xref: /openbmc/linux/fs/btrfs/send.c (revision 1c2f87c2)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 
55 			char *buf;
56 			unsigned short buf_len:15;
57 			unsigned short reversed:1;
58 			char inline_buf[];
59 		};
60 		/*
61 		 * Average path length does not exceed 200 bytes, we'll have
62 		 * better packing in the slab and higher chance to satisfy
63 		 * a allocation later during send.
64 		 */
65 		char pad[256];
66 	};
67 };
68 #define FS_PATH_INLINE_SIZE \
69 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 
71 
72 /* reused for each extent */
73 struct clone_root {
74 	struct btrfs_root *root;
75 	u64 ino;
76 	u64 offset;
77 
78 	u64 found_refs;
79 };
80 
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 
84 struct send_ctx {
85 	struct file *send_filp;
86 	loff_t send_off;
87 	char *send_buf;
88 	u32 send_size;
89 	u32 send_max_size;
90 	u64 total_send_size;
91 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 
94 	struct btrfs_root *send_root;
95 	struct btrfs_root *parent_root;
96 	struct clone_root *clone_roots;
97 	int clone_roots_cnt;
98 
99 	/* current state of the compare_tree call */
100 	struct btrfs_path *left_path;
101 	struct btrfs_path *right_path;
102 	struct btrfs_key *cmp_key;
103 
104 	/*
105 	 * infos of the currently processed inode. In case of deleted inodes,
106 	 * these are the values from the deleted inode.
107 	 */
108 	u64 cur_ino;
109 	u64 cur_inode_gen;
110 	int cur_inode_new;
111 	int cur_inode_new_gen;
112 	int cur_inode_deleted;
113 	u64 cur_inode_size;
114 	u64 cur_inode_mode;
115 	u64 cur_inode_rdev;
116 	u64 cur_inode_last_extent;
117 
118 	u64 send_progress;
119 
120 	struct list_head new_refs;
121 	struct list_head deleted_refs;
122 
123 	struct radix_tree_root name_cache;
124 	struct list_head name_cache_list;
125 	int name_cache_size;
126 
127 	struct file_ra_state ra;
128 
129 	char *read_buf;
130 
131 	/*
132 	 * We process inodes by their increasing order, so if before an
133 	 * incremental send we reverse the parent/child relationship of
134 	 * directories such that a directory with a lower inode number was
135 	 * the parent of a directory with a higher inode number, and the one
136 	 * becoming the new parent got renamed too, we can't rename/move the
137 	 * directory with lower inode number when we finish processing it - we
138 	 * must process the directory with higher inode number first, then
139 	 * rename/move it and then rename/move the directory with lower inode
140 	 * number. Example follows.
141 	 *
142 	 * Tree state when the first send was performed:
143 	 *
144 	 * .
145 	 * |-- a                   (ino 257)
146 	 *     |-- b               (ino 258)
147 	 *         |
148 	 *         |
149 	 *         |-- c           (ino 259)
150 	 *         |   |-- d       (ino 260)
151 	 *         |
152 	 *         |-- c2          (ino 261)
153 	 *
154 	 * Tree state when the second (incremental) send is performed:
155 	 *
156 	 * .
157 	 * |-- a                   (ino 257)
158 	 *     |-- b               (ino 258)
159 	 *         |-- c2          (ino 261)
160 	 *             |-- d2      (ino 260)
161 	 *                 |-- cc  (ino 259)
162 	 *
163 	 * The sequence of steps that lead to the second state was:
164 	 *
165 	 * mv /a/b/c/d /a/b/c2/d2
166 	 * mv /a/b/c /a/b/c2/d2/cc
167 	 *
168 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 	 * before we move "d", which has higher inode number.
170 	 *
171 	 * So we just memorize which move/rename operations must be performed
172 	 * later when their respective parent is processed and moved/renamed.
173 	 */
174 
175 	/* Indexed by parent directory inode number. */
176 	struct rb_root pending_dir_moves;
177 
178 	/*
179 	 * Reverse index, indexed by the inode number of a directory that
180 	 * is waiting for the move/rename of its immediate parent before its
181 	 * own move/rename can be performed.
182 	 */
183 	struct rb_root waiting_dir_moves;
184 
185 	/*
186 	 * A directory that is going to be rm'ed might have a child directory
187 	 * which is in the pending directory moves index above. In this case,
188 	 * the directory can only be removed after the move/rename of its child
189 	 * is performed. Example:
190 	 *
191 	 * Parent snapshot:
192 	 *
193 	 * .                        (ino 256)
194 	 * |-- a/                   (ino 257)
195 	 *     |-- b/               (ino 258)
196 	 *         |-- c/           (ino 259)
197 	 *         |   |-- x/       (ino 260)
198 	 *         |
199 	 *         |-- y/           (ino 261)
200 	 *
201 	 * Send snapshot:
202 	 *
203 	 * .                        (ino 256)
204 	 * |-- a/                   (ino 257)
205 	 *     |-- b/               (ino 258)
206 	 *         |-- YY/          (ino 261)
207 	 *              |-- x/      (ino 260)
208 	 *
209 	 * Sequence of steps that lead to the send snapshot:
210 	 * rm -f /a/b/c/foo.txt
211 	 * mv /a/b/y /a/b/YY
212 	 * mv /a/b/c/x /a/b/YY
213 	 * rmdir /a/b/c
214 	 *
215 	 * When the child is processed, its move/rename is delayed until its
216 	 * parent is processed (as explained above), but all other operations
217 	 * like update utimes, chown, chgrp, etc, are performed and the paths
218 	 * that it uses for those operations must use the orphanized name of
219 	 * its parent (the directory we're going to rm later), so we need to
220 	 * memorize that name.
221 	 *
222 	 * Indexed by the inode number of the directory to be deleted.
223 	 */
224 	struct rb_root orphan_dirs;
225 };
226 
227 struct pending_dir_move {
228 	struct rb_node node;
229 	struct list_head list;
230 	u64 parent_ino;
231 	u64 ino;
232 	u64 gen;
233 	struct list_head update_refs;
234 };
235 
236 struct waiting_dir_move {
237 	struct rb_node node;
238 	u64 ino;
239 	/*
240 	 * There might be some directory that could not be removed because it
241 	 * was waiting for this directory inode to be moved first. Therefore
242 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
243 	 */
244 	u64 rmdir_ino;
245 };
246 
247 struct orphan_dir_info {
248 	struct rb_node node;
249 	u64 ino;
250 	u64 gen;
251 };
252 
253 struct name_cache_entry {
254 	struct list_head list;
255 	/*
256 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
257 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
258 	 * more then one inum would fall into the same entry, we use radix_list
259 	 * to store the additional entries. radix_list is also used to store
260 	 * entries where two entries have the same inum but different
261 	 * generations.
262 	 */
263 	struct list_head radix_list;
264 	u64 ino;
265 	u64 gen;
266 	u64 parent_ino;
267 	u64 parent_gen;
268 	int ret;
269 	int need_later_update;
270 	int name_len;
271 	char name[];
272 };
273 
274 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
275 
276 static struct waiting_dir_move *
277 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
278 
279 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
280 
281 static int need_send_hole(struct send_ctx *sctx)
282 {
283 	return (sctx->parent_root && !sctx->cur_inode_new &&
284 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
285 		S_ISREG(sctx->cur_inode_mode));
286 }
287 
288 static void fs_path_reset(struct fs_path *p)
289 {
290 	if (p->reversed) {
291 		p->start = p->buf + p->buf_len - 1;
292 		p->end = p->start;
293 		*p->start = 0;
294 	} else {
295 		p->start = p->buf;
296 		p->end = p->start;
297 		*p->start = 0;
298 	}
299 }
300 
301 static struct fs_path *fs_path_alloc(void)
302 {
303 	struct fs_path *p;
304 
305 	p = kmalloc(sizeof(*p), GFP_NOFS);
306 	if (!p)
307 		return NULL;
308 	p->reversed = 0;
309 	p->buf = p->inline_buf;
310 	p->buf_len = FS_PATH_INLINE_SIZE;
311 	fs_path_reset(p);
312 	return p;
313 }
314 
315 static struct fs_path *fs_path_alloc_reversed(void)
316 {
317 	struct fs_path *p;
318 
319 	p = fs_path_alloc();
320 	if (!p)
321 		return NULL;
322 	p->reversed = 1;
323 	fs_path_reset(p);
324 	return p;
325 }
326 
327 static void fs_path_free(struct fs_path *p)
328 {
329 	if (!p)
330 		return;
331 	if (p->buf != p->inline_buf)
332 		kfree(p->buf);
333 	kfree(p);
334 }
335 
336 static int fs_path_len(struct fs_path *p)
337 {
338 	return p->end - p->start;
339 }
340 
341 static int fs_path_ensure_buf(struct fs_path *p, int len)
342 {
343 	char *tmp_buf;
344 	int path_len;
345 	int old_buf_len;
346 
347 	len++;
348 
349 	if (p->buf_len >= len)
350 		return 0;
351 
352 	path_len = p->end - p->start;
353 	old_buf_len = p->buf_len;
354 
355 	/*
356 	 * First time the inline_buf does not suffice
357 	 */
358 	if (p->buf == p->inline_buf)
359 		tmp_buf = kmalloc(len, GFP_NOFS);
360 	else
361 		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
362 	if (!tmp_buf)
363 		return -ENOMEM;
364 	p->buf = tmp_buf;
365 	/*
366 	 * The real size of the buffer is bigger, this will let the fast path
367 	 * happen most of the time
368 	 */
369 	p->buf_len = ksize(p->buf);
370 
371 	if (p->reversed) {
372 		tmp_buf = p->buf + old_buf_len - path_len - 1;
373 		p->end = p->buf + p->buf_len - 1;
374 		p->start = p->end - path_len;
375 		memmove(p->start, tmp_buf, path_len + 1);
376 	} else {
377 		p->start = p->buf;
378 		p->end = p->start + path_len;
379 	}
380 	return 0;
381 }
382 
383 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
384 				   char **prepared)
385 {
386 	int ret;
387 	int new_len;
388 
389 	new_len = p->end - p->start + name_len;
390 	if (p->start != p->end)
391 		new_len++;
392 	ret = fs_path_ensure_buf(p, new_len);
393 	if (ret < 0)
394 		goto out;
395 
396 	if (p->reversed) {
397 		if (p->start != p->end)
398 			*--p->start = '/';
399 		p->start -= name_len;
400 		*prepared = p->start;
401 	} else {
402 		if (p->start != p->end)
403 			*p->end++ = '/';
404 		*prepared = p->end;
405 		p->end += name_len;
406 		*p->end = 0;
407 	}
408 
409 out:
410 	return ret;
411 }
412 
413 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
414 {
415 	int ret;
416 	char *prepared;
417 
418 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
419 	if (ret < 0)
420 		goto out;
421 	memcpy(prepared, name, name_len);
422 
423 out:
424 	return ret;
425 }
426 
427 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
428 {
429 	int ret;
430 	char *prepared;
431 
432 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
433 	if (ret < 0)
434 		goto out;
435 	memcpy(prepared, p2->start, p2->end - p2->start);
436 
437 out:
438 	return ret;
439 }
440 
441 static int fs_path_add_from_extent_buffer(struct fs_path *p,
442 					  struct extent_buffer *eb,
443 					  unsigned long off, int len)
444 {
445 	int ret;
446 	char *prepared;
447 
448 	ret = fs_path_prepare_for_add(p, len, &prepared);
449 	if (ret < 0)
450 		goto out;
451 
452 	read_extent_buffer(eb, prepared, off, len);
453 
454 out:
455 	return ret;
456 }
457 
458 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
459 {
460 	int ret;
461 
462 	p->reversed = from->reversed;
463 	fs_path_reset(p);
464 
465 	ret = fs_path_add_path(p, from);
466 
467 	return ret;
468 }
469 
470 
471 static void fs_path_unreverse(struct fs_path *p)
472 {
473 	char *tmp;
474 	int len;
475 
476 	if (!p->reversed)
477 		return;
478 
479 	tmp = p->start;
480 	len = p->end - p->start;
481 	p->start = p->buf;
482 	p->end = p->start + len;
483 	memmove(p->start, tmp, len + 1);
484 	p->reversed = 0;
485 }
486 
487 static struct btrfs_path *alloc_path_for_send(void)
488 {
489 	struct btrfs_path *path;
490 
491 	path = btrfs_alloc_path();
492 	if (!path)
493 		return NULL;
494 	path->search_commit_root = 1;
495 	path->skip_locking = 1;
496 	path->need_commit_sem = 1;
497 	return path;
498 }
499 
500 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
501 {
502 	int ret;
503 	mm_segment_t old_fs;
504 	u32 pos = 0;
505 
506 	old_fs = get_fs();
507 	set_fs(KERNEL_DS);
508 
509 	while (pos < len) {
510 		ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
511 		/* TODO handle that correctly */
512 		/*if (ret == -ERESTARTSYS) {
513 			continue;
514 		}*/
515 		if (ret < 0)
516 			goto out;
517 		if (ret == 0) {
518 			ret = -EIO;
519 			goto out;
520 		}
521 		pos += ret;
522 	}
523 
524 	ret = 0;
525 
526 out:
527 	set_fs(old_fs);
528 	return ret;
529 }
530 
531 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
532 {
533 	struct btrfs_tlv_header *hdr;
534 	int total_len = sizeof(*hdr) + len;
535 	int left = sctx->send_max_size - sctx->send_size;
536 
537 	if (unlikely(left < total_len))
538 		return -EOVERFLOW;
539 
540 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
541 	hdr->tlv_type = cpu_to_le16(attr);
542 	hdr->tlv_len = cpu_to_le16(len);
543 	memcpy(hdr + 1, data, len);
544 	sctx->send_size += total_len;
545 
546 	return 0;
547 }
548 
549 #define TLV_PUT_DEFINE_INT(bits) \
550 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
551 			u##bits attr, u##bits value)			\
552 	{								\
553 		__le##bits __tmp = cpu_to_le##bits(value);		\
554 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
555 	}
556 
557 TLV_PUT_DEFINE_INT(64)
558 
559 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
560 			  const char *str, int len)
561 {
562 	if (len == -1)
563 		len = strlen(str);
564 	return tlv_put(sctx, attr, str, len);
565 }
566 
567 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
568 			const u8 *uuid)
569 {
570 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
571 }
572 
573 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
574 				  struct extent_buffer *eb,
575 				  struct btrfs_timespec *ts)
576 {
577 	struct btrfs_timespec bts;
578 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
579 	return tlv_put(sctx, attr, &bts, sizeof(bts));
580 }
581 
582 
583 #define TLV_PUT(sctx, attrtype, attrlen, data) \
584 	do { \
585 		ret = tlv_put(sctx, attrtype, attrlen, data); \
586 		if (ret < 0) \
587 			goto tlv_put_failure; \
588 	} while (0)
589 
590 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
591 	do { \
592 		ret = tlv_put_u##bits(sctx, attrtype, value); \
593 		if (ret < 0) \
594 			goto tlv_put_failure; \
595 	} while (0)
596 
597 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
598 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
599 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
600 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
601 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
602 	do { \
603 		ret = tlv_put_string(sctx, attrtype, str, len); \
604 		if (ret < 0) \
605 			goto tlv_put_failure; \
606 	} while (0)
607 #define TLV_PUT_PATH(sctx, attrtype, p) \
608 	do { \
609 		ret = tlv_put_string(sctx, attrtype, p->start, \
610 			p->end - p->start); \
611 		if (ret < 0) \
612 			goto tlv_put_failure; \
613 	} while(0)
614 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
615 	do { \
616 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
617 		if (ret < 0) \
618 			goto tlv_put_failure; \
619 	} while (0)
620 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
621 	do { \
622 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
623 		if (ret < 0) \
624 			goto tlv_put_failure; \
625 	} while (0)
626 
627 static int send_header(struct send_ctx *sctx)
628 {
629 	struct btrfs_stream_header hdr;
630 
631 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
632 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
633 
634 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
635 					&sctx->send_off);
636 }
637 
638 /*
639  * For each command/item we want to send to userspace, we call this function.
640  */
641 static int begin_cmd(struct send_ctx *sctx, int cmd)
642 {
643 	struct btrfs_cmd_header *hdr;
644 
645 	if (WARN_ON(!sctx->send_buf))
646 		return -EINVAL;
647 
648 	BUG_ON(sctx->send_size);
649 
650 	sctx->send_size += sizeof(*hdr);
651 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
652 	hdr->cmd = cpu_to_le16(cmd);
653 
654 	return 0;
655 }
656 
657 static int send_cmd(struct send_ctx *sctx)
658 {
659 	int ret;
660 	struct btrfs_cmd_header *hdr;
661 	u32 crc;
662 
663 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
664 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
665 	hdr->crc = 0;
666 
667 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
668 	hdr->crc = cpu_to_le32(crc);
669 
670 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
671 					&sctx->send_off);
672 
673 	sctx->total_send_size += sctx->send_size;
674 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
675 	sctx->send_size = 0;
676 
677 	return ret;
678 }
679 
680 /*
681  * Sends a move instruction to user space
682  */
683 static int send_rename(struct send_ctx *sctx,
684 		     struct fs_path *from, struct fs_path *to)
685 {
686 	int ret;
687 
688 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
689 
690 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
691 	if (ret < 0)
692 		goto out;
693 
694 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
695 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
696 
697 	ret = send_cmd(sctx);
698 
699 tlv_put_failure:
700 out:
701 	return ret;
702 }
703 
704 /*
705  * Sends a link instruction to user space
706  */
707 static int send_link(struct send_ctx *sctx,
708 		     struct fs_path *path, struct fs_path *lnk)
709 {
710 	int ret;
711 
712 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
713 
714 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
715 	if (ret < 0)
716 		goto out;
717 
718 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
719 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
720 
721 	ret = send_cmd(sctx);
722 
723 tlv_put_failure:
724 out:
725 	return ret;
726 }
727 
728 /*
729  * Sends an unlink instruction to user space
730  */
731 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
732 {
733 	int ret;
734 
735 verbose_printk("btrfs: send_unlink %s\n", path->start);
736 
737 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
738 	if (ret < 0)
739 		goto out;
740 
741 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
742 
743 	ret = send_cmd(sctx);
744 
745 tlv_put_failure:
746 out:
747 	return ret;
748 }
749 
750 /*
751  * Sends a rmdir instruction to user space
752  */
753 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
754 {
755 	int ret;
756 
757 verbose_printk("btrfs: send_rmdir %s\n", path->start);
758 
759 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
760 	if (ret < 0)
761 		goto out;
762 
763 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
764 
765 	ret = send_cmd(sctx);
766 
767 tlv_put_failure:
768 out:
769 	return ret;
770 }
771 
772 /*
773  * Helper function to retrieve some fields from an inode item.
774  */
775 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
776 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
777 			  u64 *gid, u64 *rdev)
778 {
779 	int ret;
780 	struct btrfs_inode_item *ii;
781 	struct btrfs_key key;
782 
783 	key.objectid = ino;
784 	key.type = BTRFS_INODE_ITEM_KEY;
785 	key.offset = 0;
786 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
787 	if (ret) {
788 		if (ret > 0)
789 			ret = -ENOENT;
790 		return ret;
791 	}
792 
793 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
794 			struct btrfs_inode_item);
795 	if (size)
796 		*size = btrfs_inode_size(path->nodes[0], ii);
797 	if (gen)
798 		*gen = btrfs_inode_generation(path->nodes[0], ii);
799 	if (mode)
800 		*mode = btrfs_inode_mode(path->nodes[0], ii);
801 	if (uid)
802 		*uid = btrfs_inode_uid(path->nodes[0], ii);
803 	if (gid)
804 		*gid = btrfs_inode_gid(path->nodes[0], ii);
805 	if (rdev)
806 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
807 
808 	return ret;
809 }
810 
811 static int get_inode_info(struct btrfs_root *root,
812 			  u64 ino, u64 *size, u64 *gen,
813 			  u64 *mode, u64 *uid, u64 *gid,
814 			  u64 *rdev)
815 {
816 	struct btrfs_path *path;
817 	int ret;
818 
819 	path = alloc_path_for_send();
820 	if (!path)
821 		return -ENOMEM;
822 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
823 			       rdev);
824 	btrfs_free_path(path);
825 	return ret;
826 }
827 
828 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
829 				   struct fs_path *p,
830 				   void *ctx);
831 
832 /*
833  * Helper function to iterate the entries in ONE btrfs_inode_ref or
834  * btrfs_inode_extref.
835  * The iterate callback may return a non zero value to stop iteration. This can
836  * be a negative value for error codes or 1 to simply stop it.
837  *
838  * path must point to the INODE_REF or INODE_EXTREF when called.
