xref: /openbmc/linux/fs/btrfs/scrub.c (revision f79e4d5f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "disk-io.h"
12 #include "ordered-data.h"
13 #include "transaction.h"
14 #include "backref.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
19 #include "raid56.h"
20 
21 /*
22  * This is only the first step towards a full-features scrub. It reads all
23  * extent and super block and verifies the checksums. In case a bad checksum
24  * is found or the extent cannot be read, good data will be written back if
25  * any can be found.
26  *
27  * Future enhancements:
28  *  - In case an unrepairable extent is encountered, track which files are
29  *    affected and report them
30  *  - track and record media errors, throw out bad devices
31  *  - add a mode to also read unallocated space
32  */
33 
34 struct scrub_block;
35 struct scrub_ctx;
36 
37 /*
38  * the following three values only influence the performance.
39  * The last one configures the number of parallel and outstanding I/O
40  * operations. The first two values configure an upper limit for the number
41  * of (dynamically allocated) pages that are added to a bio.
42  */
43 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
46 
47 /*
48  * the following value times PAGE_SIZE needs to be large enough to match the
49  * largest node/leaf/sector size that shall be supported.
50  * Values larger than BTRFS_STRIPE_LEN are not supported.
51  */
52 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
53 
54 struct scrub_recover {
55 	refcount_t		refs;
56 	struct btrfs_bio	*bbio;
57 	u64			map_length;
58 };
59 
60 struct scrub_page {
61 	struct scrub_block	*sblock;
62 	struct page		*page;
63 	struct btrfs_device	*dev;
64 	struct list_head	list;
65 	u64			flags;  /* extent flags */
66 	u64			generation;
67 	u64			logical;
68 	u64			physical;
69 	u64			physical_for_dev_replace;
70 	atomic_t		refs;
71 	struct {
72 		unsigned int	mirror_num:8;
73 		unsigned int	have_csum:1;
74 		unsigned int	io_error:1;
75 	};
76 	u8			csum[BTRFS_CSUM_SIZE];
77 
78 	struct scrub_recover	*recover;
79 };
80 
81 struct scrub_bio {
82 	int			index;
83 	struct scrub_ctx	*sctx;
84 	struct btrfs_device	*dev;
85 	struct bio		*bio;
86 	blk_status_t		status;
87 	u64			logical;
88 	u64			physical;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
91 #else
92 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
93 #endif
94 	int			page_count;
95 	int			next_free;
96 	struct btrfs_work	work;
97 };
98 
99 struct scrub_block {
100 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 	int			page_count;
102 	atomic_t		outstanding_pages;
103 	refcount_t		refs; /* free mem on transition to zero */
104 	struct scrub_ctx	*sctx;
105 	struct scrub_parity	*sparity;
106 	struct {
107 		unsigned int	header_error:1;
108 		unsigned int	checksum_error:1;
109 		unsigned int	no_io_error_seen:1;
110 		unsigned int	generation_error:1; /* also sets header_error */
111 
112 		/* The following is for the data used to check parity */
113 		/* It is for the data with checksum */
114 		unsigned int	data_corrected:1;
115 	};
116 	struct btrfs_work	work;
117 };
118 
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity {
121 	struct scrub_ctx	*sctx;
122 
123 	struct btrfs_device	*scrub_dev;
124 
125 	u64			logic_start;
126 
127 	u64			logic_end;
128 
129 	int			nsectors;
130 
131 	u64			stripe_len;
132 
133 	refcount_t		refs;
134 
135 	struct list_head	spages;
136 
137 	/* Work of parity check and repair */
138 	struct btrfs_work	work;
139 
140 	/* Mark the parity blocks which have data */
141 	unsigned long		*dbitmap;
142 
143 	/*
144 	 * Mark the parity blocks which have data, but errors happen when
145 	 * read data or check data
146 	 */
147 	unsigned long		*ebitmap;
148 
149 	unsigned long		bitmap[0];
150 };
151 
152 struct scrub_ctx {
153 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
154 	struct btrfs_fs_info	*fs_info;
155 	int			first_free;
156 	int			curr;
157 	atomic_t		bios_in_flight;
158 	atomic_t		workers_pending;
159 	spinlock_t		list_lock;
160 	wait_queue_head_t	list_wait;
161 	u16			csum_size;
162 	struct list_head	csum_list;
163 	atomic_t		cancel_req;
164 	int			readonly;
165 	int			pages_per_rd_bio;
166 
167 	int			is_dev_replace;
168 
169 	struct scrub_bio        *wr_curr_bio;
170 	struct mutex            wr_lock;
171 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 	struct btrfs_device     *wr_tgtdev;
173 	bool                    flush_all_writes;
174 
175 	/*
176 	 * statistics
177 	 */
178 	struct btrfs_scrub_progress stat;
179 	spinlock_t		stat_lock;
180 
181 	/*
182 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 	 * decrement bios_in_flight and workers_pending and then do a wakeup
184 	 * on the list_wait wait queue. We must ensure the main scrub task
185 	 * doesn't free the scrub context before or while the workers are
186 	 * doing the wakeup() call.
187 	 */
188 	refcount_t              refs;
189 };
190 
191 struct scrub_fixup_nodatasum {
192 	struct scrub_ctx	*sctx;
193 	struct btrfs_device	*dev;
194 	u64			logical;
195 	struct btrfs_root	*root;
196 	struct btrfs_work	work;
197 	int			mirror_num;
198 };
199 
200 struct scrub_nocow_inode {
201 	u64			inum;
202 	u64			offset;
203 	u64			root;
204 	struct list_head	list;
205 };
206 
207 struct scrub_copy_nocow_ctx {
208 	struct scrub_ctx	*sctx;
209 	u64			logical;
210 	u64			len;
211 	int			mirror_num;
212 	u64			physical_for_dev_replace;
213 	struct list_head	inodes;
214 	struct btrfs_work	work;
215 };
216 
217 struct scrub_warning {
218 	struct btrfs_path	*path;
219 	u64			extent_item_size;
220 	const char		*errstr;
221 	u64			physical;
222 	u64			logical;
223 	struct btrfs_device	*dev;
224 };
225 
226 struct full_stripe_lock {
227 	struct rb_node node;
228 	u64 logical;
229 	u64 refs;
230 	struct mutex mutex;
231 };
232 
233 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
234 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
235 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
236 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
239 				     struct scrub_block *sblocks_for_recheck);
240 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
241 				struct scrub_block *sblock,
242 				int retry_failed_mirror);
243 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
244 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
245 					     struct scrub_block *sblock_good);
246 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
247 					    struct scrub_block *sblock_good,
248 					    int page_num, int force_write);
249 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
250 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
251 					   int page_num);
252 static int scrub_checksum_data(struct scrub_block *sblock);
253 static int scrub_checksum_tree_block(struct scrub_block *sblock);
254 static int scrub_checksum_super(struct scrub_block *sblock);
255 static void scrub_block_get(struct scrub_block *sblock);
256 static void scrub_block_put(struct scrub_block *sblock);
257 static void scrub_page_get(struct scrub_page *spage);
258 static void scrub_page_put(struct scrub_page *spage);
259 static void scrub_parity_get(struct scrub_parity *sparity);
260 static void scrub_parity_put(struct scrub_parity *sparity);
261 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
262 				    struct scrub_page *spage);
263 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
264 		       u64 physical, struct btrfs_device *dev, u64 flags,
265 		       u64 gen, int mirror_num, u8 *csum, int force,
266 		       u64 physical_for_dev_replace);
267 static void scrub_bio_end_io(struct bio *bio);
268 static void scrub_bio_end_io_worker(struct btrfs_work *work);
269 static void scrub_block_complete(struct scrub_block *sblock);
270 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
271 			       u64 extent_logical, u64 extent_len,
272 			       u64 *extent_physical,
273 			       struct btrfs_device **extent_dev,
274 			       int *extent_mirror_num);
275 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
276 				    struct scrub_page *spage);
277 static void scrub_wr_submit(struct scrub_ctx *sctx);
278 static void scrub_wr_bio_end_io(struct bio *bio);
279 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
280 static int write_page_nocow(struct scrub_ctx *sctx,
281 			    u64 physical_for_dev_replace, struct page *page);
282 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
283 				      struct scrub_copy_nocow_ctx *ctx);
284 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
285 			    int mirror_num, u64 physical_for_dev_replace);
286 static void copy_nocow_pages_worker(struct btrfs_work *work);
287 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
288 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
290 
291 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
292 {
293 	return page->recover &&
294 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
295 }
296 
297 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
298 {
299 	refcount_inc(&sctx->refs);
300 	atomic_inc(&sctx->bios_in_flight);
301 }
302 
303 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
304 {
305 	atomic_dec(&sctx->bios_in_flight);
306 	wake_up(&sctx->list_wait);
307 	scrub_put_ctx(sctx);
308 }
309 
310 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
311 {
312 	while (atomic_read(&fs_info->scrub_pause_req)) {
313 		mutex_unlock(&fs_info->scrub_lock);
314 		wait_event(fs_info->scrub_pause_wait,
315 		   atomic_read(&fs_info->scrub_pause_req) == 0);
316 		mutex_lock(&fs_info->scrub_lock);
317 	}
318 }
319 
320 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
321 {
322 	atomic_inc(&fs_info->scrubs_paused);
323 	wake_up(&fs_info->scrub_pause_wait);
324 }
325 
326 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
327 {
328 	mutex_lock(&fs_info->scrub_lock);
329 	__scrub_blocked_if_needed(fs_info);
330 	atomic_dec(&fs_info->scrubs_paused);
331 	mutex_unlock(&fs_info->scrub_lock);
332 
333 	wake_up(&fs_info->scrub_pause_wait);
334 }
335 
336 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
337 {
338 	scrub_pause_on(fs_info);
339 	scrub_pause_off(fs_info);
340 }
341 
342 /*
343  * Insert new full stripe lock into full stripe locks tree
344  *
345  * Return pointer to existing or newly inserted full_stripe_lock structure if
346  * everything works well.
347  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
348  *
349  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
350  * function
351  */
352 static struct full_stripe_lock *insert_full_stripe_lock(
353 		struct btrfs_full_stripe_locks_tree *locks_root,
354 		u64 fstripe_logical)
355 {
356 	struct rb_node **p;
357 	struct rb_node *parent = NULL;
358 	struct full_stripe_lock *entry;
359 	struct full_stripe_lock *ret;
360 
361 	lockdep_assert_held(&locks_root->lock);
362 
363 	p = &locks_root->root.rb_node;
364 	while (*p) {
365 		parent = *p;
366 		entry = rb_entry(parent, struct full_stripe_lock, node);
367 		if (fstripe_logical < entry->logical) {
368 			p = &(*p)->rb_left;
369 		} else if (fstripe_logical > entry->logical) {
370 			p = &(*p)->rb_right;
371 		} else {
372 			entry->refs++;
373 			return entry;
374 		}
375 	}
376 
377 	/* Insert new lock */
378 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
379 	if (!ret)
380 		return ERR_PTR(-ENOMEM);
381 	ret->logical = fstripe_logical;
382 	ret->refs = 1;
383 	mutex_init(&ret->mutex);
384 
385 	rb_link_node(&ret->node, parent, p);
386 	rb_insert_color(&ret->node, &locks_root->root);
387 	return ret;
388 }
389 
390 /*
391  * Search for a full stripe lock of a block group
392  *
393  * Return pointer to existing full stripe lock if found
394  * Return NULL if not found
395  */
396 static struct full_stripe_lock *search_full_stripe_lock(
397 		struct btrfs_full_stripe_locks_tree *locks_root,
398 		u64 fstripe_logical)
399 {
400 	struct rb_node *node;
401 	struct full_stripe_lock *entry;
402 
403 	lockdep_assert_held(&locks_root->lock);
404 
405 	node = locks_root->root.rb_node;
406 	while (node) {
407 		entry = rb_entry(node, struct full_stripe_lock, node);
408 		if (fstripe_logical < entry->logical)
409 			node = node->rb_left;
410 		else if (fstripe_logical > entry->logical)
411 			node = node->rb_right;
412 		else
413 			return entry;
414 	}
415 	return NULL;
416 }
417 
418 /*
419  * Helper to get full stripe logical from a normal bytenr.
420  *
421  * Caller must ensure @cache is a RAID56 block group.
422  */
423 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
424 				   u64 bytenr)
425 {
426 	u64 ret;
427 
428 	/*
429 	 * Due to chunk item size limit, full stripe length should not be
430 	 * larger than U32_MAX. Just a sanity check here.
431 	 */
432 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
433 
434 	/*
435 	 * round_down() can only handle power of 2, while RAID56 full
436 	 * stripe length can be 64KiB * n, so we need to manually round down.
437 	 */
438 	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
439 		cache->full_stripe_len + cache->key.objectid;
440 	return ret;
441 }
442 
443 /*
444  * Lock a full stripe to avoid concurrency of recovery and read
445  *
446  * It's only used for profiles with parities (RAID5/6), for other profiles it
447  * does nothing.
448  *
449  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
450  * So caller must call unlock_full_stripe() at the same context.
451  *
452  * Return <0 if encounters error.
453  */
454 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
455 			    bool *locked_ret)
456 {
457 	struct btrfs_block_group_cache *bg_cache;
458 	struct btrfs_full_stripe_locks_tree *locks_root;
459 	struct full_stripe_lock *existing;
460 	u64 fstripe_start;
461 	int ret = 0;
462 
463 	*locked_ret = false;
464 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
465 	if (!bg_cache) {
466 		ASSERT(0);
467 		return -ENOENT;
468 	}
469 
470 	/* Profiles not based on parity don't need full stripe lock */
471 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
472 		goto out;
473 	locks_root = &bg_cache->full_stripe_locks_root;
474 
475 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
476 
477 	/* Now insert the full stripe lock */
478 	mutex_lock(&locks_root->lock);
479 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
480 	mutex_unlock(&locks_root->lock);
481 	if (IS_ERR(existing)) {
482 		ret = PTR_ERR(existing);
483 		goto out;
484 	}
485 	mutex_lock(&existing->mutex);
486 	*locked_ret = true;
487 out:
488 	btrfs_put_block_group(bg_cache);
489 	return ret;
490 }
491 
492 /*
493  * Unlock a full stripe.
494  *
495  * NOTE: Caller must ensure it's the same context calling corresponding
496  * lock_full_stripe().
497  *
498  * Return 0 if we unlock full stripe without problem.
499  * Return <0 for error
500  */
501 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
502 			      bool locked)
503 {
504 	struct btrfs_block_group_cache *bg_cache;
505 	struct btrfs_full_stripe_locks_tree *locks_root;
506 	struct full_stripe_lock *fstripe_lock;
507 	u64 fstripe_start;
508 	bool freeit = false;
509 	int ret = 0;
510 
511 	/* If we didn't acquire full stripe lock, no need to continue */
512 	if (!locked)
513 		return 0;
514 
515 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
516 	if (!bg_cache) {
517 		ASSERT(0);
518 		return -ENOENT;
519 	}
520 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
521 		goto out;
522 
523 	locks_root = &bg_cache->full_stripe_locks_root;
524 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
525 
526 	mutex_lock(&locks_root->lock);
527 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
528 	/* Unpaired unlock_full_stripe() detected */
529 	if (!fstripe_lock) {
530 		WARN_ON(1);
531 		ret = -ENOENT;
532 		mutex_unlock(&locks_root->lock);
533 		goto out;
534 	}
535 
536 	if (fstripe_lock->refs == 0) {
537 		WARN_ON(1);
538 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
539 			fstripe_lock->logical);
540 	} else {
541 		fstripe_lock->refs--;
542 	}
543 
544 	if (fstripe_lock->refs == 0) {
545 		rb_erase(&fstripe_lock->node, &locks_root->root);
546 		freeit = true;
547 	}
548 	mutex_unlock(&locks_root->lock);
549 
550 	mutex_unlock(&fstripe_lock->mutex);
551 	if (freeit)
552 		kfree(fstripe_lock);
553 out:
554 	btrfs_put_block_group(bg_cache);
555 	return ret;
556 }
557 
558 /*
559  * used for workers that require transaction commits (i.e., for the
560  * NOCOW case)
561  */
562 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
563 {
564 	struct btrfs_fs_info *fs_info = sctx->fs_info;
565 
566 	refcount_inc(&sctx->refs);
567 	/*
568 	 * increment scrubs_running to prevent cancel requests from
569 	 * completing as long as a worker is running. we must also
570 	 * increment scrubs_paused to prevent deadlocking on pause
571 	 * requests used for transactions commits (as the worker uses a
572 	 * transaction context). it is safe to regard the worker
573 	 * as paused for all matters practical. effectively, we only
574 	 * avoid cancellation requests from completing.
575 	 */
576 	mutex_lock(&fs_info->scrub_lock);
577 	atomic_inc(&fs_info->scrubs_running);
578 	atomic_inc(&fs_info->scrubs_paused);
579 	mutex_unlock(&fs_info->scrub_lock);
580 
581 	/*
582 	 * check if @scrubs_running=@scrubs_paused condition
583 	 * inside wait_event() is not an atomic operation.
584 	 * which means we may inc/dec @scrub_running/paused
585 	 * at any time. Let's wake up @scrub_pause_wait as
586 	 * much as we can to let commit transaction blocked less.
