1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 27 /* 28 * A fs_path is a helper to dynamically build path names with unknown size. 29 * It reallocates the internal buffer on demand. 30 * It allows fast adding of path elements on the right side (normal path) and 31 * fast adding to the left side (reversed path). A reversed path can also be 32 * unreversed if needed. 33 */ 34 struct fs_path { 35 union { 36 struct { 37 char *start; 38 char *end; 39 40 char *buf; 41 unsigned short buf_len:15; 42 unsigned short reversed:1; 43 char inline_buf[]; 44 }; 45 /* 46 * Average path length does not exceed 200 bytes, we'll have 47 * better packing in the slab and higher chance to satisfy 48 * a allocation later during send. 49 */ 50 char pad[256]; 51 }; 52 }; 53 #define FS_PATH_INLINE_SIZE \ 54 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 55 56 57 /* reused for each extent */ 58 struct clone_root { 59 struct btrfs_root *root; 60 u64 ino; 61 u64 offset; 62 63 u64 found_refs; 64 }; 65 66 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 67 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 68 69 struct send_ctx { 70 struct file *send_filp; 71 loff_t send_off; 72 char *send_buf; 73 u32 send_size; 74 u32 send_max_size; 75 u64 total_send_size; 76 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 77 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 78 79 struct btrfs_root *send_root; 80 struct btrfs_root *parent_root; 81 struct clone_root *clone_roots; 82 int clone_roots_cnt; 83 84 /* current state of the compare_tree call */ 85 struct btrfs_path *left_path; 86 struct btrfs_path *right_path; 87 struct btrfs_key *cmp_key; 88 89 /* 90 * infos of the currently processed inode. In case of deleted inodes, 91 * these are the values from the deleted inode. 92 */ 93 u64 cur_ino; 94 u64 cur_inode_gen; 95 int cur_inode_new; 96 int cur_inode_new_gen; 97 int cur_inode_deleted; 98 u64 cur_inode_size; 99 u64 cur_inode_mode; 100 u64 cur_inode_rdev; 101 u64 cur_inode_last_extent; 102 u64 cur_inode_next_write_offset; 103 bool ignore_cur_inode; 104 105 u64 send_progress; 106 107 struct list_head new_refs; 108 struct list_head deleted_refs; 109 110 struct radix_tree_root name_cache; 111 struct list_head name_cache_list; 112 int name_cache_size; 113 114 struct file_ra_state ra; 115 116 char *read_buf; 117 118 /* 119 * We process inodes by their increasing order, so if before an 120 * incremental send we reverse the parent/child relationship of 121 * directories such that a directory with a lower inode number was 122 * the parent of a directory with a higher inode number, and the one 123 * becoming the new parent got renamed too, we can't rename/move the 124 * directory with lower inode number when we finish processing it - we 125 * must process the directory with higher inode number first, then 126 * rename/move it and then rename/move the directory with lower inode 127 * number. Example follows. 128 * 129 * Tree state when the first send was performed: 130 * 131 * . 132 * |-- a (ino 257) 133 * |-- b (ino 258) 134 * | 135 * | 136 * |-- c (ino 259) 137 * | |-- d (ino 260) 138 * | 139 * |-- c2 (ino 261) 140 * 141 * Tree state when the second (incremental) send is performed: 142 * 143 * . 144 * |-- a (ino 257) 145 * |-- b (ino 258) 146 * |-- c2 (ino 261) 147 * |-- d2 (ino 260) 148 * |-- cc (ino 259) 149 * 150 * The sequence of steps that lead to the second state was: 151 * 152 * mv /a/b/c/d /a/b/c2/d2 153 * mv /a/b/c /a/b/c2/d2/cc 154 * 155 * "c" has lower inode number, but we can't move it (2nd mv operation) 156 * before we move "d", which has higher inode number. 157 * 158 * So we just memorize which move/rename operations must be performed 159 * later when their respective parent is processed and moved/renamed. 160 */ 161 162 /* Indexed by parent directory inode number. */ 163 struct rb_root pending_dir_moves; 164 165 /* 166 * Reverse index, indexed by the inode number of a directory that 167 * is waiting for the move/rename of its immediate parent before its 168 * own move/rename can be performed. 169 */ 170 struct rb_root waiting_dir_moves; 171 172 /* 173 * A directory that is going to be rm'ed might have a child directory 174 * which is in the pending directory moves index above. In this case, 175 * the directory can only be removed after the move/rename of its child 176 * is performed. Example: 177 * 178 * Parent snapshot: 179 * 180 * . (ino 256) 181 * |-- a/ (ino 257) 182 * |-- b/ (ino 258) 183 * |-- c/ (ino 259) 184 * | |-- x/ (ino 260) 185 * | 186 * |-- y/ (ino 261) 187 * 188 * Send snapshot: 189 * 190 * . (ino 256) 191 * |-- a/ (ino 257) 192 * |-- b/ (ino 258) 193 * |-- YY/ (ino 261) 194 * |-- x/ (ino 260) 195 * 196 * Sequence of steps that lead to the send snapshot: 197 * rm -f /a/b/c/foo.txt 198 * mv /a/b/y /a/b/YY 199 * mv /a/b/c/x /a/b/YY 200 * rmdir /a/b/c 201 * 202 * When the child is processed, its move/rename is delayed until its 203 * parent is processed (as explained above), but all other operations 204 * like update utimes, chown, chgrp, etc, are performed and the paths 205 * that it uses for those operations must use the orphanized name of 206 * its parent (the directory we're going to rm later), so we need to 207 * memorize that name. 208 * 209 * Indexed by the inode number of the directory to be deleted. 210 */ 211 struct rb_root orphan_dirs; 212 }; 213 214 struct pending_dir_move { 215 struct rb_node node; 216 struct list_head list; 217 u64 parent_ino; 218 u64 ino; 219 u64 gen; 220 struct list_head update_refs; 221 }; 222 223 struct waiting_dir_move { 224 struct rb_node node; 225 u64 ino; 226 /* 227 * There might be some directory that could not be removed because it 228 * was waiting for this directory inode to be moved first. Therefore 229 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 230 */ 231 u64 rmdir_ino; 232 bool orphanized; 233 }; 234 235 struct orphan_dir_info { 236 struct rb_node node; 237 u64 ino; 238 u64 gen; 239 u64 last_dir_index_offset; 240 }; 241 242 struct name_cache_entry { 243 struct list_head list; 244 /* 245 * radix_tree has only 32bit entries but we need to handle 64bit inums. 246 * We use the lower 32bit of the 64bit inum to store it in the tree. If 247 * more then one inum would fall into the same entry, we use radix_list 248 * to store the additional entries. radix_list is also used to store 249 * entries where two entries have the same inum but different 250 * generations. 251 */ 252 struct list_head radix_list; 253 u64 ino; 254 u64 gen; 255 u64 parent_ino; 256 u64 parent_gen; 257 int ret; 258 int need_later_update; 259 int name_len; 260 char name[]; 261 }; 262 263 __cold 264 static void inconsistent_snapshot_error(struct send_ctx *sctx, 265 enum btrfs_compare_tree_result result, 266 const char *what) 267 { 268 const char *result_string; 269 270 switch (result) { 271 case BTRFS_COMPARE_TREE_NEW: 272 result_string = "new"; 273 break; 274 case BTRFS_COMPARE_TREE_DELETED: 275 result_string = "deleted"; 276 break; 277 case BTRFS_COMPARE_TREE_CHANGED: 278 result_string = "updated"; 279 break; 280 case BTRFS_COMPARE_TREE_SAME: 281 ASSERT(0); 282 result_string = "unchanged"; 283 break; 284 default: 285 ASSERT(0); 286 result_string = "unexpected"; 287 } 288 289 btrfs_err(sctx->send_root->fs_info, 290 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 291 result_string, what, sctx->cmp_key->objectid, 292 sctx->send_root->root_key.objectid, 293 (sctx->parent_root ? 294 sctx->parent_root->root_key.objectid : 0)); 295 } 296 297 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 298 299 static struct waiting_dir_move * 300 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 301 302 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 303 304 static int need_send_hole(struct send_ctx *sctx) 305 { 306 return (sctx->parent_root && !sctx->cur_inode_new && 307 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 308 S_ISREG(sctx->cur_inode_mode)); 309 } 310 311 static void fs_path_reset(struct fs_path *p) 312 { 313 if (p->reversed) { 314 p->start = p->buf + p->buf_len - 1; 315 p->end = p->start; 316 *p->start = 0; 317 } else { 318 p->start = p->buf; 319 p->end = p->start; 320 *p->start = 0; 321 } 322 } 323 324 static struct fs_path *fs_path_alloc(void) 325 { 326 struct fs_path *p; 327 328 p = kmalloc(sizeof(*p), GFP_KERNEL); 329 if (!p) 330 return NULL; 331 p->reversed = 0; 332 p->buf = p->inline_buf; 333 p->buf_len = FS_PATH_INLINE_SIZE; 334 fs_path_reset(p); 335 return p; 336 } 337 338 static struct fs_path *fs_path_alloc_reversed(void) 339 { 340 struct fs_path *p; 341 342 p = fs_path_alloc(); 343 if (!p) 344 return NULL; 345 p->reversed = 1; 346 fs_path_reset(p); 347 return p; 348 } 349 350 static void fs_path_free(struct fs_path *p) 351 { 352 if (!p) 353 return; 354 if (p->buf != p->inline_buf) 355 kfree(p->buf); 356 kfree(p); 357 } 358 359 static int fs_path_len(struct fs_path *p) 360 { 361 return p->end - p->start; 362 } 363 364 static int fs_path_ensure_buf(struct fs_path *p, int len) 365 { 366 char *tmp_buf; 367 int path_len; 368 int old_buf_len; 369 370 len++; 371 372 if (p->buf_len >= len) 373 return 0; 374 375 if (len > PATH_MAX) { 376 WARN_ON(1); 377 return -ENOMEM; 378 } 379 380 path_len = p->end - p->start; 381 old_buf_len = p->buf_len; 382 383 /* 384 * First time the inline_buf does not suffice 385 */ 386 if (p->buf == p->inline_buf) { 387 tmp_buf = kmalloc(len, GFP_KERNEL); 388 if (tmp_buf) 389 memcpy(tmp_buf, p->buf, old_buf_len); 390 } else { 391 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 392 } 393 if (!tmp_buf) 394 return -ENOMEM; 395 p->buf = tmp_buf; 396 /* 397 * The real size of the buffer is bigger, this will let the fast path 398 * happen most of the time 399 */ 400 p->buf_len = ksize(p->buf); 401 402 if (p->reversed) { 403 tmp_buf = p->buf + old_buf_len - path_len - 1; 404 p->end = p->buf + p->buf_len - 1; 405 p->start = p->end - path_len; 406 memmove(p->start, tmp_buf, path_len + 1); 407 } else { 408 p->start = p->buf; 409 p->end = p->start + path_len; 410 } 411 return 0; 412 } 413 414 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 415 char **prepared) 416 { 417 int ret; 418 int new_len; 419 420 new_len = p->end - p->start + name_len; 421 if (p->start != p->end) 422 new_len++; 423 ret = fs_path_ensure_buf(p, new_len); 424 if (ret < 0) 425 goto out; 426 427 if (p->reversed) { 428 if (p->start != p->end) 429 *--p->start = '/'; 430 p->start -= name_len; 431 *prepared = p->start; 432 } else { 433 if (p->start != p->end) 434 *p->end++ = '/'; 435 *prepared = p->end; 436 p->end += name_len; 437 *p->end = 0; 438 } 439 440 out: 441 return ret; 442 } 443 444 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 445 { 446 int ret; 447 char *prepared; 448 449 ret = fs_path_prepare_for_add(p, name_len, &prepared); 450 if (ret < 0) 451 goto out; 452 memcpy(prepared, name, name_len); 453 454 out: 455 return ret; 456 } 457 458 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 459 { 460 int ret; 461 char *prepared; 462 463 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 464 if (ret < 0) 465 goto out; 466 memcpy(prepared, p2->start, p2->end - p2->start); 467 468 out: 469 return ret; 470 } 471 472 static int fs_path_add_from_extent_buffer(struct fs_path *p, 473 struct extent_buffer *eb, 474 unsigned long off, int len) 475 { 476 int ret; 477 char *prepared; 478 479 ret = fs_path_prepare_for_add(p, len, &prepared); 480 if (ret < 0) 481 goto out; 482 483 read_extent_buffer(eb, prepared, off, len); 484 485 out: 486 return ret; 487 } 488 489 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 490 { 491 int ret; 492 493 p->reversed = from->reversed; 494 fs_path_reset(p); 495 496 ret = fs_path_add_path(p, from); 497 498 return ret; 499 } 500 501 502 static void fs_path_unreverse(struct fs_path *p) 503 { 504 char *tmp; 505 int len; 506 507 if (!p->reversed) 508 return; 509 510 tmp = p->start; 511 len = p->end - p->start; 512 p->start = p->buf; 513 p->end = p->start + len; 514 memmove(p->start, tmp, len + 1); 515 p->reversed = 0; 516 } 517 518 static struct btrfs_path *alloc_path_for_send(void) 519 { 520 struct btrfs_path *path; 521 522 path = btrfs_alloc_path(); 523 if (!path) 524 return NULL; 525 path->search_commit_root = 1; 526 path->skip_locking = 1; 527 path->need_commit_sem = 1; 528 return path; 529 } 530 531 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 532 { 533 int ret; 534 u32 pos = 0; 535 536 while (pos < len) { 537 ret = kernel_write(filp, buf + pos, len - pos, off); 538 /* TODO handle that correctly */ 539 /*if (ret == -ERESTARTSYS) { 540 continue; 541 }*/ 542 if (ret < 0) 543 return ret; 544 if (ret == 0) { 545 return -EIO; 546 } 547 pos += ret; 548 } 549 550 return 0; 551 } 552 553 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 554 { 555 struct btrfs_tlv_header *hdr; 556 int total_len = sizeof(*hdr) + len; 557 int left = sctx->send_max_size - sctx->send_size; 558 559 if (unlikely(left < total_len)) 560 return -EOVERFLOW; 561 562 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 563 hdr->tlv_type = cpu_to_le16(attr); 564 hdr->tlv_len = cpu_to_le16(len); 565 memcpy(hdr + 1, data, len); 566 sctx->send_size += total_len; 567 568 return 0; 569 } 570 571 #define TLV_PUT_DEFINE_INT(bits) \ 572 static int tlv_put_u##bits(struct send_ctx *sctx, \ 573 u##bits attr, u##bits value) \ 574 { \ 575 __le##bits __tmp = cpu_to_le##bits(value); \ 576 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 577 } 578 579 TLV_PUT_DEFINE_INT(64) 580 581 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 582 const char *str, int len) 583 { 584 if (len == -1) 585 len = strlen(str); 586 return tlv_put(sctx, attr, str, len); 587 } 588 589 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 590 const u8 *uuid) 591 { 592 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 593 } 594 595 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 596 struct extent_buffer *eb, 597 struct btrfs_timespec *ts) 598 { 599 struct btrfs_timespec bts; 600 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 601 return tlv_put(sctx, attr, &bts, sizeof(bts)); 602 } 603 604 605 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 606 do { \ 607 ret = tlv_put(sctx, attrtype, data, attrlen); \ 608 if (ret < 0) \ 609 goto tlv_put_failure; \ 610 } while (0) 611 612 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 613 do { \ 614 ret = tlv_put_u##bits(sctx, attrtype, value); \ 615 if (ret < 0) \ 616 goto tlv_put_failure; \ 617 } while (0) 618 619 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 620 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 621 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 622 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 623 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 624 do { \ 625 ret = tlv_put_string(sctx, attrtype, str, len); \ 626 if (ret < 0) \ 627 goto tlv_put_failure; \ 628 } while (0) 629 #define TLV_PUT_PATH(sctx, attrtype, p) \ 630 do { \ 631 ret = tlv_put_string(sctx, attrtype, p->start, \ 632 p->end - p->start); \ 633 if (ret < 0) \ 634 goto tlv_put_failure; \ 635 } while(0) 636 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 637 do { \ 638 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 639 if (ret < 0) \ 640 goto tlv_put_failure; \ 641 } while (0) 642 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 643 do { \ 644 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 645 if (ret < 0) \ 646 goto tlv_put_failure; \ 647 } while (0) 648 649 static int send_header(struct send_ctx *sctx) 650 { 651 struct btrfs_stream_header hdr; 652 653 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 654 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 655 656 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 657 &sctx->send_off); 658 } 659 660 /* 661 * For each command/item we want to send to userspace, we call this function. 662 */ 663 static int begin_cmd(struct send_ctx *sctx, int cmd) 664 { 665 struct btrfs_cmd_header *hdr; 666 667 if (WARN_ON(!sctx->send_buf)) 668 return -EINVAL; 669 670 BUG_ON(sctx->send_size); 671 672 sctx->send_size += sizeof(*hdr); 673 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 674 hdr->cmd = cpu_to_le16(cmd); 675 676 return 0; 677 } 678 679 static int send_cmd(struct send_ctx *sctx) 680 { 681 int ret; 682 struct btrfs_cmd_header *hdr; 683 u32 crc; 684 685 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 686 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 687 hdr->crc = 0; 688 689 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 690 hdr->crc = cpu_to_le32(crc); 691 692 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 693 &sctx->send_off); 694 695 sctx->total_send_size += sctx->send_size; 696 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 697 sctx->send_size = 0; 698 699 return ret; 700 } 701 702 /* 703 * Sends a move instruction to user space 704 */ 705 static int send_rename(struct send_ctx *sctx, 706 struct fs_path *from, struct fs_path *to) 707 { 708 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 709 int ret; 710 711 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 712 713 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 714 if (ret < 0) 715 goto out; 716 717 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 718 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 719 720 ret = send_cmd(sctx); 721 722 tlv_put_failure: 723 out: 724 return ret; 725 } 726 727 /* 728 * Sends a link instruction to user space 729 */ 730 static int send_link(struct send_ctx *sctx, 731 struct fs_path *path, struct fs_path *lnk) 732 { 733 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 734 int ret; 735 736 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 737 738 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 739 if (ret < 0) 740 goto out; 741 742 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 743 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 744 745 ret = send_cmd(sctx); 746 747 tlv_put_failure: 748 out: 749 return ret; 750 } 751 752 /* 753 * Sends an unlink instruction to user space 754 */ 755 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 756 { 757 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 758 int ret; 759 760 btrfs_debug(fs_info, "send_unlink %s", path->start); 761 762 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 763 if (ret < 0) 764 goto out; 765 766 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 767 768 ret = send_cmd(sctx); 769 770 tlv_put_failure: 771 out: 772 return ret; 773 } 774 775 /* 776 * Sends a rmdir instruction to user space 777 */ 778 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 779 { 780 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 781 int ret; 782 783 btrfs_debug(fs_info, "send_rmdir %s", path->start); 784 785 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 786 if (ret < 0) 787 goto out; 788 789 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 790 791 ret = send_cmd(sctx); 792 793 tlv_put_failure: 794 out: 795 return ret; 796 } 797 798 /* 799 * Helper function to retrieve some fields from an inode item. 800 */ 801 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 802 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 803 u64 *gid, u64 *rdev) 804 { 805 int ret; 806 struct btrfs_inode_item *ii; 807 struct btrfs_key key; 808 809 key.objectid = ino; 810 key.type = BTRFS_INODE_ITEM_KEY; 811 key.offset = 0; 812 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 813 if (ret) { 814 if (ret > 0) 815 ret = -ENOENT; 816 return ret; 817 } 818 819 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 820 struct btrfs_inode_item); 821 if (size) 822 *size = btrfs_inode_size(path->nodes[0], ii); 823 if (gen) 824 *gen = btrfs_inode_generation(path->nodes[0], ii); 825 if (mode) 826 *mode = btrfs_inode_mode(path->nodes[0], ii); 827 if (uid) 828 *uid = btrfs_inode_uid(path->nodes[0], ii); 829 if (gid) 830 *gid = btrfs_inode_gid(path->nodes[0], ii); 831 if (rdev) 832 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 833 834 return ret; 835 } 836 837 static int get_inode_info(struct btrfs_root *root, 838 u64 ino, u64 *size, u64 *gen, 839 u64 *mode, u64 *uid, u64 *gid, 840 u64 *rdev) 841 { 842 struct btrfs_path *path; 843 int ret; 844 845 path = alloc_path_for_send(); 846 if (!path) 847 return -ENOMEM; 848 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 849 rdev); 850 btrfs_free_path(path); 851 return ret; 852 } 853 854 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 855 struct fs_path *p, 856 void *ctx); 857 858 /* 859 * Helper function to iterate the entries in ONE btrfs_inode_ref or 860 * btrfs_inode_extref. 861 * The iterate callback may return a non zero value to stop iteration. This can 862 * be a negative value for error codes or 1 to simply stop it. 863 * 864 * path must point to the INODE_REF or INODE_EXTREF when called. 865 */ 866 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 867 struct btrfs_key *found_key, int resolve, 868 iterate_inode_ref_t iterate, void *ctx) 869 { 870 struct extent_buffer *eb = path->nodes[0]; 871 struct btrfs_item *item; 872 struct btrfs_inode_ref *iref; 873 struct btrfs_inode_extref *extref; 874 struct btrfs_path *tmp_path; 875 struct fs_path *p; 876 u32 cur = 0; 877 u32 total; 878 int slot = path->slots[0]; 879 u32 name_len; 880 char *start; 881 int ret = 0; 882 int num = 0; 883 int index; 884 u64 dir; 885 unsigned long name_off; 886 unsigned long elem_size; 887 unsigned long ptr; 888 889 p = fs_path_alloc_reversed(); 890 if (!p) 891 return -ENOMEM; 892 893 tmp_path = alloc_path_for_send(); 894 if (!tmp_path) { 895 fs_path_free(p); 896 return -ENOMEM; 897 } 898 899 900 if (found_key->type == BTRFS_INODE_REF_KEY) { 901 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 902 struct btrfs_inode_ref); 903 item = btrfs_item_nr(slot); 904 total = btrfs_item_size(eb, item); 905 elem_size = sizeof(*iref); 906 } else { 907 ptr = btrfs_item_ptr_offset(eb, slot); 908 total = btrfs_item_size_nr(eb, slot); 909 elem_size = sizeof(*extref); 910 } 911 912 while (cur < total) { 913 fs_path_reset(p); 914 915 if (found_key->type == BTRFS_INODE_REF_KEY) { 916 iref = (struct btrfs_inode_ref *)(ptr + cur); 917 name_len = btrfs_inode_ref_name_len(eb, iref); 918 name_off = (unsigned long)(iref + 1); 919 index = btrfs_inode_ref_index(eb, iref); 920 dir = found_key->offset; 921 } else { 922 extref = (struct btrfs_inode_extref *)(ptr + cur); 923 name_len = btrfs_inode_extref_name_len(eb, extref); 924 name_off = (unsigned long)&extref->name; 925 index = btrfs_inode_extref_index(eb, extref); 926 dir = btrfs_inode_extref_parent(eb, extref); 927 } 928 929 if (resolve) { 930 start = btrfs_ref_to_path(root, tmp_path, name_len, 931 name_off, eb, dir, 932 p->buf, p->buf_len); 933 if (IS_ERR(start)) { 934 ret = PTR_ERR(start); 935 goto out; 936 } 937 if (start < p->buf) { 938 /* overflow , try again with larger buffer */ 939 ret = fs_path_ensure_buf(p, 940 p->buf_len + p->buf - start); 941 if (ret < 0) 942 goto out; 943 start = btrfs_ref_to_path(root, tmp_path, 944 name_len, name_off, 945 eb, dir, 946 p->buf, p->buf_len); 947 if (IS_ERR(start)) { 948 ret = PTR_ERR(start); 949 goto out; 950 } 951 BUG_ON(start < p->buf); 952 } 953 p->start = start; 954 } else { 955 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 956 name_len); 957 if (ret < 0) 958 goto out; 959 } 960 961 cur += elem_size + name_len; 962 ret = iterate(num, dir, index, p, ctx); 963 if (ret) 964 goto out; 965 num++; 966 } 967 968 out: 969 btrfs_free_path(tmp_path); 970 fs_path_free(p); 971 return ret; 972 } 973 974 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 975 const char *name, int name_len, 976 const char *data, int data_len, 977 u8 type, void *ctx); 978 979 /* 980 * Helper function to iterate the entries in ONE btrfs_dir_item. 981 * The iterate callback may return a non zero value to stop iteration. This can 982 * be a negative value for error codes or 1 to simply stop it. 983 * 984 * path must point to the dir item when called. 