1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 27 /* 28 * A fs_path is a helper to dynamically build path names with unknown size. 29 * It reallocates the internal buffer on demand. 30 * It allows fast adding of path elements on the right side (normal path) and 31 * fast adding to the left side (reversed path). A reversed path can also be 32 * unreversed if needed. 33 */ 34 struct fs_path { 35 union { 36 struct { 37 char *start; 38 char *end; 39 40 char *buf; 41 unsigned short buf_len:15; 42 unsigned short reversed:1; 43 char inline_buf[]; 44 }; 45 /* 46 * Average path length does not exceed 200 bytes, we'll have 47 * better packing in the slab and higher chance to satisfy 48 * a allocation later during send. 49 */ 50 char pad[256]; 51 }; 52 }; 53 #define FS_PATH_INLINE_SIZE \ 54 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 55 56 57 /* reused for each extent */ 58 struct clone_root { 59 struct btrfs_root *root; 60 u64 ino; 61 u64 offset; 62 63 u64 found_refs; 64 }; 65 66 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 67 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 68 69 struct send_ctx { 70 struct file *send_filp; 71 loff_t send_off; 72 char *send_buf; 73 u32 send_size; 74 u32 send_max_size; 75 u64 total_send_size; 76 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 77 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 78 79 struct btrfs_root *send_root; 80 struct btrfs_root *parent_root; 81 struct clone_root *clone_roots; 82 int clone_roots_cnt; 83 84 /* current state of the compare_tree call */ 85 struct btrfs_path *left_path; 86 struct btrfs_path *right_path; 87 struct btrfs_key *cmp_key; 88 89 /* 90 * infos of the currently processed inode. In case of deleted inodes, 91 * these are the values from the deleted inode. 92 */ 93 u64 cur_ino; 94 u64 cur_inode_gen; 95 int cur_inode_new; 96 int cur_inode_new_gen; 97 int cur_inode_deleted; 98 u64 cur_inode_size; 99 u64 cur_inode_mode; 100 u64 cur_inode_rdev; 101 u64 cur_inode_last_extent; 102 u64 cur_inode_next_write_offset; 103 bool ignore_cur_inode; 104 105 u64 send_progress; 106 107 struct list_head new_refs; 108 struct list_head deleted_refs; 109 110 struct radix_tree_root name_cache; 111 struct list_head name_cache_list; 112 int name_cache_size; 113 114 struct file_ra_state ra; 115 116 char *read_buf; 117 118 /* 119 * We process inodes by their increasing order, so if before an 120 * incremental send we reverse the parent/child relationship of 121 * directories such that a directory with a lower inode number was 122 * the parent of a directory with a higher inode number, and the one 123 * becoming the new parent got renamed too, we can't rename/move the 124 * directory with lower inode number when we finish processing it - we 125 * must process the directory with higher inode number first, then 126 * rename/move it and then rename/move the directory with lower inode 127 * number. Example follows. 128 * 129 * Tree state when the first send was performed: 130 * 131 * . 132 * |-- a (ino 257) 133 * |-- b (ino 258) 134 * | 135 * | 136 * |-- c (ino 259) 137 * | |-- d (ino 260) 138 * | 139 * |-- c2 (ino 261) 140 * 141 * Tree state when the second (incremental) send is performed: 142 * 143 * . 144 * |-- a (ino 257) 145 * |-- b (ino 258) 146 * |-- c2 (ino 261) 147 * |-- d2 (ino 260) 148 * |-- cc (ino 259) 149 * 150 * The sequence of steps that lead to the second state was: 151 * 152 * mv /a/b/c/d /a/b/c2/d2 153 * mv /a/b/c /a/b/c2/d2/cc 154 * 155 * "c" has lower inode number, but we can't move it (2nd mv operation) 156 * before we move "d", which has higher inode number. 157 * 158 * So we just memorize which move/rename operations must be performed 159 * later when their respective parent is processed and moved/renamed. 160 */ 161 162 /* Indexed by parent directory inode number. */ 163 struct rb_root pending_dir_moves; 164 165 /* 166 * Reverse index, indexed by the inode number of a directory that 167 * is waiting for the move/rename of its immediate parent before its 168 * own move/rename can be performed. 169 */ 170 struct rb_root waiting_dir_moves; 171 172 /* 173 * A directory that is going to be rm'ed might have a child directory 174 * which is in the pending directory moves index above. In this case, 175 * the directory can only be removed after the move/rename of its child 176 * is performed. Example: 177 * 178 * Parent snapshot: 179 * 180 * . (ino 256) 181 * |-- a/ (ino 257) 182 * |-- b/ (ino 258) 183 * |-- c/ (ino 259) 184 * | |-- x/ (ino 260) 185 * | 186 * |-- y/ (ino 261) 187 * 188 * Send snapshot: 189 * 190 * . (ino 256) 191 * |-- a/ (ino 257) 192 * |-- b/ (ino 258) 193 * |-- YY/ (ino 261) 194 * |-- x/ (ino 260) 195 * 196 * Sequence of steps that lead to the send snapshot: 197 * rm -f /a/b/c/foo.txt 198 * mv /a/b/y /a/b/YY 199 * mv /a/b/c/x /a/b/YY 200 * rmdir /a/b/c 201 * 202 * When the child is processed, its move/rename is delayed until its 203 * parent is processed (as explained above), but all other operations 204 * like update utimes, chown, chgrp, etc, are performed and the paths 205 * that it uses for those operations must use the orphanized name of 206 * its parent (the directory we're going to rm later), so we need to 207 * memorize that name. 208 * 209 * Indexed by the inode number of the directory to be deleted. 210 */ 211 struct rb_root orphan_dirs; 212 }; 213 214 struct pending_dir_move { 215 struct rb_node node; 216 struct list_head list; 217 u64 parent_ino; 218 u64 ino; 219 u64 gen; 220 struct list_head update_refs; 221 }; 222 223 struct waiting_dir_move { 224 struct rb_node node; 225 u64 ino; 226 /* 227 * There might be some directory that could not be removed because it 228 * was waiting for this directory inode to be moved first. Therefore 229 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 230 */ 231 u64 rmdir_ino; 232 bool orphanized; 233 }; 234 235 struct orphan_dir_info { 236 struct rb_node node; 237 u64 ino; 238 u64 gen; 239 u64 last_dir_index_offset; 240 }; 241 242 struct name_cache_entry { 243 struct list_head list; 244 /* 245 * radix_tree has only 32bit entries but we need to handle 64bit inums. 246 * We use the lower 32bit of the 64bit inum to store it in the tree. If 247 * more then one inum would fall into the same entry, we use radix_list 248 * to store the additional entries. radix_list is also used to store 249 * entries where two entries have the same inum but different 250 * generations. 251 */ 252 struct list_head radix_list; 253 u64 ino; 254 u64 gen; 255 u64 parent_ino; 256 u64 parent_gen; 257 int ret; 258 int need_later_update; 259 int name_len; 260 char name[]; 261 }; 262 263 __cold 264 static void inconsistent_snapshot_error(struct send_ctx *sctx, 265 enum btrfs_compare_tree_result result, 266 const char *what) 267 { 268 const char *result_string; 269 270 switch (result) { 271 case BTRFS_COMPARE_TREE_NEW: 272 result_string = "new"; 273 break; 274 case BTRFS_COMPARE_TREE_DELETED: 275 result_string = "deleted"; 276 break; 277 case BTRFS_COMPARE_TREE_CHANGED: 278 result_string = "updated"; 279 break; 280 case BTRFS_COMPARE_TREE_SAME: 281 ASSERT(0); 282 result_string = "unchanged"; 283 break; 284 default: 285 ASSERT(0); 286 result_string = "unexpected"; 287 } 288 289 btrfs_err(sctx->send_root->fs_info, 290 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 291 result_string, what, sctx->cmp_key->objectid, 292 sctx->send_root->root_key.objectid, 293 (sctx->parent_root ? 294 sctx->parent_root->root_key.objectid : 0)); 295 } 296 297 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 298 299 static struct waiting_dir_move * 300 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 301 302 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 303 304 static int need_send_hole(struct send_ctx *sctx) 305 { 306 return (sctx->parent_root && !sctx->cur_inode_new && 307 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 308 S_ISREG(sctx->cur_inode_mode)); 309 } 310 311 static void fs_path_reset(struct fs_path *p) 312 { 313 if (p->reversed) { 314 p->start = p->buf + p->buf_len - 1; 315 p->end = p->start; 316 *p->start = 0; 317 } else { 318 p->start = p->buf; 319 p->end = p->start; 320 *p->start = 0; 321 } 322 } 323 324 static struct fs_path *fs_path_alloc(void) 325 { 326 struct fs_path *p; 327 328 p = kmalloc(sizeof(*p), GFP_KERNEL); 329 if (!p) 330 return NULL; 331 p->reversed = 0; 332 p->buf = p->inline_buf; 333 p->buf_len = FS_PATH_INLINE_SIZE; 334 fs_path_reset(p); 335 return p; 336 } 337 338 static struct fs_path *fs_path_alloc_reversed(void) 339 { 340 struct fs_path *p; 341 342 p = fs_path_alloc(); 343 if (!p) 344 return NULL; 345 p->reversed = 1; 346 fs_path_reset(p); 347 return p; 348 } 349 350 static void fs_path_free(struct fs_path *p) 351 { 352 if (!p) 353 return; 354 if (p->buf != p->inline_buf) 355 kfree(p->buf); 356 kfree(p); 357 } 358 359 static int fs_path_len(struct fs_path *p) 360 { 361 return p->end - p->start; 362 } 363 364 static int fs_path_ensure_buf(struct fs_path *p, int len) 365 { 366 char *tmp_buf; 367 int path_len; 368 int old_buf_len; 369 370 len++; 371 372 if (p->buf_len >= len) 373 return 0; 374 375 if (len > PATH_MAX) { 376 WARN_ON(1); 377 return -ENOMEM; 378 } 379 380 path_len = p->end - p->start; 381 old_buf_len = p->buf_len; 382 383 /* 384 * First time the inline_buf does not suffice 385 */ 386 if (p->buf == p->inline_buf) { 387 tmp_buf = kmalloc(len, GFP_KERNEL); 388 if (tmp_buf) 389 memcpy(tmp_buf, p->buf, old_buf_len); 390 } else { 391 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 392 } 393 if (!tmp_buf) 394 return -ENOMEM; 395 p->buf = tmp_buf; 396 /* 397 * The real size of the buffer is bigger, this will let the fast path 398 * happen most of the time 399 */ 400 p->buf_len = ksize(p->buf); 401 402 if (p->reversed) { 403 tmp_buf = p->buf + old_buf_len - path_len - 1; 404 p->end = p->buf + p->buf_len - 1; 405 p->start = p->end - path_len; 406 memmove(p->start, tmp_buf, path_len + 1); 407 } else { 408 p->start = p->buf; 409 p->end = p->start + path_len; 410 } 411 return 0; 412 } 413 414 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 415 char **prepared) 416 { 417 int ret; 418 int new_len; 419 420 new_len = p->end - p->start + name_len; 421 if (p->start != p->end) 422 new_len++; 423 ret = fs_path_ensure_buf(p, new_len); 424 if (ret < 0) 425 goto out; 426 427 if (p->reversed) { 428 if (p->start != p->end) 429 *--p->start = '/'; 430 p->start -= name_len; 431 *prepared = p->start; 432 } else { 433 if (p->start != p->end) 434 *p->end++ = '/'; 435 *prepared = p->end; 436 p->end += name_len; 437 *p->end = 0; 438 } 439 440 out: 441 return ret; 442 } 443 444 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 445 { 446 int ret; 447 char *prepared; 448 449 ret = fs_path_prepare_for_add(p, name_len, &prepared); 450 if (ret < 0) 451 goto out; 452 memcpy(prepared, name, name_len); 453 454 out: 455 return ret; 456 } 457 458 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 459 { 460 int ret; 461 char *prepared; 462 463 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 464 if (ret < 0) 465 goto out; 466 memcpy(prepared, p2->start, p2->end - p2->start); 467 468 out: 469 return ret; 470 } 471 472 static int fs_path_add_from_extent_buffer(struct fs_path *p, 473 struct extent_buffer *eb, 474 unsigned long off, int len) 475 { 476 int ret; 477 char *prepared; 478 479 ret = fs_path_prepare_for_add(p, len, &prepared); 480 if (ret < 0) 481 goto out; 482 483 read_extent_buffer(eb, prepared, off, len); 484 485 out: 486 return ret; 487 } 488 489 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 490 { 491 int ret; 492 493 p->reversed = from->reversed; 494 fs_path_reset(p); 495 496 ret = fs_path_add_path(p, from); 497 498 return ret; 499 } 500 501 502 static void fs_path_unreverse(struct fs_path *p) 503 { 504 char *tmp; 505 int len; 506 507 if (!p->reversed) 508 return; 509 510 tmp = p->start; 511 len = p->end - p->start; 512 p->start = p->buf; 513 p->end = p->start + len; 514 memmove(p->start, tmp, len + 1); 515 p->reversed = 0; 516 } 517 518 static struct btrfs_path *alloc_path_for_send(void) 519 { 520 struct btrfs_path *path; 521 522 path = btrfs_alloc_path(); 523 if (!path) 524 return NULL; 525 path->search_commit_root = 1; 526 path->skip_locking = 1; 527 path->need_commit_sem = 1; 528 return path; 529 } 530 531 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 532 { 533 int ret; 534 u32 pos = 0; 535 536 while (pos < len) { 537 ret = kernel_write(filp, buf + pos, len - pos, off); 538 /* TODO handle that correctly */ 539 /*if (ret == -ERESTARTSYS) { 540 continue; 541 }*/ 542 if (ret < 0) 543 return ret; 544 if (ret == 0) { 545 return -EIO; 546 } 547 pos += ret; 548 } 549 550 return 0; 551 } 552 553 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 554 { 555 struct btrfs_tlv_header *hdr; 556 int total_len = sizeof(*hdr) + len; 557 int left = sctx->send_max_size - sctx->send_size; 558 559 if (unlikely(left < total_len)) 560 return -EOVERFLOW; 561 562 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 563 hdr->tlv_type = cpu_to_le16(attr); 564 hdr->tlv_len = cpu_to_le16(len); 565 memcpy(hdr + 1, data, len); 566 sctx->send_size += total_len; 567 568 return 0; 569 } 570 571 #define TLV_PUT_DEFINE_INT(bits) \ 572 static int tlv_put_u##bits(struct send_ctx *sctx, \ 573 u##bits attr, u##bits value) \ 574 { \ 575 __le##bits __tmp = cpu_to_le##bits(value); \ 576 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 577 } 578 579 TLV_PUT_DEFINE_INT(64) 580 581 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 582 const char *str, int len) 583 { 584 if (len == -1) 585 len = strlen(str); 586 return tlv_put(sctx, attr, str, len); 587 } 588 589 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 590 const u8 *uuid) 591 { 592 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 593 } 594 595 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 596 struct extent_buffer *eb, 597 struct btrfs_timespec *ts) 598 { 599 struct btrfs_timespec bts; 600 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 601 return tlv_put(sctx, attr, &bts, sizeof(bts)); 602 } 603 604 605 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 606 do { \ 607 ret = tlv_put(sctx, attrtype, data, attrlen); \ 608 if (ret < 0) \ 609 goto tlv_put_failure; \ 610 } while (0) 611 612 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 613 do { \ 614 ret = tlv_put_u##bits(sctx, attrtype, value); \ 615 if (ret < 0) \ 616 goto tlv_put_failure; \ 617 } while (0) 618 619 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 620 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 621 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 622 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 623 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 624 do { \ 625 ret = tlv_put_string(sctx, attrtype, str, len); \ 626 if (ret < 0) \ 627 goto tlv_put_failure; \ 628 } while (0) 629 #define TLV_PUT_PATH(sctx, attrtype, p) \ 630 do { \ 631 ret = tlv_put_string(sctx, attrtype, p->start, \ 632 p->end - p->start); \ 633 if (ret < 0) \ 634 goto tlv_put_failure; \ 635 } while(0) 636 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 637 do { \ 638 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 639 if (ret < 0) \ 640 goto tlv_put_failure; \ 641 } while (0) 642 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 643 do { \ 644 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 645 if (ret < 0) \ 646 goto tlv_put_failure; \ 647 } while (0) 648 649 static int send_header(struct send_ctx *sctx) 650 { 651 struct btrfs_stream_header hdr; 652 653 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 654 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 655 656 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 657 &sctx->send_off); 658 } 659 660 /* 661 * For each command/item we want to send to userspace, we call this function. 662 */ 663 static int begin_cmd(struct send_ctx *sctx, int cmd) 664 { 665 struct btrfs_cmd_header *hdr; 666 667 if (WARN_ON(!sctx->send_buf)) 668 return -EINVAL; 669 670 BUG_ON(sctx->send_size); 671 672 sctx->send_size += sizeof(*hdr); 673 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 674 hdr->cmd = cpu_to_le16(cmd); 675 676 return 0; 677 } 678 679 static int send_cmd(struct send_ctx *sctx) 680 { 681 int ret; 682 struct btrfs_cmd_header *hdr; 683 u32 crc; 684 685 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 686 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 687 hdr->crc = 0; 688 689 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 690 hdr->crc = cpu_to_le32(crc); 691 692 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 693 &sctx->send_off); 694 695 sctx->total_send_size += sctx->send_size; 696 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 697 sctx->send_size = 0; 698 699 return ret; 700 } 701 702 /* 703 * Sends a move instruction to user space 704 */ 705 static int send_rename(struct send_ctx *sctx, 706 struct fs_path *from, struct fs_path *to) 707 { 708 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 709 int ret; 710 711 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 712 713 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 714 if (ret < 0) 715 goto out; 716 717 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 718 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 719 720 ret = send_cmd(sctx); 721 722 tlv_put_failure: 723 out: 724 return ret; 725 } 726 727 /* 728 * Sends a link instruction to user space 729 */ 730 static int send_link(struct send_ctx *sctx, 731 struct fs_path *path, struct fs_path *lnk) 732 { 733 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 734 int ret; 735 736 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 737 738 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 739 if (ret < 0) 740 goto out; 741 742 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 743 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 744 745 ret = send_cmd(sctx); 746 747 tlv_put_failure: 748 out: 749 return ret; 750 } 751 752 /* 753 * Sends an unlink instruction to user space 754 */ 755 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 756 { 757 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 758 int ret; 759 760 btrfs_debug(fs_info, "send_unlink %s", path->start); 761 762 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 763 if (ret < 0) 764 goto out; 765 766 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 767 768 ret = send_cmd(sctx); 769 770 tlv_put_failure: 771 out: 772 return ret; 773 } 774 775 /* 776 * Sends a rmdir instruction to user space 777 */ 778 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 779 { 780 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 781 int ret; 782 783 btrfs_debug(fs_info, "send_rmdir %s", path->start); 784 785 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 786 if (ret < 0) 787 goto out; 788 789 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 790 791 ret = send_cmd(sctx); 792 793 tlv_put_failure: 794 out: 795 return ret; 796 } 797 798 /* 799 * Helper function to retrieve some fields from an inode item. 800 */ 801 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 802 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 803 u64 *gid, u64 *rdev) 804 { 805 int ret; 806 struct btrfs_inode_item *ii; 807 struct btrfs_key key; 808 809 key.objectid = ino; 810 key.type = BTRFS_INODE_ITEM_KEY; 811 key.offset = 0; 812 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 813 if (ret) { 814 if (ret > 0) 815 ret = -ENOENT; 816 return ret; 817 } 818 819 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 820 struct btrfs_inode_item); 821 if (size) 822 *size = btrfs_inode_size(path->nodes[0], ii); 823 if (gen) 824 *gen = btrfs_inode_generation(path->nodes[0], ii); 825 if (mode) 826 *mode = btrfs_inode_mode(path->nodes[0], ii); 827 if (uid) 828 *uid = btrfs_inode_uid(path->nodes[0], ii); 829 if (gid) 830 *gid = btrfs_inode_gid(path->nodes[0], ii); 831 if (rdev) 832 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 833 834 return ret; 835 } 836 837 static int get_inode_info(struct btrfs_root *root, 838 u64 ino, u64 *size, u64 *gen, 839 u64 *mode, u64 *uid, u64 *gid, 840 u64 *rdev) 841 { 842 struct btrfs_path *path; 843 int ret; 844 845 path = alloc_path_for_send(); 846 if (!path) 847 return -ENOMEM; 848 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 849 rdev); 850 btrfs_free_path(path); 851 return ret; 852 } 853 854 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 855 struct fs_path *p, 856 void *ctx); 857 858 /* 859 * Helper function to iterate the entries in ONE btrfs_inode_ref or 860 * btrfs_inode_extref. 861 * The iterate callback may return a non zero value to stop iteration. This can 862 * be a negative value for error codes or 1 to simply stop it. 863 * 864 * path must point to the INODE_REF or INODE_EXTREF when called. 865 */ 866 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 867 struct btrfs_key *found_key, int resolve, 868 iterate_inode_ref_t iterate, void *ctx) 869 { 870 struct extent_buffer *eb = path->nodes[0]; 871 struct btrfs_item *item; 872 struct btrfs_inode_ref *iref; 873 struct btrfs_inode_extref *extref; 874 struct btrfs_path *tmp_path; 875 struct fs_path *p; 876 u32 cur = 0; 877 u32 total; 878 int slot = path->slots[0]; 879 u32 name_len; 880 char *start; 881 int ret = 0; 882 int num = 0; 883 int index; 884 u64 dir; 885 unsigned long name_off; 886 unsigned long elem_size; 887 unsigned long ptr; 888 889 p = fs_path_alloc_reversed(); 890 if (!p) 891 return -ENOMEM; 892 893 tmp_path = alloc_path_for_send(); 894 if (!tmp_path) { 895 fs_path_free(p); 896 return -ENOMEM; 897 } 898 899 900 if (found_key->type == BTRFS_INODE_REF_KEY) { 901 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 902 struct btrfs_inode_ref); 903 item = btrfs_item_nr(slot); 904 total = btrfs_item_size(eb, item); 905 elem_size = sizeof(*iref); 906 } else { 907 ptr = btrfs_item_ptr_offset(eb, slot); 908 total = btrfs_item_size_nr(eb, slot); 909 elem_size = sizeof(*extref); 910 } 911 912 while (cur < total) { 913 fs_path_reset(p); 914 915 if (found_key->type == BTRFS_INODE_REF_KEY) { 916 iref = (struct btrfs_inode_ref *)(ptr + cur); 917 name_len = btrfs_inode_ref_name_len(eb, iref); 918 name_off = (unsigned long)(iref + 1); 919 index = btrfs_inode_ref_index(eb, iref); 920 dir = found_key->offset; 921 } else { 922 extref = (struct btrfs_inode_extref *)(ptr + cur); 923 name_len = btrfs_inode_extref_name_len(eb, extref); 924 name_off = (unsigned long)&extref->name; 925 index = btrfs_inode_extref_index(eb, extref); 926 dir = btrfs_inode_extref_parent(eb, extref); 927 } 928 929 if (resolve) { 930 start = btrfs_ref_to_path(root, tmp_path, name_len, 931 name_off, eb, dir, 932 p->buf, p->buf_len); 933 if (IS_ERR(start)) { 934 ret = PTR_ERR(start); 935 goto out; 936 } 937 if (start < p->buf) { 938 /* overflow , try again with larger buffer */ 939 ret = fs_path_ensure_buf(p, 940 p->buf_len + p->buf - start); 941 if (ret < 0) 942 goto out; 943 start = btrfs_ref_to_path(root, tmp_path, 944 name_len, name_off, 945 eb, dir, 946 p->buf, p->buf_len); 947 if (IS_ERR(start)) { 948 ret = PTR_ERR(start); 949 goto out; 950 } 951 BUG_ON(start < p->buf); 952 } 953 p->start = start; 954 } else { 955 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 956 name_len); 957 if (ret < 0) 958 goto out; 959 } 960 961 cur += elem_size + name_len; 962 ret = iterate(num, dir, index, p, ctx); 963 if (ret) 964 goto out; 965 num++; 966 } 967 968 out: 969 btrfs_free_path(tmp_path); 970 fs_path_free(p); 971 return ret; 972 } 973 974 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 975 const char *name, int name_len, 976 const char *data, int data_len, 977 u8 type, void *ctx); 978 979 /* 980 * Helper function to iterate the entries in ONE btrfs_dir_item. 981 * The iterate callback may return a non zero value to stop iteration. This can 982 * be a negative value for error codes or 1 to simply stop it. 983 * 984 * path must point to the dir item when called. 