587 	 */
588 	wake_up(&fs_info->scrub_pause_wait);
589 
590 	atomic_inc(&sctx->workers_pending);
591 }
592 
593 /* used for workers that require transaction commits */
594 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
595 {
596 	struct btrfs_fs_info *fs_info = sctx->fs_info;
597 
598 	/*
599 	 * see scrub_pending_trans_workers_inc() why we're pretending
600 	 * to be paused in the scrub counters
601 	 */
602 	mutex_lock(&fs_info->scrub_lock);
603 	atomic_dec(&fs_info->scrubs_running);
604 	atomic_dec(&fs_info->scrubs_paused);
605 	mutex_unlock(&fs_info->scrub_lock);
606 	atomic_dec(&sctx->workers_pending);
607 	wake_up(&fs_info->scrub_pause_wait);
608 	wake_up(&sctx->list_wait);
609 	scrub_put_ctx(sctx);
610 }
611 
612 static void scrub_free_csums(struct scrub_ctx *sctx)
613 {
614 	while (!list_empty(&sctx->csum_list)) {
615 		struct btrfs_ordered_sum *sum;
616 		sum = list_first_entry(&sctx->csum_list,
617 				       struct btrfs_ordered_sum, list);
618 		list_del(&sum->list);
619 		kfree(sum);
620 	}
621 }
622 
623 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
624 {
625 	int i;
626 
627 	if (!sctx)
628 		return;
629 
630 	/* this can happen when scrub is cancelled */
631 	if (sctx->curr != -1) {
632 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
633 
634 		for (i = 0; i < sbio->page_count; i++) {
635 			WARN_ON(!sbio->pagev[i]->page);
636 			scrub_block_put(sbio->pagev[i]->sblock);
637 		}
638 		bio_put(sbio->bio);
639 	}
640 
641 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
642 		struct scrub_bio *sbio = sctx->bios[i];
643 
644 		if (!sbio)
645 			break;
646 		kfree(sbio);
647 	}
648 
649 	kfree(sctx->wr_curr_bio);
650 	scrub_free_csums(sctx);
651 	kfree(sctx);
652 }
653 
654 static void scrub_put_ctx(struct scrub_ctx *sctx)
655 {
656 	if (refcount_dec_and_test(&sctx->refs))
657 		scrub_free_ctx(sctx);
658 }
659 
660 static noinline_for_stack
661 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
662 {
663 	struct scrub_ctx *sctx;
664 	int		i;
665 	struct btrfs_fs_info *fs_info = dev->fs_info;
666 
667 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
668 	if (!sctx)
669 		goto nomem;
670 	refcount_set(&sctx->refs, 1);
671 	sctx->is_dev_replace = is_dev_replace;
672 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
673 	sctx->curr = -1;
674 	sctx->fs_info = dev->fs_info;
675 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
676 		struct scrub_bio *sbio;
677 
678 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
679 		if (!sbio)
680 			goto nomem;
681 		sctx->bios[i] = sbio;
682 
683 		sbio->index = i;
684 		sbio->sctx = sctx;
685 		sbio->page_count = 0;
686 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
687 				scrub_bio_end_io_worker, NULL, NULL);
688 
689 		if (i != SCRUB_BIOS_PER_SCTX - 1)
690 			sctx->bios[i]->next_free = i + 1;
691 		else
692 			sctx->bios[i]->next_free = -1;
693 	}
694 	sctx->first_free = 0;
695 	atomic_set(&sctx->bios_in_flight, 0);
696 	atomic_set(&sctx->workers_pending, 0);
697 	atomic_set(&sctx->cancel_req, 0);
698 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
699 	INIT_LIST_HEAD(&sctx->csum_list);
700 
701 	spin_lock_init(&sctx->list_lock);
702 	spin_lock_init(&sctx->stat_lock);
703 	init_waitqueue_head(&sctx->list_wait);
704 
705 	WARN_ON(sctx->wr_curr_bio != NULL);
706 	mutex_init(&sctx->wr_lock);
707 	sctx->wr_curr_bio = NULL;
708 	if (is_dev_replace) {
709 		WARN_ON(!fs_info->dev_replace.tgtdev);
710 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
711 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
712 		sctx->flush_all_writes = false;
713 	}
714 
715 	return sctx;
716 
717 nomem:
718 	scrub_free_ctx(sctx);
719 	return ERR_PTR(-ENOMEM);
720 }
721 
722 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
723 				     void *warn_ctx)
724 {
725 	u64 isize;
726 	u32 nlink;
727 	int ret;
728 	int i;
729 	unsigned nofs_flag;
730 	struct extent_buffer *eb;
731 	struct btrfs_inode_item *inode_item;
732 	struct scrub_warning *swarn = warn_ctx;
733 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
734 	struct inode_fs_paths *ipath = NULL;
735 	struct btrfs_root *local_root;
736 	struct btrfs_key root_key;
737 	struct btrfs_key key;
738 
739 	root_key.objectid = root;
740 	root_key.type = BTRFS_ROOT_ITEM_KEY;
741 	root_key.offset = (u64)-1;
742 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
743 	if (IS_ERR(local_root)) {
744 		ret = PTR_ERR(local_root);
745 		goto err;
746 	}
747 
748 	/*
749 	 * this makes the path point to (inum INODE_ITEM ioff)
750 	 */
751 	key.objectid = inum;
752 	key.type = BTRFS_INODE_ITEM_KEY;
753 	key.offset = 0;
754 
755 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
756 	if (ret) {
757 		btrfs_release_path(swarn->path);
758 		goto err;
759 	}
760 
761 	eb = swarn->path->nodes[0];
762 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
763 					struct btrfs_inode_item);
764 	isize = btrfs_inode_size(eb, inode_item);
765 	nlink = btrfs_inode_nlink(eb, inode_item);
766 	btrfs_release_path(swarn->path);
767 
768 	/*
769 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
770 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
771 	 * not seem to be strictly necessary.
772 	 */
773 	nofs_flag = memalloc_nofs_save();
774 	ipath = init_ipath(4096, local_root, swarn->path);
775 	memalloc_nofs_restore(nofs_flag);
776 	if (IS_ERR(ipath)) {
777 		ret = PTR_ERR(ipath);
778 		ipath = NULL;
779 		goto err;
780 	}
781 	ret = paths_from_inode(inum, ipath);
782 
783 	if (ret < 0)
784 		goto err;
785 
786 	/*
787 	 * we deliberately ignore the bit ipath might have been too small to
788 	 * hold all of the paths here
789 	 */
790 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
791 		btrfs_warn_in_rcu(fs_info,
792 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
793 				  swarn->errstr, swarn->logical,
794 				  rcu_str_deref(swarn->dev->name),
795 				  swarn->physical,
796 				  root, inum, offset,
797 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
798 				  (char *)(unsigned long)ipath->fspath->val[i]);
799 
800 	free_ipath(ipath);
801 	return 0;
802 
803 err:
804 	btrfs_warn_in_rcu(fs_info,
805 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
806 			  swarn->errstr, swarn->logical,
807 			  rcu_str_deref(swarn->dev->name),
808 			  swarn->physical,
809 			  root, inum, offset, ret);
810 
811 	free_ipath(ipath);
812 	return 0;
813 }
814 
815 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
816 {
817 	struct btrfs_device *dev;
818 	struct btrfs_fs_info *fs_info;
819 	struct btrfs_path *path;
820 	struct btrfs_key found_key;
821 	struct extent_buffer *eb;
822 	struct btrfs_extent_item *ei;
823 	struct scrub_warning swarn;
824 	unsigned long ptr = 0;
825 	u64 extent_item_pos;
826 	u64 flags = 0;
827 	u64 ref_root;
828 	u32 item_size;
829 	u8 ref_level = 0;
830 	int ret;
831 
832 	WARN_ON(sblock->page_count < 1);
833 	dev = sblock->pagev[0]->dev;
834 	fs_info = sblock->sctx->fs_info;
835 
836 	path = btrfs_alloc_path();
837 	if (!path)
838 		return;
839 
840 	swarn.physical = sblock->pagev[0]->physical;
841 	swarn.logical = sblock->pagev[0]->logical;
842 	swarn.errstr = errstr;
843 	swarn.dev = NULL;
844 
845 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
846 				  &flags);
847 	if (ret < 0)
848 		goto out;
849 
850 	extent_item_pos = swarn.logical - found_key.objectid;
851 	swarn.extent_item_size = found_key.offset;
852 
853 	eb = path->nodes[0];
854 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
855 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
856 
857 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
858 		do {
859 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
860 						      item_size, &ref_root,
861 						      &ref_level);
862 			btrfs_warn_in_rcu(fs_info,
863 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
864 				errstr, swarn.logical,
865 				rcu_str_deref(dev->name),
866 				swarn.physical,
867 				ref_level ? "node" : "leaf",
868 				ret < 0 ? -1 : ref_level,
869 				ret < 0 ? -1 : ref_root);
870 		} while (ret != 1);
871 		btrfs_release_path(path);
872 	} else {
873 		btrfs_release_path(path);
874 		swarn.path = path;
875 		swarn.dev = dev;
876 		iterate_extent_inodes(fs_info, found_key.objectid,
877 					extent_item_pos, 1,
878 					scrub_print_warning_inode, &swarn, false);
879 	}
880 
881 out:
882 	btrfs_free_path(path);
883 }
884 
885 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
886 {
887 	struct page *page = NULL;
888 	unsigned long index;
889 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
890 	int ret;
891 	int corrected = 0;
892 	struct btrfs_key key;
893 	struct inode *inode = NULL;
894 	struct btrfs_fs_info *fs_info;
895 	u64 end = offset + PAGE_SIZE - 1;
896 	struct btrfs_root *local_root;
897 	int srcu_index;
898 
899 	key.objectid = root;
900 	key.type = BTRFS_ROOT_ITEM_KEY;
901 	key.offset = (u64)-1;
902 
903 	fs_info = fixup->root->fs_info;
904 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
905 
906 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
907 	if (IS_ERR(local_root)) {
908 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
909 		return PTR_ERR(local_root);
910 	}
911 
912 	key.type = BTRFS_INODE_ITEM_KEY;
913 	key.objectid = inum;
914 	key.offset = 0;
915 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
916 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
917 	if (IS_ERR(inode))
918 		return PTR_ERR(inode);
919 
920 	index = offset >> PAGE_SHIFT;
921 
922 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
923 	if (!page) {
924 		ret = -ENOMEM;
925 		goto out;
926 	}
927 
928 	if (PageUptodate(page)) {
929 		if (PageDirty(page)) {
930 			/*
931 			 * we need to write the data to the defect sector. the
932 			 * data that was in that sector is not in memory,
933 			 * because the page was modified. we must not write the
934 			 * modified page to that sector.
935 			 *
936 			 * TODO: what could be done here: wait for the delalloc
937 			 *       runner to write out that page (might involve
938 			 *       COW) and see whether the sector is still
939 			 *       referenced afterwards.
940 			 *
941 			 * For the meantime, we'll treat this error
942 			 * incorrectable, although there is a chance that a
943 			 * later scrub will find the bad sector again and that
944 			 * there's no dirty page in memory, then.
945 			 */
946 			ret = -EIO;
947 			goto out;
948 		}
949 		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
950 					fixup->logical, page,
951 					offset - page_offset(page),
952 					fixup->mirror_num);
953 		unlock_page(page);
954 		corrected = !ret;
955 	} else {
956 		/*
957 		 * we need to get good data first. the general readpage path
958 		 * will call repair_io_failure for us, we just have to make
959 		 * sure we read the bad mirror.
960 		 */
961 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
962 					EXTENT_DAMAGED);
963 		if (ret) {
964 			/* set_extent_bits should give proper error */
965 			WARN_ON(ret > 0);
966 			if (ret > 0)
967 				ret = -EFAULT;
968 			goto out;
969 		}
970 
971 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
972 						btrfs_get_extent,
973 						fixup->mirror_num);
974 		wait_on_page_locked(page);
975 
976 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
977 						end, EXTENT_DAMAGED, 0, NULL);
978 		if (!corrected)
979 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
980 						EXTENT_DAMAGED);
981 	}
982 
983 out:
984 	if (page)
985 		put_page(page);
986 
987 	iput(inode);
988 
989 	if (ret < 0)
990 		return ret;
991 
992 	if (ret == 0 && corrected) {
993 		/*
994 		 * we only need to call readpage for one of the inodes belonging
995 		 * to this extent. so make iterate_extent_inodes stop
996 		 */
997 		return 1;
998 	}
999 
1000 	return -EIO;
1001 }
1002 
1003 static void scrub_fixup_nodatasum(struct btrfs_work *work)
1004 {
1005 	struct btrfs_fs_info *fs_info;
1006 	int ret;
1007 	struct scrub_fixup_nodatasum *fixup;
1008 	struct scrub_ctx *sctx;
1009 	struct btrfs_trans_handle *trans = NULL;
1010 	struct btrfs_path *path;
1011 	int uncorrectable = 0;
1012 
1013 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1014 	sctx = fixup->sctx;
1015 	fs_info = fixup->root->fs_info;
1016 
1017 	path = btrfs_alloc_path();
1018 	if (!path) {
1019 		spin_lock(&sctx->stat_lock);
1020 		++sctx->stat.malloc_errors;
1021 		spin_unlock(&sctx->stat_lock);
1022 		uncorrectable = 1;
1023 		goto out;
1024 	}
1025 
1026 	trans = btrfs_join_transaction(fixup->root);
1027 	if (IS_ERR(trans)) {
1028 		uncorrectable = 1;
1029 		goto out;
1030 	}
1031 
1032 	/*
1033 	 * the idea is to trigger a regular read through the standard path. we
1034 	 * read a page from the (failed) logical address by specifying the
1035 	 * corresponding copynum of the failed sector. thus, that readpage is
1036 	 * expected to fail.
1037 	 * that is the point where on-the-fly error correction will kick in
1038 	 * (once it's finished) and rewrite the failed sector if a good copy
1039 	 * can be found.
1040 	 */
1041 	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1042 					  scrub_fixup_readpage, fixup, false);
1043 	if (ret < 0) {
1044 		uncorrectable = 1;
1045 		goto out;
1046 	}
1047 	WARN_ON(ret != 1);
1048 
1049 	spin_lock(&sctx->stat_lock);
1050 	++sctx->stat.corrected_errors;
1051 	spin_unlock(&sctx->stat_lock);
1052 
1053 out:
1054 	if (trans && !IS_ERR(trans))
1055 		btrfs_end_transaction(trans);
1056 	if (uncorrectable) {
1057 		spin_lock(&sctx->stat_lock);
1058 		++sctx->stat.uncorrectable_errors;
1059 		spin_unlock(&sctx->stat_lock);
1060 		btrfs_dev_replace_stats_inc(
1061 			&fs_info->dev_replace.num_uncorrectable_read_errors);
1062 		btrfs_err_rl_in_rcu(fs_info,
1063 		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064 			fixup->logical, rcu_str_deref(fixup->dev->name));
1065 	}
1066 
1067 	btrfs_free_path(path);
1068 	kfree(fixup);
1069 
1070 	scrub_pending_trans_workers_dec(sctx);
1071 }
1072 
1073 static inline void scrub_get_recover(struct scrub_recover *recover)
1074 {
1075 	refcount_inc(&recover->refs);
1076 }
1077 
1078 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1079 				     struct scrub_recover *recover)
1080 {
1081 	if (refcount_dec_and_test(&recover->refs)) {
1082 		btrfs_bio_counter_dec(fs_info);
1083 		btrfs_put_bbio(recover->bbio);
1084 		kfree(recover);
1085 	}
1086 }
1087 
1088 /*
1089  * scrub_handle_errored_block gets called when either verification of the
1090  * pages failed or the bio failed to read, e.g. with EIO. In the latter
1091  * case, this function handles all pages in the bio, even though only one
1092  * may be bad.
1093  * The goal of this function is to repair the errored block by using the
1094  * contents of one of the mirrors.
1095  */
1096 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1097 {
1098 	struct scrub_ctx *sctx = sblock_to_check->sctx;
1099 	struct btrfs_device *dev;
1100 	struct btrfs_fs_info *fs_info;
1101 	u64 logical;
1102 	unsigned int failed_mirror_index;
1103 	unsigned int is_metadata;
1104 	unsigned int have_csum;
1105 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1106 	struct scrub_block *sblock_bad;
1107 	int ret;
1108 	int mirror_index;
1109 	int page_num;
1110 	int success;
1111 	bool full_stripe_locked;
1112 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1113 				      DEFAULT_RATELIMIT_BURST);
1114 
1115 	BUG_ON(sblock_to_check->page_count < 1);
1116 	fs_info = sctx->fs_info;
1117 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1118 		/*
1119 		 * if we find an error in a super block, we just report it.
1120 		 * They will get written with the next transaction commit
1121 		 * anyway
1122 		 */
1123 		spin_lock(&sctx->stat_lock);
1124 		++sctx->stat.super_errors;
1125 		spin_unlock(&sctx->stat_lock);
1126 		return 0;
1127 	}
1128 	logical = sblock_to_check->pagev[0]->logical;
1129 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1130 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1131 	is_metadata = !(sblock_to_check->pagev[0]->flags &
1132 			BTRFS_EXTENT_FLAG_DATA);
1133 	have_csum = sblock_to_check->pagev[0]->have_csum;
1134 	dev = sblock_to_check->pagev[0]->dev;
1135 
1136 	/*
1137 	 * For RAID5/6, race can happen for a different device scrub thread.
1138 	 * For data corruption, Parity and Data threads will both try
1139 	 * to recovery the data.
1140 	 * Race can lead to doubly added csum error, or even unrecoverable
1141 	 * error.
1142 	 */
1143 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1144 	if (ret < 0) {
1145 		spin_lock(&sctx->stat_lock);
1146 		if (ret == -ENOMEM)
1147 			sctx->stat.malloc_errors++;
1148 		sctx->stat.read_errors++;
1149 		sctx->stat.uncorrectable_errors++;
1150 		spin_unlock(&sctx->stat_lock);
1151 		return ret;
1152 	}
1153 
1154 	/*
1155 	 * read all mirrors one after the other. This includes to
1156 	 * re-read the extent or metadata block that failed (that was
1157 	 * the cause that this fixup code is called) another time,
1158 	 * page by page this time in order to know which pages
1159 	 * caused I/O errors and which ones are good (for all mirrors).
1160 	 * It is the goal to handle the situation when more than one
1161 	 * mirror contains I/O errors, but the errors do not
1162 	 * overlap, i.e. the data can be repaired by selecting the
1163 	 * pages from those mirrors without I/O error on the
1164 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1165 	 * would be that mirror #1 has an I/O error on the first page,
1166 	 * the second page is good, and mirror #2 has an I/O error on
1167 	 * the second page, but the first page is good.
1168 	 * Then the first page of the first mirror can be repaired by
1169 	 * taking the first page of the second mirror, and the
1170 	 * second page of the second mirror can be repaired by
1171 	 * copying the contents of the 2nd page of the 1st mirror.
1172 	 * One more note: if the pages of one mirror contain I/O
1173 	 * errors, the checksum cannot be verified. In order to get
1174 	 * the best data for repairing, the first attempt is to find
1175 	 * a mirror without I/O errors and with a validated checksum.
1176 	 * Only if this is not possible, the pages are picked from
1177 	 * mirrors with I/O errors without considering the checksum.
1178 	 * If the latter is the case, at the end, the checksum of the
1179 	 * repaired area is verified in order to correctly maintain
1180 	 * the statistics.
