1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "disk-io.h" 12 #include "ordered-data.h" 13 #include "transaction.h" 14 #include "backref.h" 15 #include "extent_io.h" 16 #include "dev-replace.h" 17 #include "check-integrity.h" 18 #include "rcu-string.h" 19 #include "raid56.h" 20 21 /* 22 * This is only the first step towards a full-features scrub. It reads all 23 * extent and super block and verifies the checksums. In case a bad checksum 24 * is found or the extent cannot be read, good data will be written back if 25 * any can be found. 26 * 27 * Future enhancements: 28 * - In case an unrepairable extent is encountered, track which files are 29 * affected and report them 30 * - track and record media errors, throw out bad devices 31 * - add a mode to also read unallocated space 32 */ 33 34 struct scrub_block; 35 struct scrub_ctx; 36 37 /* 38 * the following three values only influence the performance. 39 * The last one configures the number of parallel and outstanding I/O 40 * operations. The first two values configure an upper limit for the number 41 * of (dynamically allocated) pages that are added to a bio. 42 */ 43 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 44 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 45 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 46 47 /* 48 * the following value times PAGE_SIZE needs to be large enough to match the 49 * largest node/leaf/sector size that shall be supported. 50 * Values larger than BTRFS_STRIPE_LEN are not supported. 51 */ 52 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 53 54 struct scrub_recover { 55 refcount_t refs; 56 struct btrfs_bio *bbio; 57 u64 map_length; 58 }; 59 60 struct scrub_page { 61 struct scrub_block *sblock; 62 struct page *page; 63 struct btrfs_device *dev; 64 struct list_head list; 65 u64 flags; /* extent flags */ 66 u64 generation; 67 u64 logical; 68 u64 physical; 69 u64 physical_for_dev_replace; 70 atomic_t refs; 71 struct { 72 unsigned int mirror_num:8; 73 unsigned int have_csum:1; 74 unsigned int io_error:1; 75 }; 76 u8 csum[BTRFS_CSUM_SIZE]; 77 78 struct scrub_recover *recover; 79 }; 80 81 struct scrub_bio { 82 int index; 83 struct scrub_ctx *sctx; 84 struct btrfs_device *dev; 85 struct bio *bio; 86 blk_status_t status; 87 u64 logical; 88 u64 physical; 89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 90 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 91 #else 92 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 93 #endif 94 int page_count; 95 int next_free; 96 struct btrfs_work work; 97 }; 98 99 struct scrub_block { 100 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 101 int page_count; 102 atomic_t outstanding_pages; 103 refcount_t refs; /* free mem on transition to zero */ 104 struct scrub_ctx *sctx; 105 struct scrub_parity *sparity; 106 struct { 107 unsigned int header_error:1; 108 unsigned int checksum_error:1; 109 unsigned int no_io_error_seen:1; 110 unsigned int generation_error:1; /* also sets header_error */ 111 112 /* The following is for the data used to check parity */ 113 /* It is for the data with checksum */ 114 unsigned int data_corrected:1; 115 }; 116 struct btrfs_work work; 117 }; 118 119 /* Used for the chunks with parity stripe such RAID5/6 */ 120 struct scrub_parity { 121 struct scrub_ctx *sctx; 122 123 struct btrfs_device *scrub_dev; 124 125 u64 logic_start; 126 127 u64 logic_end; 128 129 int nsectors; 130 131 u64 stripe_len; 132 133 refcount_t refs; 134 135 struct list_head spages; 136 137 /* Work of parity check and repair */ 138 struct btrfs_work work; 139 140 /* Mark the parity blocks which have data */ 141 unsigned long *dbitmap; 142 143 /* 144 * Mark the parity blocks which have data, but errors happen when 145 * read data or check data 146 */ 147 unsigned long *ebitmap; 148 149 unsigned long bitmap[0]; 150 }; 151 152 struct scrub_ctx { 153 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 154 struct btrfs_fs_info *fs_info; 155 int