985 */ 986 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 987 iterate_dir_item_t iterate, void *ctx) 988 { 989 int ret = 0; 990 struct extent_buffer *eb; 991 struct btrfs_item *item; 992 struct btrfs_dir_item *di; 993 struct btrfs_key di_key; 994 char *buf = NULL; 995 int buf_len; 996 u32 name_len; 997 u32 data_len; 998 u32 cur; 999 u32 len; 1000 u32 total; 1001 int slot; 1002 int num; 1003 u8 type; 1004 1005 /* 1006 * Start with a small buffer (1 page). If later we end up needing more 1007 * space, which can happen for xattrs on a fs with a leaf size greater 1008 * then the page size, attempt to increase the buffer. Typically xattr 1009 * values are small. 1010 */ 1011 buf_len = PATH_MAX; 1012 buf = kmalloc(buf_len, GFP_KERNEL); 1013 if (!buf) { 1014 ret = -ENOMEM; 1015 goto out; 1016 } 1017 1018 eb = path->nodes[0]; 1019 slot = path->slots[0]; 1020 item = btrfs_item_nr(slot); 1021 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1022 cur = 0; 1023 len = 0; 1024 total = btrfs_item_size(eb, item); 1025 1026 num = 0; 1027 while (cur < total) { 1028 name_len = btrfs_dir_name_len(eb, di); 1029 data_len = btrfs_dir_data_len(eb, di); 1030 type = btrfs_dir_type(eb, di); 1031 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1032 1033 if (type == BTRFS_FT_XATTR) { 1034 if (name_len > XATTR_NAME_MAX) { 1035 ret = -ENAMETOOLONG; 1036 goto out; 1037 } 1038 if (name_len + data_len > 1039 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1040 ret = -E2BIG; 1041 goto out; 1042 } 1043 } else { 1044 /* 1045 * Path too long 1046 */ 1047 if (name_len + data_len > PATH_MAX) { 1048 ret = -ENAMETOOLONG; 1049 goto out; 1050 } 1051 } 1052 1053 if (name_len + data_len > buf_len) { 1054 buf_len = name_len + data_len; 1055 if (is_vmalloc_addr(buf)) { 1056 vfree(buf); 1057 buf = NULL; 1058 } else { 1059 char *tmp = krealloc(buf, buf_len, 1060 GFP_KERNEL | __GFP_NOWARN); 1061 1062 if (!tmp) 1063 kfree(buf); 1064 buf = tmp; 1065 } 1066 if (!buf) { 1067 buf = kvmalloc(buf_len, GFP_KERNEL); 1068 if (!buf) { 1069 ret = -ENOMEM; 1070 goto out; 1071 } 1072 } 1073 } 1074 1075 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1076 name_len + data_len); 1077 1078 len = sizeof(*di) + name_len + data_len; 1079 di = (struct btrfs_dir_item *)((char *)di + len); 1080 cur += len; 1081 1082 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1083 data_len, type, ctx); 1084 if (ret < 0) 1085 goto out; 1086 if (ret) { 1087 ret = 0; 1088 goto out; 1089 } 1090 1091 num++; 1092 } 1093 1094 out: 1095 kvfree(buf); 1096 return ret; 1097 } 1098 1099 static int __copy_first_ref(int num, u64 dir, int index, 1100 struct fs_path *p, void *ctx) 1101 { 1102 int ret; 1103 struct fs_path *pt = ctx; 1104 1105 ret = fs_path_copy(pt, p); 1106 if (ret < 0) 1107 return ret; 1108 1109 /* we want the first only */ 1110 return 1; 1111 } 1112 1113 /* 1114 * Retrieve the first path of an inode. If an inode has more then one 1115 * ref/hardlink, this is ignored. 1116 */ 1117 static int get_inode_path(struct btrfs_root *root, 1118 u64 ino, struct fs_path *path) 1119 { 1120 int ret; 1121 struct btrfs_key key, found_key; 1122 struct btrfs_path *p; 1123 1124 p = alloc_path_for_send(); 1125 if (!p) 1126 return -ENOMEM; 1127 1128 fs_path_reset(path); 1129 1130 key.objectid = ino; 1131 key.type = BTRFS_INODE_REF_KEY; 1132 key.offset = 0; 1133 1134 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1135 if (ret < 0) 1136 goto out; 1137 if (ret) { 1138 ret = 1; 1139 goto out; 1140 } 1141 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1142 if (found_key.objectid != ino || 1143 (found_key.type != BTRFS_INODE_REF_KEY && 1144 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1145 ret = -ENOENT; 1146 goto out; 1147 } 1148 1149 ret = iterate_inode_ref(root, p, &found_key, 1, 1150 __copy_first_ref, path); 1151 if (ret < 0) 1152 goto out; 1153 ret = 0; 1154 1155 out: 1156 btrfs_free_path(p); 1157 return ret; 1158 } 1159 1160 struct backref_ctx { 1161 struct send_ctx *sctx; 1162 1163 /* number of total found references */ 1164 u64 found; 1165 1166 /* 1167 * used for clones found in send_root. clones found behind cur_objectid 1168 * and cur_offset are not considered as allowed clones. 1169 */ 1170 u64 cur_objectid; 1171 u64 cur_offset; 1172 1173 /* may be truncated in case it's the last extent in a file */ 1174 u64 extent_len; 1175 1176 /* data offset in the file extent item */ 1177 u64 data_offset; 1178 1179 /* Just to check for bugs in backref resolving */ 1180 int found_itself; 1181 }; 1182 1183 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1184 { 1185 u64 root = (u64)(uintptr_t)key; 1186 struct clone_root *cr = (struct clone_root *)elt; 1187 1188 if (root < cr->root->root_key.objectid) 1189 return -1; 1190 if (root > cr->root->root_key.objectid) 1191 return 1; 1192 return 0; 1193 } 1194 1195 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1196 { 1197 struct clone_root *cr1 = (struct clone_root *)e1; 1198 struct clone_root *cr2 = (struct clone_root *)e2; 1199 1200 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1201 return -1; 1202 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1203 return 1; 1204 return 0; 1205 } 1206 1207 /* 1208 * Called for every backref that is found for the current extent. 1209 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1210 */ 1211 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1212 { 1213 struct backref_ctx *bctx = ctx_; 1214 struct clone_root *found; 1215 1216 /* First check if the root is in the list of accepted clone sources */ 1217 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1218 bctx->sctx->clone_roots_cnt, 1219 sizeof(struct clone_root), 1220 __clone_root_cmp_bsearch); 1221 if (!found) 1222 return 0; 1223 1224 if (found->root == bctx->sctx->send_root && 1225 ino == bctx->cur_objectid && 1226 offset == bctx->cur_offset) { 1227 bctx->found_itself = 1; 1228 } 1229 1230 /* 1231 * Make sure we don't consider clones from send_root that are 1232 * behind the current inode/offset. 1233 */ 1234 if (found->root == bctx->sctx->send_root) { 1235 /* 1236 * TODO for the moment we don't accept clones from the inode 1237 * that is currently send. We may change this when 1238 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1239 * file. 1240 */ 1241 if (ino >= bctx->cur_objectid) 1242 return 0; 1243 } 1244 1245 bctx->found++; 1246 found->found_refs++; 1247 if (ino < found->ino) { 1248 found->ino = ino; 1249 found->offset = offset; 1250 } else if (found->ino == ino) { 1251 /* 1252 * same extent found more then once in the same file. 1253 */ 1254 if (found->offset > offset + bctx->extent_len) 1255 found->offset = offset; 1256 } 1257 1258 return 0; 1259 } 1260 1261 /* 1262 * Given an inode, offset and extent item, it finds a good clone for a clone 1263 * instruction. Returns -ENOENT when none could be found. The function makes 1264 * sure that the returned clone is usable at the point where sending is at the 1265 * moment. This means, that no clones are accepted which lie behind the current 1266 * inode+offset. 1267 * 1268 * path must point to the extent item when called. 1269 */ 1270 static int find_extent_clone(struct send_ctx *sctx, 1271 struct btrfs_path *path, 1272 u64 ino, u64 data_offset, 1273 u64 ino_size, 1274 struct clone_root **found) 1275 { 1276 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1277 int ret; 1278 int extent_type; 1279 u64 logical; 1280 u64 disk_byte; 1281 u64 num_bytes; 1282 u64 extent_item_pos; 1283 u64 flags = 0; 1284 struct btrfs_file_extent_item *fi; 1285 struct extent_buffer *eb = path->nodes[0]; 1286 struct backref_ctx *backref_ctx = NULL; 1287 struct clone_root *cur_clone_root; 1288 struct btrfs_key found_key; 1289 struct btrfs_path *tmp_path; 1290 int compressed; 1291 u32 i; 1292 1293 tmp_path = alloc_path_for_send(); 1294 if (!tmp_path) 1295 return -ENOMEM; 1296 1297 /* We only use this path under the commit sem */ 1298 tmp_path->need_commit_sem = 0; 1299 1300 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1301 if (!backref_ctx) { 1302 ret = -ENOMEM; 1303 goto out; 1304 } 1305 1306 if (data_offset >= ino_size) { 1307 /* 1308 * There may be extents that lie behind the file's size. 1309 * I at least had this in combination with snapshotting while 1310 * writing large files. 1311 */ 1312 ret = 0; 1313 goto out; 1314 } 1315 1316 fi = btrfs_item_ptr(eb, path->slots[0], 1317 struct btrfs_file_extent_item); 1318 extent_type = btrfs_file_extent_type(eb, fi); 1319 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1320 ret = -ENOENT; 1321 goto out; 1322 } 1323 compressed = btrfs_file_extent_compression(eb, fi); 1324 1325 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1326 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1327 if (disk_byte == 0) { 1328 ret = -ENOENT; 1329 goto out; 1330 } 1331 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1332 1333 down_read(&fs_info->commit_root_sem); 1334 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1335 &found_key, &flags); 1336 up_read(&fs_info->commit_root_sem); 1337 btrfs_release_path(tmp_path); 1338 1339 if (ret < 0) 1340 goto out; 1341 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1342 ret = -EIO; 1343 goto out; 1344 } 1345 1346 /* 1347 * Setup the clone roots. 1348 */ 1349 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1350 cur_clone_root = sctx->clone_roots + i; 1351 cur_clone_root->ino = (u64)-1; 1352 cur_clone_root->offset = 0; 1353 cur_clone_root->found_refs = 0; 1354 } 1355 1356 backref_ctx->sctx = sctx; 1357 backref_ctx->found = 0; 1358 backref_ctx->cur_objectid = ino; 1359 backref_ctx->cur_offset = data_offset; 1360 backref_ctx->found_itself = 0; 1361 backref_ctx->extent_len = num_bytes; 1362 /* 1363 * For non-compressed extents iterate_extent_inodes() gives us extent 1364 * offsets that already take into account the data offset, but not for 1365 * compressed extents, since the offset is logical and not relative to 1366 * the physical extent locations. We must take this into account to 1367 * avoid sending clone offsets that go beyond the source file's size, 1368 * which would result in the clone ioctl failing with -EINVAL on the 1369 * receiving end. 1370 */ 1371 if (compressed == BTRFS_COMPRESS_NONE) 1372 backref_ctx->data_offset = 0; 1373 else 1374 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1375 1376 /* 1377 * The last extent of a file may be too large due to page alignment. 1378 * We need to adjust extent_len in this case so that the checks in 1379 * __iterate_backrefs work. 1380 */ 1381 if (data_offset + num_bytes >= ino_size) 1382 backref_ctx->extent_len = ino_size - data_offset; 1383 1384 /* 1385 * Now collect all backrefs. 1386 */ 1387 if (compressed == BTRFS_COMPRESS_NONE) 1388 extent_item_pos = logical - found_key.objectid; 1389 else 1390 extent_item_pos = 0; 1391 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1392 extent_item_pos, 1, __iterate_backrefs, 1393 backref_ctx, false); 1394 1395 if (ret < 0) 1396 goto out; 1397 1398 if (!backref_ctx->found_itself) { 1399 /* found a bug in backref code? */ 1400 ret = -EIO; 1401 btrfs_err(fs_info, 1402 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1403 ino, data_offset, disk_byte, found_key.objectid); 1404 goto out; 1405 } 1406 1407 btrfs_debug(fs_info, 1408 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1409 data_offset, ino, num_bytes, logical); 1410 1411 if (!backref_ctx->found) 1412 btrfs_debug(fs_info, "no clones found"); 1413 1414 cur_clone_root = NULL; 1415 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1416 if (sctx->clone_roots[i].found_refs) { 1417 if (!cur_clone_root) 1418 cur_clone_root = sctx->clone_roots + i; 1419 else if (sctx->clone_roots[i].root == sctx->send_root) 1420 /* prefer clones from send_root over others */ 1421 cur_clone_root = sctx->clone_roots + i; 1422 } 1423 1424 } 1425 1426 if (cur_clone_root) { 1427 *found = cur_clone_root; 1428 ret = 0; 1429 } else { 1430 ret = -ENOENT; 1431 } 1432 1433 out: 1434 btrfs_free_path(tmp_path); 1435 kfree(backref_ctx); 1436 return ret; 1437 } 1438 1439 static int read_symlink(struct btrfs_root *root, 1440 u64 ino, 1441 struct fs_path *dest) 1442 { 1443 int ret; 1444 struct btrfs_path *path; 1445 struct btrfs_key key; 1446 struct btrfs_file_extent_item *ei; 1447 u8 type; 1448 u8 compression; 1449 unsigned long off; 1450 int len; 1451 1452 path = alloc_path_for_send(); 1453 if (!path) 1454 return -ENOMEM; 1455 1456 key.objectid = ino; 1457 key.type = BTRFS_EXTENT_DATA_KEY; 1458 key.offset = 0; 1459 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1460 if (ret < 0) 1461 goto out; 1462 if (ret) { 1463 /* 1464 * An empty symlink inode. Can happen in rare error paths when 1465 * creating a symlink (transaction committed before the inode 1466 * eviction handler removed the symlink inode items and a crash 1467 * happened in between or the subvol was snapshoted in between). 1468 * Print an informative message to dmesg/syslog so that the user 1469 * can delete the symlink. 1470 */ 1471 btrfs_err(root->fs_info, 1472 "Found empty symlink inode %llu at root %llu", 1473 ino, root->root_key.objectid); 1474 ret = -EIO; 1475 goto out; 1476 } 1477 1478 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1479 struct btrfs_file_extent_item); 1480 type = btrfs_file_extent_type(path->nodes[0], ei); 1481 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1482 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1483 BUG_ON(compression); 1484 1485 off = btrfs_file_extent_inline_start(ei); 1486 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1487 1488 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1489 1490 out: 1491 btrfs_free_path(path); 1492 return ret; 1493 } 1494 1495 /* 1496 * Helper function to generate a file name that is unique in the root of 1497 * send_root and parent_root. This is used to generate names for orphan inodes. 1498 */ 1499 static int gen_unique_name(struct send_ctx *sctx, 1500 u64 ino, u64 gen, 1501 struct fs_path *dest) 1502 { 1503 int ret = 0; 1504 struct btrfs_path *path; 1505 struct btrfs_dir_item *di; 1506 char tmp[64]; 1507 int len; 1508 u64 idx = 0; 1509 1510 path = alloc_path_for_send(); 1511 if (!path) 1512 return -ENOMEM; 1513 1514 while (1) { 1515 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1516 ino, gen, idx); 1517 ASSERT(len < sizeof(tmp)); 1518 1519 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1520 path, BTRFS_FIRST_FREE_OBJECTID, 1521 tmp, strlen(tmp), 0); 1522 btrfs_release_path(path); 1523 if (IS_ERR(di)) { 1524 ret = PTR_ERR(di); 1525 goto out; 1526 } 1527 if (di) { 1528 /* not unique, try again */ 1529 idx++; 1530 continue; 1531 } 1532 1533 if (!sctx->parent_root) { 1534 /* unique */ 1535 ret = 0; 1536 break; 1537 } 1538 1539 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1540 path, BTRFS_FIRST_FREE_OBJECTID, 1541 tmp, strlen(tmp), 0); 1542 btrfs_release_path(path); 1543 if (IS_ERR(di)) { 1544 ret = PTR_ERR(di); 1545 goto out; 1546 } 1547 if (di) { 1548 /* not unique, try again */ 1549 idx++; 1550 continue; 1551 } 1552 /* unique */ 1553 break; 1554 } 1555 1556 ret = fs_path_add(dest, tmp, strlen(tmp)); 1557 1558 out: 1559 btrfs_free_path(path); 1560 return ret; 1561 } 1562 1563 enum inode_state { 1564 inode_state_no_change, 1565 inode_state_will_create, 1566 inode_state_did_create, 1567 inode_state_will_delete, 1568 inode_state_did_delete, 1569 }; 1570 1571 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1572 { 1573 int ret; 1574 int left_ret; 1575 int right_ret; 1576 u64 left_gen; 1577 u64 right_gen; 1578 1579 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1580 NULL, NULL); 1581 if (ret < 0 && ret != -ENOENT) 1582 goto out; 1583 left_ret = ret; 1584 1585 if (!sctx->parent_root) { 1586 right_ret = -ENOENT; 1587 } else { 1588 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1589 NULL, NULL, NULL, NULL); 1590 if (ret < 0 && ret != -ENOENT) 1591 goto out; 1592 right_ret = ret; 1593 } 1594 1595 if (!left_ret && !right_ret) { 1596 if (left_gen == gen && right_gen == gen) { 1597 ret = inode_state_no_change; 1598 } else if (left_gen == gen) { 1599 if (ino < sctx->send_progress) 1600 ret = inode_state_did_create; 1601 else 1602 ret = inode_state_will_create; 1603 } else if (right_gen == gen) { 1604 if (ino < sctx->send_progress) 1605 ret = inode_state_did_delete; 1606 else 1607 ret = inode_state_will_delete; 1608 } else { 1609 ret = -ENOENT; 1610 } 1611 } else if (!left_ret) { 1612 if (left_gen == gen) { 1613 if (ino < sctx->send_progress) 1614 ret = inode_state_did_create; 1615 else 1616 ret = inode_state_will_create; 1617 } else { 1618 ret = -ENOENT; 1619 } 1620 } else if (!right_ret) { 1621 if (right_gen == gen) { 1622 if (ino < sctx->send_progress) 1623 ret = inode_state_did_delete; 1624 else 1625 ret = inode_state_will_delete; 1626 } else { 1627 ret = -ENOENT; 1628 } 1629 } else { 1630 ret = -ENOENT; 1631 } 1632 1633 out: 1634 return ret; 1635 } 1636 1637 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1638 { 1639 int ret; 1640 1641 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1642 return 1; 1643 1644 ret = get_cur_inode_state(sctx, ino, gen); 1645 if (ret < 0) 1646 goto out; 1647 1648 if (ret == inode_state_no_change || 1649 ret == inode_state_did_create || 1650 ret == inode_state_will_delete) 1651 ret = 1; 1652 else 1653 ret = 0; 1654 1655 out: 1656 return ret; 1657 } 1658 1659 /* 1660 * Helper function to lookup a dir item in a dir. 1661 */ 1662 static int lookup_dir_item_inode(struct btrfs_root *root, 1663 u64 dir, const char *name, int name_len, 1664 u64 *found_inode, 1665 u8 *found_type) 1666 { 1667 int ret = 0; 1668 struct btrfs_dir_item *di; 1669 struct btrfs_key key; 1670 struct btrfs_path *path; 1671 1672 path = alloc_path_for_send(); 1673 if (!path) 1674 return -ENOMEM; 1675 1676 di = btrfs_lookup_dir_item(NULL, root, path, 1677 dir, name, name_len, 0); 1678 if (IS_ERR_OR_NULL(di)) { 1679 ret = di ? PTR_ERR(di) : -ENOENT; 1680 goto out; 1681 } 1682 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1683 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1684 ret = -ENOENT; 1685 goto out; 1686 } 1687 *found_inode = key.objectid; 1688 *found_type = btrfs_dir_type(path->nodes[0], di); 1689 1690 out: 1691 btrfs_free_path(path); 1692 return ret; 1693 } 1694 1695 /* 1696 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1697 * generation of the parent dir and the name of the dir entry. 1698 */ 1699 static int get_first_ref(struct btrfs_root *root, u64 ino, 1700 u64 *dir, u64 *dir_gen, struct fs_path *name) 1701 { 1702 int ret; 1703 struct btrfs_key key; 1704 struct btrfs_key found_key; 1705 struct btrfs_path *path; 1706 int len; 1707 u64 parent_dir; 1708 1709 path = alloc_path_for_send(); 1710 if (!path) 1711 return -ENOMEM; 1712 1713 key.objectid = ino; 1714 key.type = BTRFS_INODE_REF_KEY; 1715 key.offset = 0; 1716 1717 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1718 if (ret < 0) 1719 goto out; 1720 if (!ret) 1721 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1722 path->slots[0]); 1723 if (ret || found_key.objectid != ino || 1724 (found_key.type != BTRFS_INODE_REF_KEY && 1725 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1726 ret = -ENOENT; 1727 goto out; 1728 } 1729 1730 if (found_key.type == BTRFS_INODE_REF_KEY) { 1731 struct btrfs_inode_ref *iref; 1732 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1733 struct btrfs_inode_ref); 1734 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1735 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1736 (unsigned long)(iref + 1), 1737 len); 1738 parent_dir = found_key.offset; 1739 } else { 1740 struct btrfs_inode_extref *extref; 1741 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1742 struct btrfs_inode_extref); 1743 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1744 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1745 (unsigned long)&extref->name, len); 1746 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1747 } 1748 if (ret < 0) 1749 goto out; 1750 btrfs_release_path(path); 1751 1752 if (dir_gen) { 1753 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1754 NULL, NULL, NULL); 1755 if (ret < 0) 1756 goto out; 1757 } 1758 1759 *dir = parent_dir; 1760 1761 out: 1762 btrfs_free_path(path); 1763 return ret; 1764 } 1765 1766 static int is_first_ref(struct btrfs_root *root, 1767 u64 ino, u64 dir, 1768 const char *name, int name_len) 1769 { 1770 int ret; 1771 struct fs_path *tmp_name; 1772 u64 tmp_dir; 1773 1774 tmp_name = fs_path_alloc(); 1775 if (!tmp_name) 1776 return -ENOMEM; 1777 1778 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1779 if (ret < 0) 1780 goto out; 1781 1782 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1783 ret = 0; 1784 goto out; 1785 } 1786 1787 ret = !memcmp(tmp_name->start, name, name_len); 1788 1789 out: 1790 fs_path_free(tmp_name); 1791 return ret; 1792 } 1793 1794 /* 1795 * Used by process_recorded_refs to determine if a new ref would overwrite an 1796 * already existing ref. In case it detects an overwrite, it returns the 1797 * inode/gen in who_ino/who_gen. 1798 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1799 * to make sure later references to the overwritten inode are possible. 1800 * Orphanizing is however only required for the first ref of an inode. 1801 * process_recorded_refs does an additional is_first_ref check to see if 1802 * orphanizing is really required. 1803 */ 1804 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1805 const char *name, int name_len, 1806 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1807 { 1808 int ret = 0; 1809 u64 gen; 1810 u64 other_inode = 0; 1811 u8 other_type = 0; 1812 1813 if (!sctx->parent_root) 1814 goto out; 1815 1816 ret = is_inode_existent(sctx, dir, dir_gen); 1817 if (ret <= 0) 1818 goto out; 1819 1820 /* 1821 * If we have a parent root we need to verify that the parent dir was 1822 * not deleted and then re-created, if it was then we have no overwrite 1823 * and we can just unlink this entry. 1824 */ 1825 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1826 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1827 NULL, NULL, NULL); 1828 if (ret < 0 && ret != -ENOENT) 1829 goto out; 1830 if (ret) { 1831 ret = 0; 1832 goto out; 1833 } 1834 if (gen != dir_gen) 1835 goto out; 1836 } 1837 1838 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1839 &other_inode, &other_type); 1840 if (ret < 0 && ret != -ENOENT) 1841 goto out; 1842 if (ret) { 1843 ret = 0; 1844 goto out; 1845 } 1846 1847 /* 1848 * Check if the overwritten ref was already processed. If yes, the ref 1849 * was already unlinked/moved, so we can safely assume that we will not 1850 * overwrite anything at this point in time. 1851 */ 1852 if (other_inode > sctx->send_progress || 1853 is_waiting_for_move(sctx, other_inode)) { 1854 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1855 who_gen, who_mode, NULL, NULL, NULL); 1856 if (ret < 0) 1857 goto out; 1858 1859 ret = 1; 1860 *who_ino = other_inode; 1861 } else { 1862 ret = 0; 1863 } 1864 1865 out: 1866 return ret; 1867 } 1868 1869 /* 1870 * Checks if the ref was overwritten by an already processed inode. This is 1871 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1872 * thus the orphan name needs be used. 1873 * process_recorded_refs also uses it to avoid unlinking of refs that were 1874 * overwritten. 