xref: /openbmc/linux/fs/btrfs/scrub.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_recover {
67 	atomic_t		refs;
68 	struct btrfs_bio	*bbio;
69 	u64			map_length;
70 };
71 
72 struct scrub_page {
73 	struct scrub_block	*sblock;
74 	struct page		*page;
75 	struct btrfs_device	*dev;
76 	struct list_head	list;
77 	u64			flags;  /* extent flags */
78 	u64			generation;
79 	u64			logical;
80 	u64			physical;
81 	u64			physical_for_dev_replace;
82 	atomic_t		refs;
83 	struct {
84 		unsigned int	mirror_num:8;
85 		unsigned int	have_csum:1;
86 		unsigned int	io_error:1;
87 	};
88 	u8			csum[BTRFS_CSUM_SIZE];
89 
90 	struct scrub_recover	*recover;
91 };
92 
93 struct scrub_bio {
94 	int			index;
95 	struct scrub_ctx	*sctx;
96 	struct btrfs_device	*dev;
97 	struct bio		*bio;
98 	int			err;
99 	u64			logical;
100 	u64			physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 	int			page_count;
107 	int			next_free;
108 	struct btrfs_work	work;
109 };
110 
111 struct scrub_block {
112 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 	int			page_count;
114 	atomic_t		outstanding_pages;
115 	atomic_t		refs; /* free mem on transition to zero */
116 	struct scrub_ctx	*sctx;
117 	struct scrub_parity	*sparity;
118 	struct {
119 		unsigned int	header_error:1;
120 		unsigned int	checksum_error:1;
121 		unsigned int	no_io_error_seen:1;
122 		unsigned int	generation_error:1; /* also sets header_error */
123 
124 		/* The following is for the data used to check parity */
125 		/* It is for the data with checksum */
126 		unsigned int	data_corrected:1;
127 	};
128 	struct btrfs_work	work;
129 };
130 
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity {
133 	struct scrub_ctx	*sctx;
134 
135 	struct btrfs_device	*scrub_dev;
136 
137 	u64			logic_start;
138 
139 	u64			logic_end;
140 
141 	int			nsectors;
142 
143 	int			stripe_len;
144 
145 	atomic_t		refs;
146 
147 	struct list_head	spages;
148 
149 	/* Work of parity check and repair */
150 	struct btrfs_work	work;
151 
152 	/* Mark the parity blocks which have data */
153 	unsigned long		*dbitmap;
154 
155 	/*
156 	 * Mark the parity blocks which have data, but errors happen when
157 	 * read data or check data
158 	 */
159 	unsigned long		*ebitmap;
160 
161 	unsigned long		bitmap[0];
162 };
163 
164 struct scrub_wr_ctx {
165 	struct scrub_bio *wr_curr_bio;
166 	struct btrfs_device *tgtdev;
167 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 	atomic_t flush_all_writes;
169 	struct mutex wr_lock;
170 };
171 
172 struct scrub_ctx {
173 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174 	struct btrfs_root	*dev_root;
175 	int			first_free;
176 	int			curr;
177 	atomic_t		bios_in_flight;
178 	atomic_t		workers_pending;
179 	spinlock_t		list_lock;
180 	wait_queue_head_t	list_wait;
181 	u16			csum_size;
182 	struct list_head	csum_list;
183 	atomic_t		cancel_req;
184 	int			readonly;
185 	int			pages_per_rd_bio;
186 	u32			sectorsize;
187 	u32			nodesize;
188 
189 	int			is_dev_replace;
190 	struct scrub_wr_ctx	wr_ctx;
191 
192 	/*
193 	 * statistics
194 	 */
195 	struct btrfs_scrub_progress stat;
196 	spinlock_t		stat_lock;
197 
198 	/*
199 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 	 * decrement bios_in_flight and workers_pending and then do a wakeup
201 	 * on the list_wait wait queue. We must ensure the main scrub task
202 	 * doesn't free the scrub context before or while the workers are
203 	 * doing the wakeup() call.
204 	 */
205 	atomic_t                refs;
206 };
207 
208 struct scrub_fixup_nodatasum {
209 	struct scrub_ctx	*sctx;
210 	struct btrfs_device	*dev;
211 	u64			logical;
212 	struct btrfs_root	*root;
213 	struct btrfs_work	work;
214 	int			mirror_num;
215 };
216 
217 struct scrub_nocow_inode {
218 	u64			inum;
219 	u64			offset;
220 	u64			root;
221 	struct list_head	list;
222 };
223 
224 struct scrub_copy_nocow_ctx {
225 	struct scrub_ctx	*sctx;
226 	u64			logical;
227 	u64			len;
228 	int			mirror_num;
229 	u64			physical_for_dev_replace;
230 	struct list_head	inodes;
231 	struct btrfs_work	work;
232 };
233 
234 struct scrub_warning {
235 	struct btrfs_path	*path;
236 	u64			extent_item_size;
237 	const char		*errstr;
238 	sector_t		sector;
239 	u64			logical;
240 	struct btrfs_device	*dev;
241 };
242 
243 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249 				     struct scrub_block *sblocks_for_recheck);
250 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 				struct scrub_block *sblock, int is_metadata,
252 				int have_csum, u8 *csum, u64 generation,
253 				u16 csum_size, int retry_failed_mirror);
254 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
255 					 struct scrub_block *sblock,
256 					 int is_metadata, int have_csum,
257 					 const u8 *csum, u64 generation,
258 					 u16 csum_size);
259 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
260 					     struct scrub_block *sblock_good);
261 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
262 					    struct scrub_block *sblock_good,
263 					    int page_num, int force_write);
264 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
265 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
266 					   int page_num);
267 static int scrub_checksum_data(struct scrub_block *sblock);
268 static int scrub_checksum_tree_block(struct scrub_block *sblock);
269 static int scrub_checksum_super(struct scrub_block *sblock);
270 static void scrub_block_get(struct scrub_block *sblock);
271 static void scrub_block_put(struct scrub_block *sblock);
272 static void scrub_page_get(struct scrub_page *spage);
273 static void scrub_page_put(struct scrub_page *spage);
274 static void scrub_parity_get(struct scrub_parity *sparity);
275 static void scrub_parity_put(struct scrub_parity *sparity);
276 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
277 				    struct scrub_page *spage);
278 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
279 		       u64 physical, struct btrfs_device *dev, u64 flags,
280 		       u64 gen, int mirror_num, u8 *csum, int force,
281 		       u64 physical_for_dev_replace);
282 static void scrub_bio_end_io(struct bio *bio);
283 static void scrub_bio_end_io_worker(struct btrfs_work *work);
284 static void scrub_block_complete(struct scrub_block *sblock);
285 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
286 			       u64 extent_logical, u64 extent_len,
287 			       u64 *extent_physical,
288 			       struct btrfs_device **extent_dev,
289 			       int *extent_mirror_num);
290 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
291 			      struct scrub_wr_ctx *wr_ctx,
292 			      struct btrfs_fs_info *fs_info,
293 			      struct btrfs_device *dev,
294 			      int is_dev_replace);
295 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
296 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
297 				    struct scrub_page *spage);
298 static void scrub_wr_submit(struct scrub_ctx *sctx);
299 static void scrub_wr_bio_end_io(struct bio *bio);
300 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
301 static int write_page_nocow(struct scrub_ctx *sctx,
302 			    u64 physical_for_dev_replace, struct page *page);
303 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
304 				      struct scrub_copy_nocow_ctx *ctx);
305 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
306 			    int mirror_num, u64 physical_for_dev_replace);
307 static void copy_nocow_pages_worker(struct btrfs_work *work);
308 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
309 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
310 static void scrub_put_ctx(struct scrub_ctx *sctx);
311 
312 
313 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
314 {
315 	atomic_inc(&sctx->refs);
316 	atomic_inc(&sctx->bios_in_flight);
317 }
318 
319 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
320 {
321 	atomic_dec(&sctx->bios_in_flight);
322 	wake_up(&sctx->list_wait);
323 	scrub_put_ctx(sctx);
324 }
325 
326 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
327 {
328 	while (atomic_read(&fs_info->scrub_pause_req)) {
329 		mutex_unlock(&fs_info->scrub_lock);
330 		wait_event(fs_info->scrub_pause_wait,
331 		   atomic_read(&fs_info->scrub_pause_req) == 0);
332 		mutex_lock(&fs_info->scrub_lock);
333 	}
334 }
335 
336 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
337 {
338 	atomic_inc(&fs_info->scrubs_paused);
339 	wake_up(&fs_info->scrub_pause_wait);
340 }
341 
342 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
343 {
344 	mutex_lock(&fs_info->scrub_lock);
345 	__scrub_blocked_if_needed(fs_info);
346 	atomic_dec(&fs_info->scrubs_paused);
347 	mutex_unlock(&fs_info->scrub_lock);
348 
349 	wake_up(&fs_info->scrub_pause_wait);
350 }
351 
352 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
353 {
354 	scrub_pause_on(fs_info);
355 	scrub_pause_off(fs_info);
356 }
357 
358 /*
359  * used for workers that require transaction commits (i.e., for the
360  * NOCOW case)
361  */
362 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
363 {
364 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
365 
366 	atomic_inc(&sctx->refs);
367 	/*
368 	 * increment scrubs_running to prevent cancel requests from
369 	 * completing as long as a worker is running. we must also
370 	 * increment scrubs_paused to prevent deadlocking on pause
371 	 * requests used for transactions commits (as the worker uses a
372 	 * transaction context). it is safe to regard the worker
373 	 * as paused for all matters practical. effectively, we only
374 	 * avoid cancellation requests from completing.
375 	 */
376 	mutex_lock(&fs_info->scrub_lock);
377 	atomic_inc(&fs_info->scrubs_running);
378 	atomic_inc(&fs_info->scrubs_paused);
379 	mutex_unlock(&fs_info->scrub_lock);
380 
381 	/*
382 	 * check if @scrubs_running=@scrubs_paused condition
383 	 * inside wait_event() is not an atomic operation.
384 	 * which means we may inc/dec @scrub_running/paused
385 	 * at any time. Let's wake up @scrub_pause_wait as
386 	 * much as we can to let commit transaction blocked less.
387 	 */
388 	wake_up(&fs_info->scrub_pause_wait);
389 
390 	atomic_inc(&sctx->workers_pending);
391 }
392 
393 /* used for workers that require transaction commits */
394 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
395 {
396 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
397 
398 	/*
399 	 * see scrub_pending_trans_workers_inc() why we're pretending
400 	 * to be paused in the scrub counters
401 	 */
402 	mutex_lock(&fs_info->scrub_lock);
403 	atomic_dec(&fs_info->scrubs_running);
404 	atomic_dec(&fs_info->scrubs_paused);
405 	mutex_unlock(&fs_info->scrub_lock);
406 	atomic_dec(&sctx->workers_pending);
407 	wake_up(&fs_info->scrub_pause_wait);
408 	wake_up(&sctx->list_wait);
409 	scrub_put_ctx(sctx);
410 }
411 
412 static void scrub_free_csums(struct scrub_ctx *sctx)
413 {
414 	while (!list_empty(&sctx->csum_list)) {
415 		struct btrfs_ordered_sum *sum;
416 		sum = list_first_entry(&sctx->csum_list,
417 				       struct btrfs_ordered_sum, list);
418 		list_del(&sum->list);
419 		kfree(sum);
420 	}
421 }
422 
423 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
424 {
425 	int i;
426 
427 	if (!sctx)
428 		return;
429 
430 	scrub_free_wr_ctx(&sctx->wr_ctx);
431 
432 	/* this can happen when scrub is cancelled */
433 	if (sctx->curr != -1) {
434 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
435 
436 		for (i = 0; i < sbio->page_count; i++) {
437 			WARN_ON(!sbio->pagev[i]->page);
438 			scrub_block_put(sbio->pagev[i]->sblock);
439 		}
440 		bio_put(sbio->bio);
441 	}
442 
443 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
444 		struct scrub_bio *sbio = sctx->bios[i];
445 
446 		if (!sbio)
447 			break;
448 		kfree(sbio);
449 	}
450 
451 	scrub_free_csums(sctx);
452 	kfree(sctx);
453 }
454 
455 static void scrub_put_ctx(struct scrub_ctx *sctx)
456 {
457 	if (atomic_dec_and_test(&sctx->refs))
458 		scrub_free_ctx(sctx);
459 }
460 
461 static noinline_for_stack
462 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
463 {
464 	struct scrub_ctx *sctx;
465 	int		i;
466 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
467 	int ret;
468 
469 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
470 	if (!sctx)
471 		goto nomem;
472 	atomic_set(&sctx->refs, 1);
473 	sctx->is_dev_replace = is_dev_replace;
474 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
475 	sctx->curr = -1;
476 	sctx->dev_root = dev->dev_root;
477 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
478 		struct scrub_bio *sbio;
479 
480 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
481 		if (!sbio)
482 			goto nomem;
483 		sctx->bios[i] = sbio;
484 
485 		sbio->index = i;
486 		sbio->sctx = sctx;
487 		sbio->page_count = 0;
488 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
489 				scrub_bio_end_io_worker, NULL, NULL);
490 
491 		if (i != SCRUB_BIOS_PER_SCTX - 1)
492 			sctx->bios[i]->next_free = i + 1;
493 		else
494 			sctx->bios[i]->next_free = -1;
495 	}
496 	sctx->first_free = 0;
497 	sctx->nodesize = dev->dev_root->nodesize;
498 	sctx->sectorsize = dev->dev_root->sectorsize;
499 	atomic_set(&sctx->bios_in_flight, 0);
500 	atomic_set(&sctx->workers_pending, 0);
501 	atomic_set(&sctx->cancel_req, 0);
502 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
503 	INIT_LIST_HEAD(&sctx->csum_list);
504 
505 	spin_lock_init(&sctx->list_lock);
506 	spin_lock_init(&sctx->stat_lock);
507 	init_waitqueue_head(&sctx->list_wait);
508 
509 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
510 				 fs_info->dev_replace.tgtdev, is_dev_replace);
511 	if (ret) {
512 		scrub_free_ctx(sctx);
513 		return ERR_PTR(ret);
514 	}
515 	return sctx;
516 
517 nomem:
518 	scrub_free_ctx(sctx);
519 	return ERR_PTR(-ENOMEM);
520 }
521 
522 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
523 				     void *warn_ctx)
524 {
525 	u64 isize;
526 	u32 nlink;
527 	int ret;
528 	int i;
529 	struct extent_buffer *eb;
530 	struct btrfs_inode_item *inode_item;
531 	struct scrub_warning *swarn = warn_ctx;
532 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
533 	struct inode_fs_paths *ipath = NULL;
534 	struct btrfs_root *local_root;
535 	struct btrfs_key root_key;
536 	struct btrfs_key key;
537 
538 	root_key.objectid = root;
539 	root_key.type = BTRFS_ROOT_ITEM_KEY;
540 	root_key.offset = (u64)-1;
541 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
542 	if (IS_ERR(local_root)) {
543 		ret = PTR_ERR(local_root);
544 		goto err;
545 	}
546 
547 	/*
548 	 * this makes the path point to (inum INODE_ITEM ioff)
549 	 */
550 	key.objectid = inum;
551 	key.type = BTRFS_INODE_ITEM_KEY;
552 	key.offset = 0;
553 
554 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
555 	if (ret) {
556 		btrfs_release_path(swarn->path);
557 		goto err;
558 	}
559 
560 	eb = swarn->path->nodes[0];
561 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
562 					struct btrfs_inode_item);
563 	isize = btrfs_inode_size(eb, inode_item);
564 	nlink = btrfs_inode_nlink(eb, inode_item);
565 	btrfs_release_path(swarn->path);
566 
567 	ipath = init_ipath(4096, local_root, swarn->path);
568 	if (IS_ERR(ipath)) {
569 		ret = PTR_ERR(ipath);
570 		ipath = NULL;
571 		goto err;
572 	}
573 	ret = paths_from_inode(inum, ipath);
574 
575 	if (ret < 0)
576 		goto err;
577 
578 	/*
579 	 * we deliberately ignore the bit ipath might have been too small to
580 	 * hold all of the paths here
581 	 */
582 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
583 		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
584 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
585 			"length %llu, links %u (path: %s)\n", swarn->errstr,
586 			swarn->logical, rcu_str_deref(swarn->dev->name),
587 			(unsigned long long)swarn->sector, root, inum, offset,
588 			min(isize - offset, (u64)PAGE_SIZE), nlink,
589 			(char *)(unsigned long)ipath->fspath->val[i]);
590 
591 	free_ipath(ipath);
592 	return 0;
593 
594 err:
595 	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
596 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
597 		"resolving failed with ret=%d\n", swarn->errstr,
598 		swarn->logical, rcu_str_deref(swarn->dev->name),
599 		(unsigned long long)swarn->sector, root, inum, offset, ret);
600 
601 	free_ipath(ipath);
602 	return 0;
603 }
604 
605 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
606 {
607 	struct btrfs_device *dev;
608 	struct btrfs_fs_info *fs_info;
609 	struct btrfs_path *path;
610 	struct btrfs_key found_key;
611 	struct extent_buffer *eb;
612 	struct btrfs_extent_item *ei;
613 	struct scrub_warning swarn;
614 	unsigned long ptr = 0;
615 	u64 extent_item_pos;
616 	u64 flags = 0;
617 	u64 ref_root;
618 	u32 item_size;
619 	u8 ref_level;
620 	int ret;
621 
622 	WARN_ON(sblock->page_count < 1);
623 	dev = sblock->pagev[0]->dev;
624 	fs_info = sblock->sctx->dev_root->fs_info;
625 
626 	path = btrfs_alloc_path();
627 	if (!path)
628 		return;
629 
630 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
631 	swarn.logical = sblock->pagev[0]->logical;
632 	swarn.errstr = errstr;
633 	swarn.dev = NULL;
634 
635 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
636 				  &flags);
637 	if (ret < 0)
638 		goto out;
639 
640 	extent_item_pos = swarn.logical - found_key.objectid;
641 	swarn.extent_item_size = found_key.offset;
642 
643 	eb = path->nodes[0];
644 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
645 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
646 
647 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
648 		do {
649 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
650 						      item_size, &ref_root,
651 						      &ref_level);
652 			printk_in_rcu(KERN_WARNING
653 				"BTRFS: %s at logical %llu on dev %s, "
654 				"sector %llu: metadata %s (level %d) in tree "
655 				"%llu\n", errstr, swarn.logical,
656 				rcu_str_deref(dev->name),
657 				(unsigned long long)swarn.sector,
658 				ref_level ? "node" : "leaf",
659 				ret < 0 ? -1 : ref_level,
660 				ret < 0 ? -1 : ref_root);
661 		} while (ret != 1);
662 		btrfs_release_path(path);
663 	} else {
664 		btrfs_release_path(path);
665 		swarn.path = path;
666 		swarn.dev = dev;
667 		iterate_extent_inodes(fs_info, found_key.objectid,
668 					extent_item_pos, 1,
669 					scrub_print_warning_inode, &swarn);
670 	}
671 
672 out:
673 	btrfs_free_path(path);
674 }
675 
676 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
677 {
678 	struct page *page = NULL;
679 	unsigned long index;
680 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
681 	int ret;
682 	int corrected = 0;
683 	struct btrfs_key key;
684 	struct inode *inode = NULL;
685 	struct btrfs_fs_info *fs_info;
686 	u64 end = offset + PAGE_SIZE - 1;
687 	struct btrfs_root *local_root;
688 	int srcu_index;
689 
690 	key.objectid = root;
691 	key.type = BTRFS_ROOT_ITEM_KEY;
692 	key.offset = (u64)-1;
693 
694 	fs_info = fixup->root->fs_info;
695 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
696 
697 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
698 	if (IS_ERR(local_root)) {
699 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
700 		return PTR_ERR(local_root);
701 	}
702 
703 	key.type = BTRFS_INODE_ITEM_KEY;
704 	key.objectid = inum;
705 	key.offset = 0;
706 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
707 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
708 	if (IS_ERR(inode))
709 		return PTR_ERR(inode);
710 
711 	index = offset >> PAGE_CACHE_SHIFT;
712 
713 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
714 	if (!page) {
715 		ret = -ENOMEM;
716 		goto out;
717 	}
718 
719 	if (PageUptodate(page)) {
720 		if (PageDirty(page)) {
721 			/*
722 			 * we need to write the data to the defect sector. the
723 			 * data that was in that sector is not in memory,
724 			 * because the page was modified. we must not write the
725 			 * modified page to that sector.
