1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include <linux/sched/mm.h> 22 #include "ctree.h" 23 #include "volumes.h" 24 #include "disk-io.h" 25 #include "ordered-data.h" 26 #include "transaction.h" 27 #include "backref.h" 28 #include "extent_io.h" 29 #include "dev-replace.h" 30 #include "check-integrity.h" 31 #include "rcu-string.h" 32 #include "raid56.h" 33 34 /* 35 * This is only the first step towards a full-features scrub. It reads all 36 * extent and super block and verifies the checksums. In case a bad checksum 37 * is found or the extent cannot be read, good data will be written back if 38 * any can be found. 39 * 40 * Future enhancements: 41 * - In case an unrepairable extent is encountered, track which files are 42 * affected and report them 43 * - track and record media errors, throw out bad devices 44 * - add a mode to also read unallocated space 45 */ 46 47 struct scrub_block; 48 struct scrub_ctx; 49 50 /* 51 * the following three values only influence the performance. 52 * The last one configures the number of parallel and outstanding I/O 53 * operations. The first two values configure an upper limit for the number 54 * of (dynamically allocated) pages that are added to a bio. 55 */ 56 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 57 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 58 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 59 60 /* 61 * the following value times PAGE_SIZE needs to be large enough to match the 62 * largest node/leaf/sector size that shall be supported. 63 * Values larger than BTRFS_STRIPE_LEN are not supported. 64 */ 65 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 66 67 struct scrub_recover { 68 refcount_t refs; 69 struct btrfs_bio *bbio; 70 u64 map_length; 71 }; 72 73 struct scrub_page { 74 struct scrub_block *sblock; 75 struct page *page; 76 struct btrfs_device *dev; 77 struct list_head list; 78 u64 flags; /* extent flags */ 79 u64 generation; 80 u64 logical; 81 u64 physical; 82 u64 physical_for_dev_replace; 83 atomic_t refs; 84 struct { 85 unsigned int mirror_num:8; 86 unsigned int have_csum:1; 87 unsigned int io_error:1; 88 }; 89 u8 csum[BTRFS_CSUM_SIZE]; 90 91 struct scrub_recover *recover; 92 }; 93 94 struct scrub_bio { 95 int index; 96 struct scrub_ctx *sctx; 97 struct btrfs_device *dev; 98 struct bio *bio; 99 blk_status_t status; 100 u64 logical; 101 u64 physical; 102 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 103 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 104 #else 105 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 106 #endif 107 int page_count; 108 int next_free; 109 struct btrfs_work work; 110 }; 111 112 struct scrub_block { 113 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 114 int page_count; 115 atomic_t outstanding_pages; 116 refcount_t refs; /* free mem on transition to zero */ 117 struct scrub_ctx *sctx; 118 struct scrub_parity *sparity; 119 struct { 120 unsigned int header_error:1; 121 unsigned int checksum_error:1; 122 unsigned int no_io_error_seen:1; 123 unsigned int generation_error:1; /* also sets header_error */ 124 125 /* The following is for the data used to check parity */ 126 /* It is for the data with checksum */ 127 unsigned int data_corrected:1; 128 }; 129 struct btrfs_work work; 130 }; 131 132 /* Used for the chunks with parity stripe such RAID5/6 */ 133 struct scrub_parity { 134 struct scrub_ctx *sctx; 135 136 struct btrfs_device *scrub_dev; 137 138 u64 logic_start; 139 140 u64 logic_end; 141 142 int nsectors; 143 144 u64 stripe_len; 145 146 refcount_t refs; 147 148 struct list_head spages; 149 150 /* Work of parity check and repair */ 151 struct btrfs_work work; 152 153 /* Mark the parity blocks which have data */ 154 unsigned long *dbitmap; 155 156 /* 157 * Mark the parity blocks which have data, but errors happen when 158 * read data or check data 159 */ 160 unsigned long *ebitmap; 161 162 unsigned long bitmap[0]; 163 }; 164 165 struct scrub_ctx { 166 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 167 struct btrfs_fs_info *fs_info; 168 int first_free; 169 int curr; 170 atomic_t bios_in_flight; 171 atomic_t workers_pending; 172 spinlock_t list_lock; 173 wait_queue_head_t list_wait; 174 u16 csum_size; 175 struct list_head csum_list; 176 atomic_t cancel_req; 177 int readonly; 178 int pages_per_rd_bio; 179 180 int is_dev_replace; 181 182 struct scrub_bio *wr_curr_bio; 183 struct mutex wr_lock; 184 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 185 atomic_t flush_all_writes; 186 struct btrfs_device *wr_tgtdev; 187 188 /* 189 * statistics 190 */ 191 struct btrfs_scrub_progress stat; 192 spinlock_t stat_lock; 193 194 /* 195 * Use a ref counter to avoid use-after-free issues. Scrub workers 196 * decrement bios_in_flight and workers_pending and then do a wakeup 197 * on the list_wait wait queue. We must ensure the main scrub task 198 * doesn't free the scrub context before or while the workers are 199 * doing the wakeup() call. 200 */ 201 refcount_t refs; 202 }; 203 204 struct scrub_fixup_nodatasum { 205 struct scrub_ctx *sctx; 206 struct btrfs_device *dev; 207 u64 logical; 208 struct btrfs_root *root; 209 struct btrfs_work work; 210 int mirror_num; 211 }; 212 213 struct scrub_nocow_inode { 214 u64 inum; 215 u64 offset; 216 u64 root; 217 struct list_head list; 218 }; 219 220 struct scrub_copy_nocow_ctx { 221 struct scrub_ctx *sctx; 222 u64 logical; 223 u64 len; 224 int mirror_num; 225 u64 physical_for_dev_replace; 226 struct list_head inodes; 227 struct btrfs_work work; 228 }; 229 230 struct scrub_warning { 231 struct btrfs_path *path; 232 u64 extent_item_size; 233 const char *errstr; 234 sector_t sector; 235 u64 logical; 236 struct btrfs_device *dev; 237 }; 238 239 struct full_stripe_lock { 240 struct rb_node node; 241 u64 logical; 242 u64 refs; 243 struct mutex mutex; 244 }; 245 246 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 247 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 248 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 249 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 250 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 251 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 252 struct scrub_block *sblocks_for_recheck); 253 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 254 struct scrub_block *sblock, 255 int retry_failed_mirror); 256 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 257 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 258 struct scrub_block *sblock_good); 259 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 260 struct scrub_block *sblock_good, 261 int page_num, int force_write); 262 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 263 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 264 int page_num); 265 static int scrub_checksum_data(struct scrub_block *sblock); 266 static int scrub_checksum_tree_block(struct scrub_block *sblock); 267 static int scrub_checksum_super(struct scrub_block *sblock); 268 static void scrub_block_get(struct scrub_block *sblock); 269 static void scrub_block_put(struct scrub_block *sblock); 270 static void scrub_page_get(struct scrub_page *spage); 271 static void scrub_page_put(struct scrub_page *spage); 272 static void scrub_parity_get(struct scrub_parity *sparity); 273 static void scrub_parity_put(struct scrub_parity *sparity); 274 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 275 struct scrub_page *spage); 276 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 277 u64 physical, struct btrfs_device *dev, u64 flags, 278 u64 gen, int mirror_num, u8 *csum, int force, 279 u64 physical_for_dev_replace); 280 static void scrub_bio_end_io(struct bio *bio); 281 static void scrub_bio_end_io_worker(struct btrfs_work *work); 282 static void scrub_block_complete(struct scrub_block *sblock); 283 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 284 u64 extent_logical, u64 extent_len, 285 u64 *extent_physical, 286 struct btrfs_device **extent_dev, 287 int *extent_mirror_num); 288 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 289 struct scrub_page *spage); 290 static void scrub_wr_submit(struct scrub_ctx *sctx); 291 static void scrub_wr_bio_end_io(struct bio *bio); 292 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 293 static int write_page_nocow(struct scrub_ctx *sctx, 294 u64 physical_for_dev_replace, struct page *page); 295 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 296 struct scrub_copy_nocow_ctx *ctx); 297 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 298 int mirror_num, u64 physical_for_dev_replace); 299 static void copy_nocow_pages_worker(struct btrfs_work *work); 300 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 302 static void scrub_put_ctx(struct scrub_ctx *sctx); 303 304 305 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 306 { 307 refcount_inc(&sctx->refs); 308 atomic_inc(&sctx->bios_in_flight); 309 } 310 311 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 312 { 313 atomic_dec(&sctx->bios_in_flight); 314 wake_up(&sctx->list_wait); 315 scrub_put_ctx(sctx); 316 } 317 318 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 319 { 320 while (atomic_read(&fs_info->scrub_pause_req)) { 321 mutex_unlock(&fs_info->scrub_lock); 322 wait_event(fs_info->scrub_pause_wait, 323 atomic_read(&fs_info->scrub_pause_req) == 0); 324 mutex_lock(&fs_info->scrub_lock); 325 } 326 } 327 328 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 329 { 330 atomic_inc(&fs_info->scrubs_paused); 331 wake_up(&fs_info->scrub_pause_wait); 332 } 333 334 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 335 { 336 mutex_lock(&fs_info->scrub_lock); 337 __scrub_blocked_if_needed(fs_info); 338 atomic_dec(&fs_info->scrubs_paused); 339 mutex_unlock(&fs_info->scrub_lock); 340 341 wake_up(&fs_info->scrub_pause_wait); 342 } 343 344 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 345 { 346 scrub_pause_on(fs_info); 347 scrub_pause_off(fs_info); 348 } 349 350 /* 351 * Insert new full stripe lock into full stripe locks tree 352 * 353 * Return pointer to existing or newly inserted full_stripe_lock structure if 354 * everything works well. 355 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 356 * 357 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 358 * function 359 */ 360 static struct full_stripe_lock *insert_full_stripe_lock( 361 struct btrfs_full_stripe_locks_tree *locks_root, 362 u64 fstripe_logical) 363 { 364 struct rb_node **p; 365 struct rb_node *parent = NULL; 366 struct full_stripe_lock *entry; 367 struct full_stripe_lock *ret; 368 369 WARN_ON(!mutex_is_locked(&locks_root->lock)); 370 371 p = &locks_root->root.rb_node; 372 while (*p) { 373 parent = *p; 374 entry = rb_entry(parent, struct full_stripe_lock, node); 375 if (fstripe_logical < entry->logical) { 376 p = &(*p)->rb_left; 377 } else if (fstripe_logical > entry->logical) { 378 p = &(*p)->rb_right; 379 } else { 380 entry->refs++; 381 return entry; 382 } 383 } 384 385 /* Insert new lock */ 386 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 387 if (!ret) 388 return ERR_PTR(-ENOMEM); 389 ret->logical = fstripe_logical; 390 ret->refs = 1; 391 mutex_init(&ret->mutex); 392 393 rb_link_node(&ret->node, parent, p); 394 rb_insert_color(&ret->node, &locks_root->root); 395 return ret; 396 } 397 398 /* 399 * Search for a full stripe lock of a block group 400 * 401 * Return pointer to existing full stripe lock if found 402 * Return NULL if not found 403 */ 404 static struct full_stripe_lock *search_full_stripe_lock( 405 struct btrfs_full_stripe_locks_tree *locks_root, 406 u64 fstripe_logical) 407 { 408 struct rb_node *node; 409 struct full_stripe_lock *entry; 410 411 WARN_ON(!mutex_is_locked(&locks_root->lock)); 412 413 node = locks_root->root.rb_node; 414 while (node) { 415 entry = rb_entry(node, struct full_stripe_lock, node); 416 if (fstripe_logical < entry->logical) 417 node = node->rb_left; 418 else if (fstripe_logical > entry->logical) 419 node = node->rb_right; 420 else 421 return entry; 422 } 423 return NULL; 424 } 425 426 /* 427 * Helper to get full stripe logical from a normal bytenr. 428 * 429 * Caller must ensure @cache is a RAID56 block group. 430 */ 431 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache, 432 u64 bytenr) 433 { 434 u64 ret; 435 436 /* 437 * Due to chunk item size limit, full stripe length should not be 438 * larger than U32_MAX. Just a sanity check here. 439 */ 440 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 441 442 /* 443 * round_down() can only handle power of 2, while RAID56 full 444 * stripe length can be 64KiB * n, so we need to manually round down. 445 */ 446 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) * 447 cache->full_stripe_len + cache->key.objectid; 448 return ret; 449 } 450 451 /* 452 * Lock a full stripe to avoid concurrency of recovery and read 453 * 454 * It's only used for profiles with parities (RAID5/6), for other profiles it 455 * does nothing. 456 * 457 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 458 * So caller must call unlock_full_stripe() at the same context. 459 * 460 * Return <0 if encounters error. 461 */ 462 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 463 bool *locked_ret) 464 { 465 struct btrfs_block_group_cache *bg_cache; 466 struct btrfs_full_stripe_locks_tree *locks_root; 467 struct full_stripe_lock *existing; 468 u64 fstripe_start; 469 int ret = 0; 470 471 *locked_ret = false; 472 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 473 if (!bg_cache) { 474 ASSERT(0); 475 return -ENOENT; 476 } 477 478 /* Profiles not based on parity don't need full stripe lock */ 479 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 480 goto out; 481 locks_root = &bg_cache->full_stripe_locks_root; 482 483 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 484 485 /* Now insert the full stripe lock */ 486 mutex_lock(&locks_root->lock); 487 existing = insert_full_stripe_lock(locks_root, fstripe_start); 488 mutex_unlock(&locks_root->lock); 489 if (IS_ERR(existing)) { 490 ret = PTR_ERR(existing); 491 goto out; 492 } 493 mutex_lock(&existing->mutex); 494 *locked_ret = true; 495 out: 496 btrfs_put_block_group(bg_cache); 497 return ret; 498 } 499 500 /* 501 * Unlock a full stripe. 502 * 503 * NOTE: Caller must ensure it's the same context calling corresponding 504 * lock_full_stripe(). 505 * 506 * Return 0 if we unlock full stripe without problem. 507 * Return <0 for error 508 */ 509 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 510 bool locked) 511 { 512 struct btrfs_block_group_cache *bg_cache; 513 struct btrfs_full_stripe_locks_tree *locks_root; 514 struct full_stripe_lock *fstripe_lock; 515 u64 fstripe_start; 516 bool freeit = false; 517 int ret = 0; 518 519 /* If we didn't acquire full stripe lock, no need to continue */ 520 if (!locked) 521 return 0; 522 523 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 524 if (!bg_cache) { 525 ASSERT(0); 526 return -ENOENT; 527 } 528 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 529 goto out; 530 531 locks_root = &bg_cache->full_stripe_locks_root; 532 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 533 534 mutex_lock(&locks_root->lock); 535 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 536 /* Unpaired unlock_full_stripe() detected */ 537 if (!fstripe_lock) { 538 WARN_ON(1); 539 ret = -ENOENT; 540 mutex_unlock(&locks_root->lock); 541 goto out; 542 } 543 544 if (fstripe_lock->refs == 0) { 545 WARN_ON(1); 546 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 547 fstripe_lock->logical); 548 } else { 549 fstripe_lock->refs--; 550 } 551 552 if (fstripe_lock->refs == 0) { 553 rb_erase(&fstripe_lock->node, &locks_root->root); 554 freeit = true; 555 } 556 mutex_unlock(&locks_root->lock); 557 558 mutex_unlock(&fstripe_lock->mutex); 559 if (freeit) 560 kfree(fstripe_lock); 561 out: 562 btrfs_put_block_group(bg_cache); 563 return ret; 564 } 565 566 /* 567 * used for workers that require transaction commits (i.e., for the 568 * NOCOW case) 569 */ 570 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 571 { 572 struct btrfs_fs_info *fs_info = sctx->fs_info; 573 574 refcount_inc(&sctx->refs); 575 /* 576 * increment scrubs_running to prevent cancel requests from 577 * completing as long as a worker is running. we must also 578 * increment scrubs_paused to prevent deadlocking on pause 579 * requests used for transactions commits (as the worker uses a 580 * transaction context). it is safe to regard the worker 581 * as paused for all matters practical. effectively, we only 582 * avoid cancellation requests from completing. 583 */ 584 mutex_lock(&fs_info->scrub_lock); 585 atomic_inc(&fs_info->scrubs_running); 586 atomic_inc(&fs_info->scrubs_paused); 587 mutex_unlock(&fs_info->scrub_lock); 588 589 /* 590 * check if @scrubs_running=@scrubs_paused condition 591 * inside wait_event() is not an atomic operation. 