985 */ 986 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 987 iterate_dir_item_t iterate, void *ctx) 988 { 989 int ret = 0; 990 struct extent_buffer *eb; 991 struct btrfs_item *item; 992 struct btrfs_dir_item *di; 993 struct btrfs_key di_key; 994 char *buf = NULL; 995 int buf_len; 996 u32 name_len; 997 u32 data_len; 998 u32 cur; 999 u32 len; 1000 u32 total; 1001 int slot; 1002 int num; 1003 u8 type; 1004 1005 /* 1006 * Start with a small buffer (1 page). If later we end up needing more 1007 * space, which can happen for xattrs on a fs with a leaf size greater 1008 * then the page size, attempt to increase the buffer. Typically xattr 1009 * values are small. 1010 */ 1011 buf_len = PATH_MAX; 1012 buf = kmalloc(buf_len, GFP_KERNEL); 1013 if (!buf) { 1014 ret = -ENOMEM; 1015 goto out; 1016 } 1017 1018 eb = path->nodes[0]; 1019 slot = path->slots[0]; 1020 item = btrfs_item_nr(slot); 1021 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1022 cur = 0; 1023 len = 0; 1024 total = btrfs_item_size(eb, item); 1025 1026 num = 0; 1027 while (cur < total) { 1028 name_len = btrfs_dir_name_len(eb, di); 1029 data_len = btrfs_dir_data_len(eb, di); 1030 type = btrfs_dir_type(eb, di); 1031 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1032 1033 if (type == BTRFS_FT_XATTR) { 1034 if (name_len > XATTR_NAME_MAX) { 1035 ret = -ENAMETOOLONG; 1036 goto out; 1037 } 1038 if (name_len + data_len > 1039 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1040 ret = -E2BIG; 1041 goto out; 1042 } 1043 } else { 1044 /* 1045 * Path too long 1046 */ 1047 if (name_len + data_len > PATH_MAX) { 1048 ret = -ENAMETOOLONG; 1049 goto out; 1050 } 1051 } 1052 1053 if (name_len + data_len > buf_len) { 1054 buf_len = name_len + data_len; 1055 if (is_vmalloc_addr(buf)) { 1056 vfree(buf); 1057 buf = NULL; 1058 } else { 1059 char *tmp = krealloc(buf, buf_len, 1060 GFP_KERNEL | __GFP_NOWARN); 1061 1062 if (!tmp) 1063 kfree(buf); 1064 buf = tmp; 1065 } 1066 if (!buf) { 1067 buf = kvmalloc(buf_len, GFP_KERNEL); 1068 if (!buf) { 1069 ret = -ENOMEM; 1070 goto out; 1071 } 1072 } 1073 } 1074 1075 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1076 name_len + data_len); 1077 1078 len = sizeof(*di) + name_len + data_len; 1079 di = (struct btrfs_dir_item *)((char *)di + len); 1080 cur += len; 1081 1082 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1083 data_len, type, ctx); 1084 if (ret < 0) 1085 goto out; 1086 if (ret) { 1087 ret = 0; 1088 goto out; 1089 } 1090 1091 num++; 1092 } 1093 1094 out: 1095 kvfree(buf); 1096 return ret; 1097 } 1098 1099 static int __copy_first_ref(int num, u64 dir, int index, 1100 struct fs_path *p, void *ctx) 1101 { 1102 int ret; 1103 struct fs_path *pt = ctx; 1104 1105 ret = fs_path_copy(pt, p); 1106 if (ret < 0) 1107 return ret; 1108 1109 /* we want the first only */ 1110 return 1; 1111 } 1112 1113 /* 1114 * Retrieve the first path of an inode. If an inode has more then one 1115 * ref/hardlink, this is ignored. 1116 */ 1117 static int get_inode_path(struct btrfs_root *root, 1118 u64 ino, struct fs_path *path) 1119 { 1120 int ret; 1121 struct btrfs_key key, found_key; 1122 struct btrfs_path *p; 1123 1124 p = alloc_path_for_send(); 1125 if (!p) 1126 return -ENOMEM; 1127 1128 fs_path_reset(path); 1129 1130 key.objectid = ino; 1131 key.type = BTRFS_INODE_REF_KEY; 1132 key.offset = 0; 1133 1134 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1135 if (ret < 0) 1136 goto out; 1137 if (ret) { 1138 ret = 1; 1139 goto out; 1140 } 1141 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1142 if (found_key.objectid != ino || 1143 (found_key.type != BTRFS_INODE_REF_KEY && 1144 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1145 ret = -ENOENT; 1146 goto out; 1147 } 1148 1149 ret = iterate_inode_ref(root, p, &found_key, 1, 1150 __copy_first_ref, path); 1151 if (ret < 0) 1152 goto out; 1153 ret = 0; 1154 1155 out: 1156 btrfs_free_path(p); 1157 return ret; 1158 } 1159 1160 struct backref_ctx { 1161 struct send_ctx *sctx; 1162 1163 struct btrfs_path *path; 1164 /* number of total found references */ 1165 u64 found; 1166 1167 /* 1168 * used for clones found in send_root. clones found behind cur_objectid 1169 * and cur_offset are not considered as allowed clones. 1170 */ 1171 u64 cur_objectid; 1172 u64 cur_offset; 1173 1174 /* may be truncated in case it's the last extent in a file */ 1175 u64 extent_len; 1176 1177 /* data offset in the file extent item */ 1178 u64 data_offset; 1179 1180 /* Just to check for bugs in backref resolving */ 1181 int found_itself; 1182 }; 1183 1184 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1185 { 1186 u64 root = (u64)(uintptr_t)key; 1187 struct clone_root *cr = (struct clone_root *)elt; 1188 1189 if (root < cr->root->root_key.objectid) 1190 return -1; 1191 if (root > cr->root->root_key.objectid) 1192 return 1; 1193 return 0; 1194 } 1195 1196 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1197 { 1198 struct clone_root *cr1 = (struct clone_root *)e1; 1199 struct clone_root *cr2 = (struct clone_root *)e2; 1200 1201 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1202 return -1; 1203 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1204 return 1; 1205 return 0; 1206 } 1207 1208 /* 1209 * Called for every backref that is found for the current extent. 1210 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1211 */ 1212 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1213 { 1214 struct backref_ctx *bctx = ctx_; 1215 struct clone_root *found; 1216 int ret; 1217 u64 i_size; 1218 1219 /* First check if the root is in the list of accepted clone sources */ 1220 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1221 bctx->sctx->clone_roots_cnt, 1222 sizeof(struct clone_root), 1223 __clone_root_cmp_bsearch); 1224 if (!found) 1225 return 0; 1226 1227 if (found->root == bctx->sctx->send_root && 1228 ino == bctx->cur_objectid && 1229 offset == bctx->cur_offset) { 1230 bctx->found_itself = 1; 1231 } 1232 1233 /* 1234 * There are inodes that have extents that lie behind its i_size. Don't 1235 * accept clones from these extents. 1236 */ 1237 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1238 NULL, NULL, NULL); 1239 btrfs_release_path(bctx->path); 1240 if (ret < 0) 1241 return ret; 1242 1243 if (offset + bctx->data_offset + bctx->extent_len > i_size) 1244 return 0; 1245 1246 /* 1247 * Make sure we don't consider clones from send_root that are 1248 * behind the current inode/offset. 1249 */ 1250 if (found->root == bctx->sctx->send_root) { 1251 /* 1252 * TODO for the moment we don't accept clones from the inode 1253 * that is currently send. We may change this when 1254 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1255 * file. 1256 */ 1257 if (ino >= bctx->cur_objectid) 1258 return 0; 1259 } 1260 1261 bctx->found++; 1262 found->found_refs++; 1263 if (ino < found->ino) { 1264 found->ino = ino; 1265 found->offset = offset; 1266 } else if (found->ino == ino) { 1267 /* 1268 * same extent found more then once in the same file. 1269 */ 1270 if (found->offset > offset + bctx->extent_len) 1271 found->offset = offset; 1272 } 1273 1274 return 0; 1275 } 1276 1277 /* 1278 * Given an inode, offset and extent item, it finds a good clone for a clone 1279 * instruction. Returns -ENOENT when none could be found. The function makes 1280 * sure that the returned clone is usable at the point where sending is at the 1281 * moment. This means, that no clones are accepted which lie behind the current 1282 * inode+offset. 1283 * 1284 * path must point to the extent item when called. 1285 */ 1286 static int find_extent_clone(struct send_ctx *sctx, 1287 struct btrfs_path *path, 1288 u64 ino, u64 data_offset, 1289 u64 ino_size, 1290 struct clone_root **found) 1291 { 1292 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1293 int ret; 1294 int extent_type; 1295 u64 logical; 1296 u64 disk_byte; 1297 u64 num_bytes; 1298 u64 extent_item_pos; 1299 u64 flags = 0; 1300 struct btrfs_file_extent_item *fi; 1301 struct extent_buffer *eb = path->nodes[0]; 1302 struct backref_ctx *backref_ctx = NULL; 1303 struct clone_root *cur_clone_root; 1304 struct btrfs_key found_key; 1305 struct btrfs_path *tmp_path; 1306 int compressed; 1307 u32 i; 1308 1309 tmp_path = alloc_path_for_send(); 1310 if (!tmp_path) 1311 return -ENOMEM; 1312 1313 /* We only use this path under the commit sem */ 1314 tmp_path->need_commit_sem = 0; 1315 1316 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1317 if (!backref_ctx) { 1318 ret = -ENOMEM; 1319 goto out; 1320 } 1321 1322 backref_ctx->path = tmp_path; 1323 1324 if (data_offset >= ino_size) { 1325 /* 1326 * There may be extents that lie behind the file's size. 1327 * I at least had this in combination with snapshotting while 1328 * writing large files. 1329 */ 1330 ret = 0; 1331 goto out; 1332 } 1333 1334 fi = btrfs_item_ptr(eb, path->slots[0], 1335 struct btrfs_file_extent_item); 1336 extent_type = btrfs_file_extent_type(eb, fi); 1337 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1338 ret = -ENOENT; 1339 goto out; 1340 } 1341 compressed = btrfs_file_extent_compression(eb, fi); 1342 1343 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1344 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1345 if (disk_byte == 0) { 1346 ret = -ENOENT; 1347 goto out; 1348 } 1349 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1350 1351 down_read(&fs_info->commit_root_sem); 1352 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1353 &found_key, &flags); 1354 up_read(&fs_info->commit_root_sem); 1355 btrfs_release_path(tmp_path); 1356 1357 if (ret < 0) 1358 goto out; 1359 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1360 ret = -EIO; 1361 goto out; 1362 } 1363 1364 /* 1365 * Setup the clone roots. 1366 */ 1367 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1368 cur_clone_root = sctx->clone_roots + i; 1369 cur_clone_root->ino = (u64)-1; 1370 cur_clone_root->offset = 0; 1371 cur_clone_root->found_refs = 0; 1372 } 1373 1374 backref_ctx->sctx = sctx; 1375 backref_ctx->found = 0; 1376 backref_ctx->cur_objectid = ino; 1377 backref_ctx->cur_offset = data_offset; 1378 backref_ctx->found_itself = 0; 1379 backref_ctx->extent_len = num_bytes; 1380 /* 1381 * For non-compressed extents iterate_extent_inodes() gives us extent 1382 * offsets that already take into account the data offset, but not for 1383 * compressed extents, since the offset is logical and not relative to 1384 * the physical extent locations. We must take this into account to 1385 * avoid sending clone offsets that go beyond the source file's size, 1386 * which would result in the clone ioctl failing with -EINVAL on the 1387 * receiving end. 1388 */ 1389 if (compressed == BTRFS_COMPRESS_NONE) 1390 backref_ctx->data_offset = 0; 1391 else 1392 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1393 1394 /* 1395 * The last extent of a file may be too large due to page alignment. 1396 * We need to adjust extent_len in this case so that the checks in 1397 * __iterate_backrefs work. 1398 */ 1399 if (data_offset + num_bytes >= ino_size) 1400 backref_ctx->extent_len = ino_size - data_offset; 1401 1402 /* 1403 * Now collect all backrefs. 1404 */ 1405 if (compressed == BTRFS_COMPRESS_NONE) 1406 extent_item_pos = logical - found_key.objectid; 1407 else 1408 extent_item_pos = 0; 1409 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1410 extent_item_pos, 1, __iterate_backrefs, 1411 backref_ctx, false); 1412 1413 if (ret < 0) 1414 goto out; 1415 1416 if (!backref_ctx->found_itself) { 1417 /* found a bug in backref code? */ 1418 ret = -EIO; 1419 btrfs_err(fs_info, 1420 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1421 ino, data_offset, disk_byte, found_key.objectid); 1422 goto out; 1423 } 1424 1425 btrfs_debug(fs_info, 1426 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1427 data_offset, ino, num_bytes, logical); 1428 1429 if (!backref_ctx->found) 1430 btrfs_debug(fs_info, "no clones found"); 1431 1432 cur_clone_root = NULL; 1433 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1434 if (sctx->clone_roots[i].found_refs) { 1435 if (!cur_clone_root) 1436 cur_clone_root = sctx->clone_roots + i; 1437 else if (sctx->clone_roots[i].root == sctx->send_root) 1438 /* prefer clones from send_root over others */ 1439 cur_clone_root = sctx->clone_roots + i; 1440 } 1441 1442 } 1443 1444 if (cur_clone_root) { 1445 *found = cur_clone_root; 1446 ret = 0; 1447 } else { 1448 ret = -ENOENT; 1449 } 1450 1451 out: 1452 btrfs_free_path(tmp_path); 1453 kfree(backref_ctx); 1454 return ret; 1455 } 1456 1457 static int read_symlink(struct btrfs_root *root, 1458 u64 ino, 1459 struct fs_path *dest) 1460 { 1461 int ret; 1462 struct btrfs_path *path; 1463 struct btrfs_key key; 1464 struct btrfs_file_extent_item *ei; 1465 u8 type; 1466 u8 compression; 1467 unsigned long off; 1468 int len; 1469 1470 path = alloc_path_for_send(); 1471 if (!path) 1472 return -ENOMEM; 1473 1474 key.objectid = ino; 1475 key.type = BTRFS_EXTENT_DATA_KEY; 1476 key.offset = 0; 1477 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1478 if (ret < 0) 1479 goto out; 1480 if (ret) { 1481 /* 1482 * An empty symlink inode. Can happen in rare error paths when 1483 * creating a symlink (transaction committed before the inode 1484 * eviction handler removed the symlink inode items and a crash 1485 * happened in between or the subvol was snapshoted in between). 1486 * Print an informative message to dmesg/syslog so that the user 1487 * can delete the symlink. 1488 */ 1489 btrfs_err(root->fs_info, 1490 "Found empty symlink inode %llu at root %llu", 1491 ino, root->root_key.objectid); 1492 ret = -EIO; 1493 goto out; 1494 } 1495 1496 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1497 struct btrfs_file_extent_item); 1498 type = btrfs_file_extent_type(path->nodes[0], ei); 1499 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1500 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1501 BUG_ON(compression); 1502 1503 off = btrfs_file_extent_inline_start(ei); 1504 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1505 1506 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1507 1508 out: 1509 btrfs_free_path(path); 1510 return ret; 1511 } 1512 1513 /* 1514 * Helper function to generate a file name that is unique in the root of 1515 * send_root and parent_root. This is used to generate names for orphan inodes. 1516 */ 1517 static int gen_unique_name(struct send_ctx *sctx, 1518 u64 ino, u64 gen, 1519 struct fs_path *dest) 1520 { 1521 int ret = 0; 1522 struct btrfs_path *path; 1523 struct btrfs_dir_item *di; 1524 char tmp[64]; 1525 int len; 1526 u64 idx = 0; 1527 1528 path = alloc_path_for_send(); 1529 if (!path) 1530 return -ENOMEM; 1531 1532 while (1) { 1533 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1534 ino, gen, idx); 1535 ASSERT(len < sizeof(tmp)); 1536 1537 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1538 path, BTRFS_FIRST_FREE_OBJECTID, 1539 tmp, strlen(tmp), 0); 1540 btrfs_release_path(path); 1541 if (IS_ERR(di)) { 1542 ret = PTR_ERR(di); 1543 goto out; 1544 } 1545 if (di) { 1546 /* not unique, try again */ 1547 idx++; 1548 continue; 1549 } 1550 1551 if (!sctx->parent_root) { 1552 /* unique */ 1553 ret = 0; 1554 break; 1555 } 1556 1557 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1558 path, BTRFS_FIRST_FREE_OBJECTID, 1559 tmp, strlen(tmp), 0); 1560 btrfs_release_path(path); 1561 if (IS_ERR(di)) { 1562 ret = PTR_ERR(di); 1563 goto out; 1564 } 1565 if (di) { 1566 /* not unique, try again */ 1567 idx++; 1568 continue; 1569 } 1570 /* unique */ 1571 break; 1572 } 1573 1574 ret = fs_path_add(dest, tmp, strlen(tmp)); 1575 1576 out: 1577 btrfs_free_path(path); 1578 return ret; 1579 } 1580 1581 enum inode_state { 1582 inode_state_no_change, 1583 inode_state_will_create, 1584 inode_state_did_create, 1585 inode_state_will_delete, 1586 inode_state_did_delete, 1587 }; 1588 1589 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1590 { 1591 int ret; 1592 int left_ret; 1593 int right_ret; 1594 u64 left_gen; 1595 u64 right_gen; 1596 1597 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1598 NULL, NULL); 1599 if (ret < 0 && ret != -ENOENT) 1600 goto out; 1601 left_ret = ret; 1602 1603 if (!sctx->parent_root) { 1604 right_ret = -ENOENT; 1605 } else { 1606 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1607 NULL, NULL, NULL, NULL); 1608 if (ret < 0 && ret != -ENOENT) 1609 goto out; 1610 right_ret = ret; 1611 } 1612 1613 if (!left_ret && !right_ret) { 1614 if (left_gen == gen && right_gen == gen) { 1615 ret = inode_state_no_change; 1616 } else if (left_gen == gen) { 1617 if (ino < sctx->send_progress) 1618 ret = inode_state_did_create; 1619 else 1620 ret = inode_state_will_create; 1621 } else if (right_gen == gen) { 1622 if (ino < sctx->send_progress) 1623 ret = inode_state_did_delete; 1624 else 1625 ret = inode_state_will_delete; 1626 } else { 1627 ret = -ENOENT; 1628 } 1629 } else if (!left_ret) { 1630 if (left_gen == gen) { 1631 if (ino < sctx->send_progress) 1632 ret = inode_state_did_create; 1633 else 1634 ret = inode_state_will_create; 1635 } else { 1636 ret = -ENOENT; 1637 } 1638 } else if (!right_ret) { 1639 if (right_gen == gen) { 1640 if (ino < sctx->send_progress) 1641 ret = inode_state_did_delete; 1642 else 1643 ret = inode_state_will_delete; 1644 } else { 1645 ret = -ENOENT; 1646 } 1647 } else { 1648 ret = -ENOENT; 1649 } 1650 1651 out: 1652 return ret; 1653 } 1654 1655 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1656 { 1657 int ret; 1658 1659 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1660 return 1; 1661 1662 ret = get_cur_inode_state(sctx, ino, gen); 1663 if (ret < 0) 1664 goto out; 1665 1666 if (ret == inode_state_no_change || 1667 ret == inode_state_did_create || 1668 ret == inode_state_will_delete) 1669 ret = 1; 1670 else 1671 ret = 0; 1672 1673 out: 1674 return ret; 1675 } 1676 1677 /* 1678 * Helper function to lookup a dir item in a dir. 1679 */ 1680 static int lookup_dir_item_inode(struct btrfs_root *root, 1681 u64 dir, const char *name, int name_len, 1682 u64 *found_inode, 1683 u8 *found_type) 1684 { 1685 int ret = 0; 1686 struct btrfs_dir_item *di; 1687 struct btrfs_key key; 1688 struct btrfs_path *path; 1689 1690 path = alloc_path_for_send(); 1691 if (!path) 1692 return -ENOMEM; 1693 1694 di = btrfs_lookup_dir_item(NULL, root, path, 1695 dir, name, name_len, 0); 1696 if (IS_ERR_OR_NULL(di)) { 1697 ret = di ? PTR_ERR(di) : -ENOENT; 1698 goto out; 1699 } 1700 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1701 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1702 ret = -ENOENT; 1703 goto out; 1704 } 1705 *found_inode = key.objectid; 1706 *found_type = btrfs_dir_type(path->nodes[0], di); 1707 1708 out: 1709 btrfs_free_path(path); 1710 return ret; 1711 } 1712 1713 /* 1714 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1715 * generation of the parent dir and the name of the dir entry. 1716 */ 1717 static int get_first_ref(struct btrfs_root *root, u64 ino, 1718 u64 *dir, u64 *dir_gen, struct fs_path *name) 1719 { 1720 int ret; 1721 struct btrfs_key key; 1722 struct btrfs_key found_key; 1723 struct btrfs_path *path; 1724 int len; 1725 u64 parent_dir; 1726 1727 path = alloc_path_for_send(); 1728 if (!path) 1729 return -ENOMEM; 1730 1731 key.objectid = ino; 1732 key.type = BTRFS_INODE_REF_KEY; 1733 key.offset = 0; 1734 1735 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1736 if (ret < 0) 1737 goto out; 1738 if (!ret) 1739 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1740 path->slots[0]); 1741 if (ret || found_key.objectid != ino || 1742 (found_key.type != BTRFS_INODE_REF_KEY && 1743 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1744 ret = -ENOENT; 1745 goto out; 1746 } 1747 1748 if (found_key.type == BTRFS_INODE_REF_KEY) { 1749 struct btrfs_inode_ref *iref; 1750 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1751 struct btrfs_inode_ref); 1752 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1753 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1754 (unsigned long)(iref + 1), 1755 len); 1756 parent_dir = found_key.offset; 1757 } else { 1758 struct btrfs_inode_extref *extref; 1759 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1760 struct btrfs_inode_extref); 1761 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1762 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1763 (unsigned long)&extref->name, len); 1764 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1765 } 1766 if (ret < 0) 1767 goto out; 1768 btrfs_release_path(path); 1769 1770 if (dir_gen) { 1771 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1772 NULL, NULL, NULL); 1773 if (ret < 0) 1774 goto out; 1775 } 1776 1777 *dir = parent_dir; 1778 1779 out: 1780 btrfs_free_path(path); 1781 return ret; 1782 } 1783 1784 static int is_first_ref(struct btrfs_root *root, 1785 u64 ino, u64 dir, 1786 const char *name, int name_len) 1787 { 1788 int ret; 1789 struct fs_path *tmp_name; 1790 u64 tmp_dir; 1791 1792 tmp_name = fs_path_alloc(); 1793 if (!tmp_name) 1794 return -ENOMEM; 1795 1796 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1797 if (ret < 0) 1798 goto out; 1799 1800 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1801 ret = 0; 1802 goto out; 1803 } 1804 1805 ret = !memcmp(tmp_name->start, name, name_len); 1806 1807 out: 1808 fs_path_free(tmp_name); 1809 return ret; 1810 } 1811 1812 /* 1813 * Used by process_recorded_refs to determine if a new ref would overwrite an 1814 * already existing ref. In case it detects an overwrite, it returns the 1815 * inode/gen in who_ino/who_gen. 1816 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1817 * to make sure later references to the overwritten inode are possible. 1818 * Orphanizing is however only required for the first ref of an inode. 1819 * process_recorded_refs does an additional is_first_ref check to see if 1820 * orphanizing is really required. 