726 			 *
727 			 * TODO: what could be done here: wait for the delalloc
728 			 *       runner to write out that page (might involve
729 			 *       COW) and see whether the sector is still
730 			 *       referenced afterwards.
731 			 *
732 			 * For the meantime, we'll treat this error
733 			 * incorrectable, although there is a chance that a
734 			 * later scrub will find the bad sector again and that
735 			 * there's no dirty page in memory, then.
736 			 */
737 			ret = -EIO;
738 			goto out;
739 		}
740 		ret = repair_io_failure(inode, offset, PAGE_SIZE,
741 					fixup->logical, page,
742 					offset - page_offset(page),
743 					fixup->mirror_num);
744 		unlock_page(page);
745 		corrected = !ret;
746 	} else {
747 		/*
748 		 * we need to get good data first. the general readpage path
749 		 * will call repair_io_failure for us, we just have to make
750 		 * sure we read the bad mirror.
751 		 */
752 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
753 					EXTENT_DAMAGED, GFP_NOFS);
754 		if (ret) {
755 			/* set_extent_bits should give proper error */
756 			WARN_ON(ret > 0);
757 			if (ret > 0)
758 				ret = -EFAULT;
759 			goto out;
760 		}
761 
762 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
763 						btrfs_get_extent,
764 						fixup->mirror_num);
765 		wait_on_page_locked(page);
766 
767 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
768 						end, EXTENT_DAMAGED, 0, NULL);
769 		if (!corrected)
770 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
771 						EXTENT_DAMAGED, GFP_NOFS);
772 	}
773 
774 out:
775 	if (page)
776 		put_page(page);
777 
778 	iput(inode);
779 
780 	if (ret < 0)
781 		return ret;
782 
783 	if (ret == 0 && corrected) {
784 		/*
785 		 * we only need to call readpage for one of the inodes belonging
786 		 * to this extent. so make iterate_extent_inodes stop
787 		 */
788 		return 1;
789 	}
790 
791 	return -EIO;
792 }
793 
794 static void scrub_fixup_nodatasum(struct btrfs_work *work)
795 {
796 	int ret;
797 	struct scrub_fixup_nodatasum *fixup;
798 	struct scrub_ctx *sctx;
799 	struct btrfs_trans_handle *trans = NULL;
800 	struct btrfs_path *path;
801 	int uncorrectable = 0;
802 
803 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
804 	sctx = fixup->sctx;
805 
806 	path = btrfs_alloc_path();
807 	if (!path) {
808 		spin_lock(&sctx->stat_lock);
809 		++sctx->stat.malloc_errors;
810 		spin_unlock(&sctx->stat_lock);
811 		uncorrectable = 1;
812 		goto out;
813 	}
814 
815 	trans = btrfs_join_transaction(fixup->root);
816 	if (IS_ERR(trans)) {
817 		uncorrectable = 1;
818 		goto out;
819 	}
820 
821 	/*
822 	 * the idea is to trigger a regular read through the standard path. we
823 	 * read a page from the (failed) logical address by specifying the
824 	 * corresponding copynum of the failed sector. thus, that readpage is
825 	 * expected to fail.
826 	 * that is the point where on-the-fly error correction will kick in
827 	 * (once it's finished) and rewrite the failed sector if a good copy
828 	 * can be found.
829 	 */
830 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
831 						path, scrub_fixup_readpage,
832 						fixup);
833 	if (ret < 0) {
834 		uncorrectable = 1;
835 		goto out;
836 	}
837 	WARN_ON(ret != 1);
838 
839 	spin_lock(&sctx->stat_lock);
840 	++sctx->stat.corrected_errors;
841 	spin_unlock(&sctx->stat_lock);
842 
843 out:
844 	if (trans && !IS_ERR(trans))
845 		btrfs_end_transaction(trans, fixup->root);
846 	if (uncorrectable) {
847 		spin_lock(&sctx->stat_lock);
848 		++sctx->stat.uncorrectable_errors;
849 		spin_unlock(&sctx->stat_lock);
850 		btrfs_dev_replace_stats_inc(
851 			&sctx->dev_root->fs_info->dev_replace.
852 			num_uncorrectable_read_errors);
853 		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
854 		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
855 			fixup->logical, rcu_str_deref(fixup->dev->name));
856 	}
857 
858 	btrfs_free_path(path);
859 	kfree(fixup);
860 
861 	scrub_pending_trans_workers_dec(sctx);
862 }
863 
864 static inline void scrub_get_recover(struct scrub_recover *recover)
865 {
866 	atomic_inc(&recover->refs);
867 }
868 
869 static inline void scrub_put_recover(struct scrub_recover *recover)
870 {
871 	if (atomic_dec_and_test(&recover->refs)) {
872 		btrfs_put_bbio(recover->bbio);
873 		kfree(recover);
874 	}
875 }
876 
877 /*
878  * scrub_handle_errored_block gets called when either verification of the
879  * pages failed or the bio failed to read, e.g. with EIO. In the latter
880  * case, this function handles all pages in the bio, even though only one
881  * may be bad.
882  * The goal of this function is to repair the errored block by using the
883  * contents of one of the mirrors.
884  */
885 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
886 {
887 	struct scrub_ctx *sctx = sblock_to_check->sctx;
888 	struct btrfs_device *dev;
889 	struct btrfs_fs_info *fs_info;
890 	u64 length;
891 	u64 logical;
892 	u64 generation;
893 	unsigned int failed_mirror_index;
894 	unsigned int is_metadata;
895 	unsigned int have_csum;
896 	u8 *csum;
897 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
898 	struct scrub_block *sblock_bad;
899 	int ret;
900 	int mirror_index;
901 	int page_num;
902 	int success;
903 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
904 				      DEFAULT_RATELIMIT_BURST);
905 
906 	BUG_ON(sblock_to_check->page_count < 1);
907 	fs_info = sctx->dev_root->fs_info;
908 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
909 		/*
910 		 * if we find an error in a super block, we just report it.
911 		 * They will get written with the next transaction commit
912 		 * anyway
913 		 */
914 		spin_lock(&sctx->stat_lock);
915 		++sctx->stat.super_errors;
916 		spin_unlock(&sctx->stat_lock);
917 		return 0;
918 	}
919 	length = sblock_to_check->page_count * PAGE_SIZE;
920 	logical = sblock_to_check->pagev[0]->logical;
921 	generation = sblock_to_check->pagev[0]->generation;
922 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
923 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
924 	is_metadata = !(sblock_to_check->pagev[0]->flags &
925 			BTRFS_EXTENT_FLAG_DATA);
926 	have_csum = sblock_to_check->pagev[0]->have_csum;
927 	csum = sblock_to_check->pagev[0]->csum;
928 	dev = sblock_to_check->pagev[0]->dev;
929 
930 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
931 		sblocks_for_recheck = NULL;
932 		goto nodatasum_case;
933 	}
934 
935 	/*
936 	 * read all mirrors one after the other. This includes to
937 	 * re-read the extent or metadata block that failed (that was
938 	 * the cause that this fixup code is called) another time,
939 	 * page by page this time in order to know which pages
940 	 * caused I/O errors and which ones are good (for all mirrors).
941 	 * It is the goal to handle the situation when more than one
942 	 * mirror contains I/O errors, but the errors do not
943 	 * overlap, i.e. the data can be repaired by selecting the
944 	 * pages from those mirrors without I/O error on the
945 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
946 	 * would be that mirror #1 has an I/O error on the first page,
947 	 * the second page is good, and mirror #2 has an I/O error on
948 	 * the second page, but the first page is good.
949 	 * Then the first page of the first mirror can be repaired by
950 	 * taking the first page of the second mirror, and the
951 	 * second page of the second mirror can be repaired by
952 	 * copying the contents of the 2nd page of the 1st mirror.
953 	 * One more note: if the pages of one mirror contain I/O
954 	 * errors, the checksum cannot be verified. In order to get
955 	 * the best data for repairing, the first attempt is to find
956 	 * a mirror without I/O errors and with a validated checksum.
957 	 * Only if this is not possible, the pages are picked from
958 	 * mirrors with I/O errors without considering the checksum.
959 	 * If the latter is the case, at the end, the checksum of the
960 	 * repaired area is verified in order to correctly maintain
961 	 * the statistics.
962 	 */
963 
964 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
965 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
966 	if (!sblocks_for_recheck) {
967 		spin_lock(&sctx->stat_lock);
968 		sctx->stat.malloc_errors++;
969 		sctx->stat.read_errors++;
970 		sctx->stat.uncorrectable_errors++;
971 		spin_unlock(&sctx->stat_lock);
972 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
973 		goto out;
974 	}
975 
976 	/* setup the context, map the logical blocks and alloc the pages */
977 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
978 	if (ret) {
979 		spin_lock(&sctx->stat_lock);
980 		sctx->stat.read_errors++;
981 		sctx->stat.uncorrectable_errors++;
982 		spin_unlock(&sctx->stat_lock);
983 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
984 		goto out;
985 	}
986 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
987 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
988 
989 	/* build and submit the bios for the failed mirror, check checksums */
990 	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
991 			    csum, generation, sctx->csum_size, 1);
992 
993 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
994 	    sblock_bad->no_io_error_seen) {
995 		/*
996 		 * the error disappeared after reading page by page, or
997 		 * the area was part of a huge bio and other parts of the
998 		 * bio caused I/O errors, or the block layer merged several
999 		 * read requests into one and the error is caused by a
1000 		 * different bio (usually one of the two latter cases is
1001 		 * the cause)
1002 		 */
1003 		spin_lock(&sctx->stat_lock);
1004 		sctx->stat.unverified_errors++;
1005 		sblock_to_check->data_corrected = 1;
1006 		spin_unlock(&sctx->stat_lock);
1007 
1008 		if (sctx->is_dev_replace)
1009 			scrub_write_block_to_dev_replace(sblock_bad);
1010 		goto out;
1011 	}
1012 
1013 	if (!sblock_bad->no_io_error_seen) {
1014 		spin_lock(&sctx->stat_lock);
1015 		sctx->stat.read_errors++;
1016 		spin_unlock(&sctx->stat_lock);
1017 		if (__ratelimit(&_rs))
1018 			scrub_print_warning("i/o error", sblock_to_check);
1019 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1020 	} else if (sblock_bad->checksum_error) {
1021 		spin_lock(&sctx->stat_lock);
1022 		sctx->stat.csum_errors++;
1023 		spin_unlock(&sctx->stat_lock);
1024 		if (__ratelimit(&_rs))
1025 			scrub_print_warning("checksum error", sblock_to_check);
1026 		btrfs_dev_stat_inc_and_print(dev,
1027 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1028 	} else if (sblock_bad->header_error) {
1029 		spin_lock(&sctx->stat_lock);
1030 		sctx->stat.verify_errors++;
1031 		spin_unlock(&sctx->stat_lock);
1032 		if (__ratelimit(&_rs))
1033 			scrub_print_warning("checksum/header error",
1034 					    sblock_to_check);
1035 		if (sblock_bad->generation_error)
1036 			btrfs_dev_stat_inc_and_print(dev,
1037 				BTRFS_DEV_STAT_GENERATION_ERRS);
1038 		else
1039 			btrfs_dev_stat_inc_and_print(dev,
1040 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1041 	}
1042 
1043 	if (sctx->readonly) {
1044 		ASSERT(!sctx->is_dev_replace);
1045 		goto out;
1046 	}
1047 
1048 	if (!is_metadata && !have_csum) {
1049 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1050 
1051 		WARN_ON(sctx->is_dev_replace);
1052 
1053 nodatasum_case:
1054 
1055 		/*
1056 		 * !is_metadata and !have_csum, this means that the data
1057 		 * might not be COW'ed, that it might be modified
1058 		 * concurrently. The general strategy to work on the
1059 		 * commit root does not help in the case when COW is not
1060 		 * used.
1061 		 */
1062 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1063 		if (!fixup_nodatasum)
1064 			goto did_not_correct_error;
1065 		fixup_nodatasum->sctx = sctx;
1066 		fixup_nodatasum->dev = dev;
1067 		fixup_nodatasum->logical = logical;
1068 		fixup_nodatasum->root = fs_info->extent_root;
1069 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1070 		scrub_pending_trans_workers_inc(sctx);
1071 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1072 				scrub_fixup_nodatasum, NULL, NULL);
1073 		btrfs_queue_work(fs_info->scrub_workers,
1074 				 &fixup_nodatasum->work);
1075 		goto out;
1076 	}
1077 
1078 	/*
1079 	 * now build and submit the bios for the other mirrors, check
1080 	 * checksums.
1081 	 * First try to pick the mirror which is completely without I/O
1082 	 * errors and also does not have a checksum error.
1083 	 * If one is found, and if a checksum is present, the full block
1084 	 * that is known to contain an error is rewritten. Afterwards
1085 	 * the block is known to be corrected.
1086 	 * If a mirror is found which is completely correct, and no
1087 	 * checksum is present, only those pages are rewritten that had
1088 	 * an I/O error in the block to be repaired, since it cannot be
1089 	 * determined, which copy of the other pages is better (and it
1090 	 * could happen otherwise that a correct page would be
1091 	 * overwritten by a bad one).
1092 	 */
1093 	for (mirror_index = 0;
1094 	     mirror_index < BTRFS_MAX_MIRRORS &&
1095 	     sblocks_for_recheck[mirror_index].page_count > 0;
1096 	     mirror_index++) {
1097 		struct scrub_block *sblock_other;
1098 
1099 		if (mirror_index == failed_mirror_index)
1100 			continue;
1101 		sblock_other = sblocks_for_recheck + mirror_index;
1102 
1103 		/* build and submit the bios, check checksums */
1104 		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1105 				    have_csum, csum, generation,
1106 				    sctx->csum_size, 0);
1107 
1108 		if (!sblock_other->header_error &&
1109 		    !sblock_other->checksum_error &&
1110 		    sblock_other->no_io_error_seen) {
1111 			if (sctx->is_dev_replace) {
1112 				scrub_write_block_to_dev_replace(sblock_other);
1113 				goto corrected_error;
1114 			} else {
1115 				ret = scrub_repair_block_from_good_copy(
1116 						sblock_bad, sblock_other);
1117 				if (!ret)
1118 					goto corrected_error;
1119 			}
1120 		}
1121 	}
1122 
1123 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1124 		goto did_not_correct_error;
1125 
1126 	/*
1127 	 * In case of I/O errors in the area that is supposed to be
1128 	 * repaired, continue by picking good copies of those pages.
