1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "xattr.h"
29 #include "print-tree.h"
30 #include "accessors.h"
31 #include "dir-item.h"
32 #include "file-item.h"
33 #include "ioctl.h"
34 #include "verity.h"
35 #include "lru_cache.h"
36
37 /*
38 * Maximum number of references an extent can have in order for us to attempt to
39 * issue clone operations instead of write operations. This currently exists to
40 * avoid hitting limitations of the backreference walking code (taking a lot of
41 * time and using too much memory for extents with large number of references).
42 */
43 #define SEND_MAX_EXTENT_REFS 1024
44
45 /*
46 * A fs_path is a helper to dynamically build path names with unknown size.
47 * It reallocates the internal buffer on demand.
48 * It allows fast adding of path elements on the right side (normal path) and
49 * fast adding to the left side (reversed path). A reversed path can also be
50 * unreversed if needed.
51 */
52 struct fs_path {
53 union {
54 struct {
55 char *start;
56 char *end;
57
58 char *buf;
59 unsigned short buf_len:15;
60 unsigned short reversed:1;
61 char inline_buf[];
62 };
63 /*
64 * Average path length does not exceed 200 bytes, we'll have
65 * better packing in the slab and higher chance to satisfy
66 * a allocation later during send.
67 */
68 char pad[256];
69 };
70 };
71 #define FS_PATH_INLINE_SIZE \
72 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
73
74
75 /* reused for each extent */
76 struct clone_root {
77 struct btrfs_root *root;
78 u64 ino;
79 u64 offset;
80 u64 num_bytes;
81 bool found_ref;
82 };
83
84 #define SEND_MAX_NAME_CACHE_SIZE 256
85
86 /*
87 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
88 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
89 * can be satisfied from the kmalloc-192 slab, without wasting any space.
90 * The most common case is to have a single root for cloning, which corresponds
91 * to the send root. Having the user specify more than 16 clone roots is not
92 * common, and in such rare cases we simply don't use caching if the number of
93 * cloning roots that lead down to a leaf is more than 17.
94 */
95 #define SEND_MAX_BACKREF_CACHE_ROOTS 17
96
97 /*
98 * Max number of entries in the cache.
99 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
100 * maple tree's internal nodes, is 24K.
101 */
102 #define SEND_MAX_BACKREF_CACHE_SIZE 128
103
104 /*
105 * A backref cache entry maps a leaf to a list of IDs of roots from which the
106 * leaf is accessible and we can use for clone operations.
107 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
108 * x86_64).
109 */
110 struct backref_cache_entry {
111 struct btrfs_lru_cache_entry entry;
112 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
113 /* Number of valid elements in the root_ids array. */
114 int num_roots;
115 };
116
117 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
118 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
119
120 /*
121 * Max number of entries in the cache that stores directories that were already
122 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
123 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
124 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
125 */
126 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
127
128 /*
129 * Max number of entries in the cache that stores directories that were already
130 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
131 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
132 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
133 */
134 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
135
136 struct send_ctx {
137 struct file *send_filp;
138 loff_t send_off;
139 char *send_buf;
140 u32 send_size;
141 u32 send_max_size;
142 /*
143 * Whether BTRFS_SEND_A_DATA attribute was already added to current
144 * command (since protocol v2, data must be the last attribute).
145 */
146 bool put_data;
147 struct page **send_buf_pages;
148 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
149 /* Protocol version compatibility requested */
150 u32 proto;
151
152 struct btrfs_root *send_root;
153 struct btrfs_root *parent_root;
154 struct clone_root *clone_roots;
155 int clone_roots_cnt;
156
157 /* current state of the compare_tree call */
158 struct btrfs_path *left_path;
159 struct btrfs_path *right_path;
160 struct btrfs_key *cmp_key;
161
162 /*
163 * Keep track of the generation of the last transaction that was used
164 * for relocating a block group. This is periodically checked in order
165 * to detect if a relocation happened since the last check, so that we
166 * don't operate on stale extent buffers for nodes (level >= 1) or on
167 * stale disk_bytenr values of file extent items.
168 */
169 u64 last_reloc_trans;
170
171 /*
172 * infos of the currently processed inode. In case of deleted inodes,
173 * these are the values from the deleted inode.
174 */
175 u64 cur_ino;
176 u64 cur_inode_gen;
177 u64 cur_inode_size;
178 u64 cur_inode_mode;
179 u64 cur_inode_rdev;
180 u64 cur_inode_last_extent;
181 u64 cur_inode_next_write_offset;
182 bool cur_inode_new;
183 bool cur_inode_new_gen;
184 bool cur_inode_deleted;
185 bool ignore_cur_inode;
186 bool cur_inode_needs_verity;
187 void *verity_descriptor;
188
189 u64 send_progress;
190
191 struct list_head new_refs;
192 struct list_head deleted_refs;
193
194 struct btrfs_lru_cache name_cache;
195
196 /*
197 * The inode we are currently processing. It's not NULL only when we
198 * need to issue write commands for data extents from this inode.
199 */
200 struct inode *cur_inode;
201 struct file_ra_state ra;
202 u64 page_cache_clear_start;
203 bool clean_page_cache;
204
205 /*
206 * We process inodes by their increasing order, so if before an
207 * incremental send we reverse the parent/child relationship of
208 * directories such that a directory with a lower inode number was
209 * the parent of a directory with a higher inode number, and the one
210 * becoming the new parent got renamed too, we can't rename/move the
211 * directory with lower inode number when we finish processing it - we
212 * must process the directory with higher inode number first, then
213 * rename/move it and then rename/move the directory with lower inode
214 * number. Example follows.
215 *
216 * Tree state when the first send was performed:
217 *
218 * .
219 * |-- a (ino 257)
220 * |-- b (ino 258)
221 * |
222 * |
223 * |-- c (ino 259)
224 * | |-- d (ino 260)
225 * |
226 * |-- c2 (ino 261)
227 *
228 * Tree state when the second (incremental) send is performed:
229 *
230 * .
231 * |-- a (ino 257)
232 * |-- b (ino 258)
233 * |-- c2 (ino 261)
234 * |-- d2 (ino 260)
235 * |-- cc (ino 259)
236 *
237 * The sequence of steps that lead to the second state was:
238 *
239 * mv /a/b/c/d /a/b/c2/d2
240 * mv /a/b/c /a/b/c2/d2/cc
241 *
242 * "c" has lower inode number, but we can't move it (2nd mv operation)
243 * before we move "d", which has higher inode number.
244 *
245 * So we just memorize which move/rename operations must be performed
246 * later when their respective parent is processed and moved/renamed.
247 */
248
249 /* Indexed by parent directory inode number. */
250 struct rb_root pending_dir_moves;
251
252 /*
253 * Reverse index, indexed by the inode number of a directory that
254 * is waiting for the move/rename of its immediate parent before its
255 * own move/rename can be performed.
256 */
257 struct rb_root waiting_dir_moves;
258
259 /*
260 * A directory that is going to be rm'ed might have a child directory
261 * which is in the pending directory moves index above. In this case,
262 * the directory can only be removed after the move/rename of its child
263 * is performed. Example:
264 *
265 * Parent snapshot:
266 *
267 * . (ino 256)
268 * |-- a/ (ino 257)
269 * |-- b/ (ino 258)
270 * |-- c/ (ino 259)
271 * | |-- x/ (ino 260)
272 * |
273 * |-- y/ (ino 261)
274 *
275 * Send snapshot:
276 *
277 * . (ino 256)
278 * |-- a/ (ino 257)
279 * |-- b/ (ino 258)
280 * |-- YY/ (ino 261)
281 * |-- x/ (ino 260)
282 *
283 * Sequence of steps that lead to the send snapshot:
284 * rm -f /a/b/c/foo.txt
285 * mv /a/b/y /a/b/YY
286 * mv /a/b/c/x /a/b/YY
287 * rmdir /a/b/c
288 *
289 * When the child is processed, its move/rename is delayed until its
290 * parent is processed (as explained above), but all other operations
291 * like update utimes, chown, chgrp, etc, are performed and the paths
292 * that it uses for those operations must use the orphanized name of
293 * its parent (the directory we're going to rm later), so we need to
294 * memorize that name.
295 *
296 * Indexed by the inode number of the directory to be deleted.
297 */
298 struct rb_root orphan_dirs;
299
300 struct rb_root rbtree_new_refs;
301 struct rb_root rbtree_deleted_refs;
302
303 struct btrfs_lru_cache backref_cache;
304 u64 backref_cache_last_reloc_trans;
305
306 struct btrfs_lru_cache dir_created_cache;
307 struct btrfs_lru_cache dir_utimes_cache;
308 };
309
310 struct pending_dir_move {
311 struct rb_node node;
312 struct list_head list;
313 u64 parent_ino;
314 u64 ino;
315 u64 gen;
316 struct list_head update_refs;
317 };
318
319 struct waiting_dir_move {
320 struct rb_node node;
321 u64 ino;
322 /*
323 * There might be some directory that could not be removed because it
324 * was waiting for this directory inode to be moved first. Therefore
325 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
326 */
327 u64 rmdir_ino;
328 u64 rmdir_gen;
329 bool orphanized;
330 };
331
332 struct orphan_dir_info {
333 struct rb_node node;
334 u64 ino;
335 u64 gen;
336 u64 last_dir_index_offset;
337 u64 dir_high_seq_ino;
338 };
339
340 struct name_cache_entry {
341 /*
342 * The key in the entry is an inode number, and the generation matches
343 * the inode's generation.
344 */
345 struct btrfs_lru_cache_entry entry;
346 u64 parent_ino;
347 u64 parent_gen;
348 int ret;
349 int need_later_update;
350 int name_len;
351 char name[];
352 };
353
354 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
355 static_assert(offsetof(struct name_cache_entry, entry) == 0);
356
357 #define ADVANCE 1
358 #define ADVANCE_ONLY_NEXT -1
359
360 enum btrfs_compare_tree_result {
361 BTRFS_COMPARE_TREE_NEW,
362 BTRFS_COMPARE_TREE_DELETED,
363 BTRFS_COMPARE_TREE_CHANGED,
364 BTRFS_COMPARE_TREE_SAME,
365 };
366
367 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)368 static void inconsistent_snapshot_error(struct send_ctx *sctx,
369 enum btrfs_compare_tree_result result,
370 const char *what)
371 {
372 const char *result_string;
373
374 switch (result) {
375 case BTRFS_COMPARE_TREE_NEW:
376 result_string = "new";
377 break;
378 case BTRFS_COMPARE_TREE_DELETED:
379 result_string = "deleted";
380 break;
381 case BTRFS_COMPARE_TREE_CHANGED:
382 result_string = "updated";
383 break;
384 case BTRFS_COMPARE_TREE_SAME:
385 ASSERT(0);
386 result_string = "unchanged";
387 break;
388 default:
389 ASSERT(0);
390 result_string = "unexpected";
391 }
392
393 btrfs_err(sctx->send_root->fs_info,
394 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
395 result_string, what, sctx->cmp_key->objectid,
396 sctx->send_root->root_key.objectid,
397 (sctx->parent_root ?
398 sctx->parent_root->root_key.objectid : 0));
399 }
400
401 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403 {
404 switch (sctx->proto) {
405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
408 default: return false;
409 }
410 }
411
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418
need_send_hole(struct send_ctx * sctx)419 static int need_send_hole(struct send_ctx *sctx)
420 {
421 return (sctx->parent_root && !sctx->cur_inode_new &&
422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 S_ISREG(sctx->cur_inode_mode));
424 }
425
fs_path_reset(struct fs_path * p)426 static void fs_path_reset(struct fs_path *p)
427 {
428 if (p->reversed) {
429 p->start = p->buf + p->buf_len - 1;
430 p->end = p->start;
431 *p->start = 0;
432 } else {
433 p->start = p->buf;
434 p->end = p->start;
435 *p->start = 0;
436 }
437 }
438
fs_path_alloc(void)439 static struct fs_path *fs_path_alloc(void)
440 {
441 struct fs_path *p;
442
443 p = kmalloc(sizeof(*p), GFP_KERNEL);
444 if (!p)
445 return NULL;
446 p->reversed = 0;
447 p->buf = p->inline_buf;
448 p->buf_len = FS_PATH_INLINE_SIZE;
449 fs_path_reset(p);
450 return p;
451 }
452
fs_path_alloc_reversed(void)453 static struct fs_path *fs_path_alloc_reversed(void)
454 {
455 struct fs_path *p;
456
457 p = fs_path_alloc();
458 if (!p)
459 return NULL;
460 p->reversed = 1;
461 fs_path_reset(p);
462 return p;
463 }
464
fs_path_free(struct fs_path * p)465 static void fs_path_free(struct fs_path *p)
466 {
467 if (!p)
468 return;
469 if (p->buf != p->inline_buf)
470 kfree(p->buf);
471 kfree(p);
472 }
473
fs_path_len(struct fs_path * p)474 static int fs_path_len(struct fs_path *p)
475 {
476 return p->end - p->start;
477 }
478
fs_path_ensure_buf(struct fs_path * p,int len)479 static int fs_path_ensure_buf(struct fs_path *p, int len)
480 {
481 char *tmp_buf;
482 int path_len;
483 int old_buf_len;
484
485 len++;
486
487 if (p->buf_len >= len)
488 return 0;
489
490 if (len > PATH_MAX) {
491 WARN_ON(1);
492 return -ENOMEM;
493 }
494
495 path_len = p->end - p->start;
496 old_buf_len = p->buf_len;
497
498 /*
499 * Allocate to the next largest kmalloc bucket size, to let
500 * the fast path happen most of the time.
501 */
502 len = kmalloc_size_roundup(len);
503 /*
504 * First time the inline_buf does not suffice
505 */
506 if (p->buf == p->inline_buf) {
507 tmp_buf = kmalloc(len, GFP_KERNEL);
508 if (tmp_buf)
509 memcpy(tmp_buf, p->buf, old_buf_len);
510 } else {
511 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
512 }
513 if (!tmp_buf)
514 return -ENOMEM;
515 p->buf = tmp_buf;
516 p->buf_len = len;
517
518 if (p->reversed) {
519 tmp_buf = p->buf + old_buf_len - path_len - 1;
520 p->end = p->buf + p->buf_len - 1;
521 p->start = p->end - path_len;
522 memmove(p->start, tmp_buf, path_len + 1);
523 } else {
524 p->start = p->buf;
525 p->end = p->start + path_len;
526 }
527 return 0;
528 }
529
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
531 char **prepared)
532 {
533 int ret;
534 int new_len;
535
536 new_len = p->end - p->start + name_len;
537 if (p->start != p->end)
538 new_len++;
539 ret = fs_path_ensure_buf(p, new_len);
540 if (ret < 0)
541 goto out;
542
543 if (p->reversed) {
544 if (p->start != p->end)
545 *--p->start = '/';
546 p->start -= name_len;
547 *prepared = p->start;
548 } else {
549 if (p->start != p->end)
550 *p->end++ = '/';
551 *prepared = p->end;
552 p->end += name_len;
553 *p->end = 0;
554 }
555
556 out:
557 return ret;
558 }
559
fs_path_add(struct fs_path * p,const char * name,int name_len)560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561 {
562 int ret;
563 char *prepared;
564
565 ret = fs_path_prepare_for_add(p, name_len, &prepared);
566 if (ret < 0)
567 goto out;
568 memcpy(prepared, name, name_len);
569
570 out:
571 return ret;
572 }
573
fs_path_add_path(struct fs_path * p,struct fs_path * p2)574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
575 {
576 int ret;
577 char *prepared;
578
579 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
580 if (ret < 0)
581 goto out;
582 memcpy(prepared, p2->start, p2->end - p2->start);
583
584 out:
585 return ret;
586 }
587
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 struct extent_buffer *eb,
590 unsigned long off, int len)
591 {
592 int ret;
593 char *prepared;
594
595 ret = fs_path_prepare_for_add(p, len, &prepared);
596 if (ret < 0)
597 goto out;
598
599 read_extent_buffer(eb, prepared, off, len);
600
601 out:
602 return ret;
603 }
604
fs_path_copy(struct fs_path * p,struct fs_path * from)605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
606 {
607 p->reversed = from->reversed;
608 fs_path_reset(p);
609
610 return fs_path_add_path(p, from);
611 }
612
fs_path_unreverse(struct fs_path * p)613 static void fs_path_unreverse(struct fs_path *p)
614 {
615 char *tmp;
616 int len;
617
618 if (!p->reversed)
619 return;
620
621 tmp = p->start;
622 len = p->end - p->start;
623 p->start = p->buf;
624 p->end = p->start + len;
625 memmove(p->start, tmp, len + 1);
626 p->reversed = 0;
627 }
628
alloc_path_for_send(void)629 static struct btrfs_path *alloc_path_for_send(void)
630 {
631 struct btrfs_path *path;
632
633 path = btrfs_alloc_path();
634 if (!path)
635 return NULL;
636 path->search_commit_root = 1;
637 path->skip_locking = 1;
638 path->need_commit_sem = 1;
639 return path;
640 }
641
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643 {
644 int ret;
645 u32 pos = 0;
646
647 while (pos < len) {
648 ret = kernel_write(filp, buf + pos, len - pos, off);
649 if (ret < 0)
650 return ret;
651 if (ret == 0)
652 return -EIO;
653 pos += ret;
654 }
655
656 return 0;
657 }
658
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660 {
661 struct btrfs_tlv_header *hdr;
662 int total_len = sizeof(*hdr) + len;
663 int left = sctx->send_max_size - sctx->send_size;
664
665 if (WARN_ON_ONCE(sctx->put_data))
666 return -EINVAL;
667
668 if (unlikely(left < total_len))
669 return -EOVERFLOW;
670
671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 put_unaligned_le16(attr, &hdr->tlv_type);
673 put_unaligned_le16(len, &hdr->tlv_len);
674 memcpy(hdr + 1, data, len);
675 sctx->send_size += total_len;
676
677 return 0;
678 }
679
680 #define TLV_PUT_DEFINE_INT(bits) \
681 static int tlv_put_u##bits(struct send_ctx *sctx, \
682 u##bits attr, u##bits value) \
683 { \
684 __le##bits __tmp = cpu_to_le##bits(value); \
685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
686 }
687
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
691
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 const char *str, int len)
694 {
695 if (len == -1)
696 len = strlen(str);
697 return tlv_put(sctx, attr, str, len);
698 }
699
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701 const u8 *uuid)
702 {
703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704 }
705
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 struct extent_buffer *eb,
708 struct btrfs_timespec *ts)
709 {
710 struct btrfs_timespec bts;
711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 return tlv_put(sctx, attr, &bts, sizeof(bts));
713 }
714
715
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
717 do { \
718 ret = tlv_put(sctx, attrtype, data, attrlen); \
719 if (ret < 0) \
720 goto tlv_put_failure; \
721 } while (0)
722
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
724 do { \
725 ret = tlv_put_u##bits(sctx, attrtype, value); \
726 if (ret < 0) \
727 goto tlv_put_failure; \
728 } while (0)
729
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
735 do { \
736 ret = tlv_put_string(sctx, attrtype, str, len); \
737 if (ret < 0) \
738 goto tlv_put_failure; \
739 } while (0)
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
741 do { \
742 ret = tlv_put_string(sctx, attrtype, p->start, \
743 p->end - p->start); \
744 if (ret < 0) \
745 goto tlv_put_failure; \
746 } while(0)
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
748 do { \
749 ret = tlv_put_uuid(sctx, attrtype, uuid); \
750 if (ret < 0) \
751 goto tlv_put_failure; \
752 } while (0)
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754 do { \
755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756 if (ret < 0) \
757 goto tlv_put_failure; \
758 } while (0)
759
send_header(struct send_ctx * sctx)760 static int send_header(struct send_ctx *sctx)
761 {
762 struct btrfs_stream_header hdr;
763
764 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 hdr.version = cpu_to_le32(sctx->proto);
766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767 &sctx->send_off);
768 }
769
770 /*
771 * For each command/item we want to send to userspace, we call this function.
772 */
begin_cmd(struct send_ctx * sctx,int cmd)773 static int begin_cmd(struct send_ctx *sctx, int cmd)
774 {
775 struct btrfs_cmd_header *hdr;
776
777 if (WARN_ON(!sctx->send_buf))
778 return -EINVAL;
779
780 if (unlikely(sctx->send_size != 0)) {
781 btrfs_err(sctx->send_root->fs_info,
782 "send: command header buffer not empty cmd %d offset %llu",
783 cmd, sctx->send_off);
784 return -EINVAL;
785 }
786
787 sctx->send_size += sizeof(*hdr);
788 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
789 put_unaligned_le16(cmd, &hdr->cmd);
790
791 return 0;
792 }
793
send_cmd(struct send_ctx * sctx)794 static int send_cmd(struct send_ctx *sctx)
795 {
796 int ret;
797 struct btrfs_cmd_header *hdr;
798 u32 crc;
799
800 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
801 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
802 put_unaligned_le32(0, &hdr->crc);
803
804 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
805 put_unaligned_le32(crc, &hdr->crc);
806
807 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
808 &sctx->send_off);
809
810 sctx->send_size = 0;
811 sctx->put_data = false;
812
813 return ret;
814 }
815
816 /*
817 * Sends a move instruction to user space
818 */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)819 static int send_rename(struct send_ctx *sctx,
820 struct fs_path *from, struct fs_path *to)
821 {
822 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
823 int ret;
824
825 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
826
827 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
828 if (ret < 0)
829 goto out;
830
831 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
832 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
833
834 ret = send_cmd(sctx);
835
836 tlv_put_failure:
837 out:
838 return ret;
839 }
840
841 /*
842 * Sends a link instruction to user space
843 */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)844 static int send_link(struct send_ctx *sctx,
845 struct fs_path *path, struct fs_path *lnk)
846 {
847 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
848 int ret;
849
850 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
851
852 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
853 if (ret < 0)
854 goto out;
855
856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
857 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
858
859 ret = send_cmd(sctx);
860
861 tlv_put_failure:
862 out:
863 return ret;
864 }
865
866 /*
867 * Sends an unlink instruction to user space
868 */
send_unlink(struct send_ctx * sctx,struct fs_path * path)869 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
870 {
871 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
872 int ret;
873
874 btrfs_debug(fs_info, "send_unlink %s", path->start);
875
876 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
877 if (ret < 0)
878 goto out;
879
880 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
881
882 ret = send_cmd(sctx);
883
884 tlv_put_failure:
885 out:
886 return ret;
887 }
888
889 /*
890 * Sends a rmdir instruction to user space
891 */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)892 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
893 {
894 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
895 int ret;
896
897 btrfs_debug(fs_info, "send_rmdir %s", path->start);
898
899 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
900 if (ret < 0)
901 goto out;
902
903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
904
905 ret = send_cmd(sctx);
906
907 tlv_put_failure:
908 out:
909 return ret;
910 }
911
912 struct btrfs_inode_info {
913 u64 size;
914 u64 gen;
915 u64 mode;
916 u64 uid;
917 u64 gid;
918 u64 rdev;
919 u64 fileattr;
920 u64 nlink;
921 };
922
923 /*
924 * Helper function to retrieve some fields from an inode item.
925 */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)926 static int get_inode_info(struct btrfs_root *root, u64 ino,
927 struct btrfs_inode_info *info)
928 {
929 int ret;
930 struct btrfs_path *path;
931 struct btrfs_inode_item *ii;
932 struct btrfs_key key;
933
934 path = alloc_path_for_send();
935 if (!path)
936 return -ENOMEM;
937
938 key.objectid = ino;
939 key.type = BTRFS_INODE_ITEM_KEY;
940 key.offset = 0;
941 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
942 if (ret) {
943 if (ret > 0)
944 ret = -ENOENT;
945 goto out;
946 }
947
948 if (!info)
949 goto out;
950
951 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
952 struct btrfs_inode_item);
953 info->size = btrfs_inode_size(path->nodes[0], ii);
954 info->gen = btrfs_inode_generation(path->nodes[0], ii);
955 info->mode = btrfs_inode_mode(path->nodes[0], ii);
956 info->uid = btrfs_inode_uid(path->nodes[0], ii);
957 info->gid = btrfs_inode_gid(path->nodes[0], ii);
958 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
959 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
960 /*
961 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
962 * otherwise logically split to 32/32 parts.
963 */
964 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
965
966 out:
967 btrfs_free_path(path);
968 return ret;
969 }
970
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)971 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
972 {
973 int ret;
974 struct btrfs_inode_info info = { 0 };
975
976 ASSERT(gen);
977
978 ret = get_inode_info(root, ino, &info);
979 *gen = info.gen;
980 return ret;
981 }
982
983 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
984 struct fs_path *p,
985 void *ctx);
986
987 /*
988 * Helper function to iterate the entries in ONE btrfs_inode_ref or
989 * btrfs_inode_extref.
990 * The iterate callback may return a non zero value to stop iteration. This can
991 * be a negative value for error codes or 1 to simply stop it.
992 *
993 * path must point to the INODE_REF or INODE_EXTREF when called.
994 */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)995 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
996 struct btrfs_key *found_key, int resolve,
997 iterate_inode_ref_t iterate, void *ctx)
998 {
999 struct extent_buffer *eb = path->nodes[0];
1000 struct btrfs_inode_ref *iref;
1001 struct btrfs_inode_extref *extref;
1002 struct btrfs_path *tmp_path;
1003 struct fs_path *p;
1004 u32 cur = 0;
1005 u32 total;
1006 int slot = path->slots[0];
1007 u32 name_len;
1008 char *start;
1009 int ret = 0;
1010 int num = 0;
1011 int index;
1012 u64 dir;
1013 unsigned long name_off;
1014 unsigned long elem_size;
1015 unsigned long ptr;
1016
1017 p = fs_path_alloc_reversed();
1018 if (!p)
1019 return -ENOMEM;
1020
1021 tmp_path = alloc_path_for_send();
1022 if (!tmp_path) {
1023 fs_path_free(p);
1024 return -ENOMEM;
1025 }
1026
1027
1028 if (found_key->type == BTRFS_INODE_REF_KEY) {
1029 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1030 struct btrfs_inode_ref);
1031 total = btrfs_item_size(eb, slot);
1032 elem_size = sizeof(*iref);
1033 } else {
1034 ptr = btrfs_item_ptr_offset(eb, slot);
1035 total = btrfs_item_size(eb, slot);
1036 elem_size = sizeof(*extref);
1037 }
1038
1039 while (cur < total) {
1040 fs_path_reset(p);
1041
1042 if (found_key->type == BTRFS_INODE_REF_KEY) {
1043 iref = (struct btrfs_inode_ref *)(ptr + cur);
1044 name_len = btrfs_inode_ref_name_len(eb, iref);
1045 name_off = (unsigned long)(iref + 1);
1046 index = btrfs_inode_ref_index(eb, iref);
1047 dir = found_key->offset;
1048 } else {
1049 extref = (struct btrfs_inode_extref *)(ptr + cur);
1050 name_len = btrfs_inode_extref_name_len(eb, extref);
1051 name_off = (unsigned long)&extref->name;
1052 index = btrfs_inode_extref_index(eb, extref);
1053 dir = btrfs_inode_extref_parent(eb, extref);
1054 }
1055
1056 if (resolve) {
1057 start = btrfs_ref_to_path(root, tmp_path, name_len,
1058 name_off, eb, dir,
1059 p->buf, p->buf_len);
1060 if (IS_ERR(start)) {
1061 ret = PTR_ERR(start);
1062 goto out;
1063 }
1064 if (start < p->buf) {
1065 /* overflow , try again with larger buffer */
1066 ret = fs_path_ensure_buf(p,
1067 p->buf_len + p->buf - start);
1068 if (ret < 0)
1069 goto out;
1070 start = btrfs_ref_to_path(root, tmp_path,
1071 name_len, name_off,
1072 eb, dir,
1073 p->buf, p->buf_len);
1074 if (IS_ERR(start)) {
1075 ret = PTR_ERR(start);
1076 goto out;
1077 }
1078 if (unlikely(start < p->buf)) {
1079 btrfs_err(root->fs_info,
1080 "send: path ref buffer underflow for key (%llu %u %llu)",
1081 found_key->objectid,
1082 found_key->type,
1083 found_key->offset);
1084 ret = -EINVAL;
1085 goto out;
1086 }
1087 }
1088 p->start = start;
1089 } else {
1090 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1091 name_len);
1092 if (ret < 0)
1093 goto out;
1094 }
1095
1096 cur += elem_size + name_len;
1097 ret = iterate(num, dir, index, p, ctx);
1098 if (ret)
1099 goto out;
1100 num++;
1101 }
1102
1103 out:
1104 btrfs_free_path(tmp_path);
1105 fs_path_free(p);
1106 return ret;
1107 }
1108
1109 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1110 const char *name, int name_len,
1111 const char *data, int data_len,
1112 void *ctx);
1113
1114 /*
1115 * Helper function to iterate the entries in ONE btrfs_dir_item.
1116 * The iterate callback may return a non zero value to stop iteration. This can
1117 * be a negative value for error codes or 1 to simply stop it.
1118 *
1119 * path must point to the dir item when called.
1120 */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1121 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1122 iterate_dir_item_t iterate, void *ctx)
1123 {
1124 int ret = 0;
1125 struct extent_buffer *eb;
1126 struct btrfs_dir_item *di;
1127 struct btrfs_key di_key;
1128 char *buf = NULL;
1129 int buf_len;
1130 u32 name_len;
1131 u32 data_len;
1132 u32 cur;
1133 u32 len;
1134 u32 total;
1135 int slot;
1136 int num;
1137
1138 /*
1139 * Start with a small buffer (1 page). If later we end up needing more
1140 * space, which can happen for xattrs on a fs with a leaf size greater
1141 * then the page size, attempt to increase the buffer. Typically xattr
1142 * values are small.