1875 */ 1876 static int did_overwrite_ref(struct send_ctx *sctx, 1877 u64 dir, u64 dir_gen, 1878 u64 ino, u64 ino_gen, 1879 const char *name, int name_len) 1880 { 1881 int ret = 0; 1882 u64 gen; 1883 u64 ow_inode; 1884 u8 other_type; 1885 1886 if (!sctx->parent_root) 1887 goto out; 1888 1889 ret = is_inode_existent(sctx, dir, dir_gen); 1890 if (ret <= 0) 1891 goto out; 1892 1893 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1894 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1895 NULL, NULL, NULL); 1896 if (ret < 0 && ret != -ENOENT) 1897 goto out; 1898 if (ret) { 1899 ret = 0; 1900 goto out; 1901 } 1902 if (gen != dir_gen) 1903 goto out; 1904 } 1905 1906 /* check if the ref was overwritten by another ref */ 1907 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1908 &ow_inode, &other_type); 1909 if (ret < 0 && ret != -ENOENT) 1910 goto out; 1911 if (ret) { 1912 /* was never and will never be overwritten */ 1913 ret = 0; 1914 goto out; 1915 } 1916 1917 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1918 NULL, NULL); 1919 if (ret < 0) 1920 goto out; 1921 1922 if (ow_inode == ino && gen == ino_gen) { 1923 ret = 0; 1924 goto out; 1925 } 1926 1927 /* 1928 * We know that it is or will be overwritten. Check this now. 1929 * The current inode being processed might have been the one that caused 1930 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1931 * the current inode being processed. 1932 */ 1933 if ((ow_inode < sctx->send_progress) || 1934 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1935 gen == sctx->cur_inode_gen)) 1936 ret = 1; 1937 else 1938 ret = 0; 1939 1940 out: 1941 return ret; 1942 } 1943 1944 /* 1945 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1946 * that got overwritten. This is used by process_recorded_refs to determine 1947 * if it has to use the path as returned by get_cur_path or the orphan name. 1948 */ 1949 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1950 { 1951 int ret = 0; 1952 struct fs_path *name = NULL; 1953 u64 dir; 1954 u64 dir_gen; 1955 1956 if (!sctx->parent_root) 1957 goto out; 1958 1959 name = fs_path_alloc(); 1960 if (!name) 1961 return -ENOMEM; 1962 1963 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1964 if (ret < 0) 1965 goto out; 1966 1967 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1968 name->start, fs_path_len(name)); 1969 1970 out: 1971 fs_path_free(name); 1972 return ret; 1973 } 1974 1975 /* 1976 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1977 * so we need to do some special handling in case we have clashes. This function 1978 * takes care of this with the help of name_cache_entry::radix_list. 1979 * In case of error, nce is kfreed. 1980 */ 1981 static int name_cache_insert(struct send_ctx *sctx, 1982 struct name_cache_entry *nce) 1983 { 1984 int ret = 0; 1985 struct list_head *nce_head; 1986 1987 nce_head = radix_tree_lookup(&sctx->name_cache, 1988 (unsigned long)nce->ino); 1989 if (!nce_head) { 1990 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 1991 if (!nce_head) { 1992 kfree(nce); 1993 return -ENOMEM; 1994 } 1995 INIT_LIST_HEAD(nce_head); 1996 1997 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 1998 if (ret < 0) { 1999 kfree(nce_head); 2000 kfree(nce); 2001 return ret; 2002 } 2003 } 2004 list_add_tail(&nce->radix_list, nce_head); 2005 list_add_tail(&nce->list, &sctx->name_cache_list); 2006 sctx->name_cache_size++; 2007 2008 return ret; 2009 } 2010 2011 static void name_cache_delete(struct send_ctx *sctx, 2012 struct name_cache_entry *nce) 2013 { 2014 struct list_head *nce_head; 2015 2016 nce_head = radix_tree_lookup(&sctx->name_cache, 2017 (unsigned long)nce->ino); 2018 if (!nce_head) { 2019 btrfs_err(sctx->send_root->fs_info, 2020 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2021 nce->ino, sctx->name_cache_size); 2022 } 2023 2024 list_del(&nce->radix_list); 2025 list_del(&nce->list); 2026 sctx->name_cache_size--; 2027 2028 /* 2029 * We may not get to the final release of nce_head if the lookup fails 2030 */ 2031 if (nce_head && list_empty(nce_head)) { 2032 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2033 kfree(nce_head); 2034 } 2035 } 2036 2037 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2038 u64 ino, u64 gen) 2039 { 2040 struct list_head *nce_head; 2041 struct name_cache_entry *cur; 2042 2043 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2044 if (!nce_head) 2045 return NULL; 2046 2047 list_for_each_entry(cur, nce_head, radix_list) { 2048 if (cur->ino == ino && cur->gen == gen) 2049 return cur; 2050 } 2051 return NULL; 2052 } 2053 2054 /* 2055 * Removes the entry from the list and adds it back to the end. This marks the 2056 * entry as recently used so that name_cache_clean_unused does not remove it. 2057 */ 2058 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2059 { 2060 list_del(&nce->list); 2061 list_add_tail(&nce->list, &sctx->name_cache_list); 2062 } 2063 2064 /* 2065 * Remove some entries from the beginning of name_cache_list. 2066 */ 2067 static void name_cache_clean_unused(struct send_ctx *sctx) 2068 { 2069 struct name_cache_entry *nce; 2070 2071 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2072 return; 2073 2074 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2075 nce = list_entry(sctx->name_cache_list.next, 2076 struct name_cache_entry, list); 2077 name_cache_delete(sctx, nce); 2078 kfree(nce); 2079 } 2080 } 2081 2082 static void name_cache_free(struct send_ctx *sctx) 2083 { 2084 struct name_cache_entry *nce; 2085 2086 while (!list_empty(&sctx->name_cache_list)) { 2087 nce = list_entry(sctx->name_cache_list.next, 2088 struct name_cache_entry, list); 2089 name_cache_delete(sctx, nce); 2090 kfree(nce); 2091 } 2092 } 2093 2094 /* 2095 * Used by get_cur_path for each ref up to the root. 2096 * Returns 0 if it succeeded. 2097 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2098 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2099 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2100 * Returns <0 in case of error. 2101 */ 2102 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2103 u64 ino, u64 gen, 2104 u64 *parent_ino, 2105 u64 *parent_gen, 2106 struct fs_path *dest) 2107 { 2108 int ret; 2109 int nce_ret; 2110 struct name_cache_entry *nce = NULL; 2111 2112 /* 2113 * First check if we already did a call to this function with the same 2114 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2115 * return the cached result. 2116 */ 2117 nce = name_cache_search(sctx, ino, gen); 2118 if (nce) { 2119 if (ino < sctx->send_progress && nce->need_later_update) { 2120 name_cache_delete(sctx, nce); 2121 kfree(nce); 2122 nce = NULL; 2123 } else { 2124 name_cache_used(sctx, nce); 2125 *parent_ino = nce->parent_ino; 2126 *parent_gen = nce->parent_gen; 2127 ret = fs_path_add(dest, nce->name, nce->name_len); 2128 if (ret < 0) 2129 goto out; 2130 ret = nce->ret; 2131 goto out; 2132 } 2133 } 2134 2135 /* 2136 * If the inode is not existent yet, add the orphan name and return 1. 2137 * This should only happen for the parent dir that we determine in 2138 * __record_new_ref 2139 */ 2140 ret = is_inode_existent(sctx, ino, gen); 2141 if (ret < 0) 2142 goto out; 2143 2144 if (!ret) { 2145 ret = gen_unique_name(sctx, ino, gen, dest); 2146 if (ret < 0) 2147 goto out; 2148 ret = 1; 2149 goto out_cache; 2150 } 2151 2152 /* 2153 * Depending on whether the inode was already processed or not, use 2154 * send_root or parent_root for ref lookup. 2155 */ 2156 if (ino < sctx->send_progress) 2157 ret = get_first_ref(sctx->send_root, ino, 2158 parent_ino, parent_gen, dest); 2159 else 2160 ret = get_first_ref(sctx->parent_root, ino, 2161 parent_ino, parent_gen, dest); 2162 if (ret < 0) 2163 goto out; 2164 2165 /* 2166 * Check if the ref was overwritten by an inode's ref that was processed 2167 * earlier. If yes, treat as orphan and return 1. 2168 */ 2169 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2170 dest->start, dest->end - dest->start); 2171 if (ret < 0) 2172 goto out; 2173 if (ret) { 2174 fs_path_reset(dest); 2175 ret = gen_unique_name(sctx, ino, gen, dest); 2176 if (ret < 0) 2177 goto out; 2178 ret = 1; 2179 } 2180 2181 out_cache: 2182 /* 2183 * Store the result of the lookup in the name cache. 2184 */ 2185 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2186 if (!nce) { 2187 ret = -ENOMEM; 2188 goto out; 2189 } 2190 2191 nce->ino = ino; 2192 nce->gen = gen; 2193 nce->parent_ino = *parent_ino; 2194 nce->parent_gen = *parent_gen; 2195 nce->name_len = fs_path_len(dest); 2196 nce->ret = ret; 2197 strcpy(nce->name, dest->start); 2198 2199 if (ino < sctx->send_progress) 2200 nce->need_later_update = 0; 2201 else 2202 nce->need_later_update = 1; 2203 2204 nce_ret = name_cache_insert(sctx, nce); 2205 if (nce_ret < 0) 2206 ret = nce_ret; 2207 name_cache_clean_unused(sctx); 2208 2209 out: 2210 return ret; 2211 } 2212 2213 /* 2214 * Magic happens here. This function returns the first ref to an inode as it 2215 * would look like while receiving the stream at this point in time. 2216 * We walk the path up to the root. For every inode in between, we check if it 2217 * was already processed/sent. If yes, we continue with the parent as found 2218 * in send_root. If not, we continue with the parent as found in parent_root. 2219 * If we encounter an inode that was deleted at this point in time, we use the 2220 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2221 * that were not created yet and overwritten inodes/refs. 2222 * 2223 * When do we have orphan inodes: 2224 * 1. When an inode is freshly created and thus no valid refs are available yet 2225 * 2. When a directory lost all it's refs (deleted) but still has dir items 2226 * inside which were not processed yet (pending for move/delete). If anyone 2227 * tried to get the path to the dir items, it would get a path inside that 2228 * orphan directory. 2229 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2230 * of an unprocessed inode. If in that case the first ref would be 2231 * overwritten, the overwritten inode gets "orphanized". Later when we 2232 * process this overwritten inode, it is restored at a new place by moving 2233 * the orphan inode. 2234 * 2235 * sctx->send_progress tells this function at which point in time receiving 2236 * would be. 2237 */ 2238 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2239 struct fs_path *dest) 2240 { 2241 int ret = 0; 2242 struct fs_path *name = NULL; 2243 u64 parent_inode = 0; 2244 u64 parent_gen = 0; 2245 int stop = 0; 2246 2247 name = fs_path_alloc(); 2248 if (!name) { 2249 ret = -ENOMEM; 2250 goto out; 2251 } 2252 2253 dest->reversed = 1; 2254 fs_path_reset(dest); 2255 2256 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2257 struct waiting_dir_move *wdm; 2258 2259 fs_path_reset(name); 2260 2261 if (is_waiting_for_rm(sctx, ino)) { 2262 ret = gen_unique_name(sctx, ino, gen, name); 2263 if (ret < 0) 2264 goto out; 2265 ret = fs_path_add_path(dest, name); 2266 break; 2267 } 2268 2269 wdm = get_waiting_dir_move(sctx, ino); 2270 if (wdm && wdm->orphanized) { 2271 ret = gen_unique_name(sctx, ino, gen, name); 2272 stop = 1; 2273 } else if (wdm) { 2274 ret = get_first_ref(sctx->parent_root, ino, 2275 &parent_inode, &parent_gen, name); 2276 } else { 2277 ret = __get_cur_name_and_parent(sctx, ino, gen, 2278 &parent_inode, 2279 &parent_gen, name); 2280 if (ret) 2281 stop = 1; 2282 } 2283 2284 if (ret < 0) 2285 goto out; 2286 2287 ret = fs_path_add_path(dest, name); 2288 if (ret < 0) 2289 goto out; 2290 2291 ino = parent_inode; 2292 gen = parent_gen; 2293 } 2294 2295 out: 2296 fs_path_free(name); 2297 if (!ret) 2298 fs_path_unreverse(dest); 2299 return ret; 2300 } 2301 2302 /* 2303 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2304 */ 2305 static int send_subvol_begin(struct send_ctx *sctx) 2306 { 2307 int ret; 2308 struct btrfs_root *send_root = sctx->send_root; 2309 struct btrfs_root *parent_root = sctx->parent_root; 2310 struct btrfs_path *path; 2311 struct btrfs_key key; 2312 struct btrfs_root_ref *ref; 2313 struct extent_buffer *leaf; 2314 char *name = NULL; 2315 int namelen; 2316 2317 path = btrfs_alloc_path(); 2318 if (!path) 2319 return -ENOMEM; 2320 2321 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2322 if (!name) { 2323 btrfs_free_path(path); 2324 return -ENOMEM; 2325 } 2326 2327 key.objectid = send_root->root_key.objectid; 2328 key.type = BTRFS_ROOT_BACKREF_KEY; 2329 key.offset = 0; 2330 2331 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2332 &key, path, 1, 0); 2333 if (ret < 0) 2334 goto out; 2335 if (ret) { 2336 ret = -ENOENT; 2337 goto out; 2338 } 2339 2340 leaf = path->nodes[0]; 2341 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2342 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2343 key.objectid != send_root->root_key.objectid) { 2344 ret = -ENOENT; 2345 goto out; 2346 } 2347 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2348 namelen = btrfs_root_ref_name_len(leaf, ref); 2349 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2350 btrfs_release_path(path); 2351 2352 if (parent_root) { 2353 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2354 if (ret < 0) 2355 goto out; 2356 } else { 2357 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2358 if (ret < 0) 2359 goto out; 2360 } 2361 2362 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2363 2364 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2365 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2366 sctx->send_root->root_item.received_uuid); 2367 else 2368 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2369 sctx->send_root->root_item.uuid); 2370 2371 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2372 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2373 if (parent_root) { 2374 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2375 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2376 parent_root->root_item.received_uuid); 2377 else 2378 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2379 parent_root->root_item.uuid); 2380 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2381 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2382 } 2383 2384 ret = send_cmd(sctx); 2385 2386 tlv_put_failure: 2387 out: 2388 btrfs_free_path(path); 2389 kfree(name); 2390 return ret; 2391 } 2392 2393 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2394 { 2395 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2396 int ret = 0; 2397 struct fs_path *p; 2398 2399 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2400 2401 p = fs_path_alloc(); 2402 if (!p) 2403 return -ENOMEM; 2404 2405 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2406 if (ret < 0) 2407 goto out; 2408 2409 ret = get_cur_path(sctx, ino, gen, p); 2410 if (ret < 0) 2411 goto out; 2412 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2413 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2414 2415 ret = send_cmd(sctx); 2416 2417 tlv_put_failure: 2418 out: 2419 fs_path_free(p); 2420 return ret; 2421 } 2422 2423 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2424 { 2425 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2426 int ret = 0; 2427 struct fs_path *p; 2428 2429 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2430 2431 p = fs_path_alloc(); 2432 if (!p) 2433 return -ENOMEM; 2434 2435 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2436 if (ret < 0) 2437 goto out; 2438 2439 ret = get_cur_path(sctx, ino, gen, p); 2440 if (ret < 0) 2441 goto out; 2442 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2443 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2444 2445 ret = send_cmd(sctx); 2446 2447 tlv_put_failure: 2448 out: 2449 fs_path_free(p); 2450 return ret; 2451 } 2452 2453 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2454 { 2455 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2456 int ret = 0; 2457 struct fs_path *p; 2458 2459 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2460 ino, uid, gid); 2461 2462 p = fs_path_alloc(); 2463 if (!p) 2464 return -ENOMEM; 2465 2466 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2467 if (ret < 0) 2468 goto out; 2469 2470 ret = get_cur_path(sctx, ino, gen, p); 2471 if (ret < 0) 2472 goto out; 2473 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2474 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2475 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2476 2477 ret = send_cmd(sctx); 2478 2479 tlv_put_failure: 2480 out: 2481 fs_path_free(p); 2482 return ret; 2483 } 2484 2485 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2486 { 2487 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2488 int ret = 0; 2489 struct fs_path *p = NULL; 2490 struct btrfs_inode_item *ii; 2491 struct btrfs_path *path = NULL; 2492 struct extent_buffer *eb; 2493 struct btrfs_key key; 2494 int slot; 2495 2496 btrfs_debug(fs_info, "send_utimes %llu", ino); 2497 2498 p = fs_path_alloc(); 2499 if (!p) 2500 return -ENOMEM; 2501 2502 path = alloc_path_for_send(); 2503 if (!path) { 2504 ret = -ENOMEM; 2505 goto out; 2506 } 2507 2508 key.objectid = ino; 2509 key.type = BTRFS_INODE_ITEM_KEY; 2510 key.offset = 0; 2511 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2512 if (ret > 0) 2513 ret = -ENOENT; 2514 if (ret < 0) 2515 goto out; 2516 2517 eb = path->nodes[0]; 2518 slot = path->slots[0]; 2519 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2520 2521 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2522 if (ret < 0) 2523 goto out; 2524 2525 ret = get_cur_path(sctx, ino, gen, p); 2526 if (ret < 0) 2527 goto out; 2528 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2529 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2530 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2531 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2532 /* TODO Add otime support when the otime patches get into upstream */ 2533 2534 ret = send_cmd(sctx); 2535 2536 tlv_put_failure: 2537 out: 2538 fs_path_free(p); 2539 btrfs_free_path(path); 2540 return ret; 2541 } 2542 2543 /* 2544 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2545 * a valid path yet because we did not process the refs yet. So, the inode 2546 * is created as orphan. 2547 */ 2548 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2549 { 2550 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2551 int ret = 0; 2552 struct fs_path *p; 2553 int cmd; 2554 u64 gen; 2555 u64 mode; 2556 u64 rdev; 2557 2558 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2559 2560 p = fs_path_alloc(); 2561 if (!p) 2562 return -ENOMEM; 2563 2564 if (ino != sctx->cur_ino) { 2565 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2566 NULL, NULL, &rdev); 2567 if (ret < 0) 2568 goto out; 2569 } else { 2570 gen = sctx->cur_inode_gen; 2571 mode = sctx->cur_inode_mode; 2572 rdev = sctx->cur_inode_rdev; 2573 } 2574 2575 if (S_ISREG(mode)) { 2576 cmd = BTRFS_SEND_C_MKFILE; 2577 } else if (S_ISDIR(mode)) { 2578 cmd = BTRFS_SEND_C_MKDIR; 2579 } else if (S_ISLNK(mode)) { 2580 cmd = BTRFS_SEND_C_SYMLINK; 2581 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2582 cmd = BTRFS_SEND_C_MKNOD; 2583 } else if (S_ISFIFO(mode)) { 2584 cmd = BTRFS_SEND_C_MKFIFO; 2585 } else if (S_ISSOCK(mode)) { 2586 cmd = BTRFS_SEND_C_MKSOCK; 2587 } else { 2588 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2589 (int)(mode & S_IFMT)); 2590 ret = -EOPNOTSUPP; 2591 goto out; 2592 } 2593 2594 ret = begin_cmd(sctx, cmd); 2595 if (ret < 0) 2596 goto out; 2597 2598 ret = gen_unique_name(sctx, ino, gen, p); 2599 if (ret < 0) 2600 goto out; 2601 2602 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2603 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2604 2605 if (S_ISLNK(mode)) { 2606 fs_path_reset(p); 2607 ret = read_symlink(sctx->send_root, ino, p); 2608 if (ret < 0) 2609 goto out; 2610 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2611 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2612 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2613 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2614 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2615 } 2616 2617 ret = send_cmd(sctx); 2618 if (ret < 0) 2619 goto out; 2620 2621 2622 tlv_put_failure: 2623 out: 2624 fs_path_free(p); 2625 return ret; 2626 } 2627 2628 /* 2629 * We need some special handling for inodes that get processed before the parent 2630 * directory got created. See process_recorded_refs for details. 2631 * This function does the check if we already created the dir out of order. 2632 */ 2633 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2634 { 2635 int ret = 0; 2636 struct btrfs_path *path = NULL; 2637 struct btrfs_key key; 2638 struct btrfs_key found_key; 2639 struct btrfs_key di_key; 2640 struct extent_buffer *eb; 2641 struct btrfs_dir_item *di; 2642 int slot; 2643 2644 path = alloc_path_for_send(); 2645 if (!path) { 2646 ret = -ENOMEM; 2647 goto out; 2648 } 2649 2650 key.objectid = dir; 2651 key.type = BTRFS_DIR_INDEX_KEY; 2652 key.offset = 0; 2653 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2654 if (ret < 0) 2655 goto out; 2656 2657 while (1) { 2658 eb = path->nodes[0]; 2659 slot = path->slots[0]; 2660 if (slot >= btrfs_header_nritems(eb)) { 2661 ret = btrfs_next_leaf(sctx->send_root, path); 2662 if (ret < 0) { 2663 goto out; 2664 } else if (ret > 0) { 2665 ret = 0; 2666 break; 2667 } 2668 continue; 2669 } 2670 2671 btrfs_item_key_to_cpu(eb, &found_key, slot); 2672 if (found_key.objectid != key.objectid || 2673 found_key.type != key.type) { 2674 ret = 0; 2675 goto out; 2676 } 2677 2678 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2679 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2680 2681 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2682 di_key.objectid < sctx->send_progress) { 2683 ret = 1; 2684 goto out; 2685 } 2686 2687 path->slots[0]++; 2688 } 2689 2690 out: 2691 btrfs_free_path(path); 2692 return ret; 2693 } 2694 2695 /* 2696 * Only creates the inode if it is: 2697 * 1. Not a directory 2698 * 2. Or a directory which was not created already due to out of order 2699 * directories. See did_create_dir and process_recorded_refs for details. 