1821 */ 1822 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1823 const char *name, int name_len, 1824 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1825 { 1826 int ret = 0; 1827 u64 gen; 1828 u64 other_inode = 0; 1829 u8 other_type = 0; 1830 1831 if (!sctx->parent_root) 1832 goto out; 1833 1834 ret = is_inode_existent(sctx, dir, dir_gen); 1835 if (ret <= 0) 1836 goto out; 1837 1838 /* 1839 * If we have a parent root we need to verify that the parent dir was 1840 * not deleted and then re-created, if it was then we have no overwrite 1841 * and we can just unlink this entry. 1842 */ 1843 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1844 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1845 NULL, NULL, NULL); 1846 if (ret < 0 && ret != -ENOENT) 1847 goto out; 1848 if (ret) { 1849 ret = 0; 1850 goto out; 1851 } 1852 if (gen != dir_gen) 1853 goto out; 1854 } 1855 1856 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1857 &other_inode, &other_type); 1858 if (ret < 0 && ret != -ENOENT) 1859 goto out; 1860 if (ret) { 1861 ret = 0; 1862 goto out; 1863 } 1864 1865 /* 1866 * Check if the overwritten ref was already processed. If yes, the ref 1867 * was already unlinked/moved, so we can safely assume that we will not 1868 * overwrite anything at this point in time. 1869 */ 1870 if (other_inode > sctx->send_progress || 1871 is_waiting_for_move(sctx, other_inode)) { 1872 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1873 who_gen, who_mode, NULL, NULL, NULL); 1874 if (ret < 0) 1875 goto out; 1876 1877 ret = 1; 1878 *who_ino = other_inode; 1879 } else { 1880 ret = 0; 1881 } 1882 1883 out: 1884 return ret; 1885 } 1886 1887 /* 1888 * Checks if the ref was overwritten by an already processed inode. This is 1889 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1890 * thus the orphan name needs be used. 1891 * process_recorded_refs also uses it to avoid unlinking of refs that were 1892 * overwritten. 1893 */ 1894 static int did_overwrite_ref(struct send_ctx *sctx, 1895 u64 dir, u64 dir_gen, 1896 u64 ino, u64 ino_gen, 1897 const char *name, int name_len) 1898 { 1899 int ret = 0; 1900 u64 gen; 1901 u64 ow_inode; 1902 u8 other_type; 1903 1904 if (!sctx->parent_root) 1905 goto out; 1906 1907 ret = is_inode_existent(sctx, dir, dir_gen); 1908 if (ret <= 0) 1909 goto out; 1910 1911 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1912 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1913 NULL, NULL, NULL); 1914 if (ret < 0 && ret != -ENOENT) 1915 goto out; 1916 if (ret) { 1917 ret = 0; 1918 goto out; 1919 } 1920 if (gen != dir_gen) 1921 goto out; 1922 } 1923 1924 /* check if the ref was overwritten by another ref */ 1925 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1926 &ow_inode, &other_type); 1927 if (ret < 0 && ret != -ENOENT) 1928 goto out; 1929 if (ret) { 1930 /* was never and will never be overwritten */ 1931 ret = 0; 1932 goto out; 1933 } 1934 1935 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1936 NULL, NULL); 1937 if (ret < 0) 1938 goto out; 1939 1940 if (ow_inode == ino && gen == ino_gen) { 1941 ret = 0; 1942 goto out; 1943 } 1944 1945 /* 1946 * We know that it is or will be overwritten. Check this now. 1947 * The current inode being processed might have been the one that caused 1948 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1949 * the current inode being processed. 1950 */ 1951 if ((ow_inode < sctx->send_progress) || 1952 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1953 gen == sctx->cur_inode_gen)) 1954 ret = 1; 1955 else 1956 ret = 0; 1957 1958 out: 1959 return ret; 1960 } 1961 1962 /* 1963 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1964 * that got overwritten. This is used by process_recorded_refs to determine 1965 * if it has to use the path as returned by get_cur_path or the orphan name. 1966 */ 1967 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1968 { 1969 int ret = 0; 1970 struct fs_path *name = NULL; 1971 u64 dir; 1972 u64 dir_gen; 1973 1974 if (!sctx->parent_root) 1975 goto out; 1976 1977 name = fs_path_alloc(); 1978 if (!name) 1979 return -ENOMEM; 1980 1981 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1982 if (ret < 0) 1983 goto out; 1984 1985 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1986 name->start, fs_path_len(name)); 1987 1988 out: 1989 fs_path_free(name); 1990 return ret; 1991 } 1992 1993 /* 1994 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1995 * so we need to do some special handling in case we have clashes. This function 1996 * takes care of this with the help of name_cache_entry::radix_list. 1997 * In case of error, nce is kfreed. 1998 */ 1999 static int name_cache_insert(struct send_ctx *sctx, 2000 struct name_cache_entry *nce) 2001 { 2002 int ret = 0; 2003 struct list_head *nce_head; 2004 2005 nce_head = radix_tree_lookup(&sctx->name_cache, 2006 (unsigned long)nce->ino); 2007 if (!nce_head) { 2008 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2009 if (!nce_head) { 2010 kfree(nce); 2011 return -ENOMEM; 2012 } 2013 INIT_LIST_HEAD(nce_head); 2014 2015 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2016 if (ret < 0) { 2017 kfree(nce_head); 2018 kfree(nce); 2019 return ret; 2020 } 2021 } 2022 list_add_tail(&nce->radix_list, nce_head); 2023 list_add_tail(&nce->list, &sctx->name_cache_list); 2024 sctx->name_cache_size++; 2025 2026 return ret; 2027 } 2028 2029 static void name_cache_delete(struct send_ctx *sctx, 2030 struct name_cache_entry *nce) 2031 { 2032 struct list_head *nce_head; 2033 2034 nce_head = radix_tree_lookup(&sctx->name_cache, 2035 (unsigned long)nce->ino); 2036 if (!nce_head) { 2037 btrfs_err(sctx->send_root->fs_info, 2038 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2039 nce->ino, sctx->name_cache_size); 2040 } 2041 2042 list_del(&nce->radix_list); 2043 list_del(&nce->list); 2044 sctx->name_cache_size--; 2045 2046 /* 2047 * We may not get to the final release of nce_head if the lookup fails 2048 */ 2049 if (nce_head && list_empty(nce_head)) { 2050 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2051 kfree(nce_head); 2052 } 2053 } 2054 2055 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2056 u64 ino, u64 gen) 2057 { 2058 struct list_head *nce_head; 2059 struct name_cache_entry *cur; 2060 2061 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2062 if (!nce_head) 2063 return NULL; 2064 2065 list_for_each_entry(cur, nce_head, radix_list) { 2066 if (cur->ino == ino && cur->gen == gen) 2067 return cur; 2068 } 2069 return NULL; 2070 } 2071 2072 /* 2073 * Removes the entry from the list and adds it back to the end. This marks the 2074 * entry as recently used so that name_cache_clean_unused does not remove it. 2075 */ 2076 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2077 { 2078 list_del(&nce->list); 2079 list_add_tail(&nce->list, &sctx->name_cache_list); 2080 } 2081 2082 /* 2083 * Remove some entries from the beginning of name_cache_list. 2084 */ 2085 static void name_cache_clean_unused(struct send_ctx *sctx) 2086 { 2087 struct name_cache_entry *nce; 2088 2089 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2090 return; 2091 2092 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2093 nce = list_entry(sctx->name_cache_list.next, 2094 struct name_cache_entry, list); 2095 name_cache_delete(sctx, nce); 2096 kfree(nce); 2097 } 2098 } 2099 2100 static void name_cache_free(struct send_ctx *sctx) 2101 { 2102 struct name_cache_entry *nce; 2103 2104 while (!list_empty(&sctx->name_cache_list)) { 2105 nce = list_entry(sctx->name_cache_list.next, 2106 struct name_cache_entry, list); 2107 name_cache_delete(sctx, nce); 2108 kfree(nce); 2109 } 2110 } 2111 2112 /* 2113 * Used by get_cur_path for each ref up to the root. 2114 * Returns 0 if it succeeded. 2115 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2116 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2117 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2118 * Returns <0 in case of error. 2119 */ 2120 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2121 u64 ino, u64 gen, 2122 u64 *parent_ino, 2123 u64 *parent_gen, 2124 struct fs_path *dest) 2125 { 2126 int ret; 2127 int nce_ret; 2128 struct name_cache_entry *nce = NULL; 2129 2130 /* 2131 * First check if we already did a call to this function with the same 2132 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2133 * return the cached result. 2134 */ 2135 nce = name_cache_search(sctx, ino, gen); 2136 if (nce) { 2137 if (ino < sctx->send_progress && nce->need_later_update) { 2138 name_cache_delete(sctx, nce); 2139 kfree(nce); 2140 nce = NULL; 2141 } else { 2142 name_cache_used(sctx, nce); 2143 *parent_ino = nce->parent_ino; 2144 *parent_gen = nce->parent_gen; 2145 ret = fs_path_add(dest, nce->name, nce->name_len); 2146 if (ret < 0) 2147 goto out; 2148 ret = nce->ret; 2149 goto out; 2150 } 2151 } 2152 2153 /* 2154 * If the inode is not existent yet, add the orphan name and return 1. 2155 * This should only happen for the parent dir that we determine in 2156 * __record_new_ref 2157 */ 2158 ret = is_inode_existent(sctx, ino, gen); 2159 if (ret < 0) 2160 goto out; 2161 2162 if (!ret) { 2163 ret = gen_unique_name(sctx, ino, gen, dest); 2164 if (ret < 0) 2165 goto out; 2166 ret = 1; 2167 goto out_cache; 2168 } 2169 2170 /* 2171 * Depending on whether the inode was already processed or not, use 2172 * send_root or parent_root for ref lookup. 2173 */ 2174 if (ino < sctx->send_progress) 2175 ret = get_first_ref(sctx->send_root, ino, 2176 parent_ino, parent_gen, dest); 2177 else 2178 ret = get_first_ref(sctx->parent_root, ino, 2179 parent_ino, parent_gen, dest); 2180 if (ret < 0) 2181 goto out; 2182 2183 /* 2184 * Check if the ref was overwritten by an inode's ref that was processed 2185 * earlier. If yes, treat as orphan and return 1. 2186 */ 2187 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2188 dest->start, dest->end - dest->start); 2189 if (ret < 0) 2190 goto out; 2191 if (ret) { 2192 fs_path_reset(dest); 2193 ret = gen_unique_name(sctx, ino, gen, dest); 2194 if (ret < 0) 2195 goto out; 2196 ret = 1; 2197 } 2198 2199 out_cache: 2200 /* 2201 * Store the result of the lookup in the name cache. 2202 */ 2203 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2204 if (!nce) { 2205 ret = -ENOMEM; 2206 goto out; 2207 } 2208 2209 nce->ino = ino; 2210 nce->gen = gen; 2211 nce->parent_ino = *parent_ino; 2212 nce->parent_gen = *parent_gen; 2213 nce->name_len = fs_path_len(dest); 2214 nce->ret = ret; 2215 strcpy(nce->name, dest->start); 2216 2217 if (ino < sctx->send_progress) 2218 nce->need_later_update = 0; 2219 else 2220 nce->need_later_update = 1; 2221 2222 nce_ret = name_cache_insert(sctx, nce); 2223 if (nce_ret < 0) 2224 ret = nce_ret; 2225 name_cache_clean_unused(sctx); 2226 2227 out: 2228 return ret; 2229 } 2230 2231 /* 2232 * Magic happens here. This function returns the first ref to an inode as it 2233 * would look like while receiving the stream at this point in time. 2234 * We walk the path up to the root. For every inode in between, we check if it 2235 * was already processed/sent. If yes, we continue with the parent as found 2236 * in send_root. If not, we continue with the parent as found in parent_root. 2237 * If we encounter an inode that was deleted at this point in time, we use the 2238 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2239 * that were not created yet and overwritten inodes/refs. 2240 * 2241 * When do we have have orphan inodes: 2242 * 1. When an inode is freshly created and thus no valid refs are available yet 2243 * 2. When a directory lost all it's refs (deleted) but still has dir items 2244 * inside which were not processed yet (pending for move/delete). If anyone 2245 * tried to get the path to the dir items, it would get a path inside that 2246 * orphan directory. 2247 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2248 * of an unprocessed inode. If in that case the first ref would be 2249 * overwritten, the overwritten inode gets "orphanized". Later when we 2250 * process this overwritten inode, it is restored at a new place by moving 2251 * the orphan inode. 2252 * 2253 * sctx->send_progress tells this function at which point in time receiving 2254 * would be. 2255 */ 2256 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2257 struct fs_path *dest) 2258 { 2259 int ret = 0; 2260 struct fs_path *name = NULL; 2261 u64 parent_inode = 0; 2262 u64 parent_gen = 0; 2263 int stop = 0; 2264 2265 name = fs_path_alloc(); 2266 if (!name) { 2267 ret = -ENOMEM; 2268 goto out; 2269 } 2270 2271 dest->reversed = 1; 2272 fs_path_reset(dest); 2273 2274 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2275 struct waiting_dir_move *wdm; 2276 2277 fs_path_reset(name); 2278 2279 if (is_waiting_for_rm(sctx, ino)) { 2280 ret = gen_unique_name(sctx, ino, gen, name); 2281 if (ret < 0) 2282 goto out; 2283 ret = fs_path_add_path(dest, name); 2284 break; 2285 } 2286 2287 wdm = get_waiting_dir_move(sctx, ino); 2288 if (wdm && wdm->orphanized) { 2289 ret = gen_unique_name(sctx, ino, gen, name); 2290 stop = 1; 2291 } else if (wdm) { 2292 ret = get_first_ref(sctx->parent_root, ino, 2293 &parent_inode, &parent_gen, name); 2294 } else { 2295 ret = __get_cur_name_and_parent(sctx, ino, gen, 2296 &parent_inode, 2297 &parent_gen, name); 2298 if (ret) 2299 stop = 1; 2300 } 2301 2302 if (ret < 0) 2303 goto out; 2304 2305 ret = fs_path_add_path(dest, name); 2306 if (ret < 0) 2307 goto out; 2308 2309 ino = parent_inode; 2310 gen = parent_gen; 2311 } 2312 2313 out: 2314 fs_path_free(name); 2315 if (!ret) 2316 fs_path_unreverse(dest); 2317 return ret; 2318 } 2319 2320 /* 2321 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2322 */ 2323 static int send_subvol_begin(struct send_ctx *sctx) 2324 { 2325 int ret; 2326 struct btrfs_root *send_root = sctx->send_root; 2327 struct btrfs_root *parent_root = sctx->parent_root; 2328 struct btrfs_path *path; 2329 struct btrfs_key key; 2330 struct btrfs_root_ref *ref; 2331 struct extent_buffer *leaf; 2332 char *name = NULL; 2333 int namelen; 2334 2335 path = btrfs_alloc_path(); 2336 if (!path) 2337 return -ENOMEM; 2338 2339 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2340 if (!name) { 2341 btrfs_free_path(path); 2342 return -ENOMEM; 2343 } 2344 2345 key.objectid = send_root->root_key.objectid; 2346 key.type = BTRFS_ROOT_BACKREF_KEY; 2347 key.offset = 0; 2348 2349 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2350 &key, path, 1, 0); 2351 if (ret < 0) 2352 goto out; 2353 if (ret) { 2354 ret = -ENOENT; 2355 goto out; 2356 } 2357 2358 leaf = path->nodes[0]; 2359 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2360 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2361 key.objectid != send_root->root_key.objectid) { 2362 ret = -ENOENT; 2363 goto out; 2364 } 2365 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2366 namelen = btrfs_root_ref_name_len(leaf, ref); 2367 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2368 btrfs_release_path(path); 2369 2370 if (parent_root) { 2371 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2372 if (ret < 0) 2373 goto out; 2374 } else { 2375 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2376 if (ret < 0) 2377 goto out; 2378 } 2379 2380 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2381 2382 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2383 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2384 sctx->send_root->root_item.received_uuid); 2385 else 2386 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2387 sctx->send_root->root_item.uuid); 2388 2389 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2390 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2391 if (parent_root) { 2392 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2393 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2394 parent_root->root_item.received_uuid); 2395 else 2396 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2397 parent_root->root_item.uuid); 2398 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2399 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2400 } 2401 2402 ret = send_cmd(sctx); 2403 2404 tlv_put_failure: 2405 out: 2406 btrfs_free_path(path); 2407 kfree(name); 2408 return ret; 2409 } 2410 2411 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2412 { 2413 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2414 int ret = 0; 2415 struct fs_path *p; 2416 2417 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2418 2419 p = fs_path_alloc(); 2420 if (!p) 2421 return -ENOMEM; 2422 2423 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2424 if (ret < 0) 2425 goto out; 2426 2427 ret = get_cur_path(sctx, ino, gen, p); 2428 if (ret < 0) 2429 goto out; 2430 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2431 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2432 2433 ret = send_cmd(sctx); 2434 2435 tlv_put_failure: 2436 out: 2437 fs_path_free(p); 2438 return ret; 2439 } 2440 2441 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2442 { 2443 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2444 int ret = 0; 2445 struct fs_path *p; 2446 2447 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2448 2449 p = fs_path_alloc(); 2450 if (!p) 2451 return -ENOMEM; 2452 2453 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2454 if (ret < 0) 2455 goto out; 2456 2457 ret = get_cur_path(sctx, ino, gen, p); 2458 if (ret < 0) 2459 goto out; 2460 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2461 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2462 2463 ret = send_cmd(sctx); 2464 2465 tlv_put_failure: 2466 out: 2467 fs_path_free(p); 2468 return ret; 2469 } 2470 2471 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2472 { 2473 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2474 int ret = 0; 2475 struct fs_path *p; 2476 2477 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2478 ino, uid, gid); 2479 2480 p = fs_path_alloc(); 2481 if (!p) 2482 return -ENOMEM; 2483 2484 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2485 if (ret < 0) 2486 goto out; 2487 2488 ret = get_cur_path(sctx, ino, gen, p); 2489 if (ret < 0) 2490 goto out; 2491 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2492 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2493 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2494 2495 ret = send_cmd(sctx); 2496 2497 tlv_put_failure: 2498 out: 2499 fs_path_free(p); 2500 return ret; 2501 } 2502 2503 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2504 { 2505 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2506 int ret = 0; 2507 struct fs_path *p = NULL; 2508 struct btrfs_inode_item *ii; 2509 struct btrfs_path *path = NULL; 2510 struct extent_buffer *eb; 2511 struct btrfs_key key; 2512 int slot; 2513 2514 btrfs_debug(fs_info, "send_utimes %llu", ino); 2515 2516 p = fs_path_alloc(); 2517 if (!p) 2518 return -ENOMEM; 2519 2520 path = alloc_path_for_send(); 2521 if (!path) { 2522 ret = -ENOMEM; 2523 goto out; 2524 } 2525 2526 key.objectid = ino; 2527 key.type = BTRFS_INODE_ITEM_KEY; 2528 key.offset = 0; 2529 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2530 if (ret > 0) 2531 ret = -ENOENT; 2532 if (ret < 0) 2533 goto out; 2534 2535 eb = path->nodes[0]; 2536 slot = path->slots[0]; 2537 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2538 2539 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2540 if (ret < 0) 2541 goto out; 2542 2543 ret = get_cur_path(sctx, ino, gen, p); 2544 if (ret < 0) 2545 goto out; 2546 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2547 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2548 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2549 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2550 /* TODO Add otime support when the otime patches get into upstream */ 2551 2552 ret = send_cmd(sctx); 2553 2554 tlv_put_failure: 2555 out: 2556 fs_path_free(p); 2557 btrfs_free_path(path); 2558 return ret; 2559 } 2560 2561 /* 2562 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2563 * a valid path yet because we did not process the refs yet. So, the inode 2564 * is created as orphan. 2565 */ 2566 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2567 { 2568 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2569 int ret = 0; 2570 struct fs_path *p; 2571 int cmd; 2572 u64 gen; 2573 u64 mode; 2574 u64 rdev; 2575 2576 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2577 2578 p = fs_path_alloc(); 2579 if (!p) 2580 return -ENOMEM; 2581 2582 if (ino != sctx->cur_ino) { 2583 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2584 NULL, NULL, &rdev); 2585 if (ret < 0) 2586 goto out; 2587 } else { 2588 gen = sctx->cur_inode_gen; 2589 mode = sctx->cur_inode_mode; 2590 rdev = sctx->cur_inode_rdev; 2591 } 2592 2593 if (S_ISREG(mode)) { 2594 cmd = BTRFS_SEND_C_MKFILE; 2595 } else if (S_ISDIR(mode)) { 2596 cmd = BTRFS_SEND_C_MKDIR; 2597 } else if (S_ISLNK(mode)) { 2598 cmd = BTRFS_SEND_C_SYMLINK; 2599 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2600 cmd = BTRFS_SEND_C_MKNOD; 2601 } else if (S_ISFIFO(mode)) { 2602 cmd = BTRFS_SEND_C_MKFIFO; 2603 } else if (S_ISSOCK(mode)) { 2604 cmd = BTRFS_SEND_C_MKSOCK; 2605 } else { 2606 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2607 (int)(mode & S_IFMT)); 2608 ret = -EOPNOTSUPP; 2609 goto out; 2610 } 2611 2612 ret = begin_cmd(sctx, cmd); 2613 if (ret < 0) 2614 goto out; 2615 2616 ret = gen_unique_name(sctx, ino, gen, p); 2617 if (ret < 0) 2618 goto out; 2619 2620 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2621 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2622 2623 if (S_ISLNK(mode)) { 2624 fs_path_reset(p); 2625 ret = read_symlink(sctx->send_root, ino, p); 2626 if (ret < 0) 2627 goto out; 2628 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2629 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2630 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2631 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2632 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2633 } 2634 2635 ret = send_cmd(sctx); 2636 if (ret < 0) 2637 goto out; 2638 2639 2640 tlv_put_failure: 2641 out: 2642 fs_path_free(p); 2643 return ret; 2644 } 2645 2646 /* 2647 * We need some special handling for inodes that get processed before the parent 2648 * directory got created. See process_recorded_refs for details. 2649 * This function does the check if we already created the dir out of order. 