1143 */
1144 buf_len = PATH_MAX;
1145 buf = kmalloc(buf_len, GFP_KERNEL);
1146 if (!buf) {
1147 ret = -ENOMEM;
1148 goto out;
1149 }
1150
1151 eb = path->nodes[0];
1152 slot = path->slots[0];
1153 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1154 cur = 0;
1155 len = 0;
1156 total = btrfs_item_size(eb, slot);
1157
1158 num = 0;
1159 while (cur < total) {
1160 name_len = btrfs_dir_name_len(eb, di);
1161 data_len = btrfs_dir_data_len(eb, di);
1162 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1163
1164 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1165 if (name_len > XATTR_NAME_MAX) {
1166 ret = -ENAMETOOLONG;
1167 goto out;
1168 }
1169 if (name_len + data_len >
1170 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1171 ret = -E2BIG;
1172 goto out;
1173 }
1174 } else {
1175 /*
1176 * Path too long
1177 */
1178 if (name_len + data_len > PATH_MAX) {
1179 ret = -ENAMETOOLONG;
1180 goto out;
1181 }
1182 }
1183
1184 if (name_len + data_len > buf_len) {
1185 buf_len = name_len + data_len;
1186 if (is_vmalloc_addr(buf)) {
1187 vfree(buf);
1188 buf = NULL;
1189 } else {
1190 char *tmp = krealloc(buf, buf_len,
1191 GFP_KERNEL | __GFP_NOWARN);
1192
1193 if (!tmp)
1194 kfree(buf);
1195 buf = tmp;
1196 }
1197 if (!buf) {
1198 buf = kvmalloc(buf_len, GFP_KERNEL);
1199 if (!buf) {
1200 ret = -ENOMEM;
1201 goto out;
1202 }
1203 }
1204 }
1205
1206 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1207 name_len + data_len);
1208
1209 len = sizeof(*di) + name_len + data_len;
1210 di = (struct btrfs_dir_item *)((char *)di + len);
1211 cur += len;
1212
1213 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1214 data_len, ctx);
1215 if (ret < 0)
1216 goto out;
1217 if (ret) {
1218 ret = 0;
1219 goto out;
1220 }
1221
1222 num++;
1223 }
1224
1225 out:
1226 kvfree(buf);
1227 return ret;
1228 }
1229
__copy_first_ref(int num,u64 dir,int index,struct fs_path * p,void * ctx)1230 static int __copy_first_ref(int num, u64 dir, int index,
1231 struct fs_path *p, void *ctx)
1232 {
1233 int ret;
1234 struct fs_path *pt = ctx;
1235
1236 ret = fs_path_copy(pt, p);
1237 if (ret < 0)
1238 return ret;
1239
1240 /* we want the first only */
1241 return 1;
1242 }
1243
1244 /*
1245 * Retrieve the first path of an inode. If an inode has more then one
1246 * ref/hardlink, this is ignored.
1247 */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1248 static int get_inode_path(struct btrfs_root *root,
1249 u64 ino, struct fs_path *path)
1250 {
1251 int ret;
1252 struct btrfs_key key, found_key;
1253 struct btrfs_path *p;
1254
1255 p = alloc_path_for_send();
1256 if (!p)
1257 return -ENOMEM;
1258
1259 fs_path_reset(path);
1260
1261 key.objectid = ino;
1262 key.type = BTRFS_INODE_REF_KEY;
1263 key.offset = 0;
1264
1265 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1266 if (ret < 0)
1267 goto out;
1268 if (ret) {
1269 ret = 1;
1270 goto out;
1271 }
1272 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1273 if (found_key.objectid != ino ||
1274 (found_key.type != BTRFS_INODE_REF_KEY &&
1275 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1276 ret = -ENOENT;
1277 goto out;
1278 }
1279
1280 ret = iterate_inode_ref(root, p, &found_key, 1,
1281 __copy_first_ref, path);
1282 if (ret < 0)
1283 goto out;
1284 ret = 0;
1285
1286 out:
1287 btrfs_free_path(p);
1288 return ret;
1289 }
1290
1291 struct backref_ctx {
1292 struct send_ctx *sctx;
1293
1294 /* number of total found references */
1295 u64 found;
1296
1297 /*
1298 * used for clones found in send_root. clones found behind cur_objectid
1299 * and cur_offset are not considered as allowed clones.
1300 */
1301 u64 cur_objectid;
1302 u64 cur_offset;
1303
1304 /* may be truncated in case it's the last extent in a file */
1305 u64 extent_len;
1306
1307 /* The bytenr the file extent item we are processing refers to. */
1308 u64 bytenr;
1309 /* The owner (root id) of the data backref for the current extent. */
1310 u64 backref_owner;
1311 /* The offset of the data backref for the current extent. */
1312 u64 backref_offset;
1313 };
1314
__clone_root_cmp_bsearch(const void * key,const void * elt)1315 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1316 {
1317 u64 root = (u64)(uintptr_t)key;
1318 const struct clone_root *cr = elt;
1319
1320 if (root < cr->root->root_key.objectid)
1321 return -1;
1322 if (root > cr->root->root_key.objectid)
1323 return 1;
1324 return 0;
1325 }
1326
__clone_root_cmp_sort(const void * e1,const void * e2)1327 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1328 {
1329 const struct clone_root *cr1 = e1;
1330 const struct clone_root *cr2 = e2;
1331
1332 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1333 return -1;
1334 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1335 return 1;
1336 return 0;
1337 }
1338
1339 /*
1340 * Called for every backref that is found for the current extent.
1341 * Results are collected in sctx->clone_roots->ino/offset.
1342 */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1343 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1344 void *ctx_)
1345 {
1346 struct backref_ctx *bctx = ctx_;
1347 struct clone_root *clone_root;
1348
1349 /* First check if the root is in the list of accepted clone sources */
1350 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1351 bctx->sctx->clone_roots_cnt,
1352 sizeof(struct clone_root),
1353 __clone_root_cmp_bsearch);
1354 if (!clone_root)
1355 return 0;
1356
1357 /* This is our own reference, bail out as we can't clone from it. */
1358 if (clone_root->root == bctx->sctx->send_root &&
1359 ino == bctx->cur_objectid &&
1360 offset == bctx->cur_offset)
1361 return 0;
1362
1363 /*
1364 * Make sure we don't consider clones from send_root that are
1365 * behind the current inode/offset.
1366 */
1367 if (clone_root->root == bctx->sctx->send_root) {
1368 /*
1369 * If the source inode was not yet processed we can't issue a
1370 * clone operation, as the source extent does not exist yet at
1371 * the destination of the stream.
1372 */
1373 if (ino > bctx->cur_objectid)
1374 return 0;
1375 /*
1376 * We clone from the inode currently being sent as long as the
1377 * source extent is already processed, otherwise we could try
1378 * to clone from an extent that does not exist yet at the
1379 * destination of the stream.
1380 */
1381 if (ino == bctx->cur_objectid &&
1382 offset + bctx->extent_len >
1383 bctx->sctx->cur_inode_next_write_offset)
1384 return 0;
1385 }
1386
1387 bctx->found++;
1388 clone_root->found_ref = true;
1389
1390 /*
1391 * If the given backref refers to a file extent item with a larger
1392 * number of bytes than what we found before, use the new one so that
1393 * we clone more optimally and end up doing less writes and getting
1394 * less exclusive, non-shared extents at the destination.
1395 */
1396 if (num_bytes > clone_root->num_bytes) {
1397 clone_root->ino = ino;
1398 clone_root->offset = offset;
1399 clone_root->num_bytes = num_bytes;
1400
1401 /*
1402 * Found a perfect candidate, so there's no need to continue
1403 * backref walking.
1404 */
1405 if (num_bytes >= bctx->extent_len)
1406 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1407 }
1408
1409 return 0;
1410 }
1411
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1412 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1413 const u64 **root_ids_ret, int *root_count_ret)
1414 {
1415 struct backref_ctx *bctx = ctx;
1416 struct send_ctx *sctx = bctx->sctx;
1417 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1418 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1419 struct btrfs_lru_cache_entry *raw_entry;
1420 struct backref_cache_entry *entry;
1421
1422 if (btrfs_lru_cache_size(&sctx->backref_cache) == 0)
1423 return false;
1424
1425 /*
1426 * If relocation happened since we first filled the cache, then we must
1427 * empty the cache and can not use it, because even though we operate on
1428 * read-only roots, their leaves and nodes may have been reallocated and
1429 * now be used for different nodes/leaves of the same tree or some other
1430 * tree.
1431 *
1432 * We are called from iterate_extent_inodes() while either holding a
1433 * transaction handle or holding fs_info->commit_root_sem, so no need
1434 * to take any lock here.
1435 */
1436 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1437 btrfs_lru_cache_clear(&sctx->backref_cache);
1438 return false;
1439 }
1440
1441 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1442 if (!raw_entry)
1443 return false;
1444
1445 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1446 *root_ids_ret = entry->root_ids;
1447 *root_count_ret = entry->num_roots;
1448
1449 return true;
1450 }
1451
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1452 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1453 void *ctx)
1454 {
1455 struct backref_ctx *bctx = ctx;
1456 struct send_ctx *sctx = bctx->sctx;
1457 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1458 struct backref_cache_entry *new_entry;
1459 struct ulist_iterator uiter;
1460 struct ulist_node *node;
1461 int ret;
1462
1463 /*
1464 * We're called while holding a transaction handle or while holding
1465 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1466 * NOFS allocation.
1467 */
1468 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1469 /* No worries, cache is optional. */
1470 if (!new_entry)
1471 return;
1472
1473 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1474 new_entry->entry.gen = 0;
1475 new_entry->num_roots = 0;
1476 ULIST_ITER_INIT(&uiter);
1477 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1478 const u64 root_id = node->val;
1479 struct clone_root *root;
1480
1481 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1482 sctx->clone_roots_cnt, sizeof(struct clone_root),
1483 __clone_root_cmp_bsearch);
1484 if (!root)
1485 continue;
1486
1487 /* Too many roots, just exit, no worries as caching is optional. */
1488 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1489 kfree(new_entry);
1490 return;
1491 }
1492
1493 new_entry->root_ids[new_entry->num_roots] = root_id;
1494 new_entry->num_roots++;
1495 }
1496
1497 /*
1498 * We may have not added any roots to the new cache entry, which means
1499 * none of the roots is part of the list of roots from which we are
1500 * allowed to clone. Cache the new entry as it's still useful to avoid
1501 * backref walking to determine which roots have a path to the leaf.
1502 *
1503 * Also use GFP_NOFS because we're called while holding a transaction
1504 * handle or while holding fs_info->commit_root_sem.
1505 */
1506 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1507 GFP_NOFS);
1508 ASSERT(ret == 0 || ret == -ENOMEM);
1509 if (ret) {
1510 /* Caching is optional, no worries. */
1511 kfree(new_entry);
1512 return;
1513 }
1514
1515 /*
1516 * We are called from iterate_extent_inodes() while either holding a
1517 * transaction handle or holding fs_info->commit_root_sem, so no need
1518 * to take any lock here.
1519 */
1520 if (btrfs_lru_cache_size(&sctx->backref_cache) == 1)
1521 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1522 }
1523
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1524 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1525 const struct extent_buffer *leaf, void *ctx)
1526 {
1527 const u64 refs = btrfs_extent_refs(leaf, ei);
1528 const struct backref_ctx *bctx = ctx;
1529 const struct send_ctx *sctx = bctx->sctx;
1530
1531 if (bytenr == bctx->bytenr) {
1532 const u64 flags = btrfs_extent_flags(leaf, ei);
1533
1534 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1535 return -EUCLEAN;
1536
1537 /*
1538 * If we have only one reference and only the send root as a
1539 * clone source - meaning no clone roots were given in the
1540 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1541 * it's our reference and there's no point in doing backref
1542 * walking which is expensive, so exit early.
1543 */
1544 if (refs == 1 && sctx->clone_roots_cnt == 1)
1545 return -ENOENT;
1546 }
1547
1548 /*
1549 * Backreference walking (iterate_extent_inodes() below) is currently
1550 * too expensive when an extent has a large number of references, both
1551 * in time spent and used memory. So for now just fallback to write
1552 * operations instead of clone operations when an extent has more than
1553 * a certain amount of references.
1554 */
1555 if (refs > SEND_MAX_EXTENT_REFS)
1556 return -ENOENT;
1557
1558 return 0;
1559 }
1560
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1561 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1562 {
1563 const struct backref_ctx *bctx = ctx;
1564
1565 if (ino == bctx->cur_objectid &&
1566 root == bctx->backref_owner &&
1567 offset == bctx->backref_offset)
1568 return true;
1569
1570 return false;
1571 }
1572
1573 /*
1574 * Given an inode, offset and extent item, it finds a good clone for a clone
1575 * instruction. Returns -ENOENT when none could be found. The function makes
1576 * sure that the returned clone is usable at the point where sending is at the
1577 * moment. This means, that no clones are accepted which lie behind the current
1578 * inode+offset.
1579 *
1580 * path must point to the extent item when called.
1581 */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1582 static int find_extent_clone(struct send_ctx *sctx,
1583 struct btrfs_path *path,
1584 u64 ino, u64 data_offset,
1585 u64 ino_size,
1586 struct clone_root **found)
1587 {
1588 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1589 int ret;
1590 int extent_type;
1591 u64 logical;
1592 u64 disk_byte;
1593 u64 num_bytes;
1594 struct btrfs_file_extent_item *fi;
1595 struct extent_buffer *eb = path->nodes[0];
1596 struct backref_ctx backref_ctx = { 0 };
1597 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1598 struct clone_root *cur_clone_root;
1599 int compressed;
1600 u32 i;
1601
1602 /*
1603 * With fallocate we can get prealloc extents beyond the inode's i_size,
1604 * so we don't do anything here because clone operations can not clone
1605 * to a range beyond i_size without increasing the i_size of the
1606 * destination inode.
1607 */
1608 if (data_offset >= ino_size)
1609 return 0;
1610
1611 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1612 extent_type = btrfs_file_extent_type(eb, fi);
1613 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1614 return -ENOENT;
1615
1616 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1617 if (disk_byte == 0)
1618 return -ENOENT;
1619
1620 compressed = btrfs_file_extent_compression(eb, fi);
1621 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1622 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1623
1624 /*
1625 * Setup the clone roots.
1626 */
1627 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1628 cur_clone_root = sctx->clone_roots + i;
1629 cur_clone_root->ino = (u64)-1;
1630 cur_clone_root->offset = 0;
1631 cur_clone_root->num_bytes = 0;
1632 cur_clone_root->found_ref = false;
1633 }
1634
1635 backref_ctx.sctx = sctx;
1636 backref_ctx.cur_objectid = ino;
1637 backref_ctx.cur_offset = data_offset;
1638 backref_ctx.bytenr = disk_byte;
1639 /*
1640 * Use the header owner and not the send root's id, because in case of a
1641 * snapshot we can have shared subtrees.
1642 */
1643 backref_ctx.backref_owner = btrfs_header_owner(eb);
1644 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1645
1646 /*
1647 * The last extent of a file may be too large due to page alignment.
1648 * We need to adjust extent_len in this case so that the checks in
1649 * iterate_backrefs() work.
1650 */
1651 if (data_offset + num_bytes >= ino_size)
1652 backref_ctx.extent_len = ino_size - data_offset;
1653 else
1654 backref_ctx.extent_len = num_bytes;
1655
1656 /*
1657 * Now collect all backrefs.
1658 */
1659 backref_walk_ctx.bytenr = disk_byte;
1660 if (compressed == BTRFS_COMPRESS_NONE)
1661 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1662 backref_walk_ctx.fs_info = fs_info;
1663 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1664 backref_walk_ctx.cache_store = store_backref_cache;
1665 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1666 backref_walk_ctx.check_extent_item = check_extent_item;
1667 backref_walk_ctx.user_ctx = &backref_ctx;
1668
1669 /*
1670 * If have a single clone root, then it's the send root and we can tell
1671 * the backref walking code to skip our own backref and not resolve it,
1672 * since we can not use it for cloning - the source and destination
1673 * ranges can't overlap and in case the leaf is shared through a subtree
1674 * due to snapshots, we can't use those other roots since they are not
1675 * in the list of clone roots.
1676 */
1677 if (sctx->clone_roots_cnt == 1)
1678 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1679
1680 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1681 &backref_ctx);
1682 if (ret < 0)
1683 return ret;
1684
1685 down_read(&fs_info->commit_root_sem);
1686 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1687 /*
1688 * A transaction commit for a transaction in which block group
1689 * relocation was done just happened.
1690 * The disk_bytenr of the file extent item we processed is
1691 * possibly stale, referring to the extent's location before
1692 * relocation. So act as if we haven't found any clone sources
1693 * and fallback to write commands, which will read the correct
1694 * data from the new extent location. Otherwise we will fail
1695 * below because we haven't found our own back reference or we
1696 * could be getting incorrect sources in case the old extent
1697 * was already reallocated after the relocation.
1698 */
1699 up_read(&fs_info->commit_root_sem);
1700 return -ENOENT;
1701 }
1702 up_read(&fs_info->commit_root_sem);
1703
1704 btrfs_debug(fs_info,
1705 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1706 data_offset, ino, num_bytes, logical);
1707
1708 if (!backref_ctx.found) {
1709 btrfs_debug(fs_info, "no clones found");
1710 return -ENOENT;
1711 }
1712
1713 cur_clone_root = NULL;
1714 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1715 struct clone_root *clone_root = &sctx->clone_roots[i];
1716
1717 if (!clone_root->found_ref)
1718 continue;
1719
1720 /*
1721 * Choose the root from which we can clone more bytes, to
1722 * minimize write operations and therefore have more extent
1723 * sharing at the destination (the same as in the source).
1724 */
1725 if (!cur_clone_root ||
1726 clone_root->num_bytes > cur_clone_root->num_bytes) {
1727 cur_clone_root = clone_root;
1728
1729 /*
1730 * We found an optimal clone candidate (any inode from
1731 * any root is fine), so we're done.
1732 */
1733 if (clone_root->num_bytes >= backref_ctx.extent_len)
1734 break;
1735 }
1736 }
1737
1738 if (cur_clone_root) {
1739 *found = cur_clone_root;
1740 ret = 0;
1741 } else {
1742 ret = -ENOENT;
1743 }
1744
1745 return ret;
1746 }
1747
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1748 static int read_symlink(struct btrfs_root *root,
1749 u64 ino,
1750 struct fs_path *dest)
1751 {
1752 int ret;
1753 struct btrfs_path *path;
1754 struct btrfs_key key;
1755 struct btrfs_file_extent_item *ei;
1756 u8 type;
1757 u8 compression;
1758 unsigned long off;
1759 int len;
1760
1761 path = alloc_path_for_send();
1762 if (!path)
1763 return -ENOMEM;
1764
1765 key.objectid = ino;
1766 key.type = BTRFS_EXTENT_DATA_KEY;
1767 key.offset = 0;
1768 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1769 if (ret < 0)
1770 goto out;
1771 if (ret) {
1772 /*
1773 * An empty symlink inode. Can happen in rare error paths when
1774 * creating a symlink (transaction committed before the inode
1775 * eviction handler removed the symlink inode items and a crash
1776 * happened in between or the subvol was snapshoted in between).
1777 * Print an informative message to dmesg/syslog so that the user
1778 * can delete the symlink.
1779 */
1780 btrfs_err(root->fs_info,
1781 "Found empty symlink inode %llu at root %llu",
1782 ino, root->root_key.objectid);
1783 ret = -EIO;
1784 goto out;
1785 }
1786
1787 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1788 struct btrfs_file_extent_item);
1789 type = btrfs_file_extent_type(path->nodes[0], ei);
1790 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1791 ret = -EUCLEAN;
1792 btrfs_crit(root->fs_info,
1793 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1794 ino, btrfs_root_id(root), type);
1795 goto out;
1796 }
1797 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1798 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1799 ret = -EUCLEAN;
1800 btrfs_crit(root->fs_info,
1801 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1802 ino, btrfs_root_id(root), compression);
1803 goto out;
1804 }
1805
1806 off = btrfs_file_extent_inline_start(ei);
1807 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1808
1809 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1810
1811 out:
1812 btrfs_free_path(path);
1813 return ret;
1814 }
1815
1816 /*
1817 * Helper function to generate a file name that is unique in the root of
1818 * send_root and parent_root. This is used to generate names for orphan inodes.
1819 */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1820 static int gen_unique_name(struct send_ctx *sctx,
1821 u64 ino, u64 gen,
1822 struct fs_path *dest)
1823 {
1824 int ret = 0;
1825 struct btrfs_path *path;
1826 struct btrfs_dir_item *di;
1827 char tmp[64];
1828 int len;
1829 u64 idx = 0;
1830
1831 path = alloc_path_for_send();
1832 if (!path)
1833 return -ENOMEM;
1834
1835 while (1) {
1836 struct fscrypt_str tmp_name;
1837
1838 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1839 ino, gen, idx);
1840 ASSERT(len < sizeof(tmp));
1841 tmp_name.name = tmp;
1842 tmp_name.len = strlen(tmp);
1843
1844 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1845 path, BTRFS_FIRST_FREE_OBJECTID,
1846 &tmp_name, 0);
1847 btrfs_release_path(path);
1848 if (IS_ERR(di)) {
1849 ret = PTR_ERR(di);
1850 goto out;
1851 }
1852 if (di) {
1853 /* not unique, try again */
1854 idx++;
1855 continue;
1856 }
1857
1858 if (!sctx->parent_root) {
1859 /* unique */
1860 ret = 0;
1861 break;
1862 }
1863
1864 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1865 path, BTRFS_FIRST_FREE_OBJECTID,
1866 &tmp_name, 0);
1867 btrfs_release_path(path);
1868 if (IS_ERR(di)) {
1869 ret = PTR_ERR(di);
1870 goto out;
1871 }
1872 if (di) {
1873 /* not unique, try again */
1874 idx++;
1875 continue;
1876 }
1877 /* unique */
1878 break;
1879 }
1880
1881 ret = fs_path_add(dest, tmp, strlen(tmp));
1882
1883 out:
1884 btrfs_free_path(path);
1885 return ret;
1886 }
1887
1888 enum inode_state {
1889 inode_state_no_change,
1890 inode_state_will_create,
1891 inode_state_did_create,
1892 inode_state_will_delete,
1893 inode_state_did_delete,
1894 };
1895
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1896 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1897 u64 *send_gen, u64 *parent_gen)
1898 {
1899 int ret;
1900 int left_ret;
1901 int right_ret;
1902 u64 left_gen;
1903 u64 right_gen = 0;
1904 struct btrfs_inode_info info;
1905
1906 ret = get_inode_info(sctx->send_root, ino, &info);
1907 if (ret < 0 && ret != -ENOENT)
1908 goto out;
1909 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1910 left_gen = info.gen;
1911 if (send_gen)
1912 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1913
1914 if (!sctx->parent_root) {
1915 right_ret = -ENOENT;
1916 } else {
1917 ret = get_inode_info(sctx->parent_root, ino, &info);
1918 if (ret < 0 && ret != -ENOENT)
1919 goto out;
1920 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1921 right_gen = info.gen;
1922 if (parent_gen)
1923 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1924 }
1925
1926 if (!left_ret && !right_ret) {
1927 if (left_gen == gen && right_gen == gen) {
1928 ret = inode_state_no_change;
1929 } else if (left_gen == gen) {
1930 if (ino < sctx->send_progress)
1931 ret = inode_state_did_create;
1932 else
1933 ret = inode_state_will_create;
1934 } else if (right_gen == gen) {
1935 if (ino < sctx->send_progress)
1936 ret = inode_state_did_delete;
1937 else
1938 ret = inode_state_will_delete;
1939 } else {
1940 ret = -ENOENT;
1941 }
1942 } else if (!left_ret) {
1943 if (left_gen == gen) {
1944 if (ino < sctx->send_progress)
1945 ret = inode_state_did_create;
1946 else
1947 ret = inode_state_will_create;
1948 } else {
1949 ret = -ENOENT;
1950 }
1951 } else if (!right_ret) {
1952 if (right_gen == gen) {
1953 if (ino < sctx->send_progress)
1954 ret = inode_state_did_delete;
1955 else
1956 ret = inode_state_will_delete;
1957 } else {
1958 ret = -ENOENT;
1959 }
1960 } else {
1961 ret = -ENOENT;
1962 }
1963
1964 out:
1965 return ret;
1966 }
1967
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1968 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1969 u64 *send_gen, u64 *parent_gen)
1970 {
1971 int ret;
1972
1973 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1974 return 1;
1975
1976 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1977 if (ret < 0)
1978 goto out;
1979
1980 if (ret == inode_state_no_change ||
1981 ret == inode_state_did_create ||
1982 ret == inode_state_will_delete)
1983 ret = 1;
1984 else
1985 ret = 0;
1986
1987 out:
1988 return ret;
1989 }
1990
1991 /*
1992 * Helper function to lookup a dir item in a dir.
1993 */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1994 static int lookup_dir_item_inode(struct btrfs_root *root,
1995 u64 dir, const char *name, int name_len,
1996 u64 *found_inode)
1997 {
1998 int ret = 0;
1999 struct btrfs_dir_item *di;
2000 struct btrfs_key key;
2001 struct btrfs_path *path;
2002 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2003
2004 path = alloc_path_for_send();
2005 if (!path)
2006 return -ENOMEM;
2007
2008 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2009 if (IS_ERR_OR_NULL(di)) {
2010 ret = di ? PTR_ERR(di) : -ENOENT;
2011 goto out;
2012 }
2013 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2014 if (key.type == BTRFS_ROOT_ITEM_KEY) {
2015 ret = -ENOENT;
2016 goto out;
2017 }
2018 *found_inode = key.objectid;
2019
2020 out:
2021 btrfs_free_path(path);
2022 return ret;
2023 }
2024
2025 /*
2026 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2027 * generation of the parent dir and the name of the dir entry.
2028 */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)2029 static int get_first_ref(struct btrfs_root *root, u64 ino,
2030 u64 *dir, u64 *dir_gen, struct fs_path *name)
2031 {
2032 int ret;
2033 struct btrfs_key key;
2034 struct btrfs_key found_key;
2035 struct btrfs_path *path;
2036 int len;
2037 u64 parent_dir;
2038
2039 path = alloc_path_for_send();
2040 if (!path)
2041 return -ENOMEM;
2042
2043 key.objectid = ino;
2044 key.type = BTRFS_INODE_REF_KEY;
2045 key.offset = 0;
2046
2047 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2048 if (ret < 0)
2049 goto out;
2050 if (!ret)
2051 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2052 path->slots[0]);
2053 if (ret || found_key.objectid != ino ||
2054 (found_key.type != BTRFS_INODE_REF_KEY &&
2055 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2056 ret = -ENOENT;
2057 goto out;
2058 }
2059
2060 if (found_key.type == BTRFS_INODE_REF_KEY) {
2061 struct btrfs_inode_ref *iref;
2062 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2063 struct btrfs_inode_ref);
2064 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2065 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2066 (unsigned long)(iref + 1),
2067 len);
2068 parent_dir = found_key.offset;
2069 } else {
2070 struct btrfs_inode_extref *extref;
2071 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2072 struct btrfs_inode_extref);
2073 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2074 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2075 (unsigned long)&extref->name, len);
2076 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2077 }
2078 if (ret < 0)
2079 goto out;
2080 btrfs_release_path(path);
2081
2082 if (dir_gen) {
2083 ret = get_inode_gen(root, parent_dir, dir_gen);
2084 if (ret < 0)
2085 goto out;
2086 }
2087
2088 *dir = parent_dir;
2089
2090 out:
2091 btrfs_free_path(path);
2092 return ret;
2093 }
2094
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2095 static int is_first_ref(struct btrfs_root *root,
2096 u64 ino, u64 dir,
2097 const char *name, int name_len)
2098 {
2099 int ret;
2100 struct fs_path *tmp_name;
2101 u64 tmp_dir;
2102
2103 tmp_name = fs_path_alloc();
2104 if (!tmp_name)
2105 return -ENOMEM;
2106
2107 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2108 if (ret < 0)
2109 goto out;
2110
2111 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2112 ret = 0;
2113 goto out;
2114 }
2115
2116 ret = !memcmp(tmp_name->start, name, name_len);
2117
2118 out:
2119 fs_path_free(tmp_name);
2120 return ret;
2121 }
2122
2123 /*
2124 * Used by process_recorded_refs to determine if a new ref would overwrite an
2125 * already existing ref. In case it detects an overwrite, it returns the
2126 * inode/gen in who_ino/who_gen.
2127 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2128 * to make sure later references to the overwritten inode are possible.
2129 * Orphanizing is however only required for the first ref of an inode.
2130 * process_recorded_refs does an additional is_first_ref check to see if
2131 * orphanizing is really required.
2132 */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2133 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2134 const char *name, int name_len,
2135 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2136 {
2137 int ret;
2138 u64 parent_root_dir_gen;
2139 u64 other_inode = 0;
2140 struct btrfs_inode_info info;
2141
2142 if (!sctx->parent_root)
2143 return 0;
2144
2145 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2146 if (ret <= 0)
2147 return 0;
2148
2149 /*
2150 * If we have a parent root we need to verify that the parent dir was
2151 * not deleted and then re-created, if it was then we have no overwrite
2152 * and we can just unlink this entry.
2153 *
2154 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2155 * parent root.
2156 */
2157 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2158 parent_root_dir_gen != dir_gen)
2159 return 0;
2160
2161 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2162 &other_inode);
2163 if (ret == -ENOENT)
2164 return 0;
2165 else if (ret < 0)
2166 return ret;
2167
2168 /*
2169 * Check if the overwritten ref was already processed. If yes, the ref
2170 * was already unlinked/moved, so we can safely assume that we will not
2171 * overwrite anything at this point in time.
2172 */
2173 if (other_inode > sctx->send_progress ||
2174 is_waiting_for_move(sctx, other_inode)) {
2175 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2176 if (ret < 0)
2177 return ret;
2178
2179 *who_ino = other_inode;
2180 *who_gen = info.gen;
2181 *who_mode = info.mode;
2182 return 1;
2183 }
2184
2185 return 0;
2186 }
2187
2188 /*
2189 * Checks if the ref was overwritten by an already processed inode. This is
2190 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2191 * thus the orphan name needs be used.
2192 * process_recorded_refs also uses it to avoid unlinking of refs that were
2193 * overwritten.
2194 */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2195 static int did_overwrite_ref(struct send_ctx *sctx,
2196 u64 dir, u64 dir_gen,
2197 u64 ino, u64 ino_gen,
2198 const char *name, int name_len)
2199 {
2200 int ret;
2201 u64 ow_inode;
2202 u64 ow_gen = 0;
2203 u64 send_root_dir_gen;
2204
2205 if (!sctx->parent_root)
2206 return 0;
2207
2208 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2209 if (ret <= 0)
2210 return ret;
2211
2212 /*
2213 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2214 * send root.
2215 */
2216 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2217 return 0;
2218
2219 /* check if the ref was overwritten by another ref */
2220 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2221 &ow_inode);
2222 if (ret == -ENOENT) {
2223 /* was never and will never be overwritten */
2224 return 0;
2225 } else if (ret < 0) {
2226 return ret;
2227 }
2228
2229 if (ow_inode == ino) {
2230 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2231 if (ret < 0)
2232 return ret;
2233
2234 /* It's the same inode, so no overwrite happened. */
2235 if (ow_gen == ino_gen)
2236 return 0;
2237 }
2238
2239 /*
2240 * We know that it is or will be overwritten. Check this now.
2241 * The current inode being processed might have been the one that caused
2242 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2243 * the current inode being processed.
2244 */
2245 if (ow_inode < sctx->send_progress)
2246 return 1;
2247
2248 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2249 if (ow_gen == 0) {
2250 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2251 if (ret < 0)
2252 return ret;
2253 }
2254 if (ow_gen == sctx->cur_inode_gen)
2255 return 1;
2256 }
2257
2258 return 0;
2259 }
2260
2261 /*
2262 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2263 * that got overwritten. This is used by process_recorded_refs to determine
2264 * if it has to use the path as returned by get_cur_path or the orphan name.