2700 */ 2701 static int send_create_inode_if_needed(struct send_ctx *sctx) 2702 { 2703 int ret; 2704 2705 if (S_ISDIR(sctx->cur_inode_mode)) { 2706 ret = did_create_dir(sctx, sctx->cur_ino); 2707 if (ret < 0) 2708 goto out; 2709 if (ret) { 2710 ret = 0; 2711 goto out; 2712 } 2713 } 2714 2715 ret = send_create_inode(sctx, sctx->cur_ino); 2716 if (ret < 0) 2717 goto out; 2718 2719 out: 2720 return ret; 2721 } 2722 2723 struct recorded_ref { 2724 struct list_head list; 2725 char *name; 2726 struct fs_path *full_path; 2727 u64 dir; 2728 u64 dir_gen; 2729 int name_len; 2730 }; 2731 2732 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2733 { 2734 ref->full_path = path; 2735 ref->name = (char *)kbasename(ref->full_path->start); 2736 ref->name_len = ref->full_path->end - ref->name; 2737 } 2738 2739 /* 2740 * We need to process new refs before deleted refs, but compare_tree gives us 2741 * everything mixed. So we first record all refs and later process them. 2742 * This function is a helper to record one ref. 2743 */ 2744 static int __record_ref(struct list_head *head, u64 dir, 2745 u64 dir_gen, struct fs_path *path) 2746 { 2747 struct recorded_ref *ref; 2748 2749 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2750 if (!ref) 2751 return -ENOMEM; 2752 2753 ref->dir = dir; 2754 ref->dir_gen = dir_gen; 2755 set_ref_path(ref, path); 2756 list_add_tail(&ref->list, head); 2757 return 0; 2758 } 2759 2760 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2761 { 2762 struct recorded_ref *new; 2763 2764 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2765 if (!new) 2766 return -ENOMEM; 2767 2768 new->dir = ref->dir; 2769 new->dir_gen = ref->dir_gen; 2770 new->full_path = NULL; 2771 INIT_LIST_HEAD(&new->list); 2772 list_add_tail(&new->list, list); 2773 return 0; 2774 } 2775 2776 static void __free_recorded_refs(struct list_head *head) 2777 { 2778 struct recorded_ref *cur; 2779 2780 while (!list_empty(head)) { 2781 cur = list_entry(head->next, struct recorded_ref, list); 2782 fs_path_free(cur->full_path); 2783 list_del(&cur->list); 2784 kfree(cur); 2785 } 2786 } 2787 2788 static void free_recorded_refs(struct send_ctx *sctx) 2789 { 2790 __free_recorded_refs(&sctx->new_refs); 2791 __free_recorded_refs(&sctx->deleted_refs); 2792 } 2793 2794 /* 2795 * Renames/moves a file/dir to its orphan name. Used when the first 2796 * ref of an unprocessed inode gets overwritten and for all non empty 2797 * directories. 2798 */ 2799 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2800 struct fs_path *path) 2801 { 2802 int ret; 2803 struct fs_path *orphan; 2804 2805 orphan = fs_path_alloc(); 2806 if (!orphan) 2807 return -ENOMEM; 2808 2809 ret = gen_unique_name(sctx, ino, gen, orphan); 2810 if (ret < 0) 2811 goto out; 2812 2813 ret = send_rename(sctx, path, orphan); 2814 2815 out: 2816 fs_path_free(orphan); 2817 return ret; 2818 } 2819 2820 static struct orphan_dir_info * 2821 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2822 { 2823 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2824 struct rb_node *parent = NULL; 2825 struct orphan_dir_info *entry, *odi; 2826 2827 while (*p) { 2828 parent = *p; 2829 entry = rb_entry(parent, struct orphan_dir_info, node); 2830 if (dir_ino < entry->ino) { 2831 p = &(*p)->rb_left; 2832 } else if (dir_ino > entry->ino) { 2833 p = &(*p)->rb_right; 2834 } else { 2835 return entry; 2836 } 2837 } 2838 2839 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2840 if (!odi) 2841 return ERR_PTR(-ENOMEM); 2842 odi->ino = dir_ino; 2843 odi->gen = 0; 2844 odi->last_dir_index_offset = 0; 2845 2846 rb_link_node(&odi->node, parent, p); 2847 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2848 return odi; 2849 } 2850 2851 static struct orphan_dir_info * 2852 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2853 { 2854 struct rb_node *n = sctx->orphan_dirs.rb_node; 2855 struct orphan_dir_info *entry; 2856 2857 while (n) { 2858 entry = rb_entry(n, struct orphan_dir_info, node); 2859 if (dir_ino < entry->ino) 2860 n = n->rb_left; 2861 else if (dir_ino > entry->ino) 2862 n = n->rb_right; 2863 else 2864 return entry; 2865 } 2866 return NULL; 2867 } 2868 2869 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2870 { 2871 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2872 2873 return odi != NULL; 2874 } 2875 2876 static void free_orphan_dir_info(struct send_ctx *sctx, 2877 struct orphan_dir_info *odi) 2878 { 2879 if (!odi) 2880 return; 2881 rb_erase(&odi->node, &sctx->orphan_dirs); 2882 kfree(odi); 2883 } 2884 2885 /* 2886 * Returns 1 if a directory can be removed at this point in time. 2887 * We check this by iterating all dir items and checking if the inode behind 2888 * the dir item was already processed. 2889 */ 2890 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2891 u64 send_progress) 2892 { 2893 int ret = 0; 2894 struct btrfs_root *root = sctx->parent_root; 2895 struct btrfs_path *path; 2896 struct btrfs_key key; 2897 struct btrfs_key found_key; 2898 struct btrfs_key loc; 2899 struct btrfs_dir_item *di; 2900 struct orphan_dir_info *odi = NULL; 2901 2902 /* 2903 * Don't try to rmdir the top/root subvolume dir. 2904 */ 2905 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2906 return 0; 2907 2908 path = alloc_path_for_send(); 2909 if (!path) 2910 return -ENOMEM; 2911 2912 key.objectid = dir; 2913 key.type = BTRFS_DIR_INDEX_KEY; 2914 key.offset = 0; 2915 2916 odi = get_orphan_dir_info(sctx, dir); 2917 if (odi) 2918 key.offset = odi->last_dir_index_offset; 2919 2920 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2921 if (ret < 0) 2922 goto out; 2923 2924 while (1) { 2925 struct waiting_dir_move *dm; 2926 2927 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2928 ret = btrfs_next_leaf(root, path); 2929 if (ret < 0) 2930 goto out; 2931 else if (ret > 0) 2932 break; 2933 continue; 2934 } 2935 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2936 path->slots[0]); 2937 if (found_key.objectid != key.objectid || 2938 found_key.type != key.type) 2939 break; 2940 2941 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2942 struct btrfs_dir_item); 2943 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2944 2945 dm = get_waiting_dir_move(sctx, loc.objectid); 2946 if (dm) { 2947 odi = add_orphan_dir_info(sctx, dir); 2948 if (IS_ERR(odi)) { 2949 ret = PTR_ERR(odi); 2950 goto out; 2951 } 2952 odi->gen = dir_gen; 2953 odi->last_dir_index_offset = found_key.offset; 2954 dm->rmdir_ino = dir; 2955 ret = 0; 2956 goto out; 2957 } 2958 2959 if (loc.objectid > send_progress) { 2960 odi = add_orphan_dir_info(sctx, dir); 2961 if (IS_ERR(odi)) { 2962 ret = PTR_ERR(odi); 2963 goto out; 2964 } 2965 odi->gen = dir_gen; 2966 odi->last_dir_index_offset = found_key.offset; 2967 ret = 0; 2968 goto out; 2969 } 2970 2971 path->slots[0]++; 2972 } 2973 free_orphan_dir_info(sctx, odi); 2974 2975 ret = 1; 2976 2977 out: 2978 btrfs_free_path(path); 2979 return ret; 2980 } 2981 2982 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 2983 { 2984 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 2985 2986 return entry != NULL; 2987 } 2988 2989 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 2990 { 2991 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 2992 struct rb_node *parent = NULL; 2993 struct waiting_dir_move *entry, *dm; 2994 2995 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 2996 if (!dm) 2997 return -ENOMEM; 2998 dm->ino = ino; 2999 dm->rmdir_ino = 0; 3000 dm->orphanized = orphanized; 3001 3002 while (*p) { 3003 parent = *p; 3004 entry = rb_entry(parent, struct waiting_dir_move, node); 3005 if (ino < entry->ino) { 3006 p = &(*p)->rb_left; 3007 } else if (ino > entry->ino) { 3008 p = &(*p)->rb_right; 3009 } else { 3010 kfree(dm); 3011 return -EEXIST; 3012 } 3013 } 3014 3015 rb_link_node(&dm->node, parent, p); 3016 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3017 return 0; 3018 } 3019 3020 static struct waiting_dir_move * 3021 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3022 { 3023 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3024 struct waiting_dir_move *entry; 3025 3026 while (n) { 3027 entry = rb_entry(n, struct waiting_dir_move, node); 3028 if (ino < entry->ino) 3029 n = n->rb_left; 3030 else if (ino > entry->ino) 3031 n = n->rb_right; 3032 else 3033 return entry; 3034 } 3035 return NULL; 3036 } 3037 3038 static void free_waiting_dir_move(struct send_ctx *sctx, 3039 struct waiting_dir_move *dm) 3040 { 3041 if (!dm) 3042 return; 3043 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3044 kfree(dm); 3045 } 3046 3047 static int add_pending_dir_move(struct send_ctx *sctx, 3048 u64 ino, 3049 u64 ino_gen, 3050 u64 parent_ino, 3051 struct list_head *new_refs, 3052 struct list_head *deleted_refs, 3053 const bool is_orphan) 3054 { 3055 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3056 struct rb_node *parent = NULL; 3057 struct pending_dir_move *entry = NULL, *pm; 3058 struct recorded_ref *cur; 3059 int exists = 0; 3060 int ret; 3061 3062 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3063 if (!pm) 3064 return -ENOMEM; 3065 pm->parent_ino = parent_ino; 3066 pm->ino = ino; 3067 pm->gen = ino_gen; 3068 INIT_LIST_HEAD(&pm->list); 3069 INIT_LIST_HEAD(&pm->update_refs); 3070 RB_CLEAR_NODE(&pm->node); 3071 3072 while (*p) { 3073 parent = *p; 3074 entry = rb_entry(parent, struct pending_dir_move, node); 3075 if (parent_ino < entry->parent_ino) { 3076 p = &(*p)->rb_left; 3077 } else if (parent_ino > entry->parent_ino) { 3078 p = &(*p)->rb_right; 3079 } else { 3080 exists = 1; 3081 break; 3082 } 3083 } 3084 3085 list_for_each_entry(cur, deleted_refs, list) { 3086 ret = dup_ref(cur, &pm->update_refs); 3087 if (ret < 0) 3088 goto out; 3089 } 3090 list_for_each_entry(cur, new_refs, list) { 3091 ret = dup_ref(cur, &pm->update_refs); 3092 if (ret < 0) 3093 goto out; 3094 } 3095 3096 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3097 if (ret) 3098 goto out; 3099 3100 if (exists) { 3101 list_add_tail(&pm->list, &entry->list); 3102 } else { 3103 rb_link_node(&pm->node, parent, p); 3104 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3105 } 3106 ret = 0; 3107 out: 3108 if (ret) { 3109 __free_recorded_refs(&pm->update_refs); 3110 kfree(pm); 3111 } 3112 return ret; 3113 } 3114 3115 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3116 u64 parent_ino) 3117 { 3118 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3119 struct pending_dir_move *entry; 3120 3121 while (n) { 3122 entry = rb_entry(n, struct pending_dir_move, node); 3123 if (parent_ino < entry->parent_ino) 3124 n = n->rb_left; 3125 else if (parent_ino > entry->parent_ino) 3126 n = n->rb_right; 3127 else 3128 return entry; 3129 } 3130 return NULL; 3131 } 3132 3133 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3134 u64 ino, u64 gen, u64 *ancestor_ino) 3135 { 3136 int ret = 0; 3137 u64 parent_inode = 0; 3138 u64 parent_gen = 0; 3139 u64 start_ino = ino; 3140 3141 *ancestor_ino = 0; 3142 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3143 fs_path_reset(name); 3144 3145 if (is_waiting_for_rm(sctx, ino)) 3146 break; 3147 if (is_waiting_for_move(sctx, ino)) { 3148 if (*ancestor_ino == 0) 3149 *ancestor_ino = ino; 3150 ret = get_first_ref(sctx->parent_root, ino, 3151 &parent_inode, &parent_gen, name); 3152 } else { 3153 ret = __get_cur_name_and_parent(sctx, ino, gen, 3154 &parent_inode, 3155 &parent_gen, name); 3156 if (ret > 0) { 3157 ret = 0; 3158 break; 3159 } 3160 } 3161 if (ret < 0) 3162 break; 3163 if (parent_inode == start_ino) { 3164 ret = 1; 3165 if (*ancestor_ino == 0) 3166 *ancestor_ino = ino; 3167 break; 3168 } 3169 ino = parent_inode; 3170 gen = parent_gen; 3171 } 3172 return ret; 3173 } 3174 3175 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3176 { 3177 struct fs_path *from_path = NULL; 3178 struct fs_path *to_path = NULL; 3179 struct fs_path *name = NULL; 3180 u64 orig_progress = sctx->send_progress; 3181 struct recorded_ref *cur; 3182 u64 parent_ino, parent_gen; 3183 struct waiting_dir_move *dm = NULL; 3184 u64 rmdir_ino = 0; 3185 u64 ancestor; 3186 bool is_orphan; 3187 int ret; 3188 3189 name = fs_path_alloc(); 3190 from_path = fs_path_alloc(); 3191 if (!name || !from_path) { 3192 ret = -ENOMEM; 3193 goto out; 3194 } 3195 3196 dm = get_waiting_dir_move(sctx, pm->ino); 3197 ASSERT(dm); 3198 rmdir_ino = dm->rmdir_ino; 3199 is_orphan = dm->orphanized; 3200 free_waiting_dir_move(sctx, dm); 3201 3202 if (is_orphan) { 3203 ret = gen_unique_name(sctx, pm->ino, 3204 pm->gen, from_path); 3205 } else { 3206 ret = get_first_ref(sctx->parent_root, pm->ino, 3207 &parent_ino, &parent_gen, name); 3208 if (ret < 0) 3209 goto out; 3210 ret = get_cur_path(sctx, parent_ino, parent_gen, 3211 from_path); 3212 if (ret < 0) 3213 goto out; 3214 ret = fs_path_add_path(from_path, name); 3215 } 3216 if (ret < 0) 3217 goto out; 3218 3219 sctx->send_progress = sctx->cur_ino + 1; 3220 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3221 if (ret < 0) 3222 goto out; 3223 if (ret) { 3224 LIST_HEAD(deleted_refs); 3225 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3226 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3227 &pm->update_refs, &deleted_refs, 3228 is_orphan); 3229 if (ret < 0) 3230 goto out; 3231 if (rmdir_ino) { 3232 dm = get_waiting_dir_move(sctx, pm->ino); 3233 ASSERT(dm); 3234 dm->rmdir_ino = rmdir_ino; 3235 } 3236 goto out; 3237 } 3238 fs_path_reset(name); 3239 to_path = name; 3240 name = NULL; 3241 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3242 if (ret < 0) 3243 goto out; 3244 3245 ret = send_rename(sctx, from_path, to_path); 3246 if (ret < 0) 3247 goto out; 3248 3249 if (rmdir_ino) { 3250 struct orphan_dir_info *odi; 3251 u64 gen; 3252 3253 odi = get_orphan_dir_info(sctx, rmdir_ino); 3254 if (!odi) { 3255 /* already deleted */ 3256 goto finish; 3257 } 3258 gen = odi->gen; 3259 3260 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3261 if (ret < 0) 3262 goto out; 3263 if (!ret) 3264 goto finish; 3265 3266 name = fs_path_alloc(); 3267 if (!name) { 3268 ret = -ENOMEM; 3269 goto out; 3270 } 3271 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3272 if (ret < 0) 3273 goto out; 3274 ret = send_rmdir(sctx, name); 3275 if (ret < 0) 3276 goto out; 3277 } 3278 3279 finish: 3280 ret = send_utimes(sctx, pm->ino, pm->gen); 3281 if (ret < 0) 3282 goto out; 3283 3284 /* 3285 * After rename/move, need to update the utimes of both new parent(s) 3286 * and old parent(s). 3287 */ 3288 list_for_each_entry(cur, &pm->update_refs, list) { 3289 /* 3290 * The parent inode might have been deleted in the send snapshot 3291 */ 3292 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3293 NULL, NULL, NULL, NULL, NULL); 3294 if (ret == -ENOENT) { 3295 ret = 0; 3296 continue; 3297 } 3298 if (ret < 0) 3299 goto out; 3300 3301 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3302 if (ret < 0) 3303 goto out; 3304 } 3305 3306 out: 3307 fs_path_free(name); 3308 fs_path_free(from_path); 3309 fs_path_free(to_path); 3310 sctx->send_progress = orig_progress; 3311 3312 return ret; 3313 } 3314 3315 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3316 { 3317 if (!list_empty(&m->list)) 3318 list_del(&m->list); 3319 if (!RB_EMPTY_NODE(&m->node)) 3320 rb_erase(&m->node, &sctx->pending_dir_moves); 3321 __free_recorded_refs(&m->update_refs); 3322 kfree(m); 3323 } 3324 3325 static void tail_append_pending_moves(struct send_ctx *sctx, 3326 struct pending_dir_move *moves, 3327 struct list_head *stack) 3328 { 3329 if (list_empty(&moves->list)) { 3330 list_add_tail(&moves->list, stack); 3331 } else { 3332 LIST_HEAD(list); 3333 list_splice_init(&moves->list, &list); 3334 list_add_tail(&moves->list, stack); 3335 list_splice_tail(&list, stack); 3336 } 3337 if (!RB_EMPTY_NODE(&moves->node)) { 3338 rb_erase(&moves->node, &sctx->pending_dir_moves); 3339 RB_CLEAR_NODE(&moves->node); 3340 } 3341 } 3342 3343 static int apply_children_dir_moves(struct send_ctx *sctx) 3344 { 3345 struct pending_dir_move *pm; 3346 struct list_head stack; 3347 u64 parent_ino = sctx->cur_ino; 3348 int ret = 0; 3349 3350 pm = get_pending_dir_moves(sctx, parent_ino); 3351 if (!pm) 3352 return 0; 3353 3354 INIT_LIST_HEAD(&stack); 3355 tail_append_pending_moves(sctx, pm, &stack); 3356 3357 while (!list_empty(&stack)) { 3358 pm = list_first_entry(&stack, struct pending_dir_move, list); 3359 parent_ino = pm->ino; 3360 ret = apply_dir_move(sctx, pm); 3361 free_pending_move(sctx, pm); 3362 if (ret) 3363 goto out; 3364 pm = get_pending_dir_moves(sctx, parent_ino); 3365 if (pm) 3366 tail_append_pending_moves(sctx, pm, &stack); 3367 } 3368 return 0; 3369 3370 out: 3371 while (!list_empty(&stack)) { 3372 pm = list_first_entry(&stack, struct pending_dir_move, list); 3373 free_pending_move(sctx, pm); 3374 } 3375 return ret; 3376 } 3377 3378 /* 3379 * We might need to delay a directory rename even when no ancestor directory 3380 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3381 * renamed. This happens when we rename a directory to the old name (the name 3382 * in the parent root) of some other unrelated directory that got its rename 3383 * delayed due to some ancestor with higher number that got renamed. 3384 * 3385 * Example: 3386 * 3387 * Parent snapshot: 3388 * . (ino 256) 3389 * |---- a/ (ino 257) 3390 * | |---- file (ino 260) 3391 * | 3392 * |---- b/ (ino 258) 3393 * |---- c/ (ino 259) 3394 * 3395 * Send snapshot: 3396 * . (ino 256) 3397 * |---- a/ (ino 258) 3398 * |---- x/ (ino 259) 3399 * |---- y/ (ino 257) 3400 * |----- file (ino 260) 3401 * 3402 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3403 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3404 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3405 * must issue is: 3406 * 3407 * 1 - rename 259 from 'c' to 'x' 3408 * 2 - rename 257 from 'a' to 'x/y' 3409 * 3 - rename 258 from 'b' to 'a' 3410 * 3411 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3412 * be done right away and < 0 on error. 3413 */ 3414 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3415 struct recorded_ref *parent_ref, 3416 const bool is_orphan) 3417 { 3418 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3419 struct btrfs_path *path; 3420 struct btrfs_key key; 3421 struct btrfs_key di_key; 3422 struct btrfs_dir_item *di; 3423 u64 left_gen; 3424 u64 right_gen; 3425 int ret = 0; 3426 struct waiting_dir_move *wdm; 3427 3428 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3429 return 0; 3430 3431 path = alloc_path_for_send(); 3432 if (!path) 3433 return -ENOMEM; 3434 3435 key.objectid = parent_ref->dir; 3436 key.type = BTRFS_DIR_ITEM_KEY; 3437 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3438 3439 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3440 if (ret < 0) { 3441 goto out; 3442 } else if (ret > 0) { 3443 ret = 0; 3444 goto out; 3445 } 3446 3447 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3448 parent_ref->name_len); 3449 if (!di) { 3450 ret = 0; 3451 goto out; 3452 } 3453 /* 3454 * di_key.objectid has the number of the inode that has a dentry in the 3455 * parent directory with the same name that sctx->cur_ino is being 3456 * renamed to. We need to check if that inode is in the send root as 3457 * well and if it is currently marked as an inode with a pending rename, 3458 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3459 * that it happens after that other inode is renamed. 3460 */ 3461 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3462 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3463 ret = 0; 3464 goto out; 3465 } 3466 3467 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3468 &left_gen, NULL, NULL, NULL, NULL); 3469 if (ret < 0) 3470 goto out; 3471 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3472 &right_gen, NULL, NULL, NULL, NULL); 3473 if (ret < 0) { 3474 if (ret == -ENOENT) 3475 ret = 0; 3476 goto out; 3477 } 3478 3479 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3480 if (right_gen != left_gen) { 3481 ret = 0; 3482 goto out; 3483 } 3484 3485 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3486 if (wdm && !wdm->orphanized) { 3487 ret = add_pending_dir_move(sctx, 3488 sctx->cur_ino, 3489 sctx->cur_inode_gen, 3490 di_key.objectid, 3491 &sctx->new_refs, 3492 &sctx->deleted_refs, 3493 is_orphan); 3494 if (!ret) 3495 ret = 1; 3496 } 3497 out: 3498 btrfs_free_path(path); 3499 return ret; 3500 } 3501 3502 /* 3503 * Check if inode ino2, or any of its ancestors, is inode ino1. 3504 * Return 1 if true, 0 if false and < 0 on error. 3505 */ 3506 static int check_ino_in_path(struct btrfs_root *root, 3507 const u64 ino1, 3508 const u64 ino1_gen, 3509 const u64 ino2, 3510 const u64 ino2_gen, 3511 struct fs_path *fs_path) 3512 { 3513 u64 ino = ino2; 3514 3515 if (ino1 == ino2) 3516 return ino1_gen == ino2_gen; 3517 3518 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3519 u64 parent; 3520 u64 parent_gen; 3521 int ret; 3522 3523 fs_path_reset(fs_path); 3524 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3525 if (ret < 0) 3526 return ret; 3527 if (parent == ino1) 3528 return parent_gen == ino1_gen; 3529 ino = parent; 3530 } 3531 return 0; 3532 } 3533 3534 /* 3535 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3536 * possible path (in case ino2 is not a directory and has multiple hard links). 3537 * Return 1 if true, 0 if false and < 0 on error. 3538 */ 3539 static int is_ancestor(struct btrfs_root *root, 3540 const u64 ino1, 3541 const u64 ino1_gen, 3542 const u64 ino2, 3543 struct fs_path *fs_path) 3544 { 3545 bool free_fs_path = false; 3546 int ret = 0; 3547 struct btrfs_path *path = NULL; 3548 struct btrfs_key key; 3549 3550 if (!fs_path) { 3551 fs_path = fs_path_alloc(); 3552 if (!fs_path) 3553 return -ENOMEM; 3554 free_fs_path = true; 3555 } 3556 3557 path = alloc_path_for_send(); 3558 if (!path) { 3559 ret = -ENOMEM; 3560 goto out; 3561 } 3562 3563 key.objectid = ino2; 3564 key.type = BTRFS_INODE_REF_KEY; 3565 key.offset = 0; 3566 3567 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3568 if (ret < 0) 3569 goto out; 3570 3571 while (true) { 3572 struct extent_buffer *leaf = path->nodes[0]; 3573 int slot = path->slots[0]; 3574 u32 cur_offset = 0; 3575 u32 item_size; 3576 3577 if (slot >= btrfs_header_nritems(leaf)) { 3578 ret = btrfs_next_leaf(root, path); 3579 if (ret < 0) 3580 goto out; 3581 if (ret > 0) 3582 break; 3583 continue; 3584 } 3585 3586 btrfs_item_key_to_cpu(leaf, &key, slot); 3587 if (key.objectid != ino2) 3588 break; 3589 if (key.type != BTRFS_INODE_REF_KEY && 3590 key.type != BTRFS_INODE_EXTREF_KEY) 3591 break; 3592 3593 item_size = btrfs_item_size_nr(leaf, slot); 3594 while (cur_offset < item_size) { 3595 u64 parent; 3596 u64 parent_gen; 3597 3598 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3599 unsigned long ptr; 3600 struct btrfs_inode_extref *extref; 3601 3602 ptr = btrfs_item_ptr_offset(leaf, slot); 3603 extref = (struct btrfs_inode_extref *) 3604 (ptr + cur_offset); 3605 parent = btrfs_inode_extref_parent(leaf, 3606 extref); 3607 cur_offset += sizeof(*extref); 3608 cur_offset += btrfs_inode_extref_name_len(leaf, 3609 extref); 3610 } else { 3611 parent = key.offset; 3612 cur_offset = item_size; 3613 } 3614 3615 ret = get_inode_info(root, parent, NULL, &parent_gen, 3616 NULL, NULL, NULL, NULL); 3617 if (ret < 0) 3618 goto out; 3619 ret = check_ino_in_path(root, ino1, ino1_gen, 3620 parent, parent_gen, fs_path); 3621 if (ret) 3622 goto out; 3623 } 3624 path->slots[0]++; 3625 } 3626 ret = 0; 3627 out: 3628 btrfs_free_path(path); 3629 if (free_fs_path) 3630 fs_path_free(fs_path); 3631 return ret; 3632 } 3633 3634 static int wait_for_parent_move(struct send_ctx *sctx, 3635 struct recorded_ref *parent_ref, 3636 const bool is_orphan) 3637 { 3638 int ret = 0; 3639 u64 ino = parent_ref->dir; 3640 u64 ino_gen = parent_ref->dir_gen; 3641 u64 parent_ino_before, parent_ino_after; 3642 struct fs_path *path_before = NULL; 3643 struct fs_path *path_after = NULL; 3644 int len1, len2; 3645 3646 path_after = fs_path_alloc(); 3647 path_before = fs_path_alloc(); 3648 if (!path_after || !path_before) { 3649 ret = -ENOMEM; 3650 goto out; 3651 } 3652 3653 /* 3654 * Our current directory inode may not yet be renamed/moved because some 3655 * ancestor (immediate or not) has to be renamed/moved first. So find if 3656 * such ancestor exists and make sure our own rename/move happens after 3657 * that ancestor is processed to avoid path build infinite loops (done 3658 * at get_cur_path()). 