2650 */ 2651 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2652 { 2653 int ret = 0; 2654 struct btrfs_path *path = NULL; 2655 struct btrfs_key key; 2656 struct btrfs_key found_key; 2657 struct btrfs_key di_key; 2658 struct extent_buffer *eb; 2659 struct btrfs_dir_item *di; 2660 int slot; 2661 2662 path = alloc_path_for_send(); 2663 if (!path) { 2664 ret = -ENOMEM; 2665 goto out; 2666 } 2667 2668 key.objectid = dir; 2669 key.type = BTRFS_DIR_INDEX_KEY; 2670 key.offset = 0; 2671 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2672 if (ret < 0) 2673 goto out; 2674 2675 while (1) { 2676 eb = path->nodes[0]; 2677 slot = path->slots[0]; 2678 if (slot >= btrfs_header_nritems(eb)) { 2679 ret = btrfs_next_leaf(sctx->send_root, path); 2680 if (ret < 0) { 2681 goto out; 2682 } else if (ret > 0) { 2683 ret = 0; 2684 break; 2685 } 2686 continue; 2687 } 2688 2689 btrfs_item_key_to_cpu(eb, &found_key, slot); 2690 if (found_key.objectid != key.objectid || 2691 found_key.type != key.type) { 2692 ret = 0; 2693 goto out; 2694 } 2695 2696 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2697 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2698 2699 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2700 di_key.objectid < sctx->send_progress) { 2701 ret = 1; 2702 goto out; 2703 } 2704 2705 path->slots[0]++; 2706 } 2707 2708 out: 2709 btrfs_free_path(path); 2710 return ret; 2711 } 2712 2713 /* 2714 * Only creates the inode if it is: 2715 * 1. Not a directory 2716 * 2. Or a directory which was not created already due to out of order 2717 * directories. See did_create_dir and process_recorded_refs for details. 2718 */ 2719 static int send_create_inode_if_needed(struct send_ctx *sctx) 2720 { 2721 int ret; 2722 2723 if (S_ISDIR(sctx->cur_inode_mode)) { 2724 ret = did_create_dir(sctx, sctx->cur_ino); 2725 if (ret < 0) 2726 goto out; 2727 if (ret) { 2728 ret = 0; 2729 goto out; 2730 } 2731 } 2732 2733 ret = send_create_inode(sctx, sctx->cur_ino); 2734 if (ret < 0) 2735 goto out; 2736 2737 out: 2738 return ret; 2739 } 2740 2741 struct recorded_ref { 2742 struct list_head list; 2743 char *name; 2744 struct fs_path *full_path; 2745 u64 dir; 2746 u64 dir_gen; 2747 int name_len; 2748 }; 2749 2750 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2751 { 2752 ref->full_path = path; 2753 ref->name = (char *)kbasename(ref->full_path->start); 2754 ref->name_len = ref->full_path->end - ref->name; 2755 } 2756 2757 /* 2758 * We need to process new refs before deleted refs, but compare_tree gives us 2759 * everything mixed. So we first record all refs and later process them. 2760 * This function is a helper to record one ref. 2761 */ 2762 static int __record_ref(struct list_head *head, u64 dir, 2763 u64 dir_gen, struct fs_path *path) 2764 { 2765 struct recorded_ref *ref; 2766 2767 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2768 if (!ref) 2769 return -ENOMEM; 2770 2771 ref->dir = dir; 2772 ref->dir_gen = dir_gen; 2773 set_ref_path(ref, path); 2774 list_add_tail(&ref->list, head); 2775 return 0; 2776 } 2777 2778 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2779 { 2780 struct recorded_ref *new; 2781 2782 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2783 if (!new) 2784 return -ENOMEM; 2785 2786 new->dir = ref->dir; 2787 new->dir_gen = ref->dir_gen; 2788 new->full_path = NULL; 2789 INIT_LIST_HEAD(&new->list); 2790 list_add_tail(&new->list, list); 2791 return 0; 2792 } 2793 2794 static void __free_recorded_refs(struct list_head *head) 2795 { 2796 struct recorded_ref *cur; 2797 2798 while (!list_empty(head)) { 2799 cur = list_entry(head->next, struct recorded_ref, list); 2800 fs_path_free(cur->full_path); 2801 list_del(&cur->list); 2802 kfree(cur); 2803 } 2804 } 2805 2806 static void free_recorded_refs(struct send_ctx *sctx) 2807 { 2808 __free_recorded_refs(&sctx->new_refs); 2809 __free_recorded_refs(&sctx->deleted_refs); 2810 } 2811 2812 /* 2813 * Renames/moves a file/dir to its orphan name. Used when the first 2814 * ref of an unprocessed inode gets overwritten and for all non empty 2815 * directories. 2816 */ 2817 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2818 struct fs_path *path) 2819 { 2820 int ret; 2821 struct fs_path *orphan; 2822 2823 orphan = fs_path_alloc(); 2824 if (!orphan) 2825 return -ENOMEM; 2826 2827 ret = gen_unique_name(sctx, ino, gen, orphan); 2828 if (ret < 0) 2829 goto out; 2830 2831 ret = send_rename(sctx, path, orphan); 2832 2833 out: 2834 fs_path_free(orphan); 2835 return ret; 2836 } 2837 2838 static struct orphan_dir_info * 2839 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2840 { 2841 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2842 struct rb_node *parent = NULL; 2843 struct orphan_dir_info *entry, *odi; 2844 2845 while (*p) { 2846 parent = *p; 2847 entry = rb_entry(parent, struct orphan_dir_info, node); 2848 if (dir_ino < entry->ino) { 2849 p = &(*p)->rb_left; 2850 } else if (dir_ino > entry->ino) { 2851 p = &(*p)->rb_right; 2852 } else { 2853 return entry; 2854 } 2855 } 2856 2857 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2858 if (!odi) 2859 return ERR_PTR(-ENOMEM); 2860 odi->ino = dir_ino; 2861 odi->gen = 0; 2862 odi->last_dir_index_offset = 0; 2863 2864 rb_link_node(&odi->node, parent, p); 2865 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2866 return odi; 2867 } 2868 2869 static struct orphan_dir_info * 2870 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2871 { 2872 struct rb_node *n = sctx->orphan_dirs.rb_node; 2873 struct orphan_dir_info *entry; 2874 2875 while (n) { 2876 entry = rb_entry(n, struct orphan_dir_info, node); 2877 if (dir_ino < entry->ino) 2878 n = n->rb_left; 2879 else if (dir_ino > entry->ino) 2880 n = n->rb_right; 2881 else 2882 return entry; 2883 } 2884 return NULL; 2885 } 2886 2887 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2888 { 2889 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2890 2891 return odi != NULL; 2892 } 2893 2894 static void free_orphan_dir_info(struct send_ctx *sctx, 2895 struct orphan_dir_info *odi) 2896 { 2897 if (!odi) 2898 return; 2899 rb_erase(&odi->node, &sctx->orphan_dirs); 2900 kfree(odi); 2901 } 2902 2903 /* 2904 * Returns 1 if a directory can be removed at this point in time. 2905 * We check this by iterating all dir items and checking if the inode behind 2906 * the dir item was already processed. 2907 */ 2908 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2909 u64 send_progress) 2910 { 2911 int ret = 0; 2912 struct btrfs_root *root = sctx->parent_root; 2913 struct btrfs_path *path; 2914 struct btrfs_key key; 2915 struct btrfs_key found_key; 2916 struct btrfs_key loc; 2917 struct btrfs_dir_item *di; 2918 struct orphan_dir_info *odi = NULL; 2919 2920 /* 2921 * Don't try to rmdir the top/root subvolume dir. 2922 */ 2923 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2924 return 0; 2925 2926 path = alloc_path_for_send(); 2927 if (!path) 2928 return -ENOMEM; 2929 2930 key.objectid = dir; 2931 key.type = BTRFS_DIR_INDEX_KEY; 2932 key.offset = 0; 2933 2934 odi = get_orphan_dir_info(sctx, dir); 2935 if (odi) 2936 key.offset = odi->last_dir_index_offset; 2937 2938 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2939 if (ret < 0) 2940 goto out; 2941 2942 while (1) { 2943 struct waiting_dir_move *dm; 2944 2945 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2946 ret = btrfs_next_leaf(root, path); 2947 if (ret < 0) 2948 goto out; 2949 else if (ret > 0) 2950 break; 2951 continue; 2952 } 2953 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2954 path->slots[0]); 2955 if (found_key.objectid != key.objectid || 2956 found_key.type != key.type) 2957 break; 2958 2959 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2960 struct btrfs_dir_item); 2961 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2962 2963 dm = get_waiting_dir_move(sctx, loc.objectid); 2964 if (dm) { 2965 odi = add_orphan_dir_info(sctx, dir); 2966 if (IS_ERR(odi)) { 2967 ret = PTR_ERR(odi); 2968 goto out; 2969 } 2970 odi->gen = dir_gen; 2971 odi->last_dir_index_offset = found_key.offset; 2972 dm->rmdir_ino = dir; 2973 ret = 0; 2974 goto out; 2975 } 2976 2977 if (loc.objectid > send_progress) { 2978 odi = add_orphan_dir_info(sctx, dir); 2979 if (IS_ERR(odi)) { 2980 ret = PTR_ERR(odi); 2981 goto out; 2982 } 2983 odi->gen = dir_gen; 2984 odi->last_dir_index_offset = found_key.offset; 2985 ret = 0; 2986 goto out; 2987 } 2988 2989 path->slots[0]++; 2990 } 2991 free_orphan_dir_info(sctx, odi); 2992 2993 ret = 1; 2994 2995 out: 2996 btrfs_free_path(path); 2997 return ret; 2998 } 2999 3000 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3001 { 3002 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3003 3004 return entry != NULL; 3005 } 3006 3007 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3008 { 3009 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3010 struct rb_node *parent = NULL; 3011 struct waiting_dir_move *entry, *dm; 3012 3013 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3014 if (!dm) 3015 return -ENOMEM; 3016 dm->ino = ino; 3017 dm->rmdir_ino = 0; 3018 dm->orphanized = orphanized; 3019 3020 while (*p) { 3021 parent = *p; 3022 entry = rb_entry(parent, struct waiting_dir_move, node); 3023 if (ino < entry->ino) { 3024 p = &(*p)->rb_left; 3025 } else if (ino > entry->ino) { 3026 p = &(*p)->rb_right; 3027 } else { 3028 kfree(dm); 3029 return -EEXIST; 3030 } 3031 } 3032 3033 rb_link_node(&dm->node, parent, p); 3034 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3035 return 0; 3036 } 3037 3038 static struct waiting_dir_move * 3039 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3040 { 3041 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3042 struct waiting_dir_move *entry; 3043 3044 while (n) { 3045 entry = rb_entry(n, struct waiting_dir_move, node); 3046 if (ino < entry->ino) 3047 n = n->rb_left; 3048 else if (ino > entry->ino) 3049 n = n->rb_right; 3050 else 3051 return entry; 3052 } 3053 return NULL; 3054 } 3055 3056 static void free_waiting_dir_move(struct send_ctx *sctx, 3057 struct waiting_dir_move *dm) 3058 { 3059 if (!dm) 3060 return; 3061 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3062 kfree(dm); 3063 } 3064 3065 static int add_pending_dir_move(struct send_ctx *sctx, 3066 u64 ino, 3067 u64 ino_gen, 3068 u64 parent_ino, 3069 struct list_head *new_refs, 3070 struct list_head *deleted_refs, 3071 const bool is_orphan) 3072 { 3073 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3074 struct rb_node *parent = NULL; 3075 struct pending_dir_move *entry = NULL, *pm; 3076 struct recorded_ref *cur; 3077 int exists = 0; 3078 int ret; 3079 3080 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3081 if (!pm) 3082 return -ENOMEM; 3083 pm->parent_ino = parent_ino; 3084 pm->ino = ino; 3085 pm->gen = ino_gen; 3086 INIT_LIST_HEAD(&pm->list); 3087 INIT_LIST_HEAD(&pm->update_refs); 3088 RB_CLEAR_NODE(&pm->node); 3089 3090 while (*p) { 3091 parent = *p; 3092 entry = rb_entry(parent, struct pending_dir_move, node); 3093 if (parent_ino < entry->parent_ino) { 3094 p = &(*p)->rb_left; 3095 } else if (parent_ino > entry->parent_ino) { 3096 p = &(*p)->rb_right; 3097 } else { 3098 exists = 1; 3099 break; 3100 } 3101 } 3102 3103 list_for_each_entry(cur, deleted_refs, list) { 3104 ret = dup_ref(cur, &pm->update_refs); 3105 if (ret < 0) 3106 goto out; 3107 } 3108 list_for_each_entry(cur, new_refs, list) { 3109 ret = dup_ref(cur, &pm->update_refs); 3110 if (ret < 0) 3111 goto out; 3112 } 3113 3114 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3115 if (ret) 3116 goto out; 3117 3118 if (exists) { 3119 list_add_tail(&pm->list, &entry->list); 3120 } else { 3121 rb_link_node(&pm->node, parent, p); 3122 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3123 } 3124 ret = 0; 3125 out: 3126 if (ret) { 3127 __free_recorded_refs(&pm->update_refs); 3128 kfree(pm); 3129 } 3130 return ret; 3131 } 3132 3133 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3134 u64 parent_ino) 3135 { 3136 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3137 struct pending_dir_move *entry; 3138 3139 while (n) { 3140 entry = rb_entry(n, struct pending_dir_move, node); 3141 if (parent_ino < entry->parent_ino) 3142 n = n->rb_left; 3143 else if (parent_ino > entry->parent_ino) 3144 n = n->rb_right; 3145 else 3146 return entry; 3147 } 3148 return NULL; 3149 } 3150 3151 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3152 u64 ino, u64 gen, u64 *ancestor_ino) 3153 { 3154 int ret = 0; 3155 u64 parent_inode = 0; 3156 u64 parent_gen = 0; 3157 u64 start_ino = ino; 3158 3159 *ancestor_ino = 0; 3160 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3161 fs_path_reset(name); 3162 3163 if (is_waiting_for_rm(sctx, ino)) 3164 break; 3165 if (is_waiting_for_move(sctx, ino)) { 3166 if (*ancestor_ino == 0) 3167 *ancestor_ino = ino; 3168 ret = get_first_ref(sctx->parent_root, ino, 3169 &parent_inode, &parent_gen, name); 3170 } else { 3171 ret = __get_cur_name_and_parent(sctx, ino, gen, 3172 &parent_inode, 3173 &parent_gen, name); 3174 if (ret > 0) { 3175 ret = 0; 3176 break; 3177 } 3178 } 3179 if (ret < 0) 3180 break; 3181 if (parent_inode == start_ino) { 3182 ret = 1; 3183 if (*ancestor_ino == 0) 3184 *ancestor_ino = ino; 3185 break; 3186 } 3187 ino = parent_inode; 3188 gen = parent_gen; 3189 } 3190 return ret; 3191 } 3192 3193 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3194 { 3195 struct fs_path *from_path = NULL; 3196 struct fs_path *to_path = NULL; 3197 struct fs_path *name = NULL; 3198 u64 orig_progress = sctx->send_progress; 3199 struct recorded_ref *cur; 3200 u64 parent_ino, parent_gen; 3201 struct waiting_dir_move *dm = NULL; 3202 u64 rmdir_ino = 0; 3203 u64 ancestor; 3204 bool is_orphan; 3205 int ret; 3206 3207 name = fs_path_alloc(); 3208 from_path = fs_path_alloc(); 3209 if (!name || !from_path) { 3210 ret = -ENOMEM; 3211 goto out; 3212 } 3213 3214 dm = get_waiting_dir_move(sctx, pm->ino); 3215 ASSERT(dm); 3216 rmdir_ino = dm->rmdir_ino; 3217 is_orphan = dm->orphanized; 3218 free_waiting_dir_move(sctx, dm); 3219 3220 if (is_orphan) { 3221 ret = gen_unique_name(sctx, pm->ino, 3222 pm->gen, from_path); 3223 } else { 3224 ret = get_first_ref(sctx->parent_root, pm->ino, 3225 &parent_ino, &parent_gen, name); 3226 if (ret < 0) 3227 goto out; 3228 ret = get_cur_path(sctx, parent_ino, parent_gen, 3229 from_path); 3230 if (ret < 0) 3231 goto out; 3232 ret = fs_path_add_path(from_path, name); 3233 } 3234 if (ret < 0) 3235 goto out; 3236 3237 sctx->send_progress = sctx->cur_ino + 1; 3238 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3239 if (ret < 0) 3240 goto out; 3241 if (ret) { 3242 LIST_HEAD(deleted_refs); 3243 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3244 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3245 &pm->update_refs, &deleted_refs, 3246 is_orphan); 3247 if (ret < 0) 3248 goto out; 3249 if (rmdir_ino) { 3250 dm = get_waiting_dir_move(sctx, pm->ino); 3251 ASSERT(dm); 3252 dm->rmdir_ino = rmdir_ino; 3253 } 3254 goto out; 3255 } 3256 fs_path_reset(name); 3257 to_path = name; 3258 name = NULL; 3259 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3260 if (ret < 0) 3261 goto out; 3262 3263 ret = send_rename(sctx, from_path, to_path); 3264 if (ret < 0) 3265 goto out; 3266 3267 if (rmdir_ino) { 3268 struct orphan_dir_info *odi; 3269 u64 gen; 3270 3271 odi = get_orphan_dir_info(sctx, rmdir_ino); 3272 if (!odi) { 3273 /* already deleted */ 3274 goto finish; 3275 } 3276 gen = odi->gen; 3277 3278 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3279 if (ret < 0) 3280 goto out; 3281 if (!ret) 3282 goto finish; 3283 3284 name = fs_path_alloc(); 3285 if (!name) { 3286 ret = -ENOMEM; 3287 goto out; 3288 } 3289 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3290 if (ret < 0) 3291 goto out; 3292 ret = send_rmdir(sctx, name); 3293 if (ret < 0) 3294 goto out; 3295 } 3296 3297 finish: 3298 ret = send_utimes(sctx, pm->ino, pm->gen); 3299 if (ret < 0) 3300 goto out; 3301 3302 /* 3303 * After rename/move, need to update the utimes of both new parent(s) 3304 * and old parent(s). 3305 */ 3306 list_for_each_entry(cur, &pm->update_refs, list) { 3307 /* 3308 * The parent inode might have been deleted in the send snapshot 3309 */ 3310 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3311 NULL, NULL, NULL, NULL, NULL); 3312 if (ret == -ENOENT) { 3313 ret = 0; 3314 continue; 3315 } 3316 if (ret < 0) 3317 goto out; 3318 3319 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3320 if (ret < 0) 3321 goto out; 3322 } 3323 3324 out: 3325 fs_path_free(name); 3326 fs_path_free(from_path); 3327 fs_path_free(to_path); 3328 sctx->send_progress = orig_progress; 3329 3330 return ret; 3331 } 3332 3333 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3334 { 3335 if (!list_empty(&m->list)) 3336 list_del(&m->list); 3337 if (!RB_EMPTY_NODE(&m->node)) 3338 rb_erase(&m->node, &sctx->pending_dir_moves); 3339 __free_recorded_refs(&m->update_refs); 3340 kfree(m); 3341 } 3342 3343 static void tail_append_pending_moves(struct send_ctx *sctx, 3344 struct pending_dir_move *moves, 3345 struct list_head *stack) 3346 { 3347 if (list_empty(&moves->list)) { 3348 list_add_tail(&moves->list, stack); 3349 } else { 3350 LIST_HEAD(list); 3351 list_splice_init(&moves->list, &list); 3352 list_add_tail(&moves->list, stack); 3353 list_splice_tail(&list, stack); 3354 } 3355 if (!RB_EMPTY_NODE(&moves->node)) { 3356 rb_erase(&moves->node, &sctx->pending_dir_moves); 3357 RB_CLEAR_NODE(&moves->node); 3358 } 3359 } 3360 3361 static int apply_children_dir_moves(struct send_ctx *sctx) 3362 { 3363 struct pending_dir_move *pm; 3364 struct list_head stack; 3365 u64 parent_ino = sctx->cur_ino; 3366 int ret = 0; 3367 3368 pm = get_pending_dir_moves(sctx, parent_ino); 3369 if (!pm) 3370 return 0; 3371 3372 INIT_LIST_HEAD(&stack); 3373 tail_append_pending_moves(sctx, pm, &stack); 3374 3375 while (!list_empty(&stack)) { 3376 pm = list_first_entry(&stack, struct pending_dir_move, list); 3377 parent_ino = pm->ino; 3378 ret = apply_dir_move(sctx, pm); 3379 free_pending_move(sctx, pm); 3380 if (ret) 3381 goto out; 3382 pm = get_pending_dir_moves(sctx, parent_ino); 3383 if (pm) 3384 tail_append_pending_moves(sctx, pm, &stack); 3385 } 3386 return 0; 3387 3388 out: 3389 while (!list_empty(&stack)) { 3390 pm = list_first_entry(&stack, struct pending_dir_move, list); 3391 free_pending_move(sctx, pm); 3392 } 3393 return ret; 3394 } 3395 3396 /* 3397 * We might need to delay a directory rename even when no ancestor directory 3398 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3399 * renamed. This happens when we rename a directory to the old name (the name 3400 * in the parent root) of some other unrelated directory that got its rename 3401 * delayed due to some ancestor with higher number that got renamed. 3402 * 3403 * Example: 3404 * 3405 * Parent snapshot: 3406 * . (ino 256) 3407 * |---- a/ (ino 257) 3408 * | |---- file (ino 260) 3409 * | 3410 * |---- b/ (ino 258) 3411 * |---- c/ (ino 259) 3412 * 3413 * Send snapshot: 3414 * . (ino 256) 3415 * |---- a/ (ino 258) 3416 * |---- x/ (ino 259) 3417 * |---- y/ (ino 257) 3418 * |----- file (ino 260) 3419 * 3420 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3421 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3422 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3423 * must issue is: 3424 * 3425 * 1 - rename 259 from 'c' to 'x' 3426 * 2 - rename 257 from 'a' to 'x/y' 3427 * 3 - rename 258 from 'b' to 'a' 3428 * 3429 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3430 * be done right away and < 0 on error. 3431 */ 3432 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3433 struct recorded_ref *parent_ref, 3434 const bool is_orphan) 3435 { 3436 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3437 struct btrfs_path *path; 3438 struct btrfs_key key; 3439 struct btrfs_key di_key; 3440 struct btrfs_dir_item *di; 3441 u64 left_gen; 3442 u64 right_gen; 3443 int ret = 0; 3444 struct waiting_dir_move *wdm; 3445 3446 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3447 return 0; 3448 3449 path = alloc_path_for_send(); 3450 if (!path) 3451 return -ENOMEM; 3452 3453 key.objectid = parent_ref->dir; 3454 key.type = BTRFS_DIR_ITEM_KEY; 3455 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3456 3457 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3458 if (ret < 0) { 3459 goto out; 3460 } else if (ret > 0) { 3461 ret = 0; 3462 goto out; 3463 } 3464 3465 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3466 parent_ref->name_len); 3467 if (!di) { 3468 ret = 0; 3469 goto out; 3470 } 3471 /* 3472 * di_key.objectid has the number of the inode that has a dentry in the 3473 * parent directory with the same name that sctx->cur_ino is being 3474 * renamed to. We need to check if that inode is in the send root as 3475 * well and if it is currently marked as an inode with a pending rename, 3476 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3477 * that it happens after that other inode is renamed. 3478 */ 3479 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3480 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3481 ret = 0; 3482 goto out; 3483 } 3484 3485 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3486 &left_gen, NULL, NULL, NULL, NULL); 3487 if (ret < 0) 3488 goto out; 3489 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3490 &right_gen, NULL, NULL, NULL, NULL); 3491 if (ret < 0) { 3492 if (ret == -ENOENT) 3493 ret = 0; 3494 goto out; 3495 } 3496 3497 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3498 if (right_gen != left_gen) { 3499 ret = 0; 3500 goto out; 3501 } 3502 3503 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3504 if (wdm && !wdm->orphanized) { 3505 ret = add_pending_dir_move(sctx, 3506 sctx->cur_ino, 3507 sctx->cur_inode_gen, 3508 di_key.objectid, 3509 &sctx->new_refs, 3510 &sctx->deleted_refs, 3511 is_orphan); 3512 if (!ret) 3513 ret = 1; 3514 } 3515 out: 3516 btrfs_free_path(path); 3517 return ret; 3518 } 3519 3520 /* 3521 * Check if inode ino2, or any of its ancestors, is inode ino1. 3522 * Return 1 if true, 0 if false and < 0 on error. 3523 */ 3524 static int check_ino_in_path(struct btrfs_root *root, 3525 const u64 ino1, 3526 const u64 ino1_gen, 3527 const u64 ino2, 3528 const u64 ino2_gen, 3529 struct fs_path *fs_path) 3530 { 3531 u64 ino = ino2; 3532 3533 if (ino1 == ino2) 3534 return ino1_gen == ino2_gen; 3535 3536 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3537 u64 parent; 3538 u64 parent_gen; 3539 int ret; 3540 3541 fs_path_reset(fs_path); 3542 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3543 if (ret < 0) 3544 return ret; 3545 if (parent == ino1) 3546 return parent_gen == ino1_gen; 3547 ino = parent; 3548 } 3549 return 0; 3550 } 3551 3552 /* 3553 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3554 * possible path (in case ino2 is not a directory and has multiple hard links). 3555 * Return 1 if true, 0 if false and < 0 on error. 