1129 	 * Select the good pages from mirrors to rewrite bad pages from
1130 	 * the area to fix. Afterwards verify the checksum of the block
1131 	 * that is supposed to be repaired. This verification step is
1132 	 * only done for the purpose of statistic counting and for the
1133 	 * final scrub report, whether errors remain.
1134 	 * A perfect algorithm could make use of the checksum and try
1135 	 * all possible combinations of pages from the different mirrors
1136 	 * until the checksum verification succeeds. For example, when
1137 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1138 	 * of mirror #2 is readable but the final checksum test fails,
1139 	 * then the 2nd page of mirror #3 could be tried, whether now
1140 	 * the final checksum succeedes. But this would be a rare
1141 	 * exception and is therefore not implemented. At least it is
1142 	 * avoided that the good copy is overwritten.
1143 	 * A more useful improvement would be to pick the sectors
1144 	 * without I/O error based on sector sizes (512 bytes on legacy
1145 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1146 	 * mirror could be repaired by taking 512 byte of a different
1147 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1148 	 * area are unreadable.
1149 	 */
1150 	success = 1;
1151 	for (page_num = 0; page_num < sblock_bad->page_count;
1152 	     page_num++) {
1153 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1154 		struct scrub_block *sblock_other = NULL;
1155 
1156 		/* skip no-io-error page in scrub */
1157 		if (!page_bad->io_error && !sctx->is_dev_replace)
1158 			continue;
1159 
1160 		/* try to find no-io-error page in mirrors */
1161 		if (page_bad->io_error) {
1162 			for (mirror_index = 0;
1163 			     mirror_index < BTRFS_MAX_MIRRORS &&
1164 			     sblocks_for_recheck[mirror_index].page_count > 0;
1165 			     mirror_index++) {
1166 				if (!sblocks_for_recheck[mirror_index].
1167 				    pagev[page_num]->io_error) {
1168 					sblock_other = sblocks_for_recheck +
1169 						       mirror_index;
1170 					break;
1171 				}
1172 			}
1173 			if (!sblock_other)
1174 				success = 0;
1175 		}
1176 
1177 		if (sctx->is_dev_replace) {
1178 			/*
1179 			 * did not find a mirror to fetch the page
1180 			 * from. scrub_write_page_to_dev_replace()
1181 			 * handles this case (page->io_error), by
1182 			 * filling the block with zeros before
1183 			 * submitting the write request
1184 			 */
1185 			if (!sblock_other)
1186 				sblock_other = sblock_bad;
1187 
1188 			if (scrub_write_page_to_dev_replace(sblock_other,
1189 							    page_num) != 0) {
1190 				btrfs_dev_replace_stats_inc(
1191 					&sctx->dev_root->
1192 					fs_info->dev_replace.
1193 					num_write_errors);
1194 				success = 0;
1195 			}
1196 		} else if (sblock_other) {
1197 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1198 							       sblock_other,
1199 							       page_num, 0);
1200 			if (0 == ret)
1201 				page_bad->io_error = 0;
1202 			else
1203 				success = 0;
1204 		}
1205 	}
1206 
1207 	if (success && !sctx->is_dev_replace) {
1208 		if (is_metadata || have_csum) {
1209 			/*
1210 			 * need to verify the checksum now that all
1211 			 * sectors on disk are repaired (the write
1212 			 * request for data to be repaired is on its way).
1213 			 * Just be lazy and use scrub_recheck_block()
1214 			 * which re-reads the data before the checksum
1215 			 * is verified, but most likely the data comes out
1216 			 * of the page cache.
1217 			 */
1218 			scrub_recheck_block(fs_info, sblock_bad,
1219 					    is_metadata, have_csum, csum,
1220 					    generation, sctx->csum_size, 1);
1221 			if (!sblock_bad->header_error &&
1222 			    !sblock_bad->checksum_error &&
1223 			    sblock_bad->no_io_error_seen)
1224 				goto corrected_error;
1225 			else
1226 				goto did_not_correct_error;
1227 		} else {
1228 corrected_error:
1229 			spin_lock(&sctx->stat_lock);
1230 			sctx->stat.corrected_errors++;
1231 			sblock_to_check->data_corrected = 1;
1232 			spin_unlock(&sctx->stat_lock);
1233 			printk_ratelimited_in_rcu(KERN_ERR
1234 				"BTRFS: fixed up error at logical %llu on dev %s\n",
1235 				logical, rcu_str_deref(dev->name));
1236 		}
1237 	} else {
1238 did_not_correct_error:
1239 		spin_lock(&sctx->stat_lock);
1240 		sctx->stat.uncorrectable_errors++;
1241 		spin_unlock(&sctx->stat_lock);
1242 		printk_ratelimited_in_rcu(KERN_ERR
1243 			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1244 			logical, rcu_str_deref(dev->name));
1245 	}
1246 
1247 out:
1248 	if (sblocks_for_recheck) {
1249 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1250 		     mirror_index++) {
1251 			struct scrub_block *sblock = sblocks_for_recheck +
1252 						     mirror_index;
1253 			struct scrub_recover *recover;
1254 			int page_index;
1255 
1256 			for (page_index = 0; page_index < sblock->page_count;
1257 			     page_index++) {
1258 				sblock->pagev[page_index]->sblock = NULL;
1259 				recover = sblock->pagev[page_index]->recover;
1260 				if (recover) {
1261 					scrub_put_recover(recover);
1262 					sblock->pagev[page_index]->recover =
1263 									NULL;
1264 				}
1265 				scrub_page_put(sblock->pagev[page_index]);
1266 			}
1267 		}
1268 		kfree(sblocks_for_recheck);
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1275 {
1276 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1277 		return 2;
1278 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1279 		return 3;
1280 	else
1281 		return (int)bbio->num_stripes;
1282 }
1283 
1284 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1285 						 u64 *raid_map,
1286 						 u64 mapped_length,
1287 						 int nstripes, int mirror,
1288 						 int *stripe_index,
1289 						 u64 *stripe_offset)
1290 {
1291 	int i;
1292 
1293 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1294 		/* RAID5/6 */
1295 		for (i = 0; i < nstripes; i++) {
1296 			if (raid_map[i] == RAID6_Q_STRIPE ||
1297 			    raid_map[i] == RAID5_P_STRIPE)
1298 				continue;
1299 
1300 			if (logical >= raid_map[i] &&
1301 			    logical < raid_map[i] + mapped_length)
1302 				break;
1303 		}
1304 
1305 		*stripe_index = i;
1306 		*stripe_offset = logical - raid_map[i];
1307 	} else {
1308 		/* The other RAID type */
1309 		*stripe_index = mirror;
1310 		*stripe_offset = 0;
1311 	}
1312 }
1313 
1314 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1315 				     struct scrub_block *sblocks_for_recheck)
1316 {
1317 	struct scrub_ctx *sctx = original_sblock->sctx;
1318 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1319 	u64 length = original_sblock->page_count * PAGE_SIZE;
1320 	u64 logical = original_sblock->pagev[0]->logical;
1321 	struct scrub_recover *recover;
1322 	struct btrfs_bio *bbio;
1323 	u64 sublen;
1324 	u64 mapped_length;
1325 	u64 stripe_offset;
1326 	int stripe_index;
1327 	int page_index = 0;
1328 	int mirror_index;
1329 	int nmirrors;
1330 	int ret;
1331 
1332 	/*
1333 	 * note: the two members refs and outstanding_pages
1334 	 * are not used (and not set) in the blocks that are used for
1335 	 * the recheck procedure
1336 	 */
1337 
1338 	while (length > 0) {
1339 		sublen = min_t(u64, length, PAGE_SIZE);
1340 		mapped_length = sublen;
1341 		bbio = NULL;
1342 
1343 		/*
1344 		 * with a length of PAGE_SIZE, each returned stripe
1345 		 * represents one mirror
1346 		 */
1347 		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1348 				       &mapped_length, &bbio, 0, 1);
1349 		if (ret || !bbio || mapped_length < sublen) {
1350 			btrfs_put_bbio(bbio);
1351 			return -EIO;
1352 		}
1353 
1354 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1355 		if (!recover) {
1356 			btrfs_put_bbio(bbio);
1357 			return -ENOMEM;
1358 		}
1359 
1360 		atomic_set(&recover->refs, 1);
1361 		recover->bbio = bbio;
1362 		recover->map_length = mapped_length;
1363 
1364 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1365 
1366 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1367 
1368 		for (mirror_index = 0; mirror_index < nmirrors;
1369 		     mirror_index++) {
1370 			struct scrub_block *sblock;
1371 			struct scrub_page *page;
1372 
1373 			sblock = sblocks_for_recheck + mirror_index;
1374 			sblock->sctx = sctx;
1375 			page = kzalloc(sizeof(*page), GFP_NOFS);
1376 			if (!page) {
1377 leave_nomem:
1378 				spin_lock(&sctx->stat_lock);
1379 				sctx->stat.malloc_errors++;
1380 				spin_unlock(&sctx->stat_lock);
1381 				scrub_put_recover(recover);
1382 				return -ENOMEM;
1383 			}
1384 			scrub_page_get(page);
1385 			sblock->pagev[page_index] = page;
1386 			page->logical = logical;
1387 
1388 			scrub_stripe_index_and_offset(logical,
1389 						      bbio->map_type,
1390 						      bbio->raid_map,
1391 						      mapped_length,
1392 						      bbio->num_stripes -
1393 						      bbio->num_tgtdevs,
1394 						      mirror_index,
1395 						      &stripe_index,
1396 						      &stripe_offset);
1397 			page->physical = bbio->stripes[stripe_index].physical +
1398 					 stripe_offset;
1399 			page->dev = bbio->stripes[stripe_index].dev;
1400 
1401 			BUG_ON(page_index >= original_sblock->page_count);
1402 			page->physical_for_dev_replace =
1403 				original_sblock->pagev[page_index]->
1404 				physical_for_dev_replace;
1405 			/* for missing devices, dev->bdev is NULL */
1406 			page->mirror_num = mirror_index + 1;
1407 			sblock->page_count++;
1408 			page->page = alloc_page(GFP_NOFS);
1409 			if (!page->page)
1410 				goto leave_nomem;
1411 
1412 			scrub_get_recover(recover);
1413 			page->recover = recover;
1414 		}
1415 		scrub_put_recover(recover);
1416 		length -= sublen;
1417 		logical += sublen;
1418 		page_index++;
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 struct scrub_bio_ret {
1425 	struct completion event;
1426 	int error;
1427 };
1428 
1429 static void scrub_bio_wait_endio(struct bio *bio)
1430 {
1431 	struct scrub_bio_ret *ret = bio->bi_private;
1432 
1433 	ret->error = bio->bi_error;
1434 	complete(&ret->event);
1435 }
1436 
1437 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1438 {
1439 	return page->recover &&
1440 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1441 }
1442 
1443 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1444 					struct bio *bio,
1445 					struct scrub_page *page)
1446 {
1447 	struct scrub_bio_ret done;
1448 	int ret;
1449 
1450 	init_completion(&done.event);
1451 	done.error = 0;
1452 	bio->bi_iter.bi_sector = page->logical >> 9;
1453 	bio->bi_private = &done;
1454 	bio->bi_end_io = scrub_bio_wait_endio;
1455 
1456 	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1457 				    page->recover->map_length,
1458 				    page->mirror_num, 0);
1459 	if (ret)
1460 		return ret;
1461 
1462 	wait_for_completion(&done.event);
1463 	if (done.error)
1464 		return -EIO;
1465 
1466 	return 0;
1467 }
1468 
1469 /*
1470  * this function will check the on disk data for checksum errors, header
1471  * errors and read I/O errors. If any I/O errors happen, the exact pages
1472  * which are errored are marked as being bad. The goal is to enable scrub
1473  * to take those pages that are not errored from all the mirrors so that
1474  * the pages that are errored in the just handled mirror can be repaired.
1475  */
1476 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1477 				struct scrub_block *sblock, int is_metadata,
1478 				int have_csum, u8 *csum, u64 generation,
1479 				u16 csum_size, int retry_failed_mirror)
1480 {
1481 	int page_num;
1482 
1483 	sblock->no_io_error_seen = 1;
1484 	sblock->header_error = 0;
1485 	sblock->checksum_error = 0;
1486 
1487 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1488 		struct bio *bio;
1489 		struct scrub_page *page = sblock->pagev[page_num];
1490 
1491 		if (page->dev->bdev == NULL) {
1492 			page->io_error = 1;
1493 			sblock->no_io_error_seen = 0;
1494 			continue;
1495 		}
1496 
1497 		WARN_ON(!page->page);
1498 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1499 		if (!bio) {
1500 			page->io_error = 1;
1501 			sblock->no_io_error_seen = 0;
1502 			continue;
1503 		}
1504 		bio->bi_bdev = page->dev->bdev;
1505 
1506 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1507 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1508 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1509 				sblock->no_io_error_seen = 0;
1510 		} else {
1511 			bio->bi_iter.bi_sector = page->physical >> 9;
1512 
1513 			if (btrfsic_submit_bio_wait(READ, bio))
1514 				sblock->no_io_error_seen = 0;
1515 		}
1516 
1517 		bio_put(bio);
1518 	}
1519 
1520 	if (sblock->no_io_error_seen)
1521 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1522 					     have_csum, csum, generation,
1523 					     csum_size);
1524 
1525 	return;
1526 }
1527 
1528 static inline int scrub_check_fsid(u8 fsid[],
1529 				   struct scrub_page *spage)
1530 {
1531 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1532 	int ret;
1533 
1534 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1535 	return !ret;
1536 }
1537 
1538 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1539 					 struct scrub_block *sblock,
1540 					 int is_metadata, int have_csum,
1541 					 const u8 *csum, u64 generation,
1542 					 u16 csum_size)
1543 {
1544 	int page_num;
1545 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1546 	u32 crc = ~(u32)0;
1547 	void *mapped_buffer;
1548 
1549 	WARN_ON(!sblock->pagev[0]->page);
1550 	if (is_metadata) {
1551 		struct btrfs_header *h;
1552 
1553 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1554 		h = (struct btrfs_header *)mapped_buffer;
1555 
1556 		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1557 		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1558 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1559 			   BTRFS_UUID_SIZE)) {
1560 			sblock->header_error = 1;
1561 		} else if (generation != btrfs_stack_header_generation(h)) {
1562 			sblock->header_error = 1;
1563 			sblock->generation_error = 1;
1564 		}
1565 		csum = h->csum;
1566 	} else {
1567 		if (!have_csum)
1568 			return;
1569 
1570 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1571 	}
1572 
1573 	for (page_num = 0;;) {
1574 		if (page_num == 0 && is_metadata)
1575 			crc = btrfs_csum_data(
1576 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1577 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1578 		else
1579 			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1580 
1581 		kunmap_atomic(mapped_buffer);
1582 		page_num++;
1583 		if (page_num >= sblock->page_count)
1584 			break;
1585 		WARN_ON(!sblock->pagev[page_num]->page);
1586 
1587 		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1588 	}
1589 
1590 	btrfs_csum_final(crc, calculated_csum);
1591 	if (memcmp(calculated_csum, csum, csum_size))
1592 		sblock->checksum_error = 1;
1593 }
1594 
1595 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1596 					     struct scrub_block *sblock_good)
1597 {
1598 	int page_num;
1599 	int ret = 0;
1600 
1601 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1602 		int ret_sub;
1603 
1604 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1605 							   sblock_good,
1606 							   page_num, 1);
1607 		if (ret_sub)
1608 			ret = ret_sub;
1609 	}
1610 
1611 	return ret;
1612 }
1613 
1614 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1615 					    struct scrub_block *sblock_good,
1616 					    int page_num, int force_write)
1617 {
1618 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1619 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1620 
1621 	BUG_ON(page_bad->page == NULL);
1622 	BUG_ON(page_good->page == NULL);
1623 	if (force_write || sblock_bad->header_error ||
1624 	    sblock_bad->checksum_error || page_bad->io_error) {
1625 		struct bio *bio;
1626 		int ret;
1627 
1628 		if (!page_bad->dev->bdev) {
1629 			printk_ratelimited(KERN_WARNING "BTRFS: "
1630 				"scrub_repair_page_from_good_copy(bdev == NULL) "
1631 				"is unexpected!\n");
1632 			return -EIO;
1633 		}
1634 
1635 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1636 		if (!bio)
1637 			return -EIO;
1638 		bio->bi_bdev = page_bad->dev->bdev;
1639 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1640 
1641 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1642 		if (PAGE_SIZE != ret) {
1643 			bio_put(bio);
1644 			return -EIO;
1645 		}
1646 
1647 		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1648 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1649 				BTRFS_DEV_STAT_WRITE_ERRS);
1650 			btrfs_dev_replace_stats_inc(
1651 				&sblock_bad->sctx->dev_root->fs_info->
1652 				dev_replace.num_write_errors);
1653 			bio_put(bio);
1654 			return -EIO;
1655 		}
1656 		bio_put(bio);
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1663 {
1664 	int page_num;
1665 
1666 	/*
1667 	 * This block is used for the check of the parity on the source device,
1668 	 * so the data needn't be written into the destination device.
1669 	 */
1670 	if (sblock->sparity)
1671 		return;
1672 
1673 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1674 		int ret;
1675 
1676 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1677 		if (ret)
1678 			btrfs_dev_replace_stats_inc(
1679 				&sblock->sctx->dev_root->fs_info->dev_replace.