1181 	 */
1182 
1183 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1184 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1185 	if (!sblocks_for_recheck) {
1186 		spin_lock(&sctx->stat_lock);
1187 		sctx->stat.malloc_errors++;
1188 		sctx->stat.read_errors++;
1189 		sctx->stat.uncorrectable_errors++;
1190 		spin_unlock(&sctx->stat_lock);
1191 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1192 		goto out;
1193 	}
1194 
1195 	/* setup the context, map the logical blocks and alloc the pages */
1196 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1197 	if (ret) {
1198 		spin_lock(&sctx->stat_lock);
1199 		sctx->stat.read_errors++;
1200 		sctx->stat.uncorrectable_errors++;
1201 		spin_unlock(&sctx->stat_lock);
1202 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1203 		goto out;
1204 	}
1205 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1206 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1207 
1208 	/* build and submit the bios for the failed mirror, check checksums */
1209 	scrub_recheck_block(fs_info, sblock_bad, 1);
1210 
1211 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1212 	    sblock_bad->no_io_error_seen) {
1213 		/*
1214 		 * the error disappeared after reading page by page, or
1215 		 * the area was part of a huge bio and other parts of the
1216 		 * bio caused I/O errors, or the block layer merged several
1217 		 * read requests into one and the error is caused by a
1218 		 * different bio (usually one of the two latter cases is
1219 		 * the cause)
1220 		 */
1221 		spin_lock(&sctx->stat_lock);
1222 		sctx->stat.unverified_errors++;
1223 		sblock_to_check->data_corrected = 1;
1224 		spin_unlock(&sctx->stat_lock);
1225 
1226 		if (sctx->is_dev_replace)
1227 			scrub_write_block_to_dev_replace(sblock_bad);
1228 		goto out;
1229 	}
1230 
1231 	if (!sblock_bad->no_io_error_seen) {
1232 		spin_lock(&sctx->stat_lock);
1233 		sctx->stat.read_errors++;
1234 		spin_unlock(&sctx->stat_lock);
1235 		if (__ratelimit(&_rs))
1236 			scrub_print_warning("i/o error", sblock_to_check);
1237 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1238 	} else if (sblock_bad->checksum_error) {
1239 		spin_lock(&sctx->stat_lock);
1240 		sctx->stat.csum_errors++;
1241 		spin_unlock(&sctx->stat_lock);
1242 		if (__ratelimit(&_rs))
1243 			scrub_print_warning("checksum error", sblock_to_check);
1244 		btrfs_dev_stat_inc_and_print(dev,
1245 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1246 	} else if (sblock_bad->header_error) {
1247 		spin_lock(&sctx->stat_lock);
1248 		sctx->stat.verify_errors++;
1249 		spin_unlock(&sctx->stat_lock);
1250 		if (__ratelimit(&_rs))
1251 			scrub_print_warning("checksum/header error",
1252 					    sblock_to_check);
1253 		if (sblock_bad->generation_error)
1254 			btrfs_dev_stat_inc_and_print(dev,
1255 				BTRFS_DEV_STAT_GENERATION_ERRS);
1256 		else
1257 			btrfs_dev_stat_inc_and_print(dev,
1258 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1259 	}
1260 
1261 	if (sctx->readonly) {
1262 		ASSERT(!sctx->is_dev_replace);
1263 		goto out;
1264 	}
1265 
1266 	/*
1267 	 * NOTE: Even for nodatasum case, it's still possible that it's a
1268 	 * compressed data extent, thus scrub_fixup_nodatasum(), which write
1269 	 * inode page cache onto disk, could cause serious data corruption.
1270 	 *
1271 	 * So here we could only read from disk, and hope our recovery could
1272 	 * reach disk before the newer write.
1273 	 */
1274 	if (0 && !is_metadata && !have_csum) {
1275 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1276 
1277 		WARN_ON(sctx->is_dev_replace);
1278 
1279 		/*
1280 		 * !is_metadata and !have_csum, this means that the data
1281 		 * might not be COWed, that it might be modified
1282 		 * concurrently. The general strategy to work on the
1283 		 * commit root does not help in the case when COW is not
1284 		 * used.
1285 		 */
1286 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1287 		if (!fixup_nodatasum)
1288 			goto did_not_correct_error;
1289 		fixup_nodatasum->sctx = sctx;
1290 		fixup_nodatasum->dev = dev;
1291 		fixup_nodatasum->logical = logical;
1292 		fixup_nodatasum->root = fs_info->extent_root;
1293 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1294 		scrub_pending_trans_workers_inc(sctx);
1295 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1296 				scrub_fixup_nodatasum, NULL, NULL);
1297 		btrfs_queue_work(fs_info->scrub_workers,
1298 				 &fixup_nodatasum->work);
1299 		goto out;
1300 	}
1301 
1302 	/*
1303 	 * now build and submit the bios for the other mirrors, check
1304 	 * checksums.
1305 	 * First try to pick the mirror which is completely without I/O
1306 	 * errors and also does not have a checksum error.
1307 	 * If one is found, and if a checksum is present, the full block
1308 	 * that is known to contain an error is rewritten. Afterwards
1309 	 * the block is known to be corrected.
1310 	 * If a mirror is found which is completely correct, and no
1311 	 * checksum is present, only those pages are rewritten that had
1312 	 * an I/O error in the block to be repaired, since it cannot be
1313 	 * determined, which copy of the other pages is better (and it
1314 	 * could happen otherwise that a correct page would be
1315 	 * overwritten by a bad one).
1316 	 */
1317 	for (mirror_index = 0; ;mirror_index++) {
1318 		struct scrub_block *sblock_other;
1319 
1320 		if (mirror_index == failed_mirror_index)
1321 			continue;
1322 
1323 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1324 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1325 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1326 				break;
1327 			if (!sblocks_for_recheck[mirror_index].page_count)
1328 				break;
1329 
1330 			sblock_other = sblocks_for_recheck + mirror_index;
1331 		} else {
1332 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1333 			int max_allowed = r->bbio->num_stripes -
1334 						r->bbio->num_tgtdevs;
1335 
1336 			if (mirror_index >= max_allowed)
1337 				break;
1338 			if (!sblocks_for_recheck[1].page_count)
1339 				break;
1340 
1341 			ASSERT(failed_mirror_index == 0);
1342 			sblock_other = sblocks_for_recheck + 1;
1343 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1344 		}
1345 
1346 		/* build and submit the bios, check checksums */
1347 		scrub_recheck_block(fs_info, sblock_other, 0);
1348 
1349 		if (!sblock_other->header_error &&
1350 		    !sblock_other->checksum_error &&
1351 		    sblock_other->no_io_error_seen) {
1352 			if (sctx->is_dev_replace) {
1353 				scrub_write_block_to_dev_replace(sblock_other);
1354 				goto corrected_error;
1355 			} else {
1356 				ret = scrub_repair_block_from_good_copy(
1357 						sblock_bad, sblock_other);
1358 				if (!ret)
1359 					goto corrected_error;
1360 			}
1361 		}
1362 	}
1363 
1364 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1365 		goto did_not_correct_error;
1366 
1367 	/*
1368 	 * In case of I/O errors in the area that is supposed to be
1369 	 * repaired, continue by picking good copies of those pages.
1370 	 * Select the good pages from mirrors to rewrite bad pages from
1371 	 * the area to fix. Afterwards verify the checksum of the block
1372 	 * that is supposed to be repaired. This verification step is
1373 	 * only done for the purpose of statistic counting and for the
1374 	 * final scrub report, whether errors remain.
1375 	 * A perfect algorithm could make use of the checksum and try
1376 	 * all possible combinations of pages from the different mirrors
1377 	 * until the checksum verification succeeds. For example, when
1378 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1379 	 * of mirror #2 is readable but the final checksum test fails,
1380 	 * then the 2nd page of mirror #3 could be tried, whether now
1381 	 * the final checksum succeeds. But this would be a rare
1382 	 * exception and is therefore not implemented. At least it is
1383 	 * avoided that the good copy is overwritten.
1384 	 * A more useful improvement would be to pick the sectors
1385 	 * without I/O error based on sector sizes (512 bytes on legacy
1386 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1387 	 * mirror could be repaired by taking 512 byte of a different
1388 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1389 	 * area are unreadable.
1390 	 */
1391 	success = 1;
1392 	for (page_num = 0; page_num < sblock_bad->page_count;
1393 	     page_num++) {
1394 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1395 		struct scrub_block *sblock_other = NULL;
1396 
1397 		/* skip no-io-error page in scrub */
1398 		if (!page_bad->io_error && !sctx->is_dev_replace)
1399 			continue;
1400 
1401 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1402 			/*
1403 			 * In case of dev replace, if raid56 rebuild process
1404 			 * didn't work out correct data, then copy the content
1405 			 * in sblock_bad to make sure target device is identical
1406 			 * to source device, instead of writing garbage data in
1407 			 * sblock_for_recheck array to target device.
1408 			 */
1409 			sblock_other = NULL;
1410 		} else if (page_bad->io_error) {
1411 			/* try to find no-io-error page in mirrors */
1412 			for (mirror_index = 0;
1413 			     mirror_index < BTRFS_MAX_MIRRORS &&
1414 			     sblocks_for_recheck[mirror_index].page_count > 0;
1415 			     mirror_index++) {
1416 				if (!sblocks_for_recheck[mirror_index].
1417 				    pagev[page_num]->io_error) {
1418 					sblock_other = sblocks_for_recheck +
1419 						       mirror_index;
1420 					break;
1421 				}
1422 			}
1423 			if (!sblock_other)
1424 				success = 0;
1425 		}
1426 
1427 		if (sctx->is_dev_replace) {
1428 			/*
1429 			 * did not find a mirror to fetch the page
1430 			 * from. scrub_write_page_to_dev_replace()
1431 			 * handles this case (page->io_error), by
1432 			 * filling the block with zeros before
1433 			 * submitting the write request
1434 			 */
1435 			if (!sblock_other)
1436 				sblock_other = sblock_bad;
1437 
1438 			if (scrub_write_page_to_dev_replace(sblock_other,
1439 							    page_num) != 0) {
1440 				btrfs_dev_replace_stats_inc(
1441 					&fs_info->dev_replace.num_write_errors);
1442 				success = 0;
1443 			}
1444 		} else if (sblock_other) {
1445 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1446 							       sblock_other,
1447 							       page_num, 0);
1448 			if (0 == ret)
1449 				page_bad->io_error = 0;
1450 			else
1451 				success = 0;
1452 		}
1453 	}
1454 
1455 	if (success && !sctx->is_dev_replace) {
1456 		if (is_metadata || have_csum) {
1457 			/*
1458 			 * need to verify the checksum now that all
1459 			 * sectors on disk are repaired (the write
1460 			 * request for data to be repaired is on its way).
1461 			 * Just be lazy and use scrub_recheck_block()
1462 			 * which re-reads the data before the checksum
1463 			 * is verified, but most likely the data comes out
1464 			 * of the page cache.
1465 			 */
1466 			scrub_recheck_block(fs_info, sblock_bad, 1);
1467 			if (!sblock_bad->header_error &&
1468 			    !sblock_bad->checksum_error &&
1469 			    sblock_bad->no_io_error_seen)
1470 				goto corrected_error;
1471 			else
1472 				goto did_not_correct_error;
1473 		} else {
1474 corrected_error:
1475 			spin_lock(&sctx->stat_lock);
1476 			sctx->stat.corrected_errors++;
1477 			sblock_to_check->data_corrected = 1;
1478 			spin_unlock(&sctx->stat_lock);
1479 			btrfs_err_rl_in_rcu(fs_info,
1480 				"fixed up error at logical %llu on dev %s",
1481 				logical, rcu_str_deref(dev->name));
1482 		}
1483 	} else {
1484 did_not_correct_error:
1485 		spin_lock(&sctx->stat_lock);
1486 		sctx->stat.uncorrectable_errors++;
1487 		spin_unlock(&sctx->stat_lock);
1488 		btrfs_err_rl_in_rcu(fs_info,
1489 			"unable to fixup (regular) error at logical %llu on dev %s",
1490 			logical, rcu_str_deref(dev->name));
1491 	}
1492 
1493 out:
1494 	if (sblocks_for_recheck) {
1495 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1496 		     mirror_index++) {
1497 			struct scrub_block *sblock = sblocks_for_recheck +
1498 						     mirror_index;
1499 			struct scrub_recover *recover;
1500 			int page_index;
1501 
1502 			for (page_index = 0; page_index < sblock->page_count;
1503 			     page_index++) {
1504 				sblock->pagev[page_index]->sblock = NULL;
1505 				recover = sblock->pagev[page_index]->recover;
1506 				if (recover) {
1507 					scrub_put_recover(fs_info, recover);
1508 					sblock->pagev[page_index]->recover =
1509 									NULL;
1510 				}
1511 				scrub_page_put(sblock->pagev[page_index]);
1512 			}
1513 		}
1514 		kfree(sblocks_for_recheck);
1515 	}
1516 
1517 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1518 	if (ret < 0)
1519 		return ret;
1520 	return 0;
1521 }
1522 
1523 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1524 {
1525 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1526 		return 2;
1527 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1528 		return 3;
1529 	else
1530 		return (int)bbio->num_stripes;
1531 }
1532 
1533 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1534 						 u64 *raid_map,
1535 						 u64 mapped_length,
1536 						 int nstripes, int mirror,
1537 						 int *stripe_index,
1538 						 u64 *stripe_offset)
1539 {
1540 	int i;
1541 
1542 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1543 		/* RAID5/6 */
1544 		for (i = 0; i < nstripes; i++) {
1545 			if (raid_map[i] == RAID6_Q_STRIPE ||
1546 			    raid_map[i] == RAID5_P_STRIPE)
1547 				continue;
1548 
1549 			if (logical >= raid_map[i] &&
1550 			    logical < raid_map[i] + mapped_length)
1551 				break;
1552 		}
1553 
1554 		*stripe_index = i;
1555 		*stripe_offset = logical - raid_map[i];
1556 	} else {
1557 		/* The other RAID type */
1558 		*stripe_index = mirror;
1559 		*stripe_offset = 0;
1560 	}
1561 }
1562 
1563 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1564 				     struct scrub_block *sblocks_for_recheck)
1565 {
1566 	struct scrub_ctx *sctx = original_sblock->sctx;
1567 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1568 	u64 length = original_sblock->page_count * PAGE_SIZE;
1569 	u64 logical = original_sblock->pagev[0]->logical;
1570 	u64 generation = original_sblock->pagev[0]->generation;
1571 	u64 flags = original_sblock->pagev[0]->flags;
1572 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1573 	struct scrub_recover *recover;
1574 	struct btrfs_bio *bbio;
1575 	u64 sublen;
1576 	u64 mapped_length;
1577 	u64 stripe_offset;
1578 	int stripe_index;
1579 	int page_index = 0;
1580 	int mirror_index;
1581 	int nmirrors;
1582 	int ret;
1583 
1584 	/*
1585 	 * note: the two members refs and outstanding_pages
1586 	 * are not used (and not set) in the blocks that are used for
1587 	 * the recheck procedure
1588 	 */
1589 
1590 	while (length > 0) {
1591 		sublen = min_t(u64, length, PAGE_SIZE);
1592 		mapped_length = sublen;
1593 		bbio = NULL;
1594 
1595 		/*
1596 		 * with a length of PAGE_SIZE, each returned stripe
1597 		 * represents one mirror
1598 		 */
1599 		btrfs_bio_counter_inc_blocked(fs_info);
1600 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1601 				logical, &mapped_length, &bbio);
1602 		if (ret || !bbio || mapped_length < sublen) {
1603 			btrfs_put_bbio(bbio);
1604 			btrfs_bio_counter_dec(fs_info);
1605 			return -EIO;
1606 		}
1607 
1608 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1609 		if (!recover) {
1610 			btrfs_put_bbio(bbio);
1611 			btrfs_bio_counter_dec(fs_info);
1612 			return -ENOMEM;
1613 		}
1614 
1615 		refcount_set(&recover->refs, 1);
1616 		recover->bbio = bbio;
1617 		recover->map_length = mapped_length;
1618 
1619 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1620 
1621 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1622 
1623 		for (mirror_index = 0; mirror_index < nmirrors;
1624 		     mirror_index++) {
1625 			struct scrub_block *sblock;
1626 			struct scrub_page *page;
1627 
1628 			sblock = sblocks_for_recheck + mirror_index;
1629 			sblock->sctx = sctx;
1630 
1631 			page = kzalloc(sizeof(*page), GFP_NOFS);
1632 			if (!page) {
1633 leave_nomem:
1634 				spin_lock(&sctx->stat_lock);
1635 				sctx->stat.malloc_errors++;
1636 				spin_unlock(&sctx->stat_lock);
1637 				scrub_put_recover(fs_info, recover);
1638 				return -ENOMEM;
1639 			}
1640 			scrub_page_get(page);
1641 			sblock->pagev[page_index] = page;
1642 			page->sblock = sblock;
1643 			page->flags = flags;
1644 			page->generation = generation;
1645 			page->logical = logical;
1646 			page->have_csum = have_csum;
1647 			if (have_csum)
1648 				memcpy(page->csum,
1649 				       original_sblock->pagev[0]->csum,
1650 				       sctx->csum_size);
1651 
1652 			scrub_stripe_index_and_offset(logical,
1653 						      bbio->map_type,
1654 						      bbio->raid_map,
1655 						      mapped_length,
1656 						      bbio->num_stripes -
1657 						      bbio->num_tgtdevs,
1658 						      mirror_index,
1659 						      &stripe_index,
1660 						      &stripe_offset);
1661 			page->physical = bbio->stripes[stripe_index].physical +
1662 					 stripe_offset;
1663 			page->dev = bbio->stripes[stripe_index].dev;
1664 
1665 			BUG_ON(page_index >= original_sblock->page_count);
1666 			page->physical_for_dev_replace =
1667 				original_sblock->pagev[page_index]->
1668 				physical_for_dev_replace;
1669 			/* for missing devices, dev->bdev is NULL */
1670 			page->mirror_num = mirror_index + 1;
1671 			sblock->page_count++;
1672 			page->page = alloc_page(GFP_NOFS);
1673 			if (!page->page)
1674 				goto leave_nomem;
1675 
1676 			scrub_get_recover(recover);
1677 			page->recover = recover;
1678 		}
1679 		scrub_put_recover(fs_info, recover);
1680 		length -= sublen;
1681 		logical += sublen;
1682 		page_index++;
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 static void scrub_bio_wait_endio(struct bio *bio)
1689 {
1690 	complete(bio->bi_private);
1691 }
1692 
1693 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1694 					struct bio *bio,
1695 					struct scrub_page *page)
1696 {
1697 	DECLARE_COMPLETION_ONSTACK(done);
1698 	int ret;
1699 	int mirror_num;
1700 
1701 	bio->bi_iter.bi_sector = page->logical >> 9;
1702 	bio->bi_private = &done;
1703 	bio->bi_end_io = scrub_bio_wait_endio;
1704 
1705 	mirror_num = page->sblock->pagev[0]->mirror_num;
1706 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1707 				    page->recover->map_length,
1708 				    mirror_num, 0);
1709 	if (ret)
1710 		return ret;
1711 
1712 	wait_for_completion_io(&done);
1713 	return blk_status_to_errno(bio->bi_status);
1714 }
1715 
1716 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1717 					  struct scrub_block *sblock)
1718 {
1719 	struct scrub_page *first_page = sblock->pagev[0];
1720 	struct bio *bio;
1721 	int page_num;
1722 
1723 	/* All pages in sblock belong to the same stripe on the same device. */
1724 	ASSERT(first_page->dev);
1725 	if (!first_page->dev->bdev)
1726 		goto out;
1727 
1728 	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1729 	bio_set_dev(bio, first_page->dev->bdev);
1730 
1731 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1732 		struct scrub_page *page = sblock->pagev[page_num];
1733 
1734 		WARN_ON(!page->page);
1735 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1736 	}
1737 
1738 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1739 		bio_put(bio);
1740 		goto out;
1741 	}
1742 
1743 	bio_put(bio);
1744 
1745 	scrub_recheck_block_checksum(sblock);
1746 
1747 	return;
1748 out:
1749 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1750 		sblock->pagev[page_num]->io_error = 1;
1751 
1752 	sblock->no_io_error_seen = 0;
1753 }
1754 
1755 /*
1756  * this function will check the on disk data for checksum errors, header
1757  * errors and read I/O errors. If any I/O errors happen, the exact pages
1758  * which are errored are marked as being bad. The goal is to enable scrub
1759  * to take those pages that are not errored from all the mirrors so that
1760  * the pages that are errored in the just handled mirror can be repaired.