3659 */ 3660 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3661 u64 parent_ino_after_gen; 3662 3663 if (is_waiting_for_move(sctx, ino)) { 3664 /* 3665 * If the current inode is an ancestor of ino in the 3666 * parent root, we need to delay the rename of the 3667 * current inode, otherwise don't delayed the rename 3668 * because we can end up with a circular dependency 3669 * of renames, resulting in some directories never 3670 * getting the respective rename operations issued in 3671 * the send stream or getting into infinite path build 3672 * loops. 3673 */ 3674 ret = is_ancestor(sctx->parent_root, 3675 sctx->cur_ino, sctx->cur_inode_gen, 3676 ino, path_before); 3677 if (ret) 3678 break; 3679 } 3680 3681 fs_path_reset(path_before); 3682 fs_path_reset(path_after); 3683 3684 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3685 &parent_ino_after_gen, path_after); 3686 if (ret < 0) 3687 goto out; 3688 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3689 NULL, path_before); 3690 if (ret < 0 && ret != -ENOENT) { 3691 goto out; 3692 } else if (ret == -ENOENT) { 3693 ret = 0; 3694 break; 3695 } 3696 3697 len1 = fs_path_len(path_before); 3698 len2 = fs_path_len(path_after); 3699 if (ino > sctx->cur_ino && 3700 (parent_ino_before != parent_ino_after || len1 != len2 || 3701 memcmp(path_before->start, path_after->start, len1))) { 3702 u64 parent_ino_gen; 3703 3704 ret = get_inode_info(sctx->parent_root, ino, NULL, 3705 &parent_ino_gen, NULL, NULL, NULL, 3706 NULL); 3707 if (ret < 0) 3708 goto out; 3709 if (ino_gen == parent_ino_gen) { 3710 ret = 1; 3711 break; 3712 } 3713 } 3714 ino = parent_ino_after; 3715 ino_gen = parent_ino_after_gen; 3716 } 3717 3718 out: 3719 fs_path_free(path_before); 3720 fs_path_free(path_after); 3721 3722 if (ret == 1) { 3723 ret = add_pending_dir_move(sctx, 3724 sctx->cur_ino, 3725 sctx->cur_inode_gen, 3726 ino, 3727 &sctx->new_refs, 3728 &sctx->deleted_refs, 3729 is_orphan); 3730 if (!ret) 3731 ret = 1; 3732 } 3733 3734 return ret; 3735 } 3736 3737 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3738 { 3739 int ret; 3740 struct fs_path *new_path; 3741 3742 /* 3743 * Our reference's name member points to its full_path member string, so 3744 * we use here a new path. 3745 */ 3746 new_path = fs_path_alloc(); 3747 if (!new_path) 3748 return -ENOMEM; 3749 3750 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3751 if (ret < 0) { 3752 fs_path_free(new_path); 3753 return ret; 3754 } 3755 ret = fs_path_add(new_path, ref->name, ref->name_len); 3756 if (ret < 0) { 3757 fs_path_free(new_path); 3758 return ret; 3759 } 3760 3761 fs_path_free(ref->full_path); 3762 set_ref_path(ref, new_path); 3763 3764 return 0; 3765 } 3766 3767 /* 3768 * This does all the move/link/unlink/rmdir magic. 3769 */ 3770 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3771 { 3772 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3773 int ret = 0; 3774 struct recorded_ref *cur; 3775 struct recorded_ref *cur2; 3776 struct list_head check_dirs; 3777 struct fs_path *valid_path = NULL; 3778 u64 ow_inode = 0; 3779 u64 ow_gen; 3780 u64 ow_mode; 3781 int did_overwrite = 0; 3782 int is_orphan = 0; 3783 u64 last_dir_ino_rm = 0; 3784 bool can_rename = true; 3785 bool orphanized_dir = false; 3786 bool orphanized_ancestor = false; 3787 3788 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3789 3790 /* 3791 * This should never happen as the root dir always has the same ref 3792 * which is always '..' 3793 */ 3794 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3795 INIT_LIST_HEAD(&check_dirs); 3796 3797 valid_path = fs_path_alloc(); 3798 if (!valid_path) { 3799 ret = -ENOMEM; 3800 goto out; 3801 } 3802 3803 /* 3804 * First, check if the first ref of the current inode was overwritten 3805 * before. If yes, we know that the current inode was already orphanized 3806 * and thus use the orphan name. If not, we can use get_cur_path to 3807 * get the path of the first ref as it would like while receiving at 3808 * this point in time. 3809 * New inodes are always orphan at the beginning, so force to use the 3810 * orphan name in this case. 3811 * The first ref is stored in valid_path and will be updated if it 3812 * gets moved around. 3813 */ 3814 if (!sctx->cur_inode_new) { 3815 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3816 sctx->cur_inode_gen); 3817 if (ret < 0) 3818 goto out; 3819 if (ret) 3820 did_overwrite = 1; 3821 } 3822 if (sctx->cur_inode_new || did_overwrite) { 3823 ret = gen_unique_name(sctx, sctx->cur_ino, 3824 sctx->cur_inode_gen, valid_path); 3825 if (ret < 0) 3826 goto out; 3827 is_orphan = 1; 3828 } else { 3829 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3830 valid_path); 3831 if (ret < 0) 3832 goto out; 3833 } 3834 3835 list_for_each_entry(cur, &sctx->new_refs, list) { 3836 /* 3837 * We may have refs where the parent directory does not exist 3838 * yet. This happens if the parent directories inum is higher 3839 * than the current inum. To handle this case, we create the 3840 * parent directory out of order. But we need to check if this 3841 * did already happen before due to other refs in the same dir. 3842 */ 3843 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3844 if (ret < 0) 3845 goto out; 3846 if (ret == inode_state_will_create) { 3847 ret = 0; 3848 /* 3849 * First check if any of the current inodes refs did 3850 * already create the dir. 3851 */ 3852 list_for_each_entry(cur2, &sctx->new_refs, list) { 3853 if (cur == cur2) 3854 break; 3855 if (cur2->dir == cur->dir) { 3856 ret = 1; 3857 break; 3858 } 3859 } 3860 3861 /* 3862 * If that did not happen, check if a previous inode 3863 * did already create the dir. 3864 */ 3865 if (!ret) 3866 ret = did_create_dir(sctx, cur->dir); 3867 if (ret < 0) 3868 goto out; 3869 if (!ret) { 3870 ret = send_create_inode(sctx, cur->dir); 3871 if (ret < 0) 3872 goto out; 3873 } 3874 } 3875 3876 /* 3877 * Check if this new ref would overwrite the first ref of 3878 * another unprocessed inode. If yes, orphanize the 3879 * overwritten inode. If we find an overwritten ref that is 3880 * not the first ref, simply unlink it. 3881 */ 3882 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3883 cur->name, cur->name_len, 3884 &ow_inode, &ow_gen, &ow_mode); 3885 if (ret < 0) 3886 goto out; 3887 if (ret) { 3888 ret = is_first_ref(sctx->parent_root, 3889 ow_inode, cur->dir, cur->name, 3890 cur->name_len); 3891 if (ret < 0) 3892 goto out; 3893 if (ret) { 3894 struct name_cache_entry *nce; 3895 struct waiting_dir_move *wdm; 3896 3897 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3898 cur->full_path); 3899 if (ret < 0) 3900 goto out; 3901 if (S_ISDIR(ow_mode)) 3902 orphanized_dir = true; 3903 3904 /* 3905 * If ow_inode has its rename operation delayed 3906 * make sure that its orphanized name is used in 3907 * the source path when performing its rename 3908 * operation. 3909 */ 3910 if (is_waiting_for_move(sctx, ow_inode)) { 3911 wdm = get_waiting_dir_move(sctx, 3912 ow_inode); 3913 ASSERT(wdm); 3914 wdm->orphanized = true; 3915 } 3916 3917 /* 3918 * Make sure we clear our orphanized inode's 3919 * name from the name cache. This is because the 3920 * inode ow_inode might be an ancestor of some 3921 * other inode that will be orphanized as well 3922 * later and has an inode number greater than 3923 * sctx->send_progress. We need to prevent 3924 * future name lookups from using the old name 3925 * and get instead the orphan name. 3926 */ 3927 nce = name_cache_search(sctx, ow_inode, ow_gen); 3928 if (nce) { 3929 name_cache_delete(sctx, nce); 3930 kfree(nce); 3931 } 3932 3933 /* 3934 * ow_inode might currently be an ancestor of 3935 * cur_ino, therefore compute valid_path (the 3936 * current path of cur_ino) again because it 3937 * might contain the pre-orphanization name of 3938 * ow_inode, which is no longer valid. 3939 */ 3940 ret = is_ancestor(sctx->parent_root, 3941 ow_inode, ow_gen, 3942 sctx->cur_ino, NULL); 3943 if (ret > 0) { 3944 orphanized_ancestor = true; 3945 fs_path_reset(valid_path); 3946 ret = get_cur_path(sctx, sctx->cur_ino, 3947 sctx->cur_inode_gen, 3948 valid_path); 3949 } 3950 if (ret < 0) 3951 goto out; 3952 } else { 3953 ret = send_unlink(sctx, cur->full_path); 3954 if (ret < 0) 3955 goto out; 3956 } 3957 } 3958 3959 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3960 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3961 if (ret < 0) 3962 goto out; 3963 if (ret == 1) { 3964 can_rename = false; 3965 *pending_move = 1; 3966 } 3967 } 3968 3969 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 3970 can_rename) { 3971 ret = wait_for_parent_move(sctx, cur, is_orphan); 3972 if (ret < 0) 3973 goto out; 3974 if (ret == 1) { 3975 can_rename = false; 3976 *pending_move = 1; 3977 } 3978 } 3979 3980 /* 3981 * link/move the ref to the new place. If we have an orphan 3982 * inode, move it and update valid_path. If not, link or move 3983 * it depending on the inode mode. 3984 */ 3985 if (is_orphan && can_rename) { 3986 ret = send_rename(sctx, valid_path, cur->full_path); 3987 if (ret < 0) 3988 goto out; 3989 is_orphan = 0; 3990 ret = fs_path_copy(valid_path, cur->full_path); 3991 if (ret < 0) 3992 goto out; 3993 } else if (can_rename) { 3994 if (S_ISDIR(sctx->cur_inode_mode)) { 3995 /* 3996 * Dirs can't be linked, so move it. For moved 3997 * dirs, we always have one new and one deleted 3998 * ref. The deleted ref is ignored later. 3999 */ 4000 ret = send_rename(sctx, valid_path, 4001 cur->full_path); 4002 if (!ret) 4003 ret = fs_path_copy(valid_path, 4004 cur->full_path); 4005 if (ret < 0) 4006 goto out; 4007 } else { 4008 /* 4009 * We might have previously orphanized an inode 4010 * which is an ancestor of our current inode, 4011 * so our reference's full path, which was 4012 * computed before any such orphanizations, must 4013 * be updated. 4014 */ 4015 if (orphanized_dir) { 4016 ret = update_ref_path(sctx, cur); 4017 if (ret < 0) 4018 goto out; 4019 } 4020 ret = send_link(sctx, cur->full_path, 4021 valid_path); 4022 if (ret < 0) 4023 goto out; 4024 } 4025 } 4026 ret = dup_ref(cur, &check_dirs); 4027 if (ret < 0) 4028 goto out; 4029 } 4030 4031 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4032 /* 4033 * Check if we can already rmdir the directory. If not, 4034 * orphanize it. For every dir item inside that gets deleted 4035 * later, we do this check again and rmdir it then if possible. 4036 * See the use of check_dirs for more details. 4037 */ 4038 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4039 sctx->cur_ino); 4040 if (ret < 0) 4041 goto out; 4042 if (ret) { 4043 ret = send_rmdir(sctx, valid_path); 4044 if (ret < 0) 4045 goto out; 4046 } else if (!is_orphan) { 4047 ret = orphanize_inode(sctx, sctx->cur_ino, 4048 sctx->cur_inode_gen, valid_path); 4049 if (ret < 0) 4050 goto out; 4051 is_orphan = 1; 4052 } 4053 4054 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4055 ret = dup_ref(cur, &check_dirs); 4056 if (ret < 0) 4057 goto out; 4058 } 4059 } else if (S_ISDIR(sctx->cur_inode_mode) && 4060 !list_empty(&sctx->deleted_refs)) { 4061 /* 4062 * We have a moved dir. Add the old parent to check_dirs 4063 */ 4064 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4065 list); 4066 ret = dup_ref(cur, &check_dirs); 4067 if (ret < 0) 4068 goto out; 4069 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4070 /* 4071 * We have a non dir inode. Go through all deleted refs and 4072 * unlink them if they were not already overwritten by other 4073 * inodes. 4074 */ 4075 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4076 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4077 sctx->cur_ino, sctx->cur_inode_gen, 4078 cur->name, cur->name_len); 4079 if (ret < 0) 4080 goto out; 4081 if (!ret) { 4082 /* 4083 * If we orphanized any ancestor before, we need 4084 * to recompute the full path for deleted names, 4085 * since any such path was computed before we 4086 * processed any references and orphanized any 4087 * ancestor inode. 4088 */ 4089 if (orphanized_ancestor) { 4090 ret = update_ref_path(sctx, cur); 4091 if (ret < 0) 4092 goto out; 4093 } 4094 ret = send_unlink(sctx, cur->full_path); 4095 if (ret < 0) 4096 goto out; 4097 } 4098 ret = dup_ref(cur, &check_dirs); 4099 if (ret < 0) 4100 goto out; 4101 } 4102 /* 4103 * If the inode is still orphan, unlink the orphan. This may 4104 * happen when a previous inode did overwrite the first ref 4105 * of this inode and no new refs were added for the current 4106 * inode. Unlinking does not mean that the inode is deleted in 4107 * all cases. There may still be links to this inode in other 4108 * places. 4109 */ 4110 if (is_orphan) { 4111 ret = send_unlink(sctx, valid_path); 4112 if (ret < 0) 4113 goto out; 4114 } 4115 } 4116 4117 /* 4118 * We did collect all parent dirs where cur_inode was once located. We 4119 * now go through all these dirs and check if they are pending for 4120 * deletion and if it's finally possible to perform the rmdir now. 4121 * We also update the inode stats of the parent dirs here. 4122 */ 4123 list_for_each_entry(cur, &check_dirs, list) { 4124 /* 4125 * In case we had refs into dirs that were not processed yet, 4126 * we don't need to do the utime and rmdir logic for these dirs. 4127 * The dir will be processed later. 4128 */ 4129 if (cur->dir > sctx->cur_ino) 4130 continue; 4131 4132 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4133 if (ret < 0) 4134 goto out; 4135 4136 if (ret == inode_state_did_create || 4137 ret == inode_state_no_change) { 4138 /* TODO delayed utimes */ 4139 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4140 if (ret < 0) 4141 goto out; 4142 } else if (ret == inode_state_did_delete && 4143 cur->dir != last_dir_ino_rm) { 4144 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4145 sctx->cur_ino); 4146 if (ret < 0) 4147 goto out; 4148 if (ret) { 4149 ret = get_cur_path(sctx, cur->dir, 4150 cur->dir_gen, valid_path); 4151 if (ret < 0) 4152 goto out; 4153 ret = send_rmdir(sctx, valid_path); 4154 if (ret < 0) 4155 goto out; 4156 last_dir_ino_rm = cur->dir; 4157 } 4158 } 4159 } 4160 4161 ret = 0; 4162 4163 out: 4164 __free_recorded_refs(&check_dirs); 4165 free_recorded_refs(sctx); 4166 fs_path_free(valid_path); 4167 return ret; 4168 } 4169 4170 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4171 void *ctx, struct list_head *refs) 4172 { 4173 int ret = 0; 4174 struct send_ctx *sctx = ctx; 4175 struct fs_path *p; 4176 u64 gen; 4177 4178 p = fs_path_alloc(); 4179 if (!p) 4180 return -ENOMEM; 4181 4182 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4183 NULL, NULL); 4184 if (ret < 0) 4185 goto out; 4186 4187 ret = get_cur_path(sctx, dir, gen, p); 4188 if (ret < 0) 4189 goto out; 4190 ret = fs_path_add_path(p, name); 4191 if (ret < 0) 4192 goto out; 4193 4194 ret = __record_ref(refs, dir, gen, p); 4195 4196 out: 4197 if (ret) 4198 fs_path_free(p); 4199 return ret; 4200 } 4201 4202 static int __record_new_ref(int num, u64 dir, int index, 4203 struct fs_path *name, 4204 void *ctx) 4205 { 4206 struct send_ctx *sctx = ctx; 4207 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4208 } 4209 4210 4211 static int __record_deleted_ref(int num, u64 dir, int index, 4212 struct fs_path *name, 4213 void *ctx) 4214 { 4215 struct send_ctx *sctx = ctx; 4216 return record_ref(sctx->parent_root, dir, name, ctx, 4217 &sctx->deleted_refs); 4218 } 4219 4220 static int record_new_ref(struct send_ctx *sctx) 4221 { 4222 int ret; 4223 4224 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4225 sctx->cmp_key, 0, __record_new_ref, sctx); 4226 if (ret < 0) 4227 goto out; 4228 ret = 0; 4229 4230 out: 4231 return ret; 4232 } 4233 4234 static int record_deleted_ref(struct send_ctx *sctx) 4235 { 4236 int ret; 4237 4238 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4239 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4240 if (ret < 0) 4241 goto out; 4242 ret = 0; 4243 4244 out: 4245 return ret; 4246 } 4247 4248 struct find_ref_ctx { 4249 u64 dir; 4250 u64 dir_gen; 4251 struct btrfs_root *root; 4252 struct fs_path *name; 4253 int found_idx; 4254 }; 4255 4256 static int __find_iref(int num, u64 dir, int index, 4257 struct fs_path *name, 4258 void *ctx_) 4259 { 4260 struct find_ref_ctx *ctx = ctx_; 4261 u64 dir_gen; 4262 int ret; 4263 4264 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4265 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4266 /* 4267 * To avoid doing extra lookups we'll only do this if everything 4268 * else matches. 4269 */ 4270 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4271 NULL, NULL, NULL); 4272 if (ret) 4273 return ret; 4274 if (dir_gen != ctx->dir_gen) 4275 return 0; 4276 ctx->found_idx = num; 4277 return 1; 4278 } 4279 return 0; 4280 } 4281 4282 static int find_iref(struct btrfs_root *root, 4283 struct btrfs_path *path, 4284 struct btrfs_key *key, 4285 u64 dir, u64 dir_gen, struct fs_path *name) 4286 { 4287 int ret; 4288 struct find_ref_ctx ctx; 4289 4290 ctx.dir = dir; 4291 ctx.name = name; 4292 ctx.dir_gen = dir_gen; 4293 ctx.found_idx = -1; 4294 ctx.root = root; 4295 4296 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4297 if (ret < 0) 4298 return ret; 4299 4300 if (ctx.found_idx == -1) 4301 return -ENOENT; 4302 4303 return ctx.found_idx; 4304 } 4305 4306 static int __record_changed_new_ref(int num, u64 dir, int index, 4307 struct fs_path *name, 4308 void *ctx) 4309 { 4310 u64 dir_gen; 4311 int ret; 4312 struct send_ctx *sctx = ctx; 4313 4314 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4315 NULL, NULL, NULL); 4316 if (ret) 4317 return ret; 4318 4319 ret = find_iref(sctx->parent_root, sctx->right_path, 4320 sctx->cmp_key, dir, dir_gen, name); 4321 if (ret == -ENOENT) 4322 ret = __record_new_ref(num, dir, index, name, sctx); 4323 else if (ret > 0) 4324 ret = 0; 4325 4326 return ret; 4327 } 4328 4329 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4330 struct fs_path *name, 4331 void *ctx) 4332 { 4333 u64 dir_gen; 4334 int ret; 4335 struct send_ctx *sctx = ctx; 4336 4337 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4338 NULL, NULL, NULL); 4339 if (ret) 4340 return ret; 4341 4342 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4343 dir, dir_gen, name); 4344 if (ret == -ENOENT) 4345 ret = __record_deleted_ref(num, dir, index, name, sctx); 4346 else if (ret > 0) 4347 ret = 0; 4348 4349 return ret; 4350 } 4351 4352 static int record_changed_ref(struct send_ctx *sctx) 4353 { 4354 int ret = 0; 4355 4356 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4357 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4358 if (ret < 0) 4359 goto out; 4360 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4361 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4362 if (ret < 0) 4363 goto out; 4364 ret = 0; 4365 4366 out: 4367 return ret; 4368 } 4369 4370 /* 4371 * Record and process all refs at once. Needed when an inode changes the 4372 * generation number, which means that it was deleted and recreated. 4373 */ 4374 static int process_all_refs(struct send_ctx *sctx, 4375 enum btrfs_compare_tree_result cmd) 4376 { 4377 int ret; 4378 struct btrfs_root *root; 4379 struct btrfs_path *path; 4380 struct btrfs_key key; 4381 struct btrfs_key found_key; 4382 struct extent_buffer *eb; 4383 int slot; 4384 iterate_inode_ref_t cb; 4385 int pending_move = 0; 4386 4387 path = alloc_path_for_send(); 4388 if (!path) 4389 return -ENOMEM; 4390 4391 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4392 root = sctx->send_root; 4393 cb = __record_new_ref; 4394 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4395 root = sctx->parent_root; 4396 cb = __record_deleted_ref; 4397 } else { 4398 btrfs_err(sctx->send_root->fs_info, 4399 "Wrong command %d in process_all_refs", cmd); 4400 ret = -EINVAL; 4401 goto out; 4402 } 4403 4404 key.objectid = sctx->cmp_key->objectid; 4405 key.type = BTRFS_INODE_REF_KEY; 4406 key.offset = 0; 4407 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4408 if (ret < 0) 4409 goto out; 4410 4411 while (1) { 4412 eb = path->nodes[0]; 4413 slot = path->slots[0]; 4414 if (slot >= btrfs_header_nritems(eb)) { 4415 ret = btrfs_next_leaf(root, path); 4416 if (ret < 0) 4417 goto out; 4418 else if (ret > 0) 4419 break; 4420 continue; 4421 } 4422 4423 btrfs_item_key_to_cpu(eb, &found_key, slot); 4424 4425 if (found_key.objectid != key.objectid || 4426 (found_key.type != BTRFS_INODE_REF_KEY && 4427 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4428 break; 4429 4430 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4431 if (ret < 0) 4432 goto out; 4433 4434 path->slots[0]++; 4435 } 4436 btrfs_release_path(path); 4437 4438 /* 4439 * We don't actually care about pending_move as we are simply 4440 * re-creating this inode and will be rename'ing it into place once we 4441 * rename the parent directory. 4442 */ 4443 ret = process_recorded_refs(sctx, &pending_move); 4444 out: 4445 btrfs_free_path(path); 4446 return ret; 4447 } 4448 4449 static int send_set_xattr(struct send_ctx *sctx, 4450 struct fs_path *path, 4451 const char *name, int name_len, 4452 const char *data, int data_len) 4453 { 4454 int ret = 0; 4455 4456 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4457 if (ret < 0) 4458 goto out; 4459 4460 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4461 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4462 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4463 4464 ret = send_cmd(sctx); 4465 4466 tlv_put_failure: 4467 out: 4468 return ret; 4469 } 4470 4471 static int send_remove_xattr(struct send_ctx *sctx, 4472 struct fs_path *path, 4473 const char *name, int name_len) 4474 { 4475 int ret = 0; 4476 4477 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4478 if (ret < 0) 4479 goto out; 4480 4481 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4482 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4483 4484 ret = send_cmd(sctx); 4485 4486 tlv_put_failure: 4487 out: 4488 return ret; 4489 } 4490 4491 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4492 const char *name, int name_len, 4493 const char *data, int data_len, 4494 u8 type, void *ctx) 4495 { 4496 int ret; 4497 struct send_ctx *sctx = ctx; 4498 struct fs_path *p; 4499 struct posix_acl_xattr_header dummy_acl; 4500 4501 p = fs_path_alloc(); 4502 if (!p) 4503 return -ENOMEM; 4504 4505 /* 4506 * This hack is needed because empty acls are stored as zero byte 4507 * data in xattrs. Problem with that is, that receiving these zero byte 4508 * acls will fail later. To fix this, we send a dummy acl list that 4509 * only contains the version number and no entries. 