xref: /openbmc/linux/fs/btrfs/send.c (revision 089a49b6)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/crc32c.h>
28 #include <linux/vmalloc.h>
29 #include <linux/string.h>
30 
31 #include "send.h"
32 #include "backref.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 			char *prepared;
55 
56 			char *buf;
57 			int buf_len;
58 			unsigned int reversed:1;
59 			unsigned int virtual_mem:1;
60 			char inline_buf[];
61 		};
62 		char pad[PAGE_SIZE];
63 	};
64 };
65 #define FS_PATH_INLINE_SIZE \
66 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67 
68 
69 /* reused for each extent */
70 struct clone_root {
71 	struct btrfs_root *root;
72 	u64 ino;
73 	u64 offset;
74 
75 	u64 found_refs;
76 };
77 
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80 
81 struct send_ctx {
82 	struct file *send_filp;
83 	loff_t send_off;
84 	char *send_buf;
85 	u32 send_size;
86 	u32 send_max_size;
87 	u64 total_send_size;
88 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
90 
91 	struct vfsmount *mnt;
92 
93 	struct btrfs_root *send_root;
94 	struct btrfs_root *parent_root;
95 	struct clone_root *clone_roots;
96 	int clone_roots_cnt;
97 
98 	/* current state of the compare_tree call */
99 	struct btrfs_path *left_path;
100 	struct btrfs_path *right_path;
101 	struct btrfs_key *cmp_key;
102 
103 	/*
104 	 * infos of the currently processed inode. In case of deleted inodes,
105 	 * these are the values from the deleted inode.
106 	 */
107 	u64 cur_ino;
108 	u64 cur_inode_gen;
109 	int cur_inode_new;
110 	int cur_inode_new_gen;
111 	int cur_inode_deleted;
112 	u64 cur_inode_size;
113 	u64 cur_inode_mode;
114 
115 	u64 send_progress;
116 
117 	struct list_head new_refs;
118 	struct list_head deleted_refs;
119 
120 	struct radix_tree_root name_cache;
121 	struct list_head name_cache_list;
122 	int name_cache_size;
123 
124 	struct file *cur_inode_filp;
125 	char *read_buf;
126 };
127 
128 struct name_cache_entry {
129 	struct list_head list;
130 	/*
131 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
132 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
133 	 * more then one inum would fall into the same entry, we use radix_list
134 	 * to store the additional entries. radix_list is also used to store
135 	 * entries where two entries have the same inum but different
136 	 * generations.
137 	 */
138 	struct list_head radix_list;
139 	u64 ino;
140 	u64 gen;
141 	u64 parent_ino;
142 	u64 parent_gen;
143 	int ret;
144 	int need_later_update;
145 	int name_len;
146 	char name[];
147 };
148 
149 static void fs_path_reset(struct fs_path *p)
150 {
151 	if (p->reversed) {
152 		p->start = p->buf + p->buf_len - 1;
153 		p->end = p->start;
154 		*p->start = 0;
155 	} else {
156 		p->start = p->buf;
157 		p->end = p->start;
158 		*p->start = 0;
159 	}
160 }
161 
162 static struct fs_path *fs_path_alloc(void)
163 {
164 	struct fs_path *p;
165 
166 	p = kmalloc(sizeof(*p), GFP_NOFS);
167 	if (!p)
168 		return NULL;
169 	p->reversed = 0;
170 	p->virtual_mem = 0;
171 	p->buf = p->inline_buf;
172 	p->buf_len = FS_PATH_INLINE_SIZE;
173 	fs_path_reset(p);
174 	return p;
175 }
176 
177 static struct fs_path *fs_path_alloc_reversed(void)
178 {
179 	struct fs_path *p;
180 
181 	p = fs_path_alloc();
182 	if (!p)
183 		return NULL;
184 	p->reversed = 1;
185 	fs_path_reset(p);
186 	return p;
187 }
188 
189 static void fs_path_free(struct fs_path *p)
190 {
191 	if (!p)
192 		return;
193 	if (p->buf != p->inline_buf) {
194 		if (p->virtual_mem)
195 			vfree(p->buf);
196 		else
197 			kfree(p->buf);
198 	}
199 	kfree(p);
200 }
201 
202 static int fs_path_len(struct fs_path *p)
203 {
204 	return p->end - p->start;
205 }
206 
207 static int fs_path_ensure_buf(struct fs_path *p, int len)
208 {
209 	char *tmp_buf;
210 	int path_len;
211 	int old_buf_len;
212 
213 	len++;
214 
215 	if (p->buf_len >= len)
216 		return 0;
217 
218 	path_len = p->end - p->start;
219 	old_buf_len = p->buf_len;
220 	len = PAGE_ALIGN(len);
221 
222 	if (p->buf == p->inline_buf) {
223 		tmp_buf = kmalloc(len, GFP_NOFS | __GFP_NOWARN);
224 		if (!tmp_buf) {
225 			tmp_buf = vmalloc(len);
226 			if (!tmp_buf)
227 				return -ENOMEM;
228 			p->virtual_mem = 1;
229 		}
230 		memcpy(tmp_buf, p->buf, p->buf_len);
231 		p->buf = tmp_buf;
232 		p->buf_len = len;
233 	} else {
234 		if (p->virtual_mem) {
235 			tmp_buf = vmalloc(len);
236 			if (!tmp_buf)
237 				return -ENOMEM;
238 			memcpy(tmp_buf, p->buf, p->buf_len);
239 			vfree(p->buf);
240 		} else {
241 			tmp_buf = krealloc(p->buf, len, GFP_NOFS);
242 			if (!tmp_buf) {
243 				tmp_buf = vmalloc(len);
244 				if (!tmp_buf)
245 					return -ENOMEM;
246 				memcpy(tmp_buf, p->buf, p->buf_len);
247 				kfree(p->buf);
248 				p->virtual_mem = 1;
249 			}
250 		}
251 		p->buf = tmp_buf;
252 		p->buf_len = len;
253 	}
254 	if (p->reversed) {
255 		tmp_buf = p->buf + old_buf_len - path_len - 1;
256 		p->end = p->buf + p->buf_len - 1;
257 		p->start = p->end - path_len;
258 		memmove(p->start, tmp_buf, path_len + 1);
259 	} else {
260 		p->start = p->buf;
261 		p->end = p->start + path_len;
262 	}
263 	return 0;
264 }
265 
266 static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
267 {
268 	int ret;
269 	int new_len;
270 
271 	new_len = p->end - p->start + name_len;
272 	if (p->start != p->end)
273 		new_len++;
274 	ret = fs_path_ensure_buf(p, new_len);
275 	if (ret < 0)
276 		goto out;
277 
278 	if (p->reversed) {
279 		if (p->start != p->end)
280 			*--p->start = '/';
281 		p->start -= name_len;
282 		p->prepared = p->start;
283 	} else {
284 		if (p->start != p->end)
285 			*p->end++ = '/';
286 		p->prepared = p->end;
287 		p->end += name_len;
288 		*p->end = 0;
289 	}
290 
291 out:
292 	return ret;
293 }
294 
295 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
296 {
297 	int ret;
298 
299 	ret = fs_path_prepare_for_add(p, name_len);
300 	if (ret < 0)
301 		goto out;
302 	memcpy(p->prepared, name, name_len);
303 	p->prepared = NULL;
304 
305 out:
306 	return ret;
307 }
308 
309 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
310 {
311 	int ret;
312 
313 	ret = fs_path_prepare_for_add(p, p2->end - p2->start);
314 	if (ret < 0)
315 		goto out;
316 	memcpy(p->prepared, p2->start, p2->end - p2->start);
317 	p->prepared = NULL;
318 
319 out:
320 	return ret;
321 }
322 
323 static int fs_path_add_from_extent_buffer(struct fs_path *p,
324 					  struct extent_buffer *eb,
325 					  unsigned long off, int len)
326 {
327 	int ret;
328 
329 	ret = fs_path_prepare_for_add(p, len);
330 	if (ret < 0)
331 		goto out;
332 
333 	read_extent_buffer(eb, p->prepared, off, len);
334 	p->prepared = NULL;
335 
336 out:
337 	return ret;
338 }
339 
340 #if 0
341 static void fs_path_remove(struct fs_path *p)
342 {
343 	BUG_ON(p->reversed);
344 	while (p->start != p->end && *p->end != '/')
345 		p->end--;
346 	*p->end = 0;
347 }
348 #endif
349 
350 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
351 {
352 	int ret;
353 
354 	p->reversed = from->reversed;
355 	fs_path_reset(p);
356 
357 	ret = fs_path_add_path(p, from);
358 
359 	return ret;
360 }
361 
362 
363 static void fs_path_unreverse(struct fs_path *p)
364 {
365 	char *tmp;
366 	int len;
367 
368 	if (!p->reversed)
369 		return;
370 
371 	tmp = p->start;
372 	len = p->end - p->start;
373 	p->start = p->buf;
374 	p->end = p->start + len;
375 	memmove(p->start, tmp, len + 1);
376 	p->reversed = 0;
377 }
378 
379 static struct btrfs_path *alloc_path_for_send(void)
380 {
381 	struct btrfs_path *path;
382 
383 	path = btrfs_alloc_path();
384 	if (!path)
385 		return NULL;
386 	path->search_commit_root = 1;
387 	path->skip_locking = 1;
388 	return path;
389 }
390 
391 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
392 {
393 	int ret;
394 	mm_segment_t old_fs;
395 	u32 pos = 0;
396 
397 	old_fs = get_fs();
398 	set_fs(KERNEL_DS);
399 
400 	while (pos < len) {
401 		ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
402 		/* TODO handle that correctly */
403 		/*if (ret == -ERESTARTSYS) {
404 			continue;
405 		}*/
406 		if (ret < 0)
407 			goto out;
408 		if (ret == 0) {
409 			ret = -EIO;
410 			goto out;
411 		}
412 		pos += ret;
413 	}
414 
415 	ret = 0;
416 
417 out:
418 	set_fs(old_fs);
419 	return ret;
420 }
421 
422 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
423 {
424 	struct btrfs_tlv_header *hdr;
425 	int total_len = sizeof(*hdr) + len;
426 	int left = sctx->send_max_size - sctx->send_size;
427 
428 	if (unlikely(left < total_len))
429 		return -EOVERFLOW;
430 
431 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
432 	hdr->tlv_type = cpu_to_le16(attr);
433 	hdr->tlv_len = cpu_to_le16(len);
434 	memcpy(hdr + 1, data, len);
435 	sctx->send_size += total_len;
436 
437 	return 0;
438 }
439 
440 #if 0
441 static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value)
442 {
443 	return tlv_put(sctx, attr, &value, sizeof(value));
444 }
445 
446 static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value)
447 {
448 	__le16 tmp = cpu_to_le16(value);
449 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
450 }
451 
452 static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value)
453 {
454 	__le32 tmp = cpu_to_le32(value);
455 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
456 }
457 #endif
458 
459 static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value)
460 {
461 	__le64 tmp = cpu_to_le64(value);
462 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
463 }
464 
465 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
466 			  const char *str, int len)
467 {
468 	if (len == -1)
469 		len = strlen(str);
470 	return tlv_put(sctx, attr, str, len);
471 }
472 
473 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
474 			const u8 *uuid)
475 {
476 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
477 }
478 
479 #if 0
480 static int tlv_put_timespec(struct send_ctx *sctx, u16 attr,
481 			    struct timespec *ts)
482 {
483 	struct btrfs_timespec bts;
484 	bts.sec = cpu_to_le64(ts->tv_sec);
485 	bts.nsec = cpu_to_le32(ts->tv_nsec);
486 	return tlv_put(sctx, attr, &bts, sizeof(bts));
487 }
488 #endif
489 
490 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
491 				  struct extent_buffer *eb,
492 				  struct btrfs_timespec *ts)
493 {
494 	struct btrfs_timespec bts;
495 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
496 	return tlv_put(sctx, attr, &bts, sizeof(bts));
497 }
498 
499 
500 #define TLV_PUT(sctx, attrtype, attrlen, data) \
501 	do { \
502 		ret = tlv_put(sctx, attrtype, attrlen, data); \
503 		if (ret < 0) \
504 			goto tlv_put_failure; \
505 	} while (0)
506 
507 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
508 	do { \
509 		ret = tlv_put_u##bits(sctx, attrtype, value); \
510 		if (ret < 0) \
511 			goto tlv_put_failure; \
512 	} while (0)
513 
514 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
515 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
516 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
517 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
518 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
519 	do { \
520 		ret = tlv_put_string(sctx, attrtype, str, len); \
521 		if (ret < 0) \
522 			goto tlv_put_failure; \
523 	} while (0)
524 #define TLV_PUT_PATH(sctx, attrtype, p) \
525 	do { \
526 		ret = tlv_put_string(sctx, attrtype, p->start, \
527 			p->end - p->start); \
528 		if (ret < 0) \
529 			goto tlv_put_failure; \
530 	} while(0)
531 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
532 	do { \
533 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
534 		if (ret < 0) \
535 			goto tlv_put_failure; \
536 	} while (0)
537 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
538 	do { \
539 		ret = tlv_put_timespec(sctx, attrtype, ts); \
540 		if (ret < 0) \
541 			goto tlv_put_failure; \
542 	} while (0)
543 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
544 	do { \
545 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
546 		if (ret < 0) \
547 			goto tlv_put_failure; \
548 	} while (0)
549 
550 static int send_header(struct send_ctx *sctx)
551 {
552 	struct btrfs_stream_header hdr;
553 
554 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
555 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
556 
557 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
558 					&sctx->send_off);
559 }
560 
561 /*
562  * For each command/item we want to send to userspace, we call this function.
563  */
564 static int begin_cmd(struct send_ctx *sctx, int cmd)
565 {
566 	struct btrfs_cmd_header *hdr;
567 
568 	if (!sctx->send_buf) {
569 		WARN_ON(1);
570 		return -EINVAL;
571 	}
572 
573 	BUG_ON(sctx->send_size);
574 
575 	sctx->send_size += sizeof(*hdr);
576 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
577 	hdr->cmd = cpu_to_le16(cmd);
578 
579 	return 0;
580 }
581 
582 static int send_cmd(struct send_ctx *sctx)
583 {
584 	int ret;
585 	struct btrfs_cmd_header *hdr;
586 	u32 crc;
587 
588 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
589 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
590 	hdr->crc = 0;
591 
592 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
593 	hdr->crc = cpu_to_le32(crc);
594 
595 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
596 					&sctx->send_off);
597 
598 	sctx->total_send_size += sctx->send_size;
599 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
600 	sctx->send_size = 0;
601 
602 	return ret;
603 }
604 
605 /*
606  * Sends a move instruction to user space
607  */
608 static int send_rename(struct send_ctx *sctx,
609 		     struct fs_path *from, struct fs_path *to)
610 {
611 	int ret;
612 
613 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
614 
615 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
616 	if (ret < 0)
617 		goto out;
618 
619 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
620 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
621 
622 	ret = send_cmd(sctx);
623 
624 tlv_put_failure:
625 out:
626 	return ret;
627 }
628 
629 /*
630  * Sends a link instruction to user space
631  */
632 static int send_link(struct send_ctx *sctx,
633 		     struct fs_path *path, struct fs_path *lnk)
634 {
635 	int ret;
636 
637 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
638 
639 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
640 	if (ret < 0)
641 		goto out;
642 
643 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
644 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
645 
646 	ret = send_cmd(sctx);
647 
648 tlv_put_failure:
649 out:
650 	return ret;
651 }
652 
653 /*
654  * Sends an unlink instruction to user space
655  */
656 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
657 {
658 	int ret;
659 
660 verbose_printk("btrfs: send_unlink %s\n", path->start);
661 
662 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
663 	if (ret < 0)
664 		goto out;
665 
666 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
667 
668 	ret = send_cmd(sctx);
669 
670 tlv_put_failure:
671 out:
672 	return ret;
673 }
674 
675 /*
676  * Sends a rmdir instruction to user space
677  */
678 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
679 {
680 	int ret;
681 
682 verbose_printk("btrfs: send_rmdir %s\n", path->start);
683 
684 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
685 	if (ret < 0)
686 		goto out;
687 
688 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
689 
690 	ret = send_cmd(sctx);
691 
692 tlv_put_failure:
693 out:
694 	return ret;
695 }
696 
697 /*
698  * Helper function to retrieve some fields from an inode item.
699  */
700 static int get_inode_info(struct btrfs_root *root,
701 			  u64 ino, u64 *size, u64 *gen,
702 			  u64 *mode, u64 *uid, u64 *gid,
703 			  u64 *rdev)
704 {
705 	int ret;
706 	struct btrfs_inode_item *ii;
707 	struct btrfs_key key;
708 	struct btrfs_path *path;
709 
710 	path = alloc_path_for_send();
711 	if (!path)
712 		return -ENOMEM;
713 
714 	key.objectid = ino;
715 	key.type = BTRFS_INODE_ITEM_KEY;
716 	key.offset = 0;
717 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
718 	if (ret < 0)
719 		goto out;
720 	if (ret) {
721 		ret = -ENOENT;
722 		goto out;
723 	}
724 
725 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
726 			struct btrfs_inode_item);
727 	if (size)
728 		*size = btrfs_inode_size(path->nodes[0], ii);
729 	if (gen)
730 		*gen = btrfs_inode_generation(path->nodes[0], ii);
731 	if (mode)
732 		*mode = btrfs_inode_mode(path->nodes[0], ii);
733 	if (uid)
734 		*uid = btrfs_inode_uid(path->nodes[0], ii);
735 	if (gid)
736 		*gid = btrfs_inode_gid(path->nodes[0], ii);
737 	if (rdev)
738 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
739 
740 out:
741 	btrfs_free_path(path);
742 	return ret;
743 }
744 
745 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
746 				   struct fs_path *p,
747 				   void *ctx);
748 
749 /*
750  * Helper function to iterate the entries in ONE btrfs_inode_ref or
751  * btrfs_inode_extref.
