5069 	btrfs_debug(sctx->send_root->fs_info,
5070 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5071 		    offset, len, clone_root->root->root_key.objectid,
5072 		    clone_root->ino, clone_root->offset);
5073 
5074 	p = fs_path_alloc();
5075 	if (!p)
5076 		return -ENOMEM;
5077 
5078 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5079 	if (ret < 0)
5080 		goto out;
5081 
5082 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5083 	if (ret < 0)
5084 		goto out;
5085 
5086 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5087 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5088 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5089 
5090 	if (clone_root->root == sctx->send_root) {
5091 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5092 				&gen, NULL, NULL, NULL, NULL);
5093 		if (ret < 0)
5094 			goto out;
5095 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5096 	} else {
5097 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5098 	}
5099 	if (ret < 0)
5100 		goto out;
5101 
5102 	/*
5103 	 * If the parent we're using has a received_uuid set then use that as
5104 	 * our clone source as that is what we will look for when doing a
5105 	 * receive.
5106 	 *
5107 	 * This covers the case that we create a snapshot off of a received
5108 	 * subvolume and then use that as the parent and try to receive on a
5109 	 * different host.
5110 	 */
5111 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5112 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5113 			     clone_root->root->root_item.received_uuid);
5114 	else
5115 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5116 			     clone_root->root->root_item.uuid);
5117 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5118 		    btrfs_root_ctransid(&clone_root->root->root_item));
5119 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5120 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5121 			clone_root->offset);
5122 
5123 	ret = send_cmd(sctx);
5124 
5125 tlv_put_failure:
5126 out:
5127 	fs_path_free(p);
5128 	return ret;
5129 }
5130 
5131 /*
5132  * Send an update extent command to user space.
5133  */
5134 static int send_update_extent(struct send_ctx *sctx,
5135 			      u64 offset, u32 len)
5136 {
5137 	int ret = 0;
5138 	struct fs_path *p;
5139 
5140 	p = fs_path_alloc();
5141 	if (!p)
5142 		return -ENOMEM;
5143 
5144 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5145 	if (ret < 0)
5146 		goto out;
5147 
5148 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5149 	if (ret < 0)
5150 		goto out;
5151 
5152 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5153 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5154 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5155 
5156 	ret = send_cmd(sctx);
5157 
5158 tlv_put_failure:
5159 out:
5160 	fs_path_free(p);
5161 	return ret;
5162 }
5163 
5164 static int send_hole(struct send_ctx *sctx, u64 end)
5165 {
5166 	struct fs_path *p = NULL;
5167 	u64 read_size = max_send_read_size(sctx);
5168 	u64 offset = sctx->cur_inode_last_extent;
5169 	int ret = 0;
5170 
5171 	/*
5172 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5173 	 * fallocate (for extent preallocation and hole punching), sending a
5174 	 * write of zeroes starting at EOF or beyond would later require issuing
5175 	 * a truncate operation which would undo the write and achieve nothing.
5176 	 */
5177 	if (offset >= sctx->cur_inode_size)
5178 		return 0;
5179 
5180 	/*
5181 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5182 	 * after the i_size.
5183 	 */
5184 	end = min_t(u64, end, sctx->cur_inode_size);
5185 
5186 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5187 		return send_update_extent(sctx, offset, end - offset);
5188 
5189 	p = fs_path_alloc();
5190 	if (!p)
5191 		return -ENOMEM;
5192 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5193 	if (ret < 0)
5194 		goto tlv_put_failure;
5195 	while (offset < end) {
5196 		u64 len = min(end - offset, read_size);
5197 
5198 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5199 		if (ret < 0)
5200 			break;
5201 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5202 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5203 		ret = put_data_header(sctx, len);
5204 		if (ret < 0)
5205 			break;
5206 		memset(sctx->send_buf + sctx->send_size, 0, len);
5207 		sctx->send_size += len;
5208 		ret = send_cmd(sctx);
5209 		if (ret < 0)
5210 			break;
5211 		offset += len;
5212 	}
5213 	sctx->cur_inode_next_write_offset = offset;
5214 tlv_put_failure:
5215 	fs_path_free(p);
5216 	return ret;
5217 }
5218 
5219 static int send_extent_data(struct send_ctx *sctx,
5220 			    const u64 offset,
5221 			    const u64 len)
5222 {
5223 	u64 read_size = max_send_read_size(sctx);
5224 	u64 sent = 0;
5225 
5226 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5227 		return send_update_extent(sctx, offset, len);
5228 
5229 	while (sent < len) {
5230 		u64 size = min(len - sent, read_size);
5231 		int ret;
5232 
5233 		ret = send_write(sctx, offset + sent, size);
5234 		if (ret < 0)
5235 			return ret;
5236 		sent += size;
5237 	}
5238 	return 0;
5239 }
5240 
5241 /*
5242  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5243  * found, call send_set_xattr function to emit it.
5244  *
5245  * Return 0 if there isn't a capability, or when the capability was emitted
5246  * successfully, or < 0 if an error occurred.
5247  */
5248 static int send_capabilities(struct send_ctx *sctx)
5249 {
5250 	struct fs_path *fspath = NULL;
5251 	struct btrfs_path *path;
5252 	struct btrfs_dir_item *di;
5253 	struct extent_buffer *leaf;
5254 	unsigned long data_ptr;
5255 	char *buf = NULL;
5256 	int buf_len;
5257 	int ret = 0;
5258 
5259 	path = alloc_path_for_send();
5260 	if (!path)
5261 		return -ENOMEM;
5262 
5263 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5264 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5265 	if (!di) {
5266 		/* There is no xattr for this inode */
5267 		goto out;
5268 	} else if (IS_ERR(di)) {
5269 		ret = PTR_ERR(di);
5270 		goto out;
5271 	}
5272 
5273 	leaf = path->nodes[0];
5274 	buf_len = btrfs_dir_data_len(leaf, di);
5275 
5276 	fspath = fs_path_alloc();
5277 	buf = kmalloc(buf_len, GFP_KERNEL);
5278 	if (!fspath || !buf) {
5279 		ret = -ENOMEM;
5280 		goto out;
5281 	}
5282 
5283 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5284 	if (ret < 0)
5285 		goto out;
5286 
5287 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5288 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5289 
5290 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5291 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5292 out:
5293 	kfree(buf);
5294 	fs_path_free(fspath);
5295 	btrfs_free_path(path);
5296 	return ret;
5297 }
5298 
5299 static int clone_range(struct send_ctx *sctx,
5300 		       struct clone_root *clone_root,
5301 		       const u64 disk_byte,
5302 		       u64 data_offset,
5303 		       u64 offset,
5304 		       u64 len)
5305 {
5306 	struct btrfs_path *path;
5307 	struct btrfs_key key;
5308 	int ret;
5309 	u64 clone_src_i_size = 0;
5310 
5311 	/*
5312 	 * Prevent cloning from a zero offset with a length matching the sector
5313 	 * size because in some scenarios this will make the receiver fail.
5314 	 *
5315 	 * For example, if in the source filesystem the extent at offset 0
5316 	 * has a length of sectorsize and it was written using direct IO, then
5317 	 * it can never be an inline extent (even if compression is enabled).
5318 	 * Then this extent can be cloned in the original filesystem to a non
5319 	 * zero file offset, but it may not be possible to clone in the
5320 	 * destination filesystem because it can be inlined due to compression
5321 	 * on the destination filesystem (as the receiver's write operations are
5322 	 * always done using buffered IO). The same happens when the original
5323 	 * filesystem does not have compression enabled but the destination
5324 	 * filesystem has.
5325 	 */
5326 	if (clone_root->offset == 0 &&
5327 	    len == sctx->send_root->fs_info->sectorsize)
5328 		return send_extent_data(sctx, offset, len);
5329 
5330 	path = alloc_path_for_send();
5331 	if (!path)
5332 		return -ENOMEM;
5333 
5334 	/*
5335 	 * There are inodes that have extents that lie behind its i_size. Don't
5336 	 * accept clones from these extents.
5337 	 */
5338 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5339 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5340 	btrfs_release_path(path);
5341 	if (ret < 0)
5342 		goto out;
5343 
5344 	/*
5345 	 * We can't send a clone operation for the entire range if we find
5346 	 * extent items in the respective range in the source file that
5347 	 * refer to different extents or if we find holes.
5348 	 * So check for that and do a mix of clone and regular write/copy
5349 	 * operations if needed.
5350 	 *
5351 	 * Example:
5352 	 *
5353 	 * mkfs.btrfs -f /dev/sda
5354 	 * mount /dev/sda /mnt
5355 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5356 	 * cp --reflink=always /mnt/foo /mnt/bar
5357 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5358 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5359 	 *
5360 	 * If when we send the snapshot and we are processing file bar (which
5361 	 * has a higher inode number than foo) we blindly send a clone operation
5362 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5363 	 * a file bar that matches the content of file foo - iow, doesn't match
5364 	 * the content from bar in the original filesystem.
5365 	 */
5366 	key.objectid = clone_root->ino;
5367 	key.type = BTRFS_EXTENT_DATA_KEY;
5368 	key.offset = clone_root->offset;
5369 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5370 	if (ret < 0)
5371 		goto out;
5372 	if (ret > 0 && path->slots[0] > 0) {
5373 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5374 		if (key.objectid == clone_root->ino &&
5375 		    key.type == BTRFS_EXTENT_DATA_KEY)
5376 			path->slots[0]--;
5377 	}
5378 
5379 	while (true) {
5380 		struct extent_buffer *leaf = path->nodes[0];
5381 		int slot = path->slots[0];
5382 		struct btrfs_file_extent_item *ei;
5383 		u8 type;
5384 		u64 ext_len;
5385 		u64 clone_len;
5386 		u64 clone_data_offset;
5387 
5388 		if (slot >= btrfs_header_nritems(leaf)) {
5389 			ret = btrfs_next_leaf(clone_root->root, path);
5390 			if (ret < 0)
5391 				goto out;
5392 			else if (ret > 0)
5393 				break;
5394 			continue;
5395 		}
5396 
5397 		btrfs_item_key_to_cpu(leaf, &key, slot);
5398 
5399 		/*
5400 		 * We might have an implicit trailing hole (NO_HOLES feature
5401 		 * enabled). We deal with it after leaving this loop.