839  */
840 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
841 			     struct btrfs_key *found_key, int resolve,
842 			     iterate_inode_ref_t iterate, void *ctx)
843 {
844 	struct extent_buffer *eb = path->nodes[0];
845 	struct btrfs_item *item;
846 	struct btrfs_inode_ref *iref;
847 	struct btrfs_inode_extref *extref;
848 	struct btrfs_path *tmp_path;
849 	struct fs_path *p;
850 	u32 cur = 0;
851 	u32 total;
852 	int slot = path->slots[0];
853 	u32 name_len;
854 	char *start;
855 	int ret = 0;
856 	int num = 0;
857 	int index;
858 	u64 dir;
859 	unsigned long name_off;
860 	unsigned long elem_size;
861 	unsigned long ptr;
862 
863 	p = fs_path_alloc_reversed();
864 	if (!p)
865 		return -ENOMEM;
866 
867 	tmp_path = alloc_path_for_send();
868 	if (!tmp_path) {
869 		fs_path_free(p);
870 		return -ENOMEM;
871 	}
872 
873 
874 	if (found_key->type == BTRFS_INODE_REF_KEY) {
875 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
876 						    struct btrfs_inode_ref);
877 		item = btrfs_item_nr(slot);
878 		total = btrfs_item_size(eb, item);
879 		elem_size = sizeof(*iref);
880 	} else {
881 		ptr = btrfs_item_ptr_offset(eb, slot);
882 		total = btrfs_item_size_nr(eb, slot);
883 		elem_size = sizeof(*extref);
884 	}
885 
886 	while (cur < total) {
887 		fs_path_reset(p);
888 
889 		if (found_key->type == BTRFS_INODE_REF_KEY) {
890 			iref = (struct btrfs_inode_ref *)(ptr + cur);
891 			name_len = btrfs_inode_ref_name_len(eb, iref);
892 			name_off = (unsigned long)(iref + 1);
893 			index = btrfs_inode_ref_index(eb, iref);
894 			dir = found_key->offset;
895 		} else {
896 			extref = (struct btrfs_inode_extref *)(ptr + cur);
897 			name_len = btrfs_inode_extref_name_len(eb, extref);
898 			name_off = (unsigned long)&extref->name;
899 			index = btrfs_inode_extref_index(eb, extref);
900 			dir = btrfs_inode_extref_parent(eb, extref);
901 		}
902 
903 		if (resolve) {
904 			start = btrfs_ref_to_path(root, tmp_path, name_len,
905 						  name_off, eb, dir,
906 						  p->buf, p->buf_len);
907 			if (IS_ERR(start)) {
908 				ret = PTR_ERR(start);
909 				goto out;
910 			}
911 			if (start < p->buf) {
912 				/* overflow , try again with larger buffer */
913 				ret = fs_path_ensure_buf(p,
914 						p->buf_len + p->buf - start);
915 				if (ret < 0)
916 					goto out;
917 				start = btrfs_ref_to_path(root, tmp_path,
918 							  name_len, name_off,
919 							  eb, dir,
920 							  p->buf, p->buf_len);
921 				if (IS_ERR(start)) {
922 					ret = PTR_ERR(start);
923 					goto out;
924 				}
925 				BUG_ON(start < p->buf);
926 			}
927 			p->start = start;
928 		} else {
929 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
930 							     name_len);
931 			if (ret < 0)
932 				goto out;
933 		}
934 
935 		cur += elem_size + name_len;
936 		ret = iterate(num, dir, index, p, ctx);
937 		if (ret)
938 			goto out;
939 		num++;
940 	}
941 
942 out:
943 	btrfs_free_path(tmp_path);
944 	fs_path_free(p);
945 	return ret;
946 }
947 
948 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
949 				  const char *name, int name_len,
950 				  const char *data, int data_len,
951 				  u8 type, void *ctx);
952 
953 /*
954  * Helper function to iterate the entries in ONE btrfs_dir_item.
955  * The iterate callback may return a non zero value to stop iteration. This can
956  * be a negative value for error codes or 1 to simply stop it.
957  *
958  * path must point to the dir item when called.
959  */
960 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
961 			    struct btrfs_key *found_key,
962 			    iterate_dir_item_t iterate, void *ctx)
963 {
964 	int ret = 0;
965 	struct extent_buffer *eb;
966 	struct btrfs_item *item;
967 	struct btrfs_dir_item *di;
968 	struct btrfs_key di_key;
969 	char *buf = NULL;
970 	const int buf_len = PATH_MAX;
971 	u32 name_len;
972 	u32 data_len;
973 	u32 cur;
974 	u32 len;
975 	u32 total;
976 	int slot;
977 	int num;
978 	u8 type;
979 
980 	buf = kmalloc(buf_len, GFP_NOFS);
981 	if (!buf) {
982 		ret = -ENOMEM;
983 		goto out;
984 	}
985 
986 	eb = path->nodes[0];
987 	slot = path->slots[0];
988 	item = btrfs_item_nr(slot);
989 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
990 	cur = 0;
991 	len = 0;
992 	total = btrfs_item_size(eb, item);
993 
994 	num = 0;
995 	while (cur < total) {
996 		name_len = btrfs_dir_name_len(eb, di);
997 		data_len = btrfs_dir_data_len(eb, di);
998 		type = btrfs_dir_type(eb, di);
999 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1000 
1001 		/*
1002 		 * Path too long
1003 		 */
1004 		if (name_len + data_len > buf_len) {
1005 			ret = -ENAMETOOLONG;
1006 			goto out;
1007 		}
1008 
1009 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1010 				name_len + data_len);
1011 
1012 		len = sizeof(*di) + name_len + data_len;
1013 		di = (struct btrfs_dir_item *)((char *)di + len);
1014 		cur += len;
1015 
1016 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1017 				data_len, type, ctx);
1018 		if (ret < 0)
1019 			goto out;
1020 		if (ret) {
1021 			ret = 0;
1022 			goto out;
1023 		}
1024 
1025 		num++;
1026 	}
1027 
1028 out:
1029 	kfree(buf);
1030 	return ret;
1031 }
1032 
1033 static int __copy_first_ref(int num, u64 dir, int index,
1034 			    struct fs_path *p, void *ctx)
1035 {
1036 	int ret;
1037 	struct fs_path *pt = ctx;
1038 
1039 	ret = fs_path_copy(pt, p);
1040 	if (ret < 0)
1041 		return ret;
1042 
1043 	/* we want the first only */
1044 	return 1;
1045 }
1046 
1047 /*
1048  * Retrieve the first path of an inode. If an inode has more then one
1049  * ref/hardlink, this is ignored.
1050  */
1051 static int get_inode_path(struct btrfs_root *root,
1052 			  u64 ino, struct fs_path *path)
1053 {
1054 	int ret;
1055 	struct btrfs_key key, found_key;
1056 	struct btrfs_path *p;
1057 
1058 	p = alloc_path_for_send();
1059 	if (!p)
1060 		return -ENOMEM;
1061 
1062 	fs_path_reset(path);
1063 
1064 	key.objectid = ino;
1065 	key.type = BTRFS_INODE_REF_KEY;
1066 	key.offset = 0;
1067 
1068 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1069 	if (ret < 0)
1070 		goto out;
1071 	if (ret) {
1072 		ret = 1;
1073 		goto out;
1074 	}
1075 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1076 	if (found_key.objectid != ino ||
1077 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1078 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1079 		ret = -ENOENT;
1080 		goto out;
1081 	}
1082 
1083 	ret = iterate_inode_ref(root, p, &found_key, 1,
1084 				__copy_first_ref, path);
1085 	if (ret < 0)
1086 		goto out;
1087 	ret = 0;
1088 
1089 out:
1090 	btrfs_free_path(p);
1091 	return ret;
1092 }
1093 
1094 struct backref_ctx {
1095 	struct send_ctx *sctx;
1096 
1097 	struct btrfs_path *path;
1098 	/* number of total found references */
1099 	u64 found;
1100 
1101 	/*
1102 	 * used for clones found in send_root. clones found behind cur_objectid
1103 	 * and cur_offset are not considered as allowed clones.
1104 	 */
1105 	u64 cur_objectid;
1106 	u64 cur_offset;
1107 
1108 	/* may be truncated in case it's the last extent in a file */
1109 	u64 extent_len;
1110 
1111 	/* Just to check for bugs in backref resolving */
1112 	int found_itself;
1113 };
1114 
1115 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1116 {
1117 	u64 root = (u64)(uintptr_t)key;
1118 	struct clone_root *cr = (struct clone_root *)elt;
1119 
1120 	if (root < cr->root->objectid)
1121 		return -1;
1122 	if (root > cr->root->objectid)
1123 		return 1;
1124 	return 0;
1125 }
1126 
1127 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1128 {
1129 	struct clone_root *cr1 = (struct clone_root *)e1;
1130 	struct clone_root *cr2 = (struct clone_root *)e2;
1131 
1132 	if (cr1->root->objectid < cr2->root->objectid)
1133 		return -1;
1134 	if (cr1->root->objectid > cr2->root->objectid)
1135 		return 1;
1136 	return 0;
1137 }
1138 
1139 /*
1140  * Called for every backref that is found for the current extent.
1141  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1142  */
1143 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1144 {
1145 	struct backref_ctx *bctx = ctx_;
1146 	struct clone_root *found;
1147 	int ret;
1148 	u64 i_size;
1149 
1150 	/* First check if the root is in the list of accepted clone sources */
1151 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1152 			bctx->sctx->clone_roots_cnt,
1153 			sizeof(struct clone_root),
1154 			__clone_root_cmp_bsearch);
1155 	if (!found)
1156 		return 0;
1157 
1158 	if (found->root == bctx->sctx->send_root &&
1159 	    ino == bctx->cur_objectid &&
1160 	    offset == bctx->cur_offset) {
1161 		bctx->found_itself = 1;
1162 	}
1163 
1164 	/*
1165 	 * There are inodes that have extents that lie behind its i_size. Don't
1166 	 * accept clones from these extents.
1167 	 */
1168 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1169 			       NULL, NULL, NULL);
1170 	btrfs_release_path(bctx->path);
1171 	if (ret < 0)
1172 		return ret;
1173 
1174 	if (offset + bctx->extent_len > i_size)
1175 		return 0;
1176 
1177 	/*
1178 	 * Make sure we don't consider clones from send_root that are
1179 	 * behind the current inode/offset.
1180 	 */
1181 	if (found->root == bctx->sctx->send_root) {
1182 		/*
1183 		 * TODO for the moment we don't accept clones from the inode
1184 		 * that is currently send. We may change this when
1185 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1186 		 * file.
1187 		 */
1188 		if (ino >= bctx->cur_objectid)
1189 			return 0;
1190 #if 0
1191 		if (ino > bctx->cur_objectid)
1192 			return 0;
1193 		if (offset + bctx->extent_len > bctx->cur_offset)
1194 			return 0;
1195 #endif
1196 	}
1197 
1198 	bctx->found++;
1199 	found->found_refs++;
1200 	if (ino < found->ino) {
1201 		found->ino = ino;
1202 		found->offset = offset;
1203 	} else if (found->ino == ino) {
1204 		/*
1205 		 * same extent found more then once in the same file.
1206 		 */
1207 		if (found->offset > offset + bctx->extent_len)
1208 			found->offset = offset;
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 /*
1215  * Given an inode, offset and extent item, it finds a good clone for a clone
1216  * instruction. Returns -ENOENT when none could be found. The function makes
1217  * sure that the returned clone is usable at the point where sending is at the
1218  * moment. This means, that no clones are accepted which lie behind the current
1219  * inode+offset.
1220  *
1221  * path must point to the extent item when called.
1222  */
1223 static int find_extent_clone(struct send_ctx *sctx,
1224 			     struct btrfs_path *path,
1225 			     u64 ino, u64 data_offset,
1226 			     u64 ino_size,
1227 			     struct clone_root **found)
1228 {
1229 	int ret;
1230 	int extent_type;
1231 	u64 logical;
1232 	u64 disk_byte;
1233 	u64 num_bytes;
1234 	u64 extent_item_pos;
1235 	u64 flags = 0;
1236 	struct btrfs_file_extent_item *fi;
1237 	struct extent_buffer *eb = path->nodes[0];
1238 	struct backref_ctx *backref_ctx = NULL;
1239 	struct clone_root *cur_clone_root;
1240 	struct btrfs_key found_key;
1241 	struct btrfs_path *tmp_path;
1242 	int compressed;
1243 	u32 i;
1244 
1245 	tmp_path = alloc_path_for_send();
1246 	if (!tmp_path)
1247 		return -ENOMEM;
1248 
1249 	/* We only use this path under the commit sem */
1250 	tmp_path->need_commit_sem = 0;
1251 
1252 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1253 	if (!backref_ctx) {
1254 		ret = -ENOMEM;
1255 		goto out;
1256 	}
1257 
1258 	backref_ctx->path = tmp_path;
1259 
1260 	if (data_offset >= ino_size) {
1261 		/*
1262 		 * There may be extents that lie behind the file's size.
1263 		 * I at least had this in combination with snapshotting while
1264 		 * writing large files.
1265 		 */
1266 		ret = 0;
1267 		goto out;
1268 	}
1269 
1270 	fi = btrfs_item_ptr(eb, path->slots[0],
1271 			struct btrfs_file_extent_item);
1272 	extent_type = btrfs_file_extent_type(eb, fi);
1273 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1274 		ret = -ENOENT;
1275 		goto out;
1276 	}
1277 	compressed = btrfs_file_extent_compression(eb, fi);
1278 
1279 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1280 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1281 	if (disk_byte == 0) {
1282 		ret = -ENOENT;
1283 		goto out;
1284 	}
1285 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1286 
1287 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1288 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1289 				  &found_key, &flags);
1290 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1291 	btrfs_release_path(tmp_path);
1292 
1293 	if (ret < 0)
1294 		goto out;
1295 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1296 		ret = -EIO;
1297 		goto out;
1298 	}
1299 
1300 	/*
1301 	 * Setup the clone roots.
1302 	 */
1303 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1304 		cur_clone_root = sctx->clone_roots + i;
1305 		cur_clone_root->ino = (u64)-1;
1306 		cur_clone_root->offset = 0;
1307 		cur_clone_root->found_refs = 0;
1308 	}
1309 
1310 	backref_ctx->sctx = sctx;
1311 	backref_ctx->found = 0;
1312 	backref_ctx->cur_objectid = ino;
1313 	backref_ctx->cur_offset = data_offset;
1314 	backref_ctx->found_itself = 0;
1315 	backref_ctx->extent_len = num_bytes;
1316 
1317 	/*
1318 	 * The last extent of a file may be too large due to page alignment.
1319 	 * We need to adjust extent_len in this case so that the checks in
1320 	 * __iterate_backrefs work.
1321 	 */
1322 	if (data_offset + num_bytes >= ino_size)
1323 		backref_ctx->extent_len = ino_size - data_offset;
1324 
1325 	/*
1326 	 * Now collect all backrefs.
1327 	 */
1328 	if (compressed == BTRFS_COMPRESS_NONE)
1329 		extent_item_pos = logical - found_key.objectid;
1330 	else
1331 		extent_item_pos = 0;
1332 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1333 					found_key.objectid, extent_item_pos, 1,
1334 					__iterate_backrefs, backref_ctx);
1335 
1336 	if (ret < 0)
1337 		goto out;
1338 
1339 	if (!backref_ctx->found_itself) {
1340 		/* found a bug in backref code? */
1341 		ret = -EIO;
1342 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1343 				"send_root. inode=%llu, offset=%llu, "
1344 				"disk_byte=%llu found extent=%llu\n",
1345 				ino, data_offset, disk_byte, found_key.objectid);
1346 		goto out;
1347 	}
1348 
1349 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1350 		"ino=%llu, "
1351 		"num_bytes=%llu, logical=%llu\n",
1352 		data_offset, ino, num_bytes, logical);
1353 
1354 	if (!backref_ctx->found)
1355 		verbose_printk("btrfs:    no clones found\n");
1356 
1357 	cur_clone_root = NULL;
1358 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1359 		if (sctx->clone_roots[i].found_refs) {
1360 			if (!cur_clone_root)
1361 				cur_clone_root = sctx->clone_roots + i;
1362 			else if (sctx->clone_roots[i].root == sctx->send_root)
1363 				/* prefer clones from send_root over others */
1364 				cur_clone_root = sctx->clone_roots + i;
1365 		}
1366 
1367 	}
1368 
1369 	if (cur_clone_root) {
1370 		if (compressed != BTRFS_COMPRESS_NONE) {
1371 			/*
1372 			 * Offsets given by iterate_extent_inodes() are relative
1373 			 * to the start of the extent, we need to add logical
1374 			 * offset from the file extent item.
1375 			 * (See why at backref.c:check_extent_in_eb())
1376 			 */
1377 			cur_clone_root->offset += btrfs_file_extent_offset(eb,
1378 									   fi);
1379 		}
1380 		*found = cur_clone_root;
1381 		ret = 0;
1382 	} else {
1383 		ret = -ENOENT;
1384 	}
1385 
1386 out:
1387 	btrfs_free_path(tmp_path);
1388 	kfree(backref_ctx);
1389 	return ret;
1390 }
1391 
1392 static int read_symlink(struct btrfs_root *root,
1393 			u64 ino,
1394 			struct fs_path *dest)
1395 {
1396 	int ret;
1397 	struct btrfs_path *path;
1398 	struct btrfs_key key;
1399 	struct btrfs_file_extent_item *ei;
1400 	u8 type;
1401 	u8 compression;
1402 	unsigned long off;
1403 	int len;
1404 
1405 	path = alloc_path_for_send();
1406 	if (!path)
1407 		return -ENOMEM;
1408 
1409 	key.objectid = ino;
1410 	key.type = BTRFS_EXTENT_DATA_KEY;
1411 	key.offset = 0;
1412 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1413 	if (ret < 0)
1414 		goto out;
1415 	BUG_ON(ret);
1416 
1417 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1418 			struct btrfs_file_extent_item);
1419 	type = btrfs_file_extent_type(path->nodes[0], ei);
1420 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1421 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1422 	BUG_ON(compression);
1423 
1424 	off = btrfs_file_extent_inline_start(ei);
1425 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1426 
1427 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1428 
1429 out:
1430 	btrfs_free_path(path);
1431 	return ret;
1432 }
1433 
1434 /*
1435  * Helper function to generate a file name that is unique in the root of
1436  * send_root and parent_root. This is used to generate names for orphan inodes.
1437  */
1438 static int gen_unique_name(struct send_ctx *sctx,
1439 			   u64 ino, u64 gen,
1440 			   struct fs_path *dest)
1441 {
1442 	int ret = 0;
1443 	struct btrfs_path *path;
1444 	struct btrfs_dir_item *di;
1445 	char tmp[64];
1446 	int len;
1447 	u64 idx = 0;
1448 
1449 	path = alloc_path_for_send();
1450 	if (!path)
1451 		return -ENOMEM;
1452 
1453 	while (1) {
1454 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1455 				ino, gen, idx);
1456 		ASSERT(len < sizeof(tmp));
1457 
1458 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1459 				path, BTRFS_FIRST_FREE_OBJECTID,
1460 				tmp, strlen(tmp), 0);
1461 		btrfs_release_path(path);
1462 		if (IS_ERR(di)) {
1463 			ret = PTR_ERR(di);
1464 			goto out;
1465 		}
1466 		if (di) {
1467 			/* not unique, try again */
1468 			idx++;
1469 			continue;
1470 		}
1471 
1472 		if (!sctx->parent_root) {
1473 			/* unique */
1474 			ret = 0;
1475 			break;
1476 		}
1477 
1478 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1479 				path, BTRFS_FIRST_FREE_OBJECTID,
1480 				tmp, strlen(tmp), 0);
1481 		btrfs_release_path(path);
1482 		if (IS_ERR(di)) {
1483 			ret = PTR_ERR(di);
1484 			goto out;
1485 		}
1486 		if (di) {
1487 			/* not unique, try again */
1488 			idx++;
1489 			continue;
1490 		}
1491 		/* unique */
1492 		break;
1493 	}
1494 
1495 	ret = fs_path_add(dest, tmp, strlen(tmp));
1496 
1497 out:
1498 	btrfs_free_path(path);
1499 	return ret;
1500 }
1501 
1502 enum inode_state {
1503 	inode_state_no_change,
1504 	inode_state_will_create,
1505 	inode_state_did_create,
1506 	inode_state_will_delete,
1507 	inode_state_did_delete,
1508 };
1509 
1510 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1511 {
1512 	int ret;
1513 	int left_ret;
1514 	int right_ret;
1515 	u64 left_gen;
1516 	u64 right_gen;
1517 
1518 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1519 			NULL, NULL);
1520 	if (ret < 0 && ret != -ENOENT)
1521 		goto out;
1522 	left_ret = ret;
1523 
1524 	if (!sctx->parent_root) {
1525 		right_ret = -ENOENT;
1526 	} else {
1527 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1528 				NULL, NULL, NULL, NULL);
1529 		if (ret < 0 && ret != -ENOENT)
1530 			goto out;
1531 		right_ret = ret;
1532 	}
1533 
1534 	if (!left_ret && !right_ret) {
1535 		if (left_gen == gen && right_gen == gen) {
1536 			ret = inode_state_no_change;
1537 		} else if (left_gen == gen) {
1538 			if (ino < sctx->send_progress)
1539 				ret = inode_state_did_create;
1540 			else
1541 				ret = inode_state_will_create;
1542 		} else if (right_gen == gen) {
1543 			if (ino < sctx->send_progress)
1544 				ret = inode_state_did_delete;
1545 			else
1546 				ret = inode_state_will_delete;
1547 		} else  {
1548 			ret = -ENOENT;
1549 		}
1550 	} else if (!left_ret) {
1551 		if (left_gen == gen) {
1552 			if (ino < sctx->send_progress)
1553 				ret = inode_state_did_create;
1554 			else
1555 				ret = inode_state_will_create;
1556 		} else {
1557 			ret = -ENOENT;
1558 		}
1559 	} else if (!right_ret) {
1560 		if (right_gen == gen) {
1561 			if (ino < sctx->send_progress)
1562 				ret = inode_state_did_delete;
1563 			else
1564 				ret = inode_state_will_delete;
1565 		} else {
1566 			ret = -ENOENT;
1567 		}
1568 	} else {
1569 		ret = -ENOENT;
1570 	}
1571 
1572 out:
1573 	return ret;
1574 }
1575 
1576 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1577 {
1578 	int ret;
1579 
1580 	ret = get_cur_inode_state(sctx, ino, gen);
1581 	if (ret < 0)
1582 		goto out;
1583 
1584 	if (ret == inode_state_no_change ||
1585 	    ret == inode_state_did_create ||
1586 	    ret == inode_state_will_delete)
1587 		ret = 1;
1588 	else
1589 		ret = 0;
1590 
1591 out:
1592 	return ret;
1593 }
1594 
1595 /*
1596  * Helper function to lookup a dir item in a dir.