592 * which means we may inc/dec @scrub_running/paused 593 * at any time. Let's wake up @scrub_pause_wait as 594 * much as we can to let commit transaction blocked less. 595 */ 596 wake_up(&fs_info->scrub_pause_wait); 597 598 atomic_inc(&sctx->workers_pending); 599 } 600 601 /* used for workers that require transaction commits */ 602 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 603 { 604 struct btrfs_fs_info *fs_info = sctx->fs_info; 605 606 /* 607 * see scrub_pending_trans_workers_inc() why we're pretending 608 * to be paused in the scrub counters 609 */ 610 mutex_lock(&fs_info->scrub_lock); 611 atomic_dec(&fs_info->scrubs_running); 612 atomic_dec(&fs_info->scrubs_paused); 613 mutex_unlock(&fs_info->scrub_lock); 614 atomic_dec(&sctx->workers_pending); 615 wake_up(&fs_info->scrub_pause_wait); 616 wake_up(&sctx->list_wait); 617 scrub_put_ctx(sctx); 618 } 619 620 static void scrub_free_csums(struct scrub_ctx *sctx) 621 { 622 while (!list_empty(&sctx->csum_list)) { 623 struct btrfs_ordered_sum *sum; 624 sum = list_first_entry(&sctx->csum_list, 625 struct btrfs_ordered_sum, list); 626 list_del(&sum->list); 627 kfree(sum); 628 } 629 } 630 631 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 632 { 633 int i; 634 635 if (!sctx) 636 return; 637 638 /* this can happen when scrub is cancelled */ 639 if (sctx->curr != -1) { 640 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 641 642 for (i = 0; i < sbio->page_count; i++) { 643 WARN_ON(!sbio->pagev[i]->page); 644 scrub_block_put(sbio->pagev[i]->sblock); 645 } 646 bio_put(sbio->bio); 647 } 648 649 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 650 struct scrub_bio *sbio = sctx->bios[i]; 651 652 if (!sbio) 653 break; 654 kfree(sbio); 655 } 656 657 kfree(sctx->wr_curr_bio); 658 scrub_free_csums(sctx); 659 kfree(sctx); 660 } 661 662 static void scrub_put_ctx(struct scrub_ctx *sctx) 663 { 664 if (refcount_dec_and_test(&sctx->refs)) 665 scrub_free_ctx(sctx); 666 } 667 668 static noinline_for_stack 669 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 670 { 671 struct scrub_ctx *sctx; 672 int i; 673 struct btrfs_fs_info *fs_info = dev->fs_info; 674 675 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 676 if (!sctx) 677 goto nomem; 678 refcount_set(&sctx->refs, 1); 679 sctx->is_dev_replace = is_dev_replace; 680 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 681 sctx->curr = -1; 682 sctx->fs_info = dev->fs_info; 683 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 684 struct scrub_bio *sbio; 685 686 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 687 if (!sbio) 688 goto nomem; 689 sctx->bios[i] = sbio; 690 691 sbio->index = i; 692 sbio->sctx = sctx; 693 sbio->page_count = 0; 694 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 695 scrub_bio_end_io_worker, NULL, NULL); 696 697 if (i != SCRUB_BIOS_PER_SCTX - 1) 698 sctx->bios[i]->next_free = i + 1; 699 else 700 sctx->bios[i]->next_free = -1; 701 } 702 sctx->first_free = 0; 703 atomic_set(&sctx->bios_in_flight, 0); 704 atomic_set(&sctx->workers_pending, 0); 705 atomic_set(&sctx->cancel_req, 0); 706 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 707 INIT_LIST_HEAD(&sctx->csum_list); 708 709 spin_lock_init(&sctx->list_lock); 710 spin_lock_init(&sctx->stat_lock); 711 init_waitqueue_head(&sctx->list_wait); 712 713 WARN_ON(sctx->wr_curr_bio != NULL); 714 mutex_init(&sctx->wr_lock); 715 sctx->wr_curr_bio = NULL; 716 if (is_dev_replace) { 717 WARN_ON(!fs_info->dev_replace.tgtdev); 718 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 719 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 720 atomic_set(&sctx->flush_all_writes, 0); 721 } 722 723 return sctx; 724 725 nomem: 726 scrub_free_ctx(sctx); 727 return ERR_PTR(-ENOMEM); 728 } 729 730 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 731 void *warn_ctx) 732 { 733 u64 isize; 734 u32 nlink; 735 int ret; 736 int i; 737 unsigned nofs_flag; 738 struct extent_buffer *eb; 739 struct btrfs_inode_item *inode_item; 740 struct scrub_warning *swarn = warn_ctx; 741 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 742 struct inode_fs_paths *ipath = NULL; 743 struct btrfs_root *local_root; 744 struct btrfs_key root_key; 745 struct btrfs_key key; 746 747 root_key.objectid = root; 748 root_key.type = BTRFS_ROOT_ITEM_KEY; 749 root_key.offset = (u64)-1; 750 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 751 if (IS_ERR(local_root)) { 752 ret = PTR_ERR(local_root); 753 goto err; 754 } 755 756 /* 757 * this makes the path point to (inum INODE_ITEM ioff) 758 */ 759 key.objectid = inum; 760 key.type = BTRFS_INODE_ITEM_KEY; 761 key.offset = 0; 762 763 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 764 if (ret) { 765 btrfs_release_path(swarn->path); 766 goto err; 767 } 768 769 eb = swarn->path->nodes[0]; 770 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 771 struct btrfs_inode_item); 772 isize = btrfs_inode_size(eb, inode_item); 773 nlink = btrfs_inode_nlink(eb, inode_item); 774 btrfs_release_path(swarn->path); 775 776 /* 777 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 778 * uses GFP_NOFS in this context, so we keep it consistent but it does 779 * not seem to be strictly necessary. 780 */ 781 nofs_flag = memalloc_nofs_save(); 782 ipath = init_ipath(4096, local_root, swarn->path); 783 memalloc_nofs_restore(nofs_flag); 784 if (IS_ERR(ipath)) { 785 ret = PTR_ERR(ipath); 786 ipath = NULL; 787 goto err; 788 } 789 ret = paths_from_inode(inum, ipath); 790 791 if (ret < 0) 792 goto err; 793 794 /* 795 * we deliberately ignore the bit ipath might have been too small to 796 * hold all of the paths here 797 */ 798 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 799 btrfs_warn_in_rcu(fs_info, 800 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", 801 swarn->errstr, swarn->logical, 802 rcu_str_deref(swarn->dev->name), 803 (unsigned long long)swarn->sector, 804 root, inum, offset, 805 min(isize - offset, (u64)PAGE_SIZE), nlink, 806 (char *)(unsigned long)ipath->fspath->val[i]); 807 808 free_ipath(ipath); 809 return 0; 810 811 err: 812 btrfs_warn_in_rcu(fs_info, 813 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 814 swarn->errstr, swarn->logical, 815 rcu_str_deref(swarn->dev->name), 816 (unsigned long long)swarn->sector, 817 root, inum, offset, ret); 818 819 free_ipath(ipath); 820 return 0; 821 } 822 823 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 824 { 825 struct btrfs_device *dev; 826 struct btrfs_fs_info *fs_info; 827 struct btrfs_path *path; 828 struct btrfs_key found_key; 829 struct extent_buffer *eb; 830 struct btrfs_extent_item *ei; 831 struct scrub_warning swarn; 832 unsigned long ptr = 0; 833 u64 extent_item_pos; 834 u64 flags = 0; 835 u64 ref_root; 836 u32 item_size; 837 u8 ref_level = 0; 838 int ret; 839 840 WARN_ON(sblock->page_count < 1); 841 dev = sblock->pagev[0]->dev; 842 fs_info = sblock->sctx->fs_info; 843 844 path = btrfs_alloc_path(); 845 if (!path) 846 return; 847 848 swarn.sector = (sblock->pagev[0]->physical) >> 9; 849 swarn.logical = sblock->pagev[0]->logical; 850 swarn.errstr = errstr; 851 swarn.dev = NULL; 852 853 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 854 &flags); 855 if (ret < 0) 856 goto out; 857 858 extent_item_pos = swarn.logical - found_key.objectid; 859 swarn.extent_item_size = found_key.offset; 860 861 eb = path->nodes[0]; 862 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 863 item_size = btrfs_item_size_nr(eb, path->slots[0]); 864 865 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 866 do { 867 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 868 item_size, &ref_root, 869 &ref_level); 870 btrfs_warn_in_rcu(fs_info, 871 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu", 872 errstr, swarn.logical, 873 rcu_str_deref(dev->name), 874 (unsigned long long)swarn.sector, 875 ref_level ? "node" : "leaf", 876 ret < 0 ? -1 : ref_level, 877 ret < 0 ? -1 : ref_root); 878 } while (ret != 1); 879 btrfs_release_path(path); 880 } else { 881 btrfs_release_path(path); 882 swarn.path = path; 883 swarn.dev = dev; 884 iterate_extent_inodes(fs_info, found_key.objectid, 885 extent_item_pos, 1, 886 scrub_print_warning_inode, &swarn); 887 } 888 889 out: 890 btrfs_free_path(path); 891 } 892 893 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 894 { 895 struct page *page = NULL; 896 unsigned long index; 897 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 898 int ret; 899 int corrected = 0; 900 struct btrfs_key key; 901 struct inode *inode = NULL; 902 struct btrfs_fs_info *fs_info; 903 u64 end = offset + PAGE_SIZE - 1; 904 struct btrfs_root *local_root; 905 int srcu_index; 906 907 key.objectid = root; 908 key.type = BTRFS_ROOT_ITEM_KEY; 909 key.offset = (u64)-1; 910 911 fs_info = fixup->root->fs_info; 912 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 913 914 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 915 if (IS_ERR(local_root)) { 916 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 917 return PTR_ERR(local_root); 918 } 919 920 key.type = BTRFS_INODE_ITEM_KEY; 921 key.objectid = inum; 922 key.offset = 0; 923 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 924 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 925 if (IS_ERR(inode)) 926 return PTR_ERR(inode); 927 928 index = offset >> PAGE_SHIFT; 929 930 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 931 if (!page) { 932 ret = -ENOMEM; 933 goto out; 934 } 935 936 if (PageUptodate(page)) { 937 if (PageDirty(page)) { 938 /* 939 * we need to write the data to the defect sector. the 940 * data that was in that sector is not in memory, 941 * because the page was modified. we must not write the 942 * modified page to that sector. 943 * 944 * TODO: what could be done here: wait for the delalloc 945 * runner to write out that page (might involve 946 * COW) and see whether the sector is still 947 * referenced afterwards. 948 * 949 * For the meantime, we'll treat this error 950 * incorrectable, although there is a chance that a 951 * later scrub will find the bad sector again and that 952 * there's no dirty page in memory, then. 953 */ 954 ret = -EIO; 955 goto out; 956 } 957 ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE, 958 fixup->logical, page, 959 offset - page_offset(page), 960 fixup->mirror_num); 961 unlock_page(page); 962 corrected = !ret; 963 } else { 964 /* 965 * we need to get good data first. the general readpage path 966 * will call repair_io_failure for us, we just have to make 967 * sure we read the bad mirror. 968 */ 969 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 970 EXTENT_DAMAGED); 971 if (ret) { 972 /* set_extent_bits should give proper error */ 973 WARN_ON(ret > 0); 974 if (ret > 0) 975 ret = -EFAULT; 976 goto out; 977 } 978 979 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 980 btrfs_get_extent, 981 fixup->mirror_num); 982 wait_on_page_locked(page); 983 984 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 985 end, EXTENT_DAMAGED, 0, NULL); 986 if (!corrected) 987 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 988 EXTENT_DAMAGED); 989 } 990 991 out: 992 if (page) 993 put_page(page); 994 995 iput(inode); 996 997 if (ret < 0) 998 return ret; 999 1000 if (ret == 0 && corrected) { 1001 /* 1002 * we only need to call readpage for one of the inodes belonging 1003 * to this extent. so make iterate_extent_inodes stop 1004 */ 1005 return 1; 1006 } 1007 1008 return -EIO; 1009 } 1010 1011 static void scrub_fixup_nodatasum(struct btrfs_work *work) 1012 { 1013 struct btrfs_fs_info *fs_info; 1014 int ret; 1015 struct scrub_fixup_nodatasum *fixup; 1016 struct scrub_ctx *sctx; 1017 struct btrfs_trans_handle *trans = NULL; 1018 struct btrfs_path *path; 1019 int uncorrectable = 0; 1020 1021 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 1022 sctx = fixup->sctx; 1023 fs_info = fixup->root->fs_info; 1024 1025 path = btrfs_alloc_path(); 1026 if (!path) { 1027 spin_lock(&sctx->stat_lock); 1028 ++sctx->stat.malloc_errors; 1029 spin_unlock(&sctx->stat_lock); 1030 uncorrectable = 1; 1031 goto out; 1032 } 1033 1034 trans = btrfs_join_transaction(fixup->root); 1035 if (IS_ERR(trans)) { 1036 uncorrectable = 1; 1037 goto out; 1038 } 1039 1040 /* 1041 * the idea is to trigger a regular read through the standard path. we 1042 * read a page from the (failed) logical address by specifying the 1043 * corresponding copynum of the failed sector. thus, that readpage is 1044 * expected to fail. 1045 * that is the point where on-the-fly error correction will kick in 1046 * (once it's finished) and rewrite the failed sector if a good copy 1047 * can be found. 1048 */ 1049 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path, 1050 scrub_fixup_readpage, fixup); 1051 if (ret < 0) { 1052 uncorrectable = 1; 1053 goto out; 1054 } 1055 WARN_ON(ret != 1); 1056 1057 spin_lock(&sctx->stat_lock); 1058 ++sctx->stat.corrected_errors; 1059 spin_unlock(&sctx->stat_lock); 1060 1061 out: 1062 if (trans && !IS_ERR(trans)) 1063 btrfs_end_transaction(trans); 1064 if (uncorrectable) { 1065 spin_lock(&sctx->stat_lock); 1066 ++sctx->stat.uncorrectable_errors; 1067 spin_unlock(&sctx->stat_lock); 1068 btrfs_dev_replace_stats_inc( 1069 &fs_info->dev_replace.num_uncorrectable_read_errors); 1070 btrfs_err_rl_in_rcu(fs_info, 1071 "unable to fixup (nodatasum) error at logical %llu on dev %s", 1072 fixup->logical, rcu_str_deref(fixup->dev->name)); 1073 } 1074 1075 btrfs_free_path(path); 1076 kfree(fixup); 1077 1078 scrub_pending_trans_workers_dec(sctx); 1079 } 1080 1081 static inline void scrub_get_recover(struct scrub_recover *recover) 1082 { 1083 refcount_inc(&recover->refs); 1084 } 1085 1086 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 1087 struct scrub_recover *recover) 1088 { 1089 if (refcount_dec_and_test(&recover->refs)) { 1090 btrfs_bio_counter_dec(fs_info); 1091 btrfs_put_bbio(recover->bbio); 1092 kfree(recover); 1093 } 1094 } 1095 1096 /* 1097 * scrub_handle_errored_block gets called when either verification of the 1098 * pages failed or the bio failed to read, e.g. with EIO. In the latter 1099 * case, this function handles all pages in the bio, even though only one 1100 * may be bad. 1101 * The goal of this function is to repair the errored block by using the 1102 * contents of one of the mirrors. 1103 */ 1104 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 1105 { 1106 struct scrub_ctx *sctx = sblock_to_check->sctx; 1107 struct btrfs_device *dev; 1108 struct btrfs_fs_info *fs_info; 1109 u64 length; 1110 u64 logical; 1111 unsigned int failed_mirror_index; 1112 unsigned int is_metadata; 1113 unsigned int have_csum; 1114 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 1115 struct scrub_block *sblock_bad; 1116 int ret; 1117 int mirror_index; 1118 int page_num; 1119 int success; 1120 bool full_stripe_locked; 1121 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 1122 DEFAULT_RATELIMIT_BURST); 1123 1124 BUG_ON(sblock_to_check->page_count < 1); 1125 fs_info = sctx->fs_info; 1126 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 1127 /* 1128 * if we find an error in a super block, we just report it. 1129 * They will get written with the next transaction commit 1130 * anyway 1131 */ 1132 spin_lock(&sctx->stat_lock); 1133 ++sctx->stat.super_errors; 1134 spin_unlock(&sctx->stat_lock); 1135 return 0; 1136 } 1137 length = sblock_to_check->page_count * PAGE_SIZE; 1138 logical = sblock_to_check->pagev[0]->logical; 1139 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 1140 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 1141 is_metadata = !(sblock_to_check->pagev[0]->flags & 1142 BTRFS_EXTENT_FLAG_DATA); 1143 have_csum = sblock_to_check->pagev[0]->have_csum; 1144 dev = sblock_to_check->pagev[0]->dev; 1145 1146 /* 1147 * For RAID5/6, race can happen for a different device scrub thread. 1148 * For data corruption, Parity and Data threads will both try 1149 * to recovery the data. 1150 * Race can lead to doubly added csum error, or even unrecoverable 1151 * error. 1152 */ 1153 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 1154 if (ret < 0) { 1155 spin_lock(&sctx->stat_lock); 1156 if (ret == -ENOMEM) 1157 sctx->stat.malloc_errors++; 1158 sctx->stat.read_errors++; 1159 sctx->stat.uncorrectable_errors++; 1160 spin_unlock(&sctx->stat_lock); 1161 return ret; 1162 } 1163 1164 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 1165 sblocks_for_recheck = NULL; 1166 goto nodatasum_case; 1167 } 1168 1169 /* 1170 * read all mirrors one after the other. This includes to 1171 * re-read the extent or metadata block that failed (that was 1172 * the cause that this fixup code is called) another time, 1173 * page by page this time in order to know which pages 1174 * caused I/O errors and which ones are good (for all mirrors). 