1680 				num_write_errors);
1681 	}
1682 }
1683 
1684 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1685 					   int page_num)
1686 {
1687 	struct scrub_page *spage = sblock->pagev[page_num];
1688 
1689 	BUG_ON(spage->page == NULL);
1690 	if (spage->io_error) {
1691 		void *mapped_buffer = kmap_atomic(spage->page);
1692 
1693 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1694 		flush_dcache_page(spage->page);
1695 		kunmap_atomic(mapped_buffer);
1696 	}
1697 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1698 }
1699 
1700 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1701 				    struct scrub_page *spage)
1702 {
1703 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1704 	struct scrub_bio *sbio;
1705 	int ret;
1706 
1707 	mutex_lock(&wr_ctx->wr_lock);
1708 again:
1709 	if (!wr_ctx->wr_curr_bio) {
1710 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1711 					      GFP_NOFS);
1712 		if (!wr_ctx->wr_curr_bio) {
1713 			mutex_unlock(&wr_ctx->wr_lock);
1714 			return -ENOMEM;
1715 		}
1716 		wr_ctx->wr_curr_bio->sctx = sctx;
1717 		wr_ctx->wr_curr_bio->page_count = 0;
1718 	}
1719 	sbio = wr_ctx->wr_curr_bio;
1720 	if (sbio->page_count == 0) {
1721 		struct bio *bio;
1722 
1723 		sbio->physical = spage->physical_for_dev_replace;
1724 		sbio->logical = spage->logical;
1725 		sbio->dev = wr_ctx->tgtdev;
1726 		bio = sbio->bio;
1727 		if (!bio) {
1728 			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1729 			if (!bio) {
1730 				mutex_unlock(&wr_ctx->wr_lock);
1731 				return -ENOMEM;
1732 			}
1733 			sbio->bio = bio;
1734 		}
1735 
1736 		bio->bi_private = sbio;
1737 		bio->bi_end_io = scrub_wr_bio_end_io;
1738 		bio->bi_bdev = sbio->dev->bdev;
1739 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1740 		sbio->err = 0;
1741 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1742 		   spage->physical_for_dev_replace ||
1743 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1744 		   spage->logical) {
1745 		scrub_wr_submit(sctx);
1746 		goto again;
1747 	}
1748 
1749 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1750 	if (ret != PAGE_SIZE) {
1751 		if (sbio->page_count < 1) {
1752 			bio_put(sbio->bio);
1753 			sbio->bio = NULL;
1754 			mutex_unlock(&wr_ctx->wr_lock);
1755 			return -EIO;
1756 		}
1757 		scrub_wr_submit(sctx);
1758 		goto again;
1759 	}
1760 
1761 	sbio->pagev[sbio->page_count] = spage;
1762 	scrub_page_get(spage);
1763 	sbio->page_count++;
1764 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1765 		scrub_wr_submit(sctx);
1766 	mutex_unlock(&wr_ctx->wr_lock);
1767 
1768 	return 0;
1769 }
1770 
1771 static void scrub_wr_submit(struct scrub_ctx *sctx)
1772 {
1773 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1774 	struct scrub_bio *sbio;
1775 
1776 	if (!wr_ctx->wr_curr_bio)
1777 		return;
1778 
1779 	sbio = wr_ctx->wr_curr_bio;
1780 	wr_ctx->wr_curr_bio = NULL;
1781 	WARN_ON(!sbio->bio->bi_bdev);
1782 	scrub_pending_bio_inc(sctx);
1783 	/* process all writes in a single worker thread. Then the block layer
1784 	 * orders the requests before sending them to the driver which
1785 	 * doubled the write performance on spinning disks when measured
1786 	 * with Linux 3.5 */
1787 	btrfsic_submit_bio(WRITE, sbio->bio);
1788 }
1789 
1790 static void scrub_wr_bio_end_io(struct bio *bio)
1791 {
1792 	struct scrub_bio *sbio = bio->bi_private;
1793 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1794 
1795 	sbio->err = bio->bi_error;
1796 	sbio->bio = bio;
1797 
1798 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1799 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1800 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1801 }
1802 
1803 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1804 {
1805 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1806 	struct scrub_ctx *sctx = sbio->sctx;
1807 	int i;
1808 
1809 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1810 	if (sbio->err) {
1811 		struct btrfs_dev_replace *dev_replace =
1812 			&sbio->sctx->dev_root->fs_info->dev_replace;
1813 
1814 		for (i = 0; i < sbio->page_count; i++) {
1815 			struct scrub_page *spage = sbio->pagev[i];
1816 
1817 			spage->io_error = 1;
1818 			btrfs_dev_replace_stats_inc(&dev_replace->
1819 						    num_write_errors);
1820 		}
1821 	}
1822 
1823 	for (i = 0; i < sbio->page_count; i++)
1824 		scrub_page_put(sbio->pagev[i]);
1825 
1826 	bio_put(sbio->bio);
1827 	kfree(sbio);
1828 	scrub_pending_bio_dec(sctx);
1829 }
1830 
1831 static int scrub_checksum(struct scrub_block *sblock)
1832 {
1833 	u64 flags;
1834 	int ret;
1835 
1836 	WARN_ON(sblock->page_count < 1);
1837 	flags = sblock->pagev[0]->flags;
1838 	ret = 0;
1839 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1840 		ret = scrub_checksum_data(sblock);
1841 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1842 		ret = scrub_checksum_tree_block(sblock);
1843 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1844 		(void)scrub_checksum_super(sblock);
1845 	else
1846 		WARN_ON(1);
1847 	if (ret)
1848 		scrub_handle_errored_block(sblock);
1849 
1850 	return ret;
1851 }
1852 
1853 static int scrub_checksum_data(struct scrub_block *sblock)
1854 {
1855 	struct scrub_ctx *sctx = sblock->sctx;
1856 	u8 csum[BTRFS_CSUM_SIZE];
1857 	u8 *on_disk_csum;
1858 	struct page *page;
1859 	void *buffer;
1860 	u32 crc = ~(u32)0;
1861 	int fail = 0;
1862 	u64 len;
1863 	int index;
1864 
1865 	BUG_ON(sblock->page_count < 1);
1866 	if (!sblock->pagev[0]->have_csum)
1867 		return 0;
1868 
1869 	on_disk_csum = sblock->pagev[0]->csum;
1870 	page = sblock->pagev[0]->page;
1871 	buffer = kmap_atomic(page);
1872 
1873 	len = sctx->sectorsize;
1874 	index = 0;
1875 	for (;;) {
1876 		u64 l = min_t(u64, len, PAGE_SIZE);
1877 
1878 		crc = btrfs_csum_data(buffer, crc, l);
1879 		kunmap_atomic(buffer);
1880 		len -= l;
1881 		if (len == 0)
1882 			break;
1883 		index++;
1884 		BUG_ON(index >= sblock->page_count);
1885 		BUG_ON(!sblock->pagev[index]->page);
1886 		page = sblock->pagev[index]->page;
1887 		buffer = kmap_atomic(page);
1888 	}
1889 
1890 	btrfs_csum_final(crc, csum);
1891 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1892 		fail = 1;
1893 
1894 	return fail;
1895 }
1896 
1897 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1898 {
1899 	struct scrub_ctx *sctx = sblock->sctx;
1900 	struct btrfs_header *h;
1901 	struct btrfs_root *root = sctx->dev_root;
1902 	struct btrfs_fs_info *fs_info = root->fs_info;
1903 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1904 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1905 	struct page *page;
1906 	void *mapped_buffer;
1907 	u64 mapped_size;
1908 	void *p;
1909 	u32 crc = ~(u32)0;
1910 	int fail = 0;
1911 	int crc_fail = 0;
1912 	u64 len;
1913 	int index;
1914 
1915 	BUG_ON(sblock->page_count < 1);
1916 	page = sblock->pagev[0]->page;
1917 	mapped_buffer = kmap_atomic(page);
1918 	h = (struct btrfs_header *)mapped_buffer;
1919 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1920 
1921 	/*
1922 	 * we don't use the getter functions here, as we
1923 	 * a) don't have an extent buffer and
1924 	 * b) the page is already kmapped
1925 	 */
1926 
1927 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1928 		++fail;
1929 
1930 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1931 		++fail;
1932 
1933 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1934 		++fail;
1935 
1936 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1937 		   BTRFS_UUID_SIZE))
1938 		++fail;
1939 
1940 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1941 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1942 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1943 	index = 0;
1944 	for (;;) {
1945 		u64 l = min_t(u64, len, mapped_size);
1946 
1947 		crc = btrfs_csum_data(p, crc, l);
1948 		kunmap_atomic(mapped_buffer);
1949 		len -= l;
1950 		if (len == 0)
1951 			break;
1952 		index++;
1953 		BUG_ON(index >= sblock->page_count);
1954 		BUG_ON(!sblock->pagev[index]->page);
1955 		page = sblock->pagev[index]->page;
1956 		mapped_buffer = kmap_atomic(page);
1957 		mapped_size = PAGE_SIZE;
1958 		p = mapped_buffer;
1959 	}
1960 
1961 	btrfs_csum_final(crc, calculated_csum);
1962 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1963 		++crc_fail;
1964 
1965 	return fail || crc_fail;
1966 }
1967 
1968 static int scrub_checksum_super(struct scrub_block *sblock)
1969 {
1970 	struct btrfs_super_block *s;
1971 	struct scrub_ctx *sctx = sblock->sctx;
1972 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1973 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1974 	struct page *page;
1975 	void *mapped_buffer;
1976 	u64 mapped_size;
1977 	void *p;
1978 	u32 crc = ~(u32)0;
1979 	int fail_gen = 0;
1980 	int fail_cor = 0;
1981 	u64 len;
1982 	int index;
1983 
1984 	BUG_ON(sblock->page_count < 1);
1985 	page = sblock->pagev[0]->page;
1986 	mapped_buffer = kmap_atomic(page);
1987 	s = (struct btrfs_super_block *)mapped_buffer;
1988 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1989 
1990 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1991 		++fail_cor;
1992 
1993 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1994 		++fail_gen;
1995 
1996 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1997 		++fail_cor;
1998 
1999 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2000 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2001 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2002 	index = 0;
2003 	for (;;) {
2004 		u64 l = min_t(u64, len, mapped_size);
2005 
2006 		crc = btrfs_csum_data(p, crc, l);
2007 		kunmap_atomic(mapped_buffer);
2008 		len -= l;
2009 		if (len == 0)
2010 			break;
2011 		index++;
2012 		BUG_ON(index >= sblock->page_count);
2013 		BUG_ON(!sblock->pagev[index]->page);
2014 		page = sblock->pagev[index]->page;
2015 		mapped_buffer = kmap_atomic(page);
2016 		mapped_size = PAGE_SIZE;
2017 		p = mapped_buffer;
2018 	}
2019 
2020 	btrfs_csum_final(crc, calculated_csum);
2021 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2022 		++fail_cor;
2023 
2024 	if (fail_cor + fail_gen) {
2025 		/*
2026 		 * if we find an error in a super block, we just report it.
2027 		 * They will get written with the next transaction commit
2028 		 * anyway
2029 		 */
2030 		spin_lock(&sctx->stat_lock);
2031 		++sctx->stat.super_errors;
2032 		spin_unlock(&sctx->stat_lock);
2033 		if (fail_cor)
2034 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2035 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2036 		else
2037 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2038 				BTRFS_DEV_STAT_GENERATION_ERRS);
2039 	}
2040 
2041 	return fail_cor + fail_gen;
2042 }
2043 
2044 static void scrub_block_get(struct scrub_block *sblock)
2045 {
2046 	atomic_inc(&sblock->refs);
2047 }
2048 
2049 static void scrub_block_put(struct scrub_block *sblock)
2050 {
2051 	if (atomic_dec_and_test(&sblock->refs)) {
2052 		int i;
2053 
2054 		if (sblock->sparity)
2055 			scrub_parity_put(sblock->sparity);
2056 
2057 		for (i = 0; i < sblock->page_count; i++)
2058 			scrub_page_put(sblock->pagev[i]);
2059 		kfree(sblock);
2060 	}
2061 }
2062 
2063 static void scrub_page_get(struct scrub_page *spage)
2064 {
2065 	atomic_inc(&spage->refs);
2066 }
2067 
2068 static void scrub_page_put(struct scrub_page *spage)
2069 {
2070 	if (atomic_dec_and_test(&spage->refs)) {
2071 		if (spage->page)
2072 			__free_page(spage->page);
2073 		kfree(spage);
2074 	}
2075 }
2076 
2077 static void scrub_submit(struct scrub_ctx *sctx)
2078 {
2079 	struct scrub_bio *sbio;
2080 
2081 	if (sctx->curr == -1)
2082 		return;
2083 
2084 	sbio = sctx->bios[sctx->curr];
2085 	sctx->curr = -1;
2086 	scrub_pending_bio_inc(sctx);
2087 	btrfsic_submit_bio(READ, sbio->bio);
2088 }
2089 
2090 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2091 				    struct scrub_page *spage)
2092 {
2093 	struct scrub_block *sblock = spage->sblock;
2094 	struct scrub_bio *sbio;
2095 	int ret;
2096 
2097 again:
2098 	/*
2099 	 * grab a fresh bio or wait for one to become available
2100 	 */
2101 	while (sctx->curr == -1) {
2102 		spin_lock(&sctx->list_lock);
2103 		sctx->curr = sctx->first_free;
2104 		if (sctx->curr != -1) {
2105 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2106 			sctx->bios[sctx->curr]->next_free = -1;
2107 			sctx->bios[sctx->curr]->page_count = 0;
2108 			spin_unlock(&sctx->list_lock);
2109 		} else {
2110 			spin_unlock(&sctx->list_lock);
2111 			wait_event(sctx->list_wait, sctx->first_free != -1);
2112 		}
2113 	}
2114 	sbio = sctx->bios[sctx->curr];
2115 	if (sbio->page_count == 0) {
2116 		struct bio *bio;
2117 
2118 		sbio->physical = spage->physical;
2119 		sbio->logical = spage->logical;
2120 		sbio->dev = spage->dev;
2121 		bio = sbio->bio;
2122 		if (!bio) {
2123 			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2124 			if (!bio)
2125 				return -ENOMEM;
2126 			sbio->bio = bio;
2127 		}
2128 
2129 		bio->bi_private = sbio;
2130 		bio->bi_end_io = scrub_bio_end_io;
2131 		bio->bi_bdev = sbio->dev->bdev;
2132 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2133 		sbio->err = 0;
2134 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2135 		   spage->physical ||
2136 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2137 		   spage->logical ||
2138 		   sbio->dev != spage->dev) {
2139 		scrub_submit(sctx);
2140 		goto again;
2141 	}
2142 
2143 	sbio->pagev[sbio->page_count] = spage;
2144 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2145 	if (ret != PAGE_SIZE) {
2146 		if (sbio->page_count < 1) {
2147 			bio_put(sbio->bio);
2148 			sbio->bio = NULL;
2149 			return -EIO;
2150 		}
2151 		scrub_submit(sctx);
2152 		goto again;
2153 	}
2154 
2155 	scrub_block_get(sblock); /* one for the page added to the bio */
2156 	atomic_inc(&sblock->outstanding_pages);
2157 	sbio->page_count++;
2158 	if (sbio->page_count == sctx->pages_per_rd_bio)
2159 		scrub_submit(sctx);
2160 
2161 	return 0;
2162 }
2163 
2164 static void scrub_missing_raid56_end_io(struct bio *bio)
2165 {
2166 	struct scrub_block *sblock = bio->bi_private;
2167 	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;
2168 
2169 	if (bio->bi_error)
2170 		sblock->no_io_error_seen = 0;
2171 
2172 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2173 }
2174 
2175 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2176 {
2177 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2178 	struct scrub_ctx *sctx = sblock->sctx;
2179 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2180 	unsigned int is_metadata;
2181 	unsigned int have_csum;
2182 	u8 *csum;
2183 	u64 generation;
2184 	u64 logical;
2185 	struct btrfs_device *dev;
2186 
2187 	is_metadata = !(sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA);
2188 	have_csum = sblock->pagev[0]->have_csum;
2189 	csum = sblock->pagev[0]->csum;
2190 	generation = sblock->pagev[0]->generation;
2191 	logical = sblock->pagev[0]->logical;
2192 	dev = sblock->pagev[0]->dev;
2193 
2194 	if (sblock->no_io_error_seen) {
2195 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
2196 					     have_csum, csum, generation,
2197 					     sctx->csum_size);
2198 	}
2199 
2200 	if (!sblock->no_io_error_seen) {
2201 		spin_lock(&sctx->stat_lock);
2202 		sctx->stat.read_errors++;
2203 		spin_unlock(&sctx->stat_lock);
2204 		printk_ratelimited_in_rcu(KERN_ERR
2205 			"BTRFS: I/O error rebulding logical %llu for dev %s\n",
2206 			logical, rcu_str_deref(dev->name));
2207 	} else if (sblock->header_error || sblock->checksum_error) {
2208 		spin_lock(&sctx->stat_lock);
2209 		sctx->stat.uncorrectable_errors++;
2210 		spin_unlock(&sctx->stat_lock);
2211 		printk_ratelimited_in_rcu(KERN_ERR
2212 			"BTRFS: failed to rebuild valid logical %llu for dev %s\n",
2213 			logical, rcu_str_deref(dev->name));
2214 	} else {
2215 		scrub_write_block_to_dev_replace(sblock);
2216 	}
2217 
2218 	scrub_block_put(sblock);
2219 
2220 	if (sctx->is_dev_replace &&
2221 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2222 		mutex_lock(&sctx->wr_ctx.wr_lock);
2223 		scrub_wr_submit(sctx);
2224 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2225 	}
2226 
2227 	scrub_pending_bio_dec(sctx);
2228 }
2229 
2230 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2231 {
2232 	struct scrub_ctx *sctx = sblock->sctx;
2233 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2234 	u64 length = sblock->page_count * PAGE_SIZE;
2235 	u64 logical = sblock->pagev[0]->logical;
2236 	struct btrfs_bio *bbio;
2237 	struct bio *bio;
2238 	struct btrfs_raid_bio *rbio;
2239 	int ret;
2240 	int i;
2241 
2242 	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
2243 			       &bbio, 0, 1);
2244 	if (ret || !bbio || !bbio->raid_map)
2245 		goto bbio_out;
2246 
2247 	if (WARN_ON(!sctx->is_dev_replace ||
2248 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2249 		/*
2250 		 * We shouldn't be scrubbing a missing device. Even for dev
2251 		 * replace, we should only get here for RAID 5/6. We either
2252 		 * managed to mount something with no mirrors remaining or
2253 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2254 		 */
2255 		goto bbio_out;
2256 	}
2257 
2258 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2259 	if (!bio)
2260 		goto bbio_out;
2261 
2262 	bio->bi_iter.bi_sector = logical >> 9;
2263 	bio->bi_private = sblock;
2264 	bio->bi_end_io = scrub_missing_raid56_end_io;
2265 
2266 	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
2267 	if (!rbio)
2268 		goto rbio_out;
2269 
2270 	for (i = 0; i < sblock->page_count; i++) {
2271 		struct scrub_page *spage = sblock->pagev[i];
2272 
2273 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2274 	}
2275 
2276 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2277 			scrub_missing_raid56_worker, NULL, NULL);
2278 	scrub_block_get(sblock);
2279 	scrub_pending_bio_inc(sctx);
2280 	raid56_submit_missing_rbio(rbio);
2281 	return;
2282 
2283 rbio_out:
2284 	bio_put(bio);
2285 bbio_out:
2286 	btrfs_put_bbio(bbio);
2287 	spin_lock(&sctx->stat_lock);
2288 	sctx->stat.malloc_errors++;
2289 	spin_unlock(&sctx->stat_lock);
2290 }
2291 
2292 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2293 		       u64 physical, struct btrfs_device *dev, u64 flags,
2294 		       u64 gen, int mirror_num, u8 *csum, int force,
2295 		       u64 physical_for_dev_replace)
2296 {
2297 	struct scrub_block *sblock;
2298 	int index;
2299 
2300 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2301 	if (!sblock) {
2302 		spin_lock(&sctx->stat_lock);
2303 		sctx->stat.malloc_errors++;
2304 		spin_unlock(&sctx->stat_lock);
2305 		return -ENOMEM;
2306 	}
2307 
2308 	/* one ref inside this function, plus one for each page added to
2309 	 * a bio later on */
2310 	atomic_set(&sblock->refs, 1);
2311 	sblock->sctx = sctx;
2312 	sblock->no_io_error_seen = 1;
2313 
2314 	for (index = 0; len > 0; index++) {
2315 		struct scrub_page *spage;
2316 		u64 l = min_t(u64, len, PAGE_SIZE);
2317 
2318 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2319 		if (!spage) {
2320 leave_nomem:
2321 			spin_lock(&sctx->stat_lock);
2322 			sctx->stat.malloc_errors++;
2323 			spin_unlock(&sctx->stat_lock);
2324 			scrub_block_put(sblock);
2325 			return -ENOMEM;
2326 		}
2327 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2328 		scrub_page_get(spage);
2329 		sblock->pagev[index] = spage;
2330 		spage->sblock = sblock;
2331 		spage->dev = dev;
2332 		spage->flags = flags;
2333 		spage->generation = gen;
2334 		spage->logical = logical;
2335 		spage->physical = physical;
2336 		spage->physical_for_dev_replace = physical_for_dev_replace;
2337 		spage->mirror_num = mirror_num;
2338 		if (csum) {
2339 			spage->have_csum = 1;
2340 			memcpy(spage->csum, csum, sctx->csum_size);
2341 		} else {
2342 			spage->have_csum = 0;
2343 		}
2344 		sblock->page_count++;
2345 		spage->page = alloc_page(GFP_NOFS);
2346 		if (!spage->page)
2347 			goto leave_nomem;
2348 		len -= l;
2349 		logical += l;
2350 		physical += l;
2351 		physical_for_dev_replace += l;
2352 	}
2353 
2354 	WARN_ON(sblock->page_count == 0);
2355 	if (dev->missing) {
2356 		/*
2357 		 * This case should only be hit for RAID 5/6 device replace. See
2358 		 * the comment in scrub_missing_raid56_pages() for details.