first_free; 156 int curr; 157 atomic_t bios_in_flight; 158 atomic_t workers_pending; 159 spinlock_t list_lock; 160 wait_queue_head_t list_wait; 161 u16 csum_size; 162 struct list_head csum_list; 163 atomic_t cancel_req; 164 int readonly; 165 int pages_per_rd_bio; 166 167 int is_dev_replace; 168 169 struct scrub_bio *wr_curr_bio; 170 struct mutex wr_lock; 171 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 172 struct btrfs_device *wr_tgtdev; 173 bool flush_all_writes; 174 175 /* 176 * statistics 177 */ 178 struct btrfs_scrub_progress stat; 179 spinlock_t stat_lock; 180 181 /* 182 * Use a ref counter to avoid use-after-free issues. Scrub workers 183 * decrement bios_in_flight and workers_pending and then do a wakeup 184 * on the list_wait wait queue. We must ensure the main scrub task 185 * doesn't free the scrub context before or while the workers are 186 * doing the wakeup() call. 187 */ 188 refcount_t refs; 189 }; 190 191 struct scrub_warning { 192 struct btrfs_path *path; 193 u64 extent_item_size; 194 const char *errstr; 195 u64 physical; 196 u64 logical; 197 struct btrfs_device *dev; 198 }; 199 200 struct full_stripe_lock { 201 struct rb_node node; 202 u64 logical; 203 u64 refs; 204 struct mutex mutex; 205 }; 206 207 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 208 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 209 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 210 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 211 struct scrub_block *sblocks_for_recheck); 212 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 213 struct scrub_block *sblock, 214 int retry_failed_mirror); 215 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 216 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 217 struct scrub_block *sblock_good); 218 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 219 struct scrub_block *sblock_good, 220 int page_num, int force_write); 221 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 222 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 223 int page_num); 224 static int scrub_checksum_data(struct scrub_block *sblock); 225 static int scrub_checksum_tree_block(struct scrub_block *sblock); 226 static int scrub_checksum_super(struct scrub_block *sblock); 227 static void scrub_block_get(struct scrub_block *sblock); 228 static void scrub_block_put(struct scrub_block *sblock); 229 static void scrub_page_get(struct scrub_page *spage); 230 static void scrub_page_put(struct scrub_page *spage); 231 static void scrub_parity_get(struct scrub_parity *sparity); 232 static void scrub_parity_put(struct scrub_parity *sparity); 233 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 234 struct scrub_page *spage); 235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 236 u64 physical, struct btrfs_device *dev, u64 flags, 237 u64 gen, int mirror_num, u8 *csum, int force, 238 u64 physical_for_dev_replace); 239 static void scrub_bio_end_io(struct bio *bio); 240 static void scrub_bio_end_io_worker(struct btrfs_work *work); 241 static void scrub_block_complete(struct scrub_block *sblock); 242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 243 u64 extent_logical, u64 extent_len, 244 u64 *extent_physical, 245 struct btrfs_device **extent_dev, 246 int *extent_mirror_num); 247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 248 struct scrub_page *spage); 249 static void scrub_wr_submit(struct scrub_ctx *sctx); 250 static void scrub_wr_bio_end_io(struct bio *bio); 251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 252 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 253 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 254 static void scrub_put_ctx(struct scrub_ctx *sctx); 255 256 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 257 { 258 return page->recover && 259 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 260 } 261 262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 263 { 264 refcount_inc(&sctx->refs); 