1761  */
1762 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1763 				struct scrub_block *sblock,
1764 				int retry_failed_mirror)
1765 {
1766 	int page_num;
1767 
1768 	sblock->no_io_error_seen = 1;
1769 
1770 	/* short cut for raid56 */
1771 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1772 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1773 
1774 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1775 		struct bio *bio;
1776 		struct scrub_page *page = sblock->pagev[page_num];
1777 
1778 		if (page->dev->bdev == NULL) {
1779 			page->io_error = 1;
1780 			sblock->no_io_error_seen = 0;
1781 			continue;
1782 		}
1783 
1784 		WARN_ON(!page->page);
1785 		bio = btrfs_io_bio_alloc(1);
1786 		bio_set_dev(bio, page->dev->bdev);
1787 
1788 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1789 		bio->bi_iter.bi_sector = page->physical >> 9;
1790 		bio->bi_opf = REQ_OP_READ;
1791 
1792 		if (btrfsic_submit_bio_wait(bio)) {
1793 			page->io_error = 1;
1794 			sblock->no_io_error_seen = 0;
1795 		}
1796 
1797 		bio_put(bio);
1798 	}
1799 
1800 	if (sblock->no_io_error_seen)
1801 		scrub_recheck_block_checksum(sblock);
1802 }
1803 
1804 static inline int scrub_check_fsid(u8 fsid[],
1805 				   struct scrub_page *spage)
1806 {
1807 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1808 	int ret;
1809 
1810 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1811 	return !ret;
1812 }
1813 
1814 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1815 {
1816 	sblock->header_error = 0;
1817 	sblock->checksum_error = 0;
1818 	sblock->generation_error = 0;
1819 
1820 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1821 		scrub_checksum_data(sblock);
1822 	else
1823 		scrub_checksum_tree_block(sblock);
1824 }
1825 
1826 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1827 					     struct scrub_block *sblock_good)
1828 {
1829 	int page_num;
1830 	int ret = 0;
1831 
1832 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1833 		int ret_sub;
1834 
1835 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1836 							   sblock_good,
1837 							   page_num, 1);
1838 		if (ret_sub)
1839 			ret = ret_sub;
1840 	}
1841 
1842 	return ret;
1843 }
1844 
1845 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1846 					    struct scrub_block *sblock_good,
1847 					    int page_num, int force_write)
1848 {
1849 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1850 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1851 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1852 
1853 	BUG_ON(page_bad->page == NULL);
1854 	BUG_ON(page_good->page == NULL);
1855 	if (force_write || sblock_bad->header_error ||
1856 	    sblock_bad->checksum_error || page_bad->io_error) {
1857 		struct bio *bio;
1858 		int ret;
1859 
1860 		if (!page_bad->dev->bdev) {
1861 			btrfs_warn_rl(fs_info,
1862 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1863 			return -EIO;
1864 		}
1865 
1866 		bio = btrfs_io_bio_alloc(1);
1867 		bio_set_dev(bio, page_bad->dev->bdev);
1868 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1869 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1870 
1871 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1872 		if (PAGE_SIZE != ret) {
1873 			bio_put(bio);
1874 			return -EIO;
1875 		}
1876 
1877 		if (btrfsic_submit_bio_wait(bio)) {
1878 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1879 				BTRFS_DEV_STAT_WRITE_ERRS);
1880 			btrfs_dev_replace_stats_inc(
1881 				&fs_info->dev_replace.num_write_errors);
1882 			bio_put(bio);
1883 			return -EIO;
1884 		}
1885 		bio_put(bio);
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1892 {
1893 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1894 	int page_num;
1895 
1896 	/*
1897 	 * This block is used for the check of the parity on the source device,
1898 	 * so the data needn't be written into the destination device.
1899 	 */
1900 	if (sblock->sparity)
1901 		return;
1902 
1903 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1904 		int ret;
1905 
1906 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1907 		if (ret)
1908 			btrfs_dev_replace_stats_inc(
1909 				&fs_info->dev_replace.num_write_errors);
1910 	}
1911 }
1912 
1913 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1914 					   int page_num)
1915 {
1916 	struct scrub_page *spage = sblock->pagev[page_num];
1917 
1918 	BUG_ON(spage->page == NULL);
1919 	if (spage->io_error) {
1920 		void *mapped_buffer = kmap_atomic(spage->page);
1921 
1922 		clear_page(mapped_buffer);
1923 		flush_dcache_page(spage->page);
1924 		kunmap_atomic(mapped_buffer);
1925 	}
1926 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1927 }
1928 
1929 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1930 				    struct scrub_page *spage)
1931 {
1932 	struct scrub_bio *sbio;
1933 	int ret;
1934 
1935 	mutex_lock(&sctx->wr_lock);
1936 again:
1937 	if (!sctx->wr_curr_bio) {
1938 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1939 					      GFP_KERNEL);
1940 		if (!sctx->wr_curr_bio) {
1941 			mutex_unlock(&sctx->wr_lock);
1942 			return -ENOMEM;
1943 		}
1944 		sctx->wr_curr_bio->sctx = sctx;
1945 		sctx->wr_curr_bio->page_count = 0;
1946 	}
1947 	sbio = sctx->wr_curr_bio;
1948 	if (sbio->page_count == 0) {
1949 		struct bio *bio;
1950 
1951 		sbio->physical = spage->physical_for_dev_replace;
1952 		sbio->logical = spage->logical;
1953 		sbio->dev = sctx->wr_tgtdev;
1954 		bio = sbio->bio;
1955 		if (!bio) {
1956 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1957 			sbio->bio = bio;
1958 		}
1959 
1960 		bio->bi_private = sbio;
1961 		bio->bi_end_io = scrub_wr_bio_end_io;
1962 		bio_set_dev(bio, sbio->dev->bdev);
1963 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1964 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1965 		sbio->status = 0;
1966 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1967 		   spage->physical_for_dev_replace ||
1968 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1969 		   spage->logical) {
1970 		scrub_wr_submit(sctx);
1971 		goto again;
1972 	}
1973 
1974 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1975 	if (ret != PAGE_SIZE) {
1976 		if (sbio->page_count < 1) {
1977 			bio_put(sbio->bio);
1978 			sbio->bio = NULL;
1979 			mutex_unlock(&sctx->wr_lock);
1980 			return -EIO;
1981 		}
1982 		scrub_wr_submit(sctx);
1983 		goto again;
1984 	}
1985 
1986 	sbio->pagev[sbio->page_count] = spage;
1987 	scrub_page_get(spage);
1988 	sbio->page_count++;
1989 	if (sbio->page_count == sctx->pages_per_wr_bio)
1990 		scrub_wr_submit(sctx);
1991 	mutex_unlock(&sctx->wr_lock);
1992 
1993 	return 0;
1994 }
1995 
1996 static void scrub_wr_submit(struct scrub_ctx *sctx)
1997 {
1998 	struct scrub_bio *sbio;
1999 
2000 	if (!sctx->wr_curr_bio)
2001 		return;
2002 
2003 	sbio = sctx->wr_curr_bio;
2004 	sctx->wr_curr_bio = NULL;
2005 	WARN_ON(!sbio->bio->bi_disk);
2006 	scrub_pending_bio_inc(sctx);
2007 	/* process all writes in a single worker thread. Then the block layer
2008 	 * orders the requests before sending them to the driver which
2009 	 * doubled the write performance on spinning disks when measured
2010 	 * with Linux 3.5 */
2011 	btrfsic_submit_bio(sbio->bio);
2012 }
2013 
2014 static void scrub_wr_bio_end_io(struct bio *bio)
2015 {
2016 	struct scrub_bio *sbio = bio->bi_private;
2017 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2018 
2019 	sbio->status = bio->bi_status;
2020 	sbio->bio = bio;
2021 
2022 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
2023 			 scrub_wr_bio_end_io_worker, NULL, NULL);
2024 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2025 }
2026 
2027 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
2028 {
2029 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2030 	struct scrub_ctx *sctx = sbio->sctx;
2031 	int i;
2032 
2033 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2034 	if (sbio->status) {
2035 		struct btrfs_dev_replace *dev_replace =
2036 			&sbio->sctx->fs_info->dev_replace;
2037 
2038 		for (i = 0; i < sbio->page_count; i++) {
2039 			struct scrub_page *spage = sbio->pagev[i];
2040 
2041 			spage->io_error = 1;
2042 			btrfs_dev_replace_stats_inc(&dev_replace->
2043 						    num_write_errors);
2044 		}
2045 	}
2046 
2047 	for (i = 0; i < sbio->page_count; i++)
2048 		scrub_page_put(sbio->pagev[i]);
2049 
2050 	bio_put(sbio->bio);
2051 	kfree(sbio);
2052 	scrub_pending_bio_dec(sctx);
2053 }
2054 
2055 static int scrub_checksum(struct scrub_block *sblock)
2056 {
2057 	u64 flags;
2058 	int ret;
2059 
2060 	/*
2061 	 * No need to initialize these stats currently,
2062 	 * because this function only use return value
2063 	 * instead of these stats value.
2064 	 *
2065 	 * Todo:
2066 	 * always use stats
2067 	 */
2068 	sblock->header_error = 0;
2069 	sblock->generation_error = 0;
2070 	sblock->checksum_error = 0;
2071 
2072 	WARN_ON(sblock->page_count < 1);
2073 	flags = sblock->pagev[0]->flags;
2074 	ret = 0;
2075 	if (flags & BTRFS_EXTENT_FLAG_DATA)
2076 		ret = scrub_checksum_data(sblock);
2077 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2078 		ret = scrub_checksum_tree_block(sblock);
2079 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2080 		(void)scrub_checksum_super(sblock);
2081 	else
2082 		WARN_ON(1);
2083 	if (ret)
2084 		scrub_handle_errored_block(sblock);
2085 
2086 	return ret;
2087 }
2088 
2089 static int scrub_checksum_data(struct scrub_block *sblock)
2090 {
2091 	struct scrub_ctx *sctx = sblock->sctx;
2092 	u8 csum[BTRFS_CSUM_SIZE];
2093 	u8 *on_disk_csum;
2094 	struct page *page;
2095 	void *buffer;
2096 	u32 crc = ~(u32)0;
2097 	u64 len;
2098 	int index;
2099 
2100 	BUG_ON(sblock->page_count < 1);
2101 	if (!sblock->pagev[0]->have_csum)
2102 		return 0;
2103 
2104 	on_disk_csum = sblock->pagev[0]->csum;
2105 	page = sblock->pagev[0]->page;
2106 	buffer = kmap_atomic(page);
2107 
2108 	len = sctx->fs_info->sectorsize;
2109 	index = 0;
2110 	for (;;) {
2111 		u64 l = min_t(u64, len, PAGE_SIZE);
2112 
2113 		crc = btrfs_csum_data(buffer, crc, l);
2114 		kunmap_atomic(buffer);
2115 		len -= l;
2116 		if (len == 0)
2117 			break;
2118 		index++;
2119 		BUG_ON(index >= sblock->page_count);
2120 		BUG_ON(!sblock->pagev[index]->page);
2121 		page = sblock->pagev[index]->page;
2122 		buffer = kmap_atomic(page);
2123 	}
2124 
2125 	btrfs_csum_final(crc, csum);
2126 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2127 		sblock->checksum_error = 1;
2128 
2129 	return sblock->checksum_error;
2130 }
2131 
2132 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2133 {
2134 	struct scrub_ctx *sctx = sblock->sctx;
2135 	struct btrfs_header *h;
2136 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2137 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2138 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2139 	struct page *page;
2140 	void *mapped_buffer;
2141 	u64 mapped_size;
2142 	void *p;
2143 	u32 crc = ~(u32)0;
2144 	u64 len;
2145 	int index;
2146 
2147 	BUG_ON(sblock->page_count < 1);
2148 	page = sblock->pagev[0]->page;
2149 	mapped_buffer = kmap_atomic(page);
2150 	h = (struct btrfs_header *)mapped_buffer;
2151 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
2152 
2153 	/*
2154 	 * we don't use the getter functions here, as we
2155 	 * a) don't have an extent buffer and
2156 	 * b) the page is already kmapped
2157 	 */
2158 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2159 		sblock->header_error = 1;
2160 
2161 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2162 		sblock->header_error = 1;
2163 		sblock->generation_error = 1;
2164 	}
2165 
2166 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2167 		sblock->header_error = 1;
2168 
2169 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2170 		   BTRFS_UUID_SIZE))
2171 		sblock->header_error = 1;
2172 
2173 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2174 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2175 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2176 	index = 0;
2177 	for (;;) {
2178 		u64 l = min_t(u64, len, mapped_size);
2179 
2180 		crc = btrfs_csum_data(p, crc, l);
2181 		kunmap_atomic(mapped_buffer);
2182 		len -= l;
2183 		if (len == 0)
2184 			break;
2185 		index++;
2186 		BUG_ON(index >= sblock->page_count);
2187 		BUG_ON(!sblock->pagev[index]->page);
2188 		page = sblock->pagev[index]->page;
2189 		mapped_buffer = kmap_atomic(page);
2190 		mapped_size = PAGE_SIZE;
2191 		p = mapped_buffer;
2192 	}
2193 
2194 	btrfs_csum_final(crc, calculated_csum);
2195 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2196 		sblock->checksum_error = 1;
2197 
2198 	return sblock->header_error || sblock->checksum_error;
2199 }
2200 
2201 static int scrub_checksum_super(struct scrub_block *sblock)
2202 {
2203 	struct btrfs_super_block *s;
2204 	struct scrub_ctx *sctx = sblock->sctx;
2205 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2206 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2207 	struct page *page;
2208 	void *mapped_buffer;
2209 	u64 mapped_size;
2210 	void *p;
2211 	u32 crc = ~(u32)0;
2212 	int fail_gen = 0;
2213 	int fail_cor = 0;
2214 	u64 len;
2215 	int index;
2216 
2217 	BUG_ON(sblock->page_count < 1);
2218 	page = sblock->pagev[0]->page;
2219 	mapped_buffer = kmap_atomic(page);
2220 	s = (struct btrfs_super_block *)mapped_buffer;
2221 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
2222 
2223 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2224 		++fail_cor;
2225 
2226 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2227 		++fail_gen;
2228 
2229 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2230 		++fail_cor;
2231 
2232 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2233 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2234 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2235 	index = 0;
2236 	for (;;) {
2237 		u64 l = min_t(u64, len, mapped_size);
2238 
2239 		crc = btrfs_csum_data(p, crc, l);
2240 		kunmap_atomic(mapped_buffer);
2241 		len -= l;
2242 		if (len == 0)
2243 			break;
2244 		index++;
2245 		BUG_ON(index >= sblock->page_count);
2246 		BUG_ON(!sblock->pagev[index]->page);
2247 		page = sblock->pagev[index]->page;
2248 		mapped_buffer = kmap_atomic(page);
2249 		mapped_size = PAGE_SIZE;
2250 		p = mapped_buffer;
2251 	}
2252 
2253 	btrfs_csum_final(crc, calculated_csum);
2254 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2255 		++fail_cor;
2256 
2257 	if (fail_cor + fail_gen) {
2258 		/*
2259 		 * if we find an error in a super block, we just report it.