5402 		 */
5403 		if (key.objectid != clone_root->ino ||
5404 		    key.type != BTRFS_EXTENT_DATA_KEY)
5405 			break;
5406 
5407 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5408 		type = btrfs_file_extent_type(leaf, ei);
5409 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5410 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5411 			ext_len = PAGE_ALIGN(ext_len);
5412 		} else {
5413 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5414 		}
5415 
5416 		if (key.offset + ext_len <= clone_root->offset)
5417 			goto next;
5418 
5419 		if (key.offset > clone_root->offset) {
5420 			/* Implicit hole, NO_HOLES feature enabled. */
5421 			u64 hole_len = key.offset - clone_root->offset;
5422 
5423 			if (hole_len > len)
5424 				hole_len = len;
5425 			ret = send_extent_data(sctx, offset, hole_len);
5426 			if (ret < 0)
5427 				goto out;
5428 
5429 			len -= hole_len;
5430 			if (len == 0)
5431 				break;
5432 			offset += hole_len;
5433 			clone_root->offset += hole_len;
5434 			data_offset += hole_len;
5435 		}
5436 
5437 		if (key.offset >= clone_root->offset + len)
5438 			break;
5439 
5440 		if (key.offset >= clone_src_i_size)
5441 			break;
5442 
5443 		if (key.offset + ext_len > clone_src_i_size)
5444 			ext_len = clone_src_i_size - key.offset;
5445 
5446 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5447 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5448 			clone_root->offset = key.offset;
5449 			if (clone_data_offset < data_offset &&
5450 				clone_data_offset + ext_len > data_offset) {
5451 				u64 extent_offset;
5452 
5453 				extent_offset = data_offset - clone_data_offset;
5454 				ext_len -= extent_offset;
5455 				clone_data_offset += extent_offset;
5456 				clone_root->offset += extent_offset;
5457 			}
5458 		}
5459 
5460 		clone_len = min_t(u64, ext_len, len);
5461 
5462 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5463 		    clone_data_offset == data_offset) {
5464 			const u64 src_end = clone_root->offset + clone_len;
5465 			const u64 sectorsize = SZ_64K;
5466 
5467 			/*
5468 			 * We can't clone the last block, when its size is not
5469 			 * sector size aligned, into the middle of a file. If we
5470 			 * do so, the receiver will get a failure (-EINVAL) when
5471 			 * trying to clone or will silently corrupt the data in
5472 			 * the destination file if it's on a kernel without the
5473 			 * fix introduced by commit ac765f83f1397646
5474 			 * ("Btrfs: fix data corruption due to cloning of eof
5475 			 * block).
5476 			 *
5477 			 * So issue a clone of the aligned down range plus a
5478 			 * regular write for the eof block, if we hit that case.
5479 			 *
5480 			 * Also, we use the maximum possible sector size, 64K,
5481 			 * because we don't know what's the sector size of the
5482 			 * filesystem that receives the stream, so we have to
5483 			 * assume the largest possible sector size.
5484 			 */
5485 			if (src_end == clone_src_i_size &&
5486 			    !IS_ALIGNED(src_end, sectorsize) &&
5487 			    offset + clone_len < sctx->cur_inode_size) {
5488 				u64 slen;
5489 
5490 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5491 						  sectorsize);
5492 				if (slen > 0) {
5493 					ret = send_clone(sctx, offset, slen,
5494 							 clone_root);
5495 					if (ret < 0)
5496 						goto out;
5497 				}
5498 				ret = send_extent_data(sctx, offset + slen,
5499 						       clone_len - slen);
5500 			} else {
5501 				ret = send_clone(sctx, offset, clone_len,
5502 						 clone_root);
5503 			}
5504 		} else {
5505 			ret = send_extent_data(sctx, offset, clone_len);
5506 		}
5507 
5508 		if (ret < 0)
5509 			goto out;
5510 
5511 		len -= clone_len;
5512 		if (len == 0)
5513 			break;
5514 		offset += clone_len;
5515 		clone_root->offset += clone_len;
5516 
5517 		/*
5518 		 * If we are cloning from the file we are currently processing,
5519 		 * and using the send root as the clone root, we must stop once
5520 		 * the current clone offset reaches the current eof of the file
5521 		 * at the receiver, otherwise we would issue an invalid clone
5522 		 * operation (source range going beyond eof) and cause the
5523 		 * receiver to fail. So if we reach the current eof, bail out
5524 		 * and fallback to a regular write.
5525 		 */
5526 		if (clone_root->root == sctx->send_root &&
5527 		    clone_root->ino == sctx->cur_ino &&
5528 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
5529 			break;
5530 
5531 		data_offset += clone_len;
5532 next:
5533 		path->slots[0]++;
5534 	}
5535 
5536 	if (len > 0)
5537 		ret = send_extent_data(sctx, offset, len);
5538 	else
5539 		ret = 0;
5540 out:
5541 	btrfs_free_path(path);
5542 	return ret;
5543 }
5544 
5545 static int send_write_or_clone(struct send_ctx *sctx,
5546 			       struct btrfs_path *path,
5547 			       struct btrfs_key *key,
5548 			       struct clone_root *clone_root)
5549 {
5550 	int ret = 0;
5551 	u64 offset = key->offset;
5552 	u64 end;
5553 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5554 
5555 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5556 	if (offset >= end)
5557 		return 0;
5558 
5559 	if (clone_root && IS_ALIGNED(end, bs)) {
5560 		struct btrfs_file_extent_item *ei;
5561 		u64 disk_byte;
5562 		u64 data_offset;
5563 
5564 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5565 				    struct btrfs_file_extent_item);
5566 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5567 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5568 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5569 				  offset, end - offset);
5570 	} else {
5571 		ret = send_extent_data(sctx, offset, end - offset);
5572 	}
5573 	sctx->cur_inode_next_write_offset = end;
5574 	return ret;
5575 }
5576 
5577 static int is_extent_unchanged(struct send_ctx *sctx,
5578 			       struct btrfs_path *left_path,
5579 			       struct btrfs_key *ekey)
5580 {
5581 	int ret = 0;
5582 	struct btrfs_key key;
5583 	struct btrfs_path *path = NULL;
5584 	struct extent_buffer *eb;
5585 	int slot;
5586 	struct btrfs_key found_key;
5587 	struct btrfs_file_extent_item *ei;
5588 	u64 left_disknr;
5589 	u64 right_disknr;
5590 	u64 left_offset;
5591 	u64 right_offset;
5592 	u64 left_offset_fixed;
5593 	u64 left_len;
5594 	u64 right_len;
5595 	u64 left_gen;
5596 	u64 right_gen;
5597 	u8 left_type;
5598 	u8 right_type;
5599 
5600 	path = alloc_path_for_send();
5601 	if (!path)
5602 		return -ENOMEM;
5603 
5604 	eb = left_path->nodes[0];
5605 	slot = left_path->slots[0];
5606 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5607 	left_type = btrfs_file_extent_type(eb, ei);
5608 
5609 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5610 		ret = 0;
5611 		goto out;
5612 	}
5613 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5614 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5615 	left_offset = btrfs_file_extent_offset(eb, ei);
5616 	left_gen = btrfs_file_extent_generation(eb, ei);
5617 
5618 	/*
5619 	 * Following comments will refer to these graphics. L is the left
5620 	 * extents which we are checking at the moment. 1-8 are the right
5621 	 * extents that we iterate.
5622 	 *
5623 	 *       |-----L-----|
5624 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5625 	 *
5626 	 *       |-----L-----|
5627 	 * |--1--|-2b-|...(same as above)
5628 	 *
5629 	 * Alternative situation. Happens on files where extents got split.
5630 	 *       |-----L-----|
5631 	 * |-----------7-----------|-6-|
5632 	 *
5633 	 * Alternative situation. Happens on files which got larger.
5634 	 *       |-----L-----|
5635 	 * |-8-|
5636 	 * Nothing follows after 8.
5637 	 */
5638 
5639 	key.objectid = ekey->objectid;
5640 	key.type = BTRFS_EXTENT_DATA_KEY;
5641 	key.offset = ekey->offset;
5642 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5643 	if (ret < 0)
5644 		goto out;
5645 	if (ret) {
5646 		ret = 0;
5647 		goto out;
5648 	}
5649 
5650 	/*
5651 	 * Handle special case where the right side has no extents at all.
5652 	 */
5653 	eb = path->nodes[0];
5654 	slot = path->slots[0];
5655 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5656 	if (found_key.objectid != key.objectid ||
5657 	    found_key.type != key.type) {
5658 		/* If we're a hole then just pretend nothing changed */
5659 		ret = (left_disknr) ? 0 : 1;
5660 		goto out;
5661 	}
5662 
5663 	/*
5664 	 * We're now on 2a, 2b or 7.
5665 	 */
5666 	key = found_key;
5667 	while (key.offset < ekey->offset + left_len) {
5668 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5669 		right_type = btrfs_file_extent_type(eb, ei);
5670 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5671 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5672 			ret = 0;
5673 			goto out;
5674 		}
5675 
5676 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5677 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5678 			right_len = PAGE_ALIGN(right_len);
5679 		} else {
5680 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5681 		}
5682 
5683 		/*
5684 		 * Are we at extent 8? If yes, we know the extent is changed.
5685 		 * This may only happen on the first iteration.
5686 		 */
5687 		if (found_key.offset + right_len <= ekey->offset) {
5688 			/* If we're a hole just pretend nothing changed */
5689 			ret = (left_disknr) ? 0 : 1;
5690 			goto out;
5691 		}
5692 
5693 		/*
5694 		 * We just wanted to see if when we have an inline extent, what
5695 		 * follows it is a regular extent (wanted to check the above
5696 		 * condition for inline extents too). This should normally not
5697 		 * happen but it's possible for example when we have an inline
5698 		 * compressed extent representing data with a size matching
5699 		 * the page size (currently the same as sector size).
5700 		 */
5701 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5702 			ret = 0;
5703 			goto out;
5704 		}
5705 
5706 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5707 		right_offset = btrfs_file_extent_offset(eb, ei);
5708 		right_gen = btrfs_file_extent_generation(eb, ei);
5709 
5710 		left_offset_fixed = left_offset;
5711 		if (key.offset < ekey->offset) {
5712 			/* Fix the right offset for 2a and 7. */
5713 			right_offset += ekey->offset - key.offset;
5714 		} else {
5715 			/* Fix the left offset for all behind 2a and 2b */
5716 			left_offset_fixed += key.offset - ekey->offset;
5717 		}
5718 
5719 		/*
5720 		 * Check if we have the same extent.
5721 		 */
5722 		if (left_disknr != right_disknr ||
5723 		    left_offset_fixed != right_offset ||
5724 		    left_gen != right_gen) {
5725 			ret = 0;
5726 			goto out;
5727 		}
5728 
5729 		/*
5730 		 * Go to the next extent.
5731 		 */
5732 		ret = btrfs_next_item(sctx->parent_root, path);
5733 		if (ret < 0)
5734 			goto out;
5735 		if (!ret) {
5736 			eb = path->nodes[0];
5737 			slot = path->slots[0];
5738 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5739 		}
5740 		if (ret || found_key.objectid != key.objectid ||
5741 		    found_key.type != key.type) {
5742 			key.offset += right_len;
5743 			break;
5744 		}
5745 		if (found_key.offset != key.offset + right_len) {
5746 			ret = 0;
5747 			goto out;
5748 		}
5749 		key = found_key;
5750 	}
5751 
5752 	/*
5753 	 * We're now behind the left extent (treat as unchanged) or at the end
5754 	 * of the right side (treat as changed).
