1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 #include <linux/fsverity.h> 19 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "xattr.h" 29 #include "print-tree.h" 30 #include "accessors.h" 31 #include "dir-item.h" 32 #include "file-item.h" 33 #include "ioctl.h" 34 #include "verity.h" 35 #include "lru_cache.h" 36 37 /* 38 * Maximum number of references an extent can have in order for us to attempt to 39 * issue clone operations instead of write operations. This currently exists to 40 * avoid hitting limitations of the backreference walking code (taking a lot of 41 * time and using too much memory for extents with large number of references). 42 */ 43 #define SEND_MAX_EXTENT_REFS 1024 44 45 /* 46 * A fs_path is a helper to dynamically build path names with unknown size. 47 * It reallocates the internal buffer on demand. 48 * It allows fast adding of path elements on the right side (normal path) and 49 * fast adding to the left side (reversed path). A reversed path can also be 50 * unreversed if needed. 51 */ 52 struct fs_path { 53 union { 54 struct { 55 char *start; 56 char *end; 57 58 char *buf; 59 unsigned short buf_len:15; 60 unsigned short reversed:1; 61 char inline_buf[]; 62 }; 63 /* 64 * Average path length does not exceed 200 bytes, we'll have 65 * better packing in the slab and higher chance to satisfy 66 * a allocation later during send. 67 */ 68 char pad[256]; 69 }; 70 }; 71 #define FS_PATH_INLINE_SIZE \ 72 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 73 74 75 /* reused for each extent */ 76 struct clone_root { 77 struct btrfs_root *root; 78 u64 ino; 79 u64 offset; 80 u64 num_bytes; 81 bool found_ref; 82 }; 83 84 #define SEND_MAX_NAME_CACHE_SIZE 256 85 86 /* 87 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 88 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 89 * can be satisfied from the kmalloc-192 slab, without wasting any space. 90 * The most common case is to have a single root for cloning, which corresponds 91 * to the send root. Having the user specify more than 16 clone roots is not 92 * common, and in such rare cases we simply don't use caching if the number of 93 * cloning roots that lead down to a leaf is more than 17. 94 */ 95 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 96 97 /* 98 * Max number of entries in the cache. 99 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 100 * maple tree's internal nodes, is 24K. 101 */ 102 #define SEND_MAX_BACKREF_CACHE_SIZE 128 103 104 /* 105 * A backref cache entry maps a leaf to a list of IDs of roots from which the 106 * leaf is accessible and we can use for clone operations. 107 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 108 * x86_64). 109 */ 110 struct backref_cache_entry { 111 struct btrfs_lru_cache_entry entry; 112 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 113 /* Number of valid elements in the root_ids array. */ 114 int num_roots; 115 }; 116 117 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 118 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 119 120 /* 121 * Max number of entries in the cache that stores directories that were already 122 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 123 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 124 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 125 */ 126 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 127 128 /* 129 * Max number of entries in the cache that stores directories that were already 130 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 131 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 132 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 133 */ 134 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 135 136 struct send_ctx { 137 struct file *send_filp; 138 loff_t send_off; 139 char *send_buf; 140 u32 send_size; 141 u32 send_max_size; 142 /* 143 * Whether BTRFS_SEND_A_DATA attribute was already added to current 144 * command (since protocol v2, data must be the last attribute). 145 */ 146 bool put_data; 147 struct page **send_buf_pages; 148 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 149 /* Protocol version compatibility requested */ 150 u32 proto; 151 152 struct btrfs_root *send_root; 153 struct btrfs_root *parent_root; 154 struct clone_root *clone_roots; 155 int clone_roots_cnt; 156 157 /* current state of the compare_tree call */ 158 struct btrfs_path *left_path; 159 struct btrfs_path *right_path; 160 struct btrfs_key *cmp_key; 161 162 /* 163 * Keep track of the generation of the last transaction that was used 164 * for relocating a block group. This is periodically checked in order 165 * to detect if a relocation happened since the last check, so that we 166 * don't operate on stale extent buffers for nodes (level >= 1) or on 167 * stale disk_bytenr values of file extent items. 168 */ 169 u64 last_reloc_trans; 170 171 /* 172 * infos of the currently processed inode. In case of deleted inodes, 173 * these are the values from the deleted inode. 174 */ 175 u64 cur_ino; 176 u64 cur_inode_gen; 177 u64 cur_inode_size; 178 u64 cur_inode_mode; 179 u64 cur_inode_rdev; 180 u64 cur_inode_last_extent; 181 u64 cur_inode_next_write_offset; 182 bool cur_inode_new; 183 bool cur_inode_new_gen; 184 bool cur_inode_deleted; 185 bool ignore_cur_inode; 186 bool cur_inode_needs_verity; 187 void *verity_descriptor; 188 189 u64 send_progress; 190 191 struct list_head new_refs; 192 struct list_head deleted_refs; 193 194 struct btrfs_lru_cache name_cache; 195 196 /* 197 * The inode we are currently processing. It's not NULL only when we 198 * need to issue write commands for data extents from this inode. 199 */ 200 struct inode *cur_inode; 201 struct file_ra_state ra; 202 u64 page_cache_clear_start; 203 bool clean_page_cache; 204 205 /* 206 * We process inodes by their increasing order, so if before an 207 * incremental send we reverse the parent/child relationship of 208 * directories such that a directory with a lower inode number was 209 * the parent of a directory with a higher inode number, and the one 210 * becoming the new parent got renamed too, we can't rename/move the 211 * directory with lower inode number when we finish processing it - we 212 * must process the directory with higher inode number first, then 213 * rename/move it and then rename/move the directory with lower inode 214 * number. Example follows. 215 * 216 * Tree state when the first send was performed: 217 * 218 * . 219 * |-- a (ino 257) 220 * |-- b (ino 258) 221 * | 222 * | 223 * |-- c (ino 259) 224 * | |-- d (ino 260) 225 * | 226 * |-- c2 (ino 261) 227 * 228 * Tree state when the second (incremental) send is performed: 229 * 230 * . 231 * |-- a (ino 257) 232 * |-- b (ino 258) 233 * |-- c2 (ino 261) 234 * |-- d2 (ino 260) 235 * |-- cc (ino 259) 236 * 237 * The sequence of steps that lead to the second state was: 238 * 239 * mv /a/b/c/d /a/b/c2/d2 240 * mv /a/b/c /a/b/c2/d2/cc 241 * 242 * "c" has lower inode number, but we can't move it (2nd mv operation) 243 * before we move "d", which has higher inode number. 244 * 245 * So we just memorize which move/rename operations must be performed 246 * later when their respective parent is processed and moved/renamed. 247 */ 248 249 /* Indexed by parent directory inode number. */ 250 struct rb_root pending_dir_moves; 251 252 /* 253 * Reverse index, indexed by the inode number of a directory that 254 * is waiting for the move/rename of its immediate parent before its 255 * own move/rename can be performed. 256 */ 257 struct rb_root waiting_dir_moves; 258 259 /* 260 * A directory that is going to be rm'ed might have a child directory 261 * which is in the pending directory moves index above. In this case, 262 * the directory can only be removed after the move/rename of its child 263 * is performed. Example: 264 * 265 * Parent snapshot: 266 * 267 * . (ino 256) 268 * |-- a/ (ino 257) 269 * |-- b/ (ino 258) 270 * |-- c/ (ino 259) 271 * | |-- x/ (ino 260) 272 * | 273 * |-- y/ (ino 261) 274 * 275 * Send snapshot: 276 * 277 * . (ino 256) 278 * |-- a/ (ino 257) 279 * |-- b/ (ino 258) 280 * |-- YY/ (ino 261) 281 * |-- x/ (ino 260) 282 * 283 * Sequence of steps that lead to the send snapshot: 284 * rm -f /a/b/c/foo.txt 285 * mv /a/b/y /a/b/YY 286 * mv /a/b/c/x /a/b/YY 287 * rmdir /a/b/c 288 * 289 * When the child is processed, its move/rename is delayed until its 290 * parent is processed (as explained above), but all other operations 291 * like update utimes, chown, chgrp, etc, are performed and the paths 292 * that it uses for those operations must use the orphanized name of 293 * its parent (the directory we're going to rm later), so we need to 294 * memorize that name. 295 * 296 * Indexed by the inode number of the directory to be deleted. 297 */ 298 struct rb_root orphan_dirs; 299 300 struct rb_root rbtree_new_refs; 301 struct rb_root rbtree_deleted_refs; 302 303 struct btrfs_lru_cache backref_cache; 304 u64 backref_cache_last_reloc_trans; 305 306 struct btrfs_lru_cache dir_created_cache; 307 struct btrfs_lru_cache dir_utimes_cache; 308 }; 309 310 struct pending_dir_move { 311 struct rb_node node; 312 struct list_head list; 313 u64 parent_ino; 314 u64 ino; 315 u64 gen; 316 struct list_head update_refs; 317 }; 318 319 struct waiting_dir_move { 320 struct rb_node node; 321 u64 ino; 322 /* 323 * There might be some directory that could not be removed because it 324 * was waiting for this directory inode to be moved first. Therefore 325 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 326 */ 327 u64 rmdir_ino; 328 u64 rmdir_gen; 329 bool orphanized; 330 }; 331 332 struct orphan_dir_info { 333 struct rb_node node; 334 u64 ino; 335 u64 gen; 336 u64 last_dir_index_offset; 337 u64 dir_high_seq_ino; 338 }; 339 340 struct name_cache_entry { 341 /* 342 * The key in the entry is an inode number, and the generation matches 343 * the inode's generation. 344 */ 345 struct btrfs_lru_cache_entry entry; 346 u64 parent_ino; 347 u64 parent_gen; 348 int ret; 349 int need_later_update; 350 int name_len; 351 char name[]; 352 }; 353 354 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 355 static_assert(offsetof(struct name_cache_entry, entry) == 0); 356 357 #define ADVANCE 1 358 #define ADVANCE_ONLY_NEXT -1 359 360 enum btrfs_compare_tree_result { 361 BTRFS_COMPARE_TREE_NEW, 362 BTRFS_COMPARE_TREE_DELETED, 363 BTRFS_COMPARE_TREE_CHANGED, 364 BTRFS_COMPARE_TREE_SAME, 365 }; 366 367 __cold 368 static void inconsistent_snapshot_error(struct send_ctx *sctx, 369 enum btrfs_compare_tree_result result, 370 const char *what) 371 { 372 const char *result_string; 373 374 switch (result) { 375 case BTRFS_COMPARE_TREE_NEW: 376 result_string = "new"; 377 break; 378 case BTRFS_COMPARE_TREE_DELETED: 379 result_string = "deleted"; 380 break; 381 case BTRFS_COMPARE_TREE_CHANGED: 382 result_string = "updated"; 383 break; 384 case BTRFS_COMPARE_TREE_SAME: 385 ASSERT(0); 386 result_string = "unchanged"; 387 break; 388 default: 389 ASSERT(0); 390 result_string = "unexpected"; 391 } 392 393 btrfs_err(sctx->send_root->fs_info, 394 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 395 result_string, what, sctx->cmp_key->objectid, 396 sctx->send_root->root_key.objectid, 397 (sctx->parent_root ? 398 sctx->parent_root->root_key.objectid : 0)); 399 } 400 401 __maybe_unused 402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 403 { 404 switch (sctx->proto) { 405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 408 default: return false; 409 } 410 } 411 412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 413 414 static struct waiting_dir_move * 415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 416 417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 418 419 static int need_send_hole(struct send_ctx *sctx) 420 { 421 return (sctx->parent_root && !sctx->cur_inode_new && 422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 423 S_ISREG(sctx->cur_inode_mode)); 424 } 425 426 static void fs_path_reset(struct fs_path *p) 427 { 428 if (p->reversed) { 429 p->start = p->buf + p->buf_len - 1; 430 p->end = p->start; 431 *p->start = 0; 432 } else { 433 p->start = p->buf; 434 p->end = p->start; 435 *p->start = 0; 436 } 437 } 438 439 static struct fs_path *fs_path_alloc(void) 440 { 441 struct fs_path *p; 442 443 p = kmalloc(sizeof(*p), GFP_KERNEL); 444 if (!p) 445 return NULL; 446 p->reversed = 0; 447 p->buf = p->inline_buf; 448 p->buf_len = FS_PATH_INLINE_SIZE; 449 fs_path_reset(p); 450 return p; 451 } 452 453 static struct fs_path *fs_path_alloc_reversed(void) 454 { 455 struct fs_path *p; 456 457 p = fs_path_alloc(); 458 if (!p) 459 return NULL; 460 p->reversed = 1; 461 fs_path_reset(p); 462 return p; 463 } 464 465 static void fs_path_free(struct fs_path *p) 466 { 467 if (!p) 468 return; 469 if (p->buf != p->inline_buf) 470 kfree(p->buf); 471 kfree(p); 472 } 473 474 static int fs_path_len(struct fs_path *p) 475 { 476 return p->end - p->start; 477 } 478 479 static int fs_path_ensure_buf(struct fs_path *p, int len) 480 { 481 char *tmp_buf; 482 int path_len; 483 int old_buf_len; 484 485 len++; 486 487 if (p->buf_len >= len) 488 return 0; 489 490 if (len > PATH_MAX) { 491 WARN_ON(1); 492 return -ENOMEM; 493 } 494 495 path_len = p->end - p->start; 496 old_buf_len = p->buf_len; 497 498 /* 499 * Allocate to the next largest kmalloc bucket size, to let 500 * the fast path happen most of the time. 501 */ 502 len = kmalloc_size_roundup(len); 503 /* 504 * First time the inline_buf does not suffice 505 */ 506 if (p->buf == p->inline_buf) { 507 tmp_buf = kmalloc(len, GFP_KERNEL); 508 if (tmp_buf) 509 memcpy(tmp_buf, p->buf, old_buf_len); 510 } else { 511 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 512 } 513 if (!tmp_buf) 514 return -ENOMEM; 515 p->buf = tmp_buf; 516 p->buf_len = len; 517 518 if (p->reversed) { 519 tmp_buf = p->buf + old_buf_len - path_len - 1; 520 p->end = p->buf + p->buf_len - 1; 521 p->start = p->end - path_len; 522 memmove(p->start, tmp_buf, path_len + 1); 523 } else { 524 p->start = p->buf; 525 p->end = p->start + path_len; 526 } 527 return 0; 528 } 529 530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 531 char **prepared) 532 { 533 int ret; 534 int new_len; 535 536 new_len = p->end - p->start + name_len; 537 if (p->start != p->end) 538 new_len++; 539 ret = fs_path_ensure_buf(p, new_len); 540 if (ret < 0) 541 goto out; 542 543 if (p->reversed) { 544 if (p->start != p->end) 545 *--p->start = '/'; 546 p->start -= name_len; 547 *prepared = p->start; 548 } else { 549 if (p->start != p->end) 550 *p->end++ = '/'; 551 *prepared = p->end; 552 p->end += name_len; 553 *p->end = 0; 554 } 555 556 out: 557 return ret; 558 } 559 560 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 561 { 562 int ret; 563 char *prepared; 564 565 ret = fs_path_prepare_for_add(p, name_len, &prepared); 566 if (ret < 0) 567 goto out; 568 memcpy(prepared, name, name_len); 569 570 out: 571 return ret; 572 } 573 574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 575 { 576 int ret; 577 char *prepared; 578 579 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 580 if (ret < 0) 581 goto out; 582 memcpy(prepared, p2->start, p2->end - p2->start); 583 584 out: 585 return ret; 586 } 587 588 static int fs_path_add_from_extent_buffer(struct fs_path *p, 589 struct extent_buffer *eb, 590 unsigned long off, int len) 591 { 592 int ret; 593 char *prepared; 594 595 ret = fs_path_prepare_for_add(p, len, &prepared); 596 if (ret < 0) 597 goto out; 598 599 read_extent_buffer(eb, prepared, off, len); 600 601 out: 602 return ret; 603 } 604 605 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 606 { 607 p->reversed = from->reversed; 608 fs_path_reset(p); 609 610 return fs_path_add_path(p, from); 611 } 612 613 static void fs_path_unreverse(struct fs_path *p) 614 { 615 char *tmp; 616 int len; 617 618 if (!p->reversed) 619 return; 620 621 tmp = p->start; 622 len = p->end - p->start; 623 p->start = p->buf; 624 p->end = p->start + len; 625 memmove(p->start, tmp, len + 1); 626 p->reversed = 0; 627 } 628 629 static struct btrfs_path *alloc_path_for_send(void) 630 { 631 struct btrfs_path *path; 632 633 path = btrfs_alloc_path(); 634 if (!path) 635 return NULL; 636 path->search_commit_root = 1; 637 path->skip_locking = 1; 638 path->need_commit_sem = 1; 639 return path; 640 } 641 642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 643 { 644 int ret; 645 u32 pos = 0; 646 647 while (pos < len) { 648 ret = kernel_write(filp, buf + pos, len - pos, off); 649 if (ret < 0) 650 return ret; 651 if (ret == 0) 652 return -EIO; 653 pos += ret; 654 } 655 656 return 0; 657 } 658 659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 660 { 661 struct btrfs_tlv_header *hdr; 662 int total_len = sizeof(*hdr) + len; 663 int left = sctx->send_max_size - sctx->send_size; 664 665 if (WARN_ON_ONCE(sctx->put_data)) 666 return -EINVAL; 667 668 if (unlikely(left < total_len)) 669 return -EOVERFLOW; 670 671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 672 put_unaligned_le16(attr, &hdr->tlv_type); 673 put_unaligned_le16(len, &hdr->tlv_len); 674 memcpy(hdr + 1, data, len); 675 sctx->send_size += total_len; 676 677 return 0; 678 } 679 680 #define TLV_PUT_DEFINE_INT(bits) \ 681 static int tlv_put_u##bits(struct send_ctx *sctx, \ 682 u##bits attr, u##bits value) \ 683 { \ 684 __le##bits __tmp = cpu_to_le##bits(value); \ 685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 686 } 687 688 TLV_PUT_DEFINE_INT(8) 689 TLV_PUT_DEFINE_INT(32) 690 TLV_PUT_DEFINE_INT(64) 691 692 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 693 const char *str, int len) 694 { 695 if (len == -1) 696 len = strlen(str); 697 return tlv_put(sctx, attr, str, len); 698 } 699 700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 701 const u8 *uuid) 702 { 703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 704 } 705 706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 707 struct extent_buffer *eb, 708 struct btrfs_timespec *ts) 709 { 710 struct btrfs_timespec bts; 711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 712 return tlv_put(sctx, attr, &bts, sizeof(bts)); 713 } 714 715 716 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 717 do { \ 718 ret = tlv_put(sctx, attrtype, data, attrlen); \ 719 if (ret < 0) \ 720 goto tlv_put_failure; \ 721 } while (0) 722 723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 724 do { \ 725 ret = tlv_put_u##bits(sctx, attrtype, value); \ 726 if (ret < 0) \ 727 goto tlv_put_failure; \ 728 } while (0) 729 730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 735 do { \ 736 ret = tlv_put_string(sctx, attrtype, str, len); \ 737 if (ret < 0) \ 738 goto tlv_put_failure; \ 739 } while (0) 740 #define TLV_PUT_PATH(sctx, attrtype, p) \ 741 do { \ 742 ret = tlv_put_string(sctx, attrtype, p->start, \ 743 p->end - p->start); \ 744 if (ret < 0) \ 745 goto tlv_put_failure; \ 746 } while(0) 747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 748 do { \ 749 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 750 if (ret < 0) \ 751 goto tlv_put_failure; \ 752 } while (0) 753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 754 do { \ 755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 756 if (ret < 0) \ 757 goto tlv_put_failure; \ 758 } while (0) 759 760 static int send_header(struct send_ctx *sctx) 761 { 762 struct btrfs_stream_header hdr; 763 764 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 765 hdr.version = cpu_to_le32(sctx->proto); 766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 767 &sctx->send_off); 768 } 769 770 /* 771 * For each command/item we want to send to userspace, we call this function. 772 */ 773 static int begin_cmd(struct send_ctx *sctx, int cmd) 774 { 775 struct btrfs_cmd_header *hdr; 776 777 if (WARN_ON(!sctx->send_buf)) 778 return -EINVAL; 779 780 if (unlikely(sctx->send_size != 0)) { 781 btrfs_err(sctx->send_root->fs_info, 782 "send: command header buffer not empty cmd %d offset %llu", 783 cmd, sctx->send_off); 784 return -EINVAL; 785 } 786 787 sctx->send_size += sizeof(*hdr); 788 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 789 put_unaligned_le16(cmd, &hdr->cmd); 790 791 return 0; 792 } 793 794 static int send_cmd(struct send_ctx *sctx) 795 { 796 int ret; 797 struct btrfs_cmd_header *hdr; 798 u32 crc; 799 800 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 801 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 802 put_unaligned_le32(0, &hdr->crc); 803 804 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 805 put_unaligned_le32(crc, &hdr->crc); 806 807 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 808 &sctx->send_off); 809 810 sctx->send_size = 0; 811 sctx->put_data = false; 812 813 return ret; 814 } 815 816 /* 817 * Sends a move instruction to user space 818 */ 819 static int send_rename(struct send_ctx *sctx, 820 struct fs_path *from, struct fs_path *to) 821 { 822 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 823 int ret; 824 825 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 826 827 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 828 if (ret < 0) 829 goto out; 830 831 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 832 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 833 834 ret = send_cmd(sctx); 835 836 tlv_put_failure: 837 out: 838 return ret; 839 } 840 841 /* 842 * Sends a link instruction to user space 843 */ 844 static int send_link(struct send_ctx *sctx, 845 struct fs_path *path, struct fs_path *lnk) 846 { 847 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 848 int ret; 849 850 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 851 852 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 853 if (ret < 0) 854 goto out; 855 856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 857 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 858 859 ret = send_cmd(sctx); 860 861 tlv_put_failure: 862 out: 863 return ret; 864 } 865 866 /* 867 * Sends an unlink instruction to user space 868 */ 869 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 870 { 871 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 872 int ret; 873 874 btrfs_debug(fs_info, "send_unlink %s", path->start); 875 876 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 877 if (ret < 0) 878 goto out; 879 880 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 881 882 ret = send_cmd(sctx); 883 884 tlv_put_failure: 885 out: 886 return ret; 887 } 888 889 /* 890 * Sends a rmdir instruction to user space 891 */ 892 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 893 { 894 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 895 int ret; 896 897 btrfs_debug(fs_info, "send_rmdir %s", path->start); 898 899 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 900 if (ret < 0) 901 goto out; 902 903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 904 905 ret = send_cmd(sctx); 906 907 tlv_put_failure: 908 out: 909 return ret; 910 } 911 912 struct btrfs_inode_info { 913 u64 size; 914 u64 gen; 915 u64 mode; 916 u64 uid; 917 u64 gid; 918 u64 rdev; 919 u64 fileattr; 920 u64 nlink; 921 }; 922 923 /* 924 * Helper function to retrieve some fields from an inode item. 925 */ 926 static int get_inode_info(struct btrfs_root *root, u64 ino, 927 struct btrfs_inode_info *info) 928 { 929 int ret; 930 struct btrfs_path *path; 931 struct btrfs_inode_item *ii; 932 struct btrfs_key key; 933 934 path = alloc_path_for_send(); 935 if (!path) 936 return -ENOMEM; 937 938 key.objectid = ino; 939 key.type = BTRFS_INODE_ITEM_KEY; 940 key.offset = 0; 941 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 942 if (ret) { 943 if (ret > 0) 944 ret = -ENOENT; 945 goto out; 946 } 947 948 if (!info) 949 goto out; 950 951 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 952 struct btrfs_inode_item); 953 info->size = btrfs_inode_size(path->nodes[0], ii); 954 info->gen = btrfs_inode_generation(path->nodes[0], ii); 955 info->mode = btrfs_inode_mode(path->nodes[0], ii); 956 info->uid = btrfs_inode_uid(path->nodes[0], ii); 957 info->gid = btrfs_inode_gid(path->nodes[0], ii); 958 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 959 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 960 /* 961 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 962 * otherwise logically split to 32/32 parts. 963 */ 964 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 965 966 out: 967 btrfs_free_path(path); 968 return ret; 969 } 970 971 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 972 { 973 int ret; 974 struct btrfs_inode_info info = { 0 }; 975 976 ASSERT(gen); 977 978 ret = get_inode_info(root, ino, &info); 979 *gen = info.gen; 980 return ret; 981 } 982 983 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 984 struct fs_path *p, 985 void *ctx); 986 987 /* 988 * Helper function to iterate the entries in ONE btrfs_inode_ref or 989 * btrfs_inode_extref. 990 * The iterate callback may return a non zero value to stop iteration. This can 991 * be a negative value for error codes or 1 to simply stop it. 992 * 993 * path must point to the INODE_REF or INODE_EXTREF when called. 994 */ 995 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 996 struct btrfs_key *found_key, int resolve, 997 iterate_inode_ref_t iterate, void *ctx) 998 { 999 struct extent_buffer *eb = path->nodes[0]; 1000 struct btrfs_inode_ref *iref; 1001 struct btrfs_inode_extref *extref; 1002 struct btrfs_path *tmp_path; 1003 struct fs_path *p; 1004 u32 cur = 0; 1005 u32 total; 1006 int slot = path->slots[0]; 1007 u32 name_len; 1008 char *start; 1009 int ret = 0; 1010 int num = 0; 1011 int index; 1012 u64 dir; 1013 unsigned long name_off; 1014 unsigned long elem_size; 1015 unsigned long ptr; 1016 1017 p = fs_path_alloc_reversed(); 1018 if (!p) 1019 return -ENOMEM; 1020 1021 tmp_path = alloc_path_for_send(); 1022 if (!tmp_path) { 1023 fs_path_free(p); 1024 return -ENOMEM; 1025 } 1026 1027 1028 if (found_key->type == BTRFS_INODE_REF_KEY) { 1029 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1030 struct btrfs_inode_ref); 1031 total = btrfs_item_size(eb, slot); 1032 elem_size = sizeof(*iref); 1033 } else { 1034 ptr = btrfs_item_ptr_offset(eb, slot); 1035 total = btrfs_item_size(eb, slot); 1036 elem_size = sizeof(*extref); 1037 } 1038 1039 while (cur < total) { 1040 fs_path_reset(p); 1041 1042 if (found_key->type == BTRFS_INODE_REF_KEY) { 1043 iref = (struct btrfs_inode_ref *)(ptr + cur); 1044 name_len = btrfs_inode_ref_name_len(eb, iref); 1045 name_off = (unsigned long)(iref + 1); 1046 index = btrfs_inode_ref_index(eb, iref); 1047 dir = found_key->offset; 1048 } else { 1049 extref = (struct btrfs_inode_extref *)(ptr + cur); 1050 name_len = btrfs_inode_extref_name_len(eb, extref); 1051 name_off = (unsigned long)&extref->name; 1052 index = btrfs_inode_extref_index(eb, extref); 1053 dir = btrfs_inode_extref_parent(eb, extref); 1054 } 1055 1056 if (resolve) { 1057 start = btrfs_ref_to_path(root, tmp_path, name_len, 1058 name_off, eb, dir, 1059 p->buf, p->buf_len); 1060 if (IS_ERR(start)) { 1061 ret = PTR_ERR(start); 1062 goto out; 1063 } 1064 if (start < p->buf) { 1065 /* overflow , try again with larger buffer */ 1066 ret = fs_path_ensure_buf(p, 1067 p->buf_len + p->buf - start); 1068 if (ret < 0) 1069 goto out; 1070 start = btrfs_ref_to_path(root, tmp_path, 1071 name_len, name_off, 1072 eb, dir, 1073 p->buf, p->buf_len); 1074 if (IS_ERR(start)) { 1075 ret = PTR_ERR(start); 1076 goto out; 1077 } 1078 if (unlikely(start < p->buf)) { 1079 btrfs_err(root->fs_info, 1080 "send: path ref buffer underflow for key (%llu %u %llu)", 1081 found_key->objectid, 1082 found_key->type, 1083 found_key->offset); 1084 ret = -EINVAL; 1085 goto out; 1086 } 1087 } 1088 p->start = start; 1089 } else { 1090 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1091 name_len); 1092 if (ret < 0) 1093 goto out; 1094 } 1095 1096 cur += elem_size + name_len; 1097 ret = iterate(num, dir, index, p, ctx); 1098 if (ret) 1099 goto out; 1100 num++; 1101 } 1102 1103 out: 1104 btrfs_free_path(tmp_path); 1105 fs_path_free(p); 1106 return ret; 1107 } 1108 1109 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1110 const char *name, int name_len, 1111 const char *data, int data_len, 1112 void *ctx); 1113 1114 /* 1115 * Helper function to iterate the entries in ONE btrfs_dir_item. 1116 * The iterate callback may return a non zero value to stop iteration. This can 1117 * be a negative value for error codes or 1 to simply stop it. 1118 * 1119 * path must point to the dir item when called. 1120 */ 1121 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1122 iterate_dir_item_t iterate, void *ctx) 1123 { 1124 int ret = 0; 1125 struct extent_buffer *eb; 1126 struct btrfs_dir_item *di; 1127 struct btrfs_key di_key; 1128 char *buf = NULL; 1129 int buf_len; 1130 u32 name_len; 1131 u32 data_len; 1132 u32 cur; 1133 u32 len; 1134 u32 total; 1135 int slot; 1136 int num; 1137 1138 /* 1139 * Start with a small buffer (1 page). If later we end up needing more 1140 * space, which can happen for xattrs on a fs with a leaf size greater 1141 * then the page size, attempt to increase the buffer. Typically xattr 1142 * values are small. 