265 atomic_inc(&sctx->bios_in_flight); 266 } 267 268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 269 { 270 atomic_dec(&sctx->bios_in_flight); 271 wake_up(&sctx->list_wait); 272 scrub_put_ctx(sctx); 273 } 274 275 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 276 { 277 while (atomic_read(&fs_info->scrub_pause_req)) { 278 mutex_unlock(&fs_info->scrub_lock); 279 wait_event(fs_info->scrub_pause_wait, 280 atomic_read(&fs_info->scrub_pause_req) == 0); 281 mutex_lock(&fs_info->scrub_lock); 282 } 283 } 284 285 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 286 { 287 atomic_inc(&fs_info->scrubs_paused); 288 wake_up(&fs_info->scrub_pause_wait); 289 } 290 291 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 292 { 293 mutex_lock(&fs_info->scrub_lock); 294 __scrub_blocked_if_needed(fs_info); 295 atomic_dec(&fs_info->scrubs_paused); 296 mutex_unlock(&fs_info->scrub_lock); 297 298 wake_up(&fs_info->scrub_pause_wait); 299 } 300 301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 302 { 303 scrub_pause_on(fs_info); 304 scrub_pause_off(fs_info); 305 } 306 307 /* 308 * Insert new full stripe lock into full stripe locks tree 309 * 310 * Return pointer to existing or newly inserted full_stripe_lock structure if 311 * everything works well. 312 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 313 * 314 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 315 * function 316 */ 317 static struct full_stripe_lock *insert_full_stripe_lock( 318 struct btrfs_full_stripe_locks_tree *locks_root, 319 u64 fstripe_logical) 320 { 321 struct rb_node **p; 322 struct rb_node *parent = NULL; 323 struct full_stripe_lock *entry; 324 struct full_stripe_lock *ret; 325 326 lockdep_assert_held(&locks_root->lock); 327 328 p = &locks_root->root.rb_node; 329 while (*p) { 330 parent = *p; 331 entry = rb_entry(parent, struct full_stripe_lock, node); 332 if (fstripe_logical < entry->logical) { 333 p = &(*p)->rb_left; 334 } else if (fstripe_logical > entry->logical) { 335 p = &(*p)->rb_right; 336 } else { 337 entry->refs++; 338 return entry; 339 } 340 } 341 342 /* Insert new lock */ 343 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 344 if (!ret) 345 return ERR_PTR(-ENOMEM); 346 ret->logical = fstripe_logical; 347 ret->refs = 1; 348 mutex_init(&ret->mutex); 349 350 rb_link_node(&ret->node, parent, p); 351 rb_insert_color(&ret->node, &locks_root->root); 352 return ret; 353 } 354 355 /* 356 * Search for a full stripe lock of a block group 357 * 358 * Return pointer to existing full stripe lock if found 359 * Return NULL if not found 360 */ 361 static struct full_stripe_lock *search_full_stripe_lock( 362 struct btrfs_full_stripe_locks_tree *locks_root, 363 u64 fstripe_logical) 364 { 365 struct rb_node *node; 366 struct full_stripe_lock *entry; 367 368 lockdep_assert_held(&locks_root->lock); 369 370 node = locks_root->root.rb_node; 371 while (node) { 372 entry = rb_entry(node, struct full_stripe_lock, node); 373 if (fstripe_logical < entry->logical) 374 node = node->rb_left; 375 else if (fstripe_logical > entry->logical) 376 node = node->rb_right; 377 else 378 return entry; 379 } 380 return NULL; 381 } 382 383 /* 384 * Helper to get full stripe logical from a normal bytenr. 385 * 386 * Caller must ensure @cache is a RAID56 block group. 387 */ 388 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache, 389 u64 bytenr) 390 { 391 u64 ret; 392 393 /* 394 * Due to chunk item size limit, full stripe length should not be 395 * larger than U32_MAX. Just a sanity check here. 396 */ 397 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 398 399 /* 400 * round_down() can only handle power of 2, while RAID56 full 401 * stripe length can be 64KiB * n, so we need to manually round down. 402 */ 403 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) * 404 cache->full_stripe_len + cache->key.objectid; 405 return ret; 406 } 407 408 /* 409 * Lock a full stripe to avoid concurrency of recovery and read 410 * 411 * It's only used for profiles with parities (RAID5/6), for other profiles it 412 * does nothing. 