752  * The iterate callback may return a non zero value to stop iteration. This can
753  * be a negative value for error codes or 1 to simply stop it.
754  *
755  * path must point to the INODE_REF or INODE_EXTREF when called.
756  */
757 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
758 			     struct btrfs_key *found_key, int resolve,
759 			     iterate_inode_ref_t iterate, void *ctx)
760 {
761 	struct extent_buffer *eb = path->nodes[0];
762 	struct btrfs_item *item;
763 	struct btrfs_inode_ref *iref;
764 	struct btrfs_inode_extref *extref;
765 	struct btrfs_path *tmp_path;
766 	struct fs_path *p;
767 	u32 cur = 0;
768 	u32 total;
769 	int slot = path->slots[0];
770 	u32 name_len;
771 	char *start;
772 	int ret = 0;
773 	int num = 0;
774 	int index;
775 	u64 dir;
776 	unsigned long name_off;
777 	unsigned long elem_size;
778 	unsigned long ptr;
779 
780 	p = fs_path_alloc_reversed();
781 	if (!p)
782 		return -ENOMEM;
783 
784 	tmp_path = alloc_path_for_send();
785 	if (!tmp_path) {
786 		fs_path_free(p);
787 		return -ENOMEM;
788 	}
789 
790 
791 	if (found_key->type == BTRFS_INODE_REF_KEY) {
792 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
793 						    struct btrfs_inode_ref);
794 		item = btrfs_item_nr(eb, slot);
795 		total = btrfs_item_size(eb, item);
796 		elem_size = sizeof(*iref);
797 	} else {
798 		ptr = btrfs_item_ptr_offset(eb, slot);
799 		total = btrfs_item_size_nr(eb, slot);
800 		elem_size = sizeof(*extref);
801 	}
802 
803 	while (cur < total) {
804 		fs_path_reset(p);
805 
806 		if (found_key->type == BTRFS_INODE_REF_KEY) {
807 			iref = (struct btrfs_inode_ref *)(ptr + cur);
808 			name_len = btrfs_inode_ref_name_len(eb, iref);
809 			name_off = (unsigned long)(iref + 1);
810 			index = btrfs_inode_ref_index(eb, iref);
811 			dir = found_key->offset;
812 		} else {
813 			extref = (struct btrfs_inode_extref *)(ptr + cur);
814 			name_len = btrfs_inode_extref_name_len(eb, extref);
815 			name_off = (unsigned long)&extref->name;
816 			index = btrfs_inode_extref_index(eb, extref);
817 			dir = btrfs_inode_extref_parent(eb, extref);
818 		}
819 
820 		if (resolve) {
821 			start = btrfs_ref_to_path(root, tmp_path, name_len,
822 						  name_off, eb, dir,
823 						  p->buf, p->buf_len);
824 			if (IS_ERR(start)) {
825 				ret = PTR_ERR(start);
826 				goto out;
827 			}
828 			if (start < p->buf) {
829 				/* overflow , try again with larger buffer */
830 				ret = fs_path_ensure_buf(p,
831 						p->buf_len + p->buf - start);
832 				if (ret < 0)
833 					goto out;
834 				start = btrfs_ref_to_path(root, tmp_path,
835 							  name_len, name_off,
836 							  eb, dir,
837 							  p->buf, p->buf_len);
838 				if (IS_ERR(start)) {
839 					ret = PTR_ERR(start);
840 					goto out;
841 				}
842 				BUG_ON(start < p->buf);
843 			}
844 			p->start = start;
845 		} else {
846 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
847 							     name_len);
848 			if (ret < 0)
849 				goto out;
850 		}
851 
852 		cur += elem_size + name_len;
853 		ret = iterate(num, dir, index, p, ctx);
854 		if (ret)
855 			goto out;
856 		num++;
857 	}
858 
859 out:
860 	btrfs_free_path(tmp_path);
861 	fs_path_free(p);
862 	return ret;
863 }
864 
865 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
866 				  const char *name, int name_len,
867 				  const char *data, int data_len,
868 				  u8 type, void *ctx);
869 
870 /*
871  * Helper function to iterate the entries in ONE btrfs_dir_item.
872  * The iterate callback may return a non zero value to stop iteration. This can
873  * be a negative value for error codes or 1 to simply stop it.
874  *
875  * path must point to the dir item when called.
876  */
877 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
878 			    struct btrfs_key *found_key,
879 			    iterate_dir_item_t iterate, void *ctx)
880 {
881 	int ret = 0;
882 	struct extent_buffer *eb;
883 	struct btrfs_item *item;
884 	struct btrfs_dir_item *di;
885 	struct btrfs_key di_key;
886 	char *buf = NULL;
887 	char *buf2 = NULL;
888 	int buf_len;
889 	int buf_virtual = 0;
890 	u32 name_len;
891 	u32 data_len;
892 	u32 cur;
893 	u32 len;
894 	u32 total;
895 	int slot;
896 	int num;
897 	u8 type;
898 
899 	buf_len = PAGE_SIZE;
900 	buf = kmalloc(buf_len, GFP_NOFS);
901 	if (!buf) {
902 		ret = -ENOMEM;
903 		goto out;
904 	}
905 
906 	eb = path->nodes[0];
907 	slot = path->slots[0];
908 	item = btrfs_item_nr(eb, slot);
909 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
910 	cur = 0;
911 	len = 0;
912 	total = btrfs_item_size(eb, item);
913 
914 	num = 0;
915 	while (cur < total) {
916 		name_len = btrfs_dir_name_len(eb, di);
917 		data_len = btrfs_dir_data_len(eb, di);
918 		type = btrfs_dir_type(eb, di);
919 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
920 
921 		if (name_len + data_len > buf_len) {
922 			buf_len = PAGE_ALIGN(name_len + data_len);
923 			if (buf_virtual) {
924 				buf2 = vmalloc(buf_len);
925 				if (!buf2) {
926 					ret = -ENOMEM;
927 					goto out;
928 				}
929 				vfree(buf);
930 			} else {
931 				buf2 = krealloc(buf, buf_len, GFP_NOFS);
932 				if (!buf2) {
933 					buf2 = vmalloc(buf_len);
934 					if (!buf2) {
935 						ret = -ENOMEM;
936 						goto out;
937 					}
938 					kfree(buf);
939 					buf_virtual = 1;
940 				}
941 			}
942 
943 			buf = buf2;
944 			buf2 = NULL;
945 		}
946 
947 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
948 				name_len + data_len);
949 
950 		len = sizeof(*di) + name_len + data_len;
951 		di = (struct btrfs_dir_item *)((char *)di + len);
952 		cur += len;
953 
954 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
955 				data_len, type, ctx);
956 		if (ret < 0)
957 			goto out;
958 		if (ret) {
959 			ret = 0;
960 			goto out;
961 		}
962 
963 		num++;
964 	}
965 
966 out:
967 	if (buf_virtual)
968 		vfree(buf);
969 	else
970 		kfree(buf);
971 	return ret;
972 }
973 
974 static int __copy_first_ref(int num, u64 dir, int index,
975 			    struct fs_path *p, void *ctx)
976 {
977 	int ret;
978 	struct fs_path *pt = ctx;
979 
980 	ret = fs_path_copy(pt, p);
981 	if (ret < 0)
982 		return ret;
983 
984 	/* we want the first only */
985 	return 1;
986 }
987 
988 /*
989  * Retrieve the first path of an inode. If an inode has more then one
990  * ref/hardlink, this is ignored.
991  */
992 static int get_inode_path(struct btrfs_root *root,
993 			  u64 ino, struct fs_path *path)
994 {
995 	int ret;
996 	struct btrfs_key key, found_key;
997 	struct btrfs_path *p;
998 
999 	p = alloc_path_for_send();
1000 	if (!p)
1001 		return -ENOMEM;
1002 
1003 	fs_path_reset(path);
1004 
1005 	key.objectid = ino;
1006 	key.type = BTRFS_INODE_REF_KEY;
1007 	key.offset = 0;
1008 
1009 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1010 	if (ret < 0)
1011 		goto out;
1012 	if (ret) {
1013 		ret = 1;
1014 		goto out;
1015 	}
1016 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1017 	if (found_key.objectid != ino ||
1018 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1019 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1020 		ret = -ENOENT;
1021 		goto out;
1022 	}
1023 
1024 	ret = iterate_inode_ref(root, p, &found_key, 1,
1025 				__copy_first_ref, path);
1026 	if (ret < 0)
1027 		goto out;
1028 	ret = 0;
1029 
1030 out:
1031 	btrfs_free_path(p);
1032 	return ret;
1033 }
1034 
1035 struct backref_ctx {
1036 	struct send_ctx *sctx;
1037 
1038 	/* number of total found references */
1039 	u64 found;
1040 
1041 	/*
1042 	 * used for clones found in send_root. clones found behind cur_objectid
1043 	 * and cur_offset are not considered as allowed clones.
1044 	 */
1045 	u64 cur_objectid;
1046 	u64 cur_offset;
1047 
1048 	/* may be truncated in case it's the last extent in a file */
1049 	u64 extent_len;
1050 
1051 	/* Just to check for bugs in backref resolving */
1052 	int found_itself;
1053 };
1054 
1055 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1056 {
1057 	u64 root = (u64)(uintptr_t)key;
1058 	struct clone_root *cr = (struct clone_root *)elt;
1059 
1060 	if (root < cr->root->objectid)
1061 		return -1;
1062 	if (root > cr->root->objectid)
1063 		return 1;
1064 	return 0;
1065 }
1066 
1067 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1068 {
1069 	struct clone_root *cr1 = (struct clone_root *)e1;
1070 	struct clone_root *cr2 = (struct clone_root *)e2;
1071 
1072 	if (cr1->root->objectid < cr2->root->objectid)
1073 		return -1;
1074 	if (cr1->root->objectid > cr2->root->objectid)
1075 		return 1;
1076 	return 0;
1077 }
1078 
1079 /*
1080  * Called for every backref that is found for the current extent.
1081  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1082  */
1083 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1084 {
1085 	struct backref_ctx *bctx = ctx_;
1086 	struct clone_root *found;
1087 	int ret;
1088 	u64 i_size;
1089 
1090 	/* First check if the root is in the list of accepted clone sources */
1091 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1092 			bctx->sctx->clone_roots_cnt,
1093 			sizeof(struct clone_root),
1094 			__clone_root_cmp_bsearch);
1095 	if (!found)
1096 		return 0;
1097 
1098 	if (found->root == bctx->sctx->send_root &&
1099 	    ino == bctx->cur_objectid &&
1100 	    offset == bctx->cur_offset) {
1101 		bctx->found_itself = 1;
1102 	}
1103 
1104 	/*
1105 	 * There are inodes that have extents that lie behind its i_size. Don't
1106 	 * accept clones from these extents.
1107 	 */
1108 	ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1109 			NULL);
1110 	if (ret < 0)
1111 		return ret;
1112 
1113 	if (offset + bctx->extent_len > i_size)
1114 		return 0;
1115 
1116 	/*
1117 	 * Make sure we don't consider clones from send_root that are
1118 	 * behind the current inode/offset.
1119 	 */
1120 	if (found->root == bctx->sctx->send_root) {
1121 		/*
1122 		 * TODO for the moment we don't accept clones from the inode
1123 		 * that is currently send. We may change this when
1124 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1125 		 * file.
1126 		 */
1127 		if (ino >= bctx->cur_objectid)
1128 			return 0;
1129 #if 0
1130 		if (ino > bctx->cur_objectid)
1131 			return 0;
1132 		if (offset + bctx->extent_len > bctx->cur_offset)
1133 			return 0;
1134 #endif
1135 	}
1136 
1137 	bctx->found++;
1138 	found->found_refs++;
1139 	if (ino < found->ino) {
1140 		found->ino = ino;
1141 		found->offset = offset;
1142 	} else if (found->ino == ino) {
1143 		/*
1144 		 * same extent found more then once in the same file.
1145 		 */
1146 		if (found->offset > offset + bctx->extent_len)
1147 			found->offset = offset;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 /*
1154  * Given an inode, offset and extent item, it finds a good clone for a clone
1155  * instruction. Returns -ENOENT when none could be found. The function makes
1156  * sure that the returned clone is usable at the point where sending is at the
1157  * moment. This means, that no clones are accepted which lie behind the current
1158  * inode+offset.
1159  *
1160  * path must point to the extent item when called.
1161  */
1162 static int find_extent_clone(struct send_ctx *sctx,
1163 			     struct btrfs_path *path,
1164 			     u64 ino, u64 data_offset,
1165 			     u64 ino_size,
1166 			     struct clone_root **found)
1167 {
1168 	int ret;
1169 	int extent_type;
1170 	u64 logical;
1171 	u64 disk_byte;
1172 	u64 num_bytes;
1173 	u64 extent_item_pos;
1174 	u64 flags = 0;
1175 	struct btrfs_file_extent_item *fi;
1176 	struct extent_buffer *eb = path->nodes[0];
1177 	struct backref_ctx *backref_ctx = NULL;
1178 	struct clone_root *cur_clone_root;
1179 	struct btrfs_key found_key;
1180 	struct btrfs_path *tmp_path;
1181 	int compressed;
1182 	u32 i;
1183 
1184 	tmp_path = alloc_path_for_send();
1185 	if (!tmp_path)
1186 		return -ENOMEM;
1187 
1188 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1189 	if (!backref_ctx) {
1190 		ret = -ENOMEM;
1191 		goto out;
1192 	}
1193 
1194 	if (data_offset >= ino_size) {
1195 		/*
1196 		 * There may be extents that lie behind the file's size.
1197 		 * I at least had this in combination with snapshotting while
1198 		 * writing large files.
1199 		 */
1200 		ret = 0;
1201 		goto out;
1202 	}
1203 
1204 	fi = btrfs_item_ptr(eb, path->slots[0],
1205 			struct btrfs_file_extent_item);
1206 	extent_type = btrfs_file_extent_type(eb, fi);
1207 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1208 		ret = -ENOENT;
1209 		goto out;
1210 	}
1211 	compressed = btrfs_file_extent_compression(eb, fi);
1212 
1213 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1214 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1215 	if (disk_byte == 0) {
1216 		ret = -ENOENT;
1217 		goto out;
1218 	}
1219 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1220 
1221 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1222 				  &found_key, &flags);
1223 	btrfs_release_path(tmp_path);
1224 
1225 	if (ret < 0)
1226 		goto out;
1227 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1228 		ret = -EIO;
1229 		goto out;
1230 	}
1231 
1232 	/*
1233 	 * Setup the clone roots.
1234 	 */
1235 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1236 		cur_clone_root = sctx->clone_roots + i;
1237 		cur_clone_root->ino = (u64)-1;
1238 		cur_clone_root->offset = 0;
1239 		cur_clone_root->found_refs = 0;
1240 	}
1241 
1242 	backref_ctx->sctx = sctx;
1243 	backref_ctx->found = 0;
1244 	backref_ctx->cur_objectid = ino;
1245 	backref_ctx->cur_offset = data_offset;
1246 	backref_ctx->found_itself = 0;
1247 	backref_ctx->extent_len = num_bytes;
1248 
1249 	/*
1250 	 * The last extent of a file may be too large due to page alignment.
1251 	 * We need to adjust extent_len in this case so that the checks in
1252 	 * __iterate_backrefs work.
1253 	 */
1254 	if (data_offset + num_bytes >= ino_size)
1255 		backref_ctx->extent_len = ino_size - data_offset;
1256 
1257 	/*
1258 	 * Now collect all backrefs.
1259 	 */
1260 	if (compressed == BTRFS_COMPRESS_NONE)
1261 		extent_item_pos = logical - found_key.objectid;
1262 	else
1263 		extent_item_pos = 0;
1264 
1265 	extent_item_pos = logical - found_key.objectid;
1266 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1267 					found_key.objectid, extent_item_pos, 1,
1268 					__iterate_backrefs, backref_ctx);
1269 
1270 	if (ret < 0)
1271 		goto out;
1272 
1273 	if (!backref_ctx->found_itself) {
1274 		/* found a bug in backref code? */
1275 		ret = -EIO;
1276 		printk(KERN_ERR "btrfs: ERROR did not find backref in "
1277 				"send_root. inode=%llu, offset=%llu, "
1278 				"disk_byte=%llu found extent=%llu\n",
1279 				ino, data_offset, disk_byte, found_key.objectid);
1280 		goto out;
1281 	}
1282 
1283 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1284 		"ino=%llu, "
1285 		"num_bytes=%llu, logical=%llu\n",
1286 		data_offset, ino, num_bytes, logical);
1287 
1288 	if (!backref_ctx->found)
1289 		verbose_printk("btrfs:    no clones found\n");
1290 
1291 	cur_clone_root = NULL;
1292 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1293 		if (sctx->clone_roots[i].found_refs) {
1294 			if (!cur_clone_root)
1295 				cur_clone_root = sctx->clone_roots + i;
1296 			else if (sctx->clone_roots[i].root == sctx->send_root)
1297 				/* prefer clones from send_root over others */
1298 				cur_clone_root = sctx->clone_roots + i;
1299 		}
1300 
1301 	}
1302 
1303 	if (cur_clone_root) {
1304 		*found = cur_clone_root;
1305 		ret = 0;
1306 	} else {
1307 		ret = -ENOENT;
1308 	}
1309 
1310 out:
1311 	btrfs_free_path(tmp_path);
1312 	kfree(backref_ctx);
1313 	return ret;
1314 }
1315 
1316 static int read_symlink(struct btrfs_root *root,
1317 			u64 ino,
1318 			struct fs_path *dest)
1319 {
1320 	int ret;
1321 	struct btrfs_path *path;
1322 	struct btrfs_key key;
1323 	struct btrfs_file_extent_item *ei;
1324 	u8 type;
1325 	u8 compression;
1326 	unsigned long off;
1327 	int len;
1328 
1329 	path = alloc_path_for_send();
1330 	if (!path)
1331 		return -ENOMEM;
1332 
1333 	key.objectid = ino;
1334 	key.type = BTRFS_EXTENT_DATA_KEY;
1335 	key.offset = 0;
1336 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1337 	if (ret < 0)
1338 		goto out;
1339 	BUG_ON(ret);
1340 
1341 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1342 			struct btrfs_file_extent_item);
1343 	type = btrfs_file_extent_type(path->nodes[0], ei);
1344 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1345 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1346 	BUG_ON(compression);
1347 
1348 	off = btrfs_file_extent_inline_start(ei);
1349 	len = btrfs_file_extent_inline_len(path->nodes[0], ei);
1350 
1351 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1352 
1353 out:
1354 	btrfs_free_path(path);
1355 	return ret;
1356 }
1357 
1358 /*
1359  * Helper function to generate a file name that is unique in the root of
1360  * send_root and parent_root. This is used to generate names for orphan inodes.