2359 		 */
2360 		scrub_missing_raid56_pages(sblock);
2361 	} else {
2362 		for (index = 0; index < sblock->page_count; index++) {
2363 			struct scrub_page *spage = sblock->pagev[index];
2364 			int ret;
2365 
2366 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2367 			if (ret) {
2368 				scrub_block_put(sblock);
2369 				return ret;
2370 			}
2371 		}
2372 
2373 		if (force)
2374 			scrub_submit(sctx);
2375 	}
2376 
2377 	/* last one frees, either here or in bio completion for last page */
2378 	scrub_block_put(sblock);
2379 	return 0;
2380 }
2381 
2382 static void scrub_bio_end_io(struct bio *bio)
2383 {
2384 	struct scrub_bio *sbio = bio->bi_private;
2385 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2386 
2387 	sbio->err = bio->bi_error;
2388 	sbio->bio = bio;
2389 
2390 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2391 }
2392 
2393 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2394 {
2395 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2396 	struct scrub_ctx *sctx = sbio->sctx;
2397 	int i;
2398 
2399 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2400 	if (sbio->err) {
2401 		for (i = 0; i < sbio->page_count; i++) {
2402 			struct scrub_page *spage = sbio->pagev[i];
2403 
2404 			spage->io_error = 1;
2405 			spage->sblock->no_io_error_seen = 0;
2406 		}
2407 	}
2408 
2409 	/* now complete the scrub_block items that have all pages completed */
2410 	for (i = 0; i < sbio->page_count; i++) {
2411 		struct scrub_page *spage = sbio->pagev[i];
2412 		struct scrub_block *sblock = spage->sblock;
2413 
2414 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2415 			scrub_block_complete(sblock);
2416 		scrub_block_put(sblock);
2417 	}
2418 
2419 	bio_put(sbio->bio);
2420 	sbio->bio = NULL;
2421 	spin_lock(&sctx->list_lock);
2422 	sbio->next_free = sctx->first_free;
2423 	sctx->first_free = sbio->index;
2424 	spin_unlock(&sctx->list_lock);
2425 
2426 	if (sctx->is_dev_replace &&
2427 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2428 		mutex_lock(&sctx->wr_ctx.wr_lock);
2429 		scrub_wr_submit(sctx);
2430 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2431 	}
2432 
2433 	scrub_pending_bio_dec(sctx);
2434 }
2435 
2436 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2437 				       unsigned long *bitmap,
2438 				       u64 start, u64 len)
2439 {
2440 	u32 offset;
2441 	int nsectors;
2442 	int sectorsize = sparity->sctx->dev_root->sectorsize;
2443 
2444 	if (len >= sparity->stripe_len) {
2445 		bitmap_set(bitmap, 0, sparity->nsectors);
2446 		return;
2447 	}
2448 
2449 	start -= sparity->logic_start;
2450 	start = div_u64_rem(start, sparity->stripe_len, &offset);
2451 	offset /= sectorsize;
2452 	nsectors = (int)len / sectorsize;
2453 
2454 	if (offset + nsectors <= sparity->nsectors) {
2455 		bitmap_set(bitmap, offset, nsectors);
2456 		return;
2457 	}
2458 
2459 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2460 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2461 }
2462 
2463 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2464 						   u64 start, u64 len)
2465 {
2466 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2467 }
2468 
2469 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2470 						  u64 start, u64 len)
2471 {
2472 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2473 }
2474 
2475 static void scrub_block_complete(struct scrub_block *sblock)
2476 {
2477 	int corrupted = 0;
2478 
2479 	if (!sblock->no_io_error_seen) {
2480 		corrupted = 1;
2481 		scrub_handle_errored_block(sblock);
2482 	} else {
2483 		/*
2484 		 * if has checksum error, write via repair mechanism in
2485 		 * dev replace case, otherwise write here in dev replace
2486 		 * case.
2487 		 */
2488 		corrupted = scrub_checksum(sblock);
2489 		if (!corrupted && sblock->sctx->is_dev_replace)
2490 			scrub_write_block_to_dev_replace(sblock);
2491 	}
2492 
2493 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2494 		u64 start = sblock->pagev[0]->logical;
2495 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2496 			  PAGE_SIZE;
2497 
2498 		scrub_parity_mark_sectors_error(sblock->sparity,
2499 						start, end - start);
2500 	}
2501 }
2502 
2503 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2504 			   u8 *csum)
2505 {
2506 	struct btrfs_ordered_sum *sum = NULL;
2507 	unsigned long index;
2508 	unsigned long num_sectors;
2509 
2510 	while (!list_empty(&sctx->csum_list)) {
2511 		sum = list_first_entry(&sctx->csum_list,
2512 				       struct btrfs_ordered_sum, list);
2513 		if (sum->bytenr > logical)
2514 			return 0;
2515 		if (sum->bytenr + sum->len > logical)
2516 			break;
2517 
2518 		++sctx->stat.csum_discards;
2519 		list_del(&sum->list);
2520 		kfree(sum);
2521 		sum = NULL;
2522 	}
2523 	if (!sum)
2524 		return 0;
2525 
2526 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2527 	num_sectors = sum->len / sctx->sectorsize;
2528 	memcpy(csum, sum->sums + index, sctx->csum_size);
2529 	if (index == num_sectors - 1) {
2530 		list_del(&sum->list);
2531 		kfree(sum);
2532 	}
2533 	return 1;
2534 }
2535 
2536 /* scrub extent tries to collect up to 64 kB for each bio */
2537 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2538 			u64 physical, struct btrfs_device *dev, u64 flags,
2539 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2540 {
2541 	int ret;
2542 	u8 csum[BTRFS_CSUM_SIZE];
2543 	u32 blocksize;
2544 
2545 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2546 		blocksize = sctx->sectorsize;
2547 		spin_lock(&sctx->stat_lock);
2548 		sctx->stat.data_extents_scrubbed++;
2549 		sctx->stat.data_bytes_scrubbed += len;
2550 		spin_unlock(&sctx->stat_lock);
2551 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2552 		blocksize = sctx->nodesize;
2553 		spin_lock(&sctx->stat_lock);
2554 		sctx->stat.tree_extents_scrubbed++;
2555 		sctx->stat.tree_bytes_scrubbed += len;
2556 		spin_unlock(&sctx->stat_lock);
2557 	} else {
2558 		blocksize = sctx->sectorsize;
2559 		WARN_ON(1);
2560 	}
2561 
2562 	while (len) {
2563 		u64 l = min_t(u64, len, blocksize);
2564 		int have_csum = 0;
2565 
2566 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2567 			/* push csums to sbio */
2568 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2569 			if (have_csum == 0)
2570 				++sctx->stat.no_csum;
2571 			if (sctx->is_dev_replace && !have_csum) {
2572 				ret = copy_nocow_pages(sctx, logical, l,
2573 						       mirror_num,
2574 						      physical_for_dev_replace);
2575 				goto behind_scrub_pages;
2576 			}
2577 		}
2578 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2579 				  mirror_num, have_csum ? csum : NULL, 0,
2580 				  physical_for_dev_replace);
2581 behind_scrub_pages:
2582 		if (ret)
2583 			return ret;
2584 		len -= l;
2585 		logical += l;
2586 		physical += l;
2587 		physical_for_dev_replace += l;
2588 	}
2589 	return 0;
2590 }
2591 
2592 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2593 				  u64 logical, u64 len,
2594 				  u64 physical, struct btrfs_device *dev,
2595 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2596 {
2597 	struct scrub_ctx *sctx = sparity->sctx;
2598 	struct scrub_block *sblock;
2599 	int index;
2600 
2601 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2602 	if (!sblock) {
2603 		spin_lock(&sctx->stat_lock);
2604 		sctx->stat.malloc_errors++;
2605 		spin_unlock(&sctx->stat_lock);
2606 		return -ENOMEM;
2607 	}
2608 
2609 	/* one ref inside this function, plus one for each page added to
2610 	 * a bio later on */
2611 	atomic_set(&sblock->refs, 1);
2612 	sblock->sctx = sctx;
2613 	sblock->no_io_error_seen = 1;
2614 	sblock->sparity = sparity;
2615 	scrub_parity_get(sparity);
2616 
2617 	for (index = 0; len > 0; index++) {
2618 		struct scrub_page *spage;
2619 		u64 l = min_t(u64, len, PAGE_SIZE);
2620 
2621 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2622 		if (!spage) {
2623 leave_nomem:
2624 			spin_lock(&sctx->stat_lock);
2625 			sctx->stat.malloc_errors++;
2626 			spin_unlock(&sctx->stat_lock);
2627 			scrub_block_put(sblock);
2628 			return -ENOMEM;
2629 		}
2630 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2631 		/* For scrub block */
2632 		scrub_page_get(spage);
2633 		sblock->pagev[index] = spage;
2634 		/* For scrub parity */
2635 		scrub_page_get(spage);
2636 		list_add_tail(&spage->list, &sparity->spages);
2637 		spage->sblock = sblock;
2638 		spage->dev = dev;
2639 		spage->flags = flags;
2640 		spage->generation = gen;
2641 		spage->logical = logical;
2642 		spage->physical = physical;
2643 		spage->mirror_num = mirror_num;
2644 		if (csum) {
2645 			spage->have_csum = 1;
2646 			memcpy(spage->csum, csum, sctx->csum_size);
2647 		} else {
2648 			spage->have_csum = 0;
2649 		}
2650 		sblock->page_count++;
2651 		spage->page = alloc_page(GFP_NOFS);
2652 		if (!spage->page)
2653 			goto leave_nomem;
2654 		len -= l;
2655 		logical += l;
2656 		physical += l;
2657 	}
2658 
2659 	WARN_ON(sblock->page_count == 0);
2660 	for (index = 0; index < sblock->page_count; index++) {
2661 		struct scrub_page *spage = sblock->pagev[index];
2662 		int ret;
2663 
2664 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2665 		if (ret) {
2666 			scrub_block_put(sblock);
2667 			return ret;
2668 		}
2669 	}
2670 
2671 	/* last one frees, either here or in bio completion for last page */
2672 	scrub_block_put(sblock);
2673 	return 0;
2674 }
2675 
2676 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2677 				   u64 logical, u64 len,
2678 				   u64 physical, struct btrfs_device *dev,
2679 				   u64 flags, u64 gen, int mirror_num)
2680 {
2681 	struct scrub_ctx *sctx = sparity->sctx;
2682 	int ret;
2683 	u8 csum[BTRFS_CSUM_SIZE];
2684 	u32 blocksize;
2685 
2686 	if (dev->missing) {
2687 		scrub_parity_mark_sectors_error(sparity, logical, len);
2688 		return 0;
2689 	}
2690 
2691 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2692 		blocksize = sctx->sectorsize;
2693 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2694 		blocksize = sctx->nodesize;
2695 	} else {
2696 		blocksize = sctx->sectorsize;
2697 		WARN_ON(1);
2698 	}
2699 
2700 	while (len) {
2701 		u64 l = min_t(u64, len, blocksize);
2702 		int have_csum = 0;
2703 
2704 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2705 			/* push csums to sbio */
2706 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2707 			if (have_csum == 0)
2708 				goto skip;
2709 		}
2710 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2711 					     flags, gen, mirror_num,
2712 					     have_csum ? csum : NULL);
2713 		if (ret)
2714 			return ret;
2715 skip:
2716 		len -= l;
2717 		logical += l;
2718 		physical += l;
2719 	}
2720 	return 0;
2721 }
2722 
2723 /*
2724  * Given a physical address, this will calculate it's
2725  * logical offset. if this is a parity stripe, it will return
2726  * the most left data stripe's logical offset.
2727  *
2728  * return 0 if it is a data stripe, 1 means parity stripe.