5755 	 */
5756 	if (key.offset >= ekey->offset + left_len)
5757 		ret = 1;
5758 	else
5759 		ret = 0;
5760 
5761 
5762 out:
5763 	btrfs_free_path(path);
5764 	return ret;
5765 }
5766 
5767 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5768 {
5769 	struct btrfs_path *path;
5770 	struct btrfs_root *root = sctx->send_root;
5771 	struct btrfs_key key;
5772 	int ret;
5773 
5774 	path = alloc_path_for_send();
5775 	if (!path)
5776 		return -ENOMEM;
5777 
5778 	sctx->cur_inode_last_extent = 0;
5779 
5780 	key.objectid = sctx->cur_ino;
5781 	key.type = BTRFS_EXTENT_DATA_KEY;
5782 	key.offset = offset;
5783 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5784 	if (ret < 0)
5785 		goto out;
5786 	ret = 0;
5787 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5788 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5789 		goto out;
5790 
5791 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5792 out:
5793 	btrfs_free_path(path);
5794 	return ret;
5795 }
5796 
5797 static int range_is_hole_in_parent(struct send_ctx *sctx,
5798 				   const u64 start,
5799 				   const u64 end)
5800 {
5801 	struct btrfs_path *path;
5802 	struct btrfs_key key;
5803 	struct btrfs_root *root = sctx->parent_root;
5804 	u64 search_start = start;
5805 	int ret;
5806 
5807 	path = alloc_path_for_send();
5808 	if (!path)
5809 		return -ENOMEM;
5810 
5811 	key.objectid = sctx->cur_ino;
5812 	key.type = BTRFS_EXTENT_DATA_KEY;
5813 	key.offset = search_start;
5814 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5815 	if (ret < 0)
5816 		goto out;
5817 	if (ret > 0 && path->slots[0] > 0)
5818 		path->slots[0]--;
5819 
5820 	while (search_start < end) {
5821 		struct extent_buffer *leaf = path->nodes[0];
5822 		int slot = path->slots[0];
5823 		struct btrfs_file_extent_item *fi;
5824 		u64 extent_end;
5825 
5826 		if (slot >= btrfs_header_nritems(leaf)) {
5827 			ret = btrfs_next_leaf(root, path);
5828 			if (ret < 0)
5829 				goto out;
5830 			else if (ret > 0)
5831 				break;
5832 			continue;
5833 		}
5834 
5835 		btrfs_item_key_to_cpu(leaf, &key, slot);
5836 		if (key.objectid < sctx->cur_ino ||
5837 		    key.type < BTRFS_EXTENT_DATA_KEY)
5838 			goto next;
5839 		if (key.objectid > sctx->cur_ino ||
5840 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5841 		    key.offset >= end)
5842 			break;
5843 
5844 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5845 		extent_end = btrfs_file_extent_end(path);
5846 		if (extent_end <= start)
5847 			goto next;
5848 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5849 			search_start = extent_end;
5850 			goto next;
5851 		}
5852 		ret = 0;
5853 		goto out;
5854 next:
5855 		path->slots[0]++;
5856 	}
5857 	ret = 1;
5858 out:
5859 	btrfs_free_path(path);
5860 	return ret;
5861 }
5862 
5863 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5864 			   struct btrfs_key *key)
5865 {
5866 	int ret = 0;
5867 
5868 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5869 		return 0;
5870 
5871 	if (sctx->cur_inode_last_extent == (u64)-1) {
5872 		ret = get_last_extent(sctx, key->offset - 1);
5873 		if (ret)
5874 			return ret;
5875 	}
5876 
5877 	if (path->slots[0] == 0 &&
5878 	    sctx->cur_inode_last_extent < key->offset) {
5879 		/*
5880 		 * We might have skipped entire leafs that contained only
5881 		 * file extent items for our current inode. These leafs have
5882 		 * a generation number smaller (older) than the one in the
5883 		 * current leaf and the leaf our last extent came from, and
5884 		 * are located between these 2 leafs.
5885 		 */
5886 		ret = get_last_extent(sctx, key->offset - 1);
5887 		if (ret)
5888 			return ret;
5889 	}
5890 
5891 	if (sctx->cur_inode_last_extent < key->offset) {
5892 		ret = range_is_hole_in_parent(sctx,
5893 					      sctx->cur_inode_last_extent,
5894 					      key->offset);
5895 		if (ret < 0)
5896 			return ret;
5897 		else if (ret == 0)
5898 			ret = send_hole(sctx, key->offset);
5899 		else
5900 			ret = 0;
5901 	}
5902 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5903 	return ret;
5904 }
5905 
5906 static int process_extent(struct send_ctx *sctx,
5907 			  struct btrfs_path *path,
5908 			  struct btrfs_key *key)
5909 {
5910 	struct clone_root *found_clone = NULL;
5911 	int ret = 0;
5912 
5913 	if (S_ISLNK(sctx->cur_inode_mode))
5914 		return 0;
5915 
5916 	if (sctx->parent_root && !sctx->cur_inode_new) {
5917 		ret = is_extent_unchanged(sctx, path, key);
5918 		if (ret < 0)
5919 			goto out;
5920 		if (ret) {
5921 			ret = 0;
5922 			goto out_hole;
5923 		}
5924 	} else {
5925 		struct btrfs_file_extent_item *ei;
5926 		u8 type;
5927 
5928 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5929 				    struct btrfs_file_extent_item);
5930 		type = btrfs_file_extent_type(path->nodes[0], ei);
5931 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5932 		    type == BTRFS_FILE_EXTENT_REG) {
5933 			/*
5934 			 * The send spec does not have a prealloc command yet,
5935 			 * so just leave a hole for prealloc'ed extents until
5936 			 * we have enough commands queued up to justify rev'ing
5937 			 * the send spec.
5938 			 */
5939 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5940 				ret = 0;
5941 				goto out;
5942 			}
5943 
5944 			/* Have a hole, just skip it. */
5945 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5946 				ret = 0;
5947 				goto out;
5948 			}
5949 		}
5950 	}
5951 
5952 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5953 			sctx->cur_inode_size, &found_clone);
5954 	if (ret != -ENOENT && ret < 0)
5955 		goto out;
5956 
5957 	ret = send_write_or_clone(sctx, path, key, found_clone);
5958 	if (ret)
5959 		goto out;
5960 out_hole:
5961 	ret = maybe_send_hole(sctx, path, key);
5962 out:
5963 	return ret;
5964 }
5965 
5966 static int process_all_extents(struct send_ctx *sctx)
5967 {
5968 	int ret;
5969 	struct btrfs_root *root;
5970 	struct btrfs_path *path;
5971 	struct btrfs_key key;
5972 	struct btrfs_key found_key;
5973 	struct extent_buffer *eb;
5974 	int slot;
5975 
5976 	root = sctx->send_root;
5977 	path = alloc_path_for_send();
5978 	if (!path)
5979 		return -ENOMEM;
5980 
5981 	key.objectid = sctx->cmp_key->objectid;
5982 	key.type = BTRFS_EXTENT_DATA_KEY;
5983 	key.offset = 0;
5984 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5985 	if (ret < 0)
5986 		goto out;
5987 
5988 	while (1) {
5989 		eb = path->nodes[0];
5990 		slot = path->slots[0];
5991 
5992 		if (slot >= btrfs_header_nritems(eb)) {
5993 			ret = btrfs_next_leaf(root, path);
5994 			if (ret < 0) {
5995 				goto out;
5996 			} else if (ret > 0) {
5997 				ret = 0;
5998 				break;
5999 			}
6000 			continue;
6001 		}
6002 
6003 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6004 
6005 		if (found_key.objectid != key.objectid ||
6006 		    found_key.type != key.type) {
6007 			ret = 0;
6008 			goto out;
6009 		}
6010 
6011 		ret = process_extent(sctx, path, &found_key);
6012 		if (ret < 0)
6013 			goto out;
6014 
6015 		path->slots[0]++;
6016 	}
6017 
6018 out:
6019 	btrfs_free_path(path);
6020 	return ret;
6021 }
6022 
6023 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6024 					   int *pending_move,
6025 					   int *refs_processed)
6026 {
6027 	int ret = 0;
6028 
6029 	if (sctx->cur_ino == 0)
6030 		goto out;
6031 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6032 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6033 		goto out;
6034 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6035 		goto out;
6036 
6037 	ret = process_recorded_refs(sctx, pending_move);
6038 	if (ret < 0)
6039 		goto out;
6040 
6041 	*refs_processed = 1;
6042 out:
6043 	return ret;
6044 }
6045 
6046 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6047 {
6048 	int ret = 0;
6049 	u64 left_mode;
6050 	u64 left_uid;
6051 	u64 left_gid;
6052 	u64 right_mode;
6053 	u64 right_uid;
6054 	u64 right_gid;
6055 	int need_chmod = 0;
6056 	int need_chown = 0;
6057 	int need_truncate = 1;
6058 	int pending_move = 0;
6059 	int refs_processed = 0;
6060 
6061 	if (sctx->ignore_cur_inode)
6062 		return 0;
6063 
6064 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6065 					      &refs_processed);
6066 	if (ret < 0)
6067 		goto out;
6068 
6069 	/*
6070 	 * We have processed the refs and thus need to advance send_progress.
6071 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6072 	 * inode into account.
6073 	 *
6074 	 * On the other hand, if our current inode is a directory and couldn't
6075 	 * be moved/renamed because its parent was renamed/moved too and it has
6076 	 * a higher inode number, we can only move/rename our current inode
6077 	 * after we moved/renamed its parent. Therefore in this case operate on
6078 	 * the old path (pre move/rename) of our current inode, and the
6079 	 * move/rename will be performed later.
6080 	 */
6081 	if (refs_processed && !pending_move)
6082 		sctx->send_progress = sctx->cur_ino + 1;
6083 
6084 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6085 		goto out;
6086 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6087 		goto out;
6088 
6089 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6090 			&left_mode, &left_uid, &left_gid, NULL);
6091 	if (ret < 0)
6092 		goto out;
6093 
6094 	if (!sctx->parent_root || sctx->cur_inode_new) {
6095 		need_chown = 1;
6096 		if (!S_ISLNK(sctx->cur_inode_mode))
6097 			need_chmod = 1;
6098 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6099 			need_truncate = 0;
6100 	} else {
6101 		u64 old_size;
6102 
6103 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6104 				&old_size, NULL, &right_mode, &right_uid,
6105 				&right_gid, NULL);
6106 		if (ret < 0)
6107 			goto out;
6108 
6109 		if (left_uid != right_uid || left_gid != right_gid)
6110 			need_chown = 1;
6111 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6112 			need_chmod = 1;
6113 		if ((old_size == sctx->cur_inode_size) ||
6114 		    (sctx->cur_inode_size > old_size &&
6115 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6116 			need_truncate = 0;
6117 	}
6118 
6119 	if (S_ISREG(sctx->cur_inode_mode)) {
6120 		if (need_send_hole(sctx)) {
6121 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6122 			    sctx->cur_inode_last_extent <
6123 			    sctx->cur_inode_size) {
6124 				ret = get_last_extent(sctx, (u64)-1);
6125 				if (ret)
6126 					goto out;
6127 			}
6128 			if (sctx->cur_inode_last_extent <
6129 			    sctx->cur_inode_size) {
6130 				ret = send_hole(sctx, sctx->cur_inode_size);
6131 				if (ret)
6132 					goto out;
6133 			}
6134 		}
6135 		if (need_truncate) {
6136 			ret = send_truncate(sctx, sctx->cur_ino,
6137 					    sctx->cur_inode_gen,
6138 					    sctx->cur_inode_size);
6139 			if (ret < 0)
6140 				goto out;
6141 		}
6142 	}
6143 
6144 	if (need_chown) {
6145 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6146 				left_uid, left_gid);
6147 		if (ret < 0)
6148 			goto out;
6149 	}
6150 	if (need_chmod) {
6151 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6152 				left_mode);
6153 		if (ret < 0)
6154 			goto out;
6155 	}
6156 
6157 	ret = send_capabilities(sctx);
6158 	if (ret < 0)
6159 		goto out;
6160 
6161 	/*
6162 	 * If other directory inodes depended on our current directory
6163 	 * inode's move/rename, now do their move/rename operations.