2265 */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2266 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2267 {
2268 int ret = 0;
2269 struct fs_path *name = NULL;
2270 u64 dir;
2271 u64 dir_gen;
2272
2273 if (!sctx->parent_root)
2274 goto out;
2275
2276 name = fs_path_alloc();
2277 if (!name)
2278 return -ENOMEM;
2279
2280 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2281 if (ret < 0)
2282 goto out;
2283
2284 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2285 name->start, fs_path_len(name));
2286
2287 out:
2288 fs_path_free(name);
2289 return ret;
2290 }
2291
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2292 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2293 u64 ino, u64 gen)
2294 {
2295 struct btrfs_lru_cache_entry *entry;
2296
2297 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2298 if (!entry)
2299 return NULL;
2300
2301 return container_of(entry, struct name_cache_entry, entry);
2302 }
2303
2304 /*
2305 * Used by get_cur_path for each ref up to the root.
2306 * Returns 0 if it succeeded.
2307 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2308 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2309 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2310 * Returns <0 in case of error.
2311 */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2312 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2313 u64 ino, u64 gen,
2314 u64 *parent_ino,
2315 u64 *parent_gen,
2316 struct fs_path *dest)
2317 {
2318 int ret;
2319 int nce_ret;
2320 struct name_cache_entry *nce;
2321
2322 /*
2323 * First check if we already did a call to this function with the same
2324 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2325 * return the cached result.
2326 */
2327 nce = name_cache_search(sctx, ino, gen);
2328 if (nce) {
2329 if (ino < sctx->send_progress && nce->need_later_update) {
2330 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2331 nce = NULL;
2332 } else {
2333 *parent_ino = nce->parent_ino;
2334 *parent_gen = nce->parent_gen;
2335 ret = fs_path_add(dest, nce->name, nce->name_len);
2336 if (ret < 0)
2337 goto out;
2338 ret = nce->ret;
2339 goto out;
2340 }
2341 }
2342
2343 /*
2344 * If the inode is not existent yet, add the orphan name and return 1.
2345 * This should only happen for the parent dir that we determine in
2346 * record_new_ref_if_needed().
2347 */
2348 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2349 if (ret < 0)
2350 goto out;
2351
2352 if (!ret) {
2353 ret = gen_unique_name(sctx, ino, gen, dest);
2354 if (ret < 0)
2355 goto out;
2356 ret = 1;
2357 goto out_cache;
2358 }
2359
2360 /*
2361 * Depending on whether the inode was already processed or not, use
2362 * send_root or parent_root for ref lookup.
2363 */
2364 if (ino < sctx->send_progress)
2365 ret = get_first_ref(sctx->send_root, ino,
2366 parent_ino, parent_gen, dest);
2367 else
2368 ret = get_first_ref(sctx->parent_root, ino,
2369 parent_ino, parent_gen, dest);
2370 if (ret < 0)
2371 goto out;
2372
2373 /*
2374 * Check if the ref was overwritten by an inode's ref that was processed
2375 * earlier. If yes, treat as orphan and return 1.
2376 */
2377 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2378 dest->start, dest->end - dest->start);
2379 if (ret < 0)
2380 goto out;
2381 if (ret) {
2382 fs_path_reset(dest);
2383 ret = gen_unique_name(sctx, ino, gen, dest);
2384 if (ret < 0)
2385 goto out;
2386 ret = 1;
2387 }
2388
2389 out_cache:
2390 /*
2391 * Store the result of the lookup in the name cache.
2392 */
2393 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2394 if (!nce) {
2395 ret = -ENOMEM;
2396 goto out;
2397 }
2398
2399 nce->entry.key = ino;
2400 nce->entry.gen = gen;
2401 nce->parent_ino = *parent_ino;
2402 nce->parent_gen = *parent_gen;
2403 nce->name_len = fs_path_len(dest);
2404 nce->ret = ret;
2405 strcpy(nce->name, dest->start);
2406
2407 if (ino < sctx->send_progress)
2408 nce->need_later_update = 0;
2409 else
2410 nce->need_later_update = 1;
2411
2412 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2413 if (nce_ret < 0) {
2414 kfree(nce);
2415 ret = nce_ret;
2416 }
2417
2418 out:
2419 return ret;
2420 }
2421
2422 /*
2423 * Magic happens here. This function returns the first ref to an inode as it
2424 * would look like while receiving the stream at this point in time.
2425 * We walk the path up to the root. For every inode in between, we check if it
2426 * was already processed/sent. If yes, we continue with the parent as found
2427 * in send_root. If not, we continue with the parent as found in parent_root.
2428 * If we encounter an inode that was deleted at this point in time, we use the
2429 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2430 * that were not created yet and overwritten inodes/refs.
2431 *
2432 * When do we have orphan inodes:
2433 * 1. When an inode is freshly created and thus no valid refs are available yet
2434 * 2. When a directory lost all it's refs (deleted) but still has dir items
2435 * inside which were not processed yet (pending for move/delete). If anyone
2436 * tried to get the path to the dir items, it would get a path inside that
2437 * orphan directory.
2438 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2439 * of an unprocessed inode. If in that case the first ref would be
2440 * overwritten, the overwritten inode gets "orphanized". Later when we
2441 * process this overwritten inode, it is restored at a new place by moving
2442 * the orphan inode.
2443 *
2444 * sctx->send_progress tells this function at which point in time receiving
2445 * would be.
2446 */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2447 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2448 struct fs_path *dest)
2449 {
2450 int ret = 0;
2451 struct fs_path *name = NULL;
2452 u64 parent_inode = 0;
2453 u64 parent_gen = 0;
2454 int stop = 0;
2455
2456 name = fs_path_alloc();
2457 if (!name) {
2458 ret = -ENOMEM;
2459 goto out;
2460 }
2461
2462 dest->reversed = 1;
2463 fs_path_reset(dest);
2464
2465 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2466 struct waiting_dir_move *wdm;
2467
2468 fs_path_reset(name);
2469
2470 if (is_waiting_for_rm(sctx, ino, gen)) {
2471 ret = gen_unique_name(sctx, ino, gen, name);
2472 if (ret < 0)
2473 goto out;
2474 ret = fs_path_add_path(dest, name);
2475 break;
2476 }
2477
2478 wdm = get_waiting_dir_move(sctx, ino);
2479 if (wdm && wdm->orphanized) {
2480 ret = gen_unique_name(sctx, ino, gen, name);
2481 stop = 1;
2482 } else if (wdm) {
2483 ret = get_first_ref(sctx->parent_root, ino,
2484 &parent_inode, &parent_gen, name);
2485 } else {
2486 ret = __get_cur_name_and_parent(sctx, ino, gen,
2487 &parent_inode,
2488 &parent_gen, name);
2489 if (ret)
2490 stop = 1;
2491 }
2492
2493 if (ret < 0)
2494 goto out;
2495
2496 ret = fs_path_add_path(dest, name);
2497 if (ret < 0)
2498 goto out;
2499
2500 ino = parent_inode;
2501 gen = parent_gen;
2502 }
2503
2504 out:
2505 fs_path_free(name);
2506 if (!ret)
2507 fs_path_unreverse(dest);
2508 return ret;
2509 }
2510
2511 /*
2512 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2513 */
send_subvol_begin(struct send_ctx * sctx)2514 static int send_subvol_begin(struct send_ctx *sctx)
2515 {
2516 int ret;
2517 struct btrfs_root *send_root = sctx->send_root;
2518 struct btrfs_root *parent_root = sctx->parent_root;
2519 struct btrfs_path *path;
2520 struct btrfs_key key;
2521 struct btrfs_root_ref *ref;
2522 struct extent_buffer *leaf;
2523 char *name = NULL;
2524 int namelen;
2525
2526 path = btrfs_alloc_path();
2527 if (!path)
2528 return -ENOMEM;
2529
2530 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2531 if (!name) {
2532 btrfs_free_path(path);
2533 return -ENOMEM;
2534 }
2535
2536 key.objectid = send_root->root_key.objectid;
2537 key.type = BTRFS_ROOT_BACKREF_KEY;
2538 key.offset = 0;
2539
2540 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2541 &key, path, 1, 0);
2542 if (ret < 0)
2543 goto out;
2544 if (ret) {
2545 ret = -ENOENT;
2546 goto out;
2547 }
2548
2549 leaf = path->nodes[0];
2550 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2551 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2552 key.objectid != send_root->root_key.objectid) {
2553 ret = -ENOENT;
2554 goto out;
2555 }
2556 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2557 namelen = btrfs_root_ref_name_len(leaf, ref);
2558 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2559 btrfs_release_path(path);
2560
2561 if (parent_root) {
2562 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2563 if (ret < 0)
2564 goto out;
2565 } else {
2566 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2567 if (ret < 0)
2568 goto out;
2569 }
2570
2571 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2572
2573 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2574 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2575 sctx->send_root->root_item.received_uuid);
2576 else
2577 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2578 sctx->send_root->root_item.uuid);
2579
2580 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2581 btrfs_root_ctransid(&sctx->send_root->root_item));
2582 if (parent_root) {
2583 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2584 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2585 parent_root->root_item.received_uuid);
2586 else
2587 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2588 parent_root->root_item.uuid);
2589 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2590 btrfs_root_ctransid(&sctx->parent_root->root_item));
2591 }
2592
2593 ret = send_cmd(sctx);
2594
2595 tlv_put_failure:
2596 out:
2597 btrfs_free_path(path);
2598 kfree(name);
2599 return ret;
2600 }
2601
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2602 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2603 {
2604 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2605 int ret = 0;
2606 struct fs_path *p;
2607
2608 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2609
2610 p = fs_path_alloc();
2611 if (!p)
2612 return -ENOMEM;
2613
2614 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2615 if (ret < 0)
2616 goto out;
2617
2618 ret = get_cur_path(sctx, ino, gen, p);
2619 if (ret < 0)
2620 goto out;
2621 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2622 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2623
2624 ret = send_cmd(sctx);
2625
2626 tlv_put_failure:
2627 out:
2628 fs_path_free(p);
2629 return ret;
2630 }
2631
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2632 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2633 {
2634 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2635 int ret = 0;
2636 struct fs_path *p;
2637
2638 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2639
2640 p = fs_path_alloc();
2641 if (!p)
2642 return -ENOMEM;
2643
2644 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2645 if (ret < 0)
2646 goto out;
2647
2648 ret = get_cur_path(sctx, ino, gen, p);
2649 if (ret < 0)
2650 goto out;
2651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2652 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2653
2654 ret = send_cmd(sctx);
2655
2656 tlv_put_failure:
2657 out:
2658 fs_path_free(p);
2659 return ret;
2660 }
2661
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2662 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2663 {
2664 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2665 int ret = 0;
2666 struct fs_path *p;
2667
2668 if (sctx->proto < 2)
2669 return 0;
2670
2671 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2672
2673 p = fs_path_alloc();
2674 if (!p)
2675 return -ENOMEM;
2676
2677 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2678 if (ret < 0)
2679 goto out;
2680
2681 ret = get_cur_path(sctx, ino, gen, p);
2682 if (ret < 0)
2683 goto out;
2684 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2685 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2686
2687 ret = send_cmd(sctx);
2688
2689 tlv_put_failure:
2690 out:
2691 fs_path_free(p);
2692 return ret;
2693 }
2694
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2695 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2696 {
2697 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2698 int ret = 0;
2699 struct fs_path *p;
2700
2701 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2702 ino, uid, gid);
2703
2704 p = fs_path_alloc();
2705 if (!p)
2706 return -ENOMEM;
2707
2708 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2709 if (ret < 0)
2710 goto out;
2711
2712 ret = get_cur_path(sctx, ino, gen, p);
2713 if (ret < 0)
2714 goto out;
2715 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2716 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2717 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2718
2719 ret = send_cmd(sctx);
2720
2721 tlv_put_failure:
2722 out:
2723 fs_path_free(p);
2724 return ret;
2725 }
2726
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2727 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2728 {
2729 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2730 int ret = 0;
2731 struct fs_path *p = NULL;
2732 struct btrfs_inode_item *ii;
2733 struct btrfs_path *path = NULL;
2734 struct extent_buffer *eb;
2735 struct btrfs_key key;
2736 int slot;
2737
2738 btrfs_debug(fs_info, "send_utimes %llu", ino);
2739
2740 p = fs_path_alloc();
2741 if (!p)
2742 return -ENOMEM;
2743
2744 path = alloc_path_for_send();
2745 if (!path) {
2746 ret = -ENOMEM;
2747 goto out;
2748 }
2749
2750 key.objectid = ino;
2751 key.type = BTRFS_INODE_ITEM_KEY;
2752 key.offset = 0;
2753 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2754 if (ret > 0)
2755 ret = -ENOENT;
2756 if (ret < 0)
2757 goto out;
2758
2759 eb = path->nodes[0];
2760 slot = path->slots[0];
2761 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2762
2763 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2764 if (ret < 0)
2765 goto out;
2766
2767 ret = get_cur_path(sctx, ino, gen, p);
2768 if (ret < 0)
2769 goto out;
2770 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2771 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2772 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2773 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2774 if (sctx->proto >= 2)
2775 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2776
2777 ret = send_cmd(sctx);
2778
2779 tlv_put_failure:
2780 out:
2781 fs_path_free(p);
2782 btrfs_free_path(path);
2783 return ret;
2784 }
2785
2786 /*
2787 * If the cache is full, we can't remove entries from it and do a call to
2788 * send_utimes() for each respective inode, because we might be finishing
2789 * processing an inode that is a directory and it just got renamed, and existing
2790 * entries in the cache may refer to inodes that have the directory in their
2791 * full path - in which case we would generate outdated paths (pre-rename)
2792 * for the inodes that the cache entries point to. Instead of prunning the
2793 * cache when inserting, do it after we finish processing each inode at
2794 * finish_inode_if_needed().
2795 */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2796 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2797 {
2798 struct btrfs_lru_cache_entry *entry;
2799 int ret;
2800
2801 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2802 if (entry != NULL)
2803 return 0;
2804
2805 /* Caching is optional, don't fail if we can't allocate memory. */
2806 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2807 if (!entry)
2808 return send_utimes(sctx, dir, gen);
2809
2810 entry->key = dir;
2811 entry->gen = gen;
2812
2813 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2814 ASSERT(ret != -EEXIST);
2815 if (ret) {
2816 kfree(entry);
2817 return send_utimes(sctx, dir, gen);
2818 }
2819
2820 return 0;
2821 }
2822
trim_dir_utimes_cache(struct send_ctx * sctx)2823 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2824 {
2825 while (btrfs_lru_cache_size(&sctx->dir_utimes_cache) >
2826 SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2827 struct btrfs_lru_cache_entry *lru;
2828 int ret;
2829
2830 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2831 ASSERT(lru != NULL);
2832
2833 ret = send_utimes(sctx, lru->key, lru->gen);
2834 if (ret)
2835 return ret;
2836
2837 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2838 }
2839
2840 return 0;
2841 }
2842
2843 /*
2844 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2845 * a valid path yet because we did not process the refs yet. So, the inode
2846 * is created as orphan.
2847 */
send_create_inode(struct send_ctx * sctx,u64 ino)2848 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2849 {
2850 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2851 int ret = 0;
2852 struct fs_path *p;
2853 int cmd;
2854 struct btrfs_inode_info info;
2855 u64 gen;
2856 u64 mode;
2857 u64 rdev;
2858
2859 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2860
2861 p = fs_path_alloc();
2862 if (!p)
2863 return -ENOMEM;
2864
2865 if (ino != sctx->cur_ino) {
2866 ret = get_inode_info(sctx->send_root, ino, &info);
2867 if (ret < 0)
2868 goto out;
2869 gen = info.gen;
2870 mode = info.mode;
2871 rdev = info.rdev;
2872 } else {
2873 gen = sctx->cur_inode_gen;
2874 mode = sctx->cur_inode_mode;
2875 rdev = sctx->cur_inode_rdev;
2876 }
2877
2878 if (S_ISREG(mode)) {
2879 cmd = BTRFS_SEND_C_MKFILE;
2880 } else if (S_ISDIR(mode)) {
2881 cmd = BTRFS_SEND_C_MKDIR;
2882 } else if (S_ISLNK(mode)) {
2883 cmd = BTRFS_SEND_C_SYMLINK;
2884 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2885 cmd = BTRFS_SEND_C_MKNOD;
2886 } else if (S_ISFIFO(mode)) {
2887 cmd = BTRFS_SEND_C_MKFIFO;
2888 } else if (S_ISSOCK(mode)) {
2889 cmd = BTRFS_SEND_C_MKSOCK;
2890 } else {
2891 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2892 (int)(mode & S_IFMT));
2893 ret = -EOPNOTSUPP;
2894 goto out;
2895 }
2896
2897 ret = begin_cmd(sctx, cmd);
2898 if (ret < 0)
2899 goto out;
2900
2901 ret = gen_unique_name(sctx, ino, gen, p);
2902 if (ret < 0)
2903 goto out;
2904
2905 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2906 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2907
2908 if (S_ISLNK(mode)) {
2909 fs_path_reset(p);
2910 ret = read_symlink(sctx->send_root, ino, p);
2911 if (ret < 0)
2912 goto out;
2913 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2914 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2915 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2916 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2917 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2918 }
2919
2920 ret = send_cmd(sctx);
2921 if (ret < 0)
2922 goto out;
2923
2924
2925 tlv_put_failure:
2926 out:
2927 fs_path_free(p);
2928 return ret;
2929 }
2930
cache_dir_created(struct send_ctx * sctx,u64 dir)2931 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2932 {
2933 struct btrfs_lru_cache_entry *entry;
2934 int ret;
2935
2936 /* Caching is optional, ignore any failures. */
2937 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2938 if (!entry)
2939 return;
2940
2941 entry->key = dir;
2942 entry->gen = 0;
2943 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2944 if (ret < 0)
2945 kfree(entry);
2946 }
2947
2948 /*
2949 * We need some special handling for inodes that get processed before the parent
2950 * directory got created. See process_recorded_refs for details.
2951 * This function does the check if we already created the dir out of order.
2952 */
did_create_dir(struct send_ctx * sctx,u64 dir)2953 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2954 {
2955 int ret = 0;
2956 int iter_ret = 0;
2957 struct btrfs_path *path = NULL;
2958 struct btrfs_key key;
2959 struct btrfs_key found_key;
2960 struct btrfs_key di_key;
2961 struct btrfs_dir_item *di;
2962
2963 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2964 return 1;
2965
2966 path = alloc_path_for_send();
2967 if (!path)
2968 return -ENOMEM;
2969
2970 key.objectid = dir;
2971 key.type = BTRFS_DIR_INDEX_KEY;
2972 key.offset = 0;
2973
2974 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2975 struct extent_buffer *eb = path->nodes[0];
2976
2977 if (found_key.objectid != key.objectid ||
2978 found_key.type != key.type) {
2979 ret = 0;
2980 break;
2981 }
2982
2983 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2984 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2985
2986 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2987 di_key.objectid < sctx->send_progress) {
2988 ret = 1;
2989 cache_dir_created(sctx, dir);
2990 break;
2991 }
2992 }
2993 /* Catch error found during iteration */
2994 if (iter_ret < 0)
2995 ret = iter_ret;
2996
2997 btrfs_free_path(path);
2998 return ret;
2999 }
3000
3001 /*
3002 * Only creates the inode if it is:
3003 * 1. Not a directory
3004 * 2. Or a directory which was not created already due to out of order
3005 * directories. See did_create_dir and process_recorded_refs for details.
3006 */
send_create_inode_if_needed(struct send_ctx * sctx)3007 static int send_create_inode_if_needed(struct send_ctx *sctx)
3008 {
3009 int ret;
3010
3011 if (S_ISDIR(sctx->cur_inode_mode)) {
3012 ret = did_create_dir(sctx, sctx->cur_ino);
3013 if (ret < 0)
3014 return ret;
3015 else if (ret > 0)
3016 return 0;
3017 }
3018
3019 ret = send_create_inode(sctx, sctx->cur_ino);
3020
3021 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3022 cache_dir_created(sctx, sctx->cur_ino);
3023
3024 return ret;
3025 }
3026
3027 struct recorded_ref {
3028 struct list_head list;
3029 char *name;
3030 struct fs_path *full_path;
3031 u64 dir;
3032 u64 dir_gen;
3033 int name_len;
3034 struct rb_node node;
3035 struct rb_root *root;
3036 };
3037
recorded_ref_alloc(void)3038 static struct recorded_ref *recorded_ref_alloc(void)
3039 {
3040 struct recorded_ref *ref;
3041
3042 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3043 if (!ref)
3044 return NULL;
3045 RB_CLEAR_NODE(&ref->node);
3046 INIT_LIST_HEAD(&ref->list);
3047 return ref;
3048 }
3049
recorded_ref_free(struct recorded_ref * ref)3050 static void recorded_ref_free(struct recorded_ref *ref)
3051 {
3052 if (!ref)
3053 return;
3054 if (!RB_EMPTY_NODE(&ref->node))
3055 rb_erase(&ref->node, ref->root);
3056 list_del(&ref->list);
3057 fs_path_free(ref->full_path);
3058 kfree(ref);
3059 }
3060
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3061 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3062 {
3063 ref->full_path = path;
3064 ref->name = (char *)kbasename(ref->full_path->start);
3065 ref->name_len = ref->full_path->end - ref->name;
3066 }
3067
dup_ref(struct recorded_ref * ref,struct list_head * list)3068 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3069 {
3070 struct recorded_ref *new;
3071
3072 new = recorded_ref_alloc();
3073 if (!new)
3074 return -ENOMEM;
3075
3076 new->dir = ref->dir;
3077 new->dir_gen = ref->dir_gen;
3078 list_add_tail(&new->list, list);
3079 return 0;
3080 }
3081
__free_recorded_refs(struct list_head * head)3082 static void __free_recorded_refs(struct list_head *head)
3083 {
3084 struct recorded_ref *cur;
3085
3086 while (!list_empty(head)) {
3087 cur = list_entry(head->next, struct recorded_ref, list);
3088 recorded_ref_free(cur);
3089 }
3090 }
3091
free_recorded_refs(struct send_ctx * sctx)3092 static void free_recorded_refs(struct send_ctx *sctx)
3093 {
3094 __free_recorded_refs(&sctx->new_refs);
3095 __free_recorded_refs(&sctx->deleted_refs);
3096 }
3097
3098 /*
3099 * Renames/moves a file/dir to its orphan name. Used when the first
3100 * ref of an unprocessed inode gets overwritten and for all non empty
3101 * directories.
3102 */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3103 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3104 struct fs_path *path)
3105 {
3106 int ret;
3107 struct fs_path *orphan;
3108
3109 orphan = fs_path_alloc();
3110 if (!orphan)
3111 return -ENOMEM;
3112
3113 ret = gen_unique_name(sctx, ino, gen, orphan);
3114 if (ret < 0)
3115 goto out;
3116
3117 ret = send_rename(sctx, path, orphan);
3118
3119 out:
3120 fs_path_free(orphan);
3121 return ret;
3122 }
3123
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3124 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3125 u64 dir_ino, u64 dir_gen)
3126 {
3127 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3128 struct rb_node *parent = NULL;
3129 struct orphan_dir_info *entry, *odi;
3130
3131 while (*p) {
3132 parent = *p;
3133 entry = rb_entry(parent, struct orphan_dir_info, node);
3134 if (dir_ino < entry->ino)
3135 p = &(*p)->rb_left;
3136 else if (dir_ino > entry->ino)
3137 p = &(*p)->rb_right;
3138 else if (dir_gen < entry->gen)
3139 p = &(*p)->rb_left;
3140 else if (dir_gen > entry->gen)
3141 p = &(*p)->rb_right;
3142 else
3143 return entry;
3144 }
3145
3146 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3147 if (!odi)
3148 return ERR_PTR(-ENOMEM);
3149 odi->ino = dir_ino;
3150 odi->gen = dir_gen;
3151 odi->last_dir_index_offset = 0;
3152 odi->dir_high_seq_ino = 0;
3153
3154 rb_link_node(&odi->node, parent, p);
3155 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3156 return odi;
3157 }
3158
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3159 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3160 u64 dir_ino, u64 gen)
3161 {
3162 struct rb_node *n = sctx->orphan_dirs.rb_node;
3163 struct orphan_dir_info *entry;
3164
3165 while (n) {
3166 entry = rb_entry(n, struct orphan_dir_info, node);
3167 if (dir_ino < entry->ino)
3168 n = n->rb_left;
3169 else if (dir_ino > entry->ino)
3170 n = n->rb_right;
3171 else if (gen < entry->gen)
3172 n = n->rb_left;
3173 else if (gen > entry->gen)
3174 n = n->rb_right;
3175 else
3176 return entry;
3177 }
3178 return NULL;
3179 }
3180
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3181 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3182 {
3183 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3184
3185 return odi != NULL;
3186 }
3187
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3188 static void free_orphan_dir_info(struct send_ctx *sctx,
3189 struct orphan_dir_info *odi)
3190 {
3191 if (!odi)
3192 return;
3193 rb_erase(&odi->node, &sctx->orphan_dirs);
3194 kfree(odi);
3195 }
3196
3197 /*
3198 * Returns 1 if a directory can be removed at this point in time.
3199 * We check this by iterating all dir items and checking if the inode behind
3200 * the dir item was already processed.
3201 */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3202 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3203 {
3204 int ret = 0;
3205 int iter_ret = 0;
3206 struct btrfs_root *root = sctx->parent_root;
3207 struct btrfs_path *path;
3208 struct btrfs_key key;
3209 struct btrfs_key found_key;
3210 struct btrfs_key loc;
3211 struct btrfs_dir_item *di;
3212 struct orphan_dir_info *odi = NULL;
3213 u64 dir_high_seq_ino = 0;
3214 u64 last_dir_index_offset = 0;
3215
3216 /*
3217 * Don't try to rmdir the top/root subvolume dir.
3218 */
3219 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3220 return 0;
3221
3222 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3223 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3224 return 0;
3225
3226 path = alloc_path_for_send();
3227 if (!path)
3228 return -ENOMEM;
3229
3230 if (!odi) {
3231 /*
3232 * Find the inode number associated with the last dir index
3233 * entry. This is very likely the inode with the highest number
3234 * of all inodes that have an entry in the directory. We can
3235 * then use it to avoid future calls to can_rmdir(), when
3236 * processing inodes with a lower number, from having to search
3237 * the parent root b+tree for dir index keys.