1143 */ 1144 buf_len = PATH_MAX; 1145 buf = kmalloc(buf_len, GFP_KERNEL); 1146 if (!buf) { 1147 ret = -ENOMEM; 1148 goto out; 1149 } 1150 1151 eb = path->nodes[0]; 1152 slot = path->slots[0]; 1153 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1154 cur = 0; 1155 len = 0; 1156 total = btrfs_item_size(eb, slot); 1157 1158 num = 0; 1159 while (cur < total) { 1160 name_len = btrfs_dir_name_len(eb, di); 1161 data_len = btrfs_dir_data_len(eb, di); 1162 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1163 1164 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1165 if (name_len > XATTR_NAME_MAX) { 1166 ret = -ENAMETOOLONG; 1167 goto out; 1168 } 1169 if (name_len + data_len > 1170 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1171 ret = -E2BIG; 1172 goto out; 1173 } 1174 } else { 1175 /* 1176 * Path too long 1177 */ 1178 if (name_len + data_len > PATH_MAX) { 1179 ret = -ENAMETOOLONG; 1180 goto out; 1181 } 1182 } 1183 1184 if (name_len + data_len > buf_len) { 1185 buf_len = name_len + data_len; 1186 if (is_vmalloc_addr(buf)) { 1187 vfree(buf); 1188 buf = NULL; 1189 } else { 1190 char *tmp = krealloc(buf, buf_len, 1191 GFP_KERNEL | __GFP_NOWARN); 1192 1193 if (!tmp) 1194 kfree(buf); 1195 buf = tmp; 1196 } 1197 if (!buf) { 1198 buf = kvmalloc(buf_len, GFP_KERNEL); 1199 if (!buf) { 1200 ret = -ENOMEM; 1201 goto out; 1202 } 1203 } 1204 } 1205 1206 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1207 name_len + data_len); 1208 1209 len = sizeof(*di) + name_len + data_len; 1210 di = (struct btrfs_dir_item *)((char *)di + len); 1211 cur += len; 1212 1213 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1214 data_len, ctx); 1215 if (ret < 0) 1216 goto out; 1217 if (ret) { 1218 ret = 0; 1219 goto out; 1220 } 1221 1222 num++; 1223 } 1224 1225 out: 1226 kvfree(buf); 1227 return ret; 1228 } 1229 1230 static int __copy_first_ref(int num, u64 dir, int index, 1231 struct fs_path *p, void *ctx) 1232 { 1233 int ret; 1234 struct fs_path *pt = ctx; 1235 1236 ret = fs_path_copy(pt, p); 1237 if (ret < 0) 1238 return ret; 1239 1240 /* we want the first only */ 1241 return 1; 1242 } 1243 1244 /* 1245 * Retrieve the first path of an inode. If an inode has more then one 1246 * ref/hardlink, this is ignored. 1247 */ 1248 static int get_inode_path(struct btrfs_root *root, 1249 u64 ino, struct fs_path *path) 1250 { 1251 int ret; 1252 struct btrfs_key key, found_key; 1253 struct btrfs_path *p; 1254 1255 p = alloc_path_for_send(); 1256 if (!p) 1257 return -ENOMEM; 1258 1259 fs_path_reset(path); 1260 1261 key.objectid = ino; 1262 key.type = BTRFS_INODE_REF_KEY; 1263 key.offset = 0; 1264 1265 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1266 if (ret < 0) 1267 goto out; 1268 if (ret) { 1269 ret = 1; 1270 goto out; 1271 } 1272 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1273 if (found_key.objectid != ino || 1274 (found_key.type != BTRFS_INODE_REF_KEY && 1275 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1276 ret = -ENOENT; 1277 goto out; 1278 } 1279 1280 ret = iterate_inode_ref(root, p, &found_key, 1, 1281 __copy_first_ref, path); 1282 if (ret < 0) 1283 goto out; 1284 ret = 0; 1285 1286 out: 1287 btrfs_free_path(p); 1288 return ret; 1289 } 1290 1291 struct backref_ctx { 1292 struct send_ctx *sctx; 1293 1294 /* number of total found references */ 1295 u64 found; 1296 1297 /* 1298 * used for clones found in send_root. clones found behind cur_objectid 1299 * and cur_offset are not considered as allowed clones. 1300 */ 1301 u64 cur_objectid; 1302 u64 cur_offset; 1303 1304 /* may be truncated in case it's the last extent in a file */ 1305 u64 extent_len; 1306 1307 /* The bytenr the file extent item we are processing refers to. */ 1308 u64 bytenr; 1309 /* The owner (root id) of the data backref for the current extent. */ 1310 u64 backref_owner; 1311 /* The offset of the data backref for the current extent. */ 1312 u64 backref_offset; 1313 }; 1314 1315 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1316 { 1317 u64 root = (u64)(uintptr_t)key; 1318 const struct clone_root *cr = elt; 1319 1320 if (root < cr->root->root_key.objectid) 1321 return -1; 1322 if (root > cr->root->root_key.objectid) 1323 return 1; 1324 return 0; 1325 } 1326 1327 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1328 { 1329 const struct clone_root *cr1 = e1; 1330 const struct clone_root *cr2 = e2; 1331 1332 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1333 return -1; 1334 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1335 return 1; 1336 return 0; 1337 } 1338 1339 /* 1340 * Called for every backref that is found for the current extent. 1341 * Results are collected in sctx->clone_roots->ino/offset. 1342 */ 1343 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1344 void *ctx_) 1345 { 1346 struct backref_ctx *bctx = ctx_; 1347 struct clone_root *clone_root; 1348 1349 /* First check if the root is in the list of accepted clone sources */ 1350 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1351 bctx->sctx->clone_roots_cnt, 1352 sizeof(struct clone_root), 1353 __clone_root_cmp_bsearch); 1354 if (!clone_root) 1355 return 0; 1356 1357 /* This is our own reference, bail out as we can't clone from it. */ 1358 if (clone_root->root == bctx->sctx->send_root && 1359 ino == bctx->cur_objectid && 1360 offset == bctx->cur_offset) 1361 return 0; 1362 1363 /* 1364 * Make sure we don't consider clones from send_root that are 1365 * behind the current inode/offset. 1366 */ 1367 if (clone_root->root == bctx->sctx->send_root) { 1368 /* 1369 * If the source inode was not yet processed we can't issue a 1370 * clone operation, as the source extent does not exist yet at 1371 * the destination of the stream. 1372 */ 1373 if (ino > bctx->cur_objectid) 1374 return 0; 1375 /* 1376 * We clone from the inode currently being sent as long as the 1377 * source extent is already processed, otherwise we could try 1378 * to clone from an extent that does not exist yet at the 1379 * destination of the stream. 1380 */ 1381 if (ino == bctx->cur_objectid && 1382 offset + bctx->extent_len > 1383 bctx->sctx->cur_inode_next_write_offset) 1384 return 0; 1385 } 1386 1387 bctx->found++; 1388 clone_root->found_ref = true; 1389 1390 /* 1391 * If the given backref refers to a file extent item with a larger 1392 * number of bytes than what we found before, use the new one so that 1393 * we clone more optimally and end up doing less writes and getting 1394 * less exclusive, non-shared extents at the destination. 1395 */ 1396 if (num_bytes > clone_root->num_bytes) { 1397 clone_root->ino = ino; 1398 clone_root->offset = offset; 1399 clone_root->num_bytes = num_bytes; 1400 1401 /* 1402 * Found a perfect candidate, so there's no need to continue 1403 * backref walking. 1404 */ 1405 if (num_bytes >= bctx->extent_len) 1406 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1407 } 1408 1409 return 0; 1410 } 1411 1412 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1413 const u64 **root_ids_ret, int *root_count_ret) 1414 { 1415 struct backref_ctx *bctx = ctx; 1416 struct send_ctx *sctx = bctx->sctx; 1417 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1418 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits; 1419 struct btrfs_lru_cache_entry *raw_entry; 1420 struct backref_cache_entry *entry; 1421 1422 if (btrfs_lru_cache_size(&sctx->backref_cache) == 0) 1423 return false; 1424 1425 /* 1426 * If relocation happened since we first filled the cache, then we must 1427 * empty the cache and can not use it, because even though we operate on 1428 * read-only roots, their leaves and nodes may have been reallocated and 1429 * now be used for different nodes/leaves of the same tree or some other 1430 * tree. 1431 * 1432 * We are called from iterate_extent_inodes() while either holding a 1433 * transaction handle or holding fs_info->commit_root_sem, so no need 1434 * to take any lock here. 1435 */ 1436 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1437 btrfs_lru_cache_clear(&sctx->backref_cache); 1438 return false; 1439 } 1440 1441 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1442 if (!raw_entry) 1443 return false; 1444 1445 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1446 *root_ids_ret = entry->root_ids; 1447 *root_count_ret = entry->num_roots; 1448 1449 return true; 1450 } 1451 1452 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1453 void *ctx) 1454 { 1455 struct backref_ctx *bctx = ctx; 1456 struct send_ctx *sctx = bctx->sctx; 1457 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1458 struct backref_cache_entry *new_entry; 1459 struct ulist_iterator uiter; 1460 struct ulist_node *node; 1461 int ret; 1462 1463 /* 1464 * We're called while holding a transaction handle or while holding 1465 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1466 * NOFS allocation. 1467 */ 1468 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1469 /* No worries, cache is optional. */ 1470 if (!new_entry) 1471 return; 1472 1473 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits; 1474 new_entry->entry.gen = 0; 1475 new_entry->num_roots = 0; 1476 ULIST_ITER_INIT(&uiter); 1477 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1478 const u64 root_id = node->val; 1479 struct clone_root *root; 1480 1481 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1482 sctx->clone_roots_cnt, sizeof(struct clone_root), 1483 __clone_root_cmp_bsearch); 1484 if (!root) 1485 continue; 1486 1487 /* Too many roots, just exit, no worries as caching is optional. */ 1488 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1489 kfree(new_entry); 1490 return; 1491 } 1492 1493 new_entry->root_ids[new_entry->num_roots] = root_id; 1494 new_entry->num_roots++; 1495 } 1496 1497 /* 1498 * We may have not added any roots to the new cache entry, which means 1499 * none of the roots is part of the list of roots from which we are 1500 * allowed to clone. Cache the new entry as it's still useful to avoid 1501 * backref walking to determine which roots have a path to the leaf. 1502 * 1503 * Also use GFP_NOFS because we're called while holding a transaction 1504 * handle or while holding fs_info->commit_root_sem. 1505 */ 1506 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1507 GFP_NOFS); 1508 ASSERT(ret == 0 || ret == -ENOMEM); 1509 if (ret) { 1510 /* Caching is optional, no worries. */ 1511 kfree(new_entry); 1512 return; 1513 } 1514 1515 /* 1516 * We are called from iterate_extent_inodes() while either holding a 1517 * transaction handle or holding fs_info->commit_root_sem, so no need 1518 * to take any lock here. 1519 */ 1520 if (btrfs_lru_cache_size(&sctx->backref_cache) == 1) 1521 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1522 } 1523 1524 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1525 const struct extent_buffer *leaf, void *ctx) 1526 { 1527 const u64 refs = btrfs_extent_refs(leaf, ei); 1528 const struct backref_ctx *bctx = ctx; 1529 const struct send_ctx *sctx = bctx->sctx; 1530 1531 if (bytenr == bctx->bytenr) { 1532 const u64 flags = btrfs_extent_flags(leaf, ei); 1533 1534 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1535 return -EUCLEAN; 1536 1537 /* 1538 * If we have only one reference and only the send root as a 1539 * clone source - meaning no clone roots were given in the 1540 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1541 * it's our reference and there's no point in doing backref 1542 * walking which is expensive, so exit early. 1543 */ 1544 if (refs == 1 && sctx->clone_roots_cnt == 1) 1545 return -ENOENT; 1546 } 1547 1548 /* 1549 * Backreference walking (iterate_extent_inodes() below) is currently 1550 * too expensive when an extent has a large number of references, both 1551 * in time spent and used memory. So for now just fallback to write 1552 * operations instead of clone operations when an extent has more than 1553 * a certain amount of references. 1554 */ 1555 if (refs > SEND_MAX_EXTENT_REFS) 1556 return -ENOENT; 1557 1558 return 0; 1559 } 1560 1561 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1562 { 1563 const struct backref_ctx *bctx = ctx; 1564 1565 if (ino == bctx->cur_objectid && 1566 root == bctx->backref_owner && 1567 offset == bctx->backref_offset) 1568 return true; 1569 1570 return false; 1571 } 1572 1573 /* 1574 * Given an inode, offset and extent item, it finds a good clone for a clone 1575 * instruction. Returns -ENOENT when none could be found. The function makes 1576 * sure that the returned clone is usable at the point where sending is at the 1577 * moment. This means, that no clones are accepted which lie behind the current 1578 * inode+offset. 1579 * 1580 * path must point to the extent item when called. 1581 */ 1582 static int find_extent_clone(struct send_ctx *sctx, 1583 struct btrfs_path *path, 1584 u64 ino, u64 data_offset, 1585 u64 ino_size, 1586 struct clone_root **found) 1587 { 1588 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1589 int ret; 1590 int extent_type; 1591 u64 logical; 1592 u64 disk_byte; 1593 u64 num_bytes; 1594 struct btrfs_file_extent_item *fi; 1595 struct extent_buffer *eb = path->nodes[0]; 1596 struct backref_ctx backref_ctx = { 0 }; 1597 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1598 struct clone_root *cur_clone_root; 1599 int compressed; 1600 u32 i; 1601 1602 /* 1603 * With fallocate we can get prealloc extents beyond the inode's i_size, 1604 * so we don't do anything here because clone operations can not clone 1605 * to a range beyond i_size without increasing the i_size of the 1606 * destination inode. 1607 */ 1608 if (data_offset >= ino_size) 1609 return 0; 1610 1611 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1612 extent_type = btrfs_file_extent_type(eb, fi); 1613 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1614 return -ENOENT; 1615 1616 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1617 if (disk_byte == 0) 1618 return -ENOENT; 1619 1620 compressed = btrfs_file_extent_compression(eb, fi); 1621 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1622 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1623 1624 /* 1625 * Setup the clone roots. 1626 */ 1627 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1628 cur_clone_root = sctx->clone_roots + i; 1629 cur_clone_root->ino = (u64)-1; 1630 cur_clone_root->offset = 0; 1631 cur_clone_root->num_bytes = 0; 1632 cur_clone_root->found_ref = false; 1633 } 1634 1635 backref_ctx.sctx = sctx; 1636 backref_ctx.cur_objectid = ino; 1637 backref_ctx.cur_offset = data_offset; 1638 backref_ctx.bytenr = disk_byte; 1639 /* 1640 * Use the header owner and not the send root's id, because in case of a 1641 * snapshot we can have shared subtrees. 1642 */ 1643 backref_ctx.backref_owner = btrfs_header_owner(eb); 1644 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1645 1646 /* 1647 * The last extent of a file may be too large due to page alignment. 1648 * We need to adjust extent_len in this case so that the checks in 1649 * iterate_backrefs() work. 1650 */ 1651 if (data_offset + num_bytes >= ino_size) 1652 backref_ctx.extent_len = ino_size - data_offset; 1653 else 1654 backref_ctx.extent_len = num_bytes; 1655 1656 /* 1657 * Now collect all backrefs. 1658 */ 1659 backref_walk_ctx.bytenr = disk_byte; 1660 if (compressed == BTRFS_COMPRESS_NONE) 1661 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1662 backref_walk_ctx.fs_info = fs_info; 1663 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1664 backref_walk_ctx.cache_store = store_backref_cache; 1665 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1666 backref_walk_ctx.check_extent_item = check_extent_item; 1667 backref_walk_ctx.user_ctx = &backref_ctx; 1668 1669 /* 1670 * If have a single clone root, then it's the send root and we can tell 1671 * the backref walking code to skip our own backref and not resolve it, 1672 * since we can not use it for cloning - the source and destination 1673 * ranges can't overlap and in case the leaf is shared through a subtree 1674 * due to snapshots, we can't use those other roots since they are not 1675 * in the list of clone roots. 1676 */ 1677 if (sctx->clone_roots_cnt == 1) 1678 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1679 1680 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1681 &backref_ctx); 1682 if (ret < 0) 1683 return ret; 1684 1685 down_read(&fs_info->commit_root_sem); 1686 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1687 /* 1688 * A transaction commit for a transaction in which block group 1689 * relocation was done just happened. 1690 * The disk_bytenr of the file extent item we processed is 1691 * possibly stale, referring to the extent's location before 1692 * relocation. So act as if we haven't found any clone sources 1693 * and fallback to write commands, which will read the correct 1694 * data from the new extent location. Otherwise we will fail 1695 * below because we haven't found our own back reference or we 1696 * could be getting incorrect sources in case the old extent 1697 * was already reallocated after the relocation. 1698 */ 1699 up_read(&fs_info->commit_root_sem); 1700 return -ENOENT; 1701 } 1702 up_read(&fs_info->commit_root_sem); 1703 1704 btrfs_debug(fs_info, 1705 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1706 data_offset, ino, num_bytes, logical); 1707 1708 if (!backref_ctx.found) { 1709 btrfs_debug(fs_info, "no clones found"); 1710 return -ENOENT; 1711 } 1712 1713 cur_clone_root = NULL; 1714 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1715 struct clone_root *clone_root = &sctx->clone_roots[i]; 1716 1717 if (!clone_root->found_ref) 1718 continue; 1719 1720 /* 1721 * Choose the root from which we can clone more bytes, to 1722 * minimize write operations and therefore have more extent 1723 * sharing at the destination (the same as in the source). 1724 */ 1725 if (!cur_clone_root || 1726 clone_root->num_bytes > cur_clone_root->num_bytes) { 1727 cur_clone_root = clone_root; 1728 1729 /* 1730 * We found an optimal clone candidate (any inode from 1731 * any root is fine), so we're done. 1732 */ 1733 if (clone_root->num_bytes >= backref_ctx.extent_len) 1734 break; 1735 } 1736 } 1737 1738 if (cur_clone_root) { 1739 *found = cur_clone_root; 1740 ret = 0; 1741 } else { 1742 ret = -ENOENT; 1743 } 1744 1745 return ret; 1746 } 1747 1748 static int read_symlink(struct btrfs_root *root, 1749 u64 ino, 1750 struct fs_path *dest) 1751 { 1752 int ret; 1753 struct btrfs_path *path; 1754 struct btrfs_key key; 1755 struct btrfs_file_extent_item *ei; 1756 u8 type; 1757 u8 compression; 1758 unsigned long off; 1759 int len; 1760 1761 path = alloc_path_for_send(); 1762 if (!path) 1763 return -ENOMEM; 1764 1765 key.objectid = ino; 1766 key.type = BTRFS_EXTENT_DATA_KEY; 1767 key.offset = 0; 1768 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1769 if (ret < 0) 1770 goto out; 1771 if (ret) { 1772 /* 1773 * An empty symlink inode. Can happen in rare error paths when 1774 * creating a symlink (transaction committed before the inode 1775 * eviction handler removed the symlink inode items and a crash 1776 * happened in between or the subvol was snapshoted in between). 1777 * Print an informative message to dmesg/syslog so that the user 1778 * can delete the symlink. 1779 */ 1780 btrfs_err(root->fs_info, 1781 "Found empty symlink inode %llu at root %llu", 1782 ino, root->root_key.objectid); 1783 ret = -EIO; 1784 goto out; 1785 } 1786 1787 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1788 struct btrfs_file_extent_item); 1789 type = btrfs_file_extent_type(path->nodes[0], ei); 1790 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1791 ret = -EUCLEAN; 1792 btrfs_crit(root->fs_info, 1793 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1794 ino, btrfs_root_id(root), type); 1795 goto out; 1796 } 1797 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1798 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1799 ret = -EUCLEAN; 1800 btrfs_crit(root->fs_info, 1801 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1802 ino, btrfs_root_id(root), compression); 1803 goto out; 1804 } 1805 1806 off = btrfs_file_extent_inline_start(ei); 1807 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1808 1809 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1810 1811 out: 1812 btrfs_free_path(path); 1813 return ret; 1814 } 1815 1816 /* 1817 * Helper function to generate a file name that is unique in the root of 1818 * send_root and parent_root. This is used to generate names for orphan inodes. 1819 */ 1820 static int gen_unique_name(struct send_ctx *sctx, 1821 u64 ino, u64 gen, 1822 struct fs_path *dest) 1823 { 1824 int ret = 0; 1825 struct btrfs_path *path; 1826 struct btrfs_dir_item *di; 1827 char tmp[64]; 1828 int len; 1829 u64 idx = 0; 1830 1831 path = alloc_path_for_send(); 1832 if (!path) 1833 return -ENOMEM; 1834 1835 while (1) { 1836 struct fscrypt_str tmp_name; 1837 1838 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1839 ino, gen, idx); 1840 ASSERT(len < sizeof(tmp)); 1841 tmp_name.name = tmp; 1842 tmp_name.len = strlen(tmp); 1843 1844 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1845 path, BTRFS_FIRST_FREE_OBJECTID, 1846 &tmp_name, 0); 1847 btrfs_release_path(path); 1848 if (IS_ERR(di)) { 1849 ret = PTR_ERR(di); 1850 goto out; 1851 } 1852 if (di) { 1853 /* not unique, try again */ 1854 idx++; 1855 continue; 1856 } 1857 1858 if (!sctx->parent_root) { 1859 /* unique */ 1860 ret = 0; 1861 break; 1862 } 1863 1864 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1865 path, BTRFS_FIRST_FREE_OBJECTID, 1866 &tmp_name, 0); 1867 btrfs_release_path(path); 1868 if (IS_ERR(di)) { 1869 ret = PTR_ERR(di); 1870 goto out; 1871 } 1872 if (di) { 1873 /* not unique, try again */ 1874 idx++; 1875 continue; 1876 } 1877 /* unique */ 1878 break; 1879 } 1880 1881 ret = fs_path_add(dest, tmp, strlen(tmp)); 1882 1883 out: 1884 btrfs_free_path(path); 1885 return ret; 1886 } 1887 1888 enum inode_state { 1889 inode_state_no_change, 1890 inode_state_will_create, 1891 inode_state_did_create, 1892 inode_state_will_delete, 1893 inode_state_did_delete, 1894 }; 1895 1896 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1897 u64 *send_gen, u64 *parent_gen) 1898 { 1899 int ret; 1900 int left_ret; 1901 int right_ret; 1902 u64 left_gen; 1903 u64 right_gen = 0; 1904 struct btrfs_inode_info info; 1905 1906 ret = get_inode_info(sctx->send_root, ino, &info); 1907 if (ret < 0 && ret != -ENOENT) 1908 goto out; 1909 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1910 left_gen = info.gen; 1911 if (send_gen) 1912 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1913 1914 if (!sctx->parent_root) { 1915 right_ret = -ENOENT; 1916 } else { 1917 ret = get_inode_info(sctx->parent_root, ino, &info); 1918 if (ret < 0 && ret != -ENOENT) 1919 goto out; 1920 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1921 right_gen = info.gen; 1922 if (parent_gen) 1923 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1924 } 1925 1926 if (!left_ret && !right_ret) { 1927 if (left_gen == gen && right_gen == gen) { 1928 ret = inode_state_no_change; 1929 } else if (left_gen == gen) { 1930 if (ino < sctx->send_progress) 1931 ret = inode_state_did_create; 1932 else 1933 ret = inode_state_will_create; 1934 } else if (right_gen == gen) { 1935 if (ino < sctx->send_progress) 1936 ret = inode_state_did_delete; 1937 else 1938 ret = inode_state_will_delete; 1939 } else { 1940 ret = -ENOENT; 1941 } 1942 } else if (!left_ret) { 1943 if (left_gen == gen) { 1944 if (ino < sctx->send_progress) 1945 ret = inode_state_did_create; 1946 else 1947 ret = inode_state_will_create; 1948 } else { 1949 ret = -ENOENT; 1950 } 1951 } else if (!right_ret) { 1952 if (right_gen == gen) { 1953 if (ino < sctx->send_progress) 1954 ret = inode_state_did_delete; 1955 else 1956 ret = inode_state_will_delete; 1957 } else { 1958 ret = -ENOENT; 1959 } 1960 } else { 1961 ret = -ENOENT; 1962 } 1963 1964 out: 1965 return ret; 1966 } 1967 1968 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1969 u64 *send_gen, u64 *parent_gen) 1970 { 1971 int ret; 1972 1973 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1974 return 1; 1975 1976 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1977 if (ret < 0) 1978 goto out; 1979 1980 if (ret == inode_state_no_change || 1981 ret == inode_state_did_create || 1982 ret == inode_state_will_delete) 1983 ret = 1; 1984 else 1985 ret = 0; 1986 1987 out: 1988 return ret; 1989 } 1990 1991 /* 1992 * Helper function to lookup a dir item in a dir. 1993 */ 1994 static int lookup_dir_item_inode(struct btrfs_root *root, 1995 u64 dir, const char *name, int name_len, 1996 u64 *found_inode) 1997 { 1998 int ret = 0; 1999 struct btrfs_dir_item *di; 2000 struct btrfs_key key; 2001 struct btrfs_path *path; 2002 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 2003 2004 path = alloc_path_for_send(); 2005 if (!path) 2006 return -ENOMEM; 2007 2008 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 2009 if (IS_ERR_OR_NULL(di)) { 2010 ret = di ? PTR_ERR(di) : -ENOENT; 2011 goto out; 2012 } 2013 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 2014 if (key.type == BTRFS_ROOT_ITEM_KEY) { 2015 ret = -ENOENT; 2016 goto out; 2017 } 2018 *found_inode = key.objectid; 2019 2020 out: 2021 btrfs_free_path(path); 2022 return ret; 2023 } 2024 2025 /* 2026 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 2027 * generation of the parent dir and the name of the dir entry. 2028 */ 2029 static int get_first_ref(struct btrfs_root *root, u64 ino, 2030 u64 *dir, u64 *dir_gen, struct fs_path *name) 2031 { 2032 int ret; 2033 struct btrfs_key key; 2034 struct btrfs_key found_key; 2035 struct btrfs_path *path; 2036 int len; 2037 u64 parent_dir; 2038 2039 path = alloc_path_for_send(); 2040 if (!path) 2041 return -ENOMEM; 2042 2043 key.objectid = ino; 2044 key.type = BTRFS_INODE_REF_KEY; 2045 key.offset = 0; 2046 2047 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2048 if (ret < 0) 2049 goto out; 2050 if (!ret) 2051 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2052 path->slots[0]); 2053 if (ret || found_key.objectid != ino || 2054 (found_key.type != BTRFS_INODE_REF_KEY && 2055 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 2056 ret = -ENOENT; 2057 goto out; 2058 } 2059 2060 if (found_key.type == BTRFS_INODE_REF_KEY) { 2061 struct btrfs_inode_ref *iref; 2062 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2063 struct btrfs_inode_ref); 2064 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 2065 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2066 (unsigned long)(iref + 1), 2067 len); 2068 parent_dir = found_key.offset; 2069 } else { 2070 struct btrfs_inode_extref *extref; 2071 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2072 struct btrfs_inode_extref); 2073 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2074 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2075 (unsigned long)&extref->name, len); 2076 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2077 } 2078 if (ret < 0) 2079 goto out; 2080 btrfs_release_path(path); 2081 2082 if (dir_gen) { 2083 ret = get_inode_gen(root, parent_dir, dir_gen); 2084 if (ret < 0) 2085 goto out; 2086 } 2087 2088 *dir = parent_dir; 2089 2090 out: 2091 btrfs_free_path(path); 2092 return ret; 2093 } 2094 2095 static int is_first_ref(struct btrfs_root *root, 2096 u64 ino, u64 dir, 2097 const char *name, int name_len) 2098 { 2099 int ret; 2100 struct fs_path *tmp_name; 2101 u64 tmp_dir; 2102 2103 tmp_name = fs_path_alloc(); 2104 if (!tmp_name) 2105 return -ENOMEM; 2106 2107 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2108 if (ret < 0) 2109 goto out; 2110 2111 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2112 ret = 0; 2113 goto out; 2114 } 2115 2116 ret = !memcmp(tmp_name->start, name, name_len); 2117 2118 out: 2119 fs_path_free(tmp_name); 2120 return ret; 2121 } 2122 2123 /* 2124 * Used by process_recorded_refs to determine if a new ref would overwrite an 2125 * already existing ref. In case it detects an overwrite, it returns the 2126 * inode/gen in who_ino/who_gen. 2127 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2128 * to make sure later references to the overwritten inode are possible. 2129 * Orphanizing is however only required for the first ref of an inode. 2130 * process_recorded_refs does an additional is_first_ref check to see if 2131 * orphanizing is really required. 2132 */ 2133 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2134 const char *name, int name_len, 2135 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2136 { 2137 int ret; 2138 u64 parent_root_dir_gen; 2139 u64 other_inode = 0; 2140 struct btrfs_inode_info info; 2141 2142 if (!sctx->parent_root) 2143 return 0; 2144 2145 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2146 if (ret <= 0) 2147 return 0; 2148 2149 /* 2150 * If we have a parent root we need to verify that the parent dir was 2151 * not deleted and then re-created, if it was then we have no overwrite 2152 * and we can just unlink this entry. 2153 * 2154 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2155 * parent root. 2156 */ 2157 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2158 parent_root_dir_gen != dir_gen) 2159 return 0; 2160 2161 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2162 &other_inode); 2163 if (ret == -ENOENT) 2164 return 0; 2165 else if (ret < 0) 2166 return ret; 2167 2168 /* 2169 * Check if the overwritten ref was already processed. If yes, the ref 2170 * was already unlinked/moved, so we can safely assume that we will not 2171 * overwrite anything at this point in time. 2172 */ 2173 if (other_inode > sctx->send_progress || 2174 is_waiting_for_move(sctx, other_inode)) { 2175 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2176 if (ret < 0) 2177 return ret; 2178 2179 *who_ino = other_inode; 2180 *who_gen = info.gen; 2181 *who_mode = info.mode; 2182 return 1; 2183 } 2184 2185 return 0; 2186 } 2187 2188 /* 2189 * Checks if the ref was overwritten by an already processed inode. This is 2190 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2191 * thus the orphan name needs be used. 2192 * process_recorded_refs also uses it to avoid unlinking of refs that were 2193 * overwritten. 2194 */ 2195 static int did_overwrite_ref(struct send_ctx *sctx, 2196 u64 dir, u64 dir_gen, 2197 u64 ino, u64 ino_gen, 2198 const char *name, int name_len) 2199 { 2200 int ret; 2201 u64 ow_inode; 2202 u64 ow_gen = 0; 2203 u64 send_root_dir_gen; 2204 2205 if (!sctx->parent_root) 2206 return 0; 2207 2208 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2209 if (ret <= 0) 2210 return ret; 2211 2212 /* 2213 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2214 * send root. 2215 */ 2216 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2217 return 0; 2218 2219 /* check if the ref was overwritten by another ref */ 2220 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2221 &ow_inode); 2222 if (ret == -ENOENT) { 2223 /* was never and will never be overwritten */ 2224 return 0; 2225 } else if (ret < 0) { 2226 return ret; 2227 } 2228 2229 if (ow_inode == ino) { 2230 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2231 if (ret < 0) 2232 return ret; 2233 2234 /* It's the same inode, so no overwrite happened. */ 2235 if (ow_gen == ino_gen) 2236 return 0; 2237 } 2238 2239 /* 2240 * We know that it is or will be overwritten. Check this now. 2241 * The current inode being processed might have been the one that caused 2242 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2243 * the current inode being processed. 