3556 */ 3557 static int is_ancestor(struct btrfs_root *root, 3558 const u64 ino1, 3559 const u64 ino1_gen, 3560 const u64 ino2, 3561 struct fs_path *fs_path) 3562 { 3563 bool free_fs_path = false; 3564 int ret = 0; 3565 struct btrfs_path *path = NULL; 3566 struct btrfs_key key; 3567 3568 if (!fs_path) { 3569 fs_path = fs_path_alloc(); 3570 if (!fs_path) 3571 return -ENOMEM; 3572 free_fs_path = true; 3573 } 3574 3575 path = alloc_path_for_send(); 3576 if (!path) { 3577 ret = -ENOMEM; 3578 goto out; 3579 } 3580 3581 key.objectid = ino2; 3582 key.type = BTRFS_INODE_REF_KEY; 3583 key.offset = 0; 3584 3585 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3586 if (ret < 0) 3587 goto out; 3588 3589 while (true) { 3590 struct extent_buffer *leaf = path->nodes[0]; 3591 int slot = path->slots[0]; 3592 u32 cur_offset = 0; 3593 u32 item_size; 3594 3595 if (slot >= btrfs_header_nritems(leaf)) { 3596 ret = btrfs_next_leaf(root, path); 3597 if (ret < 0) 3598 goto out; 3599 if (ret > 0) 3600 break; 3601 continue; 3602 } 3603 3604 btrfs_item_key_to_cpu(leaf, &key, slot); 3605 if (key.objectid != ino2) 3606 break; 3607 if (key.type != BTRFS_INODE_REF_KEY && 3608 key.type != BTRFS_INODE_EXTREF_KEY) 3609 break; 3610 3611 item_size = btrfs_item_size_nr(leaf, slot); 3612 while (cur_offset < item_size) { 3613 u64 parent; 3614 u64 parent_gen; 3615 3616 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3617 unsigned long ptr; 3618 struct btrfs_inode_extref *extref; 3619 3620 ptr = btrfs_item_ptr_offset(leaf, slot); 3621 extref = (struct btrfs_inode_extref *) 3622 (ptr + cur_offset); 3623 parent = btrfs_inode_extref_parent(leaf, 3624 extref); 3625 cur_offset += sizeof(*extref); 3626 cur_offset += btrfs_inode_extref_name_len(leaf, 3627 extref); 3628 } else { 3629 parent = key.offset; 3630 cur_offset = item_size; 3631 } 3632 3633 ret = get_inode_info(root, parent, NULL, &parent_gen, 3634 NULL, NULL, NULL, NULL); 3635 if (ret < 0) 3636 goto out; 3637 ret = check_ino_in_path(root, ino1, ino1_gen, 3638 parent, parent_gen, fs_path); 3639 if (ret) 3640 goto out; 3641 } 3642 path->slots[0]++; 3643 } 3644 ret = 0; 3645 out: 3646 btrfs_free_path(path); 3647 if (free_fs_path) 3648 fs_path_free(fs_path); 3649 return ret; 3650 } 3651 3652 static int wait_for_parent_move(struct send_ctx *sctx, 3653 struct recorded_ref *parent_ref, 3654 const bool is_orphan) 3655 { 3656 int ret = 0; 3657 u64 ino = parent_ref->dir; 3658 u64 ino_gen = parent_ref->dir_gen; 3659 u64 parent_ino_before, parent_ino_after; 3660 struct fs_path *path_before = NULL; 3661 struct fs_path *path_after = NULL; 3662 int len1, len2; 3663 3664 path_after = fs_path_alloc(); 3665 path_before = fs_path_alloc(); 3666 if (!path_after || !path_before) { 3667 ret = -ENOMEM; 3668 goto out; 3669 } 3670 3671 /* 3672 * Our current directory inode may not yet be renamed/moved because some 3673 * ancestor (immediate or not) has to be renamed/moved first. So find if 3674 * such ancestor exists and make sure our own rename/move happens after 3675 * that ancestor is processed to avoid path build infinite loops (done 3676 * at get_cur_path()). 3677 */ 3678 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3679 u64 parent_ino_after_gen; 3680 3681 if (is_waiting_for_move(sctx, ino)) { 3682 /* 3683 * If the current inode is an ancestor of ino in the 3684 * parent root, we need to delay the rename of the 3685 * current inode, otherwise don't delayed the rename 3686 * because we can end up with a circular dependency 3687 * of renames, resulting in some directories never 3688 * getting the respective rename operations issued in 3689 * the send stream or getting into infinite path build 3690 * loops. 3691 */ 3692 ret = is_ancestor(sctx->parent_root, 3693 sctx->cur_ino, sctx->cur_inode_gen, 3694 ino, path_before); 3695 if (ret) 3696 break; 3697 } 3698 3699 fs_path_reset(path_before); 3700 fs_path_reset(path_after); 3701 3702 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3703 &parent_ino_after_gen, path_after); 3704 if (ret < 0) 3705 goto out; 3706 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3707 NULL, path_before); 3708 if (ret < 0 && ret != -ENOENT) { 3709 goto out; 3710 } else if (ret == -ENOENT) { 3711 ret = 0; 3712 break; 3713 } 3714 3715 len1 = fs_path_len(path_before); 3716 len2 = fs_path_len(path_after); 3717 if (ino > sctx->cur_ino && 3718 (parent_ino_before != parent_ino_after || len1 != len2 || 3719 memcmp(path_before->start, path_after->start, len1))) { 3720 u64 parent_ino_gen; 3721 3722 ret = get_inode_info(sctx->parent_root, ino, NULL, 3723 &parent_ino_gen, NULL, NULL, NULL, 3724 NULL); 3725 if (ret < 0) 3726 goto out; 3727 if (ino_gen == parent_ino_gen) { 3728 ret = 1; 3729 break; 3730 } 3731 } 3732 ino = parent_ino_after; 3733 ino_gen = parent_ino_after_gen; 3734 } 3735 3736 out: 3737 fs_path_free(path_before); 3738 fs_path_free(path_after); 3739 3740 if (ret == 1) { 3741 ret = add_pending_dir_move(sctx, 3742 sctx->cur_ino, 3743 sctx->cur_inode_gen, 3744 ino, 3745 &sctx->new_refs, 3746 &sctx->deleted_refs, 3747 is_orphan); 3748 if (!ret) 3749 ret = 1; 3750 } 3751 3752 return ret; 3753 } 3754 3755 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3756 { 3757 int ret; 3758 struct fs_path *new_path; 3759 3760 /* 3761 * Our reference's name member points to its full_path member string, so 3762 * we use here a new path. 3763 */ 3764 new_path = fs_path_alloc(); 3765 if (!new_path) 3766 return -ENOMEM; 3767 3768 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3769 if (ret < 0) { 3770 fs_path_free(new_path); 3771 return ret; 3772 } 3773 ret = fs_path_add(new_path, ref->name, ref->name_len); 3774 if (ret < 0) { 3775 fs_path_free(new_path); 3776 return ret; 3777 } 3778 3779 fs_path_free(ref->full_path); 3780 set_ref_path(ref, new_path); 3781 3782 return 0; 3783 } 3784 3785 /* 3786 * This does all the move/link/unlink/rmdir magic. 3787 */ 3788 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3789 { 3790 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3791 int ret = 0; 3792 struct recorded_ref *cur; 3793 struct recorded_ref *cur2; 3794 struct list_head check_dirs; 3795 struct fs_path *valid_path = NULL; 3796 u64 ow_inode = 0; 3797 u64 ow_gen; 3798 u64 ow_mode; 3799 int did_overwrite = 0; 3800 int is_orphan = 0; 3801 u64 last_dir_ino_rm = 0; 3802 bool can_rename = true; 3803 bool orphanized_dir = false; 3804 bool orphanized_ancestor = false; 3805 3806 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3807 3808 /* 3809 * This should never happen as the root dir always has the same ref 3810 * which is always '..' 3811 */ 3812 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3813 INIT_LIST_HEAD(&check_dirs); 3814 3815 valid_path = fs_path_alloc(); 3816 if (!valid_path) { 3817 ret = -ENOMEM; 3818 goto out; 3819 } 3820 3821 /* 3822 * First, check if the first ref of the current inode was overwritten 3823 * before. If yes, we know that the current inode was already orphanized 3824 * and thus use the orphan name. If not, we can use get_cur_path to 3825 * get the path of the first ref as it would like while receiving at 3826 * this point in time. 3827 * New inodes are always orphan at the beginning, so force to use the 3828 * orphan name in this case. 3829 * The first ref is stored in valid_path and will be updated if it 3830 * gets moved around. 3831 */ 3832 if (!sctx->cur_inode_new) { 3833 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3834 sctx->cur_inode_gen); 3835 if (ret < 0) 3836 goto out; 3837 if (ret) 3838 did_overwrite = 1; 3839 } 3840 if (sctx->cur_inode_new || did_overwrite) { 3841 ret = gen_unique_name(sctx, sctx->cur_ino, 3842 sctx->cur_inode_gen, valid_path); 3843 if (ret < 0) 3844 goto out; 3845 is_orphan = 1; 3846 } else { 3847 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3848 valid_path); 3849 if (ret < 0) 3850 goto out; 3851 } 3852 3853 list_for_each_entry(cur, &sctx->new_refs, list) { 3854 /* 3855 * We may have refs where the parent directory does not exist 3856 * yet. This happens if the parent directories inum is higher 3857 * the the current inum. To handle this case, we create the 3858 * parent directory out of order. But we need to check if this 3859 * did already happen before due to other refs in the same dir. 3860 */ 3861 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3862 if (ret < 0) 3863 goto out; 3864 if (ret == inode_state_will_create) { 3865 ret = 0; 3866 /* 3867 * First check if any of the current inodes refs did 3868 * already create the dir. 3869 */ 3870 list_for_each_entry(cur2, &sctx->new_refs, list) { 3871 if (cur == cur2) 3872 break; 3873 if (cur2->dir == cur->dir) { 3874 ret = 1; 3875 break; 3876 } 3877 } 3878 3879 /* 3880 * If that did not happen, check if a previous inode 3881 * did already create the dir. 3882 */ 3883 if (!ret) 3884 ret = did_create_dir(sctx, cur->dir); 3885 if (ret < 0) 3886 goto out; 3887 if (!ret) { 3888 ret = send_create_inode(sctx, cur->dir); 3889 if (ret < 0) 3890 goto out; 3891 } 3892 } 3893 3894 /* 3895 * Check if this new ref would overwrite the first ref of 3896 * another unprocessed inode. If yes, orphanize the 3897 * overwritten inode. If we find an overwritten ref that is 3898 * not the first ref, simply unlink it. 3899 */ 3900 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3901 cur->name, cur->name_len, 3902 &ow_inode, &ow_gen, &ow_mode); 3903 if (ret < 0) 3904 goto out; 3905 if (ret) { 3906 ret = is_first_ref(sctx->parent_root, 3907 ow_inode, cur->dir, cur->name, 3908 cur->name_len); 3909 if (ret < 0) 3910 goto out; 3911 if (ret) { 3912 struct name_cache_entry *nce; 3913 struct waiting_dir_move *wdm; 3914 3915 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3916 cur->full_path); 3917 if (ret < 0) 3918 goto out; 3919 if (S_ISDIR(ow_mode)) 3920 orphanized_dir = true; 3921 3922 /* 3923 * If ow_inode has its rename operation delayed 3924 * make sure that its orphanized name is used in 3925 * the source path when performing its rename 3926 * operation. 3927 */ 3928 if (is_waiting_for_move(sctx, ow_inode)) { 3929 wdm = get_waiting_dir_move(sctx, 3930 ow_inode); 3931 ASSERT(wdm); 3932 wdm->orphanized = true; 3933 } 3934 3935 /* 3936 * Make sure we clear our orphanized inode's 3937 * name from the name cache. This is because the 3938 * inode ow_inode might be an ancestor of some 3939 * other inode that will be orphanized as well 3940 * later and has an inode number greater than 3941 * sctx->send_progress. We need to prevent 3942 * future name lookups from using the old name 3943 * and get instead the orphan name. 3944 */ 3945 nce = name_cache_search(sctx, ow_inode, ow_gen); 3946 if (nce) { 3947 name_cache_delete(sctx, nce); 3948 kfree(nce); 3949 } 3950 3951 /* 3952 * ow_inode might currently be an ancestor of 3953 * cur_ino, therefore compute valid_path (the 3954 * current path of cur_ino) again because it 3955 * might contain the pre-orphanization name of 3956 * ow_inode, which is no longer valid. 3957 */ 3958 ret = is_ancestor(sctx->parent_root, 3959 ow_inode, ow_gen, 3960 sctx->cur_ino, NULL); 3961 if (ret > 0) { 3962 orphanized_ancestor = true; 3963 fs_path_reset(valid_path); 3964 ret = get_cur_path(sctx, sctx->cur_ino, 3965 sctx->cur_inode_gen, 3966 valid_path); 3967 } 3968 if (ret < 0) 3969 goto out; 3970 } else { 3971 ret = send_unlink(sctx, cur->full_path); 3972 if (ret < 0) 3973 goto out; 3974 } 3975 } 3976 3977 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3978 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3979 if (ret < 0) 3980 goto out; 3981 if (ret == 1) { 3982 can_rename = false; 3983 *pending_move = 1; 3984 } 3985 } 3986 3987 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 3988 can_rename) { 3989 ret = wait_for_parent_move(sctx, cur, is_orphan); 3990 if (ret < 0) 3991 goto out; 3992 if (ret == 1) { 3993 can_rename = false; 3994 *pending_move = 1; 3995 } 3996 } 3997 3998 /* 3999 * link/move the ref to the new place. If we have an orphan 4000 * inode, move it and update valid_path. If not, link or move 4001 * it depending on the inode mode. 4002 */ 4003 if (is_orphan && can_rename) { 4004 ret = send_rename(sctx, valid_path, cur->full_path); 4005 if (ret < 0) 4006 goto out; 4007 is_orphan = 0; 4008 ret = fs_path_copy(valid_path, cur->full_path); 4009 if (ret < 0) 4010 goto out; 4011 } else if (can_rename) { 4012 if (S_ISDIR(sctx->cur_inode_mode)) { 4013 /* 4014 * Dirs can't be linked, so move it. For moved 4015 * dirs, we always have one new and one deleted 4016 * ref. The deleted ref is ignored later. 4017 */ 4018 ret = send_rename(sctx, valid_path, 4019 cur->full_path); 4020 if (!ret) 4021 ret = fs_path_copy(valid_path, 4022 cur->full_path); 4023 if (ret < 0) 4024 goto out; 4025 } else { 4026 /* 4027 * We might have previously orphanized an inode 4028 * which is an ancestor of our current inode, 4029 * so our reference's full path, which was 4030 * computed before any such orphanizations, must 4031 * be updated. 4032 */ 4033 if (orphanized_dir) { 4034 ret = update_ref_path(sctx, cur); 4035 if (ret < 0) 4036 goto out; 4037 } 4038 ret = send_link(sctx, cur->full_path, 4039 valid_path); 4040 if (ret < 0) 4041 goto out; 4042 } 4043 } 4044 ret = dup_ref(cur, &check_dirs); 4045 if (ret < 0) 4046 goto out; 4047 } 4048 4049 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4050 /* 4051 * Check if we can already rmdir the directory. If not, 4052 * orphanize it. For every dir item inside that gets deleted 4053 * later, we do this check again and rmdir it then if possible. 4054 * See the use of check_dirs for more details. 4055 */ 4056 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4057 sctx->cur_ino); 4058 if (ret < 0) 4059 goto out; 4060 if (ret) { 4061 ret = send_rmdir(sctx, valid_path); 4062 if (ret < 0) 4063 goto out; 4064 } else if (!is_orphan) { 4065 ret = orphanize_inode(sctx, sctx->cur_ino, 4066 sctx->cur_inode_gen, valid_path); 4067 if (ret < 0) 4068 goto out; 4069 is_orphan = 1; 4070 } 4071 4072 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4073 ret = dup_ref(cur, &check_dirs); 4074 if (ret < 0) 4075 goto out; 4076 } 4077 } else if (S_ISDIR(sctx->cur_inode_mode) && 4078 !list_empty(&sctx->deleted_refs)) { 4079 /* 4080 * We have a moved dir. Add the old parent to check_dirs 4081 */ 4082 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4083 list); 4084 ret = dup_ref(cur, &check_dirs); 4085 if (ret < 0) 4086 goto out; 4087 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4088 /* 4089 * We have a non dir inode. Go through all deleted refs and 4090 * unlink them if they were not already overwritten by other 4091 * inodes. 4092 */ 4093 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4094 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4095 sctx->cur_ino, sctx->cur_inode_gen, 4096 cur->name, cur->name_len); 4097 if (ret < 0) 4098 goto out; 4099 if (!ret) { 4100 /* 4101 * If we orphanized any ancestor before, we need 4102 * to recompute the full path for deleted names, 4103 * since any such path was computed before we 4104 * processed any references and orphanized any 4105 * ancestor inode. 4106 */ 4107 if (orphanized_ancestor) { 4108 ret = update_ref_path(sctx, cur); 4109 if (ret < 0) 4110 goto out; 4111 } 4112 ret = send_unlink(sctx, cur->full_path); 4113 if (ret < 0) 4114 goto out; 4115 } 4116 ret = dup_ref(cur, &check_dirs); 4117 if (ret < 0) 4118 goto out; 4119 } 4120 /* 4121 * If the inode is still orphan, unlink the orphan. This may 4122 * happen when a previous inode did overwrite the first ref 4123 * of this inode and no new refs were added for the current 4124 * inode. Unlinking does not mean that the inode is deleted in 4125 * all cases. There may still be links to this inode in other 4126 * places. 4127 */ 4128 if (is_orphan) { 4129 ret = send_unlink(sctx, valid_path); 4130 if (ret < 0) 4131 goto out; 4132 } 4133 } 4134 4135 /* 4136 * We did collect all parent dirs where cur_inode was once located. We 4137 * now go through all these dirs and check if they are pending for 4138 * deletion and if it's finally possible to perform the rmdir now. 4139 * We also update the inode stats of the parent dirs here. 4140 */ 4141 list_for_each_entry(cur, &check_dirs, list) { 4142 /* 4143 * In case we had refs into dirs that were not processed yet, 4144 * we don't need to do the utime and rmdir logic for these dirs. 4145 * The dir will be processed later. 4146 */ 4147 if (cur->dir > sctx->cur_ino) 4148 continue; 4149 4150 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4151 if (ret < 0) 4152 goto out; 4153 4154 if (ret == inode_state_did_create || 4155 ret == inode_state_no_change) { 4156 /* TODO delayed utimes */ 4157 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4158 if (ret < 0) 4159 goto out; 4160 } else if (ret == inode_state_did_delete && 4161 cur->dir != last_dir_ino_rm) { 4162 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4163 sctx->cur_ino); 4164 if (ret < 0) 4165 goto out; 4166 if (ret) { 4167 ret = get_cur_path(sctx, cur->dir, 4168 cur->dir_gen, valid_path); 4169 if (ret < 0) 4170 goto out; 4171 ret = send_rmdir(sctx, valid_path); 4172 if (ret < 0) 4173 goto out; 4174 last_dir_ino_rm = cur->dir; 4175 } 4176 } 4177 } 4178 4179 ret = 0; 4180 4181 out: 4182 __free_recorded_refs(&check_dirs); 4183 free_recorded_refs(sctx); 4184 fs_path_free(valid_path); 4185 return ret; 4186 } 4187 4188 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4189 void *ctx, struct list_head *refs) 4190 { 4191 int ret = 0; 4192 struct send_ctx *sctx = ctx; 4193 struct fs_path *p; 4194 u64 gen; 4195 4196 p = fs_path_alloc(); 4197 if (!p) 4198 return -ENOMEM; 4199 4200 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4201 NULL, NULL); 4202 if (ret < 0) 4203 goto out; 4204 4205 ret = get_cur_path(sctx, dir, gen, p); 4206 if (ret < 0) 4207 goto out; 4208 ret = fs_path_add_path(p, name); 4209 if (ret < 0) 4210 goto out; 4211 4212 ret = __record_ref(refs, dir, gen, p); 4213 4214 out: 4215 if (ret) 4216 fs_path_free(p); 4217 return ret; 4218 } 4219 4220 static int __record_new_ref(int num, u64 dir, int index, 4221 struct fs_path *name, 4222 void *ctx) 4223 { 4224 struct send_ctx *sctx = ctx; 4225 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4226 } 4227 4228 4229 static int __record_deleted_ref(int num, u64 dir, int index, 4230 struct fs_path *name, 4231 void *ctx) 4232 { 4233 struct send_ctx *sctx = ctx; 4234 return record_ref(sctx->parent_root, dir, name, ctx, 4235 &sctx->deleted_refs); 4236 } 4237 4238 static int record_new_ref(struct send_ctx *sctx) 4239 { 4240 int ret; 4241 4242 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4243 sctx->cmp_key, 0, __record_new_ref, sctx); 4244 if (ret < 0) 4245 goto out; 4246 ret = 0; 4247 4248 out: 4249 return ret; 4250 } 4251 4252 static int record_deleted_ref(struct send_ctx *sctx) 4253 { 4254 int ret; 4255 4256 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4257 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4258 if (ret < 0) 4259 goto out; 4260 ret = 0; 4261 4262 out: 4263 return ret; 4264 } 4265 4266 struct find_ref_ctx { 4267 u64 dir; 4268 u64 dir_gen; 4269 struct btrfs_root *root; 4270 struct fs_path *name; 4271 int found_idx; 4272 }; 4273 4274 static int __find_iref(int num, u64 dir, int index, 4275 struct fs_path *name, 4276 void *ctx_) 4277 { 4278 struct find_ref_ctx *ctx = ctx_; 4279 u64 dir_gen; 4280 int ret; 4281 4282 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4283 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4284 /* 4285 * To avoid doing extra lookups we'll only do this if everything 4286 * else matches. 4287 */ 4288 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4289 NULL, NULL, NULL); 4290 if (ret) 4291 return ret; 4292 if (dir_gen != ctx->dir_gen) 4293 return 0; 4294 ctx->found_idx = num; 4295 return 1; 4296 } 4297 return 0; 4298 } 4299 4300 static int find_iref(struct btrfs_root *root, 4301 struct btrfs_path *path, 4302 struct btrfs_key *key, 4303 u64 dir, u64 dir_gen, struct fs_path *name) 4304 { 4305 int ret; 4306 struct find_ref_ctx ctx; 4307 4308 ctx.dir = dir; 4309 ctx.name = name; 4310 ctx.dir_gen = dir_gen; 4311 ctx.found_idx = -1; 4312 ctx.root = root; 4313 4314 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4315 if (ret < 0) 4316 return ret; 4317 4318 if (ctx.found_idx == -1) 4319 return -ENOENT; 4320 4321 return ctx.found_idx; 4322 } 4323 4324 static int __record_changed_new_ref(int num, u64 dir, int index, 4325 struct fs_path *name, 4326 void *ctx) 4327 { 4328 u64 dir_gen; 4329 int ret; 4330 struct send_ctx *sctx = ctx; 4331 4332 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4333 NULL, NULL, NULL); 4334 if (ret) 4335 return ret; 4336 4337 ret = find_iref(sctx->parent_root, sctx->right_path, 4338 sctx->cmp_key, dir, dir_gen, name); 4339 if (ret == -ENOENT) 4340 ret = __record_new_ref(num, dir, index, name, sctx); 4341 else if (ret > 0) 4342 ret = 0; 4343 4344 return ret; 4345 } 4346 4347 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4348 struct fs_path *name, 4349 void *ctx) 4350 { 4351 u64 dir_gen; 4352 int ret; 4353 struct send_ctx *sctx = ctx; 4354 4355 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4356 NULL, NULL, NULL); 4357 if (ret) 4358 return ret; 4359 4360 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4361 dir, dir_gen, name); 4362 if (ret == -ENOENT) 4363 ret = __record_deleted_ref(num, dir, index, name, sctx); 4364 else if (ret > 0) 4365 ret = 0; 4366 4367 return ret; 4368 } 4369 4370 static int record_changed_ref(struct send_ctx *sctx) 4371 { 4372 int ret = 0; 4373 4374 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4375 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4376 if (ret < 0) 4377 goto out; 4378 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4379 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4380 if (ret < 0) 4381 goto out; 4382 ret = 0; 4383 4384 out: 4385 return ret; 4386 } 4387 4388 /* 4389 * Record and process all refs at once. Needed when an inode changes the 4390 * generation number, which means that it was deleted and recreated. 4391 */ 4392 static int process_all_refs(struct send_ctx *sctx, 4393 enum btrfs_compare_tree_result cmd) 4394 { 4395 int ret; 4396 struct btrfs_root *root; 4397 struct btrfs_path *path; 4398 struct btrfs_key key; 4399 struct btrfs_key found_key; 4400 struct extent_buffer *eb; 4401 int slot; 4402 iterate_inode_ref_t cb; 4403 int pending_move = 0; 4404 4405 path = alloc_path_for_send(); 4406 if (!path) 4407 return -ENOMEM; 4408 4409 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4410 root = sctx->send_root; 4411 cb = __record_new_ref; 4412 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4413 root = sctx->parent_root; 4414 cb = __record_deleted_ref; 4415 } else { 4416 btrfs_err(sctx->send_root->fs_info, 4417 "Wrong command %d in process_all_refs", cmd); 4418 ret = -EINVAL; 4419 goto out; 4420 } 4421 4422 key.objectid = sctx->cmp_key->objectid; 4423 key.type = BTRFS_INODE_REF_KEY; 4424 key.offset = 0; 4425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4426 if (ret < 0) 4427 goto out; 4428 4429 while (1) { 4430 eb = path->nodes[0]; 4431 slot = path->slots[0]; 4432 if (slot >= btrfs_header_nritems(eb)) { 4433 ret = btrfs_next_leaf(root, path); 4434 if (ret < 0) 4435 goto out; 4436 else if (ret > 0) 4437 break; 4438 continue; 4439 } 4440 4441 btrfs_item_key_to_cpu(eb, &found_key, slot); 4442 4443 if (found_key.objectid != key.objectid || 4444 (found_key.type != BTRFS_INODE_REF_KEY && 4445 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4446 break; 4447 4448 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4449 if (ret < 0) 4450 goto out; 4451 4452 path->slots[0]++; 4453 } 4454 btrfs_release_path(path); 4455 4456 /* 4457 * We don't actually care about pending_move as we are simply 4458 * re-creating this inode and will be rename'ing it into place once we 4459 * rename the parent directory. 