3238 */
3239 key.objectid = dir;
3240 key.type = BTRFS_DIR_INDEX_KEY;
3241 key.offset = (u64)-1;
3242
3243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3244 if (ret < 0) {
3245 goto out;
3246 } else if (ret > 0) {
3247 /* Can't happen, the root is never empty. */
3248 ASSERT(path->slots[0] > 0);
3249 if (WARN_ON(path->slots[0] == 0)) {
3250 ret = -EUCLEAN;
3251 goto out;
3252 }
3253 path->slots[0]--;
3254 }
3255
3256 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3257 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3258 /* No index keys, dir can be removed. */
3259 ret = 1;
3260 goto out;
3261 }
3262
3263 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3264 struct btrfs_dir_item);
3265 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3266 dir_high_seq_ino = loc.objectid;
3267 if (sctx->cur_ino < dir_high_seq_ino) {
3268 ret = 0;
3269 goto out;
3270 }
3271
3272 btrfs_release_path(path);
3273 }
3274
3275 key.objectid = dir;
3276 key.type = BTRFS_DIR_INDEX_KEY;
3277 key.offset = (odi ? odi->last_dir_index_offset : 0);
3278
3279 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3280 struct waiting_dir_move *dm;
3281
3282 if (found_key.objectid != key.objectid ||
3283 found_key.type != key.type)
3284 break;
3285
3286 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3287 struct btrfs_dir_item);
3288 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3289
3290 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3291 last_dir_index_offset = found_key.offset;
3292
3293 dm = get_waiting_dir_move(sctx, loc.objectid);
3294 if (dm) {
3295 dm->rmdir_ino = dir;
3296 dm->rmdir_gen = dir_gen;
3297 ret = 0;
3298 goto out;
3299 }
3300
3301 if (loc.objectid > sctx->cur_ino) {
3302 ret = 0;
3303 goto out;
3304 }
3305 }
3306 if (iter_ret < 0) {
3307 ret = iter_ret;
3308 goto out;
3309 }
3310 free_orphan_dir_info(sctx, odi);
3311
3312 ret = 1;
3313
3314 out:
3315 btrfs_free_path(path);
3316
3317 if (ret)
3318 return ret;
3319
3320 if (!odi) {
3321 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3322 if (IS_ERR(odi))
3323 return PTR_ERR(odi);
3324
3325 odi->gen = dir_gen;
3326 }
3327
3328 odi->last_dir_index_offset = last_dir_index_offset;
3329 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3330
3331 return 0;
3332 }
3333
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3334 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3335 {
3336 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3337
3338 return entry != NULL;
3339 }
3340
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3341 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3342 {
3343 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3344 struct rb_node *parent = NULL;
3345 struct waiting_dir_move *entry, *dm;
3346
3347 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3348 if (!dm)
3349 return -ENOMEM;
3350 dm->ino = ino;
3351 dm->rmdir_ino = 0;
3352 dm->rmdir_gen = 0;
3353 dm->orphanized = orphanized;
3354
3355 while (*p) {
3356 parent = *p;
3357 entry = rb_entry(parent, struct waiting_dir_move, node);
3358 if (ino < entry->ino) {
3359 p = &(*p)->rb_left;
3360 } else if (ino > entry->ino) {
3361 p = &(*p)->rb_right;
3362 } else {
3363 kfree(dm);
3364 return -EEXIST;
3365 }
3366 }
3367
3368 rb_link_node(&dm->node, parent, p);
3369 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3370 return 0;
3371 }
3372
3373 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3374 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3375 {
3376 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3377 struct waiting_dir_move *entry;
3378
3379 while (n) {
3380 entry = rb_entry(n, struct waiting_dir_move, node);
3381 if (ino < entry->ino)
3382 n = n->rb_left;
3383 else if (ino > entry->ino)
3384 n = n->rb_right;
3385 else
3386 return entry;
3387 }
3388 return NULL;
3389 }
3390
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3391 static void free_waiting_dir_move(struct send_ctx *sctx,
3392 struct waiting_dir_move *dm)
3393 {
3394 if (!dm)
3395 return;
3396 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3397 kfree(dm);
3398 }
3399
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3400 static int add_pending_dir_move(struct send_ctx *sctx,
3401 u64 ino,
3402 u64 ino_gen,
3403 u64 parent_ino,
3404 struct list_head *new_refs,
3405 struct list_head *deleted_refs,
3406 const bool is_orphan)
3407 {
3408 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3409 struct rb_node *parent = NULL;
3410 struct pending_dir_move *entry = NULL, *pm;
3411 struct recorded_ref *cur;
3412 int exists = 0;
3413 int ret;
3414
3415 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3416 if (!pm)
3417 return -ENOMEM;
3418 pm->parent_ino = parent_ino;
3419 pm->ino = ino;
3420 pm->gen = ino_gen;
3421 INIT_LIST_HEAD(&pm->list);
3422 INIT_LIST_HEAD(&pm->update_refs);
3423 RB_CLEAR_NODE(&pm->node);
3424
3425 while (*p) {
3426 parent = *p;
3427 entry = rb_entry(parent, struct pending_dir_move, node);
3428 if (parent_ino < entry->parent_ino) {
3429 p = &(*p)->rb_left;
3430 } else if (parent_ino > entry->parent_ino) {
3431 p = &(*p)->rb_right;
3432 } else {
3433 exists = 1;
3434 break;
3435 }
3436 }
3437
3438 list_for_each_entry(cur, deleted_refs, list) {
3439 ret = dup_ref(cur, &pm->update_refs);
3440 if (ret < 0)
3441 goto out;
3442 }
3443 list_for_each_entry(cur, new_refs, list) {
3444 ret = dup_ref(cur, &pm->update_refs);
3445 if (ret < 0)
3446 goto out;
3447 }
3448
3449 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3450 if (ret)
3451 goto out;
3452
3453 if (exists) {
3454 list_add_tail(&pm->list, &entry->list);
3455 } else {
3456 rb_link_node(&pm->node, parent, p);
3457 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3458 }
3459 ret = 0;
3460 out:
3461 if (ret) {
3462 __free_recorded_refs(&pm->update_refs);
3463 kfree(pm);
3464 }
3465 return ret;
3466 }
3467
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3468 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3469 u64 parent_ino)
3470 {
3471 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3472 struct pending_dir_move *entry;
3473
3474 while (n) {
3475 entry = rb_entry(n, struct pending_dir_move, node);
3476 if (parent_ino < entry->parent_ino)
3477 n = n->rb_left;
3478 else if (parent_ino > entry->parent_ino)
3479 n = n->rb_right;
3480 else
3481 return entry;
3482 }
3483 return NULL;
3484 }
3485
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3486 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3487 u64 ino, u64 gen, u64 *ancestor_ino)
3488 {
3489 int ret = 0;
3490 u64 parent_inode = 0;
3491 u64 parent_gen = 0;
3492 u64 start_ino = ino;
3493
3494 *ancestor_ino = 0;
3495 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3496 fs_path_reset(name);
3497
3498 if (is_waiting_for_rm(sctx, ino, gen))
3499 break;
3500 if (is_waiting_for_move(sctx, ino)) {
3501 if (*ancestor_ino == 0)
3502 *ancestor_ino = ino;
3503 ret = get_first_ref(sctx->parent_root, ino,
3504 &parent_inode, &parent_gen, name);
3505 } else {
3506 ret = __get_cur_name_and_parent(sctx, ino, gen,
3507 &parent_inode,
3508 &parent_gen, name);
3509 if (ret > 0) {
3510 ret = 0;
3511 break;
3512 }
3513 }
3514 if (ret < 0)
3515 break;
3516 if (parent_inode == start_ino) {
3517 ret = 1;
3518 if (*ancestor_ino == 0)
3519 *ancestor_ino = ino;
3520 break;
3521 }
3522 ino = parent_inode;
3523 gen = parent_gen;
3524 }
3525 return ret;
3526 }
3527
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3528 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3529 {
3530 struct fs_path *from_path = NULL;
3531 struct fs_path *to_path = NULL;
3532 struct fs_path *name = NULL;
3533 u64 orig_progress = sctx->send_progress;
3534 struct recorded_ref *cur;
3535 u64 parent_ino, parent_gen;
3536 struct waiting_dir_move *dm = NULL;
3537 u64 rmdir_ino = 0;
3538 u64 rmdir_gen;
3539 u64 ancestor;
3540 bool is_orphan;
3541 int ret;
3542
3543 name = fs_path_alloc();
3544 from_path = fs_path_alloc();
3545 if (!name || !from_path) {
3546 ret = -ENOMEM;
3547 goto out;
3548 }
3549
3550 dm = get_waiting_dir_move(sctx, pm->ino);
3551 ASSERT(dm);
3552 rmdir_ino = dm->rmdir_ino;
3553 rmdir_gen = dm->rmdir_gen;
3554 is_orphan = dm->orphanized;
3555 free_waiting_dir_move(sctx, dm);
3556
3557 if (is_orphan) {
3558 ret = gen_unique_name(sctx, pm->ino,
3559 pm->gen, from_path);
3560 } else {
3561 ret = get_first_ref(sctx->parent_root, pm->ino,
3562 &parent_ino, &parent_gen, name);
3563 if (ret < 0)
3564 goto out;
3565 ret = get_cur_path(sctx, parent_ino, parent_gen,
3566 from_path);
3567 if (ret < 0)
3568 goto out;
3569 ret = fs_path_add_path(from_path, name);
3570 }
3571 if (ret < 0)
3572 goto out;
3573
3574 sctx->send_progress = sctx->cur_ino + 1;
3575 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3576 if (ret < 0)
3577 goto out;
3578 if (ret) {
3579 LIST_HEAD(deleted_refs);
3580 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3581 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3582 &pm->update_refs, &deleted_refs,
3583 is_orphan);
3584 if (ret < 0)
3585 goto out;
3586 if (rmdir_ino) {
3587 dm = get_waiting_dir_move(sctx, pm->ino);
3588 ASSERT(dm);
3589 dm->rmdir_ino = rmdir_ino;
3590 dm->rmdir_gen = rmdir_gen;
3591 }
3592 goto out;
3593 }
3594 fs_path_reset(name);
3595 to_path = name;
3596 name = NULL;
3597 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3598 if (ret < 0)
3599 goto out;
3600
3601 ret = send_rename(sctx, from_path, to_path);
3602 if (ret < 0)
3603 goto out;
3604
3605 if (rmdir_ino) {
3606 struct orphan_dir_info *odi;
3607 u64 gen;
3608
3609 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3610 if (!odi) {
3611 /* already deleted */
3612 goto finish;
3613 }
3614 gen = odi->gen;
3615
3616 ret = can_rmdir(sctx, rmdir_ino, gen);
3617 if (ret < 0)
3618 goto out;
3619 if (!ret)
3620 goto finish;
3621
3622 name = fs_path_alloc();
3623 if (!name) {
3624 ret = -ENOMEM;
3625 goto out;
3626 }
3627 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3628 if (ret < 0)
3629 goto out;
3630 ret = send_rmdir(sctx, name);
3631 if (ret < 0)
3632 goto out;
3633 }
3634
3635 finish:
3636 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3637 if (ret < 0)
3638 goto out;
3639
3640 /*
3641 * After rename/move, need to update the utimes of both new parent(s)
3642 * and old parent(s).
3643 */
3644 list_for_each_entry(cur, &pm->update_refs, list) {
3645 /*
3646 * The parent inode might have been deleted in the send snapshot
3647 */
3648 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3649 if (ret == -ENOENT) {
3650 ret = 0;
3651 continue;
3652 }
3653 if (ret < 0)
3654 goto out;
3655
3656 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3657 if (ret < 0)
3658 goto out;
3659 }
3660
3661 out:
3662 fs_path_free(name);
3663 fs_path_free(from_path);
3664 fs_path_free(to_path);
3665 sctx->send_progress = orig_progress;
3666
3667 return ret;
3668 }
3669
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3670 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3671 {
3672 if (!list_empty(&m->list))
3673 list_del(&m->list);
3674 if (!RB_EMPTY_NODE(&m->node))
3675 rb_erase(&m->node, &sctx->pending_dir_moves);
3676 __free_recorded_refs(&m->update_refs);
3677 kfree(m);
3678 }
3679
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3680 static void tail_append_pending_moves(struct send_ctx *sctx,
3681 struct pending_dir_move *moves,
3682 struct list_head *stack)
3683 {
3684 if (list_empty(&moves->list)) {
3685 list_add_tail(&moves->list, stack);
3686 } else {
3687 LIST_HEAD(list);
3688 list_splice_init(&moves->list, &list);
3689 list_add_tail(&moves->list, stack);
3690 list_splice_tail(&list, stack);
3691 }
3692 if (!RB_EMPTY_NODE(&moves->node)) {
3693 rb_erase(&moves->node, &sctx->pending_dir_moves);
3694 RB_CLEAR_NODE(&moves->node);
3695 }
3696 }
3697
apply_children_dir_moves(struct send_ctx * sctx)3698 static int apply_children_dir_moves(struct send_ctx *sctx)
3699 {
3700 struct pending_dir_move *pm;
3701 LIST_HEAD(stack);
3702 u64 parent_ino = sctx->cur_ino;
3703 int ret = 0;
3704
3705 pm = get_pending_dir_moves(sctx, parent_ino);
3706 if (!pm)
3707 return 0;
3708
3709 tail_append_pending_moves(sctx, pm, &stack);
3710
3711 while (!list_empty(&stack)) {
3712 pm = list_first_entry(&stack, struct pending_dir_move, list);
3713 parent_ino = pm->ino;
3714 ret = apply_dir_move(sctx, pm);
3715 free_pending_move(sctx, pm);
3716 if (ret)
3717 goto out;
3718 pm = get_pending_dir_moves(sctx, parent_ino);
3719 if (pm)
3720 tail_append_pending_moves(sctx, pm, &stack);
3721 }
3722 return 0;
3723
3724 out:
3725 while (!list_empty(&stack)) {
3726 pm = list_first_entry(&stack, struct pending_dir_move, list);
3727 free_pending_move(sctx, pm);
3728 }
3729 return ret;
3730 }
3731
3732 /*
3733 * We might need to delay a directory rename even when no ancestor directory
3734 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3735 * renamed. This happens when we rename a directory to the old name (the name
3736 * in the parent root) of some other unrelated directory that got its rename
3737 * delayed due to some ancestor with higher number that got renamed.
3738 *
3739 * Example:
3740 *
3741 * Parent snapshot:
3742 * . (ino 256)
3743 * |---- a/ (ino 257)
3744 * | |---- file (ino 260)
3745 * |
3746 * |---- b/ (ino 258)
3747 * |---- c/ (ino 259)
3748 *
3749 * Send snapshot:
3750 * . (ino 256)
3751 * |---- a/ (ino 258)
3752 * |---- x/ (ino 259)
3753 * |---- y/ (ino 257)
3754 * |----- file (ino 260)
3755 *
3756 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3757 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3758 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3759 * must issue is:
3760 *
3761 * 1 - rename 259 from 'c' to 'x'
3762 * 2 - rename 257 from 'a' to 'x/y'
3763 * 3 - rename 258 from 'b' to 'a'
3764 *
3765 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3766 * be done right away and < 0 on error.
3767 */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3768 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3769 struct recorded_ref *parent_ref,
3770 const bool is_orphan)
3771 {
3772 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3773 struct btrfs_path *path;
3774 struct btrfs_key key;
3775 struct btrfs_key di_key;
3776 struct btrfs_dir_item *di;
3777 u64 left_gen;
3778 u64 right_gen;
3779 int ret = 0;
3780 struct waiting_dir_move *wdm;
3781
3782 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3783 return 0;
3784
3785 path = alloc_path_for_send();
3786 if (!path)
3787 return -ENOMEM;
3788
3789 key.objectid = parent_ref->dir;
3790 key.type = BTRFS_DIR_ITEM_KEY;
3791 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3792
3793 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3794 if (ret < 0) {
3795 goto out;
3796 } else if (ret > 0) {
3797 ret = 0;
3798 goto out;
3799 }
3800
3801 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3802 parent_ref->name_len);
3803 if (!di) {
3804 ret = 0;
3805 goto out;
3806 }
3807 /*
3808 * di_key.objectid has the number of the inode that has a dentry in the
3809 * parent directory with the same name that sctx->cur_ino is being
3810 * renamed to. We need to check if that inode is in the send root as
3811 * well and if it is currently marked as an inode with a pending rename,
3812 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3813 * that it happens after that other inode is renamed.
3814 */
3815 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3816 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3817 ret = 0;
3818 goto out;
3819 }
3820
3821 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3822 if (ret < 0)
3823 goto out;
3824 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3825 if (ret < 0) {
3826 if (ret == -ENOENT)
3827 ret = 0;
3828 goto out;
3829 }
3830
3831 /* Different inode, no need to delay the rename of sctx->cur_ino */
3832 if (right_gen != left_gen) {
3833 ret = 0;
3834 goto out;
3835 }
3836
3837 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3838 if (wdm && !wdm->orphanized) {
3839 ret = add_pending_dir_move(sctx,
3840 sctx->cur_ino,
3841 sctx->cur_inode_gen,
3842 di_key.objectid,
3843 &sctx->new_refs,
3844 &sctx->deleted_refs,
3845 is_orphan);
3846 if (!ret)
3847 ret = 1;
3848 }
3849 out:
3850 btrfs_free_path(path);
3851 return ret;
3852 }
3853
3854 /*
3855 * Check if inode ino2, or any of its ancestors, is inode ino1.
3856 * Return 1 if true, 0 if false and < 0 on error.
3857 */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3858 static int check_ino_in_path(struct btrfs_root *root,
3859 const u64 ino1,
3860 const u64 ino1_gen,
3861 const u64 ino2,
3862 const u64 ino2_gen,
3863 struct fs_path *fs_path)
3864 {
3865 u64 ino = ino2;
3866
3867 if (ino1 == ino2)
3868 return ino1_gen == ino2_gen;
3869
3870 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3871 u64 parent;
3872 u64 parent_gen;
3873 int ret;
3874
3875 fs_path_reset(fs_path);
3876 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3877 if (ret < 0)
3878 return ret;
3879 if (parent == ino1)
3880 return parent_gen == ino1_gen;
3881 ino = parent;
3882 }
3883 return 0;
3884 }
3885
3886 /*
3887 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3888 * possible path (in case ino2 is not a directory and has multiple hard links).
3889 * Return 1 if true, 0 if false and < 0 on error.
3890 */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3891 static int is_ancestor(struct btrfs_root *root,
3892 const u64 ino1,
3893 const u64 ino1_gen,
3894 const u64 ino2,
3895 struct fs_path *fs_path)
3896 {
3897 bool free_fs_path = false;
3898 int ret = 0;
3899 int iter_ret = 0;
3900 struct btrfs_path *path = NULL;
3901 struct btrfs_key key;
3902
3903 if (!fs_path) {
3904 fs_path = fs_path_alloc();
3905 if (!fs_path)
3906 return -ENOMEM;
3907 free_fs_path = true;
3908 }
3909
3910 path = alloc_path_for_send();
3911 if (!path) {
3912 ret = -ENOMEM;
3913 goto out;
3914 }
3915
3916 key.objectid = ino2;
3917 key.type = BTRFS_INODE_REF_KEY;
3918 key.offset = 0;
3919
3920 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3921 struct extent_buffer *leaf = path->nodes[0];
3922 int slot = path->slots[0];
3923 u32 cur_offset = 0;
3924 u32 item_size;
3925
3926 if (key.objectid != ino2)
3927 break;
3928 if (key.type != BTRFS_INODE_REF_KEY &&
3929 key.type != BTRFS_INODE_EXTREF_KEY)
3930 break;
3931
3932 item_size = btrfs_item_size(leaf, slot);
3933 while (cur_offset < item_size) {
3934 u64 parent;
3935 u64 parent_gen;
3936
3937 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3938 unsigned long ptr;
3939 struct btrfs_inode_extref *extref;
3940
3941 ptr = btrfs_item_ptr_offset(leaf, slot);
3942 extref = (struct btrfs_inode_extref *)
3943 (ptr + cur_offset);
3944 parent = btrfs_inode_extref_parent(leaf,
3945 extref);
3946 cur_offset += sizeof(*extref);
3947 cur_offset += btrfs_inode_extref_name_len(leaf,
3948 extref);
3949 } else {
3950 parent = key.offset;
3951 cur_offset = item_size;
3952 }
3953
3954 ret = get_inode_gen(root, parent, &parent_gen);
3955 if (ret < 0)
3956 goto out;
3957 ret = check_ino_in_path(root, ino1, ino1_gen,
3958 parent, parent_gen, fs_path);
3959 if (ret)
3960 goto out;
3961 }
3962 }
3963 ret = 0;
3964 if (iter_ret < 0)
3965 ret = iter_ret;
3966
3967 out:
3968 btrfs_free_path(path);
3969 if (free_fs_path)
3970 fs_path_free(fs_path);
3971 return ret;
3972 }
3973
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3974 static int wait_for_parent_move(struct send_ctx *sctx,
3975 struct recorded_ref *parent_ref,
3976 const bool is_orphan)
3977 {
3978 int ret = 0;
3979 u64 ino = parent_ref->dir;
3980 u64 ino_gen = parent_ref->dir_gen;
3981 u64 parent_ino_before, parent_ino_after;
3982 struct fs_path *path_before = NULL;
3983 struct fs_path *path_after = NULL;
3984 int len1, len2;
3985
3986 path_after = fs_path_alloc();
3987 path_before = fs_path_alloc();
3988 if (!path_after || !path_before) {
3989 ret = -ENOMEM;
3990 goto out;
3991 }
3992
3993 /*
3994 * Our current directory inode may not yet be renamed/moved because some
3995 * ancestor (immediate or not) has to be renamed/moved first. So find if
3996 * such ancestor exists and make sure our own rename/move happens after
3997 * that ancestor is processed to avoid path build infinite loops (done
3998 * at get_cur_path()).
3999 */
4000 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
4001 u64 parent_ino_after_gen;
4002
4003 if (is_waiting_for_move(sctx, ino)) {
4004 /*
4005 * If the current inode is an ancestor of ino in the
4006 * parent root, we need to delay the rename of the
4007 * current inode, otherwise don't delayed the rename
4008 * because we can end up with a circular dependency
4009 * of renames, resulting in some directories never
4010 * getting the respective rename operations issued in
4011 * the send stream or getting into infinite path build
4012 * loops.
4013 */
4014 ret = is_ancestor(sctx->parent_root,
4015 sctx->cur_ino, sctx->cur_inode_gen,
4016 ino, path_before);
4017 if (ret)
4018 break;
4019 }
4020
4021 fs_path_reset(path_before);
4022 fs_path_reset(path_after);
4023
4024 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4025 &parent_ino_after_gen, path_after);
4026 if (ret < 0)
4027 goto out;
4028 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4029 NULL, path_before);
4030 if (ret < 0 && ret != -ENOENT) {
4031 goto out;
4032 } else if (ret == -ENOENT) {
4033 ret = 0;
4034 break;
4035 }
4036
4037 len1 = fs_path_len(path_before);
4038 len2 = fs_path_len(path_after);
4039 if (ino > sctx->cur_ino &&
4040 (parent_ino_before != parent_ino_after || len1 != len2 ||
4041 memcmp(path_before->start, path_after->start, len1))) {
4042 u64 parent_ino_gen;
4043
4044 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4045 if (ret < 0)
4046 goto out;
4047 if (ino_gen == parent_ino_gen) {
4048 ret = 1;
4049 break;
4050 }
4051 }
4052 ino = parent_ino_after;
4053 ino_gen = parent_ino_after_gen;
4054 }
4055
4056 out:
4057 fs_path_free(path_before);
4058 fs_path_free(path_after);
4059
4060 if (ret == 1) {
4061 ret = add_pending_dir_move(sctx,
4062 sctx->cur_ino,
4063 sctx->cur_inode_gen,
4064 ino,
4065 &sctx->new_refs,
4066 &sctx->deleted_refs,
4067 is_orphan);
4068 if (!ret)
4069 ret = 1;
4070 }
4071
4072 return ret;
4073 }
4074
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4075 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4076 {
4077 int ret;
4078 struct fs_path *new_path;
4079
4080 /*
4081 * Our reference's name member points to its full_path member string, so
4082 * we use here a new path.
4083 */
4084 new_path = fs_path_alloc();
4085 if (!new_path)
4086 return -ENOMEM;
4087
4088 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4089 if (ret < 0) {
4090 fs_path_free(new_path);
4091 return ret;
4092 }
4093 ret = fs_path_add(new_path, ref->name, ref->name_len);
4094 if (ret < 0) {
4095 fs_path_free(new_path);
4096 return ret;
4097 }
4098
4099 fs_path_free(ref->full_path);
4100 set_ref_path(ref, new_path);
4101
4102 return 0;
4103 }
4104
4105 /*
4106 * When processing the new references for an inode we may orphanize an existing
4107 * directory inode because its old name conflicts with one of the new references
4108 * of the current inode. Later, when processing another new reference of our
4109 * inode, we might need to orphanize another inode, but the path we have in the
4110 * reference reflects the pre-orphanization name of the directory we previously
4111 * orphanized. For example:
4112 *
4113 * parent snapshot looks like:
4114 *
4115 * . (ino 256)
4116 * |----- f1 (ino 257)
4117 * |----- f2 (ino 258)
4118 * |----- d1/ (ino 259)
4119 * |----- d2/ (ino 260)
4120 *
4121 * send snapshot looks like:
4122 *
4123 * . (ino 256)
4124 * |----- d1 (ino 258)
4125 * |----- f2/ (ino 259)
4126 * |----- f2_link/ (ino 260)
4127 * | |----- f1 (ino 257)
4128 * |
4129 * |----- d2 (ino 258)
4130 *
4131 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4132 * cache it in the name cache. Later when we start processing inode 258, when
4133 * collecting all its new references we set a full path of "d1/d2" for its new
4134 * reference with name "d2". When we start processing the new references we
4135 * start by processing the new reference with name "d1", and this results in
4136 * orphanizing inode 259, since its old reference causes a conflict. Then we
4137 * move on the next new reference, with name "d2", and we find out we must
4138 * orphanize inode 260, as its old reference conflicts with ours - but for the
4139 * orphanization we use a source path corresponding to the path we stored in the
4140 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4141 * receiver fail since the path component "d1/" no longer exists, it was renamed
4142 * to "o259-6-0/" when processing the previous new reference. So in this case we
4143 * must recompute the path in the new reference and use it for the new
4144 * orphanization operation.
4145 */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4146 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4147 {
4148 char *name;
4149 int ret;
4150
4151 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4152 if (!name)
4153 return -ENOMEM;
4154
4155 fs_path_reset(ref->full_path);
4156 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4157 if (ret < 0)
4158 goto out;
4159
4160 ret = fs_path_add(ref->full_path, name, ref->name_len);
4161 if (ret < 0)
4162 goto out;
4163
4164 /* Update the reference's base name pointer. */
4165 set_ref_path(ref, ref->full_path);
4166 out:
4167 kfree(name);
4168 return ret;
4169 }
4170
4171 /*
4172 * This does all the move/link/unlink/rmdir magic.
4173 */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4174 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4175 {
4176 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4177 int ret = 0;
4178 struct recorded_ref *cur;
4179 struct recorded_ref *cur2;
4180 LIST_HEAD(check_dirs);
4181 struct fs_path *valid_path = NULL;
4182 u64 ow_inode = 0;
4183 u64 ow_gen;
4184 u64 ow_mode;
4185 int did_overwrite = 0;
4186 int is_orphan = 0;
4187 u64 last_dir_ino_rm = 0;
4188 bool can_rename = true;
4189 bool orphanized_dir = false;
4190 bool orphanized_ancestor = false;
4191
4192 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4193
4194 /*
4195 * This should never happen as the root dir always has the same ref
4196 * which is always '..'
4197 */
4198 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4199 btrfs_err(fs_info,
4200 "send: unexpected inode %llu in process_recorded_refs()",
4201 sctx->cur_ino);
4202 ret = -EINVAL;
4203 goto out;
4204 }
4205
4206 valid_path = fs_path_alloc();
4207 if (!valid_path) {
4208 ret = -ENOMEM;
4209 goto out;
4210 }
4211
4212 /*
4213 * First, check if the first ref of the current inode was overwritten
4214 * before. If yes, we know that the current inode was already orphanized
4215 * and thus use the orphan name. If not, we can use get_cur_path to
4216 * get the path of the first ref as it would like while receiving at
4217 * this point in time.
4218 * New inodes are always orphan at the beginning, so force to use the
4219 * orphan name in this case.
4220 * The first ref is stored in valid_path and will be updated if it
4221 * gets moved around.
4222 */
4223 if (!sctx->cur_inode_new) {
4224 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4225 sctx->cur_inode_gen);
4226 if (ret < 0)
4227 goto out;
4228 if (ret)
4229 did_overwrite = 1;
4230 }
4231 if (sctx->cur_inode_new || did_overwrite) {
4232 ret = gen_unique_name(sctx, sctx->cur_ino,
4233 sctx->cur_inode_gen, valid_path);
4234 if (ret < 0)
4235 goto out;
4236 is_orphan = 1;
4237 } else {
4238 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4239 valid_path);
4240 if (ret < 0)
4241 goto out;
4242 }
4243
4244 /*
4245 * Before doing any rename and link operations, do a first pass on the
4246 * new references to orphanize any unprocessed inodes that may have a
4247 * reference that conflicts with one of the new references of the current
4248 * inode. This needs to happen first because a new reference may conflict
4249 * with the old reference of a parent directory, so we must make sure
4250 * that the path used for link and rename commands don't use an
4251 * orphanized name when an ancestor was not yet orphanized.
4252 *
4253 * Example:
4254 *
4255 * Parent snapshot:
4256 *
4257 * . (ino 256)
4258 * |----- testdir/ (ino 259)
4259 * | |----- a (ino 257)
4260 * |
4261 * |----- b (ino 258)
4262 *
4263 * Send snapshot:
4264 *
4265 * . (ino 256)
4266 * |----- testdir_2/ (ino 259)
4267 * | |----- a (ino 260)
4268 * |
4269 * |----- testdir (ino 257)
4270 * |----- b (ino 257)
4271 * |----- b2 (ino 258)
4272 *
4273 * Processing the new reference for inode 257 with name "b" may happen
4274 * before processing the new reference with name "testdir". If so, we
4275 * must make sure that by the time we send a link command to create the
4276 * hard link "b", inode 259 was already orphanized, since the generated
4277 * path in "valid_path" already contains the orphanized name for 259.
4278 * We are processing inode 257, so only later when processing 259 we do
4279 * the rename operation to change its temporary (orphanized) name to
4280 * "testdir_2".
4281 */
4282 list_for_each_entry(cur, &sctx->new_refs, list) {
4283 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4284 if (ret < 0)
4285 goto out;
4286 if (ret == inode_state_will_create)
4287 continue;
4288
4289 /*
4290 * Check if this new ref would overwrite the first ref of another
4291 * unprocessed inode. If yes, orphanize the overwritten inode.
4292 * If we find an overwritten ref that is not the first ref,
4293 * simply unlink it.
4294 */
4295 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4296 cur->name, cur->name_len,
4297 &ow_inode, &ow_gen, &ow_mode);
4298 if (ret < 0)
4299 goto out;
4300 if (ret) {
4301 ret = is_first_ref(sctx->parent_root,
4302 ow_inode, cur->dir, cur->name,
4303 cur->name_len);
4304 if (ret < 0)
4305 goto out;
4306 if (ret) {
4307 struct name_cache_entry *nce;
4308 struct waiting_dir_move *wdm;
4309
4310 if (orphanized_dir) {
4311 ret = refresh_ref_path(sctx, cur);
4312 if (ret < 0)
4313 goto out;
4314 }
4315
4316 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4317 cur->full_path);
4318 if (ret < 0)
4319 goto out;
4320 if (S_ISDIR(ow_mode))
4321 orphanized_dir = true;
4322
4323 /*
4324 * If ow_inode has its rename operation delayed
4325 * make sure that its orphanized name is used in
4326 * the source path when performing its rename
4327 * operation.
4328 */
4329 wdm = get_waiting_dir_move(sctx, ow_inode);
4330 if (wdm)
4331 wdm->orphanized = true;
4332
4333 /*
4334 * Make sure we clear our orphanized inode's
4335 * name from the name cache. This is because the
4336 * inode ow_inode might be an ancestor of some
4337 * other inode that will be orphanized as well
4338 * later and has an inode number greater than
4339 * sctx->send_progress. We need to prevent
4340 * future name lookups from using the old name
4341 * and get instead the orphan name.
4342 */
4343 nce = name_cache_search(sctx, ow_inode, ow_gen);
4344 if (nce)
4345 btrfs_lru_cache_remove(&sctx->name_cache,
4346 &nce->entry);
4347
4348 /*
4349 * ow_inode might currently be an ancestor of
4350 * cur_ino, therefore compute valid_path (the
4351 * current path of cur_ino) again because it
4352 * might contain the pre-orphanization name of
4353 * ow_inode, which is no longer valid.
4354 */
4355 ret = is_ancestor(sctx->parent_root,
4356 ow_inode, ow_gen,
4357 sctx->cur_ino, NULL);
4358 if (ret > 0) {
4359 orphanized_ancestor = true;
4360 fs_path_reset(valid_path);
4361 ret = get_cur_path(sctx, sctx->cur_ino,
4362 sctx->cur_inode_gen,
4363 valid_path);
4364 }
4365 if (ret < 0)
4366 goto out;
4367 } else {
4368 /*
4369 * If we previously orphanized a directory that
4370 * collided with a new reference that we already
4371 * processed, recompute the current path because
4372 * that directory may be part of the path.
4373 */
4374 if (orphanized_dir) {
4375 ret = refresh_ref_path(sctx, cur);
4376 if (ret < 0)
4377 goto out;
4378 }
4379 ret = send_unlink(sctx, cur->full_path);
4380 if (ret < 0)
4381 goto out;
4382 }
4383 }
4384
4385 }
4386
4387 list_for_each_entry(cur, &sctx->new_refs, list) {
4388 /*
4389 * We may have refs where the parent directory does not exist
4390 * yet. This happens if the parent directories inum is higher
4391 * than the current inum. To handle this case, we create the
4392 * parent directory out of order. But we need to check if this
4393 * did already happen before due to other refs in the same dir.
4394 */
4395 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4396 if (ret < 0)
4397 goto out;
4398 if (ret == inode_state_will_create) {
4399 ret = 0;
4400 /*
4401 * First check if any of the current inodes refs did
4402 * already create the dir.
4403 */
4404 list_for_each_entry(cur2, &sctx->new_refs, list) {
4405 if (cur == cur2)
4406 break;
4407 if (cur2->dir == cur->dir) {
4408 ret = 1;
4409 break;
4410 }
4411 }
4412
4413 /*
4414 * If that did not happen, check if a previous inode
4415 * did already create the dir.