2729  */
2730 static int get_raid56_logic_offset(u64 physical, int num,
2731 				   struct map_lookup *map, u64 *offset,
2732 				   u64 *stripe_start)
2733 {
2734 	int i;
2735 	int j = 0;
2736 	u64 stripe_nr;
2737 	u64 last_offset;
2738 	u32 stripe_index;
2739 	u32 rot;
2740 
2741 	last_offset = (physical - map->stripes[num].physical) *
2742 		      nr_data_stripes(map);
2743 	if (stripe_start)
2744 		*stripe_start = last_offset;
2745 
2746 	*offset = last_offset;
2747 	for (i = 0; i < nr_data_stripes(map); i++) {
2748 		*offset = last_offset + i * map->stripe_len;
2749 
2750 		stripe_nr = div_u64(*offset, map->stripe_len);
2751 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2752 
2753 		/* Work out the disk rotation on this stripe-set */
2754 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2755 		/* calculate which stripe this data locates */
2756 		rot += i;
2757 		stripe_index = rot % map->num_stripes;
2758 		if (stripe_index == num)
2759 			return 0;
2760 		if (stripe_index < num)
2761 			j++;
2762 	}
2763 	*offset = last_offset + j * map->stripe_len;
2764 	return 1;
2765 }
2766 
2767 static void scrub_free_parity(struct scrub_parity *sparity)
2768 {
2769 	struct scrub_ctx *sctx = sparity->sctx;
2770 	struct scrub_page *curr, *next;
2771 	int nbits;
2772 
2773 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2774 	if (nbits) {
2775 		spin_lock(&sctx->stat_lock);
2776 		sctx->stat.read_errors += nbits;
2777 		sctx->stat.uncorrectable_errors += nbits;
2778 		spin_unlock(&sctx->stat_lock);
2779 	}
2780 
2781 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2782 		list_del_init(&curr->list);
2783 		scrub_page_put(curr);
2784 	}
2785 
2786 	kfree(sparity);
2787 }
2788 
2789 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2790 {
2791 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2792 						    work);
2793 	struct scrub_ctx *sctx = sparity->sctx;
2794 
2795 	scrub_free_parity(sparity);
2796 	scrub_pending_bio_dec(sctx);
2797 }
2798 
2799 static void scrub_parity_bio_endio(struct bio *bio)
2800 {
2801 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2802 
2803 	if (bio->bi_error)
2804 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2805 			  sparity->nsectors);
2806 
2807 	bio_put(bio);
2808 
2809 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2810 			scrub_parity_bio_endio_worker, NULL, NULL);
2811 	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
2812 			 &sparity->work);
2813 }
2814 
2815 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2816 {
2817 	struct scrub_ctx *sctx = sparity->sctx;
2818 	struct bio *bio;
2819 	struct btrfs_raid_bio *rbio;
2820 	struct scrub_page *spage;
2821 	struct btrfs_bio *bbio = NULL;
2822 	u64 length;
2823 	int ret;
2824 
2825 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2826 			   sparity->nsectors))
2827 		goto out;
2828 
2829 	length = sparity->logic_end - sparity->logic_start;
2830 	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2831 			       sparity->logic_start,
2832 			       &length, &bbio, 0, 1);
2833 	if (ret || !bbio || !bbio->raid_map)
2834 		goto bbio_out;
2835 
2836 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2837 	if (!bio)
2838 		goto bbio_out;
2839 
2840 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2841 	bio->bi_private = sparity;
2842 	bio->bi_end_io = scrub_parity_bio_endio;
2843 
2844 	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2845 					      length, sparity->scrub_dev,
2846 					      sparity->dbitmap,
2847 					      sparity->nsectors);
2848 	if (!rbio)
2849 		goto rbio_out;
2850 
2851 	list_for_each_entry(spage, &sparity->spages, list)
2852 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2853 
2854 	scrub_pending_bio_inc(sctx);
2855 	raid56_parity_submit_scrub_rbio(rbio);
2856 	return;
2857 
2858 rbio_out:
2859 	bio_put(bio);
2860 bbio_out:
2861 	btrfs_put_bbio(bbio);
2862 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2863 		  sparity->nsectors);
2864 	spin_lock(&sctx->stat_lock);
2865 	sctx->stat.malloc_errors++;
2866 	spin_unlock(&sctx->stat_lock);
2867 out:
2868 	scrub_free_parity(sparity);
2869 }
2870 
2871 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2872 {
2873 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
2874 }
2875 
2876 static void scrub_parity_get(struct scrub_parity *sparity)
2877 {
2878 	atomic_inc(&sparity->refs);
2879 }
2880 
2881 static void scrub_parity_put(struct scrub_parity *sparity)
2882 {
2883 	if (!atomic_dec_and_test(&sparity->refs))
2884 		return;
2885 
2886 	scrub_parity_check_and_repair(sparity);
2887 }
2888 
2889 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2890 						  struct map_lookup *map,
2891 						  struct btrfs_device *sdev,
2892 						  struct btrfs_path *path,
2893 						  u64 logic_start,
2894 						  u64 logic_end)
2895 {
2896 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2897 	struct btrfs_root *root = fs_info->extent_root;
2898 	struct btrfs_root *csum_root = fs_info->csum_root;
2899 	struct btrfs_extent_item *extent;
2900 	struct btrfs_bio *bbio = NULL;
2901 	u64 flags;
2902 	int ret;
2903 	int slot;
2904 	struct extent_buffer *l;
2905 	struct btrfs_key key;
2906 	u64 generation;
2907 	u64 extent_logical;
2908 	u64 extent_physical;
2909 	u64 extent_len;
2910 	u64 mapped_length;
2911 	struct btrfs_device *extent_dev;
2912 	struct scrub_parity *sparity;
2913 	int nsectors;
2914 	int bitmap_len;
2915 	int extent_mirror_num;
2916 	int stop_loop = 0;
2917 
2918 	nsectors = map->stripe_len / root->sectorsize;
2919 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2920 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2921 			  GFP_NOFS);
2922 	if (!sparity) {
2923 		spin_lock(&sctx->stat_lock);
2924 		sctx->stat.malloc_errors++;
2925 		spin_unlock(&sctx->stat_lock);
2926 		return -ENOMEM;
2927 	}
2928 
2929 	sparity->stripe_len = map->stripe_len;
2930 	sparity->nsectors = nsectors;
2931 	sparity->sctx = sctx;
2932 	sparity->scrub_dev = sdev;
2933 	sparity->logic_start = logic_start;
2934 	sparity->logic_end = logic_end;
2935 	atomic_set(&sparity->refs, 1);
2936 	INIT_LIST_HEAD(&sparity->spages);
2937 	sparity->dbitmap = sparity->bitmap;
2938 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2939 
2940 	ret = 0;
2941 	while (logic_start < logic_end) {
2942 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2943 			key.type = BTRFS_METADATA_ITEM_KEY;
2944 		else
2945 			key.type = BTRFS_EXTENT_ITEM_KEY;
2946 		key.objectid = logic_start;
2947 		key.offset = (u64)-1;
2948 
2949 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2950 		if (ret < 0)
2951 			goto out;
2952 
2953 		if (ret > 0) {
2954 			ret = btrfs_previous_extent_item(root, path, 0);
2955 			if (ret < 0)
2956 				goto out;
2957 			if (ret > 0) {
2958 				btrfs_release_path(path);
2959 				ret = btrfs_search_slot(NULL, root, &key,
2960 							path, 0, 0);
2961 				if (ret < 0)
2962 					goto out;
2963 			}
2964 		}
2965 
2966 		stop_loop = 0;
2967 		while (1) {
2968 			u64 bytes;
2969 
2970 			l = path->nodes[0];
2971 			slot = path->slots[0];
2972 			if (slot >= btrfs_header_nritems(l)) {
2973 				ret = btrfs_next_leaf(root, path);
2974 				if (ret == 0)
2975 					continue;
2976 				if (ret < 0)
2977 					goto out;
2978 
2979 				stop_loop = 1;
2980 				break;
2981 			}
2982 			btrfs_item_key_to_cpu(l, &key, slot);
2983 
2984 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2985 			    key.type != BTRFS_METADATA_ITEM_KEY)
2986 				goto next;
2987 
2988 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2989 				bytes = root->nodesize;
2990 			else
2991 				bytes = key.offset;
2992 
2993 			if (key.objectid + bytes <= logic_start)
2994 				goto next;
2995 
2996 			if (key.objectid >= logic_end) {
2997 				stop_loop = 1;
2998 				break;
2999 			}
3000 
3001 			while (key.objectid >= logic_start + map->stripe_len)
3002 				logic_start += map->stripe_len;
3003 
3004 			extent = btrfs_item_ptr(l, slot,
3005 						struct btrfs_extent_item);
3006 			flags = btrfs_extent_flags(l, extent);
3007 			generation = btrfs_extent_generation(l, extent);
3008 
3009 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3010 			    (key.objectid < logic_start ||
3011 			     key.objectid + bytes >
3012 			     logic_start + map->stripe_len)) {
3013 				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3014 					  key.objectid, logic_start);
3015 				goto next;
3016 			}
3017 again:
3018 			extent_logical = key.objectid;
3019 			extent_len = bytes;
3020 
3021 			if (extent_logical < logic_start) {
3022 				extent_len -= logic_start - extent_logical;
3023 				extent_logical = logic_start;
3024 			}
3025 
3026 			if (extent_logical + extent_len >
3027 			    logic_start + map->stripe_len)
3028 				extent_len = logic_start + map->stripe_len -
3029 					     extent_logical;
3030 
3031 			scrub_parity_mark_sectors_data(sparity, extent_logical,
3032 						       extent_len);
3033 
3034 			mapped_length = extent_len;
3035 			ret = btrfs_map_block(fs_info, READ, extent_logical,
3036 					      &mapped_length, &bbio, 0);
3037 			if (!ret) {
3038 				if (!bbio || mapped_length < extent_len)
3039 					ret = -EIO;
3040 			}
3041 			if (ret) {
3042 				btrfs_put_bbio(bbio);
3043 				goto out;
3044 			}
3045 			extent_physical = bbio->stripes[0].physical;
3046 			extent_mirror_num = bbio->mirror_num;
3047 			extent_dev = bbio->stripes[0].dev;
3048 			btrfs_put_bbio(bbio);
3049 
3050 			ret = btrfs_lookup_csums_range(csum_root,
3051 						extent_logical,
3052 						extent_logical + extent_len - 1,
3053 						&sctx->csum_list, 1);
3054 			if (ret)
3055 				goto out;
3056 
3057 			ret = scrub_extent_for_parity(sparity, extent_logical,
3058 						      extent_len,
3059 						      extent_physical,
3060 						      extent_dev, flags,
3061 						      generation,
3062 						      extent_mirror_num);
3063 
3064 			scrub_free_csums(sctx);
3065 
3066 			if (ret)
3067 				goto out;
3068 
3069 			if (extent_logical + extent_len <
3070 			    key.objectid + bytes) {
3071 				logic_start += map->stripe_len;
3072 
3073 				if (logic_start >= logic_end) {
3074 					stop_loop = 1;
3075 					break;
3076 				}
3077 
3078 				if (logic_start < key.objectid + bytes) {
3079 					cond_resched();
3080 					goto again;
3081 				}
3082 			}
3083 next:
3084 			path->slots[0]++;
3085 		}
3086 
3087 		btrfs_release_path(path);
3088 
3089 		if (stop_loop)
3090 			break;
3091 
3092 		logic_start += map->stripe_len;
3093 	}
3094 out:
3095 	if (ret < 0)
3096 		scrub_parity_mark_sectors_error(sparity, logic_start,
3097 						logic_end - logic_start);
3098 	scrub_parity_put(sparity);
3099 	scrub_submit(sctx);
3100 	mutex_lock(&sctx->wr_ctx.wr_lock);
3101 	scrub_wr_submit(sctx);
3102 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3103 
3104 	btrfs_release_path(path);
3105 	return ret < 0 ? ret : 0;
3106 }
3107 
3108 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3109 					   struct map_lookup *map,
3110 					   struct btrfs_device *scrub_dev,
3111 					   int num, u64 base, u64 length,
3112 					   int is_dev_replace)
3113 {
3114 	struct btrfs_path *path, *ppath;
3115 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3116 	struct btrfs_root *root = fs_info->extent_root;
3117 	struct btrfs_root *csum_root = fs_info->csum_root;
3118 	struct btrfs_extent_item *extent;
3119 	struct blk_plug plug;
3120 	u64 flags;
3121 	int ret;
3122 	int slot;
3123 	u64 nstripes;
3124 	struct extent_buffer *l;
3125 	struct btrfs_key key;
3126 	u64 physical;
3127 	u64 logical;
3128 	u64 logic_end;
3129 	u64 physical_end;
3130 	u64 generation;
3131 	int mirror_num;
3132 	struct reada_control *reada1;
3133 	struct reada_control *reada2;
3134 	struct btrfs_key key_start;
3135 	struct btrfs_key key_end;
3136 	u64 increment = map->stripe_len;
3137 	u64 offset;
3138 	u64 extent_logical;
3139 	u64 extent_physical;
3140 	u64 extent_len;
3141 	u64 stripe_logical;
3142 	u64 stripe_end;
3143 	struct btrfs_device *extent_dev;
3144 	int extent_mirror_num;
3145 	int stop_loop = 0;
3146 
3147 	physical = map->stripes[num].physical;
3148 	offset = 0;
3149 	nstripes = div_u64(length, map->stripe_len);
3150 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3151 		offset = map->stripe_len * num;
3152 		increment = map->stripe_len * map->num_stripes;
3153 		mirror_num = 1;
3154 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3155 		int factor = map->num_stripes / map->sub_stripes;
3156 		offset = map->stripe_len * (num / map->sub_stripes);
3157 		increment = map->stripe_len * factor;
3158 		mirror_num = num % map->sub_stripes + 1;
3159 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3160 		increment = map->stripe_len;
3161 		mirror_num = num % map->num_stripes + 1;
3162 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3163 		increment = map->stripe_len;
3164 		mirror_num = num % map->num_stripes + 1;
3165 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3166 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3167 		increment = map->stripe_len * nr_data_stripes(map);
3168 		mirror_num = 1;
3169 	} else {
3170 		increment = map->stripe_len;
3171 		mirror_num = 1;
3172 	}
3173 
3174 	path = btrfs_alloc_path();
3175 	if (!path)
3176 		return -ENOMEM;
3177 
3178 	ppath = btrfs_alloc_path();
3179 	if (!ppath) {
3180 		btrfs_free_path(path);
3181 		return -ENOMEM;
3182 	}
3183 
3184 	/*
3185 	 * work on commit root. The related disk blocks are static as
3186 	 * long as COW is applied. This means, it is save to rewrite
3187 	 * them to repair disk errors without any race conditions
3188 	 */
3189 	path->search_commit_root = 1;
3190 	path->skip_locking = 1;
3191 
3192 	ppath->search_commit_root = 1;
3193 	ppath->skip_locking = 1;
3194 	/*
3195 	 * trigger the readahead for extent tree csum tree and wait for
3196 	 * completion. During readahead, the scrub is officially paused
3197 	 * to not hold off transaction commits
3198 	 */
3199 	logical = base + offset;
3200 	physical_end = physical + nstripes * map->stripe_len;
3201 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3202 		get_raid56_logic_offset(physical_end, num,
3203 					map, &logic_end, NULL);
3204 		logic_end += base;
3205 	} else {
3206 		logic_end = logical + increment * nstripes;
3207 	}
3208 	wait_event(sctx->list_wait,
3209 		   atomic_read(&sctx->bios_in_flight) == 0);
3210 	scrub_blocked_if_needed(fs_info);
3211 
3212 	/* FIXME it might be better to start readahead at commit root */
3213 	key_start.objectid = logical;
3214 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
3215 	key_start.offset = (u64)0;
3216 	key_end.objectid = logic_end;
3217 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3218 	key_end.offset = (u64)-1;
3219 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
3220 
3221 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3222 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
3223 	key_start.offset = logical;
3224 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3225 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3226 	key_end.offset = logic_end;
3227 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3228 
3229 	if (!IS_ERR(reada1))
3230 		btrfs_reada_wait(reada1);
3231 	if (!IS_ERR(reada2))
3232 		btrfs_reada_wait(reada2);
3233 
3234 
3235 	/*
3236 	 * collect all data csums for the stripe to avoid seeking during
3237 	 * the scrub. This might currently (crc32) end up to be about 1MB
3238 	 */
3239 	blk_start_plug(&plug);
3240 
3241 	/*
3242 	 * now find all extents for each stripe and scrub them
3243 	 */
3244 	ret = 0;
3245 	while (physical < physical_end) {
3246 		/*
3247 		 * canceled?