2244 */ 2245 if (ow_inode < sctx->send_progress) 2246 return 1; 2247 2248 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2249 if (ow_gen == 0) { 2250 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2251 if (ret < 0) 2252 return ret; 2253 } 2254 if (ow_gen == sctx->cur_inode_gen) 2255 return 1; 2256 } 2257 2258 return 0; 2259 } 2260 2261 /* 2262 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2263 * that got overwritten. This is used by process_recorded_refs to determine 2264 * if it has to use the path as returned by get_cur_path or the orphan name. 2265 */ 2266 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2267 { 2268 int ret = 0; 2269 struct fs_path *name = NULL; 2270 u64 dir; 2271 u64 dir_gen; 2272 2273 if (!sctx->parent_root) 2274 goto out; 2275 2276 name = fs_path_alloc(); 2277 if (!name) 2278 return -ENOMEM; 2279 2280 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2281 if (ret < 0) 2282 goto out; 2283 2284 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2285 name->start, fs_path_len(name)); 2286 2287 out: 2288 fs_path_free(name); 2289 return ret; 2290 } 2291 2292 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2293 u64 ino, u64 gen) 2294 { 2295 struct btrfs_lru_cache_entry *entry; 2296 2297 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2298 if (!entry) 2299 return NULL; 2300 2301 return container_of(entry, struct name_cache_entry, entry); 2302 } 2303 2304 /* 2305 * Used by get_cur_path for each ref up to the root. 2306 * Returns 0 if it succeeded. 2307 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2308 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2309 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2310 * Returns <0 in case of error. 2311 */ 2312 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2313 u64 ino, u64 gen, 2314 u64 *parent_ino, 2315 u64 *parent_gen, 2316 struct fs_path *dest) 2317 { 2318 int ret; 2319 int nce_ret; 2320 struct name_cache_entry *nce; 2321 2322 /* 2323 * First check if we already did a call to this function with the same 2324 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2325 * return the cached result. 2326 */ 2327 nce = name_cache_search(sctx, ino, gen); 2328 if (nce) { 2329 if (ino < sctx->send_progress && nce->need_later_update) { 2330 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2331 nce = NULL; 2332 } else { 2333 *parent_ino = nce->parent_ino; 2334 *parent_gen = nce->parent_gen; 2335 ret = fs_path_add(dest, nce->name, nce->name_len); 2336 if (ret < 0) 2337 goto out; 2338 ret = nce->ret; 2339 goto out; 2340 } 2341 } 2342 2343 /* 2344 * If the inode is not existent yet, add the orphan name and return 1. 2345 * This should only happen for the parent dir that we determine in 2346 * record_new_ref_if_needed(). 2347 */ 2348 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2349 if (ret < 0) 2350 goto out; 2351 2352 if (!ret) { 2353 ret = gen_unique_name(sctx, ino, gen, dest); 2354 if (ret < 0) 2355 goto out; 2356 ret = 1; 2357 goto out_cache; 2358 } 2359 2360 /* 2361 * Depending on whether the inode was already processed or not, use 2362 * send_root or parent_root for ref lookup. 2363 */ 2364 if (ino < sctx->send_progress) 2365 ret = get_first_ref(sctx->send_root, ino, 2366 parent_ino, parent_gen, dest); 2367 else 2368 ret = get_first_ref(sctx->parent_root, ino, 2369 parent_ino, parent_gen, dest); 2370 if (ret < 0) 2371 goto out; 2372 2373 /* 2374 * Check if the ref was overwritten by an inode's ref that was processed 2375 * earlier. If yes, treat as orphan and return 1. 2376 */ 2377 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2378 dest->start, dest->end - dest->start); 2379 if (ret < 0) 2380 goto out; 2381 if (ret) { 2382 fs_path_reset(dest); 2383 ret = gen_unique_name(sctx, ino, gen, dest); 2384 if (ret < 0) 2385 goto out; 2386 ret = 1; 2387 } 2388 2389 out_cache: 2390 /* 2391 * Store the result of the lookup in the name cache. 2392 */ 2393 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2394 if (!nce) { 2395 ret = -ENOMEM; 2396 goto out; 2397 } 2398 2399 nce->entry.key = ino; 2400 nce->entry.gen = gen; 2401 nce->parent_ino = *parent_ino; 2402 nce->parent_gen = *parent_gen; 2403 nce->name_len = fs_path_len(dest); 2404 nce->ret = ret; 2405 strcpy(nce->name, dest->start); 2406 2407 if (ino < sctx->send_progress) 2408 nce->need_later_update = 0; 2409 else 2410 nce->need_later_update = 1; 2411 2412 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2413 if (nce_ret < 0) { 2414 kfree(nce); 2415 ret = nce_ret; 2416 } 2417 2418 out: 2419 return ret; 2420 } 2421 2422 /* 2423 * Magic happens here. This function returns the first ref to an inode as it 2424 * would look like while receiving the stream at this point in time. 2425 * We walk the path up to the root. For every inode in between, we check if it 2426 * was already processed/sent. If yes, we continue with the parent as found 2427 * in send_root. If not, we continue with the parent as found in parent_root. 2428 * If we encounter an inode that was deleted at this point in time, we use the 2429 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2430 * that were not created yet and overwritten inodes/refs. 2431 * 2432 * When do we have orphan inodes: 2433 * 1. When an inode is freshly created and thus no valid refs are available yet 2434 * 2. When a directory lost all it's refs (deleted) but still has dir items 2435 * inside which were not processed yet (pending for move/delete). If anyone 2436 * tried to get the path to the dir items, it would get a path inside that 2437 * orphan directory. 2438 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2439 * of an unprocessed inode. If in that case the first ref would be 2440 * overwritten, the overwritten inode gets "orphanized". Later when we 2441 * process this overwritten inode, it is restored at a new place by moving 2442 * the orphan inode. 2443 * 2444 * sctx->send_progress tells this function at which point in time receiving 2445 * would be. 2446 */ 2447 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2448 struct fs_path *dest) 2449 { 2450 int ret = 0; 2451 struct fs_path *name = NULL; 2452 u64 parent_inode = 0; 2453 u64 parent_gen = 0; 2454 int stop = 0; 2455 2456 name = fs_path_alloc(); 2457 if (!name) { 2458 ret = -ENOMEM; 2459 goto out; 2460 } 2461 2462 dest->reversed = 1; 2463 fs_path_reset(dest); 2464 2465 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2466 struct waiting_dir_move *wdm; 2467 2468 fs_path_reset(name); 2469 2470 if (is_waiting_for_rm(sctx, ino, gen)) { 2471 ret = gen_unique_name(sctx, ino, gen, name); 2472 if (ret < 0) 2473 goto out; 2474 ret = fs_path_add_path(dest, name); 2475 break; 2476 } 2477 2478 wdm = get_waiting_dir_move(sctx, ino); 2479 if (wdm && wdm->orphanized) { 2480 ret = gen_unique_name(sctx, ino, gen, name); 2481 stop = 1; 2482 } else if (wdm) { 2483 ret = get_first_ref(sctx->parent_root, ino, 2484 &parent_inode, &parent_gen, name); 2485 } else { 2486 ret = __get_cur_name_and_parent(sctx, ino, gen, 2487 &parent_inode, 2488 &parent_gen, name); 2489 if (ret) 2490 stop = 1; 2491 } 2492 2493 if (ret < 0) 2494 goto out; 2495 2496 ret = fs_path_add_path(dest, name); 2497 if (ret < 0) 2498 goto out; 2499 2500 ino = parent_inode; 2501 gen = parent_gen; 2502 } 2503 2504 out: 2505 fs_path_free(name); 2506 if (!ret) 2507 fs_path_unreverse(dest); 2508 return ret; 2509 } 2510 2511 /* 2512 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2513 */ 2514 static int send_subvol_begin(struct send_ctx *sctx) 2515 { 2516 int ret; 2517 struct btrfs_root *send_root = sctx->send_root; 2518 struct btrfs_root *parent_root = sctx->parent_root; 2519 struct btrfs_path *path; 2520 struct btrfs_key key; 2521 struct btrfs_root_ref *ref; 2522 struct extent_buffer *leaf; 2523 char *name = NULL; 2524 int namelen; 2525 2526 path = btrfs_alloc_path(); 2527 if (!path) 2528 return -ENOMEM; 2529 2530 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2531 if (!name) { 2532 btrfs_free_path(path); 2533 return -ENOMEM; 2534 } 2535 2536 key.objectid = send_root->root_key.objectid; 2537 key.type = BTRFS_ROOT_BACKREF_KEY; 2538 key.offset = 0; 2539 2540 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2541 &key, path, 1, 0); 2542 if (ret < 0) 2543 goto out; 2544 if (ret) { 2545 ret = -ENOENT; 2546 goto out; 2547 } 2548 2549 leaf = path->nodes[0]; 2550 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2551 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2552 key.objectid != send_root->root_key.objectid) { 2553 ret = -ENOENT; 2554 goto out; 2555 } 2556 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2557 namelen = btrfs_root_ref_name_len(leaf, ref); 2558 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2559 btrfs_release_path(path); 2560 2561 if (parent_root) { 2562 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2563 if (ret < 0) 2564 goto out; 2565 } else { 2566 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2567 if (ret < 0) 2568 goto out; 2569 } 2570 2571 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2572 2573 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2574 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2575 sctx->send_root->root_item.received_uuid); 2576 else 2577 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2578 sctx->send_root->root_item.uuid); 2579 2580 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2581 btrfs_root_ctransid(&sctx->send_root->root_item)); 2582 if (parent_root) { 2583 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2584 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2585 parent_root->root_item.received_uuid); 2586 else 2587 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2588 parent_root->root_item.uuid); 2589 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2590 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2591 } 2592 2593 ret = send_cmd(sctx); 2594 2595 tlv_put_failure: 2596 out: 2597 btrfs_free_path(path); 2598 kfree(name); 2599 return ret; 2600 } 2601 2602 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2603 { 2604 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2605 int ret = 0; 2606 struct fs_path *p; 2607 2608 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2609 2610 p = fs_path_alloc(); 2611 if (!p) 2612 return -ENOMEM; 2613 2614 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2615 if (ret < 0) 2616 goto out; 2617 2618 ret = get_cur_path(sctx, ino, gen, p); 2619 if (ret < 0) 2620 goto out; 2621 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2622 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2623 2624 ret = send_cmd(sctx); 2625 2626 tlv_put_failure: 2627 out: 2628 fs_path_free(p); 2629 return ret; 2630 } 2631 2632 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2633 { 2634 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2635 int ret = 0; 2636 struct fs_path *p; 2637 2638 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2639 2640 p = fs_path_alloc(); 2641 if (!p) 2642 return -ENOMEM; 2643 2644 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2645 if (ret < 0) 2646 goto out; 2647 2648 ret = get_cur_path(sctx, ino, gen, p); 2649 if (ret < 0) 2650 goto out; 2651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2652 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2653 2654 ret = send_cmd(sctx); 2655 2656 tlv_put_failure: 2657 out: 2658 fs_path_free(p); 2659 return ret; 2660 } 2661 2662 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2663 { 2664 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2665 int ret = 0; 2666 struct fs_path *p; 2667 2668 if (sctx->proto < 2) 2669 return 0; 2670 2671 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2672 2673 p = fs_path_alloc(); 2674 if (!p) 2675 return -ENOMEM; 2676 2677 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2678 if (ret < 0) 2679 goto out; 2680 2681 ret = get_cur_path(sctx, ino, gen, p); 2682 if (ret < 0) 2683 goto out; 2684 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2685 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2686 2687 ret = send_cmd(sctx); 2688 2689 tlv_put_failure: 2690 out: 2691 fs_path_free(p); 2692 return ret; 2693 } 2694 2695 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2696 { 2697 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2698 int ret = 0; 2699 struct fs_path *p; 2700 2701 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2702 ino, uid, gid); 2703 2704 p = fs_path_alloc(); 2705 if (!p) 2706 return -ENOMEM; 2707 2708 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2709 if (ret < 0) 2710 goto out; 2711 2712 ret = get_cur_path(sctx, ino, gen, p); 2713 if (ret < 0) 2714 goto out; 2715 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2716 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2717 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2718 2719 ret = send_cmd(sctx); 2720 2721 tlv_put_failure: 2722 out: 2723 fs_path_free(p); 2724 return ret; 2725 } 2726 2727 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2728 { 2729 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2730 int ret = 0; 2731 struct fs_path *p = NULL; 2732 struct btrfs_inode_item *ii; 2733 struct btrfs_path *path = NULL; 2734 struct extent_buffer *eb; 2735 struct btrfs_key key; 2736 int slot; 2737 2738 btrfs_debug(fs_info, "send_utimes %llu", ino); 2739 2740 p = fs_path_alloc(); 2741 if (!p) 2742 return -ENOMEM; 2743 2744 path = alloc_path_for_send(); 2745 if (!path) { 2746 ret = -ENOMEM; 2747 goto out; 2748 } 2749 2750 key.objectid = ino; 2751 key.type = BTRFS_INODE_ITEM_KEY; 2752 key.offset = 0; 2753 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2754 if (ret > 0) 2755 ret = -ENOENT; 2756 if (ret < 0) 2757 goto out; 2758 2759 eb = path->nodes[0]; 2760 slot = path->slots[0]; 2761 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2762 2763 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2764 if (ret < 0) 2765 goto out; 2766 2767 ret = get_cur_path(sctx, ino, gen, p); 2768 if (ret < 0) 2769 goto out; 2770 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2771 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2772 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2773 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2774 if (sctx->proto >= 2) 2775 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2776 2777 ret = send_cmd(sctx); 2778 2779 tlv_put_failure: 2780 out: 2781 fs_path_free(p); 2782 btrfs_free_path(path); 2783 return ret; 2784 } 2785 2786 /* 2787 * If the cache is full, we can't remove entries from it and do a call to 2788 * send_utimes() for each respective inode, because we might be finishing 2789 * processing an inode that is a directory and it just got renamed, and existing 2790 * entries in the cache may refer to inodes that have the directory in their 2791 * full path - in which case we would generate outdated paths (pre-rename) 2792 * for the inodes that the cache entries point to. Instead of prunning the 2793 * cache when inserting, do it after we finish processing each inode at 2794 * finish_inode_if_needed(). 2795 */ 2796 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2797 { 2798 struct btrfs_lru_cache_entry *entry; 2799 int ret; 2800 2801 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2802 if (entry != NULL) 2803 return 0; 2804 2805 /* Caching is optional, don't fail if we can't allocate memory. */ 2806 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2807 if (!entry) 2808 return send_utimes(sctx, dir, gen); 2809 2810 entry->key = dir; 2811 entry->gen = gen; 2812 2813 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2814 ASSERT(ret != -EEXIST); 2815 if (ret) { 2816 kfree(entry); 2817 return send_utimes(sctx, dir, gen); 2818 } 2819 2820 return 0; 2821 } 2822 2823 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2824 { 2825 while (btrfs_lru_cache_size(&sctx->dir_utimes_cache) > 2826 SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2827 struct btrfs_lru_cache_entry *lru; 2828 int ret; 2829 2830 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2831 ASSERT(lru != NULL); 2832 2833 ret = send_utimes(sctx, lru->key, lru->gen); 2834 if (ret) 2835 return ret; 2836 2837 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2838 } 2839 2840 return 0; 2841 } 2842 2843 /* 2844 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2845 * a valid path yet because we did not process the refs yet. So, the inode 2846 * is created as orphan. 2847 */ 2848 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2849 { 2850 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2851 int ret = 0; 2852 struct fs_path *p; 2853 int cmd; 2854 struct btrfs_inode_info info; 2855 u64 gen; 2856 u64 mode; 2857 u64 rdev; 2858 2859 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2860 2861 p = fs_path_alloc(); 2862 if (!p) 2863 return -ENOMEM; 2864 2865 if (ino != sctx->cur_ino) { 2866 ret = get_inode_info(sctx->send_root, ino, &info); 2867 if (ret < 0) 2868 goto out; 2869 gen = info.gen; 2870 mode = info.mode; 2871 rdev = info.rdev; 2872 } else { 2873 gen = sctx->cur_inode_gen; 2874 mode = sctx->cur_inode_mode; 2875 rdev = sctx->cur_inode_rdev; 2876 } 2877 2878 if (S_ISREG(mode)) { 2879 cmd = BTRFS_SEND_C_MKFILE; 2880 } else if (S_ISDIR(mode)) { 2881 cmd = BTRFS_SEND_C_MKDIR; 2882 } else if (S_ISLNK(mode)) { 2883 cmd = BTRFS_SEND_C_SYMLINK; 2884 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2885 cmd = BTRFS_SEND_C_MKNOD; 2886 } else if (S_ISFIFO(mode)) { 2887 cmd = BTRFS_SEND_C_MKFIFO; 2888 } else if (S_ISSOCK(mode)) { 2889 cmd = BTRFS_SEND_C_MKSOCK; 2890 } else { 2891 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2892 (int)(mode & S_IFMT)); 2893 ret = -EOPNOTSUPP; 2894 goto out; 2895 } 2896 2897 ret = begin_cmd(sctx, cmd); 2898 if (ret < 0) 2899 goto out; 2900 2901 ret = gen_unique_name(sctx, ino, gen, p); 2902 if (ret < 0) 2903 goto out; 2904 2905 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2906 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2907 2908 if (S_ISLNK(mode)) { 2909 fs_path_reset(p); 2910 ret = read_symlink(sctx->send_root, ino, p); 2911 if (ret < 0) 2912 goto out; 2913 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2914 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2915 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2916 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2917 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2918 } 2919 2920 ret = send_cmd(sctx); 2921 if (ret < 0) 2922 goto out; 2923 2924 2925 tlv_put_failure: 2926 out: 2927 fs_path_free(p); 2928 return ret; 2929 } 2930 2931 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2932 { 2933 struct btrfs_lru_cache_entry *entry; 2934 int ret; 2935 2936 /* Caching is optional, ignore any failures. */ 2937 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2938 if (!entry) 2939 return; 2940 2941 entry->key = dir; 2942 entry->gen = 0; 2943 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2944 if (ret < 0) 2945 kfree(entry); 2946 } 2947 2948 /* 2949 * We need some special handling for inodes that get processed before the parent 2950 * directory got created. See process_recorded_refs for details. 2951 * This function does the check if we already created the dir out of order. 2952 */ 2953 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2954 { 2955 int ret = 0; 2956 int iter_ret = 0; 2957 struct btrfs_path *path = NULL; 2958 struct btrfs_key key; 2959 struct btrfs_key found_key; 2960 struct btrfs_key di_key; 2961 struct btrfs_dir_item *di; 2962 2963 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2964 return 1; 2965 2966 path = alloc_path_for_send(); 2967 if (!path) 2968 return -ENOMEM; 2969 2970 key.objectid = dir; 2971 key.type = BTRFS_DIR_INDEX_KEY; 2972 key.offset = 0; 2973 2974 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2975 struct extent_buffer *eb = path->nodes[0]; 2976 2977 if (found_key.objectid != key.objectid || 2978 found_key.type != key.type) { 2979 ret = 0; 2980 break; 2981 } 2982 2983 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2984 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2985 2986 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2987 di_key.objectid < sctx->send_progress) { 2988 ret = 1; 2989 cache_dir_created(sctx, dir); 2990 break; 2991 } 2992 } 2993 /* Catch error found during iteration */ 2994 if (iter_ret < 0) 2995 ret = iter_ret; 2996 2997 btrfs_free_path(path); 2998 return ret; 2999 } 3000 3001 /* 3002 * Only creates the inode if it is: 3003 * 1. Not a directory 3004 * 2. Or a directory which was not created already due to out of order 3005 * directories. See did_create_dir and process_recorded_refs for details. 3006 */ 3007 static int send_create_inode_if_needed(struct send_ctx *sctx) 3008 { 3009 int ret; 3010 3011 if (S_ISDIR(sctx->cur_inode_mode)) { 3012 ret = did_create_dir(sctx, sctx->cur_ino); 3013 if (ret < 0) 3014 return ret; 3015 else if (ret > 0) 3016 return 0; 3017 } 3018 3019 ret = send_create_inode(sctx, sctx->cur_ino); 3020 3021 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 3022 cache_dir_created(sctx, sctx->cur_ino); 3023 3024 return ret; 3025 } 3026 3027 struct recorded_ref { 3028 struct list_head list; 3029 char *name; 3030 struct fs_path *full_path; 3031 u64 dir; 3032 u64 dir_gen; 3033 int name_len; 3034 struct rb_node node; 3035 struct rb_root *root; 3036 }; 3037 3038 static struct recorded_ref *recorded_ref_alloc(void) 3039 { 3040 struct recorded_ref *ref; 3041 3042 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 3043 if (!ref) 3044 return NULL; 3045 RB_CLEAR_NODE(&ref->node); 3046 INIT_LIST_HEAD(&ref->list); 3047 return ref; 3048 } 3049 3050 static void recorded_ref_free(struct recorded_ref *ref) 3051 { 3052 if (!ref) 3053 return; 3054 if (!RB_EMPTY_NODE(&ref->node)) 3055 rb_erase(&ref->node, ref->root); 3056 list_del(&ref->list); 3057 fs_path_free(ref->full_path); 3058 kfree(ref); 3059 } 3060 3061 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3062 { 3063 ref->full_path = path; 3064 ref->name = (char *)kbasename(ref->full_path->start); 3065 ref->name_len = ref->full_path->end - ref->name; 3066 } 3067 3068 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3069 { 3070 struct recorded_ref *new; 3071 3072 new = recorded_ref_alloc(); 3073 if (!new) 3074 return -ENOMEM; 3075 3076 new->dir = ref->dir; 3077 new->dir_gen = ref->dir_gen; 3078 list_add_tail(&new->list, list); 3079 return 0; 3080 } 3081 3082 static void __free_recorded_refs(struct list_head *head) 3083 { 3084 struct recorded_ref *cur; 3085 3086 while (!list_empty(head)) { 3087 cur = list_entry(head->next, struct recorded_ref, list); 3088 recorded_ref_free(cur); 3089 } 3090 } 3091 3092 static void free_recorded_refs(struct send_ctx *sctx) 3093 { 3094 __free_recorded_refs(&sctx->new_refs); 3095 __free_recorded_refs(&sctx->deleted_refs); 3096 } 3097 3098 /* 3099 * Renames/moves a file/dir to its orphan name. Used when the first 3100 * ref of an unprocessed inode gets overwritten and for all non empty 3101 * directories. 3102 */ 3103 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3104 struct fs_path *path) 3105 { 3106 int ret; 3107 struct fs_path *orphan; 3108 3109 orphan = fs_path_alloc(); 3110 if (!orphan) 3111 return -ENOMEM; 3112 3113 ret = gen_unique_name(sctx, ino, gen, orphan); 3114 if (ret < 0) 3115 goto out; 3116 3117 ret = send_rename(sctx, path, orphan); 3118 3119 out: 3120 fs_path_free(orphan); 3121 return ret; 3122 } 3123 3124 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3125 u64 dir_ino, u64 dir_gen) 3126 { 3127 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3128 struct rb_node *parent = NULL; 3129 struct orphan_dir_info *entry, *odi; 3130 3131 while (*p) { 3132 parent = *p; 3133 entry = rb_entry(parent, struct orphan_dir_info, node); 3134 if (dir_ino < entry->ino) 3135 p = &(*p)->rb_left; 3136 else if (dir_ino > entry->ino) 3137 p = &(*p)->rb_right; 3138 else if (dir_gen < entry->gen) 3139 p = &(*p)->rb_left; 3140 else if (dir_gen > entry->gen) 3141 p = &(*p)->rb_right; 3142 else 3143 return entry; 3144 } 3145 3146 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3147 if (!odi) 3148 return ERR_PTR(-ENOMEM); 3149 odi->ino = dir_ino; 3150 odi->gen = dir_gen; 3151 odi->last_dir_index_offset = 0; 3152 odi->dir_high_seq_ino = 0; 3153 3154 rb_link_node(&odi->node, parent, p); 3155 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3156 return odi; 3157 } 3158 3159 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3160 u64 dir_ino, u64 gen) 3161 { 3162 struct rb_node *n = sctx->orphan_dirs.rb_node; 3163 struct orphan_dir_info *entry; 3164 3165 while (n) { 3166 entry = rb_entry(n, struct orphan_dir_info, node); 3167 if (dir_ino < entry->ino) 3168 n = n->rb_left; 3169 else if (dir_ino > entry->ino) 3170 n = n->rb_right; 3171 else if (gen < entry->gen) 3172 n = n->rb_left; 3173 else if (gen > entry->gen) 3174 n = n->rb_right; 3175 else 3176 return entry; 3177 } 3178 return NULL; 3179 } 3180 3181 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3182 { 3183 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3184 3185 return odi != NULL; 3186 } 3187 3188 static void free_orphan_dir_info(struct send_ctx *sctx, 3189 struct orphan_dir_info *odi) 3190 { 3191 if (!odi) 3192 return; 3193 rb_erase(&odi->node, &sctx->orphan_dirs); 3194 kfree(odi); 3195 } 3196 3197 /* 3198 * Returns 1 if a directory can be removed at this point in time. 3199 * We check this by iterating all dir items and checking if the inode behind 3200 * the dir item was already processed. 