1175 * It is the goal to handle the situation when more than one 1176 * mirror contains I/O errors, but the errors do not 1177 * overlap, i.e. the data can be repaired by selecting the 1178 * pages from those mirrors without I/O error on the 1179 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 1180 * would be that mirror #1 has an I/O error on the first page, 1181 * the second page is good, and mirror #2 has an I/O error on 1182 * the second page, but the first page is good. 1183 * Then the first page of the first mirror can be repaired by 1184 * taking the first page of the second mirror, and the 1185 * second page of the second mirror can be repaired by 1186 * copying the contents of the 2nd page of the 1st mirror. 1187 * One more note: if the pages of one mirror contain I/O 1188 * errors, the checksum cannot be verified. In order to get 1189 * the best data for repairing, the first attempt is to find 1190 * a mirror without I/O errors and with a validated checksum. 1191 * Only if this is not possible, the pages are picked from 1192 * mirrors with I/O errors without considering the checksum. 1193 * If the latter is the case, at the end, the checksum of the 1194 * repaired area is verified in order to correctly maintain 1195 * the statistics. 1196 */ 1197 1198 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 1199 sizeof(*sblocks_for_recheck), GFP_NOFS); 1200 if (!sblocks_for_recheck) { 1201 spin_lock(&sctx->stat_lock); 1202 sctx->stat.malloc_errors++; 1203 sctx->stat.read_errors++; 1204 sctx->stat.uncorrectable_errors++; 1205 spin_unlock(&sctx->stat_lock); 1206 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1207 goto out; 1208 } 1209 1210 /* setup the context, map the logical blocks and alloc the pages */ 1211 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 1212 if (ret) { 1213 spin_lock(&sctx->stat_lock); 1214 sctx->stat.read_errors++; 1215 sctx->stat.uncorrectable_errors++; 1216 spin_unlock(&sctx->stat_lock); 1217 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1218 goto out; 1219 } 1220 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 1221 sblock_bad = sblocks_for_recheck + failed_mirror_index; 1222 1223 /* build and submit the bios for the failed mirror, check checksums */ 1224 scrub_recheck_block(fs_info, sblock_bad, 1); 1225 1226 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 1227 sblock_bad->no_io_error_seen) { 1228 /* 1229 * the error disappeared after reading page by page, or 1230 * the area was part of a huge bio and other parts of the 1231 * bio caused I/O errors, or the block layer merged several 1232 * read requests into one and the error is caused by a 1233 * different bio (usually one of the two latter cases is 1234 * the cause) 1235 */ 1236 spin_lock(&sctx->stat_lock); 1237 sctx->stat.unverified_errors++; 1238 sblock_to_check->data_corrected = 1; 1239 spin_unlock(&sctx->stat_lock); 1240 1241 if (sctx->is_dev_replace) 1242 scrub_write_block_to_dev_replace(sblock_bad); 1243 goto out; 1244 } 1245 1246 if (!sblock_bad->no_io_error_seen) { 1247 spin_lock(&sctx->stat_lock); 1248 sctx->stat.read_errors++; 1249 spin_unlock(&sctx->stat_lock); 1250 if (__ratelimit(&_rs)) 1251 scrub_print_warning("i/o error", sblock_to_check); 1252 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1253 } else if (sblock_bad->checksum_error) { 1254 spin_lock(&sctx->stat_lock); 1255 sctx->stat.csum_errors++; 1256 spin_unlock(&sctx->stat_lock); 1257 if (__ratelimit(&_rs)) 1258 scrub_print_warning("checksum error", sblock_to_check); 1259 btrfs_dev_stat_inc_and_print(dev, 1260 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1261 } else if (sblock_bad->header_error) { 1262 spin_lock(&sctx->stat_lock); 1263 sctx->stat.verify_errors++; 1264 spin_unlock(&sctx->stat_lock); 1265 if (__ratelimit(&_rs)) 1266 scrub_print_warning("checksum/header error", 1267 sblock_to_check); 1268 if (sblock_bad->generation_error) 1269 btrfs_dev_stat_inc_and_print(dev, 1270 BTRFS_DEV_STAT_GENERATION_ERRS); 1271 else 1272 btrfs_dev_stat_inc_and_print(dev, 1273 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1274 } 1275 1276 if (sctx->readonly) { 1277 ASSERT(!sctx->is_dev_replace); 1278 goto out; 1279 } 1280 1281 if (!is_metadata && !have_csum) { 1282 struct scrub_fixup_nodatasum *fixup_nodatasum; 1283 1284 WARN_ON(sctx->is_dev_replace); 1285 1286 nodatasum_case: 1287 1288 /* 1289 * !is_metadata and !have_csum, this means that the data 1290 * might not be COWed, that it might be modified 1291 * concurrently. The general strategy to work on the 1292 * commit root does not help in the case when COW is not 1293 * used. 1294 */ 1295 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 1296 if (!fixup_nodatasum) 1297 goto did_not_correct_error; 1298 fixup_nodatasum->sctx = sctx; 1299 fixup_nodatasum->dev = dev; 1300 fixup_nodatasum->logical = logical; 1301 fixup_nodatasum->root = fs_info->extent_root; 1302 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 1303 scrub_pending_trans_workers_inc(sctx); 1304 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, 1305 scrub_fixup_nodatasum, NULL, NULL); 1306 btrfs_queue_work(fs_info->scrub_workers, 1307 &fixup_nodatasum->work); 1308 goto out; 1309 } 1310 1311 /* 1312 * now build and submit the bios for the other mirrors, check 1313 * checksums. 1314 * First try to pick the mirror which is completely without I/O 1315 * errors and also does not have a checksum error. 1316 * If one is found, and if a checksum is present, the full block 1317 * that is known to contain an error is rewritten. Afterwards 1318 * the block is known to be corrected. 1319 * If a mirror is found which is completely correct, and no 1320 * checksum is present, only those pages are rewritten that had 1321 * an I/O error in the block to be repaired, since it cannot be 1322 * determined, which copy of the other pages is better (and it 1323 * could happen otherwise that a correct page would be 1324 * overwritten by a bad one). 1325 */ 1326 for (mirror_index = 0; 1327 mirror_index < BTRFS_MAX_MIRRORS && 1328 sblocks_for_recheck[mirror_index].page_count > 0; 1329 mirror_index++) { 1330 struct scrub_block *sblock_other; 1331 1332 if (mirror_index == failed_mirror_index) 1333 continue; 1334 sblock_other = sblocks_for_recheck + mirror_index; 1335 1336 /* build and submit the bios, check checksums */ 1337 scrub_recheck_block(fs_info, sblock_other, 0); 1338 1339 if (!sblock_other->header_error && 1340 !sblock_other->checksum_error && 1341 sblock_other->no_io_error_seen) { 1342 if (sctx->is_dev_replace) { 1343 scrub_write_block_to_dev_replace(sblock_other); 1344 goto corrected_error; 1345 } else { 1346 ret = scrub_repair_block_from_good_copy( 1347 sblock_bad, sblock_other); 1348 if (!ret) 1349 goto corrected_error; 1350 } 1351 } 1352 } 1353 1354 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1355 goto did_not_correct_error; 1356 1357 /* 1358 * In case of I/O errors in the area that is supposed to be 1359 * repaired, continue by picking good copies of those pages. 1360 * Select the good pages from mirrors to rewrite bad pages from 1361 * the area to fix. Afterwards verify the checksum of the block 1362 * that is supposed to be repaired. This verification step is 1363 * only done for the purpose of statistic counting and for the 1364 * final scrub report, whether errors remain. 1365 * A perfect algorithm could make use of the checksum and try 1366 * all possible combinations of pages from the different mirrors 1367 * until the checksum verification succeeds. For example, when 1368 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1369 * of mirror #2 is readable but the final checksum test fails, 1370 * then the 2nd page of mirror #3 could be tried, whether now 1371 * the final checksum succeeds. But this would be a rare 1372 * exception and is therefore not implemented. At least it is 1373 * avoided that the good copy is overwritten. 1374 * A more useful improvement would be to pick the sectors 1375 * without I/O error based on sector sizes (512 bytes on legacy 1376 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1377 * mirror could be repaired by taking 512 byte of a different 1378 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1379 * area are unreadable. 1380 */ 1381 success = 1; 1382 for (page_num = 0; page_num < sblock_bad->page_count; 1383 page_num++) { 1384 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1385 struct scrub_block *sblock_other = NULL; 1386 1387 /* skip no-io-error page in scrub */ 1388 if (!page_bad->io_error && !sctx->is_dev_replace) 1389 continue; 1390 1391 /* try to find no-io-error page in mirrors */ 1392 if (page_bad->io_error) { 1393 for (mirror_index = 0; 1394 mirror_index < BTRFS_MAX_MIRRORS && 1395 sblocks_for_recheck[mirror_index].page_count > 0; 1396 mirror_index++) { 1397 if (!sblocks_for_recheck[mirror_index]. 1398 pagev[page_num]->io_error) { 1399 sblock_other = sblocks_for_recheck + 1400 mirror_index; 1401 break; 1402 } 1403 } 1404 if (!sblock_other) 1405 success = 0; 1406 } 1407 1408 if (sctx->is_dev_replace) { 1409 /* 1410 * did not find a mirror to fetch the page 1411 * from. scrub_write_page_to_dev_replace() 1412 * handles this case (page->io_error), by 1413 * filling the block with zeros before 1414 * submitting the write request 1415 */ 1416 if (!sblock_other) 1417 sblock_other = sblock_bad; 1418 1419 if (scrub_write_page_to_dev_replace(sblock_other, 1420 page_num) != 0) { 1421 btrfs_dev_replace_stats_inc( 1422 &fs_info->dev_replace.num_write_errors); 1423 success = 0; 1424 } 1425 } else if (sblock_other) { 1426 ret = scrub_repair_page_from_good_copy(sblock_bad, 1427 sblock_other, 1428 page_num, 0); 1429 if (0 == ret) 1430 page_bad->io_error = 0; 1431 else 1432 success = 0; 1433 } 1434 } 1435 1436 if (success && !sctx->is_dev_replace) { 1437 if (is_metadata || have_csum) { 1438 /* 1439 * need to verify the checksum now that all 1440 * sectors on disk are repaired (the write 1441 * request for data to be repaired is on its way). 1442 * Just be lazy and use scrub_recheck_block() 1443 * which re-reads the data before the checksum 1444 * is verified, but most likely the data comes out 1445 * of the page cache. 1446 */ 1447 scrub_recheck_block(fs_info, sblock_bad, 1); 1448 if (!sblock_bad->header_error && 1449 !sblock_bad->checksum_error && 1450 sblock_bad->no_io_error_seen) 1451 goto corrected_error; 1452 else 1453 goto did_not_correct_error; 1454 } else { 1455 corrected_error: 1456 spin_lock(&sctx->stat_lock); 1457 sctx->stat.corrected_errors++; 1458 sblock_to_check->data_corrected = 1; 1459 spin_unlock(&sctx->stat_lock); 1460 btrfs_err_rl_in_rcu(fs_info, 1461 "fixed up error at logical %llu on dev %s", 1462 logical, rcu_str_deref(dev->name)); 1463 } 1464 } else { 1465 did_not_correct_error: 1466 spin_lock(&sctx->stat_lock); 1467 sctx->stat.uncorrectable_errors++; 1468 spin_unlock(&sctx->stat_lock); 1469 btrfs_err_rl_in_rcu(fs_info, 1470 "unable to fixup (regular) error at logical %llu on dev %s", 1471 logical, rcu_str_deref(dev->name)); 1472 } 1473 1474 out: 1475 if (sblocks_for_recheck) { 1476 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1477 mirror_index++) { 1478 struct scrub_block *sblock = sblocks_for_recheck + 1479 mirror_index; 1480 struct scrub_recover *recover; 1481 int page_index; 1482 1483 for (page_index = 0; page_index < sblock->page_count; 1484 page_index++) { 1485 sblock->pagev[page_index]->sblock = NULL; 1486 recover = sblock->pagev[page_index]->recover; 1487 if (recover) { 1488 scrub_put_recover(fs_info, recover); 1489 sblock->pagev[page_index]->recover = 1490 NULL; 1491 } 1492 scrub_page_put(sblock->pagev[page_index]); 1493 } 1494 } 1495 kfree(sblocks_for_recheck); 1496 } 1497 1498 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1499 if (ret < 0) 1500 return ret; 1501 return 0; 1502 } 1503 1504 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1505 { 1506 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1507 return 2; 1508 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1509 return 3; 1510 else 1511 return (int)bbio->num_stripes; 1512 } 1513 1514 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1515 u64 *raid_map, 1516 u64 mapped_length, 1517 int nstripes, int mirror, 1518 int *stripe_index, 1519 u64 *stripe_offset) 1520 { 1521 int i; 1522 1523 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1524 /* RAID5/6 */ 1525 for (i = 0; i < nstripes; i++) { 1526 if (raid_map[i] == RAID6_Q_STRIPE || 1527 raid_map[i] == RAID5_P_STRIPE) 1528 continue; 1529 1530 if (logical >= raid_map[i] && 1531 logical < raid_map[i] + mapped_length) 1532 break; 1533 } 1534 1535 *stripe_index = i; 1536 *stripe_offset = logical - raid_map[i]; 1537 } else { 1538 /* The other RAID type */ 1539 *stripe_index = mirror; 1540 *stripe_offset = 0; 1541 } 1542 } 1543 1544 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1545 struct scrub_block *sblocks_for_recheck) 1546 { 1547 struct scrub_ctx *sctx = original_sblock->sctx; 1548 struct btrfs_fs_info *fs_info = sctx->fs_info; 1549 u64 length = original_sblock->page_count * PAGE_SIZE; 1550 u64 logical = original_sblock->pagev[0]->logical; 1551 u64 generation = original_sblock->pagev[0]->generation; 1552 u64 flags = original_sblock->pagev[0]->flags; 1553 u64 have_csum = original_sblock->pagev[0]->have_csum; 1554 struct scrub_recover *recover; 1555 struct btrfs_bio *bbio; 1556 u64 sublen; 1557 u64 mapped_length; 1558 u64 stripe_offset; 1559 int stripe_index; 1560 int page_index = 0; 1561 int mirror_index; 1562 int nmirrors; 1563 int ret; 1564 1565 /* 1566 * note: the two members refs and outstanding_pages 1567 * are not used (and not set) in the blocks that are used for 1568 * the recheck procedure 1569 */ 1570 1571 while (length > 0) { 1572 sublen = min_t(u64, length, PAGE_SIZE); 1573 mapped_length = sublen; 1574 bbio = NULL; 1575 1576 /* 1577 * with a length of PAGE_SIZE, each returned stripe 1578 * represents one mirror 1579 */ 1580 btrfs_bio_counter_inc_blocked(fs_info); 1581 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1582 logical, &mapped_length, &bbio); 1583 if (ret || !bbio || mapped_length < sublen) { 1584 btrfs_put_bbio(bbio); 1585 btrfs_bio_counter_dec(fs_info); 1586 return -EIO; 1587 } 1588 1589 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1590 if (!recover) { 1591 btrfs_put_bbio(bbio); 1592 btrfs_bio_counter_dec(fs_info); 1593 return -ENOMEM; 1594 } 1595 1596 refcount_set(&recover->refs, 1); 1597 recover->bbio = bbio; 1598 recover->map_length = mapped_length; 1599 1600 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1601 1602 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1603 1604 for (mirror_index = 0; mirror_index < nmirrors; 1605 mirror_index++) { 1606 struct scrub_block *sblock; 1607 struct scrub_page *page; 1608 1609 sblock = sblocks_for_recheck + mirror_index; 1610 sblock->sctx = sctx; 1611 1612 page = kzalloc(sizeof(*page), GFP_NOFS); 1613 if (!page) { 1614 leave_nomem: 1615 spin_lock(&sctx->stat_lock); 1616 sctx->stat.malloc_errors++; 1617 spin_unlock(&sctx->stat_lock); 1618 scrub_put_recover(fs_info, recover); 1619 return -ENOMEM; 1620 } 1621 scrub_page_get(page); 1622 sblock->pagev[page_index] = page; 1623 page->sblock = sblock; 1624 page->flags = flags; 1625 page->generation = generation; 1626 page->logical = logical; 1627 page->have_csum = have_csum; 1628 if (have_csum) 1629 memcpy(page->csum, 1630 original_sblock->pagev[0]->csum, 1631 sctx->csum_size); 1632 1633 scrub_stripe_index_and_offset(logical, 1634 bbio->map_type, 1635 bbio->raid_map, 1636 mapped_length, 1637 bbio->num_stripes - 1638 bbio->num_tgtdevs, 1639 mirror_index, 1640 &stripe_index, 1641 &stripe_offset); 1642 page->physical = bbio->stripes[stripe_index].physical + 1643 stripe_offset; 1644 page->dev = bbio->stripes[stripe_index].dev; 1645 1646 BUG_ON(page_index >= original_sblock->page_count); 1647 page->physical_for_dev_replace = 1648 original_sblock->pagev[page_index]-> 1649 physical_for_dev_replace; 1650 /* for missing devices, dev->bdev is NULL */ 1651 page->mirror_num = mirror_index + 1; 1652 sblock->page_count++; 1653 page->page = alloc_page(GFP_NOFS); 1654 if (!page->page) 1655 goto leave_nomem; 1656 1657 scrub_get_recover(recover); 1658 page->recover = recover; 1659 } 1660 scrub_put_recover(fs_info, recover); 1661 length -= sublen; 1662 logical += sublen; 1663 page_index++; 1664 } 1665 1666 return 0; 1667 } 1668 1669 struct scrub_bio_ret { 1670 struct completion event; 1671 blk_status_t status; 1672 }; 1673 1674 static void scrub_bio_wait_endio(struct bio *bio) 1675 { 1676 struct scrub_bio_ret *ret = bio->bi_private; 1677 1678 ret->status = bio->bi_status; 1679 complete(&ret->event); 1680 } 1681 1682 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 1683 { 1684 return page->recover && 1685 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 1686 } 1687 1688 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1689 struct bio *bio, 1690 struct scrub_page *page) 1691 { 1692 struct scrub_bio_ret done; 1693 int ret; 1694 1695 init_completion(&done.event); 1696 done.status = 0; 1697 bio->bi_iter.bi_sector = page->logical >> 9; 1698 bio->bi_private = &done; 1699 bio->bi_end_io = scrub_bio_wait_endio; 1700 1701 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, 1702 page->recover->map_length, 1703 page->mirror_num, 0); 1704 if (ret) 1705 return ret; 1706 1707 wait_for_completion(&done.event); 1708 if (done.status) 1709 return -EIO; 1710 1711 return 0; 1712 } 1713 1714 /* 1715 * this function will check the on disk data for checksum errors, header 1716 * errors and read I/O errors. If any I/O errors happen, the exact pages 1717 * which are errored are marked as being bad. The goal is to enable scrub 1718 * to take those pages that are not errored from all the mirrors so that 1719 * the pages that are errored in the just handled mirror can be repaired. 