2260 		 * They will get written with the next transaction commit
2261 		 * anyway
2262 		 */
2263 		spin_lock(&sctx->stat_lock);
2264 		++sctx->stat.super_errors;
2265 		spin_unlock(&sctx->stat_lock);
2266 		if (fail_cor)
2267 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2268 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2269 		else
2270 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2271 				BTRFS_DEV_STAT_GENERATION_ERRS);
2272 	}
2273 
2274 	return fail_cor + fail_gen;
2275 }
2276 
2277 static void scrub_block_get(struct scrub_block *sblock)
2278 {
2279 	refcount_inc(&sblock->refs);
2280 }
2281 
2282 static void scrub_block_put(struct scrub_block *sblock)
2283 {
2284 	if (refcount_dec_and_test(&sblock->refs)) {
2285 		int i;
2286 
2287 		if (sblock->sparity)
2288 			scrub_parity_put(sblock->sparity);
2289 
2290 		for (i = 0; i < sblock->page_count; i++)
2291 			scrub_page_put(sblock->pagev[i]);
2292 		kfree(sblock);
2293 	}
2294 }
2295 
2296 static void scrub_page_get(struct scrub_page *spage)
2297 {
2298 	atomic_inc(&spage->refs);
2299 }
2300 
2301 static void scrub_page_put(struct scrub_page *spage)
2302 {
2303 	if (atomic_dec_and_test(&spage->refs)) {
2304 		if (spage->page)
2305 			__free_page(spage->page);
2306 		kfree(spage);
2307 	}
2308 }
2309 
2310 static void scrub_submit(struct scrub_ctx *sctx)
2311 {
2312 	struct scrub_bio *sbio;
2313 
2314 	if (sctx->curr == -1)
2315 		return;
2316 
2317 	sbio = sctx->bios[sctx->curr];
2318 	sctx->curr = -1;
2319 	scrub_pending_bio_inc(sctx);
2320 	btrfsic_submit_bio(sbio->bio);
2321 }
2322 
2323 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2324 				    struct scrub_page *spage)
2325 {
2326 	struct scrub_block *sblock = spage->sblock;
2327 	struct scrub_bio *sbio;
2328 	int ret;
2329 
2330 again:
2331 	/*
2332 	 * grab a fresh bio or wait for one to become available
2333 	 */
2334 	while (sctx->curr == -1) {
2335 		spin_lock(&sctx->list_lock);
2336 		sctx->curr = sctx->first_free;
2337 		if (sctx->curr != -1) {
2338 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2339 			sctx->bios[sctx->curr]->next_free = -1;
2340 			sctx->bios[sctx->curr]->page_count = 0;
2341 			spin_unlock(&sctx->list_lock);
2342 		} else {
2343 			spin_unlock(&sctx->list_lock);
2344 			wait_event(sctx->list_wait, sctx->first_free != -1);
2345 		}
2346 	}
2347 	sbio = sctx->bios[sctx->curr];
2348 	if (sbio->page_count == 0) {
2349 		struct bio *bio;
2350 
2351 		sbio->physical = spage->physical;
2352 		sbio->logical = spage->logical;
2353 		sbio->dev = spage->dev;
2354 		bio = sbio->bio;
2355 		if (!bio) {
2356 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2357 			sbio->bio = bio;
2358 		}
2359 
2360 		bio->bi_private = sbio;
2361 		bio->bi_end_io = scrub_bio_end_io;
2362 		bio_set_dev(bio, sbio->dev->bdev);
2363 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2364 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2365 		sbio->status = 0;
2366 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2367 		   spage->physical ||
2368 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2369 		   spage->logical ||
2370 		   sbio->dev != spage->dev) {
2371 		scrub_submit(sctx);
2372 		goto again;
2373 	}
2374 
2375 	sbio->pagev[sbio->page_count] = spage;
2376 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2377 	if (ret != PAGE_SIZE) {
2378 		if (sbio->page_count < 1) {
2379 			bio_put(sbio->bio);
2380 			sbio->bio = NULL;
2381 			return -EIO;
2382 		}
2383 		scrub_submit(sctx);
2384 		goto again;
2385 	}
2386 
2387 	scrub_block_get(sblock); /* one for the page added to the bio */
2388 	atomic_inc(&sblock->outstanding_pages);
2389 	sbio->page_count++;
2390 	if (sbio->page_count == sctx->pages_per_rd_bio)
2391 		scrub_submit(sctx);
2392 
2393 	return 0;
2394 }
2395 
2396 static void scrub_missing_raid56_end_io(struct bio *bio)
2397 {
2398 	struct scrub_block *sblock = bio->bi_private;
2399 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2400 
2401 	if (bio->bi_status)
2402 		sblock->no_io_error_seen = 0;
2403 
2404 	bio_put(bio);
2405 
2406 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2407 }
2408 
2409 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2410 {
2411 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2412 	struct scrub_ctx *sctx = sblock->sctx;
2413 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2414 	u64 logical;
2415 	struct btrfs_device *dev;
2416 
2417 	logical = sblock->pagev[0]->logical;
2418 	dev = sblock->pagev[0]->dev;
2419 
2420 	if (sblock->no_io_error_seen)
2421 		scrub_recheck_block_checksum(sblock);
2422 
2423 	if (!sblock->no_io_error_seen) {
2424 		spin_lock(&sctx->stat_lock);
2425 		sctx->stat.read_errors++;
2426 		spin_unlock(&sctx->stat_lock);
2427 		btrfs_err_rl_in_rcu(fs_info,
2428 			"IO error rebuilding logical %llu for dev %s",
2429 			logical, rcu_str_deref(dev->name));
2430 	} else if (sblock->header_error || sblock->checksum_error) {
2431 		spin_lock(&sctx->stat_lock);
2432 		sctx->stat.uncorrectable_errors++;
2433 		spin_unlock(&sctx->stat_lock);
2434 		btrfs_err_rl_in_rcu(fs_info,
2435 			"failed to rebuild valid logical %llu for dev %s",
2436 			logical, rcu_str_deref(dev->name));
2437 	} else {
2438 		scrub_write_block_to_dev_replace(sblock);
2439 	}
2440 
2441 	scrub_block_put(sblock);
2442 
2443 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2444 		mutex_lock(&sctx->wr_lock);
2445 		scrub_wr_submit(sctx);
2446 		mutex_unlock(&sctx->wr_lock);
2447 	}
2448 
2449 	scrub_pending_bio_dec(sctx);
2450 }
2451 
2452 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2453 {
2454 	struct scrub_ctx *sctx = sblock->sctx;
2455 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2456 	u64 length = sblock->page_count * PAGE_SIZE;
2457 	u64 logical = sblock->pagev[0]->logical;
2458 	struct btrfs_bio *bbio = NULL;
2459 	struct bio *bio;
2460 	struct btrfs_raid_bio *rbio;
2461 	int ret;
2462 	int i;
2463 
2464 	btrfs_bio_counter_inc_blocked(fs_info);
2465 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2466 			&length, &bbio);
2467 	if (ret || !bbio || !bbio->raid_map)
2468 		goto bbio_out;
2469 
2470 	if (WARN_ON(!sctx->is_dev_replace ||
2471 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2472 		/*
2473 		 * We shouldn't be scrubbing a missing device. Even for dev
2474 		 * replace, we should only get here for RAID 5/6. We either
2475 		 * managed to mount something with no mirrors remaining or
2476 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2477 		 */
2478 		goto bbio_out;
2479 	}
2480 
2481 	bio = btrfs_io_bio_alloc(0);
2482 	bio->bi_iter.bi_sector = logical >> 9;
2483 	bio->bi_private = sblock;
2484 	bio->bi_end_io = scrub_missing_raid56_end_io;
2485 
2486 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2487 	if (!rbio)
2488 		goto rbio_out;
2489 
2490 	for (i = 0; i < sblock->page_count; i++) {
2491 		struct scrub_page *spage = sblock->pagev[i];
2492 
2493 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2494 	}
2495 
2496 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2497 			scrub_missing_raid56_worker, NULL, NULL);
2498 	scrub_block_get(sblock);
2499 	scrub_pending_bio_inc(sctx);
2500 	raid56_submit_missing_rbio(rbio);
2501 	return;
2502 
2503 rbio_out:
2504 	bio_put(bio);
2505 bbio_out:
2506 	btrfs_bio_counter_dec(fs_info);
2507 	btrfs_put_bbio(bbio);
2508 	spin_lock(&sctx->stat_lock);
2509 	sctx->stat.malloc_errors++;
2510 	spin_unlock(&sctx->stat_lock);
2511 }
2512 
2513 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2514 		       u64 physical, struct btrfs_device *dev, u64 flags,
2515 		       u64 gen, int mirror_num, u8 *csum, int force,
2516 		       u64 physical_for_dev_replace)
2517 {
2518 	struct scrub_block *sblock;
2519 	int index;
2520 
2521 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2522 	if (!sblock) {
2523 		spin_lock(&sctx->stat_lock);
2524 		sctx->stat.malloc_errors++;
2525 		spin_unlock(&sctx->stat_lock);
2526 		return -ENOMEM;
2527 	}
2528 
2529 	/* one ref inside this function, plus one for each page added to
2530 	 * a bio later on */
2531 	refcount_set(&sblock->refs, 1);
2532 	sblock->sctx = sctx;
2533 	sblock->no_io_error_seen = 1;
2534 
2535 	for (index = 0; len > 0; index++) {
2536 		struct scrub_page *spage;
2537 		u64 l = min_t(u64, len, PAGE_SIZE);
2538 
2539 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2540 		if (!spage) {
2541 leave_nomem:
2542 			spin_lock(&sctx->stat_lock);
2543 			sctx->stat.malloc_errors++;
2544 			spin_unlock(&sctx->stat_lock);
2545 			scrub_block_put(sblock);
2546 			return -ENOMEM;
2547 		}
2548 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2549 		scrub_page_get(spage);
2550 		sblock->pagev[index] = spage;
2551 		spage->sblock = sblock;
2552 		spage->dev = dev;
2553 		spage->flags = flags;
2554 		spage->generation = gen;
2555 		spage->logical = logical;
2556 		spage->physical = physical;
2557 		spage->physical_for_dev_replace = physical_for_dev_replace;
2558 		spage->mirror_num = mirror_num;
2559 		if (csum) {
2560 			spage->have_csum = 1;
2561 			memcpy(spage->csum, csum, sctx->csum_size);
2562 		} else {
2563 			spage->have_csum = 0;
2564 		}
2565 		sblock->page_count++;
2566 		spage->page = alloc_page(GFP_KERNEL);
2567 		if (!spage->page)
2568 			goto leave_nomem;
2569 		len -= l;
2570 		logical += l;
2571 		physical += l;
2572 		physical_for_dev_replace += l;
2573 	}
2574 
2575 	WARN_ON(sblock->page_count == 0);
2576 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2577 		/*
2578 		 * This case should only be hit for RAID 5/6 device replace. See
2579 		 * the comment in scrub_missing_raid56_pages() for details.
2580 		 */
2581 		scrub_missing_raid56_pages(sblock);
2582 	} else {
2583 		for (index = 0; index < sblock->page_count; index++) {
2584 			struct scrub_page *spage = sblock->pagev[index];
2585 			int ret;
2586 
2587 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2588 			if (ret) {
2589 				scrub_block_put(sblock);
2590 				return ret;
2591 			}
2592 		}
2593 
2594 		if (force)
2595 			scrub_submit(sctx);
2596 	}
2597 
2598 	/* last one frees, either here or in bio completion for last page */
2599 	scrub_block_put(sblock);
2600 	return 0;
2601 }
2602 
2603 static void scrub_bio_end_io(struct bio *bio)
2604 {
2605 	struct scrub_bio *sbio = bio->bi_private;
2606 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2607 
2608 	sbio->status = bio->bi_status;
2609 	sbio->bio = bio;
2610 
2611 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2612 }
2613 
2614 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2615 {
2616 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2617 	struct scrub_ctx *sctx = sbio->sctx;
2618 	int i;
2619 
2620 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2621 	if (sbio->status) {
2622 		for (i = 0; i < sbio->page_count; i++) {
2623 			struct scrub_page *spage = sbio->pagev[i];
2624 
2625 			spage->io_error = 1;
2626 			spage->sblock->no_io_error_seen = 0;
2627 		}
2628 	}
2629 
2630 	/* now complete the scrub_block items that have all pages completed */
2631 	for (i = 0; i < sbio->page_count; i++) {
2632 		struct scrub_page *spage = sbio->pagev[i];
2633 		struct scrub_block *sblock = spage->sblock;
2634 
2635 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2636 			scrub_block_complete(sblock);
2637 		scrub_block_put(sblock);
2638 	}
2639 
2640 	bio_put(sbio->bio);
2641 	sbio->bio = NULL;
2642 	spin_lock(&sctx->list_lock);
2643 	sbio->next_free = sctx->first_free;
2644 	sctx->first_free = sbio->index;
2645 	spin_unlock(&sctx->list_lock);
2646 
2647 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2648 		mutex_lock(&sctx->wr_lock);
2649 		scrub_wr_submit(sctx);
2650 		mutex_unlock(&sctx->wr_lock);
2651 	}
2652 
2653 	scrub_pending_bio_dec(sctx);
2654 }
2655 
2656 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2657 				       unsigned long *bitmap,
2658 				       u64 start, u64 len)
2659 {
2660 	u64 offset;
2661 	u64 nsectors64;
2662 	u32 nsectors;
2663 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2664 
2665 	if (len >= sparity->stripe_len) {
2666 		bitmap_set(bitmap, 0, sparity->nsectors);
2667 		return;
2668 	}
2669 
2670 	start -= sparity->logic_start;
2671 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2672 	offset = div_u64(offset, sectorsize);
2673 	nsectors64 = div_u64(len, sectorsize);
2674 
2675 	ASSERT(nsectors64 < UINT_MAX);
2676 	nsectors = (u32)nsectors64;
2677 
2678 	if (offset + nsectors <= sparity->nsectors) {
2679 		bitmap_set(bitmap, offset, nsectors);
2680 		return;
2681 	}
2682 
2683 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2684 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2685 }
2686 
2687 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2688 						   u64 start, u64 len)
2689 {
2690 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2691 }
2692 
2693 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2694 						  u64 start, u64 len)
2695 {
2696 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2697 }
2698 
2699 static void scrub_block_complete(struct scrub_block *sblock)
2700 {
2701 	int corrupted = 0;
2702 
2703 	if (!sblock->no_io_error_seen) {
2704 		corrupted = 1;
2705 		scrub_handle_errored_block(sblock);
2706 	} else {
2707 		/*
2708 		 * if has checksum error, write via repair mechanism in
2709 		 * dev replace case, otherwise write here in dev replace
2710 		 * case.
2711 		 */
2712 		corrupted = scrub_checksum(sblock);
2713 		if (!corrupted && sblock->sctx->is_dev_replace)
2714 			scrub_write_block_to_dev_replace(sblock);
2715 	}
2716 
2717 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2718 		u64 start = sblock->pagev[0]->logical;
2719 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2720 			  PAGE_SIZE;
2721 
2722 		scrub_parity_mark_sectors_error(sblock->sparity,
2723 						start, end - start);
2724 	}
2725 }
2726 
2727 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2728 {
2729 	struct btrfs_ordered_sum *sum = NULL;
2730 	unsigned long index;
2731 	unsigned long num_sectors;
2732 
2733 	while (!list_empty(&sctx->csum_list)) {
2734 		sum = list_first_entry(&sctx->csum_list,
2735 				       struct btrfs_ordered_sum, list);
2736 		if (sum->bytenr > logical)
2737 			return 0;
2738 		if (sum->bytenr + sum->len > logical)
2739 			break;
2740 
2741 		++sctx->stat.csum_discards;
2742 		list_del(&sum->list);
2743 		kfree(sum);
2744 		sum = NULL;
2745 	}
2746 	if (!sum)
2747 		return 0;
2748 
2749 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2750 	ASSERT(index < UINT_MAX);
2751 
2752 	num_sectors = sum->len / sctx->fs_info->sectorsize;
2753 	memcpy(csum, sum->sums + index, sctx->csum_size);
2754 	if (index == num_sectors - 1) {
2755 		list_del(&sum->list);
2756 		kfree(sum);
2757 	}
2758 	return 1;
2759 }
2760 
2761 /* scrub extent tries to collect up to 64 kB for each bio */
2762 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2763 			u64 logical, u64 len,
2764 			u64 physical, struct btrfs_device *dev, u64 flags,
2765 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2766 {
2767 	int ret;
2768 	u8 csum[BTRFS_CSUM_SIZE];
2769 	u32 blocksize;
2770 
2771 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2772 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2773 			blocksize = map->stripe_len;
2774 		else
2775 			blocksize = sctx->fs_info->sectorsize;
2776 		spin_lock(&sctx->stat_lock);
2777 		sctx->stat.data_extents_scrubbed++;
2778 		sctx->stat.data_bytes_scrubbed += len;
2779 		spin_unlock(&sctx->stat_lock);
2780 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2781 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2782 			blocksize = map->stripe_len;
2783 		else
2784 			blocksize = sctx->fs_info->nodesize;
2785 		spin_lock(&sctx->stat_lock);
2786 		sctx->stat.tree_extents_scrubbed++;
2787 		sctx->stat.tree_bytes_scrubbed += len;
2788 		spin_unlock(&sctx->stat_lock);
2789 	} else {
2790 		blocksize = sctx->fs_info->sectorsize;
2791 		WARN_ON(1);
2792 	}
2793 
2794 	while (len) {
2795 		u64 l = min_t(u64, len, blocksize);
2796 		int have_csum = 0;
2797 
2798 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2799 			/* push csums to sbio */
2800 			have_csum = scrub_find_csum(sctx, logical, csum);
2801 			if (have_csum == 0)
2802 				++sctx->stat.no_csum;
2803 			if (0 && sctx->is_dev_replace && !have_csum) {
2804 				ret = copy_nocow_pages(sctx, logical, l,
2805 						       mirror_num,
2806 						      physical_for_dev_replace);
2807 				goto behind_scrub_pages;
2808 			}
2809 		}
2810 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2811 				  mirror_num, have_csum ? csum : NULL, 0,
2812 				  physical_for_dev_replace);
2813 behind_scrub_pages:
2814 		if (ret)
2815 			return ret;
2816 		len -= l;
2817 		logical += l;
2818 		physical += l;
2819 		physical_for_dev_replace += l;
2820 	}
2821 	return 0;
2822 }
2823 
2824 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2825 				  u64 logical, u64 len,
2826 				  u64 physical, struct btrfs_device *dev,
2827 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2828 {
2829 	struct scrub_ctx *sctx = sparity->sctx;
2830 	struct scrub_block *sblock;
2831 	int index;
2832 
2833 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2834 	if (!sblock) {
2835 		spin_lock(&sctx->stat_lock);
2836 		sctx->stat.malloc_errors++;
2837 		spin_unlock(&sctx->stat_lock);
2838 		return -ENOMEM;
2839 	}
2840 
2841 	/* one ref inside this function, plus one for each page added to
2842 	 * a bio later on */
2843 	refcount_set(&sblock->refs, 1);
2844 	sblock->sctx = sctx;
2845 	sblock->no_io_error_seen = 1;
2846 	sblock->sparity = sparity;
2847 	scrub_parity_get(sparity);
2848 
2849 	for (index = 0; len > 0; index++) {
2850 		struct scrub_page *spage;
2851 		u64 l = min_t(u64, len, PAGE_SIZE);
2852 
2853 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2854 		if (!spage) {
2855 leave_nomem:
2856 			spin_lock(&sctx->stat_lock);
2857 			sctx->stat.malloc_errors++;
2858 			spin_unlock(&sctx->stat_lock);
2859 			scrub_block_put(sblock);
2860 			return -ENOMEM;
2861 		}
2862 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2863 		/* For scrub block */
2864 		scrub_page_get(spage);
2865 		sblock->pagev[index] = spage;
2866 		/* For scrub parity */
2867 		scrub_page_get(spage);
2868 		list_add_tail(&spage->list, &sparity->spages);
2869 		spage->sblock = sblock;
2870 		spage->dev = dev;
2871 		spage->flags = flags;
2872 		spage->generation = gen;
2873 		spage->logical = logical;
2874 		spage->physical = physical;
2875 		spage->mirror_num = mirror_num;
2876 		if (csum) {
2877 			spage->have_csum = 1;
2878 			memcpy(spage->csum, csum, sctx->csum_size);
2879 		} else {
2880 			spage->have_csum = 0;
2881 		}
2882 		sblock->page_count++;
2883 		spage->page = alloc_page(GFP_KERNEL);
2884 		if (!spage->page)
2885 			goto leave_nomem;
2886 		len -= l;
2887 		logical += l;
2888 		physical += l;
2889 	}
2890 
2891 	WARN_ON(sblock->page_count == 0);
2892 	for (index = 0; index < sblock->page_count; index++) {
2893 		struct scrub_page *spage = sblock->pagev[index];
2894 		int ret;
2895 
2896 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2897 		if (ret) {
2898 			scrub_block_put(sblock);
2899 			return ret;
2900 		}
2901 	}
2902 
2903 	/* last one frees, either here or in bio completion for last page */
2904 	scrub_block_put(sblock);
2905 	return 0;
2906 }
2907 
2908 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2909 				   u64 logical, u64 len,
2910 				   u64 physical, struct btrfs_device *dev,
2911 				   u64 flags, u64 gen, int mirror_num)
2912 {
2913 	struct scrub_ctx *sctx = sparity->sctx;
2914 	int ret;
2915 	u8 csum[BTRFS_CSUM_SIZE];
2916 	u32 blocksize;
2917 
2918 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2919 		scrub_parity_mark_sectors_error(sparity, logical, len);
2920 		return 0;
2921 	}
2922 
2923 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2924 		blocksize = sparity->stripe_len;
2925 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2926 		blocksize = sparity->stripe_len;
2927 	} else {
2928 		blocksize = sctx->fs_info->sectorsize;
2929 		WARN_ON(1);
2930 	}
2931 
2932 	while (len) {
2933 		u64 l = min_t(u64, len, blocksize);
2934 		int have_csum = 0;
2935 
2936 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2937 			/* push csums to sbio */
2938 			have_csum = scrub_find_csum(sctx, logical, csum);
2939 			if (have_csum == 0)
2940 				goto skip;
2941 		}
2942 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2943 					     flags, gen, mirror_num,
2944 					     have_csum ? csum : NULL);
2945 		if (ret)
2946 			return ret;
2947 skip:
2948 		len -= l;
2949 		logical += l;
2950 		physical += l;
2951 	}
2952 	return 0;
2953 }
2954 
2955 /*
2956  * Given a physical address, this will calculate it's
2957  * logical offset. if this is a parity stripe, it will return
2958  * the most left data stripe's logical offset.