4416 */
4417 if (!ret)
4418 ret = did_create_dir(sctx, cur->dir);
4419 if (ret < 0)
4420 goto out;
4421 if (!ret) {
4422 ret = send_create_inode(sctx, cur->dir);
4423 if (ret < 0)
4424 goto out;
4425 cache_dir_created(sctx, cur->dir);
4426 }
4427 }
4428
4429 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4430 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4431 if (ret < 0)
4432 goto out;
4433 if (ret == 1) {
4434 can_rename = false;
4435 *pending_move = 1;
4436 }
4437 }
4438
4439 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4440 can_rename) {
4441 ret = wait_for_parent_move(sctx, cur, is_orphan);
4442 if (ret < 0)
4443 goto out;
4444 if (ret == 1) {
4445 can_rename = false;
4446 *pending_move = 1;
4447 }
4448 }
4449
4450 /*
4451 * link/move the ref to the new place. If we have an orphan
4452 * inode, move it and update valid_path. If not, link or move
4453 * it depending on the inode mode.
4454 */
4455 if (is_orphan && can_rename) {
4456 ret = send_rename(sctx, valid_path, cur->full_path);
4457 if (ret < 0)
4458 goto out;
4459 is_orphan = 0;
4460 ret = fs_path_copy(valid_path, cur->full_path);
4461 if (ret < 0)
4462 goto out;
4463 } else if (can_rename) {
4464 if (S_ISDIR(sctx->cur_inode_mode)) {
4465 /*
4466 * Dirs can't be linked, so move it. For moved
4467 * dirs, we always have one new and one deleted
4468 * ref. The deleted ref is ignored later.
4469 */
4470 ret = send_rename(sctx, valid_path,
4471 cur->full_path);
4472 if (!ret)
4473 ret = fs_path_copy(valid_path,
4474 cur->full_path);
4475 if (ret < 0)
4476 goto out;
4477 } else {
4478 /*
4479 * We might have previously orphanized an inode
4480 * which is an ancestor of our current inode,
4481 * so our reference's full path, which was
4482 * computed before any such orphanizations, must
4483 * be updated.
4484 */
4485 if (orphanized_dir) {
4486 ret = update_ref_path(sctx, cur);
4487 if (ret < 0)
4488 goto out;
4489 }
4490 ret = send_link(sctx, cur->full_path,
4491 valid_path);
4492 if (ret < 0)
4493 goto out;
4494 }
4495 }
4496 ret = dup_ref(cur, &check_dirs);
4497 if (ret < 0)
4498 goto out;
4499 }
4500
4501 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4502 /*
4503 * Check if we can already rmdir the directory. If not,
4504 * orphanize it. For every dir item inside that gets deleted
4505 * later, we do this check again and rmdir it then if possible.
4506 * See the use of check_dirs for more details.
4507 */
4508 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4509 if (ret < 0)
4510 goto out;
4511 if (ret) {
4512 ret = send_rmdir(sctx, valid_path);
4513 if (ret < 0)
4514 goto out;
4515 } else if (!is_orphan) {
4516 ret = orphanize_inode(sctx, sctx->cur_ino,
4517 sctx->cur_inode_gen, valid_path);
4518 if (ret < 0)
4519 goto out;
4520 is_orphan = 1;
4521 }
4522
4523 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4524 ret = dup_ref(cur, &check_dirs);
4525 if (ret < 0)
4526 goto out;
4527 }
4528 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4529 !list_empty(&sctx->deleted_refs)) {
4530 /*
4531 * We have a moved dir. Add the old parent to check_dirs
4532 */
4533 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4534 list);
4535 ret = dup_ref(cur, &check_dirs);
4536 if (ret < 0)
4537 goto out;
4538 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4539 /*
4540 * We have a non dir inode. Go through all deleted refs and
4541 * unlink them if they were not already overwritten by other
4542 * inodes.
4543 */
4544 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4545 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4546 sctx->cur_ino, sctx->cur_inode_gen,
4547 cur->name, cur->name_len);
4548 if (ret < 0)
4549 goto out;
4550 if (!ret) {
4551 /*
4552 * If we orphanized any ancestor before, we need
4553 * to recompute the full path for deleted names,
4554 * since any such path was computed before we
4555 * processed any references and orphanized any
4556 * ancestor inode.
4557 */
4558 if (orphanized_ancestor) {
4559 ret = update_ref_path(sctx, cur);
4560 if (ret < 0)
4561 goto out;
4562 }
4563 ret = send_unlink(sctx, cur->full_path);
4564 if (ret < 0)
4565 goto out;
4566 }
4567 ret = dup_ref(cur, &check_dirs);
4568 if (ret < 0)
4569 goto out;
4570 }
4571 /*
4572 * If the inode is still orphan, unlink the orphan. This may
4573 * happen when a previous inode did overwrite the first ref
4574 * of this inode and no new refs were added for the current
4575 * inode. Unlinking does not mean that the inode is deleted in
4576 * all cases. There may still be links to this inode in other
4577 * places.
4578 */
4579 if (is_orphan) {
4580 ret = send_unlink(sctx, valid_path);
4581 if (ret < 0)
4582 goto out;
4583 }
4584 }
4585
4586 /*
4587 * We did collect all parent dirs where cur_inode was once located. We
4588 * now go through all these dirs and check if they are pending for
4589 * deletion and if it's finally possible to perform the rmdir now.
4590 * We also update the inode stats of the parent dirs here.
4591 */
4592 list_for_each_entry(cur, &check_dirs, list) {
4593 /*
4594 * In case we had refs into dirs that were not processed yet,
4595 * we don't need to do the utime and rmdir logic for these dirs.
4596 * The dir will be processed later.
4597 */
4598 if (cur->dir > sctx->cur_ino)
4599 continue;
4600
4601 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4602 if (ret < 0)
4603 goto out;
4604
4605 if (ret == inode_state_did_create ||
4606 ret == inode_state_no_change) {
4607 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4608 if (ret < 0)
4609 goto out;
4610 } else if (ret == inode_state_did_delete &&
4611 cur->dir != last_dir_ino_rm) {
4612 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4613 if (ret < 0)
4614 goto out;
4615 if (ret) {
4616 ret = get_cur_path(sctx, cur->dir,
4617 cur->dir_gen, valid_path);
4618 if (ret < 0)
4619 goto out;
4620 ret = send_rmdir(sctx, valid_path);
4621 if (ret < 0)
4622 goto out;
4623 last_dir_ino_rm = cur->dir;
4624 }
4625 }
4626 }
4627
4628 ret = 0;
4629
4630 out:
4631 __free_recorded_refs(&check_dirs);
4632 free_recorded_refs(sctx);
4633 fs_path_free(valid_path);
4634 return ret;
4635 }
4636
rbtree_ref_comp(const void * k,const struct rb_node * node)4637 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4638 {
4639 const struct recorded_ref *data = k;
4640 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4641 int result;
4642
4643 if (data->dir > ref->dir)
4644 return 1;
4645 if (data->dir < ref->dir)
4646 return -1;
4647 if (data->dir_gen > ref->dir_gen)
4648 return 1;
4649 if (data->dir_gen < ref->dir_gen)
4650 return -1;
4651 if (data->name_len > ref->name_len)
4652 return 1;
4653 if (data->name_len < ref->name_len)
4654 return -1;
4655 result = strcmp(data->name, ref->name);
4656 if (result > 0)
4657 return 1;
4658 if (result < 0)
4659 return -1;
4660 return 0;
4661 }
4662
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4663 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4664 {
4665 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4666
4667 return rbtree_ref_comp(entry, parent) < 0;
4668 }
4669
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4670 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4671 struct fs_path *name, u64 dir, u64 dir_gen,
4672 struct send_ctx *sctx)
4673 {
4674 int ret = 0;
4675 struct fs_path *path = NULL;
4676 struct recorded_ref *ref = NULL;
4677
4678 path = fs_path_alloc();
4679 if (!path) {
4680 ret = -ENOMEM;
4681 goto out;
4682 }
4683
4684 ref = recorded_ref_alloc();
4685 if (!ref) {
4686 ret = -ENOMEM;
4687 goto out;
4688 }
4689
4690 ret = get_cur_path(sctx, dir, dir_gen, path);
4691 if (ret < 0)
4692 goto out;
4693 ret = fs_path_add_path(path, name);
4694 if (ret < 0)
4695 goto out;
4696
4697 ref->dir = dir;
4698 ref->dir_gen = dir_gen;
4699 set_ref_path(ref, path);
4700 list_add_tail(&ref->list, refs);
4701 rb_add(&ref->node, root, rbtree_ref_less);
4702 ref->root = root;
4703 out:
4704 if (ret) {
4705 if (path && (!ref || !ref->full_path))
4706 fs_path_free(path);
4707 recorded_ref_free(ref);
4708 }
4709 return ret;
4710 }
4711
record_new_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4712 static int record_new_ref_if_needed(int num, u64 dir, int index,
4713 struct fs_path *name, void *ctx)
4714 {
4715 int ret = 0;
4716 struct send_ctx *sctx = ctx;
4717 struct rb_node *node = NULL;
4718 struct recorded_ref data;
4719 struct recorded_ref *ref;
4720 u64 dir_gen;
4721
4722 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4723 if (ret < 0)
4724 goto out;
4725
4726 data.dir = dir;
4727 data.dir_gen = dir_gen;
4728 set_ref_path(&data, name);
4729 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4730 if (node) {
4731 ref = rb_entry(node, struct recorded_ref, node);
4732 recorded_ref_free(ref);
4733 } else {
4734 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4735 &sctx->new_refs, name, dir, dir_gen,
4736 sctx);
4737 }
4738 out:
4739 return ret;
4740 }
4741
record_deleted_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4742 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4743 struct fs_path *name, void *ctx)
4744 {
4745 int ret = 0;
4746 struct send_ctx *sctx = ctx;
4747 struct rb_node *node = NULL;
4748 struct recorded_ref data;
4749 struct recorded_ref *ref;
4750 u64 dir_gen;
4751
4752 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4753 if (ret < 0)
4754 goto out;
4755
4756 data.dir = dir;
4757 data.dir_gen = dir_gen;
4758 set_ref_path(&data, name);
4759 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4760 if (node) {
4761 ref = rb_entry(node, struct recorded_ref, node);
4762 recorded_ref_free(ref);
4763 } else {
4764 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4765 &sctx->deleted_refs, name, dir,
4766 dir_gen, sctx);
4767 }
4768 out:
4769 return ret;
4770 }
4771
record_new_ref(struct send_ctx * sctx)4772 static int record_new_ref(struct send_ctx *sctx)
4773 {
4774 int ret;
4775
4776 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4777 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4778 if (ret < 0)
4779 goto out;
4780 ret = 0;
4781
4782 out:
4783 return ret;
4784 }
4785
record_deleted_ref(struct send_ctx * sctx)4786 static int record_deleted_ref(struct send_ctx *sctx)
4787 {
4788 int ret;
4789
4790 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4791 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4792 sctx);
4793 if (ret < 0)
4794 goto out;
4795 ret = 0;
4796
4797 out:
4798 return ret;
4799 }
4800
record_changed_ref(struct send_ctx * sctx)4801 static int record_changed_ref(struct send_ctx *sctx)
4802 {
4803 int ret = 0;
4804
4805 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4806 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4807 if (ret < 0)
4808 goto out;
4809 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4810 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4811 if (ret < 0)
4812 goto out;
4813 ret = 0;
4814
4815 out:
4816 return ret;
4817 }
4818
4819 /*
4820 * Record and process all refs at once. Needed when an inode changes the
4821 * generation number, which means that it was deleted and recreated.
4822 */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4823 static int process_all_refs(struct send_ctx *sctx,
4824 enum btrfs_compare_tree_result cmd)
4825 {
4826 int ret = 0;
4827 int iter_ret = 0;
4828 struct btrfs_root *root;
4829 struct btrfs_path *path;
4830 struct btrfs_key key;
4831 struct btrfs_key found_key;
4832 iterate_inode_ref_t cb;
4833 int pending_move = 0;
4834
4835 path = alloc_path_for_send();
4836 if (!path)
4837 return -ENOMEM;
4838
4839 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4840 root = sctx->send_root;
4841 cb = record_new_ref_if_needed;
4842 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4843 root = sctx->parent_root;
4844 cb = record_deleted_ref_if_needed;
4845 } else {
4846 btrfs_err(sctx->send_root->fs_info,
4847 "Wrong command %d in process_all_refs", cmd);
4848 ret = -EINVAL;
4849 goto out;
4850 }
4851
4852 key.objectid = sctx->cmp_key->objectid;
4853 key.type = BTRFS_INODE_REF_KEY;
4854 key.offset = 0;
4855 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4856 if (found_key.objectid != key.objectid ||
4857 (found_key.type != BTRFS_INODE_REF_KEY &&
4858 found_key.type != BTRFS_INODE_EXTREF_KEY))
4859 break;
4860
4861 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4862 if (ret < 0)
4863 goto out;
4864 }
4865 /* Catch error found during iteration */
4866 if (iter_ret < 0) {
4867 ret = iter_ret;
4868 goto out;
4869 }
4870 btrfs_release_path(path);
4871
4872 /*
4873 * We don't actually care about pending_move as we are simply
4874 * re-creating this inode and will be rename'ing it into place once we
4875 * rename the parent directory.
4876 */
4877 ret = process_recorded_refs(sctx, &pending_move);
4878 out:
4879 btrfs_free_path(path);
4880 return ret;
4881 }
4882
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4883 static int send_set_xattr(struct send_ctx *sctx,
4884 struct fs_path *path,
4885 const char *name, int name_len,
4886 const char *data, int data_len)
4887 {
4888 int ret = 0;
4889
4890 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4891 if (ret < 0)
4892 goto out;
4893
4894 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4895 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4896 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4897
4898 ret = send_cmd(sctx);
4899
4900 tlv_put_failure:
4901 out:
4902 return ret;
4903 }
4904
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4905 static int send_remove_xattr(struct send_ctx *sctx,
4906 struct fs_path *path,
4907 const char *name, int name_len)
4908 {
4909 int ret = 0;
4910
4911 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4912 if (ret < 0)
4913 goto out;
4914
4915 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4916 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4917
4918 ret = send_cmd(sctx);
4919
4920 tlv_put_failure:
4921 out:
4922 return ret;
4923 }
4924
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4925 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4926 const char *name, int name_len, const char *data,
4927 int data_len, void *ctx)
4928 {
4929 int ret;
4930 struct send_ctx *sctx = ctx;
4931 struct fs_path *p;
4932 struct posix_acl_xattr_header dummy_acl;
4933
4934 /* Capabilities are emitted by finish_inode_if_needed */
4935 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4936 return 0;
4937
4938 p = fs_path_alloc();
4939 if (!p)
4940 return -ENOMEM;
4941
4942 /*
4943 * This hack is needed because empty acls are stored as zero byte
4944 * data in xattrs. Problem with that is, that receiving these zero byte
4945 * acls will fail later. To fix this, we send a dummy acl list that
4946 * only contains the version number and no entries.
4947 */
4948 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4949 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4950 if (data_len == 0) {
4951 dummy_acl.a_version =
4952 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4953 data = (char *)&dummy_acl;
4954 data_len = sizeof(dummy_acl);
4955 }
4956 }
4957
4958 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4959 if (ret < 0)
4960 goto out;
4961
4962 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4963
4964 out:
4965 fs_path_free(p);
4966 return ret;
4967 }
4968
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4969 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4970 const char *name, int name_len,
4971 const char *data, int data_len, void *ctx)
4972 {
4973 int ret;
4974 struct send_ctx *sctx = ctx;
4975 struct fs_path *p;
4976
4977 p = fs_path_alloc();
4978 if (!p)
4979 return -ENOMEM;
4980
4981 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4982 if (ret < 0)
4983 goto out;
4984
4985 ret = send_remove_xattr(sctx, p, name, name_len);
4986
4987 out:
4988 fs_path_free(p);
4989 return ret;
4990 }
4991
process_new_xattr(struct send_ctx * sctx)4992 static int process_new_xattr(struct send_ctx *sctx)
4993 {
4994 int ret = 0;
4995
4996 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4997 __process_new_xattr, sctx);
4998
4999 return ret;
5000 }
5001
process_deleted_xattr(struct send_ctx * sctx)5002 static int process_deleted_xattr(struct send_ctx *sctx)
5003 {
5004 return iterate_dir_item(sctx->parent_root, sctx->right_path,
5005 __process_deleted_xattr, sctx);
5006 }
5007
5008 struct find_xattr_ctx {
5009 const char *name;
5010 int name_len;
5011 int found_idx;
5012 char *found_data;
5013 int found_data_len;
5014 };
5015
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)5016 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5017 int name_len, const char *data, int data_len, void *vctx)
5018 {
5019 struct find_xattr_ctx *ctx = vctx;
5020
5021 if (name_len == ctx->name_len &&
5022 strncmp(name, ctx->name, name_len) == 0) {
5023 ctx->found_idx = num;
5024 ctx->found_data_len = data_len;
5025 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5026 if (!ctx->found_data)
5027 return -ENOMEM;
5028 return 1;
5029 }
5030 return 0;
5031 }
5032
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)5033 static int find_xattr(struct btrfs_root *root,
5034 struct btrfs_path *path,
5035 struct btrfs_key *key,
5036 const char *name, int name_len,
5037 char **data, int *data_len)
5038 {
5039 int ret;
5040 struct find_xattr_ctx ctx;
5041
5042 ctx.name = name;
5043 ctx.name_len = name_len;
5044 ctx.found_idx = -1;
5045 ctx.found_data = NULL;
5046 ctx.found_data_len = 0;
5047
5048 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5049 if (ret < 0)
5050 return ret;
5051
5052 if (ctx.found_idx == -1)
5053 return -ENOENT;
5054 if (data) {
5055 *data = ctx.found_data;
5056 *data_len = ctx.found_data_len;
5057 } else {
5058 kfree(ctx.found_data);
5059 }
5060 return ctx.found_idx;
5061 }
5062
5063
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5064 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5065 const char *name, int name_len,
5066 const char *data, int data_len,
5067 void *ctx)
5068 {
5069 int ret;
5070 struct send_ctx *sctx = ctx;
5071 char *found_data = NULL;
5072 int found_data_len = 0;
5073
5074 ret = find_xattr(sctx->parent_root, sctx->right_path,
5075 sctx->cmp_key, name, name_len, &found_data,
5076 &found_data_len);
5077 if (ret == -ENOENT) {
5078 ret = __process_new_xattr(num, di_key, name, name_len, data,
5079 data_len, ctx);
5080 } else if (ret >= 0) {
5081 if (data_len != found_data_len ||
5082 memcmp(data, found_data, data_len)) {
5083 ret = __process_new_xattr(num, di_key, name, name_len,
5084 data, data_len, ctx);
5085 } else {
5086 ret = 0;
5087 }
5088 }
5089
5090 kfree(found_data);
5091 return ret;
5092 }
5093
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5094 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5095 const char *name, int name_len,
5096 const char *data, int data_len,
5097 void *ctx)
5098 {
5099 int ret;
5100 struct send_ctx *sctx = ctx;
5101
5102 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5103 name, name_len, NULL, NULL);
5104 if (ret == -ENOENT)
5105 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5106 data_len, ctx);
5107 else if (ret >= 0)
5108 ret = 0;
5109
5110 return ret;
5111 }
5112
process_changed_xattr(struct send_ctx * sctx)5113 static int process_changed_xattr(struct send_ctx *sctx)
5114 {
5115 int ret = 0;
5116
5117 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5118 __process_changed_new_xattr, sctx);
5119 if (ret < 0)
5120 goto out;
5121 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5122 __process_changed_deleted_xattr, sctx);
5123
5124 out:
5125 return ret;
5126 }
5127
process_all_new_xattrs(struct send_ctx * sctx)5128 static int process_all_new_xattrs(struct send_ctx *sctx)
5129 {
5130 int ret = 0;
5131 int iter_ret = 0;
5132 struct btrfs_root *root;
5133 struct btrfs_path *path;
5134 struct btrfs_key key;
5135 struct btrfs_key found_key;
5136
5137 path = alloc_path_for_send();
5138 if (!path)
5139 return -ENOMEM;
5140
5141 root = sctx->send_root;
5142
5143 key.objectid = sctx->cmp_key->objectid;
5144 key.type = BTRFS_XATTR_ITEM_KEY;
5145 key.offset = 0;
5146 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5147 if (found_key.objectid != key.objectid ||
5148 found_key.type != key.type) {
5149 ret = 0;
5150 break;
5151 }
5152
5153 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5154 if (ret < 0)
5155 break;
5156 }
5157 /* Catch error found during iteration */
5158 if (iter_ret < 0)
5159 ret = iter_ret;
5160
5161 btrfs_free_path(path);
5162 return ret;
5163 }
5164
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5165 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5166 struct fsverity_descriptor *desc)
5167 {
5168 int ret;
5169
5170 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5171 if (ret < 0)
5172 goto out;
5173
5174 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5175 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5176 le8_to_cpu(desc->hash_algorithm));
5177 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5178 1U << le8_to_cpu(desc->log_blocksize));
5179 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5180 le8_to_cpu(desc->salt_size));
5181 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5182 le32_to_cpu(desc->sig_size));
5183
5184 ret = send_cmd(sctx);
5185
5186 tlv_put_failure:
5187 out:
5188 return ret;
5189 }
5190
process_verity(struct send_ctx * sctx)5191 static int process_verity(struct send_ctx *sctx)
5192 {
5193 int ret = 0;
5194 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5195 struct inode *inode;
5196 struct fs_path *p;
5197
5198 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5199 if (IS_ERR(inode))
5200 return PTR_ERR(inode);
5201
5202 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5203 if (ret < 0)
5204 goto iput;
5205
5206 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5207 ret = -EMSGSIZE;
5208 goto iput;
5209 }
5210 if (!sctx->verity_descriptor) {
5211 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5212 GFP_KERNEL);
5213 if (!sctx->verity_descriptor) {
5214 ret = -ENOMEM;
5215 goto iput;
5216 }
5217 }
5218
5219 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5220 if (ret < 0)
5221 goto iput;
5222
5223 p = fs_path_alloc();
5224 if (!p) {
5225 ret = -ENOMEM;
5226 goto iput;
5227 }
5228 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5229 if (ret < 0)
5230 goto free_path;
5231
5232 ret = send_verity(sctx, p, sctx->verity_descriptor);
5233 if (ret < 0)
5234 goto free_path;
5235
5236 free_path:
5237 fs_path_free(p);
5238 iput:
5239 iput(inode);
5240 return ret;
5241 }
5242
max_send_read_size(const struct send_ctx * sctx)5243 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5244 {
5245 return sctx->send_max_size - SZ_16K;
5246 }
5247
put_data_header(struct send_ctx * sctx,u32 len)5248 static int put_data_header(struct send_ctx *sctx, u32 len)
5249 {
5250 if (WARN_ON_ONCE(sctx->put_data))
5251 return -EINVAL;
5252 sctx->put_data = true;
5253 if (sctx->proto >= 2) {
5254 /*
5255 * Since v2, the data attribute header doesn't include a length,
5256 * it is implicitly to the end of the command.
5257 */
5258 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5259 return -EOVERFLOW;
5260 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5261 sctx->send_size += sizeof(__le16);
5262 } else {
5263 struct btrfs_tlv_header *hdr;
5264
5265 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5266 return -EOVERFLOW;
5267 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5268 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5269 put_unaligned_le16(len, &hdr->tlv_len);
5270 sctx->send_size += sizeof(*hdr);
5271 }
5272 return 0;
5273 }
5274
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5275 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5276 {
5277 struct btrfs_root *root = sctx->send_root;
5278 struct btrfs_fs_info *fs_info = root->fs_info;
5279 struct page *page;
5280 pgoff_t index = offset >> PAGE_SHIFT;
5281 pgoff_t last_index;
5282 unsigned pg_offset = offset_in_page(offset);
5283 int ret;
5284
5285 ret = put_data_header(sctx, len);
5286 if (ret)
5287 return ret;
5288
5289 last_index = (offset + len - 1) >> PAGE_SHIFT;
5290
5291 while (index <= last_index) {
5292 unsigned cur_len = min_t(unsigned, len,
5293 PAGE_SIZE - pg_offset);
5294
5295 page = find_lock_page(sctx->cur_inode->i_mapping, index);
5296 if (!page) {
5297 page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5298 &sctx->ra, NULL, index,
5299 last_index + 1 - index);
5300
5301 page = find_or_create_page(sctx->cur_inode->i_mapping,
5302 index, GFP_KERNEL);
5303 if (!page) {
5304 ret = -ENOMEM;
5305 break;
5306 }
5307 }
5308
5309 if (PageReadahead(page))
5310 page_cache_async_readahead(sctx->cur_inode->i_mapping,
5311 &sctx->ra, NULL, page_folio(page),
5312 index, last_index + 1 - index);
5313
5314 if (!PageUptodate(page)) {
5315 btrfs_read_folio(NULL, page_folio(page));
5316 lock_page(page);
5317 if (!PageUptodate(page)) {
5318 unlock_page(page);
5319 btrfs_err(fs_info,
5320 "send: IO error at offset %llu for inode %llu root %llu",
5321 page_offset(page), sctx->cur_ino,
5322 sctx->send_root->root_key.objectid);
5323 put_page(page);
5324 ret = -EIO;
5325 break;
5326 }
5327 }
5328
5329 memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5330 pg_offset, cur_len);
5331 unlock_page(page);
5332 put_page(page);
5333 index++;
5334 pg_offset = 0;
5335 len -= cur_len;
5336 sctx->send_size += cur_len;
5337 }
5338
5339 return ret;
5340 }
5341
5342 /*
5343 * Read some bytes from the current inode/file and send a write command to
5344 * user space.
5345 */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5346 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5347 {
5348 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5349 int ret = 0;
5350 struct fs_path *p;
5351
5352 p = fs_path_alloc();
5353 if (!p)
5354 return -ENOMEM;
5355
5356 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5357
5358 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5359 if (ret < 0)
5360 goto out;
5361
5362 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5363 if (ret < 0)
5364 goto out;
5365
5366 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5367 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5368 ret = put_file_data(sctx, offset, len);
5369 if (ret < 0)
5370 goto out;
5371
5372 ret = send_cmd(sctx);
5373
5374 tlv_put_failure:
5375 out:
5376 fs_path_free(p);
5377 return ret;
5378 }
5379
5380 /*
5381 * Send a clone command to user space.
5382 */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5383 static int send_clone(struct send_ctx *sctx,
5384 u64 offset, u32 len,
5385 struct clone_root *clone_root)
5386 {
5387 int ret = 0;
5388 struct fs_path *p;
5389 u64 gen;
5390
5391 btrfs_debug(sctx->send_root->fs_info,
5392 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5393 offset, len, clone_root->root->root_key.objectid,
5394 clone_root->ino, clone_root->offset);
5395
5396 p = fs_path_alloc();
5397 if (!p)
5398 return -ENOMEM;
5399
5400 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5401 if (ret < 0)
5402 goto out;
5403
5404 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5405 if (ret < 0)
5406 goto out;
5407
5408 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5409 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5410 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5411
5412 if (clone_root->root == sctx->send_root) {
5413 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5414 if (ret < 0)
5415 goto out;
5416 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5417 } else {
5418 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5419 }
5420 if (ret < 0)
5421 goto out;
5422
5423 /*
5424 * If the parent we're using has a received_uuid set then use that as
5425 * our clone source as that is what we will look for when doing a
5426 * receive.
5427 *
5428 * This covers the case that we create a snapshot off of a received
5429 * subvolume and then use that as the parent and try to receive on a
5430 * different host.
5431 */
5432 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5433 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5434 clone_root->root->root_item.received_uuid);
5435 else
5436 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5437 clone_root->root->root_item.uuid);
5438 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5439 btrfs_root_ctransid(&clone_root->root->root_item));
5440 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5441 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5442 clone_root->offset);
5443
5444 ret = send_cmd(sctx);
5445
5446 tlv_put_failure:
5447 out:
5448 fs_path_free(p);
5449 return ret;
5450 }
5451
5452 /*
5453 * Send an update extent command to user space.
5454 */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5455 static int send_update_extent(struct send_ctx *sctx,
5456 u64 offset, u32 len)
5457 {
5458 int ret = 0;
5459 struct fs_path *p;
5460
5461 p = fs_path_alloc();
5462 if (!p)
5463 return -ENOMEM;
5464
5465 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5466 if (ret < 0)
5467 goto out;
5468
5469 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5470 if (ret < 0)
5471 goto out;
5472
5473 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5474 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5475 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5476
5477 ret = send_cmd(sctx);
5478
5479 tlv_put_failure:
5480 out:
5481 fs_path_free(p);
5482 return ret;
5483 }
5484
send_hole(struct send_ctx * sctx,u64 end)5485 static int send_hole(struct send_ctx *sctx, u64 end)
5486 {
5487 struct fs_path *p = NULL;
5488 u64 read_size = max_send_read_size(sctx);
5489 u64 offset = sctx->cur_inode_last_extent;
5490 int ret = 0;
5491
5492 /*
5493 * A hole that starts at EOF or beyond it. Since we do not yet support
5494 * fallocate (for extent preallocation and hole punching), sending a
5495 * write of zeroes starting at EOF or beyond would later require issuing
5496 * a truncate operation which would undo the write and achieve nothing.
5497 */
5498 if (offset >= sctx->cur_inode_size)
5499 return 0;
5500
5501 /*
5502 * Don't go beyond the inode's i_size due to prealloc extents that start
5503 * after the i_size.