1720 */ 1721 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1722 struct scrub_block *sblock, 1723 int retry_failed_mirror) 1724 { 1725 int page_num; 1726 1727 sblock->no_io_error_seen = 1; 1728 1729 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1730 struct bio *bio; 1731 struct scrub_page *page = sblock->pagev[page_num]; 1732 1733 if (page->dev->bdev == NULL) { 1734 page->io_error = 1; 1735 sblock->no_io_error_seen = 0; 1736 continue; 1737 } 1738 1739 WARN_ON(!page->page); 1740 bio = btrfs_io_bio_alloc(1); 1741 bio->bi_bdev = page->dev->bdev; 1742 1743 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1744 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) { 1745 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) { 1746 page->io_error = 1; 1747 sblock->no_io_error_seen = 0; 1748 } 1749 } else { 1750 bio->bi_iter.bi_sector = page->physical >> 9; 1751 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1752 1753 if (btrfsic_submit_bio_wait(bio)) { 1754 page->io_error = 1; 1755 sblock->no_io_error_seen = 0; 1756 } 1757 } 1758 1759 bio_put(bio); 1760 } 1761 1762 if (sblock->no_io_error_seen) 1763 scrub_recheck_block_checksum(sblock); 1764 } 1765 1766 static inline int scrub_check_fsid(u8 fsid[], 1767 struct scrub_page *spage) 1768 { 1769 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1770 int ret; 1771 1772 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE); 1773 return !ret; 1774 } 1775 1776 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1777 { 1778 sblock->header_error = 0; 1779 sblock->checksum_error = 0; 1780 sblock->generation_error = 0; 1781 1782 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1783 scrub_checksum_data(sblock); 1784 else 1785 scrub_checksum_tree_block(sblock); 1786 } 1787 1788 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1789 struct scrub_block *sblock_good) 1790 { 1791 int page_num; 1792 int ret = 0; 1793 1794 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1795 int ret_sub; 1796 1797 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1798 sblock_good, 1799 page_num, 1); 1800 if (ret_sub) 1801 ret = ret_sub; 1802 } 1803 1804 return ret; 1805 } 1806 1807 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1808 struct scrub_block *sblock_good, 1809 int page_num, int force_write) 1810 { 1811 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1812 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1813 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1814 1815 BUG_ON(page_bad->page == NULL); 1816 BUG_ON(page_good->page == NULL); 1817 if (force_write || sblock_bad->header_error || 1818 sblock_bad->checksum_error || page_bad->io_error) { 1819 struct bio *bio; 1820 int ret; 1821 1822 if (!page_bad->dev->bdev) { 1823 btrfs_warn_rl(fs_info, 1824 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1825 return -EIO; 1826 } 1827 1828 bio = btrfs_io_bio_alloc(1); 1829 bio->bi_bdev = page_bad->dev->bdev; 1830 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1831 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1832 1833 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1834 if (PAGE_SIZE != ret) { 1835 bio_put(bio); 1836 return -EIO; 1837 } 1838 1839 if (btrfsic_submit_bio_wait(bio)) { 1840 btrfs_dev_stat_inc_and_print(page_bad->dev, 1841 BTRFS_DEV_STAT_WRITE_ERRS); 1842 btrfs_dev_replace_stats_inc( 1843 &fs_info->dev_replace.num_write_errors); 1844 bio_put(bio); 1845 return -EIO; 1846 } 1847 bio_put(bio); 1848 } 1849 1850 return 0; 1851 } 1852 1853 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1854 { 1855 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1856 int page_num; 1857 1858 /* 1859 * This block is used for the check of the parity on the source device, 1860 * so the data needn't be written into the destination device. 1861 */ 1862 if (sblock->sparity) 1863 return; 1864 1865 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1866 int ret; 1867 1868 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1869 if (ret) 1870 btrfs_dev_replace_stats_inc( 1871 &fs_info->dev_replace.num_write_errors); 1872 } 1873 } 1874 1875 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1876 int page_num) 1877 { 1878 struct scrub_page *spage = sblock->pagev[page_num]; 1879 1880 BUG_ON(spage->page == NULL); 1881 if (spage->io_error) { 1882 void *mapped_buffer = kmap_atomic(spage->page); 1883 1884 clear_page(mapped_buffer); 1885 flush_dcache_page(spage->page); 1886 kunmap_atomic(mapped_buffer); 1887 } 1888 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1889 } 1890 1891 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1892 struct scrub_page *spage) 1893 { 1894 struct scrub_bio *sbio; 1895 int ret; 1896 1897 mutex_lock(&sctx->wr_lock); 1898 again: 1899 if (!sctx->wr_curr_bio) { 1900 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1901 GFP_KERNEL); 1902 if (!sctx->wr_curr_bio) { 1903 mutex_unlock(&sctx->wr_lock); 1904 return -ENOMEM; 1905 } 1906 sctx->wr_curr_bio->sctx = sctx; 1907 sctx->wr_curr_bio->page_count = 0; 1908 } 1909 sbio = sctx->wr_curr_bio; 1910 if (sbio->page_count == 0) { 1911 struct bio *bio; 1912 1913 sbio->physical = spage->physical_for_dev_replace; 1914 sbio->logical = spage->logical; 1915 sbio->dev = sctx->wr_tgtdev; 1916 bio = sbio->bio; 1917 if (!bio) { 1918 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); 1919 sbio->bio = bio; 1920 } 1921 1922 bio->bi_private = sbio; 1923 bio->bi_end_io = scrub_wr_bio_end_io; 1924 bio->bi_bdev = sbio->dev->bdev; 1925 bio->bi_iter.bi_sector = sbio->physical >> 9; 1926 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1927 sbio->status = 0; 1928 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1929 spage->physical_for_dev_replace || 1930 sbio->logical + sbio->page_count * PAGE_SIZE != 1931 spage->logical) { 1932 scrub_wr_submit(sctx); 1933 goto again; 1934 } 1935 1936 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1937 if (ret != PAGE_SIZE) { 1938 if (sbio->page_count < 1) { 1939 bio_put(sbio->bio); 1940 sbio->bio = NULL; 1941 mutex_unlock(&sctx->wr_lock); 1942 return -EIO; 1943 } 1944 scrub_wr_submit(sctx); 1945 goto again; 1946 } 1947 1948 sbio->pagev[sbio->page_count] = spage; 1949 scrub_page_get(spage); 1950 sbio->page_count++; 1951 if (sbio->page_count == sctx->pages_per_wr_bio) 1952 scrub_wr_submit(sctx); 1953 mutex_unlock(&sctx->wr_lock); 1954 1955 return 0; 1956 } 1957 1958 static void scrub_wr_submit(struct scrub_ctx *sctx) 1959 { 1960 struct scrub_bio *sbio; 1961 1962 if (!sctx->wr_curr_bio) 1963 return; 1964 1965 sbio = sctx->wr_curr_bio; 1966 sctx->wr_curr_bio = NULL; 1967 WARN_ON(!sbio->bio->bi_bdev); 1968 scrub_pending_bio_inc(sctx); 1969 /* process all writes in a single worker thread. Then the block layer 1970 * orders the requests before sending them to the driver which 1971 * doubled the write performance on spinning disks when measured 1972 * with Linux 3.5 */ 1973 btrfsic_submit_bio(sbio->bio); 1974 } 1975 1976 static void scrub_wr_bio_end_io(struct bio *bio) 1977 { 1978 struct scrub_bio *sbio = bio->bi_private; 1979 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1980 1981 sbio->status = bio->bi_status; 1982 sbio->bio = bio; 1983 1984 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1985 scrub_wr_bio_end_io_worker, NULL, NULL); 1986 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1987 } 1988 1989 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1990 { 1991 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1992 struct scrub_ctx *sctx = sbio->sctx; 1993 int i; 1994 1995 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1996 if (sbio->status) { 1997 struct btrfs_dev_replace *dev_replace = 1998 &sbio->sctx->fs_info->dev_replace; 1999 2000 for (i = 0; i < sbio->page_count; i++) { 2001 struct scrub_page *spage = sbio->pagev[i]; 2002 2003 spage->io_error = 1; 2004 btrfs_dev_replace_stats_inc(&dev_replace-> 2005 num_write_errors); 2006 } 2007 } 2008 2009 for (i = 0; i < sbio->page_count; i++) 2010 scrub_page_put(sbio->pagev[i]); 2011 2012 bio_put(sbio->bio); 2013 kfree(sbio); 2014 scrub_pending_bio_dec(sctx); 2015 } 2016 2017 static int scrub_checksum(struct scrub_block *sblock) 2018 { 2019 u64 flags; 2020 int ret; 2021 2022 /* 2023 * No need to initialize these stats currently, 2024 * because this function only use return value 2025 * instead of these stats value. 2026 * 2027 * Todo: 2028 * always use stats 2029 */ 2030 sblock->header_error = 0; 2031 sblock->generation_error = 0; 2032 sblock->checksum_error = 0; 2033 2034 WARN_ON(sblock->page_count < 1); 2035 flags = sblock->pagev[0]->flags; 2036 ret = 0; 2037 if (flags & BTRFS_EXTENT_FLAG_DATA) 2038 ret = scrub_checksum_data(sblock); 2039 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2040 ret = scrub_checksum_tree_block(sblock); 2041 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 2042 (void)scrub_checksum_super(sblock); 2043 else 2044 WARN_ON(1); 2045 if (ret) 2046 scrub_handle_errored_block(sblock); 2047 2048 return ret; 2049 } 2050 2051 static int scrub_checksum_data(struct scrub_block *sblock) 2052 { 2053 struct scrub_ctx *sctx = sblock->sctx; 2054 u8 csum[BTRFS_CSUM_SIZE]; 2055 u8 *on_disk_csum; 2056 struct page *page; 2057 void *buffer; 2058 u32 crc = ~(u32)0; 2059 u64 len; 2060 int index; 2061 2062 BUG_ON(sblock->page_count < 1); 2063 if (!sblock->pagev[0]->have_csum) 2064 return 0; 2065 2066 on_disk_csum = sblock->pagev[0]->csum; 2067 page = sblock->pagev[0]->page; 2068 buffer = kmap_atomic(page); 2069 2070 len = sctx->fs_info->sectorsize; 2071 index = 0; 2072 for (;;) { 2073 u64 l = min_t(u64, len, PAGE_SIZE); 2074 2075 crc = btrfs_csum_data(buffer, crc, l); 2076 kunmap_atomic(buffer); 2077 len -= l; 2078 if (len == 0) 2079 break; 2080 index++; 2081 BUG_ON(index >= sblock->page_count); 2082 BUG_ON(!sblock->pagev[index]->page); 2083 page = sblock->pagev[index]->page; 2084 buffer = kmap_atomic(page); 2085 } 2086 2087 btrfs_csum_final(crc, csum); 2088 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 2089 sblock->checksum_error = 1; 2090 2091 return sblock->checksum_error; 2092 } 2093 2094 static int scrub_checksum_tree_block(struct scrub_block *sblock) 2095 { 2096 struct scrub_ctx *sctx = sblock->sctx; 2097 struct btrfs_header *h; 2098 struct btrfs_fs_info *fs_info = sctx->fs_info; 2099 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2100 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2101 struct page *page; 2102 void *mapped_buffer; 2103 u64 mapped_size; 2104 void *p; 2105 u32 crc = ~(u32)0; 2106 u64 len; 2107 int index; 2108 2109 BUG_ON(sblock->page_count < 1); 2110 page = sblock->pagev[0]->page; 2111 mapped_buffer = kmap_atomic(page); 2112 h = (struct btrfs_header *)mapped_buffer; 2113 memcpy(on_disk_csum, h->csum, sctx->csum_size); 2114 2115 /* 2116 * we don't use the getter functions here, as we 2117 * a) don't have an extent buffer and 2118 * b) the page is already kmapped 2119 */ 2120 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 2121 sblock->header_error = 1; 2122 2123 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { 2124 sblock->header_error = 1; 2125 sblock->generation_error = 1; 2126 } 2127 2128 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 2129 sblock->header_error = 1; 2130 2131 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 2132 BTRFS_UUID_SIZE)) 2133 sblock->header_error = 1; 2134 2135 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE; 2136 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2137 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2138 index = 0; 2139 for (;;) { 2140 u64 l = min_t(u64, len, mapped_size); 2141 2142 crc = btrfs_csum_data(p, crc, l); 2143 kunmap_atomic(mapped_buffer); 2144 len -= l; 2145 if (len == 0) 2146 break; 2147 index++; 2148 BUG_ON(index >= sblock->page_count); 2149 BUG_ON(!sblock->pagev[index]->page); 2150 page = sblock->pagev[index]->page; 2151 mapped_buffer = kmap_atomic(page); 2152 mapped_size = PAGE_SIZE; 2153 p = mapped_buffer; 2154 } 2155 2156 btrfs_csum_final(crc, calculated_csum); 2157 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2158 sblock->checksum_error = 1; 2159 2160 return sblock->header_error || sblock->checksum_error; 2161 } 2162 2163 static int scrub_checksum_super(struct scrub_block *sblock) 2164 { 2165 struct btrfs_super_block *s; 2166 struct scrub_ctx *sctx = sblock->sctx; 2167 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2168 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2169 struct page *page; 2170 void *mapped_buffer; 2171 u64 mapped_size; 2172 void *p; 2173 u32 crc = ~(u32)0; 2174 int fail_gen = 0; 2175 int fail_cor = 0; 2176 u64 len; 2177 int index; 2178 2179 BUG_ON(sblock->page_count < 1); 2180 page = sblock->pagev[0]->page; 2181 mapped_buffer = kmap_atomic(page); 2182 s = (struct btrfs_super_block *)mapped_buffer; 2183 memcpy(on_disk_csum, s->csum, sctx->csum_size); 2184 2185 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 2186 ++fail_cor; 2187 2188 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 2189 ++fail_gen; 2190 2191 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 2192 ++fail_cor; 2193 2194 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 2195 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2196 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2197 index = 0; 2198 for (;;) { 2199 u64 l = min_t(u64, len, mapped_size); 2200 2201 crc = btrfs_csum_data(p, crc, l); 2202 kunmap_atomic(mapped_buffer); 2203 len -= l; 2204 if (len == 0) 2205 break; 2206 index++; 2207 BUG_ON(index >= sblock->page_count); 2208 BUG_ON(!sblock->pagev[index]->page); 2209 page = sblock->pagev[index]->page; 2210 mapped_buffer = kmap_atomic(page); 2211 mapped_size = PAGE_SIZE; 2212 p = mapped_buffer; 2213 } 2214 2215 btrfs_csum_final(crc, calculated_csum); 2216 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2217 ++fail_cor; 2218 2219 if (fail_cor + fail_gen) { 2220 /* 2221 * if we find an error in a super block, we just report it. 2222 * They will get written with the next transaction commit 2223 * anyway 2224 */ 2225 spin_lock(&sctx->stat_lock); 2226 ++sctx->stat.super_errors; 2227 spin_unlock(&sctx->stat_lock); 2228 if (fail_cor) 2229 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2230 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2231 else 2232 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2233 BTRFS_DEV_STAT_GENERATION_ERRS); 2234 } 2235 2236 return fail_cor + fail_gen; 2237 } 2238 2239 static void scrub_block_get(struct scrub_block *sblock) 2240 { 2241 refcount_inc(&sblock->refs); 2242 } 2243 2244 static void scrub_block_put(struct scrub_block *sblock) 2245 { 2246 if (refcount_dec_and_test(&sblock->refs)) { 2247 int i; 2248 2249 if (sblock->sparity) 2250 scrub_parity_put(sblock->sparity); 2251 2252 for (i = 0; i < sblock->page_count; i++) 2253 scrub_page_put(sblock->pagev[i]); 2254 kfree(sblock); 2255 } 2256 } 2257 2258 static void scrub_page_get(struct scrub_page *spage) 2259 { 2260 atomic_inc(&spage->refs); 2261 } 2262 2263 static void scrub_page_put(struct scrub_page *spage) 2264 { 2265 if (atomic_dec_and_test(&spage->refs)) { 2266 if (spage->page) 2267 __free_page(spage->page); 2268 kfree(spage); 2269 } 2270 } 2271 2272 static void scrub_submit(struct scrub_ctx *sctx) 2273 { 2274 struct scrub_bio *sbio; 2275 2276 if (sctx->curr == -1) 2277 return; 2278 2279 sbio = sctx->bios[sctx->curr]; 2280 sctx->curr = -1; 2281 scrub_pending_bio_inc(sctx); 2282 btrfsic_submit_bio(sbio->bio); 2283 } 2284 2285 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2286 struct scrub_page *spage) 2287 { 2288 struct scrub_block *sblock = spage->sblock; 2289 struct scrub_bio *sbio; 2290 int ret; 2291 2292 again: 2293 /* 2294 * grab a fresh bio or wait for one to become available 2295 */ 2296 while (sctx->curr == -1) { 2297 spin_lock(&sctx->list_lock); 2298 sctx->curr = sctx->first_free; 2299 if (sctx->curr != -1) { 2300 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2301 sctx->bios[sctx->curr]->next_free = -1; 2302 sctx->bios[sctx->curr]->page_count = 0; 2303 spin_unlock(&sctx->list_lock); 2304 } else { 2305 spin_unlock(&sctx->list_lock); 2306 wait_event(sctx->list_wait, sctx->first_free != -1); 2307 } 2308 } 2309 sbio = sctx->bios[sctx->curr]; 2310 if (sbio->page_count == 0) { 2311 struct bio *bio; 2312 2313 sbio->physical = spage->physical; 2314 sbio->logical = spage->logical; 2315 sbio->dev = spage->dev; 2316 bio = sbio->bio; 2317 if (!bio) { 2318 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); 2319 sbio->bio = bio; 2320 } 2321 2322 bio->bi_private = sbio; 2323 bio->bi_end_io = scrub_bio_end_io; 2324 bio->bi_bdev = sbio->dev->bdev; 2325 bio->bi_iter.bi_sector = sbio->physical >> 9; 2326 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2327 sbio->status = 0; 2328 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2329 spage->physical || 2330 sbio->logical + sbio->page_count * PAGE_SIZE != 2331 spage->logical || 2332 sbio->dev != spage->dev) { 2333 scrub_submit(sctx); 2334 goto again; 2335 } 2336 2337 sbio->pagev[sbio->page_count] = spage; 2338 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2339 if (ret != PAGE_SIZE) { 2340 if (sbio->page_count < 1) { 2341 bio_put(sbio->bio); 2342 sbio->bio = NULL; 2343 return -EIO; 2344 } 2345 scrub_submit(sctx); 2346 goto again; 2347 } 2348 2349 scrub_block_get(sblock); /* one for the page added to the bio */ 2350 atomic_inc(&sblock->outstanding_pages); 2351 sbio->page_count++; 2352 if (sbio->page_count == sctx->pages_per_rd_bio) 2353 scrub_submit(sctx); 2354 2355 return 0; 2356 } 2357 2358 static void scrub_missing_raid56_end_io(struct bio *bio) 2359 { 2360 struct scrub_block *sblock = bio->bi_private; 2361 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2362 2363 if (bio->bi_status) 2364 sblock->no_io_error_seen = 0; 2365 2366 bio_put(bio); 2367 2368 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2369 } 2370 2371 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2372 { 2373 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2374 struct scrub_ctx *sctx = sblock->sctx; 2375 struct btrfs_fs_info *fs_info = sctx->fs_info; 2376 u64 logical; 2377 struct btrfs_device *dev; 2378 2379 logical = sblock->pagev[0]->logical; 2380 dev = sblock->pagev[0]->dev; 2381 2382 if (sblock->no_io_error_seen) 2383 scrub_recheck_block_checksum(sblock); 2384 2385 if (!sblock->no_io_error_seen) { 2386 spin_lock(&sctx->stat_lock); 2387 sctx->stat.read_errors++; 2388 spin_unlock(&sctx->stat_lock); 2389 btrfs_err_rl_in_rcu(fs_info, 2390 "IO error rebuilding logical %llu for dev %s", 2391 logical, rcu_str_deref(dev->name)); 2392 } else if (sblock->header_error || sblock->checksum_error) { 2393 spin_lock(&sctx->stat_lock); 2394 sctx->stat.uncorrectable_errors++; 2395 spin_unlock(&sctx->stat_lock); 2396 btrfs_err_rl_in_rcu(fs_info, 2397 "failed to rebuild valid logical %llu for dev %s", 2398 logical, rcu_str_deref(dev->name)); 2399 } else { 2400 scrub_write_block_to_dev_replace(sblock); 2401 } 2402 2403 scrub_block_put(sblock); 2404 2405 if (sctx->is_dev_replace && 2406 atomic_read(&sctx->flush_all_writes)) { 2407 mutex_lock(&sctx->wr_lock); 2408 scrub_wr_submit(sctx); 2409 mutex_unlock(&sctx->wr_lock); 2410 } 2411 2412 scrub_pending_bio_dec(sctx); 2413 } 2414 2415 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2416 { 2417 struct scrub_ctx *sctx = sblock->sctx; 2418 struct btrfs_fs_info *fs_info = sctx->fs_info; 2419 u64 length = sblock->page_count * PAGE_SIZE; 2420 u64 logical = sblock->pagev[0]->logical; 2421 struct btrfs_bio *bbio = NULL; 2422 struct bio *bio; 2423 struct btrfs_raid_bio *rbio; 2424 int ret; 2425 int i; 2426 2427 btrfs_bio_counter_inc_blocked(fs_info); 2428 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2429 &length, &bbio); 2430 if (ret || !bbio || !bbio->raid_map) 2431 goto bbio_out; 2432 2433 if (WARN_ON(!sctx->is_dev_replace || 2434 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2435 /* 2436 * We shouldn't be scrubbing a missing device. Even for dev 2437 * replace, we should only get here for RAID 5/6. We either 2438 * managed to mount something with no mirrors remaining or 2439 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2440 */ 2441 goto bbio_out; 2442 } 2443 2444 bio = btrfs_io_bio_alloc(0); 2445 bio->bi_iter.bi_sector = logical >> 9; 2446 bio->bi_private = sblock; 2447 bio->bi_end_io = scrub_missing_raid56_end_io; 2448 2449 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2450 if (!rbio) 2451 goto rbio_out; 2452 2453 for (i = 0; i < sblock->page_count; i++) { 2454 struct scrub_page *spage = sblock->pagev[i]; 2455 2456 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2457 } 2458 2459 btrfs_init_work(&sblock->work, btrfs_scrub_helper, 2460 scrub_missing_raid56_worker, NULL, NULL); 2461 scrub_block_get(sblock); 2462 scrub_pending_bio_inc(sctx); 2463 raid56_submit_missing_rbio(rbio); 2464 return; 2465 2466 rbio_out: 2467 bio_put(bio); 2468 bbio_out: 2469 btrfs_bio_counter_dec(fs_info); 2470 btrfs_put_bbio(bbio); 2471 spin_lock(&sctx->stat_lock); 2472 sctx->stat.malloc_errors++; 2473 spin_unlock(&sctx->stat_lock); 2474 } 2475 2476 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2477 u64 physical, struct btrfs_device *dev, u64 flags, 2478 u64 gen, int mirror_num, u8 *csum, int force, 2479 u64 physical_for_dev_replace) 2480 { 2481 struct scrub_block *sblock; 2482 int index; 2483 2484 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2485 if (!sblock) { 2486 spin_lock(&sctx->stat_lock); 2487 sctx->stat.malloc_errors++; 2488 spin_unlock(&sctx->stat_lock); 2489 return -ENOMEM; 2490 } 2491 2492 /* one ref inside this function, plus one for each page added to 2493 * a bio later on */ 2494 refcount_set(&sblock->refs, 1); 2495 sblock->sctx = sctx; 2496 sblock->no_io_error_seen = 1; 2497 2498 for (index = 0; len > 0; index++) { 2499 struct scrub_page *spage; 2500 u64 l = min_t(u64, len, PAGE_SIZE); 2501 2502 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2503 if (!spage) { 2504 leave_nomem: 2505 spin_lock(&sctx->stat_lock); 2506 sctx->stat.malloc_errors++; 2507 spin_unlock(&sctx->stat_lock); 2508 scrub_block_put(sblock); 2509 return -ENOMEM; 2510 } 2511 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2512 scrub_page_get(spage); 2513 sblock->pagev[index] = spage; 2514 spage->sblock = sblock; 2515 spage->dev = dev; 2516 spage->flags = flags; 2517 spage->generation = gen; 2518 spage->logical = logical; 2519 spage->physical = physical; 2520 spage->physical_for_dev_replace = physical_for_dev_replace; 2521 spage->mirror_num = mirror_num; 2522 if (csum) { 2523 spage->have_csum = 1; 2524 memcpy(spage->csum, csum, sctx->csum_size); 2525 } else { 2526 spage->have_csum = 0; 2527 } 2528 sblock->page_count++; 2529 spage->page = alloc_page(GFP_KERNEL); 2530 if (!spage->page) 2531 goto leave_nomem; 2532 len -= l; 2533 logical += l; 2534 physical += l; 2535 physical_for_dev_replace += l; 2536 } 2537 2538 WARN_ON(sblock->page_count == 0); 2539 if (dev->missing) { 2540 /* 2541 * This case should only be hit for RAID 5/6 device replace. See 2542 * the comment in scrub_missing_raid56_pages() for details. 2543 */ 2544 scrub_missing_raid56_pages(sblock); 2545 } else { 2546 for (index = 0; index < sblock->page_count; index++) { 2547 struct scrub_page *spage = sblock->pagev[index]; 2548 int ret; 2549 2550 ret = scrub_add_page_to_rd_bio(sctx, spage); 2551 if (ret) { 2552 scrub_block_put(sblock); 2553 return ret; 2554 } 2555 } 2556 2557 if (force) 2558 scrub_submit(sctx); 2559 } 2560 2561 /* last one frees, either here or in bio completion for last page */ 2562 scrub_block_put(sblock); 2563 return 0; 2564 } 2565 2566 static void scrub_bio_end_io(struct bio *bio) 2567 { 2568 struct scrub_bio *sbio = bio->bi_private; 2569 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2570 2571 sbio->status = bio->bi_status; 2572 sbio->bio = bio; 2573 2574 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2575 } 2576 2577 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2578 { 2579 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2580 struct scrub_ctx *sctx = sbio->sctx; 2581 int i; 2582 2583 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2584 if (sbio->status) { 2585 for (i = 0; i < sbio->page_count; i++) { 2586 struct scrub_page *spage = sbio->pagev[i]; 2587 2588 spage->io_error = 1; 2589 spage->sblock->no_io_error_seen = 0; 2590 } 2591 } 2592 2593 /* now complete the scrub_block items that have all pages completed */ 2594 for (i = 0; i < sbio->page_count; i++) { 2595 struct scrub_page *spage = sbio->pagev[i]; 2596 struct scrub_block *sblock = spage->sblock; 2597 2598 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2599 scrub_block_complete(sblock); 2600 scrub_block_put(sblock); 2601 } 2602 2603 bio_put(sbio->bio); 2604 sbio->bio = NULL; 2605 spin_lock(&sctx->list_lock); 2606 sbio->next_free = sctx->first_free; 2607 sctx->first_free = sbio->index; 2608 spin_unlock(&sctx->list_lock); 2609 2610 if (sctx->is_dev_replace && 2611 atomic_read(&sctx->flush_all_writes)) { 2612 mutex_lock(&sctx->wr_lock); 2613 scrub_wr_submit(sctx); 2614 mutex_unlock(&sctx->wr_lock); 2615 } 2616 2617 scrub_pending_bio_dec(sctx); 2618 } 2619 2620 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2621 unsigned long *bitmap, 2622 u64 start, u64 len) 2623 { 2624 u64 offset; 2625 int nsectors; 2626 int sectorsize = sparity->sctx->fs_info->sectorsize; 2627 2628 if (len >= sparity->stripe_len) { 2629 bitmap_set(bitmap, 0, sparity->nsectors); 2630 return; 2631 } 2632 2633 start -= sparity->logic_start; 2634 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2635 offset = div_u64(offset, sectorsize); 2636 nsectors = (int)len / sectorsize; 2637 2638 if (offset + nsectors <= sparity->nsectors) { 2639 bitmap_set(bitmap, offset, nsectors); 2640 return; 2641 } 2642 2643 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2644 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2645 } 2646 2647 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2648 u64 start, u64 len) 2649 { 2650 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2651 } 2652 2653 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2654 u64 start, u64 len) 2655 { 2656 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2657 } 2658 2659 static void scrub_block_complete(struct scrub_block *sblock) 2660 { 2661 int corrupted = 0; 2662 2663 if (!sblock->no_io_error_seen) { 2664 corrupted = 1; 2665 scrub_handle_errored_block(sblock); 2666 } else { 2667 /* 2668 * if has checksum error, write via repair mechanism in 2669 * dev replace case, otherwise write here in dev replace 2670 * case. 2671 */ 2672 corrupted = scrub_checksum(sblock); 2673 if (!corrupted && sblock->sctx->is_dev_replace) 2674 scrub_write_block_to_dev_replace(sblock); 2675 } 2676 2677 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2678 u64 start = sblock->pagev[0]->logical; 2679 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2680 PAGE_SIZE; 2681 2682 scrub_parity_mark_sectors_error(sblock->sparity, 2683 start, end - start); 2684 } 2685 } 2686 2687 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2688 { 2689 struct btrfs_ordered_sum *sum = NULL; 2690 unsigned long index; 2691 unsigned long num_sectors; 2692 2693 while (!list_empty(&sctx->csum_list)) { 2694 sum = list_first_entry(&sctx->csum_list, 2695 struct btrfs_ordered_sum, list); 2696 if (sum->bytenr > logical) 2697 return 0; 2698 if (sum->bytenr + sum->len > logical) 2699 break; 2700 2701 ++sctx->stat.csum_discards; 2702 list_del(&sum->list); 2703 kfree(sum); 2704 sum = NULL; 2705 } 2706 if (!sum) 2707 return 0; 2708 2709 index = ((u32)(logical - sum->bytenr)) / sctx->fs_info->sectorsize; 2710 num_sectors = sum->len / sctx->fs_info->sectorsize; 2711 memcpy(csum, sum->sums + index, sctx->csum_size); 2712 if (index == num_sectors - 1) { 2713 list_del(&sum->list); 2714 kfree(sum); 2715 } 2716 return 1; 2717 } 2718 2719 /* scrub extent tries to collect up to 64 kB for each bio */ 2720 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2721 u64 physical, struct btrfs_device *dev, u64 flags, 2722 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2723 { 2724 int ret; 2725 u8 csum[BTRFS_CSUM_SIZE]; 2726 u32 blocksize; 2727 2728 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2729 blocksize = sctx->fs_info->sectorsize; 2730 spin_lock(&sctx->stat_lock); 2731 sctx->stat.data_extents_scrubbed++; 2732 sctx->stat.data_bytes_scrubbed += len; 2733 spin_unlock(&sctx->stat_lock); 2734 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2735 blocksize = sctx->fs_info->nodesize; 2736 spin_lock(&sctx->stat_lock); 2737 sctx->stat.tree_extents_scrubbed++; 2738 sctx->stat.tree_bytes_scrubbed += len; 2739 spin_unlock(&sctx->stat_lock); 2740 } else { 2741 blocksize = sctx->fs_info->sectorsize; 2742 WARN_ON(1); 2743 } 2744 2745 while (len) { 2746 u64 l = min_t(u64, len, blocksize); 2747 int have_csum = 0; 2748 2749 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2750 /* push csums to sbio */ 2751 have_csum = scrub_find_csum(sctx, logical, csum); 2752 if (have_csum == 0) 2753 ++sctx->stat.no_csum; 2754 if (sctx->is_dev_replace && !have_csum) { 2755 ret = copy_nocow_pages(sctx, logical, l, 2756 mirror_num, 2757 physical_for_dev_replace); 2758 goto behind_scrub_pages; 2759 } 2760 } 2761 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2762 mirror_num, have_csum ? csum : NULL, 0, 2763 physical_for_dev_replace); 2764 behind_scrub_pages: 2765 if (ret) 2766 return ret; 2767 len -= l; 2768 logical += l; 2769 physical += l; 2770 physical_for_dev_replace += l; 2771 } 2772 return 0; 2773 } 2774 2775 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2776 u64 logical, u64 len, 2777 u64 physical, struct btrfs_device *dev, 2778 u64 flags, u64 gen, int mirror_num, u8 *csum) 2779 { 2780 struct scrub_ctx *sctx = sparity->sctx; 2781 struct scrub_block *sblock; 2782 int index; 2783 2784 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2785 if (!sblock) { 2786 spin_lock(&sctx->stat_lock); 2787 sctx->stat.malloc_errors++; 2788 spin_unlock(&sctx->stat_lock); 2789 return -ENOMEM; 2790 } 2791 2792 /* one ref inside this function, plus one for each page added to 2793 * a bio later on */ 2794 refcount_set(&sblock->refs, 1); 2795 sblock->sctx = sctx; 2796 sblock->no_io_error_seen = 1; 2797 sblock->sparity = sparity; 2798 scrub_parity_get(sparity); 2799 2800 for (index = 0; len > 0; index++) { 2801 struct scrub_page *spage; 2802 u64 l = min_t(u64, len, PAGE_SIZE); 2803 2804 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2805 if (!spage) { 2806 leave_nomem: 2807 spin_lock(&sctx->stat_lock); 2808 sctx->stat.malloc_errors++; 2809 spin_unlock(&sctx->stat_lock); 2810 scrub_block_put(sblock); 2811 return -ENOMEM; 2812 } 2813 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2814 /* For scrub block */ 2815 scrub_page_get(spage); 2816 sblock->pagev[index] = spage; 2817 /* For scrub parity */ 2818 scrub_page_get(spage); 2819 list_add_tail(&spage->list, &sparity->spages); 2820 spage->sblock = sblock; 2821 spage->dev = dev; 2822 spage->flags = flags; 2823 spage->generation = gen; 2824 spage->logical = logical; 2825 spage->physical = physical; 2826 spage->mirror_num = mirror_num; 2827 if (csum) { 2828 spage->have_csum = 1; 2829 memcpy(spage->csum, csum, sctx->csum_size); 2830 } else { 2831 spage->have_csum = 0; 2832 } 2833 sblock->page_count++; 2834 spage->page = alloc_page(GFP_KERNEL); 2835 if (!spage->page) 2836 goto leave_nomem; 2837 len -= l; 2838 logical += l; 2839 physical += l; 2840 } 2841 2842 WARN_ON(sblock->page_count == 0); 2843 for (index = 0; index < sblock->page_count; index++) { 2844 struct scrub_page *spage = sblock->pagev[index]; 2845 int ret; 2846 2847 ret = scrub_add_page_to_rd_bio(sctx, spage); 2848 if (ret) { 2849 scrub_block_put(sblock); 2850 return ret; 2851 } 2852 } 2853 2854 /* last one frees, either here or in bio completion for last page */ 2855 scrub_block_put(sblock); 2856 return 0; 2857 } 2858 2859 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2860 u64 logical, u64 len, 2861 u64 physical, struct btrfs_device *dev, 2862 u64 flags, u64 gen, int mirror_num) 2863 { 2864 struct scrub_ctx *sctx = sparity->sctx; 2865 int ret; 2866 u8 csum[BTRFS_CSUM_SIZE]; 2867 u32 blocksize; 2868 2869 if (dev->missing) { 2870 scrub_parity_mark_sectors_error(sparity, logical, len); 2871 return 0; 2872 } 2873 2874 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2875 blocksize = sctx->fs_info->sectorsize; 2876 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2877 blocksize = sctx->fs_info->nodesize; 2878 } else { 2879 blocksize = sctx->fs_info->sectorsize; 2880 WARN_ON(1); 2881 } 2882 2883 while (len) { 2884 u64 l = min_t(u64, len, blocksize); 2885 int have_csum = 0; 2886 2887 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2888 /* push csums to sbio */ 2889 have_csum = scrub_find_csum(sctx, logical, csum); 2890 if (have_csum == 0) 2891 goto skip; 2892 } 2893 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2894 flags, gen, mirror_num, 2895 have_csum ? csum : NULL); 2896 if (ret) 2897 return ret; 2898 skip: 2899 len -= l; 2900 logical += l; 2901 physical += l; 2902 } 2903 return 0; 2904 } 2905 2906 /* 2907 * Given a physical address, this will calculate it's 2908 * logical offset. if this is a parity stripe, it will return 2909 * the most left data stripe's logical offset. 