2959  *
2960  * return 0 if it is a data stripe, 1 means parity stripe.
2961  */
2962 static int get_raid56_logic_offset(u64 physical, int num,
2963 				   struct map_lookup *map, u64 *offset,
2964 				   u64 *stripe_start)
2965 {
2966 	int i;
2967 	int j = 0;
2968 	u64 stripe_nr;
2969 	u64 last_offset;
2970 	u32 stripe_index;
2971 	u32 rot;
2972 
2973 	last_offset = (physical - map->stripes[num].physical) *
2974 		      nr_data_stripes(map);
2975 	if (stripe_start)
2976 		*stripe_start = last_offset;
2977 
2978 	*offset = last_offset;
2979 	for (i = 0; i < nr_data_stripes(map); i++) {
2980 		*offset = last_offset + i * map->stripe_len;
2981 
2982 		stripe_nr = div64_u64(*offset, map->stripe_len);
2983 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2984 
2985 		/* Work out the disk rotation on this stripe-set */
2986 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2987 		/* calculate which stripe this data locates */
2988 		rot += i;
2989 		stripe_index = rot % map->num_stripes;
2990 		if (stripe_index == num)
2991 			return 0;
2992 		if (stripe_index < num)
2993 			j++;
2994 	}
2995 	*offset = last_offset + j * map->stripe_len;
2996 	return 1;
2997 }
2998 
2999 static void scrub_free_parity(struct scrub_parity *sparity)
3000 {
3001 	struct scrub_ctx *sctx = sparity->sctx;
3002 	struct scrub_page *curr, *next;
3003 	int nbits;
3004 
3005 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
3006 	if (nbits) {
3007 		spin_lock(&sctx->stat_lock);
3008 		sctx->stat.read_errors += nbits;
3009 		sctx->stat.uncorrectable_errors += nbits;
3010 		spin_unlock(&sctx->stat_lock);
3011 	}
3012 
3013 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
3014 		list_del_init(&curr->list);
3015 		scrub_page_put(curr);
3016 	}
3017 
3018 	kfree(sparity);
3019 }
3020 
3021 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
3022 {
3023 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
3024 						    work);
3025 	struct scrub_ctx *sctx = sparity->sctx;
3026 
3027 	scrub_free_parity(sparity);
3028 	scrub_pending_bio_dec(sctx);
3029 }
3030 
3031 static void scrub_parity_bio_endio(struct bio *bio)
3032 {
3033 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3034 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3035 
3036 	if (bio->bi_status)
3037 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3038 			  sparity->nsectors);
3039 
3040 	bio_put(bio);
3041 
3042 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3043 			scrub_parity_bio_endio_worker, NULL, NULL);
3044 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3045 }
3046 
3047 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3048 {
3049 	struct scrub_ctx *sctx = sparity->sctx;
3050 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3051 	struct bio *bio;
3052 	struct btrfs_raid_bio *rbio;
3053 	struct btrfs_bio *bbio = NULL;
3054 	u64 length;
3055 	int ret;
3056 
3057 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3058 			   sparity->nsectors))
3059 		goto out;
3060 
3061 	length = sparity->logic_end - sparity->logic_start;
3062 
3063 	btrfs_bio_counter_inc_blocked(fs_info);
3064 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3065 			       &length, &bbio);
3066 	if (ret || !bbio || !bbio->raid_map)
3067 		goto bbio_out;
3068 
3069 	bio = btrfs_io_bio_alloc(0);
3070 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3071 	bio->bi_private = sparity;
3072 	bio->bi_end_io = scrub_parity_bio_endio;
3073 
3074 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3075 					      length, sparity->scrub_dev,
3076 					      sparity->dbitmap,
3077 					      sparity->nsectors);
3078 	if (!rbio)
3079 		goto rbio_out;
3080 
3081 	scrub_pending_bio_inc(sctx);
3082 	raid56_parity_submit_scrub_rbio(rbio);
3083 	return;
3084 
3085 rbio_out:
3086 	bio_put(bio);
3087 bbio_out:
3088 	btrfs_bio_counter_dec(fs_info);
3089 	btrfs_put_bbio(bbio);
3090 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3091 		  sparity->nsectors);
3092 	spin_lock(&sctx->stat_lock);
3093 	sctx->stat.malloc_errors++;
3094 	spin_unlock(&sctx->stat_lock);
3095 out:
3096 	scrub_free_parity(sparity);
3097 }
3098 
3099 static inline int scrub_calc_parity_bitmap_len(int nsectors)
3100 {
3101 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3102 }
3103 
3104 static void scrub_parity_get(struct scrub_parity *sparity)
3105 {
3106 	refcount_inc(&sparity->refs);
3107 }
3108 
3109 static void scrub_parity_put(struct scrub_parity *sparity)
3110 {
3111 	if (!refcount_dec_and_test(&sparity->refs))
3112 		return;
3113 
3114 	scrub_parity_check_and_repair(sparity);
3115 }
3116 
3117 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3118 						  struct map_lookup *map,
3119 						  struct btrfs_device *sdev,
3120 						  struct btrfs_path *path,
3121 						  u64 logic_start,
3122 						  u64 logic_end)
3123 {
3124 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3125 	struct btrfs_root *root = fs_info->extent_root;
3126 	struct btrfs_root *csum_root = fs_info->csum_root;
3127 	struct btrfs_extent_item *extent;
3128 	struct btrfs_bio *bbio = NULL;
3129 	u64 flags;
3130 	int ret;
3131 	int slot;
3132 	struct extent_buffer *l;
3133 	struct btrfs_key key;
3134 	u64 generation;
3135 	u64 extent_logical;
3136 	u64 extent_physical;
3137 	u64 extent_len;
3138 	u64 mapped_length;
3139 	struct btrfs_device *extent_dev;
3140 	struct scrub_parity *sparity;
3141 	int nsectors;
3142 	int bitmap_len;
3143 	int extent_mirror_num;
3144 	int stop_loop = 0;
3145 
3146 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3147 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3148 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3149 			  GFP_NOFS);
3150 	if (!sparity) {
3151 		spin_lock(&sctx->stat_lock);
3152 		sctx->stat.malloc_errors++;
3153 		spin_unlock(&sctx->stat_lock);
3154 		return -ENOMEM;
3155 	}
3156 
3157 	sparity->stripe_len = map->stripe_len;
3158 	sparity->nsectors = nsectors;
3159 	sparity->sctx = sctx;
3160 	sparity->scrub_dev = sdev;
3161 	sparity->logic_start = logic_start;
3162 	sparity->logic_end = logic_end;
3163 	refcount_set(&sparity->refs, 1);
3164 	INIT_LIST_HEAD(&sparity->spages);
3165 	sparity->dbitmap = sparity->bitmap;
3166 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3167 
3168 	ret = 0;
3169 	while (logic_start < logic_end) {
3170 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3171 			key.type = BTRFS_METADATA_ITEM_KEY;
3172 		else
3173 			key.type = BTRFS_EXTENT_ITEM_KEY;
3174 		key.objectid = logic_start;
3175 		key.offset = (u64)-1;
3176 
3177 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3178 		if (ret < 0)
3179 			goto out;
3180 
3181 		if (ret > 0) {
3182 			ret = btrfs_previous_extent_item(root, path, 0);
3183 			if (ret < 0)
3184 				goto out;
3185 			if (ret > 0) {
3186 				btrfs_release_path(path);
3187 				ret = btrfs_search_slot(NULL, root, &key,
3188 							path, 0, 0);
3189 				if (ret < 0)
3190 					goto out;
3191 			}
3192 		}
3193 
3194 		stop_loop = 0;
3195 		while (1) {
3196 			u64 bytes;
3197 
3198 			l = path->nodes[0];
3199 			slot = path->slots[0];
3200 			if (slot >= btrfs_header_nritems(l)) {
3201 				ret = btrfs_next_leaf(root, path);
3202 				if (ret == 0)
3203 					continue;
3204 				if (ret < 0)
3205 					goto out;
3206 
3207 				stop_loop = 1;
3208 				break;
3209 			}
3210 			btrfs_item_key_to_cpu(l, &key, slot);
3211 
3212 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3213 			    key.type != BTRFS_METADATA_ITEM_KEY)
3214 				goto next;
3215 
3216 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3217 				bytes = fs_info->nodesize;
3218 			else
3219 				bytes = key.offset;
3220 
3221 			if (key.objectid + bytes <= logic_start)
3222 				goto next;
3223 
3224 			if (key.objectid >= logic_end) {
3225 				stop_loop = 1;
3226 				break;
3227 			}
3228 
3229 			while (key.objectid >= logic_start + map->stripe_len)
3230 				logic_start += map->stripe_len;
3231 
3232 			extent = btrfs_item_ptr(l, slot,
3233 						struct btrfs_extent_item);
3234 			flags = btrfs_extent_flags(l, extent);
3235 			generation = btrfs_extent_generation(l, extent);
3236 
3237 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3238 			    (key.objectid < logic_start ||
3239 			     key.objectid + bytes >
3240 			     logic_start + map->stripe_len)) {
3241 				btrfs_err(fs_info,
3242 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3243 					  key.objectid, logic_start);
3244 				spin_lock(&sctx->stat_lock);
3245 				sctx->stat.uncorrectable_errors++;
3246 				spin_unlock(&sctx->stat_lock);
3247 				goto next;
3248 			}
3249 again:
3250 			extent_logical = key.objectid;
3251 			extent_len = bytes;
3252 
3253 			if (extent_logical < logic_start) {
3254 				extent_len -= logic_start - extent_logical;
3255 				extent_logical = logic_start;
3256 			}
3257 
3258 			if (extent_logical + extent_len >
3259 			    logic_start + map->stripe_len)
3260 				extent_len = logic_start + map->stripe_len -
3261 					     extent_logical;
3262 
3263 			scrub_parity_mark_sectors_data(sparity, extent_logical,
3264 						       extent_len);
3265 
3266 			mapped_length = extent_len;
3267 			bbio = NULL;
3268 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3269 					extent_logical, &mapped_length, &bbio,
3270 					0);
3271 			if (!ret) {
3272 				if (!bbio || mapped_length < extent_len)
3273 					ret = -EIO;
3274 			}
3275 			if (ret) {
3276 				btrfs_put_bbio(bbio);
3277 				goto out;
3278 			}
3279 			extent_physical = bbio->stripes[0].physical;
3280 			extent_mirror_num = bbio->mirror_num;
3281 			extent_dev = bbio->stripes[0].dev;
3282 			btrfs_put_bbio(bbio);
3283 
3284 			ret = btrfs_lookup_csums_range(csum_root,
3285 						extent_logical,
3286 						extent_logical + extent_len - 1,
3287 						&sctx->csum_list, 1);
3288 			if (ret)
3289 				goto out;
3290 
3291 			ret = scrub_extent_for_parity(sparity, extent_logical,
3292 						      extent_len,
3293 						      extent_physical,
3294 						      extent_dev, flags,
3295 						      generation,
3296 						      extent_mirror_num);
3297 
3298 			scrub_free_csums(sctx);
3299 
3300 			if (ret)
3301 				goto out;
3302 
3303 			if (extent_logical + extent_len <
3304 			    key.objectid + bytes) {
3305 				logic_start += map->stripe_len;
3306 
3307 				if (logic_start >= logic_end) {
3308 					stop_loop = 1;
3309 					break;
3310 				}
3311 
3312 				if (logic_start < key.objectid + bytes) {
3313 					cond_resched();
3314 					goto again;
3315 				}
3316 			}
3317 next:
3318 			path->slots[0]++;
3319 		}
3320 
3321 		btrfs_release_path(path);
3322 
3323 		if (stop_loop)
3324 			break;
3325 
3326 		logic_start += map->stripe_len;
3327 	}
3328 out:
3329 	if (ret < 0)
3330 		scrub_parity_mark_sectors_error(sparity, logic_start,
3331 						logic_end - logic_start);
3332 	scrub_parity_put(sparity);
3333 	scrub_submit(sctx);
3334 	mutex_lock(&sctx->wr_lock);
3335 	scrub_wr_submit(sctx);
3336 	mutex_unlock(&sctx->wr_lock);
3337 
3338 	btrfs_release_path(path);
3339 	return ret < 0 ? ret : 0;
3340 }
3341 
3342 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3343 					   struct map_lookup *map,
3344 					   struct btrfs_device *scrub_dev,
3345 					   int num, u64 base, u64 length,
3346 					   int is_dev_replace)
3347 {
3348 	struct btrfs_path *path, *ppath;
3349 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3350 	struct btrfs_root *root = fs_info->extent_root;
3351 	struct btrfs_root *csum_root = fs_info->csum_root;
3352 	struct btrfs_extent_item *extent;
3353 	struct blk_plug plug;
3354 	u64 flags;
3355 	int ret;
3356 	int slot;
3357 	u64 nstripes;
3358 	struct extent_buffer *l;
3359 	u64 physical;
3360 	u64 logical;
3361 	u64 logic_end;
3362 	u64 physical_end;
3363 	u64 generation;
3364 	int mirror_num;
3365 	struct reada_control *reada1;
3366 	struct reada_control *reada2;
3367 	struct btrfs_key key;
3368 	struct btrfs_key key_end;
3369 	u64 increment = map->stripe_len;
3370 	u64 offset;
3371 	u64 extent_logical;
3372 	u64 extent_physical;
3373 	u64 extent_len;
3374 	u64 stripe_logical;
3375 	u64 stripe_end;
3376 	struct btrfs_device *extent_dev;
3377 	int extent_mirror_num;
3378 	int stop_loop = 0;
3379 
3380 	physical = map->stripes[num].physical;
3381 	offset = 0;
3382 	nstripes = div64_u64(length, map->stripe_len);
3383 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3384 		offset = map->stripe_len * num;
3385 		increment = map->stripe_len * map->num_stripes;
3386 		mirror_num = 1;
3387 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3388 		int factor = map->num_stripes / map->sub_stripes;
3389 		offset = map->stripe_len * (num / map->sub_stripes);
3390 		increment = map->stripe_len * factor;
3391 		mirror_num = num % map->sub_stripes + 1;
3392 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3393 		increment = map->stripe_len;
3394 		mirror_num = num % map->num_stripes + 1;
3395 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3396 		increment = map->stripe_len;
3397 		mirror_num = num % map->num_stripes + 1;
3398 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3399 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3400 		increment = map->stripe_len * nr_data_stripes(map);
3401 		mirror_num = 1;
3402 	} else {
3403 		increment = map->stripe_len;
3404 		mirror_num = 1;
3405 	}
3406 
3407 	path = btrfs_alloc_path();
3408 	if (!path)
3409 		return -ENOMEM;
3410 
3411 	ppath = btrfs_alloc_path();
3412 	if (!ppath) {
3413 		btrfs_free_path(path);
3414 		return -ENOMEM;
3415 	}
3416 
3417 	/*
3418 	 * work on commit root. The related disk blocks are static as
3419 	 * long as COW is applied. This means, it is save to rewrite
3420 	 * them to repair disk errors without any race conditions
3421 	 */
3422 	path->search_commit_root = 1;
3423 	path->skip_locking = 1;
3424 
3425 	ppath->search_commit_root = 1;
3426 	ppath->skip_locking = 1;
3427 	/*
3428 	 * trigger the readahead for extent tree csum tree and wait for
3429 	 * completion. During readahead, the scrub is officially paused
3430 	 * to not hold off transaction commits
3431 	 */
3432 	logical = base + offset;
3433 	physical_end = physical + nstripes * map->stripe_len;
3434 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3435 		get_raid56_logic_offset(physical_end, num,
3436 					map, &logic_end, NULL);
3437 		logic_end += base;
3438 	} else {
3439 		logic_end = logical + increment * nstripes;
3440 	}
3441 	wait_event(sctx->list_wait,
3442 		   atomic_read(&sctx->bios_in_flight) == 0);
3443 	scrub_blocked_if_needed(fs_info);
3444 
3445 	/* FIXME it might be better to start readahead at commit root */
3446 	key.objectid = logical;
3447 	key.type = BTRFS_EXTENT_ITEM_KEY;
3448 	key.offset = (u64)0;
3449 	key_end.objectid = logic_end;
3450 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3451 	key_end.offset = (u64)-1;
3452 	reada1 = btrfs_reada_add(root, &key, &key_end);
3453 
3454 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3455 	key.type = BTRFS_EXTENT_CSUM_KEY;
3456 	key.offset = logical;
3457 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3458 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3459 	key_end.offset = logic_end;
3460 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3461 
3462 	if (!IS_ERR(reada1))
3463 		btrfs_reada_wait(reada1);
3464 	if (!IS_ERR(reada2))
3465 		btrfs_reada_wait(reada2);
3466 
3467 
3468 	/*
3469 	 * collect all data csums for the stripe to avoid seeking during
3470 	 * the scrub. This might currently (crc32) end up to be about 1MB
3471 	 */
3472 	blk_start_plug(&plug);
3473 
3474 	/*
3475 	 * now find all extents for each stripe and scrub them
3476 	 */
3477 	ret = 0;
3478 	while (physical < physical_end) {
3479 		/*
3480 		 * canceled?