5504 */
5505 end = min_t(u64, end, sctx->cur_inode_size);
5506
5507 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5508 return send_update_extent(sctx, offset, end - offset);
5509
5510 p = fs_path_alloc();
5511 if (!p)
5512 return -ENOMEM;
5513 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5514 if (ret < 0)
5515 goto tlv_put_failure;
5516 while (offset < end) {
5517 u64 len = min(end - offset, read_size);
5518
5519 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5520 if (ret < 0)
5521 break;
5522 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5523 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5524 ret = put_data_header(sctx, len);
5525 if (ret < 0)
5526 break;
5527 memset(sctx->send_buf + sctx->send_size, 0, len);
5528 sctx->send_size += len;
5529 ret = send_cmd(sctx);
5530 if (ret < 0)
5531 break;
5532 offset += len;
5533 }
5534 sctx->cur_inode_next_write_offset = offset;
5535 tlv_put_failure:
5536 fs_path_free(p);
5537 return ret;
5538 }
5539
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5540 static int send_encoded_inline_extent(struct send_ctx *sctx,
5541 struct btrfs_path *path, u64 offset,
5542 u64 len)
5543 {
5544 struct btrfs_root *root = sctx->send_root;
5545 struct btrfs_fs_info *fs_info = root->fs_info;
5546 struct inode *inode;
5547 struct fs_path *fspath;
5548 struct extent_buffer *leaf = path->nodes[0];
5549 struct btrfs_key key;
5550 struct btrfs_file_extent_item *ei;
5551 u64 ram_bytes;
5552 size_t inline_size;
5553 int ret;
5554
5555 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5556 if (IS_ERR(inode))
5557 return PTR_ERR(inode);
5558
5559 fspath = fs_path_alloc();
5560 if (!fspath) {
5561 ret = -ENOMEM;
5562 goto out;
5563 }
5564
5565 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5566 if (ret < 0)
5567 goto out;
5568
5569 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5570 if (ret < 0)
5571 goto out;
5572
5573 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5574 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5575 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5576 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5577
5578 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5579 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5580 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5581 min(key.offset + ram_bytes - offset, len));
5582 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5583 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5584 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5585 btrfs_file_extent_compression(leaf, ei));
5586 if (ret < 0)
5587 goto out;
5588 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5589
5590 ret = put_data_header(sctx, inline_size);
5591 if (ret < 0)
5592 goto out;
5593 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5594 btrfs_file_extent_inline_start(ei), inline_size);
5595 sctx->send_size += inline_size;
5596
5597 ret = send_cmd(sctx);
5598
5599 tlv_put_failure:
5600 out:
5601 fs_path_free(fspath);
5602 iput(inode);
5603 return ret;
5604 }
5605
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5606 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5607 u64 offset, u64 len)
5608 {
5609 struct btrfs_root *root = sctx->send_root;
5610 struct btrfs_fs_info *fs_info = root->fs_info;
5611 struct inode *inode;
5612 struct fs_path *fspath;
5613 struct extent_buffer *leaf = path->nodes[0];
5614 struct btrfs_key key;
5615 struct btrfs_file_extent_item *ei;
5616 u64 disk_bytenr, disk_num_bytes;
5617 u32 data_offset;
5618 struct btrfs_cmd_header *hdr;
5619 u32 crc;
5620 int ret;
5621
5622 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5623 if (IS_ERR(inode))
5624 return PTR_ERR(inode);
5625
5626 fspath = fs_path_alloc();
5627 if (!fspath) {
5628 ret = -ENOMEM;
5629 goto out;
5630 }
5631
5632 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5633 if (ret < 0)
5634 goto out;
5635
5636 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5637 if (ret < 0)
5638 goto out;
5639
5640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5641 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5642 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5643 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5644
5645 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5646 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5647 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5648 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5649 len));
5650 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5651 btrfs_file_extent_ram_bytes(leaf, ei));
5652 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5653 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5654 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5655 btrfs_file_extent_compression(leaf, ei));
5656 if (ret < 0)
5657 goto out;
5658 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5659 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5660
5661 ret = put_data_header(sctx, disk_num_bytes);
5662 if (ret < 0)
5663 goto out;
5664
5665 /*
5666 * We want to do I/O directly into the send buffer, so get the next page
5667 * boundary in the send buffer. This means that there may be a gap
5668 * between the beginning of the command and the file data.
5669 */
5670 data_offset = PAGE_ALIGN(sctx->send_size);
5671 if (data_offset > sctx->send_max_size ||
5672 sctx->send_max_size - data_offset < disk_num_bytes) {
5673 ret = -EOVERFLOW;
5674 goto out;
5675 }
5676
5677 /*
5678 * Note that send_buf is a mapping of send_buf_pages, so this is really
5679 * reading into send_buf.
5680 */
5681 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5682 disk_bytenr, disk_num_bytes,
5683 sctx->send_buf_pages +
5684 (data_offset >> PAGE_SHIFT));
5685 if (ret)
5686 goto out;
5687
5688 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5689 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5690 hdr->crc = 0;
5691 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5692 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5693 hdr->crc = cpu_to_le32(crc);
5694
5695 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5696 &sctx->send_off);
5697 if (!ret) {
5698 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5699 disk_num_bytes, &sctx->send_off);
5700 }
5701 sctx->send_size = 0;
5702 sctx->put_data = false;
5703
5704 tlv_put_failure:
5705 out:
5706 fs_path_free(fspath);
5707 iput(inode);
5708 return ret;
5709 }
5710
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5711 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5712 const u64 offset, const u64 len)
5713 {
5714 const u64 end = offset + len;
5715 struct extent_buffer *leaf = path->nodes[0];
5716 struct btrfs_file_extent_item *ei;
5717 u64 read_size = max_send_read_size(sctx);
5718 u64 sent = 0;
5719
5720 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5721 return send_update_extent(sctx, offset, len);
5722
5723 ei = btrfs_item_ptr(leaf, path->slots[0],
5724 struct btrfs_file_extent_item);
5725 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5726 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5727 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5728 BTRFS_FILE_EXTENT_INLINE);
5729
5730 /*
5731 * Send the compressed extent unless the compressed data is
5732 * larger than the decompressed data. This can happen if we're
5733 * not sending the entire extent, either because it has been
5734 * partially overwritten/truncated or because this is a part of
5735 * the extent that we couldn't clone in clone_range().
5736 */
5737 if (is_inline &&
5738 btrfs_file_extent_inline_item_len(leaf,
5739 path->slots[0]) <= len) {
5740 return send_encoded_inline_extent(sctx, path, offset,
5741 len);
5742 } else if (!is_inline &&
5743 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5744 return send_encoded_extent(sctx, path, offset, len);
5745 }
5746 }
5747
5748 if (sctx->cur_inode == NULL) {
5749 struct btrfs_root *root = sctx->send_root;
5750
5751 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5752 if (IS_ERR(sctx->cur_inode)) {
5753 int err = PTR_ERR(sctx->cur_inode);
5754
5755 sctx->cur_inode = NULL;
5756 return err;
5757 }
5758 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5759 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5760
5761 /*
5762 * It's very likely there are no pages from this inode in the page
5763 * cache, so after reading extents and sending their data, we clean
5764 * the page cache to avoid trashing the page cache (adding pressure
5765 * to the page cache and forcing eviction of other data more useful
5766 * for applications).
5767 *
5768 * We decide if we should clean the page cache simply by checking
5769 * if the inode's mapping nrpages is 0 when we first open it, and
5770 * not by using something like filemap_range_has_page() before
5771 * reading an extent because when we ask the readahead code to
5772 * read a given file range, it may (and almost always does) read
5773 * pages from beyond that range (see the documentation for
5774 * page_cache_sync_readahead()), so it would not be reliable,
5775 * because after reading the first extent future calls to
5776 * filemap_range_has_page() would return true because the readahead
5777 * on the previous extent resulted in reading pages of the current
5778 * extent as well.
5779 */
5780 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5781 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5782 }
5783
5784 while (sent < len) {
5785 u64 size = min(len - sent, read_size);
5786 int ret;
5787
5788 ret = send_write(sctx, offset + sent, size);
5789 if (ret < 0)
5790 return ret;
5791 sent += size;
5792 }
5793
5794 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5795 /*
5796 * Always operate only on ranges that are a multiple of the page
5797 * size. This is not only to prevent zeroing parts of a page in
5798 * the case of subpage sector size, but also to guarantee we evict
5799 * pages, as passing a range that is smaller than page size does
5800 * not evict the respective page (only zeroes part of its content).
5801 *
5802 * Always start from the end offset of the last range cleared.
5803 * This is because the readahead code may (and very often does)
5804 * reads pages beyond the range we request for readahead. So if
5805 * we have an extent layout like this:
5806 *
5807 * [ extent A ] [ extent B ] [ extent C ]
5808 *
5809 * When we ask page_cache_sync_readahead() to read extent A, it
5810 * may also trigger reads for pages of extent B. If we are doing
5811 * an incremental send and extent B has not changed between the
5812 * parent and send snapshots, some or all of its pages may end
5813 * up being read and placed in the page cache. So when truncating
5814 * the page cache we always start from the end offset of the
5815 * previously processed extent up to the end of the current
5816 * extent.
5817 */
5818 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5819 sctx->page_cache_clear_start,
5820 end - 1);
5821 sctx->page_cache_clear_start = end;
5822 }
5823
5824 return 0;
5825 }
5826
5827 /*
5828 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5829 * found, call send_set_xattr function to emit it.
5830 *
5831 * Return 0 if there isn't a capability, or when the capability was emitted
5832 * successfully, or < 0 if an error occurred.
5833 */
send_capabilities(struct send_ctx * sctx)5834 static int send_capabilities(struct send_ctx *sctx)
5835 {
5836 struct fs_path *fspath = NULL;
5837 struct btrfs_path *path;
5838 struct btrfs_dir_item *di;
5839 struct extent_buffer *leaf;
5840 unsigned long data_ptr;
5841 char *buf = NULL;
5842 int buf_len;
5843 int ret = 0;
5844
5845 path = alloc_path_for_send();
5846 if (!path)
5847 return -ENOMEM;
5848
5849 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5850 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5851 if (!di) {
5852 /* There is no xattr for this inode */
5853 goto out;
5854 } else if (IS_ERR(di)) {
5855 ret = PTR_ERR(di);
5856 goto out;
5857 }
5858
5859 leaf = path->nodes[0];
5860 buf_len = btrfs_dir_data_len(leaf, di);
5861
5862 fspath = fs_path_alloc();
5863 buf = kmalloc(buf_len, GFP_KERNEL);
5864 if (!fspath || !buf) {
5865 ret = -ENOMEM;
5866 goto out;
5867 }
5868
5869 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5870 if (ret < 0)
5871 goto out;
5872
5873 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5874 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5875
5876 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5877 strlen(XATTR_NAME_CAPS), buf, buf_len);
5878 out:
5879 kfree(buf);
5880 fs_path_free(fspath);
5881 btrfs_free_path(path);
5882 return ret;
5883 }
5884
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5885 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5886 struct clone_root *clone_root, const u64 disk_byte,
5887 u64 data_offset, u64 offset, u64 len)
5888 {
5889 struct btrfs_path *path;
5890 struct btrfs_key key;
5891 int ret;
5892 struct btrfs_inode_info info;
5893 u64 clone_src_i_size = 0;
5894
5895 /*
5896 * Prevent cloning from a zero offset with a length matching the sector
5897 * size because in some scenarios this will make the receiver fail.
5898 *
5899 * For example, if in the source filesystem the extent at offset 0
5900 * has a length of sectorsize and it was written using direct IO, then
5901 * it can never be an inline extent (even if compression is enabled).
5902 * Then this extent can be cloned in the original filesystem to a non
5903 * zero file offset, but it may not be possible to clone in the
5904 * destination filesystem because it can be inlined due to compression
5905 * on the destination filesystem (as the receiver's write operations are
5906 * always done using buffered IO). The same happens when the original
5907 * filesystem does not have compression enabled but the destination
5908 * filesystem has.
5909 */
5910 if (clone_root->offset == 0 &&
5911 len == sctx->send_root->fs_info->sectorsize)
5912 return send_extent_data(sctx, dst_path, offset, len);
5913
5914 path = alloc_path_for_send();
5915 if (!path)
5916 return -ENOMEM;
5917
5918 /*
5919 * There are inodes that have extents that lie behind its i_size. Don't
5920 * accept clones from these extents.
5921 */
5922 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5923 btrfs_release_path(path);
5924 if (ret < 0)
5925 goto out;
5926 clone_src_i_size = info.size;
5927
5928 /*
5929 * We can't send a clone operation for the entire range if we find
5930 * extent items in the respective range in the source file that
5931 * refer to different extents or if we find holes.
5932 * So check for that and do a mix of clone and regular write/copy
5933 * operations if needed.
5934 *
5935 * Example:
5936 *
5937 * mkfs.btrfs -f /dev/sda
5938 * mount /dev/sda /mnt
5939 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5940 * cp --reflink=always /mnt/foo /mnt/bar
5941 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5942 * btrfs subvolume snapshot -r /mnt /mnt/snap
5943 *
5944 * If when we send the snapshot and we are processing file bar (which
5945 * has a higher inode number than foo) we blindly send a clone operation
5946 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5947 * a file bar that matches the content of file foo - iow, doesn't match
5948 * the content from bar in the original filesystem.
5949 */
5950 key.objectid = clone_root->ino;
5951 key.type = BTRFS_EXTENT_DATA_KEY;
5952 key.offset = clone_root->offset;
5953 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5954 if (ret < 0)
5955 goto out;
5956 if (ret > 0 && path->slots[0] > 0) {
5957 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5958 if (key.objectid == clone_root->ino &&
5959 key.type == BTRFS_EXTENT_DATA_KEY)
5960 path->slots[0]--;
5961 }
5962
5963 while (true) {
5964 struct extent_buffer *leaf = path->nodes[0];
5965 int slot = path->slots[0];
5966 struct btrfs_file_extent_item *ei;
5967 u8 type;
5968 u64 ext_len;
5969 u64 clone_len;
5970 u64 clone_data_offset;
5971 bool crossed_src_i_size = false;
5972
5973 if (slot >= btrfs_header_nritems(leaf)) {
5974 ret = btrfs_next_leaf(clone_root->root, path);
5975 if (ret < 0)
5976 goto out;
5977 else if (ret > 0)
5978 break;
5979 continue;
5980 }
5981
5982 btrfs_item_key_to_cpu(leaf, &key, slot);
5983
5984 /*
5985 * We might have an implicit trailing hole (NO_HOLES feature
5986 * enabled). We deal with it after leaving this loop.
5987 */
5988 if (key.objectid != clone_root->ino ||
5989 key.type != BTRFS_EXTENT_DATA_KEY)
5990 break;
5991
5992 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5993 type = btrfs_file_extent_type(leaf, ei);
5994 if (type == BTRFS_FILE_EXTENT_INLINE) {
5995 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5996 ext_len = PAGE_ALIGN(ext_len);
5997 } else {
5998 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5999 }
6000
6001 if (key.offset + ext_len <= clone_root->offset)
6002 goto next;
6003
6004 if (key.offset > clone_root->offset) {
6005 /* Implicit hole, NO_HOLES feature enabled. */
6006 u64 hole_len = key.offset - clone_root->offset;
6007
6008 if (hole_len > len)
6009 hole_len = len;
6010 ret = send_extent_data(sctx, dst_path, offset,
6011 hole_len);
6012 if (ret < 0)
6013 goto out;
6014
6015 len -= hole_len;
6016 if (len == 0)
6017 break;
6018 offset += hole_len;
6019 clone_root->offset += hole_len;
6020 data_offset += hole_len;
6021 }
6022
6023 if (key.offset >= clone_root->offset + len)
6024 break;
6025
6026 if (key.offset >= clone_src_i_size)
6027 break;
6028
6029 if (key.offset + ext_len > clone_src_i_size) {
6030 ext_len = clone_src_i_size - key.offset;
6031 crossed_src_i_size = true;
6032 }
6033
6034 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6035 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6036 clone_root->offset = key.offset;
6037 if (clone_data_offset < data_offset &&
6038 clone_data_offset + ext_len > data_offset) {
6039 u64 extent_offset;
6040
6041 extent_offset = data_offset - clone_data_offset;
6042 ext_len -= extent_offset;
6043 clone_data_offset += extent_offset;
6044 clone_root->offset += extent_offset;
6045 }
6046 }
6047
6048 clone_len = min_t(u64, ext_len, len);
6049
6050 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6051 clone_data_offset == data_offset) {
6052 const u64 src_end = clone_root->offset + clone_len;
6053 const u64 sectorsize = SZ_64K;
6054
6055 /*
6056 * We can't clone the last block, when its size is not
6057 * sector size aligned, into the middle of a file. If we
6058 * do so, the receiver will get a failure (-EINVAL) when
6059 * trying to clone or will silently corrupt the data in
6060 * the destination file if it's on a kernel without the
6061 * fix introduced by commit ac765f83f1397646
6062 * ("Btrfs: fix data corruption due to cloning of eof
6063 * block).
6064 *
6065 * So issue a clone of the aligned down range plus a
6066 * regular write for the eof block, if we hit that case.
6067 *
6068 * Also, we use the maximum possible sector size, 64K,
6069 * because we don't know what's the sector size of the
6070 * filesystem that receives the stream, so we have to
6071 * assume the largest possible sector size.
6072 */
6073 if (src_end == clone_src_i_size &&
6074 !IS_ALIGNED(src_end, sectorsize) &&
6075 offset + clone_len < sctx->cur_inode_size) {
6076 u64 slen;
6077
6078 slen = ALIGN_DOWN(src_end - clone_root->offset,
6079 sectorsize);
6080 if (slen > 0) {
6081 ret = send_clone(sctx, offset, slen,
6082 clone_root);
6083 if (ret < 0)
6084 goto out;
6085 }
6086 ret = send_extent_data(sctx, dst_path,
6087 offset + slen,
6088 clone_len - slen);
6089 } else {
6090 ret = send_clone(sctx, offset, clone_len,
6091 clone_root);
6092 }
6093 } else if (crossed_src_i_size && clone_len < len) {
6094 /*
6095 * If we are at i_size of the clone source inode and we
6096 * can not clone from it, terminate the loop. This is
6097 * to avoid sending two write operations, one with a
6098 * length matching clone_len and the final one after
6099 * this loop with a length of len - clone_len.
6100 *
6101 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6102 * was passed to the send ioctl), this helps avoid
6103 * sending an encoded write for an offset that is not
6104 * sector size aligned, in case the i_size of the source
6105 * inode is not sector size aligned. That will make the
6106 * receiver fallback to decompression of the data and
6107 * writing it using regular buffered IO, therefore while
6108 * not incorrect, it's not optimal due decompression and
6109 * possible re-compression at the receiver.
6110 */
6111 break;
6112 } else {
6113 ret = send_extent_data(sctx, dst_path, offset,
6114 clone_len);
6115 }
6116
6117 if (ret < 0)
6118 goto out;
6119
6120 len -= clone_len;
6121 if (len == 0)
6122 break;
6123 offset += clone_len;
6124 clone_root->offset += clone_len;
6125
6126 /*
6127 * If we are cloning from the file we are currently processing,
6128 * and using the send root as the clone root, we must stop once
6129 * the current clone offset reaches the current eof of the file
6130 * at the receiver, otherwise we would issue an invalid clone
6131 * operation (source range going beyond eof) and cause the
6132 * receiver to fail. So if we reach the current eof, bail out
6133 * and fallback to a regular write.
6134 */
6135 if (clone_root->root == sctx->send_root &&
6136 clone_root->ino == sctx->cur_ino &&
6137 clone_root->offset >= sctx->cur_inode_next_write_offset)
6138 break;
6139
6140 data_offset += clone_len;
6141 next:
6142 path->slots[0]++;
6143 }
6144
6145 if (len > 0)
6146 ret = send_extent_data(sctx, dst_path, offset, len);
6147 else
6148 ret = 0;
6149 out:
6150 btrfs_free_path(path);
6151 return ret;
6152 }
6153
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6154 static int send_write_or_clone(struct send_ctx *sctx,
6155 struct btrfs_path *path,
6156 struct btrfs_key *key,
6157 struct clone_root *clone_root)
6158 {
6159 int ret = 0;
6160 u64 offset = key->offset;
6161 u64 end;
6162 u64 bs = sctx->send_root->fs_info->sectorsize;
6163 struct btrfs_file_extent_item *ei;
6164 u64 disk_byte;
6165 u64 data_offset;
6166 u64 num_bytes;
6167 struct btrfs_inode_info info = { 0 };
6168
6169 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6170 if (offset >= end)
6171 return 0;
6172
6173 num_bytes = end - offset;
6174
6175 if (!clone_root)
6176 goto write_data;
6177
6178 if (IS_ALIGNED(end, bs))
6179 goto clone_data;
6180
6181 /*
6182 * If the extent end is not aligned, we can clone if the extent ends at
6183 * the i_size of the inode and the clone range ends at the i_size of the
6184 * source inode, otherwise the clone operation fails with -EINVAL.
6185 */
6186 if (end != sctx->cur_inode_size)
6187 goto write_data;
6188
6189 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6190 if (ret < 0)
6191 return ret;
6192
6193 if (clone_root->offset + num_bytes == info.size) {
6194 /*
6195 * The final size of our file matches the end offset, but it may
6196 * be that its current size is larger, so we have to truncate it
6197 * to any value between the start offset of the range and the
6198 * final i_size, otherwise the clone operation is invalid
6199 * because it's unaligned and it ends before the current EOF.
6200 * We do this truncate to the final i_size when we finish
6201 * processing the inode, but it's too late by then. And here we
6202 * truncate to the start offset of the range because it's always
6203 * sector size aligned while if it were the final i_size it
6204 * would result in dirtying part of a page, filling part of a
6205 * page with zeroes and then having the clone operation at the
6206 * receiver trigger IO and wait for it due to the dirty page.
6207 */
6208 if (sctx->parent_root != NULL) {
6209 ret = send_truncate(sctx, sctx->cur_ino,
6210 sctx->cur_inode_gen, offset);
6211 if (ret < 0)
6212 return ret;
6213 }
6214 goto clone_data;
6215 }
6216
6217 write_data:
6218 ret = send_extent_data(sctx, path, offset, num_bytes);
6219 sctx->cur_inode_next_write_offset = end;
6220 return ret;
6221
6222 clone_data:
6223 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6224 struct btrfs_file_extent_item);
6225 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6226 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6227 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6228 num_bytes);
6229 sctx->cur_inode_next_write_offset = end;
6230 return ret;
6231 }
6232
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6233 static int is_extent_unchanged(struct send_ctx *sctx,
6234 struct btrfs_path *left_path,
6235 struct btrfs_key *ekey)
6236 {
6237 int ret = 0;
6238 struct btrfs_key key;
6239 struct btrfs_path *path = NULL;
6240 struct extent_buffer *eb;
6241 int slot;
6242 struct btrfs_key found_key;
6243 struct btrfs_file_extent_item *ei;
6244 u64 left_disknr;
6245 u64 right_disknr;
6246 u64 left_offset;
6247 u64 right_offset;
6248 u64 left_offset_fixed;
6249 u64 left_len;
6250 u64 right_len;
6251 u64 left_gen;
6252 u64 right_gen;
6253 u8 left_type;
6254 u8 right_type;
6255
6256 path = alloc_path_for_send();
6257 if (!path)
6258 return -ENOMEM;
6259
6260 eb = left_path->nodes[0];
6261 slot = left_path->slots[0];
6262 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6263 left_type = btrfs_file_extent_type(eb, ei);
6264
6265 if (left_type != BTRFS_FILE_EXTENT_REG) {
6266 ret = 0;
6267 goto out;
6268 }
6269 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6270 left_len = btrfs_file_extent_num_bytes(eb, ei);
6271 left_offset = btrfs_file_extent_offset(eb, ei);
6272 left_gen = btrfs_file_extent_generation(eb, ei);
6273
6274 /*
6275 * Following comments will refer to these graphics. L is the left
6276 * extents which we are checking at the moment. 1-8 are the right
6277 * extents that we iterate.
6278 *
6279 * |-----L-----|
6280 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6281 *
6282 * |-----L-----|
6283 * |--1--|-2b-|...(same as above)
6284 *
6285 * Alternative situation. Happens on files where extents got split.
6286 * |-----L-----|
6287 * |-----------7-----------|-6-|
6288 *
6289 * Alternative situation. Happens on files which got larger.
6290 * |-----L-----|
6291 * |-8-|
6292 * Nothing follows after 8.
6293 */
6294
6295 key.objectid = ekey->objectid;
6296 key.type = BTRFS_EXTENT_DATA_KEY;
6297 key.offset = ekey->offset;
6298 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6299 if (ret < 0)
6300 goto out;
6301 if (ret) {
6302 ret = 0;
6303 goto out;
6304 }
6305
6306 /*
6307 * Handle special case where the right side has no extents at all.
6308 */
6309 eb = path->nodes[0];
6310 slot = path->slots[0];
6311 btrfs_item_key_to_cpu(eb, &found_key, slot);
6312 if (found_key.objectid != key.objectid ||
6313 found_key.type != key.type) {
6314 /* If we're a hole then just pretend nothing changed */
6315 ret = (left_disknr) ? 0 : 1;
6316 goto out;
6317 }
6318
6319 /*
6320 * We're now on 2a, 2b or 7.
6321 */
6322 key = found_key;
6323 while (key.offset < ekey->offset + left_len) {
6324 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6325 right_type = btrfs_file_extent_type(eb, ei);
6326 if (right_type != BTRFS_FILE_EXTENT_REG &&
6327 right_type != BTRFS_FILE_EXTENT_INLINE) {
6328 ret = 0;
6329 goto out;
6330 }
6331
6332 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6333 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6334 right_len = PAGE_ALIGN(right_len);
6335 } else {
6336 right_len = btrfs_file_extent_num_bytes(eb, ei);
6337 }
6338
6339 /*
6340 * Are we at extent 8? If yes, we know the extent is changed.
6341 * This may only happen on the first iteration.
6342 */
6343 if (found_key.offset + right_len <= ekey->offset) {
6344 /* If we're a hole just pretend nothing changed */
6345 ret = (left_disknr) ? 0 : 1;
6346 goto out;
6347 }
6348
6349 /*
6350 * We just wanted to see if when we have an inline extent, what
6351 * follows it is a regular extent (wanted to check the above
6352 * condition for inline extents too). This should normally not
6353 * happen but it's possible for example when we have an inline
6354 * compressed extent representing data with a size matching
6355 * the page size (currently the same as sector size).
6356 */
6357 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6358 ret = 0;
6359 goto out;
6360 }
6361
6362 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6363 right_offset = btrfs_file_extent_offset(eb, ei);
6364 right_gen = btrfs_file_extent_generation(eb, ei);
6365
6366 left_offset_fixed = left_offset;
6367 if (key.offset < ekey->offset) {
6368 /* Fix the right offset for 2a and 7. */
6369 right_offset += ekey->offset - key.offset;
6370 } else {
6371 /* Fix the left offset for all behind 2a and 2b */
6372 left_offset_fixed += key.offset - ekey->offset;
6373 }
6374
6375 /*
6376 * Check if we have the same extent.
6377 */
6378 if (left_disknr != right_disknr ||
6379 left_offset_fixed != right_offset ||
6380 left_gen != right_gen) {
6381 ret = 0;
6382 goto out;
6383 }
6384
6385 /*
6386 * Go to the next extent.
6387 */
6388 ret = btrfs_next_item(sctx->parent_root, path);
6389 if (ret < 0)
6390 goto out;
6391 if (!ret) {
6392 eb = path->nodes[0];
6393 slot = path->slots[0];
6394 btrfs_item_key_to_cpu(eb, &found_key, slot);
6395 }
6396 if (ret || found_key.objectid != key.objectid ||
6397 found_key.type != key.type) {
6398 key.offset += right_len;
6399 break;
6400 }
6401 if (found_key.offset != key.offset + right_len) {
6402 ret = 0;
6403 goto out;
6404 }
6405 key = found_key;
6406 }
6407
6408 /*
6409 * We're now behind the left extent (treat as unchanged) or at the end
6410 * of the right side (treat as changed).
6411 */
6412 if (key.offset >= ekey->offset + left_len)
6413 ret = 1;
6414 else
6415 ret = 0;
6416
6417
6418 out:
6419 btrfs_free_path(path);
6420 return ret;
6421 }
6422
get_last_extent(struct send_ctx * sctx,u64 offset)6423 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6424 {
6425 struct btrfs_path *path;
6426 struct btrfs_root *root = sctx->send_root;
6427 struct btrfs_key key;
6428 int ret;
6429
6430 path = alloc_path_for_send();
6431 if (!path)
6432 return -ENOMEM;
6433
6434 sctx->cur_inode_last_extent = 0;
6435
6436 key.objectid = sctx->cur_ino;
6437 key.type = BTRFS_EXTENT_DATA_KEY;
6438 key.offset = offset;
6439 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6440 if (ret < 0)
6441 goto out;
6442 ret = 0;
6443 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6444 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6445 goto out;
6446
6447 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6448 out:
6449 btrfs_free_path(path);
6450 return ret;
6451 }
6452
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6453 static int range_is_hole_in_parent(struct send_ctx *sctx,
6454 const u64 start,
6455 const u64 end)
6456 {
6457 struct btrfs_path *path;
6458 struct btrfs_key key;
6459 struct btrfs_root *root = sctx->parent_root;
6460 u64 search_start = start;
6461 int ret;
6462
6463 path = alloc_path_for_send();
6464 if (!path)
6465 return -ENOMEM;
6466
6467 key.objectid = sctx->cur_ino;
6468 key.type = BTRFS_EXTENT_DATA_KEY;
6469 key.offset = search_start;
6470 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6471 if (ret < 0)
6472 goto out;
6473 if (ret > 0 && path->slots[0] > 0)
6474 path->slots[0]--;
6475
6476 while (search_start < end) {
6477 struct extent_buffer *leaf = path->nodes[0];
6478 int slot = path->slots[0];
6479 struct btrfs_file_extent_item *fi;
6480 u64 extent_end;
6481
6482 if (slot >= btrfs_header_nritems(leaf)) {
6483 ret = btrfs_next_leaf(root, path);
6484 if (ret < 0)
6485 goto out;
6486 else if (ret > 0)
6487 break;
6488 continue;
6489 }
6490
6491 btrfs_item_key_to_cpu(leaf, &key, slot);
6492 if (key.objectid < sctx->cur_ino ||
6493 key.type < BTRFS_EXTENT_DATA_KEY)
6494 goto next;
6495 if (key.objectid > sctx->cur_ino ||
6496 key.type > BTRFS_EXTENT_DATA_KEY ||
6497 key.offset >= end)
6498 break;
6499
6500 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6501 extent_end = btrfs_file_extent_end(path);
6502 if (extent_end <= start)
6503 goto next;
6504 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6505 search_start = extent_end;
6506 goto next;
6507 }
6508 ret = 0;
6509 goto out;
6510 next:
6511 path->slots[0]++;
6512 }
6513 ret = 1;
6514 out:
6515 btrfs_free_path(path);
6516 return ret;
6517 }
6518
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6519 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6520 struct btrfs_key *key)
6521 {
6522 int ret = 0;
6523
6524 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6525 return 0;
6526
6527 if (sctx->cur_inode_last_extent == (u64)-1) {
6528 ret = get_last_extent(sctx, key->offset - 1);
6529 if (ret)
6530 return ret;
6531 }
6532
6533 if (path->slots[0] == 0 &&
6534 sctx->cur_inode_last_extent < key->offset) {
6535 /*
6536 * We might have skipped entire leafs that contained only
6537 * file extent items for our current inode. These leafs have
6538 * a generation number smaller (older) than the one in the
6539 * current leaf and the leaf our last extent came from, and
6540 * are located between these 2 leafs.