2910 * 2911 * return 0 if it is a data stripe, 1 means parity stripe. 2912 */ 2913 static int get_raid56_logic_offset(u64 physical, int num, 2914 struct map_lookup *map, u64 *offset, 2915 u64 *stripe_start) 2916 { 2917 int i; 2918 int j = 0; 2919 u64 stripe_nr; 2920 u64 last_offset; 2921 u32 stripe_index; 2922 u32 rot; 2923 2924 last_offset = (physical - map->stripes[num].physical) * 2925 nr_data_stripes(map); 2926 if (stripe_start) 2927 *stripe_start = last_offset; 2928 2929 *offset = last_offset; 2930 for (i = 0; i < nr_data_stripes(map); i++) { 2931 *offset = last_offset + i * map->stripe_len; 2932 2933 stripe_nr = div64_u64(*offset, map->stripe_len); 2934 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2935 2936 /* Work out the disk rotation on this stripe-set */ 2937 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2938 /* calculate which stripe this data locates */ 2939 rot += i; 2940 stripe_index = rot % map->num_stripes; 2941 if (stripe_index == num) 2942 return 0; 2943 if (stripe_index < num) 2944 j++; 2945 } 2946 *offset = last_offset + j * map->stripe_len; 2947 return 1; 2948 } 2949 2950 static void scrub_free_parity(struct scrub_parity *sparity) 2951 { 2952 struct scrub_ctx *sctx = sparity->sctx; 2953 struct scrub_page *curr, *next; 2954 int nbits; 2955 2956 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2957 if (nbits) { 2958 spin_lock(&sctx->stat_lock); 2959 sctx->stat.read_errors += nbits; 2960 sctx->stat.uncorrectable_errors += nbits; 2961 spin_unlock(&sctx->stat_lock); 2962 } 2963 2964 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2965 list_del_init(&curr->list); 2966 scrub_page_put(curr); 2967 } 2968 2969 kfree(sparity); 2970 } 2971 2972 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2973 { 2974 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2975 work); 2976 struct scrub_ctx *sctx = sparity->sctx; 2977 2978 scrub_free_parity(sparity); 2979 scrub_pending_bio_dec(sctx); 2980 } 2981 2982 static void scrub_parity_bio_endio(struct bio *bio) 2983 { 2984 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2985 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2986 2987 if (bio->bi_status) 2988 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2989 sparity->nsectors); 2990 2991 bio_put(bio); 2992 2993 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 2994 scrub_parity_bio_endio_worker, NULL, NULL); 2995 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 2996 } 2997 2998 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2999 { 3000 struct scrub_ctx *sctx = sparity->sctx; 3001 struct btrfs_fs_info *fs_info = sctx->fs_info; 3002 struct bio *bio; 3003 struct btrfs_raid_bio *rbio; 3004 struct btrfs_bio *bbio = NULL; 3005 u64 length; 3006 int ret; 3007 3008 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 3009 sparity->nsectors)) 3010 goto out; 3011 3012 length = sparity->logic_end - sparity->logic_start; 3013 3014 btrfs_bio_counter_inc_blocked(fs_info); 3015 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 3016 &length, &bbio); 3017 if (ret || !bbio || !bbio->raid_map) 3018 goto bbio_out; 3019 3020 bio = btrfs_io_bio_alloc(0); 3021 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 3022 bio->bi_private = sparity; 3023 bio->bi_end_io = scrub_parity_bio_endio; 3024 3025 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 3026 length, sparity->scrub_dev, 3027 sparity->dbitmap, 3028 sparity->nsectors); 3029 if (!rbio) 3030 goto rbio_out; 3031 3032 scrub_pending_bio_inc(sctx); 3033 raid56_parity_submit_scrub_rbio(rbio); 3034 return; 3035 3036 rbio_out: 3037 bio_put(bio); 3038 bbio_out: 3039 btrfs_bio_counter_dec(fs_info); 3040 btrfs_put_bbio(bbio); 3041 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 3042 sparity->nsectors); 3043 spin_lock(&sctx->stat_lock); 3044 sctx->stat.malloc_errors++; 3045 spin_unlock(&sctx->stat_lock); 3046 out: 3047 scrub_free_parity(sparity); 3048 } 3049 3050 static inline int scrub_calc_parity_bitmap_len(int nsectors) 3051 { 3052 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 3053 } 3054 3055 static void scrub_parity_get(struct scrub_parity *sparity) 3056 { 3057 refcount_inc(&sparity->refs); 3058 } 3059 3060 static void scrub_parity_put(struct scrub_parity *sparity) 3061 { 3062 if (!refcount_dec_and_test(&sparity->refs)) 3063 return; 3064 3065 scrub_parity_check_and_repair(sparity); 3066 } 3067 3068 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 3069 struct map_lookup *map, 3070 struct btrfs_device *sdev, 3071 struct btrfs_path *path, 3072 u64 logic_start, 3073 u64 logic_end) 3074 { 3075 struct btrfs_fs_info *fs_info = sctx->fs_info; 3076 struct btrfs_root *root = fs_info->extent_root; 3077 struct btrfs_root *csum_root = fs_info->csum_root; 3078 struct btrfs_extent_item *extent; 3079 struct btrfs_bio *bbio = NULL; 3080 u64 flags; 3081 int ret; 3082 int slot; 3083 struct extent_buffer *l; 3084 struct btrfs_key key; 3085 u64 generation; 3086 u64 extent_logical; 3087 u64 extent_physical; 3088 u64 extent_len; 3089 u64 mapped_length; 3090 struct btrfs_device *extent_dev; 3091 struct scrub_parity *sparity; 3092 int nsectors; 3093 int bitmap_len; 3094 int extent_mirror_num; 3095 int stop_loop = 0; 3096 3097 nsectors = div_u64(map->stripe_len, fs_info->sectorsize); 3098 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 3099 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 3100 GFP_NOFS); 3101 if (!sparity) { 3102 spin_lock(&sctx->stat_lock); 3103 sctx->stat.malloc_errors++; 3104 spin_unlock(&sctx->stat_lock); 3105 return -ENOMEM; 3106 } 3107 3108 sparity->stripe_len = map->stripe_len; 3109 sparity->nsectors = nsectors; 3110 sparity->sctx = sctx; 3111 sparity->scrub_dev = sdev; 3112 sparity->logic_start = logic_start; 3113 sparity->logic_end = logic_end; 3114 refcount_set(&sparity->refs, 1); 3115 INIT_LIST_HEAD(&sparity->spages); 3116 sparity->dbitmap = sparity->bitmap; 3117 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 3118 3119 ret = 0; 3120 while (logic_start < logic_end) { 3121 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3122 key.type = BTRFS_METADATA_ITEM_KEY; 3123 else 3124 key.type = BTRFS_EXTENT_ITEM_KEY; 3125 key.objectid = logic_start; 3126 key.offset = (u64)-1; 3127 3128 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3129 if (ret < 0) 3130 goto out; 3131 3132 if (ret > 0) { 3133 ret = btrfs_previous_extent_item(root, path, 0); 3134 if (ret < 0) 3135 goto out; 3136 if (ret > 0) { 3137 btrfs_release_path(path); 3138 ret = btrfs_search_slot(NULL, root, &key, 3139 path, 0, 0); 3140 if (ret < 0) 3141 goto out; 3142 } 3143 } 3144 3145 stop_loop = 0; 3146 while (1) { 3147 u64 bytes; 3148 3149 l = path->nodes[0]; 3150 slot = path->slots[0]; 3151 if (slot >= btrfs_header_nritems(l)) { 3152 ret = btrfs_next_leaf(root, path); 3153 if (ret == 0) 3154 continue; 3155 if (ret < 0) 3156 goto out; 3157 3158 stop_loop = 1; 3159 break; 3160 } 3161 btrfs_item_key_to_cpu(l, &key, slot); 3162 3163 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3164 key.type != BTRFS_METADATA_ITEM_KEY) 3165 goto next; 3166 3167 if (key.type == BTRFS_METADATA_ITEM_KEY) 3168 bytes = fs_info->nodesize; 3169 else 3170 bytes = key.offset; 3171 3172 if (key.objectid + bytes <= logic_start) 3173 goto next; 3174 3175 if (key.objectid >= logic_end) { 3176 stop_loop = 1; 3177 break; 3178 } 3179 3180 while (key.objectid >= logic_start + map->stripe_len) 3181 logic_start += map->stripe_len; 3182 3183 extent = btrfs_item_ptr(l, slot, 3184 struct btrfs_extent_item); 3185 flags = btrfs_extent_flags(l, extent); 3186 generation = btrfs_extent_generation(l, extent); 3187 3188 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3189 (key.objectid < logic_start || 3190 key.objectid + bytes > 3191 logic_start + map->stripe_len)) { 3192 btrfs_err(fs_info, 3193 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3194 key.objectid, logic_start); 3195 spin_lock(&sctx->stat_lock); 3196 sctx->stat.uncorrectable_errors++; 3197 spin_unlock(&sctx->stat_lock); 3198 goto next; 3199 } 3200 again: 3201 extent_logical = key.objectid; 3202 extent_len = bytes; 3203 3204 if (extent_logical < logic_start) { 3205 extent_len -= logic_start - extent_logical; 3206 extent_logical = logic_start; 3207 } 3208 3209 if (extent_logical + extent_len > 3210 logic_start + map->stripe_len) 3211 extent_len = logic_start + map->stripe_len - 3212 extent_logical; 3213 3214 scrub_parity_mark_sectors_data(sparity, extent_logical, 3215 extent_len); 3216 3217 mapped_length = extent_len; 3218 bbio = NULL; 3219 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 3220 extent_logical, &mapped_length, &bbio, 3221 0); 3222 if (!ret) { 3223 if (!bbio || mapped_length < extent_len) 3224 ret = -EIO; 3225 } 3226 if (ret) { 3227 btrfs_put_bbio(bbio); 3228 goto out; 3229 } 3230 extent_physical = bbio->stripes[0].physical; 3231 extent_mirror_num = bbio->mirror_num; 3232 extent_dev = bbio->stripes[0].dev; 3233 btrfs_put_bbio(bbio); 3234 3235 ret = btrfs_lookup_csums_range(csum_root, 3236 extent_logical, 3237 extent_logical + extent_len - 1, 3238 &sctx->csum_list, 1); 3239 if (ret) 3240 goto out; 3241 3242 ret = scrub_extent_for_parity(sparity, extent_logical, 3243 extent_len, 3244 extent_physical, 3245 extent_dev, flags, 3246 generation, 3247 extent_mirror_num); 3248 3249 scrub_free_csums(sctx); 3250 3251 if (ret) 3252 goto out; 3253 3254 if (extent_logical + extent_len < 3255 key.objectid + bytes) { 3256 logic_start += map->stripe_len; 3257 3258 if (logic_start >= logic_end) { 3259 stop_loop = 1; 3260 break; 3261 } 3262 3263 if (logic_start < key.objectid + bytes) { 3264 cond_resched(); 3265 goto again; 3266 } 3267 } 3268 next: 3269 path->slots[0]++; 3270 } 3271 3272 btrfs_release_path(path); 3273 3274 if (stop_loop) 3275 break; 3276 3277 logic_start += map->stripe_len; 3278 } 3279 out: 3280 if (ret < 0) 3281 scrub_parity_mark_sectors_error(sparity, logic_start, 3282 logic_end - logic_start); 3283 scrub_parity_put(sparity); 3284 scrub_submit(sctx); 3285 mutex_lock(&sctx->wr_lock); 3286 scrub_wr_submit(sctx); 3287 mutex_unlock(&sctx->wr_lock); 3288 3289 btrfs_release_path(path); 3290 return ret < 0 ? ret : 0; 3291 } 3292 3293 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3294 struct map_lookup *map, 3295 struct btrfs_device *scrub_dev, 3296 int num, u64 base, u64 length, 3297 int is_dev_replace) 3298 { 3299 struct btrfs_path *path, *ppath; 3300 struct btrfs_fs_info *fs_info = sctx->fs_info; 3301 struct btrfs_root *root = fs_info->extent_root; 3302 struct btrfs_root *csum_root = fs_info->csum_root; 3303 struct btrfs_extent_item *extent; 3304 struct blk_plug plug; 3305 u64 flags; 3306 int ret; 3307 int slot; 3308 u64 nstripes; 3309 struct extent_buffer *l; 3310 u64 physical; 3311 u64 logical; 3312 u64 logic_end; 3313 u64 physical_end; 3314 u64 generation; 3315 int mirror_num; 3316 struct reada_control *reada1; 3317 struct reada_control *reada2; 3318 struct btrfs_key key; 3319 struct btrfs_key key_end; 3320 u64 increment = map->stripe_len; 3321 u64 offset; 3322 u64 extent_logical; 3323 u64 extent_physical; 3324 u64 extent_len; 3325 u64 stripe_logical; 3326 u64 stripe_end; 3327 struct btrfs_device *extent_dev; 3328 int extent_mirror_num; 3329 int stop_loop = 0; 3330 3331 physical = map->stripes[num].physical; 3332 offset = 0; 3333 nstripes = div64_u64(length, map->stripe_len); 3334 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3335 offset = map->stripe_len * num; 3336 increment = map->stripe_len * map->num_stripes; 3337 mirror_num = 1; 3338 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3339 int factor = map->num_stripes / map->sub_stripes; 3340 offset = map->stripe_len * (num / map->sub_stripes); 3341 increment = map->stripe_len * factor; 3342 mirror_num = num % map->sub_stripes + 1; 3343 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3344 increment = map->stripe_len; 3345 mirror_num = num % map->num_stripes + 1; 3346 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3347 increment = map->stripe_len; 3348 mirror_num = num % map->num_stripes + 1; 3349 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3350 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3351 increment = map->stripe_len * nr_data_stripes(map); 3352 mirror_num = 1; 3353 } else { 3354 increment = map->stripe_len; 3355 mirror_num = 1; 3356 } 3357 3358 path = btrfs_alloc_path(); 3359 if (!path) 3360 return -ENOMEM; 3361 3362 ppath = btrfs_alloc_path(); 3363 if (!ppath) { 3364 btrfs_free_path(path); 3365 return -ENOMEM; 3366 } 3367 3368 /* 3369 * work on commit root. The related disk blocks are static as 3370 * long as COW is applied. This means, it is save to rewrite 3371 * them to repair disk errors without any race conditions 3372 */ 3373 path->search_commit_root = 1; 3374 path->skip_locking = 1; 3375 3376 ppath->search_commit_root = 1; 3377 ppath->skip_locking = 1; 3378 /* 3379 * trigger the readahead for extent tree csum tree and wait for 3380 * completion. During readahead, the scrub is officially paused 3381 * to not hold off transaction commits 3382 */ 3383 logical = base + offset; 3384 physical_end = physical + nstripes * map->stripe_len; 3385 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3386 get_raid56_logic_offset(physical_end, num, 3387 map, &logic_end, NULL); 3388 logic_end += base; 3389 } else { 3390 logic_end = logical + increment * nstripes; 3391 } 3392 wait_event(sctx->list_wait, 3393 atomic_read(&sctx->bios_in_flight) == 0); 3394 scrub_blocked_if_needed(fs_info); 3395 3396 /* FIXME it might be better to start readahead at commit root */ 3397 key.objectid = logical; 3398 key.type = BTRFS_EXTENT_ITEM_KEY; 3399 key.offset = (u64)0; 3400 key_end.objectid = logic_end; 3401 key_end.type = BTRFS_METADATA_ITEM_KEY; 3402 key_end.offset = (u64)-1; 3403 reada1 = btrfs_reada_add(root, &key, &key_end); 3404 3405 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3406 key.type = BTRFS_EXTENT_CSUM_KEY; 3407 key.offset = logical; 3408 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3409 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3410 key_end.offset = logic_end; 3411 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3412 3413 if (!IS_ERR(reada1)) 3414 btrfs_reada_wait(reada1); 3415 if (!IS_ERR(reada2)) 3416 btrfs_reada_wait(reada2); 3417 3418 3419 /* 3420 * collect all data csums for the stripe to avoid seeking during 3421 * the scrub. This might currently (crc32) end up to be about 1MB 3422 */ 3423 blk_start_plug(&plug); 3424 3425 /* 3426 * now find all extents for each stripe and scrub them 3427 */ 3428 ret = 0; 3429 while (physical < physical_end) { 3430 /* 3431 * canceled? 