1597  */
1598 static int lookup_dir_item_inode(struct btrfs_root *root,
1599 				 u64 dir, const char *name, int name_len,
1600 				 u64 *found_inode,
1601 				 u8 *found_type)
1602 {
1603 	int ret = 0;
1604 	struct btrfs_dir_item *di;
1605 	struct btrfs_key key;
1606 	struct btrfs_path *path;
1607 
1608 	path = alloc_path_for_send();
1609 	if (!path)
1610 		return -ENOMEM;
1611 
1612 	di = btrfs_lookup_dir_item(NULL, root, path,
1613 			dir, name, name_len, 0);
1614 	if (!di) {
1615 		ret = -ENOENT;
1616 		goto out;
1617 	}
1618 	if (IS_ERR(di)) {
1619 		ret = PTR_ERR(di);
1620 		goto out;
1621 	}
1622 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1623 	*found_inode = key.objectid;
1624 	*found_type = btrfs_dir_type(path->nodes[0], di);
1625 
1626 out:
1627 	btrfs_free_path(path);
1628 	return ret;
1629 }
1630 
1631 /*
1632  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1633  * generation of the parent dir and the name of the dir entry.
1634  */
1635 static int get_first_ref(struct btrfs_root *root, u64 ino,
1636 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1637 {
1638 	int ret;
1639 	struct btrfs_key key;
1640 	struct btrfs_key found_key;
1641 	struct btrfs_path *path;
1642 	int len;
1643 	u64 parent_dir;
1644 
1645 	path = alloc_path_for_send();
1646 	if (!path)
1647 		return -ENOMEM;
1648 
1649 	key.objectid = ino;
1650 	key.type = BTRFS_INODE_REF_KEY;
1651 	key.offset = 0;
1652 
1653 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1654 	if (ret < 0)
1655 		goto out;
1656 	if (!ret)
1657 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1658 				path->slots[0]);
1659 	if (ret || found_key.objectid != ino ||
1660 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1661 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1662 		ret = -ENOENT;
1663 		goto out;
1664 	}
1665 
1666 	if (key.type == BTRFS_INODE_REF_KEY) {
1667 		struct btrfs_inode_ref *iref;
1668 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1669 				      struct btrfs_inode_ref);
1670 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1671 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1672 						     (unsigned long)(iref + 1),
1673 						     len);
1674 		parent_dir = found_key.offset;
1675 	} else {
1676 		struct btrfs_inode_extref *extref;
1677 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1678 					struct btrfs_inode_extref);
1679 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1680 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1681 					(unsigned long)&extref->name, len);
1682 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1683 	}
1684 	if (ret < 0)
1685 		goto out;
1686 	btrfs_release_path(path);
1687 
1688 	ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1689 			NULL, NULL);
1690 	if (ret < 0)
1691 		goto out;
1692 
1693 	*dir = parent_dir;
1694 
1695 out:
1696 	btrfs_free_path(path);
1697 	return ret;
1698 }
1699 
1700 static int is_first_ref(struct btrfs_root *root,
1701 			u64 ino, u64 dir,
1702 			const char *name, int name_len)
1703 {
1704 	int ret;
1705 	struct fs_path *tmp_name;
1706 	u64 tmp_dir;
1707 	u64 tmp_dir_gen;
1708 
1709 	tmp_name = fs_path_alloc();
1710 	if (!tmp_name)
1711 		return -ENOMEM;
1712 
1713 	ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1714 	if (ret < 0)
1715 		goto out;
1716 
1717 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1718 		ret = 0;
1719 		goto out;
1720 	}
1721 
1722 	ret = !memcmp(tmp_name->start, name, name_len);
1723 
1724 out:
1725 	fs_path_free(tmp_name);
1726 	return ret;
1727 }
1728 
1729 /*
1730  * Used by process_recorded_refs to determine if a new ref would overwrite an
1731  * already existing ref. In case it detects an overwrite, it returns the
1732  * inode/gen in who_ino/who_gen.
1733  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1734  * to make sure later references to the overwritten inode are possible.
1735  * Orphanizing is however only required for the first ref of an inode.
1736  * process_recorded_refs does an additional is_first_ref check to see if
1737  * orphanizing is really required.
1738  */
1739 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1740 			      const char *name, int name_len,
1741 			      u64 *who_ino, u64 *who_gen)
1742 {
1743 	int ret = 0;
1744 	u64 gen;
1745 	u64 other_inode = 0;
1746 	u8 other_type = 0;
1747 
1748 	if (!sctx->parent_root)
1749 		goto out;
1750 
1751 	ret = is_inode_existent(sctx, dir, dir_gen);
1752 	if (ret <= 0)
1753 		goto out;
1754 
1755 	/*
1756 	 * If we have a parent root we need to verify that the parent dir was
1757 	 * not delted and then re-created, if it was then we have no overwrite
1758 	 * and we can just unlink this entry.
1759 	 */
1760 	if (sctx->parent_root) {
1761 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1762 				     NULL, NULL, NULL);
1763 		if (ret < 0 && ret != -ENOENT)
1764 			goto out;
1765 		if (ret) {
1766 			ret = 0;
1767 			goto out;
1768 		}
1769 		if (gen != dir_gen)
1770 			goto out;
1771 	}
1772 
1773 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1774 			&other_inode, &other_type);
1775 	if (ret < 0 && ret != -ENOENT)
1776 		goto out;
1777 	if (ret) {
1778 		ret = 0;
1779 		goto out;
1780 	}
1781 
1782 	/*
1783 	 * Check if the overwritten ref was already processed. If yes, the ref
1784 	 * was already unlinked/moved, so we can safely assume that we will not
1785 	 * overwrite anything at this point in time.
1786 	 */
1787 	if (other_inode > sctx->send_progress) {
1788 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1789 				who_gen, NULL, NULL, NULL, NULL);
1790 		if (ret < 0)
1791 			goto out;
1792 
1793 		ret = 1;
1794 		*who_ino = other_inode;
1795 	} else {
1796 		ret = 0;
1797 	}
1798 
1799 out:
1800 	return ret;
1801 }
1802 
1803 /*
1804  * Checks if the ref was overwritten by an already processed inode. This is
1805  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1806  * thus the orphan name needs be used.
1807  * process_recorded_refs also uses it to avoid unlinking of refs that were
1808  * overwritten.
1809  */
1810 static int did_overwrite_ref(struct send_ctx *sctx,
1811 			    u64 dir, u64 dir_gen,
1812 			    u64 ino, u64 ino_gen,
1813 			    const char *name, int name_len)
1814 {
1815 	int ret = 0;
1816 	u64 gen;
1817 	u64 ow_inode;
1818 	u8 other_type;
1819 
1820 	if (!sctx->parent_root)
1821 		goto out;
1822 
1823 	ret = is_inode_existent(sctx, dir, dir_gen);
1824 	if (ret <= 0)
1825 		goto out;
1826 
1827 	/* check if the ref was overwritten by another ref */
1828 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1829 			&ow_inode, &other_type);
1830 	if (ret < 0 && ret != -ENOENT)
1831 		goto out;
1832 	if (ret) {
1833 		/* was never and will never be overwritten */
1834 		ret = 0;
1835 		goto out;
1836 	}
1837 
1838 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1839 			NULL, NULL);
1840 	if (ret < 0)
1841 		goto out;
1842 
1843 	if (ow_inode == ino && gen == ino_gen) {
1844 		ret = 0;
1845 		goto out;
1846 	}
1847 
1848 	/* we know that it is or will be overwritten. check this now */
1849 	if (ow_inode < sctx->send_progress)
1850 		ret = 1;
1851 	else
1852 		ret = 0;
1853 
1854 out:
1855 	return ret;
1856 }
1857 
1858 /*
1859  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1860  * that got overwritten. This is used by process_recorded_refs to determine
1861  * if it has to use the path as returned by get_cur_path or the orphan name.
1862  */
1863 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1864 {
1865 	int ret = 0;
1866 	struct fs_path *name = NULL;
1867 	u64 dir;
1868 	u64 dir_gen;
1869 
1870 	if (!sctx->parent_root)
1871 		goto out;
1872 
1873 	name = fs_path_alloc();
1874 	if (!name)
1875 		return -ENOMEM;
1876 
1877 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1878 	if (ret < 0)
1879 		goto out;
1880 
1881 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1882 			name->start, fs_path_len(name));
1883 
1884 out:
1885 	fs_path_free(name);
1886 	return ret;
1887 }
1888 
1889 /*
1890  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1891  * so we need to do some special handling in case we have clashes. This function
1892  * takes care of this with the help of name_cache_entry::radix_list.
1893  * In case of error, nce is kfreed.
1894  */
1895 static int name_cache_insert(struct send_ctx *sctx,
1896 			     struct name_cache_entry *nce)
1897 {
1898 	int ret = 0;
1899 	struct list_head *nce_head;
1900 
1901 	nce_head = radix_tree_lookup(&sctx->name_cache,
1902 			(unsigned long)nce->ino);
1903 	if (!nce_head) {
1904 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1905 		if (!nce_head) {
1906 			kfree(nce);
1907 			return -ENOMEM;
1908 		}
1909 		INIT_LIST_HEAD(nce_head);
1910 
1911 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1912 		if (ret < 0) {
1913 			kfree(nce_head);
1914 			kfree(nce);
1915 			return ret;
1916 		}
1917 	}
1918 	list_add_tail(&nce->radix_list, nce_head);
1919 	list_add_tail(&nce->list, &sctx->name_cache_list);
1920 	sctx->name_cache_size++;
1921 
1922 	return ret;
1923 }
1924 
1925 static void name_cache_delete(struct send_ctx *sctx,
1926 			      struct name_cache_entry *nce)
1927 {
1928 	struct list_head *nce_head;
1929 
1930 	nce_head = radix_tree_lookup(&sctx->name_cache,
1931 			(unsigned long)nce->ino);
1932 	if (!nce_head) {
1933 		btrfs_err(sctx->send_root->fs_info,
1934 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
1935 			nce->ino, sctx->name_cache_size);
1936 	}
1937 
1938 	list_del(&nce->radix_list);
1939 	list_del(&nce->list);
1940 	sctx->name_cache_size--;
1941 
1942 	/*
1943 	 * We may not get to the final release of nce_head if the lookup fails
1944 	 */
1945 	if (nce_head && list_empty(nce_head)) {
1946 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1947 		kfree(nce_head);
1948 	}
1949 }
1950 
1951 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1952 						    u64 ino, u64 gen)
1953 {
1954 	struct list_head *nce_head;
1955 	struct name_cache_entry *cur;
1956 
1957 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1958 	if (!nce_head)
1959 		return NULL;
1960 
1961 	list_for_each_entry(cur, nce_head, radix_list) {
1962 		if (cur->ino == ino && cur->gen == gen)
1963 			return cur;
1964 	}
1965 	return NULL;
1966 }
1967 
1968 /*
1969  * Removes the entry from the list and adds it back to the end. This marks the
1970  * entry as recently used so that name_cache_clean_unused does not remove it.
1971  */
1972 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1973 {
1974 	list_del(&nce->list);
1975 	list_add_tail(&nce->list, &sctx->name_cache_list);
1976 }
1977 
1978 /*
1979  * Remove some entries from the beginning of name_cache_list.
1980  */
1981 static void name_cache_clean_unused(struct send_ctx *sctx)
1982 {
1983 	struct name_cache_entry *nce;
1984 
1985 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1986 		return;
1987 
1988 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1989 		nce = list_entry(sctx->name_cache_list.next,
1990 				struct name_cache_entry, list);
1991 		name_cache_delete(sctx, nce);
1992 		kfree(nce);
1993 	}
1994 }
1995 
1996 static void name_cache_free(struct send_ctx *sctx)
1997 {
1998 	struct name_cache_entry *nce;
1999 
2000 	while (!list_empty(&sctx->name_cache_list)) {
2001 		nce = list_entry(sctx->name_cache_list.next,
2002 				struct name_cache_entry, list);
2003 		name_cache_delete(sctx, nce);
2004 		kfree(nce);
2005 	}
2006 }
2007 
2008 /*
2009  * Used by get_cur_path for each ref up to the root.
2010  * Returns 0 if it succeeded.
2011  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2012  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2013  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2014  * Returns <0 in case of error.
2015  */
2016 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2017 				     u64 ino, u64 gen,
2018 				     u64 *parent_ino,
2019 				     u64 *parent_gen,
2020 				     struct fs_path *dest)
2021 {
2022 	int ret;
2023 	int nce_ret;
2024 	struct btrfs_path *path = NULL;
2025 	struct name_cache_entry *nce = NULL;
2026 
2027 	/*
2028 	 * First check if we already did a call to this function with the same
2029 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2030 	 * return the cached result.
2031 	 */
2032 	nce = name_cache_search(sctx, ino, gen);
2033 	if (nce) {
2034 		if (ino < sctx->send_progress && nce->need_later_update) {
2035 			name_cache_delete(sctx, nce);
2036 			kfree(nce);
2037 			nce = NULL;
2038 		} else {
2039 			name_cache_used(sctx, nce);
2040 			*parent_ino = nce->parent_ino;
2041 			*parent_gen = nce->parent_gen;
2042 			ret = fs_path_add(dest, nce->name, nce->name_len);
2043 			if (ret < 0)
2044 				goto out;
2045 			ret = nce->ret;
2046 			goto out;
2047 		}
2048 	}
2049 
2050 	path = alloc_path_for_send();
2051 	if (!path)
2052 		return -ENOMEM;
2053 
2054 	/*
2055 	 * If the inode is not existent yet, add the orphan name and return 1.
2056 	 * This should only happen for the parent dir that we determine in
2057 	 * __record_new_ref
2058 	 */
2059 	ret = is_inode_existent(sctx, ino, gen);
2060 	if (ret < 0)
2061 		goto out;
2062 
2063 	if (!ret) {
2064 		ret = gen_unique_name(sctx, ino, gen, dest);
2065 		if (ret < 0)
2066 			goto out;
2067 		ret = 1;
2068 		goto out_cache;
2069 	}
2070 
2071 	/*
2072 	 * Depending on whether the inode was already processed or not, use
2073 	 * send_root or parent_root for ref lookup.
2074 	 */
2075 	if (ino < sctx->send_progress)
2076 		ret = get_first_ref(sctx->send_root, ino,
2077 				    parent_ino, parent_gen, dest);
2078 	else
2079 		ret = get_first_ref(sctx->parent_root, ino,
2080 				    parent_ino, parent_gen, dest);
2081 	if (ret < 0)
2082 		goto out;
2083 
2084 	/*
2085 	 * Check if the ref was overwritten by an inode's ref that was processed
2086 	 * earlier. If yes, treat as orphan and return 1.
2087 	 */
2088 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2089 			dest->start, dest->end - dest->start);
2090 	if (ret < 0)
2091 		goto out;
2092 	if (ret) {
2093 		fs_path_reset(dest);
2094 		ret = gen_unique_name(sctx, ino, gen, dest);
2095 		if (ret < 0)
2096 			goto out;
2097 		ret = 1;
2098 	}
2099 
2100 out_cache:
2101 	/*
2102 	 * Store the result of the lookup in the name cache.
2103 	 */
2104 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2105 	if (!nce) {
2106 		ret = -ENOMEM;
2107 		goto out;
2108 	}
2109 
2110 	nce->ino = ino;
2111 	nce->gen = gen;
2112 	nce->parent_ino = *parent_ino;
2113 	nce->parent_gen = *parent_gen;
2114 	nce->name_len = fs_path_len(dest);
2115 	nce->ret = ret;
2116 	strcpy(nce->name, dest->start);
2117 
2118 	if (ino < sctx->send_progress)
2119 		nce->need_later_update = 0;
2120 	else
2121 		nce->need_later_update = 1;
2122 
2123 	nce_ret = name_cache_insert(sctx, nce);
2124 	if (nce_ret < 0)
2125 		ret = nce_ret;
2126 	name_cache_clean_unused(sctx);
2127 
2128 out:
2129 	btrfs_free_path(path);
2130 	return ret;
2131 }
2132 
2133 /*
2134  * Magic happens here. This function returns the first ref to an inode as it
2135  * would look like while receiving the stream at this point in time.
2136  * We walk the path up to the root. For every inode in between, we check if it
2137  * was already processed/sent. If yes, we continue with the parent as found
2138  * in send_root. If not, we continue with the parent as found in parent_root.
2139  * If we encounter an inode that was deleted at this point in time, we use the
2140  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2141  * that were not created yet and overwritten inodes/refs.
2142  *
2143  * When do we have have orphan inodes:
2144  * 1. When an inode is freshly created and thus no valid refs are available yet
2145  * 2. When a directory lost all it's refs (deleted) but still has dir items
2146  *    inside which were not processed yet (pending for move/delete). If anyone
2147  *    tried to get the path to the dir items, it would get a path inside that
2148  *    orphan directory.
2149  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2150  *    of an unprocessed inode. If in that case the first ref would be
2151  *    overwritten, the overwritten inode gets "orphanized". Later when we
2152  *    process this overwritten inode, it is restored at a new place by moving
2153  *    the orphan inode.
2154  *
2155  * sctx->send_progress tells this function at which point in time receiving
2156  * would be.