6164 	 */
6165 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6166 		ret = apply_children_dir_moves(sctx);
6167 		if (ret)
6168 			goto out;
6169 		/*
6170 		 * Need to send that every time, no matter if it actually
6171 		 * changed between the two trees as we have done changes to
6172 		 * the inode before. If our inode is a directory and it's
6173 		 * waiting to be moved/renamed, we will send its utimes when
6174 		 * it's moved/renamed, therefore we don't need to do it here.
6175 		 */
6176 		sctx->send_progress = sctx->cur_ino + 1;
6177 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6178 		if (ret < 0)
6179 			goto out;
6180 	}
6181 
6182 out:
6183 	return ret;
6184 }
6185 
6186 struct parent_paths_ctx {
6187 	struct list_head *refs;
6188 	struct send_ctx *sctx;
6189 };
6190 
6191 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6192 			     void *ctx)
6193 {
6194 	struct parent_paths_ctx *ppctx = ctx;
6195 
6196 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6197 			  ppctx->refs);
6198 }
6199 
6200 /*
6201  * Issue unlink operations for all paths of the current inode found in the
6202  * parent snapshot.
6203  */
6204 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6205 {
6206 	LIST_HEAD(deleted_refs);
6207 	struct btrfs_path *path;
6208 	struct btrfs_key key;
6209 	struct parent_paths_ctx ctx;
6210 	int ret;
6211 
6212 	path = alloc_path_for_send();
6213 	if (!path)
6214 		return -ENOMEM;
6215 
6216 	key.objectid = sctx->cur_ino;
6217 	key.type = BTRFS_INODE_REF_KEY;
6218 	key.offset = 0;
6219 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6220 	if (ret < 0)
6221 		goto out;
6222 
6223 	ctx.refs = &deleted_refs;
6224 	ctx.sctx = sctx;
6225 
6226 	while (true) {
6227 		struct extent_buffer *eb = path->nodes[0];
6228 		int slot = path->slots[0];
6229 
6230 		if (slot >= btrfs_header_nritems(eb)) {
6231 			ret = btrfs_next_leaf(sctx->parent_root, path);
6232 			if (ret < 0)
6233 				goto out;
6234 			else if (ret > 0)
6235 				break;
6236 			continue;
6237 		}
6238 
6239 		btrfs_item_key_to_cpu(eb, &key, slot);
6240 		if (key.objectid != sctx->cur_ino)
6241 			break;
6242 		if (key.type != BTRFS_INODE_REF_KEY &&
6243 		    key.type != BTRFS_INODE_EXTREF_KEY)
6244 			break;
6245 
6246 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6247 					record_parent_ref, &ctx);
6248 		if (ret < 0)
6249 			goto out;
6250 
6251 		path->slots[0]++;
6252 	}
6253 
6254 	while (!list_empty(&deleted_refs)) {
6255 		struct recorded_ref *ref;
6256 
6257 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6258 		ret = send_unlink(sctx, ref->full_path);
6259 		if (ret < 0)
6260 			goto out;
6261 		fs_path_free(ref->full_path);
6262 		list_del(&ref->list);
6263 		kfree(ref);
6264 	}
6265 	ret = 0;
6266 out:
6267 	btrfs_free_path(path);
6268 	if (ret)
6269 		__free_recorded_refs(&deleted_refs);
6270 	return ret;
6271 }
6272 
6273 static int changed_inode(struct send_ctx *sctx,
6274 			 enum btrfs_compare_tree_result result)
6275 {
6276 	int ret = 0;
6277 	struct btrfs_key *key = sctx->cmp_key;
6278 	struct btrfs_inode_item *left_ii = NULL;
6279 	struct btrfs_inode_item *right_ii = NULL;
6280 	u64 left_gen = 0;
6281 	u64 right_gen = 0;
6282 
6283 	sctx->cur_ino = key->objectid;
6284 	sctx->cur_inode_new_gen = 0;
6285 	sctx->cur_inode_last_extent = (u64)-1;
6286 	sctx->cur_inode_next_write_offset = 0;
6287 	sctx->ignore_cur_inode = false;
6288 
6289 	/*
6290 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6291 	 * functions that the current inode's refs are not updated yet. Later,
6292 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6293 	 */
6294 	sctx->send_progress = sctx->cur_ino;
6295 
6296 	if (result == BTRFS_COMPARE_TREE_NEW ||
6297 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6298 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6299 				sctx->left_path->slots[0],
6300 				struct btrfs_inode_item);
6301 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6302 				left_ii);
6303 	} else {
6304 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6305 				sctx->right_path->slots[0],
6306 				struct btrfs_inode_item);
6307 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6308 				right_ii);
6309 	}
6310 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6311 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6312 				sctx->right_path->slots[0],
6313 				struct btrfs_inode_item);
6314 
6315 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6316 				right_ii);
6317 
6318 		/*
6319 		 * The cur_ino = root dir case is special here. We can't treat
6320 		 * the inode as deleted+reused because it would generate a
6321 		 * stream that tries to delete/mkdir the root dir.
6322 		 */
6323 		if (left_gen != right_gen &&
6324 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6325 			sctx->cur_inode_new_gen = 1;
6326 	}
6327 
6328 	/*
6329 	 * Normally we do not find inodes with a link count of zero (orphans)
6330 	 * because the most common case is to create a snapshot and use it
6331 	 * for a send operation. However other less common use cases involve
6332 	 * using a subvolume and send it after turning it to RO mode just
6333 	 * after deleting all hard links of a file while holding an open
6334 	 * file descriptor against it or turning a RO snapshot into RW mode,
6335 	 * keep an open file descriptor against a file, delete it and then
6336 	 * turn the snapshot back to RO mode before using it for a send
6337 	 * operation. So if we find such cases, ignore the inode and all its
6338 	 * items completely if it's a new inode, or if it's a changed inode
6339 	 * make sure all its previous paths (from the parent snapshot) are all
6340 	 * unlinked and all other the inode items are ignored.
6341 	 */
6342 	if (result == BTRFS_COMPARE_TREE_NEW ||
6343 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6344 		u32 nlinks;
6345 
6346 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6347 		if (nlinks == 0) {
6348 			sctx->ignore_cur_inode = true;
6349 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6350 				ret = btrfs_unlink_all_paths(sctx);
6351 			goto out;
6352 		}
6353 	}
6354 
6355 	if (result == BTRFS_COMPARE_TREE_NEW) {
6356 		sctx->cur_inode_gen = left_gen;
6357 		sctx->cur_inode_new = 1;
6358 		sctx->cur_inode_deleted = 0;
6359 		sctx->cur_inode_size = btrfs_inode_size(
6360 				sctx->left_path->nodes[0], left_ii);
6361 		sctx->cur_inode_mode = btrfs_inode_mode(
6362 				sctx->left_path->nodes[0], left_ii);
6363 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6364 				sctx->left_path->nodes[0], left_ii);
6365 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6366 			ret = send_create_inode_if_needed(sctx);
6367 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6368 		sctx->cur_inode_gen = right_gen;
6369 		sctx->cur_inode_new = 0;
6370 		sctx->cur_inode_deleted = 1;
6371 		sctx->cur_inode_size = btrfs_inode_size(
6372 				sctx->right_path->nodes[0], right_ii);
6373 		sctx->cur_inode_mode = btrfs_inode_mode(
6374 				sctx->right_path->nodes[0], right_ii);
6375 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6376 		/*
6377 		 * We need to do some special handling in case the inode was
6378 		 * reported as changed with a changed generation number. This
6379 		 * means that the original inode was deleted and new inode
6380 		 * reused the same inum. So we have to treat the old inode as
6381 		 * deleted and the new one as new.
6382 		 */
6383 		if (sctx->cur_inode_new_gen) {
6384 			/*
6385 			 * First, process the inode as if it was deleted.
6386 			 */
6387 			sctx->cur_inode_gen = right_gen;
6388 			sctx->cur_inode_new = 0;
6389 			sctx->cur_inode_deleted = 1;
6390 			sctx->cur_inode_size = btrfs_inode_size(
6391 					sctx->right_path->nodes[0], right_ii);
6392 			sctx->cur_inode_mode = btrfs_inode_mode(
6393 					sctx->right_path->nodes[0], right_ii);
6394 			ret = process_all_refs(sctx,
6395 					BTRFS_COMPARE_TREE_DELETED);
6396 			if (ret < 0)
6397 				goto out;
6398 
6399 			/*
6400 			 * Now process the inode as if it was new.
6401 			 */
6402 			sctx->cur_inode_gen = left_gen;
6403 			sctx->cur_inode_new = 1;
6404 			sctx->cur_inode_deleted = 0;
6405 			sctx->cur_inode_size = btrfs_inode_size(
6406 					sctx->left_path->nodes[0], left_ii);
6407 			sctx->cur_inode_mode = btrfs_inode_mode(
6408 					sctx->left_path->nodes[0], left_ii);
6409 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6410 					sctx->left_path->nodes[0], left_ii);
6411 			ret = send_create_inode_if_needed(sctx);
6412 			if (ret < 0)
6413 				goto out;
6414 
6415 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6416 			if (ret < 0)
6417 				goto out;
6418 			/*
6419 			 * Advance send_progress now as we did not get into
6420 			 * process_recorded_refs_if_needed in the new_gen case.
6421 			 */
6422 			sctx->send_progress = sctx->cur_ino + 1;
6423 
6424 			/*
6425 			 * Now process all extents and xattrs of the inode as if
6426 			 * they were all new.
6427 			 */
6428 			ret = process_all_extents(sctx);
6429 			if (ret < 0)
6430 				goto out;
6431 			ret = process_all_new_xattrs(sctx);
6432 			if (ret < 0)
6433 				goto out;
6434 		} else {
6435 			sctx->cur_inode_gen = left_gen;
6436 			sctx->cur_inode_new = 0;
6437 			sctx->cur_inode_new_gen = 0;
6438 			sctx->cur_inode_deleted = 0;
6439 			sctx->cur_inode_size = btrfs_inode_size(
6440 					sctx->left_path->nodes[0], left_ii);
6441 			sctx->cur_inode_mode = btrfs_inode_mode(
6442 					sctx->left_path->nodes[0], left_ii);
6443 		}
6444 	}
6445 
6446 out:
6447 	return ret;
6448 }
6449 
6450 /*
6451  * We have to process new refs before deleted refs, but compare_trees gives us
6452  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6453  * first and later process them in process_recorded_refs.