4460 */ 4461 ret = process_recorded_refs(sctx, &pending_move); 4462 out: 4463 btrfs_free_path(path); 4464 return ret; 4465 } 4466 4467 static int send_set_xattr(struct send_ctx *sctx, 4468 struct fs_path *path, 4469 const char *name, int name_len, 4470 const char *data, int data_len) 4471 { 4472 int ret = 0; 4473 4474 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4475 if (ret < 0) 4476 goto out; 4477 4478 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4479 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4480 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4481 4482 ret = send_cmd(sctx); 4483 4484 tlv_put_failure: 4485 out: 4486 return ret; 4487 } 4488 4489 static int send_remove_xattr(struct send_ctx *sctx, 4490 struct fs_path *path, 4491 const char *name, int name_len) 4492 { 4493 int ret = 0; 4494 4495 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4496 if (ret < 0) 4497 goto out; 4498 4499 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4500 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4501 4502 ret = send_cmd(sctx); 4503 4504 tlv_put_failure: 4505 out: 4506 return ret; 4507 } 4508 4509 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4510 const char *name, int name_len, 4511 const char *data, int data_len, 4512 u8 type, void *ctx) 4513 { 4514 int ret; 4515 struct send_ctx *sctx = ctx; 4516 struct fs_path *p; 4517 struct posix_acl_xattr_header dummy_acl; 4518 4519 p = fs_path_alloc(); 4520 if (!p) 4521 return -ENOMEM; 4522 4523 /* 4524 * This hack is needed because empty acls are stored as zero byte 4525 * data in xattrs. Problem with that is, that receiving these zero byte 4526 * acls will fail later. To fix this, we send a dummy acl list that 4527 * only contains the version number and no entries. 4528 */ 4529 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4530 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4531 if (data_len == 0) { 4532 dummy_acl.a_version = 4533 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4534 data = (char *)&dummy_acl; 4535 data_len = sizeof(dummy_acl); 4536 } 4537 } 4538 4539 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4540 if (ret < 0) 4541 goto out; 4542 4543 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4544 4545 out: 4546 fs_path_free(p); 4547 return ret; 4548 } 4549 4550 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4551 const char *name, int name_len, 4552 const char *data, int data_len, 4553 u8 type, void *ctx) 4554 { 4555 int ret; 4556 struct send_ctx *sctx = ctx; 4557 struct fs_path *p; 4558 4559 p = fs_path_alloc(); 4560 if (!p) 4561 return -ENOMEM; 4562 4563 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4564 if (ret < 0) 4565 goto out; 4566 4567 ret = send_remove_xattr(sctx, p, name, name_len); 4568 4569 out: 4570 fs_path_free(p); 4571 return ret; 4572 } 4573 4574 static int process_new_xattr(struct send_ctx *sctx) 4575 { 4576 int ret = 0; 4577 4578 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4579 __process_new_xattr, sctx); 4580 4581 return ret; 4582 } 4583 4584 static int process_deleted_xattr(struct send_ctx *sctx) 4585 { 4586 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4587 __process_deleted_xattr, sctx); 4588 } 4589 4590 struct find_xattr_ctx { 4591 const char *name; 4592 int name_len; 4593 int found_idx; 4594 char *found_data; 4595 int found_data_len; 4596 }; 4597 4598 static int __find_xattr(int num, struct btrfs_key *di_key, 4599 const char *name, int name_len, 4600 const char *data, int data_len, 4601 u8 type, void *vctx) 4602 { 4603 struct find_xattr_ctx *ctx = vctx; 4604 4605 if (name_len == ctx->name_len && 4606 strncmp(name, ctx->name, name_len) == 0) { 4607 ctx->found_idx = num; 4608 ctx->found_data_len = data_len; 4609 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4610 if (!ctx->found_data) 4611 return -ENOMEM; 4612 return 1; 4613 } 4614 return 0; 4615 } 4616 4617 static int find_xattr(struct btrfs_root *root, 4618 struct btrfs_path *path, 4619 struct btrfs_key *key, 4620 const char *name, int name_len, 4621 char **data, int *data_len) 4622 { 4623 int ret; 4624 struct find_xattr_ctx ctx; 4625 4626 ctx.name = name; 4627 ctx.name_len = name_len; 4628 ctx.found_idx = -1; 4629 ctx.found_data = NULL; 4630 ctx.found_data_len = 0; 4631 4632 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4633 if (ret < 0) 4634 return ret; 4635 4636 if (ctx.found_idx == -1) 4637 return -ENOENT; 4638 if (data) { 4639 *data = ctx.found_data; 4640 *data_len = ctx.found_data_len; 4641 } else { 4642 kfree(ctx.found_data); 4643 } 4644 return ctx.found_idx; 4645 } 4646 4647 4648 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4649 const char *name, int name_len, 4650 const char *data, int data_len, 4651 u8 type, void *ctx) 4652 { 4653 int ret; 4654 struct send_ctx *sctx = ctx; 4655 char *found_data = NULL; 4656 int found_data_len = 0; 4657 4658 ret = find_xattr(sctx->parent_root, sctx->right_path, 4659 sctx->cmp_key, name, name_len, &found_data, 4660 &found_data_len); 4661 if (ret == -ENOENT) { 4662 ret = __process_new_xattr(num, di_key, name, name_len, data, 4663 data_len, type, ctx); 4664 } else if (ret >= 0) { 4665 if (data_len != found_data_len || 4666 memcmp(data, found_data, data_len)) { 4667 ret = __process_new_xattr(num, di_key, name, name_len, 4668 data, data_len, type, ctx); 4669 } else { 4670 ret = 0; 4671 } 4672 } 4673 4674 kfree(found_data); 4675 return ret; 4676 } 4677 4678 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4679 const char *name, int name_len, 4680 const char *data, int data_len, 4681 u8 type, void *ctx) 4682 { 4683 int ret; 4684 struct send_ctx *sctx = ctx; 4685 4686 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4687 name, name_len, NULL, NULL); 4688 if (ret == -ENOENT) 4689 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4690 data_len, type, ctx); 4691 else if (ret >= 0) 4692 ret = 0; 4693 4694 return ret; 4695 } 4696 4697 static int process_changed_xattr(struct send_ctx *sctx) 4698 { 4699 int ret = 0; 4700 4701 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4702 __process_changed_new_xattr, sctx); 4703 if (ret < 0) 4704 goto out; 4705 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4706 __process_changed_deleted_xattr, sctx); 4707 4708 out: 4709 return ret; 4710 } 4711 4712 static int process_all_new_xattrs(struct send_ctx *sctx) 4713 { 4714 int ret; 4715 struct btrfs_root *root; 4716 struct btrfs_path *path; 4717 struct btrfs_key key; 4718 struct btrfs_key found_key; 4719 struct extent_buffer *eb; 4720 int slot; 4721 4722 path = alloc_path_for_send(); 4723 if (!path) 4724 return -ENOMEM; 4725 4726 root = sctx->send_root; 4727 4728 key.objectid = sctx->cmp_key->objectid; 4729 key.type = BTRFS_XATTR_ITEM_KEY; 4730 key.offset = 0; 4731 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4732 if (ret < 0) 4733 goto out; 4734 4735 while (1) { 4736 eb = path->nodes[0]; 4737 slot = path->slots[0]; 4738 if (slot >= btrfs_header_nritems(eb)) { 4739 ret = btrfs_next_leaf(root, path); 4740 if (ret < 0) { 4741 goto out; 4742 } else if (ret > 0) { 4743 ret = 0; 4744 break; 4745 } 4746 continue; 4747 } 4748 4749 btrfs_item_key_to_cpu(eb, &found_key, slot); 4750 if (found_key.objectid != key.objectid || 4751 found_key.type != key.type) { 4752 ret = 0; 4753 goto out; 4754 } 4755 4756 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4757 if (ret < 0) 4758 goto out; 4759 4760 path->slots[0]++; 4761 } 4762 4763 out: 4764 btrfs_free_path(path); 4765 return ret; 4766 } 4767 4768 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4769 { 4770 struct btrfs_root *root = sctx->send_root; 4771 struct btrfs_fs_info *fs_info = root->fs_info; 4772 struct inode *inode; 4773 struct page *page; 4774 char *addr; 4775 struct btrfs_key key; 4776 pgoff_t index = offset >> PAGE_SHIFT; 4777 pgoff_t last_index; 4778 unsigned pg_offset = offset & ~PAGE_MASK; 4779 ssize_t ret = 0; 4780 4781 key.objectid = sctx->cur_ino; 4782 key.type = BTRFS_INODE_ITEM_KEY; 4783 key.offset = 0; 4784 4785 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4786 if (IS_ERR(inode)) 4787 return PTR_ERR(inode); 4788 4789 if (offset + len > i_size_read(inode)) { 4790 if (offset > i_size_read(inode)) 4791 len = 0; 4792 else 4793 len = offset - i_size_read(inode); 4794 } 4795 if (len == 0) 4796 goto out; 4797 4798 last_index = (offset + len - 1) >> PAGE_SHIFT; 4799 4800 /* initial readahead */ 4801 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4802 file_ra_state_init(&sctx->ra, inode->i_mapping); 4803 4804 while (index <= last_index) { 4805 unsigned cur_len = min_t(unsigned, len, 4806 PAGE_SIZE - pg_offset); 4807 4808 page = find_lock_page(inode->i_mapping, index); 4809 if (!page) { 4810 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4811 NULL, index, last_index + 1 - index); 4812 4813 page = find_or_create_page(inode->i_mapping, index, 4814 GFP_KERNEL); 4815 if (!page) { 4816 ret = -ENOMEM; 4817 break; 4818 } 4819 } 4820 4821 if (PageReadahead(page)) { 4822 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4823 NULL, page, index, last_index + 1 - index); 4824 } 4825 4826 if (!PageUptodate(page)) { 4827 btrfs_readpage(NULL, page); 4828 lock_page(page); 4829 if (!PageUptodate(page)) { 4830 unlock_page(page); 4831 put_page(page); 4832 ret = -EIO; 4833 break; 4834 } 4835 } 4836 4837 addr = kmap(page); 4838 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4839 kunmap(page); 4840 unlock_page(page); 4841 put_page(page); 4842 index++; 4843 pg_offset = 0; 4844 len -= cur_len; 4845 ret += cur_len; 4846 } 4847 out: 4848 iput(inode); 4849 return ret; 4850 } 4851 4852 /* 4853 * Read some bytes from the current inode/file and send a write command to 4854 * user space. 4855 */ 4856 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4857 { 4858 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4859 int ret = 0; 4860 struct fs_path *p; 4861 ssize_t num_read = 0; 4862 4863 p = fs_path_alloc(); 4864 if (!p) 4865 return -ENOMEM; 4866 4867 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4868 4869 num_read = fill_read_buf(sctx, offset, len); 4870 if (num_read <= 0) { 4871 if (num_read < 0) 4872 ret = num_read; 4873 goto out; 4874 } 4875 4876 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4877 if (ret < 0) 4878 goto out; 4879 4880 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4881 if (ret < 0) 4882 goto out; 4883 4884 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4885 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4886 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4887 4888 ret = send_cmd(sctx); 4889 4890 tlv_put_failure: 4891 out: 4892 fs_path_free(p); 4893 if (ret < 0) 4894 return ret; 4895 return num_read; 4896 } 4897 4898 /* 4899 * Send a clone command to user space. 4900 */ 4901 static int send_clone(struct send_ctx *sctx, 4902 u64 offset, u32 len, 4903 struct clone_root *clone_root) 4904 { 4905 int ret = 0; 4906 struct fs_path *p; 4907 u64 gen; 4908 4909 btrfs_debug(sctx->send_root->fs_info, 4910 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4911 offset, len, clone_root->root->root_key.objectid, 4912 clone_root->ino, clone_root->offset); 4913 4914 p = fs_path_alloc(); 4915 if (!p) 4916 return -ENOMEM; 4917 4918 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4919 if (ret < 0) 4920 goto out; 4921 4922 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4923 if (ret < 0) 4924 goto out; 4925 4926 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4927 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4928 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4929 4930 if (clone_root->root == sctx->send_root) { 4931 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4932 &gen, NULL, NULL, NULL, NULL); 4933 if (ret < 0) 4934 goto out; 4935 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4936 } else { 4937 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4938 } 4939 if (ret < 0) 4940 goto out; 4941 4942 /* 4943 * If the parent we're using has a received_uuid set then use that as 4944 * our clone source as that is what we will look for when doing a 4945 * receive. 4946 * 4947 * This covers the case that we create a snapshot off of a received 4948 * subvolume and then use that as the parent and try to receive on a 4949 * different host. 4950 */ 4951 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4952 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4953 clone_root->root->root_item.received_uuid); 4954 else 4955 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4956 clone_root->root->root_item.uuid); 4957 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4958 le64_to_cpu(clone_root->root->root_item.ctransid)); 4959 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4960 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4961 clone_root->offset); 4962 4963 ret = send_cmd(sctx); 4964 4965 tlv_put_failure: 4966 out: 4967 fs_path_free(p); 4968 return ret; 4969 } 4970 4971 /* 4972 * Send an update extent command to user space. 4973 */ 4974 static int send_update_extent(struct send_ctx *sctx, 4975 u64 offset, u32 len) 4976 { 4977 int ret = 0; 4978 struct fs_path *p; 4979 4980 p = fs_path_alloc(); 4981 if (!p) 4982 return -ENOMEM; 4983 4984 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4985 if (ret < 0) 4986 goto out; 4987 4988 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4989 if (ret < 0) 4990 goto out; 4991 4992 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4993 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4994 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4995 4996 ret = send_cmd(sctx); 4997 4998 tlv_put_failure: 4999 out: 5000 fs_path_free(p); 5001 return ret; 5002 } 5003 5004 static int send_hole(struct send_ctx *sctx, u64 end) 5005 { 5006 struct fs_path *p = NULL; 5007 u64 offset = sctx->cur_inode_last_extent; 5008 u64 len; 5009 int ret = 0; 5010 5011 /* 5012 * A hole that starts at EOF or beyond it. Since we do not yet support 5013 * fallocate (for extent preallocation and hole punching), sending a 5014 * write of zeroes starting at EOF or beyond would later require issuing 5015 * a truncate operation which would undo the write and achieve nothing. 5016 */ 5017 if (offset >= sctx->cur_inode_size) 5018 return 0; 5019 5020 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5021 return send_update_extent(sctx, offset, end - offset); 5022 5023 p = fs_path_alloc(); 5024 if (!p) 5025 return -ENOMEM; 5026 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5027 if (ret < 0) 5028 goto tlv_put_failure; 5029 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 5030 while (offset < end) { 5031 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 5032 5033 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5034 if (ret < 0) 5035 break; 5036 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5037 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5038 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 5039 ret = send_cmd(sctx); 5040 if (ret < 0) 5041 break; 5042 offset += len; 5043 } 5044 sctx->cur_inode_next_write_offset = offset; 5045 tlv_put_failure: 5046 fs_path_free(p); 5047 return ret; 5048 } 5049 5050 static int send_extent_data(struct send_ctx *sctx, 5051 const u64 offset, 5052 const u64 len) 5053 { 5054 u64 sent = 0; 5055 5056 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5057 return send_update_extent(sctx, offset, len); 5058 5059 while (sent < len) { 5060 u64 size = len - sent; 5061 int ret; 5062 5063 if (size > BTRFS_SEND_READ_SIZE) 5064 size = BTRFS_SEND_READ_SIZE; 5065 ret = send_write(sctx, offset + sent, size); 5066 if (ret < 0) 5067 return ret; 5068 if (!ret) 5069 break; 5070 sent += ret; 5071 } 5072 return 0; 5073 } 5074 5075 static int clone_range(struct send_ctx *sctx, 5076 struct clone_root *clone_root, 5077 const u64 disk_byte, 5078 u64 data_offset, 5079 u64 offset, 5080 u64 len) 5081 { 5082 struct btrfs_path *path; 5083 struct btrfs_key key; 5084 int ret; 5085 5086 /* 5087 * Prevent cloning from a zero offset with a length matching the sector 5088 * size because in some scenarios this will make the receiver fail. 5089 * 5090 * For example, if in the source filesystem the extent at offset 0 5091 * has a length of sectorsize and it was written using direct IO, then 5092 * it can never be an inline extent (even if compression is enabled). 5093 * Then this extent can be cloned in the original filesystem to a non 5094 * zero file offset, but it may not be possible to clone in the 5095 * destination filesystem because it can be inlined due to compression 5096 * on the destination filesystem (as the receiver's write operations are 5097 * always done using buffered IO). The same happens when the original 5098 * filesystem does not have compression enabled but the destination 5099 * filesystem has. 5100 */ 5101 if (clone_root->offset == 0 && 5102 len == sctx->send_root->fs_info->sectorsize) 5103 return send_extent_data(sctx, offset, len); 5104 5105 path = alloc_path_for_send(); 5106 if (!path) 5107 return -ENOMEM; 5108 5109 /* 5110 * We can't send a clone operation for the entire range if we find 5111 * extent items in the respective range in the source file that 5112 * refer to different extents or if we find holes. 5113 * So check for that and do a mix of clone and regular write/copy 5114 * operations if needed. 5115 * 5116 * Example: 5117 * 5118 * mkfs.btrfs -f /dev/sda 5119 * mount /dev/sda /mnt 5120 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5121 * cp --reflink=always /mnt/foo /mnt/bar 5122 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5123 * btrfs subvolume snapshot -r /mnt /mnt/snap 5124 * 5125 * If when we send the snapshot and we are processing file bar (which 5126 * has a higher inode number than foo) we blindly send a clone operation 5127 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5128 * a file bar that matches the content of file foo - iow, doesn't match 5129 * the content from bar in the original filesystem. 5130 */ 5131 key.objectid = clone_root->ino; 5132 key.type = BTRFS_EXTENT_DATA_KEY; 5133 key.offset = clone_root->offset; 5134 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5135 if (ret < 0) 5136 goto out; 5137 if (ret > 0 && path->slots[0] > 0) { 5138 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5139 if (key.objectid == clone_root->ino && 5140 key.type == BTRFS_EXTENT_DATA_KEY) 5141 path->slots[0]--; 5142 } 5143 5144 while (true) { 5145 struct extent_buffer *leaf = path->nodes[0]; 5146 int slot = path->slots[0]; 5147 struct btrfs_file_extent_item *ei; 5148 u8 type; 5149 u64 ext_len; 5150 u64 clone_len; 5151 5152 if (slot >= btrfs_header_nritems(leaf)) { 5153 ret = btrfs_next_leaf(clone_root->root, path); 5154 if (ret < 0) 5155 goto out; 5156 else if (ret > 0) 5157 break; 5158 continue; 5159 } 5160 5161 btrfs_item_key_to_cpu(leaf, &key, slot); 5162 5163 /* 5164 * We might have an implicit trailing hole (NO_HOLES feature 5165 * enabled). We deal with it after leaving this loop. 5166 */ 5167 if (key.objectid != clone_root->ino || 5168 key.type != BTRFS_EXTENT_DATA_KEY) 5169 break; 5170 5171 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5172 type = btrfs_file_extent_type(leaf, ei); 5173 if (type == BTRFS_FILE_EXTENT_INLINE) { 5174 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5175 ext_len = PAGE_ALIGN(ext_len); 5176 } else { 5177 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5178 } 5179 5180 if (key.offset + ext_len <= clone_root->offset) 5181 goto next; 5182 5183 if (key.offset > clone_root->offset) { 5184 /* Implicit hole, NO_HOLES feature enabled. */ 5185 u64 hole_len = key.offset - clone_root->offset; 5186 5187 if (hole_len > len) 5188 hole_len = len; 5189 ret = send_extent_data(sctx, offset, hole_len); 5190 if (ret < 0) 5191 goto out; 5192 5193 len -= hole_len; 5194 if (len == 0) 5195 break; 5196 offset += hole_len; 5197 clone_root->offset += hole_len; 5198 data_offset += hole_len; 5199 } 5200 5201 if (key.offset >= clone_root->offset + len) 5202 break; 5203 5204 clone_len = min_t(u64, ext_len, len); 5205 5206 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5207 btrfs_file_extent_offset(leaf, ei) == data_offset) 5208 ret = send_clone(sctx, offset, clone_len, clone_root); 5209 else 5210 ret = send_extent_data(sctx, offset, clone_len); 5211 5212 if (ret < 0) 5213 goto out; 5214 5215 len -= clone_len; 5216 if (len == 0) 5217 break; 5218 offset += clone_len; 5219 clone_root->offset += clone_len; 5220 data_offset += clone_len; 5221 next: 5222 path->slots[0]++; 5223 } 5224 5225 if (len > 0) 5226 ret = send_extent_data(sctx, offset, len); 5227 else 5228 ret = 0; 5229 out: 5230 btrfs_free_path(path); 5231 return ret; 5232 } 5233 5234 static int send_write_or_clone(struct send_ctx *sctx, 5235 struct btrfs_path *path, 5236 struct btrfs_key *key, 5237 struct clone_root *clone_root) 5238 { 5239 int ret = 0; 5240 struct btrfs_file_extent_item *ei; 5241 u64 offset = key->offset; 5242 u64 len; 5243 u8 type; 5244 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5245 5246 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5247 struct btrfs_file_extent_item); 5248 type = btrfs_file_extent_type(path->nodes[0], ei); 5249 if (type == BTRFS_FILE_EXTENT_INLINE) { 5250 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 5251 /* 5252 * it is possible the inline item won't cover the whole page, 5253 * but there may be items after this page. Make 5254 * sure to send the whole thing 5255 */ 5256 len = PAGE_ALIGN(len); 5257 } else { 5258 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5259 } 5260 5261 if (offset >= sctx->cur_inode_size) { 5262 ret = 0; 5263 goto out; 5264 } 5265 if (offset + len > sctx->cur_inode_size) 5266 len = sctx->cur_inode_size - offset; 5267 if (len == 0) { 5268 ret = 0; 5269 goto out; 5270 } 5271 5272 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5273 u64 disk_byte; 5274 u64 data_offset; 5275 5276 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5277 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5278 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5279 offset, len); 5280 } else { 5281 ret = send_extent_data(sctx, offset, len); 5282 } 5283 sctx->cur_inode_next_write_offset = offset + len; 5284 out: 5285 return ret; 5286 } 5287 5288 static int is_extent_unchanged(struct send_ctx *sctx, 5289 struct btrfs_path *left_path, 5290 struct btrfs_key *ekey) 5291 { 5292 int ret = 0; 5293 struct btrfs_key key; 5294 struct btrfs_path *path = NULL; 5295 struct extent_buffer *eb; 5296 int slot; 5297 struct btrfs_key found_key; 5298 struct btrfs_file_extent_item *ei; 5299 u64 left_disknr; 5300 u64 right_disknr; 5301 u64 left_offset; 5302 u64 right_offset; 5303 u64 left_offset_fixed; 5304 u64 left_len; 5305 u64 right_len; 5306 u64 left_gen; 5307 u64 right_gen; 5308 u8 left_type; 5309 u8 right_type; 5310 5311 path = alloc_path_for_send(); 5312 if (!path) 5313 return -ENOMEM; 5314 5315 eb = left_path->nodes[0]; 5316 slot = left_path->slots[0]; 5317 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5318 left_type = btrfs_file_extent_type(eb, ei); 5319 5320 if (left_type != BTRFS_FILE_EXTENT_REG) { 5321 ret = 0; 5322 goto out; 5323 } 5324 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5325 left_len = btrfs_file_extent_num_bytes(eb, ei); 5326 left_offset = btrfs_file_extent_offset(eb, ei); 5327 left_gen = btrfs_file_extent_generation(eb, ei); 5328 5329 /* 5330 * Following comments will refer to these graphics. L is the left 5331 * extents which we are checking at the moment. 