1361  */
1362 static int gen_unique_name(struct send_ctx *sctx,
1363 			   u64 ino, u64 gen,
1364 			   struct fs_path *dest)
1365 {
1366 	int ret = 0;
1367 	struct btrfs_path *path;
1368 	struct btrfs_dir_item *di;
1369 	char tmp[64];
1370 	int len;
1371 	u64 idx = 0;
1372 
1373 	path = alloc_path_for_send();
1374 	if (!path)
1375 		return -ENOMEM;
1376 
1377 	while (1) {
1378 		len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu",
1379 				ino, gen, idx);
1380 		if (len >= sizeof(tmp)) {
1381 			/* should really not happen */
1382 			ret = -EOVERFLOW;
1383 			goto out;
1384 		}
1385 
1386 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1387 				path, BTRFS_FIRST_FREE_OBJECTID,
1388 				tmp, strlen(tmp), 0);
1389 		btrfs_release_path(path);
1390 		if (IS_ERR(di)) {
1391 			ret = PTR_ERR(di);
1392 			goto out;
1393 		}
1394 		if (di) {
1395 			/* not unique, try again */
1396 			idx++;
1397 			continue;
1398 		}
1399 
1400 		if (!sctx->parent_root) {
1401 			/* unique */
1402 			ret = 0;
1403 			break;
1404 		}
1405 
1406 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1407 				path, BTRFS_FIRST_FREE_OBJECTID,
1408 				tmp, strlen(tmp), 0);
1409 		btrfs_release_path(path);
1410 		if (IS_ERR(di)) {
1411 			ret = PTR_ERR(di);
1412 			goto out;
1413 		}
1414 		if (di) {
1415 			/* not unique, try again */
1416 			idx++;
1417 			continue;
1418 		}
1419 		/* unique */
1420 		break;
1421 	}
1422 
1423 	ret = fs_path_add(dest, tmp, strlen(tmp));
1424 
1425 out:
1426 	btrfs_free_path(path);
1427 	return ret;
1428 }
1429 
1430 enum inode_state {
1431 	inode_state_no_change,
1432 	inode_state_will_create,
1433 	inode_state_did_create,
1434 	inode_state_will_delete,
1435 	inode_state_did_delete,
1436 };
1437 
1438 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1439 {
1440 	int ret;
1441 	int left_ret;
1442 	int right_ret;
1443 	u64 left_gen;
1444 	u64 right_gen;
1445 
1446 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1447 			NULL, NULL);
1448 	if (ret < 0 && ret != -ENOENT)
1449 		goto out;
1450 	left_ret = ret;
1451 
1452 	if (!sctx->parent_root) {
1453 		right_ret = -ENOENT;
1454 	} else {
1455 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1456 				NULL, NULL, NULL, NULL);
1457 		if (ret < 0 && ret != -ENOENT)
1458 			goto out;
1459 		right_ret = ret;
1460 	}
1461 
1462 	if (!left_ret && !right_ret) {
1463 		if (left_gen == gen && right_gen == gen) {
1464 			ret = inode_state_no_change;
1465 		} else if (left_gen == gen) {
1466 			if (ino < sctx->send_progress)
1467 				ret = inode_state_did_create;
1468 			else
1469 				ret = inode_state_will_create;
1470 		} else if (right_gen == gen) {
1471 			if (ino < sctx->send_progress)
1472 				ret = inode_state_did_delete;
1473 			else
1474 				ret = inode_state_will_delete;
1475 		} else  {
1476 			ret = -ENOENT;
1477 		}
1478 	} else if (!left_ret) {
1479 		if (left_gen == gen) {
1480 			if (ino < sctx->send_progress)
1481 				ret = inode_state_did_create;
1482 			else
1483 				ret = inode_state_will_create;
1484 		} else {
1485 			ret = -ENOENT;
1486 		}
1487 	} else if (!right_ret) {
1488 		if (right_gen == gen) {
1489 			if (ino < sctx->send_progress)
1490 				ret = inode_state_did_delete;
1491 			else
1492 				ret = inode_state_will_delete;
1493 		} else {
1494 			ret = -ENOENT;
1495 		}
1496 	} else {
1497 		ret = -ENOENT;
1498 	}
1499 
1500 out:
1501 	return ret;
1502 }
1503 
1504 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1505 {
1506 	int ret;
1507 
1508 	ret = get_cur_inode_state(sctx, ino, gen);
1509 	if (ret < 0)
1510 		goto out;
1511 
1512 	if (ret == inode_state_no_change ||
1513 	    ret == inode_state_did_create ||
1514 	    ret == inode_state_will_delete)
1515 		ret = 1;
1516 	else
1517 		ret = 0;
1518 
1519 out:
1520 	return ret;
1521 }
1522 
1523 /*
1524  * Helper function to lookup a dir item in a dir.
1525  */
1526 static int lookup_dir_item_inode(struct btrfs_root *root,
1527 				 u64 dir, const char *name, int name_len,
1528 				 u64 *found_inode,
1529 				 u8 *found_type)
1530 {
1531 	int ret = 0;
1532 	struct btrfs_dir_item *di;
1533 	struct btrfs_key key;
1534 	struct btrfs_path *path;
1535 
1536 	path = alloc_path_for_send();
1537 	if (!path)
1538 		return -ENOMEM;
1539 
1540 	di = btrfs_lookup_dir_item(NULL, root, path,
1541 			dir, name, name_len, 0);
1542 	if (!di) {
1543 		ret = -ENOENT;
1544 		goto out;
1545 	}
1546 	if (IS_ERR(di)) {
1547 		ret = PTR_ERR(di);
1548 		goto out;
1549 	}
1550 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1551 	*found_inode = key.objectid;
1552 	*found_type = btrfs_dir_type(path->nodes[0], di);
1553 
1554 out:
1555 	btrfs_free_path(path);
1556 	return ret;
1557 }
1558 
1559 /*
1560  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1561  * generation of the parent dir and the name of the dir entry.
1562  */
1563 static int get_first_ref(struct btrfs_root *root, u64 ino,
1564 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1565 {
1566 	int ret;
1567 	struct btrfs_key key;
1568 	struct btrfs_key found_key;
1569 	struct btrfs_path *path;
1570 	int len;
1571 	u64 parent_dir;
1572 
1573 	path = alloc_path_for_send();
1574 	if (!path)
1575 		return -ENOMEM;
1576 
1577 	key.objectid = ino;
1578 	key.type = BTRFS_INODE_REF_KEY;
1579 	key.offset = 0;
1580 
1581 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1582 	if (ret < 0)
1583 		goto out;
1584 	if (!ret)
1585 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1586 				path->slots[0]);
1587 	if (ret || found_key.objectid != ino ||
1588 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1589 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1590 		ret = -ENOENT;
1591 		goto out;
1592 	}
1593 
1594 	if (key.type == BTRFS_INODE_REF_KEY) {
1595 		struct btrfs_inode_ref *iref;
1596 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1597 				      struct btrfs_inode_ref);
1598 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1599 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1600 						     (unsigned long)(iref + 1),
1601 						     len);
1602 		parent_dir = found_key.offset;
1603 	} else {
1604 		struct btrfs_inode_extref *extref;
1605 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1606 					struct btrfs_inode_extref);
1607 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1608 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1609 					(unsigned long)&extref->name, len);
1610 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1611 	}
1612 	if (ret < 0)
1613 		goto out;
1614 	btrfs_release_path(path);
1615 
1616 	ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1617 			NULL, NULL);
1618 	if (ret < 0)
1619 		goto out;
1620 
1621 	*dir = parent_dir;
1622 
1623 out:
1624 	btrfs_free_path(path);
1625 	return ret;
1626 }
1627 
1628 static int is_first_ref(struct btrfs_root *root,
1629 			u64 ino, u64 dir,
1630 			const char *name, int name_len)
1631 {
1632 	int ret;
1633 	struct fs_path *tmp_name;
1634 	u64 tmp_dir;
1635 	u64 tmp_dir_gen;
1636 
1637 	tmp_name = fs_path_alloc();
1638 	if (!tmp_name)
1639 		return -ENOMEM;
1640 
1641 	ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1642 	if (ret < 0)
1643 		goto out;
1644 
1645 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1646 		ret = 0;
1647 		goto out;
1648 	}
1649 
1650 	ret = !memcmp(tmp_name->start, name, name_len);
1651 
1652 out:
1653 	fs_path_free(tmp_name);
1654 	return ret;
1655 }
1656 
1657 /*
1658  * Used by process_recorded_refs to determine if a new ref would overwrite an
1659  * already existing ref. In case it detects an overwrite, it returns the
1660  * inode/gen in who_ino/who_gen.
1661  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1662  * to make sure later references to the overwritten inode are possible.
1663  * Orphanizing is however only required for the first ref of an inode.
1664  * process_recorded_refs does an additional is_first_ref check to see if
1665  * orphanizing is really required.
1666  */
1667 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1668 			      const char *name, int name_len,
1669 			      u64 *who_ino, u64 *who_gen)
1670 {
1671 	int ret = 0;
1672 	u64 gen;
1673 	u64 other_inode = 0;
1674 	u8 other_type = 0;
1675 
1676 	if (!sctx->parent_root)
1677 		goto out;
1678 
1679 	ret = is_inode_existent(sctx, dir, dir_gen);
1680 	if (ret <= 0)
1681 		goto out;
1682 
1683 	/*
1684 	 * If we have a parent root we need to verify that the parent dir was
1685 	 * not delted and then re-created, if it was then we have no overwrite
1686 	 * and we can just unlink this entry.
1687 	 */
1688 	if (sctx->parent_root) {
1689 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1690 				     NULL, NULL, NULL);
1691 		if (ret < 0 && ret != -ENOENT)
1692 			goto out;
1693 		if (ret) {
1694 			ret = 0;
1695 			goto out;
1696 		}
1697 		if (gen != dir_gen)
1698 			goto out;
1699 	}
1700 
1701 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1702 			&other_inode, &other_type);
1703 	if (ret < 0 && ret != -ENOENT)
1704 		goto out;
1705 	if (ret) {
1706 		ret = 0;
1707 		goto out;
1708 	}
1709 
1710 	/*
1711 	 * Check if the overwritten ref was already processed. If yes, the ref
1712 	 * was already unlinked/moved, so we can safely assume that we will not
1713 	 * overwrite anything at this point in time.
1714 	 */
1715 	if (other_inode > sctx->send_progress) {
1716 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1717 				who_gen, NULL, NULL, NULL, NULL);
1718 		if (ret < 0)
1719 			goto out;
1720 
1721 		ret = 1;
1722 		*who_ino = other_inode;
1723 	} else {
1724 		ret = 0;
1725 	}
1726 
1727 out:
1728 	return ret;
1729 }
1730 
1731 /*
1732  * Checks if the ref was overwritten by an already processed inode. This is
1733  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1734  * thus the orphan name needs be used.
1735  * process_recorded_refs also uses it to avoid unlinking of refs that were
1736  * overwritten.
1737  */
1738 static int did_overwrite_ref(struct send_ctx *sctx,
1739 			    u64 dir, u64 dir_gen,
1740 			    u64 ino, u64 ino_gen,
1741 			    const char *name, int name_len)
1742 {
1743 	int ret = 0;
1744 	u64 gen;
1745 	u64 ow_inode;
1746 	u8 other_type;
1747 
1748 	if (!sctx->parent_root)
1749 		goto out;
1750 
1751 	ret = is_inode_existent(sctx, dir, dir_gen);
1752 	if (ret <= 0)
1753 		goto out;
1754 
1755 	/* check if the ref was overwritten by another ref */
1756 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1757 			&ow_inode, &other_type);
1758 	if (ret < 0 && ret != -ENOENT)
1759 		goto out;
1760 	if (ret) {
1761 		/* was never and will never be overwritten */
1762 		ret = 0;
1763 		goto out;
1764 	}
1765 
1766 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1767 			NULL, NULL);
1768 	if (ret < 0)
1769 		goto out;
1770 
1771 	if (ow_inode == ino && gen == ino_gen) {
1772 		ret = 0;
1773 		goto out;
1774 	}
1775 
1776 	/* we know that it is or will be overwritten. check this now */
1777 	if (ow_inode < sctx->send_progress)
1778 		ret = 1;
1779 	else
1780 		ret = 0;
1781 
1782 out:
1783 	return ret;
1784 }
1785 
1786 /*
1787  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1788  * that got overwritten. This is used by process_recorded_refs to determine
1789  * if it has to use the path as returned by get_cur_path or the orphan name.
1790  */
1791 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1792 {
1793 	int ret = 0;
1794 	struct fs_path *name = NULL;
1795 	u64 dir;
1796 	u64 dir_gen;
1797 
1798 	if (!sctx->parent_root)
1799 		goto out;
1800 
1801 	name = fs_path_alloc();
1802 	if (!name)
1803 		return -ENOMEM;
1804 
1805 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1806 	if (ret < 0)
1807 		goto out;
1808 
1809 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1810 			name->start, fs_path_len(name));
1811 
1812 out:
1813 	fs_path_free(name);
1814 	return ret;
1815 }
1816 
1817 /*
1818  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1819  * so we need to do some special handling in case we have clashes. This function
1820  * takes care of this with the help of name_cache_entry::radix_list.
1821  * In case of error, nce is kfreed.
1822  */
1823 static int name_cache_insert(struct send_ctx *sctx,
1824 			     struct name_cache_entry *nce)
1825 {
1826 	int ret = 0;
1827 	struct list_head *nce_head;
1828 
1829 	nce_head = radix_tree_lookup(&sctx->name_cache,
1830 			(unsigned long)nce->ino);
1831 	if (!nce_head) {
1832 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1833 		if (!nce_head) {
1834 			kfree(nce);
1835 			return -ENOMEM;
1836 		}
1837 		INIT_LIST_HEAD(nce_head);
1838 
1839 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1840 		if (ret < 0) {
1841 			kfree(nce_head);
1842 			kfree(nce);
1843 			return ret;
1844 		}
1845 	}
1846 	list_add_tail(&nce->radix_list, nce_head);
1847 	list_add_tail(&nce->list, &sctx->name_cache_list);
1848 	sctx->name_cache_size++;
1849 
1850 	return ret;
1851 }
1852 
1853 static void name_cache_delete(struct send_ctx *sctx,
1854 			      struct name_cache_entry *nce)
1855 {
1856 	struct list_head *nce_head;
1857 
1858 	nce_head = radix_tree_lookup(&sctx->name_cache,
1859 			(unsigned long)nce->ino);
1860 	BUG_ON(!nce_head);
1861 
1862 	list_del(&nce->radix_list);
1863 	list_del(&nce->list);
1864 	sctx->name_cache_size--;
1865 
1866 	if (list_empty(nce_head)) {
1867 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1868 		kfree(nce_head);
1869 	}
1870 }
1871 
1872 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1873 						    u64 ino, u64 gen)
1874 {
1875 	struct list_head *nce_head;
1876 	struct name_cache_entry *cur;
1877 
1878 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1879 	if (!nce_head)
1880 		return NULL;
1881 
1882 	list_for_each_entry(cur, nce_head, radix_list) {
1883 		if (cur->ino == ino && cur->gen == gen)
1884 			return cur;
1885 	}
1886 	return NULL;
1887 }
1888 
1889 /*
1890  * Removes the entry from the list and adds it back to the end. This marks the
1891  * entry as recently used so that name_cache_clean_unused does not remove it.
1892  */
1893 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1894 {
1895 	list_del(&nce->list);
1896 	list_add_tail(&nce->list, &sctx->name_cache_list);
1897 }
1898 
1899 /*
1900  * Remove some entries from the beginning of name_cache_list.
1901  */
1902 static void name_cache_clean_unused(struct send_ctx *sctx)
1903 {
1904 	struct name_cache_entry *nce;
1905 
1906 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1907 		return;
1908 
1909 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1910 		nce = list_entry(sctx->name_cache_list.next,
1911 				struct name_cache_entry, list);
1912 		name_cache_delete(sctx, nce);
1913 		kfree(nce);
1914 	}
1915 }
1916 
1917 static void name_cache_free(struct send_ctx *sctx)
1918 {
1919 	struct name_cache_entry *nce;
1920 
1921 	while (!list_empty(&sctx->name_cache_list)) {
1922 		nce = list_entry(sctx->name_cache_list.next,
1923 				struct name_cache_entry, list);
1924 		name_cache_delete(sctx, nce);
1925 		kfree(nce);
1926 	}
1927 }
1928 
1929 /*
1930  * Used by get_cur_path for each ref up to the root.
1931  * Returns 0 if it succeeded.
1932  * Returns 1 if the inode is not existent or got overwritten. In that case, the
1933  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1934  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1935  * Returns <0 in case of error.