413 * 414 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 415 * So caller must call unlock_full_stripe() at the same context. 416 * 417 * Return <0 if encounters error. 418 */ 419 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 420 bool *locked_ret) 421 { 422 struct btrfs_block_group_cache *bg_cache; 423 struct btrfs_full_stripe_locks_tree *locks_root; 424 struct full_stripe_lock *existing; 425 u64 fstripe_start; 426 int ret = 0; 427 428 *locked_ret = false; 429 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 430 if (!bg_cache) { 431 ASSERT(0); 432 return -ENOENT; 433 } 434 435 /* Profiles not based on parity don't need full stripe lock */ 436 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 437 goto out; 438 locks_root = &bg_cache->full_stripe_locks_root; 439 440 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 441 442 /* Now insert the full stripe lock */ 443 mutex_lock(&locks_root->lock); 444 existing = insert_full_stripe_lock(locks_root, fstripe_start); 445 mutex_unlock(&locks_root->lock); 446 if (IS_ERR(existing)) { 447 ret = PTR_ERR(existing); 448 goto out; 449 } 450 mutex_lock(&existing->mutex); 451 *locked_ret = true; 452 out: 453 btrfs_put_block_group(bg_cache); 454 return ret; 455 } 456 457 /* 458 * Unlock a full stripe. 459 * 460 * NOTE: Caller must ensure it's the same context calling corresponding 461 * lock_full_stripe(). 462 * 463 * Return 0 if we unlock full stripe without problem. 464 * Return <0 for error 465 */ 466 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 467 bool locked) 468 { 469 struct btrfs_block_group_cache *bg_cache; 470 struct btrfs_full_stripe_locks_tree *locks_root; 471 struct full_stripe_lock *fstripe_lock; 472 u64 fstripe_start; 473 bool freeit = false; 474 int ret = 0; 475 476 /* If we didn't acquire full stripe lock, no need to continue */ 477 if (!locked) 478 return 0; 479 480 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 481 if (!bg_cache) { 482 ASSERT(0); 483 return -ENOENT; 484 } 485 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 486 goto out; 487 488 locks_root = &bg_cache->full_stripe_locks_root; 489 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 490 491 mutex_lock(&locks_root->lock); 492 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 493 /* Unpaired unlock_full_stripe() detected */ 494 if (!fstripe_lock) { 495 WARN_ON(1); 496 ret = -ENOENT; 497 mutex_unlock(&locks_root->lock); 498 goto out; 499 } 500 501 if (fstripe_lock->refs == 0) { 502 WARN_ON(1); 503 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 504 fstripe_lock->logical); 505 } else { 506 fstripe_lock->refs--; 507 } 508 509 if (fstripe_lock->refs == 0) { 510 rb_erase(&fstripe_lock->node, &locks_root->root); 511 freeit = true; 512 } 513 mutex_unlock(&locks_root->lock); 514 515 mutex_unlock(&fstripe_lock->mutex); 516 if (freeit) 517 kfree(fstripe_lock); 518 out: 519 btrfs_put_block_group(bg_cache); 520 return ret; 521 } 522 523 static void scrub_free_csums(struct scrub_ctx *sctx) 524 { 525 while (!list_empty(&sctx->csum_list)) { 526 struct btrfs_ordered_sum *sum; 527 sum = list_first_entry(&sctx->csum_list, 528 struct btrfs_ordered_sum, list); 529 list_del(&sum->list); 530 kfree(sum); 531 } 532 } 533 534 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 535 { 536 int i; 537 538 if (!sctx) 539 return; 540 541 /* this can happen when scrub is cancelled */ 542 if (sctx->curr != -1) { 543 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 544 545 for (i = 0; i < sbio->page_count; i++) { 546 WARN_ON(!sbio->pagev[i]->page); 547 scrub_block_put(sbio->pagev[i]->sblock); 548 } 549 bio_put(sbio->bio); 550 } 551 552 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 553 struct scrub_bio *sbio = sctx->bios[i]; 554 555 if (!sbio) 556 break; 557 kfree(sbio); 558 } 559 560 kfree(sctx->wr_curr_bio); 561 scrub_free_csums(sctx); 562 