6454  * For the cur_inode_new_gen case, we skip recording completely because
6455  * changed_inode did already initiate processing of refs. The reason for this is
6456  * that in this case, compare_tree actually compares the refs of 2 different
6457  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6458  * refs of the right tree as deleted and all refs of the left tree as new.
6459  */
6460 static int changed_ref(struct send_ctx *sctx,
6461 		       enum btrfs_compare_tree_result result)
6462 {
6463 	int ret = 0;
6464 
6465 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6466 		inconsistent_snapshot_error(sctx, result, "reference");
6467 		return -EIO;
6468 	}
6469 
6470 	if (!sctx->cur_inode_new_gen &&
6471 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6472 		if (result == BTRFS_COMPARE_TREE_NEW)
6473 			ret = record_new_ref(sctx);
6474 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6475 			ret = record_deleted_ref(sctx);
6476 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6477 			ret = record_changed_ref(sctx);
6478 	}
6479 
6480 	return ret;
6481 }
6482 
6483 /*
6484  * Process new/deleted/changed xattrs. We skip processing in the
6485  * cur_inode_new_gen case because changed_inode did already initiate processing
6486  * of xattrs. The reason is the same as in changed_ref
6487  */
6488 static int changed_xattr(struct send_ctx *sctx,
6489 			 enum btrfs_compare_tree_result result)
6490 {
6491 	int ret = 0;
6492 
6493 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6494 		inconsistent_snapshot_error(sctx, result, "xattr");
6495 		return -EIO;
6496 	}
6497 
6498 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6499 		if (result == BTRFS_COMPARE_TREE_NEW)
6500 			ret = process_new_xattr(sctx);
6501 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6502 			ret = process_deleted_xattr(sctx);
6503 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6504 			ret = process_changed_xattr(sctx);
6505 	}
6506 
6507 	return ret;
6508 }
6509 
6510 /*
6511  * Process new/deleted/changed extents. We skip processing in the
6512  * cur_inode_new_gen case because changed_inode did already initiate processing
6513  * of extents. The reason is the same as in changed_ref
6514  */
6515 static int changed_extent(struct send_ctx *sctx,
6516 			  enum btrfs_compare_tree_result result)
6517 {
6518 	int ret = 0;
6519 
6520 	/*
6521 	 * We have found an extent item that changed without the inode item
6522 	 * having changed. This can happen either after relocation (where the
6523 	 * disk_bytenr of an extent item is replaced at
6524 	 * relocation.c:replace_file_extents()) or after deduplication into a
6525 	 * file in both the parent and send snapshots (where an extent item can
6526 	 * get modified or replaced with a new one). Note that deduplication
6527 	 * updates the inode item, but it only changes the iversion (sequence
6528 	 * field in the inode item) of the inode, so if a file is deduplicated
6529 	 * the same amount of times in both the parent and send snapshots, its
6530 	 * iversion becomes the same in both snapshots, whence the inode item is
6531 	 * the same on both snapshots.
6532 	 */
6533 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6534 		return 0;
6535 
6536 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6537 		if (result != BTRFS_COMPARE_TREE_DELETED)
6538 			ret = process_extent(sctx, sctx->left_path,
6539 					sctx->cmp_key);
6540 	}
6541 
6542 	return ret;
6543 }
6544 
6545 static int dir_changed(struct send_ctx *sctx, u64 dir)
6546 {
6547 	u64 orig_gen, new_gen;
6548 	int ret;
6549 
6550 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6551 			     NULL, NULL);
6552 	if (ret)
6553 		return ret;
6554 
6555 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6556 			     NULL, NULL, NULL);
6557 	if (ret)
6558 		return ret;
6559 
6560 	return (orig_gen != new_gen) ? 1 : 0;
6561 }
6562 
6563 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6564 			struct btrfs_key *key)
6565 {
6566 	struct btrfs_inode_extref *extref;
6567 	struct extent_buffer *leaf;
6568 	u64 dirid = 0, last_dirid = 0;
6569 	unsigned long ptr;
6570 	u32 item_size;
6571 	u32 cur_offset = 0;
6572 	int ref_name_len;
6573 	int ret = 0;
6574 
6575 	/* Easy case, just check this one dirid */
6576 	if (key->type == BTRFS_INODE_REF_KEY) {
6577 		dirid = key->offset;
6578 
6579 		ret = dir_changed(sctx, dirid);
6580 		goto out;
6581 	}
6582 
6583 	leaf = path->nodes[0];
6584 	item_size = btrfs_item_size(leaf, path->slots[0]);
6585 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6586 	while (cur_offset < item_size) {
6587 		extref = (struct btrfs_inode_extref *)(ptr +
6588 						       cur_offset);
6589 		dirid = btrfs_inode_extref_parent(leaf, extref);
6590 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6591 		cur_offset += ref_name_len + sizeof(*extref);
6592 		if (dirid == last_dirid)
6593 			continue;
6594 		ret = dir_changed(sctx, dirid);
6595 		if (ret)
6596 			break;
6597 		last_dirid = dirid;
6598 	}
6599 out:
6600 	return ret;
6601 }
6602 
6603 /*
6604  * Updates compare related fields in sctx and simply forwards to the actual
6605  * changed_xxx functions.
6606  */
6607 static int changed_cb(struct btrfs_path *left_path,
6608 		      struct btrfs_path *right_path,
6609 		      struct btrfs_key *key,
6610 		      enum btrfs_compare_tree_result result,
6611 		      struct send_ctx *sctx)
6612 {
6613 	int ret = 0;
6614 
6615 	/*
6616 	 * We can not hold the commit root semaphore here. This is because in
6617 	 * the case of sending and receiving to the same filesystem, using a
6618 	 * pipe, could result in a deadlock:
6619 	 *
6620 	 * 1) The task running send blocks on the pipe because it's full;
6621 	 *
6622 	 * 2) The task running receive, which is the only consumer of the pipe,
6623 	 *    is waiting for a transaction commit (for example due to a space
6624 	 *    reservation when doing a write or triggering a transaction commit
6625 	 *    when creating a subvolume);
6626 	 *
6627 	 * 3) The transaction is waiting to write lock the commit root semaphore,
6628 	 *    but can not acquire it since it's being held at 1).
6629 	 *
6630 	 * Down this call chain we write to the pipe through kernel_write().
6631 	 * The same type of problem can also happen when sending to a file that
6632 	 * is stored in the same filesystem - when reserving space for a write
6633 	 * into the file, we can trigger a transaction commit.
6634 	 *
6635 	 * Our caller has supplied us with clones of leaves from the send and
6636 	 * parent roots, so we're safe here from a concurrent relocation and
6637 	 * further reallocation of metadata extents while we are here. Below we
6638 	 * also assert that the leaves are clones.
6639 	 */
6640 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
6641 
6642 	/*
6643 	 * We always have a send root, so left_path is never NULL. We will not
6644 	 * have a leaf when we have reached the end of the send root but have
6645 	 * not yet reached the end of the parent root.
6646 	 */
6647 	if (left_path->nodes[0])
6648 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6649 				&left_path->nodes[0]->bflags));
6650 	/*
6651 	 * When doing a full send we don't have a parent root, so right_path is
6652 	 * NULL. When doing an incremental send, we may have reached the end of
6653 	 * the parent root already, so we don't have a leaf at right_path.
6654 	 */
6655 	if (right_path && right_path->nodes[0])
6656 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6657 				&right_path->nodes[0]->bflags));
6658 
6659 	if (result == BTRFS_COMPARE_TREE_SAME) {
6660 		if (key->type == BTRFS_INODE_REF_KEY ||
6661 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6662 			ret = compare_refs(sctx, left_path, key);
6663 			if (!ret)
6664 				return 0;
6665 			if (ret < 0)
6666 				return ret;
6667 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6668 			return maybe_send_hole(sctx, left_path, key);
6669 		} else {
6670 			return 0;
6671 		}
6672 		result = BTRFS_COMPARE_TREE_CHANGED;
6673 		ret = 0;
6674 	}
6675 
6676 	sctx->left_path = left_path;
6677 	sctx->right_path = right_path;
6678 	sctx->cmp_key = key;
6679 
6680 	ret = finish_inode_if_needed(sctx, 0);
6681 	if (ret < 0)
6682 		goto out;
6683 
6684 	/* Ignore non-FS objects */
6685 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6686 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6687 		goto out;
6688 
6689 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6690 		ret = changed_inode(sctx, result);
6691 	} else if (!sctx->ignore_cur_inode) {
6692 		if (key->type == BTRFS_INODE_REF_KEY ||
6693 		    key->type == BTRFS_INODE_EXTREF_KEY)
6694 			ret = changed_ref(sctx, result);
6695 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6696 			ret = changed_xattr(sctx, result);
6697 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6698 			ret = changed_extent(sctx, result);
6699 	}
6700 
6701 out:
6702 	return ret;
6703 }
6704 
6705 static int search_key_again(const struct send_ctx *sctx,
6706 			    struct btrfs_root *root,
6707 			    struct btrfs_path *path,
6708 			    const struct btrfs_key *key)
6709 {
6710 	int ret;
6711 
6712 	if (!path->need_commit_sem)
6713 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
6714 
6715 	/*
6716 	 * Roots used for send operations are readonly and no one can add,
6717 	 * update or remove keys from them, so we should be able to find our
6718 	 * key again. The only exception is deduplication, which can operate on
6719 	 * readonly roots and add, update or remove keys to/from them - but at
6720 	 * the moment we don't allow it to run in parallel with send.
6721 	 */
6722 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6723 	ASSERT(ret <= 0);
6724 	if (ret > 0) {
6725 		btrfs_print_tree(path->nodes[path->lowest_level], false);
6726 		btrfs_err(root->fs_info,
6727 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
6728 			  key->objectid, key->type, key->offset,
6729 			  (root == sctx->parent_root ? "parent" : "send"),
6730 			  root->root_key.objectid, path->lowest_level,
6731 			  path->slots[path->lowest_level]);
6732 		return -EUCLEAN;
6733 	}
6734 
6735 	return ret;
6736 }
6737 
6738 static int full_send_tree(struct send_ctx *sctx)
6739 {
6740 	int ret;
6741 	struct btrfs_root *send_root = sctx->send_root;
6742 	struct btrfs_key key;
6743 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6744 	struct btrfs_path *path;
6745 
6746 	path = alloc_path_for_send();
6747 	if (!path)
6748 		return -ENOMEM;
6749 	path->reada = READA_FORWARD_ALWAYS;
6750 
6751 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6752 	key.type = BTRFS_INODE_ITEM_KEY;
6753 	key.offset = 0;
6754 
6755 	down_read(&fs_info->commit_root_sem);
6756 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
6757 	up_read(&fs_info->commit_root_sem);
6758 
6759 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6760 	if (ret < 0)
6761 		goto out;
6762 	if (ret)
6763 		goto out_finish;
6764 
6765 	while (1) {
6766 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6767 
6768 		ret = changed_cb(path, NULL, &key,
6769 				 BTRFS_COMPARE_TREE_NEW, sctx);
6770 		if (ret < 0)
6771 			goto out;
6772 
6773 		down_read(&fs_info->commit_root_sem);
6774 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
6775 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
6776 			up_read(&fs_info->commit_root_sem);
6777 			/*
6778 			 * A transaction used for relocating a block group was
6779 			 * committed or is about to finish its commit. Release
6780 			 * our path (leaf) and restart the search, so that we
6781 			 * avoid operating on any file extent items that are
6782 			 * stale, with a disk_bytenr that reflects a pre
6783 			 * relocation value. This way we avoid as much as
6784 			 * possible to fallback to regular writes when checking
6785 			 * if we can clone file ranges.