2157  */
2158 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2159 			struct fs_path *dest)
2160 {
2161 	int ret = 0;
2162 	struct fs_path *name = NULL;
2163 	u64 parent_inode = 0;
2164 	u64 parent_gen = 0;
2165 	int stop = 0;
2166 
2167 	name = fs_path_alloc();
2168 	if (!name) {
2169 		ret = -ENOMEM;
2170 		goto out;
2171 	}
2172 
2173 	dest->reversed = 1;
2174 	fs_path_reset(dest);
2175 
2176 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2177 		fs_path_reset(name);
2178 
2179 		if (is_waiting_for_rm(sctx, ino)) {
2180 			ret = gen_unique_name(sctx, ino, gen, name);
2181 			if (ret < 0)
2182 				goto out;
2183 			ret = fs_path_add_path(dest, name);
2184 			break;
2185 		}
2186 
2187 		if (is_waiting_for_move(sctx, ino)) {
2188 			ret = get_first_ref(sctx->parent_root, ino,
2189 					    &parent_inode, &parent_gen, name);
2190 		} else {
2191 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2192 							&parent_inode,
2193 							&parent_gen, name);
2194 			if (ret)
2195 				stop = 1;
2196 		}
2197 
2198 		if (ret < 0)
2199 			goto out;
2200 
2201 		ret = fs_path_add_path(dest, name);
2202 		if (ret < 0)
2203 			goto out;
2204 
2205 		ino = parent_inode;
2206 		gen = parent_gen;
2207 	}
2208 
2209 out:
2210 	fs_path_free(name);
2211 	if (!ret)
2212 		fs_path_unreverse(dest);
2213 	return ret;
2214 }
2215 
2216 /*
2217  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2218  */
2219 static int send_subvol_begin(struct send_ctx *sctx)
2220 {
2221 	int ret;
2222 	struct btrfs_root *send_root = sctx->send_root;
2223 	struct btrfs_root *parent_root = sctx->parent_root;
2224 	struct btrfs_path *path;
2225 	struct btrfs_key key;
2226 	struct btrfs_root_ref *ref;
2227 	struct extent_buffer *leaf;
2228 	char *name = NULL;
2229 	int namelen;
2230 
2231 	path = btrfs_alloc_path();
2232 	if (!path)
2233 		return -ENOMEM;
2234 
2235 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2236 	if (!name) {
2237 		btrfs_free_path(path);
2238 		return -ENOMEM;
2239 	}
2240 
2241 	key.objectid = send_root->objectid;
2242 	key.type = BTRFS_ROOT_BACKREF_KEY;
2243 	key.offset = 0;
2244 
2245 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2246 				&key, path, 1, 0);
2247 	if (ret < 0)
2248 		goto out;
2249 	if (ret) {
2250 		ret = -ENOENT;
2251 		goto out;
2252 	}
2253 
2254 	leaf = path->nodes[0];
2255 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2256 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2257 	    key.objectid != send_root->objectid) {
2258 		ret = -ENOENT;
2259 		goto out;
2260 	}
2261 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2262 	namelen = btrfs_root_ref_name_len(leaf, ref);
2263 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2264 	btrfs_release_path(path);
2265 
2266 	if (parent_root) {
2267 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2268 		if (ret < 0)
2269 			goto out;
2270 	} else {
2271 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2272 		if (ret < 0)
2273 			goto out;
2274 	}
2275 
2276 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2277 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2278 			sctx->send_root->root_item.uuid);
2279 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2280 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2281 	if (parent_root) {
2282 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2283 				sctx->parent_root->root_item.uuid);
2284 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2285 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2286 	}
2287 
2288 	ret = send_cmd(sctx);
2289 
2290 tlv_put_failure:
2291 out:
2292 	btrfs_free_path(path);
2293 	kfree(name);
2294 	return ret;
2295 }
2296 
2297 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2298 {
2299 	int ret = 0;
2300 	struct fs_path *p;
2301 
2302 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2303 
2304 	p = fs_path_alloc();
2305 	if (!p)
2306 		return -ENOMEM;
2307 
2308 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2309 	if (ret < 0)
2310 		goto out;
2311 
2312 	ret = get_cur_path(sctx, ino, gen, p);
2313 	if (ret < 0)
2314 		goto out;
2315 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2316 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2317 
2318 	ret = send_cmd(sctx);
2319 
2320 tlv_put_failure:
2321 out:
2322 	fs_path_free(p);
2323 	return ret;
2324 }
2325 
2326 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2327 {
2328 	int ret = 0;
2329 	struct fs_path *p;
2330 
2331 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2332 
2333 	p = fs_path_alloc();
2334 	if (!p)
2335 		return -ENOMEM;
2336 
2337 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2338 	if (ret < 0)
2339 		goto out;
2340 
2341 	ret = get_cur_path(sctx, ino, gen, p);
2342 	if (ret < 0)
2343 		goto out;
2344 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2345 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2346 
2347 	ret = send_cmd(sctx);
2348 
2349 tlv_put_failure:
2350 out:
2351 	fs_path_free(p);
2352 	return ret;
2353 }
2354 
2355 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2356 {
2357 	int ret = 0;
2358 	struct fs_path *p;
2359 
2360 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2361 
2362 	p = fs_path_alloc();
2363 	if (!p)
2364 		return -ENOMEM;
2365 
2366 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2367 	if (ret < 0)
2368 		goto out;
2369 
2370 	ret = get_cur_path(sctx, ino, gen, p);
2371 	if (ret < 0)
2372 		goto out;
2373 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2374 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2375 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2376 
2377 	ret = send_cmd(sctx);
2378 
2379 tlv_put_failure:
2380 out:
2381 	fs_path_free(p);
2382 	return ret;
2383 }
2384 
2385 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2386 {
2387 	int ret = 0;
2388 	struct fs_path *p = NULL;
2389 	struct btrfs_inode_item *ii;
2390 	struct btrfs_path *path = NULL;
2391 	struct extent_buffer *eb;
2392 	struct btrfs_key key;
2393 	int slot;
2394 
2395 verbose_printk("btrfs: send_utimes %llu\n", ino);
2396 
2397 	p = fs_path_alloc();
2398 	if (!p)
2399 		return -ENOMEM;
2400 
2401 	path = alloc_path_for_send();
2402 	if (!path) {
2403 		ret = -ENOMEM;
2404 		goto out;
2405 	}
2406 
2407 	key.objectid = ino;
2408 	key.type = BTRFS_INODE_ITEM_KEY;
2409 	key.offset = 0;
2410 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2411 	if (ret < 0)
2412 		goto out;
2413 
2414 	eb = path->nodes[0];
2415 	slot = path->slots[0];
2416 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2417 
2418 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2419 	if (ret < 0)
2420 		goto out;
2421 
2422 	ret = get_cur_path(sctx, ino, gen, p);
2423 	if (ret < 0)
2424 		goto out;
2425 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2426 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2427 			btrfs_inode_atime(ii));
2428 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2429 			btrfs_inode_mtime(ii));
2430 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2431 			btrfs_inode_ctime(ii));
2432 	/* TODO Add otime support when the otime patches get into upstream */
2433 
2434 	ret = send_cmd(sctx);
2435 
2436 tlv_put_failure:
2437 out:
2438 	fs_path_free(p);
2439 	btrfs_free_path(path);
2440 	return ret;
2441 }
2442 
2443 /*
2444  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2445  * a valid path yet because we did not process the refs yet. So, the inode
2446  * is created as orphan.
2447  */
2448 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2449 {
2450 	int ret = 0;
2451 	struct fs_path *p;
2452 	int cmd;
2453 	u64 gen;
2454 	u64 mode;
2455 	u64 rdev;
2456 
2457 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2458 
2459 	p = fs_path_alloc();
2460 	if (!p)
2461 		return -ENOMEM;
2462 
2463 	if (ino != sctx->cur_ino) {
2464 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2465 				     NULL, NULL, &rdev);
2466 		if (ret < 0)
2467 			goto out;
2468 	} else {
2469 		gen = sctx->cur_inode_gen;
2470 		mode = sctx->cur_inode_mode;
2471 		rdev = sctx->cur_inode_rdev;
2472 	}
2473 
2474 	if (S_ISREG(mode)) {
2475 		cmd = BTRFS_SEND_C_MKFILE;
2476 	} else if (S_ISDIR(mode)) {
2477 		cmd = BTRFS_SEND_C_MKDIR;
2478 	} else if (S_ISLNK(mode)) {
2479 		cmd = BTRFS_SEND_C_SYMLINK;
2480 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2481 		cmd = BTRFS_SEND_C_MKNOD;
2482 	} else if (S_ISFIFO(mode)) {
2483 		cmd = BTRFS_SEND_C_MKFIFO;
2484 	} else if (S_ISSOCK(mode)) {
2485 		cmd = BTRFS_SEND_C_MKSOCK;
2486 	} else {
2487 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2488 				(int)(mode & S_IFMT));
2489 		ret = -ENOTSUPP;
2490 		goto out;
2491 	}
2492 
2493 	ret = begin_cmd(sctx, cmd);
2494 	if (ret < 0)
2495 		goto out;
2496 
2497 	ret = gen_unique_name(sctx, ino, gen, p);
2498 	if (ret < 0)
2499 		goto out;
2500 
2501 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2502 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2503 
2504 	if (S_ISLNK(mode)) {
2505 		fs_path_reset(p);
2506 		ret = read_symlink(sctx->send_root, ino, p);
2507 		if (ret < 0)
2508 			goto out;
2509 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2510 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2511 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2512 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2513 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2514 	}
2515 
2516 	ret = send_cmd(sctx);
2517 	if (ret < 0)
2518 		goto out;
2519 
2520 
2521 tlv_put_failure:
2522 out:
2523 	fs_path_free(p);
2524 	return ret;
2525 }
2526 
2527 /*
2528  * We need some special handling for inodes that get processed before the parent
2529  * directory got created. See process_recorded_refs for details.
2530  * This function does the check if we already created the dir out of order.
2531  */
2532 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2533 {
2534 	int ret = 0;
2535 	struct btrfs_path *path = NULL;
2536 	struct btrfs_key key;
2537 	struct btrfs_key found_key;
2538 	struct btrfs_key di_key;
2539 	struct extent_buffer *eb;
2540 	struct btrfs_dir_item *di;
2541 	int slot;
2542 
2543 	path = alloc_path_for_send();
2544 	if (!path) {
2545 		ret = -ENOMEM;
2546 		goto out;
2547 	}
2548 
2549 	key.objectid = dir;
2550 	key.type = BTRFS_DIR_INDEX_KEY;
2551 	key.offset = 0;
2552 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2553 	if (ret < 0)
2554 		goto out;
2555 
2556 	while (1) {
2557 		eb = path->nodes[0];
2558 		slot = path->slots[0];
2559 		if (slot >= btrfs_header_nritems(eb)) {
2560 			ret = btrfs_next_leaf(sctx->send_root, path);
2561 			if (ret < 0) {
2562 				goto out;
2563 			} else if (ret > 0) {
2564 				ret = 0;
2565 				break;
2566 			}
2567 			continue;
2568 		}
2569 
2570 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2571 		if (found_key.objectid != key.objectid ||
2572 		    found_key.type != key.type) {
2573 			ret = 0;
2574 			goto out;
2575 		}
2576 
2577 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2578 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2579 
2580 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2581 		    di_key.objectid < sctx->send_progress) {
2582 			ret = 1;
2583 			goto out;
2584 		}
2585 
2586 		path->slots[0]++;
2587 	}
2588 
2589 out:
2590 	btrfs_free_path(path);
2591 	return ret;
2592 }
2593 
2594 /*
2595  * Only creates the inode if it is:
2596  * 1. Not a directory
2597  * 2. Or a directory which was not created already due to out of order
2598  *    directories. See did_create_dir and process_recorded_refs for details.
2599  */
2600 static int send_create_inode_if_needed(struct send_ctx *sctx)
2601 {
2602 	int ret;
2603 
2604 	if (S_ISDIR(sctx->cur_inode_mode)) {
2605 		ret = did_create_dir(sctx, sctx->cur_ino);
2606 		if (ret < 0)
2607 			goto out;
2608 		if (ret) {
2609 			ret = 0;
2610 			goto out;
2611 		}
2612 	}
2613 
2614 	ret = send_create_inode(sctx, sctx->cur_ino);
2615 	if (ret < 0)
2616 		goto out;
2617 
2618 out:
2619 	return ret;
2620 }
2621 
2622 struct recorded_ref {
2623 	struct list_head list;
2624 	char *dir_path;
2625 	char *name;
2626 	struct fs_path *full_path;
2627 	u64 dir;
2628 	u64 dir_gen;
2629 	int dir_path_len;
2630 	int name_len;
2631 };
2632 
2633 /*
2634  * We need to process new refs before deleted refs, but compare_tree gives us
2635  * everything mixed. So we first record all refs and later process them.
2636  * This function is a helper to record one ref.
2637  */
2638 static int __record_ref(struct list_head *head, u64 dir,
2639 		      u64 dir_gen, struct fs_path *path)
2640 {
2641 	struct recorded_ref *ref;
2642 
2643 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2644 	if (!ref)
2645 		return -ENOMEM;
2646 
2647 	ref->dir = dir;
2648 	ref->dir_gen = dir_gen;
2649 	ref->full_path = path;
2650 
2651 	ref->name = (char *)kbasename(ref->full_path->start);
2652 	ref->name_len = ref->full_path->end - ref->name;
2653 	ref->dir_path = ref->full_path->start;
2654 	if (ref->name == ref->full_path->start)
2655 		ref->dir_path_len = 0;
2656 	else
2657 		ref->dir_path_len = ref->full_path->end -
2658 				ref->full_path->start - 1 - ref->name_len;
2659 
2660 	list_add_tail(&ref->list, head);
2661 	return 0;
2662 }
2663 
2664 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2665 {
2666 	struct recorded_ref *new;
2667 
2668 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2669 	if (!new)
2670 		return -ENOMEM;
2671 
2672 	new->dir = ref->dir;
2673 	new->dir_gen = ref->dir_gen;
2674 	new->full_path = NULL;
2675 	INIT_LIST_HEAD(&new->list);
2676 	list_add_tail(&new->list, list);
2677 	return 0;
2678 }
2679 
2680 static void __free_recorded_refs(struct list_head *head)
2681 {
2682 	struct recorded_ref *cur;
2683 
2684 	while (!list_empty(head)) {
2685 		cur = list_entry(head->next, struct recorded_ref, list);
2686 		fs_path_free(cur->full_path);
2687 		list_del(&cur->list);
2688 		kfree(cur);
2689 	}
2690 }
2691 
2692 static void free_recorded_refs(struct send_ctx *sctx)
2693 {
2694 	__free_recorded_refs(&sctx->new_refs);
2695 	__free_recorded_refs(&sctx->deleted_refs);
2696 }
2697 
2698 /*
2699  * Renames/moves a file/dir to its orphan name. Used when the first
2700  * ref of an unprocessed inode gets overwritten and for all non empty
2701  * directories.
2702  */
2703 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2704 			  struct fs_path *path)
2705 {
2706 	int ret;
2707 	struct fs_path *orphan;
2708 
2709 	orphan = fs_path_alloc();
2710 	if (!orphan)
2711 		return -ENOMEM;
2712 
2713 	ret = gen_unique_name(sctx, ino, gen, orphan);
2714 	if (ret < 0)
2715 		goto out;
2716 
2717 	ret = send_rename(sctx, path, orphan);
2718 
2719 out:
2720 	fs_path_free(orphan);
2721 	return ret;
2722 }
2723 
2724 static struct orphan_dir_info *
2725 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2726 {
2727 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2728 	struct rb_node *parent = NULL;
2729 	struct orphan_dir_info *entry, *odi;
2730 
2731 	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2732 	if (!odi)
2733 		return ERR_PTR(-ENOMEM);
2734 	odi->ino = dir_ino;
2735 	odi->gen = 0;
2736 
2737 	while (*p) {
2738 		parent = *p;
2739 		entry = rb_entry(parent, struct orphan_dir_info, node);
2740 		if (dir_ino < entry->ino) {
2741 			p = &(*p)->rb_left;
2742 		} else if (dir_ino > entry->ino) {
2743 			p = &(*p)->rb_right;
2744 		} else {
2745 			kfree(odi);
2746 			return entry;
2747 		}
2748 	}
2749 
2750 	rb_link_node(&odi->node, parent, p);
2751 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2752 	return odi;
2753 }
2754 
2755 static struct orphan_dir_info *
2756 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2757 {
2758 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2759 	struct orphan_dir_info *entry;
2760 
2761 	while (n) {
2762 		entry = rb_entry(n, struct orphan_dir_info, node);
2763 		if (dir_ino < entry->ino)
2764 			n = n->rb_left;
2765 		else if (dir_ino > entry->ino)
2766 			n = n->rb_right;
2767 		else
2768 			return entry;
2769 	}
2770 	return NULL;
2771 }
2772 
2773 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2774 {
2775 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2776 
2777 	return odi != NULL;
2778 }
2779 
2780 static void free_orphan_dir_info(struct send_ctx *sctx,
2781 				 struct orphan_dir_info *odi)
2782 {
2783 	if (!odi)
2784 		return;
2785 	rb_erase(&odi->node, &sctx->orphan_dirs);
2786 	kfree(odi);
2787 }
2788 
2789 /*
2790  * Returns 1 if a directory can be removed at this point in time.
2791  * We check this by iterating all dir items and checking if the inode behind
2792  * the dir item was already processed.
2793  */
2794 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2795 		     u64 send_progress)
2796 {
2797 	int ret = 0;
2798 	struct btrfs_root *root = sctx->parent_root;
2799 	struct btrfs_path *path;
2800 	struct btrfs_key key;
2801 	struct btrfs_key found_key;
2802 	struct btrfs_key loc;
2803 	struct btrfs_dir_item *di;
2804 
2805 	/*
2806 	 * Don't try to rmdir the top/root subvolume dir.
2807 	 */
2808 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2809 		return 0;
2810 
2811 	path = alloc_path_for_send();
2812 	if (!path)
2813 		return -ENOMEM;
2814 
2815 	key.objectid = dir;
2816 	key.type = BTRFS_DIR_INDEX_KEY;
2817 	key.offset = 0;
2818 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2819 	if (ret < 0)
2820 		goto out;
2821 
2822 	while (1) {
2823 		struct waiting_dir_move *dm;
2824 
2825 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2826 			ret = btrfs_next_leaf(root, path);
2827 			if (ret < 0)
2828 				goto out;
2829 			else if (ret > 0)
2830 				break;
2831 			continue;
2832 		}
2833 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2834 				      path->slots[0]);
2835 		if (found_key.objectid != key.objectid ||
2836 		    found_key.type != key.type)
2837 			break;
2838 
2839 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2840 				struct btrfs_dir_item);
2841 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2842 
2843 		dm = get_waiting_dir_move(sctx, loc.objectid);
2844 		if (dm) {
2845 			struct orphan_dir_info *odi;
2846 
2847 			odi = add_orphan_dir_info(sctx, dir);
2848 			if (IS_ERR(odi)) {
2849 				ret = PTR_ERR(odi);
2850 				goto out;
2851 			}
2852 			odi->gen = dir_gen;
2853 			dm->rmdir_ino = dir;
2854 			ret = 0;
2855 			goto out;
2856 		}
2857 
2858 		if (loc.objectid > send_progress) {
2859 			ret = 0;
2860 			goto out;
2861 		}
2862 
2863 		path->slots[0]++;
2864 	}
2865 
2866 	ret = 1;
2867 
2868 out:
2869 	btrfs_free_path(path);
2870 	return ret;
2871 }
2872 
2873 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2874 {
2875 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2876 
2877 	return entry != NULL;
2878 }
2879 
2880 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2881 {
2882 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2883 	struct rb_node *parent = NULL;
2884 	struct waiting_dir_move *entry, *dm;
2885 
2886 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2887 	if (!dm)
2888 		return -ENOMEM;
2889 	dm->ino = ino;
2890 	dm->rmdir_ino = 0;
2891 
2892 	while (*p) {
2893 		parent = *p;
2894 		entry = rb_entry(parent, struct waiting_dir_move, node);
2895 		if (ino < entry->ino) {
2896 			p = &(*p)->rb_left;
2897 		} else if (ino > entry->ino) {
2898 			p = &(*p)->rb_right;
2899 		} else {
2900 			kfree(dm);
2901 			return -EEXIST;
2902 		}
2903 	}
2904 
2905 	rb_link_node(&dm->node, parent, p);
2906 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2907 	return 0;
2908 }
2909 
2910 static struct waiting_dir_move *
2911 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2912 {
2913 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2914 	struct waiting_dir_move *entry;
2915 
2916 	while (n) {
2917 		entry = rb_entry(n, struct waiting_dir_move, node);
2918 		if (ino < entry->ino)
2919 			n = n->rb_left;
2920 		else if (ino > entry->ino)
2921 			n = n->rb_right;
2922 		else
2923 			return entry;
2924 	}
2925 	return NULL;
2926 }
2927 
2928 static void free_waiting_dir_move(struct send_ctx *sctx,
2929 				  struct waiting_dir_move *dm)
2930 {
2931 	if (!dm)
2932 		return;
2933 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
2934 	kfree(dm);
2935 }
2936 
2937 static int add_pending_dir_move(struct send_ctx *sctx,
2938 				u64 ino,
2939 				u64 ino_gen,
2940 				u64 parent_ino)
2941 {
2942 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2943 	struct rb_node *parent = NULL;
2944 	struct pending_dir_move *entry = NULL, *pm;
2945 	struct recorded_ref *cur;
2946 	int exists = 0;
2947 	int ret;
2948 
2949 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
2950 	if (!pm)
2951 		return -ENOMEM;
2952 	pm->parent_ino = parent_ino;
2953 	pm->ino = ino;
2954 	pm->gen = ino_gen;
2955 	INIT_LIST_HEAD(&pm->list);
2956 	INIT_LIST_HEAD(&pm->update_refs);
2957 	RB_CLEAR_NODE(&pm->node);
2958 
2959 	while (*p) {
2960 		parent = *p;
2961 		entry = rb_entry(parent, struct pending_dir_move, node);
2962 		if (parent_ino < entry->parent_ino) {
2963 			p = &(*p)->rb_left;
2964 		} else if (parent_ino > entry->parent_ino) {
2965 			p = &(*p)->rb_right;
2966 		} else {
2967 			exists = 1;
2968 			break;
2969 		}
2970 	}
2971 
2972 	list_for_each_entry(cur, &sctx->deleted_refs, list) {
2973 		ret = dup_ref(cur, &pm->update_refs);
2974 		if (ret < 0)
2975 			goto out;
2976 	}
2977 	list_for_each_entry(cur, &sctx->new_refs, list) {
2978 		ret = dup_ref(cur, &pm->update_refs);
2979 		if (ret < 0)
2980 			goto out;
2981 	}
2982 
2983 	ret = add_waiting_dir_move(sctx, pm->ino);
2984 	if (ret)
2985 		goto out;
2986 
2987 	if (exists) {
2988 		list_add_tail(&pm->list, &entry->list);
2989 	} else {
2990 		rb_link_node(&pm->node, parent, p);
2991 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
2992 	}
2993 	ret = 0;
2994 out:
2995 	if (ret) {
2996 		__free_recorded_refs(&pm->update_refs);
2997 		kfree(pm);
2998 	}
2999 	return ret;
3000 }
3001 
3002 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3003 						      u64 parent_ino)
3004 {
3005 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3006 	struct pending_dir_move *entry;
3007 
3008 	while (n) {
3009 		entry = rb_entry(n, struct pending_dir_move, node);
3010 		if (parent_ino < entry->parent_ino)
3011 			n = n->rb_left;
3012 		else if (parent_ino > entry->parent_ino)
3013 			n = n->rb_right;
3014 		else
3015 			return entry;
3016 	}
3017 	return NULL;
3018 }
3019 
3020 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3021 {
3022 	struct fs_path *from_path = NULL;
3023 	struct fs_path *to_path = NULL;
3024 	struct fs_path *name = NULL;
3025 	u64 orig_progress = sctx->send_progress;
3026 	struct recorded_ref *cur;
3027 	u64 parent_ino, parent_gen;
3028 	struct waiting_dir_move *dm = NULL;
3029 	u64 rmdir_ino = 0;
3030 	int ret;
3031 
3032 	name = fs_path_alloc();
3033 	from_path = fs_path_alloc();
3034 	if (!name || !from_path) {
3035 		ret = -ENOMEM;
3036 		goto out;
3037 	}
3038 
3039 	dm = get_waiting_dir_move(sctx, pm->ino);
3040 	ASSERT(dm);
3041 	rmdir_ino = dm->rmdir_ino;
3042 	free_waiting_dir_move(sctx, dm);
3043 
3044 	ret = get_first_ref(sctx->parent_root, pm->ino,
3045 			    &parent_ino, &parent_gen, name);
3046 	if (ret < 0)
3047 		goto out;
3048 
3049 	if (parent_ino == sctx->cur_ino) {
3050 		/* child only renamed, not moved */
3051 		ASSERT(parent_gen == sctx->cur_inode_gen);
3052 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3053 				   from_path);
3054 		if (ret < 0)
3055 			goto out;
3056 		ret = fs_path_add_path(from_path, name);
3057 		if (ret < 0)
3058 			goto out;
3059 	} else {
3060 		/* child moved and maybe renamed too */
3061 		sctx->send_progress = pm->ino;
3062 		ret = get_cur_path(sctx, pm->ino, pm->gen, from_path);
3063 		if (ret < 0)
3064 			goto out;
3065 	}
3066 
3067 	fs_path_free(name);
3068 	name = NULL;
3069 
3070 	to_path = fs_path_alloc();
3071 	if (!to_path) {
3072 		ret = -ENOMEM;
3073 		goto out;
3074 	}
3075 
3076 	sctx->send_progress = sctx->cur_ino + 1;
3077 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3078 	if (ret < 0)
3079 		goto out;
3080 
3081 	ret = send_rename(sctx, from_path, to_path);
3082 	if (ret < 0)
3083 		goto out;
3084 
3085 	if (rmdir_ino) {
3086 		struct orphan_dir_info *odi;
3087 
3088 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3089 		if (!odi) {
3090 			/* already deleted */
3091 			goto finish;
3092 		}
3093 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3094 		if (ret < 0)
3095 			goto out;
3096 		if (!ret)
3097 			goto finish;
3098 
3099 		name = fs_path_alloc();
3100 		if (!name) {
3101 			ret = -ENOMEM;
3102 			goto out;
3103 		}
3104 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3105 		if (ret < 0)
3106 			goto out;
3107 		ret = send_rmdir(sctx, name);
3108 		if (ret < 0)
3109 			goto out;
3110 		free_orphan_dir_info(sctx, odi);
3111 	}
3112 
3113 finish:
3114 	ret = send_utimes(sctx, pm->ino, pm->gen);
3115 	if (ret < 0)
3116 		goto out;
3117 
3118 	/*
3119 	 * After rename/move, need to update the utimes of both new parent(s)
3120 	 * and old parent(s).