3201 */ 3202 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3203 { 3204 int ret = 0; 3205 int iter_ret = 0; 3206 struct btrfs_root *root = sctx->parent_root; 3207 struct btrfs_path *path; 3208 struct btrfs_key key; 3209 struct btrfs_key found_key; 3210 struct btrfs_key loc; 3211 struct btrfs_dir_item *di; 3212 struct orphan_dir_info *odi = NULL; 3213 u64 dir_high_seq_ino = 0; 3214 u64 last_dir_index_offset = 0; 3215 3216 /* 3217 * Don't try to rmdir the top/root subvolume dir. 3218 */ 3219 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3220 return 0; 3221 3222 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3223 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3224 return 0; 3225 3226 path = alloc_path_for_send(); 3227 if (!path) 3228 return -ENOMEM; 3229 3230 if (!odi) { 3231 /* 3232 * Find the inode number associated with the last dir index 3233 * entry. This is very likely the inode with the highest number 3234 * of all inodes that have an entry in the directory. We can 3235 * then use it to avoid future calls to can_rmdir(), when 3236 * processing inodes with a lower number, from having to search 3237 * the parent root b+tree for dir index keys. 3238 */ 3239 key.objectid = dir; 3240 key.type = BTRFS_DIR_INDEX_KEY; 3241 key.offset = (u64)-1; 3242 3243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3244 if (ret < 0) { 3245 goto out; 3246 } else if (ret > 0) { 3247 /* Can't happen, the root is never empty. */ 3248 ASSERT(path->slots[0] > 0); 3249 if (WARN_ON(path->slots[0] == 0)) { 3250 ret = -EUCLEAN; 3251 goto out; 3252 } 3253 path->slots[0]--; 3254 } 3255 3256 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3257 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3258 /* No index keys, dir can be removed. */ 3259 ret = 1; 3260 goto out; 3261 } 3262 3263 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3264 struct btrfs_dir_item); 3265 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3266 dir_high_seq_ino = loc.objectid; 3267 if (sctx->cur_ino < dir_high_seq_ino) { 3268 ret = 0; 3269 goto out; 3270 } 3271 3272 btrfs_release_path(path); 3273 } 3274 3275 key.objectid = dir; 3276 key.type = BTRFS_DIR_INDEX_KEY; 3277 key.offset = (odi ? odi->last_dir_index_offset : 0); 3278 3279 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3280 struct waiting_dir_move *dm; 3281 3282 if (found_key.objectid != key.objectid || 3283 found_key.type != key.type) 3284 break; 3285 3286 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3287 struct btrfs_dir_item); 3288 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3289 3290 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3291 last_dir_index_offset = found_key.offset; 3292 3293 dm = get_waiting_dir_move(sctx, loc.objectid); 3294 if (dm) { 3295 dm->rmdir_ino = dir; 3296 dm->rmdir_gen = dir_gen; 3297 ret = 0; 3298 goto out; 3299 } 3300 3301 if (loc.objectid > sctx->cur_ino) { 3302 ret = 0; 3303 goto out; 3304 } 3305 } 3306 if (iter_ret < 0) { 3307 ret = iter_ret; 3308 goto out; 3309 } 3310 free_orphan_dir_info(sctx, odi); 3311 3312 ret = 1; 3313 3314 out: 3315 btrfs_free_path(path); 3316 3317 if (ret) 3318 return ret; 3319 3320 if (!odi) { 3321 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3322 if (IS_ERR(odi)) 3323 return PTR_ERR(odi); 3324 3325 odi->gen = dir_gen; 3326 } 3327 3328 odi->last_dir_index_offset = last_dir_index_offset; 3329 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3330 3331 return 0; 3332 } 3333 3334 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3335 { 3336 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3337 3338 return entry != NULL; 3339 } 3340 3341 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3342 { 3343 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3344 struct rb_node *parent = NULL; 3345 struct waiting_dir_move *entry, *dm; 3346 3347 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3348 if (!dm) 3349 return -ENOMEM; 3350 dm->ino = ino; 3351 dm->rmdir_ino = 0; 3352 dm->rmdir_gen = 0; 3353 dm->orphanized = orphanized; 3354 3355 while (*p) { 3356 parent = *p; 3357 entry = rb_entry(parent, struct waiting_dir_move, node); 3358 if (ino < entry->ino) { 3359 p = &(*p)->rb_left; 3360 } else if (ino > entry->ino) { 3361 p = &(*p)->rb_right; 3362 } else { 3363 kfree(dm); 3364 return -EEXIST; 3365 } 3366 } 3367 3368 rb_link_node(&dm->node, parent, p); 3369 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3370 return 0; 3371 } 3372 3373 static struct waiting_dir_move * 3374 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3375 { 3376 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3377 struct waiting_dir_move *entry; 3378 3379 while (n) { 3380 entry = rb_entry(n, struct waiting_dir_move, node); 3381 if (ino < entry->ino) 3382 n = n->rb_left; 3383 else if (ino > entry->ino) 3384 n = n->rb_right; 3385 else 3386 return entry; 3387 } 3388 return NULL; 3389 } 3390 3391 static void free_waiting_dir_move(struct send_ctx *sctx, 3392 struct waiting_dir_move *dm) 3393 { 3394 if (!dm) 3395 return; 3396 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3397 kfree(dm); 3398 } 3399 3400 static int add_pending_dir_move(struct send_ctx *sctx, 3401 u64 ino, 3402 u64 ino_gen, 3403 u64 parent_ino, 3404 struct list_head *new_refs, 3405 struct list_head *deleted_refs, 3406 const bool is_orphan) 3407 { 3408 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3409 struct rb_node *parent = NULL; 3410 struct pending_dir_move *entry = NULL, *pm; 3411 struct recorded_ref *cur; 3412 int exists = 0; 3413 int ret; 3414 3415 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3416 if (!pm) 3417 return -ENOMEM; 3418 pm->parent_ino = parent_ino; 3419 pm->ino = ino; 3420 pm->gen = ino_gen; 3421 INIT_LIST_HEAD(&pm->list); 3422 INIT_LIST_HEAD(&pm->update_refs); 3423 RB_CLEAR_NODE(&pm->node); 3424 3425 while (*p) { 3426 parent = *p; 3427 entry = rb_entry(parent, struct pending_dir_move, node); 3428 if (parent_ino < entry->parent_ino) { 3429 p = &(*p)->rb_left; 3430 } else if (parent_ino > entry->parent_ino) { 3431 p = &(*p)->rb_right; 3432 } else { 3433 exists = 1; 3434 break; 3435 } 3436 } 3437 3438 list_for_each_entry(cur, deleted_refs, list) { 3439 ret = dup_ref(cur, &pm->update_refs); 3440 if (ret < 0) 3441 goto out; 3442 } 3443 list_for_each_entry(cur, new_refs, list) { 3444 ret = dup_ref(cur, &pm->update_refs); 3445 if (ret < 0) 3446 goto out; 3447 } 3448 3449 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3450 if (ret) 3451 goto out; 3452 3453 if (exists) { 3454 list_add_tail(&pm->list, &entry->list); 3455 } else { 3456 rb_link_node(&pm->node, parent, p); 3457 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3458 } 3459 ret = 0; 3460 out: 3461 if (ret) { 3462 __free_recorded_refs(&pm->update_refs); 3463 kfree(pm); 3464 } 3465 return ret; 3466 } 3467 3468 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3469 u64 parent_ino) 3470 { 3471 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3472 struct pending_dir_move *entry; 3473 3474 while (n) { 3475 entry = rb_entry(n, struct pending_dir_move, node); 3476 if (parent_ino < entry->parent_ino) 3477 n = n->rb_left; 3478 else if (parent_ino > entry->parent_ino) 3479 n = n->rb_right; 3480 else 3481 return entry; 3482 } 3483 return NULL; 3484 } 3485 3486 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3487 u64 ino, u64 gen, u64 *ancestor_ino) 3488 { 3489 int ret = 0; 3490 u64 parent_inode = 0; 3491 u64 parent_gen = 0; 3492 u64 start_ino = ino; 3493 3494 *ancestor_ino = 0; 3495 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3496 fs_path_reset(name); 3497 3498 if (is_waiting_for_rm(sctx, ino, gen)) 3499 break; 3500 if (is_waiting_for_move(sctx, ino)) { 3501 if (*ancestor_ino == 0) 3502 *ancestor_ino = ino; 3503 ret = get_first_ref(sctx->parent_root, ino, 3504 &parent_inode, &parent_gen, name); 3505 } else { 3506 ret = __get_cur_name_and_parent(sctx, ino, gen, 3507 &parent_inode, 3508 &parent_gen, name); 3509 if (ret > 0) { 3510 ret = 0; 3511 break; 3512 } 3513 } 3514 if (ret < 0) 3515 break; 3516 if (parent_inode == start_ino) { 3517 ret = 1; 3518 if (*ancestor_ino == 0) 3519 *ancestor_ino = ino; 3520 break; 3521 } 3522 ino = parent_inode; 3523 gen = parent_gen; 3524 } 3525 return ret; 3526 } 3527 3528 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3529 { 3530 struct fs_path *from_path = NULL; 3531 struct fs_path *to_path = NULL; 3532 struct fs_path *name = NULL; 3533 u64 orig_progress = sctx->send_progress; 3534 struct recorded_ref *cur; 3535 u64 parent_ino, parent_gen; 3536 struct waiting_dir_move *dm = NULL; 3537 u64 rmdir_ino = 0; 3538 u64 rmdir_gen; 3539 u64 ancestor; 3540 bool is_orphan; 3541 int ret; 3542 3543 name = fs_path_alloc(); 3544 from_path = fs_path_alloc(); 3545 if (!name || !from_path) { 3546 ret = -ENOMEM; 3547 goto out; 3548 } 3549 3550 dm = get_waiting_dir_move(sctx, pm->ino); 3551 ASSERT(dm); 3552 rmdir_ino = dm->rmdir_ino; 3553 rmdir_gen = dm->rmdir_gen; 3554 is_orphan = dm->orphanized; 3555 free_waiting_dir_move(sctx, dm); 3556 3557 if (is_orphan) { 3558 ret = gen_unique_name(sctx, pm->ino, 3559 pm->gen, from_path); 3560 } else { 3561 ret = get_first_ref(sctx->parent_root, pm->ino, 3562 &parent_ino, &parent_gen, name); 3563 if (ret < 0) 3564 goto out; 3565 ret = get_cur_path(sctx, parent_ino, parent_gen, 3566 from_path); 3567 if (ret < 0) 3568 goto out; 3569 ret = fs_path_add_path(from_path, name); 3570 } 3571 if (ret < 0) 3572 goto out; 3573 3574 sctx->send_progress = sctx->cur_ino + 1; 3575 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3576 if (ret < 0) 3577 goto out; 3578 if (ret) { 3579 LIST_HEAD(deleted_refs); 3580 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3581 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3582 &pm->update_refs, &deleted_refs, 3583 is_orphan); 3584 if (ret < 0) 3585 goto out; 3586 if (rmdir_ino) { 3587 dm = get_waiting_dir_move(sctx, pm->ino); 3588 ASSERT(dm); 3589 dm->rmdir_ino = rmdir_ino; 3590 dm->rmdir_gen = rmdir_gen; 3591 } 3592 goto out; 3593 } 3594 fs_path_reset(name); 3595 to_path = name; 3596 name = NULL; 3597 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3598 if (ret < 0) 3599 goto out; 3600 3601 ret = send_rename(sctx, from_path, to_path); 3602 if (ret < 0) 3603 goto out; 3604 3605 if (rmdir_ino) { 3606 struct orphan_dir_info *odi; 3607 u64 gen; 3608 3609 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3610 if (!odi) { 3611 /* already deleted */ 3612 goto finish; 3613 } 3614 gen = odi->gen; 3615 3616 ret = can_rmdir(sctx, rmdir_ino, gen); 3617 if (ret < 0) 3618 goto out; 3619 if (!ret) 3620 goto finish; 3621 3622 name = fs_path_alloc(); 3623 if (!name) { 3624 ret = -ENOMEM; 3625 goto out; 3626 } 3627 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3628 if (ret < 0) 3629 goto out; 3630 ret = send_rmdir(sctx, name); 3631 if (ret < 0) 3632 goto out; 3633 } 3634 3635 finish: 3636 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3637 if (ret < 0) 3638 goto out; 3639 3640 /* 3641 * After rename/move, need to update the utimes of both new parent(s) 3642 * and old parent(s). 3643 */ 3644 list_for_each_entry(cur, &pm->update_refs, list) { 3645 /* 3646 * The parent inode might have been deleted in the send snapshot 3647 */ 3648 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3649 if (ret == -ENOENT) { 3650 ret = 0; 3651 continue; 3652 } 3653 if (ret < 0) 3654 goto out; 3655 3656 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3657 if (ret < 0) 3658 goto out; 3659 } 3660 3661 out: 3662 fs_path_free(name); 3663 fs_path_free(from_path); 3664 fs_path_free(to_path); 3665 sctx->send_progress = orig_progress; 3666 3667 return ret; 3668 } 3669 3670 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3671 { 3672 if (!list_empty(&m->list)) 3673 list_del(&m->list); 3674 if (!RB_EMPTY_NODE(&m->node)) 3675 rb_erase(&m->node, &sctx->pending_dir_moves); 3676 __free_recorded_refs(&m->update_refs); 3677 kfree(m); 3678 } 3679 3680 static void tail_append_pending_moves(struct send_ctx *sctx, 3681 struct pending_dir_move *moves, 3682 struct list_head *stack) 3683 { 3684 if (list_empty(&moves->list)) { 3685 list_add_tail(&moves->list, stack); 3686 } else { 3687 LIST_HEAD(list); 3688 list_splice_init(&moves->list, &list); 3689 list_add_tail(&moves->list, stack); 3690 list_splice_tail(&list, stack); 3691 } 3692 if (!RB_EMPTY_NODE(&moves->node)) { 3693 rb_erase(&moves->node, &sctx->pending_dir_moves); 3694 RB_CLEAR_NODE(&moves->node); 3695 } 3696 } 3697 3698 static int apply_children_dir_moves(struct send_ctx *sctx) 3699 { 3700 struct pending_dir_move *pm; 3701 LIST_HEAD(stack); 3702 u64 parent_ino = sctx->cur_ino; 3703 int ret = 0; 3704 3705 pm = get_pending_dir_moves(sctx, parent_ino); 3706 if (!pm) 3707 return 0; 3708 3709 tail_append_pending_moves(sctx, pm, &stack); 3710 3711 while (!list_empty(&stack)) { 3712 pm = list_first_entry(&stack, struct pending_dir_move, list); 3713 parent_ino = pm->ino; 3714 ret = apply_dir_move(sctx, pm); 3715 free_pending_move(sctx, pm); 3716 if (ret) 3717 goto out; 3718 pm = get_pending_dir_moves(sctx, parent_ino); 3719 if (pm) 3720 tail_append_pending_moves(sctx, pm, &stack); 3721 } 3722 return 0; 3723 3724 out: 3725 while (!list_empty(&stack)) { 3726 pm = list_first_entry(&stack, struct pending_dir_move, list); 3727 free_pending_move(sctx, pm); 3728 } 3729 return ret; 3730 } 3731 3732 /* 3733 * We might need to delay a directory rename even when no ancestor directory 3734 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3735 * renamed. This happens when we rename a directory to the old name (the name 3736 * in the parent root) of some other unrelated directory that got its rename 3737 * delayed due to some ancestor with higher number that got renamed. 3738 * 3739 * Example: 3740 * 3741 * Parent snapshot: 3742 * . (ino 256) 3743 * |---- a/ (ino 257) 3744 * | |---- file (ino 260) 3745 * | 3746 * |---- b/ (ino 258) 3747 * |---- c/ (ino 259) 3748 * 3749 * Send snapshot: 3750 * . (ino 256) 3751 * |---- a/ (ino 258) 3752 * |---- x/ (ino 259) 3753 * |---- y/ (ino 257) 3754 * |----- file (ino 260) 3755 * 3756 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3757 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3758 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3759 * must issue is: 3760 * 3761 * 1 - rename 259 from 'c' to 'x' 3762 * 2 - rename 257 from 'a' to 'x/y' 3763 * 3 - rename 258 from 'b' to 'a' 3764 * 3765 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3766 * be done right away and < 0 on error. 3767 */ 3768 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3769 struct recorded_ref *parent_ref, 3770 const bool is_orphan) 3771 { 3772 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3773 struct btrfs_path *path; 3774 struct btrfs_key key; 3775 struct btrfs_key di_key; 3776 struct btrfs_dir_item *di; 3777 u64 left_gen; 3778 u64 right_gen; 3779 int ret = 0; 3780 struct waiting_dir_move *wdm; 3781 3782 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3783 return 0; 3784 3785 path = alloc_path_for_send(); 3786 if (!path) 3787 return -ENOMEM; 3788 3789 key.objectid = parent_ref->dir; 3790 key.type = BTRFS_DIR_ITEM_KEY; 3791 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3792 3793 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3794 if (ret < 0) { 3795 goto out; 3796 } else if (ret > 0) { 3797 ret = 0; 3798 goto out; 3799 } 3800 3801 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3802 parent_ref->name_len); 3803 if (!di) { 3804 ret = 0; 3805 goto out; 3806 } 3807 /* 3808 * di_key.objectid has the number of the inode that has a dentry in the 3809 * parent directory with the same name that sctx->cur_ino is being 3810 * renamed to. We need to check if that inode is in the send root as 3811 * well and if it is currently marked as an inode with a pending rename, 3812 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3813 * that it happens after that other inode is renamed. 3814 */ 3815 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3816 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3817 ret = 0; 3818 goto out; 3819 } 3820 3821 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3822 if (ret < 0) 3823 goto out; 3824 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3825 if (ret < 0) { 3826 if (ret == -ENOENT) 3827 ret = 0; 3828 goto out; 3829 } 3830 3831 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3832 if (right_gen != left_gen) { 3833 ret = 0; 3834 goto out; 3835 } 3836 3837 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3838 if (wdm && !wdm->orphanized) { 3839 ret = add_pending_dir_move(sctx, 3840 sctx->cur_ino, 3841 sctx->cur_inode_gen, 3842 di_key.objectid, 3843 &sctx->new_refs, 3844 &sctx->deleted_refs, 3845 is_orphan); 3846 if (!ret) 3847 ret = 1; 3848 } 3849 out: 3850 btrfs_free_path(path); 3851 return ret; 3852 } 3853 3854 /* 3855 * Check if inode ino2, or any of its ancestors, is inode ino1. 3856 * Return 1 if true, 0 if false and < 0 on error. 3857 */ 3858 static int check_ino_in_path(struct btrfs_root *root, 3859 const u64 ino1, 3860 const u64 ino1_gen, 3861 const u64 ino2, 3862 const u64 ino2_gen, 3863 struct fs_path *fs_path) 3864 { 3865 u64 ino = ino2; 3866 3867 if (ino1 == ino2) 3868 return ino1_gen == ino2_gen; 3869 3870 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3871 u64 parent; 3872 u64 parent_gen; 3873 int ret; 3874 3875 fs_path_reset(fs_path); 3876 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3877 if (ret < 0) 3878 return ret; 3879 if (parent == ino1) 3880 return parent_gen == ino1_gen; 3881 ino = parent; 3882 } 3883 return 0; 3884 } 3885 3886 /* 3887 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3888 * possible path (in case ino2 is not a directory and has multiple hard links). 3889 * Return 1 if true, 0 if false and < 0 on error. 3890 */ 3891 static int is_ancestor(struct btrfs_root *root, 3892 const u64 ino1, 3893 const u64 ino1_gen, 3894 const u64 ino2, 3895 struct fs_path *fs_path) 3896 { 3897 bool free_fs_path = false; 3898 int ret = 0; 3899 int iter_ret = 0; 3900 struct btrfs_path *path = NULL; 3901 struct btrfs_key key; 3902 3903 if (!fs_path) { 3904 fs_path = fs_path_alloc(); 3905 if (!fs_path) 3906 return -ENOMEM; 3907 free_fs_path = true; 3908 } 3909 3910 path = alloc_path_for_send(); 3911 if (!path) { 3912 ret = -ENOMEM; 3913 goto out; 3914 } 3915 3916 key.objectid = ino2; 3917 key.type = BTRFS_INODE_REF_KEY; 3918 key.offset = 0; 3919 3920 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3921 struct extent_buffer *leaf = path->nodes[0]; 3922 int slot = path->slots[0]; 3923 u32 cur_offset = 0; 3924 u32 item_size; 3925 3926 if (key.objectid != ino2) 3927 break; 3928 if (key.type != BTRFS_INODE_REF_KEY && 3929 key.type != BTRFS_INODE_EXTREF_KEY) 3930 break; 3931 3932 item_size = btrfs_item_size(leaf, slot); 3933 while (cur_offset < item_size) { 3934 u64 parent; 3935 u64 parent_gen; 3936 3937 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3938 unsigned long ptr; 3939 struct btrfs_inode_extref *extref; 3940 3941 ptr = btrfs_item_ptr_offset(leaf, slot); 3942 extref = (struct btrfs_inode_extref *) 3943 (ptr + cur_offset); 3944 parent = btrfs_inode_extref_parent(leaf, 3945 extref); 3946 cur_offset += sizeof(*extref); 3947 cur_offset += btrfs_inode_extref_name_len(leaf, 3948 extref); 3949 } else { 3950 parent = key.offset; 3951 cur_offset = item_size; 3952 } 3953 3954 ret = get_inode_gen(root, parent, &parent_gen); 3955 if (ret < 0) 3956 goto out; 3957 ret = check_ino_in_path(root, ino1, ino1_gen, 3958 parent, parent_gen, fs_path); 3959 if (ret) 3960 goto out; 3961 } 3962 } 3963 ret = 0; 3964 if (iter_ret < 0) 3965 ret = iter_ret; 3966 3967 out: 3968 btrfs_free_path(path); 3969 if (free_fs_path) 3970 fs_path_free(fs_path); 3971 return ret; 3972 } 3973 3974 static int wait_for_parent_move(struct send_ctx *sctx, 3975 struct recorded_ref *parent_ref, 3976 const bool is_orphan) 3977 { 3978 int ret = 0; 3979 u64 ino = parent_ref->dir; 3980 u64 ino_gen = parent_ref->dir_gen; 3981 u64 parent_ino_before, parent_ino_after; 3982 struct fs_path *path_before = NULL; 3983 struct fs_path *path_after = NULL; 3984 int len1, len2; 3985 3986 path_after = fs_path_alloc(); 3987 path_before = fs_path_alloc(); 3988 if (!path_after || !path_before) { 3989 ret = -ENOMEM; 3990 goto out; 3991 } 3992 3993 /* 3994 * Our current directory inode may not yet be renamed/moved because some 3995 * ancestor (immediate or not) has to be renamed/moved first. So find if 3996 * such ancestor exists and make sure our own rename/move happens after 3997 * that ancestor is processed to avoid path build infinite loops (done 3998 * at get_cur_path()). 3999 */ 4000 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 4001 u64 parent_ino_after_gen; 4002 4003 if (is_waiting_for_move(sctx, ino)) { 4004 /* 4005 * If the current inode is an ancestor of ino in the 4006 * parent root, we need to delay the rename of the 4007 * current inode, otherwise don't delayed the rename 4008 * because we can end up with a circular dependency 4009 * of renames, resulting in some directories never 4010 * getting the respective rename operations issued in 4011 * the send stream or getting into infinite path build 4012 * loops. 4013 */ 4014 ret = is_ancestor(sctx->parent_root, 4015 sctx->cur_ino, sctx->cur_inode_gen, 4016 ino, path_before); 4017 if (ret) 4018 break; 4019 } 4020 4021 fs_path_reset(path_before); 4022 fs_path_reset(path_after); 4023 4024 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 4025 &parent_ino_after_gen, path_after); 4026 if (ret < 0) 4027 goto out; 4028 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 4029 NULL, path_before); 4030 if (ret < 0 && ret != -ENOENT) { 4031 goto out; 4032 } else if (ret == -ENOENT) { 4033 ret = 0; 4034 break; 4035 } 4036 4037 len1 = fs_path_len(path_before); 4038 len2 = fs_path_len(path_after); 4039 if (ino > sctx->cur_ino && 4040 (parent_ino_before != parent_ino_after || len1 != len2 || 4041 memcmp(path_before->start, path_after->start, len1))) { 4042 u64 parent_ino_gen; 4043 4044 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 4045 if (ret < 0) 4046 goto out; 4047 if (ino_gen == parent_ino_gen) { 4048 ret = 1; 4049 break; 4050 } 4051 } 4052 ino = parent_ino_after; 4053 ino_gen = parent_ino_after_gen; 4054 } 4055 4056 out: 4057 fs_path_free(path_before); 4058 fs_path_free(path_after); 4059 4060 if (ret == 1) { 4061 ret = add_pending_dir_move(sctx, 4062 sctx->cur_ino, 4063 sctx->cur_inode_gen, 4064 ino, 4065 &sctx->new_refs, 4066 &sctx->deleted_refs, 4067 is_orphan); 4068 if (!ret) 4069 ret = 1; 4070 } 4071 4072 return ret; 4073 } 4074 4075 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4076 { 4077 int ret; 4078 struct fs_path *new_path; 4079 4080 /* 4081 * Our reference's name member points to its full_path member string, so 4082 * we use here a new path. 4083 */ 4084 new_path = fs_path_alloc(); 4085 if (!new_path) 4086 return -ENOMEM; 4087 4088 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4089 if (ret < 0) { 4090 fs_path_free(new_path); 4091 return ret; 4092 } 4093 ret = fs_path_add(new_path, ref->name, ref->name_len); 4094 if (ret < 0) { 4095 fs_path_free(new_path); 4096 return ret; 4097 } 4098 4099 fs_path_free(ref->full_path); 4100 set_ref_path(ref, new_path); 4101 4102 return 0; 4103 } 4104 4105 /* 4106 * When processing the new references for an inode we may orphanize an existing 4107 * directory inode because its old name conflicts with one of the new references 4108 * of the current inode. Later, when processing another new reference of our 4109 * inode, we might need to orphanize another inode, but the path we have in the 4110 * reference reflects the pre-orphanization name of the directory we previously 4111 * orphanized. For example: 4112 * 4113 * parent snapshot looks like: 4114 * 4115 * . (ino 256) 4116 * |----- f1 (ino 257) 4117 * |----- f2 (ino 258) 4118 * |----- d1/ (ino 259) 4119 * |----- d2/ (ino 260) 4120 * 4121 * send snapshot looks like: 4122 * 4123 * . (ino 256) 4124 * |----- d1 (ino 258) 4125 * |----- f2/ (ino 259) 4126 * |----- f2_link/ (ino 260) 4127 * | |----- f1 (ino 257) 4128 * | 4129 * |----- d2 (ino 258) 4130 * 4131 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4132 * cache it in the name cache. Later when we start processing inode 258, when 4133 * collecting all its new references we set a full path of "d1/d2" for its new 4134 * reference with name "d2". When we start processing the new references we 4135 * start by processing the new reference with name "d1", and this results in 4136 * orphanizing inode 259, since its old reference causes a conflict. Then we 4137 * move on the next new reference, with name "d2", and we find out we must 4138 * orphanize inode 260, as its old reference conflicts with ours - but for the 4139 * orphanization we use a source path corresponding to the path we stored in the 4140 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4141 * receiver fail since the path component "d1/" no longer exists, it was renamed 4142 * to "o259-6-0/" when processing the previous new reference. So in this case we 4143 * must recompute the path in the new reference and use it for the new 4144 * orphanization operation. 4145 */ 4146 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4147 { 4148 char *name; 4149 int ret; 4150 4151 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4152 if (!name) 4153 return -ENOMEM; 4154 4155 fs_path_reset(ref->full_path); 4156 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4157 if (ret < 0) 4158 goto out; 4159 4160 ret = fs_path_add(ref->full_path, name, ref->name_len); 4161 if (ret < 0) 4162 goto out; 4163 4164 /* Update the reference's base name pointer. */ 4165 set_ref_path(ref, ref->full_path); 4166 out: 4167 kfree(name); 4168 return ret; 4169 } 4170 4171 /* 4172 * This does all the move/link/unlink/rmdir magic. 4173 */ 4174 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4175 { 4176 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4177 int ret = 0; 4178 struct recorded_ref *cur; 4179 struct recorded_ref *cur2; 4180 LIST_HEAD(check_dirs); 4181 struct fs_path *valid_path = NULL; 4182 u64 ow_inode = 0; 4183 u64 ow_gen; 4184 u64 ow_mode; 4185 int did_overwrite = 0; 4186 int is_orphan = 0; 4187 u64 last_dir_ino_rm = 0; 4188 bool can_rename = true; 4189 bool orphanized_dir = false; 4190 bool orphanized_ancestor = false; 4191 4192 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 4193 4194 /* 4195 * This should never happen as the root dir always has the same ref 4196 * which is always '..' 4197 */ 4198 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { 4199 btrfs_err(fs_info, 4200 "send: unexpected inode %llu in process_recorded_refs()", 4201 sctx->cur_ino); 4202 ret = -EINVAL; 4203 goto out; 4204 } 4205 4206 valid_path = fs_path_alloc(); 4207 if (!valid_path) { 4208 ret = -ENOMEM; 4209 goto out; 4210 } 4211 4212 /* 4213 * First, check if the first ref of the current inode was overwritten 4214 * before. If yes, we know that the current inode was already orphanized 4215 * and thus use the orphan name. If not, we can use get_cur_path to 4216 * get the path of the first ref as it would like while receiving at 4217 * this point in time. 4218 * New inodes are always orphan at the beginning, so force to use the 4219 * orphan name in this case. 4220 * The first ref is stored in valid_path and will be updated if it 4221 * gets moved around. 4222 */ 4223 if (!sctx->cur_inode_new) { 4224 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4225 sctx->cur_inode_gen); 4226 if (ret < 0) 4227 goto out; 4228 if (ret) 4229 did_overwrite = 1; 4230 } 4231 if (sctx->cur_inode_new || did_overwrite) { 4232 ret = gen_unique_name(sctx, sctx->cur_ino, 4233 sctx->cur_inode_gen, valid_path); 4234 if (ret < 0) 4235 goto out; 4236 is_orphan = 1; 4237 } else { 4238 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4239 valid_path); 4240 if (ret < 0) 4241 goto out; 4242 } 4243 4244 /* 4245 * Before doing any rename and link operations, do a first pass on the 4246 * new references to orphanize any unprocessed inodes that may have a 4247 * reference that conflicts with one of the new references of the current 4248 * inode. This needs to happen first because a new reference may conflict 4249 * with the old reference of a parent directory, so we must make sure 4250 * that the path used for link and rename commands don't use an 4251 * orphanized name when an ancestor was not yet orphanized. 4252 * 4253 * Example: 4254 * 4255 * Parent snapshot: 4256 * 4257 * . (ino 256) 4258 * |----- testdir/ (ino 259) 4259 * | |----- a (ino 257) 4260 * | 4261 * |----- b (ino 258) 4262 * 4263 * Send snapshot: 4264 * 4265 * . (ino 256) 4266 * |----- testdir_2/ (ino 259) 4267 * | |----- a (ino 260) 4268 * | 4269 * |----- testdir (ino 257) 4270 * |----- b (ino 257) 4271 * |----- b2 (ino 258) 4272 * 4273 * Processing the new reference for inode 257 with name "b" may happen 4274 * before processing the new reference with name "testdir". If so, we 4275 * must make sure that by the time we send a link command to create the 4276 * hard link "b", inode 259 was already orphanized, since the generated 4277 * path in "valid_path" already contains the orphanized name for 259. 4278 * We are processing inode 257, so only later when processing 259 we do 4279 * the rename operation to change its temporary (orphanized) name to 4280 * "testdir_2". 4281 */ 4282 list_for_each_entry(cur, &sctx->new_refs, list) { 4283 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4284 if (ret < 0) 4285 goto out; 4286 if (ret == inode_state_will_create) 4287 continue; 4288 4289 /* 4290 * Check if this new ref would overwrite the first ref of another 4291 * unprocessed inode. If yes, orphanize the overwritten inode. 4292 * If we find an overwritten ref that is not the first ref, 4293 * simply unlink it. 4294 */ 4295 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4296 cur->name, cur->name_len, 4297 &ow_inode, &ow_gen, &ow_mode); 4298 if (ret < 0) 4299 goto out; 4300 if (ret) { 4301 ret = is_first_ref(sctx->parent_root, 4302 ow_inode, cur->dir, cur->name, 4303 cur->name_len); 4304 if (ret < 0) 4305 goto out; 4306 if (ret) { 4307 struct name_cache_entry *nce; 4308 struct waiting_dir_move *wdm; 4309 4310 if (orphanized_dir) { 4311 ret = refresh_ref_path(sctx, cur); 4312 if (ret < 0) 4313 goto out; 4314 } 4315 4316 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4317 cur->full_path); 4318 if (ret < 0) 4319 goto out; 4320 if (S_ISDIR(ow_mode)) 4321 orphanized_dir = true; 4322 4323 /* 4324 * If ow_inode has its rename operation delayed 4325 * make sure that its orphanized name is used in 4326 * the source path when performing its rename 4327 * operation. 4328 */ 4329 wdm = get_waiting_dir_move(sctx, ow_inode); 4330 if (wdm) 4331 wdm->orphanized = true; 4332 4333 /* 4334 * Make sure we clear our orphanized inode's 4335 * name from the name cache. This is because the 4336 * inode ow_inode might be an ancestor of some 4337 * other inode that will be orphanized as well 4338 * later and has an inode number greater than 4339 * sctx->send_progress. We need to prevent 4340 * future name lookups from using the old name 4341 * and get instead the orphan name. 4342 */ 4343 nce = name_cache_search(sctx, ow_inode, ow_gen); 4344 if (nce) 4345 btrfs_lru_cache_remove(&sctx->name_cache, 4346 &nce->entry); 4347 4348 /* 4349 * ow_inode might currently be an ancestor of 4350 * cur_ino, therefore compute valid_path (the 4351 * current path of cur_ino) again because it 4352 * might contain the pre-orphanization name of 4353 * ow_inode, which is no longer valid. 4354 */ 4355 ret = is_ancestor(sctx->parent_root, 4356 ow_inode, ow_gen, 4357 sctx->cur_ino, NULL); 4358 if (ret > 0) { 4359 orphanized_ancestor = true; 4360 fs_path_reset(valid_path); 4361 ret = get_cur_path(sctx, sctx->cur_ino, 4362 sctx->cur_inode_gen, 4363 valid_path); 4364 } 4365 if (ret < 0) 4366 goto out; 4367 } else { 4368 /* 4369 * If we previously orphanized a directory that 4370 * collided with a new reference that we already 4371 * processed, recompute the current path because 4372 * that directory may be part of the path. 4373 */ 4374 if (orphanized_dir) { 4375 ret = refresh_ref_path(sctx, cur); 4376 if (ret < 0) 4377 goto out; 4378 } 4379 ret = send_unlink(sctx, cur->full_path); 4380 if (ret < 0) 4381 goto out; 4382 } 4383 } 4384 4385 } 4386 4387 list_for_each_entry(cur, &sctx->new_refs, list) { 4388 /* 4389 * We may have refs where the parent directory does not exist 4390 * yet. This happens if the parent directories inum is higher 4391 * than the current inum. To handle this case, we create the 4392 * parent directory out of order. But we need to check if this 4393 * did already happen before due to other refs in the same dir. 4394 */ 4395 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4396 if (ret < 0) 4397 goto out; 4398 if (ret == inode_state_will_create) { 4399 ret = 0; 4400 /* 4401 * First check if any of the current inodes refs did 4402 * already create the dir. 4403 */ 4404 list_for_each_entry(cur2, &sctx->new_refs, list) { 4405 if (cur == cur2) 4406 break; 4407 if (cur2->dir == cur->dir) { 4408 ret = 1; 4409 break; 4410 } 4411 } 4412 4413 /* 4414 * If that did not happen, check if a previous inode 4415 * did already create the dir. 4416 */ 4417 if (!ret) 4418 ret = did_create_dir(sctx, cur->dir); 4419 if (ret < 0) 4420 goto out; 4421 if (!ret) { 4422 ret = send_create_inode(sctx, cur->dir); 4423 if (ret < 0) 4424 goto out; 4425 cache_dir_created(sctx, cur->dir); 4426 } 4427 } 4428 4429 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4430 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4431 if (ret < 0) 4432 goto out; 4433 if (ret == 1) { 4434 can_rename = false; 4435 *pending_move = 1; 4436 } 4437 } 4438 4439 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4440 can_rename) { 4441 ret = wait_for_parent_move(sctx, cur, is_orphan); 4442 if (ret < 0) 4443 goto out; 4444 if (ret == 1) { 4445 can_rename = false; 4446 *pending_move = 1; 4447 } 4448 } 4449 4450 /* 4451 * link/move the ref to the new place. If we have an orphan 4452 * inode, move it and update valid_path. If not, link or move 4453 * it depending on the inode mode. 4454 */ 4455 if (is_orphan && can_rename) { 4456 ret = send_rename(sctx, valid_path, cur->full_path); 4457 if (ret < 0) 4458 goto out; 4459 is_orphan = 0; 4460 ret = fs_path_copy(valid_path, cur->full_path); 4461 if (ret < 0) 4462 goto out; 4463 } else if (can_rename) { 4464 if (S_ISDIR(sctx->cur_inode_mode)) { 4465 /* 4466 * Dirs can't be linked, so move it. For moved 4467 * dirs, we always have one new and one deleted 4468 * ref. The deleted ref is ignored later. 