1936  */
1937 static int __get_cur_name_and_parent(struct send_ctx *sctx,
1938 				     u64 ino, u64 gen,
1939 				     u64 *parent_ino,
1940 				     u64 *parent_gen,
1941 				     struct fs_path *dest)
1942 {
1943 	int ret;
1944 	int nce_ret;
1945 	struct btrfs_path *path = NULL;
1946 	struct name_cache_entry *nce = NULL;
1947 
1948 	/*
1949 	 * First check if we already did a call to this function with the same
1950 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1951 	 * return the cached result.
1952 	 */
1953 	nce = name_cache_search(sctx, ino, gen);
1954 	if (nce) {
1955 		if (ino < sctx->send_progress && nce->need_later_update) {
1956 			name_cache_delete(sctx, nce);
1957 			kfree(nce);
1958 			nce = NULL;
1959 		} else {
1960 			name_cache_used(sctx, nce);
1961 			*parent_ino = nce->parent_ino;
1962 			*parent_gen = nce->parent_gen;
1963 			ret = fs_path_add(dest, nce->name, nce->name_len);
1964 			if (ret < 0)
1965 				goto out;
1966 			ret = nce->ret;
1967 			goto out;
1968 		}
1969 	}
1970 
1971 	path = alloc_path_for_send();
1972 	if (!path)
1973 		return -ENOMEM;
1974 
1975 	/*
1976 	 * If the inode is not existent yet, add the orphan name and return 1.
1977 	 * This should only happen for the parent dir that we determine in
1978 	 * __record_new_ref
1979 	 */
1980 	ret = is_inode_existent(sctx, ino, gen);
1981 	if (ret < 0)
1982 		goto out;
1983 
1984 	if (!ret) {
1985 		ret = gen_unique_name(sctx, ino, gen, dest);
1986 		if (ret < 0)
1987 			goto out;
1988 		ret = 1;
1989 		goto out_cache;
1990 	}
1991 
1992 	/*
1993 	 * Depending on whether the inode was already processed or not, use
1994 	 * send_root or parent_root for ref lookup.
1995 	 */
1996 	if (ino < sctx->send_progress)
1997 		ret = get_first_ref(sctx->send_root, ino,
1998 				    parent_ino, parent_gen, dest);
1999 	else
2000 		ret = get_first_ref(sctx->parent_root, ino,
2001 				    parent_ino, parent_gen, dest);
2002 	if (ret < 0)
2003 		goto out;
2004 
2005 	/*
2006 	 * Check if the ref was overwritten by an inode's ref that was processed
2007 	 * earlier. If yes, treat as orphan and return 1.
2008 	 */
2009 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2010 			dest->start, dest->end - dest->start);
2011 	if (ret < 0)
2012 		goto out;
2013 	if (ret) {
2014 		fs_path_reset(dest);
2015 		ret = gen_unique_name(sctx, ino, gen, dest);
2016 		if (ret < 0)
2017 			goto out;
2018 		ret = 1;
2019 	}
2020 
2021 out_cache:
2022 	/*
2023 	 * Store the result of the lookup in the name cache.
2024 	 */
2025 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2026 	if (!nce) {
2027 		ret = -ENOMEM;
2028 		goto out;
2029 	}
2030 
2031 	nce->ino = ino;
2032 	nce->gen = gen;
2033 	nce->parent_ino = *parent_ino;
2034 	nce->parent_gen = *parent_gen;
2035 	nce->name_len = fs_path_len(dest);
2036 	nce->ret = ret;
2037 	strcpy(nce->name, dest->start);
2038 
2039 	if (ino < sctx->send_progress)
2040 		nce->need_later_update = 0;
2041 	else
2042 		nce->need_later_update = 1;
2043 
2044 	nce_ret = name_cache_insert(sctx, nce);
2045 	if (nce_ret < 0)
2046 		ret = nce_ret;
2047 	name_cache_clean_unused(sctx);
2048 
2049 out:
2050 	btrfs_free_path(path);
2051 	return ret;
2052 }
2053 
2054 /*
2055  * Magic happens here. This function returns the first ref to an inode as it
2056  * would look like while receiving the stream at this point in time.
2057  * We walk the path up to the root. For every inode in between, we check if it
2058  * was already processed/sent. If yes, we continue with the parent as found
2059  * in send_root. If not, we continue with the parent as found in parent_root.
2060  * If we encounter an inode that was deleted at this point in time, we use the
2061  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2062  * that were not created yet and overwritten inodes/refs.
2063  *
2064  * When do we have have orphan inodes:
2065  * 1. When an inode is freshly created and thus no valid refs are available yet
2066  * 2. When a directory lost all it's refs (deleted) but still has dir items
2067  *    inside which were not processed yet (pending for move/delete). If anyone
2068  *    tried to get the path to the dir items, it would get a path inside that
2069  *    orphan directory.
2070  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2071  *    of an unprocessed inode. If in that case the first ref would be
2072  *    overwritten, the overwritten inode gets "orphanized". Later when we
2073  *    process this overwritten inode, it is restored at a new place by moving
2074  *    the orphan inode.
2075  *
2076  * sctx->send_progress tells this function at which point in time receiving
2077  * would be.
2078  */
2079 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2080 			struct fs_path *dest)
2081 {
2082 	int ret = 0;
2083 	struct fs_path *name = NULL;
2084 	u64 parent_inode = 0;
2085 	u64 parent_gen = 0;
2086 	int stop = 0;
2087 
2088 	name = fs_path_alloc();
2089 	if (!name) {
2090 		ret = -ENOMEM;
2091 		goto out;
2092 	}
2093 
2094 	dest->reversed = 1;
2095 	fs_path_reset(dest);
2096 
2097 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2098 		fs_path_reset(name);
2099 
2100 		ret = __get_cur_name_and_parent(sctx, ino, gen,
2101 				&parent_inode, &parent_gen, name);
2102 		if (ret < 0)
2103 			goto out;
2104 		if (ret)
2105 			stop = 1;
2106 
2107 		ret = fs_path_add_path(dest, name);
2108 		if (ret < 0)
2109 			goto out;
2110 
2111 		ino = parent_inode;
2112 		gen = parent_gen;
2113 	}
2114 
2115 out:
2116 	fs_path_free(name);
2117 	if (!ret)
2118 		fs_path_unreverse(dest);
2119 	return ret;
2120 }
2121 
2122 /*
2123  * Called for regular files when sending extents data. Opens a struct file
2124  * to read from the file.
2125  */
2126 static int open_cur_inode_file(struct send_ctx *sctx)
2127 {
2128 	int ret = 0;
2129 	struct btrfs_key key;
2130 	struct path path;
2131 	struct inode *inode;
2132 	struct dentry *dentry;
2133 	struct file *filp;
2134 	int new = 0;
2135 
2136 	if (sctx->cur_inode_filp)
2137 		goto out;
2138 
2139 	key.objectid = sctx->cur_ino;
2140 	key.type = BTRFS_INODE_ITEM_KEY;
2141 	key.offset = 0;
2142 
2143 	inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root,
2144 			&new);
2145 	if (IS_ERR(inode)) {
2146 		ret = PTR_ERR(inode);
2147 		goto out;
2148 	}
2149 
2150 	dentry = d_obtain_alias(inode);
2151 	inode = NULL;
2152 	if (IS_ERR(dentry)) {
2153 		ret = PTR_ERR(dentry);
2154 		goto out;
2155 	}
2156 
2157 	path.mnt = sctx->mnt;
2158 	path.dentry = dentry;
2159 	filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred());
2160 	dput(dentry);
2161 	dentry = NULL;
2162 	if (IS_ERR(filp)) {
2163 		ret = PTR_ERR(filp);
2164 		goto out;
2165 	}
2166 	sctx->cur_inode_filp = filp;
2167 
2168 out:
2169 	/*
2170 	 * no xxxput required here as every vfs op
2171 	 * does it by itself on failure
2172 	 */
2173 	return ret;
2174 }
2175 
2176 /*
2177  * Closes the struct file that was created in open_cur_inode_file
2178  */
2179 static int close_cur_inode_file(struct send_ctx *sctx)
2180 {
2181 	int ret = 0;
2182 
2183 	if (!sctx->cur_inode_filp)
2184 		goto out;
2185 
2186 	ret = filp_close(sctx->cur_inode_filp, NULL);
2187 	sctx->cur_inode_filp = NULL;
2188 
2189 out:
2190 	return ret;
2191 }
2192 
2193 /*
2194  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2195  */
2196 static int send_subvol_begin(struct send_ctx *sctx)
2197 {
2198 	int ret;
2199 	struct btrfs_root *send_root = sctx->send_root;
2200 	struct btrfs_root *parent_root = sctx->parent_root;
2201 	struct btrfs_path *path;
2202 	struct btrfs_key key;
2203 	struct btrfs_root_ref *ref;
2204 	struct extent_buffer *leaf;
2205 	char *name = NULL;
2206 	int namelen;
2207 
2208 	path = alloc_path_for_send();
2209 	if (!path)
2210 		return -ENOMEM;
2211 
2212 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2213 	if (!name) {
2214 		btrfs_free_path(path);
2215 		return -ENOMEM;
2216 	}
2217 
2218 	key.objectid = send_root->objectid;
2219 	key.type = BTRFS_ROOT_BACKREF_KEY;
2220 	key.offset = 0;
2221 
2222 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2223 				&key, path, 1, 0);
2224 	if (ret < 0)
2225 		goto out;
2226 	if (ret) {
2227 		ret = -ENOENT;
2228 		goto out;
2229 	}
2230 
2231 	leaf = path->nodes[0];
2232 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2233 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2234 	    key.objectid != send_root->objectid) {
2235 		ret = -ENOENT;
2236 		goto out;
2237 	}
2238 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2239 	namelen = btrfs_root_ref_name_len(leaf, ref);
2240 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2241 	btrfs_release_path(path);
2242 
2243 	if (parent_root) {
2244 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2245 		if (ret < 0)
2246 			goto out;
2247 	} else {
2248 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2249 		if (ret < 0)
2250 			goto out;
2251 	}
2252 
2253 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2254 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2255 			sctx->send_root->root_item.uuid);
2256 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2257 			sctx->send_root->root_item.ctransid);
2258 	if (parent_root) {
2259 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2260 				sctx->parent_root->root_item.uuid);
2261 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2262 				sctx->parent_root->root_item.ctransid);
2263 	}
2264 
2265 	ret = send_cmd(sctx);
2266 
2267 tlv_put_failure:
2268 out:
2269 	btrfs_free_path(path);
2270 	kfree(name);
2271 	return ret;
2272 }
2273 
2274 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2275 {
2276 	int ret = 0;
2277 	struct fs_path *p;
2278 
2279 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2280 
2281 	p = fs_path_alloc();
2282 	if (!p)
2283 		return -ENOMEM;
2284 
2285 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2286 	if (ret < 0)
2287 		goto out;
2288 
2289 	ret = get_cur_path(sctx, ino, gen, p);
2290 	if (ret < 0)
2291 		goto out;
2292 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2293 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2294 
2295 	ret = send_cmd(sctx);
2296 
2297 tlv_put_failure:
2298 out:
2299 	fs_path_free(p);
2300 	return ret;
2301 }
2302 
2303 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2304 {
2305 	int ret = 0;
2306 	struct fs_path *p;
2307 
2308 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2309 
2310 	p = fs_path_alloc();
2311 	if (!p)
2312 		return -ENOMEM;
2313 
2314 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2315 	if (ret < 0)
2316 		goto out;
2317 
2318 	ret = get_cur_path(sctx, ino, gen, p);
2319 	if (ret < 0)
2320 		goto out;
2321 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2322 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2323 
2324 	ret = send_cmd(sctx);
2325 
2326 tlv_put_failure:
2327 out:
2328 	fs_path_free(p);
2329 	return ret;
2330 }
2331 
2332 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2333 {
2334 	int ret = 0;
2335 	struct fs_path *p;
2336 
2337 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2338 
2339 	p = fs_path_alloc();
2340 	if (!p)
2341 		return -ENOMEM;
2342 
2343 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2344 	if (ret < 0)
2345 		goto out;
2346 
2347 	ret = get_cur_path(sctx, ino, gen, p);
2348 	if (ret < 0)
2349 		goto out;
2350 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2351 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2352 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2353 
2354 	ret = send_cmd(sctx);
2355 
2356 tlv_put_failure:
2357 out:
2358 	fs_path_free(p);
2359 	return ret;
2360 }
2361 
2362 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2363 {
2364 	int ret = 0;
2365 	struct fs_path *p = NULL;
2366 	struct btrfs_inode_item *ii;
2367 	struct btrfs_path *path = NULL;
2368 	struct extent_buffer *eb;
2369 	struct btrfs_key key;
2370 	int slot;
2371 
2372 verbose_printk("btrfs: send_utimes %llu\n", ino);
2373 
2374 	p = fs_path_alloc();
2375 	if (!p)
2376 		return -ENOMEM;
2377 
2378 	path = alloc_path_for_send();
2379 	if (!path) {
2380 		ret = -ENOMEM;
2381 		goto out;
2382 	}
2383 
2384 	key.objectid = ino;
2385 	key.type = BTRFS_INODE_ITEM_KEY;
2386 	key.offset = 0;
2387 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2388 	if (ret < 0)
2389 		goto out;
2390 
2391 	eb = path->nodes[0];
2392 	slot = path->slots[0];
2393 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2394 
2395 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2396 	if (ret < 0)
2397 		goto out;
2398 
2399 	ret = get_cur_path(sctx, ino, gen, p);
2400 	if (ret < 0)
2401 		goto out;
2402 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2403 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2404 			btrfs_inode_atime(ii));
2405 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2406 			btrfs_inode_mtime(ii));
2407 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2408 			btrfs_inode_ctime(ii));
2409 	/* TODO Add otime support when the otime patches get into upstream */
2410 
2411 	ret = send_cmd(sctx);
2412 
2413 tlv_put_failure:
2414 out:
2415 	fs_path_free(p);
2416 	btrfs_free_path(path);
2417 	return ret;
2418 }
2419 
2420 /*
2421  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2422  * a valid path yet because we did not process the refs yet. So, the inode
2423  * is created as orphan.
2424  */
2425 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2426 {
2427 	int ret = 0;
2428 	struct fs_path *p;
2429 	int cmd;
2430 	u64 gen;
2431 	u64 mode;
2432 	u64 rdev;
2433 
2434 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2435 
2436 	p = fs_path_alloc();
2437 	if (!p)
2438 		return -ENOMEM;
2439 
2440 	ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2441 			NULL, &rdev);
2442 	if (ret < 0)
2443 		goto out;
2444 
2445 	if (S_ISREG(mode)) {
2446 		cmd = BTRFS_SEND_C_MKFILE;
2447 	} else if (S_ISDIR(mode)) {
2448 		cmd = BTRFS_SEND_C_MKDIR;
2449 	} else if (S_ISLNK(mode)) {
2450 		cmd = BTRFS_SEND_C_SYMLINK;
2451 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2452 		cmd = BTRFS_SEND_C_MKNOD;
2453 	} else if (S_ISFIFO(mode)) {
2454 		cmd = BTRFS_SEND_C_MKFIFO;
2455 	} else if (S_ISSOCK(mode)) {
2456 		cmd = BTRFS_SEND_C_MKSOCK;
2457 	} else {
2458 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2459 				(int)(mode & S_IFMT));
2460 		ret = -ENOTSUPP;
2461 		goto out;
2462 	}
2463 
2464 	ret = begin_cmd(sctx, cmd);
2465 	if (ret < 0)
2466 		goto out;
2467 
2468 	ret = gen_unique_name(sctx, ino, gen, p);
2469 	if (ret < 0)
2470 		goto out;
2471 
2472 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2473 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2474 
2475 	if (S_ISLNK(mode)) {
2476 		fs_path_reset(p);
2477 		ret = read_symlink(sctx->send_root, ino, p);
2478 		if (ret < 0)
2479 			goto out;
2480 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2481 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2482 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2483 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2484 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2485 	}
2486 
2487 	ret = send_cmd(sctx);
2488 	if (ret < 0)
2489 		goto out;
2490 
2491 
2492 tlv_put_failure:
2493 out:
2494 	fs_path_free(p);
2495 	return ret;
2496 }
2497 
2498 /*
2499  * We need some special handling for inodes that get processed before the parent
2500  * directory got created. See process_recorded_refs for details.
2501  * This function does the check if we already created the dir out of order.
2502  */
2503 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2504 {
2505 	int ret = 0;
2506 	struct btrfs_path *path = NULL;
2507 	struct btrfs_key key;
2508 	struct btrfs_key found_key;
2509 	struct btrfs_key di_key;
2510 	struct extent_buffer *eb;
2511 	struct btrfs_dir_item *di;
2512 	int slot;
2513 
2514 	path = alloc_path_for_send();
2515 	if (!path) {
2516 		ret = -ENOMEM;
2517 		goto out;
2518 	}
2519 
2520 	key.objectid = dir;
2521 	key.type = BTRFS_DIR_INDEX_KEY;
2522 	key.offset = 0;
2523 	while (1) {
2524 		ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2525 				1, 0);
2526 		if (ret < 0)
2527 			goto out;
2528 		if (!ret) {
2529 			eb = path->nodes[0];
2530 			slot = path->slots[0];
2531 			btrfs_item_key_to_cpu(eb, &found_key, slot);
2532 		}
2533 		if (ret || found_key.objectid != key.objectid ||
2534 		    found_key.type != key.type) {
2535 			ret = 0;
2536 			goto out;
2537 		}
2538 
2539 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2540 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2541 
2542 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2543 		    di_key.objectid < sctx->send_progress) {
2544 			ret = 1;
2545 			goto out;
2546 		}
2547 
2548 		key.offset = found_key.offset + 1;
2549 		btrfs_release_path(path);
2550 	}
2551 
2552 out:
2553 	btrfs_free_path(path);
2554 	return ret;
2555 }
2556 
2557 /*
2558  * Only creates the inode if it is:
2559  * 1. Not a directory
2560  * 2. Or a directory which was not created already due to out of order
2561  *    directories. See did_create_dir and process_recorded_refs for details.