3121 	 */
3122 	list_for_each_entry(cur, &pm->update_refs, list) {
3123 		if (cur->dir == rmdir_ino)
3124 			continue;
3125 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3126 		if (ret < 0)
3127 			goto out;
3128 	}
3129 
3130 out:
3131 	fs_path_free(name);
3132 	fs_path_free(from_path);
3133 	fs_path_free(to_path);
3134 	sctx->send_progress = orig_progress;
3135 
3136 	return ret;
3137 }
3138 
3139 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3140 {
3141 	if (!list_empty(&m->list))
3142 		list_del(&m->list);
3143 	if (!RB_EMPTY_NODE(&m->node))
3144 		rb_erase(&m->node, &sctx->pending_dir_moves);
3145 	__free_recorded_refs(&m->update_refs);
3146 	kfree(m);
3147 }
3148 
3149 static void tail_append_pending_moves(struct pending_dir_move *moves,
3150 				      struct list_head *stack)
3151 {
3152 	if (list_empty(&moves->list)) {
3153 		list_add_tail(&moves->list, stack);
3154 	} else {
3155 		LIST_HEAD(list);
3156 		list_splice_init(&moves->list, &list);
3157 		list_add_tail(&moves->list, stack);
3158 		list_splice_tail(&list, stack);
3159 	}
3160 }
3161 
3162 static int apply_children_dir_moves(struct send_ctx *sctx)
3163 {
3164 	struct pending_dir_move *pm;
3165 	struct list_head stack;
3166 	u64 parent_ino = sctx->cur_ino;
3167 	int ret = 0;
3168 
3169 	pm = get_pending_dir_moves(sctx, parent_ino);
3170 	if (!pm)
3171 		return 0;
3172 
3173 	INIT_LIST_HEAD(&stack);
3174 	tail_append_pending_moves(pm, &stack);
3175 
3176 	while (!list_empty(&stack)) {
3177 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3178 		parent_ino = pm->ino;
3179 		ret = apply_dir_move(sctx, pm);
3180 		free_pending_move(sctx, pm);
3181 		if (ret)
3182 			goto out;
3183 		pm = get_pending_dir_moves(sctx, parent_ino);
3184 		if (pm)
3185 			tail_append_pending_moves(pm, &stack);
3186 	}
3187 	return 0;
3188 
3189 out:
3190 	while (!list_empty(&stack)) {
3191 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3192 		free_pending_move(sctx, pm);
3193 	}
3194 	return ret;
3195 }
3196 
3197 static int wait_for_parent_move(struct send_ctx *sctx,
3198 				struct recorded_ref *parent_ref)
3199 {
3200 	int ret;
3201 	u64 ino = parent_ref->dir;
3202 	u64 parent_ino_before, parent_ino_after;
3203 	u64 old_gen;
3204 	struct fs_path *path_before = NULL;
3205 	struct fs_path *path_after = NULL;
3206 	int len1, len2;
3207 	int register_upper_dirs;
3208 	u64 gen;
3209 
3210 	if (is_waiting_for_move(sctx, ino))
3211 		return 1;
3212 
3213 	if (parent_ref->dir <= sctx->cur_ino)
3214 		return 0;
3215 
3216 	ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen,
3217 			     NULL, NULL, NULL, NULL);
3218 	if (ret == -ENOENT)
3219 		return 0;
3220 	else if (ret < 0)
3221 		return ret;
3222 
3223 	if (parent_ref->dir_gen != old_gen)
3224 		return 0;
3225 
3226 	path_before = fs_path_alloc();
3227 	if (!path_before)
3228 		return -ENOMEM;
3229 
3230 	ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3231 			    NULL, path_before);
3232 	if (ret == -ENOENT) {
3233 		ret = 0;
3234 		goto out;
3235 	} else if (ret < 0) {
3236 		goto out;
3237 	}
3238 
3239 	path_after = fs_path_alloc();
3240 	if (!path_after) {
3241 		ret = -ENOMEM;
3242 		goto out;
3243 	}
3244 
3245 	ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3246 			    &gen, path_after);
3247 	if (ret == -ENOENT) {
3248 		ret = 0;
3249 		goto out;
3250 	} else if (ret < 0) {
3251 		goto out;
3252 	}
3253 
3254 	len1 = fs_path_len(path_before);
3255 	len2 = fs_path_len(path_after);
3256 	if (parent_ino_before != parent_ino_after || len1 != len2 ||
3257 	     memcmp(path_before->start, path_after->start, len1)) {
3258 		ret = 1;
3259 		goto out;
3260 	}
3261 	ret = 0;
3262 
3263 	/*
3264 	 * Ok, our new most direct ancestor has a higher inode number but
3265 	 * wasn't moved/renamed. So maybe some of the new ancestors higher in
3266 	 * the hierarchy have an higher inode number too *and* were renamed
3267 	 * or moved - in this case we need to wait for the ancestor's rename
3268 	 * or move operation before we can do the move/rename for the current
3269 	 * inode.
3270 	 */
3271 	register_upper_dirs = 0;
3272 	ino = parent_ino_after;
3273 again:
3274 	while ((ret == 0 || register_upper_dirs) && ino > sctx->cur_ino) {
3275 		u64 parent_gen;
3276 
3277 		fs_path_reset(path_before);
3278 		fs_path_reset(path_after);
3279 
3280 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3281 				    &parent_gen, path_after);
3282 		if (ret < 0)
3283 			goto out;
3284 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3285 				    NULL, path_before);
3286 		if (ret == -ENOENT) {
3287 			ret = 0;
3288 			break;
3289 		} else if (ret < 0) {
3290 			goto out;
3291 		}
3292 
3293 		len1 = fs_path_len(path_before);
3294 		len2 = fs_path_len(path_after);
3295 		if (parent_ino_before != parent_ino_after || len1 != len2 ||
3296 		    memcmp(path_before->start, path_after->start, len1)) {
3297 			ret = 1;
3298 			if (register_upper_dirs) {
3299 				break;
3300 			} else {
3301 				register_upper_dirs = 1;
3302 				ino = parent_ref->dir;
3303 				gen = parent_ref->dir_gen;
3304 				goto again;
3305 			}
3306 		} else if (register_upper_dirs) {
3307 			ret = add_pending_dir_move(sctx, ino, gen,
3308 						   parent_ino_after);
3309 			if (ret < 0 && ret != -EEXIST)
3310 				goto out;
3311 		}
3312 
3313 		ino = parent_ino_after;
3314 		gen = parent_gen;
3315 	}
3316 
3317 out:
3318 	fs_path_free(path_before);
3319 	fs_path_free(path_after);
3320 
3321 	return ret;
3322 }
3323 
3324 /*
3325  * This does all the move/link/unlink/rmdir magic.
3326  */
3327 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3328 {
3329 	int ret = 0;
3330 	struct recorded_ref *cur;
3331 	struct recorded_ref *cur2;
3332 	struct list_head check_dirs;
3333 	struct fs_path *valid_path = NULL;
3334 	u64 ow_inode = 0;
3335 	u64 ow_gen;
3336 	int did_overwrite = 0;
3337 	int is_orphan = 0;
3338 	u64 last_dir_ino_rm = 0;
3339 
3340 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3341 
3342 	/*
3343 	 * This should never happen as the root dir always has the same ref
3344 	 * which is always '..'
3345 	 */
3346 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3347 	INIT_LIST_HEAD(&check_dirs);
3348 
3349 	valid_path = fs_path_alloc();
3350 	if (!valid_path) {
3351 		ret = -ENOMEM;
3352 		goto out;
3353 	}
3354 
3355 	/*
3356 	 * First, check if the first ref of the current inode was overwritten
3357 	 * before. If yes, we know that the current inode was already orphanized
3358 	 * and thus use the orphan name. If not, we can use get_cur_path to
3359 	 * get the path of the first ref as it would like while receiving at
3360 	 * this point in time.
3361 	 * New inodes are always orphan at the beginning, so force to use the
3362 	 * orphan name in this case.
3363 	 * The first ref is stored in valid_path and will be updated if it
3364 	 * gets moved around.
3365 	 */
3366 	if (!sctx->cur_inode_new) {
3367 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3368 				sctx->cur_inode_gen);
3369 		if (ret < 0)
3370 			goto out;
3371 		if (ret)
3372 			did_overwrite = 1;
3373 	}
3374 	if (sctx->cur_inode_new || did_overwrite) {
3375 		ret = gen_unique_name(sctx, sctx->cur_ino,
3376 				sctx->cur_inode_gen, valid_path);
3377 		if (ret < 0)
3378 			goto out;
3379 		is_orphan = 1;
3380 	} else {
3381 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3382 				valid_path);
3383 		if (ret < 0)
3384 			goto out;
3385 	}
3386 
3387 	list_for_each_entry(cur, &sctx->new_refs, list) {
3388 		/*
3389 		 * We may have refs where the parent directory does not exist
3390 		 * yet. This happens if the parent directories inum is higher
3391 		 * the the current inum. To handle this case, we create the
3392 		 * parent directory out of order. But we need to check if this
3393 		 * did already happen before due to other refs in the same dir.
3394 		 */
3395 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3396 		if (ret < 0)
3397 			goto out;
3398 		if (ret == inode_state_will_create) {
3399 			ret = 0;
3400 			/*
3401 			 * First check if any of the current inodes refs did
3402 			 * already create the dir.
3403 			 */
3404 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3405 				if (cur == cur2)
3406 					break;
3407 				if (cur2->dir == cur->dir) {
3408 					ret = 1;
3409 					break;
3410 				}
3411 			}
3412 
3413 			/*
3414 			 * If that did not happen, check if a previous inode
3415 			 * did already create the dir.
3416 			 */
3417 			if (!ret)
3418 				ret = did_create_dir(sctx, cur->dir);
3419 			if (ret < 0)
3420 				goto out;
3421 			if (!ret) {
3422 				ret = send_create_inode(sctx, cur->dir);
3423 				if (ret < 0)
3424 					goto out;
3425 			}
3426 		}
3427 
3428 		/*
3429 		 * Check if this new ref would overwrite the first ref of
3430 		 * another unprocessed inode. If yes, orphanize the
3431 		 * overwritten inode. If we find an overwritten ref that is
3432 		 * not the first ref, simply unlink it.
3433 		 */
3434 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3435 				cur->name, cur->name_len,
3436 				&ow_inode, &ow_gen);
3437 		if (ret < 0)
3438 			goto out;
3439 		if (ret) {
3440 			ret = is_first_ref(sctx->parent_root,
3441 					   ow_inode, cur->dir, cur->name,
3442 					   cur->name_len);
3443 			if (ret < 0)
3444 				goto out;
3445 			if (ret) {
3446 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3447 						cur->full_path);
3448 				if (ret < 0)
3449 					goto out;
3450 			} else {
3451 				ret = send_unlink(sctx, cur->full_path);
3452 				if (ret < 0)
3453 					goto out;
3454 			}
3455 		}
3456 
3457 		/*
3458 		 * link/move the ref to the new place. If we have an orphan
3459 		 * inode, move it and update valid_path. If not, link or move
3460 		 * it depending on the inode mode.
3461 		 */
3462 		if (is_orphan) {
3463 			ret = send_rename(sctx, valid_path, cur->full_path);
3464 			if (ret < 0)
3465 				goto out;
3466 			is_orphan = 0;
3467 			ret = fs_path_copy(valid_path, cur->full_path);
3468 			if (ret < 0)
3469 				goto out;
3470 		} else {
3471 			if (S_ISDIR(sctx->cur_inode_mode)) {
3472 				/*
3473 				 * Dirs can't be linked, so move it. For moved
3474 				 * dirs, we always have one new and one deleted
3475 				 * ref. The deleted ref is ignored later.
3476 				 */
3477 				ret = wait_for_parent_move(sctx, cur);
3478 				if (ret < 0)
3479 					goto out;
3480 				if (ret) {
3481 					ret = add_pending_dir_move(sctx,
3482 							   sctx->cur_ino,
3483 							   sctx->cur_inode_gen,
3484 							   cur->dir);
3485 					*pending_move = 1;
3486 				} else {
3487 					ret = send_rename(sctx, valid_path,
3488 							  cur->full_path);
3489 					if (!ret)
3490 						ret = fs_path_copy(valid_path,
3491 							       cur->full_path);
3492 				}
3493 				if (ret < 0)
3494 					goto out;
3495 			} else {
3496 				ret = send_link(sctx, cur->full_path,
3497 						valid_path);
3498 				if (ret < 0)
3499 					goto out;
3500 			}
3501 		}
3502 		ret = dup_ref(cur, &check_dirs);
3503 		if (ret < 0)
3504 			goto out;
3505 	}
3506 
3507 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3508 		/*
3509 		 * Check if we can already rmdir the directory. If not,
3510 		 * orphanize it. For every dir item inside that gets deleted
3511 		 * later, we do this check again and rmdir it then if possible.
3512 		 * See the use of check_dirs for more details.
3513 		 */
3514 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3515 				sctx->cur_ino);
3516 		if (ret < 0)
3517 			goto out;
3518 		if (ret) {
3519 			ret = send_rmdir(sctx, valid_path);
3520 			if (ret < 0)
3521 				goto out;
3522 		} else if (!is_orphan) {
3523 			ret = orphanize_inode(sctx, sctx->cur_ino,
3524 					sctx->cur_inode_gen, valid_path);
3525 			if (ret < 0)
3526 				goto out;
3527 			is_orphan = 1;
3528 		}
3529 
3530 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3531 			ret = dup_ref(cur, &check_dirs);
3532 			if (ret < 0)
3533 				goto out;
3534 		}
3535 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3536 		   !list_empty(&sctx->deleted_refs)) {
3537 		/*
3538 		 * We have a moved dir. Add the old parent to check_dirs
3539 		 */
3540 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3541 				list);
3542 		ret = dup_ref(cur, &check_dirs);
3543 		if (ret < 0)
3544 			goto out;
3545 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3546 		/*
3547 		 * We have a non dir inode. Go through all deleted refs and
3548 		 * unlink them if they were not already overwritten by other
3549 		 * inodes.
3550 		 */
3551 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3552 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3553 					sctx->cur_ino, sctx->cur_inode_gen,
3554 					cur->name, cur->name_len);
3555 			if (ret < 0)
3556 				goto out;
3557 			if (!ret) {
3558 				ret = send_unlink(sctx, cur->full_path);
3559 				if (ret < 0)
3560 					goto out;
3561 			}
3562 			ret = dup_ref(cur, &check_dirs);
3563 			if (ret < 0)
3564 				goto out;
3565 		}
3566 		/*
3567 		 * If the inode is still orphan, unlink the orphan. This may
3568 		 * happen when a previous inode did overwrite the first ref
3569 		 * of this inode and no new refs were added for the current
3570 		 * inode. Unlinking does not mean that the inode is deleted in
3571 		 * all cases. There may still be links to this inode in other
3572 		 * places.
3573 		 */
3574 		if (is_orphan) {
3575 			ret = send_unlink(sctx, valid_path);
3576 			if (ret < 0)
3577 				goto out;
3578 		}
3579 	}
3580 
3581 	/*
3582 	 * We did collect all parent dirs where cur_inode was once located. We
3583 	 * now go through all these dirs and check if they are pending for
3584 	 * deletion and if it's finally possible to perform the rmdir now.
3585 	 * We also update the inode stats of the parent dirs here.
3586 	 */
3587 	list_for_each_entry(cur, &check_dirs, list) {
3588 		/*
3589 		 * In case we had refs into dirs that were not processed yet,
3590 		 * we don't need to do the utime and rmdir logic for these dirs.
3591 		 * The dir will be processed later.