6786 			 */
6787 			btrfs_release_path(path);
6788 			ret = search_key_again(sctx, send_root, path, &key);
6789 			if (ret < 0)
6790 				goto out;
6791 		} else {
6792 			up_read(&fs_info->commit_root_sem);
6793 		}
6794 
6795 		ret = btrfs_next_item(send_root, path);
6796 		if (ret < 0)
6797 			goto out;
6798 		if (ret) {
6799 			ret  = 0;
6800 			break;
6801 		}
6802 	}
6803 
6804 out_finish:
6805 	ret = finish_inode_if_needed(sctx, 1);
6806 
6807 out:
6808 	btrfs_free_path(path);
6809 	return ret;
6810 }
6811 
6812 static int replace_node_with_clone(struct btrfs_path *path, int level)
6813 {
6814 	struct extent_buffer *clone;
6815 
6816 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
6817 	if (!clone)
6818 		return -ENOMEM;
6819 
6820 	free_extent_buffer(path->nodes[level]);
6821 	path->nodes[level] = clone;
6822 
6823 	return 0;
6824 }
6825 
6826 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
6827 {
6828 	struct extent_buffer *eb;
6829 	struct extent_buffer *parent = path->nodes[*level];
6830 	int slot = path->slots[*level];
6831 	const int nritems = btrfs_header_nritems(parent);
6832 	u64 reada_max;
6833 	u64 reada_done = 0;
6834 
6835 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
6836 
6837 	BUG_ON(*level == 0);
6838 	eb = btrfs_read_node_slot(parent, slot);
6839 	if (IS_ERR(eb))
6840 		return PTR_ERR(eb);
6841 
6842 	/*
6843 	 * Trigger readahead for the next leaves we will process, so that it is
6844 	 * very likely that when we need them they are already in memory and we
6845 	 * will not block on disk IO. For nodes we only do readahead for one,
6846 	 * since the time window between processing nodes is typically larger.
6847 	 */
6848 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
6849 
6850 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
6851 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
6852 			btrfs_readahead_node_child(parent, slot);
6853 			reada_done += eb->fs_info->nodesize;
6854 		}
6855 	}
6856 
6857 	path->nodes[*level - 1] = eb;
6858 	path->slots[*level - 1] = 0;
6859 	(*level)--;
6860 
6861 	if (*level == 0)
6862 		return replace_node_with_clone(path, 0);
6863 
6864 	return 0;
6865 }
6866 
6867 static int tree_move_next_or_upnext(struct btrfs_path *path,
6868 				    int *level, int root_level)
6869 {
6870 	int ret = 0;
6871 	int nritems;
6872 	nritems = btrfs_header_nritems(path->nodes[*level]);
6873 
6874 	path->slots[*level]++;
6875 
6876 	while (path->slots[*level] >= nritems) {
6877 		if (*level == root_level) {
6878 			path->slots[*level] = nritems - 1;
6879 			return -1;
6880 		}
6881 
6882 		/* move upnext */
6883 		path->slots[*level] = 0;
6884 		free_extent_buffer(path->nodes[*level]);
6885 		path->nodes[*level] = NULL;
6886 		(*level)++;
6887 		path->slots[*level]++;
6888 
6889 		nritems = btrfs_header_nritems(path->nodes[*level]);
6890 		ret = 1;
6891 	}
6892 	return ret;
6893 }
6894 
6895 /*
6896  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6897  * or down.
6898  */
6899 static int tree_advance(struct btrfs_path *path,
6900 			int *level, int root_level,
6901 			int allow_down,
6902 			struct btrfs_key *key,
6903 			u64 reada_min_gen)
6904 {
6905 	int ret;
6906 
6907 	if (*level == 0 || !allow_down) {
6908 		ret = tree_move_next_or_upnext(path, level, root_level);
6909 	} else {
6910 		ret = tree_move_down(path, level, reada_min_gen);
6911 	}
6912 
6913 	/*
6914 	 * Even if we have reached the end of a tree, ret is -1, update the key
6915 	 * anyway, so that in case we need to restart due to a block group
6916 	 * relocation, we can assert that the last key of the root node still
6917 	 * exists in the tree.
6918 	 */
6919 	if (*level == 0)
6920 		btrfs_item_key_to_cpu(path->nodes[*level], key,
6921 				      path->slots[*level]);
6922 	else
6923 		btrfs_node_key_to_cpu(path->nodes[*level], key,
6924 				      path->slots[*level]);
6925 
6926 	return ret;
6927 }
6928 
6929 static int tree_compare_item(struct btrfs_path *left_path,
6930 			     struct btrfs_path *right_path,
6931 			     char *tmp_buf)
6932 {
6933 	int cmp;
6934 	int len1, len2;
6935 	unsigned long off1, off2;
6936 
6937 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
6938 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
6939 	if (len1 != len2)
6940 		return 1;
6941 
6942 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6943 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6944 				right_path->slots[0]);
6945 
6946 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6947 
6948 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6949 	if (cmp)
6950 		return 1;
6951 	return 0;
6952 }
6953 
6954 /*
6955  * A transaction used for relocating a block group was committed or is about to
6956  * finish its commit. Release our paths and restart the search, so that we are
6957  * not using stale extent buffers:
6958  *
6959  * 1) For levels > 0, we are only holding references of extent buffers, without
6960  *    any locks on them, which does not prevent them from having been relocated
6961  *    and reallocated after the last time we released the commit root semaphore.
6962  *    The exception are the root nodes, for which we always have a clone, see
6963  *    the comment at btrfs_compare_trees();
6964  *
6965  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
6966  *    we are safe from the concurrent relocation and reallocation. However they
6967  *    can have file extent items with a pre relocation disk_bytenr value, so we
6968  *    restart the start from the current commit roots and clone the new leaves so
6969  *    that we get the post relocation disk_bytenr values. Not doing so, could
6970  *    make us clone the wrong data in case there are new extents using the old
6971  *    disk_bytenr that happen to be shared.
6972  */
6973 static int restart_after_relocation(struct btrfs_path *left_path,
6974 				    struct btrfs_path *right_path,
6975 				    const struct btrfs_key *left_key,
6976 				    const struct btrfs_key *right_key,
6977 				    int left_level,
6978 				    int right_level,
6979 				    const struct send_ctx *sctx)
6980 {
6981 	int root_level;
6982 	int ret;
6983 
6984 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
6985 
6986 	btrfs_release_path(left_path);
6987 	btrfs_release_path(right_path);
6988 
6989 	/*
6990 	 * Since keys can not be added or removed to/from our roots because they
6991 	 * are readonly and we do not allow deduplication to run in parallel
6992 	 * (which can add, remove or change keys), the layout of the trees should
6993 	 * not change.
6994 	 */
6995 	left_path->lowest_level = left_level;
6996 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
6997 	if (ret < 0)
6998 		return ret;
6999 
7000 	right_path->lowest_level = right_level;
7001 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7002 	if (ret < 0)
7003 		return ret;
7004 
7005 	/*
7006 	 * If the lowest level nodes are leaves, clone them so that they can be
7007 	 * safely used by changed_cb() while not under the protection of the
7008 	 * commit root semaphore, even if relocation and reallocation happens in
7009 	 * parallel.
7010 	 */
7011 	if (left_level == 0) {
7012 		ret = replace_node_with_clone(left_path, 0);
7013 		if (ret < 0)
7014 			return ret;
7015 	}
7016 
7017 	if (right_level == 0) {
7018 		ret = replace_node_with_clone(right_path, 0);
7019 		if (ret < 0)
7020 			return ret;
7021 	}
7022 
7023 	/*
7024 	 * Now clone the root nodes (unless they happen to be the leaves we have
7025 	 * already cloned). This is to protect against concurrent snapshotting of
7026 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7027 	 */
7028 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7029 	if (root_level > 0) {
7030 		ret = replace_node_with_clone(left_path, root_level);
7031 		if (ret < 0)
7032 			return ret;
7033 	}
7034 
7035 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7036 	if (root_level > 0) {
7037 		ret = replace_node_with_clone(right_path, root_level);
7038 		if (ret < 0)
7039 			return ret;
7040 	}
7041 
7042 	return 0;
7043 }
7044 
7045 /*
7046  * This function compares two trees and calls the provided callback for
7047  * every changed/new/deleted item it finds.
7048  * If shared tree blocks are encountered, whole subtrees are skipped, making
7049  * the compare pretty fast on snapshotted subvolumes.
7050  *
7051  * This currently works on commit roots only. As commit roots are read only,
7052  * we don't do any locking. The commit roots are protected with transactions.
7053  * Transactions are ended and rejoined when a commit is tried in between.
7054  *
7055  * This function checks for modifications done to the trees while comparing.
7056  * If it detects a change, it aborts immediately.
7057  */
7058 static int btrfs_compare_trees(struct btrfs_root *left_root,
7059 			struct btrfs_root *right_root, struct send_ctx *sctx)
7060 {
7061 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7062 	int ret;
7063 	int cmp;
7064 	struct btrfs_path *left_path = NULL;
7065 	struct btrfs_path *right_path = NULL;
7066 	struct btrfs_key left_key;
7067 	struct btrfs_key right_key;
7068 	char *tmp_buf = NULL;
7069 	int left_root_level;
7070 	int right_root_level;
7071 	int left_level;
7072 	int right_level;
7073 	int left_end_reached = 0;
7074 	int right_end_reached = 0;
7075 	int advance_left = 0;
7076 	int advance_right = 0;
7077 	u64 left_blockptr;
7078 	u64 right_blockptr;
7079 	u64 left_gen;
7080 	u64 right_gen;
7081 	u64 reada_min_gen;
7082 
7083 	left_path = btrfs_alloc_path();
7084 	if (!left_path) {
7085 		ret = -ENOMEM;
7086 		goto out;
7087 	}
7088 	right_path = btrfs_alloc_path();
7089 	if (!right_path) {
7090 		ret = -ENOMEM;
7091 		goto out;
7092 	}
7093 
7094 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7095 	if (!tmp_buf) {
7096 		ret = -ENOMEM;
7097 		goto out;
7098 	}
7099 
7100 	left_path->search_commit_root = 1;
7101 	left_path->skip_locking = 1;
7102 	right_path->search_commit_root = 1;
7103 	right_path->skip_locking = 1;
7104 
7105 	/*
7106 	 * Strategy: Go to the first items of both trees. Then do
7107 	 *
7108 	 * If both trees are at level 0
7109 	 *   Compare keys of current items
7110 	 *     If left < right treat left item as new, advance left tree
7111 	 *       and repeat
7112 	 *     If left > right treat right item as deleted, advance right tree
7113 	 *       and repeat
7114 	 *     If left == right do deep compare of items, treat as changed if
7115 	 *       needed, advance both trees and repeat
7116 	 * If both trees are at the same level but not at level 0
7117 	 *   Compare keys of current nodes/leafs
7118 	 *     If left < right advance left tree and repeat
7119 	 *     If left > right advance right tree and repeat
7120 	 *     If left == right compare blockptrs of the next nodes/leafs
7121 	 *       If they match advance both trees but stay at the same level
7122 	 *         and repeat
7123 	 *       If they don't match advance both trees while allowing to go
7124 	 *         deeper and repeat
7125 	 * If tree levels are different
7126 	 *   Advance the tree that needs it and repeat
7127 	 *
7128 	 * Advancing a tree means:
7129 	 *   If we are at level 0, try to go to the next slot. If that's not
7130 	 *   possible, go one level up and repeat. Stop when we found a level
7131 	 *   where we could go to the next slot. We may at this point be on a
7132 	 *   node or a leaf.