4469 */ 4470 ret = send_rename(sctx, valid_path, 4471 cur->full_path); 4472 if (!ret) 4473 ret = fs_path_copy(valid_path, 4474 cur->full_path); 4475 if (ret < 0) 4476 goto out; 4477 } else { 4478 /* 4479 * We might have previously orphanized an inode 4480 * which is an ancestor of our current inode, 4481 * so our reference's full path, which was 4482 * computed before any such orphanizations, must 4483 * be updated. 4484 */ 4485 if (orphanized_dir) { 4486 ret = update_ref_path(sctx, cur); 4487 if (ret < 0) 4488 goto out; 4489 } 4490 ret = send_link(sctx, cur->full_path, 4491 valid_path); 4492 if (ret < 0) 4493 goto out; 4494 } 4495 } 4496 ret = dup_ref(cur, &check_dirs); 4497 if (ret < 0) 4498 goto out; 4499 } 4500 4501 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4502 /* 4503 * Check if we can already rmdir the directory. If not, 4504 * orphanize it. For every dir item inside that gets deleted 4505 * later, we do this check again and rmdir it then if possible. 4506 * See the use of check_dirs for more details. 4507 */ 4508 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4509 if (ret < 0) 4510 goto out; 4511 if (ret) { 4512 ret = send_rmdir(sctx, valid_path); 4513 if (ret < 0) 4514 goto out; 4515 } else if (!is_orphan) { 4516 ret = orphanize_inode(sctx, sctx->cur_ino, 4517 sctx->cur_inode_gen, valid_path); 4518 if (ret < 0) 4519 goto out; 4520 is_orphan = 1; 4521 } 4522 4523 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4524 ret = dup_ref(cur, &check_dirs); 4525 if (ret < 0) 4526 goto out; 4527 } 4528 } else if (S_ISDIR(sctx->cur_inode_mode) && 4529 !list_empty(&sctx->deleted_refs)) { 4530 /* 4531 * We have a moved dir. Add the old parent to check_dirs 4532 */ 4533 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4534 list); 4535 ret = dup_ref(cur, &check_dirs); 4536 if (ret < 0) 4537 goto out; 4538 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4539 /* 4540 * We have a non dir inode. Go through all deleted refs and 4541 * unlink them if they were not already overwritten by other 4542 * inodes. 4543 */ 4544 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4545 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4546 sctx->cur_ino, sctx->cur_inode_gen, 4547 cur->name, cur->name_len); 4548 if (ret < 0) 4549 goto out; 4550 if (!ret) { 4551 /* 4552 * If we orphanized any ancestor before, we need 4553 * to recompute the full path for deleted names, 4554 * since any such path was computed before we 4555 * processed any references and orphanized any 4556 * ancestor inode. 4557 */ 4558 if (orphanized_ancestor) { 4559 ret = update_ref_path(sctx, cur); 4560 if (ret < 0) 4561 goto out; 4562 } 4563 ret = send_unlink(sctx, cur->full_path); 4564 if (ret < 0) 4565 goto out; 4566 } 4567 ret = dup_ref(cur, &check_dirs); 4568 if (ret < 0) 4569 goto out; 4570 } 4571 /* 4572 * If the inode is still orphan, unlink the orphan. This may 4573 * happen when a previous inode did overwrite the first ref 4574 * of this inode and no new refs were added for the current 4575 * inode. Unlinking does not mean that the inode is deleted in 4576 * all cases. There may still be links to this inode in other 4577 * places. 4578 */ 4579 if (is_orphan) { 4580 ret = send_unlink(sctx, valid_path); 4581 if (ret < 0) 4582 goto out; 4583 } 4584 } 4585 4586 /* 4587 * We did collect all parent dirs where cur_inode was once located. We 4588 * now go through all these dirs and check if they are pending for 4589 * deletion and if it's finally possible to perform the rmdir now. 4590 * We also update the inode stats of the parent dirs here. 4591 */ 4592 list_for_each_entry(cur, &check_dirs, list) { 4593 /* 4594 * In case we had refs into dirs that were not processed yet, 4595 * we don't need to do the utime and rmdir logic for these dirs. 4596 * The dir will be processed later. 4597 */ 4598 if (cur->dir > sctx->cur_ino) 4599 continue; 4600 4601 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4602 if (ret < 0) 4603 goto out; 4604 4605 if (ret == inode_state_did_create || 4606 ret == inode_state_no_change) { 4607 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4608 if (ret < 0) 4609 goto out; 4610 } else if (ret == inode_state_did_delete && 4611 cur->dir != last_dir_ino_rm) { 4612 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4613 if (ret < 0) 4614 goto out; 4615 if (ret) { 4616 ret = get_cur_path(sctx, cur->dir, 4617 cur->dir_gen, valid_path); 4618 if (ret < 0) 4619 goto out; 4620 ret = send_rmdir(sctx, valid_path); 4621 if (ret < 0) 4622 goto out; 4623 last_dir_ino_rm = cur->dir; 4624 } 4625 } 4626 } 4627 4628 ret = 0; 4629 4630 out: 4631 __free_recorded_refs(&check_dirs); 4632 free_recorded_refs(sctx); 4633 fs_path_free(valid_path); 4634 return ret; 4635 } 4636 4637 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4638 { 4639 const struct recorded_ref *data = k; 4640 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4641 int result; 4642 4643 if (data->dir > ref->dir) 4644 return 1; 4645 if (data->dir < ref->dir) 4646 return -1; 4647 if (data->dir_gen > ref->dir_gen) 4648 return 1; 4649 if (data->dir_gen < ref->dir_gen) 4650 return -1; 4651 if (data->name_len > ref->name_len) 4652 return 1; 4653 if (data->name_len < ref->name_len) 4654 return -1; 4655 result = strcmp(data->name, ref->name); 4656 if (result > 0) 4657 return 1; 4658 if (result < 0) 4659 return -1; 4660 return 0; 4661 } 4662 4663 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4664 { 4665 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4666 4667 return rbtree_ref_comp(entry, parent) < 0; 4668 } 4669 4670 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4671 struct fs_path *name, u64 dir, u64 dir_gen, 4672 struct send_ctx *sctx) 4673 { 4674 int ret = 0; 4675 struct fs_path *path = NULL; 4676 struct recorded_ref *ref = NULL; 4677 4678 path = fs_path_alloc(); 4679 if (!path) { 4680 ret = -ENOMEM; 4681 goto out; 4682 } 4683 4684 ref = recorded_ref_alloc(); 4685 if (!ref) { 4686 ret = -ENOMEM; 4687 goto out; 4688 } 4689 4690 ret = get_cur_path(sctx, dir, dir_gen, path); 4691 if (ret < 0) 4692 goto out; 4693 ret = fs_path_add_path(path, name); 4694 if (ret < 0) 4695 goto out; 4696 4697 ref->dir = dir; 4698 ref->dir_gen = dir_gen; 4699 set_ref_path(ref, path); 4700 list_add_tail(&ref->list, refs); 4701 rb_add(&ref->node, root, rbtree_ref_less); 4702 ref->root = root; 4703 out: 4704 if (ret) { 4705 if (path && (!ref || !ref->full_path)) 4706 fs_path_free(path); 4707 recorded_ref_free(ref); 4708 } 4709 return ret; 4710 } 4711 4712 static int record_new_ref_if_needed(int num, u64 dir, int index, 4713 struct fs_path *name, void *ctx) 4714 { 4715 int ret = 0; 4716 struct send_ctx *sctx = ctx; 4717 struct rb_node *node = NULL; 4718 struct recorded_ref data; 4719 struct recorded_ref *ref; 4720 u64 dir_gen; 4721 4722 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4723 if (ret < 0) 4724 goto out; 4725 4726 data.dir = dir; 4727 data.dir_gen = dir_gen; 4728 set_ref_path(&data, name); 4729 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4730 if (node) { 4731 ref = rb_entry(node, struct recorded_ref, node); 4732 recorded_ref_free(ref); 4733 } else { 4734 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4735 &sctx->new_refs, name, dir, dir_gen, 4736 sctx); 4737 } 4738 out: 4739 return ret; 4740 } 4741 4742 static int record_deleted_ref_if_needed(int num, u64 dir, int index, 4743 struct fs_path *name, void *ctx) 4744 { 4745 int ret = 0; 4746 struct send_ctx *sctx = ctx; 4747 struct rb_node *node = NULL; 4748 struct recorded_ref data; 4749 struct recorded_ref *ref; 4750 u64 dir_gen; 4751 4752 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4753 if (ret < 0) 4754 goto out; 4755 4756 data.dir = dir; 4757 data.dir_gen = dir_gen; 4758 set_ref_path(&data, name); 4759 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4760 if (node) { 4761 ref = rb_entry(node, struct recorded_ref, node); 4762 recorded_ref_free(ref); 4763 } else { 4764 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4765 &sctx->deleted_refs, name, dir, 4766 dir_gen, sctx); 4767 } 4768 out: 4769 return ret; 4770 } 4771 4772 static int record_new_ref(struct send_ctx *sctx) 4773 { 4774 int ret; 4775 4776 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4777 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4778 if (ret < 0) 4779 goto out; 4780 ret = 0; 4781 4782 out: 4783 return ret; 4784 } 4785 4786 static int record_deleted_ref(struct send_ctx *sctx) 4787 { 4788 int ret; 4789 4790 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4791 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4792 sctx); 4793 if (ret < 0) 4794 goto out; 4795 ret = 0; 4796 4797 out: 4798 return ret; 4799 } 4800 4801 static int record_changed_ref(struct send_ctx *sctx) 4802 { 4803 int ret = 0; 4804 4805 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4806 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4807 if (ret < 0) 4808 goto out; 4809 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4810 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4811 if (ret < 0) 4812 goto out; 4813 ret = 0; 4814 4815 out: 4816 return ret; 4817 } 4818 4819 /* 4820 * Record and process all refs at once. Needed when an inode changes the 4821 * generation number, which means that it was deleted and recreated. 4822 */ 4823 static int process_all_refs(struct send_ctx *sctx, 4824 enum btrfs_compare_tree_result cmd) 4825 { 4826 int ret = 0; 4827 int iter_ret = 0; 4828 struct btrfs_root *root; 4829 struct btrfs_path *path; 4830 struct btrfs_key key; 4831 struct btrfs_key found_key; 4832 iterate_inode_ref_t cb; 4833 int pending_move = 0; 4834 4835 path = alloc_path_for_send(); 4836 if (!path) 4837 return -ENOMEM; 4838 4839 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4840 root = sctx->send_root; 4841 cb = record_new_ref_if_needed; 4842 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4843 root = sctx->parent_root; 4844 cb = record_deleted_ref_if_needed; 4845 } else { 4846 btrfs_err(sctx->send_root->fs_info, 4847 "Wrong command %d in process_all_refs", cmd); 4848 ret = -EINVAL; 4849 goto out; 4850 } 4851 4852 key.objectid = sctx->cmp_key->objectid; 4853 key.type = BTRFS_INODE_REF_KEY; 4854 key.offset = 0; 4855 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4856 if (found_key.objectid != key.objectid || 4857 (found_key.type != BTRFS_INODE_REF_KEY && 4858 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4859 break; 4860 4861 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4862 if (ret < 0) 4863 goto out; 4864 } 4865 /* Catch error found during iteration */ 4866 if (iter_ret < 0) { 4867 ret = iter_ret; 4868 goto out; 4869 } 4870 btrfs_release_path(path); 4871 4872 /* 4873 * We don't actually care about pending_move as we are simply 4874 * re-creating this inode and will be rename'ing it into place once we 4875 * rename the parent directory. 4876 */ 4877 ret = process_recorded_refs(sctx, &pending_move); 4878 out: 4879 btrfs_free_path(path); 4880 return ret; 4881 } 4882 4883 static int send_set_xattr(struct send_ctx *sctx, 4884 struct fs_path *path, 4885 const char *name, int name_len, 4886 const char *data, int data_len) 4887 { 4888 int ret = 0; 4889 4890 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4891 if (ret < 0) 4892 goto out; 4893 4894 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4895 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4896 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4897 4898 ret = send_cmd(sctx); 4899 4900 tlv_put_failure: 4901 out: 4902 return ret; 4903 } 4904 4905 static int send_remove_xattr(struct send_ctx *sctx, 4906 struct fs_path *path, 4907 const char *name, int name_len) 4908 { 4909 int ret = 0; 4910 4911 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4912 if (ret < 0) 4913 goto out; 4914 4915 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4916 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4917 4918 ret = send_cmd(sctx); 4919 4920 tlv_put_failure: 4921 out: 4922 return ret; 4923 } 4924 4925 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4926 const char *name, int name_len, const char *data, 4927 int data_len, void *ctx) 4928 { 4929 int ret; 4930 struct send_ctx *sctx = ctx; 4931 struct fs_path *p; 4932 struct posix_acl_xattr_header dummy_acl; 4933 4934 /* Capabilities are emitted by finish_inode_if_needed */ 4935 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4936 return 0; 4937 4938 p = fs_path_alloc(); 4939 if (!p) 4940 return -ENOMEM; 4941 4942 /* 4943 * This hack is needed because empty acls are stored as zero byte 4944 * data in xattrs. Problem with that is, that receiving these zero byte 4945 * acls will fail later. To fix this, we send a dummy acl list that 4946 * only contains the version number and no entries. 4947 */ 4948 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4949 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4950 if (data_len == 0) { 4951 dummy_acl.a_version = 4952 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4953 data = (char *)&dummy_acl; 4954 data_len = sizeof(dummy_acl); 4955 } 4956 } 4957 4958 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4959 if (ret < 0) 4960 goto out; 4961 4962 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4963 4964 out: 4965 fs_path_free(p); 4966 return ret; 4967 } 4968 4969 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4970 const char *name, int name_len, 4971 const char *data, int data_len, void *ctx) 4972 { 4973 int ret; 4974 struct send_ctx *sctx = ctx; 4975 struct fs_path *p; 4976 4977 p = fs_path_alloc(); 4978 if (!p) 4979 return -ENOMEM; 4980 4981 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4982 if (ret < 0) 4983 goto out; 4984 4985 ret = send_remove_xattr(sctx, p, name, name_len); 4986 4987 out: 4988 fs_path_free(p); 4989 return ret; 4990 } 4991 4992 static int process_new_xattr(struct send_ctx *sctx) 4993 { 4994 int ret = 0; 4995 4996 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4997 __process_new_xattr, sctx); 4998 4999 return ret; 5000 } 5001 5002 static int process_deleted_xattr(struct send_ctx *sctx) 5003 { 5004 return iterate_dir_item(sctx->parent_root, sctx->right_path, 5005 __process_deleted_xattr, sctx); 5006 } 5007 5008 struct find_xattr_ctx { 5009 const char *name; 5010 int name_len; 5011 int found_idx; 5012 char *found_data; 5013 int found_data_len; 5014 }; 5015 5016 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 5017 int name_len, const char *data, int data_len, void *vctx) 5018 { 5019 struct find_xattr_ctx *ctx = vctx; 5020 5021 if (name_len == ctx->name_len && 5022 strncmp(name, ctx->name, name_len) == 0) { 5023 ctx->found_idx = num; 5024 ctx->found_data_len = data_len; 5025 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 5026 if (!ctx->found_data) 5027 return -ENOMEM; 5028 return 1; 5029 } 5030 return 0; 5031 } 5032 5033 static int find_xattr(struct btrfs_root *root, 5034 struct btrfs_path *path, 5035 struct btrfs_key *key, 5036 const char *name, int name_len, 5037 char **data, int *data_len) 5038 { 5039 int ret; 5040 struct find_xattr_ctx ctx; 5041 5042 ctx.name = name; 5043 ctx.name_len = name_len; 5044 ctx.found_idx = -1; 5045 ctx.found_data = NULL; 5046 ctx.found_data_len = 0; 5047 5048 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 5049 if (ret < 0) 5050 return ret; 5051 5052 if (ctx.found_idx == -1) 5053 return -ENOENT; 5054 if (data) { 5055 *data = ctx.found_data; 5056 *data_len = ctx.found_data_len; 5057 } else { 5058 kfree(ctx.found_data); 5059 } 5060 return ctx.found_idx; 5061 } 5062 5063 5064 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5065 const char *name, int name_len, 5066 const char *data, int data_len, 5067 void *ctx) 5068 { 5069 int ret; 5070 struct send_ctx *sctx = ctx; 5071 char *found_data = NULL; 5072 int found_data_len = 0; 5073 5074 ret = find_xattr(sctx->parent_root, sctx->right_path, 5075 sctx->cmp_key, name, name_len, &found_data, 5076 &found_data_len); 5077 if (ret == -ENOENT) { 5078 ret = __process_new_xattr(num, di_key, name, name_len, data, 5079 data_len, ctx); 5080 } else if (ret >= 0) { 5081 if (data_len != found_data_len || 5082 memcmp(data, found_data, data_len)) { 5083 ret = __process_new_xattr(num, di_key, name, name_len, 5084 data, data_len, ctx); 5085 } else { 5086 ret = 0; 5087 } 5088 } 5089 5090 kfree(found_data); 5091 return ret; 5092 } 5093 5094 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5095 const char *name, int name_len, 5096 const char *data, int data_len, 5097 void *ctx) 5098 { 5099 int ret; 5100 struct send_ctx *sctx = ctx; 5101 5102 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5103 name, name_len, NULL, NULL); 5104 if (ret == -ENOENT) 5105 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5106 data_len, ctx); 5107 else if (ret >= 0) 5108 ret = 0; 5109 5110 return ret; 5111 } 5112 5113 static int process_changed_xattr(struct send_ctx *sctx) 5114 { 5115 int ret = 0; 5116 5117 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5118 __process_changed_new_xattr, sctx); 5119 if (ret < 0) 5120 goto out; 5121 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 5122 __process_changed_deleted_xattr, sctx); 5123 5124 out: 5125 return ret; 5126 } 5127 5128 static int process_all_new_xattrs(struct send_ctx *sctx) 5129 { 5130 int ret = 0; 5131 int iter_ret = 0; 5132 struct btrfs_root *root; 5133 struct btrfs_path *path; 5134 struct btrfs_key key; 5135 struct btrfs_key found_key; 5136 5137 path = alloc_path_for_send(); 5138 if (!path) 5139 return -ENOMEM; 5140 5141 root = sctx->send_root; 5142 5143 key.objectid = sctx->cmp_key->objectid; 5144 key.type = BTRFS_XATTR_ITEM_KEY; 5145 key.offset = 0; 5146 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5147 if (found_key.objectid != key.objectid || 5148 found_key.type != key.type) { 5149 ret = 0; 5150 break; 5151 } 5152 5153 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5154 if (ret < 0) 5155 break; 5156 } 5157 /* Catch error found during iteration */ 5158 if (iter_ret < 0) 5159 ret = iter_ret; 5160 5161 btrfs_free_path(path); 5162 return ret; 5163 } 5164 5165 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5166 struct fsverity_descriptor *desc) 5167 { 5168 int ret; 5169 5170 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5171 if (ret < 0) 5172 goto out; 5173 5174 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5175 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5176 le8_to_cpu(desc->hash_algorithm)); 5177 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5178 1U << le8_to_cpu(desc->log_blocksize)); 5179 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5180 le8_to_cpu(desc->salt_size)); 5181 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5182 le32_to_cpu(desc->sig_size)); 5183 5184 ret = send_cmd(sctx); 5185 5186 tlv_put_failure: 5187 out: 5188 return ret; 5189 } 5190 5191 static int process_verity(struct send_ctx *sctx) 5192 { 5193 int ret = 0; 5194 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5195 struct inode *inode; 5196 struct fs_path *p; 5197 5198 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root); 5199 if (IS_ERR(inode)) 5200 return PTR_ERR(inode); 5201 5202 ret = btrfs_get_verity_descriptor(inode, NULL, 0); 5203 if (ret < 0) 5204 goto iput; 5205 5206 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5207 ret = -EMSGSIZE; 5208 goto iput; 5209 } 5210 if (!sctx->verity_descriptor) { 5211 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5212 GFP_KERNEL); 5213 if (!sctx->verity_descriptor) { 5214 ret = -ENOMEM; 5215 goto iput; 5216 } 5217 } 5218 5219 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret); 5220 if (ret < 0) 5221 goto iput; 5222 5223 p = fs_path_alloc(); 5224 if (!p) { 5225 ret = -ENOMEM; 5226 goto iput; 5227 } 5228 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5229 if (ret < 0) 5230 goto free_path; 5231 5232 ret = send_verity(sctx, p, sctx->verity_descriptor); 5233 if (ret < 0) 5234 goto free_path; 5235 5236 free_path: 5237 fs_path_free(p); 5238 iput: 5239 iput(inode); 5240 return ret; 5241 } 5242 5243 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5244 { 5245 return sctx->send_max_size - SZ_16K; 5246 } 5247 5248 static int put_data_header(struct send_ctx *sctx, u32 len) 5249 { 5250 if (WARN_ON_ONCE(sctx->put_data)) 5251 return -EINVAL; 5252 sctx->put_data = true; 5253 if (sctx->proto >= 2) { 5254 /* 5255 * Since v2, the data attribute header doesn't include a length, 5256 * it is implicitly to the end of the command. 5257 */ 5258 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5259 return -EOVERFLOW; 5260 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5261 sctx->send_size += sizeof(__le16); 5262 } else { 5263 struct btrfs_tlv_header *hdr; 5264 5265 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5266 return -EOVERFLOW; 5267 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5268 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5269 put_unaligned_le16(len, &hdr->tlv_len); 5270 sctx->send_size += sizeof(*hdr); 5271 } 5272 return 0; 5273 } 5274 5275 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5276 { 5277 struct btrfs_root *root = sctx->send_root; 5278 struct btrfs_fs_info *fs_info = root->fs_info; 5279 struct page *page; 5280 pgoff_t index = offset >> PAGE_SHIFT; 5281 pgoff_t last_index; 5282 unsigned pg_offset = offset_in_page(offset); 5283 int ret; 5284 5285 ret = put_data_header(sctx, len); 5286 if (ret) 5287 return ret; 5288 5289 last_index = (offset + len - 1) >> PAGE_SHIFT; 5290 5291 while (index <= last_index) { 5292 unsigned cur_len = min_t(unsigned, len, 5293 PAGE_SIZE - pg_offset); 5294 5295 page = find_lock_page(sctx->cur_inode->i_mapping, index); 5296 if (!page) { 5297 page_cache_sync_readahead(sctx->cur_inode->i_mapping, 5298 &sctx->ra, NULL, index, 5299 last_index + 1 - index); 5300 5301 page = find_or_create_page(sctx->cur_inode->i_mapping, 5302 index, GFP_KERNEL); 5303 if (!page) { 5304 ret = -ENOMEM; 5305 break; 5306 } 5307 } 5308 5309 if (PageReadahead(page)) 5310 page_cache_async_readahead(sctx->cur_inode->i_mapping, 5311 &sctx->ra, NULL, page_folio(page), 5312 index, last_index + 1 - index); 5313 5314 if (!PageUptodate(page)) { 5315 btrfs_read_folio(NULL, page_folio(page)); 5316 lock_page(page); 5317 if (!PageUptodate(page)) { 5318 unlock_page(page); 5319 btrfs_err(fs_info, 5320 "send: IO error at offset %llu for inode %llu root %llu", 5321 page_offset(page), sctx->cur_ino, 5322 sctx->send_root->root_key.objectid); 5323 put_page(page); 5324 ret = -EIO; 5325 break; 5326 } 5327 } 5328 5329 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 5330 pg_offset, cur_len); 5331 unlock_page(page); 5332 put_page(page); 5333 index++; 5334 pg_offset = 0; 5335 len -= cur_len; 5336 sctx->send_size += cur_len; 5337 } 5338 5339 return ret; 5340 } 5341 5342 /* 5343 * Read some bytes from the current inode/file and send a write command to 5344 * user space. 5345 */ 5346 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5347 { 5348 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5349 int ret = 0; 5350 struct fs_path *p; 5351 5352 p = fs_path_alloc(); 5353 if (!p) 5354 return -ENOMEM; 5355 5356 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5357 5358 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5359 if (ret < 0) 5360 goto out; 5361 5362 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5363 if (ret < 0) 5364 goto out; 5365 5366 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5367 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5368 ret = put_file_data(sctx, offset, len); 5369 if (ret < 0) 5370 goto out; 5371 5372 ret = send_cmd(sctx); 5373 5374 tlv_put_failure: 5375 out: 5376 fs_path_free(p); 5377 return ret; 5378 } 5379 5380 /* 5381 * Send a clone command to user space. 5382 */ 5383 static int send_clone(struct send_ctx *sctx, 5384 u64 offset, u32 len, 5385 struct clone_root *clone_root) 5386 { 5387 int ret = 0; 5388 struct fs_path *p; 5389 u64 gen; 5390 5391 btrfs_debug(sctx->send_root->fs_info, 5392 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5393 offset, len, clone_root->root->root_key.objectid, 5394 clone_root->ino, clone_root->offset); 5395 5396 p = fs_path_alloc(); 5397 if (!p) 5398 return -ENOMEM; 5399 5400 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5401 if (ret < 0) 5402 goto out; 5403 5404 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5405 if (ret < 0) 5406 goto out; 5407 5408 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5409 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5410 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5411 5412 if (clone_root->root == sctx->send_root) { 5413 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5414 if (ret < 0) 5415 goto out; 5416 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5417 } else { 5418 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5419 } 5420 if (ret < 0) 5421 goto out; 5422 5423 /* 5424 * If the parent we're using has a received_uuid set then use that as 5425 * our clone source as that is what we will look for when doing a 5426 * receive. 5427 * 5428 * This covers the case that we create a snapshot off of a received 5429 * subvolume and then use that as the parent and try to receive on a 5430 * different host. 5431 */ 5432 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5433 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5434 clone_root->root->root_item.received_uuid); 5435 else 5436 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5437 clone_root->root->root_item.uuid); 5438 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5439 btrfs_root_ctransid(&clone_root->root->root_item)); 5440 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5441 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5442 clone_root->offset); 5443 5444 ret = send_cmd(sctx); 5445 5446 tlv_put_failure: 5447 out: 5448 fs_path_free(p); 5449 return ret; 5450 } 5451 5452 /* 5453 * Send an update extent command to user space. 5454 */ 5455 static int send_update_extent(struct send_ctx *sctx, 5456 u64 offset, u32 len) 5457 { 5458 int ret = 0; 5459 struct fs_path *p; 5460 5461 p = fs_path_alloc(); 5462 if (!p) 5463 return -ENOMEM; 5464 5465 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5466 if (ret < 0) 5467 goto out; 5468 5469 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5470 if (ret < 0) 5471 goto out; 5472 5473 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5474 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5475 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5476 5477 ret = send_cmd(sctx); 5478 5479 tlv_put_failure: 5480 out: 5481 fs_path_free(p); 5482 return ret; 5483 } 5484 5485 static int send_hole(struct send_ctx *sctx, u64 end) 5486 { 5487 struct fs_path *p = NULL; 5488 u64 read_size = max_send_read_size(sctx); 5489 u64 offset = sctx->cur_inode_last_extent; 5490 int ret = 0; 5491 5492 /* 5493 * A hole that starts at EOF or beyond it. Since we do not yet support 5494 * fallocate (for extent preallocation and hole punching), sending a 5495 * write of zeroes starting at EOF or beyond would later require issuing 5496 * a truncate operation which would undo the write and achieve nothing. 