2562  */
2563 static int send_create_inode_if_needed(struct send_ctx *sctx)
2564 {
2565 	int ret;
2566 
2567 	if (S_ISDIR(sctx->cur_inode_mode)) {
2568 		ret = did_create_dir(sctx, sctx->cur_ino);
2569 		if (ret < 0)
2570 			goto out;
2571 		if (ret) {
2572 			ret = 0;
2573 			goto out;
2574 		}
2575 	}
2576 
2577 	ret = send_create_inode(sctx, sctx->cur_ino);
2578 	if (ret < 0)
2579 		goto out;
2580 
2581 out:
2582 	return ret;
2583 }
2584 
2585 struct recorded_ref {
2586 	struct list_head list;
2587 	char *dir_path;
2588 	char *name;
2589 	struct fs_path *full_path;
2590 	u64 dir;
2591 	u64 dir_gen;
2592 	int dir_path_len;
2593 	int name_len;
2594 };
2595 
2596 /*
2597  * We need to process new refs before deleted refs, but compare_tree gives us
2598  * everything mixed. So we first record all refs and later process them.
2599  * This function is a helper to record one ref.
2600  */
2601 static int record_ref(struct list_head *head, u64 dir,
2602 		      u64 dir_gen, struct fs_path *path)
2603 {
2604 	struct recorded_ref *ref;
2605 
2606 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2607 	if (!ref)
2608 		return -ENOMEM;
2609 
2610 	ref->dir = dir;
2611 	ref->dir_gen = dir_gen;
2612 	ref->full_path = path;
2613 
2614 	ref->name = (char *)kbasename(ref->full_path->start);
2615 	ref->name_len = ref->full_path->end - ref->name;
2616 	ref->dir_path = ref->full_path->start;
2617 	if (ref->name == ref->full_path->start)
2618 		ref->dir_path_len = 0;
2619 	else
2620 		ref->dir_path_len = ref->full_path->end -
2621 				ref->full_path->start - 1 - ref->name_len;
2622 
2623 	list_add_tail(&ref->list, head);
2624 	return 0;
2625 }
2626 
2627 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2628 {
2629 	struct recorded_ref *new;
2630 
2631 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2632 	if (!new)
2633 		return -ENOMEM;
2634 
2635 	new->dir = ref->dir;
2636 	new->dir_gen = ref->dir_gen;
2637 	new->full_path = NULL;
2638 	INIT_LIST_HEAD(&new->list);
2639 	list_add_tail(&new->list, list);
2640 	return 0;
2641 }
2642 
2643 static void __free_recorded_refs(struct list_head *head)
2644 {
2645 	struct recorded_ref *cur;
2646 
2647 	while (!list_empty(head)) {
2648 		cur = list_entry(head->next, struct recorded_ref, list);
2649 		fs_path_free(cur->full_path);
2650 		list_del(&cur->list);
2651 		kfree(cur);
2652 	}
2653 }
2654 
2655 static void free_recorded_refs(struct send_ctx *sctx)
2656 {
2657 	__free_recorded_refs(&sctx->new_refs);
2658 	__free_recorded_refs(&sctx->deleted_refs);
2659 }
2660 
2661 /*
2662  * Renames/moves a file/dir to its orphan name. Used when the first
2663  * ref of an unprocessed inode gets overwritten and for all non empty
2664  * directories.
2665  */
2666 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2667 			  struct fs_path *path)
2668 {
2669 	int ret;
2670 	struct fs_path *orphan;
2671 
2672 	orphan = fs_path_alloc();
2673 	if (!orphan)
2674 		return -ENOMEM;
2675 
2676 	ret = gen_unique_name(sctx, ino, gen, orphan);
2677 	if (ret < 0)
2678 		goto out;
2679 
2680 	ret = send_rename(sctx, path, orphan);
2681 
2682 out:
2683 	fs_path_free(orphan);
2684 	return ret;
2685 }
2686 
2687 /*
2688  * Returns 1 if a directory can be removed at this point in time.
2689  * We check this by iterating all dir items and checking if the inode behind
2690  * the dir item was already processed.
2691  */
2692 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2693 {
2694 	int ret = 0;
2695 	struct btrfs_root *root = sctx->parent_root;
2696 	struct btrfs_path *path;
2697 	struct btrfs_key key;
2698 	struct btrfs_key found_key;
2699 	struct btrfs_key loc;
2700 	struct btrfs_dir_item *di;
2701 
2702 	/*
2703 	 * Don't try to rmdir the top/root subvolume dir.
2704 	 */
2705 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2706 		return 0;
2707 
2708 	path = alloc_path_for_send();
2709 	if (!path)
2710 		return -ENOMEM;
2711 
2712 	key.objectid = dir;
2713 	key.type = BTRFS_DIR_INDEX_KEY;
2714 	key.offset = 0;
2715 
2716 	while (1) {
2717 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2718 		if (ret < 0)
2719 			goto out;
2720 		if (!ret) {
2721 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2722 					path->slots[0]);
2723 		}
2724 		if (ret || found_key.objectid != key.objectid ||
2725 		    found_key.type != key.type) {
2726 			break;
2727 		}
2728 
2729 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2730 				struct btrfs_dir_item);
2731 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2732 
2733 		if (loc.objectid > send_progress) {
2734 			ret = 0;
2735 			goto out;
2736 		}
2737 
2738 		btrfs_release_path(path);
2739 		key.offset = found_key.offset + 1;
2740 	}
2741 
2742 	ret = 1;
2743 
2744 out:
2745 	btrfs_free_path(path);
2746 	return ret;
2747 }
2748 
2749 /*
2750  * This does all the move/link/unlink/rmdir magic.
2751  */
2752 static int process_recorded_refs(struct send_ctx *sctx)
2753 {
2754 	int ret = 0;
2755 	struct recorded_ref *cur;
2756 	struct recorded_ref *cur2;
2757 	struct list_head check_dirs;
2758 	struct fs_path *valid_path = NULL;
2759 	u64 ow_inode = 0;
2760 	u64 ow_gen;
2761 	int did_overwrite = 0;
2762 	int is_orphan = 0;
2763 
2764 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
2765 
2766 	/*
2767 	 * This should never happen as the root dir always has the same ref
2768 	 * which is always '..'
2769 	 */
2770 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
2771 	INIT_LIST_HEAD(&check_dirs);
2772 
2773 	valid_path = fs_path_alloc();
2774 	if (!valid_path) {
2775 		ret = -ENOMEM;
2776 		goto out;
2777 	}
2778 
2779 	/*
2780 	 * First, check if the first ref of the current inode was overwritten
2781 	 * before. If yes, we know that the current inode was already orphanized
2782 	 * and thus use the orphan name. If not, we can use get_cur_path to
2783 	 * get the path of the first ref as it would like while receiving at
2784 	 * this point in time.
2785 	 * New inodes are always orphan at the beginning, so force to use the
2786 	 * orphan name in this case.
2787 	 * The first ref is stored in valid_path and will be updated if it
2788 	 * gets moved around.
2789 	 */
2790 	if (!sctx->cur_inode_new) {
2791 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
2792 				sctx->cur_inode_gen);
2793 		if (ret < 0)
2794 			goto out;
2795 		if (ret)
2796 			did_overwrite = 1;
2797 	}
2798 	if (sctx->cur_inode_new || did_overwrite) {
2799 		ret = gen_unique_name(sctx, sctx->cur_ino,
2800 				sctx->cur_inode_gen, valid_path);
2801 		if (ret < 0)
2802 			goto out;
2803 		is_orphan = 1;
2804 	} else {
2805 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2806 				valid_path);
2807 		if (ret < 0)
2808 			goto out;
2809 	}
2810 
2811 	list_for_each_entry(cur, &sctx->new_refs, list) {
2812 		/*
2813 		 * We may have refs where the parent directory does not exist
2814 		 * yet. This happens if the parent directories inum is higher
2815 		 * the the current inum. To handle this case, we create the
2816 		 * parent directory out of order. But we need to check if this
2817 		 * did already happen before due to other refs in the same dir.
2818 		 */
2819 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
2820 		if (ret < 0)
2821 			goto out;
2822 		if (ret == inode_state_will_create) {
2823 			ret = 0;
2824 			/*
2825 			 * First check if any of the current inodes refs did
2826 			 * already create the dir.
2827 			 */
2828 			list_for_each_entry(cur2, &sctx->new_refs, list) {
2829 				if (cur == cur2)
2830 					break;
2831 				if (cur2->dir == cur->dir) {
2832 					ret = 1;
2833 					break;
2834 				}
2835 			}
2836 
2837 			/*
2838 			 * If that did not happen, check if a previous inode
2839 			 * did already create the dir.
2840 			 */
2841 			if (!ret)
2842 				ret = did_create_dir(sctx, cur->dir);
2843 			if (ret < 0)
2844 				goto out;
2845 			if (!ret) {
2846 				ret = send_create_inode(sctx, cur->dir);
2847 				if (ret < 0)
2848 					goto out;
2849 			}
2850 		}
2851 
2852 		/*
2853 		 * Check if this new ref would overwrite the first ref of
2854 		 * another unprocessed inode. If yes, orphanize the
2855 		 * overwritten inode. If we find an overwritten ref that is
2856 		 * not the first ref, simply unlink it.
2857 		 */
2858 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2859 				cur->name, cur->name_len,
2860 				&ow_inode, &ow_gen);
2861 		if (ret < 0)
2862 			goto out;
2863 		if (ret) {
2864 			ret = is_first_ref(sctx->parent_root,
2865 					   ow_inode, cur->dir, cur->name,
2866 					   cur->name_len);
2867 			if (ret < 0)
2868 				goto out;
2869 			if (ret) {
2870 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
2871 						cur->full_path);
2872 				if (ret < 0)
2873 					goto out;
2874 			} else {
2875 				ret = send_unlink(sctx, cur->full_path);
2876 				if (ret < 0)
2877 					goto out;
2878 			}
2879 		}
2880 
2881 		/*
2882 		 * link/move the ref to the new place. If we have an orphan
2883 		 * inode, move it and update valid_path. If not, link or move
2884 		 * it depending on the inode mode.
2885 		 */
2886 		if (is_orphan) {
2887 			ret = send_rename(sctx, valid_path, cur->full_path);
2888 			if (ret < 0)
2889 				goto out;
2890 			is_orphan = 0;
2891 			ret = fs_path_copy(valid_path, cur->full_path);
2892 			if (ret < 0)
2893 				goto out;
2894 		} else {
2895 			if (S_ISDIR(sctx->cur_inode_mode)) {
2896 				/*
2897 				 * Dirs can't be linked, so move it. For moved
2898 				 * dirs, we always have one new and one deleted
2899 				 * ref. The deleted ref is ignored later.
2900 				 */
2901 				ret = send_rename(sctx, valid_path,
2902 						cur->full_path);
2903 				if (ret < 0)
2904 					goto out;
2905 				ret = fs_path_copy(valid_path, cur->full_path);
2906 				if (ret < 0)
2907 					goto out;
2908 			} else {
2909 				ret = send_link(sctx, cur->full_path,
2910 						valid_path);
2911 				if (ret < 0)
2912 					goto out;
2913 			}
2914 		}
2915 		ret = dup_ref(cur, &check_dirs);
2916 		if (ret < 0)
2917 			goto out;
2918 	}
2919 
2920 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
2921 		/*
2922 		 * Check if we can already rmdir the directory. If not,
2923 		 * orphanize it. For every dir item inside that gets deleted
2924 		 * later, we do this check again and rmdir it then if possible.
2925 		 * See the use of check_dirs for more details.
2926 		 */
2927 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
2928 		if (ret < 0)
2929 			goto out;
2930 		if (ret) {
2931 			ret = send_rmdir(sctx, valid_path);
2932 			if (ret < 0)
2933 				goto out;
2934 		} else if (!is_orphan) {
2935 			ret = orphanize_inode(sctx, sctx->cur_ino,
2936 					sctx->cur_inode_gen, valid_path);
2937 			if (ret < 0)
2938 				goto out;
2939 			is_orphan = 1;
2940 		}
2941 
2942 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
2943 			ret = dup_ref(cur, &check_dirs);
2944 			if (ret < 0)
2945 				goto out;
2946 		}
2947 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
2948 		   !list_empty(&sctx->deleted_refs)) {
2949 		/*
2950 		 * We have a moved dir. Add the old parent to check_dirs
2951 		 */
2952 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
2953 				list);
2954 		ret = dup_ref(cur, &check_dirs);
2955 		if (ret < 0)
2956 			goto out;
2957 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
2958 		/*
2959 		 * We have a non dir inode. Go through all deleted refs and
2960 		 * unlink them if they were not already overwritten by other
2961 		 * inodes.
2962 		 */
2963 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
2964 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2965 					sctx->cur_ino, sctx->cur_inode_gen,
2966 					cur->name, cur->name_len);
2967 			if (ret < 0)
2968 				goto out;
2969 			if (!ret) {
2970 				ret = send_unlink(sctx, cur->full_path);
2971 				if (ret < 0)
2972 					goto out;
2973 			}
2974 			ret = dup_ref(cur, &check_dirs);
2975 			if (ret < 0)
2976 				goto out;
2977 		}
2978 		/*
2979 		 * If the inode is still orphan, unlink the orphan. This may
2980 		 * happen when a previous inode did overwrite the first ref
2981 		 * of this inode and no new refs were added for the current
2982 		 * inode. Unlinking does not mean that the inode is deleted in
2983 		 * all cases. There may still be links to this inode in other
2984 		 * places.
2985 		 */
2986 		if (is_orphan) {
2987 			ret = send_unlink(sctx, valid_path);
2988 			if (ret < 0)
2989 				goto out;
2990 		}
2991 	}
2992 
2993 	/*
2994 	 * We did collect all parent dirs where cur_inode was once located. We
2995 	 * now go through all these dirs and check if they are pending for
2996 	 * deletion and if it's finally possible to perform the rmdir now.
2997 	 * We also update the inode stats of the parent dirs here.
2998 	 */
2999 	list_for_each_entry(cur, &check_dirs, list) {
3000 		/*
3001 		 * In case we had refs into dirs that were not processed yet,
3002 		 * we don't need to do the utime and rmdir logic for these dirs.
3003 		 * The dir will be processed later.
3004 		 */
3005 		if (cur->dir > sctx->cur_ino)
3006 			continue;
3007 
3008 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3009 		if (ret < 0)
3010 			goto out;
3011 
3012 		if (ret == inode_state_did_create ||
3013 		    ret == inode_state_no_change) {
3014 			/* TODO delayed utimes */
3015 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3016 			if (ret < 0)
3017 				goto out;
3018 		} else if (ret == inode_state_did_delete) {
3019 			ret = can_rmdir(sctx, cur->dir, sctx->cur_ino);
3020 			if (ret < 0)
3021 				goto out;
3022 			if (ret) {
3023 				ret = get_cur_path(sctx, cur->dir,
3024 						   cur->dir_gen, valid_path);
3025 				if (ret < 0)
3026 					goto out;
3027 				ret = send_rmdir(sctx, valid_path);
3028 				if (ret < 0)
3029 					goto out;
3030 			}
3031 		}
3032 	}
3033 
3034 	ret = 0;
3035 
3036 out:
3037 	__free_recorded_refs(&check_dirs);
3038 	free_recorded_refs(sctx);
3039 	fs_path_free(valid_path);
3040 	return ret;
3041 }
3042 
3043 static int __record_new_ref(int num, u64 dir, int index,
3044 			    struct fs_path *name,
3045 			    void *ctx)
3046 {
3047 	int ret = 0;
3048 	struct send_ctx *sctx = ctx;
3049 	struct fs_path *p;
3050 	u64 gen;
3051 
3052 	p = fs_path_alloc();
3053 	if (!p)
3054 		return -ENOMEM;
3055 
3056 	ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
3057 			NULL, NULL);
3058 	if (ret < 0)
3059 		goto out;
3060 
3061 	ret = get_cur_path(sctx, dir, gen, p);
3062 	if (ret < 0)
3063 		goto out;
3064 	ret = fs_path_add_path(p, name);
3065 	if (ret < 0)
3066 		goto out;
3067 
3068 	ret = record_ref(&sctx->new_refs, dir, gen, p);
3069 
3070 out:
3071 	if (ret)
3072 		fs_path_free(p);
3073 	return ret;
3074 }
3075 
3076 static int __record_deleted_ref(int num, u64 dir, int index,
3077 				struct fs_path *name,
3078 				void *ctx)
3079 {
3080 	int ret = 0;
3081 	struct send_ctx *sctx = ctx;
3082 	struct fs_path *p;
3083 	u64 gen;
3084 
3085 	p = fs_path_alloc();
3086 	if (!p)
3087 		return -ENOMEM;
3088 
3089 	ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
3090 			NULL, NULL);
3091 	if (ret < 0)
3092 		goto out;
3093 
3094 	ret = get_cur_path(sctx, dir, gen, p);
3095 	if (ret < 0)
3096 		goto out;
3097 	ret = fs_path_add_path(p, name);
3098 	if (ret < 0)
3099 		goto out;
3100 
3101 	ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3102 
3103 out:
3104 	if (ret)
3105 		fs_path_free(p);
3106 	return ret;
3107 }
3108 
3109 static int record_new_ref(struct send_ctx *sctx)
3110 {
3111 	int ret;
3112 
3113 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3114 				sctx->cmp_key, 0, __record_new_ref, sctx);
3115 	if (ret < 0)
3116 		goto out;
3117 	ret = 0;
3118 
3119 out:
3120 	return ret;
3121 }
3122 
3123 static int record_deleted_ref(struct send_ctx *sctx)
3124 {
3125 	int ret;
3126 
3127 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3128 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3129 	if (ret < 0)
3130 		goto out;
3131 	ret = 0;
3132 
3133 out:
3134 	return ret;
3135 }
3136 
3137 struct find_ref_ctx {
3138 	u64 dir;
3139 	u64 dir_gen;
3140 	struct btrfs_root *root;
3141 	struct fs_path *name;
3142 	int found_idx;
3143 };
3144 
3145 static int __find_iref(int num, u64 dir, int index,
3146 		       struct fs_path *name,
3147 		       void *ctx_)
3148 {
3149 	struct find_ref_ctx *ctx = ctx_;
3150 	u64 dir_gen;
3151 	int ret;
3152 
3153 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3154 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3155 		/*
3156 		 * To avoid doing extra lookups we'll only do this if everything
3157 		 * else matches.