3592 		 */
3593 		if (cur->dir > sctx->cur_ino)
3594 			continue;
3595 
3596 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3597 		if (ret < 0)
3598 			goto out;
3599 
3600 		if (ret == inode_state_did_create ||
3601 		    ret == inode_state_no_change) {
3602 			/* TODO delayed utimes */
3603 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3604 			if (ret < 0)
3605 				goto out;
3606 		} else if (ret == inode_state_did_delete &&
3607 			   cur->dir != last_dir_ino_rm) {
3608 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3609 					sctx->cur_ino);
3610 			if (ret < 0)
3611 				goto out;
3612 			if (ret) {
3613 				ret = get_cur_path(sctx, cur->dir,
3614 						   cur->dir_gen, valid_path);
3615 				if (ret < 0)
3616 					goto out;
3617 				ret = send_rmdir(sctx, valid_path);
3618 				if (ret < 0)
3619 					goto out;
3620 				last_dir_ino_rm = cur->dir;
3621 			}
3622 		}
3623 	}
3624 
3625 	ret = 0;
3626 
3627 out:
3628 	__free_recorded_refs(&check_dirs);
3629 	free_recorded_refs(sctx);
3630 	fs_path_free(valid_path);
3631 	return ret;
3632 }
3633 
3634 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3635 		      struct fs_path *name, void *ctx, struct list_head *refs)
3636 {
3637 	int ret = 0;
3638 	struct send_ctx *sctx = ctx;
3639 	struct fs_path *p;
3640 	u64 gen;
3641 
3642 	p = fs_path_alloc();
3643 	if (!p)
3644 		return -ENOMEM;
3645 
3646 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3647 			NULL, NULL);
3648 	if (ret < 0)
3649 		goto out;
3650 
3651 	ret = get_cur_path(sctx, dir, gen, p);
3652 	if (ret < 0)
3653 		goto out;
3654 	ret = fs_path_add_path(p, name);
3655 	if (ret < 0)
3656 		goto out;
3657 
3658 	ret = __record_ref(refs, dir, gen, p);
3659 
3660 out:
3661 	if (ret)
3662 		fs_path_free(p);
3663 	return ret;
3664 }
3665 
3666 static int __record_new_ref(int num, u64 dir, int index,
3667 			    struct fs_path *name,
3668 			    void *ctx)
3669 {
3670 	struct send_ctx *sctx = ctx;
3671 	return record_ref(sctx->send_root, num, dir, index, name,
3672 			  ctx, &sctx->new_refs);
3673 }
3674 
3675 
3676 static int __record_deleted_ref(int num, u64 dir, int index,
3677 				struct fs_path *name,
3678 				void *ctx)
3679 {
3680 	struct send_ctx *sctx = ctx;
3681 	return record_ref(sctx->parent_root, num, dir, index, name,
3682 			  ctx, &sctx->deleted_refs);
3683 }
3684 
3685 static int record_new_ref(struct send_ctx *sctx)
3686 {
3687 	int ret;
3688 
3689 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3690 				sctx->cmp_key, 0, __record_new_ref, sctx);
3691 	if (ret < 0)
3692 		goto out;
3693 	ret = 0;
3694 
3695 out:
3696 	return ret;
3697 }
3698 
3699 static int record_deleted_ref(struct send_ctx *sctx)
3700 {
3701 	int ret;
3702 
3703 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3704 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3705 	if (ret < 0)
3706 		goto out;
3707 	ret = 0;
3708 
3709 out:
3710 	return ret;
3711 }
3712 
3713 struct find_ref_ctx {
3714 	u64 dir;
3715 	u64 dir_gen;
3716 	struct btrfs_root *root;
3717 	struct fs_path *name;
3718 	int found_idx;
3719 };
3720 
3721 static int __find_iref(int num, u64 dir, int index,
3722 		       struct fs_path *name,
3723 		       void *ctx_)
3724 {
3725 	struct find_ref_ctx *ctx = ctx_;
3726 	u64 dir_gen;
3727 	int ret;
3728 
3729 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3730 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3731 		/*
3732 		 * To avoid doing extra lookups we'll only do this if everything
3733 		 * else matches.
3734 		 */
3735 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3736 				     NULL, NULL, NULL);
3737 		if (ret)
3738 			return ret;
3739 		if (dir_gen != ctx->dir_gen)
3740 			return 0;
3741 		ctx->found_idx = num;
3742 		return 1;
3743 	}
3744 	return 0;
3745 }
3746 
3747 static int find_iref(struct btrfs_root *root,
3748 		     struct btrfs_path *path,
3749 		     struct btrfs_key *key,
3750 		     u64 dir, u64 dir_gen, struct fs_path *name)
3751 {
3752 	int ret;
3753 	struct find_ref_ctx ctx;
3754 
3755 	ctx.dir = dir;
3756 	ctx.name = name;
3757 	ctx.dir_gen = dir_gen;
3758 	ctx.found_idx = -1;
3759 	ctx.root = root;
3760 
3761 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3762 	if (ret < 0)
3763 		return ret;
3764 
3765 	if (ctx.found_idx == -1)
3766 		return -ENOENT;
3767 
3768 	return ctx.found_idx;
3769 }
3770 
3771 static int __record_changed_new_ref(int num, u64 dir, int index,
3772 				    struct fs_path *name,
3773 				    void *ctx)
3774 {
3775 	u64 dir_gen;
3776 	int ret;
3777 	struct send_ctx *sctx = ctx;
3778 
3779 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3780 			     NULL, NULL, NULL);
3781 	if (ret)
3782 		return ret;
3783 
3784 	ret = find_iref(sctx->parent_root, sctx->right_path,
3785 			sctx->cmp_key, dir, dir_gen, name);
3786 	if (ret == -ENOENT)
3787 		ret = __record_new_ref(num, dir, index, name, sctx);
3788 	else if (ret > 0)
3789 		ret = 0;
3790 
3791 	return ret;
3792 }
3793 
3794 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3795 					struct fs_path *name,
3796 					void *ctx)
3797 {
3798 	u64 dir_gen;
3799 	int ret;
3800 	struct send_ctx *sctx = ctx;
3801 
3802 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3803 			     NULL, NULL, NULL);
3804 	if (ret)
3805 		return ret;
3806 
3807 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3808 			dir, dir_gen, name);
3809 	if (ret == -ENOENT)
3810 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3811 	else if (ret > 0)
3812 		ret = 0;
3813 
3814 	return ret;
3815 }
3816 
3817 static int record_changed_ref(struct send_ctx *sctx)
3818 {
3819 	int ret = 0;
3820 
3821 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3822 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3823 	if (ret < 0)
3824 		goto out;
3825 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3826 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3827 	if (ret < 0)
3828 		goto out;
3829 	ret = 0;
3830 
3831 out:
3832 	return ret;
3833 }
3834 
3835 /*
3836  * Record and process all refs at once. Needed when an inode changes the
3837  * generation number, which means that it was deleted and recreated.
3838  */
3839 static int process_all_refs(struct send_ctx *sctx,
3840 			    enum btrfs_compare_tree_result cmd)
3841 {
3842 	int ret;
3843 	struct btrfs_root *root;
3844 	struct btrfs_path *path;
3845 	struct btrfs_key key;
3846 	struct btrfs_key found_key;
3847 	struct extent_buffer *eb;
3848 	int slot;
3849 	iterate_inode_ref_t cb;
3850 	int pending_move = 0;
3851 
3852 	path = alloc_path_for_send();
3853 	if (!path)
3854 		return -ENOMEM;
3855 
3856 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
3857 		root = sctx->send_root;
3858 		cb = __record_new_ref;
3859 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3860 		root = sctx->parent_root;
3861 		cb = __record_deleted_ref;
3862 	} else {
3863 		btrfs_err(sctx->send_root->fs_info,
3864 				"Wrong command %d in process_all_refs", cmd);
3865 		ret = -EINVAL;
3866 		goto out;
3867 	}
3868 
3869 	key.objectid = sctx->cmp_key->objectid;
3870 	key.type = BTRFS_INODE_REF_KEY;
3871 	key.offset = 0;
3872 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3873 	if (ret < 0)
3874 		goto out;
3875 
3876 	while (1) {
3877 		eb = path->nodes[0];
3878 		slot = path->slots[0];
3879 		if (slot >= btrfs_header_nritems(eb)) {
3880 			ret = btrfs_next_leaf(root, path);
3881 			if (ret < 0)
3882 				goto out;
3883 			else if (ret > 0)
3884 				break;
3885 			continue;
3886 		}
3887 
3888 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3889 
3890 		if (found_key.objectid != key.objectid ||
3891 		    (found_key.type != BTRFS_INODE_REF_KEY &&
3892 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
3893 			break;
3894 
3895 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3896 		if (ret < 0)
3897 			goto out;
3898 
3899 		path->slots[0]++;
3900 	}
3901 	btrfs_release_path(path);
3902 
3903 	ret = process_recorded_refs(sctx, &pending_move);
3904 	/* Only applicable to an incremental send. */
3905 	ASSERT(pending_move == 0);
3906 
3907 out:
3908 	btrfs_free_path(path);
3909 	return ret;
3910 }
3911 
3912 static int send_set_xattr(struct send_ctx *sctx,
3913 			  struct fs_path *path,
3914 			  const char *name, int name_len,
3915 			  const char *data, int data_len)
3916 {
3917 	int ret = 0;
3918 
3919 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3920 	if (ret < 0)
3921 		goto out;
3922 
3923 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3924 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3925 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3926 
3927 	ret = send_cmd(sctx);
3928 
3929 tlv_put_failure:
3930 out:
3931 	return ret;
3932 }
3933 
3934 static int send_remove_xattr(struct send_ctx *sctx,
3935 			  struct fs_path *path,
3936 			  const char *name, int name_len)
3937 {
3938 	int ret = 0;
3939 
3940 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3941 	if (ret < 0)
3942 		goto out;
3943 
3944 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3945 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3946 
3947 	ret = send_cmd(sctx);
3948 
3949 tlv_put_failure:
3950 out:
3951 	return ret;
3952 }
3953 
3954 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3955 			       const char *name, int name_len,
3956 			       const char *data, int data_len,
3957 			       u8 type, void *ctx)
3958 {
3959 	int ret;
3960 	struct send_ctx *sctx = ctx;
3961 	struct fs_path *p;
3962 	posix_acl_xattr_header dummy_acl;
3963 
3964 	p = fs_path_alloc();
3965 	if (!p)
3966 		return -ENOMEM;
3967 
3968 	/*
3969 	 * This hack is needed because empty acl's are stored as zero byte
3970 	 * data in xattrs. Problem with that is, that receiving these zero byte
3971 	 * acl's will fail later. To fix this, we send a dummy acl list that
3972 	 * only contains the version number and no entries.
3973 	 */
3974 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3975 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3976 		if (data_len == 0) {
3977 			dummy_acl.a_version =
3978 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3979 			data = (char *)&dummy_acl;
3980 			data_len = sizeof(dummy_acl);
3981 		}
3982 	}
3983 
3984 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3985 	if (ret < 0)
3986 		goto out;
3987 
3988 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3989 
3990 out:
3991 	fs_path_free(p);
3992 	return ret;
3993 }
3994 
3995 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3996 				   const char *name, int name_len,
3997 				   const char *data, int data_len,
3998 				   u8 type, void *ctx)
3999 {
4000 	int ret;
4001 	struct send_ctx *sctx = ctx;
4002 	struct fs_path *p;
4003 
4004 	p = fs_path_alloc();
4005 	if (!p)
4006 		return -ENOMEM;
4007 
4008 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4009 	if (ret < 0)
4010 		goto out;
4011 
4012 	ret = send_remove_xattr(sctx, p, name, name_len);
4013 
4014 out:
4015 	fs_path_free(p);
4016 	return ret;
4017 }
4018 
4019 static int process_new_xattr(struct send_ctx *sctx)
4020 {
4021 	int ret = 0;
4022 
4023 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4024 			       sctx->cmp_key, __process_new_xattr, sctx);
4025 
4026 	return ret;
4027 }
4028 
4029 static int process_deleted_xattr(struct send_ctx *sctx)
4030 {
4031 	int ret;
4032 
4033 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4034 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4035 
4036 	return ret;
4037 }
4038 
4039 struct find_xattr_ctx {
4040 	const char *name;
4041 	int name_len;
4042 	int found_idx;
4043 	char *found_data;
4044 	int found_data_len;
4045 };
4046 
4047 static int __find_xattr(int num, struct btrfs_key *di_key,
4048 			const char *name, int name_len,
4049 			const char *data, int data_len,
4050 			u8 type, void *vctx)
4051 {
4052 	struct find_xattr_ctx *ctx = vctx;
4053 
4054 	if (name_len == ctx->name_len &&
4055 	    strncmp(name, ctx->name, name_len) == 0) {
4056 		ctx->found_idx = num;
4057 		ctx->found_data_len = data_len;
4058 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4059 		if (!ctx->found_data)
4060 			return -ENOMEM;
4061 		return 1;
4062 	}
4063 	return 0;
4064 }
4065 
4066 static int find_xattr(struct btrfs_root *root,
4067 		      struct btrfs_path *path,
4068 		      struct btrfs_key *key,
4069 		      const char *name, int name_len,
4070 		      char **data, int *data_len)
4071 {
4072 	int ret;
4073 	struct find_xattr_ctx ctx;
4074 
4075 	ctx.name = name;
4076 	ctx.name_len = name_len;
4077 	ctx.found_idx = -1;
4078 	ctx.found_data = NULL;
4079 	ctx.found_data_len = 0;
4080 
4081 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4082 	if (ret < 0)
4083 		return ret;
4084 
4085 	if (ctx.found_idx == -1)
4086 		return -ENOENT;
4087 	if (data) {
4088 		*data = ctx.found_data;
4089 		*data_len = ctx.found_data_len;
4090 	} else {
4091 		kfree(ctx.found_data);
4092 	}
4093 	return ctx.found_idx;
4094 }
4095 
4096 
4097 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4098 				       const char *name, int name_len,
4099 				       const char *data, int data_len,
4100 				       u8 type, void *ctx)
4101 {
4102 	int ret;
4103 	struct send_ctx *sctx = ctx;
4104 	char *found_data = NULL;
4105 	int found_data_len  = 0;
4106 
4107 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4108 			 sctx->cmp_key, name, name_len, &found_data,
4109 			 &found_data_len);
4110 	if (ret == -ENOENT) {
4111 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4112 				data_len, type, ctx);
4113 	} else if (ret >= 0) {
4114 		if (data_len != found_data_len ||
4115 		    memcmp(data, found_data, data_len)) {
4116 			ret = __process_new_xattr(num, di_key, name, name_len,
4117 					data, data_len, type, ctx);
4118 		} else {
4119 			ret = 0;
4120 		}
4121 	}
4122 
4123 	kfree(found_data);
4124 	return ret;
4125 }
4126 
4127 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4128 					   const char *name, int name_len,
4129 					   const char *data, int data_len,
4130 					   u8 type, void *ctx)
4131 {
4132 	int ret;
4133 	struct send_ctx *sctx = ctx;
4134 
4135 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4136 			 name, name_len, NULL, NULL);
4137 	if (ret == -ENOENT)
4138 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4139 				data_len, type, ctx);
4140 	else if (ret >= 0)
4141 		ret = 0;
4142 
4143 	return ret;
4144 }
4145 
4146 static int process_changed_xattr(struct send_ctx *sctx)
4147 {
4148 	int ret = 0;
4149 
4150 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4151 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4152 	if (ret < 0)
4153 		goto out;
4154 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4155 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4156 
4157 out:
4158 	return ret;
4159 }
4160 
4161 static int process_all_new_xattrs(struct send_ctx *sctx)
4162 {
4163 	int ret;
4164 	struct btrfs_root *root;
4165 	struct btrfs_path *path;
4166 	struct btrfs_key key;
4167 	struct btrfs_key found_key;
4168 	struct extent_buffer *eb;
4169 	int slot;
4170 
4171 	path = alloc_path_for_send();
4172 	if (!path)
4173 		return -ENOMEM;
4174 
4175 	root = sctx->send_root;
4176 
4177 	key.objectid = sctx->cmp_key->objectid;
4178 	key.type = BTRFS_XATTR_ITEM_KEY;
4179 	key.offset = 0;
4180 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4181 	if (ret < 0)
4182 		goto out;
4183 
4184 	while (1) {
4185 		eb = path->nodes[0];
4186 		slot = path->slots[0];
4187 		if (slot >= btrfs_header_nritems(eb)) {
4188 			ret = btrfs_next_leaf(root, path);
4189 			if (ret < 0) {
4190 				goto out;
4191 			} else if (ret > 0) {
4192 				ret = 0;
4193 				break;
4194 			}
4195 			continue;
4196 		}
4197 
4198 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4199 		if (found_key.objectid != key.objectid ||
4200 		    found_key.type != key.type) {
4201 			ret = 0;
4202 			goto out;
4203 		}
4204 
4205 		ret = iterate_dir_item(root, path, &found_key,
4206 				       __process_new_xattr, sctx);
4207 		if (ret < 0)
4208 			goto out;
4209 
4210 		path->slots[0]++;
4211 	}
4212 
4213 out:
4214 	btrfs_free_path(path);
4215 	return ret;
4216 }
4217 
4218 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4219 {
4220 	struct btrfs_root *root = sctx->send_root;
4221 	struct btrfs_fs_info *fs_info = root->fs_info;
4222 	struct inode *inode;
4223 	struct page *page;
4224 	char *addr;
4225 	struct btrfs_key key;
4226 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4227 	pgoff_t last_index;
4228 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4229 	ssize_t ret = 0;
4230 
4231 	key.objectid = sctx->cur_ino;
4232 	key.type = BTRFS_INODE_ITEM_KEY;
4233 	key.offset = 0;
4234 
4235 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4236 	if (IS_ERR(inode))
4237 		return PTR_ERR(inode);
4238 
4239 	if (offset + len > i_size_read(inode)) {
4240 		if (offset > i_size_read(inode))
4241 			len = 0;
4242 		else
4243 			len = offset - i_size_read(inode);
4244 	}
4245 	if (len == 0)
4246 		goto out;
4247 
4248 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4249 
4250 	/* initial readahead */
4251 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4252 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4253 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4254 		       last_index - index + 1);
4255 
4256 	while (index <= last_index) {
4257 		unsigned cur_len = min_t(unsigned, len,
4258 					 PAGE_CACHE_SIZE - pg_offset);
4259 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4260 		if (!page) {
4261 			ret = -ENOMEM;
4262 			break;
4263 		}
4264 
4265 		if (!PageUptodate(page)) {
4266 			btrfs_readpage(NULL, page);
4267 			lock_page(page);
4268 			if (!PageUptodate(page)) {
4269 				unlock_page(page);
4270 				page_cache_release(page);
4271 				ret = -EIO;
4272 				break;
4273 			}
4274 		}
4275 
4276 		addr = kmap(page);
4277 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4278 		kunmap(page);
4279 		unlock_page(page);
4280 		page_cache_release(page);
4281 		index++;
4282 		pg_offset = 0;
4283 		len -= cur_len;
4284 		ret += cur_len;
4285 	}
4286 out:
4287 	iput(inode);
4288 	return ret;
4289 }
4290 
4291 /*
4292  * Read some bytes from the current inode/file and send a write command to
4293  * user space.
4294  */
4295 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4296 {
4297 	int ret = 0;
4298 	struct fs_path *p;
4299 	ssize_t num_read = 0;
4300 
4301 	p = fs_path_alloc();
4302 	if (!p)
4303 		return -ENOMEM;
4304 
4305 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4306 
4307 	num_read = fill_read_buf(sctx, offset, len);
4308 	if (num_read <= 0) {
4309 		if (num_read < 0)
4310 			ret = num_read;
4311 		goto out;
4312 	}
4313 
4314 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4315 	if (ret < 0)
4316 		goto out;
4317 
4318 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4319 	if (ret < 0)
4320 		goto out;
4321 
4322 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4323 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4324 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4325 
4326 	ret = send_cmd(sctx);
4327 
4328 tlv_put_failure:
4329 out:
4330 	fs_path_free(p);
4331 	if (ret < 0)
4332 		return ret;
4333 	return num_read;
4334 }
4335 
4336 /*
4337  * Send a clone command to user space.
4338  */
4339 static int send_clone(struct send_ctx *sctx,
4340 		      u64 offset, u32 len,
4341 		      struct clone_root *clone_root)
4342 {
4343 	int ret = 0;
4344 	struct fs_path *p;
4345 	u64 gen;
4346 
4347 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4348 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4349 		clone_root->root->objectid, clone_root->ino,
4350 		clone_root->offset);
4351 
4352 	p = fs_path_alloc();
4353 	if (!p)
4354 		return -ENOMEM;
4355 
4356 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4357 	if (ret < 0)
4358 		goto out;
4359 
4360 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4361 	if (ret < 0)
4362 		goto out;
4363 
4364 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4365 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4366 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4367 
4368 	if (clone_root->root == sctx->send_root) {
4369 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4370 				&gen, NULL, NULL, NULL, NULL);
4371 		if (ret < 0)
4372 			goto out;
4373 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4374 	} else {
4375 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4376 	}
4377 	if (ret < 0)
4378 		goto out;
4379 
4380 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4381 			clone_root->root->root_item.uuid);
4382 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4383 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4384 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4385 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4386 			clone_root->offset);
4387 
4388 	ret = send_cmd(sctx);
4389 
4390 tlv_put_failure:
4391 out:
4392 	fs_path_free(p);
4393 	return ret;
4394 }
4395 
4396 /*
4397  * Send an update extent command to user space.