3248 		 */
3249 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3250 		    atomic_read(&sctx->cancel_req)) {
3251 			ret = -ECANCELED;
3252 			goto out;
3253 		}
3254 		/*
3255 		 * check to see if we have to pause
3256 		 */
3257 		if (atomic_read(&fs_info->scrub_pause_req)) {
3258 			/* push queued extents */
3259 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3260 			scrub_submit(sctx);
3261 			mutex_lock(&sctx->wr_ctx.wr_lock);
3262 			scrub_wr_submit(sctx);
3263 			mutex_unlock(&sctx->wr_ctx.wr_lock);
3264 			wait_event(sctx->list_wait,
3265 				   atomic_read(&sctx->bios_in_flight) == 0);
3266 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3267 			scrub_blocked_if_needed(fs_info);
3268 		}
3269 
3270 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3271 			ret = get_raid56_logic_offset(physical, num, map,
3272 						      &logical,
3273 						      &stripe_logical);
3274 			logical += base;
3275 			if (ret) {
3276 				/* it is parity strip */
3277 				stripe_logical += base;
3278 				stripe_end = stripe_logical + increment;
3279 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3280 							  ppath, stripe_logical,
3281 							  stripe_end);
3282 				if (ret)
3283 					goto out;
3284 				goto skip;
3285 			}
3286 		}
3287 
3288 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3289 			key.type = BTRFS_METADATA_ITEM_KEY;
3290 		else
3291 			key.type = BTRFS_EXTENT_ITEM_KEY;
3292 		key.objectid = logical;
3293 		key.offset = (u64)-1;
3294 
3295 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3296 		if (ret < 0)
3297 			goto out;
3298 
3299 		if (ret > 0) {
3300 			ret = btrfs_previous_extent_item(root, path, 0);
3301 			if (ret < 0)
3302 				goto out;
3303 			if (ret > 0) {
3304 				/* there's no smaller item, so stick with the
3305 				 * larger one */
3306 				btrfs_release_path(path);
3307 				ret = btrfs_search_slot(NULL, root, &key,
3308 							path, 0, 0);
3309 				if (ret < 0)
3310 					goto out;
3311 			}
3312 		}
3313 
3314 		stop_loop = 0;
3315 		while (1) {
3316 			u64 bytes;
3317 
3318 			l = path->nodes[0];
3319 			slot = path->slots[0];
3320 			if (slot >= btrfs_header_nritems(l)) {
3321 				ret = btrfs_next_leaf(root, path);
3322 				if (ret == 0)
3323 					continue;
3324 				if (ret < 0)
3325 					goto out;
3326 
3327 				stop_loop = 1;
3328 				break;
3329 			}
3330 			btrfs_item_key_to_cpu(l, &key, slot);
3331 
3332 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3333 			    key.type != BTRFS_METADATA_ITEM_KEY)
3334 				goto next;
3335 
3336 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3337 				bytes = root->nodesize;
3338 			else
3339 				bytes = key.offset;
3340 
3341 			if (key.objectid + bytes <= logical)
3342 				goto next;
3343 
3344 			if (key.objectid >= logical + map->stripe_len) {
3345 				/* out of this device extent */
3346 				if (key.objectid >= logic_end)
3347 					stop_loop = 1;
3348 				break;
3349 			}
3350 
3351 			extent = btrfs_item_ptr(l, slot,
3352 						struct btrfs_extent_item);
3353 			flags = btrfs_extent_flags(l, extent);
3354 			generation = btrfs_extent_generation(l, extent);
3355 
3356 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3357 			    (key.objectid < logical ||
3358 			     key.objectid + bytes >
3359 			     logical + map->stripe_len)) {
3360 				btrfs_err(fs_info,
3361 					   "scrub: tree block %llu spanning "
3362 					   "stripes, ignored. logical=%llu",
3363 				       key.objectid, logical);
3364 				goto next;
3365 			}
3366 
3367 again:
3368 			extent_logical = key.objectid;
3369 			extent_len = bytes;
3370 
3371 			/*
3372 			 * trim extent to this stripe
3373 			 */
3374 			if (extent_logical < logical) {
3375 				extent_len -= logical - extent_logical;
3376 				extent_logical = logical;
3377 			}
3378 			if (extent_logical + extent_len >
3379 			    logical + map->stripe_len) {
3380 				extent_len = logical + map->stripe_len -
3381 					     extent_logical;
3382 			}
3383 
3384 			extent_physical = extent_logical - logical + physical;
3385 			extent_dev = scrub_dev;
3386 			extent_mirror_num = mirror_num;
3387 			if (is_dev_replace)
3388 				scrub_remap_extent(fs_info, extent_logical,
3389 						   extent_len, &extent_physical,
3390 						   &extent_dev,
3391 						   &extent_mirror_num);
3392 
3393 			ret = btrfs_lookup_csums_range(csum_root,
3394 						       extent_logical,
3395 						       extent_logical +
3396 						       extent_len - 1,
3397 						       &sctx->csum_list, 1);
3398 			if (ret)
3399 				goto out;
3400 
3401 			ret = scrub_extent(sctx, extent_logical, extent_len,
3402 					   extent_physical, extent_dev, flags,
3403 					   generation, extent_mirror_num,
3404 					   extent_logical - logical + physical);
3405 
3406 			scrub_free_csums(sctx);
3407 
3408 			if (ret)
3409 				goto out;
3410 
3411 			if (extent_logical + extent_len <
3412 			    key.objectid + bytes) {
3413 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3414 					/*
3415 					 * loop until we find next data stripe
3416 					 * or we have finished all stripes.
3417 					 */
3418 loop:
3419 					physical += map->stripe_len;
3420 					ret = get_raid56_logic_offset(physical,
3421 							num, map, &logical,
3422 							&stripe_logical);
3423 					logical += base;
3424 
3425 					if (ret && physical < physical_end) {
3426 						stripe_logical += base;
3427 						stripe_end = stripe_logical +
3428 								increment;
3429 						ret = scrub_raid56_parity(sctx,
3430 							map, scrub_dev, ppath,
3431 							stripe_logical,
3432 							stripe_end);
3433 						if (ret)
3434 							goto out;
3435 						goto loop;
3436 					}
3437 				} else {
3438 					physical += map->stripe_len;
3439 					logical += increment;
3440 				}
3441 				if (logical < key.objectid + bytes) {
3442 					cond_resched();
3443 					goto again;
3444 				}
3445 
3446 				if (physical >= physical_end) {
3447 					stop_loop = 1;
3448 					break;
3449 				}
3450 			}
3451 next:
3452 			path->slots[0]++;
3453 		}
3454 		btrfs_release_path(path);
3455 skip:
3456 		logical += increment;
3457 		physical += map->stripe_len;
3458 		spin_lock(&sctx->stat_lock);
3459 		if (stop_loop)
3460 			sctx->stat.last_physical = map->stripes[num].physical +
3461 						   length;
3462 		else
3463 			sctx->stat.last_physical = physical;
3464 		spin_unlock(&sctx->stat_lock);
3465 		if (stop_loop)
3466 			break;
3467 	}
3468 out:
3469 	/* push queued extents */
3470 	scrub_submit(sctx);
3471 	mutex_lock(&sctx->wr_ctx.wr_lock);
3472 	scrub_wr_submit(sctx);
3473 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3474 
3475 	blk_finish_plug(&plug);
3476 	btrfs_free_path(path);
3477 	btrfs_free_path(ppath);
3478 	return ret < 0 ? ret : 0;
3479 }
3480 
3481 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3482 					  struct btrfs_device *scrub_dev,
3483 					  u64 chunk_offset, u64 length,
3484 					  u64 dev_offset, int is_dev_replace)
3485 {
3486 	struct btrfs_mapping_tree *map_tree =
3487 		&sctx->dev_root->fs_info->mapping_tree;
3488 	struct map_lookup *map;
3489 	struct extent_map *em;
3490 	int i;
3491 	int ret = 0;
3492 
3493 	read_lock(&map_tree->map_tree.lock);
3494 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3495 	read_unlock(&map_tree->map_tree.lock);
3496 
3497 	if (!em)
3498 		return -EINVAL;
3499 
3500 	map = (struct map_lookup *)em->bdev;
3501 	if (em->start != chunk_offset)
3502 		goto out;
3503 
3504 	if (em->len < length)
3505 		goto out;
3506 
3507 	for (i = 0; i < map->num_stripes; ++i) {
3508 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3509 		    map->stripes[i].physical == dev_offset) {
3510 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3511 					   chunk_offset, length,
3512 					   is_dev_replace);
3513 			if (ret)
3514 				goto out;
3515 		}
3516 	}
3517 out:
3518 	free_extent_map(em);
3519 
3520 	return ret;
3521 }
3522 
3523 static noinline_for_stack
3524 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3525 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3526 			   int is_dev_replace)
3527 {
3528 	struct btrfs_dev_extent *dev_extent = NULL;
3529 	struct btrfs_path *path;
3530 	struct btrfs_root *root = sctx->dev_root;
3531 	struct btrfs_fs_info *fs_info = root->fs_info;
3532 	u64 length;
3533 	u64 chunk_offset;
3534 	int ret = 0;
3535 	int slot;
3536 	struct extent_buffer *l;
3537 	struct btrfs_key key;
3538 	struct btrfs_key found_key;
3539 	struct btrfs_block_group_cache *cache;
3540 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3541 
3542 	path = btrfs_alloc_path();
3543 	if (!path)
3544 		return -ENOMEM;
3545 
3546 	path->reada = 2;
3547 	path->search_commit_root = 1;
3548 	path->skip_locking = 1;
3549 
3550 	key.objectid = scrub_dev->devid;
3551 	key.offset = 0ull;
3552 	key.type = BTRFS_DEV_EXTENT_KEY;
3553 
3554 	while (1) {
3555 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3556 		if (ret < 0)
3557 			break;
3558 		if (ret > 0) {
3559 			if (path->slots[0] >=
3560 			    btrfs_header_nritems(path->nodes[0])) {
3561 				ret = btrfs_next_leaf(root, path);
3562 				if (ret < 0)
3563 					break;
3564 				if (ret > 0) {
3565 					ret = 0;
3566 					break;
3567 				}
3568 			} else {
3569 				ret = 0;
3570 			}
3571 		}
3572 
3573 		l = path->nodes[0];
3574 		slot = path->slots[0];
3575 
3576 		btrfs_item_key_to_cpu(l, &found_key, slot);
3577 
3578 		if (found_key.objectid != scrub_dev->devid)
3579 			break;
3580 
3581 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3582 			break;
3583 
3584 		if (found_key.offset >= end)
3585 			break;
3586 
3587 		if (found_key.offset < key.offset)
3588 			break;
3589 
3590 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3591 		length = btrfs_dev_extent_length(l, dev_extent);
3592 
3593 		if (found_key.offset + length <= start)
3594 			goto skip;
3595 
3596 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3597 
3598 		/*
3599 		 * get a reference on the corresponding block group to prevent
3600 		 * the chunk from going away while we scrub it
3601 		 */
3602 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3603 
3604 		/* some chunks are removed but not committed to disk yet,
3605 		 * continue scrubbing */
3606 		if (!cache)
3607 			goto skip;
3608 
3609 		/*
3610 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3611 		 * to avoid deadlock caused by:
3612 		 * btrfs_inc_block_group_ro()
3613 		 * -> btrfs_wait_for_commit()
3614 		 * -> btrfs_commit_transaction()
3615 		 * -> btrfs_scrub_pause()
3616 		 */
3617 		scrub_pause_on(fs_info);
3618 		ret = btrfs_inc_block_group_ro(root, cache);
3619 		scrub_pause_off(fs_info);
3620 		if (ret) {
3621 			btrfs_put_block_group(cache);
3622 			break;
3623 		}
3624 
3625 		dev_replace->cursor_right = found_key.offset + length;
3626 		dev_replace->cursor_left = found_key.offset;
3627 		dev_replace->item_needs_writeback = 1;
3628 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3629 				  found_key.offset, is_dev_replace);
3630 
3631 		/*
3632 		 * flush, submit all pending read and write bios, afterwards
3633 		 * wait for them.
3634 		 * Note that in the dev replace case, a read request causes
3635 		 * write requests that are submitted in the read completion
3636 		 * worker. Therefore in the current situation, it is required
3637 		 * that all write requests are flushed, so that all read and
3638 		 * write requests are really completed when bios_in_flight
3639 		 * changes to 0.
3640 		 */
3641 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3642 		scrub_submit(sctx);
3643 		mutex_lock(&sctx->wr_ctx.wr_lock);
3644 		scrub_wr_submit(sctx);
3645 		mutex_unlock(&sctx->wr_ctx.wr_lock);
3646 
3647 		wait_event(sctx->list_wait,
3648 			   atomic_read(&sctx->bios_in_flight) == 0);
3649 
3650 		scrub_pause_on(fs_info);
3651 
3652 		/*
3653 		 * must be called before we decrease @scrub_paused.
3654 		 * make sure we don't block transaction commit while
3655 		 * we are waiting pending workers finished.
3656 		 */
3657 		wait_event(sctx->list_wait,
3658 			   atomic_read(&sctx->workers_pending) == 0);
3659 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3660 
3661 		scrub_pause_off(fs_info);
3662 
3663 		btrfs_dec_block_group_ro(root, cache);
3664 
3665 		btrfs_put_block_group(cache);
3666 		if (ret)
3667 			break;
3668 		if (is_dev_replace &&
3669 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3670 			ret = -EIO;
3671 			break;
3672 		}
3673 		if (sctx->stat.malloc_errors > 0) {
3674 			ret = -ENOMEM;
3675 			break;
3676 		}
3677 
3678 		dev_replace->cursor_left = dev_replace->cursor_right;
3679 		dev_replace->item_needs_writeback = 1;
3680 skip:
3681 		key.offset = found_key.offset + length;
3682 		btrfs_release_path(path);
3683 	}
3684 
3685 	btrfs_free_path(path);
3686 
3687 	return ret;
3688 }
3689 
3690 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3691 					   struct btrfs_device *scrub_dev)
3692 {
3693 	int	i;
3694 	u64	bytenr;
3695 	u64	gen;
3696 	int	ret;
3697 	struct btrfs_root *root = sctx->dev_root;
3698 
3699 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3700 		return -EIO;
3701 
3702 	/* Seed devices of a new filesystem has their own generation. */
3703 	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3704 		gen = scrub_dev->generation;
3705 	else
3706 		gen = root->fs_info->last_trans_committed;
3707 
3708 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3709 		bytenr = btrfs_sb_offset(i);
3710 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3711 		    scrub_dev->commit_total_bytes)
3712 			break;
3713 
3714 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3715 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3716 				  NULL, 1, bytenr);
3717 		if (ret)
3718 			return ret;
3719 	}
3720 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3721 
3722 	return 0;
3723 }
3724 
3725 /*
3726  * get a reference count on fs_info->scrub_workers. start worker if necessary
3727  */
3728 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3729 						int is_dev_replace)
3730 {
3731 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3732 	int max_active = fs_info->thread_pool_size;
3733 
3734 	if (fs_info->scrub_workers_refcnt == 0) {
3735 		if (is_dev_replace)
3736 			fs_info->scrub_workers =
3737 				btrfs_alloc_workqueue("btrfs-scrub", flags,
3738 						      1, 4);
3739 		else
3740 			fs_info->scrub_workers =
3741 				btrfs_alloc_workqueue("btrfs-scrub", flags,
3742 						      max_active, 4);
3743 		if (!fs_info->scrub_workers)
3744 			goto fail_scrub_workers;
3745 
3746 		fs_info->scrub_wr_completion_workers =
3747 			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
3748 					      max_active, 2);
3749 		if (!fs_info->scrub_wr_completion_workers)
3750 			goto fail_scrub_wr_completion_workers;
3751 
3752 		fs_info->scrub_nocow_workers =
3753 			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3754 		if (!fs_info->scrub_nocow_workers)
3755 			goto fail_scrub_nocow_workers;
3756 		fs_info->scrub_parity_workers =
3757 			btrfs_alloc_workqueue("btrfs-scrubparity", flags,
3758 					      max_active, 2);
3759 		if (!fs_info->scrub_parity_workers)
3760 			goto fail_scrub_parity_workers;
3761 	}
3762 	++fs_info->scrub_workers_refcnt;
3763 	return 0;
3764 
3765 fail_scrub_parity_workers:
3766 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3767 fail_scrub_nocow_workers:
3768 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3769 fail_scrub_wr_completion_workers:
3770 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3771 fail_scrub_workers:
3772 	return -ENOMEM;
3773 }
3774 
3775 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3776 {
3777 	if (--fs_info->scrub_workers_refcnt == 0) {
3778 		btrfs_destroy_workqueue(fs_info->scrub_workers);
3779 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3780 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3781 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3782 	}
3783 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3784 }
3785 
3786 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3787 		    u64 end, struct btrfs_scrub_progress *progress,
3788 		    int readonly, int is_dev_replace)
3789 {
3790 	struct scrub_ctx *sctx;
3791 	int ret;
3792 	struct btrfs_device *dev;
3793 	struct rcu_string *name;
3794 
3795 	if (btrfs_fs_closing(fs_info))
3796 		return -EINVAL;
3797 
3798 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3799 		/*
3800 		 * in this case scrub is unable to calculate the checksum
3801 		 * the way scrub is implemented. Do not handle this
3802 		 * situation at all because it won't ever happen.
3803 		 */
3804 		btrfs_err(fs_info,
3805 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3806 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3807 		return -EINVAL;
3808 	}
3809 
3810 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3811 		/* not supported for data w/o checksums */
3812 		btrfs_err(fs_info,
3813 			   "scrub: size assumption sectorsize != PAGE_SIZE "
3814 			   "(%d != %lu) fails",
3815 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
3816 		return -EINVAL;
3817 	}
3818 
3819 	if (fs_info->chunk_root->nodesize >
3820 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3821 	    fs_info->chunk_root->sectorsize >
3822 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3823 		/*
3824 		 * would exhaust the array bounds of pagev member in
3825 		 * struct scrub_block
3826 		 */
3827 		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3828 			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3829 		       fs_info->chunk_root->nodesize,
3830 		       SCRUB_MAX_PAGES_PER_BLOCK,
3831 		       fs_info->chunk_root->sectorsize,
3832 		       SCRUB_MAX_PAGES_PER_BLOCK);
3833 		return -EINVAL;
3834 	}
3835 
3836 
3837 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3838 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3839 	if (!dev || (dev->missing && !is_dev_replace)) {
3840 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3841 		return -ENODEV;
3842 	}
3843 
3844 	if (!is_dev_replace && !readonly && !dev->writeable) {
3845 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3846 		rcu_read_lock();
3847 		name = rcu_dereference(dev->name);
3848 		btrfs_err(fs_info, "scrub: device %s is not writable",
3849 			  name->str);
3850 		rcu_read_unlock();
3851 		return -EROFS;
3852 	}
3853 
3854 	mutex_lock(&fs_info->scrub_lock);
3855 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3856 		mutex_unlock(&fs_info->scrub_lock);
3857 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3858 		return -EIO;
3859 	}
3860 
3861 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3862 	if (dev->scrub_device ||
3863 	    (!is_dev_replace &&
3864 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3865 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
3866 		mutex_unlock(&fs_info->scrub_lock);
3867 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3868 		return -EINPROGRESS;
3869 	}
3870 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3871 
3872 	ret = scrub_workers_get(fs_info, is_dev_replace);
3873 	if (ret) {
3874 		mutex_unlock(&fs_info->scrub_lock);
3875 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3876 		return ret;
3877 	}
3878 
3879 	sctx = scrub_setup_ctx(dev, is_dev_replace);
3880 	if (IS_ERR(sctx)) {
3881 		mutex_unlock(&fs_info->scrub_lock);
3882 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3883 		scrub_workers_put(fs_info);
3884 		return PTR_ERR(sctx);
3885 	}
3886 	sctx->readonly = readonly;
3887 	dev->scrub_device = sctx;
3888 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3889 
3890 	/*
3891 	 * checking @scrub_pause_req here, we can avoid
3892 	 * race between committing transaction and scrubbing.