kfree(sctx); 563 } 564 565 static void scrub_put_ctx(struct scrub_ctx *sctx) 566 { 567 if (refcount_dec_and_test(&sctx->refs)) 568 scrub_free_ctx(sctx); 569 } 570 571 static noinline_for_stack 572 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 573 { 574 struct scrub_ctx *sctx; 575 int i; 576 struct btrfs_fs_info *fs_info = dev->fs_info; 577 578 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 579 if (!sctx) 580 goto nomem; 581 refcount_set(&sctx->refs, 1); 582 sctx->is_dev_replace = is_dev_replace; 583 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 584 sctx->curr = -1; 585 sctx->fs_info = dev->fs_info; 586 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 587 struct scrub_bio *sbio; 588 589 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 590 if (!sbio) 591 goto nomem; 592 sctx->bios[i] = sbio; 593 594 sbio->index = i; 595 sbio->sctx = sctx; 596 sbio->page_count = 0; 597 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 598 scrub_bio_end_io_worker, NULL, NULL); 599 600 if (i != SCRUB_BIOS_PER_SCTX - 1) 601 sctx->bios[i]->next_free = i + 1; 602 else 603 sctx->bios[i]->next_free = -1; 604 } 605 sctx->first_free = 0; 606 atomic_set(&sctx->bios_in_flight, 0); 607 atomic_set(&sctx->workers_pending, 0); 608 atomic_set(&sctx->cancel_req, 0); 609 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 610 INIT_LIST_HEAD(&sctx->csum_list); 611 612 spin_lock_init(&sctx->list_lock); 613 spin_lock_init(&sctx->stat_lock); 614 init_waitqueue_head(&sctx->list_wait); 615 616 WARN_ON(sctx->wr_curr_bio != NULL); 617 mutex_init(&sctx->wr_lock); 618 sctx->wr_curr_bio = NULL; 619 if (is_dev_replace) { 620 WARN_ON(!fs_info->dev_replace.tgtdev); 621 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 622 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 623 sctx->flush_all_writes = false; 624 } 625 626 return sctx; 627 628 nomem: 629 scrub_free_ctx(sctx); 630 return ERR_PTR(-ENOMEM); 631 } 632 633 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 634 void *warn_ctx) 635 { 636 u64 isize; 637 u32 nlink; 638 int ret; 639 int i; 640 unsigned nofs_flag; 641 struct extent_buffer *eb; 642 struct btrfs_inode_item *inode_item; 643 struct scrub_warning *swarn = warn_ctx; 644 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 645 struct inode_fs_paths *ipath = NULL; 646 struct btrfs_root *local_root; 647 struct btrfs_key root_key; 648 struct btrfs_key key; 649 650 root_key.objectid = root; 651 root_key.type = BTRFS_ROOT_ITEM_KEY; 652 root_key.offset = (u64)-1; 653 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 654 if (IS_ERR(local_root)) { 655 ret = PTR_ERR(local_root); 656 goto err; 657 } 658 659 /* 660 * this makes the path point to (inum INODE_ITEM ioff) 661 */ 662 key.objectid = inum; 663 key.type = BTRFS_INODE_ITEM_KEY; 664 key.offset = 0; 665 666 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 667 if (ret) { 668 btrfs_release_path(swarn->path); 669 goto err; 670 } 671 672 eb = swarn->path->nodes[0]; 673 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 674 struct btrfs_inode_item); 675 isize = btrfs_inode_size(eb, inode_item); 676 nlink = btrfs_inode_nlink(eb, inode_item); 677 btrfs_release_path(swarn->path); 678 679 /* 680 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 681 * uses GFP_NOFS in this context, so we keep it consistent but it does 682 * not seem to be strictly necessary. 