4398  */
4399 static int send_update_extent(struct send_ctx *sctx,
4400 			      u64 offset, u32 len)
4401 {
4402 	int ret = 0;
4403 	struct fs_path *p;
4404 
4405 	p = fs_path_alloc();
4406 	if (!p)
4407 		return -ENOMEM;
4408 
4409 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4410 	if (ret < 0)
4411 		goto out;
4412 
4413 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4414 	if (ret < 0)
4415 		goto out;
4416 
4417 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4418 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4419 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4420 
4421 	ret = send_cmd(sctx);
4422 
4423 tlv_put_failure:
4424 out:
4425 	fs_path_free(p);
4426 	return ret;
4427 }
4428 
4429 static int send_hole(struct send_ctx *sctx, u64 end)
4430 {
4431 	struct fs_path *p = NULL;
4432 	u64 offset = sctx->cur_inode_last_extent;
4433 	u64 len;
4434 	int ret = 0;
4435 
4436 	p = fs_path_alloc();
4437 	if (!p)
4438 		return -ENOMEM;
4439 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4440 	if (ret < 0)
4441 		goto tlv_put_failure;
4442 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4443 	while (offset < end) {
4444 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4445 
4446 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4447 		if (ret < 0)
4448 			break;
4449 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4450 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4451 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4452 		ret = send_cmd(sctx);
4453 		if (ret < 0)
4454 			break;
4455 		offset += len;
4456 	}
4457 tlv_put_failure:
4458 	fs_path_free(p);
4459 	return ret;
4460 }
4461 
4462 static int send_write_or_clone(struct send_ctx *sctx,
4463 			       struct btrfs_path *path,
4464 			       struct btrfs_key *key,
4465 			       struct clone_root *clone_root)
4466 {
4467 	int ret = 0;
4468 	struct btrfs_file_extent_item *ei;
4469 	u64 offset = key->offset;
4470 	u64 pos = 0;
4471 	u64 len;
4472 	u32 l;
4473 	u8 type;
4474 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4475 
4476 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4477 			struct btrfs_file_extent_item);
4478 	type = btrfs_file_extent_type(path->nodes[0], ei);
4479 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4480 		len = btrfs_file_extent_inline_len(path->nodes[0],
4481 						   path->slots[0], ei);
4482 		/*
4483 		 * it is possible the inline item won't cover the whole page,
4484 		 * but there may be items after this page.  Make
4485 		 * sure to send the whole thing
4486 		 */
4487 		len = PAGE_CACHE_ALIGN(len);
4488 	} else {
4489 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4490 	}
4491 
4492 	if (offset + len > sctx->cur_inode_size)
4493 		len = sctx->cur_inode_size - offset;
4494 	if (len == 0) {
4495 		ret = 0;
4496 		goto out;
4497 	}
4498 
4499 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4500 		ret = send_clone(sctx, offset, len, clone_root);
4501 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4502 		ret = send_update_extent(sctx, offset, len);
4503 	} else {
4504 		while (pos < len) {
4505 			l = len - pos;
4506 			if (l > BTRFS_SEND_READ_SIZE)
4507 				l = BTRFS_SEND_READ_SIZE;
4508 			ret = send_write(sctx, pos + offset, l);
4509 			if (ret < 0)
4510 				goto out;
4511 			if (!ret)
4512 				break;
4513 			pos += ret;
4514 		}
4515 		ret = 0;
4516 	}
4517 out:
4518 	return ret;
4519 }
4520 
4521 static int is_extent_unchanged(struct send_ctx *sctx,
4522 			       struct btrfs_path *left_path,
4523 			       struct btrfs_key *ekey)
4524 {
4525 	int ret = 0;
4526 	struct btrfs_key key;
4527 	struct btrfs_path *path = NULL;
4528 	struct extent_buffer *eb;
4529 	int slot;
4530 	struct btrfs_key found_key;
4531 	struct btrfs_file_extent_item *ei;
4532 	u64 left_disknr;
4533 	u64 right_disknr;
4534 	u64 left_offset;
4535 	u64 right_offset;
4536 	u64 left_offset_fixed;
4537 	u64 left_len;
4538 	u64 right_len;
4539 	u64 left_gen;
4540 	u64 right_gen;
4541 	u8 left_type;
4542 	u8 right_type;
4543 
4544 	path = alloc_path_for_send();
4545 	if (!path)
4546 		return -ENOMEM;
4547 
4548 	eb = left_path->nodes[0];
4549 	slot = left_path->slots[0];
4550 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4551 	left_type = btrfs_file_extent_type(eb, ei);
4552 
4553 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4554 		ret = 0;
4555 		goto out;
4556 	}
4557 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4558 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4559 	left_offset = btrfs_file_extent_offset(eb, ei);
4560 	left_gen = btrfs_file_extent_generation(eb, ei);
4561 
4562 	/*
4563 	 * Following comments will refer to these graphics. L is the left
4564 	 * extents which we are checking at the moment. 1-8 are the right
4565 	 * extents that we iterate.
4566 	 *
4567 	 *       |-----L-----|
4568 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4569 	 *
4570 	 *       |-----L-----|
4571 	 * |--1--|-2b-|...(same as above)
4572 	 *
4573 	 * Alternative situation. Happens on files where extents got split.
4574 	 *       |-----L-----|
4575 	 * |-----------7-----------|-6-|
4576 	 *
4577 	 * Alternative situation. Happens on files which got larger.
4578 	 *       |-----L-----|
4579 	 * |-8-|
4580 	 * Nothing follows after 8.
4581 	 */
4582 
4583 	key.objectid = ekey->objectid;
4584 	key.type = BTRFS_EXTENT_DATA_KEY;
4585 	key.offset = ekey->offset;
4586 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4587 	if (ret < 0)
4588 		goto out;
4589 	if (ret) {
4590 		ret = 0;
4591 		goto out;
4592 	}
4593 
4594 	/*
4595 	 * Handle special case where the right side has no extents at all.
4596 	 */
4597 	eb = path->nodes[0];
4598 	slot = path->slots[0];
4599 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4600 	if (found_key.objectid != key.objectid ||
4601 	    found_key.type != key.type) {
4602 		/* If we're a hole then just pretend nothing changed */
4603 		ret = (left_disknr) ? 0 : 1;
4604 		goto out;
4605 	}
4606 
4607 	/*
4608 	 * We're now on 2a, 2b or 7.
4609 	 */
4610 	key = found_key;
4611 	while (key.offset < ekey->offset + left_len) {
4612 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4613 		right_type = btrfs_file_extent_type(eb, ei);
4614 		if (right_type != BTRFS_FILE_EXTENT_REG) {
4615 			ret = 0;
4616 			goto out;
4617 		}
4618 
4619 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4620 		right_len = btrfs_file_extent_num_bytes(eb, ei);
4621 		right_offset = btrfs_file_extent_offset(eb, ei);
4622 		right_gen = btrfs_file_extent_generation(eb, ei);
4623 
4624 		/*
4625 		 * Are we at extent 8? If yes, we know the extent is changed.
4626 		 * This may only happen on the first iteration.
4627 		 */
4628 		if (found_key.offset + right_len <= ekey->offset) {
4629 			/* If we're a hole just pretend nothing changed */
4630 			ret = (left_disknr) ? 0 : 1;
4631 			goto out;
4632 		}
4633 
4634 		left_offset_fixed = left_offset;
4635 		if (key.offset < ekey->offset) {
4636 			/* Fix the right offset for 2a and 7. */
4637 			right_offset += ekey->offset - key.offset;
4638 		} else {
4639 			/* Fix the left offset for all behind 2a and 2b */
4640 			left_offset_fixed += key.offset - ekey->offset;
4641 		}
4642 
4643 		/*
4644 		 * Check if we have the same extent.
4645 		 */
4646 		if (left_disknr != right_disknr ||
4647 		    left_offset_fixed != right_offset ||
4648 		    left_gen != right_gen) {
4649 			ret = 0;
4650 			goto out;
4651 		}
4652 
4653 		/*
4654 		 * Go to the next extent.
4655 		 */
4656 		ret = btrfs_next_item(sctx->parent_root, path);
4657 		if (ret < 0)
4658 			goto out;
4659 		if (!ret) {
4660 			eb = path->nodes[0];
4661 			slot = path->slots[0];
4662 			btrfs_item_key_to_cpu(eb, &found_key, slot);
4663 		}
4664 		if (ret || found_key.objectid != key.objectid ||
4665 		    found_key.type != key.type) {
4666 			key.offset += right_len;
4667 			break;
4668 		}
4669 		if (found_key.offset != key.offset + right_len) {
4670 			ret = 0;
4671 			goto out;
4672 		}
4673 		key = found_key;
4674 	}
4675 
4676 	/*
4677 	 * We're now behind the left extent (treat as unchanged) or at the end
4678 	 * of the right side (treat as changed).
4679 	 */
4680 	if (key.offset >= ekey->offset + left_len)
4681 		ret = 1;
4682 	else
4683 		ret = 0;
4684 
4685 
4686 out:
4687 	btrfs_free_path(path);
4688 	return ret;
4689 }
4690 
4691 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4692 {
4693 	struct btrfs_path *path;
4694 	struct btrfs_root *root = sctx->send_root;
4695 	struct btrfs_file_extent_item *fi;
4696 	struct btrfs_key key;
4697 	u64 extent_end;
4698 	u8 type;
4699 	int ret;
4700 
4701 	path = alloc_path_for_send();
4702 	if (!path)
4703 		return -ENOMEM;
4704 
4705 	sctx->cur_inode_last_extent = 0;
4706 
4707 	key.objectid = sctx->cur_ino;
4708 	key.type = BTRFS_EXTENT_DATA_KEY;
4709 	key.offset = offset;
4710 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4711 	if (ret < 0)
4712 		goto out;
4713 	ret = 0;
4714 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4715 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4716 		goto out;
4717 
4718 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4719 			    struct btrfs_file_extent_item);
4720 	type = btrfs_file_extent_type(path->nodes[0], fi);
4721 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4722 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4723 							path->slots[0], fi);
4724 		extent_end = ALIGN(key.offset + size,
4725 				   sctx->send_root->sectorsize);
4726 	} else {
4727 		extent_end = key.offset +
4728 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4729 	}
4730 	sctx->cur_inode_last_extent = extent_end;
4731 out:
4732 	btrfs_free_path(path);
4733 	return ret;
4734 }
4735 
4736 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4737 			   struct btrfs_key *key)
4738 {
4739 	struct btrfs_file_extent_item *fi;
4740 	u64 extent_end;
4741 	u8 type;
4742 	int ret = 0;
4743 
4744 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4745 		return 0;
4746 
4747 	if (sctx->cur_inode_last_extent == (u64)-1) {
4748 		ret = get_last_extent(sctx, key->offset - 1);
4749 		if (ret)
4750 			return ret;
4751 	}
4752 
4753 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4754 			    struct btrfs_file_extent_item);
4755 	type = btrfs_file_extent_type(path->nodes[0], fi);
4756 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4757 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4758 							path->slots[0], fi);
4759 		extent_end = ALIGN(key->offset + size,
4760 				   sctx->send_root->sectorsize);
4761 	} else {
4762 		extent_end = key->offset +
4763 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4764 	}
4765 
4766 	if (path->slots[0] == 0 &&
4767 	    sctx->cur_inode_last_extent < key->offset) {
4768 		/*
4769 		 * We might have skipped entire leafs that contained only
4770 		 * file extent items for our current inode. These leafs have
4771 		 * a generation number smaller (older) than the one in the
4772 		 * current leaf and the leaf our last extent came from, and
4773 		 * are located between these 2 leafs.
4774 		 */
4775 		ret = get_last_extent(sctx, key->offset - 1);
4776 		if (ret)
4777 			return ret;
4778 	}
4779 
4780 	if (sctx->cur_inode_last_extent < key->offset)
4781 		ret = send_hole(sctx, key->offset);
4782 	sctx->cur_inode_last_extent = extent_end;
4783 	return ret;
4784 }
4785 
4786 static int process_extent(struct send_ctx *sctx,
4787 			  struct btrfs_path *path,
4788 			  struct btrfs_key *key)
4789 {
4790 	struct clone_root *found_clone = NULL;
4791 	int ret = 0;
4792 
4793 	if (S_ISLNK(sctx->cur_inode_mode))
4794 		return 0;
4795 
4796 	if (sctx->parent_root && !sctx->cur_inode_new) {
4797 		ret = is_extent_unchanged(sctx, path, key);
4798 		if (ret < 0)
4799 			goto out;
4800 		if (ret) {
4801 			ret = 0;
4802 			goto out_hole;
4803 		}
4804 	} else {
4805 		struct btrfs_file_extent_item *ei;
4806 		u8 type;
4807 
4808 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4809 				    struct btrfs_file_extent_item);
4810 		type = btrfs_file_extent_type(path->nodes[0], ei);
4811 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4812 		    type == BTRFS_FILE_EXTENT_REG) {
4813 			/*
4814 			 * The send spec does not have a prealloc command yet,
4815 			 * so just leave a hole for prealloc'ed extents until
4816 			 * we have enough commands queued up to justify rev'ing
4817 			 * the send spec.
4818 			 */
4819 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4820 				ret = 0;
4821 				goto out;
4822 			}
4823 
4824 			/* Have a hole, just skip it. */
4825 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4826 				ret = 0;
4827 				goto out;
4828 			}
4829 		}
4830 	}
4831 
4832 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4833 			sctx->cur_inode_size, &found_clone);
4834 	if (ret != -ENOENT && ret < 0)
4835 		goto out;
4836 
4837 	ret = send_write_or_clone(sctx, path, key, found_clone);
4838 	if (ret)
4839 		goto out;
4840 out_hole:
4841 	ret = maybe_send_hole(sctx, path, key);
4842 out:
4843 	return ret;
4844 }
4845 
4846 static int process_all_extents(struct send_ctx *sctx)
4847 {
4848 	int ret;
4849 	struct btrfs_root *root;
4850 	struct btrfs_path *path;
4851 	struct btrfs_key key;
4852 	struct btrfs_key found_key;
4853 	struct extent_buffer *eb;
4854 	int slot;
4855 
4856 	root = sctx->send_root;
4857 	path = alloc_path_for_send();
4858 	if (!path)
4859 		return -ENOMEM;
4860 
4861 	key.objectid = sctx->cmp_key->objectid;
4862 	key.type = BTRFS_EXTENT_DATA_KEY;
4863 	key.offset = 0;
4864 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4865 	if (ret < 0)
4866 		goto out;
4867 
4868 	while (1) {
4869 		eb = path->nodes[0];
4870 		slot = path->slots[0];
4871 
4872 		if (slot >= btrfs_header_nritems(eb)) {
4873 			ret = btrfs_next_leaf(root, path);
4874 			if (ret < 0) {
4875 				goto out;
4876 			} else if (ret > 0) {
4877 				ret = 0;
4878 				break;
4879 			}
4880 			continue;
4881 		}
4882 
4883 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4884 
4885 		if (found_key.objectid != key.objectid ||
4886 		    found_key.type != key.type) {
4887 			ret = 0;
4888 			goto out;
4889 		}
4890 
4891 		ret = process_extent(sctx, path, &found_key);
4892 		if (ret < 0)
4893 			goto out;
4894 
4895 		path->slots[0]++;
4896 	}
4897 
4898 out:
4899 	btrfs_free_path(path);
4900 	return ret;
4901 }
4902 
4903 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4904 					   int *pending_move,
4905 					   int *refs_processed)
4906 {
4907 	int ret = 0;
4908 
4909 	if (sctx->cur_ino == 0)
4910 		goto out;
4911 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4912 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4913 		goto out;
4914 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4915 		goto out;
4916 
4917 	ret = process_recorded_refs(sctx, pending_move);
4918 	if (ret < 0)
4919 		goto out;
4920 
4921 	*refs_processed = 1;
4922 out:
4923 	return ret;
4924 }
4925 
4926 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4927 {
4928 	int ret = 0;
4929 	u64 left_mode;
4930 	u64 left_uid;
4931 	u64 left_gid;
4932 	u64 right_mode;
4933 	u64 right_uid;
4934 	u64 right_gid;
4935 	int need_chmod = 0;
4936 	int need_chown = 0;
4937 	int pending_move = 0;
4938 	int refs_processed = 0;
4939 
4940 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4941 					      &refs_processed);
4942 	if (ret < 0)
4943 		goto out;
4944 
4945 	/*
4946 	 * We have processed the refs and thus need to advance send_progress.
4947 	 * Now, calls to get_cur_xxx will take the updated refs of the current
4948 	 * inode into account.
4949 	 *
4950 	 * On the other hand, if our current inode is a directory and couldn't
4951 	 * be moved/renamed because its parent was renamed/moved too and it has
4952 	 * a higher inode number, we can only move/rename our current inode
4953 	 * after we moved/renamed its parent. Therefore in this case operate on
4954 	 * the old path (pre move/rename) of our current inode, and the
4955 	 * move/rename will be performed later.
4956 	 */
4957 	if (refs_processed && !pending_move)
4958 		sctx->send_progress = sctx->cur_ino + 1;
4959 
4960 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4961 		goto out;
4962 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4963 		goto out;
4964 
4965 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4966 			&left_mode, &left_uid, &left_gid, NULL);
4967 	if (ret < 0)
4968 		goto out;
4969 
4970 	if (!sctx->parent_root || sctx->cur_inode_new) {
4971 		need_chown = 1;
4972 		if (!S_ISLNK(sctx->cur_inode_mode))
4973 			need_chmod = 1;
4974 	} else {
4975 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4976 				NULL, NULL, &right_mode, &right_uid,
4977 				&right_gid, NULL);
4978 		if (ret < 0)
4979 			goto out;
4980 
4981 		if (left_uid != right_uid || left_gid != right_gid)
4982 			need_chown = 1;
4983 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4984 			need_chmod = 1;
4985 	}
4986 
4987 	if (S_ISREG(sctx->cur_inode_mode)) {
4988 		if (need_send_hole(sctx)) {
4989 			if (sctx->cur_inode_last_extent == (u64)-1 ||
4990 			    sctx->cur_inode_last_extent <
4991 			    sctx->cur_inode_size) {
4992 				ret = get_last_extent(sctx, (u64)-1);
4993 				if (ret)
4994 					goto out;
4995 			}
4996 			if (sctx->cur_inode_last_extent <
4997 			    sctx->cur_inode_size) {
4998 				ret = send_hole(sctx, sctx->cur_inode_size);
4999 				if (ret)
5000 					goto out;
5001 			}
5002 		}
5003 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5004 				sctx->cur_inode_size);
5005 		if (ret < 0)
5006 			goto out;
5007 	}
5008 
5009 	if (need_chown) {
5010 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5011 				left_uid, left_gid);
5012 		if (ret < 0)
5013 			goto out;
5014 	}
5015 	if (need_chmod) {
5016 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5017 				left_mode);
5018 		if (ret < 0)
5019 			goto out;
5020 	}
5021 
5022 	/*
5023 	 * If other directory inodes depended on our current directory
5024 	 * inode's move/rename, now do their move/rename operations.
5025 	 */
5026 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5027 		ret = apply_children_dir_moves(sctx);
5028 		if (ret)
5029 			goto out;
5030 		/*
5031 		 * Need to send that every time, no matter if it actually
5032 		 * changed between the two trees as we have done changes to
5033 		 * the inode before. If our inode is a directory and it's
5034 		 * waiting to be moved/renamed, we will send its utimes when
5035 		 * it's moved/renamed, therefore we don't need to do it here.
5036 		 */
5037 		sctx->send_progress = sctx->cur_ino + 1;
5038 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5039 		if (ret < 0)
5040 			goto out;
5041 	}
5042 
5043 out:
5044 	return ret;
5045 }
5046 
5047 static int changed_inode(struct send_ctx *sctx,
5048 			 enum btrfs_compare_tree_result result)
5049 {
5050 	int ret = 0;
5051 	struct btrfs_key *key = sctx->cmp_key;
5052 	struct btrfs_inode_item *left_ii = NULL;
5053 	struct btrfs_inode_item *right_ii = NULL;
5054 	u64 left_gen = 0;
5055 	u64 right_gen = 0;
5056 
5057 	sctx->cur_ino = key->objectid;
5058 	sctx->cur_inode_new_gen = 0;
5059 	sctx->cur_inode_last_extent = (u64)-1;
5060 
5061 	/*
5062 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5063 	 * functions that the current inode's refs are not updated yet. Later,
5064 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5065 	 */
5066 	sctx->send_progress = sctx->cur_ino;
5067 
5068 	if (result == BTRFS_COMPARE_TREE_NEW ||
5069 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5070 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5071 				sctx->left_path->slots[0],
5072 				struct btrfs_inode_item);
5073 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5074 				left_ii);
5075 	} else {
5076 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5077 				sctx->right_path->slots[0],
5078 				struct btrfs_inode_item);
5079 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5080 				right_ii);
5081 	}
5082 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5083 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5084 				sctx->right_path->slots[0],
5085 				struct btrfs_inode_item);
5086 
5087 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5088 				right_ii);
5089 
5090 		/*
5091 		 * The cur_ino = root dir case is special here. We can't treat
5092 		 * the inode as deleted+reused because it would generate a
5093 		 * stream that tries to delete/mkdir the root dir.
5094 		 */
5095 		if (left_gen != right_gen &&
5096 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5097 			sctx->cur_inode_new_gen = 1;
5098 	}
5099 
5100 	if (result == BTRFS_COMPARE_TREE_NEW) {
5101 		sctx->cur_inode_gen = left_gen;
5102 		sctx->cur_inode_new = 1;
5103 		sctx->cur_inode_deleted = 0;
5104 		sctx->cur_inode_size = btrfs_inode_size(
5105 				sctx->left_path->nodes[0], left_ii);
5106 		sctx->cur_inode_mode = btrfs_inode_mode(
5107 				sctx->left_path->nodes[0], left_ii);
5108 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5109 				sctx->left_path->nodes[0], left_ii);
5110 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5111 			ret = send_create_inode_if_needed(sctx);
5112 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5113 		sctx->cur_inode_gen = right_gen;
5114 		sctx->cur_inode_new = 0;
5115 		sctx->cur_inode_deleted = 1;
5116 		sctx->cur_inode_size = btrfs_inode_size(
5117 				sctx->right_path->nodes[0], right_ii);
5118 		sctx->cur_inode_mode = btrfs_inode_mode(
5119 				sctx->right_path->nodes[0], right_ii);
5120 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5121 		/*
5122 		 * We need to do some special handling in case the inode was
5123 		 * reported as changed with a changed generation number. This
5124 		 * means that the original inode was deleted and new inode
5125 		 * reused the same inum. So we have to treat the old inode as
5126 		 * deleted and the new one as new.