4510 */ 4511 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4512 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4513 if (data_len == 0) { 4514 dummy_acl.a_version = 4515 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4516 data = (char *)&dummy_acl; 4517 data_len = sizeof(dummy_acl); 4518 } 4519 } 4520 4521 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4522 if (ret < 0) 4523 goto out; 4524 4525 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4526 4527 out: 4528 fs_path_free(p); 4529 return ret; 4530 } 4531 4532 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4533 const char *name, int name_len, 4534 const char *data, int data_len, 4535 u8 type, void *ctx) 4536 { 4537 int ret; 4538 struct send_ctx *sctx = ctx; 4539 struct fs_path *p; 4540 4541 p = fs_path_alloc(); 4542 if (!p) 4543 return -ENOMEM; 4544 4545 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4546 if (ret < 0) 4547 goto out; 4548 4549 ret = send_remove_xattr(sctx, p, name, name_len); 4550 4551 out: 4552 fs_path_free(p); 4553 return ret; 4554 } 4555 4556 static int process_new_xattr(struct send_ctx *sctx) 4557 { 4558 int ret = 0; 4559 4560 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4561 __process_new_xattr, sctx); 4562 4563 return ret; 4564 } 4565 4566 static int process_deleted_xattr(struct send_ctx *sctx) 4567 { 4568 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4569 __process_deleted_xattr, sctx); 4570 } 4571 4572 struct find_xattr_ctx { 4573 const char *name; 4574 int name_len; 4575 int found_idx; 4576 char *found_data; 4577 int found_data_len; 4578 }; 4579 4580 static int __find_xattr(int num, struct btrfs_key *di_key, 4581 const char *name, int name_len, 4582 const char *data, int data_len, 4583 u8 type, void *vctx) 4584 { 4585 struct find_xattr_ctx *ctx = vctx; 4586 4587 if (name_len == ctx->name_len && 4588 strncmp(name, ctx->name, name_len) == 0) { 4589 ctx->found_idx = num; 4590 ctx->found_data_len = data_len; 4591 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4592 if (!ctx->found_data) 4593 return -ENOMEM; 4594 return 1; 4595 } 4596 return 0; 4597 } 4598 4599 static int find_xattr(struct btrfs_root *root, 4600 struct btrfs_path *path, 4601 struct btrfs_key *key, 4602 const char *name, int name_len, 4603 char **data, int *data_len) 4604 { 4605 int ret; 4606 struct find_xattr_ctx ctx; 4607 4608 ctx.name = name; 4609 ctx.name_len = name_len; 4610 ctx.found_idx = -1; 4611 ctx.found_data = NULL; 4612 ctx.found_data_len = 0; 4613 4614 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4615 if (ret < 0) 4616 return ret; 4617 4618 if (ctx.found_idx == -1) 4619 return -ENOENT; 4620 if (data) { 4621 *data = ctx.found_data; 4622 *data_len = ctx.found_data_len; 4623 } else { 4624 kfree(ctx.found_data); 4625 } 4626 return ctx.found_idx; 4627 } 4628 4629 4630 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4631 const char *name, int name_len, 4632 const char *data, int data_len, 4633 u8 type, void *ctx) 4634 { 4635 int ret; 4636 struct send_ctx *sctx = ctx; 4637 char *found_data = NULL; 4638 int found_data_len = 0; 4639 4640 ret = find_xattr(sctx->parent_root, sctx->right_path, 4641 sctx->cmp_key, name, name_len, &found_data, 4642 &found_data_len); 4643 if (ret == -ENOENT) { 4644 ret = __process_new_xattr(num, di_key, name, name_len, data, 4645 data_len, type, ctx); 4646 } else if (ret >= 0) { 4647 if (data_len != found_data_len || 4648 memcmp(data, found_data, data_len)) { 4649 ret = __process_new_xattr(num, di_key, name, name_len, 4650 data, data_len, type, ctx); 4651 } else { 4652 ret = 0; 4653 } 4654 } 4655 4656 kfree(found_data); 4657 return ret; 4658 } 4659 4660 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4661 const char *name, int name_len, 4662 const char *data, int data_len, 4663 u8 type, void *ctx) 4664 { 4665 int ret; 4666 struct send_ctx *sctx = ctx; 4667 4668 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4669 name, name_len, NULL, NULL); 4670 if (ret == -ENOENT) 4671 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4672 data_len, type, ctx); 4673 else if (ret >= 0) 4674 ret = 0; 4675 4676 return ret; 4677 } 4678 4679 static int process_changed_xattr(struct send_ctx *sctx) 4680 { 4681 int ret = 0; 4682 4683 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4684 __process_changed_new_xattr, sctx); 4685 if (ret < 0) 4686 goto out; 4687 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4688 __process_changed_deleted_xattr, sctx); 4689 4690 out: 4691 return ret; 4692 } 4693 4694 static int process_all_new_xattrs(struct send_ctx *sctx) 4695 { 4696 int ret; 4697 struct btrfs_root *root; 4698 struct btrfs_path *path; 4699 struct btrfs_key key; 4700 struct btrfs_key found_key; 4701 struct extent_buffer *eb; 4702 int slot; 4703 4704 path = alloc_path_for_send(); 4705 if (!path) 4706 return -ENOMEM; 4707 4708 root = sctx->send_root; 4709 4710 key.objectid = sctx->cmp_key->objectid; 4711 key.type = BTRFS_XATTR_ITEM_KEY; 4712 key.offset = 0; 4713 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4714 if (ret < 0) 4715 goto out; 4716 4717 while (1) { 4718 eb = path->nodes[0]; 4719 slot = path->slots[0]; 4720 if (slot >= btrfs_header_nritems(eb)) { 4721 ret = btrfs_next_leaf(root, path); 4722 if (ret < 0) { 4723 goto out; 4724 } else if (ret > 0) { 4725 ret = 0; 4726 break; 4727 } 4728 continue; 4729 } 4730 4731 btrfs_item_key_to_cpu(eb, &found_key, slot); 4732 if (found_key.objectid != key.objectid || 4733 found_key.type != key.type) { 4734 ret = 0; 4735 goto out; 4736 } 4737 4738 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4739 if (ret < 0) 4740 goto out; 4741 4742 path->slots[0]++; 4743 } 4744 4745 out: 4746 btrfs_free_path(path); 4747 return ret; 4748 } 4749 4750 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4751 { 4752 struct btrfs_root *root = sctx->send_root; 4753 struct btrfs_fs_info *fs_info = root->fs_info; 4754 struct inode *inode; 4755 struct page *page; 4756 char *addr; 4757 struct btrfs_key key; 4758 pgoff_t index = offset >> PAGE_SHIFT; 4759 pgoff_t last_index; 4760 unsigned pg_offset = offset_in_page(offset); 4761 ssize_t ret = 0; 4762 4763 key.objectid = sctx->cur_ino; 4764 key.type = BTRFS_INODE_ITEM_KEY; 4765 key.offset = 0; 4766 4767 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4768 if (IS_ERR(inode)) 4769 return PTR_ERR(inode); 4770 4771 if (offset + len > i_size_read(inode)) { 4772 if (offset > i_size_read(inode)) 4773 len = 0; 4774 else 4775 len = offset - i_size_read(inode); 4776 } 4777 if (len == 0) 4778 goto out; 4779 4780 last_index = (offset + len - 1) >> PAGE_SHIFT; 4781 4782 /* initial readahead */ 4783 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4784 file_ra_state_init(&sctx->ra, inode->i_mapping); 4785 4786 while (index <= last_index) { 4787 unsigned cur_len = min_t(unsigned, len, 4788 PAGE_SIZE - pg_offset); 4789 4790 page = find_lock_page(inode->i_mapping, index); 4791 if (!page) { 4792 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4793 NULL, index, last_index + 1 - index); 4794 4795 page = find_or_create_page(inode->i_mapping, index, 4796 GFP_KERNEL); 4797 if (!page) { 4798 ret = -ENOMEM; 4799 break; 4800 } 4801 } 4802 4803 if (PageReadahead(page)) { 4804 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4805 NULL, page, index, last_index + 1 - index); 4806 } 4807 4808 if (!PageUptodate(page)) { 4809 btrfs_readpage(NULL, page); 4810 lock_page(page); 4811 if (!PageUptodate(page)) { 4812 unlock_page(page); 4813 put_page(page); 4814 ret = -EIO; 4815 break; 4816 } 4817 } 4818 4819 addr = kmap(page); 4820 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4821 kunmap(page); 4822 unlock_page(page); 4823 put_page(page); 4824 index++; 4825 pg_offset = 0; 4826 len -= cur_len; 4827 ret += cur_len; 4828 } 4829 out: 4830 iput(inode); 4831 return ret; 4832 } 4833 4834 /* 4835 * Read some bytes from the current inode/file and send a write command to 4836 * user space. 4837 */ 4838 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4839 { 4840 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4841 int ret = 0; 4842 struct fs_path *p; 4843 ssize_t num_read = 0; 4844 4845 p = fs_path_alloc(); 4846 if (!p) 4847 return -ENOMEM; 4848 4849 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4850 4851 num_read = fill_read_buf(sctx, offset, len); 4852 if (num_read <= 0) { 4853 if (num_read < 0) 4854 ret = num_read; 4855 goto out; 4856 } 4857 4858 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4859 if (ret < 0) 4860 goto out; 4861 4862 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4863 if (ret < 0) 4864 goto out; 4865 4866 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4867 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4868 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4869 4870 ret = send_cmd(sctx); 4871 4872 tlv_put_failure: 4873 out: 4874 fs_path_free(p); 4875 if (ret < 0) 4876 return ret; 4877 return num_read; 4878 } 4879 4880 /* 4881 * Send a clone command to user space. 4882 */ 4883 static int send_clone(struct send_ctx *sctx, 4884 u64 offset, u32 len, 4885 struct clone_root *clone_root) 4886 { 4887 int ret = 0; 4888 struct fs_path *p; 4889 u64 gen; 4890 4891 btrfs_debug(sctx->send_root->fs_info, 4892 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4893 offset, len, clone_root->root->root_key.objectid, 4894 clone_root->ino, clone_root->offset); 4895 4896 p = fs_path_alloc(); 4897 if (!p) 4898 return -ENOMEM; 4899 4900 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4901 if (ret < 0) 4902 goto out; 4903 4904 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4905 if (ret < 0) 4906 goto out; 4907 4908 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4909 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4910 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4911 4912 if (clone_root->root == sctx->send_root) { 4913 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4914 &gen, NULL, NULL, NULL, NULL); 4915 if (ret < 0) 4916 goto out; 4917 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4918 } else { 4919 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4920 } 4921 if (ret < 0) 4922 goto out; 4923 4924 /* 4925 * If the parent we're using has a received_uuid set then use that as 4926 * our clone source as that is what we will look for when doing a 4927 * receive. 4928 * 4929 * This covers the case that we create a snapshot off of a received 4930 * subvolume and then use that as the parent and try to receive on a 4931 * different host. 4932 */ 4933 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4934 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4935 clone_root->root->root_item.received_uuid); 4936 else 4937 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4938 clone_root->root->root_item.uuid); 4939 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4940 le64_to_cpu(clone_root->root->root_item.ctransid)); 4941 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4942 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4943 clone_root->offset); 4944 4945 ret = send_cmd(sctx); 4946 4947 tlv_put_failure: 4948 out: 4949 fs_path_free(p); 4950 return ret; 4951 } 4952 4953 /* 4954 * Send an update extent command to user space. 4955 */ 4956 static int send_update_extent(struct send_ctx *sctx, 4957 u64 offset, u32 len) 4958 { 4959 int ret = 0; 4960 struct fs_path *p; 4961 4962 p = fs_path_alloc(); 4963 if (!p) 4964 return -ENOMEM; 4965 4966 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4967 if (ret < 0) 4968 goto out; 4969 4970 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4971 if (ret < 0) 4972 goto out; 4973 4974 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4975 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4976 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4977 4978 ret = send_cmd(sctx); 4979 4980 tlv_put_failure: 4981 out: 4982 fs_path_free(p); 4983 return ret; 4984 } 4985 4986 static int send_hole(struct send_ctx *sctx, u64 end) 4987 { 4988 struct fs_path *p = NULL; 4989 u64 offset = sctx->cur_inode_last_extent; 4990 u64 len; 4991 int ret = 0; 4992 4993 /* 4994 * A hole that starts at EOF or beyond it. Since we do not yet support 4995 * fallocate (for extent preallocation and hole punching), sending a 4996 * write of zeroes starting at EOF or beyond would later require issuing 4997 * a truncate operation which would undo the write and achieve nothing. 4998 */ 4999 if (offset >= sctx->cur_inode_size) 5000 return 0; 5001 5002 /* 5003 * Don't go beyond the inode's i_size due to prealloc extents that start 5004 * after the i_size. 5005 */ 5006 end = min_t(u64, end, sctx->cur_inode_size); 5007 5008 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5009 return send_update_extent(sctx, offset, end - offset); 5010 5011 p = fs_path_alloc(); 5012 if (!p) 5013 return -ENOMEM; 5014 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5015 if (ret < 0) 5016 goto tlv_put_failure; 5017 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 5018 while (offset < end) { 5019 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 5020 5021 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5022 if (ret < 0) 5023 break; 5024 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5025 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5026 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 5027 ret = send_cmd(sctx); 5028 if (ret < 0) 5029 break; 5030 offset += len; 5031 } 5032 sctx->cur_inode_next_write_offset = offset; 5033 tlv_put_failure: 5034 fs_path_free(p); 5035 return ret; 5036 } 5037 5038 static int send_extent_data(struct send_ctx *sctx, 5039 const u64 offset, 5040 const u64 len) 5041 { 5042 u64 sent = 0; 5043 5044 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5045 return send_update_extent(sctx, offset, len); 5046 5047 while (sent < len) { 5048 u64 size = len - sent; 5049 int ret; 5050 5051 if (size > BTRFS_SEND_READ_SIZE) 5052 size = BTRFS_SEND_READ_SIZE; 5053 ret = send_write(sctx, offset + sent, size); 5054 if (ret < 0) 5055 return ret; 5056 if (!ret) 5057 break; 5058 sent += ret; 5059 } 5060 return 0; 5061 } 5062 5063 static int clone_range(struct send_ctx *sctx, 5064 struct clone_root *clone_root, 5065 const u64 disk_byte, 5066 u64 data_offset, 5067 u64 offset, 5068 u64 len) 5069 { 5070 struct btrfs_path *path; 5071 struct btrfs_key key; 5072 int ret; 5073 u64 clone_src_i_size; 5074 5075 /* 5076 * Prevent cloning from a zero offset with a length matching the sector 5077 * size because in some scenarios this will make the receiver fail. 5078 * 5079 * For example, if in the source filesystem the extent at offset 0 5080 * has a length of sectorsize and it was written using direct IO, then 5081 * it can never be an inline extent (even if compression is enabled). 5082 * Then this extent can be cloned in the original filesystem to a non 5083 * zero file offset, but it may not be possible to clone in the 5084 * destination filesystem because it can be inlined due to compression 5085 * on the destination filesystem (as the receiver's write operations are 5086 * always done using buffered IO). The same happens when the original 5087 * filesystem does not have compression enabled but the destination 5088 * filesystem has. 5089 */ 5090 if (clone_root->offset == 0 && 5091 len == sctx->send_root->fs_info->sectorsize) 5092 return send_extent_data(sctx, offset, len); 5093 5094 path = alloc_path_for_send(); 5095 if (!path) 5096 return -ENOMEM; 5097 5098 /* 5099 * There are inodes that have extents that lie behind its i_size. Don't 5100 * accept clones from these extents. 5101 */ 5102 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5103 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5104 btrfs_release_path(path); 5105 if (ret < 0) 5106 goto out; 5107 5108 /* 5109 * We can't send a clone operation for the entire range if we find 5110 * extent items in the respective range in the source file that 5111 * refer to different extents or if we find holes. 5112 * So check for that and do a mix of clone and regular write/copy 5113 * operations if needed. 5114 * 5115 * Example: 5116 * 5117 * mkfs.btrfs -f /dev/sda 5118 * mount /dev/sda /mnt 5119 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5120 * cp --reflink=always /mnt/foo /mnt/bar 5121 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5122 * btrfs subvolume snapshot -r /mnt /mnt/snap 5123 * 5124 * If when we send the snapshot and we are processing file bar (which 5125 * has a higher inode number than foo) we blindly send a clone operation 5126 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5127 * a file bar that matches the content of file foo - iow, doesn't match 5128 * the content from bar in the original filesystem. 5129 */ 5130 key.objectid = clone_root->ino; 5131 key.type = BTRFS_EXTENT_DATA_KEY; 5132 key.offset = clone_root->offset; 5133 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5134 if (ret < 0) 5135 goto out; 5136 if (ret > 0 && path->slots[0] > 0) { 5137 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5138 if (key.objectid == clone_root->ino && 5139 key.type == BTRFS_EXTENT_DATA_KEY) 5140 path->slots[0]--; 5141 } 5142 5143 while (true) { 5144 struct extent_buffer *leaf = path->nodes[0]; 5145 int slot = path->slots[0]; 5146 struct btrfs_file_extent_item *ei; 5147 u8 type; 5148 u64 ext_len; 5149 u64 clone_len; 5150 u64 clone_data_offset; 5151 5152 if (slot >= btrfs_header_nritems(leaf)) { 5153 ret = btrfs_next_leaf(clone_root->root, path); 5154 if (ret < 0) 5155 goto out; 5156 else if (ret > 0) 5157 break; 5158 continue; 5159 } 5160 5161 btrfs_item_key_to_cpu(leaf, &key, slot); 5162 5163 /* 5164 * We might have an implicit trailing hole (NO_HOLES feature 5165 * enabled). We deal with it after leaving this loop. 5166 */ 5167 if (key.objectid != clone_root->ino || 5168 key.type != BTRFS_EXTENT_DATA_KEY) 5169 break; 5170 5171 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5172 type = btrfs_file_extent_type(leaf, ei); 5173 if (type == BTRFS_FILE_EXTENT_INLINE) { 5174 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5175 ext_len = PAGE_ALIGN(ext_len); 5176 } else { 5177 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5178 } 5179 5180 if (key.offset + ext_len <= clone_root->offset) 5181 goto next; 5182 5183 if (key.offset > clone_root->offset) { 5184 /* Implicit hole, NO_HOLES feature enabled. */ 5185 u64 hole_len = key.offset - clone_root->offset; 5186 5187 if (hole_len > len) 5188 hole_len = len; 5189 ret = send_extent_data(sctx, offset, hole_len); 5190 if (ret < 0) 5191 goto out; 5192 5193 len -= hole_len; 5194 if (len == 0) 5195 break; 5196 offset += hole_len; 5197 clone_root->offset += hole_len; 5198 data_offset += hole_len; 5199 } 5200 5201 if (key.offset >= clone_root->offset + len) 5202 break; 5203 5204 if (key.offset >= clone_src_i_size) 5205 break; 5206 5207 if (key.offset + ext_len > clone_src_i_size) 5208 ext_len = clone_src_i_size - key.offset; 5209 5210 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5211 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5212 clone_root->offset = key.offset; 5213 if (clone_data_offset < data_offset && 5214 clone_data_offset + ext_len > data_offset) { 5215 u64 extent_offset; 5216 5217 extent_offset = data_offset - clone_data_offset; 5218 ext_len -= extent_offset; 5219 clone_data_offset += extent_offset; 5220 clone_root->offset += extent_offset; 5221 } 5222 } 5223 5224 clone_len = min_t(u64, ext_len, len); 5225 5226 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5227 clone_data_offset == data_offset) { 5228 const u64 src_end = clone_root->offset + clone_len; 5229 const u64 sectorsize = SZ_64K; 5230 5231 /* 5232 * We can't clone the last block, when its size is not 5233 * sector size aligned, into the middle of a file. If we 5234 * do so, the receiver will get a failure (-EINVAL) when 5235 * trying to clone or will silently corrupt the data in 5236 * the destination file if it's on a kernel without the 5237 * fix introduced by commit ac765f83f1397646 5238 * ("Btrfs: fix data corruption due to cloning of eof 5239 * block). 5240 * 5241 * So issue a clone of the aligned down range plus a 5242 * regular write for the eof block, if we hit that case. 5243 * 5244 * Also, we use the maximum possible sector size, 64K, 5245 * because we don't know what's the sector size of the 5246 * filesystem that receives the stream, so we have to 5247 * assume the largest possible sector size. 5248 */ 5249 if (src_end == clone_src_i_size && 5250 !IS_ALIGNED(src_end, sectorsize) && 5251 offset + clone_len < sctx->cur_inode_size) { 5252 u64 slen; 5253 5254 slen = ALIGN_DOWN(src_end - clone_root->offset, 5255 sectorsize); 5256 if (slen > 0) { 5257 ret = send_clone(sctx, offset, slen, 5258 clone_root); 5259 if (ret < 0) 5260 goto out; 5261 } 5262 ret = send_extent_data(sctx, offset + slen, 5263 clone_len - slen); 5264 } else { 5265 ret = send_clone(sctx, offset, clone_len, 5266 clone_root); 5267 } 5268 } else { 5269 ret = send_extent_data(sctx, offset, clone_len); 5270 } 5271 5272 if (ret < 0) 5273 goto out; 5274 5275 len -= clone_len; 5276 if (len == 0) 5277 break; 5278 offset += clone_len; 5279 clone_root->offset += clone_len; 5280 data_offset += clone_len; 5281 next: 5282 path->slots[0]++; 5283 } 5284 5285 if (len > 0) 5286 ret = send_extent_data(sctx, offset, len); 5287 else 5288 ret = 0; 5289 out: 5290 btrfs_free_path(path); 5291 return ret; 5292 } 5293 5294 static int send_write_or_clone(struct send_ctx *sctx, 5295 struct btrfs_path *path, 5296 struct btrfs_key *key, 5297 struct clone_root *clone_root) 5298 { 5299 int ret = 0; 5300 struct btrfs_file_extent_item *ei; 5301 u64 offset = key->offset; 5302 u64 len; 5303 u8 type; 5304 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5305 5306 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5307 struct btrfs_file_extent_item); 5308 type = btrfs_file_extent_type(path->nodes[0], ei); 5309 if (type == BTRFS_FILE_EXTENT_INLINE) { 5310 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 5311 /* 5312 * it is possible the inline item won't cover the whole page, 5313 * but there may be items after this page. Make 5314 * sure to send the whole thing 5315 */ 5316 len = PAGE_ALIGN(len); 5317 } else { 5318 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5319 } 5320 5321 if (offset >= sctx->cur_inode_size) { 5322 ret = 0; 5323 goto out; 5324 } 5325 if (offset + len > sctx->cur_inode_size) 5326 len = sctx->cur_inode_size - offset; 5327 if (len == 0) { 5328 ret = 0; 5329 goto out; 5330 } 5331 5332 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5333 u64 disk_byte; 5334 u64 data_offset; 5335 5336 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5337 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5338 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5339 offset, len); 5340 } else { 5341 ret = send_extent_data(sctx, offset, len); 5342 } 5343 sctx->cur_inode_next_write_offset = offset + len; 5344 out: 5345 return ret; 5346 } 5347 5348 static int is_extent_unchanged(struct send_ctx *sctx, 5349 struct btrfs_path *left_path, 5350 struct btrfs_key *ekey) 5351 { 5352 int ret = 0; 5353 struct btrfs_key key; 5354 struct btrfs_path *path = NULL; 5355 struct extent_buffer *eb; 5356 int slot; 5357 struct btrfs_key found_key; 5358 struct btrfs_file_extent_item *ei; 5359 u64 left_disknr; 5360 u64 right_disknr; 5361 u64 left_offset; 5362 u64 right_offset; 5363 u64 left_offset_fixed; 5364 u64 left_len; 5365 u64 right_len; 5366 u64 left_gen; 5367 u64 right_gen; 5368 u8 left_type; 5369 u8 right_type; 5370 5371 path = alloc_path_for_send(); 5372 if (!path) 5373 return -ENOMEM; 5374 5375 eb = left_path->nodes[0]; 5376 slot = left_path->slots[0]; 5377 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5378 left_type = btrfs_file_extent_type(eb, ei); 5379 5380 if (left_type != BTRFS_FILE_EXTENT_REG) { 5381 ret = 0; 5382 goto out; 5383 } 5384 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5385 left_len = btrfs_file_extent_num_bytes(eb, ei); 5386 left_offset = btrfs_file_extent_offset(eb, ei); 5387 left_gen = btrfs_file_extent_generation(eb, ei); 5388 5389 /* 5390 * Following comments will refer to these graphics. L is the left 5391 * extents which we are checking at the moment. 1-8 are the right 5392 * extents that we iterate. 5393 * 5394 * |-----L-----| 5395 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5396 * 5397 * |-----L-----| 5398 * |--1--|-2b-|...(same as above) 5399 * 5400 * Alternative situation. Happens on files where extents got split. 5401 * |-----L-----| 5402 * |-----------7-----------|-6-| 5403 * 5404 * Alternative situation. Happens on files which got larger. 