6541 */
6542 ret = get_last_extent(sctx, key->offset - 1);
6543 if (ret)
6544 return ret;
6545 }
6546
6547 if (sctx->cur_inode_last_extent < key->offset) {
6548 ret = range_is_hole_in_parent(sctx,
6549 sctx->cur_inode_last_extent,
6550 key->offset);
6551 if (ret < 0)
6552 return ret;
6553 else if (ret == 0)
6554 ret = send_hole(sctx, key->offset);
6555 else
6556 ret = 0;
6557 }
6558 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6559 return ret;
6560 }
6561
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6562 static int process_extent(struct send_ctx *sctx,
6563 struct btrfs_path *path,
6564 struct btrfs_key *key)
6565 {
6566 struct clone_root *found_clone = NULL;
6567 int ret = 0;
6568
6569 if (S_ISLNK(sctx->cur_inode_mode))
6570 return 0;
6571
6572 if (sctx->parent_root && !sctx->cur_inode_new) {
6573 ret = is_extent_unchanged(sctx, path, key);
6574 if (ret < 0)
6575 goto out;
6576 if (ret) {
6577 ret = 0;
6578 goto out_hole;
6579 }
6580 } else {
6581 struct btrfs_file_extent_item *ei;
6582 u8 type;
6583
6584 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6585 struct btrfs_file_extent_item);
6586 type = btrfs_file_extent_type(path->nodes[0], ei);
6587 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6588 type == BTRFS_FILE_EXTENT_REG) {
6589 /*
6590 * The send spec does not have a prealloc command yet,
6591 * so just leave a hole for prealloc'ed extents until
6592 * we have enough commands queued up to justify rev'ing
6593 * the send spec.
6594 */
6595 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6596 ret = 0;
6597 goto out;
6598 }
6599
6600 /* Have a hole, just skip it. */
6601 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6602 ret = 0;
6603 goto out;
6604 }
6605 }
6606 }
6607
6608 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6609 sctx->cur_inode_size, &found_clone);
6610 if (ret != -ENOENT && ret < 0)
6611 goto out;
6612
6613 ret = send_write_or_clone(sctx, path, key, found_clone);
6614 if (ret)
6615 goto out;
6616 out_hole:
6617 ret = maybe_send_hole(sctx, path, key);
6618 out:
6619 return ret;
6620 }
6621
process_all_extents(struct send_ctx * sctx)6622 static int process_all_extents(struct send_ctx *sctx)
6623 {
6624 int ret = 0;
6625 int iter_ret = 0;
6626 struct btrfs_root *root;
6627 struct btrfs_path *path;
6628 struct btrfs_key key;
6629 struct btrfs_key found_key;
6630
6631 root = sctx->send_root;
6632 path = alloc_path_for_send();
6633 if (!path)
6634 return -ENOMEM;
6635
6636 key.objectid = sctx->cmp_key->objectid;
6637 key.type = BTRFS_EXTENT_DATA_KEY;
6638 key.offset = 0;
6639 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6640 if (found_key.objectid != key.objectid ||
6641 found_key.type != key.type) {
6642 ret = 0;
6643 break;
6644 }
6645
6646 ret = process_extent(sctx, path, &found_key);
6647 if (ret < 0)
6648 break;
6649 }
6650 /* Catch error found during iteration */
6651 if (iter_ret < 0)
6652 ret = iter_ret;
6653
6654 btrfs_free_path(path);
6655 return ret;
6656 }
6657
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)6658 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6659 int *pending_move,
6660 int *refs_processed)
6661 {
6662 int ret = 0;
6663
6664 if (sctx->cur_ino == 0)
6665 goto out;
6666 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6667 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6668 goto out;
6669 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6670 goto out;
6671
6672 ret = process_recorded_refs(sctx, pending_move);
6673 if (ret < 0)
6674 goto out;
6675
6676 *refs_processed = 1;
6677 out:
6678 return ret;
6679 }
6680
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6681 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6682 {
6683 int ret = 0;
6684 struct btrfs_inode_info info;
6685 u64 left_mode;
6686 u64 left_uid;
6687 u64 left_gid;
6688 u64 left_fileattr;
6689 u64 right_mode;
6690 u64 right_uid;
6691 u64 right_gid;
6692 u64 right_fileattr;
6693 int need_chmod = 0;
6694 int need_chown = 0;
6695 bool need_fileattr = false;
6696 int need_truncate = 1;
6697 int pending_move = 0;
6698 int refs_processed = 0;
6699
6700 if (sctx->ignore_cur_inode)
6701 return 0;
6702
6703 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6704 &refs_processed);
6705 if (ret < 0)
6706 goto out;
6707
6708 /*
6709 * We have processed the refs and thus need to advance send_progress.
6710 * Now, calls to get_cur_xxx will take the updated refs of the current
6711 * inode into account.
6712 *
6713 * On the other hand, if our current inode is a directory and couldn't
6714 * be moved/renamed because its parent was renamed/moved too and it has
6715 * a higher inode number, we can only move/rename our current inode
6716 * after we moved/renamed its parent. Therefore in this case operate on
6717 * the old path (pre move/rename) of our current inode, and the
6718 * move/rename will be performed later.
6719 */
6720 if (refs_processed && !pending_move)
6721 sctx->send_progress = sctx->cur_ino + 1;
6722
6723 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6724 goto out;
6725 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6726 goto out;
6727 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6728 if (ret < 0)
6729 goto out;
6730 left_mode = info.mode;
6731 left_uid = info.uid;
6732 left_gid = info.gid;
6733 left_fileattr = info.fileattr;
6734
6735 if (!sctx->parent_root || sctx->cur_inode_new) {
6736 need_chown = 1;
6737 if (!S_ISLNK(sctx->cur_inode_mode))
6738 need_chmod = 1;
6739 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6740 need_truncate = 0;
6741 } else {
6742 u64 old_size;
6743
6744 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6745 if (ret < 0)
6746 goto out;
6747 old_size = info.size;
6748 right_mode = info.mode;
6749 right_uid = info.uid;
6750 right_gid = info.gid;
6751 right_fileattr = info.fileattr;
6752
6753 if (left_uid != right_uid || left_gid != right_gid)
6754 need_chown = 1;
6755 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6756 need_chmod = 1;
6757 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6758 need_fileattr = true;
6759 if ((old_size == sctx->cur_inode_size) ||
6760 (sctx->cur_inode_size > old_size &&
6761 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6762 need_truncate = 0;
6763 }
6764
6765 if (S_ISREG(sctx->cur_inode_mode)) {
6766 if (need_send_hole(sctx)) {
6767 if (sctx->cur_inode_last_extent == (u64)-1 ||
6768 sctx->cur_inode_last_extent <
6769 sctx->cur_inode_size) {
6770 ret = get_last_extent(sctx, (u64)-1);
6771 if (ret)
6772 goto out;
6773 }
6774 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6775 ret = range_is_hole_in_parent(sctx,
6776 sctx->cur_inode_last_extent,
6777 sctx->cur_inode_size);
6778 if (ret < 0) {
6779 goto out;
6780 } else if (ret == 0) {
6781 ret = send_hole(sctx, sctx->cur_inode_size);
6782 if (ret < 0)
6783 goto out;
6784 } else {
6785 /* Range is already a hole, skip. */
6786 ret = 0;
6787 }
6788 }
6789 }
6790 if (need_truncate) {
6791 ret = send_truncate(sctx, sctx->cur_ino,
6792 sctx->cur_inode_gen,
6793 sctx->cur_inode_size);
6794 if (ret < 0)
6795 goto out;
6796 }
6797 }
6798
6799 if (need_chown) {
6800 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6801 left_uid, left_gid);
6802 if (ret < 0)
6803 goto out;
6804 }
6805 if (need_chmod) {
6806 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6807 left_mode);
6808 if (ret < 0)
6809 goto out;
6810 }
6811 if (need_fileattr) {
6812 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6813 left_fileattr);
6814 if (ret < 0)
6815 goto out;
6816 }
6817
6818 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6819 && sctx->cur_inode_needs_verity) {
6820 ret = process_verity(sctx);
6821 if (ret < 0)
6822 goto out;
6823 }
6824
6825 ret = send_capabilities(sctx);
6826 if (ret < 0)
6827 goto out;
6828
6829 /*
6830 * If other directory inodes depended on our current directory
6831 * inode's move/rename, now do their move/rename operations.
6832 */
6833 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6834 ret = apply_children_dir_moves(sctx);
6835 if (ret)
6836 goto out;
6837 /*
6838 * Need to send that every time, no matter if it actually
6839 * changed between the two trees as we have done changes to
6840 * the inode before. If our inode is a directory and it's
6841 * waiting to be moved/renamed, we will send its utimes when
6842 * it's moved/renamed, therefore we don't need to do it here.
6843 */
6844 sctx->send_progress = sctx->cur_ino + 1;
6845
6846 /*
6847 * If the current inode is a non-empty directory, delay issuing
6848 * the utimes command for it, as it's very likely we have inodes
6849 * with an higher number inside it. We want to issue the utimes
6850 * command only after adding all dentries to it.
6851 */
6852 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6853 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6854 else
6855 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6856
6857 if (ret < 0)
6858 goto out;
6859 }
6860
6861 out:
6862 if (!ret)
6863 ret = trim_dir_utimes_cache(sctx);
6864
6865 return ret;
6866 }
6867
close_current_inode(struct send_ctx * sctx)6868 static void close_current_inode(struct send_ctx *sctx)
6869 {
6870 u64 i_size;
6871
6872 if (sctx->cur_inode == NULL)
6873 return;
6874
6875 i_size = i_size_read(sctx->cur_inode);
6876
6877 /*
6878 * If we are doing an incremental send, we may have extents between the
6879 * last processed extent and the i_size that have not been processed
6880 * because they haven't changed but we may have read some of their pages
6881 * through readahead, see the comments at send_extent_data().
6882 */
6883 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6884 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6885 sctx->page_cache_clear_start,
6886 round_up(i_size, PAGE_SIZE) - 1);
6887
6888 iput(sctx->cur_inode);
6889 sctx->cur_inode = NULL;
6890 }
6891
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6892 static int changed_inode(struct send_ctx *sctx,
6893 enum btrfs_compare_tree_result result)
6894 {
6895 int ret = 0;
6896 struct btrfs_key *key = sctx->cmp_key;
6897 struct btrfs_inode_item *left_ii = NULL;
6898 struct btrfs_inode_item *right_ii = NULL;
6899 u64 left_gen = 0;
6900 u64 right_gen = 0;
6901
6902 close_current_inode(sctx);
6903
6904 sctx->cur_ino = key->objectid;
6905 sctx->cur_inode_new_gen = false;
6906 sctx->cur_inode_last_extent = (u64)-1;
6907 sctx->cur_inode_next_write_offset = 0;
6908 sctx->ignore_cur_inode = false;
6909
6910 /*
6911 * Set send_progress to current inode. This will tell all get_cur_xxx
6912 * functions that the current inode's refs are not updated yet. Later,
6913 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6914 */
6915 sctx->send_progress = sctx->cur_ino;
6916
6917 if (result == BTRFS_COMPARE_TREE_NEW ||
6918 result == BTRFS_COMPARE_TREE_CHANGED) {
6919 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6920 sctx->left_path->slots[0],
6921 struct btrfs_inode_item);
6922 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6923 left_ii);
6924 } else {
6925 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6926 sctx->right_path->slots[0],
6927 struct btrfs_inode_item);
6928 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6929 right_ii);
6930 }
6931 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6932 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6933 sctx->right_path->slots[0],
6934 struct btrfs_inode_item);
6935
6936 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6937 right_ii);
6938
6939 /*
6940 * The cur_ino = root dir case is special here. We can't treat
6941 * the inode as deleted+reused because it would generate a
6942 * stream that tries to delete/mkdir the root dir.
6943 */
6944 if (left_gen != right_gen &&
6945 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6946 sctx->cur_inode_new_gen = true;
6947 }
6948
6949 /*
6950 * Normally we do not find inodes with a link count of zero (orphans)
6951 * because the most common case is to create a snapshot and use it
6952 * for a send operation. However other less common use cases involve
6953 * using a subvolume and send it after turning it to RO mode just
6954 * after deleting all hard links of a file while holding an open
6955 * file descriptor against it or turning a RO snapshot into RW mode,
6956 * keep an open file descriptor against a file, delete it and then
6957 * turn the snapshot back to RO mode before using it for a send
6958 * operation. The former is what the receiver operation does.
6959 * Therefore, if we want to send these snapshots soon after they're
6960 * received, we need to handle orphan inodes as well. Moreover, orphans
6961 * can appear not only in the send snapshot but also in the parent
6962 * snapshot. Here are several cases:
6963 *
6964 * Case 1: BTRFS_COMPARE_TREE_NEW
6965 * | send snapshot | action
6966 * --------------------------------
6967 * nlink | 0 | ignore
6968 *
6969 * Case 2: BTRFS_COMPARE_TREE_DELETED
6970 * | parent snapshot | action
6971 * ----------------------------------
6972 * nlink | 0 | as usual
6973 * Note: No unlinks will be sent because there're no paths for it.
6974 *
6975 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6976 * | | parent snapshot | send snapshot | action
6977 * -----------------------------------------------------------------------
6978 * subcase 1 | nlink | 0 | 0 | ignore
6979 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6980 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6981 *
6982 */
6983 if (result == BTRFS_COMPARE_TREE_NEW) {
6984 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6985 sctx->ignore_cur_inode = true;
6986 goto out;
6987 }
6988 sctx->cur_inode_gen = left_gen;
6989 sctx->cur_inode_new = true;
6990 sctx->cur_inode_deleted = false;
6991 sctx->cur_inode_size = btrfs_inode_size(
6992 sctx->left_path->nodes[0], left_ii);
6993 sctx->cur_inode_mode = btrfs_inode_mode(
6994 sctx->left_path->nodes[0], left_ii);
6995 sctx->cur_inode_rdev = btrfs_inode_rdev(
6996 sctx->left_path->nodes[0], left_ii);
6997 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6998 ret = send_create_inode_if_needed(sctx);
6999 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
7000 sctx->cur_inode_gen = right_gen;
7001 sctx->cur_inode_new = false;
7002 sctx->cur_inode_deleted = true;
7003 sctx->cur_inode_size = btrfs_inode_size(
7004 sctx->right_path->nodes[0], right_ii);
7005 sctx->cur_inode_mode = btrfs_inode_mode(
7006 sctx->right_path->nodes[0], right_ii);
7007 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
7008 u32 new_nlinks, old_nlinks;
7009
7010 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
7011 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
7012 if (new_nlinks == 0 && old_nlinks == 0) {
7013 sctx->ignore_cur_inode = true;
7014 goto out;
7015 } else if (new_nlinks == 0 || old_nlinks == 0) {
7016 sctx->cur_inode_new_gen = 1;
7017 }
7018 /*
7019 * We need to do some special handling in case the inode was
7020 * reported as changed with a changed generation number. This
7021 * means that the original inode was deleted and new inode
7022 * reused the same inum. So we have to treat the old inode as
7023 * deleted and the new one as new.
7024 */
7025 if (sctx->cur_inode_new_gen) {
7026 /*
7027 * First, process the inode as if it was deleted.
7028 */
7029 if (old_nlinks > 0) {
7030 sctx->cur_inode_gen = right_gen;
7031 sctx->cur_inode_new = false;
7032 sctx->cur_inode_deleted = true;
7033 sctx->cur_inode_size = btrfs_inode_size(
7034 sctx->right_path->nodes[0], right_ii);
7035 sctx->cur_inode_mode = btrfs_inode_mode(
7036 sctx->right_path->nodes[0], right_ii);
7037 ret = process_all_refs(sctx,
7038 BTRFS_COMPARE_TREE_DELETED);
7039 if (ret < 0)
7040 goto out;
7041 }
7042
7043 /*
7044 * Now process the inode as if it was new.
7045 */
7046 if (new_nlinks > 0) {
7047 sctx->cur_inode_gen = left_gen;
7048 sctx->cur_inode_new = true;
7049 sctx->cur_inode_deleted = false;
7050 sctx->cur_inode_size = btrfs_inode_size(
7051 sctx->left_path->nodes[0],
7052 left_ii);
7053 sctx->cur_inode_mode = btrfs_inode_mode(
7054 sctx->left_path->nodes[0],
7055 left_ii);
7056 sctx->cur_inode_rdev = btrfs_inode_rdev(
7057 sctx->left_path->nodes[0],
7058 left_ii);
7059 ret = send_create_inode_if_needed(sctx);
7060 if (ret < 0)
7061 goto out;
7062
7063 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7064 if (ret < 0)
7065 goto out;
7066 /*
7067 * Advance send_progress now as we did not get
7068 * into process_recorded_refs_if_needed in the
7069 * new_gen case.
7070 */
7071 sctx->send_progress = sctx->cur_ino + 1;
7072
7073 /*
7074 * Now process all extents and xattrs of the
7075 * inode as if they were all new.
7076 */
7077 ret = process_all_extents(sctx);
7078 if (ret < 0)
7079 goto out;
7080 ret = process_all_new_xattrs(sctx);
7081 if (ret < 0)
7082 goto out;
7083 }
7084 } else {
7085 sctx->cur_inode_gen = left_gen;
7086 sctx->cur_inode_new = false;
7087 sctx->cur_inode_new_gen = false;
7088 sctx->cur_inode_deleted = false;
7089 sctx->cur_inode_size = btrfs_inode_size(
7090 sctx->left_path->nodes[0], left_ii);
7091 sctx->cur_inode_mode = btrfs_inode_mode(
7092 sctx->left_path->nodes[0], left_ii);
7093 }
7094 }
7095
7096 out:
7097 return ret;
7098 }
7099
7100 /*
7101 * We have to process new refs before deleted refs, but compare_trees gives us
7102 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7103 * first and later process them in process_recorded_refs.
7104 * For the cur_inode_new_gen case, we skip recording completely because
7105 * changed_inode did already initiate processing of refs. The reason for this is
7106 * that in this case, compare_tree actually compares the refs of 2 different
7107 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7108 * refs of the right tree as deleted and all refs of the left tree as new.
7109 */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7110 static int changed_ref(struct send_ctx *sctx,
7111 enum btrfs_compare_tree_result result)
7112 {
7113 int ret = 0;
7114
7115 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7116 inconsistent_snapshot_error(sctx, result, "reference");
7117 return -EIO;
7118 }
7119
7120 if (!sctx->cur_inode_new_gen &&
7121 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7122 if (result == BTRFS_COMPARE_TREE_NEW)
7123 ret = record_new_ref(sctx);
7124 else if (result == BTRFS_COMPARE_TREE_DELETED)
7125 ret = record_deleted_ref(sctx);
7126 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7127 ret = record_changed_ref(sctx);
7128 }
7129
7130 return ret;
7131 }
7132
7133 /*
7134 * Process new/deleted/changed xattrs. We skip processing in the
7135 * cur_inode_new_gen case because changed_inode did already initiate processing
7136 * of xattrs. The reason is the same as in changed_ref
7137 */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7138 static int changed_xattr(struct send_ctx *sctx,
7139 enum btrfs_compare_tree_result result)
7140 {
7141 int ret = 0;
7142
7143 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7144 inconsistent_snapshot_error(sctx, result, "xattr");
7145 return -EIO;
7146 }
7147
7148 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7149 if (result == BTRFS_COMPARE_TREE_NEW)
7150 ret = process_new_xattr(sctx);
7151 else if (result == BTRFS_COMPARE_TREE_DELETED)
7152 ret = process_deleted_xattr(sctx);
7153 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7154 ret = process_changed_xattr(sctx);
7155 }
7156
7157 return ret;
7158 }
7159
7160 /*
7161 * Process new/deleted/changed extents. We skip processing in the
7162 * cur_inode_new_gen case because changed_inode did already initiate processing
7163 * of extents. The reason is the same as in changed_ref
7164 */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7165 static int changed_extent(struct send_ctx *sctx,
7166 enum btrfs_compare_tree_result result)
7167 {
7168 int ret = 0;
7169
7170 /*
7171 * We have found an extent item that changed without the inode item
7172 * having changed. This can happen either after relocation (where the
7173 * disk_bytenr of an extent item is replaced at
7174 * relocation.c:replace_file_extents()) or after deduplication into a
7175 * file in both the parent and send snapshots (where an extent item can
7176 * get modified or replaced with a new one). Note that deduplication
7177 * updates the inode item, but it only changes the iversion (sequence
7178 * field in the inode item) of the inode, so if a file is deduplicated
7179 * the same amount of times in both the parent and send snapshots, its
7180 * iversion becomes the same in both snapshots, whence the inode item is
7181 * the same on both snapshots.
7182 */
7183 if (sctx->cur_ino != sctx->cmp_key->objectid)
7184 return 0;
7185
7186 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7187 if (result != BTRFS_COMPARE_TREE_DELETED)
7188 ret = process_extent(sctx, sctx->left_path,
7189 sctx->cmp_key);
7190 }
7191
7192 return ret;
7193 }
7194
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7195 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7196 {
7197 int ret = 0;
7198
7199 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7200 if (result == BTRFS_COMPARE_TREE_NEW)
7201 sctx->cur_inode_needs_verity = true;
7202 }
7203 return ret;
7204 }
7205
dir_changed(struct send_ctx * sctx,u64 dir)7206 static int dir_changed(struct send_ctx *sctx, u64 dir)
7207 {
7208 u64 orig_gen, new_gen;
7209 int ret;
7210
7211 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7212 if (ret)
7213 return ret;
7214
7215 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7216 if (ret)
7217 return ret;
7218
7219 return (orig_gen != new_gen) ? 1 : 0;
7220 }
7221
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7222 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7223 struct btrfs_key *key)
7224 {
7225 struct btrfs_inode_extref *extref;
7226 struct extent_buffer *leaf;
7227 u64 dirid = 0, last_dirid = 0;
7228 unsigned long ptr;
7229 u32 item_size;
7230 u32 cur_offset = 0;
7231 int ref_name_len;
7232 int ret = 0;
7233
7234 /* Easy case, just check this one dirid */
7235 if (key->type == BTRFS_INODE_REF_KEY) {
7236 dirid = key->offset;
7237
7238 ret = dir_changed(sctx, dirid);
7239 goto out;
7240 }
7241
7242 leaf = path->nodes[0];
7243 item_size = btrfs_item_size(leaf, path->slots[0]);
7244 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7245 while (cur_offset < item_size) {
7246 extref = (struct btrfs_inode_extref *)(ptr +
7247 cur_offset);
7248 dirid = btrfs_inode_extref_parent(leaf, extref);
7249 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7250 cur_offset += ref_name_len + sizeof(*extref);
7251 if (dirid == last_dirid)
7252 continue;
7253 ret = dir_changed(sctx, dirid);
7254 if (ret)
7255 break;
7256 last_dirid = dirid;
7257 }
7258 out:
7259 return ret;
7260 }
7261
7262 /*
7263 * Updates compare related fields in sctx and simply forwards to the actual
7264 * changed_xxx functions.
7265 */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7266 static int changed_cb(struct btrfs_path *left_path,
7267 struct btrfs_path *right_path,
7268 struct btrfs_key *key,
7269 enum btrfs_compare_tree_result result,
7270 struct send_ctx *sctx)
7271 {
7272 int ret = 0;
7273
7274 /*
7275 * We can not hold the commit root semaphore here. This is because in
7276 * the case of sending and receiving to the same filesystem, using a
7277 * pipe, could result in a deadlock:
7278 *
7279 * 1) The task running send blocks on the pipe because it's full;
7280 *
7281 * 2) The task running receive, which is the only consumer of the pipe,
7282 * is waiting for a transaction commit (for example due to a space
7283 * reservation when doing a write or triggering a transaction commit
7284 * when creating a subvolume);
7285 *
7286 * 3) The transaction is waiting to write lock the commit root semaphore,
7287 * but can not acquire it since it's being held at 1).
7288 *
7289 * Down this call chain we write to the pipe through kernel_write().
7290 * The same type of problem can also happen when sending to a file that
7291 * is stored in the same filesystem - when reserving space for a write
7292 * into the file, we can trigger a transaction commit.
7293 *
7294 * Our caller has supplied us with clones of leaves from the send and
7295 * parent roots, so we're safe here from a concurrent relocation and
7296 * further reallocation of metadata extents while we are here. Below we
7297 * also assert that the leaves are clones.
7298 */
7299 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7300
7301 /*
7302 * We always have a send root, so left_path is never NULL. We will not
7303 * have a leaf when we have reached the end of the send root but have
7304 * not yet reached the end of the parent root.
7305 */
7306 if (left_path->nodes[0])
7307 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7308 &left_path->nodes[0]->bflags));
7309 /*
7310 * When doing a full send we don't have a parent root, so right_path is
7311 * NULL. When doing an incremental send, we may have reached the end of
7312 * the parent root already, so we don't have a leaf at right_path.
7313 */
7314 if (right_path && right_path->nodes[0])
7315 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7316 &right_path->nodes[0]->bflags));
7317
7318 if (result == BTRFS_COMPARE_TREE_SAME) {
7319 if (key->type == BTRFS_INODE_REF_KEY ||
7320 key->type == BTRFS_INODE_EXTREF_KEY) {
7321 ret = compare_refs(sctx, left_path, key);
7322 if (!ret)
7323 return 0;
7324 if (ret < 0)
7325 return ret;
7326 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7327 return maybe_send_hole(sctx, left_path, key);
7328 } else {
7329 return 0;
7330 }
7331 result = BTRFS_COMPARE_TREE_CHANGED;
7332 ret = 0;
7333 }
7334
7335 sctx->left_path = left_path;
7336 sctx->right_path = right_path;
7337 sctx->cmp_key = key;
7338
7339 ret = finish_inode_if_needed(sctx, 0);
7340 if (ret < 0)
7341 goto out;
7342
7343 /* Ignore non-FS objects */
7344 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7345 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7346 goto out;
7347
7348 if (key->type == BTRFS_INODE_ITEM_KEY) {
7349 ret = changed_inode(sctx, result);
7350 } else if (!sctx->ignore_cur_inode) {
7351 if (key->type == BTRFS_INODE_REF_KEY ||
7352 key->type == BTRFS_INODE_EXTREF_KEY)
7353 ret = changed_ref(sctx, result);
7354 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7355 ret = changed_xattr(sctx, result);
7356 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7357 ret = changed_extent(sctx, result);
7358 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7359 key->offset == 0)
7360 ret = changed_verity(sctx, result);
7361 }
7362
7363 out:
7364 return ret;
7365 }
7366
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7367 static int search_key_again(const struct send_ctx *sctx,
7368 struct btrfs_root *root,
7369 struct btrfs_path *path,
7370 const struct btrfs_key *key)
7371 {
7372 int ret;
7373
7374 if (!path->need_commit_sem)
7375 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7376
7377 /*
7378 * Roots used for send operations are readonly and no one can add,
7379 * update or remove keys from them, so we should be able to find our
7380 * key again. The only exception is deduplication, which can operate on
7381 * readonly roots and add, update or remove keys to/from them - but at
7382 * the moment we don't allow it to run in parallel with send.
7383 */
7384 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7385 ASSERT(ret <= 0);
7386 if (ret > 0) {
7387 btrfs_print_tree(path->nodes[path->lowest_level], false);
7388 btrfs_err(root->fs_info,
7389 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7390 key->objectid, key->type, key->offset,
7391 (root == sctx->parent_root ? "parent" : "send"),
7392 root->root_key.objectid, path->lowest_level,
7393 path->slots[path->lowest_level]);
7394 return -EUCLEAN;
7395 }
7396
7397 return ret;
7398 }
7399
full_send_tree(struct send_ctx * sctx)7400 static int full_send_tree(struct send_ctx *sctx)
7401 {
7402 int ret;
7403 struct btrfs_root *send_root = sctx->send_root;
7404 struct btrfs_key key;
7405 struct btrfs_fs_info *fs_info = send_root->fs_info;
7406 struct btrfs_path *path;
7407
7408 path = alloc_path_for_send();
7409 if (!path)
7410 return -ENOMEM;
7411 path->reada = READA_FORWARD_ALWAYS;
7412
7413 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7414 key.type = BTRFS_INODE_ITEM_KEY;
7415 key.offset = 0;
7416
7417 down_read(&fs_info->commit_root_sem);
7418 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7419 up_read(&fs_info->commit_root_sem);
7420
7421 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7422 if (ret < 0)
7423 goto out;
7424 if (ret)
7425 goto out_finish;
7426
7427 while (1) {
7428 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7429
7430 ret = changed_cb(path, NULL, &key,
7431 BTRFS_COMPARE_TREE_NEW, sctx);
7432 if (ret < 0)
7433 goto out;
7434
7435 down_read(&fs_info->commit_root_sem);
7436 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7437 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7438 up_read(&fs_info->commit_root_sem);
7439 /*
7440 * A transaction used for relocating a block group was
7441 * committed or is about to finish its commit. Release
7442 * our path (leaf) and restart the search, so that we
7443 * avoid operating on any file extent items that are
7444 * stale, with a disk_bytenr that reflects a pre
7445 * relocation value. This way we avoid as much as
7446 * possible to fallback to regular writes when checking
7447 * if we can clone file ranges.
7448 */
7449 btrfs_release_path(path);
7450 ret = search_key_again(sctx, send_root, path, &key);
7451 if (ret < 0)
7452 goto out;
7453 } else {
7454 up_read(&fs_info->commit_root_sem);
7455 }
7456
7457 ret = btrfs_next_item(send_root, path);
7458 if (ret < 0)
7459 goto out;
7460 if (ret) {
7461 ret = 0;
7462 break;
7463 }
7464 }
7465
7466 out_finish:
7467 ret = finish_inode_if_needed(sctx, 1);
7468
7469 out:
7470 btrfs_free_path(path);
7471 return ret;
7472 }
7473
replace_node_with_clone(struct btrfs_path * path,int level)7474 static int replace_node_with_clone(struct btrfs_path *path, int level)
7475 {
7476 struct extent_buffer *clone;
7477
7478 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7479 if (!clone)
7480 return -ENOMEM;
7481
7482 free_extent_buffer(path->nodes[level]);
7483 path->nodes[level] = clone;
7484
7485 return 0;
7486 }
7487
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7488 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7489 {
7490 struct extent_buffer *eb;
7491 struct extent_buffer *parent = path->nodes[*level];
7492 int slot = path->slots[*level];
7493 const int nritems = btrfs_header_nritems(parent);
7494 u64 reada_max;
7495 u64 reada_done = 0;
7496
7497 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7498 ASSERT(*level != 0);
7499
7500 eb = btrfs_read_node_slot(parent, slot);
7501 if (IS_ERR(eb))
7502 return PTR_ERR(eb);
7503
7504 /*
7505 * Trigger readahead for the next leaves we will process, so that it is
7506 * very likely that when we need them they are already in memory and we
7507 * will not block on disk IO. For nodes we only do readahead for one,
7508 * since the time window between processing nodes is typically larger.