683 */ 684 nofs_flag = memalloc_nofs_save(); 685 ipath = init_ipath(4096, local_root, swarn->path); 686 memalloc_nofs_restore(nofs_flag); 687 if (IS_ERR(ipath)) { 688 ret = PTR_ERR(ipath); 689 ipath = NULL; 690 goto err; 691 } 692 ret = paths_from_inode(inum, ipath); 693 694 if (ret < 0) 695 goto err; 696 697 /* 698 * we deliberately ignore the bit ipath might have been too small to 699 * hold all of the paths here 700 */ 701 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 702 btrfs_warn_in_rcu(fs_info, 703 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", 704 swarn->errstr, swarn->logical, 705 rcu_str_deref(swarn->dev->name), 706 swarn->physical, 707 root, inum, offset, 708 min(isize - offset, (u64)PAGE_SIZE), nlink, 709 (char *)(unsigned long)ipath->fspath->val[i]); 710 711 free_ipath(ipath); 712 return 0; 713 714 err: 715 btrfs_warn_in_rcu(fs_info, 716 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 717 swarn->errstr, swarn->logical, 718 rcu_str_deref(swarn->dev->name), 719 swarn->physical, 720 root, inum, offset, ret); 721 722 free_ipath(ipath); 723 return 0; 724 } 725 726 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 727 { 728 struct btrfs_device *dev; 729 struct btrfs_fs_info *fs_info; 730 struct btrfs_path *path; 731 struct btrfs_key found_key; 732 struct extent_buffer *eb; 733 struct btrfs_extent_item *ei; 734 struct scrub_warning swarn; 735 unsigned long ptr = 0; 736 u64 extent_item_pos; 737 u64 flags = 0; 738 u64 ref_root; 739 u32 item_size; 740 u8 ref_level = 0; 741 int ret; 742 743 WARN_ON(sblock->page_count < 1); 744 dev = sblock->pagev[0]->dev; 745 fs_info = sblock->sctx->fs_info; 746 747 path = btrfs_alloc_path(); 748 if (!path) 749 return; 750 751 swarn.physical = sblock->pagev[0]->physical; 752 swarn.logical = sblock->pagev[0]->logical; 753 swarn.errstr = errstr; 754 swarn.dev = NULL; 755 756 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 757 &flags); 758 if (ret < 0) 759 goto out; 760 761 extent_item_pos = swarn.logical - found_key.objectid; 762 swarn.extent_item_size = found_key.offset; 763 764 eb = path->nodes[0]; 765 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 766 item_size = btrfs_item_size_nr(eb, path->slots[0]); 767 768 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 769 do { 770 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 771 item_size, &ref_root, 772 &ref_level); 773 btrfs_warn_in_rcu(fs_info, 774 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 775 errstr, swarn.logical, 776 rcu_str_deref(dev->name), 777 swarn.physical, 778 ref_level ? "node" : "leaf", 779 ret < 0 ? -1 : ref_level, 780 ret < 0 ? -1 : ref_root); 781 } while (ret != 1); 782 btrfs_release_path(path); 783 } else { 784 btrfs_release_path(path); 785 swarn.path = path; 786 swarn.dev = dev; 787 iterate_extent_inodes(fs_info, found_key.objectid, 788 extent_item_pos, 1, 789 scrub_print_warning_inode, &swarn, false); 790 } 791 792 out: 793 btrfs_free_path(path); 794 } 795 796 static inline void scrub_get_recover(struct scrub_recover *recover) 797 { 798 refcount_inc(&recover->refs); 799 } 800 801 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 802 struct scrub_recover *recover) 803 { 804 if (refcount_dec_and_test(&recover->refs)) { 805 btrfs_bio_counter_dec(fs_info); 806 btrfs_put_bbio(recover->bbio); 807 kfree(recover); 808 } 809 } 810 811 /* 812 * scrub_handle_errored_block gets called when either verification of the 813 * pages failed or the bio failed to read, e.g. with EIO. In the latter 814 * case, this function handles all pages in the bio, even though only one 815 * may be bad. 816 * The goal of this function is to repair the errored block by using the 817 * contents of one of the mirrors. 818 */ 819 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 820 { 821 struct scrub_ctx *sctx = sblock_to_check->sctx; 822 struct btrfs_device *dev; 823 struct btrfs_fs_info *fs_info; 824 u64 logical; 825 unsigned int failed_mirror_index; 826 unsigned int is_metadata; 827 unsigned int have_csum; 828 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 829 struct scrub_block *sblock_bad; 830 int ret; 831 int mirror_index; 832 int page_num; 833 int success; 834 bool full_stripe_locked; 835 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 836 DEFAULT_RATELIMIT_BURST); 837 838 BUG_ON(sblock_to_check->page_count < 1); 839 fs_info = sctx->fs_info; 840 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 841 /* 842 * if we find an error in a super block, we just report it. 843 * They will get written with the next transaction commit 844 * anyway 845 */ 846 spin_lock(&sctx->stat_lock); 847 ++sctx->stat.super_errors; 848 spin_unlock(&sctx->stat_lock); 849 return 0; 850 } 851 logical = sblock_to_check->pagev[0]->logical; 852 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 853 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 854 is_metadata = !