3158 		 */
3159 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3160 				     NULL, NULL, NULL);
3161 		if (ret)
3162 			return ret;
3163 		if (dir_gen != ctx->dir_gen)
3164 			return 0;
3165 		ctx->found_idx = num;
3166 		return 1;
3167 	}
3168 	return 0;
3169 }
3170 
3171 static int find_iref(struct btrfs_root *root,
3172 		     struct btrfs_path *path,
3173 		     struct btrfs_key *key,
3174 		     u64 dir, u64 dir_gen, struct fs_path *name)
3175 {
3176 	int ret;
3177 	struct find_ref_ctx ctx;
3178 
3179 	ctx.dir = dir;
3180 	ctx.name = name;
3181 	ctx.dir_gen = dir_gen;
3182 	ctx.found_idx = -1;
3183 	ctx.root = root;
3184 
3185 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3186 	if (ret < 0)
3187 		return ret;
3188 
3189 	if (ctx.found_idx == -1)
3190 		return -ENOENT;
3191 
3192 	return ctx.found_idx;
3193 }
3194 
3195 static int __record_changed_new_ref(int num, u64 dir, int index,
3196 				    struct fs_path *name,
3197 				    void *ctx)
3198 {
3199 	u64 dir_gen;
3200 	int ret;
3201 	struct send_ctx *sctx = ctx;
3202 
3203 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3204 			     NULL, NULL, NULL);
3205 	if (ret)
3206 		return ret;
3207 
3208 	ret = find_iref(sctx->parent_root, sctx->right_path,
3209 			sctx->cmp_key, dir, dir_gen, name);
3210 	if (ret == -ENOENT)
3211 		ret = __record_new_ref(num, dir, index, name, sctx);
3212 	else if (ret > 0)
3213 		ret = 0;
3214 
3215 	return ret;
3216 }
3217 
3218 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3219 					struct fs_path *name,
3220 					void *ctx)
3221 {
3222 	u64 dir_gen;
3223 	int ret;
3224 	struct send_ctx *sctx = ctx;
3225 
3226 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3227 			     NULL, NULL, NULL);
3228 	if (ret)
3229 		return ret;
3230 
3231 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3232 			dir, dir_gen, name);
3233 	if (ret == -ENOENT)
3234 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3235 	else if (ret > 0)
3236 		ret = 0;
3237 
3238 	return ret;
3239 }
3240 
3241 static int record_changed_ref(struct send_ctx *sctx)
3242 {
3243 	int ret = 0;
3244 
3245 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3246 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3247 	if (ret < 0)
3248 		goto out;
3249 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3250 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3251 	if (ret < 0)
3252 		goto out;
3253 	ret = 0;
3254 
3255 out:
3256 	return ret;
3257 }
3258 
3259 /*
3260  * Record and process all refs at once. Needed when an inode changes the
3261  * generation number, which means that it was deleted and recreated.
3262  */
3263 static int process_all_refs(struct send_ctx *sctx,
3264 			    enum btrfs_compare_tree_result cmd)
3265 {
3266 	int ret;
3267 	struct btrfs_root *root;
3268 	struct btrfs_path *path;
3269 	struct btrfs_key key;
3270 	struct btrfs_key found_key;
3271 	struct extent_buffer *eb;
3272 	int slot;
3273 	iterate_inode_ref_t cb;
3274 
3275 	path = alloc_path_for_send();
3276 	if (!path)
3277 		return -ENOMEM;
3278 
3279 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
3280 		root = sctx->send_root;
3281 		cb = __record_new_ref;
3282 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3283 		root = sctx->parent_root;
3284 		cb = __record_deleted_ref;
3285 	} else {
3286 		BUG();
3287 	}
3288 
3289 	key.objectid = sctx->cmp_key->objectid;
3290 	key.type = BTRFS_INODE_REF_KEY;
3291 	key.offset = 0;
3292 	while (1) {
3293 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3294 		if (ret < 0)
3295 			goto out;
3296 		if (ret)
3297 			break;
3298 
3299 		eb = path->nodes[0];
3300 		slot = path->slots[0];
3301 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3302 
3303 		if (found_key.objectid != key.objectid ||
3304 		    (found_key.type != BTRFS_INODE_REF_KEY &&
3305 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
3306 			break;
3307 
3308 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3309 		btrfs_release_path(path);
3310 		if (ret < 0)
3311 			goto out;
3312 
3313 		key.offset = found_key.offset + 1;
3314 	}
3315 	btrfs_release_path(path);
3316 
3317 	ret = process_recorded_refs(sctx);
3318 
3319 out:
3320 	btrfs_free_path(path);
3321 	return ret;
3322 }
3323 
3324 static int send_set_xattr(struct send_ctx *sctx,
3325 			  struct fs_path *path,
3326 			  const char *name, int name_len,
3327 			  const char *data, int data_len)
3328 {
3329 	int ret = 0;
3330 
3331 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3332 	if (ret < 0)
3333 		goto out;
3334 
3335 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3336 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3337 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3338 
3339 	ret = send_cmd(sctx);
3340 
3341 tlv_put_failure:
3342 out:
3343 	return ret;
3344 }
3345 
3346 static int send_remove_xattr(struct send_ctx *sctx,
3347 			  struct fs_path *path,
3348 			  const char *name, int name_len)
3349 {
3350 	int ret = 0;
3351 
3352 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3353 	if (ret < 0)
3354 		goto out;
3355 
3356 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3357 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3358 
3359 	ret = send_cmd(sctx);
3360 
3361 tlv_put_failure:
3362 out:
3363 	return ret;
3364 }
3365 
3366 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3367 			       const char *name, int name_len,
3368 			       const char *data, int data_len,
3369 			       u8 type, void *ctx)
3370 {
3371 	int ret;
3372 	struct send_ctx *sctx = ctx;
3373 	struct fs_path *p;
3374 	posix_acl_xattr_header dummy_acl;
3375 
3376 	p = fs_path_alloc();
3377 	if (!p)
3378 		return -ENOMEM;
3379 
3380 	/*
3381 	 * This hack is needed because empty acl's are stored as zero byte
3382 	 * data in xattrs. Problem with that is, that receiving these zero byte
3383 	 * acl's will fail later. To fix this, we send a dummy acl list that
3384 	 * only contains the version number and no entries.
3385 	 */
3386 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3387 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3388 		if (data_len == 0) {
3389 			dummy_acl.a_version =
3390 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3391 			data = (char *)&dummy_acl;
3392 			data_len = sizeof(dummy_acl);
3393 		}
3394 	}
3395 
3396 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3397 	if (ret < 0)
3398 		goto out;
3399 
3400 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3401 
3402 out:
3403 	fs_path_free(p);
3404 	return ret;
3405 }
3406 
3407 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3408 				   const char *name, int name_len,
3409 				   const char *data, int data_len,
3410 				   u8 type, void *ctx)
3411 {
3412 	int ret;
3413 	struct send_ctx *sctx = ctx;
3414 	struct fs_path *p;
3415 
3416 	p = fs_path_alloc();
3417 	if (!p)
3418 		return -ENOMEM;
3419 
3420 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3421 	if (ret < 0)
3422 		goto out;
3423 
3424 	ret = send_remove_xattr(sctx, p, name, name_len);
3425 
3426 out:
3427 	fs_path_free(p);
3428 	return ret;
3429 }
3430 
3431 static int process_new_xattr(struct send_ctx *sctx)
3432 {
3433 	int ret = 0;
3434 
3435 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3436 			       sctx->cmp_key, __process_new_xattr, sctx);
3437 
3438 	return ret;
3439 }
3440 
3441 static int process_deleted_xattr(struct send_ctx *sctx)
3442 {
3443 	int ret;
3444 
3445 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3446 			       sctx->cmp_key, __process_deleted_xattr, sctx);
3447 
3448 	return ret;
3449 }
3450 
3451 struct find_xattr_ctx {
3452 	const char *name;
3453 	int name_len;
3454 	int found_idx;
3455 	char *found_data;
3456 	int found_data_len;
3457 };
3458 
3459 static int __find_xattr(int num, struct btrfs_key *di_key,
3460 			const char *name, int name_len,
3461 			const char *data, int data_len,
3462 			u8 type, void *vctx)
3463 {
3464 	struct find_xattr_ctx *ctx = vctx;
3465 
3466 	if (name_len == ctx->name_len &&
3467 	    strncmp(name, ctx->name, name_len) == 0) {
3468 		ctx->found_idx = num;
3469 		ctx->found_data_len = data_len;
3470 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
3471 		if (!ctx->found_data)
3472 			return -ENOMEM;
3473 		return 1;
3474 	}
3475 	return 0;
3476 }
3477 
3478 static int find_xattr(struct btrfs_root *root,
3479 		      struct btrfs_path *path,
3480 		      struct btrfs_key *key,
3481 		      const char *name, int name_len,
3482 		      char **data, int *data_len)
3483 {
3484 	int ret;
3485 	struct find_xattr_ctx ctx;
3486 
3487 	ctx.name = name;
3488 	ctx.name_len = name_len;
3489 	ctx.found_idx = -1;
3490 	ctx.found_data = NULL;
3491 	ctx.found_data_len = 0;
3492 
3493 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
3494 	if (ret < 0)
3495 		return ret;
3496 
3497 	if (ctx.found_idx == -1)
3498 		return -ENOENT;
3499 	if (data) {
3500 		*data = ctx.found_data;
3501 		*data_len = ctx.found_data_len;
3502 	} else {
3503 		kfree(ctx.found_data);
3504 	}
3505 	return ctx.found_idx;
3506 }
3507 
3508 
3509 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3510 				       const char *name, int name_len,
3511 				       const char *data, int data_len,
3512 				       u8 type, void *ctx)
3513 {
3514 	int ret;
3515 	struct send_ctx *sctx = ctx;
3516 	char *found_data = NULL;
3517 	int found_data_len  = 0;
3518 
3519 	ret = find_xattr(sctx->parent_root, sctx->right_path,
3520 			 sctx->cmp_key, name, name_len, &found_data,
3521 			 &found_data_len);
3522 	if (ret == -ENOENT) {
3523 		ret = __process_new_xattr(num, di_key, name, name_len, data,
3524 				data_len, type, ctx);
3525 	} else if (ret >= 0) {
3526 		if (data_len != found_data_len ||
3527 		    memcmp(data, found_data, data_len)) {
3528 			ret = __process_new_xattr(num, di_key, name, name_len,
3529 					data, data_len, type, ctx);
3530 		} else {
3531 			ret = 0;
3532 		}
3533 	}
3534 
3535 	kfree(found_data);
3536 	return ret;
3537 }
3538 
3539 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3540 					   const char *name, int name_len,
3541 					   const char *data, int data_len,
3542 					   u8 type, void *ctx)
3543 {
3544 	int ret;
3545 	struct send_ctx *sctx = ctx;
3546 
3547 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
3548 			 name, name_len, NULL, NULL);
3549 	if (ret == -ENOENT)
3550 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3551 				data_len, type, ctx);
3552 	else if (ret >= 0)
3553 		ret = 0;
3554 
3555 	return ret;
3556 }
3557 
3558 static int process_changed_xattr(struct send_ctx *sctx)
3559 {
3560 	int ret = 0;
3561 
3562 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3563 			sctx->cmp_key, __process_changed_new_xattr, sctx);
3564 	if (ret < 0)
3565 		goto out;
3566 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3567 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3568 
3569 out:
3570 	return ret;
3571 }
3572 
3573 static int process_all_new_xattrs(struct send_ctx *sctx)
3574 {
3575 	int ret;
3576 	struct btrfs_root *root;
3577 	struct btrfs_path *path;
3578 	struct btrfs_key key;
3579 	struct btrfs_key found_key;
3580 	struct extent_buffer *eb;
3581 	int slot;
3582 
3583 	path = alloc_path_for_send();
3584 	if (!path)
3585 		return -ENOMEM;
3586 
3587 	root = sctx->send_root;
3588 
3589 	key.objectid = sctx->cmp_key->objectid;
3590 	key.type = BTRFS_XATTR_ITEM_KEY;
3591 	key.offset = 0;
3592 	while (1) {
3593 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3594 		if (ret < 0)
3595 			goto out;
3596 		if (ret) {
3597 			ret = 0;
3598 			goto out;
3599 		}
3600 
3601 		eb = path->nodes[0];
3602 		slot = path->slots[0];
3603 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3604 
3605 		if (found_key.objectid != key.objectid ||
3606 		    found_key.type != key.type) {
3607 			ret = 0;
3608 			goto out;
3609 		}
3610 
3611 		ret = iterate_dir_item(root, path, &found_key,
3612 				       __process_new_xattr, sctx);
3613 		if (ret < 0)
3614 			goto out;
3615 
3616 		btrfs_release_path(path);
3617 		key.offset = found_key.offset + 1;
3618 	}
3619 
3620 out:
3621 	btrfs_free_path(path);
3622 	return ret;
3623 }
3624 
3625 /*
3626  * Read some bytes from the current inode/file and send a write command to
3627  * user space.
3628  */
3629 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
3630 {
3631 	int ret = 0;
3632 	struct fs_path *p;
3633 	loff_t pos = offset;
3634 	int num_read = 0;
3635 	mm_segment_t old_fs;
3636 
3637 	p = fs_path_alloc();
3638 	if (!p)
3639 		return -ENOMEM;
3640 
3641 	/*
3642 	 * vfs normally only accepts user space buffers for security reasons.
3643 	 * we only read from the file and also only provide the read_buf buffer
3644 	 * to vfs. As this buffer does not come from a user space call, it's
3645 	 * ok to temporary allow kernel space buffers.
3646 	 */
3647 	old_fs = get_fs();
3648 	set_fs(KERNEL_DS);
3649 
3650 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
3651 
3652 	ret = open_cur_inode_file(sctx);
3653 	if (ret < 0)
3654 		goto out;
3655 
3656 	ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos);
3657 	if (ret < 0)
3658 		goto out;
3659 	num_read = ret;
3660 	if (!num_read)
3661 		goto out;
3662 
3663 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
3664 	if (ret < 0)
3665 		goto out;
3666 
3667 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3668 	if (ret < 0)
3669 		goto out;
3670 
3671 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3672 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3673 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
3674 
3675 	ret = send_cmd(sctx);
3676 
3677 tlv_put_failure:
3678 out:
3679 	fs_path_free(p);
3680 	set_fs(old_fs);
3681 	if (ret < 0)
3682 		return ret;
3683 	return num_read;
3684 }
3685 
3686 /*
3687  * Send a clone command to user space.
3688  */
3689 static int send_clone(struct send_ctx *sctx,
3690 		      u64 offset, u32 len,
3691 		      struct clone_root *clone_root)
3692 {
3693 	int ret = 0;
3694 	struct fs_path *p;
3695 	u64 gen;
3696 
3697 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3698 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
3699 		clone_root->root->objectid, clone_root->ino,
3700 		clone_root->offset);
3701 
3702 	p = fs_path_alloc();
3703 	if (!p)
3704 		return -ENOMEM;
3705 
3706 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
3707 	if (ret < 0)
3708 		goto out;
3709 
3710 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3711 	if (ret < 0)
3712 		goto out;
3713 
3714 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3715 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
3716 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3717 
3718 	if (clone_root->root == sctx->send_root) {
3719 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
3720 				&gen, NULL, NULL, NULL, NULL);
3721 		if (ret < 0)
3722 			goto out;
3723 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
3724 	} else {
3725 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
3726 	}
3727 	if (ret < 0)
3728 		goto out;
3729 
3730 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
3731 			clone_root->root->root_item.uuid);
3732 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
3733 			clone_root->root->root_item.ctransid);
3734 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
3735 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
3736 			clone_root->offset);
3737 
3738 	ret = send_cmd(sctx);
3739 
3740 tlv_put_failure:
3741 out:
3742 	fs_path_free(p);
3743 	return ret;
3744 }
3745 
3746 /*
3747  * Send an update extent command to user space.