5405 * |-----L-----| 5406 * |-8-| 5407 * Nothing follows after 8. 5408 */ 5409 5410 key.objectid = ekey->objectid; 5411 key.type = BTRFS_EXTENT_DATA_KEY; 5412 key.offset = ekey->offset; 5413 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5414 if (ret < 0) 5415 goto out; 5416 if (ret) { 5417 ret = 0; 5418 goto out; 5419 } 5420 5421 /* 5422 * Handle special case where the right side has no extents at all. 5423 */ 5424 eb = path->nodes[0]; 5425 slot = path->slots[0]; 5426 btrfs_item_key_to_cpu(eb, &found_key, slot); 5427 if (found_key.objectid != key.objectid || 5428 found_key.type != key.type) { 5429 /* If we're a hole then just pretend nothing changed */ 5430 ret = (left_disknr) ? 0 : 1; 5431 goto out; 5432 } 5433 5434 /* 5435 * We're now on 2a, 2b or 7. 5436 */ 5437 key = found_key; 5438 while (key.offset < ekey->offset + left_len) { 5439 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5440 right_type = btrfs_file_extent_type(eb, ei); 5441 if (right_type != BTRFS_FILE_EXTENT_REG && 5442 right_type != BTRFS_FILE_EXTENT_INLINE) { 5443 ret = 0; 5444 goto out; 5445 } 5446 5447 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5448 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5449 right_len = PAGE_ALIGN(right_len); 5450 } else { 5451 right_len = btrfs_file_extent_num_bytes(eb, ei); 5452 } 5453 5454 /* 5455 * Are we at extent 8? If yes, we know the extent is changed. 5456 * This may only happen on the first iteration. 5457 */ 5458 if (found_key.offset + right_len <= ekey->offset) { 5459 /* If we're a hole just pretend nothing changed */ 5460 ret = (left_disknr) ? 0 : 1; 5461 goto out; 5462 } 5463 5464 /* 5465 * We just wanted to see if when we have an inline extent, what 5466 * follows it is a regular extent (wanted to check the above 5467 * condition for inline extents too). This should normally not 5468 * happen but it's possible for example when we have an inline 5469 * compressed extent representing data with a size matching 5470 * the page size (currently the same as sector size). 5471 */ 5472 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5473 ret = 0; 5474 goto out; 5475 } 5476 5477 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5478 right_offset = btrfs_file_extent_offset(eb, ei); 5479 right_gen = btrfs_file_extent_generation(eb, ei); 5480 5481 left_offset_fixed = left_offset; 5482 if (key.offset < ekey->offset) { 5483 /* Fix the right offset for 2a and 7. */ 5484 right_offset += ekey->offset - key.offset; 5485 } else { 5486 /* Fix the left offset for all behind 2a and 2b */ 5487 left_offset_fixed += key.offset - ekey->offset; 5488 } 5489 5490 /* 5491 * Check if we have the same extent. 5492 */ 5493 if (left_disknr != right_disknr || 5494 left_offset_fixed != right_offset || 5495 left_gen != right_gen) { 5496 ret = 0; 5497 goto out; 5498 } 5499 5500 /* 5501 * Go to the next extent. 5502 */ 5503 ret = btrfs_next_item(sctx->parent_root, path); 5504 if (ret < 0) 5505 goto out; 5506 if (!ret) { 5507 eb = path->nodes[0]; 5508 slot = path->slots[0]; 5509 btrfs_item_key_to_cpu(eb, &found_key, slot); 5510 } 5511 if (ret || found_key.objectid != key.objectid || 5512 found_key.type != key.type) { 5513 key.offset += right_len; 5514 break; 5515 } 5516 if (found_key.offset != key.offset + right_len) { 5517 ret = 0; 5518 goto out; 5519 } 5520 key = found_key; 5521 } 5522 5523 /* 5524 * We're now behind the left extent (treat as unchanged) or at the end 5525 * of the right side (treat as changed). 5526 */ 5527 if (key.offset >= ekey->offset + left_len) 5528 ret = 1; 5529 else 5530 ret = 0; 5531 5532 5533 out: 5534 btrfs_free_path(path); 5535 return ret; 5536 } 5537 5538 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5539 { 5540 struct btrfs_path *path; 5541 struct btrfs_root *root = sctx->send_root; 5542 struct btrfs_file_extent_item *fi; 5543 struct btrfs_key key; 5544 u64 extent_end; 5545 u8 type; 5546 int ret; 5547 5548 path = alloc_path_for_send(); 5549 if (!path) 5550 return -ENOMEM; 5551 5552 sctx->cur_inode_last_extent = 0; 5553 5554 key.objectid = sctx->cur_ino; 5555 key.type = BTRFS_EXTENT_DATA_KEY; 5556 key.offset = offset; 5557 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5558 if (ret < 0) 5559 goto out; 5560 ret = 0; 5561 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5562 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5563 goto out; 5564 5565 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5566 struct btrfs_file_extent_item); 5567 type = btrfs_file_extent_type(path->nodes[0], fi); 5568 if (type == BTRFS_FILE_EXTENT_INLINE) { 5569 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi); 5570 extent_end = ALIGN(key.offset + size, 5571 sctx->send_root->fs_info->sectorsize); 5572 } else { 5573 extent_end = key.offset + 5574 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5575 } 5576 sctx->cur_inode_last_extent = extent_end; 5577 out: 5578 btrfs_free_path(path); 5579 return ret; 5580 } 5581 5582 static int range_is_hole_in_parent(struct send_ctx *sctx, 5583 const u64 start, 5584 const u64 end) 5585 { 5586 struct btrfs_path *path; 5587 struct btrfs_key key; 5588 struct btrfs_root *root = sctx->parent_root; 5589 u64 search_start = start; 5590 int ret; 5591 5592 path = alloc_path_for_send(); 5593 if (!path) 5594 return -ENOMEM; 5595 5596 key.objectid = sctx->cur_ino; 5597 key.type = BTRFS_EXTENT_DATA_KEY; 5598 key.offset = search_start; 5599 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5600 if (ret < 0) 5601 goto out; 5602 if (ret > 0 && path->slots[0] > 0) 5603 path->slots[0]--; 5604 5605 while (search_start < end) { 5606 struct extent_buffer *leaf = path->nodes[0]; 5607 int slot = path->slots[0]; 5608 struct btrfs_file_extent_item *fi; 5609 u64 extent_end; 5610 5611 if (slot >= btrfs_header_nritems(leaf)) { 5612 ret = btrfs_next_leaf(root, path); 5613 if (ret < 0) 5614 goto out; 5615 else if (ret > 0) 5616 break; 5617 continue; 5618 } 5619 5620 btrfs_item_key_to_cpu(leaf, &key, slot); 5621 if (key.objectid < sctx->cur_ino || 5622 key.type < BTRFS_EXTENT_DATA_KEY) 5623 goto next; 5624 if (key.objectid > sctx->cur_ino || 5625 key.type > BTRFS_EXTENT_DATA_KEY || 5626 key.offset >= end) 5627 break; 5628 5629 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5630 if (btrfs_file_extent_type(leaf, fi) == 5631 BTRFS_FILE_EXTENT_INLINE) { 5632 u64 size = btrfs_file_extent_ram_bytes(leaf, fi); 5633 5634 extent_end = ALIGN(key.offset + size, 5635 root->fs_info->sectorsize); 5636 } else { 5637 extent_end = key.offset + 5638 btrfs_file_extent_num_bytes(leaf, fi); 5639 } 5640 if (extent_end <= start) 5641 goto next; 5642 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5643 search_start = extent_end; 5644 goto next; 5645 } 5646 ret = 0; 5647 goto out; 5648 next: 5649 path->slots[0]++; 5650 } 5651 ret = 1; 5652 out: 5653 btrfs_free_path(path); 5654 return ret; 5655 } 5656 5657 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5658 struct btrfs_key *key) 5659 { 5660 struct btrfs_file_extent_item *fi; 5661 u64 extent_end; 5662 u8 type; 5663 int ret = 0; 5664 5665 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5666 return 0; 5667 5668 if (sctx->cur_inode_last_extent == (u64)-1) { 5669 ret = get_last_extent(sctx, key->offset - 1); 5670 if (ret) 5671 return ret; 5672 } 5673 5674 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5675 struct btrfs_file_extent_item); 5676 type = btrfs_file_extent_type(path->nodes[0], fi); 5677 if (type == BTRFS_FILE_EXTENT_INLINE) { 5678 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi); 5679 extent_end = ALIGN(key->offset + size, 5680 sctx->send_root->fs_info->sectorsize); 5681 } else { 5682 extent_end = key->offset + 5683 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5684 } 5685 5686 if (path->slots[0] == 0 && 5687 sctx->cur_inode_last_extent < key->offset) { 5688 /* 5689 * We might have skipped entire leafs that contained only 5690 * file extent items for our current inode. These leafs have 5691 * a generation number smaller (older) than the one in the 5692 * current leaf and the leaf our last extent came from, and 5693 * are located between these 2 leafs. 5694 */ 5695 ret = get_last_extent(sctx, key->offset - 1); 5696 if (ret) 5697 return ret; 5698 } 5699 5700 if (sctx->cur_inode_last_extent < key->offset) { 5701 ret = range_is_hole_in_parent(sctx, 5702 sctx->cur_inode_last_extent, 5703 key->offset); 5704 if (ret < 0) 5705 return ret; 5706 else if (ret == 0) 5707 ret = send_hole(sctx, key->offset); 5708 else 5709 ret = 0; 5710 } 5711 sctx->cur_inode_last_extent = extent_end; 5712 return ret; 5713 } 5714 5715 static int process_extent(struct send_ctx *sctx, 5716 struct btrfs_path *path, 5717 struct btrfs_key *key) 5718 { 5719 struct clone_root *found_clone = NULL; 5720 int ret = 0; 5721 5722 if (S_ISLNK(sctx->cur_inode_mode)) 5723 return 0; 5724 5725 if (sctx->parent_root && !sctx->cur_inode_new) { 5726 ret = is_extent_unchanged(sctx, path, key); 5727 if (ret < 0) 5728 goto out; 5729 if (ret) { 5730 ret = 0; 5731 goto out_hole; 5732 } 5733 } else { 5734 struct btrfs_file_extent_item *ei; 5735 u8 type; 5736 5737 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5738 struct btrfs_file_extent_item); 5739 type = btrfs_file_extent_type(path->nodes[0], ei); 5740 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5741 type == BTRFS_FILE_EXTENT_REG) { 5742 /* 5743 * The send spec does not have a prealloc command yet, 5744 * so just leave a hole for prealloc'ed extents until 5745 * we have enough commands queued up to justify rev'ing 5746 * the send spec. 5747 */ 5748 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5749 ret = 0; 5750 goto out; 5751 } 5752 5753 /* Have a hole, just skip it. */ 5754 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5755 ret = 0; 5756 goto out; 5757 } 5758 } 5759 } 5760 5761 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5762 sctx->cur_inode_size, &found_clone); 5763 if (ret != -ENOENT && ret < 0) 5764 goto out; 5765 5766 ret = send_write_or_clone(sctx, path, key, found_clone); 5767 if (ret) 5768 goto out; 5769 out_hole: 5770 ret = maybe_send_hole(sctx, path, key); 5771 out: 5772 return ret; 5773 } 5774 5775 static int process_all_extents(struct send_ctx *sctx) 5776 { 5777 int ret; 5778 struct btrfs_root *root; 5779 struct btrfs_path *path; 5780 struct btrfs_key key; 5781 struct btrfs_key found_key; 5782 struct extent_buffer *eb; 5783 int slot; 5784 5785 root = sctx->send_root; 5786 path = alloc_path_for_send(); 5787 if (!path) 5788 return -ENOMEM; 5789 5790 key.objectid = sctx->cmp_key->objectid; 5791 key.type = BTRFS_EXTENT_DATA_KEY; 5792 key.offset = 0; 5793 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5794 if (ret < 0) 5795 goto out; 5796 5797 while (1) { 5798 eb = path->nodes[0]; 5799 slot = path->slots[0]; 5800 5801 if (slot >= btrfs_header_nritems(eb)) { 5802 ret = btrfs_next_leaf(root, path); 5803 if (ret < 0) { 5804 goto out; 5805 } else if (ret > 0) { 5806 ret = 0; 5807 break; 5808 } 5809 continue; 5810 } 5811 5812 btrfs_item_key_to_cpu(eb, &found_key, slot); 5813 5814 if (found_key.objectid != key.objectid || 5815 found_key.type != key.type) { 5816 ret = 0; 5817 goto out; 5818 } 5819 5820 ret = process_extent(sctx, path, &found_key); 5821 if (ret < 0) 5822 goto out; 5823 5824 path->slots[0]++; 5825 } 5826 5827 out: 5828 btrfs_free_path(path); 5829 return ret; 5830 } 5831 5832 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5833 int *pending_move, 5834 int *refs_processed) 5835 { 5836 int ret = 0; 5837 5838 if (sctx->cur_ino == 0) 5839 goto out; 5840 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5841 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5842 goto out; 5843 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5844 goto out; 5845 5846 ret = process_recorded_refs(sctx, pending_move); 5847 if (ret < 0) 5848 goto out; 5849 5850 *refs_processed = 1; 5851 out: 5852 return ret; 5853 } 5854 5855 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5856 { 5857 int ret = 0; 5858 u64 left_mode; 5859 u64 left_uid; 5860 u64 left_gid; 5861 u64 right_mode; 5862 u64 right_uid; 5863 u64 right_gid; 5864 int need_chmod = 0; 5865 int need_chown = 0; 5866 int need_truncate = 1; 5867 int pending_move = 0; 5868 int refs_processed = 0; 5869 5870 if (sctx->ignore_cur_inode) 5871 return 0; 5872 5873 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5874 &refs_processed); 5875 if (ret < 0) 5876 goto out; 5877 5878 /* 5879 * We have processed the refs and thus need to advance send_progress. 5880 * Now, calls to get_cur_xxx will take the updated refs of the current 5881 * inode into account. 5882 * 5883 * On the other hand, if our current inode is a directory and couldn't 5884 * be moved/renamed because its parent was renamed/moved too and it has 5885 * a higher inode number, we can only move/rename our current inode 5886 * after we moved/renamed its parent. Therefore in this case operate on 5887 * the old path (pre move/rename) of our current inode, and the 5888 * move/rename will be performed later. 5889 */ 5890 if (refs_processed && !pending_move) 5891 sctx->send_progress = sctx->cur_ino + 1; 5892 5893 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5894 goto out; 5895 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5896 goto out; 5897 5898 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5899 &left_mode, &left_uid, &left_gid, NULL); 5900 if (ret < 0) 5901 goto out; 5902 5903 if (!sctx->parent_root || sctx->cur_inode_new) { 5904 need_chown = 1; 5905 if (!S_ISLNK(sctx->cur_inode_mode)) 5906 need_chmod = 1; 5907 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 5908 need_truncate = 0; 5909 } else { 5910 u64 old_size; 5911 5912 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5913 &old_size, NULL, &right_mode, &right_uid, 5914 &right_gid, NULL); 5915 if (ret < 0) 5916 goto out; 5917 5918 if (left_uid != right_uid || left_gid != right_gid) 5919 need_chown = 1; 5920 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5921 need_chmod = 1; 5922 if ((old_size == sctx->cur_inode_size) || 5923 (sctx->cur_inode_size > old_size && 5924 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 5925 need_truncate = 0; 5926 } 5927 5928 if (S_ISREG(sctx->cur_inode_mode)) { 5929 if (need_send_hole(sctx)) { 5930 if (sctx->cur_inode_last_extent == (u64)-1 || 5931 sctx->cur_inode_last_extent < 5932 sctx->cur_inode_size) { 5933 ret = get_last_extent(sctx, (u64)-1); 5934 if (ret) 5935 goto out; 5936 } 5937 if (sctx->cur_inode_last_extent < 5938 sctx->cur_inode_size) { 5939 ret = send_hole(sctx, sctx->cur_inode_size); 5940 if (ret) 5941 goto out; 5942 } 5943 } 5944 if (need_truncate) { 5945 ret = send_truncate(sctx, sctx->cur_ino, 5946 sctx->cur_inode_gen, 5947 sctx->cur_inode_size); 5948 if (ret < 0) 5949 goto out; 5950 } 5951 } 5952 5953 if (need_chown) { 5954 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5955 left_uid, left_gid); 5956 if (ret < 0) 5957 goto out; 5958 } 5959 if (need_chmod) { 5960 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5961 left_mode); 5962 if (ret < 0) 5963 goto out; 5964 } 5965 5966 /* 5967 * If other directory inodes depended on our current directory 5968 * inode's move/rename, now do their move/rename operations. 5969 */ 5970 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5971 ret = apply_children_dir_moves(sctx); 5972 if (ret) 5973 goto out; 5974 /* 5975 * Need to send that every time, no matter if it actually 5976 * changed between the two trees as we have done changes to 5977 * the inode before. If our inode is a directory and it's 5978 * waiting to be moved/renamed, we will send its utimes when 5979 * it's moved/renamed, therefore we don't need to do it here. 5980 */ 5981 sctx->send_progress = sctx->cur_ino + 1; 5982 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5983 if (ret < 0) 5984 goto out; 5985 } 5986 5987 out: 5988 return ret; 5989 } 5990 5991 struct parent_paths_ctx { 5992 struct list_head *refs; 5993 struct send_ctx *sctx; 5994 }; 5995 5996 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 5997 void *ctx) 5998 { 5999 struct parent_paths_ctx *ppctx = ctx; 6000 6001 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 6002 ppctx->refs); 6003 } 6004 6005 /* 6006 * Issue unlink operations for all paths of the current inode found in the 6007 * parent snapshot. 6008 */ 6009 static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6010 { 6011 LIST_HEAD(deleted_refs); 6012 struct btrfs_path *path; 6013 struct btrfs_key key; 6014 struct parent_paths_ctx ctx; 6015 int ret; 6016 6017 path = alloc_path_for_send(); 6018 if (!path) 6019 return -ENOMEM; 6020 6021 key.objectid = sctx->cur_ino; 6022 key.type = BTRFS_INODE_REF_KEY; 6023 key.offset = 0; 6024 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 6025 if (ret < 0) 6026 goto out; 6027 6028 ctx.refs = &deleted_refs; 6029 ctx.sctx = sctx; 6030 6031 while (true) { 6032 struct extent_buffer *eb = path->nodes[0]; 6033 int slot = path->slots[0]; 6034 6035 if (slot >= btrfs_header_nritems(eb)) { 6036 ret = btrfs_next_leaf(sctx->parent_root, path); 6037 if (ret < 0) 6038 goto out; 6039 else if (ret > 0) 6040 break; 6041 continue; 6042 } 6043 6044 btrfs_item_key_to_cpu(eb, &key, slot); 6045 if (key.objectid != sctx->cur_ino) 6046 break; 6047 if (key.type != BTRFS_INODE_REF_KEY && 6048 key.type != BTRFS_INODE_EXTREF_KEY) 6049 break; 6050 6051 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, 6052 record_parent_ref, &ctx); 6053 if (ret < 0) 6054 goto out; 6055 6056 path->slots[0]++; 6057 } 6058 6059 while (!list_empty(&deleted_refs)) { 6060 struct recorded_ref *ref; 6061 6062 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6063 ret = send_unlink(sctx, ref->full_path); 6064 if (ret < 0) 6065 goto out; 6066 fs_path_free(ref->full_path); 6067 list_del(&ref->list); 6068 kfree(ref); 6069 } 6070 ret = 0; 6071 out: 6072 btrfs_free_path(path); 6073 if (ret) 6074 __free_recorded_refs(&deleted_refs); 6075 return ret; 6076 } 6077 6078 static int changed_inode(struct send_ctx *sctx, 6079 enum btrfs_compare_tree_result result) 6080 { 6081 int ret = 0; 6082 struct btrfs_key *key = sctx->cmp_key; 6083 struct btrfs_inode_item *left_ii = NULL; 6084 struct btrfs_inode_item *right_ii = NULL; 6085 u64 left_gen = 0; 6086 u64 right_gen = 0; 6087 6088 sctx->cur_ino = key->objectid; 6089 sctx->cur_inode_new_gen = 0; 6090 sctx->cur_inode_last_extent = (u64)-1; 6091 sctx->cur_inode_next_write_offset = 0; 6092 sctx->ignore_cur_inode = false; 6093 6094 /* 6095 * Set send_progress to current inode. This will tell all get_cur_xxx 6096 * functions that the current inode's refs are not updated yet. Later, 6097 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6098 */ 6099 sctx->send_progress = sctx->cur_ino; 6100 6101 if (result == BTRFS_COMPARE_TREE_NEW || 6102 result == BTRFS_COMPARE_TREE_CHANGED) { 6103 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6104 sctx->left_path->slots[0], 6105 struct btrfs_inode_item); 6106 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6107 left_ii); 6108 } else { 6109 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6110 sctx->right_path->slots[0], 6111 struct btrfs_inode_item); 6112 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6113 right_ii); 6114 } 6115 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6116 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6117 sctx->right_path->slots[0], 6118 struct btrfs_inode_item); 6119 6120 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6121 right_ii); 6122 6123 /* 6124 * The cur_ino = root dir case is special here. We can't treat 6125 * the inode as deleted+reused because it would generate a 6126 * stream that tries to delete/mkdir the root dir. 6127 */ 6128 if (left_gen != right_gen && 6129 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6130 sctx->cur_inode_new_gen = 1; 6131 } 6132 6133 /* 6134 * Normally we do not find inodes with a link count of zero (orphans) 6135 * because the most common case is to create a snapshot and use it 6136 * for a send operation. However other less common use cases involve 6137 * using a subvolume and send it after turning it to RO mode just 6138 * after deleting all hard links of a file while holding an open 6139 * file descriptor against it or turning a RO snapshot into RW mode, 6140 * keep an open file descriptor against a file, delete it and then 6141 * turn the snapshot back to RO mode before using it for a send 6142 * operation. So if we find such cases, ignore the inode and all its 6143 * items completely if it's a new inode, or if it's a changed inode 6144 * make sure all its previous paths (from the parent snapshot) are all 6145 * unlinked and all other the inode items are ignored. 6146 */ 6147 if (result == BTRFS_COMPARE_TREE_NEW || 6148 result == BTRFS_COMPARE_TREE_CHANGED) { 6149 u32 nlinks; 6150 6151 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6152 if (nlinks == 0) { 6153 sctx->ignore_cur_inode = true; 6154 if (result == BTRFS_COMPARE_TREE_CHANGED) 6155 ret = btrfs_unlink_all_paths(sctx); 6156 goto out; 6157 } 6158 } 6159 6160 if (result == BTRFS_COMPARE_TREE_NEW) { 6161 sctx->cur_inode_gen = left_gen; 6162 sctx->cur_inode_new = 1; 6163 sctx->cur_inode_deleted = 0; 6164 sctx->cur_inode_size = btrfs_inode_size( 6165 sctx->left_path->nodes[0], left_ii); 6166 sctx->cur_inode_mode = btrfs_inode_mode( 6167 sctx->left_path->nodes[0], left_ii); 6168 sctx->cur_inode_rdev = btrfs_inode_rdev( 6169 sctx->left_path->nodes[0], left_ii); 6170 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6171 ret = send_create_inode_if_needed(sctx); 6172 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6173 sctx->cur_inode_gen = right_gen; 6174 sctx->cur_inode_new = 0; 6175 sctx->cur_inode_deleted = 1; 6176 sctx->cur_inode_size = btrfs_inode_size( 6177 sctx->right_path->nodes[0], right_ii); 6178 sctx->cur_inode_mode = btrfs_inode_mode( 6179 sctx->right_path->nodes[0], right_ii); 6180 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6181 /* 6182 * We need to do some special handling in case the inode was 6183 * reported as changed with a changed generation number. This 6184 * means that the original inode was deleted and new inode 6185 * reused the same inum. So we have to treat the old inode as 6186 * deleted and the new one as new. 6187 */ 6188 if (sctx->cur_inode_new_gen) { 6189 /* 6190 * First, process the inode as if it was deleted. 