7509 */
7510 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7511
7512 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7513 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7514 btrfs_readahead_node_child(parent, slot);
7515 reada_done += eb->fs_info->nodesize;
7516 }
7517 }
7518
7519 path->nodes[*level - 1] = eb;
7520 path->slots[*level - 1] = 0;
7521 (*level)--;
7522
7523 if (*level == 0)
7524 return replace_node_with_clone(path, 0);
7525
7526 return 0;
7527 }
7528
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7529 static int tree_move_next_or_upnext(struct btrfs_path *path,
7530 int *level, int root_level)
7531 {
7532 int ret = 0;
7533 int nritems;
7534 nritems = btrfs_header_nritems(path->nodes[*level]);
7535
7536 path->slots[*level]++;
7537
7538 while (path->slots[*level] >= nritems) {
7539 if (*level == root_level) {
7540 path->slots[*level] = nritems - 1;
7541 return -1;
7542 }
7543
7544 /* move upnext */
7545 path->slots[*level] = 0;
7546 free_extent_buffer(path->nodes[*level]);
7547 path->nodes[*level] = NULL;
7548 (*level)++;
7549 path->slots[*level]++;
7550
7551 nritems = btrfs_header_nritems(path->nodes[*level]);
7552 ret = 1;
7553 }
7554 return ret;
7555 }
7556
7557 /*
7558 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7559 * or down.
7560 */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7561 static int tree_advance(struct btrfs_path *path,
7562 int *level, int root_level,
7563 int allow_down,
7564 struct btrfs_key *key,
7565 u64 reada_min_gen)
7566 {
7567 int ret;
7568
7569 if (*level == 0 || !allow_down) {
7570 ret = tree_move_next_or_upnext(path, level, root_level);
7571 } else {
7572 ret = tree_move_down(path, level, reada_min_gen);
7573 }
7574
7575 /*
7576 * Even if we have reached the end of a tree, ret is -1, update the key
7577 * anyway, so that in case we need to restart due to a block group
7578 * relocation, we can assert that the last key of the root node still
7579 * exists in the tree.
7580 */
7581 if (*level == 0)
7582 btrfs_item_key_to_cpu(path->nodes[*level], key,
7583 path->slots[*level]);
7584 else
7585 btrfs_node_key_to_cpu(path->nodes[*level], key,
7586 path->slots[*level]);
7587
7588 return ret;
7589 }
7590
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7591 static int tree_compare_item(struct btrfs_path *left_path,
7592 struct btrfs_path *right_path,
7593 char *tmp_buf)
7594 {
7595 int cmp;
7596 int len1, len2;
7597 unsigned long off1, off2;
7598
7599 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7600 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7601 if (len1 != len2)
7602 return 1;
7603
7604 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7605 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7606 right_path->slots[0]);
7607
7608 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7609
7610 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7611 if (cmp)
7612 return 1;
7613 return 0;
7614 }
7615
7616 /*
7617 * A transaction used for relocating a block group was committed or is about to
7618 * finish its commit. Release our paths and restart the search, so that we are
7619 * not using stale extent buffers:
7620 *
7621 * 1) For levels > 0, we are only holding references of extent buffers, without
7622 * any locks on them, which does not prevent them from having been relocated
7623 * and reallocated after the last time we released the commit root semaphore.
7624 * The exception are the root nodes, for which we always have a clone, see
7625 * the comment at btrfs_compare_trees();
7626 *
7627 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7628 * we are safe from the concurrent relocation and reallocation. However they
7629 * can have file extent items with a pre relocation disk_bytenr value, so we
7630 * restart the start from the current commit roots and clone the new leaves so
7631 * that we get the post relocation disk_bytenr values. Not doing so, could
7632 * make us clone the wrong data in case there are new extents using the old
7633 * disk_bytenr that happen to be shared.
7634 */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7635 static int restart_after_relocation(struct btrfs_path *left_path,
7636 struct btrfs_path *right_path,
7637 const struct btrfs_key *left_key,
7638 const struct btrfs_key *right_key,
7639 int left_level,
7640 int right_level,
7641 const struct send_ctx *sctx)
7642 {
7643 int root_level;
7644 int ret;
7645
7646 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7647
7648 btrfs_release_path(left_path);
7649 btrfs_release_path(right_path);
7650
7651 /*
7652 * Since keys can not be added or removed to/from our roots because they
7653 * are readonly and we do not allow deduplication to run in parallel
7654 * (which can add, remove or change keys), the layout of the trees should
7655 * not change.
7656 */
7657 left_path->lowest_level = left_level;
7658 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7659 if (ret < 0)
7660 return ret;
7661
7662 right_path->lowest_level = right_level;
7663 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7664 if (ret < 0)
7665 return ret;
7666
7667 /*
7668 * If the lowest level nodes are leaves, clone them so that they can be
7669 * safely used by changed_cb() while not under the protection of the
7670 * commit root semaphore, even if relocation and reallocation happens in
7671 * parallel.
7672 */
7673 if (left_level == 0) {
7674 ret = replace_node_with_clone(left_path, 0);
7675 if (ret < 0)
7676 return ret;
7677 }
7678
7679 if (right_level == 0) {
7680 ret = replace_node_with_clone(right_path, 0);
7681 if (ret < 0)
7682 return ret;
7683 }
7684
7685 /*
7686 * Now clone the root nodes (unless they happen to be the leaves we have
7687 * already cloned). This is to protect against concurrent snapshotting of
7688 * the send and parent roots (see the comment at btrfs_compare_trees()).
7689 */
7690 root_level = btrfs_header_level(sctx->send_root->commit_root);
7691 if (root_level > 0) {
7692 ret = replace_node_with_clone(left_path, root_level);
7693 if (ret < 0)
7694 return ret;
7695 }
7696
7697 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7698 if (root_level > 0) {
7699 ret = replace_node_with_clone(right_path, root_level);
7700 if (ret < 0)
7701 return ret;
7702 }
7703
7704 return 0;
7705 }
7706
7707 /*
7708 * This function compares two trees and calls the provided callback for
7709 * every changed/new/deleted item it finds.
7710 * If shared tree blocks are encountered, whole subtrees are skipped, making
7711 * the compare pretty fast on snapshotted subvolumes.
7712 *
7713 * This currently works on commit roots only. As commit roots are read only,
7714 * we don't do any locking. The commit roots are protected with transactions.
7715 * Transactions are ended and rejoined when a commit is tried in between.
7716 *
7717 * This function checks for modifications done to the trees while comparing.
7718 * If it detects a change, it aborts immediately.
7719 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7720 static int btrfs_compare_trees(struct btrfs_root *left_root,
7721 struct btrfs_root *right_root, struct send_ctx *sctx)
7722 {
7723 struct btrfs_fs_info *fs_info = left_root->fs_info;
7724 int ret;
7725 int cmp;
7726 struct btrfs_path *left_path = NULL;
7727 struct btrfs_path *right_path = NULL;
7728 struct btrfs_key left_key;
7729 struct btrfs_key right_key;
7730 char *tmp_buf = NULL;
7731 int left_root_level;
7732 int right_root_level;
7733 int left_level;
7734 int right_level;
7735 int left_end_reached = 0;
7736 int right_end_reached = 0;
7737 int advance_left = 0;
7738 int advance_right = 0;
7739 u64 left_blockptr;
7740 u64 right_blockptr;
7741 u64 left_gen;
7742 u64 right_gen;
7743 u64 reada_min_gen;
7744
7745 left_path = btrfs_alloc_path();
7746 if (!left_path) {
7747 ret = -ENOMEM;
7748 goto out;
7749 }
7750 right_path = btrfs_alloc_path();
7751 if (!right_path) {
7752 ret = -ENOMEM;
7753 goto out;
7754 }
7755
7756 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7757 if (!tmp_buf) {
7758 ret = -ENOMEM;
7759 goto out;
7760 }
7761
7762 left_path->search_commit_root = 1;
7763 left_path->skip_locking = 1;
7764 right_path->search_commit_root = 1;
7765 right_path->skip_locking = 1;
7766
7767 /*
7768 * Strategy: Go to the first items of both trees. Then do
7769 *
7770 * If both trees are at level 0
7771 * Compare keys of current items
7772 * If left < right treat left item as new, advance left tree
7773 * and repeat
7774 * If left > right treat right item as deleted, advance right tree
7775 * and repeat
7776 * If left == right do deep compare of items, treat as changed if
7777 * needed, advance both trees and repeat
7778 * If both trees are at the same level but not at level 0
7779 * Compare keys of current nodes/leafs
7780 * If left < right advance left tree and repeat
7781 * If left > right advance right tree and repeat
7782 * If left == right compare blockptrs of the next nodes/leafs
7783 * If they match advance both trees but stay at the same level
7784 * and repeat
7785 * If they don't match advance both trees while allowing to go
7786 * deeper and repeat
7787 * If tree levels are different
7788 * Advance the tree that needs it and repeat
7789 *
7790 * Advancing a tree means:
7791 * If we are at level 0, try to go to the next slot. If that's not
7792 * possible, go one level up and repeat. Stop when we found a level
7793 * where we could go to the next slot. We may at this point be on a
7794 * node or a leaf.
7795 *
7796 * If we are not at level 0 and not on shared tree blocks, go one
7797 * level deeper.
7798 *
7799 * If we are not at level 0 and on shared tree blocks, go one slot to
7800 * the right if possible or go up and right.
7801 */
7802
7803 down_read(&fs_info->commit_root_sem);
7804 left_level = btrfs_header_level(left_root->commit_root);
7805 left_root_level = left_level;
7806 /*
7807 * We clone the root node of the send and parent roots to prevent races
7808 * with snapshot creation of these roots. Snapshot creation COWs the
7809 * root node of a tree, so after the transaction is committed the old
7810 * extent can be reallocated while this send operation is still ongoing.
7811 * So we clone them, under the commit root semaphore, to be race free.
7812 */
7813 left_path->nodes[left_level] =
7814 btrfs_clone_extent_buffer(left_root->commit_root);
7815 if (!left_path->nodes[left_level]) {
7816 ret = -ENOMEM;
7817 goto out_unlock;
7818 }
7819
7820 right_level = btrfs_header_level(right_root->commit_root);
7821 right_root_level = right_level;
7822 right_path->nodes[right_level] =
7823 btrfs_clone_extent_buffer(right_root->commit_root);
7824 if (!right_path->nodes[right_level]) {
7825 ret = -ENOMEM;
7826 goto out_unlock;
7827 }
7828 /*
7829 * Our right root is the parent root, while the left root is the "send"
7830 * root. We know that all new nodes/leaves in the left root must have
7831 * a generation greater than the right root's generation, so we trigger
7832 * readahead for those nodes and leaves of the left root, as we know we
7833 * will need to read them at some point.
7834 */
7835 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7836
7837 if (left_level == 0)
7838 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7839 &left_key, left_path->slots[left_level]);
7840 else
7841 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7842 &left_key, left_path->slots[left_level]);
7843 if (right_level == 0)
7844 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7845 &right_key, right_path->slots[right_level]);
7846 else
7847 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7848 &right_key, right_path->slots[right_level]);
7849
7850 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7851
7852 while (1) {
7853 if (need_resched() ||
7854 rwsem_is_contended(&fs_info->commit_root_sem)) {
7855 up_read(&fs_info->commit_root_sem);
7856 cond_resched();
7857 down_read(&fs_info->commit_root_sem);
7858 }
7859
7860 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7861 ret = restart_after_relocation(left_path, right_path,
7862 &left_key, &right_key,
7863 left_level, right_level,
7864 sctx);
7865 if (ret < 0)
7866 goto out_unlock;
7867 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7868 }
7869
7870 if (advance_left && !left_end_reached) {
7871 ret = tree_advance(left_path, &left_level,
7872 left_root_level,
7873 advance_left != ADVANCE_ONLY_NEXT,
7874 &left_key, reada_min_gen);
7875 if (ret == -1)
7876 left_end_reached = ADVANCE;
7877 else if (ret < 0)
7878 goto out_unlock;
7879 advance_left = 0;
7880 }
7881 if (advance_right && !right_end_reached) {
7882 ret = tree_advance(right_path, &right_level,
7883 right_root_level,
7884 advance_right != ADVANCE_ONLY_NEXT,
7885 &right_key, reada_min_gen);
7886 if (ret == -1)
7887 right_end_reached = ADVANCE;
7888 else if (ret < 0)
7889 goto out_unlock;
7890 advance_right = 0;
7891 }
7892
7893 if (left_end_reached && right_end_reached) {
7894 ret = 0;
7895 goto out_unlock;
7896 } else if (left_end_reached) {
7897 if (right_level == 0) {
7898 up_read(&fs_info->commit_root_sem);
7899 ret = changed_cb(left_path, right_path,
7900 &right_key,
7901 BTRFS_COMPARE_TREE_DELETED,
7902 sctx);
7903 if (ret < 0)
7904 goto out;
7905 down_read(&fs_info->commit_root_sem);
7906 }
7907 advance_right = ADVANCE;
7908 continue;
7909 } else if (right_end_reached) {
7910 if (left_level == 0) {
7911 up_read(&fs_info->commit_root_sem);
7912 ret = changed_cb(left_path, right_path,
7913 &left_key,
7914 BTRFS_COMPARE_TREE_NEW,
7915 sctx);
7916 if (ret < 0)
7917 goto out;
7918 down_read(&fs_info->commit_root_sem);
7919 }
7920 advance_left = ADVANCE;
7921 continue;
7922 }
7923
7924 if (left_level == 0 && right_level == 0) {
7925 up_read(&fs_info->commit_root_sem);
7926 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7927 if (cmp < 0) {
7928 ret = changed_cb(left_path, right_path,
7929 &left_key,
7930 BTRFS_COMPARE_TREE_NEW,
7931 sctx);
7932 advance_left = ADVANCE;
7933 } else if (cmp > 0) {
7934 ret = changed_cb(left_path, right_path,
7935 &right_key,
7936 BTRFS_COMPARE_TREE_DELETED,
7937 sctx);
7938 advance_right = ADVANCE;
7939 } else {
7940 enum btrfs_compare_tree_result result;
7941
7942 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7943 ret = tree_compare_item(left_path, right_path,
7944 tmp_buf);
7945 if (ret)
7946 result = BTRFS_COMPARE_TREE_CHANGED;
7947 else
7948 result = BTRFS_COMPARE_TREE_SAME;
7949 ret = changed_cb(left_path, right_path,
7950 &left_key, result, sctx);
7951 advance_left = ADVANCE;
7952 advance_right = ADVANCE;
7953 }
7954
7955 if (ret < 0)
7956 goto out;
7957 down_read(&fs_info->commit_root_sem);
7958 } else if (left_level == right_level) {
7959 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7960 if (cmp < 0) {
7961 advance_left = ADVANCE;
7962 } else if (cmp > 0) {
7963 advance_right = ADVANCE;
7964 } else {
7965 left_blockptr = btrfs_node_blockptr(
7966 left_path->nodes[left_level],
7967 left_path->slots[left_level]);
7968 right_blockptr = btrfs_node_blockptr(
7969 right_path->nodes[right_level],
7970 right_path->slots[right_level]);
7971 left_gen = btrfs_node_ptr_generation(
7972 left_path->nodes[left_level],
7973 left_path->slots[left_level]);
7974 right_gen = btrfs_node_ptr_generation(
7975 right_path->nodes[right_level],
7976 right_path->slots[right_level]);
7977 if (left_blockptr == right_blockptr &&
7978 left_gen == right_gen) {
7979 /*
7980 * As we're on a shared block, don't
7981 * allow to go deeper.
7982 */
7983 advance_left = ADVANCE_ONLY_NEXT;
7984 advance_right = ADVANCE_ONLY_NEXT;
7985 } else {
7986 advance_left = ADVANCE;
7987 advance_right = ADVANCE;
7988 }
7989 }
7990 } else if (left_level < right_level) {
7991 advance_right = ADVANCE;
7992 } else {
7993 advance_left = ADVANCE;
7994 }
7995 }
7996
7997 out_unlock:
7998 up_read(&fs_info->commit_root_sem);
7999 out:
8000 btrfs_free_path(left_path);
8001 btrfs_free_path(right_path);
8002 kvfree(tmp_buf);
8003 return ret;
8004 }
8005
send_subvol(struct send_ctx * sctx)8006 static int send_subvol(struct send_ctx *sctx)
8007 {
8008 int ret;
8009
8010 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
8011 ret = send_header(sctx);
8012 if (ret < 0)
8013 goto out;
8014 }
8015
8016 ret = send_subvol_begin(sctx);
8017 if (ret < 0)
8018 goto out;
8019
8020 if (sctx->parent_root) {
8021 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
8022 if (ret < 0)
8023 goto out;
8024 ret = finish_inode_if_needed(sctx, 1);
8025 if (ret < 0)
8026 goto out;
8027 } else {
8028 ret = full_send_tree(sctx);
8029 if (ret < 0)
8030 goto out;
8031 }
8032
8033 out:
8034 free_recorded_refs(sctx);
8035 return ret;
8036 }
8037
8038 /*
8039 * If orphan cleanup did remove any orphans from a root, it means the tree
8040 * was modified and therefore the commit root is not the same as the current
8041 * root anymore. This is a problem, because send uses the commit root and
8042 * therefore can see inode items that don't exist in the current root anymore,
8043 * and for example make calls to btrfs_iget, which will do tree lookups based
8044 * on the current root and not on the commit root. Those lookups will fail,
8045 * returning a -ESTALE error, and making send fail with that error. So make
8046 * sure a send does not see any orphans we have just removed, and that it will
8047 * see the same inodes regardless of whether a transaction commit happened
8048 * before it started (meaning that the commit root will be the same as the
8049 * current root) or not.
8050 */
ensure_commit_roots_uptodate(struct send_ctx * sctx)8051 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8052 {
8053 int i;
8054 struct btrfs_trans_handle *trans = NULL;
8055
8056 again:
8057 if (sctx->parent_root &&
8058 sctx->parent_root->node != sctx->parent_root->commit_root)
8059 goto commit_trans;
8060
8061 for (i = 0; i < sctx->clone_roots_cnt; i++)
8062 if (sctx->clone_roots[i].root->node !=
8063 sctx->clone_roots[i].root->commit_root)
8064 goto commit_trans;
8065
8066 if (trans)
8067 return btrfs_end_transaction(trans);
8068
8069 return 0;
8070
8071 commit_trans:
8072 /* Use any root, all fs roots will get their commit roots updated. */
8073 if (!trans) {
8074 trans = btrfs_join_transaction(sctx->send_root);
8075 if (IS_ERR(trans))
8076 return PTR_ERR(trans);
8077 goto again;
8078 }
8079
8080 return btrfs_commit_transaction(trans);
8081 }
8082
8083 /*
8084 * Make sure any existing dellaloc is flushed for any root used by a send
8085 * operation so that we do not miss any data and we do not race with writeback
8086 * finishing and changing a tree while send is using the tree. This could
8087 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8088 * a send operation then uses the subvolume.
8089 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8090 */
flush_delalloc_roots(struct send_ctx * sctx)8091 static int flush_delalloc_roots(struct send_ctx *sctx)
8092 {
8093 struct btrfs_root *root = sctx->parent_root;
8094 int ret;
8095 int i;
8096
8097 if (root) {
8098 ret = btrfs_start_delalloc_snapshot(root, false);
8099 if (ret)
8100 return ret;
8101 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8102 }
8103
8104 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8105 root = sctx->clone_roots[i].root;
8106 ret = btrfs_start_delalloc_snapshot(root, false);
8107 if (ret)
8108 return ret;
8109 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8110 }
8111
8112 return 0;
8113 }
8114
btrfs_root_dec_send_in_progress(struct btrfs_root * root)8115 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8116 {
8117 spin_lock(&root->root_item_lock);
8118 root->send_in_progress--;
8119 /*
8120 * Not much left to do, we don't know why it's unbalanced and
8121 * can't blindly reset it to 0.
8122 */
8123 if (root->send_in_progress < 0)
8124 btrfs_err(root->fs_info,
8125 "send_in_progress unbalanced %d root %llu",
8126 root->send_in_progress, root->root_key.objectid);
8127 spin_unlock(&root->root_item_lock);
8128 }
8129
dedupe_in_progress_warn(const struct btrfs_root * root)8130 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8131 {
8132 btrfs_warn_rl(root->fs_info,
8133 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8134 root->root_key.objectid, root->dedupe_in_progress);
8135 }
8136
btrfs_ioctl_send(struct inode * inode,struct btrfs_ioctl_send_args * arg)8137 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8138 {
8139 int ret = 0;
8140 struct btrfs_root *send_root = BTRFS_I(inode)->root;
8141 struct btrfs_fs_info *fs_info = send_root->fs_info;
8142 struct btrfs_root *clone_root;
8143 struct send_ctx *sctx = NULL;
8144 u32 i;
8145 u64 *clone_sources_tmp = NULL;
8146 int clone_sources_to_rollback = 0;
8147 size_t alloc_size;
8148 int sort_clone_roots = 0;
8149 struct btrfs_lru_cache_entry *entry;
8150 struct btrfs_lru_cache_entry *tmp;
8151
8152 if (!capable(CAP_SYS_ADMIN))
8153 return -EPERM;
8154
8155 /*
8156 * The subvolume must remain read-only during send, protect against
8157 * making it RW. This also protects against deletion.
8158 */
8159 spin_lock(&send_root->root_item_lock);
8160 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8161 dedupe_in_progress_warn(send_root);
8162 spin_unlock(&send_root->root_item_lock);
8163 return -EAGAIN;
8164 }
8165 send_root->send_in_progress++;
8166 spin_unlock(&send_root->root_item_lock);
8167
8168 /*
8169 * Userspace tools do the checks and warn the user if it's
8170 * not RO.
8171 */
8172 if (!btrfs_root_readonly(send_root)) {
8173 ret = -EPERM;
8174 goto out;
8175 }
8176
8177 /*
8178 * Check that we don't overflow at later allocations, we request
8179 * clone_sources_count + 1 items, and compare to unsigned long inside
8180 * access_ok. Also set an upper limit for allocation size so this can't
8181 * easily exhaust memory. Max number of clone sources is about 200K.
8182 */
8183 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8184 ret = -EINVAL;
8185 goto out;
8186 }
8187
8188 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8189 ret = -EOPNOTSUPP;
8190 goto out;
8191 }
8192
8193 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8194 if (!sctx) {
8195 ret = -ENOMEM;
8196 goto out;
8197 }
8198
8199 INIT_LIST_HEAD(&sctx->new_refs);
8200 INIT_LIST_HEAD(&sctx->deleted_refs);
8201
8202 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8203 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8204 btrfs_lru_cache_init(&sctx->dir_created_cache,
8205 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8206 /*
8207 * This cache is periodically trimmed to a fixed size elsewhere, see
8208 * cache_dir_utimes() and trim_dir_utimes_cache().
8209 */
8210 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8211
8212 sctx->pending_dir_moves = RB_ROOT;
8213 sctx->waiting_dir_moves = RB_ROOT;
8214 sctx->orphan_dirs = RB_ROOT;
8215 sctx->rbtree_new_refs = RB_ROOT;
8216 sctx->rbtree_deleted_refs = RB_ROOT;
8217
8218 sctx->flags = arg->flags;
8219
8220 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8221 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8222 ret = -EPROTO;
8223 goto out;
8224 }
8225 /* Zero means "use the highest version" */
8226 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8227 } else {
8228 sctx->proto = 1;
8229 }
8230 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8231 ret = -EINVAL;
8232 goto out;
8233 }
8234
8235 sctx->send_filp = fget(arg->send_fd);
8236 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8237 ret = -EBADF;
8238 goto out;
8239 }
8240
8241 sctx->send_root = send_root;
8242 /*
8243 * Unlikely but possible, if the subvolume is marked for deletion but
8244 * is slow to remove the directory entry, send can still be started
8245 */
8246 if (btrfs_root_dead(sctx->send_root)) {
8247 ret = -EPERM;
8248 goto out;
8249 }
8250
8251 sctx->clone_roots_cnt = arg->clone_sources_count;
8252
8253 if (sctx->proto >= 2) {
8254 u32 send_buf_num_pages;
8255
8256 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8257 sctx->send_buf = vmalloc(sctx->send_max_size);
8258 if (!sctx->send_buf) {
8259 ret = -ENOMEM;
8260 goto out;
8261 }
8262 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8263 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8264 sizeof(*sctx->send_buf_pages),
8265 GFP_KERNEL);
8266 if (!sctx->send_buf_pages) {
8267 ret = -ENOMEM;
8268 goto out;
8269 }
8270 for (i = 0; i < send_buf_num_pages; i++) {
8271 sctx->send_buf_pages[i] =
8272 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8273 }
8274 } else {
8275 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8276 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8277 }
8278 if (!sctx->send_buf) {
8279 ret = -ENOMEM;
8280 goto out;
8281 }
8282
8283 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8284 sizeof(*sctx->clone_roots),
8285 GFP_KERNEL);
8286 if (!sctx->clone_roots) {
8287 ret = -ENOMEM;
8288 goto out;
8289 }
8290
8291 alloc_size = array_size(sizeof(*arg->clone_sources),
8292 arg->clone_sources_count);
8293
8294 if (arg->clone_sources_count) {
8295 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8296 if (!clone_sources_tmp) {
8297 ret = -ENOMEM;
8298 goto out;
8299 }
8300
8301 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8302 alloc_size);
8303 if (ret) {
8304 ret = -EFAULT;
8305 goto out;
8306 }
8307
8308 for (i = 0; i < arg->clone_sources_count; i++) {
8309 clone_root = btrfs_get_fs_root(fs_info,
8310 clone_sources_tmp[i], true);
8311 if (IS_ERR(clone_root)) {
8312 ret = PTR_ERR(clone_root);
8313 goto out;
8314 }
8315 spin_lock(&clone_root->root_item_lock);
8316 if (!btrfs_root_readonly(clone_root) ||
8317 btrfs_root_dead(clone_root)) {
8318 spin_unlock(&clone_root->root_item_lock);
8319 btrfs_put_root(clone_root);
8320 ret = -EPERM;
8321 goto out;
8322 }
8323 if (clone_root->dedupe_in_progress) {
8324 dedupe_in_progress_warn(clone_root);
8325 spin_unlock(&clone_root->root_item_lock);
8326 btrfs_put_root(clone_root);
8327 ret = -EAGAIN;
8328 goto out;
8329 }
8330 clone_root->send_in_progress++;
8331 spin_unlock(&clone_root->root_item_lock);
8332
8333 sctx->clone_roots[i].root = clone_root;
8334 clone_sources_to_rollback = i + 1;
8335 }
8336 kvfree(clone_sources_tmp);
8337 clone_sources_tmp = NULL;
8338 }
8339
8340 if (arg->parent_root) {
8341 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8342 true);
8343 if (IS_ERR(sctx->parent_root)) {
8344 ret = PTR_ERR(sctx->parent_root);
8345 goto out;
8346 }
8347
8348 spin_lock(&sctx->parent_root->root_item_lock);
8349 sctx->parent_root->send_in_progress++;
8350 if (!btrfs_root_readonly(sctx->parent_root) ||
8351 btrfs_root_dead(sctx->parent_root)) {
8352 spin_unlock(&sctx->parent_root->root_item_lock);
8353 ret = -EPERM;
8354 goto out;
8355 }
8356 if (sctx->parent_root->dedupe_in_progress) {
8357 dedupe_in_progress_warn(sctx->parent_root);
8358 spin_unlock(&sctx->parent_root->root_item_lock);
8359 ret = -EAGAIN;
8360 goto out;
8361 }
8362 spin_unlock(&sctx->parent_root->root_item_lock);
8363 }
8364
8365 /*
8366 * Clones from send_root are allowed, but only if the clone source
8367 * is behind the current send position. This is checked while searching
8368 * for possible clone sources.
8369 */
8370 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8371 btrfs_grab_root(sctx->send_root);
8372
8373 /* We do a bsearch later */
8374 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8375 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8376 NULL);
8377 sort_clone_roots = 1;
8378
8379 ret = flush_delalloc_roots(sctx);
8380 if (ret)
8381 goto out;
8382
8383 ret = ensure_commit_roots_uptodate(sctx);
8384 if (ret)
8385 goto out;
8386
8387 ret = send_subvol(sctx);
8388 if (ret < 0)
8389 goto out;
8390
8391 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8392 ret = send_utimes(sctx, entry->key, entry->gen);
8393 if (ret < 0)
8394 goto out;
8395 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8396 }
8397
8398 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8399 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8400 if (ret < 0)
8401 goto out;
8402 ret = send_cmd(sctx);
8403 if (ret < 0)
8404 goto out;
8405 }
8406
8407 out:
8408 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8409 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8410 struct rb_node *n;
8411 struct pending_dir_move *pm;
8412
8413 n = rb_first(&sctx->pending_dir_moves);
8414 pm = rb_entry(n, struct pending_dir_move, node);
8415 while (!list_empty(&pm->list)) {
8416 struct pending_dir_move *pm2;
8417
8418 pm2 = list_first_entry(&pm->list,
8419 struct pending_dir_move, list);
8420 free_pending_move(sctx, pm2);
8421 }
8422 free_pending_move(sctx, pm);
8423 }
8424
8425 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8426 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8427 struct rb_node *n;
8428 struct waiting_dir_move *dm;
8429
8430 n = rb_first(&sctx->waiting_dir_moves);
8431 dm = rb_entry(n, struct waiting_dir_move, node);
8432 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8433 kfree(dm);
8434 }
8435
8436 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8437 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8438 struct rb_node *n;
8439 struct orphan_dir_info *odi;
8440
8441 n = rb_first(&sctx->orphan_dirs);
8442 odi = rb_entry(n, struct orphan_dir_info, node);
8443 free_orphan_dir_info(sctx, odi);
8444 }
8445
8446 if (sort_clone_roots) {
8447 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8448 btrfs_root_dec_send_in_progress(
8449 sctx->clone_roots[i].root);
8450 btrfs_put_root(sctx->clone_roots[i].root);
8451 }
8452 } else {
8453 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8454 btrfs_root_dec_send_in_progress(
8455 sctx->clone_roots[i].root);
8456 btrfs_put_root(sctx->clone_roots[i].root);
8457 }
8458
8459 btrfs_root_dec_send_in_progress(send_root);
8460 }
8461 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8462 btrfs_root_dec_send_in_progress(sctx->parent_root);
8463 btrfs_put_root(sctx->parent_root);
8464 }
8465
8466 kvfree(clone_sources_tmp);
8467
8468 if (sctx) {
8469 if (sctx->send_filp)
8470 fput(sctx->send_filp);
8471
8472 kvfree(sctx->clone_roots);
8473 kfree(sctx->send_buf_pages);
8474 kvfree(sctx->send_buf);
8475 kvfree(sctx->verity_descriptor);
8476
8477 close_current_inode(sctx);
8478
8479 btrfs_lru_cache_clear(&sctx->name_cache);
8480 btrfs_lru_cache_clear(&sctx->backref_cache);
8481 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8482 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8483
8484 kfree(sctx);
8485 }
8486
8487 return ret;
8488 }
8489