3748  */
3749 static int send_update_extent(struct send_ctx *sctx,
3750 			      u64 offset, u32 len)
3751 {
3752 	int ret = 0;
3753 	struct fs_path *p;
3754 
3755 	p = fs_path_alloc();
3756 	if (!p)
3757 		return -ENOMEM;
3758 
3759 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
3760 	if (ret < 0)
3761 		goto out;
3762 
3763 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3764 	if (ret < 0)
3765 		goto out;
3766 
3767 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3768 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3769 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
3770 
3771 	ret = send_cmd(sctx);
3772 
3773 tlv_put_failure:
3774 out:
3775 	fs_path_free(p);
3776 	return ret;
3777 }
3778 
3779 static int send_write_or_clone(struct send_ctx *sctx,
3780 			       struct btrfs_path *path,
3781 			       struct btrfs_key *key,
3782 			       struct clone_root *clone_root)
3783 {
3784 	int ret = 0;
3785 	struct btrfs_file_extent_item *ei;
3786 	u64 offset = key->offset;
3787 	u64 pos = 0;
3788 	u64 len;
3789 	u32 l;
3790 	u8 type;
3791 
3792 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3793 			struct btrfs_file_extent_item);
3794 	type = btrfs_file_extent_type(path->nodes[0], ei);
3795 	if (type == BTRFS_FILE_EXTENT_INLINE) {
3796 		len = btrfs_file_extent_inline_len(path->nodes[0], ei);
3797 		/*
3798 		 * it is possible the inline item won't cover the whole page,
3799 		 * but there may be items after this page.  Make
3800 		 * sure to send the whole thing
3801 		 */
3802 		len = PAGE_CACHE_ALIGN(len);
3803 	} else {
3804 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3805 	}
3806 
3807 	if (offset + len > sctx->cur_inode_size)
3808 		len = sctx->cur_inode_size - offset;
3809 	if (len == 0) {
3810 		ret = 0;
3811 		goto out;
3812 	}
3813 
3814 	if (clone_root) {
3815 		ret = send_clone(sctx, offset, len, clone_root);
3816 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
3817 		ret = send_update_extent(sctx, offset, len);
3818 	} else {
3819 		while (pos < len) {
3820 			l = len - pos;
3821 			if (l > BTRFS_SEND_READ_SIZE)
3822 				l = BTRFS_SEND_READ_SIZE;
3823 			ret = send_write(sctx, pos + offset, l);
3824 			if (ret < 0)
3825 				goto out;
3826 			if (!ret)
3827 				break;
3828 			pos += ret;
3829 		}
3830 		ret = 0;
3831 	}
3832 out:
3833 	return ret;
3834 }
3835 
3836 static int is_extent_unchanged(struct send_ctx *sctx,
3837 			       struct btrfs_path *left_path,
3838 			       struct btrfs_key *ekey)
3839 {
3840 	int ret = 0;
3841 	struct btrfs_key key;
3842 	struct btrfs_path *path = NULL;
3843 	struct extent_buffer *eb;
3844 	int slot;
3845 	struct btrfs_key found_key;
3846 	struct btrfs_file_extent_item *ei;
3847 	u64 left_disknr;
3848 	u64 right_disknr;
3849 	u64 left_offset;
3850 	u64 right_offset;
3851 	u64 left_offset_fixed;
3852 	u64 left_len;
3853 	u64 right_len;
3854 	u64 left_gen;
3855 	u64 right_gen;
3856 	u8 left_type;
3857 	u8 right_type;
3858 
3859 	path = alloc_path_for_send();
3860 	if (!path)
3861 		return -ENOMEM;
3862 
3863 	eb = left_path->nodes[0];
3864 	slot = left_path->slots[0];
3865 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3866 	left_type = btrfs_file_extent_type(eb, ei);
3867 
3868 	if (left_type != BTRFS_FILE_EXTENT_REG) {
3869 		ret = 0;
3870 		goto out;
3871 	}
3872 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3873 	left_len = btrfs_file_extent_num_bytes(eb, ei);
3874 	left_offset = btrfs_file_extent_offset(eb, ei);
3875 	left_gen = btrfs_file_extent_generation(eb, ei);
3876 
3877 	/*
3878 	 * Following comments will refer to these graphics. L is the left
3879 	 * extents which we are checking at the moment. 1-8 are the right
3880 	 * extents that we iterate.
3881 	 *
3882 	 *       |-----L-----|
3883 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3884 	 *
3885 	 *       |-----L-----|
3886 	 * |--1--|-2b-|...(same as above)
3887 	 *
3888 	 * Alternative situation. Happens on files where extents got split.
3889 	 *       |-----L-----|
3890 	 * |-----------7-----------|-6-|
3891 	 *
3892 	 * Alternative situation. Happens on files which got larger.
3893 	 *       |-----L-----|
3894 	 * |-8-|
3895 	 * Nothing follows after 8.
3896 	 */
3897 
3898 	key.objectid = ekey->objectid;
3899 	key.type = BTRFS_EXTENT_DATA_KEY;
3900 	key.offset = ekey->offset;
3901 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
3902 	if (ret < 0)
3903 		goto out;
3904 	if (ret) {
3905 		ret = 0;
3906 		goto out;
3907 	}
3908 
3909 	/*
3910 	 * Handle special case where the right side has no extents at all.
3911 	 */
3912 	eb = path->nodes[0];
3913 	slot = path->slots[0];
3914 	btrfs_item_key_to_cpu(eb, &found_key, slot);
3915 	if (found_key.objectid != key.objectid ||
3916 	    found_key.type != key.type) {
3917 		/* If we're a hole then just pretend nothing changed */
3918 		ret = (left_disknr) ? 0 : 1;
3919 		goto out;
3920 	}
3921 
3922 	/*
3923 	 * We're now on 2a, 2b or 7.
3924 	 */
3925 	key = found_key;
3926 	while (key.offset < ekey->offset + left_len) {
3927 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3928 		right_type = btrfs_file_extent_type(eb, ei);
3929 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3930 		right_len = btrfs_file_extent_num_bytes(eb, ei);
3931 		right_offset = btrfs_file_extent_offset(eb, ei);
3932 		right_gen = btrfs_file_extent_generation(eb, ei);
3933 
3934 		if (right_type != BTRFS_FILE_EXTENT_REG) {
3935 			ret = 0;
3936 			goto out;
3937 		}
3938 
3939 		/*
3940 		 * Are we at extent 8? If yes, we know the extent is changed.
3941 		 * This may only happen on the first iteration.
3942 		 */
3943 		if (found_key.offset + right_len <= ekey->offset) {
3944 			/* If we're a hole just pretend nothing changed */
3945 			ret = (left_disknr) ? 0 : 1;
3946 			goto out;
3947 		}
3948 
3949 		left_offset_fixed = left_offset;
3950 		if (key.offset < ekey->offset) {
3951 			/* Fix the right offset for 2a and 7. */
3952 			right_offset += ekey->offset - key.offset;
3953 		} else {
3954 			/* Fix the left offset for all behind 2a and 2b */
3955 			left_offset_fixed += key.offset - ekey->offset;
3956 		}
3957 
3958 		/*
3959 		 * Check if we have the same extent.
3960 		 */
3961 		if (left_disknr != right_disknr ||
3962 		    left_offset_fixed != right_offset ||
3963 		    left_gen != right_gen) {
3964 			ret = 0;
3965 			goto out;
3966 		}
3967 
3968 		/*
3969 		 * Go to the next extent.
3970 		 */
3971 		ret = btrfs_next_item(sctx->parent_root, path);
3972 		if (ret < 0)
3973 			goto out;
3974 		if (!ret) {
3975 			eb = path->nodes[0];
3976 			slot = path->slots[0];
3977 			btrfs_item_key_to_cpu(eb, &found_key, slot);
3978 		}
3979 		if (ret || found_key.objectid != key.objectid ||
3980 		    found_key.type != key.type) {
3981 			key.offset += right_len;
3982 			break;
3983 		}
3984 		if (found_key.offset != key.offset + right_len) {
3985 			ret = 0;
3986 			goto out;
3987 		}
3988 		key = found_key;
3989 	}
3990 
3991 	/*
3992 	 * We're now behind the left extent (treat as unchanged) or at the end
3993 	 * of the right side (treat as changed).
3994 	 */
3995 	if (key.offset >= ekey->offset + left_len)
3996 		ret = 1;
3997 	else
3998 		ret = 0;
3999 
4000 
4001 out:
4002 	btrfs_free_path(path);
4003 	return ret;
4004 }
4005 
4006 static int process_extent(struct send_ctx *sctx,
4007 			  struct btrfs_path *path,
4008 			  struct btrfs_key *key)
4009 {
4010 	struct clone_root *found_clone = NULL;
4011 	int ret = 0;
4012 
4013 	if (S_ISLNK(sctx->cur_inode_mode))
4014 		return 0;
4015 
4016 	if (sctx->parent_root && !sctx->cur_inode_new) {
4017 		ret = is_extent_unchanged(sctx, path, key);
4018 		if (ret < 0)
4019 			goto out;
4020 		if (ret) {
4021 			ret = 0;
4022 			goto out;
4023 		}
4024 	} else {
4025 		struct btrfs_file_extent_item *ei;
4026 		u8 type;
4027 
4028 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4029 				    struct btrfs_file_extent_item);
4030 		type = btrfs_file_extent_type(path->nodes[0], ei);
4031 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4032 		    type == BTRFS_FILE_EXTENT_REG) {
4033 			/*
4034 			 * The send spec does not have a prealloc command yet,
4035 			 * so just leave a hole for prealloc'ed extents until
4036 			 * we have enough commands queued up to justify rev'ing
4037 			 * the send spec.
4038 			 */
4039 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4040 				ret = 0;
4041 				goto out;
4042 			}
4043 
4044 			/* Have a hole, just skip it. */
4045 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4046 				ret = 0;
4047 				goto out;
4048 			}
4049 		}
4050 	}
4051 
4052 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4053 			sctx->cur_inode_size, &found_clone);
4054 	if (ret != -ENOENT && ret < 0)
4055 		goto out;
4056 
4057 	ret = send_write_or_clone(sctx, path, key, found_clone);
4058 
4059 out:
4060 	return ret;
4061 }
4062 
4063 static int process_all_extents(struct send_ctx *sctx)
4064 {
4065 	int ret;
4066 	struct btrfs_root *root;
4067 	struct btrfs_path *path;
4068 	struct btrfs_key key;
4069 	struct btrfs_key found_key;
4070 	struct extent_buffer *eb;
4071 	int slot;
4072 
4073 	root = sctx->send_root;
4074 	path = alloc_path_for_send();
4075 	if (!path)
4076 		return -ENOMEM;
4077 
4078 	key.objectid = sctx->cmp_key->objectid;
4079 	key.type = BTRFS_EXTENT_DATA_KEY;
4080 	key.offset = 0;
4081 	while (1) {
4082 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
4083 		if (ret < 0)
4084 			goto out;
4085 		if (ret) {
4086 			ret = 0;
4087 			goto out;
4088 		}
4089 
4090 		eb = path->nodes[0];
4091 		slot = path->slots[0];
4092 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4093 
4094 		if (found_key.objectid != key.objectid ||
4095 		    found_key.type != key.type) {
4096 			ret = 0;
4097 			goto out;
4098 		}
4099 
4100 		ret = process_extent(sctx, path, &found_key);
4101 		if (ret < 0)
4102 			goto out;
4103 
4104 		btrfs_release_path(path);
4105 		key.offset = found_key.offset + 1;
4106 	}
4107 
4108 out:
4109 	btrfs_free_path(path);
4110 	return ret;
4111 }
4112 
4113 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end)
4114 {
4115 	int ret = 0;
4116 
4117 	if (sctx->cur_ino == 0)
4118 		goto out;
4119 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4120 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4121 		goto out;
4122 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4123 		goto out;
4124 
4125 	ret = process_recorded_refs(sctx);
4126 	if (ret < 0)
4127 		goto out;
4128 
4129 	/*
4130 	 * We have processed the refs and thus need to advance send_progress.
4131 	 * Now, calls to get_cur_xxx will take the updated refs of the current
4132 	 * inode into account.
4133 	 */
4134 	sctx->send_progress = sctx->cur_ino + 1;
4135 
4136 out:
4137 	return ret;
4138 }
4139 
4140 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4141 {
4142 	int ret = 0;
4143 	u64 left_mode;
4144 	u64 left_uid;
4145 	u64 left_gid;
4146 	u64 right_mode;
4147 	u64 right_uid;
4148 	u64 right_gid;
4149 	int need_chmod = 0;
4150 	int need_chown = 0;
4151 
4152 	ret = process_recorded_refs_if_needed(sctx, at_end);
4153 	if (ret < 0)
4154 		goto out;
4155 
4156 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4157 		goto out;
4158 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4159 		goto out;
4160 
4161 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4162 			&left_mode, &left_uid, &left_gid, NULL);
4163 	if (ret < 0)
4164 		goto out;
4165 
4166 	if (!sctx->parent_root || sctx->cur_inode_new) {
4167 		need_chown = 1;
4168 		if (!S_ISLNK(sctx->cur_inode_mode))
4169 			need_chmod = 1;
4170 	} else {
4171 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4172 				NULL, NULL, &right_mode, &right_uid,
4173 				&right_gid, NULL);
4174 		if (ret < 0)
4175 			goto out;
4176 
4177 		if (left_uid != right_uid || left_gid != right_gid)
4178 			need_chown = 1;
4179 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4180 			need_chmod = 1;
4181 	}
4182 
4183 	if (S_ISREG(sctx->cur_inode_mode)) {
4184 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4185 				sctx->cur_inode_size);
4186 		if (ret < 0)
4187 			goto out;
4188 	}
4189 
4190 	if (need_chown) {
4191 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4192 				left_uid, left_gid);
4193 		if (ret < 0)
4194 			goto out;
4195 	}
4196 	if (need_chmod) {
4197 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4198 				left_mode);
4199 		if (ret < 0)
4200 			goto out;
4201 	}
4202 
4203 	/*
4204 	 * Need to send that every time, no matter if it actually changed
4205 	 * between the two trees as we have done changes to the inode before.
4206 	 */
4207 	ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4208 	if (ret < 0)
4209 		goto out;
4210 
4211 out:
4212 	return ret;
4213 }
4214 
4215 static int changed_inode(struct send_ctx *sctx,
4216 			 enum btrfs_compare_tree_result result)
4217 {
4218 	int ret = 0;
4219 	struct btrfs_key *key = sctx->cmp_key;
4220 	struct btrfs_inode_item *left_ii = NULL;
4221 	struct btrfs_inode_item *right_ii = NULL;
4222 	u64 left_gen = 0;
4223 	u64 right_gen = 0;
4224 
4225 	ret = close_cur_inode_file(sctx);
4226 	if (ret < 0)
4227 		goto out;
4228 
4229 	sctx->cur_ino = key->objectid;
4230 	sctx->cur_inode_new_gen = 0;
4231 
4232 	/*
4233 	 * Set send_progress to current inode. This will tell all get_cur_xxx
4234 	 * functions that the current inode's refs are not updated yet. Later,
4235 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4236 	 */
4237 	sctx->send_progress = sctx->cur_ino;
4238 
4239 	if (result == BTRFS_COMPARE_TREE_NEW ||
4240 	    result == BTRFS_COMPARE_TREE_CHANGED) {
4241 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4242 				sctx->left_path->slots[0],
4243 				struct btrfs_inode_item);
4244 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4245 				left_ii);
4246 	} else {
4247 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4248 				sctx->right_path->slots[0],
4249 				struct btrfs_inode_item);
4250 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4251 				right_ii);
4252 	}
4253 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
4254 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4255 				sctx->right_path->slots[0],
4256 				struct btrfs_inode_item);
4257 
4258 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4259 				right_ii);
4260 
4261 		/*
4262 		 * The cur_ino = root dir case is special here. We can't treat
4263 		 * the inode as deleted+reused because it would generate a
4264 		 * stream that tries to delete/mkdir the root dir.
4265 		 */
4266 		if (left_gen != right_gen &&
4267 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4268 			sctx->cur_inode_new_gen = 1;
4269 	}
4270 
4271 	if (result == BTRFS_COMPARE_TREE_NEW) {
4272 		sctx->cur_inode_gen = left_gen;
4273 		sctx->cur_inode_new = 1;
4274 		sctx->cur_inode_deleted = 0;
4275 		sctx->cur_inode_size = btrfs_inode_size(
4276 				sctx->left_path->nodes[0], left_ii);
4277 		sctx->cur_inode_mode = btrfs_inode_mode(
4278 				sctx->left_path->nodes[0], left_ii);
4279 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4280 			ret = send_create_inode_if_needed(sctx);
4281 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
4282 		sctx->cur_inode_gen = right_gen;
4283 		sctx->cur_inode_new = 0;
4284 		sctx->cur_inode_deleted = 1;
4285 		sctx->cur_inode_size = btrfs_inode_size(
4286 				sctx->right_path->nodes[0], right_ii);
4287 		sctx->cur_inode_mode = btrfs_inode_mode(
4288 				sctx->right_path->nodes[0], right_ii);
4289 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
4290 		/*
4291 		 * We need to do some special handling in case the inode was
4292 		 * reported as changed with a changed generation number. This
4293 		 * means that the original inode was deleted and new inode
4294 		 * reused the same inum. So we have to treat the old inode as
4295 		 * deleted and the new one as new.
4296 		 */
4297 		if (sctx->cur_inode_new_gen) {
4298 			/*
4299 			 * First, process the inode as if it was deleted.
4300 			 */
4301 			sctx->cur_inode_gen = right_gen;
4302 			sctx->cur_inode_new = 0;
4303 			sctx->cur_inode_deleted = 1;
4304 			sctx->cur_inode_size = btrfs_inode_size(
4305 					sctx->right_path->nodes[0], right_ii);
4306 			sctx->cur_inode_mode = btrfs_inode_mode(
4307 					sctx->right_path->nodes[0], right_ii);
4308 			ret = process_all_refs(sctx,
4309 					BTRFS_COMPARE_TREE_DELETED);
4310 			if (ret < 0)
4311 				goto out;
4312 
4313 			/*
4314 			 * Now process the inode as if it was new.
4315 			 */
4316 			sctx->cur_inode_gen = left_gen;
4317 			sctx->cur_inode_new = 1;
4318 			sctx->cur_inode_deleted = 0;
4319 			sctx->cur_inode_size = btrfs_inode_size(
4320 					sctx->left_path->nodes[0], left_ii);
4321 			sctx->cur_inode_mode = btrfs_inode_mode(
4322 					sctx->left_path->nodes[0], left_ii);
4323 			ret = send_create_inode_if_needed(sctx);
4324 			if (ret < 0)
4325 				goto out;
4326 
4327 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4328 			if (ret < 0)
4329 				goto out;
4330 			/*
4331 			 * Advance send_progress now as we did not get into
4332 			 * process_recorded_refs_if_needed in the new_gen case.
4333 			 */
4334 			sctx->send_progress = sctx->cur_ino + 1;
4335 
4336 			/*
4337 			 * Now process all extents and xattrs of the inode as if
4338 			 * they were all new.