7133 	 *
7134 	 *   If we are not at level 0 and not on shared tree blocks, go one
7135 	 *   level deeper.
7136 	 *
7137 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7138 	 *   the right if possible or go up and right.
7139 	 */
7140 
7141 	down_read(&fs_info->commit_root_sem);
7142 	left_level = btrfs_header_level(left_root->commit_root);
7143 	left_root_level = left_level;
7144 	/*
7145 	 * We clone the root node of the send and parent roots to prevent races
7146 	 * with snapshot creation of these roots. Snapshot creation COWs the
7147 	 * root node of a tree, so after the transaction is committed the old
7148 	 * extent can be reallocated while this send operation is still ongoing.
7149 	 * So we clone them, under the commit root semaphore, to be race free.
7150 	 */
7151 	left_path->nodes[left_level] =
7152 			btrfs_clone_extent_buffer(left_root->commit_root);
7153 	if (!left_path->nodes[left_level]) {
7154 		ret = -ENOMEM;
7155 		goto out_unlock;
7156 	}
7157 
7158 	right_level = btrfs_header_level(right_root->commit_root);
7159 	right_root_level = right_level;
7160 	right_path->nodes[right_level] =
7161 			btrfs_clone_extent_buffer(right_root->commit_root);
7162 	if (!right_path->nodes[right_level]) {
7163 		ret = -ENOMEM;
7164 		goto out_unlock;
7165 	}
7166 	/*
7167 	 * Our right root is the parent root, while the left root is the "send"
7168 	 * root. We know that all new nodes/leaves in the left root must have
7169 	 * a generation greater than the right root's generation, so we trigger
7170 	 * readahead for those nodes and leaves of the left root, as we know we
7171 	 * will need to read them at some point.
7172 	 */
7173 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7174 
7175 	if (left_level == 0)
7176 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7177 				&left_key, left_path->slots[left_level]);
7178 	else
7179 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7180 				&left_key, left_path->slots[left_level]);
7181 	if (right_level == 0)
7182 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7183 				&right_key, right_path->slots[right_level]);
7184 	else
7185 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7186 				&right_key, right_path->slots[right_level]);
7187 
7188 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7189 
7190 	while (1) {
7191 		if (need_resched() ||
7192 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7193 			up_read(&fs_info->commit_root_sem);
7194 			cond_resched();
7195 			down_read(&fs_info->commit_root_sem);
7196 		}
7197 
7198 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7199 			ret = restart_after_relocation(left_path, right_path,
7200 						       &left_key, &right_key,
7201 						       left_level, right_level,
7202 						       sctx);
7203 			if (ret < 0)
7204 				goto out_unlock;
7205 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7206 		}
7207 
7208 		if (advance_left && !left_end_reached) {
7209 			ret = tree_advance(left_path, &left_level,
7210 					left_root_level,
7211 					advance_left != ADVANCE_ONLY_NEXT,
7212 					&left_key, reada_min_gen);
7213 			if (ret == -1)
7214 				left_end_reached = ADVANCE;
7215 			else if (ret < 0)
7216 				goto out_unlock;
7217 			advance_left = 0;
7218 		}
7219 		if (advance_right && !right_end_reached) {
7220 			ret = tree_advance(right_path, &right_level,
7221 					right_root_level,
7222 					advance_right != ADVANCE_ONLY_NEXT,
7223 					&right_key, reada_min_gen);
7224 			if (ret == -1)
7225 				right_end_reached = ADVANCE;
7226 			else if (ret < 0)
7227 				goto out_unlock;
7228 			advance_right = 0;
7229 		}
7230 
7231 		if (left_end_reached && right_end_reached) {
7232 			ret = 0;
7233 			goto out_unlock;
7234 		} else if (left_end_reached) {
7235 			if (right_level == 0) {
7236 				up_read(&fs_info->commit_root_sem);
7237 				ret = changed_cb(left_path, right_path,
7238 						&right_key,
7239 						BTRFS_COMPARE_TREE_DELETED,
7240 						sctx);
7241 				if (ret < 0)
7242 					goto out;
7243 				down_read(&fs_info->commit_root_sem);
7244 			}
7245 			advance_right = ADVANCE;
7246 			continue;
7247 		} else if (right_end_reached) {
7248 			if (left_level == 0) {
7249 				up_read(&fs_info->commit_root_sem);
7250 				ret = changed_cb(left_path, right_path,
7251 						&left_key,
7252 						BTRFS_COMPARE_TREE_NEW,
7253 						sctx);
7254 				if (ret < 0)
7255 					goto out;
7256 				down_read(&fs_info->commit_root_sem);
7257 			}
7258 			advance_left = ADVANCE;
7259 			continue;
7260 		}
7261 
7262 		if (left_level == 0 && right_level == 0) {
7263 			up_read(&fs_info->commit_root_sem);
7264 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7265 			if (cmp < 0) {
7266 				ret = changed_cb(left_path, right_path,
7267 						&left_key,
7268 						BTRFS_COMPARE_TREE_NEW,
7269 						sctx);
7270 				advance_left = ADVANCE;
7271 			} else if (cmp > 0) {
7272 				ret = changed_cb(left_path, right_path,
7273 						&right_key,
7274 						BTRFS_COMPARE_TREE_DELETED,
7275 						sctx);
7276 				advance_right = ADVANCE;
7277 			} else {
7278 				enum btrfs_compare_tree_result result;
7279 
7280 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7281 				ret = tree_compare_item(left_path, right_path,
7282 							tmp_buf);
7283 				if (ret)
7284 					result = BTRFS_COMPARE_TREE_CHANGED;
7285 				else
7286 					result = BTRFS_COMPARE_TREE_SAME;
7287 				ret = changed_cb(left_path, right_path,
7288 						 &left_key, result, sctx);
7289 				advance_left = ADVANCE;
7290 				advance_right = ADVANCE;
7291 			}
7292 
7293 			if (ret < 0)
7294 				goto out;
7295 			down_read(&fs_info->commit_root_sem);
7296 		} else if (left_level == right_level) {
7297 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7298 			if (cmp < 0) {
7299 				advance_left = ADVANCE;
7300 			} else if (cmp > 0) {
7301 				advance_right = ADVANCE;
7302 			} else {
7303 				left_blockptr = btrfs_node_blockptr(
7304 						left_path->nodes[left_level],
7305 						left_path->slots[left_level]);
7306 				right_blockptr = btrfs_node_blockptr(
7307 						right_path->nodes[right_level],
7308 						right_path->slots[right_level]);
7309 				left_gen = btrfs_node_ptr_generation(
7310 						left_path->nodes[left_level],
7311 						left_path->slots[left_level]);
7312 				right_gen = btrfs_node_ptr_generation(
7313 						right_path->nodes[right_level],
7314 						right_path->slots[right_level]);
7315 				if (left_blockptr == right_blockptr &&
7316 				    left_gen == right_gen) {
7317 					/*
7318 					 * As we're on a shared block, don't
7319 					 * allow to go deeper.
7320 					 */
7321 					advance_left = ADVANCE_ONLY_NEXT;
7322 					advance_right = ADVANCE_ONLY_NEXT;
7323 				} else {
7324 					advance_left = ADVANCE;
7325 					advance_right = ADVANCE;
7326 				}
7327 			}
7328 		} else if (left_level < right_level) {
7329 			advance_right = ADVANCE;
7330 		} else {
7331 			advance_left = ADVANCE;
7332 		}
7333 	}
7334 
7335 out_unlock:
7336 	up_read(&fs_info->commit_root_sem);
7337 out:
7338 	btrfs_free_path(left_path);
7339 	btrfs_free_path(right_path);
7340 	kvfree(tmp_buf);
7341 	return ret;
7342 }
7343 
7344 static int send_subvol(struct send_ctx *sctx)
7345 {
7346 	int ret;
7347 
7348 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7349 		ret = send_header(sctx);
7350 		if (ret < 0)
7351 			goto out;
7352 	}
7353 
7354 	ret = send_subvol_begin(sctx);
7355 	if (ret < 0)
7356 		goto out;
7357 
7358 	if (sctx->parent_root) {
7359 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7360 		if (ret < 0)
7361 			goto out;
7362 		ret = finish_inode_if_needed(sctx, 1);
7363 		if (ret < 0)
7364 			goto out;
7365 	} else {
7366 		ret = full_send_tree(sctx);
7367 		if (ret < 0)
7368 			goto out;
7369 	}
7370 
7371 out:
7372 	free_recorded_refs(sctx);
7373 	return ret;
7374 }
7375 
7376 /*
7377  * If orphan cleanup did remove any orphans from a root, it means the tree
7378  * was modified and therefore the commit root is not the same as the current
7379  * root anymore. This is a problem, because send uses the commit root and
7380  * therefore can see inode items that don't exist in the current root anymore,
7381  * and for example make calls to btrfs_iget, which will do tree lookups based
7382  * on the current root and not on the commit root. Those lookups will fail,
7383  * returning a -ESTALE error, and making send fail with that error. So make
7384  * sure a send does not see any orphans we have just removed, and that it will
7385  * see the same inodes regardless of whether a transaction commit happened
7386  * before it started (meaning that the commit root will be the same as the
7387  * current root) or not.
7388  */
7389 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7390 {
7391 	int i;
7392 	struct btrfs_trans_handle *trans = NULL;
7393 
7394 again:
7395 	if (sctx->parent_root &&
7396 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7397 		goto commit_trans;
7398 
7399 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7400 		if (sctx->clone_roots[i].root->node !=
7401 		    sctx->clone_roots[i].root->commit_root)
7402 			goto commit_trans;
7403 
7404 	if (trans)
7405 		return btrfs_end_transaction(trans);
7406 
7407 	return 0;
7408 
7409 commit_trans:
7410 	/* Use any root, all fs roots will get their commit roots updated. */
7411 	if (!trans) {
7412 		trans = btrfs_join_transaction(sctx->send_root);
7413 		if (IS_ERR(trans))
7414 			return PTR_ERR(trans);
7415 		goto again;
7416 	}
7417 
7418 	return btrfs_commit_transaction(trans);
7419 }
7420 
7421 /*
7422  * Make sure any existing dellaloc is flushed for any root used by a send
7423  * operation so that we do not miss any data and we do not race with writeback
7424  * finishing and changing a tree while send is using the tree. This could
7425  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7426  * a send operation then uses the subvolume.