6191 */ 6192 sctx->cur_inode_gen = right_gen; 6193 sctx->cur_inode_new = 0; 6194 sctx->cur_inode_deleted = 1; 6195 sctx->cur_inode_size = btrfs_inode_size( 6196 sctx->right_path->nodes[0], right_ii); 6197 sctx->cur_inode_mode = btrfs_inode_mode( 6198 sctx->right_path->nodes[0], right_ii); 6199 ret = process_all_refs(sctx, 6200 BTRFS_COMPARE_TREE_DELETED); 6201 if (ret < 0) 6202 goto out; 6203 6204 /* 6205 * Now process the inode as if it was new. 6206 */ 6207 sctx->cur_inode_gen = left_gen; 6208 sctx->cur_inode_new = 1; 6209 sctx->cur_inode_deleted = 0; 6210 sctx->cur_inode_size = btrfs_inode_size( 6211 sctx->left_path->nodes[0], left_ii); 6212 sctx->cur_inode_mode = btrfs_inode_mode( 6213 sctx->left_path->nodes[0], left_ii); 6214 sctx->cur_inode_rdev = btrfs_inode_rdev( 6215 sctx->left_path->nodes[0], left_ii); 6216 ret = send_create_inode_if_needed(sctx); 6217 if (ret < 0) 6218 goto out; 6219 6220 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6221 if (ret < 0) 6222 goto out; 6223 /* 6224 * Advance send_progress now as we did not get into 6225 * process_recorded_refs_if_needed in the new_gen case. 6226 */ 6227 sctx->send_progress = sctx->cur_ino + 1; 6228 6229 /* 6230 * Now process all extents and xattrs of the inode as if 6231 * they were all new. 6232 */ 6233 ret = process_all_extents(sctx); 6234 if (ret < 0) 6235 goto out; 6236 ret = process_all_new_xattrs(sctx); 6237 if (ret < 0) 6238 goto out; 6239 } else { 6240 sctx->cur_inode_gen = left_gen; 6241 sctx->cur_inode_new = 0; 6242 sctx->cur_inode_new_gen = 0; 6243 sctx->cur_inode_deleted = 0; 6244 sctx->cur_inode_size = btrfs_inode_size( 6245 sctx->left_path->nodes[0], left_ii); 6246 sctx->cur_inode_mode = btrfs_inode_mode( 6247 sctx->left_path->nodes[0], left_ii); 6248 } 6249 } 6250 6251 out: 6252 return ret; 6253 } 6254 6255 /* 6256 * We have to process new refs before deleted refs, but compare_trees gives us 6257 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6258 * first and later process them in process_recorded_refs. 6259 * For the cur_inode_new_gen case, we skip recording completely because 6260 * changed_inode did already initiate processing of refs. The reason for this is 6261 * that in this case, compare_tree actually compares the refs of 2 different 6262 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6263 * refs of the right tree as deleted and all refs of the left tree as new. 6264 */ 6265 static int changed_ref(struct send_ctx *sctx, 6266 enum btrfs_compare_tree_result result) 6267 { 6268 int ret = 0; 6269 6270 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6271 inconsistent_snapshot_error(sctx, result, "reference"); 6272 return -EIO; 6273 } 6274 6275 if (!sctx->cur_inode_new_gen && 6276 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6277 if (result == BTRFS_COMPARE_TREE_NEW) 6278 ret = record_new_ref(sctx); 6279 else if (result == BTRFS_COMPARE_TREE_DELETED) 6280 ret = record_deleted_ref(sctx); 6281 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6282 ret = record_changed_ref(sctx); 6283 } 6284 6285 return ret; 6286 } 6287 6288 /* 6289 * Process new/deleted/changed xattrs. We skip processing in the 6290 * cur_inode_new_gen case because changed_inode did already initiate processing 6291 * of xattrs. The reason is the same as in changed_ref 6292 */ 6293 static int changed_xattr(struct send_ctx *sctx, 6294 enum btrfs_compare_tree_result result) 6295 { 6296 int ret = 0; 6297 6298 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6299 inconsistent_snapshot_error(sctx, result, "xattr"); 6300 return -EIO; 6301 } 6302 6303 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6304 if (result == BTRFS_COMPARE_TREE_NEW) 6305 ret = process_new_xattr(sctx); 6306 else if (result == BTRFS_COMPARE_TREE_DELETED) 6307 ret = process_deleted_xattr(sctx); 6308 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6309 ret = process_changed_xattr(sctx); 6310 } 6311 6312 return ret; 6313 } 6314 6315 /* 6316 * Process new/deleted/changed extents. We skip processing in the 6317 * cur_inode_new_gen case because changed_inode did already initiate processing 6318 * of extents. The reason is the same as in changed_ref 6319 */ 6320 static int changed_extent(struct send_ctx *sctx, 6321 enum btrfs_compare_tree_result result) 6322 { 6323 int ret = 0; 6324 6325 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6326 6327 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6328 struct extent_buffer *leaf_l; 6329 struct extent_buffer *leaf_r; 6330 struct btrfs_file_extent_item *ei_l; 6331 struct btrfs_file_extent_item *ei_r; 6332 6333 leaf_l = sctx->left_path->nodes[0]; 6334 leaf_r = sctx->right_path->nodes[0]; 6335 ei_l = btrfs_item_ptr(leaf_l, 6336 sctx->left_path->slots[0], 6337 struct btrfs_file_extent_item); 6338 ei_r = btrfs_item_ptr(leaf_r, 6339 sctx->right_path->slots[0], 6340 struct btrfs_file_extent_item); 6341 6342 /* 6343 * We may have found an extent item that has changed 6344 * only its disk_bytenr field and the corresponding 6345 * inode item was not updated. This case happens due to 6346 * very specific timings during relocation when a leaf 6347 * that contains file extent items is COWed while 6348 * relocation is ongoing and its in the stage where it 6349 * updates data pointers. So when this happens we can 6350 * safely ignore it since we know it's the same extent, 6351 * but just at different logical and physical locations 6352 * (when an extent is fully replaced with a new one, we 6353 * know the generation number must have changed too, 6354 * since snapshot creation implies committing the current 6355 * transaction, and the inode item must have been updated 6356 * as well). 6357 * This replacement of the disk_bytenr happens at 6358 * relocation.c:replace_file_extents() through 6359 * relocation.c:btrfs_reloc_cow_block(). 6360 */ 6361 if (btrfs_file_extent_generation(leaf_l, ei_l) == 6362 btrfs_file_extent_generation(leaf_r, ei_r) && 6363 btrfs_file_extent_ram_bytes(leaf_l, ei_l) == 6364 btrfs_file_extent_ram_bytes(leaf_r, ei_r) && 6365 btrfs_file_extent_compression(leaf_l, ei_l) == 6366 btrfs_file_extent_compression(leaf_r, ei_r) && 6367 btrfs_file_extent_encryption(leaf_l, ei_l) == 6368 btrfs_file_extent_encryption(leaf_r, ei_r) && 6369 btrfs_file_extent_other_encoding(leaf_l, ei_l) == 6370 btrfs_file_extent_other_encoding(leaf_r, ei_r) && 6371 btrfs_file_extent_type(leaf_l, ei_l) == 6372 btrfs_file_extent_type(leaf_r, ei_r) && 6373 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) != 6374 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) && 6375 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) == 6376 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) && 6377 btrfs_file_extent_offset(leaf_l, ei_l) == 6378 btrfs_file_extent_offset(leaf_r, ei_r) && 6379 btrfs_file_extent_num_bytes(leaf_l, ei_l) == 6380 btrfs_file_extent_num_bytes(leaf_r, ei_r)) 6381 return 0; 6382 } 6383 6384 inconsistent_snapshot_error(sctx, result, "extent"); 6385 return -EIO; 6386 } 6387 6388 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6389 if (result != BTRFS_COMPARE_TREE_DELETED) 6390 ret = process_extent(sctx, sctx->left_path, 6391 sctx->cmp_key); 6392 } 6393 6394 return ret; 6395 } 6396 6397 static int dir_changed(struct send_ctx *sctx, u64 dir) 6398 { 6399 u64 orig_gen, new_gen; 6400 int ret; 6401 6402 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6403 NULL, NULL); 6404 if (ret) 6405 return ret; 6406 6407 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6408 NULL, NULL, NULL); 6409 if (ret) 6410 return ret; 6411 6412 return (orig_gen != new_gen) ? 1 : 0; 6413 } 6414 6415 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6416 struct btrfs_key *key) 6417 { 6418 struct btrfs_inode_extref *extref; 6419 struct extent_buffer *leaf; 6420 u64 dirid = 0, last_dirid = 0; 6421 unsigned long ptr; 6422 u32 item_size; 6423 u32 cur_offset = 0; 6424 int ref_name_len; 6425 int ret = 0; 6426 6427 /* Easy case, just check this one dirid */ 6428 if (key->type == BTRFS_INODE_REF_KEY) { 6429 dirid = key->offset; 6430 6431 ret = dir_changed(sctx, dirid); 6432 goto out; 6433 } 6434 6435 leaf = path->nodes[0]; 6436 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6437 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6438 while (cur_offset < item_size) { 6439 extref = (struct btrfs_inode_extref *)(ptr + 6440 cur_offset); 6441 dirid = btrfs_inode_extref_parent(leaf, extref); 6442 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6443 cur_offset += ref_name_len + sizeof(*extref); 6444 if (dirid == last_dirid) 6445 continue; 6446 ret = dir_changed(sctx, dirid); 6447 if (ret) 6448 break; 6449 last_dirid = dirid; 6450 } 6451 out: 6452 return ret; 6453 } 6454 6455 /* 6456 * Updates compare related fields in sctx and simply forwards to the actual 6457 * changed_xxx functions. 6458 */ 6459 static int changed_cb(struct btrfs_path *left_path, 6460 struct btrfs_path *right_path, 6461 struct btrfs_key *key, 6462 enum btrfs_compare_tree_result result, 6463 void *ctx) 6464 { 6465 int ret = 0; 6466 struct send_ctx *sctx = ctx; 6467 6468 if (result == BTRFS_COMPARE_TREE_SAME) { 6469 if (key->type == BTRFS_INODE_REF_KEY || 6470 key->type == BTRFS_INODE_EXTREF_KEY) { 6471 ret = compare_refs(sctx, left_path, key); 6472 if (!ret) 6473 return 0; 6474 if (ret < 0) 6475 return ret; 6476 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6477 return maybe_send_hole(sctx, left_path, key); 6478 } else { 6479 return 0; 6480 } 6481 result = BTRFS_COMPARE_TREE_CHANGED; 6482 ret = 0; 6483 } 6484 6485 sctx->left_path = left_path; 6486 sctx->right_path = right_path; 6487 sctx->cmp_key = key; 6488 6489 ret = finish_inode_if_needed(sctx, 0); 6490 if (ret < 0) 6491 goto out; 6492 6493 /* Ignore non-FS objects */ 6494 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6495 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6496 goto out; 6497 6498 if (key->type == BTRFS_INODE_ITEM_KEY) { 6499 ret = changed_inode(sctx, result); 6500 } else if (!sctx->ignore_cur_inode) { 6501 if (key->type == BTRFS_INODE_REF_KEY || 6502 key->type == BTRFS_INODE_EXTREF_KEY) 6503 ret = changed_ref(sctx, result); 6504 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6505 ret = changed_xattr(sctx, result); 6506 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6507 ret = changed_extent(sctx, result); 6508 } 6509 6510 out: 6511 return ret; 6512 } 6513 6514 static int full_send_tree(struct send_ctx *sctx) 6515 { 6516 int ret; 6517 struct btrfs_root *send_root = sctx->send_root; 6518 struct btrfs_key key; 6519 struct btrfs_path *path; 6520 struct extent_buffer *eb; 6521 int slot; 6522 6523 path = alloc_path_for_send(); 6524 if (!path) 6525 return -ENOMEM; 6526 6527 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6528 key.type = BTRFS_INODE_ITEM_KEY; 6529 key.offset = 0; 6530 6531 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6532 if (ret < 0) 6533 goto out; 6534 if (ret) 6535 goto out_finish; 6536 6537 while (1) { 6538 eb = path->nodes[0]; 6539 slot = path->slots[0]; 6540 btrfs_item_key_to_cpu(eb, &key, slot); 6541 6542 ret = changed_cb(path, NULL, &key, 6543 BTRFS_COMPARE_TREE_NEW, sctx); 6544 if (ret < 0) 6545 goto out; 6546 6547 ret = btrfs_next_item(send_root, path); 6548 if (ret < 0) 6549 goto out; 6550 if (ret) { 6551 ret = 0; 6552 break; 6553 } 6554 } 6555 6556 out_finish: 6557 ret = finish_inode_if_needed(sctx, 1); 6558 6559 out: 6560 btrfs_free_path(path); 6561 return ret; 6562 } 6563 6564 static int send_subvol(struct send_ctx *sctx) 6565 { 6566 int ret; 6567 6568 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 6569 ret = send_header(sctx); 6570 if (ret < 0) 6571 goto out; 6572 } 6573 6574 ret = send_subvol_begin(sctx); 6575 if (ret < 0) 6576 goto out; 6577 6578 if (sctx->parent_root) { 6579 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 6580 changed_cb, sctx); 6581 if (ret < 0) 6582 goto out; 6583 ret = finish_inode_if_needed(sctx, 1); 6584 if (ret < 0) 6585 goto out; 6586 } else { 6587 ret = full_send_tree(sctx); 6588 if (ret < 0) 6589 goto out; 6590 } 6591 6592 out: 6593 free_recorded_refs(sctx); 6594 return ret; 6595 } 6596 6597 /* 6598 * If orphan cleanup did remove any orphans from a root, it means the tree 6599 * was modified and therefore the commit root is not the same as the current 6600 * root anymore. This is a problem, because send uses the commit root and 6601 * therefore can see inode items that don't exist in the current root anymore, 6602 * and for example make calls to btrfs_iget, which will do tree lookups based 6603 * on the current root and not on the commit root. Those lookups will fail, 6604 * returning a -ESTALE error, and making send fail with that error. So make 6605 * sure a send does not see any orphans we have just removed, and that it will 6606 * see the same inodes regardless of whether a transaction commit happened 6607 * before it started (meaning that the commit root will be the same as the 6608 * current root) or not. 6609 */ 6610 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 6611 { 6612 int i; 6613 struct btrfs_trans_handle *trans = NULL; 6614 6615 again: 6616 if (sctx->parent_root && 6617 sctx->parent_root->node != sctx->parent_root->commit_root) 6618 goto commit_trans; 6619 6620 for (i = 0; i < sctx->clone_roots_cnt; i++) 6621 if (sctx->clone_roots[i].root->node != 6622 sctx->clone_roots[i].root->commit_root) 6623 goto commit_trans; 6624 6625 if (trans) 6626 return btrfs_end_transaction(trans); 6627 6628 return 0; 6629 6630 commit_trans: 6631 /* Use any root, all fs roots will get their commit roots updated. */ 6632 if (!trans) { 6633 trans = btrfs_join_transaction(sctx->send_root); 6634 if (IS_ERR(trans)) 6635 return PTR_ERR(trans); 6636 goto again; 6637 } 6638 6639 return btrfs_commit_transaction(trans); 6640 } 6641 6642 /* 6643 * Make sure any existing dellaloc is flushed for any root used by a send 6644 * operation so that we do not miss any data and we do not race with writeback 6645 * finishing and changing a tree while send is using the tree. This could 6646 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 6647 * a send operation then uses the subvolume. 6648 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 6649 */ 6650 static int flush_delalloc_roots(struct send_ctx *sctx) 6651 { 6652 struct btrfs_root *root = sctx->parent_root; 6653 int ret; 6654 int i; 6655 6656 if (root) { 6657 ret = btrfs_start_delalloc_snapshot(root); 6658 if (ret) 6659 return ret; 6660 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 6661 } 6662 6663 for (i = 0; i < sctx->clone_roots_cnt; i++) { 6664 root = sctx->clone_roots[i].root; 6665 ret = btrfs_start_delalloc_snapshot(root); 6666 if (ret) 6667 return ret; 6668 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 6669 } 6670 6671 return 0; 6672 } 6673 6674 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 6675 { 6676 spin_lock(&root->root_item_lock); 6677 root->send_in_progress--; 6678 /* 6679 * Not much left to do, we don't know why it's unbalanced and 6680 * can't blindly reset it to 0. 6681 */ 6682 if (root->send_in_progress < 0) 6683 btrfs_err(root->fs_info, 6684 "send_in_progress unbalanced %d root %llu", 6685 root->send_in_progress, root->root_key.objectid); 6686 spin_unlock(&root->root_item_lock); 6687 } 6688 6689 static void dedupe_in_progress_warn(const struct btrfs_root *root) 6690 { 6691 btrfs_warn_rl(root->fs_info, 6692 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 6693 root->root_key.objectid, root->dedupe_in_progress); 6694 } 6695 6696 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 6697 { 6698 int ret = 0; 6699 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 6700 struct btrfs_fs_info *fs_info = send_root->fs_info; 6701 struct btrfs_root *clone_root; 6702 struct btrfs_key key; 6703 struct send_ctx *sctx = NULL; 6704 u32 i; 6705 u64 *clone_sources_tmp = NULL; 6706 int clone_sources_to_rollback = 0; 6707 unsigned alloc_size; 6708 int sort_clone_roots = 0; 6709 int index; 6710 6711 if (!capable(CAP_SYS_ADMIN)) 6712 return -EPERM; 6713 6714 /* 6715 * The subvolume must remain read-only during send, protect against 6716 * making it RW. This also protects against deletion. 6717 */ 6718 spin_lock(&send_root->root_item_lock); 6719 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 6720 dedupe_in_progress_warn(send_root); 6721 spin_unlock(&send_root->root_item_lock); 6722 return -EAGAIN; 6723 } 6724 send_root->send_in_progress++; 6725 spin_unlock(&send_root->root_item_lock); 6726 6727 /* 6728 * This is done when we lookup the root, it should already be complete 6729 * by the time we get here. 6730 */ 6731 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 6732 6733 /* 6734 * Userspace tools do the checks and warn the user if it's 6735 * not RO. 6736 */ 6737 if (!btrfs_root_readonly(send_root)) { 6738 ret = -EPERM; 6739 goto out; 6740 } 6741 6742 /* 6743 * Check that we don't overflow at later allocations, we request 6744 * clone_sources_count + 1 items, and compare to unsigned long inside 6745 * access_ok. 6746 */ 6747 if (arg->clone_sources_count > 6748 ULONG_MAX / sizeof(struct clone_root) - 1) { 6749 ret = -EINVAL; 6750 goto out; 6751 } 6752 6753 if (!access_ok(arg->clone_sources, 6754 sizeof(*arg->clone_sources) * 6755 arg->clone_sources_count)) { 6756 ret = -EFAULT; 6757 goto out; 6758 } 6759 6760 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 6761 ret = -EINVAL; 6762 goto out; 6763 } 6764 6765 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 6766 if (!sctx) { 6767 ret = -ENOMEM; 6768 goto out; 6769 } 6770 6771 INIT_LIST_HEAD(&sctx->new_refs); 6772 INIT_LIST_HEAD(&sctx->deleted_refs); 6773 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 6774 INIT_LIST_HEAD(&sctx->name_cache_list); 6775 6776 sctx->flags = arg->flags; 6777 6778 sctx->send_filp = fget(arg->send_fd); 6779 if (!sctx->send_filp) { 6780 ret = -EBADF; 6781 goto out; 6782 } 6783 6784 sctx->send_root = send_root; 6785 /* 6786 * Unlikely but possible, if the subvolume is marked for deletion but 6787 * is slow to remove the directory entry, send can still be started 6788 */ 6789 if (btrfs_root_dead(sctx->send_root)) { 6790 ret = -EPERM; 6791 goto out; 6792 } 6793 6794 sctx->clone_roots_cnt = arg->clone_sources_count; 6795 6796 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 6797 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 6798 if (!sctx->send_buf) { 6799 ret = -ENOMEM; 6800 goto out; 6801 } 6802 6803 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL); 6804 if (!sctx->read_buf) { 6805 ret = -ENOMEM; 6806 goto out; 6807 } 6808 6809 sctx->pending_dir_moves = RB_ROOT; 6810 sctx->waiting_dir_moves = RB_ROOT; 6811 sctx->orphan_dirs = RB_ROOT; 6812 6813 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 6814 6815 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL); 6816 if (!sctx->clone_roots) { 6817 ret = -ENOMEM; 6818 goto out; 6819 } 6820 6821 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 6822 6823 if (arg->clone_sources_count) { 6824 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 6825 if (!clone_sources_tmp) { 6826 ret = -ENOMEM; 6827 goto out; 6828 } 6829 6830 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 6831 alloc_size); 6832 if (ret) { 6833 ret = -EFAULT; 6834 goto out; 6835 } 6836 6837 for (i = 0; i < arg->clone_sources_count; i++) { 6838 key.objectid = clone_sources_tmp[i]; 6839 key.type = BTRFS_ROOT_ITEM_KEY; 6840 key.offset = (u64)-1; 6841 6842 index = srcu_read_lock(&fs_info->subvol_srcu); 6843 6844 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 6845 if (IS_ERR(clone_root)) { 6846 srcu_read_unlock(&fs_info->subvol_srcu, index); 6847 ret = PTR_ERR(clone_root); 6848 goto out; 6849 } 6850 spin_lock(&clone_root->root_item_lock); 6851 if (!btrfs_root_readonly(clone_root) || 6852 btrfs_root_dead(clone_root)) { 6853 spin_unlock(&clone_root->root_item_lock); 6854 srcu_read_unlock(&fs_info->subvol_srcu, index); 6855 ret = -EPERM; 6856 goto out; 6857 } 6858 if (clone_root->dedupe_in_progress) { 6859 dedupe_in_progress_warn(clone_root); 6860 spin_unlock(&clone_root->root_item_lock); 6861 srcu_read_unlock(&fs_info->subvol_srcu, index); 6862 ret = -EAGAIN; 6863 goto out; 6864 } 6865 clone_root->send_in_progress++; 6866 spin_unlock(&clone_root->root_item_lock); 6867 srcu_read_unlock(&fs_info->subvol_srcu, index); 6868 6869 sctx->clone_roots[i].root = clone_root; 6870 clone_sources_to_rollback = i + 1; 6871 } 6872 kvfree(clone_sources_tmp); 6873 clone_sources_tmp = NULL; 6874 } 6875 6876 if (arg->parent_root) { 6877 key.objectid = arg->parent_root; 6878 key.type = BTRFS_ROOT_ITEM_KEY; 6879 key.offset = (u64)-1; 6880 6881 index = srcu_read_lock(&fs_info->subvol_srcu); 6882 6883 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 6884 if (IS_ERR(sctx->parent_root)) { 6885 srcu_read_unlock(&fs_info->subvol_srcu, index); 6886 ret = PTR_ERR(sctx->parent_root); 6887 goto out; 6888 } 6889 6890 spin_lock(&sctx->parent_root->root_item_lock); 6891 sctx->parent_root->send_in_progress++; 6892 if (!btrfs_root_readonly(sctx->parent_root) || 6893 btrfs_root_dead(sctx->parent_root)) { 6894 spin_unlock(&sctx->parent_root->root_item_lock); 6895 srcu_read_unlock(&fs_info->subvol_srcu, index); 6896 ret = -EPERM; 6897 goto out; 6898 } 6899 if (sctx->parent_root->dedupe_in_progress) { 6900 dedupe_in_progress_warn(sctx->parent_root); 6901 spin_unlock(&sctx->parent_root->root_item_lock); 6902 srcu_read_unlock(&fs_info->subvol_srcu, index); 6903 ret = -EAGAIN; 6904 goto out; 6905 } 6906 spin_unlock(&sctx->parent_root->root_item_lock); 6907 6908 srcu_read_unlock(&fs_info->subvol_srcu, index); 6909 } 6910 6911 /* 6912 * Clones from send_root are allowed, but only if the clone source 6913 * is behind the current send position. This is checked while searching 6914 * for possible clone sources. 6915 */ 6916 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 6917 6918 /* We do a bsearch later */ 6919 sort(sctx->clone_roots, sctx->clone_roots_cnt, 6920 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 6921 NULL); 6922 sort_clone_roots = 1; 6923 6924 ret = flush_delalloc_roots(sctx); 6925 if (ret) 6926 goto out; 6927 6928 ret = ensure_commit_roots_uptodate(sctx); 6929 if (ret) 6930 goto out; 6931 6932 current->journal_info = BTRFS_SEND_TRANS_STUB; 6933 ret = send_subvol(sctx); 6934 current->journal_info = NULL; 6935 if (ret < 0) 6936 goto out; 6937 6938 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 6939 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 6940 if (ret < 0) 6941 goto out; 6942 ret = send_cmd(sctx); 6943 if (ret < 0) 6944 goto out; 6945 } 6946 6947 out: 6948 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 6949 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 6950 struct rb_node *n; 6951 struct pending_dir_move *pm; 6952 6953 n = rb_first(&sctx->pending_dir_moves); 6954 pm = rb_entry(n, struct pending_dir_move, node); 6955 while (!list_empty(&pm->list)) { 6956 struct pending_dir_move *pm2; 6957 6958 pm2 = list_first_entry(&pm->list, 6959 struct pending_dir_move, list); 6960 free_pending_move(sctx, pm2); 6961 } 6962 free_pending_move(sctx, pm); 6963 } 6964 6965 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 6966 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 6967 struct rb_node *n; 6968 struct waiting_dir_move *dm; 6969 6970 n = rb_first(&sctx->waiting_dir_moves); 6971 dm = rb_entry(n, struct waiting_dir_move, node); 6972 rb_erase(&dm->node, &sctx->waiting_dir_moves); 6973 kfree(dm); 6974 } 6975 6976 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 6977 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 6978 struct rb_node *n; 6979 struct orphan_dir_info *odi; 6980 6981 n = rb_first(&sctx->orphan_dirs); 6982 odi = rb_entry(n, struct orphan_dir_info, node); 6983 free_orphan_dir_info(sctx, odi); 6984 } 6985 6986 if (sort_clone_roots) { 6987 for (i = 0; i < sctx->clone_roots_cnt; i++) 6988 btrfs_root_dec_send_in_progress( 6989 sctx->clone_roots[i].root); 6990 } else { 6991 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 6992 btrfs_root_dec_send_in_progress( 6993 sctx->clone_roots[i].root); 6994 6995 btrfs_root_dec_send_in_progress(send_root); 6996 } 6997 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 6998 btrfs_root_dec_send_in_progress(sctx->parent_root); 6999 7000 kvfree(clone_sources_tmp); 7001 7002 if (sctx) { 7003 if (sctx->send_filp) 7004 fput(sctx->send_filp); 7005 7006 kvfree(sctx->clone_roots); 7007 kvfree(sctx->send_buf); 7008 kvfree(sctx->read_buf); 7009 7010 name_cache_free(sctx); 7011 7012 kfree(sctx); 7013 } 7014 7015 return ret; 7016 } 7017