3432 */ 3433 if (atomic_read(&fs_info->scrub_cancel_req) || 3434 atomic_read(&sctx->cancel_req)) { 3435 ret = -ECANCELED; 3436 goto out; 3437 } 3438 /* 3439 * check to see if we have to pause 3440 */ 3441 if (atomic_read(&fs_info->scrub_pause_req)) { 3442 /* push queued extents */ 3443 atomic_set(&sctx->flush_all_writes, 1); 3444 scrub_submit(sctx); 3445 mutex_lock(&sctx->wr_lock); 3446 scrub_wr_submit(sctx); 3447 mutex_unlock(&sctx->wr_lock); 3448 wait_event(sctx->list_wait, 3449 atomic_read(&sctx->bios_in_flight) == 0); 3450 atomic_set(&sctx->flush_all_writes, 0); 3451 scrub_blocked_if_needed(fs_info); 3452 } 3453 3454 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3455 ret = get_raid56_logic_offset(physical, num, map, 3456 &logical, 3457 &stripe_logical); 3458 logical += base; 3459 if (ret) { 3460 /* it is parity strip */ 3461 stripe_logical += base; 3462 stripe_end = stripe_logical + increment; 3463 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3464 ppath, stripe_logical, 3465 stripe_end); 3466 if (ret) 3467 goto out; 3468 goto skip; 3469 } 3470 } 3471 3472 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3473 key.type = BTRFS_METADATA_ITEM_KEY; 3474 else 3475 key.type = BTRFS_EXTENT_ITEM_KEY; 3476 key.objectid = logical; 3477 key.offset = (u64)-1; 3478 3479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3480 if (ret < 0) 3481 goto out; 3482 3483 if (ret > 0) { 3484 ret = btrfs_previous_extent_item(root, path, 0); 3485 if (ret < 0) 3486 goto out; 3487 if (ret > 0) { 3488 /* there's no smaller item, so stick with the 3489 * larger one */ 3490 btrfs_release_path(path); 3491 ret = btrfs_search_slot(NULL, root, &key, 3492 path, 0, 0); 3493 if (ret < 0) 3494 goto out; 3495 } 3496 } 3497 3498 stop_loop = 0; 3499 while (1) { 3500 u64 bytes; 3501 3502 l = path->nodes[0]; 3503 slot = path->slots[0]; 3504 if (slot >= btrfs_header_nritems(l)) { 3505 ret = btrfs_next_leaf(root, path); 3506 if (ret == 0) 3507 continue; 3508 if (ret < 0) 3509 goto out; 3510 3511 stop_loop = 1; 3512 break; 3513 } 3514 btrfs_item_key_to_cpu(l, &key, slot); 3515 3516 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3517 key.type != BTRFS_METADATA_ITEM_KEY) 3518 goto next; 3519 3520 if (key.type == BTRFS_METADATA_ITEM_KEY) 3521 bytes = fs_info->nodesize; 3522 else 3523 bytes = key.offset; 3524 3525 if (key.objectid + bytes <= logical) 3526 goto next; 3527 3528 if (key.objectid >= logical + map->stripe_len) { 3529 /* out of this device extent */ 3530 if (key.objectid >= logic_end) 3531 stop_loop = 1; 3532 break; 3533 } 3534 3535 extent = btrfs_item_ptr(l, slot, 3536 struct btrfs_extent_item); 3537 flags = btrfs_extent_flags(l, extent); 3538 generation = btrfs_extent_generation(l, extent); 3539 3540 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3541 (key.objectid < logical || 3542 key.objectid + bytes > 3543 logical + map->stripe_len)) { 3544 btrfs_err(fs_info, 3545 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3546 key.objectid, logical); 3547 spin_lock(&sctx->stat_lock); 3548 sctx->stat.uncorrectable_errors++; 3549 spin_unlock(&sctx->stat_lock); 3550 goto next; 3551 } 3552 3553 again: 3554 extent_logical = key.objectid; 3555 extent_len = bytes; 3556 3557 /* 3558 * trim extent to this stripe 3559 */ 3560 if (extent_logical < logical) { 3561 extent_len -= logical - extent_logical; 3562 extent_logical = logical; 3563 } 3564 if (extent_logical + extent_len > 3565 logical + map->stripe_len) { 3566 extent_len = logical + map->stripe_len - 3567 extent_logical; 3568 } 3569 3570 extent_physical = extent_logical - logical + physical; 3571 extent_dev = scrub_dev; 3572 extent_mirror_num = mirror_num; 3573 if (is_dev_replace) 3574 scrub_remap_extent(fs_info, extent_logical, 3575 extent_len, &extent_physical, 3576 &extent_dev, 3577 &extent_mirror_num); 3578 3579 ret = btrfs_lookup_csums_range(csum_root, 3580 extent_logical, 3581 extent_logical + 3582 extent_len - 1, 3583 &sctx->csum_list, 1); 3584 if (ret) 3585 goto out; 3586 3587 ret = scrub_extent(sctx, extent_logical, extent_len, 3588 extent_physical, extent_dev, flags, 3589 generation, extent_mirror_num, 3590 extent_logical - logical + physical); 3591 3592 scrub_free_csums(sctx); 3593 3594 if (ret) 3595 goto out; 3596 3597 if (extent_logical + extent_len < 3598 key.objectid + bytes) { 3599 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3600 /* 3601 * loop until we find next data stripe 3602 * or we have finished all stripes. 3603 */ 3604 loop: 3605 physical += map->stripe_len; 3606 ret = get_raid56_logic_offset(physical, 3607 num, map, &logical, 3608 &stripe_logical); 3609 logical += base; 3610 3611 if (ret && physical < physical_end) { 3612 stripe_logical += base; 3613 stripe_end = stripe_logical + 3614 increment; 3615 ret = scrub_raid56_parity(sctx, 3616 map, scrub_dev, ppath, 3617 stripe_logical, 3618 stripe_end); 3619 if (ret) 3620 goto out; 3621 goto loop; 3622 } 3623 } else { 3624 physical += map->stripe_len; 3625 logical += increment; 3626 } 3627 if (logical < key.objectid + bytes) { 3628 cond_resched(); 3629 goto again; 3630 } 3631 3632 if (physical >= physical_end) { 3633 stop_loop = 1; 3634 break; 3635 } 3636 } 3637 next: 3638 path->slots[0]++; 3639 } 3640 btrfs_release_path(path); 3641 skip: 3642 logical += increment; 3643 physical += map->stripe_len; 3644 spin_lock(&sctx->stat_lock); 3645 if (stop_loop) 3646 sctx->stat.last_physical = map->stripes[num].physical + 3647 length; 3648 else 3649 sctx->stat.last_physical = physical; 3650 spin_unlock(&sctx->stat_lock); 3651 if (stop_loop) 3652 break; 3653 } 3654 out: 3655 /* push queued extents */ 3656 scrub_submit(sctx); 3657 mutex_lock(&sctx->wr_lock); 3658 scrub_wr_submit(sctx); 3659 mutex_unlock(&sctx->wr_lock); 3660 3661 blk_finish_plug(&plug); 3662 btrfs_free_path(path); 3663 btrfs_free_path(ppath); 3664 return ret < 0 ? ret : 0; 3665 } 3666 3667 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3668 struct btrfs_device *scrub_dev, 3669 u64 chunk_offset, u64 length, 3670 u64 dev_offset, 3671 struct btrfs_block_group_cache *cache, 3672 int is_dev_replace) 3673 { 3674 struct btrfs_fs_info *fs_info = sctx->fs_info; 3675 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 3676 struct map_lookup *map; 3677 struct extent_map *em; 3678 int i; 3679 int ret = 0; 3680 3681 read_lock(&map_tree->map_tree.lock); 3682 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3683 read_unlock(&map_tree->map_tree.lock); 3684 3685 if (!em) { 3686 /* 3687 * Might have been an unused block group deleted by the cleaner 3688 * kthread or relocation. 3689 */ 3690 spin_lock(&cache->lock); 3691 if (!cache->removed) 3692 ret = -EINVAL; 3693 spin_unlock(&cache->lock); 3694 3695 return ret; 3696 } 3697 3698 map = em->map_lookup; 3699 if (em->start != chunk_offset) 3700 goto out; 3701 3702 if (em->len < length) 3703 goto out; 3704 3705 for (i = 0; i < map->num_stripes; ++i) { 3706 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3707 map->stripes[i].physical == dev_offset) { 3708 ret = scrub_stripe(sctx, map, scrub_dev, i, 3709 chunk_offset, length, 3710 is_dev_replace); 3711 if (ret) 3712 goto out; 3713 } 3714 } 3715 out: 3716 free_extent_map(em); 3717 3718 return ret; 3719 } 3720 3721 static noinline_for_stack 3722 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3723 struct btrfs_device *scrub_dev, u64 start, u64 end, 3724 int is_dev_replace) 3725 { 3726 struct btrfs_dev_extent *dev_extent = NULL; 3727 struct btrfs_path *path; 3728 struct btrfs_fs_info *fs_info = sctx->fs_info; 3729 struct btrfs_root *root = fs_info->dev_root; 3730 u64 length; 3731 u64 chunk_offset; 3732 int ret = 0; 3733 int ro_set; 3734 int slot; 3735 struct extent_buffer *l; 3736 struct btrfs_key key; 3737 struct btrfs_key found_key; 3738 struct btrfs_block_group_cache *cache; 3739 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3740 3741 path = btrfs_alloc_path(); 3742 if (!path) 3743 return -ENOMEM; 3744 3745 path->reada = READA_FORWARD; 3746 path->search_commit_root = 1; 3747 path->skip_locking = 1; 3748 3749 key.objectid = scrub_dev->devid; 3750 key.offset = 0ull; 3751 key.type = BTRFS_DEV_EXTENT_KEY; 3752 3753 while (1) { 3754 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3755 if (ret < 0) 3756 break; 3757 if (ret > 0) { 3758 if (path->slots[0] >= 3759 btrfs_header_nritems(path->nodes[0])) { 3760 ret = btrfs_next_leaf(root, path); 3761 if (ret < 0) 3762 break; 3763 if (ret > 0) { 3764 ret = 0; 3765 break; 3766 } 3767 } else { 3768 ret = 0; 3769 } 3770 } 3771 3772 l = path->nodes[0]; 3773 slot = path->slots[0]; 3774 3775 btrfs_item_key_to_cpu(l, &found_key, slot); 3776 3777 if (found_key.objectid != scrub_dev->devid) 3778 break; 3779 3780 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3781 break; 3782 3783 if (found_key.offset >= end) 3784 break; 3785 3786 if (found_key.offset < key.offset) 3787 break; 3788 3789 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3790 length = btrfs_dev_extent_length(l, dev_extent); 3791 3792 if (found_key.offset + length <= start) 3793 goto skip; 3794 3795 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3796 3797 /* 3798 * get a reference on the corresponding block group to prevent 3799 * the chunk from going away while we scrub it 3800 */ 3801 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3802 3803 /* some chunks are removed but not committed to disk yet, 3804 * continue scrubbing */ 3805 if (!cache) 3806 goto skip; 3807 3808 /* 3809 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3810 * to avoid deadlock caused by: 3811 * btrfs_inc_block_group_ro() 3812 * -> btrfs_wait_for_commit() 3813 * -> btrfs_commit_transaction() 3814 * -> btrfs_scrub_pause() 3815 */ 3816 scrub_pause_on(fs_info); 3817 ret = btrfs_inc_block_group_ro(fs_info, cache); 3818 if (!ret && is_dev_replace) { 3819 /* 3820 * If we are doing a device replace wait for any tasks 3821 * that started dellaloc right before we set the block 3822 * group to RO mode, as they might have just allocated 3823 * an extent from it or decided they could do a nocow 3824 * write. And if any such tasks did that, wait for their 3825 * ordered extents to complete and then commit the 3826 * current transaction, so that we can later see the new 3827 * extent items in the extent tree - the ordered extents 3828 * create delayed data references (for cow writes) when 3829 * they complete, which will be run and insert the 3830 * corresponding extent items into the extent tree when 3831 * we commit the transaction they used when running 3832 * inode.c:btrfs_finish_ordered_io(). We later use 3833 * the commit root of the extent tree to find extents 3834 * to copy from the srcdev into the tgtdev, and we don't 3835 * want to miss any new extents. 3836 */ 3837 btrfs_wait_block_group_reservations(cache); 3838 btrfs_wait_nocow_writers(cache); 3839 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX, 3840 cache->key.objectid, 3841 cache->key.offset); 3842 if (ret > 0) { 3843 struct btrfs_trans_handle *trans; 3844 3845 trans = btrfs_join_transaction(root); 3846 if (IS_ERR(trans)) 3847 ret = PTR_ERR(trans); 3848 else 3849 ret = btrfs_commit_transaction(trans); 3850 if (ret) { 3851 scrub_pause_off(fs_info); 3852 btrfs_put_block_group(cache); 3853 break; 3854 } 3855 } 3856 } 3857 scrub_pause_off(fs_info); 3858 3859 if (ret == 0) { 3860 ro_set = 1; 3861 } else if (ret == -ENOSPC) { 3862 /* 3863 * btrfs_inc_block_group_ro return -ENOSPC when it 3864 * failed in creating new chunk for metadata. 3865 * It is not a problem for scrub/replace, because 3866 * metadata are always cowed, and our scrub paused 3867 * commit_transactions. 3868 */ 3869 ro_set = 0; 3870 } else { 3871 btrfs_warn(fs_info, 3872 "failed setting block group ro, ret=%d\n", 3873 ret); 3874 btrfs_put_block_group(cache); 3875 break; 3876 } 3877 3878 btrfs_dev_replace_lock(&fs_info->dev_replace, 1); 3879 dev_replace->cursor_right = found_key.offset + length; 3880 dev_replace->cursor_left = found_key.offset; 3881 dev_replace->item_needs_writeback = 1; 3882 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1); 3883 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3884 found_key.offset, cache, is_dev_replace); 3885 3886 /* 3887 * flush, submit all pending read and write bios, afterwards 3888 * wait for them. 3889 * Note that in the dev replace case, a read request causes 3890 * write requests that are submitted in the read completion 3891 * worker. Therefore in the current situation, it is required 3892 * that all write requests are flushed, so that all read and 3893 * write requests are really completed when bios_in_flight 3894 * changes to 0. 3895 */ 3896 atomic_set(&sctx->flush_all_writes, 1); 3897 scrub_submit(sctx); 3898 mutex_lock(&sctx->wr_lock); 3899 scrub_wr_submit(sctx); 3900 mutex_unlock(&sctx->wr_lock); 3901 3902 wait_event(sctx->list_wait, 3903 atomic_read(&sctx->bios_in_flight) == 0); 3904 3905 scrub_pause_on(fs_info); 3906 3907 /* 3908 * must be called before we decrease @scrub_paused. 3909 * make sure we don't block transaction commit while 3910 * we are waiting pending workers finished. 3911 */ 3912 wait_event(sctx->list_wait, 3913 atomic_read(&sctx->workers_pending) == 0); 3914 atomic_set(&sctx->flush_all_writes, 0); 3915 3916 scrub_pause_off(fs_info); 3917 3918 btrfs_dev_replace_lock(&fs_info->dev_replace, 1); 3919 dev_replace->cursor_left = dev_replace->cursor_right; 3920 dev_replace->item_needs_writeback = 1; 3921 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1); 3922 3923 if (ro_set) 3924 btrfs_dec_block_group_ro(cache); 3925 3926 /* 3927 * We might have prevented the cleaner kthread from deleting 3928 * this block group if it was already unused because we raced 3929 * and set it to RO mode first. So add it back to the unused 3930 * list, otherwise it might not ever be deleted unless a manual 3931 * balance is triggered or it becomes used and unused again. 3932 */ 3933 spin_lock(&cache->lock); 3934 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3935 btrfs_block_group_used(&cache->item) == 0) { 3936 spin_unlock(&cache->lock); 3937 spin_lock(&fs_info->unused_bgs_lock); 3938 if (list_empty(&cache->bg_list)) { 3939 btrfs_get_block_group(cache); 3940 list_add_tail(&cache->bg_list, 3941 &fs_info->unused_bgs); 3942 } 3943 spin_unlock(&fs_info->unused_bgs_lock); 3944 } else { 3945 spin_unlock(&cache->lock); 3946 } 3947 3948 btrfs_put_block_group(cache); 3949 if (ret) 3950 break; 3951 if (is_dev_replace && 3952 atomic64_read(&dev_replace->num_write_errors) > 0) { 3953 ret = -EIO; 3954 break; 3955 } 3956 if (sctx->stat.malloc_errors > 0) { 3957 ret = -ENOMEM; 3958 break; 3959 } 3960 skip: 3961 key.offset = found_key.offset + length; 3962 btrfs_release_path(path); 3963 } 3964 3965 btrfs_free_path(path); 3966 3967 return ret; 3968 } 3969 3970 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3971 struct btrfs_device *scrub_dev) 3972 { 3973 int i; 3974 u64 bytenr; 3975 u64 gen; 3976 int ret; 3977 struct btrfs_fs_info *fs_info = sctx->fs_info; 3978 3979 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3980 return -EIO; 3981 3982 /* Seed devices of a new filesystem has their own generation. */ 3983 if (scrub_dev->fs_devices != fs_info->fs_devices) 3984 gen = scrub_dev->generation; 3985 else 3986 gen = fs_info->last_trans_committed; 3987 3988 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3989 bytenr = btrfs_sb_offset(i); 3990 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3991 scrub_dev->commit_total_bytes) 3992 break; 3993 3994 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3995 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3996 NULL, 1, bytenr); 3997 if (ret) 3998 return ret; 3999 } 4000 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4001 4002 return 0; 4003 } 4004 4005 /* 4006 * get a reference count on fs_info->scrub_workers. start worker if necessary 4007 */ 4008 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 4009 int is_dev_replace) 4010 { 4011 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 4012 int max_active = fs_info->thread_pool_size; 4013 4014 if (fs_info->scrub_workers_refcnt == 0) { 4015 if (is_dev_replace) 4016 fs_info->scrub_workers = 4017 btrfs_alloc_workqueue(fs_info, "scrub", flags, 4018 1, 4); 4019 else 4020 fs_info->scrub_workers = 4021 btrfs_alloc_workqueue(fs_info, "scrub", flags, 4022 max_active, 4); 4023 if (!fs_info->scrub_workers) 4024 goto fail_scrub_workers; 4025 4026 fs_info->scrub_wr_completion_workers = 4027 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 4028 max_active, 2); 4029 if (!fs_info->scrub_wr_completion_workers) 4030 goto fail_scrub_wr_completion_workers; 4031 4032 fs_info->scrub_nocow_workers = 4033 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0); 4034 if (!fs_info->scrub_nocow_workers) 4035 goto fail_scrub_nocow_workers; 4036 fs_info->scrub_parity_workers = 4037 btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 4038 max_active, 2); 4039 if (!fs_info->scrub_parity_workers) 4040 goto fail_scrub_parity_workers; 4041 } 4042 ++fs_info->scrub_workers_refcnt; 4043 return 0; 4044 4045 fail_scrub_parity_workers: 4046 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 4047 fail_scrub_nocow_workers: 4048 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 4049 fail_scrub_wr_completion_workers: 4050 btrfs_destroy_workqueue(fs_info->scrub_workers); 4051 fail_scrub_workers: 4052 return -ENOMEM; 4053 } 4054 4055 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 4056 { 4057 if (--fs_info->scrub_workers_refcnt == 0) { 4058 btrfs_destroy_workqueue(fs_info->scrub_workers); 4059 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 4060 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 4061 btrfs_destroy_workqueue(fs_info->scrub_parity_workers); 4062 } 4063 WARN_ON(fs_info->scrub_workers_refcnt < 0); 4064 } 4065 4066 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4067 u64 end, struct btrfs_scrub_progress *progress, 4068 int readonly, int is_dev_replace) 4069 { 4070 struct scrub_ctx *sctx; 4071 int ret; 4072 struct btrfs_device *dev; 4073 struct rcu_string *name; 4074 4075 if (btrfs_fs_closing(fs_info)) 4076 return -EINVAL; 4077 4078 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 4079 /* 4080 * in this case scrub is unable to calculate the checksum 4081 * the way scrub is implemented. Do not handle this 4082 * situation at all because it won't ever happen. 