4339 			 */
4340 			ret = process_all_extents(sctx);
4341 			if (ret < 0)
4342 				goto out;
4343 			ret = process_all_new_xattrs(sctx);
4344 			if (ret < 0)
4345 				goto out;
4346 		} else {
4347 			sctx->cur_inode_gen = left_gen;
4348 			sctx->cur_inode_new = 0;
4349 			sctx->cur_inode_new_gen = 0;
4350 			sctx->cur_inode_deleted = 0;
4351 			sctx->cur_inode_size = btrfs_inode_size(
4352 					sctx->left_path->nodes[0], left_ii);
4353 			sctx->cur_inode_mode = btrfs_inode_mode(
4354 					sctx->left_path->nodes[0], left_ii);
4355 		}
4356 	}
4357 
4358 out:
4359 	return ret;
4360 }
4361 
4362 /*
4363  * We have to process new refs before deleted refs, but compare_trees gives us
4364  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4365  * first and later process them in process_recorded_refs.
4366  * For the cur_inode_new_gen case, we skip recording completely because
4367  * changed_inode did already initiate processing of refs. The reason for this is
4368  * that in this case, compare_tree actually compares the refs of 2 different
4369  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4370  * refs of the right tree as deleted and all refs of the left tree as new.
4371  */
4372 static int changed_ref(struct send_ctx *sctx,
4373 		       enum btrfs_compare_tree_result result)
4374 {
4375 	int ret = 0;
4376 
4377 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4378 
4379 	if (!sctx->cur_inode_new_gen &&
4380 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4381 		if (result == BTRFS_COMPARE_TREE_NEW)
4382 			ret = record_new_ref(sctx);
4383 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4384 			ret = record_deleted_ref(sctx);
4385 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4386 			ret = record_changed_ref(sctx);
4387 	}
4388 
4389 	return ret;
4390 }
4391 
4392 /*
4393  * Process new/deleted/changed xattrs. We skip processing in the
4394  * cur_inode_new_gen case because changed_inode did already initiate processing
4395  * of xattrs. The reason is the same as in changed_ref
4396  */
4397 static int changed_xattr(struct send_ctx *sctx,
4398 			 enum btrfs_compare_tree_result result)
4399 {
4400 	int ret = 0;
4401 
4402 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4403 
4404 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4405 		if (result == BTRFS_COMPARE_TREE_NEW)
4406 			ret = process_new_xattr(sctx);
4407 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4408 			ret = process_deleted_xattr(sctx);
4409 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4410 			ret = process_changed_xattr(sctx);
4411 	}
4412 
4413 	return ret;
4414 }
4415 
4416 /*
4417  * Process new/deleted/changed extents. We skip processing in the
4418  * cur_inode_new_gen case because changed_inode did already initiate processing
4419  * of extents. The reason is the same as in changed_ref
4420  */
4421 static int changed_extent(struct send_ctx *sctx,
4422 			  enum btrfs_compare_tree_result result)
4423 {
4424 	int ret = 0;
4425 
4426 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4427 
4428 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4429 		if (result != BTRFS_COMPARE_TREE_DELETED)
4430 			ret = process_extent(sctx, sctx->left_path,
4431 					sctx->cmp_key);
4432 	}
4433 
4434 	return ret;
4435 }
4436 
4437 static int dir_changed(struct send_ctx *sctx, u64 dir)
4438 {
4439 	u64 orig_gen, new_gen;
4440 	int ret;
4441 
4442 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
4443 			     NULL, NULL);
4444 	if (ret)
4445 		return ret;
4446 
4447 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
4448 			     NULL, NULL, NULL);
4449 	if (ret)
4450 		return ret;
4451 
4452 	return (orig_gen != new_gen) ? 1 : 0;
4453 }
4454 
4455 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
4456 			struct btrfs_key *key)
4457 {
4458 	struct btrfs_inode_extref *extref;
4459 	struct extent_buffer *leaf;
4460 	u64 dirid = 0, last_dirid = 0;
4461 	unsigned long ptr;
4462 	u32 item_size;
4463 	u32 cur_offset = 0;
4464 	int ref_name_len;
4465 	int ret = 0;
4466 
4467 	/* Easy case, just check this one dirid */
4468 	if (key->type == BTRFS_INODE_REF_KEY) {
4469 		dirid = key->offset;
4470 
4471 		ret = dir_changed(sctx, dirid);
4472 		goto out;
4473 	}
4474 
4475 	leaf = path->nodes[0];
4476 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4477 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4478 	while (cur_offset < item_size) {
4479 		extref = (struct btrfs_inode_extref *)(ptr +
4480 						       cur_offset);
4481 		dirid = btrfs_inode_extref_parent(leaf, extref);
4482 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
4483 		cur_offset += ref_name_len + sizeof(*extref);
4484 		if (dirid == last_dirid)
4485 			continue;
4486 		ret = dir_changed(sctx, dirid);
4487 		if (ret)
4488 			break;
4489 		last_dirid = dirid;
4490 	}
4491 out:
4492 	return ret;
4493 }
4494 
4495 /*
4496  * Updates compare related fields in sctx and simply forwards to the actual
4497  * changed_xxx functions.
4498  */
4499 static int changed_cb(struct btrfs_root *left_root,
4500 		      struct btrfs_root *right_root,
4501 		      struct btrfs_path *left_path,
4502 		      struct btrfs_path *right_path,
4503 		      struct btrfs_key *key,
4504 		      enum btrfs_compare_tree_result result,
4505 		      void *ctx)
4506 {
4507 	int ret = 0;
4508 	struct send_ctx *sctx = ctx;
4509 
4510 	if (result == BTRFS_COMPARE_TREE_SAME) {
4511 		if (key->type != BTRFS_INODE_REF_KEY &&
4512 		    key->type != BTRFS_INODE_EXTREF_KEY)
4513 			return 0;
4514 		ret = compare_refs(sctx, left_path, key);
4515 		if (!ret)
4516 			return 0;
4517 		if (ret < 0)
4518 			return ret;
4519 		result = BTRFS_COMPARE_TREE_CHANGED;
4520 		ret = 0;
4521 	}
4522 
4523 	sctx->left_path = left_path;
4524 	sctx->right_path = right_path;
4525 	sctx->cmp_key = key;
4526 
4527 	ret = finish_inode_if_needed(sctx, 0);
4528 	if (ret < 0)
4529 		goto out;
4530 
4531 	/* Ignore non-FS objects */
4532 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
4533 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
4534 		goto out;
4535 
4536 	if (key->type == BTRFS_INODE_ITEM_KEY)
4537 		ret = changed_inode(sctx, result);
4538 	else if (key->type == BTRFS_INODE_REF_KEY ||
4539 		 key->type == BTRFS_INODE_EXTREF_KEY)
4540 		ret = changed_ref(sctx, result);
4541 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
4542 		ret = changed_xattr(sctx, result);
4543 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
4544 		ret = changed_extent(sctx, result);
4545 
4546 out:
4547 	return ret;
4548 }
4549 
4550 static int full_send_tree(struct send_ctx *sctx)
4551 {
4552 	int ret;
4553 	struct btrfs_trans_handle *trans = NULL;
4554 	struct btrfs_root *send_root = sctx->send_root;
4555 	struct btrfs_key key;
4556 	struct btrfs_key found_key;
4557 	struct btrfs_path *path;
4558 	struct extent_buffer *eb;
4559 	int slot;
4560 	u64 start_ctransid;
4561 	u64 ctransid;
4562 
4563 	path = alloc_path_for_send();
4564 	if (!path)
4565 		return -ENOMEM;
4566 
4567 	spin_lock(&send_root->root_item_lock);
4568 	start_ctransid = btrfs_root_ctransid(&send_root->root_item);
4569 	spin_unlock(&send_root->root_item_lock);
4570 
4571 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
4572 	key.type = BTRFS_INODE_ITEM_KEY;
4573 	key.offset = 0;
4574 
4575 join_trans:
4576 	/*
4577 	 * We need to make sure the transaction does not get committed
4578 	 * while we do anything on commit roots. Join a transaction to prevent
4579 	 * this.
4580 	 */
4581 	trans = btrfs_join_transaction(send_root);
4582 	if (IS_ERR(trans)) {
4583 		ret = PTR_ERR(trans);
4584 		trans = NULL;
4585 		goto out;
4586 	}
4587 
4588 	/*
4589 	 * Make sure the tree has not changed after re-joining. We detect this
4590 	 * by comparing start_ctransid and ctransid. They should always match.
4591 	 */
4592 	spin_lock(&send_root->root_item_lock);
4593 	ctransid = btrfs_root_ctransid(&send_root->root_item);
4594 	spin_unlock(&send_root->root_item_lock);
4595 
4596 	if (ctransid != start_ctransid) {
4597 		WARN(1, KERN_WARNING "btrfs: the root that you're trying to "
4598 				     "send was modified in between. This is "
4599 				     "probably a bug.\n");
4600 		ret = -EIO;
4601 		goto out;
4602 	}
4603 
4604 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
4605 	if (ret < 0)
4606 		goto out;
4607 	if (ret)
4608 		goto out_finish;
4609 
4610 	while (1) {
4611 		/*
4612 		 * When someone want to commit while we iterate, end the
4613 		 * joined transaction and rejoin.
4614 		 */
4615 		if (btrfs_should_end_transaction(trans, send_root)) {
4616 			ret = btrfs_end_transaction(trans, send_root);
4617 			trans = NULL;
4618 			if (ret < 0)
4619 				goto out;
4620 			btrfs_release_path(path);
4621 			goto join_trans;
4622 		}
4623 
4624 		eb = path->nodes[0];
4625 		slot = path->slots[0];
4626 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4627 
4628 		ret = changed_cb(send_root, NULL, path, NULL,
4629 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
4630 		if (ret < 0)
4631 			goto out;
4632 
4633 		key.objectid = found_key.objectid;
4634 		key.type = found_key.type;
4635 		key.offset = found_key.offset + 1;
4636 
4637 		ret = btrfs_next_item(send_root, path);
4638 		if (ret < 0)
4639 			goto out;
4640 		if (ret) {
4641 			ret  = 0;
4642 			break;
4643 		}
4644 	}
4645 
4646 out_finish:
4647 	ret = finish_inode_if_needed(sctx, 1);
4648 
4649 out:
4650 	btrfs_free_path(path);
4651 	if (trans) {
4652 		if (!ret)
4653 			ret = btrfs_end_transaction(trans, send_root);
4654 		else
4655 			btrfs_end_transaction(trans, send_root);
4656 	}
4657 	return ret;
4658 }
4659 
4660 static int send_subvol(struct send_ctx *sctx)
4661 {
4662 	int ret;
4663 
4664 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
4665 		ret = send_header(sctx);
4666 		if (ret < 0)
4667 			goto out;
4668 	}
4669 
4670 	ret = send_subvol_begin(sctx);
4671 	if (ret < 0)
4672 		goto out;
4673 
4674 	if (sctx->parent_root) {
4675 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
4676 				changed_cb, sctx);
4677 		if (ret < 0)
4678 			goto out;
4679 		ret = finish_inode_if_needed(sctx, 1);
4680 		if (ret < 0)
4681 			goto out;
4682 	} else {
4683 		ret = full_send_tree(sctx);
4684 		if (ret < 0)
4685 			goto out;
4686 	}
4687 
4688 out:
4689 	if (!ret)
4690 		ret = close_cur_inode_file(sctx);
4691 	else
4692 		close_cur_inode_file(sctx);
4693 
4694 	free_recorded_refs(sctx);
4695 	return ret;
4696 }
4697 
4698 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
4699 {
4700 	int ret = 0;
4701 	struct btrfs_root *send_root;
4702 	struct btrfs_root *clone_root;
4703 	struct btrfs_fs_info *fs_info;
4704 	struct btrfs_ioctl_send_args *arg = NULL;
4705 	struct btrfs_key key;
4706 	struct send_ctx *sctx = NULL;
4707 	u32 i;
4708 	u64 *clone_sources_tmp = NULL;
4709 
4710 	if (!capable(CAP_SYS_ADMIN))
4711 		return -EPERM;
4712 
4713 	send_root = BTRFS_I(file_inode(mnt_file))->root;
4714 	fs_info = send_root->fs_info;
4715 
4716 	/*
4717 	 * This is done when we lookup the root, it should already be complete
4718 	 * by the time we get here.
4719 	 */
4720 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
4721 
4722 	/*
4723 	 * If we just created this root we need to make sure that the orphan
4724 	 * cleanup has been done and committed since we search the commit root,
4725 	 * so check its commit root transid with our otransid and if they match
4726 	 * commit the transaction to make sure everything is updated.
4727 	 */
4728 	down_read(&send_root->fs_info->extent_commit_sem);
4729 	if (btrfs_header_generation(send_root->commit_root) ==
4730 	    btrfs_root_otransid(&send_root->root_item)) {
4731 		struct btrfs_trans_handle *trans;
4732 
4733 		up_read(&send_root->fs_info->extent_commit_sem);
4734 
4735 		trans = btrfs_attach_transaction_barrier(send_root);
4736 		if (IS_ERR(trans)) {
4737 			if (PTR_ERR(trans) != -ENOENT) {
4738 				ret = PTR_ERR(trans);
4739 				goto out;
4740 			}
4741 			/* ENOENT means theres no transaction */
4742 		} else {
4743 			ret = btrfs_commit_transaction(trans, send_root);
4744 			if (ret)
4745 				goto out;
4746 		}
4747 	} else {
4748 		up_read(&send_root->fs_info->extent_commit_sem);
4749 	}
4750 
4751 	arg = memdup_user(arg_, sizeof(*arg));
4752 	if (IS_ERR(arg)) {
4753 		ret = PTR_ERR(arg);
4754 		arg = NULL;
4755 		goto out;
4756 	}
4757 
4758 	if (!access_ok(VERIFY_READ, arg->clone_sources,
4759 			sizeof(*arg->clone_sources *
4760 			arg->clone_sources_count))) {
4761 		ret = -EFAULT;
4762 		goto out;
4763 	}
4764 
4765 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
4766 		ret = -EINVAL;
4767 		goto out;
4768 	}
4769 
4770 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
4771 	if (!sctx) {
4772 		ret = -ENOMEM;
4773 		goto out;
4774 	}
4775 
4776 	INIT_LIST_HEAD(&sctx->new_refs);
4777 	INIT_LIST_HEAD(&sctx->deleted_refs);
4778 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
4779 	INIT_LIST_HEAD(&sctx->name_cache_list);
4780 
4781 	sctx->flags = arg->flags;
4782 
4783 	sctx->send_filp = fget(arg->send_fd);
4784 	if (!sctx->send_filp) {
4785 		ret = -EBADF;
4786 		goto out;
4787 	}
4788 
4789 	sctx->mnt = mnt_file->f_path.mnt;
4790 
4791 	sctx->send_root = send_root;
4792 	sctx->clone_roots_cnt = arg->clone_sources_count;
4793 
4794 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
4795 	sctx->send_buf = vmalloc(sctx->send_max_size);
4796 	if (!sctx->send_buf) {
4797 		ret = -ENOMEM;
4798 		goto out;
4799 	}
4800 
4801 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
4802 	if (!sctx->read_buf) {
4803 		ret = -ENOMEM;
4804 		goto out;
4805 	}
4806 
4807 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
4808 			(arg->clone_sources_count + 1));
4809 	if (!sctx->clone_roots) {
4810 		ret = -ENOMEM;
4811 		goto out;
4812 	}
4813 
4814 	if (arg->clone_sources_count) {
4815 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
4816 				sizeof(*arg->clone_sources));
4817 		if (!clone_sources_tmp) {
4818 			ret = -ENOMEM;
4819 			goto out;
4820 		}
4821 
4822 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
4823 				arg->clone_sources_count *
4824 				sizeof(*arg->clone_sources));
4825 		if (ret) {
4826 			ret = -EFAULT;
4827 			goto out;
4828 		}
4829 
4830 		for (i = 0; i < arg->clone_sources_count; i++) {
4831 			key.objectid = clone_sources_tmp[i];
4832 			key.type = BTRFS_ROOT_ITEM_KEY;
4833 			key.offset = (u64)-1;
4834 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
4835 			if (IS_ERR(clone_root)) {
4836 				ret = PTR_ERR(clone_root);
4837 				goto out;
4838 			}
4839 			sctx->clone_roots[i].root = clone_root;
4840 		}
4841 		vfree(clone_sources_tmp);
4842 		clone_sources_tmp = NULL;
4843 	}
4844 
4845 	if (arg->parent_root) {
4846 		key.objectid = arg->parent_root;
4847 		key.type = BTRFS_ROOT_ITEM_KEY;
4848 		key.offset = (u64)-1;
4849 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
4850 		if (IS_ERR(sctx->parent_root)) {
4851 			ret = PTR_ERR(sctx->parent_root);
4852 			goto out;
4853 		}
4854 	}
4855 
4856 	/*
4857 	 * Clones from send_root are allowed, but only if the clone source
4858 	 * is behind the current send position. This is checked while searching
4859 	 * for possible clone sources.
4860 	 */
4861 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
4862 
4863 	/* We do a bsearch later */
4864 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
4865 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
4866 			NULL);
4867 
4868 	ret = send_subvol(sctx);
4869 	if (ret < 0)
4870 		goto out;
4871 
4872 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
4873 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
4874 		if (ret < 0)
4875 			goto out;
4876 		ret = send_cmd(sctx);
4877 		if (ret < 0)
4878 			goto out;
4879 	}
4880 
4881 out:
4882 	kfree(arg);
4883 	vfree(clone_sources_tmp);
4884 
4885 	if (sctx) {
4886 		if (sctx->send_filp)
4887 			fput(sctx->send_filp);
4888 
4889 		vfree(sctx->clone_roots);
4890 		vfree(sctx->send_buf);
4891 		vfree(sctx->read_buf);
4892 
4893 		name_cache_free(sctx);
4894 
4895 		kfree(sctx);
4896 	}
4897 
4898 	return ret;
4899 }
4900