5497 */ 5498 if (offset >= sctx->cur_inode_size) 5499 return 0; 5500 5501 /* 5502 * Don't go beyond the inode's i_size due to prealloc extents that start 5503 * after the i_size. 5504 */ 5505 end = min_t(u64, end, sctx->cur_inode_size); 5506 5507 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5508 return send_update_extent(sctx, offset, end - offset); 5509 5510 p = fs_path_alloc(); 5511 if (!p) 5512 return -ENOMEM; 5513 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5514 if (ret < 0) 5515 goto tlv_put_failure; 5516 while (offset < end) { 5517 u64 len = min(end - offset, read_size); 5518 5519 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5520 if (ret < 0) 5521 break; 5522 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5523 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5524 ret = put_data_header(sctx, len); 5525 if (ret < 0) 5526 break; 5527 memset(sctx->send_buf + sctx->send_size, 0, len); 5528 sctx->send_size += len; 5529 ret = send_cmd(sctx); 5530 if (ret < 0) 5531 break; 5532 offset += len; 5533 } 5534 sctx->cur_inode_next_write_offset = offset; 5535 tlv_put_failure: 5536 fs_path_free(p); 5537 return ret; 5538 } 5539 5540 static int send_encoded_inline_extent(struct send_ctx *sctx, 5541 struct btrfs_path *path, u64 offset, 5542 u64 len) 5543 { 5544 struct btrfs_root *root = sctx->send_root; 5545 struct btrfs_fs_info *fs_info = root->fs_info; 5546 struct inode *inode; 5547 struct fs_path *fspath; 5548 struct extent_buffer *leaf = path->nodes[0]; 5549 struct btrfs_key key; 5550 struct btrfs_file_extent_item *ei; 5551 u64 ram_bytes; 5552 size_t inline_size; 5553 int ret; 5554 5555 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5556 if (IS_ERR(inode)) 5557 return PTR_ERR(inode); 5558 5559 fspath = fs_path_alloc(); 5560 if (!fspath) { 5561 ret = -ENOMEM; 5562 goto out; 5563 } 5564 5565 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5566 if (ret < 0) 5567 goto out; 5568 5569 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5570 if (ret < 0) 5571 goto out; 5572 5573 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5574 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5575 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5576 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5577 5578 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5579 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5580 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5581 min(key.offset + ram_bytes - offset, len)); 5582 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5583 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5584 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5585 btrfs_file_extent_compression(leaf, ei)); 5586 if (ret < 0) 5587 goto out; 5588 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5589 5590 ret = put_data_header(sctx, inline_size); 5591 if (ret < 0) 5592 goto out; 5593 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5594 btrfs_file_extent_inline_start(ei), inline_size); 5595 sctx->send_size += inline_size; 5596 5597 ret = send_cmd(sctx); 5598 5599 tlv_put_failure: 5600 out: 5601 fs_path_free(fspath); 5602 iput(inode); 5603 return ret; 5604 } 5605 5606 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5607 u64 offset, u64 len) 5608 { 5609 struct btrfs_root *root = sctx->send_root; 5610 struct btrfs_fs_info *fs_info = root->fs_info; 5611 struct inode *inode; 5612 struct fs_path *fspath; 5613 struct extent_buffer *leaf = path->nodes[0]; 5614 struct btrfs_key key; 5615 struct btrfs_file_extent_item *ei; 5616 u64 disk_bytenr, disk_num_bytes; 5617 u32 data_offset; 5618 struct btrfs_cmd_header *hdr; 5619 u32 crc; 5620 int ret; 5621 5622 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5623 if (IS_ERR(inode)) 5624 return PTR_ERR(inode); 5625 5626 fspath = fs_path_alloc(); 5627 if (!fspath) { 5628 ret = -ENOMEM; 5629 goto out; 5630 } 5631 5632 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5633 if (ret < 0) 5634 goto out; 5635 5636 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5637 if (ret < 0) 5638 goto out; 5639 5640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5641 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5642 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5643 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5644 5645 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5646 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5647 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5648 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5649 len)); 5650 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5651 btrfs_file_extent_ram_bytes(leaf, ei)); 5652 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5653 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5654 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5655 btrfs_file_extent_compression(leaf, ei)); 5656 if (ret < 0) 5657 goto out; 5658 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5659 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5660 5661 ret = put_data_header(sctx, disk_num_bytes); 5662 if (ret < 0) 5663 goto out; 5664 5665 /* 5666 * We want to do I/O directly into the send buffer, so get the next page 5667 * boundary in the send buffer. This means that there may be a gap 5668 * between the beginning of the command and the file data. 5669 */ 5670 data_offset = PAGE_ALIGN(sctx->send_size); 5671 if (data_offset > sctx->send_max_size || 5672 sctx->send_max_size - data_offset < disk_num_bytes) { 5673 ret = -EOVERFLOW; 5674 goto out; 5675 } 5676 5677 /* 5678 * Note that send_buf is a mapping of send_buf_pages, so this is really 5679 * reading into send_buf. 5680 */ 5681 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset, 5682 disk_bytenr, disk_num_bytes, 5683 sctx->send_buf_pages + 5684 (data_offset >> PAGE_SHIFT)); 5685 if (ret) 5686 goto out; 5687 5688 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5689 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5690 hdr->crc = 0; 5691 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size); 5692 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5693 hdr->crc = cpu_to_le32(crc); 5694 5695 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5696 &sctx->send_off); 5697 if (!ret) { 5698 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5699 disk_num_bytes, &sctx->send_off); 5700 } 5701 sctx->send_size = 0; 5702 sctx->put_data = false; 5703 5704 tlv_put_failure: 5705 out: 5706 fs_path_free(fspath); 5707 iput(inode); 5708 return ret; 5709 } 5710 5711 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5712 const u64 offset, const u64 len) 5713 { 5714 const u64 end = offset + len; 5715 struct extent_buffer *leaf = path->nodes[0]; 5716 struct btrfs_file_extent_item *ei; 5717 u64 read_size = max_send_read_size(sctx); 5718 u64 sent = 0; 5719 5720 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5721 return send_update_extent(sctx, offset, len); 5722 5723 ei = btrfs_item_ptr(leaf, path->slots[0], 5724 struct btrfs_file_extent_item); 5725 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5726 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5727 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5728 BTRFS_FILE_EXTENT_INLINE); 5729 5730 /* 5731 * Send the compressed extent unless the compressed data is 5732 * larger than the decompressed data. This can happen if we're 5733 * not sending the entire extent, either because it has been 5734 * partially overwritten/truncated or because this is a part of 5735 * the extent that we couldn't clone in clone_range(). 5736 */ 5737 if (is_inline && 5738 btrfs_file_extent_inline_item_len(leaf, 5739 path->slots[0]) <= len) { 5740 return send_encoded_inline_extent(sctx, path, offset, 5741 len); 5742 } else if (!is_inline && 5743 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5744 return send_encoded_extent(sctx, path, offset, len); 5745 } 5746 } 5747 5748 if (sctx->cur_inode == NULL) { 5749 struct btrfs_root *root = sctx->send_root; 5750 5751 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root); 5752 if (IS_ERR(sctx->cur_inode)) { 5753 int err = PTR_ERR(sctx->cur_inode); 5754 5755 sctx->cur_inode = NULL; 5756 return err; 5757 } 5758 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5759 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5760 5761 /* 5762 * It's very likely there are no pages from this inode in the page 5763 * cache, so after reading extents and sending their data, we clean 5764 * the page cache to avoid trashing the page cache (adding pressure 5765 * to the page cache and forcing eviction of other data more useful 5766 * for applications). 5767 * 5768 * We decide if we should clean the page cache simply by checking 5769 * if the inode's mapping nrpages is 0 when we first open it, and 5770 * not by using something like filemap_range_has_page() before 5771 * reading an extent because when we ask the readahead code to 5772 * read a given file range, it may (and almost always does) read 5773 * pages from beyond that range (see the documentation for 5774 * page_cache_sync_readahead()), so it would not be reliable, 5775 * because after reading the first extent future calls to 5776 * filemap_range_has_page() would return true because the readahead 5777 * on the previous extent resulted in reading pages of the current 5778 * extent as well. 5779 */ 5780 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5781 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5782 } 5783 5784 while (sent < len) { 5785 u64 size = min(len - sent, read_size); 5786 int ret; 5787 5788 ret = send_write(sctx, offset + sent, size); 5789 if (ret < 0) 5790 return ret; 5791 sent += size; 5792 } 5793 5794 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5795 /* 5796 * Always operate only on ranges that are a multiple of the page 5797 * size. This is not only to prevent zeroing parts of a page in 5798 * the case of subpage sector size, but also to guarantee we evict 5799 * pages, as passing a range that is smaller than page size does 5800 * not evict the respective page (only zeroes part of its content). 5801 * 5802 * Always start from the end offset of the last range cleared. 5803 * This is because the readahead code may (and very often does) 5804 * reads pages beyond the range we request for readahead. So if 5805 * we have an extent layout like this: 5806 * 5807 * [ extent A ] [ extent B ] [ extent C ] 5808 * 5809 * When we ask page_cache_sync_readahead() to read extent A, it 5810 * may also trigger reads for pages of extent B. If we are doing 5811 * an incremental send and extent B has not changed between the 5812 * parent and send snapshots, some or all of its pages may end 5813 * up being read and placed in the page cache. So when truncating 5814 * the page cache we always start from the end offset of the 5815 * previously processed extent up to the end of the current 5816 * extent. 5817 */ 5818 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5819 sctx->page_cache_clear_start, 5820 end - 1); 5821 sctx->page_cache_clear_start = end; 5822 } 5823 5824 return 0; 5825 } 5826 5827 /* 5828 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5829 * found, call send_set_xattr function to emit it. 5830 * 5831 * Return 0 if there isn't a capability, or when the capability was emitted 5832 * successfully, or < 0 if an error occurred. 5833 */ 5834 static int send_capabilities(struct send_ctx *sctx) 5835 { 5836 struct fs_path *fspath = NULL; 5837 struct btrfs_path *path; 5838 struct btrfs_dir_item *di; 5839 struct extent_buffer *leaf; 5840 unsigned long data_ptr; 5841 char *buf = NULL; 5842 int buf_len; 5843 int ret = 0; 5844 5845 path = alloc_path_for_send(); 5846 if (!path) 5847 return -ENOMEM; 5848 5849 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5850 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5851 if (!di) { 5852 /* There is no xattr for this inode */ 5853 goto out; 5854 } else if (IS_ERR(di)) { 5855 ret = PTR_ERR(di); 5856 goto out; 5857 } 5858 5859 leaf = path->nodes[0]; 5860 buf_len = btrfs_dir_data_len(leaf, di); 5861 5862 fspath = fs_path_alloc(); 5863 buf = kmalloc(buf_len, GFP_KERNEL); 5864 if (!fspath || !buf) { 5865 ret = -ENOMEM; 5866 goto out; 5867 } 5868 5869 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5870 if (ret < 0) 5871 goto out; 5872 5873 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5874 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5875 5876 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5877 strlen(XATTR_NAME_CAPS), buf, buf_len); 5878 out: 5879 kfree(buf); 5880 fs_path_free(fspath); 5881 btrfs_free_path(path); 5882 return ret; 5883 } 5884 5885 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5886 struct clone_root *clone_root, const u64 disk_byte, 5887 u64 data_offset, u64 offset, u64 len) 5888 { 5889 struct btrfs_path *path; 5890 struct btrfs_key key; 5891 int ret; 5892 struct btrfs_inode_info info; 5893 u64 clone_src_i_size = 0; 5894 5895 /* 5896 * Prevent cloning from a zero offset with a length matching the sector 5897 * size because in some scenarios this will make the receiver fail. 5898 * 5899 * For example, if in the source filesystem the extent at offset 0 5900 * has a length of sectorsize and it was written using direct IO, then 5901 * it can never be an inline extent (even if compression is enabled). 5902 * Then this extent can be cloned in the original filesystem to a non 5903 * zero file offset, but it may not be possible to clone in the 5904 * destination filesystem because it can be inlined due to compression 5905 * on the destination filesystem (as the receiver's write operations are 5906 * always done using buffered IO). The same happens when the original 5907 * filesystem does not have compression enabled but the destination 5908 * filesystem has. 5909 */ 5910 if (clone_root->offset == 0 && 5911 len == sctx->send_root->fs_info->sectorsize) 5912 return send_extent_data(sctx, dst_path, offset, len); 5913 5914 path = alloc_path_for_send(); 5915 if (!path) 5916 return -ENOMEM; 5917 5918 /* 5919 * There are inodes that have extents that lie behind its i_size. Don't 5920 * accept clones from these extents. 5921 */ 5922 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5923 btrfs_release_path(path); 5924 if (ret < 0) 5925 goto out; 5926 clone_src_i_size = info.size; 5927 5928 /* 5929 * We can't send a clone operation for the entire range if we find 5930 * extent items in the respective range in the source file that 5931 * refer to different extents or if we find holes. 5932 * So check for that and do a mix of clone and regular write/copy 5933 * operations if needed. 5934 * 5935 * Example: 5936 * 5937 * mkfs.btrfs -f /dev/sda 5938 * mount /dev/sda /mnt 5939 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5940 * cp --reflink=always /mnt/foo /mnt/bar 5941 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5942 * btrfs subvolume snapshot -r /mnt /mnt/snap 5943 * 5944 * If when we send the snapshot and we are processing file bar (which 5945 * has a higher inode number than foo) we blindly send a clone operation 5946 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5947 * a file bar that matches the content of file foo - iow, doesn't match 5948 * the content from bar in the original filesystem. 5949 */ 5950 key.objectid = clone_root->ino; 5951 key.type = BTRFS_EXTENT_DATA_KEY; 5952 key.offset = clone_root->offset; 5953 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5954 if (ret < 0) 5955 goto out; 5956 if (ret > 0 && path->slots[0] > 0) { 5957 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5958 if (key.objectid == clone_root->ino && 5959 key.type == BTRFS_EXTENT_DATA_KEY) 5960 path->slots[0]--; 5961 } 5962 5963 while (true) { 5964 struct extent_buffer *leaf = path->nodes[0]; 5965 int slot = path->slots[0]; 5966 struct btrfs_file_extent_item *ei; 5967 u8 type; 5968 u64 ext_len; 5969 u64 clone_len; 5970 u64 clone_data_offset; 5971 bool crossed_src_i_size = false; 5972 5973 if (slot >= btrfs_header_nritems(leaf)) { 5974 ret = btrfs_next_leaf(clone_root->root, path); 5975 if (ret < 0) 5976 goto out; 5977 else if (ret > 0) 5978 break; 5979 continue; 5980 } 5981 5982 btrfs_item_key_to_cpu(leaf, &key, slot); 5983 5984 /* 5985 * We might have an implicit trailing hole (NO_HOLES feature 5986 * enabled). We deal with it after leaving this loop. 5987 */ 5988 if (key.objectid != clone_root->ino || 5989 key.type != BTRFS_EXTENT_DATA_KEY) 5990 break; 5991 5992 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5993 type = btrfs_file_extent_type(leaf, ei); 5994 if (type == BTRFS_FILE_EXTENT_INLINE) { 5995 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5996 ext_len = PAGE_ALIGN(ext_len); 5997 } else { 5998 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5999 } 6000 6001 if (key.offset + ext_len <= clone_root->offset) 6002 goto next; 6003 6004 if (key.offset > clone_root->offset) { 6005 /* Implicit hole, NO_HOLES feature enabled. */ 6006 u64 hole_len = key.offset - clone_root->offset; 6007 6008 if (hole_len > len) 6009 hole_len = len; 6010 ret = send_extent_data(sctx, dst_path, offset, 6011 hole_len); 6012 if (ret < 0) 6013 goto out; 6014 6015 len -= hole_len; 6016 if (len == 0) 6017 break; 6018 offset += hole_len; 6019 clone_root->offset += hole_len; 6020 data_offset += hole_len; 6021 } 6022 6023 if (key.offset >= clone_root->offset + len) 6024 break; 6025 6026 if (key.offset >= clone_src_i_size) 6027 break; 6028 6029 if (key.offset + ext_len > clone_src_i_size) { 6030 ext_len = clone_src_i_size - key.offset; 6031 crossed_src_i_size = true; 6032 } 6033 6034 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 6035 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 6036 clone_root->offset = key.offset; 6037 if (clone_data_offset < data_offset && 6038 clone_data_offset + ext_len > data_offset) { 6039 u64 extent_offset; 6040 6041 extent_offset = data_offset - clone_data_offset; 6042 ext_len -= extent_offset; 6043 clone_data_offset += extent_offset; 6044 clone_root->offset += extent_offset; 6045 } 6046 } 6047 6048 clone_len = min_t(u64, ext_len, len); 6049 6050 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 6051 clone_data_offset == data_offset) { 6052 const u64 src_end = clone_root->offset + clone_len; 6053 const u64 sectorsize = SZ_64K; 6054 6055 /* 6056 * We can't clone the last block, when its size is not 6057 * sector size aligned, into the middle of a file. If we 6058 * do so, the receiver will get a failure (-EINVAL) when 6059 * trying to clone or will silently corrupt the data in 6060 * the destination file if it's on a kernel without the 6061 * fix introduced by commit ac765f83f1397646 6062 * ("Btrfs: fix data corruption due to cloning of eof 6063 * block). 6064 * 6065 * So issue a clone of the aligned down range plus a 6066 * regular write for the eof block, if we hit that case. 6067 * 6068 * Also, we use the maximum possible sector size, 64K, 6069 * because we don't know what's the sector size of the 6070 * filesystem that receives the stream, so we have to 6071 * assume the largest possible sector size. 6072 */ 6073 if (src_end == clone_src_i_size && 6074 !IS_ALIGNED(src_end, sectorsize) && 6075 offset + clone_len < sctx->cur_inode_size) { 6076 u64 slen; 6077 6078 slen = ALIGN_DOWN(src_end - clone_root->offset, 6079 sectorsize); 6080 if (slen > 0) { 6081 ret = send_clone(sctx, offset, slen, 6082 clone_root); 6083 if (ret < 0) 6084 goto out; 6085 } 6086 ret = send_extent_data(sctx, dst_path, 6087 offset + slen, 6088 clone_len - slen); 6089 } else { 6090 ret = send_clone(sctx, offset, clone_len, 6091 clone_root); 6092 } 6093 } else if (crossed_src_i_size && clone_len < len) { 6094 /* 6095 * If we are at i_size of the clone source inode and we 6096 * can not clone from it, terminate the loop. This is 6097 * to avoid sending two write operations, one with a 6098 * length matching clone_len and the final one after 6099 * this loop with a length of len - clone_len. 6100 * 6101 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6102 * was passed to the send ioctl), this helps avoid 6103 * sending an encoded write for an offset that is not 6104 * sector size aligned, in case the i_size of the source 6105 * inode is not sector size aligned. That will make the 6106 * receiver fallback to decompression of the data and 6107 * writing it using regular buffered IO, therefore while 6108 * not incorrect, it's not optimal due decompression and 6109 * possible re-compression at the receiver. 6110 */ 6111 break; 6112 } else { 6113 ret = send_extent_data(sctx, dst_path, offset, 6114 clone_len); 6115 } 6116 6117 if (ret < 0) 6118 goto out; 6119 6120 len -= clone_len; 6121 if (len == 0) 6122 break; 6123 offset += clone_len; 6124 clone_root->offset += clone_len; 6125 6126 /* 6127 * If we are cloning from the file we are currently processing, 6128 * and using the send root as the clone root, we must stop once 6129 * the current clone offset reaches the current eof of the file 6130 * at the receiver, otherwise we would issue an invalid clone 6131 * operation (source range going beyond eof) and cause the 6132 * receiver to fail. So if we reach the current eof, bail out 6133 * and fallback to a regular write. 6134 */ 6135 if (clone_root->root == sctx->send_root && 6136 clone_root->ino == sctx->cur_ino && 6137 clone_root->offset >= sctx->cur_inode_next_write_offset) 6138 break; 6139 6140 data_offset += clone_len; 6141 next: 6142 path->slots[0]++; 6143 } 6144 6145 if (len > 0) 6146 ret = send_extent_data(sctx, dst_path, offset, len); 6147 else 6148 ret = 0; 6149 out: 6150 btrfs_free_path(path); 6151 return ret; 6152 } 6153 6154 static int send_write_or_clone(struct send_ctx *sctx, 6155 struct btrfs_path *path, 6156 struct btrfs_key *key, 6157 struct clone_root *clone_root) 6158 { 6159 int ret = 0; 6160 u64 offset = key->offset; 6161 u64 end; 6162 u64 bs = sctx->send_root->fs_info->sectorsize; 6163 struct btrfs_file_extent_item *ei; 6164 u64 disk_byte; 6165 u64 data_offset; 6166 u64 num_bytes; 6167 struct btrfs_inode_info info = { 0 }; 6168 6169 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6170 if (offset >= end) 6171 return 0; 6172 6173 num_bytes = end - offset; 6174 6175 if (!clone_root) 6176 goto write_data; 6177 6178 if (IS_ALIGNED(end, bs)) 6179 goto clone_data; 6180 6181 /* 6182 * If the extent end is not aligned, we can clone if the extent ends at 6183 * the i_size of the inode and the clone range ends at the i_size of the 6184 * source inode, otherwise the clone operation fails with -EINVAL. 6185 */ 6186 if (end != sctx->cur_inode_size) 6187 goto write_data; 6188 6189 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 6190 if (ret < 0) 6191 return ret; 6192 6193 if (clone_root->offset + num_bytes == info.size) 6194 goto clone_data; 6195 6196 write_data: 6197 ret = send_extent_data(sctx, path, offset, num_bytes); 6198 sctx->cur_inode_next_write_offset = end; 6199 return ret; 6200 6201 clone_data: 6202 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6203 struct btrfs_file_extent_item); 6204 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6205 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6206 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset, 6207 num_bytes); 6208 sctx->cur_inode_next_write_offset = end; 6209 return ret; 6210 } 6211 6212 static int is_extent_unchanged(struct send_ctx *sctx, 6213 struct btrfs_path *left_path, 6214 struct btrfs_key *ekey) 6215 { 6216 int ret = 0; 6217 struct btrfs_key key; 6218 struct btrfs_path *path = NULL; 6219 struct extent_buffer *eb; 6220 int slot; 6221 struct btrfs_key found_key; 6222 struct btrfs_file_extent_item *ei; 6223 u64 left_disknr; 6224 u64 right_disknr; 6225 u64 left_offset; 6226 u64 right_offset; 6227 u64 left_offset_fixed; 6228 u64 left_len; 6229 u64 right_len; 6230 u64 left_gen; 6231 u64 right_gen; 6232 u8 left_type; 6233 u8 right_type; 6234 6235 path = alloc_path_for_send(); 6236 if (!path) 6237 return -ENOMEM; 6238 6239 eb = left_path->nodes[0]; 6240 slot = left_path->slots[0]; 6241 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6242 left_type = btrfs_file_extent_type(eb, ei); 6243 6244 if (left_type != BTRFS_FILE_EXTENT_REG) { 6245 ret = 0; 6246 goto out; 6247 } 6248 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6249 left_len = btrfs_file_extent_num_bytes(eb, ei); 6250 left_offset = btrfs_file_extent_offset(eb, ei); 6251 left_gen = btrfs_file_extent_generation(eb, ei); 6252 6253 /* 6254 * Following comments will refer to these graphics. L is the left 6255 * extents which we are checking at the moment. 1-8 are the right 6256 * extents that we iterate. 6257 * 6258 * |-----L-----| 6259 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6260 * 6261 * |-----L-----| 6262 * |--1--|-2b-|...(same as above) 6263 * 6264 * Alternative situation. Happens on files where extents got split. 6265 * |-----L-----| 6266 * |-----------7-----------|-6-| 6267 * 6268 * Alternative situation. Happens on files which got larger. 6269 * |-----L-----| 6270 * |-8-| 6271 * Nothing follows after 8. 6272 */ 6273 6274 key.objectid = ekey->objectid; 6275 key.type = BTRFS_EXTENT_DATA_KEY; 6276 key.offset = ekey->offset; 6277 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6278 if (ret < 0) 6279 goto out; 6280 if (ret) { 6281 ret = 0; 6282 goto out; 6283 } 6284 6285 /* 6286 * Handle special case where the right side has no extents at all. 6287 */ 6288 eb = path->nodes[0]; 6289 slot = path->slots[0]; 6290 btrfs_item_key_to_cpu(eb, &found_key, slot); 6291 if (found_key.objectid != key.objectid || 6292 found_key.type != key.type) { 6293 /* If we're a hole then just pretend nothing changed */ 6294 ret = (left_disknr) ? 0 : 1; 6295 goto out; 6296 } 6297 6298 /* 6299 * We're now on 2a, 2b or 7. 6300 */ 6301 key = found_key; 6302 while (key.offset < ekey->offset + left_len) { 6303 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6304 right_type = btrfs_file_extent_type(eb, ei); 6305 if (right_type != BTRFS_FILE_EXTENT_REG && 6306 right_type != BTRFS_FILE_EXTENT_INLINE) { 6307 ret = 0; 6308 goto out; 6309 } 6310 6311 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6312 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6313 right_len = PAGE_ALIGN(right_len); 6314 } else { 6315 right_len = btrfs_file_extent_num_bytes(eb, ei); 6316 } 6317 6318 /* 6319 * Are we at extent 8? If yes, we know the extent is changed. 6320 * This may only happen on the first iteration. 6321 */ 6322 if (found_key.offset + right_len <= ekey->offset) { 6323 /* If we're a hole just pretend nothing changed */ 6324 ret = (left_disknr) ? 0 : 1; 6325 goto out; 6326 } 6327 6328 /* 6329 * We just wanted to see if when we have an inline extent, what 6330 * follows it is a regular extent (wanted to check the above 6331 * condition for inline extents too). This should normally not 6332 * happen but it's possible for example when we have an inline 6333 * compressed extent representing data with a size matching 6334 * the page size (currently the same as sector size). 6335 */ 6336 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6337 ret = 0; 6338 goto out; 6339 } 6340 6341 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6342 right_offset = btrfs_file_extent_offset(eb, ei); 6343 right_gen = btrfs_file_extent_generation(eb, ei); 6344 6345 left_offset_fixed = left_offset; 6346 if (key.offset < ekey->offset) { 6347 /* Fix the right offset for 2a and 7. */ 6348 right_offset += ekey->offset - key.offset; 6349 } else { 6350 /* Fix the left offset for all behind 2a and 2b */ 6351 left_offset_fixed += key.offset - ekey->offset; 6352 } 6353 6354 /* 6355 * Check if we have the same extent. 6356 */ 6357 if (left_disknr != right_disknr || 6358 left_offset_fixed != right_offset || 6359 left_gen != right_gen) { 6360 ret = 0; 6361 goto out; 6362 } 6363 6364 /* 6365 * Go to the next extent. 6366 */ 6367 ret = btrfs_next_item(sctx->parent_root, path); 6368 if (ret < 0) 6369 goto out; 6370 if (!ret) { 6371 eb = path->nodes[0]; 6372 slot = path->slots[0]; 6373 btrfs_item_key_to_cpu(eb, &found_key, slot); 6374 } 6375 if (ret || found_key.objectid != key.objectid || 6376 found_key.type != key.type) { 6377 key.offset += right_len; 6378 break; 6379 } 6380 if (found_key.offset != key.offset + right_len) { 6381 ret = 0; 6382 goto out; 6383 } 6384 key = found_key; 6385 } 6386 6387 /* 6388 * We're now behind the left extent (treat as unchanged) or at the end 6389 * of the right side (treat as changed). 6390 */ 6391 if (key.offset >= ekey->offset + left_len) 6392 ret = 1; 6393 else 6394 ret = 0; 6395 6396 6397 out: 6398 btrfs_free_path(path); 6399 return ret; 6400 } 6401 6402 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6403 { 6404 struct btrfs_path *path; 6405 struct btrfs_root *root = sctx->send_root; 6406 struct btrfs_key key; 6407 int ret; 6408 6409 path = alloc_path_for_send(); 6410 if (!path) 6411 return -ENOMEM; 6412 6413 sctx->cur_inode_last_extent = 0; 6414 6415 key.objectid = sctx->cur_ino; 6416 key.type = BTRFS_EXTENT_DATA_KEY; 6417 key.offset = offset; 6418 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6419 if (ret < 0) 6420 goto out; 6421 ret = 0; 6422 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6423 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6424 goto out; 6425 6426 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6427 out: 6428 btrfs_free_path(path); 6429 return ret; 6430 } 6431 6432 static int range_is_hole_in_parent(struct send_ctx *sctx, 6433 const u64 start, 6434 const u64 end) 6435 { 6436 struct btrfs_path *path; 6437 struct btrfs_key key; 6438 struct btrfs_root *root = sctx->parent_root; 6439 u64 search_start = start; 6440 int ret; 6441 6442 path = alloc_path_for_send(); 6443 if (!path) 6444 return -ENOMEM; 6445 6446 key.objectid = sctx->cur_ino; 6447 key.type = BTRFS_EXTENT_DATA_KEY; 6448 key.offset = search_start; 6449 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6450 if (ret < 0) 6451 goto out; 6452 if (ret > 0 && path->slots[0] > 0) 6453 path->slots[0]--; 6454 6455 while (search_start < end) { 6456 struct extent_buffer *leaf = path->nodes[0]; 6457 int slot = path->slots[0]; 6458 struct btrfs_file_extent_item *fi; 6459 u64 extent_end; 6460 6461 if (slot >= btrfs_header_nritems(leaf)) { 6462 ret = btrfs_next_leaf(root, path); 6463 if (ret < 0) 6464 goto out; 6465 else if (ret > 0) 6466 break; 6467 continue; 6468 } 6469 6470 btrfs_item_key_to_cpu(leaf, &key, slot); 6471 if (key.objectid < sctx->cur_ino || 6472 key.type < BTRFS_EXTENT_DATA_KEY) 6473 goto next; 6474 if (key.objectid > sctx->cur_ino || 6475 key.type > BTRFS_EXTENT_DATA_KEY || 6476 key.offset >= end) 6477 break; 6478 6479 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6480 extent_end = btrfs_file_extent_end(path); 6481 if (extent_end <= start) 6482 goto next; 6483 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6484 search_start = extent_end; 6485 goto next; 6486 } 6487 ret = 0; 6488 goto out; 6489 next: 6490 path->slots[0]++; 6491 } 6492 ret = 1; 6493 out: 6494 btrfs_free_path(path); 6495 return ret; 6496 } 6497 6498 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6499 struct btrfs_key *key) 6500 { 6501 int ret = 0; 6502 6503 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6504 return 0; 6505 6506 if (sctx->cur_inode_last_extent == (u64)-1) { 6507 ret = get_last_extent(sctx, key->offset - 1); 6508 if (ret) 6509 return ret; 6510 } 6511 6512 if (path->slots[0] == 0 && 6513 sctx->cur_inode_last_extent < key->offset) { 6514 /* 6515 * We might have skipped entire leafs that contained only 6516 * file extent items for our current inode. These leafs have 6517 * a generation number smaller (older) than the one in the 6518 * current leaf and the leaf our last extent came from, and 6519 * are located between these 2 leafs. 