4083 */ 4084 btrfs_err(fs_info, 4085 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 4086 fs_info->nodesize, 4087 BTRFS_STRIPE_LEN); 4088 return -EINVAL; 4089 } 4090 4091 if (fs_info->sectorsize != PAGE_SIZE) { 4092 /* not supported for data w/o checksums */ 4093 btrfs_err_rl(fs_info, 4094 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", 4095 fs_info->sectorsize, PAGE_SIZE); 4096 return -EINVAL; 4097 } 4098 4099 if (fs_info->nodesize > 4100 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 4101 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 4102 /* 4103 * would exhaust the array bounds of pagev member in 4104 * struct scrub_block 4105 */ 4106 btrfs_err(fs_info, 4107 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 4108 fs_info->nodesize, 4109 SCRUB_MAX_PAGES_PER_BLOCK, 4110 fs_info->sectorsize, 4111 SCRUB_MAX_PAGES_PER_BLOCK); 4112 return -EINVAL; 4113 } 4114 4115 4116 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4117 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 4118 if (!dev || (dev->missing && !is_dev_replace)) { 4119 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4120 return -ENODEV; 4121 } 4122 4123 if (!is_dev_replace && !readonly && !dev->writeable) { 4124 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4125 rcu_read_lock(); 4126 name = rcu_dereference(dev->name); 4127 btrfs_err(fs_info, "scrub: device %s is not writable", 4128 name->str); 4129 rcu_read_unlock(); 4130 return -EROFS; 4131 } 4132 4133 mutex_lock(&fs_info->scrub_lock); 4134 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 4135 mutex_unlock(&fs_info->scrub_lock); 4136 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4137 return -EIO; 4138 } 4139 4140 btrfs_dev_replace_lock(&fs_info->dev_replace, 0); 4141 if (dev->scrub_device || 4142 (!is_dev_replace && 4143 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4144 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 4145 mutex_unlock(&fs_info->scrub_lock); 4146 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4147 return -EINPROGRESS; 4148 } 4149 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0); 4150 4151 ret = scrub_workers_get(fs_info, is_dev_replace); 4152 if (ret) { 4153 mutex_unlock(&fs_info->scrub_lock); 4154 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4155 return ret; 4156 } 4157 4158 sctx = scrub_setup_ctx(dev, is_dev_replace); 4159 if (IS_ERR(sctx)) { 4160 mutex_unlock(&fs_info->scrub_lock); 4161 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4162 scrub_workers_put(fs_info); 4163 return PTR_ERR(sctx); 4164 } 4165 sctx->readonly = readonly; 4166 dev->scrub_device = sctx; 4167 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4168 4169 /* 4170 * checking @scrub_pause_req here, we can avoid 4171 * race between committing transaction and scrubbing. 4172 */ 4173 __scrub_blocked_if_needed(fs_info); 4174 atomic_inc(&fs_info->scrubs_running); 4175 mutex_unlock(&fs_info->scrub_lock); 4176 4177 if (!is_dev_replace) { 4178 /* 4179 * by holding device list mutex, we can 4180 * kick off writing super in log tree sync. 4181 */ 4182 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4183 ret = scrub_supers(sctx, dev); 4184 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4185 } 4186 4187 if (!ret) 4188 ret = scrub_enumerate_chunks(sctx, dev, start, end, 4189 is_dev_replace); 4190 4191 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4192 atomic_dec(&fs_info->scrubs_running); 4193 wake_up(&fs_info->scrub_pause_wait); 4194 4195 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4196 4197 if (progress) 4198 memcpy(progress, &sctx->stat, sizeof(*progress)); 4199 4200 mutex_lock(&fs_info->scrub_lock); 4201 dev->scrub_device = NULL; 4202 scrub_workers_put(fs_info); 4203 mutex_unlock(&fs_info->scrub_lock); 4204 4205 scrub_put_ctx(sctx); 4206 4207 return ret; 4208 } 4209 4210 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4211 { 4212 mutex_lock(&fs_info->scrub_lock); 4213 atomic_inc(&fs_info->scrub_pause_req); 4214 while (atomic_read(&fs_info->scrubs_paused) != 4215 atomic_read(&fs_info->scrubs_running)) { 4216 mutex_unlock(&fs_info->scrub_lock); 4217 wait_event(fs_info->scrub_pause_wait, 4218 atomic_read(&fs_info->scrubs_paused) == 4219 atomic_read(&fs_info->scrubs_running)); 4220 mutex_lock(&fs_info->scrub_lock); 4221 } 4222 mutex_unlock(&fs_info->scrub_lock); 4223 } 4224 4225 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4226 { 4227 atomic_dec(&fs_info->scrub_pause_req); 4228 wake_up(&fs_info->scrub_pause_wait); 4229 } 4230 4231 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4232 { 4233 mutex_lock(&fs_info->scrub_lock); 4234 if (!atomic_read(&fs_info->scrubs_running)) { 4235 mutex_unlock(&fs_info->scrub_lock); 4236 return -ENOTCONN; 4237 } 4238 4239 atomic_inc(&fs_info->scrub_cancel_req); 4240 while (atomic_read(&fs_info->scrubs_running)) { 4241 mutex_unlock(&fs_info->scrub_lock); 4242 wait_event(fs_info->scrub_pause_wait, 4243 atomic_read(&fs_info->scrubs_running) == 0); 4244 mutex_lock(&fs_info->scrub_lock); 4245 } 4246 atomic_dec(&fs_info->scrub_cancel_req); 4247 mutex_unlock(&fs_info->scrub_lock); 4248 4249 return 0; 4250 } 4251 4252 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 4253 struct btrfs_device *dev) 4254 { 4255 struct scrub_ctx *sctx; 4256 4257 mutex_lock(&fs_info->scrub_lock); 4258 sctx = dev->scrub_device; 4259 if (!sctx) { 4260 mutex_unlock(&fs_info->scrub_lock); 4261 return -ENOTCONN; 4262 } 4263 atomic_inc(&sctx->cancel_req); 4264 while (dev->scrub_device) { 4265 mutex_unlock(&fs_info->scrub_lock); 4266 wait_event(fs_info->scrub_pause_wait, 4267 dev->scrub_device == NULL); 4268 mutex_lock(&fs_info->scrub_lock); 4269 } 4270 mutex_unlock(&fs_info->scrub_lock); 4271 4272 return 0; 4273 } 4274 4275 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4276 struct btrfs_scrub_progress *progress) 4277 { 4278 struct btrfs_device *dev; 4279 struct scrub_ctx *sctx = NULL; 4280 4281 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4282 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 4283 if (dev) 4284 sctx = dev->scrub_device; 4285 if (sctx) 4286 memcpy(progress, &sctx->stat, sizeof(*progress)); 4287 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4288 4289 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4290 } 4291 4292 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4293 u64 extent_logical, u64 extent_len, 4294 u64 *extent_physical, 4295 struct btrfs_device **extent_dev, 4296 int *extent_mirror_num) 4297 { 4298 u64 mapped_length; 4299 struct btrfs_bio *bbio = NULL; 4300 int ret; 4301 4302 mapped_length = extent_len; 4303 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4304 &mapped_length, &bbio, 0); 4305 if (ret || !bbio || mapped_length < extent_len || 4306 !bbio->stripes[0].dev->bdev) { 4307 btrfs_put_bbio(bbio); 4308 return; 4309 } 4310 4311 *extent_physical = bbio->stripes[0].physical; 4312 *extent_mirror_num = bbio->mirror_num; 4313 *extent_dev = bbio->stripes[0].dev; 4314 btrfs_put_bbio(bbio); 4315 } 4316 4317 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 4318 int mirror_num, u64 physical_for_dev_replace) 4319 { 4320 struct scrub_copy_nocow_ctx *nocow_ctx; 4321 struct btrfs_fs_info *fs_info = sctx->fs_info; 4322 4323 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 4324 if (!nocow_ctx) { 4325 spin_lock(&sctx->stat_lock); 4326 sctx->stat.malloc_errors++; 4327 spin_unlock(&sctx->stat_lock); 4328 return -ENOMEM; 4329 } 4330 4331 scrub_pending_trans_workers_inc(sctx); 4332 4333 nocow_ctx->sctx = sctx; 4334 nocow_ctx->logical = logical; 4335 nocow_ctx->len = len; 4336 nocow_ctx->mirror_num = mirror_num; 4337 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 4338 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, 4339 copy_nocow_pages_worker, NULL, NULL); 4340 INIT_LIST_HEAD(&nocow_ctx->inodes); 4341 btrfs_queue_work(fs_info->scrub_nocow_workers, 4342 &nocow_ctx->work); 4343 4344 return 0; 4345 } 4346 4347 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 4348 { 4349 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 4350 struct scrub_nocow_inode *nocow_inode; 4351 4352 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 4353 if (!nocow_inode) 4354 return -ENOMEM; 4355 nocow_inode->inum = inum; 4356 nocow_inode->offset = offset; 4357 nocow_inode->root = root; 4358 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 4359 return 0; 4360 } 4361 4362 #define COPY_COMPLETE 1 4363 4364 static void copy_nocow_pages_worker(struct btrfs_work *work) 4365 { 4366 struct scrub_copy_nocow_ctx *nocow_ctx = 4367 container_of(work, struct scrub_copy_nocow_ctx, work); 4368 struct scrub_ctx *sctx = nocow_ctx->sctx; 4369 struct btrfs_fs_info *fs_info = sctx->fs_info; 4370 struct btrfs_root *root = fs_info->extent_root; 4371 u64 logical = nocow_ctx->logical; 4372 u64 len = nocow_ctx->len; 4373 int mirror_num = nocow_ctx->mirror_num; 4374 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4375 int ret; 4376 struct btrfs_trans_handle *trans = NULL; 4377 struct btrfs_path *path; 4378 int not_written = 0; 4379 4380 path = btrfs_alloc_path(); 4381 if (!path) { 4382 spin_lock(&sctx->stat_lock); 4383 sctx->stat.malloc_errors++; 4384 spin_unlock(&sctx->stat_lock); 4385 not_written = 1; 4386 goto out; 4387 } 4388 4389 trans = btrfs_join_transaction(root); 4390 if (IS_ERR(trans)) { 4391 not_written = 1; 4392 goto out; 4393 } 4394 4395 ret = iterate_inodes_from_logical(logical, fs_info, path, 4396 record_inode_for_nocow, nocow_ctx); 4397 if (ret != 0 && ret != -ENOENT) { 4398 btrfs_warn(fs_info, 4399 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d", 4400 logical, physical_for_dev_replace, len, mirror_num, 4401 ret); 4402 not_written = 1; 4403 goto out; 4404 } 4405 4406 btrfs_end_transaction(trans); 4407 trans = NULL; 4408 while (!list_empty(&nocow_ctx->inodes)) { 4409 struct scrub_nocow_inode *entry; 4410 entry = list_first_entry(&nocow_ctx->inodes, 4411 struct scrub_nocow_inode, 4412 list); 4413 list_del_init(&entry->list); 4414 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 4415 entry->root, nocow_ctx); 4416 kfree(entry); 4417 if (ret == COPY_COMPLETE) { 4418 ret = 0; 4419 break; 4420 } else if (ret) { 4421 break; 4422 } 4423 } 4424 out: 4425 while (!list_empty(&nocow_ctx->inodes)) { 4426 struct scrub_nocow_inode *entry; 4427 entry = list_first_entry(&nocow_ctx->inodes, 4428 struct scrub_nocow_inode, 4429 list); 4430 list_del_init(&entry->list); 4431 kfree(entry); 4432 } 4433 if (trans && !IS_ERR(trans)) 4434 btrfs_end_transaction(trans); 4435 if (not_written) 4436 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 4437 num_uncorrectable_read_errors); 4438 4439 btrfs_free_path(path); 4440 kfree(nocow_ctx); 4441 4442 scrub_pending_trans_workers_dec(sctx); 4443 } 4444 4445 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len, 4446 u64 logical) 4447 { 4448 struct extent_state *cached_state = NULL; 4449 struct btrfs_ordered_extent *ordered; 4450 struct extent_io_tree *io_tree; 4451 struct extent_map *em; 4452 u64 lockstart = start, lockend = start + len - 1; 4453 int ret = 0; 4454 4455 io_tree = &inode->io_tree; 4456 4457 lock_extent_bits(io_tree, lockstart, lockend, &cached_state); 4458 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 4459 if (ordered) { 4460 btrfs_put_ordered_extent(ordered); 4461 ret = 1; 4462 goto out_unlock; 4463 } 4464 4465 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 4466 if (IS_ERR(em)) { 4467 ret = PTR_ERR(em); 4468 goto out_unlock; 4469 } 4470 4471 /* 4472 * This extent does not actually cover the logical extent anymore, 4473 * move on to the next inode. 4474 */ 4475 if (em->block_start > logical || 4476 em->block_start + em->block_len < logical + len) { 4477 free_extent_map(em); 4478 ret = 1; 4479 goto out_unlock; 4480 } 4481 free_extent_map(em); 4482 4483 out_unlock: 4484 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state, 4485 GFP_NOFS); 4486 return ret; 4487 } 4488 4489 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 4490 struct scrub_copy_nocow_ctx *nocow_ctx) 4491 { 4492 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info; 4493 struct btrfs_key key; 4494 struct inode *inode; 4495 struct page *page; 4496 struct btrfs_root *local_root; 4497 struct extent_io_tree *io_tree; 4498 u64 physical_for_dev_replace; 4499 u64 nocow_ctx_logical; 4500 u64 len = nocow_ctx->len; 4501 unsigned long index; 4502 int srcu_index; 4503 int ret = 0; 4504 int err = 0; 4505 4506 key.objectid = root; 4507 key.type = BTRFS_ROOT_ITEM_KEY; 4508 key.offset = (u64)-1; 4509 4510 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 4511 4512 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 4513 if (IS_ERR(local_root)) { 4514 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4515 return PTR_ERR(local_root); 4516 } 4517 4518 key.type = BTRFS_INODE_ITEM_KEY; 4519 key.objectid = inum; 4520 key.offset = 0; 4521 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 4522 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4523 if (IS_ERR(inode)) 4524 return PTR_ERR(inode); 4525 4526 /* Avoid truncate/dio/punch hole.. */ 4527 inode_lock(inode); 4528 inode_dio_wait(inode); 4529 4530 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4531 io_tree = &BTRFS_I(inode)->io_tree; 4532 nocow_ctx_logical = nocow_ctx->logical; 4533 4534 ret = check_extent_to_block(BTRFS_I(inode), offset, len, 4535 nocow_ctx_logical); 4536 if (ret) { 4537 ret = ret > 0 ? 0 : ret; 4538 goto out; 4539 } 4540 4541 while (len >= PAGE_SIZE) { 4542 index = offset >> PAGE_SHIFT; 4543 again: 4544 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4545 if (!page) { 4546 btrfs_err(fs_info, "find_or_create_page() failed"); 4547 ret = -ENOMEM; 4548 goto out; 4549 } 4550 4551 if (PageUptodate(page)) { 4552 if (PageDirty(page)) 4553 goto next_page; 4554 } else { 4555 ClearPageError(page); 4556 err = extent_read_full_page(io_tree, page, 4557 btrfs_get_extent, 4558 nocow_ctx->mirror_num); 4559 if (err) { 4560 ret = err; 4561 goto next_page; 4562 } 4563 4564 lock_page(page); 4565 /* 4566 * If the page has been remove from the page cache, 4567 * the data on it is meaningless, because it may be 4568 * old one, the new data may be written into the new 4569 * page in the page cache. 4570 */ 4571 if (page->mapping != inode->i_mapping) { 4572 unlock_page(page); 4573 put_page(page); 4574 goto again; 4575 } 4576 if (!PageUptodate(page)) { 4577 ret = -EIO; 4578 goto next_page; 4579 } 4580 } 4581 4582 ret = check_extent_to_block(BTRFS_I(inode), offset, len, 4583 nocow_ctx_logical); 4584 if (ret) { 4585 ret = ret > 0 ? 0 : ret; 4586 goto next_page; 4587 } 4588 4589 err = write_page_nocow(nocow_ctx->sctx, 4590 physical_for_dev_replace, page); 4591 if (err) 4592 ret = err; 4593 next_page: 4594 unlock_page(page); 4595 put_page(page); 4596 4597 if (ret) 4598 break; 4599 4600 offset += PAGE_SIZE; 4601 physical_for_dev_replace += PAGE_SIZE; 4602 nocow_ctx_logical += PAGE_SIZE; 4603 len -= PAGE_SIZE; 4604 } 4605 ret = COPY_COMPLETE; 4606 out: 4607 inode_unlock(inode); 4608 iput(inode); 4609 return ret; 4610 } 4611 4612 static int write_page_nocow(struct scrub_ctx *sctx, 4613 u64 physical_for_dev_replace, struct page *page) 4614 { 4615 struct bio *bio; 4616 struct btrfs_device *dev; 4617 int ret; 4618 4619 dev = sctx->wr_tgtdev; 4620 if (!dev) 4621 return -EIO; 4622 if (!dev->bdev) { 4623 btrfs_warn_rl(dev->fs_info, 4624 "scrub write_page_nocow(bdev == NULL) is unexpected"); 4625 return -EIO; 4626 } 4627 bio = btrfs_io_bio_alloc(1); 4628 bio->bi_iter.bi_size = 0; 4629 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 4630 bio->bi_bdev = dev->bdev; 4631 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 4632 ret = bio_add_page(bio, page, PAGE_SIZE, 0); 4633 if (ret != PAGE_SIZE) { 4634 leave_with_eio: 4635 bio_put(bio); 4636 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 4637 return -EIO; 4638 } 4639 4640 if (btrfsic_submit_bio_wait(bio)) 4641 goto leave_with_eio; 4642 4643 bio_put(bio); 4644 return 0; 4645 } 4646