(sblock_to_check->pagev[0]->flags & 855 BTRFS_EXTENT_FLAG_DATA); 856 have_csum = sblock_to_check->pagev[0]->have_csum; 857 dev = sblock_to_check->pagev[0]->dev; 858 859 /* 860 * For RAID5/6, race can happen for a different device scrub thread. 861 * For data corruption, Parity and Data threads will both try 862 * to recovery the data. 863 * Race can lead to doubly added csum error, or even unrecoverable 864 * error. 865 */ 866 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 867 if (ret < 0) { 868 spin_lock(&sctx->stat_lock); 869 if (ret == -ENOMEM) 870 sctx->stat.malloc_errors++; 871 sctx->stat.read_errors++; 872 sctx->stat.uncorrectable_errors++; 873 spin_unlock(&sctx->stat_lock); 874 return ret; 875 } 876 877 /* 878 * read all mirrors one after the other. This includes to 879 * re-read the extent or metadata block that failed (that was 880 * the cause that this fixup code is called) another time, 881 * page by page this time in order to know which pages 882 * caused I/O errors and which ones are good (for all mirrors). 883 * It is the goal to handle the situation when more than one 884 * mirror contains I/O errors, but the errors do not 885 * overlap, i.e. the data can be repaired by selecting the 886 * pages from those mirrors without I/O error on the 887 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 888 * would be that mirror #1 has an I/O error on the first page, 889 * the second page is good, and mirror #2 has an I/O error on 890 * the second page, but the first page is good. 891 * Then the first page of the first mirror can be repaired by 892 * taking the first page of the second mirror, and the 893 * second page of the second mirror can be repaired by 894 * copying the contents of the 2nd page of the 1st mirror. 895 * One more note: if the pages of one mirror contain I/O 896 * errors, the checksum cannot be verified. In order to get 897 * the best data for repairing, the first attempt is to find 898 * a mirror without I/O errors and with a validated checksum. 899 * Only if this is not possible, the pages are picked from 900 * mirrors with I/O errors without considering the checksum. 901 * If the latter is the case, at the end, the checksum of the 902 * repaired area is verified in order to correctly maintain 903 * the statistics. 904 */ 905 906 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 907 sizeof(*sblocks_for_recheck), GFP_NOFS); 908 if (!sblocks_for_recheck) { 909 spin_lock(&sctx->stat_lock); 910 sctx->stat.malloc_errors++; 911 sctx->stat.read_errors++; 912 sctx->stat.uncorrectable_errors++; 913 spin_unlock(&sctx->stat_lock); 914 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 915 goto out; 916 } 917 918 /* setup the context, map the logical blocks and alloc the pages */ 919 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 920 if (ret) { 921 spin_lock(&sctx->stat_lock); 922 sctx->stat.read_errors++; 923 sctx->stat.uncorrectable_errors++; 924 spin_unlock(&sctx->stat_lock); 925 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 926 goto out; 927 } 928 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 929 sblock_bad = sblocks_for_recheck + failed_mirror_index; 930 931 /* build and submit the bios for the failed mirror, check checksums */ 932 scrub_recheck_block(fs_info, sblock_bad, 1); 933 934 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 935 sblock_bad->no_io_error_seen) { 936 /* 937 * the error disappeared after reading page by page, or 938 * the area was part of a huge bio and other parts of the 939 * bio caused I/O errors, or the block layer merged several 940 * read requests into one and the