1-8 are the right 5332 * extents that we iterate. 5333 * 5334 * |-----L-----| 5335 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5336 * 5337 * |-----L-----| 5338 * |--1--|-2b-|...(same as above) 5339 * 5340 * Alternative situation. Happens on files where extents got split. 5341 * |-----L-----| 5342 * |-----------7-----------|-6-| 5343 * 5344 * Alternative situation. Happens on files which got larger. 5345 * |-----L-----| 5346 * |-8-| 5347 * Nothing follows after 8. 5348 */ 5349 5350 key.objectid = ekey->objectid; 5351 key.type = BTRFS_EXTENT_DATA_KEY; 5352 key.offset = ekey->offset; 5353 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5354 if (ret < 0) 5355 goto out; 5356 if (ret) { 5357 ret = 0; 5358 goto out; 5359 } 5360 5361 /* 5362 * Handle special case where the right side has no extents at all. 5363 */ 5364 eb = path->nodes[0]; 5365 slot = path->slots[0]; 5366 btrfs_item_key_to_cpu(eb, &found_key, slot); 5367 if (found_key.objectid != key.objectid || 5368 found_key.type != key.type) { 5369 /* If we're a hole then just pretend nothing changed */ 5370 ret = (left_disknr) ? 0 : 1; 5371 goto out; 5372 } 5373 5374 /* 5375 * We're now on 2a, 2b or 7. 5376 */ 5377 key = found_key; 5378 while (key.offset < ekey->offset + left_len) { 5379 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5380 right_type = btrfs_file_extent_type(eb, ei); 5381 if (right_type != BTRFS_FILE_EXTENT_REG && 5382 right_type != BTRFS_FILE_EXTENT_INLINE) { 5383 ret = 0; 5384 goto out; 5385 } 5386 5387 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5388 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5389 right_len = PAGE_ALIGN(right_len); 5390 } else { 5391 right_len = btrfs_file_extent_num_bytes(eb, ei); 5392 } 5393 5394 /* 5395 * Are we at extent 8? If yes, we know the extent is changed. 5396 * This may only happen on the first iteration. 5397 */ 5398 if (found_key.offset + right_len <= ekey->offset) { 5399 /* If we're a hole just pretend nothing changed */ 5400 ret = (left_disknr) ? 0 : 1; 5401 goto out; 5402 } 5403 5404 /* 5405 * We just wanted to see if when we have an inline extent, what 5406 * follows it is a regular extent (wanted to check the above 5407 * condition for inline extents too). This should normally not 5408 * happen but it's possible for example when we have an inline 5409 * compressed extent representing data with a size matching 5410 * the page size (currently the same as sector size). 5411 */ 5412 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5413 ret = 0; 5414 goto out; 5415 } 5416 5417 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5418 right_offset = btrfs_file_extent_offset(eb, ei); 5419 right_gen = btrfs_file_extent_generation(eb, ei); 5420 5421 left_offset_fixed = left_offset; 5422 if (key.offset < ekey->offset) { 5423 /* Fix the right offset for 2a and 7. */ 5424 right_offset += ekey->offset - key.offset; 5425 } else { 5426 /* Fix the left offset for all behind 2a and 2b */ 5427 left_offset_fixed += key.offset - ekey->offset; 5428 } 5429 5430 /* 5431 * Check if we have the same extent. 5432 */ 5433 if (left_disknr != right_disknr || 5434 left_offset_fixed != right_offset || 5435 left_gen != right_gen) { 5436 ret = 0; 5437 goto out; 5438 } 5439 5440 /* 5441 * Go to the next extent. 5442 */ 5443 ret = btrfs_next_item(sctx->parent_root, path); 5444 if (ret < 0) 5445 goto out; 5446 if (!ret) { 5447 eb = path->nodes[0]; 5448 slot = path->slots[0]; 5449 btrfs_item_key_to_cpu(eb, &found_key, slot); 5450 } 5451 if (ret || found_key.objectid != key.objectid || 5452 found_key.type != key.type) { 5453 key.offset += right_len; 5454 break; 5455 } 5456 if (found_key.offset != key.offset + right_len) { 5457 ret = 0; 5458 goto out; 5459 } 5460 key = found_key; 5461 } 5462 5463 /* 5464 * We're now behind the left extent (treat as unchanged) or at the end 5465 * of the right side (treat as changed). 5466 */ 5467 if (key.offset >= ekey->offset + left_len) 5468 ret = 1; 5469 else 5470 ret = 0; 5471 5472 5473 out: 5474 btrfs_free_path(path); 5475 return ret; 5476 } 5477 5478 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5479 { 5480 struct btrfs_path *path; 5481 struct btrfs_root *root = sctx->send_root; 5482 struct btrfs_file_extent_item *fi; 5483 struct btrfs_key key; 5484 u64 extent_end; 5485 u8 type; 5486 int ret; 5487 5488 path = alloc_path_for_send(); 5489 if (!path) 5490 return -ENOMEM; 5491 5492 sctx->cur_inode_last_extent = 0; 5493 5494 key.objectid = sctx->cur_ino; 5495 key.type = BTRFS_EXTENT_DATA_KEY; 5496 key.offset = offset; 5497 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5498 if (ret < 0) 5499 goto out; 5500 ret = 0; 5501 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5502 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5503 goto out; 5504 5505 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5506 struct btrfs_file_extent_item); 5507 type = btrfs_file_extent_type(path->nodes[0], fi); 5508 if (type == BTRFS_FILE_EXTENT_INLINE) { 5509 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi); 5510 extent_end = ALIGN(key.offset + size, 5511 sctx->send_root->fs_info->sectorsize); 5512 } else { 5513 extent_end = key.offset + 5514 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5515 } 5516 sctx->cur_inode_last_extent = extent_end; 5517 out: 5518 btrfs_free_path(path); 5519 return ret; 5520 } 5521 5522 static int range_is_hole_in_parent(struct send_ctx *sctx, 5523 const u64 start, 5524 const u64 end) 5525 { 5526 struct btrfs_path *path; 5527 struct btrfs_key key; 5528 struct btrfs_root *root = sctx->parent_root; 5529 u64 search_start = start; 5530 int ret; 5531 5532 path = alloc_path_for_send(); 5533 if (!path) 5534 return -ENOMEM; 5535 5536 key.objectid = sctx->cur_ino; 5537 key.type = BTRFS_EXTENT_DATA_KEY; 5538 key.offset = search_start; 5539 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5540 if (ret < 0) 5541 goto out; 5542 if (ret > 0 && path->slots[0] > 0) 5543 path->slots[0]--; 5544 5545 while (search_start < end) { 5546 struct extent_buffer *leaf = path->nodes[0]; 5547 int slot = path->slots[0]; 5548 struct btrfs_file_extent_item *fi; 5549 u64 extent_end; 5550 5551 if (slot >= btrfs_header_nritems(leaf)) { 5552 ret = btrfs_next_leaf(root, path); 5553 if (ret < 0) 5554 goto out; 5555 else if (ret > 0) 5556 break; 5557 continue; 5558 } 5559 5560 btrfs_item_key_to_cpu(leaf, &key, slot); 5561 if (key.objectid < sctx->cur_ino || 5562 key.type < BTRFS_EXTENT_DATA_KEY) 5563 goto next; 5564 if (key.objectid > sctx->cur_ino || 5565 key.type > BTRFS_EXTENT_DATA_KEY || 5566 key.offset >= end) 5567 break; 5568 5569 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5570 if (btrfs_file_extent_type(leaf, fi) == 5571 BTRFS_FILE_EXTENT_INLINE) { 5572 u64 size = btrfs_file_extent_ram_bytes(leaf, fi); 5573 5574 extent_end = ALIGN(key.offset + size, 5575 root->fs_info->sectorsize); 5576 } else { 5577 extent_end = key.offset + 5578 btrfs_file_extent_num_bytes(leaf, fi); 5579 } 5580 if (extent_end <= start) 5581 goto next; 5582 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5583 search_start = extent_end; 5584 goto next; 5585 } 5586 ret = 0; 5587 goto out; 5588 next: 5589 path->slots[0]++; 5590 } 5591 ret = 1; 5592 out: 5593 btrfs_free_path(path); 5594 return ret; 5595 } 5596 5597 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5598 struct btrfs_key *key) 5599 { 5600 struct btrfs_file_extent_item *fi; 5601 u64 extent_end; 5602 u8 type; 5603 int ret = 0; 5604 5605 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5606 return 0; 5607 5608 if (sctx->cur_inode_last_extent == (u64)-1) { 5609 ret = get_last_extent(sctx, key->offset - 1); 5610 if (ret) 5611 return ret; 5612 } 5613 5614 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5615 struct btrfs_file_extent_item); 5616 type = btrfs_file_extent_type(path->nodes[0], fi); 5617 if (type == BTRFS_FILE_EXTENT_INLINE) { 5618 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi); 5619 extent_end = ALIGN(key->offset + size, 5620 sctx->send_root->fs_info->sectorsize); 5621 } else { 5622 extent_end = key->offset + 5623 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5624 } 5625 5626 if (path->slots[0] == 0 && 5627 sctx->cur_inode_last_extent < key->offset) { 5628 /* 5629 * We might have skipped entire leafs that contained only 5630 * file extent items for our current inode. These leafs have 5631 * a generation number smaller (older) than the one in the 5632 * current leaf and the leaf our last extent came from, and 5633 * are located between these 2 leafs. 5634 */ 5635 ret = get_last_extent(sctx, key->offset - 1); 5636 if (ret) 5637 return ret; 5638 } 5639 5640 if (sctx->cur_inode_last_extent < key->offset) { 5641 ret = range_is_hole_in_parent(sctx, 5642 sctx->cur_inode_last_extent, 5643 key->offset); 5644 if (ret < 0) 5645 return ret; 5646 else if (ret == 0) 5647 ret = send_hole(sctx, key->offset); 5648 else 5649 ret = 0; 5650 } 5651 sctx->cur_inode_last_extent = extent_end; 5652 return ret; 5653 } 5654 5655 static int process_extent(struct send_ctx *sctx, 5656 struct btrfs_path *path, 5657 struct btrfs_key *key) 5658 { 5659 struct clone_root *found_clone = NULL; 5660 int ret = 0; 5661 5662 if (S_ISLNK(sctx->cur_inode_mode)) 5663 return 0; 5664 5665 if (sctx->parent_root && !sctx->cur_inode_new) { 5666 ret = is_extent_unchanged(sctx, path, key); 5667 if (ret < 0) 5668 goto out; 5669 if (ret) { 5670 ret = 0; 5671 goto out_hole; 5672 } 5673 } else { 5674 struct btrfs_file_extent_item *ei; 5675 u8 type; 5676 5677 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5678 struct btrfs_file_extent_item); 5679 type = btrfs_file_extent_type(path->nodes[0], ei); 5680 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5681 type == BTRFS_FILE_EXTENT_REG) { 5682 /* 5683 * The send spec does not have a prealloc command yet, 5684 * so just leave a hole for prealloc'ed extents until 5685 * we have enough commands queued up to justify rev'ing 5686 * the send spec. 5687 */ 5688 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5689 ret = 0; 5690 goto out; 5691 } 5692 5693 /* Have a hole, just skip it. */ 5694 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5695 ret = 0; 5696 goto out; 5697 } 5698 } 5699 } 5700 5701 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5702 sctx->cur_inode_size, &found_clone); 5703 if (ret != -ENOENT && ret < 0) 5704 goto out; 5705 5706 ret = send_write_or_clone(sctx, path, key, found_clone); 5707 if (ret) 5708 goto out; 5709 out_hole: 5710 ret = maybe_send_hole(sctx, path, key); 5711 out: 5712 return ret; 5713 } 5714 5715 static int process_all_extents(struct send_ctx *sctx) 5716 { 5717 int ret; 5718 struct btrfs_root *root; 5719 struct btrfs_path *path; 5720 struct btrfs_key key; 5721 struct btrfs_key found_key; 5722 struct extent_buffer *eb; 5723 int slot; 5724 5725 root = sctx->send_root; 5726 path = alloc_path_for_send(); 5727 if (!path) 5728 return -ENOMEM; 5729 5730 key.objectid = sctx->cmp_key->objectid; 5731 key.type = BTRFS_EXTENT_DATA_KEY; 5732 key.offset = 0; 5733 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5734 if (ret < 0) 5735 goto out; 5736 5737 while (1) { 5738 eb = path->nodes[0]; 5739 slot = path->slots[0]; 5740 5741 if (slot >= btrfs_header_nritems(eb)) { 5742 ret = btrfs_next_leaf(root, path); 5743 if (ret < 0) { 5744 goto out; 5745 } else if (ret > 0) { 5746 ret = 0; 5747 break; 5748 } 5749 continue; 5750 } 5751 5752 btrfs_item_key_to_cpu(eb, &found_key, slot); 5753 5754 if (found_key.objectid != key.objectid || 5755 found_key.type != key.type) { 5756 ret = 0; 5757 goto out; 5758 } 5759 5760 ret = process_extent(sctx, path, &found_key); 5761 if (ret < 0) 5762 goto out; 5763 5764 path->slots[0]++; 5765 } 5766 5767 out: 5768 btrfs_free_path(path); 5769 return ret; 5770 } 5771 5772 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5773 int *pending_move, 5774 int *refs_processed) 5775 { 5776 int ret = 0; 5777 5778 if (sctx->cur_ino == 0) 5779 goto out; 5780 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5781 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5782 goto out; 5783 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5784 goto out; 5785 5786 ret = process_recorded_refs(sctx, pending_move); 5787 if (ret < 0) 5788 goto out; 5789 5790 *refs_processed = 1; 5791 out: 5792 return ret; 5793 } 5794 5795 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5796 { 5797 int ret = 0; 5798 u64 left_mode; 5799 u64 left_uid; 5800 u64 left_gid; 5801 u64 right_mode; 5802 u64 right_uid; 5803 u64 right_gid; 5804 int need_chmod = 0; 5805 int need_chown = 0; 5806 int need_truncate = 1; 5807 int pending_move = 0; 5808 int refs_processed = 0; 5809 5810 if (sctx->ignore_cur_inode) 5811 return 0; 5812 5813 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5814 &refs_processed); 5815 if (ret < 0) 5816 goto out; 5817 5818 /* 5819 * We have processed the refs and thus need to advance send_progress. 5820 * Now, calls to get_cur_xxx will take the updated refs of the current 5821 * inode into account. 5822 * 5823 * On the other hand, if our current inode is a directory and couldn't 5824 * be moved/renamed because its parent was renamed/moved too and it has 5825 * a higher inode number, we can only move/rename our current inode 5826 * after we moved/renamed its parent. Therefore in this case operate on 5827 * the old path (pre move/rename) of our current inode, and the 5828 * move/rename will be performed later. 5829 */ 5830 if (refs_processed && !pending_move) 5831 sctx->send_progress = sctx->cur_ino + 1; 5832 5833 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5834 goto out; 5835 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5836 goto out; 5837 5838 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5839 &left_mode, &left_uid, &left_gid, NULL); 5840 if (ret < 0) 5841 goto out; 5842 5843 if (!sctx->parent_root || sctx->cur_inode_new) { 5844 need_chown = 1; 5845 if (!S_ISLNK(sctx->cur_inode_mode)) 5846 need_chmod = 1; 5847 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 5848 need_truncate = 0; 5849 } else { 5850 u64 old_size; 5851 5852 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5853 &old_size, NULL, &right_mode, &right_uid, 5854 &right_gid, NULL); 5855 if (ret < 0) 5856 goto out; 5857 5858 if (left_uid != right_uid || left_gid != right_gid) 5859 need_chown = 1; 5860 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5861 need_chmod = 1; 5862 if ((old_size == sctx->cur_inode_size) || 5863 (sctx->cur_inode_size > old_size && 5864 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 5865 need_truncate = 0; 5866 } 5867 5868 if (S_ISREG(sctx->cur_inode_mode)) { 5869 if (need_send_hole(sctx)) { 5870 if (sctx->cur_inode_last_extent == (u64)-1 || 5871 sctx->cur_inode_last_extent < 5872 sctx->cur_inode_size) { 5873 ret = get_last_extent(sctx, (u64)-1); 5874 if (ret) 5875 goto out; 5876 } 5877 if (sctx->cur_inode_last_extent < 5878 sctx->cur_inode_size) { 5879 ret = send_hole(sctx, sctx->cur_inode_size); 5880 if (ret) 5881 goto out; 5882 } 5883 } 5884 if (need_truncate) { 5885 ret = send_truncate(sctx, sctx->cur_ino, 5886 sctx->cur_inode_gen, 5887 sctx->cur_inode_size); 5888 if (ret < 0) 5889 goto out; 5890 } 5891 } 5892 5893 if (need_chown) { 5894 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5895 left_uid, left_gid); 5896 if (ret < 0) 5897 goto out; 5898 } 5899 if (need_chmod) { 5900 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5901 left_mode); 5902 if (ret < 0) 5903 goto out; 5904 } 5905 5906 /* 5907 * If other directory inodes depended on our current directory 5908 * inode's move/rename, now do their move/rename operations. 5909 */ 5910 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5911 ret = apply_children_dir_moves(sctx); 5912 if (ret) 5913 goto out; 5914 /* 5915 * Need to send that every time, no matter if it actually 5916 * changed between the two trees as we have done changes to 5917 * the inode before. If our inode is a directory and it's 5918 * waiting to be moved/renamed, we will send its utimes when 5919 * it's moved/renamed, therefore we don't need to do it here. 5920 */ 5921 sctx->send_progress = sctx->cur_ino + 1; 5922 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5923 if (ret < 0) 5924 goto out; 5925 } 5926 5927 out: 5928 return ret; 5929 } 5930 5931 struct parent_paths_ctx { 5932 struct list_head *refs; 5933 struct send_ctx *sctx; 5934 }; 5935 5936 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 5937 void *ctx) 5938 { 5939 struct parent_paths_ctx *ppctx = ctx; 5940 5941 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 5942 ppctx->refs); 5943 } 5944 5945 /* 5946 * Issue unlink operations for all paths of the current inode found in the 5947 * parent snapshot. 5948 */ 5949 static int btrfs_unlink_all_paths(struct send_ctx *sctx) 5950 { 5951 LIST_HEAD(deleted_refs); 5952 struct btrfs_path *path; 5953 struct btrfs_key key; 5954 struct parent_paths_ctx ctx; 5955 int ret; 5956 5957 path = alloc_path_for_send(); 5958 if (!path) 5959 return -ENOMEM; 5960 5961 key.objectid = sctx->cur_ino; 5962 key.type = BTRFS_INODE_REF_KEY; 5963 key.offset = 0; 5964 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 5965 if (ret < 0) 5966 goto out; 5967 5968 ctx.refs = &deleted_refs; 5969 ctx.sctx = sctx; 5970 5971 while (true) { 5972 struct extent_buffer *eb = path->nodes[0]; 5973 int slot = path->slots[0]; 5974 5975 if (slot >= btrfs_header_nritems(eb)) { 5976 ret = btrfs_next_leaf(sctx->parent_root, path); 5977 if (ret < 0) 5978 goto out; 5979 else if (ret > 0) 5980 break; 5981 continue; 5982 } 5983 5984 btrfs_item_key_to_cpu(eb, &key, slot); 5985 if (key.objectid != sctx->cur_ino) 5986 break; 5987 if (key.type != BTRFS_INODE_REF_KEY && 5988 key.type != BTRFS_INODE_EXTREF_KEY) 5989 break; 5990 5991 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, 5992 record_parent_ref, &ctx); 5993 if (ret < 0) 5994 goto out; 5995 5996 path->slots[0]++; 5997 } 5998 5999 while (!list_empty(&deleted_refs)) { 6000 struct recorded_ref *ref; 6001 6002 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6003 ret = send_unlink(sctx, ref->full_path); 6004 if (ret < 0) 6005 goto out; 6006 fs_path_free(ref->full_path); 6007 list_del(&ref->list); 6008 kfree(ref); 6009 } 6010 ret = 0; 6011 out: 6012 btrfs_free_path(path); 6013 if (ret) 6014 __free_recorded_refs(&deleted_refs); 6015 return ret; 6016 } 6017 6018 static int changed_inode(struct send_ctx *sctx, 6019 enum btrfs_compare_tree_result result) 6020 { 6021 int ret = 0; 6022 struct btrfs_key *key = sctx->cmp_key; 6023 struct btrfs_inode_item *left_ii = NULL; 6024 struct btrfs_inode_item *right_ii = NULL; 6025 u64 left_gen = 0; 6026 u64 right_gen = 0; 6027 6028 sctx->cur_ino = key->objectid; 6029 sctx->cur_inode_new_gen = 0; 6030 sctx->cur_inode_last_extent = (u64)-1; 6031 sctx->cur_inode_next_write_offset = 0; 6032 sctx->ignore_cur_inode = false; 6033 6034 /* 6035 * Set send_progress to current inode. This will tell all get_cur_xxx 6036 * functions that the current inode's refs are not updated yet. Later, 6037 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6038 */ 6039 sctx->send_progress = sctx->cur_ino; 6040 6041 if (result == BTRFS_COMPARE_TREE_NEW || 6042 result == BTRFS_COMPARE_TREE_CHANGED) { 6043 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6044 sctx->left_path->slots[0], 6045 struct btrfs_inode_item); 6046 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6047 left_ii); 6048 } else { 6049 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6050 sctx->right_path->slots[0], 6051 struct btrfs_inode_item); 6052 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6053 right_ii); 6054 } 6055 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6056 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6057 sctx->right_path->slots[0], 6058 struct btrfs_inode_item); 6059 6060 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6061 right_ii); 6062 6063 /* 6064 * The cur_ino = root dir case is special here. We can't treat 6065 * the inode as deleted+reused because it would generate a 6066 * stream that tries to delete/mkdir the root dir. 6067 */ 6068 if (left_gen != right_gen && 6069 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6070 sctx->cur_inode_new_gen = 1; 6071 } 6072 6073 /* 6074 * Normally we do not find inodes with a link count of zero (orphans) 6075 * because the most common case is to create a snapshot and use it 6076 * for a send operation. However other less common use cases involve 6077 * using a subvolume and send it after turning it to RO mode just 6078 * after deleting all hard links of a file while holding an open 6079 * file descriptor against it or turning a RO snapshot into RW mode, 6080 * keep an open file descriptor against a file, delete it and then 6081 * turn the snapshot back to RO mode before using it for a send 6082 * operation. So if we find such cases, ignore the inode and all its 6083 * items completely if it's a new inode, or if it's a changed inode 6084 * make sure all its previous paths (from the parent snapshot) are all 6085 * unlinked and all other the inode items are ignored. 6086 */ 6087 if (result == BTRFS_COMPARE_TREE_NEW || 6088 result == BTRFS_COMPARE_TREE_CHANGED) { 6089 u32 nlinks; 6090 6091 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6092 if (nlinks == 0) { 6093 sctx->ignore_cur_inode = true; 6094 if (result == BTRFS_COMPARE_TREE_CHANGED) 6095 ret = btrfs_unlink_all_paths(sctx); 6096 goto out; 6097 } 6098 } 6099 6100 if (result == BTRFS_COMPARE_TREE_NEW) { 6101 sctx->cur_inode_gen = left_gen; 6102 sctx->cur_inode_new = 1; 6103 sctx->cur_inode_deleted = 0; 6104 sctx->cur_inode_size = btrfs_inode_size( 6105 sctx->left_path->nodes[0], left_ii); 6106 sctx->cur_inode_mode = btrfs_inode_mode( 6107 sctx->left_path->nodes[0], left_ii); 6108 sctx->cur_inode_rdev = btrfs_inode_rdev( 6109 sctx->left_path->nodes[0], left_ii); 6110 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6111 ret = send_create_inode_if_needed(sctx); 6112 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6113 sctx->cur_inode_gen = right_gen; 6114 sctx->cur_inode_new = 0; 6115 sctx->cur_inode_deleted = 1; 6116 sctx->cur_inode_size = btrfs_inode_size( 6117 sctx->right_path->nodes[0], right_ii); 6118 sctx->cur_inode_mode = btrfs_inode_mode( 6119 sctx->right_path->nodes[0], right_ii); 6120 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6121 /* 6122 * We need to do some special handling in case the inode was 6123 * reported as changed with a changed generation number. This 6124 * means that the original inode was deleted and new inode 6125 * reused the same inum. So we have to treat the old inode as 6126 * deleted and the new one as new. 6127 */ 6128 if (sctx->cur_inode_new_gen) { 6129 /* 6130 * First, process the inode as if it was deleted. 