3893 	 */
3894 	__scrub_blocked_if_needed(fs_info);
3895 	atomic_inc(&fs_info->scrubs_running);
3896 	mutex_unlock(&fs_info->scrub_lock);
3897 
3898 	if (!is_dev_replace) {
3899 		/*
3900 		 * by holding device list mutex, we can
3901 		 * kick off writing super in log tree sync.
3902 		 */
3903 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3904 		ret = scrub_supers(sctx, dev);
3905 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3906 	}
3907 
3908 	if (!ret)
3909 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3910 					     is_dev_replace);
3911 
3912 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3913 	atomic_dec(&fs_info->scrubs_running);
3914 	wake_up(&fs_info->scrub_pause_wait);
3915 
3916 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3917 
3918 	if (progress)
3919 		memcpy(progress, &sctx->stat, sizeof(*progress));
3920 
3921 	mutex_lock(&fs_info->scrub_lock);
3922 	dev->scrub_device = NULL;
3923 	scrub_workers_put(fs_info);
3924 	mutex_unlock(&fs_info->scrub_lock);
3925 
3926 	scrub_put_ctx(sctx);
3927 
3928 	return ret;
3929 }
3930 
3931 void btrfs_scrub_pause(struct btrfs_root *root)
3932 {
3933 	struct btrfs_fs_info *fs_info = root->fs_info;
3934 
3935 	mutex_lock(&fs_info->scrub_lock);
3936 	atomic_inc(&fs_info->scrub_pause_req);
3937 	while (atomic_read(&fs_info->scrubs_paused) !=
3938 	       atomic_read(&fs_info->scrubs_running)) {
3939 		mutex_unlock(&fs_info->scrub_lock);
3940 		wait_event(fs_info->scrub_pause_wait,
3941 			   atomic_read(&fs_info->scrubs_paused) ==
3942 			   atomic_read(&fs_info->scrubs_running));
3943 		mutex_lock(&fs_info->scrub_lock);
3944 	}
3945 	mutex_unlock(&fs_info->scrub_lock);
3946 }
3947 
3948 void btrfs_scrub_continue(struct btrfs_root *root)
3949 {
3950 	struct btrfs_fs_info *fs_info = root->fs_info;
3951 
3952 	atomic_dec(&fs_info->scrub_pause_req);
3953 	wake_up(&fs_info->scrub_pause_wait);
3954 }
3955 
3956 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3957 {
3958 	mutex_lock(&fs_info->scrub_lock);
3959 	if (!atomic_read(&fs_info->scrubs_running)) {
3960 		mutex_unlock(&fs_info->scrub_lock);
3961 		return -ENOTCONN;
3962 	}
3963 
3964 	atomic_inc(&fs_info->scrub_cancel_req);
3965 	while (atomic_read(&fs_info->scrubs_running)) {
3966 		mutex_unlock(&fs_info->scrub_lock);
3967 		wait_event(fs_info->scrub_pause_wait,
3968 			   atomic_read(&fs_info->scrubs_running) == 0);
3969 		mutex_lock(&fs_info->scrub_lock);
3970 	}
3971 	atomic_dec(&fs_info->scrub_cancel_req);
3972 	mutex_unlock(&fs_info->scrub_lock);
3973 
3974 	return 0;
3975 }
3976 
3977 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3978 			   struct btrfs_device *dev)
3979 {
3980 	struct scrub_ctx *sctx;
3981 
3982 	mutex_lock(&fs_info->scrub_lock);
3983 	sctx = dev->scrub_device;
3984 	if (!sctx) {
3985 		mutex_unlock(&fs_info->scrub_lock);
3986 		return -ENOTCONN;
3987 	}
3988 	atomic_inc(&sctx->cancel_req);
3989 	while (dev->scrub_device) {
3990 		mutex_unlock(&fs_info->scrub_lock);
3991 		wait_event(fs_info->scrub_pause_wait,
3992 			   dev->scrub_device == NULL);
3993 		mutex_lock(&fs_info->scrub_lock);
3994 	}
3995 	mutex_unlock(&fs_info->scrub_lock);
3996 
3997 	return 0;
3998 }
3999 
4000 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4001 			 struct btrfs_scrub_progress *progress)
4002 {
4003 	struct btrfs_device *dev;
4004 	struct scrub_ctx *sctx = NULL;
4005 
4006 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4007 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
4008 	if (dev)
4009 		sctx = dev->scrub_device;
4010 	if (sctx)
4011 		memcpy(progress, &sctx->stat, sizeof(*progress));
4012 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
4013 
4014 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4015 }
4016 
4017 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4018 			       u64 extent_logical, u64 extent_len,
4019 			       u64 *extent_physical,
4020 			       struct btrfs_device **extent_dev,
4021 			       int *extent_mirror_num)
4022 {
4023 	u64 mapped_length;
4024 	struct btrfs_bio *bbio = NULL;
4025 	int ret;
4026 
4027 	mapped_length = extent_len;
4028 	ret = btrfs_map_block(fs_info, READ, extent_logical,
4029 			      &mapped_length, &bbio, 0);
4030 	if (ret || !bbio || mapped_length < extent_len ||
4031 	    !bbio->stripes[0].dev->bdev) {
4032 		btrfs_put_bbio(bbio);
4033 		return;
4034 	}
4035 
4036 	*extent_physical = bbio->stripes[0].physical;
4037 	*extent_mirror_num = bbio->mirror_num;
4038 	*extent_dev = bbio->stripes[0].dev;
4039 	btrfs_put_bbio(bbio);
4040 }
4041 
4042 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4043 			      struct scrub_wr_ctx *wr_ctx,
4044 			      struct btrfs_fs_info *fs_info,
4045 			      struct btrfs_device *dev,
4046 			      int is_dev_replace)
4047 {
4048 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4049 
4050 	mutex_init(&wr_ctx->wr_lock);
4051 	wr_ctx->wr_curr_bio = NULL;
4052 	if (!is_dev_replace)
4053 		return 0;
4054 
4055 	WARN_ON(!dev->bdev);
4056 	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4057 	wr_ctx->tgtdev = dev;
4058 	atomic_set(&wr_ctx->flush_all_writes, 0);
4059 	return 0;
4060 }
4061 
4062 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4063 {
4064 	mutex_lock(&wr_ctx->wr_lock);
4065 	kfree(wr_ctx->wr_curr_bio);
4066 	wr_ctx->wr_curr_bio = NULL;
4067 	mutex_unlock(&wr_ctx->wr_lock);
4068 }
4069 
4070 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4071 			    int mirror_num, u64 physical_for_dev_replace)
4072 {
4073 	struct scrub_copy_nocow_ctx *nocow_ctx;
4074 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
4075 
4076 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4077 	if (!nocow_ctx) {
4078 		spin_lock(&sctx->stat_lock);
4079 		sctx->stat.malloc_errors++;
4080 		spin_unlock(&sctx->stat_lock);
4081 		return -ENOMEM;
4082 	}
4083 
4084 	scrub_pending_trans_workers_inc(sctx);
4085 
4086 	nocow_ctx->sctx = sctx;
4087 	nocow_ctx->logical = logical;
4088 	nocow_ctx->len = len;
4089 	nocow_ctx->mirror_num = mirror_num;
4090 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4091 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4092 			copy_nocow_pages_worker, NULL, NULL);
4093 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4094 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4095 			 &nocow_ctx->work);
4096 
4097 	return 0;
4098 }
4099 
4100 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4101 {
4102 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4103 	struct scrub_nocow_inode *nocow_inode;
4104 
4105 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4106 	if (!nocow_inode)
4107 		return -ENOMEM;
4108 	nocow_inode->inum = inum;
4109 	nocow_inode->offset = offset;
4110 	nocow_inode->root = root;
4111 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4112 	return 0;
4113 }
4114 
4115 #define COPY_COMPLETE 1
4116 
4117 static void copy_nocow_pages_worker(struct btrfs_work *work)
4118 {
4119 	struct scrub_copy_nocow_ctx *nocow_ctx =
4120 		container_of(work, struct scrub_copy_nocow_ctx, work);
4121 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4122 	u64 logical = nocow_ctx->logical;
4123 	u64 len = nocow_ctx->len;
4124 	int mirror_num = nocow_ctx->mirror_num;
4125 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4126 	int ret;
4127 	struct btrfs_trans_handle *trans = NULL;
4128 	struct btrfs_fs_info *fs_info;
4129 	struct btrfs_path *path;
4130 	struct btrfs_root *root;
4131 	int not_written = 0;
4132 
4133 	fs_info = sctx->dev_root->fs_info;
4134 	root = fs_info->extent_root;
4135 
4136 	path = btrfs_alloc_path();
4137 	if (!path) {
4138 		spin_lock(&sctx->stat_lock);
4139 		sctx->stat.malloc_errors++;
4140 		spin_unlock(&sctx->stat_lock);
4141 		not_written = 1;
4142 		goto out;
4143 	}
4144 
4145 	trans = btrfs_join_transaction(root);
4146 	if (IS_ERR(trans)) {
4147 		not_written = 1;
4148 		goto out;
4149 	}
4150 
4151 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4152 					  record_inode_for_nocow, nocow_ctx);
4153 	if (ret != 0 && ret != -ENOENT) {
4154 		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
4155 			"phys %llu, len %llu, mir %u, ret %d",
4156 			logical, physical_for_dev_replace, len, mirror_num,
4157 			ret);
4158 		not_written = 1;
4159 		goto out;
4160 	}
4161 
4162 	btrfs_end_transaction(trans, root);
4163 	trans = NULL;
4164 	while (!list_empty(&nocow_ctx->inodes)) {
4165 		struct scrub_nocow_inode *entry;
4166 		entry = list_first_entry(&nocow_ctx->inodes,
4167 					 struct scrub_nocow_inode,
4168 					 list);
4169 		list_del_init(&entry->list);
4170 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4171 						 entry->root, nocow_ctx);
4172 		kfree(entry);
4173 		if (ret == COPY_COMPLETE) {
4174 			ret = 0;
4175 			break;
4176 		} else if (ret) {
4177 			break;
4178 		}
4179 	}
4180 out:
4181 	while (!list_empty(&nocow_ctx->inodes)) {
4182 		struct scrub_nocow_inode *entry;
4183 		entry = list_first_entry(&nocow_ctx->inodes,
4184 					 struct scrub_nocow_inode,
4185 					 list);
4186 		list_del_init(&entry->list);
4187 		kfree(entry);
4188 	}
4189 	if (trans && !IS_ERR(trans))
4190 		btrfs_end_transaction(trans, root);
4191 	if (not_written)
4192 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4193 					    num_uncorrectable_read_errors);
4194 
4195 	btrfs_free_path(path);
4196 	kfree(nocow_ctx);
4197 
4198 	scrub_pending_trans_workers_dec(sctx);
4199 }
4200 
4201 static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4202 				 u64 logical)
4203 {
4204 	struct extent_state *cached_state = NULL;
4205 	struct btrfs_ordered_extent *ordered;
4206 	struct extent_io_tree *io_tree;
4207 	struct extent_map *em;
4208 	u64 lockstart = start, lockend = start + len - 1;
4209 	int ret = 0;
4210 
4211 	io_tree = &BTRFS_I(inode)->io_tree;
4212 
4213 	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
4214 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4215 	if (ordered) {
4216 		btrfs_put_ordered_extent(ordered);
4217 		ret = 1;
4218 		goto out_unlock;
4219 	}
4220 
4221 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4222 	if (IS_ERR(em)) {
4223 		ret = PTR_ERR(em);
4224 		goto out_unlock;
4225 	}
4226 
4227 	/*
4228 	 * This extent does not actually cover the logical extent anymore,
4229 	 * move on to the next inode.
4230 	 */
4231 	if (em->block_start > logical ||
4232 	    em->block_start + em->block_len < logical + len) {
4233 		free_extent_map(em);
4234 		ret = 1;
4235 		goto out_unlock;
4236 	}
4237 	free_extent_map(em);
4238 
4239 out_unlock:
4240 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4241 			     GFP_NOFS);
4242 	return ret;
4243 }
4244 
4245 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4246 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4247 {
4248 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4249 	struct btrfs_key key;
4250 	struct inode *inode;
4251 	struct page *page;
4252 	struct btrfs_root *local_root;
4253 	struct extent_io_tree *io_tree;
4254 	u64 physical_for_dev_replace;
4255 	u64 nocow_ctx_logical;
4256 	u64 len = nocow_ctx->len;
4257 	unsigned long index;
4258 	int srcu_index;
4259 	int ret = 0;
4260 	int err = 0;
4261 
4262 	key.objectid = root;
4263 	key.type = BTRFS_ROOT_ITEM_KEY;
4264 	key.offset = (u64)-1;
4265 
4266 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4267 
4268 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4269 	if (IS_ERR(local_root)) {
4270 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4271 		return PTR_ERR(local_root);
4272 	}
4273 
4274 	key.type = BTRFS_INODE_ITEM_KEY;
4275 	key.objectid = inum;
4276 	key.offset = 0;
4277 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4278 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4279 	if (IS_ERR(inode))
4280 		return PTR_ERR(inode);
4281 
4282 	/* Avoid truncate/dio/punch hole.. */
4283 	mutex_lock(&inode->i_mutex);
4284 	inode_dio_wait(inode);
4285 
4286 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4287 	io_tree = &BTRFS_I(inode)->io_tree;
4288 	nocow_ctx_logical = nocow_ctx->logical;
4289 
4290 	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4291 	if (ret) {
4292 		ret = ret > 0 ? 0 : ret;
4293 		goto out;
4294 	}
4295 
4296 	while (len >= PAGE_CACHE_SIZE) {
4297 		index = offset >> PAGE_CACHE_SHIFT;
4298 again:
4299 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4300 		if (!page) {
4301 			btrfs_err(fs_info, "find_or_create_page() failed");
4302 			ret = -ENOMEM;
4303 			goto out;
4304 		}
4305 
4306 		if (PageUptodate(page)) {
4307 			if (PageDirty(page))
4308 				goto next_page;
4309 		} else {
4310 			ClearPageError(page);
4311 			err = extent_read_full_page(io_tree, page,
4312 							   btrfs_get_extent,
4313 							   nocow_ctx->mirror_num);
4314 			if (err) {
4315 				ret = err;
4316 				goto next_page;
4317 			}
4318 
4319 			lock_page(page);
4320 			/*
4321 			 * If the page has been remove from the page cache,
4322 			 * the data on it is meaningless, because it may be
4323 			 * old one, the new data may be written into the new
4324 			 * page in the page cache.
4325 			 */
4326 			if (page->mapping != inode->i_mapping) {
4327 				unlock_page(page);
4328 				page_cache_release(page);
4329 				goto again;
4330 			}
4331 			if (!PageUptodate(page)) {
4332 				ret = -EIO;
4333 				goto next_page;
4334 			}
4335 		}
4336 
4337 		ret = check_extent_to_block(inode, offset, len,
4338 					    nocow_ctx_logical);
4339 		if (ret) {
4340 			ret = ret > 0 ? 0 : ret;
4341 			goto next_page;
4342 		}
4343 
4344 		err = write_page_nocow(nocow_ctx->sctx,
4345 				       physical_for_dev_replace, page);
4346 		if (err)
4347 			ret = err;
4348 next_page:
4349 		unlock_page(page);
4350 		page_cache_release(page);
4351 
4352 		if (ret)
4353 			break;
4354 
4355 		offset += PAGE_CACHE_SIZE;
4356 		physical_for_dev_replace += PAGE_CACHE_SIZE;
4357 		nocow_ctx_logical += PAGE_CACHE_SIZE;
4358 		len -= PAGE_CACHE_SIZE;
4359 	}
4360 	ret = COPY_COMPLETE;
4361 out:
4362 	mutex_unlock(&inode->i_mutex);
4363 	iput(inode);
4364 	return ret;
4365 }
4366 
4367 static int write_page_nocow(struct scrub_ctx *sctx,
4368 			    u64 physical_for_dev_replace, struct page *page)
4369 {
4370 	struct bio *bio;
4371 	struct btrfs_device *dev;
4372 	int ret;
4373 
4374 	dev = sctx->wr_ctx.tgtdev;
4375 	if (!dev)
4376 		return -EIO;
4377 	if (!dev->bdev) {
4378 		printk_ratelimited(KERN_WARNING
4379 			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4380 		return -EIO;
4381 	}
4382 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4383 	if (!bio) {
4384 		spin_lock(&sctx->stat_lock);
4385 		sctx->stat.malloc_errors++;
4386 		spin_unlock(&sctx->stat_lock);
4387 		return -ENOMEM;
4388 	}
4389 	bio->bi_iter.bi_size = 0;
4390 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4391 	bio->bi_bdev = dev->bdev;
4392 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
4393 	if (ret != PAGE_CACHE_SIZE) {
4394 leave_with_eio:
4395 		bio_put(bio);
4396 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4397 		return -EIO;
4398 	}
4399 
4400 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4401 		goto leave_with_eio;
4402 
4403 	bio_put(bio);
4404 	return 0;
4405 }
4406