3481 		 */
3482 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3483 		    atomic_read(&sctx->cancel_req)) {
3484 			ret = -ECANCELED;
3485 			goto out;
3486 		}
3487 		/*
3488 		 * check to see if we have to pause
3489 		 */
3490 		if (atomic_read(&fs_info->scrub_pause_req)) {
3491 			/* push queued extents */
3492 			sctx->flush_all_writes = true;
3493 			scrub_submit(sctx);
3494 			mutex_lock(&sctx->wr_lock);
3495 			scrub_wr_submit(sctx);
3496 			mutex_unlock(&sctx->wr_lock);
3497 			wait_event(sctx->list_wait,
3498 				   atomic_read(&sctx->bios_in_flight) == 0);
3499 			sctx->flush_all_writes = false;
3500 			scrub_blocked_if_needed(fs_info);
3501 		}
3502 
3503 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3504 			ret = get_raid56_logic_offset(physical, num, map,
3505 						      &logical,
3506 						      &stripe_logical);
3507 			logical += base;
3508 			if (ret) {
3509 				/* it is parity strip */
3510 				stripe_logical += base;
3511 				stripe_end = stripe_logical + increment;
3512 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3513 							  ppath, stripe_logical,
3514 							  stripe_end);
3515 				if (ret)
3516 					goto out;
3517 				goto skip;
3518 			}
3519 		}
3520 
3521 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3522 			key.type = BTRFS_METADATA_ITEM_KEY;
3523 		else
3524 			key.type = BTRFS_EXTENT_ITEM_KEY;
3525 		key.objectid = logical;
3526 		key.offset = (u64)-1;
3527 
3528 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3529 		if (ret < 0)
3530 			goto out;
3531 
3532 		if (ret > 0) {
3533 			ret = btrfs_previous_extent_item(root, path, 0);
3534 			if (ret < 0)
3535 				goto out;
3536 			if (ret > 0) {
3537 				/* there's no smaller item, so stick with the
3538 				 * larger one */
3539 				btrfs_release_path(path);
3540 				ret = btrfs_search_slot(NULL, root, &key,
3541 							path, 0, 0);
3542 				if (ret < 0)
3543 					goto out;
3544 			}
3545 		}
3546 
3547 		stop_loop = 0;
3548 		while (1) {
3549 			u64 bytes;
3550 
3551 			l = path->nodes[0];
3552 			slot = path->slots[0];
3553 			if (slot >= btrfs_header_nritems(l)) {
3554 				ret = btrfs_next_leaf(root, path);
3555 				if (ret == 0)
3556 					continue;
3557 				if (ret < 0)
3558 					goto out;
3559 
3560 				stop_loop = 1;
3561 				break;
3562 			}
3563 			btrfs_item_key_to_cpu(l, &key, slot);
3564 
3565 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3566 			    key.type != BTRFS_METADATA_ITEM_KEY)
3567 				goto next;
3568 
3569 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3570 				bytes = fs_info->nodesize;
3571 			else
3572 				bytes = key.offset;
3573 
3574 			if (key.objectid + bytes <= logical)
3575 				goto next;
3576 
3577 			if (key.objectid >= logical + map->stripe_len) {
3578 				/* out of this device extent */
3579 				if (key.objectid >= logic_end)
3580 					stop_loop = 1;
3581 				break;
3582 			}
3583 
3584 			extent = btrfs_item_ptr(l, slot,
3585 						struct btrfs_extent_item);
3586 			flags = btrfs_extent_flags(l, extent);
3587 			generation = btrfs_extent_generation(l, extent);
3588 
3589 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3590 			    (key.objectid < logical ||
3591 			     key.objectid + bytes >
3592 			     logical + map->stripe_len)) {
3593 				btrfs_err(fs_info,
3594 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3595 				       key.objectid, logical);
3596 				spin_lock(&sctx->stat_lock);
3597 				sctx->stat.uncorrectable_errors++;
3598 				spin_unlock(&sctx->stat_lock);
3599 				goto next;
3600 			}
3601 
3602 again:
3603 			extent_logical = key.objectid;
3604 			extent_len = bytes;
3605 
3606 			/*
3607 			 * trim extent to this stripe
3608 			 */
3609 			if (extent_logical < logical) {
3610 				extent_len -= logical - extent_logical;
3611 				extent_logical = logical;
3612 			}
3613 			if (extent_logical + extent_len >
3614 			    logical + map->stripe_len) {
3615 				extent_len = logical + map->stripe_len -
3616 					     extent_logical;
3617 			}
3618 
3619 			extent_physical = extent_logical - logical + physical;
3620 			extent_dev = scrub_dev;
3621 			extent_mirror_num = mirror_num;
3622 			if (is_dev_replace)
3623 				scrub_remap_extent(fs_info, extent_logical,
3624 						   extent_len, &extent_physical,
3625 						   &extent_dev,
3626 						   &extent_mirror_num);
3627 
3628 			ret = btrfs_lookup_csums_range(csum_root,
3629 						       extent_logical,
3630 						       extent_logical +
3631 						       extent_len - 1,
3632 						       &sctx->csum_list, 1);
3633 			if (ret)
3634 				goto out;
3635 
3636 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3637 					   extent_physical, extent_dev, flags,
3638 					   generation, extent_mirror_num,
3639 					   extent_logical - logical + physical);
3640 
3641 			scrub_free_csums(sctx);
3642 
3643 			if (ret)
3644 				goto out;
3645 
3646 			if (extent_logical + extent_len <
3647 			    key.objectid + bytes) {
3648 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3649 					/*
3650 					 * loop until we find next data stripe
3651 					 * or we have finished all stripes.
3652 					 */
3653 loop:
3654 					physical += map->stripe_len;
3655 					ret = get_raid56_logic_offset(physical,
3656 							num, map, &logical,
3657 							&stripe_logical);
3658 					logical += base;
3659 
3660 					if (ret && physical < physical_end) {
3661 						stripe_logical += base;
3662 						stripe_end = stripe_logical +
3663 								increment;
3664 						ret = scrub_raid56_parity(sctx,
3665 							map, scrub_dev, ppath,
3666 							stripe_logical,
3667 							stripe_end);
3668 						if (ret)
3669 							goto out;
3670 						goto loop;
3671 					}
3672 				} else {
3673 					physical += map->stripe_len;
3674 					logical += increment;
3675 				}
3676 				if (logical < key.objectid + bytes) {
3677 					cond_resched();
3678 					goto again;
3679 				}
3680 
3681 				if (physical >= physical_end) {
3682 					stop_loop = 1;
3683 					break;
3684 				}
3685 			}
3686 next:
3687 			path->slots[0]++;
3688 		}
3689 		btrfs_release_path(path);
3690 skip:
3691 		logical += increment;
3692 		physical += map->stripe_len;
3693 		spin_lock(&sctx->stat_lock);
3694 		if (stop_loop)
3695 			sctx->stat.last_physical = map->stripes[num].physical +
3696 						   length;
3697 		else
3698 			sctx->stat.last_physical = physical;
3699 		spin_unlock(&sctx->stat_lock);
3700 		if (stop_loop)
3701 			break;
3702 	}
3703 out:
3704 	/* push queued extents */
3705 	scrub_submit(sctx);
3706 	mutex_lock(&sctx->wr_lock);
3707 	scrub_wr_submit(sctx);
3708 	mutex_unlock(&sctx->wr_lock);
3709 
3710 	blk_finish_plug(&plug);
3711 	btrfs_free_path(path);
3712 	btrfs_free_path(ppath);
3713 	return ret < 0 ? ret : 0;
3714 }
3715 
3716 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3717 					  struct btrfs_device *scrub_dev,
3718 					  u64 chunk_offset, u64 length,
3719 					  u64 dev_offset,
3720 					  struct btrfs_block_group_cache *cache,
3721 					  int is_dev_replace)
3722 {
3723 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3724 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3725 	struct map_lookup *map;
3726 	struct extent_map *em;
3727 	int i;
3728 	int ret = 0;
3729 
3730 	read_lock(&map_tree->map_tree.lock);
3731 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3732 	read_unlock(&map_tree->map_tree.lock);
3733 
3734 	if (!em) {
3735 		/*
3736 		 * Might have been an unused block group deleted by the cleaner
3737 		 * kthread or relocation.
3738 		 */
3739 		spin_lock(&cache->lock);
3740 		if (!cache->removed)
3741 			ret = -EINVAL;
3742 		spin_unlock(&cache->lock);
3743 
3744 		return ret;
3745 	}
3746 
3747 	map = em->map_lookup;
3748 	if (em->start != chunk_offset)
3749 		goto out;
3750 
3751 	if (em->len < length)
3752 		goto out;
3753 
3754 	for (i = 0; i < map->num_stripes; ++i) {
3755 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3756 		    map->stripes[i].physical == dev_offset) {
3757 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3758 					   chunk_offset, length,
3759 					   is_dev_replace);
3760 			if (ret)
3761 				goto out;
3762 		}
3763 	}
3764 out:
3765 	free_extent_map(em);
3766 
3767 	return ret;
3768 }
3769 
3770 static noinline_for_stack
3771 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3772 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3773 			   int is_dev_replace)
3774 {
3775 	struct btrfs_dev_extent *dev_extent = NULL;
3776 	struct btrfs_path *path;
3777 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3778 	struct btrfs_root *root = fs_info->dev_root;
3779 	u64 length;
3780 	u64 chunk_offset;
3781 	int ret = 0;
3782 	int ro_set;
3783 	int slot;
3784 	struct extent_buffer *l;
3785 	struct btrfs_key key;
3786 	struct btrfs_key found_key;
3787 	struct btrfs_block_group_cache *cache;
3788 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3789 
3790 	path = btrfs_alloc_path();
3791 	if (!path)
3792 		return -ENOMEM;
3793 
3794 	path->reada = READA_FORWARD;
3795 	path->search_commit_root = 1;
3796 	path->skip_locking = 1;
3797 
3798 	key.objectid = scrub_dev->devid;
3799 	key.offset = 0ull;
3800 	key.type = BTRFS_DEV_EXTENT_KEY;
3801 
3802 	while (1) {
3803 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3804 		if (ret < 0)
3805 			break;
3806 		if (ret > 0) {
3807 			if (path->slots[0] >=
3808 			    btrfs_header_nritems(path->nodes[0])) {
3809 				ret = btrfs_next_leaf(root, path);
3810 				if (ret < 0)
3811 					break;
3812 				if (ret > 0) {
3813 					ret = 0;
3814 					break;
3815 				}
3816 			} else {
3817 				ret = 0;
3818 			}
3819 		}
3820 
3821 		l = path->nodes[0];
3822 		slot = path->slots[0];
3823 
3824 		btrfs_item_key_to_cpu(l, &found_key, slot);
3825 
3826 		if (found_key.objectid != scrub_dev->devid)
3827 			break;
3828 
3829 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3830 			break;
3831 
3832 		if (found_key.offset >= end)
3833 			break;
3834 
3835 		if (found_key.offset < key.offset)
3836 			break;
3837 
3838 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3839 		length = btrfs_dev_extent_length(l, dev_extent);
3840 
3841 		if (found_key.offset + length <= start)
3842 			goto skip;
3843 
3844 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3845 
3846 		/*
3847 		 * get a reference on the corresponding block group to prevent
3848 		 * the chunk from going away while we scrub it
3849 		 */
3850 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3851 
3852 		/* some chunks are removed but not committed to disk yet,
3853 		 * continue scrubbing */
3854 		if (!cache)
3855 			goto skip;
3856 
3857 		/*
3858 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3859 		 * to avoid deadlock caused by:
3860 		 * btrfs_inc_block_group_ro()
3861 		 * -> btrfs_wait_for_commit()
3862 		 * -> btrfs_commit_transaction()
3863 		 * -> btrfs_scrub_pause()
3864 		 */
3865 		scrub_pause_on(fs_info);
3866 		ret = btrfs_inc_block_group_ro(fs_info, cache);
3867 		if (!ret && is_dev_replace) {
3868 			/*
3869 			 * If we are doing a device replace wait for any tasks
3870 			 * that started dellaloc right before we set the block
3871 			 * group to RO mode, as they might have just allocated
3872 			 * an extent from it or decided they could do a nocow
3873 			 * write. And if any such tasks did that, wait for their
3874 			 * ordered extents to complete and then commit the
3875 			 * current transaction, so that we can later see the new
3876 			 * extent items in the extent tree - the ordered extents
3877 			 * create delayed data references (for cow writes) when
3878 			 * they complete, which will be run and insert the
3879 			 * corresponding extent items into the extent tree when
3880 			 * we commit the transaction they used when running
3881 			 * inode.c:btrfs_finish_ordered_io(). We later use
3882 			 * the commit root of the extent tree to find extents
3883 			 * to copy from the srcdev into the tgtdev, and we don't
3884 			 * want to miss any new extents.
3885 			 */
3886 			btrfs_wait_block_group_reservations(cache);
3887 			btrfs_wait_nocow_writers(cache);
3888 			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3889 						       cache->key.objectid,
3890 						       cache->key.offset);
3891 			if (ret > 0) {
3892 				struct btrfs_trans_handle *trans;
3893 
3894 				trans = btrfs_join_transaction(root);
3895 				if (IS_ERR(trans))
3896 					ret = PTR_ERR(trans);
3897 				else
3898 					ret = btrfs_commit_transaction(trans);
3899 				if (ret) {
3900 					scrub_pause_off(fs_info);
3901 					btrfs_put_block_group(cache);
3902 					break;
3903 				}
3904 			}
3905 		}
3906 		scrub_pause_off(fs_info);
3907 
3908 		if (ret == 0) {
3909 			ro_set = 1;
3910 		} else if (ret == -ENOSPC) {
3911 			/*
3912 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3913 			 * failed in creating new chunk for metadata.
3914 			 * It is not a problem for scrub/replace, because
3915 			 * metadata are always cowed, and our scrub paused
3916 			 * commit_transactions.
3917 			 */
3918 			ro_set = 0;
3919 		} else {
3920 			btrfs_warn(fs_info,
3921 				   "failed setting block group ro: %d", ret);
3922 			btrfs_put_block_group(cache);
3923 			break;
3924 		}
3925 
3926 		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3927 		dev_replace->cursor_right = found_key.offset + length;
3928 		dev_replace->cursor_left = found_key.offset;
3929 		dev_replace->item_needs_writeback = 1;
3930 		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3931 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3932 				  found_key.offset, cache, is_dev_replace);
3933 
3934 		/*
3935 		 * flush, submit all pending read and write bios, afterwards
3936 		 * wait for them.
3937 		 * Note that in the dev replace case, a read request causes
3938 		 * write requests that are submitted in the read completion
3939 		 * worker. Therefore in the current situation, it is required
3940 		 * that all write requests are flushed, so that all read and
3941 		 * write requests are really completed when bios_in_flight
3942 		 * changes to 0.
3943 		 */
3944 		sctx->flush_all_writes = true;
3945 		scrub_submit(sctx);
3946 		mutex_lock(&sctx->wr_lock);
3947 		scrub_wr_submit(sctx);
3948 		mutex_unlock(&sctx->wr_lock);
3949 
3950 		wait_event(sctx->list_wait,
3951 			   atomic_read(&sctx->bios_in_flight) == 0);
3952 
3953 		scrub_pause_on(fs_info);
3954 
3955 		/*
3956 		 * must be called before we decrease @scrub_paused.
3957 		 * make sure we don't block transaction commit while
3958 		 * we are waiting pending workers finished.
3959 		 */
3960 		wait_event(sctx->list_wait,
3961 			   atomic_read(&sctx->workers_pending) == 0);
3962 		sctx->flush_all_writes = false;
3963 
3964 		scrub_pause_off(fs_info);
3965 
3966 		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3967 		dev_replace->cursor_left = dev_replace->cursor_right;
3968 		dev_replace->item_needs_writeback = 1;
3969 		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3970 
3971 		if (ro_set)
3972 			btrfs_dec_block_group_ro(cache);
3973 
3974 		/*
3975 		 * We might have prevented the cleaner kthread from deleting
3976 		 * this block group if it was already unused because we raced
3977 		 * and set it to RO mode first. So add it back to the unused
3978 		 * list, otherwise it might not ever be deleted unless a manual
3979 		 * balance is triggered or it becomes used and unused again.
3980 		 */
3981 		spin_lock(&cache->lock);
3982 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3983 		    btrfs_block_group_used(&cache->item) == 0) {
3984 			spin_unlock(&cache->lock);
3985 			spin_lock(&fs_info->unused_bgs_lock);
3986 			if (list_empty(&cache->bg_list)) {
3987 				btrfs_get_block_group(cache);
3988 				trace_btrfs_add_unused_block_group(cache);
3989 				list_add_tail(&cache->bg_list,
3990 					      &fs_info->unused_bgs);
3991 			}
3992 			spin_unlock(&fs_info->unused_bgs_lock);
3993 		} else {
3994 			spin_unlock(&cache->lock);
3995 		}
3996 
3997 		btrfs_put_block_group(cache);
3998 		if (ret)
3999 			break;
4000 		if (is_dev_replace &&
4001 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4002 			ret = -EIO;
4003 			break;
4004 		}
4005 		if (sctx->stat.malloc_errors > 0) {
4006 			ret = -ENOMEM;
4007 			break;
4008 		}
4009 skip:
4010 		key.offset = found_key.offset + length;
4011 		btrfs_release_path(path);
4012 	}
4013 
4014 	btrfs_free_path(path);
4015 
4016 	return ret;
4017 }
4018 
4019 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4020 					   struct btrfs_device *scrub_dev)
4021 {
4022 	int	i;
4023 	u64	bytenr;
4024 	u64	gen;
4025 	int	ret;
4026 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4027 
4028 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4029 		return -EIO;
4030 
4031 	/* Seed devices of a new filesystem has their own generation. */
4032 	if (scrub_dev->fs_devices != fs_info->fs_devices)
4033 		gen = scrub_dev->generation;
4034 	else
4035 		gen = fs_info->last_trans_committed;
4036 
4037 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4038 		bytenr = btrfs_sb_offset(i);
4039 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4040 		    scrub_dev->commit_total_bytes)
4041 			break;
4042 
4043 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4044 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4045 				  NULL, 1, bytenr);
4046 		if (ret)
4047 			return ret;
4048 	}
4049 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4050 
4051 	return 0;
4052 }
4053 
4054 /*
4055  * get a reference count on fs_info->scrub_workers. start worker if necessary
4056  */
4057 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4058 						int is_dev_replace)
4059 {
4060 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4061 	int max_active = fs_info->thread_pool_size;
4062 
4063 	if (fs_info->scrub_workers_refcnt == 0) {
4064 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4065 				flags, is_dev_replace ? 1 : max_active, 4);
4066 		if (!fs_info->scrub_workers)
4067 			goto fail_scrub_workers;
4068 
4069 		fs_info->scrub_wr_completion_workers =
4070 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4071 					      max_active, 2);
4072 		if (!fs_info->scrub_wr_completion_workers)
4073 			goto fail_scrub_wr_completion_workers;
4074 
4075 		fs_info->scrub_nocow_workers =
4076 			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4077 		if (!fs_info->scrub_nocow_workers)
4078 			goto fail_scrub_nocow_workers;
4079 		fs_info->scrub_parity_workers =
4080 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4081 					      max_active, 2);
4082 		if (!fs_info->scrub_parity_workers)
4083 			goto fail_scrub_parity_workers;
4084 	}
4085 	++fs_info->scrub_workers_refcnt;
4086 	return 0;
4087 
4088 fail_scrub_parity_workers:
4089 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4090 fail_scrub_nocow_workers:
4091 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4092 fail_scrub_wr_completion_workers:
4093 	btrfs_destroy_workqueue(fs_info->scrub_workers);
4094 fail_scrub_workers:
4095 	return -ENOMEM;
4096 }
4097 
4098 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4099 {
4100 	if (--fs_info->scrub_workers_refcnt == 0) {
4101 		btrfs_destroy_workqueue(fs_info->scrub_workers);
4102 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4103 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4104 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4105 	}
4106 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
4107 }
4108 
4109 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4110 		    u64 end, struct btrfs_scrub_progress *progress,
4111 		    int readonly, int is_dev_replace)
4112 {
4113 	struct scrub_ctx *sctx;
4114 	int ret;
4115 	struct btrfs_device *dev;
4116 	struct rcu_string *name;
4117 
4118 	if (btrfs_fs_closing(fs_info))
4119 		return -EINVAL;
4120 
4121 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4122 		/*
4123 		 * in this case scrub is unable to calculate the checksum
4124 		 * the way scrub is implemented. Do not handle this
4125 		 * situation at all because it won't ever happen.