6520 */ 6521 ret = get_last_extent(sctx, key->offset - 1); 6522 if (ret) 6523 return ret; 6524 } 6525 6526 if (sctx->cur_inode_last_extent < key->offset) { 6527 ret = range_is_hole_in_parent(sctx, 6528 sctx->cur_inode_last_extent, 6529 key->offset); 6530 if (ret < 0) 6531 return ret; 6532 else if (ret == 0) 6533 ret = send_hole(sctx, key->offset); 6534 else 6535 ret = 0; 6536 } 6537 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6538 return ret; 6539 } 6540 6541 static int process_extent(struct send_ctx *sctx, 6542 struct btrfs_path *path, 6543 struct btrfs_key *key) 6544 { 6545 struct clone_root *found_clone = NULL; 6546 int ret = 0; 6547 6548 if (S_ISLNK(sctx->cur_inode_mode)) 6549 return 0; 6550 6551 if (sctx->parent_root && !sctx->cur_inode_new) { 6552 ret = is_extent_unchanged(sctx, path, key); 6553 if (ret < 0) 6554 goto out; 6555 if (ret) { 6556 ret = 0; 6557 goto out_hole; 6558 } 6559 } else { 6560 struct btrfs_file_extent_item *ei; 6561 u8 type; 6562 6563 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6564 struct btrfs_file_extent_item); 6565 type = btrfs_file_extent_type(path->nodes[0], ei); 6566 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6567 type == BTRFS_FILE_EXTENT_REG) { 6568 /* 6569 * The send spec does not have a prealloc command yet, 6570 * so just leave a hole for prealloc'ed extents until 6571 * we have enough commands queued up to justify rev'ing 6572 * the send spec. 6573 */ 6574 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6575 ret = 0; 6576 goto out; 6577 } 6578 6579 /* Have a hole, just skip it. */ 6580 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6581 ret = 0; 6582 goto out; 6583 } 6584 } 6585 } 6586 6587 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6588 sctx->cur_inode_size, &found_clone); 6589 if (ret != -ENOENT && ret < 0) 6590 goto out; 6591 6592 ret = send_write_or_clone(sctx, path, key, found_clone); 6593 if (ret) 6594 goto out; 6595 out_hole: 6596 ret = maybe_send_hole(sctx, path, key); 6597 out: 6598 return ret; 6599 } 6600 6601 static int process_all_extents(struct send_ctx *sctx) 6602 { 6603 int ret = 0; 6604 int iter_ret = 0; 6605 struct btrfs_root *root; 6606 struct btrfs_path *path; 6607 struct btrfs_key key; 6608 struct btrfs_key found_key; 6609 6610 root = sctx->send_root; 6611 path = alloc_path_for_send(); 6612 if (!path) 6613 return -ENOMEM; 6614 6615 key.objectid = sctx->cmp_key->objectid; 6616 key.type = BTRFS_EXTENT_DATA_KEY; 6617 key.offset = 0; 6618 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6619 if (found_key.objectid != key.objectid || 6620 found_key.type != key.type) { 6621 ret = 0; 6622 break; 6623 } 6624 6625 ret = process_extent(sctx, path, &found_key); 6626 if (ret < 0) 6627 break; 6628 } 6629 /* Catch error found during iteration */ 6630 if (iter_ret < 0) 6631 ret = iter_ret; 6632 6633 btrfs_free_path(path); 6634 return ret; 6635 } 6636 6637 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6638 int *pending_move, 6639 int *refs_processed) 6640 { 6641 int ret = 0; 6642 6643 if (sctx->cur_ino == 0) 6644 goto out; 6645 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6646 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6647 goto out; 6648 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6649 goto out; 6650 6651 ret = process_recorded_refs(sctx, pending_move); 6652 if (ret < 0) 6653 goto out; 6654 6655 *refs_processed = 1; 6656 out: 6657 return ret; 6658 } 6659 6660 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6661 { 6662 int ret = 0; 6663 struct btrfs_inode_info info; 6664 u64 left_mode; 6665 u64 left_uid; 6666 u64 left_gid; 6667 u64 left_fileattr; 6668 u64 right_mode; 6669 u64 right_uid; 6670 u64 right_gid; 6671 u64 right_fileattr; 6672 int need_chmod = 0; 6673 int need_chown = 0; 6674 bool need_fileattr = false; 6675 int need_truncate = 1; 6676 int pending_move = 0; 6677 int refs_processed = 0; 6678 6679 if (sctx->ignore_cur_inode) 6680 return 0; 6681 6682 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6683 &refs_processed); 6684 if (ret < 0) 6685 goto out; 6686 6687 /* 6688 * We have processed the refs and thus need to advance send_progress. 6689 * Now, calls to get_cur_xxx will take the updated refs of the current 6690 * inode into account. 6691 * 6692 * On the other hand, if our current inode is a directory and couldn't 6693 * be moved/renamed because its parent was renamed/moved too and it has 6694 * a higher inode number, we can only move/rename our current inode 6695 * after we moved/renamed its parent. Therefore in this case operate on 6696 * the old path (pre move/rename) of our current inode, and the 6697 * move/rename will be performed later. 6698 */ 6699 if (refs_processed && !pending_move) 6700 sctx->send_progress = sctx->cur_ino + 1; 6701 6702 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6703 goto out; 6704 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6705 goto out; 6706 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6707 if (ret < 0) 6708 goto out; 6709 left_mode = info.mode; 6710 left_uid = info.uid; 6711 left_gid = info.gid; 6712 left_fileattr = info.fileattr; 6713 6714 if (!sctx->parent_root || sctx->cur_inode_new) { 6715 need_chown = 1; 6716 if (!S_ISLNK(sctx->cur_inode_mode)) 6717 need_chmod = 1; 6718 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6719 need_truncate = 0; 6720 } else { 6721 u64 old_size; 6722 6723 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6724 if (ret < 0) 6725 goto out; 6726 old_size = info.size; 6727 right_mode = info.mode; 6728 right_uid = info.uid; 6729 right_gid = info.gid; 6730 right_fileattr = info.fileattr; 6731 6732 if (left_uid != right_uid || left_gid != right_gid) 6733 need_chown = 1; 6734 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6735 need_chmod = 1; 6736 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6737 need_fileattr = true; 6738 if ((old_size == sctx->cur_inode_size) || 6739 (sctx->cur_inode_size > old_size && 6740 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6741 need_truncate = 0; 6742 } 6743 6744 if (S_ISREG(sctx->cur_inode_mode)) { 6745 if (need_send_hole(sctx)) { 6746 if (sctx->cur_inode_last_extent == (u64)-1 || 6747 sctx->cur_inode_last_extent < 6748 sctx->cur_inode_size) { 6749 ret = get_last_extent(sctx, (u64)-1); 6750 if (ret) 6751 goto out; 6752 } 6753 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6754 ret = range_is_hole_in_parent(sctx, 6755 sctx->cur_inode_last_extent, 6756 sctx->cur_inode_size); 6757 if (ret < 0) { 6758 goto out; 6759 } else if (ret == 0) { 6760 ret = send_hole(sctx, sctx->cur_inode_size); 6761 if (ret < 0) 6762 goto out; 6763 } else { 6764 /* Range is already a hole, skip. */ 6765 ret = 0; 6766 } 6767 } 6768 } 6769 if (need_truncate) { 6770 ret = send_truncate(sctx, sctx->cur_ino, 6771 sctx->cur_inode_gen, 6772 sctx->cur_inode_size); 6773 if (ret < 0) 6774 goto out; 6775 } 6776 } 6777 6778 if (need_chown) { 6779 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6780 left_uid, left_gid); 6781 if (ret < 0) 6782 goto out; 6783 } 6784 if (need_chmod) { 6785 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6786 left_mode); 6787 if (ret < 0) 6788 goto out; 6789 } 6790 if (need_fileattr) { 6791 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6792 left_fileattr); 6793 if (ret < 0) 6794 goto out; 6795 } 6796 6797 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6798 && sctx->cur_inode_needs_verity) { 6799 ret = process_verity(sctx); 6800 if (ret < 0) 6801 goto out; 6802 } 6803 6804 ret = send_capabilities(sctx); 6805 if (ret < 0) 6806 goto out; 6807 6808 /* 6809 * If other directory inodes depended on our current directory 6810 * inode's move/rename, now do their move/rename operations. 6811 */ 6812 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6813 ret = apply_children_dir_moves(sctx); 6814 if (ret) 6815 goto out; 6816 /* 6817 * Need to send that every time, no matter if it actually 6818 * changed between the two trees as we have done changes to 6819 * the inode before. If our inode is a directory and it's 6820 * waiting to be moved/renamed, we will send its utimes when 6821 * it's moved/renamed, therefore we don't need to do it here. 6822 */ 6823 sctx->send_progress = sctx->cur_ino + 1; 6824 6825 /* 6826 * If the current inode is a non-empty directory, delay issuing 6827 * the utimes command for it, as it's very likely we have inodes 6828 * with an higher number inside it. We want to issue the utimes 6829 * command only after adding all dentries to it. 6830 */ 6831 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6832 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6833 else 6834 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6835 6836 if (ret < 0) 6837 goto out; 6838 } 6839 6840 out: 6841 if (!ret) 6842 ret = trim_dir_utimes_cache(sctx); 6843 6844 return ret; 6845 } 6846 6847 static void close_current_inode(struct send_ctx *sctx) 6848 { 6849 u64 i_size; 6850 6851 if (sctx->cur_inode == NULL) 6852 return; 6853 6854 i_size = i_size_read(sctx->cur_inode); 6855 6856 /* 6857 * If we are doing an incremental send, we may have extents between the 6858 * last processed extent and the i_size that have not been processed 6859 * because they haven't changed but we may have read some of their pages 6860 * through readahead, see the comments at send_extent_data(). 6861 */ 6862 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6863 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6864 sctx->page_cache_clear_start, 6865 round_up(i_size, PAGE_SIZE) - 1); 6866 6867 iput(sctx->cur_inode); 6868 sctx->cur_inode = NULL; 6869 } 6870 6871 static int changed_inode(struct send_ctx *sctx, 6872 enum btrfs_compare_tree_result result) 6873 { 6874 int ret = 0; 6875 struct btrfs_key *key = sctx->cmp_key; 6876 struct btrfs_inode_item *left_ii = NULL; 6877 struct btrfs_inode_item *right_ii = NULL; 6878 u64 left_gen = 0; 6879 u64 right_gen = 0; 6880 6881 close_current_inode(sctx); 6882 6883 sctx->cur_ino = key->objectid; 6884 sctx->cur_inode_new_gen = false; 6885 sctx->cur_inode_last_extent = (u64)-1; 6886 sctx->cur_inode_next_write_offset = 0; 6887 sctx->ignore_cur_inode = false; 6888 6889 /* 6890 * Set send_progress to current inode. This will tell all get_cur_xxx 6891 * functions that the current inode's refs are not updated yet. Later, 6892 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6893 */ 6894 sctx->send_progress = sctx->cur_ino; 6895 6896 if (result == BTRFS_COMPARE_TREE_NEW || 6897 result == BTRFS_COMPARE_TREE_CHANGED) { 6898 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6899 sctx->left_path->slots[0], 6900 struct btrfs_inode_item); 6901 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6902 left_ii); 6903 } else { 6904 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6905 sctx->right_path->slots[0], 6906 struct btrfs_inode_item); 6907 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6908 right_ii); 6909 } 6910 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6911 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6912 sctx->right_path->slots[0], 6913 struct btrfs_inode_item); 6914 6915 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6916 right_ii); 6917 6918 /* 6919 * The cur_ino = root dir case is special here. We can't treat 6920 * the inode as deleted+reused because it would generate a 6921 * stream that tries to delete/mkdir the root dir. 6922 */ 6923 if (left_gen != right_gen && 6924 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6925 sctx->cur_inode_new_gen = true; 6926 } 6927 6928 /* 6929 * Normally we do not find inodes with a link count of zero (orphans) 6930 * because the most common case is to create a snapshot and use it 6931 * for a send operation. However other less common use cases involve 6932 * using a subvolume and send it after turning it to RO mode just 6933 * after deleting all hard links of a file while holding an open 6934 * file descriptor against it or turning a RO snapshot into RW mode, 6935 * keep an open file descriptor against a file, delete it and then 6936 * turn the snapshot back to RO mode before using it for a send 6937 * operation. The former is what the receiver operation does. 6938 * Therefore, if we want to send these snapshots soon after they're 6939 * received, we need to handle orphan inodes as well. Moreover, orphans 6940 * can appear not only in the send snapshot but also in the parent 6941 * snapshot. Here are several cases: 6942 * 6943 * Case 1: BTRFS_COMPARE_TREE_NEW 6944 * | send snapshot | action 6945 * -------------------------------- 6946 * nlink | 0 | ignore 6947 * 6948 * Case 2: BTRFS_COMPARE_TREE_DELETED 6949 * | parent snapshot | action 6950 * ---------------------------------- 6951 * nlink | 0 | as usual 6952 * Note: No unlinks will be sent because there're no paths for it. 6953 * 6954 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6955 * | | parent snapshot | send snapshot | action 6956 * ----------------------------------------------------------------------- 6957 * subcase 1 | nlink | 0 | 0 | ignore 6958 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6959 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6960 * 6961 */ 6962 if (result == BTRFS_COMPARE_TREE_NEW) { 6963 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6964 sctx->ignore_cur_inode = true; 6965 goto out; 6966 } 6967 sctx->cur_inode_gen = left_gen; 6968 sctx->cur_inode_new = true; 6969 sctx->cur_inode_deleted = false; 6970 sctx->cur_inode_size = btrfs_inode_size( 6971 sctx->left_path->nodes[0], left_ii); 6972 sctx->cur_inode_mode = btrfs_inode_mode( 6973 sctx->left_path->nodes[0], left_ii); 6974 sctx->cur_inode_rdev = btrfs_inode_rdev( 6975 sctx->left_path->nodes[0], left_ii); 6976 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6977 ret = send_create_inode_if_needed(sctx); 6978 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6979 sctx->cur_inode_gen = right_gen; 6980 sctx->cur_inode_new = false; 6981 sctx->cur_inode_deleted = true; 6982 sctx->cur_inode_size = btrfs_inode_size( 6983 sctx->right_path->nodes[0], right_ii); 6984 sctx->cur_inode_mode = btrfs_inode_mode( 6985 sctx->right_path->nodes[0], right_ii); 6986 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6987 u32 new_nlinks, old_nlinks; 6988 6989 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6990 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6991 if (new_nlinks == 0 && old_nlinks == 0) { 6992 sctx->ignore_cur_inode = true; 6993 goto out; 6994 } else if (new_nlinks == 0 || old_nlinks == 0) { 6995 sctx->cur_inode_new_gen = 1; 6996 } 6997 /* 6998 * We need to do some special handling in case the inode was 6999 * reported as changed with a changed generation number. This 7000 * means that the original inode was deleted and new inode 7001 * reused the same inum. So we have to treat the old inode as 7002 * deleted and the new one as new. 7003 */ 7004 if (sctx->cur_inode_new_gen) { 7005 /* 7006 * First, process the inode as if it was deleted. 7007 */ 7008 if (old_nlinks > 0) { 7009 sctx->cur_inode_gen = right_gen; 7010 sctx->cur_inode_new = false; 7011 sctx->cur_inode_deleted = true; 7012 sctx->cur_inode_size = btrfs_inode_size( 7013 sctx->right_path->nodes[0], right_ii); 7014 sctx->cur_inode_mode = btrfs_inode_mode( 7015 sctx->right_path->nodes[0], right_ii); 7016 ret = process_all_refs(sctx, 7017 BTRFS_COMPARE_TREE_DELETED); 7018 if (ret < 0) 7019 goto out; 7020 } 7021 7022 /* 7023 * Now process the inode as if it was new. 7024 */ 7025 if (new_nlinks > 0) { 7026 sctx->cur_inode_gen = left_gen; 7027 sctx->cur_inode_new = true; 7028 sctx->cur_inode_deleted = false; 7029 sctx->cur_inode_size = btrfs_inode_size( 7030 sctx->left_path->nodes[0], 7031 left_ii); 7032 sctx->cur_inode_mode = btrfs_inode_mode( 7033 sctx->left_path->nodes[0], 7034 left_ii); 7035 sctx->cur_inode_rdev = btrfs_inode_rdev( 7036 sctx->left_path->nodes[0], 7037 left_ii); 7038 ret = send_create_inode_if_needed(sctx); 7039 if (ret < 0) 7040 goto out; 7041 7042 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 7043 if (ret < 0) 7044 goto out; 7045 /* 7046 * Advance send_progress now as we did not get 7047 * into process_recorded_refs_if_needed in the 7048 * new_gen case. 7049 */ 7050 sctx->send_progress = sctx->cur_ino + 1; 7051 7052 /* 7053 * Now process all extents and xattrs of the 7054 * inode as if they were all new. 7055 */ 7056 ret = process_all_extents(sctx); 7057 if (ret < 0) 7058 goto out; 7059 ret = process_all_new_xattrs(sctx); 7060 if (ret < 0) 7061 goto out; 7062 } 7063 } else { 7064 sctx->cur_inode_gen = left_gen; 7065 sctx->cur_inode_new = false; 7066 sctx->cur_inode_new_gen = false; 7067 sctx->cur_inode_deleted = false; 7068 sctx->cur_inode_size = btrfs_inode_size( 7069 sctx->left_path->nodes[0], left_ii); 7070 sctx->cur_inode_mode = btrfs_inode_mode( 7071 sctx->left_path->nodes[0], left_ii); 7072 } 7073 } 7074 7075 out: 7076 return ret; 7077 } 7078 7079 /* 7080 * We have to process new refs before deleted refs, but compare_trees gives us 7081 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 7082 * first and later process them in process_recorded_refs. 7083 * For the cur_inode_new_gen case, we skip recording completely because 7084 * changed_inode did already initiate processing of refs. The reason for this is 7085 * that in this case, compare_tree actually compares the refs of 2 different 7086 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 7087 * refs of the right tree as deleted and all refs of the left tree as new. 7088 */ 7089 static int changed_ref(struct send_ctx *sctx, 7090 enum btrfs_compare_tree_result result) 7091 { 7092 int ret = 0; 7093 7094 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7095 inconsistent_snapshot_error(sctx, result, "reference"); 7096 return -EIO; 7097 } 7098 7099 if (!sctx->cur_inode_new_gen && 7100 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 7101 if (result == BTRFS_COMPARE_TREE_NEW) 7102 ret = record_new_ref(sctx); 7103 else if (result == BTRFS_COMPARE_TREE_DELETED) 7104 ret = record_deleted_ref(sctx); 7105 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7106 ret = record_changed_ref(sctx); 7107 } 7108 7109 return ret; 7110 } 7111 7112 /* 7113 * Process new/deleted/changed xattrs. We skip processing in the 7114 * cur_inode_new_gen case because changed_inode did already initiate processing 7115 * of xattrs. The reason is the same as in changed_ref 7116 */ 7117 static int changed_xattr(struct send_ctx *sctx, 7118 enum btrfs_compare_tree_result result) 7119 { 7120 int ret = 0; 7121 7122 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7123 inconsistent_snapshot_error(sctx, result, "xattr"); 7124 return -EIO; 7125 } 7126 7127 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7128 if (result == BTRFS_COMPARE_TREE_NEW) 7129 ret = process_new_xattr(sctx); 7130 else if (result == BTRFS_COMPARE_TREE_DELETED) 7131 ret = process_deleted_xattr(sctx); 7132 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7133 ret = process_changed_xattr(sctx); 7134 } 7135 7136 return ret; 7137 } 7138 7139 /* 7140 * Process new/deleted/changed extents. We skip processing in the 7141 * cur_inode_new_gen case because changed_inode did already initiate processing 7142 * of extents. The reason is the same as in changed_ref 7143 */ 7144 static int changed_extent(struct send_ctx *sctx, 7145 enum btrfs_compare_tree_result result) 7146 { 7147 int ret = 0; 7148 7149 /* 7150 * We have found an extent item that changed without the inode item 7151 * having changed. This can happen either after relocation (where the 7152 * disk_bytenr of an extent item is replaced at 7153 * relocation.c:replace_file_extents()) or after deduplication into a 7154 * file in both the parent and send snapshots (where an extent item can 7155 * get modified or replaced with a new one). Note that deduplication 7156 * updates the inode item, but it only changes the iversion (sequence 7157 * field in the inode item) of the inode, so if a file is deduplicated 7158 * the same amount of times in both the parent and send snapshots, its 7159 * iversion becomes the same in both snapshots, whence the inode item is 7160 * the same on both snapshots. 7161 */ 7162 if (sctx->cur_ino != sctx->cmp_key->objectid) 7163 return 0; 7164 7165 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7166 if (result != BTRFS_COMPARE_TREE_DELETED) 7167 ret = process_extent(sctx, sctx->left_path, 7168 sctx->cmp_key); 7169 } 7170 7171 return ret; 7172 } 7173 7174 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7175 { 7176 int ret = 0; 7177 7178 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7179 if (result == BTRFS_COMPARE_TREE_NEW) 7180 sctx->cur_inode_needs_verity = true; 7181 } 7182 return ret; 7183 } 7184 7185 static int dir_changed(struct send_ctx *sctx, u64 dir) 7186 { 7187 u64 orig_gen, new_gen; 7188 int ret; 7189 7190 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7191 if (ret) 7192 return ret; 7193 7194 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7195 if (ret) 7196 return ret; 7197 7198 return (orig_gen != new_gen) ? 1 : 0; 7199 } 7200 7201 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7202 struct btrfs_key *key) 7203 { 7204 struct btrfs_inode_extref *extref; 7205 struct extent_buffer *leaf; 7206 u64 dirid = 0, last_dirid = 0; 7207 unsigned long ptr; 7208 u32 item_size; 7209 u32 cur_offset = 0; 7210 int ref_name_len; 7211 int ret = 0; 7212 7213 /* Easy case, just check this one dirid */ 7214 if (key->type == BTRFS_INODE_REF_KEY) { 7215 dirid = key->offset; 7216 7217 ret = dir_changed(sctx, dirid); 7218 goto out; 7219 } 7220 7221 leaf = path->nodes[0]; 7222 item_size = btrfs_item_size(leaf, path->slots[0]); 7223 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7224 while (cur_offset < item_size) { 7225 extref = (struct btrfs_inode_extref *)(ptr + 7226 cur_offset); 7227 dirid = btrfs_inode_extref_parent(leaf, extref); 7228 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7229 cur_offset += ref_name_len + sizeof(*extref); 7230 if (dirid == last_dirid) 7231 continue; 7232 ret = dir_changed(sctx, dirid); 7233 if (ret) 7234 break; 7235 last_dirid = dirid; 7236 } 7237 out: 7238 return ret; 7239 } 7240 7241 /* 7242 * Updates compare related fields in sctx and simply forwards to the actual 7243 * changed_xxx functions. 7244 */ 7245 static int changed_cb(struct btrfs_path *left_path, 7246 struct btrfs_path *right_path, 7247 struct btrfs_key *key, 7248 enum btrfs_compare_tree_result result, 7249 struct send_ctx *sctx) 7250 { 7251 int ret = 0; 7252 7253 /* 7254 * We can not hold the commit root semaphore here. This is because in 7255 * the case of sending and receiving to the same filesystem, using a 7256 * pipe, could result in a deadlock: 7257 * 7258 * 1) The task running send blocks on the pipe because it's full; 7259 * 7260 * 2) The task running receive, which is the only consumer of the pipe, 7261 * is waiting for a transaction commit (for example due to a space 7262 * reservation when doing a write or triggering a transaction commit 7263 * when creating a subvolume); 7264 * 7265 * 3) The transaction is waiting to write lock the commit root semaphore, 7266 * but can not acquire it since it's being held at 1). 7267 * 7268 * Down this call chain we write to the pipe through kernel_write(). 7269 * The same type of problem can also happen when sending to a file that 7270 * is stored in the same filesystem - when reserving space for a write 7271 * into the file, we can trigger a transaction commit. 7272 * 7273 * Our caller has supplied us with clones of leaves from the send and 7274 * parent roots, so we're safe here from a concurrent relocation and 7275 * further reallocation of metadata extents while we are here. Below we 7276 * also assert that the leaves are clones. 7277 */ 7278 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7279 7280 /* 7281 * We always have a send root, so left_path is never NULL. We will not 7282 * have a leaf when we have reached the end of the send root but have 7283 * not yet reached the end of the parent root. 7284 */ 7285 if (left_path->nodes[0]) 7286 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7287 &left_path->nodes[0]->bflags)); 7288 /* 7289 * When doing a full send we don't have a parent root, so right_path is 7290 * NULL. When doing an incremental send, we may have reached the end of 7291 * the parent root already, so we don't have a leaf at right_path. 7292 */ 7293 if (right_path && right_path->nodes[0]) 7294 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7295 &right_path->nodes[0]->bflags)); 7296 7297 if (result == BTRFS_COMPARE_TREE_SAME) { 7298 if (key->type == BTRFS_INODE_REF_KEY || 7299 key->type == BTRFS_INODE_EXTREF_KEY) { 7300 ret = compare_refs(sctx, left_path, key); 7301 if (!ret) 7302 return 0; 7303 if (ret < 0) 7304 return ret; 7305 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7306 return maybe_send_hole(sctx, left_path, key); 7307 } else { 7308 return 0; 7309 } 7310 result = BTRFS_COMPARE_TREE_CHANGED; 7311 ret = 0; 7312 } 7313 7314 sctx->left_path = left_path; 7315 sctx->right_path = right_path; 7316 sctx->cmp_key = key; 7317 7318 ret = finish_inode_if_needed(sctx, 0); 7319 if (ret < 0) 7320 goto out; 7321 7322 /* Ignore non-FS objects */ 7323 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7324 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7325 goto out; 7326 7327 if (key->type == BTRFS_INODE_ITEM_KEY) { 7328 ret = changed_inode(sctx, result); 7329 } else if (!sctx->ignore_cur_inode) { 7330 if (key->type == BTRFS_INODE_REF_KEY || 7331 key->type == BTRFS_INODE_EXTREF_KEY) 7332 ret = changed_ref(sctx, result); 7333 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7334 ret = changed_xattr(sctx, result); 7335 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7336 ret = changed_extent(sctx, result); 7337 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7338 key->offset == 0) 7339 ret = changed_verity(sctx, result); 7340 } 7341 7342 out: 7343 return ret; 7344 } 7345 7346 static int search_key_again(const struct send_ctx *sctx, 7347 struct btrfs_root *root, 7348 struct btrfs_path *path, 7349 const struct btrfs_key *key) 7350 { 7351 int ret; 7352 7353 if (!path->need_commit_sem) 7354 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7355 7356 /* 7357 * Roots used for send operations are readonly and no one can add, 7358 * update or remove keys from them, so we should be able to find our 7359 * key again. The only exception is deduplication, which can operate on 7360 * readonly roots and add, update or remove keys to/from them - but at 7361 * the moment we don't allow it to run in parallel with send. 7362 */ 7363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7364 ASSERT(ret <= 0); 7365 if (ret > 0) { 7366 btrfs_print_tree(path->nodes[path->lowest_level], false); 7367 btrfs_err(root->fs_info, 7368 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7369 key->objectid, key->type, key->offset, 7370 (root == sctx->parent_root ? "parent" : "send"), 7371 root->root_key.objectid, path->lowest_level, 7372 path->slots[path->lowest_level]); 7373 return -EUCLEAN; 7374 } 7375 7376 return ret; 7377 } 7378 7379 static int full_send_tree(struct send_ctx *sctx) 7380 { 7381 int ret; 7382 struct btrfs_root *send_root = sctx->send_root; 7383 struct btrfs_key key; 7384 struct btrfs_fs_info *fs_info = send_root->fs_info; 7385 struct btrfs_path *path; 7386 7387 path = alloc_path_for_send(); 7388 if (!path) 7389 return -ENOMEM; 7390 path->reada = READA_FORWARD_ALWAYS; 7391 7392 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7393 key.type = BTRFS_INODE_ITEM_KEY; 7394 key.offset = 0; 7395 7396 down_read(&fs_info->commit_root_sem); 7397 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7398 up_read(&fs_info->commit_root_sem); 7399 7400 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7401 if (ret < 0) 7402 goto out; 7403 if (ret) 7404 goto out_finish; 7405 7406 while (1) { 7407 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7408 7409 ret = changed_cb(path, NULL, &key, 7410 BTRFS_COMPARE_TREE_NEW, sctx); 7411 if (ret < 0) 7412 goto out; 7413 7414 down_read(&fs_info->commit_root_sem); 7415 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7416 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7417 up_read(&fs_info->commit_root_sem); 7418 /* 7419 * A transaction used for relocating a block group was 7420 * committed or is about to finish its commit. Release 7421 * our path (leaf) and restart the search, so that we 7422 * avoid operating on any file extent items that are 7423 * stale, with a disk_bytenr that reflects a pre 7424 * relocation value. This way we avoid as much as 7425 * possible to fallback to regular writes when checking 7426 * if we can clone file ranges. 7427 */ 7428 btrfs_release_path(path); 7429 ret = search_key_again(sctx, send_root, path, &key); 7430 if (ret < 0) 7431 goto out; 7432 } else { 7433 up_read(&fs_info->commit_root_sem); 7434 } 7435 7436 ret = btrfs_next_item(send_root, path); 7437 if (ret < 0) 7438 goto out; 7439 if (ret) { 7440 ret = 0; 7441 break; 7442 } 7443 } 7444 7445 out_finish: 7446 ret = finish_inode_if_needed(sctx, 1); 7447 7448 out: 7449 btrfs_free_path(path); 7450 return ret; 7451 } 7452 7453 static int replace_node_with_clone(struct btrfs_path *path, int level) 7454 { 7455 struct extent_buffer *clone; 7456 7457 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7458 if (!clone) 7459 return -ENOMEM; 7460 7461 free_extent_buffer(path->nodes[level]); 7462 path->nodes[level] = clone; 7463 7464 return 0; 7465 } 7466 7467 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7468 { 7469 struct extent_buffer *eb; 7470 struct extent_buffer *parent = path->nodes[*level]; 7471 int slot = path->slots[*level]; 7472 const int nritems = btrfs_header_nritems(parent); 7473 u64 reada_max; 7474 u64 reada_done = 0; 7475 7476 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7477 ASSERT(*level != 0); 7478 7479 eb = btrfs_read_node_slot(parent, slot); 7480 if (IS_ERR(eb)) 7481 return PTR_ERR(eb); 7482 7483 /* 7484 * Trigger readahead for the next leaves we will process, so that it is 7485 * very likely that when we need them they are already in memory and we 7486 * will not block on disk IO. For nodes we only do readahead for one, 7487 * since the time window between processing nodes is typically larger. 