6131 */ 6132 sctx->cur_inode_gen = right_gen; 6133 sctx->cur_inode_new = 0; 6134 sctx->cur_inode_deleted = 1; 6135 sctx->cur_inode_size = btrfs_inode_size( 6136 sctx->right_path->nodes[0], right_ii); 6137 sctx->cur_inode_mode = btrfs_inode_mode( 6138 sctx->right_path->nodes[0], right_ii); 6139 ret = process_all_refs(sctx, 6140 BTRFS_COMPARE_TREE_DELETED); 6141 if (ret < 0) 6142 goto out; 6143 6144 /* 6145 * Now process the inode as if it was new. 6146 */ 6147 sctx->cur_inode_gen = left_gen; 6148 sctx->cur_inode_new = 1; 6149 sctx->cur_inode_deleted = 0; 6150 sctx->cur_inode_size = btrfs_inode_size( 6151 sctx->left_path->nodes[0], left_ii); 6152 sctx->cur_inode_mode = btrfs_inode_mode( 6153 sctx->left_path->nodes[0], left_ii); 6154 sctx->cur_inode_rdev = btrfs_inode_rdev( 6155 sctx->left_path->nodes[0], left_ii); 6156 ret = send_create_inode_if_needed(sctx); 6157 if (ret < 0) 6158 goto out; 6159 6160 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6161 if (ret < 0) 6162 goto out; 6163 /* 6164 * Advance send_progress now as we did not get into 6165 * process_recorded_refs_if_needed in the new_gen case. 6166 */ 6167 sctx->send_progress = sctx->cur_ino + 1; 6168 6169 /* 6170 * Now process all extents and xattrs of the inode as if 6171 * they were all new. 6172 */ 6173 ret = process_all_extents(sctx); 6174 if (ret < 0) 6175 goto out; 6176 ret = process_all_new_xattrs(sctx); 6177 if (ret < 0) 6178 goto out; 6179 } else { 6180 sctx->cur_inode_gen = left_gen; 6181 sctx->cur_inode_new = 0; 6182 sctx->cur_inode_new_gen = 0; 6183 sctx->cur_inode_deleted = 0; 6184 sctx->cur_inode_size = btrfs_inode_size( 6185 sctx->left_path->nodes[0], left_ii); 6186 sctx->cur_inode_mode = btrfs_inode_mode( 6187 sctx->left_path->nodes[0], left_ii); 6188 } 6189 } 6190 6191 out: 6192 return ret; 6193 } 6194 6195 /* 6196 * We have to process new refs before deleted refs, but compare_trees gives us 6197 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6198 * first and later process them in process_recorded_refs. 6199 * For the cur_inode_new_gen case, we skip recording completely because 6200 * changed_inode did already initiate processing of refs. The reason for this is 6201 * that in this case, compare_tree actually compares the refs of 2 different 6202 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6203 * refs of the right tree as deleted and all refs of the left tree as new. 6204 */ 6205 static int changed_ref(struct send_ctx *sctx, 6206 enum btrfs_compare_tree_result result) 6207 { 6208 int ret = 0; 6209 6210 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6211 inconsistent_snapshot_error(sctx, result, "reference"); 6212 return -EIO; 6213 } 6214 6215 if (!sctx->cur_inode_new_gen && 6216 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6217 if (result == BTRFS_COMPARE_TREE_NEW) 6218 ret = record_new_ref(sctx); 6219 else if (result == BTRFS_COMPARE_TREE_DELETED) 6220 ret = record_deleted_ref(sctx); 6221 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6222 ret = record_changed_ref(sctx); 6223 } 6224 6225 return ret; 6226 } 6227 6228 /* 6229 * Process new/deleted/changed xattrs. We skip processing in the 6230 * cur_inode_new_gen case because changed_inode did already initiate processing 6231 * of xattrs. The reason is the same as in changed_ref 6232 */ 6233 static int changed_xattr(struct send_ctx *sctx, 6234 enum btrfs_compare_tree_result result) 6235 { 6236 int ret = 0; 6237 6238 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6239 inconsistent_snapshot_error(sctx, result, "xattr"); 6240 return -EIO; 6241 } 6242 6243 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6244 if (result == BTRFS_COMPARE_TREE_NEW) 6245 ret = process_new_xattr(sctx); 6246 else if (result == BTRFS_COMPARE_TREE_DELETED) 6247 ret = process_deleted_xattr(sctx); 6248 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6249 ret = process_changed_xattr(sctx); 6250 } 6251 6252 return ret; 6253 } 6254 6255 /* 6256 * Process new/deleted/changed extents. We skip processing in the 6257 * cur_inode_new_gen case because changed_inode did already initiate processing 6258 * of extents. The reason is the same as in changed_ref 6259 */ 6260 static int changed_extent(struct send_ctx *sctx, 6261 enum btrfs_compare_tree_result result) 6262 { 6263 int ret = 0; 6264 6265 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6266 6267 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6268 struct extent_buffer *leaf_l; 6269 struct extent_buffer *leaf_r; 6270 struct btrfs_file_extent_item *ei_l; 6271 struct btrfs_file_extent_item *ei_r; 6272 6273 leaf_l = sctx->left_path->nodes[0]; 6274 leaf_r = sctx->right_path->nodes[0]; 6275 ei_l = btrfs_item_ptr(leaf_l, 6276 sctx->left_path->slots[0], 6277 struct btrfs_file_extent_item); 6278 ei_r = btrfs_item_ptr(leaf_r, 6279 sctx->right_path->slots[0], 6280 struct btrfs_file_extent_item); 6281 6282 /* 6283 * We may have found an extent item that has changed 6284 * only its disk_bytenr field and the corresponding 6285 * inode item was not updated. This case happens due to 6286 * very specific timings during relocation when a leaf 6287 * that contains file extent items is COWed while 6288 * relocation is ongoing and its in the stage where it 6289 * updates data pointers. So when this happens we can 6290 * safely ignore it since we know it's the same extent, 6291 * but just at different logical and physical locations 6292 * (when an extent is fully replaced with a new one, we 6293 * know the generation number must have changed too, 6294 * since snapshot creation implies committing the current 6295 * transaction, and the inode item must have been updated 6296 * as well). 6297 * This replacement of the disk_bytenr happens at 6298 * relocation.c:replace_file_extents() through 6299 * relocation.c:btrfs_reloc_cow_block(). 6300 */ 6301 if (btrfs_file_extent_generation(leaf_l, ei_l) == 6302 btrfs_file_extent_generation(leaf_r, ei_r) && 6303 btrfs_file_extent_ram_bytes(leaf_l, ei_l) == 6304 btrfs_file_extent_ram_bytes(leaf_r, ei_r) && 6305 btrfs_file_extent_compression(leaf_l, ei_l) == 6306 btrfs_file_extent_compression(leaf_r, ei_r) && 6307 btrfs_file_extent_encryption(leaf_l, ei_l) == 6308 btrfs_file_extent_encryption(leaf_r, ei_r) && 6309 btrfs_file_extent_other_encoding(leaf_l, ei_l) == 6310 btrfs_file_extent_other_encoding(leaf_r, ei_r) && 6311 btrfs_file_extent_type(leaf_l, ei_l) == 6312 btrfs_file_extent_type(leaf_r, ei_r) && 6313 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) != 6314 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) && 6315 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) == 6316 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) && 6317 btrfs_file_extent_offset(leaf_l, ei_l) == 6318 btrfs_file_extent_offset(leaf_r, ei_r) && 6319 btrfs_file_extent_num_bytes(leaf_l, ei_l) == 6320 btrfs_file_extent_num_bytes(leaf_r, ei_r)) 6321 return 0; 6322 } 6323 6324 inconsistent_snapshot_error(sctx, result, "extent"); 6325 return -EIO; 6326 } 6327 6328 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6329 if (result != BTRFS_COMPARE_TREE_DELETED) 6330 ret = process_extent(sctx, sctx->left_path, 6331 sctx->cmp_key); 6332 } 6333 6334 return ret; 6335 } 6336 6337 static int dir_changed(struct send_ctx *sctx, u64 dir) 6338 { 6339 u64 orig_gen, new_gen; 6340 int ret; 6341 6342 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6343 NULL, NULL); 6344 if (ret) 6345 return ret; 6346 6347 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6348 NULL, NULL, NULL); 6349 if (ret) 6350 return ret; 6351 6352 return (orig_gen != new_gen) ? 1 : 0; 6353 } 6354 6355 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6356 struct btrfs_key *key) 6357 { 6358 struct btrfs_inode_extref *extref; 6359 struct extent_buffer *leaf; 6360 u64 dirid = 0, last_dirid = 0; 6361 unsigned long ptr; 6362 u32 item_size; 6363 u32 cur_offset = 0; 6364 int ref_name_len; 6365 int ret = 0; 6366 6367 /* Easy case, just check this one dirid */ 6368 if (key->type == BTRFS_INODE_REF_KEY) { 6369 dirid = key->offset; 6370 6371 ret = dir_changed(sctx, dirid); 6372 goto out; 6373 } 6374 6375 leaf = path->nodes[0]; 6376 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6377 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6378 while (cur_offset < item_size) { 6379 extref = (struct btrfs_inode_extref *)(ptr + 6380 cur_offset); 6381 dirid = btrfs_inode_extref_parent(leaf, extref); 6382 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6383 cur_offset += ref_name_len + sizeof(*extref); 6384 if (dirid == last_dirid) 6385 continue; 6386 ret = dir_changed(sctx, dirid); 6387 if (ret) 6388 break; 6389 last_dirid = dirid; 6390 } 6391 out: 6392 return ret; 6393 } 6394 6395 /* 6396 * Updates compare related fields in sctx and simply forwards to the actual 6397 * changed_xxx functions. 6398 */ 6399 static int changed_cb(struct btrfs_path *left_path, 6400 struct btrfs_path *right_path, 6401 struct btrfs_key *key, 6402 enum btrfs_compare_tree_result result, 6403 void *ctx) 6404 { 6405 int ret = 0; 6406 struct send_ctx *sctx = ctx; 6407 6408 if (result == BTRFS_COMPARE_TREE_SAME) { 6409 if (key->type == BTRFS_INODE_REF_KEY || 6410 key->type == BTRFS_INODE_EXTREF_KEY) { 6411 ret = compare_refs(sctx, left_path, key); 6412 if (!ret) 6413 return 0; 6414 if (ret < 0) 6415 return ret; 6416 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6417 return maybe_send_hole(sctx, left_path, key); 6418 } else { 6419 return 0; 6420 } 6421 result = BTRFS_COMPARE_TREE_CHANGED; 6422 ret = 0; 6423 } 6424 6425 sctx->left_path = left_path; 6426 sctx->right_path = right_path; 6427 sctx->cmp_key = key; 6428 6429 ret = finish_inode_if_needed(sctx, 0); 6430 if (ret < 0) 6431 goto out; 6432 6433 /* Ignore non-FS objects */ 6434 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6435 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6436 goto out; 6437 6438 if (key->type == BTRFS_INODE_ITEM_KEY) { 6439 ret = changed_inode(sctx, result); 6440 } else if (!sctx->ignore_cur_inode) { 6441 if (key->type == BTRFS_INODE_REF_KEY || 6442 key->type == BTRFS_INODE_EXTREF_KEY) 6443 ret = changed_ref(sctx, result); 6444 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6445 ret = changed_xattr(sctx, result); 6446 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6447 ret = changed_extent(sctx, result); 6448 } 6449 6450 out: 6451 return ret; 6452 } 6453 6454 static int full_send_tree(struct send_ctx *sctx) 6455 { 6456 int ret; 6457 struct btrfs_root *send_root = sctx->send_root; 6458 struct btrfs_key key; 6459 struct btrfs_path *path; 6460 struct extent_buffer *eb; 6461 int slot; 6462 6463 path = alloc_path_for_send(); 6464 if (!path) 6465 return -ENOMEM; 6466 6467 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6468 key.type = BTRFS_INODE_ITEM_KEY; 6469 key.offset = 0; 6470 6471 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6472 if (ret < 0) 6473 goto out; 6474 if (ret) 6475 goto out_finish; 6476 6477 while (1) { 6478 eb = path->nodes[0]; 6479 slot = path->slots[0]; 6480 btrfs_item_key_to_cpu(eb, &key, slot); 6481 6482 ret = changed_cb(path, NULL, &key, 6483 BTRFS_COMPARE_TREE_NEW, sctx); 6484 if (ret < 0) 6485 goto out; 6486 6487 ret = btrfs_next_item(send_root, path); 6488 if (ret < 0) 6489 goto out; 6490 if (ret) { 6491 ret = 0; 6492 break; 6493 } 6494 } 6495 6496 out_finish: 6497 ret = finish_inode_if_needed(sctx, 1); 6498 6499 out: 6500 btrfs_free_path(path); 6501 return ret; 6502 } 6503 6504 static int send_subvol(struct send_ctx *sctx) 6505 { 6506 int ret; 6507 6508 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 6509 ret = send_header(sctx); 6510 if (ret < 0) 6511 goto out; 6512 } 6513 6514 ret = send_subvol_begin(sctx); 6515 if (ret < 0) 6516 goto out; 6517 6518 if (sctx->parent_root) { 6519 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 6520 changed_cb, sctx); 6521 if (ret < 0) 6522 goto out; 6523 ret = finish_inode_if_needed(sctx, 1); 6524 if (ret < 0) 6525 goto out; 6526 } else { 6527 ret = full_send_tree(sctx); 6528 if (ret < 0) 6529 goto out; 6530 } 6531 6532 out: 6533 free_recorded_refs(sctx); 6534 return ret; 6535 } 6536 6537 /* 6538 * If orphan cleanup did remove any orphans from a root, it means the tree 6539 * was modified and therefore the commit root is not the same as the current 6540 * root anymore. This is a problem, because send uses the commit root and 6541 * therefore can see inode items that don't exist in the current root anymore, 6542 * and for example make calls to btrfs_iget, which will do tree lookups based 6543 * on the current root and not on the commit root. Those lookups will fail, 6544 * returning a -ESTALE error, and making send fail with that error. So make 6545 * sure a send does not see any orphans we have just removed, and that it will 6546 * see the same inodes regardless of whether a transaction commit happened 6547 * before it started (meaning that the commit root will be the same as the 6548 * current root) or not. 6549 */ 6550 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 6551 { 6552 int i; 6553 struct btrfs_trans_handle *trans = NULL; 6554 6555 again: 6556 if (sctx->parent_root && 6557 sctx->parent_root->node != sctx->parent_root->commit_root) 6558 goto commit_trans; 6559 6560 for (i = 0; i < sctx->clone_roots_cnt; i++) 6561 if (sctx->clone_roots[i].root->node != 6562 sctx->clone_roots[i].root->commit_root) 6563 goto commit_trans; 6564 6565 if (trans) 6566 return btrfs_end_transaction(trans); 6567 6568 return 0; 6569 6570 commit_trans: 6571 /* Use any root, all fs roots will get their commit roots updated. */ 6572 if (!trans) { 6573 trans = btrfs_join_transaction(sctx->send_root); 6574 if (IS_ERR(trans)) 6575 return PTR_ERR(trans); 6576 goto again; 6577 } 6578 6579 return btrfs_commit_transaction(trans); 6580 } 6581 6582 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 6583 { 6584 spin_lock(&root->root_item_lock); 6585 root->send_in_progress--; 6586 /* 6587 * Not much left to do, we don't know why it's unbalanced and 6588 * can't blindly reset it to 0. 6589 */ 6590 if (root->send_in_progress < 0) 6591 btrfs_err(root->fs_info, 6592 "send_in_progress unbalanced %d root %llu", 6593 root->send_in_progress, root->root_key.objectid); 6594 spin_unlock(&root->root_item_lock); 6595 } 6596 6597 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 6598 { 6599 int ret = 0; 6600 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 6601 struct btrfs_fs_info *fs_info = send_root->fs_info; 6602 struct btrfs_root *clone_root; 6603 struct btrfs_key key; 6604 struct send_ctx *sctx = NULL; 6605 u32 i; 6606 u64 *clone_sources_tmp = NULL; 6607 int clone_sources_to_rollback = 0; 6608 unsigned alloc_size; 6609 int sort_clone_roots = 0; 6610 int index; 6611 6612 if (!capable(CAP_SYS_ADMIN)) 6613 return -EPERM; 6614 6615 /* 6616 * The subvolume must remain read-only during send, protect against 6617 * making it RW. This also protects against deletion. 6618 */ 6619 spin_lock(&send_root->root_item_lock); 6620 send_root->send_in_progress++; 6621 spin_unlock(&send_root->root_item_lock); 6622 6623 /* 6624 * This is done when we lookup the root, it should already be complete 6625 * by the time we get here. 6626 */ 6627 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 6628 6629 /* 6630 * Userspace tools do the checks and warn the user if it's 6631 * not RO. 6632 */ 6633 if (!btrfs_root_readonly(send_root)) { 6634 ret = -EPERM; 6635 goto out; 6636 } 6637 6638 /* 6639 * Check that we don't overflow at later allocations, we request 6640 * clone_sources_count + 1 items, and compare to unsigned long inside 6641 * access_ok. 6642 */ 6643 if (arg->clone_sources_count > 6644 ULONG_MAX / sizeof(struct clone_root) - 1) { 6645 ret = -EINVAL; 6646 goto out; 6647 } 6648 6649 if (!access_ok(VERIFY_READ, arg->clone_sources, 6650 sizeof(*arg->clone_sources) * 6651 arg->clone_sources_count)) { 6652 ret = -EFAULT; 6653 goto out; 6654 } 6655 6656 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 6657 ret = -EINVAL; 6658 goto out; 6659 } 6660 6661 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 6662 if (!sctx) { 6663 ret = -ENOMEM; 6664 goto out; 6665 } 6666 6667 INIT_LIST_HEAD(&sctx->new_refs); 6668 INIT_LIST_HEAD(&sctx->deleted_refs); 6669 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 6670 INIT_LIST_HEAD(&sctx->name_cache_list); 6671 6672 sctx->flags = arg->flags; 6673 6674 sctx->send_filp = fget(arg->send_fd); 6675 if (!sctx->send_filp) { 6676 ret = -EBADF; 6677 goto out; 6678 } 6679 6680 sctx->send_root = send_root; 6681 /* 6682 * Unlikely but possible, if the subvolume is marked for deletion but 6683 * is slow to remove the directory entry, send can still be started 6684 */ 6685 if (btrfs_root_dead(sctx->send_root)) { 6686 ret = -EPERM; 6687 goto out; 6688 } 6689 6690 sctx->clone_roots_cnt = arg->clone_sources_count; 6691 6692 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 6693 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 6694 if (!sctx->send_buf) { 6695 ret = -ENOMEM; 6696 goto out; 6697 } 6698 6699 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL); 6700 if (!sctx->read_buf) { 6701 ret = -ENOMEM; 6702 goto out; 6703 } 6704 6705 sctx->pending_dir_moves = RB_ROOT; 6706 sctx->waiting_dir_moves = RB_ROOT; 6707 sctx->orphan_dirs = RB_ROOT; 6708 6709 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 6710 6711 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL); 6712 if (!sctx->clone_roots) { 6713 ret = -ENOMEM; 6714 goto out; 6715 } 6716 6717 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 6718 6719 if (arg->clone_sources_count) { 6720 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 6721 if (!clone_sources_tmp) { 6722 ret = -ENOMEM; 6723 goto out; 6724 } 6725 6726 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 6727 alloc_size); 6728 if (ret) { 6729 ret = -EFAULT; 6730 goto out; 6731 } 6732 6733 for (i = 0; i < arg->clone_sources_count; i++) { 6734 key.objectid = clone_sources_tmp[i]; 6735 key.type = BTRFS_ROOT_ITEM_KEY; 6736 key.offset = (u64)-1; 6737 6738 index = srcu_read_lock(&fs_info->subvol_srcu); 6739 6740 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 6741 if (IS_ERR(clone_root)) { 6742 srcu_read_unlock(&fs_info->subvol_srcu, index); 6743 ret = PTR_ERR(clone_root); 6744 goto out; 6745 } 6746 spin_lock(&clone_root->root_item_lock); 6747 if (!btrfs_root_readonly(clone_root) || 6748 btrfs_root_dead(clone_root)) { 6749 spin_unlock(&clone_root->root_item_lock); 6750 srcu_read_unlock(&fs_info->subvol_srcu, index); 6751 ret = -EPERM; 6752 goto out; 6753 } 6754 clone_root->send_in_progress++; 6755 spin_unlock(&clone_root->root_item_lock); 6756 srcu_read_unlock(&fs_info->subvol_srcu, index); 6757 6758 sctx->clone_roots[i].root = clone_root; 6759 clone_sources_to_rollback = i + 1; 6760 } 6761 kvfree(clone_sources_tmp); 6762 clone_sources_tmp = NULL; 6763 } 6764 6765 if (arg->parent_root) { 6766 key.objectid = arg->parent_root; 6767 key.type = BTRFS_ROOT_ITEM_KEY; 6768 key.offset = (u64)-1; 6769 6770 index = srcu_read_lock(&fs_info->subvol_srcu); 6771 6772 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 6773 if (IS_ERR(sctx->parent_root)) { 6774 srcu_read_unlock(&fs_info->subvol_srcu, index); 6775 ret = PTR_ERR(sctx->parent_root); 6776 goto out; 6777 } 6778 6779 spin_lock(&sctx->parent_root->root_item_lock); 6780 sctx->parent_root->send_in_progress++; 6781 if (!btrfs_root_readonly(sctx->parent_root) || 6782 btrfs_root_dead(sctx->parent_root)) { 6783 spin_unlock(&sctx->parent_root->root_item_lock); 6784 srcu_read_unlock(&fs_info->subvol_srcu, index); 6785 ret = -EPERM; 6786 goto out; 6787 } 6788 spin_unlock(&sctx->parent_root->root_item_lock); 6789 6790 srcu_read_unlock(&fs_info->subvol_srcu, index); 6791 } 6792 6793 /* 6794 * Clones from send_root are allowed, but only if the clone source 6795 * is behind the current send position. This is checked while searching 6796 * for possible clone sources. 6797 */ 6798 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 6799 6800 /* We do a bsearch later */ 6801 sort(sctx->clone_roots, sctx->clone_roots_cnt, 6802 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 6803 NULL); 6804 sort_clone_roots = 1; 6805 6806 ret = ensure_commit_roots_uptodate(sctx); 6807 if (ret) 6808 goto out; 6809 6810 current->journal_info = BTRFS_SEND_TRANS_STUB; 6811 ret = send_subvol(sctx); 6812 current->journal_info = NULL; 6813 if (ret < 0) 6814 goto out; 6815 6816 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 6817 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 6818 if (ret < 0) 6819 goto out; 6820 ret = send_cmd(sctx); 6821 if (ret < 0) 6822 goto out; 6823 } 6824 6825 out: 6826 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 6827 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 6828 struct rb_node *n; 6829 struct pending_dir_move *pm; 6830 6831 n = rb_first(&sctx->pending_dir_moves); 6832 pm = rb_entry(n, struct pending_dir_move, node); 6833 while (!list_empty(&pm->list)) { 6834 struct pending_dir_move *pm2; 6835 6836 pm2 = list_first_entry(&pm->list, 6837 struct pending_dir_move, list); 6838 free_pending_move(sctx, pm2); 6839 } 6840 free_pending_move(sctx, pm); 6841 } 6842 6843 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 6844 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 6845 struct rb_node *n; 6846 struct waiting_dir_move *dm; 6847 6848 n = rb_first(&sctx->waiting_dir_moves); 6849 dm = rb_entry(n, struct waiting_dir_move, node); 6850 rb_erase(&dm->node, &sctx->waiting_dir_moves); 6851 kfree(dm); 6852 } 6853 6854 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 6855 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 6856 struct rb_node *n; 6857 struct orphan_dir_info *odi; 6858 6859 n = rb_first(&sctx->orphan_dirs); 6860 odi = rb_entry(n, struct orphan_dir_info, node); 6861 free_orphan_dir_info(sctx, odi); 6862 } 6863 6864 if (sort_clone_roots) { 6865 for (i = 0; i < sctx->clone_roots_cnt; i++) 6866 btrfs_root_dec_send_in_progress( 6867 sctx->clone_roots[i].root); 6868 } else { 6869 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 6870 btrfs_root_dec_send_in_progress( 6871 sctx->clone_roots[i].root); 6872 6873 btrfs_root_dec_send_in_progress(send_root); 6874 } 6875 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 6876 btrfs_root_dec_send_in_progress(sctx->parent_root); 6877 6878 kvfree(clone_sources_tmp); 6879 6880 if (sctx) { 6881 if (sctx->send_filp) 6882 fput(sctx->send_filp); 6883 6884 kvfree(sctx->clone_roots); 6885 kvfree(sctx->send_buf); 6886 kvfree(sctx->read_buf); 6887 6888 name_cache_free(sctx); 6889 6890 kfree(sctx); 6891 } 6892 6893 return ret; 6894 } 6895