5127 		 */
5128 		if (sctx->cur_inode_new_gen) {
5129 			/*
5130 			 * First, process the inode as if it was deleted.
5131 			 */
5132 			sctx->cur_inode_gen = right_gen;
5133 			sctx->cur_inode_new = 0;
5134 			sctx->cur_inode_deleted = 1;
5135 			sctx->cur_inode_size = btrfs_inode_size(
5136 					sctx->right_path->nodes[0], right_ii);
5137 			sctx->cur_inode_mode = btrfs_inode_mode(
5138 					sctx->right_path->nodes[0], right_ii);
5139 			ret = process_all_refs(sctx,
5140 					BTRFS_COMPARE_TREE_DELETED);
5141 			if (ret < 0)
5142 				goto out;
5143 
5144 			/*
5145 			 * Now process the inode as if it was new.
5146 			 */
5147 			sctx->cur_inode_gen = left_gen;
5148 			sctx->cur_inode_new = 1;
5149 			sctx->cur_inode_deleted = 0;
5150 			sctx->cur_inode_size = btrfs_inode_size(
5151 					sctx->left_path->nodes[0], left_ii);
5152 			sctx->cur_inode_mode = btrfs_inode_mode(
5153 					sctx->left_path->nodes[0], left_ii);
5154 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5155 					sctx->left_path->nodes[0], left_ii);
5156 			ret = send_create_inode_if_needed(sctx);
5157 			if (ret < 0)
5158 				goto out;
5159 
5160 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5161 			if (ret < 0)
5162 				goto out;
5163 			/*
5164 			 * Advance send_progress now as we did not get into
5165 			 * process_recorded_refs_if_needed in the new_gen case.
5166 			 */
5167 			sctx->send_progress = sctx->cur_ino + 1;
5168 
5169 			/*
5170 			 * Now process all extents and xattrs of the inode as if
5171 			 * they were all new.
5172 			 */
5173 			ret = process_all_extents(sctx);
5174 			if (ret < 0)
5175 				goto out;
5176 			ret = process_all_new_xattrs(sctx);
5177 			if (ret < 0)
5178 				goto out;
5179 		} else {
5180 			sctx->cur_inode_gen = left_gen;
5181 			sctx->cur_inode_new = 0;
5182 			sctx->cur_inode_new_gen = 0;
5183 			sctx->cur_inode_deleted = 0;
5184 			sctx->cur_inode_size = btrfs_inode_size(
5185 					sctx->left_path->nodes[0], left_ii);
5186 			sctx->cur_inode_mode = btrfs_inode_mode(
5187 					sctx->left_path->nodes[0], left_ii);
5188 		}
5189 	}
5190 
5191 out:
5192 	return ret;
5193 }
5194 
5195 /*
5196  * We have to process new refs before deleted refs, but compare_trees gives us
5197  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5198  * first and later process them in process_recorded_refs.
5199  * For the cur_inode_new_gen case, we skip recording completely because
5200  * changed_inode did already initiate processing of refs. The reason for this is
5201  * that in this case, compare_tree actually compares the refs of 2 different
5202  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5203  * refs of the right tree as deleted and all refs of the left tree as new.
5204  */
5205 static int changed_ref(struct send_ctx *sctx,
5206 		       enum btrfs_compare_tree_result result)
5207 {
5208 	int ret = 0;
5209 
5210 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5211 
5212 	if (!sctx->cur_inode_new_gen &&
5213 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5214 		if (result == BTRFS_COMPARE_TREE_NEW)
5215 			ret = record_new_ref(sctx);
5216 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5217 			ret = record_deleted_ref(sctx);
5218 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5219 			ret = record_changed_ref(sctx);
5220 	}
5221 
5222 	return ret;
5223 }
5224 
5225 /*
5226  * Process new/deleted/changed xattrs. We skip processing in the
5227  * cur_inode_new_gen case because changed_inode did already initiate processing
5228  * of xattrs. The reason is the same as in changed_ref
5229  */
5230 static int changed_xattr(struct send_ctx *sctx,
5231 			 enum btrfs_compare_tree_result result)
5232 {
5233 	int ret = 0;
5234 
5235 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5236 
5237 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5238 		if (result == BTRFS_COMPARE_TREE_NEW)
5239 			ret = process_new_xattr(sctx);
5240 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5241 			ret = process_deleted_xattr(sctx);
5242 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5243 			ret = process_changed_xattr(sctx);
5244 	}
5245 
5246 	return ret;
5247 }
5248 
5249 /*
5250  * Process new/deleted/changed extents. We skip processing in the
5251  * cur_inode_new_gen case because changed_inode did already initiate processing
5252  * of extents. The reason is the same as in changed_ref
5253  */
5254 static int changed_extent(struct send_ctx *sctx,
5255 			  enum btrfs_compare_tree_result result)
5256 {
5257 	int ret = 0;
5258 
5259 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5260 
5261 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5262 		if (result != BTRFS_COMPARE_TREE_DELETED)
5263 			ret = process_extent(sctx, sctx->left_path,
5264 					sctx->cmp_key);
5265 	}
5266 
5267 	return ret;
5268 }
5269 
5270 static int dir_changed(struct send_ctx *sctx, u64 dir)
5271 {
5272 	u64 orig_gen, new_gen;
5273 	int ret;
5274 
5275 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5276 			     NULL, NULL);
5277 	if (ret)
5278 		return ret;
5279 
5280 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5281 			     NULL, NULL, NULL);
5282 	if (ret)
5283 		return ret;
5284 
5285 	return (orig_gen != new_gen) ? 1 : 0;
5286 }
5287 
5288 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5289 			struct btrfs_key *key)
5290 {
5291 	struct btrfs_inode_extref *extref;
5292 	struct extent_buffer *leaf;
5293 	u64 dirid = 0, last_dirid = 0;
5294 	unsigned long ptr;
5295 	u32 item_size;
5296 	u32 cur_offset = 0;
5297 	int ref_name_len;
5298 	int ret = 0;
5299 
5300 	/* Easy case, just check this one dirid */
5301 	if (key->type == BTRFS_INODE_REF_KEY) {
5302 		dirid = key->offset;
5303 
5304 		ret = dir_changed(sctx, dirid);
5305 		goto out;
5306 	}
5307 
5308 	leaf = path->nodes[0];
5309 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5310 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5311 	while (cur_offset < item_size) {
5312 		extref = (struct btrfs_inode_extref *)(ptr +
5313 						       cur_offset);
5314 		dirid = btrfs_inode_extref_parent(leaf, extref);
5315 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5316 		cur_offset += ref_name_len + sizeof(*extref);
5317 		if (dirid == last_dirid)
5318 			continue;
5319 		ret = dir_changed(sctx, dirid);
5320 		if (ret)
5321 			break;
5322 		last_dirid = dirid;
5323 	}
5324 out:
5325 	return ret;
5326 }
5327 
5328 /*
5329  * Updates compare related fields in sctx and simply forwards to the actual
5330  * changed_xxx functions.
5331  */
5332 static int changed_cb(struct btrfs_root *left_root,
5333 		      struct btrfs_root *right_root,
5334 		      struct btrfs_path *left_path,
5335 		      struct btrfs_path *right_path,
5336 		      struct btrfs_key *key,
5337 		      enum btrfs_compare_tree_result result,
5338 		      void *ctx)
5339 {
5340 	int ret = 0;
5341 	struct send_ctx *sctx = ctx;
5342 
5343 	if (result == BTRFS_COMPARE_TREE_SAME) {
5344 		if (key->type == BTRFS_INODE_REF_KEY ||
5345 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5346 			ret = compare_refs(sctx, left_path, key);
5347 			if (!ret)
5348 				return 0;
5349 			if (ret < 0)
5350 				return ret;
5351 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5352 			return maybe_send_hole(sctx, left_path, key);
5353 		} else {
5354 			return 0;
5355 		}
5356 		result = BTRFS_COMPARE_TREE_CHANGED;
5357 		ret = 0;
5358 	}
5359 
5360 	sctx->left_path = left_path;
5361 	sctx->right_path = right_path;
5362 	sctx->cmp_key = key;
5363 
5364 	ret = finish_inode_if_needed(sctx, 0);
5365 	if (ret < 0)
5366 		goto out;
5367 
5368 	/* Ignore non-FS objects */
5369 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5370 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5371 		goto out;
5372 
5373 	if (key->type == BTRFS_INODE_ITEM_KEY)
5374 		ret = changed_inode(sctx, result);
5375 	else if (key->type == BTRFS_INODE_REF_KEY ||
5376 		 key->type == BTRFS_INODE_EXTREF_KEY)
5377 		ret = changed_ref(sctx, result);
5378 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5379 		ret = changed_xattr(sctx, result);
5380 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5381 		ret = changed_extent(sctx, result);
5382 
5383 out:
5384 	return ret;
5385 }
5386 
5387 static int full_send_tree(struct send_ctx *sctx)
5388 {
5389 	int ret;
5390 	struct btrfs_root *send_root = sctx->send_root;
5391 	struct btrfs_key key;
5392 	struct btrfs_key found_key;
5393 	struct btrfs_path *path;
5394 	struct extent_buffer *eb;
5395 	int slot;
5396 
5397 	path = alloc_path_for_send();
5398 	if (!path)
5399 		return -ENOMEM;
5400 
5401 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5402 	key.type = BTRFS_INODE_ITEM_KEY;
5403 	key.offset = 0;
5404 
5405 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5406 	if (ret < 0)
5407 		goto out;
5408 	if (ret)
5409 		goto out_finish;
5410 
5411 	while (1) {
5412 		eb = path->nodes[0];
5413 		slot = path->slots[0];
5414 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5415 
5416 		ret = changed_cb(send_root, NULL, path, NULL,
5417 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5418 		if (ret < 0)
5419 			goto out;
5420 
5421 		key.objectid = found_key.objectid;
5422 		key.type = found_key.type;
5423 		key.offset = found_key.offset + 1;
5424 
5425 		ret = btrfs_next_item(send_root, path);
5426 		if (ret < 0)
5427 			goto out;
5428 		if (ret) {
5429 			ret  = 0;
5430 			break;
5431 		}
5432 	}
5433 
5434 out_finish:
5435 	ret = finish_inode_if_needed(sctx, 1);
5436 
5437 out:
5438 	btrfs_free_path(path);
5439 	return ret;
5440 }
5441 
5442 static int send_subvol(struct send_ctx *sctx)
5443 {
5444 	int ret;
5445 
5446 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5447 		ret = send_header(sctx);
5448 		if (ret < 0)
5449 			goto out;
5450 	}
5451 
5452 	ret = send_subvol_begin(sctx);
5453 	if (ret < 0)
5454 		goto out;
5455 
5456 	if (sctx->parent_root) {
5457 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5458 				changed_cb, sctx);
5459 		if (ret < 0)
5460 			goto out;
5461 		ret = finish_inode_if_needed(sctx, 1);
5462 		if (ret < 0)
5463 			goto out;
5464 	} else {
5465 		ret = full_send_tree(sctx);
5466 		if (ret < 0)
5467 			goto out;
5468 	}
5469 
5470 out:
5471 	free_recorded_refs(sctx);
5472 	return ret;
5473 }
5474 
5475 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5476 {
5477 	spin_lock(&root->root_item_lock);
5478 	root->send_in_progress--;
5479 	/*
5480 	 * Not much left to do, we don't know why it's unbalanced and
5481 	 * can't blindly reset it to 0.
5482 	 */
5483 	if (root->send_in_progress < 0)
5484 		btrfs_err(root->fs_info,
5485 			"send_in_progres unbalanced %d root %llu\n",
5486 			root->send_in_progress, root->root_key.objectid);
5487 	spin_unlock(&root->root_item_lock);
5488 }
5489 
5490 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5491 {
5492 	int ret = 0;
5493 	struct btrfs_root *send_root;
5494 	struct btrfs_root *clone_root;
5495 	struct btrfs_fs_info *fs_info;
5496 	struct btrfs_ioctl_send_args *arg = NULL;
5497 	struct btrfs_key key;
5498 	struct send_ctx *sctx = NULL;
5499 	u32 i;
5500 	u64 *clone_sources_tmp = NULL;
5501 	int clone_sources_to_rollback = 0;
5502 	int sort_clone_roots = 0;
5503 	int index;
5504 
5505 	if (!capable(CAP_SYS_ADMIN))
5506 		return -EPERM;
5507 
5508 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5509 	fs_info = send_root->fs_info;
5510 
5511 	/*
5512 	 * The subvolume must remain read-only during send, protect against
5513 	 * making it RW.
5514 	 */
5515 	spin_lock(&send_root->root_item_lock);
5516 	send_root->send_in_progress++;
5517 	spin_unlock(&send_root->root_item_lock);
5518 
5519 	/*
5520 	 * This is done when we lookup the root, it should already be complete
5521 	 * by the time we get here.
5522 	 */
5523 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5524 
5525 	/*
5526 	 * Userspace tools do the checks and warn the user if it's
5527 	 * not RO.
5528 	 */
5529 	if (!btrfs_root_readonly(send_root)) {
5530 		ret = -EPERM;
5531 		goto out;
5532 	}
5533 
5534 	arg = memdup_user(arg_, sizeof(*arg));
5535 	if (IS_ERR(arg)) {
5536 		ret = PTR_ERR(arg);
5537 		arg = NULL;
5538 		goto out;
5539 	}
5540 
5541 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5542 			sizeof(*arg->clone_sources) *
5543 			arg->clone_sources_count)) {
5544 		ret = -EFAULT;
5545 		goto out;
5546 	}
5547 
5548 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5549 		ret = -EINVAL;
5550 		goto out;
5551 	}
5552 
5553 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5554 	if (!sctx) {
5555 		ret = -ENOMEM;
5556 		goto out;
5557 	}
5558 
5559 	INIT_LIST_HEAD(&sctx->new_refs);
5560 	INIT_LIST_HEAD(&sctx->deleted_refs);
5561 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5562 	INIT_LIST_HEAD(&sctx->name_cache_list);
5563 
5564 	sctx->flags = arg->flags;
5565 
5566 	sctx->send_filp = fget(arg->send_fd);
5567 	if (!sctx->send_filp) {
5568 		ret = -EBADF;
5569 		goto out;
5570 	}
5571 
5572 	sctx->send_root = send_root;
5573 	sctx->clone_roots_cnt = arg->clone_sources_count;
5574 
5575 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5576 	sctx->send_buf = vmalloc(sctx->send_max_size);
5577 	if (!sctx->send_buf) {
5578 		ret = -ENOMEM;
5579 		goto out;
5580 	}
5581 
5582 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5583 	if (!sctx->read_buf) {
5584 		ret = -ENOMEM;
5585 		goto out;
5586 	}
5587 
5588 	sctx->pending_dir_moves = RB_ROOT;
5589 	sctx->waiting_dir_moves = RB_ROOT;
5590 	sctx->orphan_dirs = RB_ROOT;
5591 
5592 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5593 			(arg->clone_sources_count + 1));
5594 	if (!sctx->clone_roots) {
5595 		ret = -ENOMEM;
5596 		goto out;
5597 	}
5598 
5599 	if (arg->clone_sources_count) {
5600 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
5601 				sizeof(*arg->clone_sources));
5602 		if (!clone_sources_tmp) {
5603 			ret = -ENOMEM;
5604 			goto out;
5605 		}
5606 
5607 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5608 				arg->clone_sources_count *
5609 				sizeof(*arg->clone_sources));
5610 		if (ret) {
5611 			ret = -EFAULT;
5612 			goto out;
5613 		}
5614 
5615 		for (i = 0; i < arg->clone_sources_count; i++) {
5616 			key.objectid = clone_sources_tmp[i];
5617 			key.type = BTRFS_ROOT_ITEM_KEY;
5618 			key.offset = (u64)-1;
5619 
5620 			index = srcu_read_lock(&fs_info->subvol_srcu);
5621 
5622 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5623 			if (IS_ERR(clone_root)) {
5624 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5625 				ret = PTR_ERR(clone_root);
5626 				goto out;
5627 			}
5628 			clone_sources_to_rollback = i + 1;
5629 			spin_lock(&clone_root->root_item_lock);
5630 			clone_root->send_in_progress++;
5631 			if (!btrfs_root_readonly(clone_root)) {
5632 				spin_unlock(&clone_root->root_item_lock);
5633 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5634 				ret = -EPERM;
5635 				goto out;
5636 			}
5637 			spin_unlock(&clone_root->root_item_lock);
5638 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5639 
5640 			sctx->clone_roots[i].root = clone_root;
5641 		}
5642 		vfree(clone_sources_tmp);
5643 		clone_sources_tmp = NULL;
5644 	}
5645 
5646 	if (arg->parent_root) {
5647 		key.objectid = arg->parent_root;
5648 		key.type = BTRFS_ROOT_ITEM_KEY;
5649 		key.offset = (u64)-1;
5650 
5651 		index = srcu_read_lock(&fs_info->subvol_srcu);
5652 
5653 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5654 		if (IS_ERR(sctx->parent_root)) {
5655 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5656 			ret = PTR_ERR(sctx->parent_root);
5657 			goto out;
5658 		}
5659 
5660 		spin_lock(&sctx->parent_root->root_item_lock);
5661 		sctx->parent_root->send_in_progress++;
5662 		if (!btrfs_root_readonly(sctx->parent_root)) {
5663 			spin_unlock(&sctx->parent_root->root_item_lock);
5664 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5665 			ret = -EPERM;
5666 			goto out;
5667 		}
5668 		spin_unlock(&sctx->parent_root->root_item_lock);
5669 
5670 		srcu_read_unlock(&fs_info->subvol_srcu, index);
5671 	}
5672 
5673 	/*
5674 	 * Clones from send_root are allowed, but only if the clone source
5675 	 * is behind the current send position. This is checked while searching
5676 	 * for possible clone sources.
5677 	 */
5678 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5679 
5680 	/* We do a bsearch later */
5681 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
5682 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5683 			NULL);
5684 	sort_clone_roots = 1;
5685 
5686 	current->journal_info = (void *)BTRFS_SEND_TRANS_STUB;
5687 	ret = send_subvol(sctx);
5688 	current->journal_info = NULL;
5689 	if (ret < 0)
5690 		goto out;
5691 
5692 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5693 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5694 		if (ret < 0)
5695 			goto out;
5696 		ret = send_cmd(sctx);
5697 		if (ret < 0)
5698 			goto out;
5699 	}
5700 
5701 out:
5702 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5703 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5704 		struct rb_node *n;
5705 		struct pending_dir_move *pm;
5706 
5707 		n = rb_first(&sctx->pending_dir_moves);
5708 		pm = rb_entry(n, struct pending_dir_move, node);
5709 		while (!list_empty(&pm->list)) {
5710 			struct pending_dir_move *pm2;
5711 
5712 			pm2 = list_first_entry(&pm->list,
5713 					       struct pending_dir_move, list);
5714 			free_pending_move(sctx, pm2);
5715 		}
5716 		free_pending_move(sctx, pm);
5717 	}
5718 
5719 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5720 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5721 		struct rb_node *n;
5722 		struct waiting_dir_move *dm;
5723 
5724 		n = rb_first(&sctx->waiting_dir_moves);
5725 		dm = rb_entry(n, struct waiting_dir_move, node);
5726 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
5727 		kfree(dm);
5728 	}
5729 
5730 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
5731 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
5732 		struct rb_node *n;
5733 		struct orphan_dir_info *odi;
5734 
5735 		n = rb_first(&sctx->orphan_dirs);
5736 		odi = rb_entry(n, struct orphan_dir_info, node);
5737 		free_orphan_dir_info(sctx, odi);
5738 	}
5739 
5740 	if (sort_clone_roots) {
5741 		for (i = 0; i < sctx->clone_roots_cnt; i++)
5742 			btrfs_root_dec_send_in_progress(
5743 					sctx->clone_roots[i].root);
5744 	} else {
5745 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5746 			btrfs_root_dec_send_in_progress(
5747 					sctx->clone_roots[i].root);
5748 
5749 		btrfs_root_dec_send_in_progress(send_root);
5750 	}
5751 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5752 		btrfs_root_dec_send_in_progress(sctx->parent_root);
5753 
5754 	kfree(arg);
5755 	vfree(clone_sources_tmp);
5756 
5757 	if (sctx) {
5758 		if (sctx->send_filp)
5759 			fput(sctx->send_filp);
5760 
5761 		vfree(sctx->clone_roots);
5762 		vfree(sctx->send_buf);
5763 		vfree(sctx->read_buf);
5764 
5765 		name_cache_free(sctx);
5766 
5767 		kfree(sctx);
5768 	}
5769 
5770 	return ret;
5771 }
5772