4126 		 */
4127 		btrfs_err(fs_info,
4128 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4129 		       fs_info->nodesize,
4130 		       BTRFS_STRIPE_LEN);
4131 		return -EINVAL;
4132 	}
4133 
4134 	if (fs_info->sectorsize != PAGE_SIZE) {
4135 		/* not supported for data w/o checksums */
4136 		btrfs_err_rl(fs_info,
4137 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4138 		       fs_info->sectorsize, PAGE_SIZE);
4139 		return -EINVAL;
4140 	}
4141 
4142 	if (fs_info->nodesize >
4143 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4144 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4145 		/*
4146 		 * would exhaust the array bounds of pagev member in
4147 		 * struct scrub_block
4148 		 */
4149 		btrfs_err(fs_info,
4150 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4151 		       fs_info->nodesize,
4152 		       SCRUB_MAX_PAGES_PER_BLOCK,
4153 		       fs_info->sectorsize,
4154 		       SCRUB_MAX_PAGES_PER_BLOCK);
4155 		return -EINVAL;
4156 	}
4157 
4158 
4159 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4160 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4161 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4162 		     !is_dev_replace)) {
4163 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4164 		return -ENODEV;
4165 	}
4166 
4167 	if (!is_dev_replace && !readonly &&
4168 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4169 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4170 		rcu_read_lock();
4171 		name = rcu_dereference(dev->name);
4172 		btrfs_err(fs_info, "scrub: device %s is not writable",
4173 			  name->str);
4174 		rcu_read_unlock();
4175 		return -EROFS;
4176 	}
4177 
4178 	mutex_lock(&fs_info->scrub_lock);
4179 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4180 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4181 		mutex_unlock(&fs_info->scrub_lock);
4182 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4183 		return -EIO;
4184 	}
4185 
4186 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
4187 	if (dev->scrub_ctx ||
4188 	    (!is_dev_replace &&
4189 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4190 		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4191 		mutex_unlock(&fs_info->scrub_lock);
4192 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4193 		return -EINPROGRESS;
4194 	}
4195 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4196 
4197 	ret = scrub_workers_get(fs_info, is_dev_replace);
4198 	if (ret) {
4199 		mutex_unlock(&fs_info->scrub_lock);
4200 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4201 		return ret;
4202 	}
4203 
4204 	sctx = scrub_setup_ctx(dev, is_dev_replace);
4205 	if (IS_ERR(sctx)) {
4206 		mutex_unlock(&fs_info->scrub_lock);
4207 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4208 		scrub_workers_put(fs_info);
4209 		return PTR_ERR(sctx);
4210 	}
4211 	sctx->readonly = readonly;
4212 	dev->scrub_ctx = sctx;
4213 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4214 
4215 	/*
4216 	 * checking @scrub_pause_req here, we can avoid
4217 	 * race between committing transaction and scrubbing.
4218 	 */
4219 	__scrub_blocked_if_needed(fs_info);
4220 	atomic_inc(&fs_info->scrubs_running);
4221 	mutex_unlock(&fs_info->scrub_lock);
4222 
4223 	if (!is_dev_replace) {
4224 		/*
4225 		 * by holding device list mutex, we can
4226 		 * kick off writing super in log tree sync.
4227 		 */
4228 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4229 		ret = scrub_supers(sctx, dev);
4230 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4231 	}
4232 
4233 	if (!ret)
4234 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
4235 					     is_dev_replace);
4236 
4237 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4238 	atomic_dec(&fs_info->scrubs_running);
4239 	wake_up(&fs_info->scrub_pause_wait);
4240 
4241 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4242 
4243 	if (progress)
4244 		memcpy(progress, &sctx->stat, sizeof(*progress));
4245 
4246 	mutex_lock(&fs_info->scrub_lock);
4247 	dev->scrub_ctx = NULL;
4248 	scrub_workers_put(fs_info);
4249 	mutex_unlock(&fs_info->scrub_lock);
4250 
4251 	scrub_put_ctx(sctx);
4252 
4253 	return ret;
4254 }
4255 
4256 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4257 {
4258 	mutex_lock(&fs_info->scrub_lock);
4259 	atomic_inc(&fs_info->scrub_pause_req);
4260 	while (atomic_read(&fs_info->scrubs_paused) !=
4261 	       atomic_read(&fs_info->scrubs_running)) {
4262 		mutex_unlock(&fs_info->scrub_lock);
4263 		wait_event(fs_info->scrub_pause_wait,
4264 			   atomic_read(&fs_info->scrubs_paused) ==
4265 			   atomic_read(&fs_info->scrubs_running));
4266 		mutex_lock(&fs_info->scrub_lock);
4267 	}
4268 	mutex_unlock(&fs_info->scrub_lock);
4269 }
4270 
4271 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4272 {
4273 	atomic_dec(&fs_info->scrub_pause_req);
4274 	wake_up(&fs_info->scrub_pause_wait);
4275 }
4276 
4277 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4278 {
4279 	mutex_lock(&fs_info->scrub_lock);
4280 	if (!atomic_read(&fs_info->scrubs_running)) {
4281 		mutex_unlock(&fs_info->scrub_lock);
4282 		return -ENOTCONN;
4283 	}
4284 
4285 	atomic_inc(&fs_info->scrub_cancel_req);
4286 	while (atomic_read(&fs_info->scrubs_running)) {
4287 		mutex_unlock(&fs_info->scrub_lock);
4288 		wait_event(fs_info->scrub_pause_wait,
4289 			   atomic_read(&fs_info->scrubs_running) == 0);
4290 		mutex_lock(&fs_info->scrub_lock);
4291 	}
4292 	atomic_dec(&fs_info->scrub_cancel_req);
4293 	mutex_unlock(&fs_info->scrub_lock);
4294 
4295 	return 0;
4296 }
4297 
4298 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4299 			   struct btrfs_device *dev)
4300 {
4301 	struct scrub_ctx *sctx;
4302 
4303 	mutex_lock(&fs_info->scrub_lock);
4304 	sctx = dev->scrub_ctx;
4305 	if (!sctx) {
4306 		mutex_unlock(&fs_info->scrub_lock);
4307 		return -ENOTCONN;
4308 	}
4309 	atomic_inc(&sctx->cancel_req);
4310 	while (dev->scrub_ctx) {
4311 		mutex_unlock(&fs_info->scrub_lock);
4312 		wait_event(fs_info->scrub_pause_wait,
4313 			   dev->scrub_ctx == NULL);
4314 		mutex_lock(&fs_info->scrub_lock);
4315 	}
4316 	mutex_unlock(&fs_info->scrub_lock);
4317 
4318 	return 0;
4319 }
4320 
4321 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4322 			 struct btrfs_scrub_progress *progress)
4323 {
4324 	struct btrfs_device *dev;
4325 	struct scrub_ctx *sctx = NULL;
4326 
4327 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4328 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4329 	if (dev)
4330 		sctx = dev->scrub_ctx;
4331 	if (sctx)
4332 		memcpy(progress, &sctx->stat, sizeof(*progress));
4333 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4334 
4335 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4336 }
4337 
4338 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4339 			       u64 extent_logical, u64 extent_len,
4340 			       u64 *extent_physical,
4341 			       struct btrfs_device **extent_dev,
4342 			       int *extent_mirror_num)
4343 {
4344 	u64 mapped_length;
4345 	struct btrfs_bio *bbio = NULL;
4346 	int ret;
4347 
4348 	mapped_length = extent_len;
4349 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4350 			      &mapped_length, &bbio, 0);
4351 	if (ret || !bbio || mapped_length < extent_len ||
4352 	    !bbio->stripes[0].dev->bdev) {
4353 		btrfs_put_bbio(bbio);
4354 		return;
4355 	}
4356 
4357 	*extent_physical = bbio->stripes[0].physical;
4358 	*extent_mirror_num = bbio->mirror_num;
4359 	*extent_dev = bbio->stripes[0].dev;
4360 	btrfs_put_bbio(bbio);
4361 }
4362 
4363 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4364 			    int mirror_num, u64 physical_for_dev_replace)
4365 {
4366 	struct scrub_copy_nocow_ctx *nocow_ctx;
4367 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4368 
4369 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4370 	if (!nocow_ctx) {
4371 		spin_lock(&sctx->stat_lock);
4372 		sctx->stat.malloc_errors++;
4373 		spin_unlock(&sctx->stat_lock);
4374 		return -ENOMEM;
4375 	}
4376 
4377 	scrub_pending_trans_workers_inc(sctx);
4378 
4379 	nocow_ctx->sctx = sctx;
4380 	nocow_ctx->logical = logical;
4381 	nocow_ctx->len = len;
4382 	nocow_ctx->mirror_num = mirror_num;
4383 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4384 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4385 			copy_nocow_pages_worker, NULL, NULL);
4386 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4387 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4388 			 &nocow_ctx->work);
4389 
4390 	return 0;
4391 }
4392 
4393 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4394 {
4395 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4396 	struct scrub_nocow_inode *nocow_inode;
4397 
4398 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4399 	if (!nocow_inode)
4400 		return -ENOMEM;
4401 	nocow_inode->inum = inum;
4402 	nocow_inode->offset = offset;
4403 	nocow_inode->root = root;
4404 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4405 	return 0;
4406 }
4407 
4408 #define COPY_COMPLETE 1
4409 
4410 static void copy_nocow_pages_worker(struct btrfs_work *work)
4411 {
4412 	struct scrub_copy_nocow_ctx *nocow_ctx =
4413 		container_of(work, struct scrub_copy_nocow_ctx, work);
4414 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4415 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4416 	struct btrfs_root *root = fs_info->extent_root;
4417 	u64 logical = nocow_ctx->logical;
4418 	u64 len = nocow_ctx->len;
4419 	int mirror_num = nocow_ctx->mirror_num;
4420 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4421 	int ret;
4422 	struct btrfs_trans_handle *trans = NULL;
4423 	struct btrfs_path *path;
4424 	int not_written = 0;
4425 
4426 	path = btrfs_alloc_path();
4427 	if (!path) {
4428 		spin_lock(&sctx->stat_lock);
4429 		sctx->stat.malloc_errors++;
4430 		spin_unlock(&sctx->stat_lock);
4431 		not_written = 1;
4432 		goto out;
4433 	}
4434 
4435 	trans = btrfs_join_transaction(root);
4436 	if (IS_ERR(trans)) {
4437 		not_written = 1;
4438 		goto out;
4439 	}
4440 
4441 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4442 			record_inode_for_nocow, nocow_ctx, false);
4443 	if (ret != 0 && ret != -ENOENT) {
4444 		btrfs_warn(fs_info,
4445 			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4446 			   logical, physical_for_dev_replace, len, mirror_num,
4447 			   ret);
4448 		not_written = 1;
4449 		goto out;
4450 	}
4451 
4452 	btrfs_end_transaction(trans);
4453 	trans = NULL;
4454 	while (!list_empty(&nocow_ctx->inodes)) {
4455 		struct scrub_nocow_inode *entry;
4456 		entry = list_first_entry(&nocow_ctx->inodes,
4457 					 struct scrub_nocow_inode,
4458 					 list);
4459 		list_del_init(&entry->list);
4460 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4461 						 entry->root, nocow_ctx);
4462 		kfree(entry);
4463 		if (ret == COPY_COMPLETE) {
4464 			ret = 0;
4465 			break;
4466 		} else if (ret) {
4467 			break;
4468 		}
4469 	}
4470 out:
4471 	while (!list_empty(&nocow_ctx->inodes)) {
4472 		struct scrub_nocow_inode *entry;
4473 		entry = list_first_entry(&nocow_ctx->inodes,
4474 					 struct scrub_nocow_inode,
4475 					 list);
4476 		list_del_init(&entry->list);
4477 		kfree(entry);
4478 	}
4479 	if (trans && !IS_ERR(trans))
4480 		btrfs_end_transaction(trans);
4481 	if (not_written)
4482 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4483 					    num_uncorrectable_read_errors);
4484 
4485 	btrfs_free_path(path);
4486 	kfree(nocow_ctx);
4487 
4488 	scrub_pending_trans_workers_dec(sctx);
4489 }
4490 
4491 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4492 				 u64 logical)
4493 {
4494 	struct extent_state *cached_state = NULL;
4495 	struct btrfs_ordered_extent *ordered;
4496 	struct extent_io_tree *io_tree;
4497 	struct extent_map *em;
4498 	u64 lockstart = start, lockend = start + len - 1;
4499 	int ret = 0;
4500 
4501 	io_tree = &inode->io_tree;
4502 
4503 	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4504 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4505 	if (ordered) {
4506 		btrfs_put_ordered_extent(ordered);
4507 		ret = 1;
4508 		goto out_unlock;
4509 	}
4510 
4511 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4512 	if (IS_ERR(em)) {
4513 		ret = PTR_ERR(em);
4514 		goto out_unlock;
4515 	}
4516 
4517 	/*
4518 	 * This extent does not actually cover the logical extent anymore,
4519 	 * move on to the next inode.
4520 	 */
4521 	if (em->block_start > logical ||
4522 	    em->block_start + em->block_len < logical + len ||
4523 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4524 		free_extent_map(em);
4525 		ret = 1;
4526 		goto out_unlock;
4527 	}
4528 	free_extent_map(em);
4529 
4530 out_unlock:
4531 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4532 	return ret;
4533 }
4534 
4535 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4536 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4537 {
4538 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4539 	struct btrfs_key key;
4540 	struct inode *inode;
4541 	struct page *page;
4542 	struct btrfs_root *local_root;
4543 	struct extent_io_tree *io_tree;
4544 	u64 physical_for_dev_replace;
4545 	u64 nocow_ctx_logical;
4546 	u64 len = nocow_ctx->len;
4547 	unsigned long index;
4548 	int srcu_index;
4549 	int ret = 0;
4550 	int err = 0;
4551 
4552 	key.objectid = root;
4553 	key.type = BTRFS_ROOT_ITEM_KEY;
4554 	key.offset = (u64)-1;
4555 
4556 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4557 
4558 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4559 	if (IS_ERR(local_root)) {
4560 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4561 		return PTR_ERR(local_root);
4562 	}
4563 
4564 	key.type = BTRFS_INODE_ITEM_KEY;
4565 	key.objectid = inum;
4566 	key.offset = 0;
4567 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4568 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4569 	if (IS_ERR(inode))
4570 		return PTR_ERR(inode);
4571 
4572 	/* Avoid truncate/dio/punch hole.. */
4573 	inode_lock(inode);
4574 	inode_dio_wait(inode);
4575 
4576 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4577 	io_tree = &BTRFS_I(inode)->io_tree;
4578 	nocow_ctx_logical = nocow_ctx->logical;
4579 
4580 	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4581 			nocow_ctx_logical);
4582 	if (ret) {
4583 		ret = ret > 0 ? 0 : ret;
4584 		goto out;
4585 	}
4586 
4587 	while (len >= PAGE_SIZE) {
4588 		index = offset >> PAGE_SHIFT;
4589 again:
4590 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4591 		if (!page) {
4592 			btrfs_err(fs_info, "find_or_create_page() failed");
4593 			ret = -ENOMEM;
4594 			goto out;
4595 		}
4596 
4597 		if (PageUptodate(page)) {
4598 			if (PageDirty(page))
4599 				goto next_page;
4600 		} else {
4601 			ClearPageError(page);
4602 			err = extent_read_full_page(io_tree, page,
4603 							   btrfs_get_extent,
4604 							   nocow_ctx->mirror_num);
4605 			if (err) {
4606 				ret = err;
4607 				goto next_page;
4608 			}
4609 
4610 			lock_page(page);
4611 			/*
4612 			 * If the page has been remove from the page cache,
4613 			 * the data on it is meaningless, because it may be
4614 			 * old one, the new data may be written into the new
4615 			 * page in the page cache.
4616 			 */
4617 			if (page->mapping != inode->i_mapping) {
4618 				unlock_page(page);
4619 				put_page(page);
4620 				goto again;
4621 			}
4622 			if (!PageUptodate(page)) {
4623 				ret = -EIO;
4624 				goto next_page;
4625 			}
4626 		}
4627 
4628 		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4629 					    nocow_ctx_logical);
4630 		if (ret) {
4631 			ret = ret > 0 ? 0 : ret;
4632 			goto next_page;
4633 		}
4634 
4635 		err = write_page_nocow(nocow_ctx->sctx,
4636 				       physical_for_dev_replace, page);
4637 		if (err)
4638 			ret = err;
4639 next_page:
4640 		unlock_page(page);
4641 		put_page(page);
4642 
4643 		if (ret)
4644 			break;
4645 
4646 		offset += PAGE_SIZE;
4647 		physical_for_dev_replace += PAGE_SIZE;
4648 		nocow_ctx_logical += PAGE_SIZE;
4649 		len -= PAGE_SIZE;
4650 	}
4651 	ret = COPY_COMPLETE;
4652 out:
4653 	inode_unlock(inode);
4654 	iput(inode);
4655 	return ret;
4656 }
4657 
4658 static int write_page_nocow(struct scrub_ctx *sctx,
4659 			    u64 physical_for_dev_replace, struct page *page)
4660 {
4661 	struct bio *bio;
4662 	struct btrfs_device *dev;
4663 
4664 	dev = sctx->wr_tgtdev;
4665 	if (!dev)
4666 		return -EIO;
4667 	if (!dev->bdev) {
4668 		btrfs_warn_rl(dev->fs_info,
4669 			"scrub write_page_nocow(bdev == NULL) is unexpected");
4670 		return -EIO;
4671 	}
4672 	bio = btrfs_io_bio_alloc(1);
4673 	bio->bi_iter.bi_size = 0;
4674 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4675 	bio_set_dev(bio, dev->bdev);
4676 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4677 	/* bio_add_page won't fail on a freshly allocated bio */
4678 	bio_add_page(bio, page, PAGE_SIZE, 0);
4679 
4680 	if (btrfsic_submit_bio_wait(bio)) {
4681 		bio_put(bio);
4682 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4683 		return -EIO;
4684 	}
4685 
4686 	bio_put(bio);
4687 	return 0;
4688 }
4689