7488 */ 7489 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7490 7491 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7492 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7493 btrfs_readahead_node_child(parent, slot); 7494 reada_done += eb->fs_info->nodesize; 7495 } 7496 } 7497 7498 path->nodes[*level - 1] = eb; 7499 path->slots[*level - 1] = 0; 7500 (*level)--; 7501 7502 if (*level == 0) 7503 return replace_node_with_clone(path, 0); 7504 7505 return 0; 7506 } 7507 7508 static int tree_move_next_or_upnext(struct btrfs_path *path, 7509 int *level, int root_level) 7510 { 7511 int ret = 0; 7512 int nritems; 7513 nritems = btrfs_header_nritems(path->nodes[*level]); 7514 7515 path->slots[*level]++; 7516 7517 while (path->slots[*level] >= nritems) { 7518 if (*level == root_level) { 7519 path->slots[*level] = nritems - 1; 7520 return -1; 7521 } 7522 7523 /* move upnext */ 7524 path->slots[*level] = 0; 7525 free_extent_buffer(path->nodes[*level]); 7526 path->nodes[*level] = NULL; 7527 (*level)++; 7528 path->slots[*level]++; 7529 7530 nritems = btrfs_header_nritems(path->nodes[*level]); 7531 ret = 1; 7532 } 7533 return ret; 7534 } 7535 7536 /* 7537 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7538 * or down. 7539 */ 7540 static int tree_advance(struct btrfs_path *path, 7541 int *level, int root_level, 7542 int allow_down, 7543 struct btrfs_key *key, 7544 u64 reada_min_gen) 7545 { 7546 int ret; 7547 7548 if (*level == 0 || !allow_down) { 7549 ret = tree_move_next_or_upnext(path, level, root_level); 7550 } else { 7551 ret = tree_move_down(path, level, reada_min_gen); 7552 } 7553 7554 /* 7555 * Even if we have reached the end of a tree, ret is -1, update the key 7556 * anyway, so that in case we need to restart due to a block group 7557 * relocation, we can assert that the last key of the root node still 7558 * exists in the tree. 7559 */ 7560 if (*level == 0) 7561 btrfs_item_key_to_cpu(path->nodes[*level], key, 7562 path->slots[*level]); 7563 else 7564 btrfs_node_key_to_cpu(path->nodes[*level], key, 7565 path->slots[*level]); 7566 7567 return ret; 7568 } 7569 7570 static int tree_compare_item(struct btrfs_path *left_path, 7571 struct btrfs_path *right_path, 7572 char *tmp_buf) 7573 { 7574 int cmp; 7575 int len1, len2; 7576 unsigned long off1, off2; 7577 7578 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7579 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7580 if (len1 != len2) 7581 return 1; 7582 7583 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7584 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7585 right_path->slots[0]); 7586 7587 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7588 7589 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7590 if (cmp) 7591 return 1; 7592 return 0; 7593 } 7594 7595 /* 7596 * A transaction used for relocating a block group was committed or is about to 7597 * finish its commit. Release our paths and restart the search, so that we are 7598 * not using stale extent buffers: 7599 * 7600 * 1) For levels > 0, we are only holding references of extent buffers, without 7601 * any locks on them, which does not prevent them from having been relocated 7602 * and reallocated after the last time we released the commit root semaphore. 7603 * The exception are the root nodes, for which we always have a clone, see 7604 * the comment at btrfs_compare_trees(); 7605 * 7606 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7607 * we are safe from the concurrent relocation and reallocation. However they 7608 * can have file extent items with a pre relocation disk_bytenr value, so we 7609 * restart the start from the current commit roots and clone the new leaves so 7610 * that we get the post relocation disk_bytenr values. Not doing so, could 7611 * make us clone the wrong data in case there are new extents using the old 7612 * disk_bytenr that happen to be shared. 7613 */ 7614 static int restart_after_relocation(struct btrfs_path *left_path, 7615 struct btrfs_path *right_path, 7616 const struct btrfs_key *left_key, 7617 const struct btrfs_key *right_key, 7618 int left_level, 7619 int right_level, 7620 const struct send_ctx *sctx) 7621 { 7622 int root_level; 7623 int ret; 7624 7625 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7626 7627 btrfs_release_path(left_path); 7628 btrfs_release_path(right_path); 7629 7630 /* 7631 * Since keys can not be added or removed to/from our roots because they 7632 * are readonly and we do not allow deduplication to run in parallel 7633 * (which can add, remove or change keys), the layout of the trees should 7634 * not change. 7635 */ 7636 left_path->lowest_level = left_level; 7637 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7638 if (ret < 0) 7639 return ret; 7640 7641 right_path->lowest_level = right_level; 7642 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7643 if (ret < 0) 7644 return ret; 7645 7646 /* 7647 * If the lowest level nodes are leaves, clone them so that they can be 7648 * safely used by changed_cb() while not under the protection of the 7649 * commit root semaphore, even if relocation and reallocation happens in 7650 * parallel. 7651 */ 7652 if (left_level == 0) { 7653 ret = replace_node_with_clone(left_path, 0); 7654 if (ret < 0) 7655 return ret; 7656 } 7657 7658 if (right_level == 0) { 7659 ret = replace_node_with_clone(right_path, 0); 7660 if (ret < 0) 7661 return ret; 7662 } 7663 7664 /* 7665 * Now clone the root nodes (unless they happen to be the leaves we have 7666 * already cloned). This is to protect against concurrent snapshotting of 7667 * the send and parent roots (see the comment at btrfs_compare_trees()). 7668 */ 7669 root_level = btrfs_header_level(sctx->send_root->commit_root); 7670 if (root_level > 0) { 7671 ret = replace_node_with_clone(left_path, root_level); 7672 if (ret < 0) 7673 return ret; 7674 } 7675 7676 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7677 if (root_level > 0) { 7678 ret = replace_node_with_clone(right_path, root_level); 7679 if (ret < 0) 7680 return ret; 7681 } 7682 7683 return 0; 7684 } 7685 7686 /* 7687 * This function compares two trees and calls the provided callback for 7688 * every changed/new/deleted item it finds. 7689 * If shared tree blocks are encountered, whole subtrees are skipped, making 7690 * the compare pretty fast on snapshotted subvolumes. 7691 * 7692 * This currently works on commit roots only. As commit roots are read only, 7693 * we don't do any locking. The commit roots are protected with transactions. 7694 * Transactions are ended and rejoined when a commit is tried in between. 7695 * 7696 * This function checks for modifications done to the trees while comparing. 7697 * If it detects a change, it aborts immediately. 7698 */ 7699 static int btrfs_compare_trees(struct btrfs_root *left_root, 7700 struct btrfs_root *right_root, struct send_ctx *sctx) 7701 { 7702 struct btrfs_fs_info *fs_info = left_root->fs_info; 7703 int ret; 7704 int cmp; 7705 struct btrfs_path *left_path = NULL; 7706 struct btrfs_path *right_path = NULL; 7707 struct btrfs_key left_key; 7708 struct btrfs_key right_key; 7709 char *tmp_buf = NULL; 7710 int left_root_level; 7711 int right_root_level; 7712 int left_level; 7713 int right_level; 7714 int left_end_reached = 0; 7715 int right_end_reached = 0; 7716 int advance_left = 0; 7717 int advance_right = 0; 7718 u64 left_blockptr; 7719 u64 right_blockptr; 7720 u64 left_gen; 7721 u64 right_gen; 7722 u64 reada_min_gen; 7723 7724 left_path = btrfs_alloc_path(); 7725 if (!left_path) { 7726 ret = -ENOMEM; 7727 goto out; 7728 } 7729 right_path = btrfs_alloc_path(); 7730 if (!right_path) { 7731 ret = -ENOMEM; 7732 goto out; 7733 } 7734 7735 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7736 if (!tmp_buf) { 7737 ret = -ENOMEM; 7738 goto out; 7739 } 7740 7741 left_path->search_commit_root = 1; 7742 left_path->skip_locking = 1; 7743 right_path->search_commit_root = 1; 7744 right_path->skip_locking = 1; 7745 7746 /* 7747 * Strategy: Go to the first items of both trees. Then do 7748 * 7749 * If both trees are at level 0 7750 * Compare keys of current items 7751 * If left < right treat left item as new, advance left tree 7752 * and repeat 7753 * If left > right treat right item as deleted, advance right tree 7754 * and repeat 7755 * If left == right do deep compare of items, treat as changed if 7756 * needed, advance both trees and repeat 7757 * If both trees are at the same level but not at level 0 7758 * Compare keys of current nodes/leafs 7759 * If left < right advance left tree and repeat 7760 * If left > right advance right tree and repeat 7761 * If left == right compare blockptrs of the next nodes/leafs 7762 * If they match advance both trees but stay at the same level 7763 * and repeat 7764 * If they don't match advance both trees while allowing to go 7765 * deeper and repeat 7766 * If tree levels are different 7767 * Advance the tree that needs it and repeat 7768 * 7769 * Advancing a tree means: 7770 * If we are at level 0, try to go to the next slot. If that's not 7771 * possible, go one level up and repeat. Stop when we found a level 7772 * where we could go to the next slot. We may at this point be on a 7773 * node or a leaf. 7774 * 7775 * If we are not at level 0 and not on shared tree blocks, go one 7776 * level deeper. 7777 * 7778 * If we are not at level 0 and on shared tree blocks, go one slot to 7779 * the right if possible or go up and right. 7780 */ 7781 7782 down_read(&fs_info->commit_root_sem); 7783 left_level = btrfs_header_level(left_root->commit_root); 7784 left_root_level = left_level; 7785 /* 7786 * We clone the root node of the send and parent roots to prevent races 7787 * with snapshot creation of these roots. Snapshot creation COWs the 7788 * root node of a tree, so after the transaction is committed the old 7789 * extent can be reallocated while this send operation is still ongoing. 7790 * So we clone them, under the commit root semaphore, to be race free. 7791 */ 7792 left_path->nodes[left_level] = 7793 btrfs_clone_extent_buffer(left_root->commit_root); 7794 if (!left_path->nodes[left_level]) { 7795 ret = -ENOMEM; 7796 goto out_unlock; 7797 } 7798 7799 right_level = btrfs_header_level(right_root->commit_root); 7800 right_root_level = right_level; 7801 right_path->nodes[right_level] = 7802 btrfs_clone_extent_buffer(right_root->commit_root); 7803 if (!right_path->nodes[right_level]) { 7804 ret = -ENOMEM; 7805 goto out_unlock; 7806 } 7807 /* 7808 * Our right root is the parent root, while the left root is the "send" 7809 * root. We know that all new nodes/leaves in the left root must have 7810 * a generation greater than the right root's generation, so we trigger 7811 * readahead for those nodes and leaves of the left root, as we know we 7812 * will need to read them at some point. 7813 */ 7814 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7815 7816 if (left_level == 0) 7817 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7818 &left_key, left_path->slots[left_level]); 7819 else 7820 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7821 &left_key, left_path->slots[left_level]); 7822 if (right_level == 0) 7823 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7824 &right_key, right_path->slots[right_level]); 7825 else 7826 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7827 &right_key, right_path->slots[right_level]); 7828 7829 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7830 7831 while (1) { 7832 if (need_resched() || 7833 rwsem_is_contended(&fs_info->commit_root_sem)) { 7834 up_read(&fs_info->commit_root_sem); 7835 cond_resched(); 7836 down_read(&fs_info->commit_root_sem); 7837 } 7838 7839 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7840 ret = restart_after_relocation(left_path, right_path, 7841 &left_key, &right_key, 7842 left_level, right_level, 7843 sctx); 7844 if (ret < 0) 7845 goto out_unlock; 7846 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7847 } 7848 7849 if (advance_left && !left_end_reached) { 7850 ret = tree_advance(left_path, &left_level, 7851 left_root_level, 7852 advance_left != ADVANCE_ONLY_NEXT, 7853 &left_key, reada_min_gen); 7854 if (ret == -1) 7855 left_end_reached = ADVANCE; 7856 else if (ret < 0) 7857 goto out_unlock; 7858 advance_left = 0; 7859 } 7860 if (advance_right && !right_end_reached) { 7861 ret = tree_advance(right_path, &right_level, 7862 right_root_level, 7863 advance_right != ADVANCE_ONLY_NEXT, 7864 &right_key, reada_min_gen); 7865 if (ret == -1) 7866 right_end_reached = ADVANCE; 7867 else if (ret < 0) 7868 goto out_unlock; 7869 advance_right = 0; 7870 } 7871 7872 if (left_end_reached && right_end_reached) { 7873 ret = 0; 7874 goto out_unlock; 7875 } else if (left_end_reached) { 7876 if (right_level == 0) { 7877 up_read(&fs_info->commit_root_sem); 7878 ret = changed_cb(left_path, right_path, 7879 &right_key, 7880 BTRFS_COMPARE_TREE_DELETED, 7881 sctx); 7882 if (ret < 0) 7883 goto out; 7884 down_read(&fs_info->commit_root_sem); 7885 } 7886 advance_right = ADVANCE; 7887 continue; 7888 } else if (right_end_reached) { 7889 if (left_level == 0) { 7890 up_read(&fs_info->commit_root_sem); 7891 ret = changed_cb(left_path, right_path, 7892 &left_key, 7893 BTRFS_COMPARE_TREE_NEW, 7894 sctx); 7895 if (ret < 0) 7896 goto out; 7897 down_read(&fs_info->commit_root_sem); 7898 } 7899 advance_left = ADVANCE; 7900 continue; 7901 } 7902 7903 if (left_level == 0 && right_level == 0) { 7904 up_read(&fs_info->commit_root_sem); 7905 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7906 if (cmp < 0) { 7907 ret = changed_cb(left_path, right_path, 7908 &left_key, 7909 BTRFS_COMPARE_TREE_NEW, 7910 sctx); 7911 advance_left = ADVANCE; 7912 } else if (cmp > 0) { 7913 ret = changed_cb(left_path, right_path, 7914 &right_key, 7915 BTRFS_COMPARE_TREE_DELETED, 7916 sctx); 7917 advance_right = ADVANCE; 7918 } else { 7919 enum btrfs_compare_tree_result result; 7920 7921 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7922 ret = tree_compare_item(left_path, right_path, 7923 tmp_buf); 7924 if (ret) 7925 result = BTRFS_COMPARE_TREE_CHANGED; 7926 else 7927 result = BTRFS_COMPARE_TREE_SAME; 7928 ret = changed_cb(left_path, right_path, 7929 &left_key, result, sctx); 7930 advance_left = ADVANCE; 7931 advance_right = ADVANCE; 7932 } 7933 7934 if (ret < 0) 7935 goto out; 7936 down_read(&fs_info->commit_root_sem); 7937 } else if (left_level == right_level) { 7938 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7939 if (cmp < 0) { 7940 advance_left = ADVANCE; 7941 } else if (cmp > 0) { 7942 advance_right = ADVANCE; 7943 } else { 7944 left_blockptr = btrfs_node_blockptr( 7945 left_path->nodes[left_level], 7946 left_path->slots[left_level]); 7947 right_blockptr = btrfs_node_blockptr( 7948 right_path->nodes[right_level], 7949 right_path->slots[right_level]); 7950 left_gen = btrfs_node_ptr_generation( 7951 left_path->nodes[left_level], 7952 left_path->slots[left_level]); 7953 right_gen = btrfs_node_ptr_generation( 7954 right_path->nodes[right_level], 7955 right_path->slots[right_level]); 7956 if (left_blockptr == right_blockptr && 7957 left_gen == right_gen) { 7958 /* 7959 * As we're on a shared block, don't 7960 * allow to go deeper. 7961 */ 7962 advance_left = ADVANCE_ONLY_NEXT; 7963 advance_right = ADVANCE_ONLY_NEXT; 7964 } else { 7965 advance_left = ADVANCE; 7966 advance_right = ADVANCE; 7967 } 7968 } 7969 } else if (left_level < right_level) { 7970 advance_right = ADVANCE; 7971 } else { 7972 advance_left = ADVANCE; 7973 } 7974 } 7975 7976 out_unlock: 7977 up_read(&fs_info->commit_root_sem); 7978 out: 7979 btrfs_free_path(left_path); 7980 btrfs_free_path(right_path); 7981 kvfree(tmp_buf); 7982 return ret; 7983 } 7984 7985 static int send_subvol(struct send_ctx *sctx) 7986 { 7987 int ret; 7988 7989 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7990 ret = send_header(sctx); 7991 if (ret < 0) 7992 goto out; 7993 } 7994 7995 ret = send_subvol_begin(sctx); 7996 if (ret < 0) 7997 goto out; 7998 7999 if (sctx->parent_root) { 8000 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 8001 if (ret < 0) 8002 goto out; 8003 ret = finish_inode_if_needed(sctx, 1); 8004 if (ret < 0) 8005 goto out; 8006 } else { 8007 ret = full_send_tree(sctx); 8008 if (ret < 0) 8009 goto out; 8010 } 8011 8012 out: 8013 free_recorded_refs(sctx); 8014 return ret; 8015 } 8016 8017 /* 8018 * If orphan cleanup did remove any orphans from a root, it means the tree 8019 * was modified and therefore the commit root is not the same as the current 8020 * root anymore. This is a problem, because send uses the commit root and 8021 * therefore can see inode items that don't exist in the current root anymore, 8022 * and for example make calls to btrfs_iget, which will do tree lookups based 8023 * on the current root and not on the commit root. Those lookups will fail, 8024 * returning a -ESTALE error, and making send fail with that error. So make 8025 * sure a send does not see any orphans we have just removed, and that it will 8026 * see the same inodes regardless of whether a transaction commit happened 8027 * before it started (meaning that the commit root will be the same as the 8028 * current root) or not. 8029 */ 8030 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 8031 { 8032 int i; 8033 struct btrfs_trans_handle *trans = NULL; 8034 8035 again: 8036 if (sctx->parent_root && 8037 sctx->parent_root->node != sctx->parent_root->commit_root) 8038 goto commit_trans; 8039 8040 for (i = 0; i < sctx->clone_roots_cnt; i++) 8041 if (sctx->clone_roots[i].root->node != 8042 sctx->clone_roots[i].root->commit_root) 8043 goto commit_trans; 8044 8045 if (trans) 8046 return btrfs_end_transaction(trans); 8047 8048 return 0; 8049 8050 commit_trans: 8051 /* Use any root, all fs roots will get their commit roots updated. */ 8052 if (!trans) { 8053 trans = btrfs_join_transaction(sctx->send_root); 8054 if (IS_ERR(trans)) 8055 return PTR_ERR(trans); 8056 goto again; 8057 } 8058 8059 return btrfs_commit_transaction(trans); 8060 } 8061 8062 /* 8063 * Make sure any existing dellaloc is flushed for any root used by a send 8064 * operation so that we do not miss any data and we do not race with writeback 8065 * finishing and changing a tree while send is using the tree. This could 8066 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 8067 * a send operation then uses the subvolume. 8068 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 8069 */ 8070 static int flush_delalloc_roots(struct send_ctx *sctx) 8071 { 8072 struct btrfs_root *root = sctx->parent_root; 8073 int ret; 8074 int i; 8075 8076 if (root) { 8077 ret = btrfs_start_delalloc_snapshot(root, false); 8078 if (ret) 8079 return ret; 8080 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 8081 } 8082 8083 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8084 root = sctx->clone_roots[i].root; 8085 ret = btrfs_start_delalloc_snapshot(root, false); 8086 if (ret) 8087 return ret; 8088 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 8089 } 8090 8091 return 0; 8092 } 8093 8094 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 8095 { 8096 spin_lock(&root->root_item_lock); 8097 root->send_in_progress--; 8098 /* 8099 * Not much left to do, we don't know why it's unbalanced and 8100 * can't blindly reset it to 0. 8101 */ 8102 if (root->send_in_progress < 0) 8103 btrfs_err(root->fs_info, 8104 "send_in_progress unbalanced %d root %llu", 8105 root->send_in_progress, root->root_key.objectid); 8106 spin_unlock(&root->root_item_lock); 8107 } 8108 8109 static void dedupe_in_progress_warn(const struct btrfs_root *root) 8110 { 8111 btrfs_warn_rl(root->fs_info, 8112 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 8113 root->root_key.objectid, root->dedupe_in_progress); 8114 } 8115 8116 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg) 8117 { 8118 int ret = 0; 8119 struct btrfs_root *send_root = BTRFS_I(inode)->root; 8120 struct btrfs_fs_info *fs_info = send_root->fs_info; 8121 struct btrfs_root *clone_root; 8122 struct send_ctx *sctx = NULL; 8123 u32 i; 8124 u64 *clone_sources_tmp = NULL; 8125 int clone_sources_to_rollback = 0; 8126 size_t alloc_size; 8127 int sort_clone_roots = 0; 8128 struct btrfs_lru_cache_entry *entry; 8129 struct btrfs_lru_cache_entry *tmp; 8130 8131 if (!capable(CAP_SYS_ADMIN)) 8132 return -EPERM; 8133 8134 /* 8135 * The subvolume must remain read-only during send, protect against 8136 * making it RW. This also protects against deletion. 8137 */ 8138 spin_lock(&send_root->root_item_lock); 8139 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 8140 dedupe_in_progress_warn(send_root); 8141 spin_unlock(&send_root->root_item_lock); 8142 return -EAGAIN; 8143 } 8144 send_root->send_in_progress++; 8145 spin_unlock(&send_root->root_item_lock); 8146 8147 /* 8148 * Userspace tools do the checks and warn the user if it's 8149 * not RO. 8150 */ 8151 if (!btrfs_root_readonly(send_root)) { 8152 ret = -EPERM; 8153 goto out; 8154 } 8155 8156 /* 8157 * Check that we don't overflow at later allocations, we request 8158 * clone_sources_count + 1 items, and compare to unsigned long inside 8159 * access_ok. Also set an upper limit for allocation size so this can't 8160 * easily exhaust memory. Max number of clone sources is about 200K. 8161 */ 8162 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8163 ret = -EINVAL; 8164 goto out; 8165 } 8166 8167 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8168 ret = -EOPNOTSUPP; 8169 goto out; 8170 } 8171 8172 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8173 if (!sctx) { 8174 ret = -ENOMEM; 8175 goto out; 8176 } 8177 8178 INIT_LIST_HEAD(&sctx->new_refs); 8179 INIT_LIST_HEAD(&sctx->deleted_refs); 8180 8181 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8182 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8183 btrfs_lru_cache_init(&sctx->dir_created_cache, 8184 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8185 /* 8186 * This cache is periodically trimmed to a fixed size elsewhere, see 8187 * cache_dir_utimes() and trim_dir_utimes_cache(). 8188 */ 8189 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8190 8191 sctx->pending_dir_moves = RB_ROOT; 8192 sctx->waiting_dir_moves = RB_ROOT; 8193 sctx->orphan_dirs = RB_ROOT; 8194 sctx->rbtree_new_refs = RB_ROOT; 8195 sctx->rbtree_deleted_refs = RB_ROOT; 8196 8197 sctx->flags = arg->flags; 8198 8199 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8200 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8201 ret = -EPROTO; 8202 goto out; 8203 } 8204 /* Zero means "use the highest version" */ 8205 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8206 } else { 8207 sctx->proto = 1; 8208 } 8209 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8210 ret = -EINVAL; 8211 goto out; 8212 } 8213 8214 sctx->send_filp = fget(arg->send_fd); 8215 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8216 ret = -EBADF; 8217 goto out; 8218 } 8219 8220 sctx->send_root = send_root; 8221 /* 8222 * Unlikely but possible, if the subvolume is marked for deletion but 8223 * is slow to remove the directory entry, send can still be started 8224 */ 8225 if (btrfs_root_dead(sctx->send_root)) { 8226 ret = -EPERM; 8227 goto out; 8228 } 8229 8230 sctx->clone_roots_cnt = arg->clone_sources_count; 8231 8232 if (sctx->proto >= 2) { 8233 u32 send_buf_num_pages; 8234 8235 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8236 sctx->send_buf = vmalloc(sctx->send_max_size); 8237 if (!sctx->send_buf) { 8238 ret = -ENOMEM; 8239 goto out; 8240 } 8241 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8242 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8243 sizeof(*sctx->send_buf_pages), 8244 GFP_KERNEL); 8245 if (!sctx->send_buf_pages) { 8246 ret = -ENOMEM; 8247 goto out; 8248 } 8249 for (i = 0; i < send_buf_num_pages; i++) { 8250 sctx->send_buf_pages[i] = 8251 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8252 } 8253 } else { 8254 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8255 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8256 } 8257 if (!sctx->send_buf) { 8258 ret = -ENOMEM; 8259 goto out; 8260 } 8261 8262 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8263 sizeof(*sctx->clone_roots), 8264 GFP_KERNEL); 8265 if (!sctx->clone_roots) { 8266 ret = -ENOMEM; 8267 goto out; 8268 } 8269 8270 alloc_size = array_size(sizeof(*arg->clone_sources), 8271 arg->clone_sources_count); 8272 8273 if (arg->clone_sources_count) { 8274 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8275 if (!clone_sources_tmp) { 8276 ret = -ENOMEM; 8277 goto out; 8278 } 8279 8280 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8281 alloc_size); 8282 if (ret) { 8283 ret = -EFAULT; 8284 goto out; 8285 } 8286 8287 for (i = 0; i < arg->clone_sources_count; i++) { 8288 clone_root = btrfs_get_fs_root(fs_info, 8289 clone_sources_tmp[i], true); 8290 if (IS_ERR(clone_root)) { 8291 ret = PTR_ERR(clone_root); 8292 goto out; 8293 } 8294 spin_lock(&clone_root->root_item_lock); 8295 if (!btrfs_root_readonly(clone_root) || 8296 btrfs_root_dead(clone_root)) { 8297 spin_unlock(&clone_root->root_item_lock); 8298 btrfs_put_root(clone_root); 8299 ret = -EPERM; 8300 goto out; 8301 } 8302 if (clone_root->dedupe_in_progress) { 8303 dedupe_in_progress_warn(clone_root); 8304 spin_unlock(&clone_root->root_item_lock); 8305 btrfs_put_root(clone_root); 8306 ret = -EAGAIN; 8307 goto out; 8308 } 8309 clone_root->send_in_progress++; 8310 spin_unlock(&clone_root->root_item_lock); 8311 8312 sctx->clone_roots[i].root = clone_root; 8313 clone_sources_to_rollback = i + 1; 8314 } 8315 kvfree(clone_sources_tmp); 8316 clone_sources_tmp = NULL; 8317 } 8318 8319 if (arg->parent_root) { 8320 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8321 true); 8322 if (IS_ERR(sctx->parent_root)) { 8323 ret = PTR_ERR(sctx->parent_root); 8324 goto out; 8325 } 8326 8327 spin_lock(&sctx->parent_root->root_item_lock); 8328 sctx->parent_root->send_in_progress++; 8329 if (!btrfs_root_readonly(sctx->parent_root) || 8330 btrfs_root_dead(sctx->parent_root)) { 8331 spin_unlock(&sctx->parent_root->root_item_lock); 8332 ret = -EPERM; 8333 goto out; 8334 } 8335 if (sctx->parent_root->dedupe_in_progress) { 8336 dedupe_in_progress_warn(sctx->parent_root); 8337 spin_unlock(&sctx->parent_root->root_item_lock); 8338 ret = -EAGAIN; 8339 goto out; 8340 } 8341 spin_unlock(&sctx->parent_root->root_item_lock); 8342 } 8343 8344 /* 8345 * Clones from send_root are allowed, but only if the clone source 8346 * is behind the current send position. This is checked while searching 8347 * for possible clone sources. 8348 */ 8349 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8350 btrfs_grab_root(sctx->send_root); 8351 8352 /* We do a bsearch later */ 8353 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8354 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8355 NULL); 8356 sort_clone_roots = 1; 8357 8358 ret = flush_delalloc_roots(sctx); 8359 if (ret) 8360 goto out; 8361 8362 ret = ensure_commit_roots_uptodate(sctx); 8363 if (ret) 8364 goto out; 8365 8366 ret = send_subvol(sctx); 8367 if (ret < 0) 8368 goto out; 8369 8370 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8371 ret = send_utimes(sctx, entry->key, entry->gen); 8372 if (ret < 0) 8373 goto out; 8374 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8375 } 8376 8377 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8378 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8379 if (ret < 0) 8380 goto out; 8381 ret = send_cmd(sctx); 8382 if (ret < 0) 8383 goto out; 8384 } 8385 8386 out: 8387 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8388 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8389 struct rb_node *n; 8390 struct pending_dir_move *pm; 8391 8392 n = rb_first(&sctx->pending_dir_moves); 8393 pm = rb_entry(n, struct pending_dir_move, node); 8394 while (!list_empty(&pm->list)) { 8395 struct pending_dir_move *pm2; 8396 8397 pm2 = list_first_entry(&pm->list, 8398 struct pending_dir_move, list); 8399 free_pending_move(sctx, pm2); 8400 } 8401 free_pending_move(sctx, pm); 8402 } 8403 8404 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8405 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8406 struct rb_node *n; 8407 struct waiting_dir_move *dm; 8408 8409 n = rb_first(&sctx->waiting_dir_moves); 8410 dm = rb_entry(n, struct waiting_dir_move, node); 8411 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8412 kfree(dm); 8413 } 8414 8415 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8416 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8417 struct rb_node *n; 8418 struct orphan_dir_info *odi; 8419 8420 n = rb_first(&sctx->orphan_dirs); 8421 odi = rb_entry(n, struct orphan_dir_info, node); 8422 free_orphan_dir_info(sctx, odi); 8423 } 8424 8425 if (sort_clone_roots) { 8426 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8427 btrfs_root_dec_send_in_progress( 8428 sctx->clone_roots[i].root); 8429 btrfs_put_root(sctx->clone_roots[i].root); 8430 } 8431 } else { 8432 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8433 btrfs_root_dec_send_in_progress( 8434 sctx->clone_roots[i].root); 8435 btrfs_put_root(sctx->clone_roots[i].root); 8436 } 8437 8438 btrfs_root_dec_send_in_progress(send_root); 8439 } 8440 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8441 btrfs_root_dec_send_in_progress(sctx->parent_root); 8442 btrfs_put_root(sctx->parent_root); 8443 } 8444 8445 kvfree(clone_sources_tmp); 8446 8447 if (sctx) { 8448 if (sctx->send_filp) 8449 fput(sctx->send_filp); 8450 8451 kvfree(sctx->clone_roots); 8452 kfree(sctx->send_buf_pages); 8453 kvfree(sctx->send_buf); 8454 kvfree(sctx->verity_descriptor); 8455 8456 close_current_inode(sctx); 8457 8458 btrfs_lru_cache_clear(&sctx->name_cache); 8459 btrfs_lru_cache_clear(&sctx->backref_cache); 8460 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8461 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8462 8463 kfree(sctx); 8464 } 8465 8466 return ret; 8467 } 8468