7427  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7428  */
7429 static int flush_delalloc_roots(struct send_ctx *sctx)
7430 {
7431 	struct btrfs_root *root = sctx->parent_root;
7432 	int ret;
7433 	int i;
7434 
7435 	if (root) {
7436 		ret = btrfs_start_delalloc_snapshot(root, false);
7437 		if (ret)
7438 			return ret;
7439 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7440 	}
7441 
7442 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7443 		root = sctx->clone_roots[i].root;
7444 		ret = btrfs_start_delalloc_snapshot(root, false);
7445 		if (ret)
7446 			return ret;
7447 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7448 	}
7449 
7450 	return 0;
7451 }
7452 
7453 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7454 {
7455 	spin_lock(&root->root_item_lock);
7456 	root->send_in_progress--;
7457 	/*
7458 	 * Not much left to do, we don't know why it's unbalanced and
7459 	 * can't blindly reset it to 0.
7460 	 */
7461 	if (root->send_in_progress < 0)
7462 		btrfs_err(root->fs_info,
7463 			  "send_in_progress unbalanced %d root %llu",
7464 			  root->send_in_progress, root->root_key.objectid);
7465 	spin_unlock(&root->root_item_lock);
7466 }
7467 
7468 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7469 {
7470 	btrfs_warn_rl(root->fs_info,
7471 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7472 		      root->root_key.objectid, root->dedupe_in_progress);
7473 }
7474 
7475 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
7476 {
7477 	int ret = 0;
7478 	struct btrfs_root *send_root = BTRFS_I(inode)->root;
7479 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7480 	struct btrfs_root *clone_root;
7481 	struct send_ctx *sctx = NULL;
7482 	u32 i;
7483 	u64 *clone_sources_tmp = NULL;
7484 	int clone_sources_to_rollback = 0;
7485 	size_t alloc_size;
7486 	int sort_clone_roots = 0;
7487 
7488 	if (!capable(CAP_SYS_ADMIN))
7489 		return -EPERM;
7490 
7491 	/*
7492 	 * The subvolume must remain read-only during send, protect against
7493 	 * making it RW. This also protects against deletion.
7494 	 */
7495 	spin_lock(&send_root->root_item_lock);
7496 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7497 		dedupe_in_progress_warn(send_root);
7498 		spin_unlock(&send_root->root_item_lock);
7499 		return -EAGAIN;
7500 	}
7501 	send_root->send_in_progress++;
7502 	spin_unlock(&send_root->root_item_lock);
7503 
7504 	/*
7505 	 * Userspace tools do the checks and warn the user if it's
7506 	 * not RO.
7507 	 */
7508 	if (!btrfs_root_readonly(send_root)) {
7509 		ret = -EPERM;
7510 		goto out;
7511 	}
7512 
7513 	/*
7514 	 * Check that we don't overflow at later allocations, we request
7515 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7516 	 * access_ok.
7517 	 */
7518 	if (arg->clone_sources_count >
7519 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7520 		ret = -EINVAL;
7521 		goto out;
7522 	}
7523 
7524 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7525 		ret = -EINVAL;
7526 		goto out;
7527 	}
7528 
7529 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7530 	if (!sctx) {
7531 		ret = -ENOMEM;
7532 		goto out;
7533 	}
7534 
7535 	INIT_LIST_HEAD(&sctx->new_refs);
7536 	INIT_LIST_HEAD(&sctx->deleted_refs);
7537 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7538 	INIT_LIST_HEAD(&sctx->name_cache_list);
7539 
7540 	sctx->flags = arg->flags;
7541 
7542 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
7543 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
7544 			ret = -EPROTO;
7545 			goto out;
7546 		}
7547 		/* Zero means "use the highest version" */
7548 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
7549 	} else {
7550 		sctx->proto = 1;
7551 	}
7552 
7553 	sctx->send_filp = fget(arg->send_fd);
7554 	if (!sctx->send_filp) {
7555 		ret = -EBADF;
7556 		goto out;
7557 	}
7558 
7559 	sctx->send_root = send_root;
7560 	/*
7561 	 * Unlikely but possible, if the subvolume is marked for deletion but
7562 	 * is slow to remove the directory entry, send can still be started
7563 	 */
7564 	if (btrfs_root_dead(sctx->send_root)) {
7565 		ret = -EPERM;
7566 		goto out;
7567 	}
7568 
7569 	sctx->clone_roots_cnt = arg->clone_sources_count;
7570 
7571 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7572 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7573 	if (!sctx->send_buf) {
7574 		ret = -ENOMEM;
7575 		goto out;
7576 	}
7577 
7578 	sctx->pending_dir_moves = RB_ROOT;
7579 	sctx->waiting_dir_moves = RB_ROOT;
7580 	sctx->orphan_dirs = RB_ROOT;
7581 
7582 	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7583 				     arg->clone_sources_count + 1,
7584 				     GFP_KERNEL);
7585 	if (!sctx->clone_roots) {
7586 		ret = -ENOMEM;
7587 		goto out;
7588 	}
7589 
7590 	alloc_size = array_size(sizeof(*arg->clone_sources),
7591 				arg->clone_sources_count);
7592 
7593 	if (arg->clone_sources_count) {
7594 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7595 		if (!clone_sources_tmp) {
7596 			ret = -ENOMEM;
7597 			goto out;
7598 		}
7599 
7600 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7601 				alloc_size);
7602 		if (ret) {
7603 			ret = -EFAULT;
7604 			goto out;
7605 		}
7606 
7607 		for (i = 0; i < arg->clone_sources_count; i++) {
7608 			clone_root = btrfs_get_fs_root(fs_info,
7609 						clone_sources_tmp[i], true);
7610 			if (IS_ERR(clone_root)) {
7611 				ret = PTR_ERR(clone_root);
7612 				goto out;
7613 			}
7614 			spin_lock(&clone_root->root_item_lock);
7615 			if (!btrfs_root_readonly(clone_root) ||
7616 			    btrfs_root_dead(clone_root)) {
7617 				spin_unlock(&clone_root->root_item_lock);
7618 				btrfs_put_root(clone_root);
7619 				ret = -EPERM;
7620 				goto out;
7621 			}
7622 			if (clone_root->dedupe_in_progress) {
7623 				dedupe_in_progress_warn(clone_root);
7624 				spin_unlock(&clone_root->root_item_lock);
7625 				btrfs_put_root(clone_root);
7626 				ret = -EAGAIN;
7627 				goto out;
7628 			}
7629 			clone_root->send_in_progress++;
7630 			spin_unlock(&clone_root->root_item_lock);
7631 
7632 			sctx->clone_roots[i].root = clone_root;
7633 			clone_sources_to_rollback = i + 1;
7634 		}
7635 		kvfree(clone_sources_tmp);
7636 		clone_sources_tmp = NULL;
7637 	}
7638 
7639 	if (arg->parent_root) {
7640 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7641 						      true);
7642 		if (IS_ERR(sctx->parent_root)) {
7643 			ret = PTR_ERR(sctx->parent_root);
7644 			goto out;
7645 		}
7646 
7647 		spin_lock(&sctx->parent_root->root_item_lock);
7648 		sctx->parent_root->send_in_progress++;
7649 		if (!btrfs_root_readonly(sctx->parent_root) ||
7650 				btrfs_root_dead(sctx->parent_root)) {
7651 			spin_unlock(&sctx->parent_root->root_item_lock);
7652 			ret = -EPERM;
7653 			goto out;
7654 		}
7655 		if (sctx->parent_root->dedupe_in_progress) {
7656 			dedupe_in_progress_warn(sctx->parent_root);
7657 			spin_unlock(&sctx->parent_root->root_item_lock);
7658 			ret = -EAGAIN;
7659 			goto out;
7660 		}
7661 		spin_unlock(&sctx->parent_root->root_item_lock);
7662 	}
7663 
7664 	/*
7665 	 * Clones from send_root are allowed, but only if the clone source
7666 	 * is behind the current send position. This is checked while searching
7667 	 * for possible clone sources.
7668 	 */
7669 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7670 		btrfs_grab_root(sctx->send_root);
7671 
7672 	/* We do a bsearch later */
7673 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7674 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7675 			NULL);
7676 	sort_clone_roots = 1;
7677 
7678 	ret = flush_delalloc_roots(sctx);
7679 	if (ret)
7680 		goto out;
7681 
7682 	ret = ensure_commit_roots_uptodate(sctx);
7683 	if (ret)
7684 		goto out;
7685 
7686 	ret = send_subvol(sctx);
7687 	if (ret < 0)
7688 		goto out;
7689 
7690 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7691 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7692 		if (ret < 0)
7693 			goto out;
7694 		ret = send_cmd(sctx);
7695 		if (ret < 0)
7696 			goto out;
7697 	}
7698 
7699 out:
7700 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7701 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7702 		struct rb_node *n;
7703 		struct pending_dir_move *pm;
7704 
7705 		n = rb_first(&sctx->pending_dir_moves);
7706 		pm = rb_entry(n, struct pending_dir_move, node);
7707 		while (!list_empty(&pm->list)) {
7708 			struct pending_dir_move *pm2;
7709 
7710 			pm2 = list_first_entry(&pm->list,
7711 					       struct pending_dir_move, list);
7712 			free_pending_move(sctx, pm2);
7713 		}
7714 		free_pending_move(sctx, pm);
7715 	}
7716 
7717 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7718 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7719 		struct rb_node *n;
7720 		struct waiting_dir_move *dm;
7721 
7722 		n = rb_first(&sctx->waiting_dir_moves);
7723 		dm = rb_entry(n, struct waiting_dir_move, node);
7724 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7725 		kfree(dm);
7726 	}
7727 
7728 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7729 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7730 		struct rb_node *n;
7731 		struct orphan_dir_info *odi;
7732 
7733 		n = rb_first(&sctx->orphan_dirs);
7734 		odi = rb_entry(n, struct orphan_dir_info, node);
7735 		free_orphan_dir_info(sctx, odi);
7736 	}
7737 
7738 	if (sort_clone_roots) {
7739 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7740 			btrfs_root_dec_send_in_progress(
7741 					sctx->clone_roots[i].root);
7742 			btrfs_put_root(sctx->clone_roots[i].root);
7743 		}
7744 	} else {
7745 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7746 			btrfs_root_dec_send_in_progress(
7747 					sctx->clone_roots[i].root);
7748 			btrfs_put_root(sctx->clone_roots[i].root);
7749 		}
7750 
7751 		btrfs_root_dec_send_in_progress(send_root);
7752 	}
7753 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7754 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7755 		btrfs_put_root(sctx->parent_root);
7756 	}
7757 
7758 	kvfree(clone_sources_tmp);
7759 
7760 	if (sctx) {
7761 		if (sctx->send_filp)
7762 			fput(sctx->send_filp);
7763 
7764 		kvfree(sctx->clone_roots);
7765 		kvfree(sctx->send_buf);
7766 
7767 		name_cache_free(sctx);
7768 
7769 		kfree(sctx);
7770 	}
7771 
7772 	return ret;
7773 }
7774