error is caused by a 941 * different bio (usually one of the two latter cases is 942 * the cause) 943 */ 944 spin_lock(&sctx->stat_lock); 945 sctx->stat.unverified_errors++; 946 sblock_to_check->data_corrected = 1; 947 spin_unlock(&sctx->stat_lock); 948 949 if (sctx->is_dev_replace) 950 scrub_write_block_to_dev_replace(sblock_bad); 951 goto out; 952 } 953 954 if (!sblock_bad->no_io_error_seen) { 955 spin_lock(&sctx->stat_lock); 956 sctx->stat.read_errors++; 957 spin_unlock(&sctx->stat_lock); 958 if (__ratelimit(&_rs)) 959 scrub_print_warning("i/o error", sblock_to_check); 960 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 961 } else if (sblock_bad->checksum_error) { 962 spin_lock(&sctx->stat_lock); 963 sctx->stat.csum_errors++; 964 spin_unlock(&sctx->stat_lock); 965 if (__ratelimit(&_rs)) 966 scrub_print_warning("checksum error", sblock_to_check); 967 btrfs_dev_stat_inc_and_print(dev, 968 BTRFS_DEV_STAT_CORRUPTION_ERRS); 969 } else if (sblock_bad->header_error) { 970 spin_lock(&sctx->stat_lock); 971 sctx->stat.verify_errors++; 972 spin_unlock(&sctx->stat_lock); 973 if (__ratelimit(&_rs)) 974 scrub_print_warning("checksum/header error", 975 sblock_to_check); 976 if (sblock_bad->generation_error) 977 btrfs_dev_stat_inc_and_print(dev, 978 BTRFS_DEV_STAT_GENERATION_ERRS); 979 else 980 btrfs_dev_stat_inc_and_print(dev, 981 BTRFS_DEV_STAT_CORRUPTION_ERRS); 982 } 983 984 if (sctx->readonly) { 985 ASSERT(!sctx->is_dev_replace); 986 goto out; 987 } 988 989 /* 990 * now build and submit the bios for the other mirrors, check 991 * checksums. 992 * First try to pick the mirror which is completely without I/O 993 * errors and also does not have a checksum error. 994 * If one is found, and if a checksum is present, the full block 995 * that is known to contain an error is rewritten. Afterwards 996 * the block is known to be corrected. 997 * If a mirror is found which is completely correct, and no 998 * checksum is present, only those pages are rewritten that had 999 * an I/O error in the block to be repaired, since it cannot be 1000 * determined, which copy of the other pages is better (and it 1001 * could happen otherwise that a correct page would be 1002 * overwritten by a bad one). 1003 */ 1004 for (mirror_index = 0; ;mirror_index++) { 1005 struct scrub_block *sblock_other; 1006 1007 if (mirror_index == failed_mirror_index) 1008 continue; 1009 1010 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1011 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1012 if (mirror_index >= BTRFS_MAX_MIRRORS) 1013 break; 1014 if (!sblocks_for_recheck[mirror_index].page_count) 1015 break; 1016 1017 sblock_other = sblocks_for_recheck + mirror_index; 1018 } else { 1019 struct scrub_recover *r = sblock_bad->pagev[0]->recover; 1020 int max_allowed = r->bbio->num_stripes - 1021 r->bbio->num_tgtdevs; 1022 1023 if (mirror_index >= max_allowed) 1024 break; 1025 if (!sblocks_for_recheck[1].page_count) 1026 break; 1027 1028 ASSERT(failed_mirror_index == 0); 1029 sblock_other = sblocks_for_recheck + 1; 1030 sblock_other->pagev[0]->mirror_num = 1 + mirror_index; 1031 } 1032 1033 /* build and submit the bios, check checksums */ 1034 scrub_recheck_block(fs_info, sblock_other, 0); 1035 1036 if (!sblock_other->header_error && 1037 !sblock_other->checksum_error && 1038 sblock_other->no_io_error_seen) { 1039 if (sctx->is_dev_replace) { 1040 scrub_write_block_to_dev_replace(sblock_other); 1041 goto corrected_error; 1042 } else { 1043 ret = scrub_repair_block_from_good_copy( 1044 sblock_bad, sblock_other); 1045 if (!ret) 1046 goto corrected_error; 1047 } 1048 } 1049 } 1050 1051 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1052 goto did_not_correct_error; 1053 1054 /* 1055 * In case of I/O errors in the area that is supposed to be 1056 * repaired, continue by picking good copies of those pages. 1057 * Select the good pages from mirrors to rewrite bad pages from 1058 * the area to fix. Afterwards verify the checksum of the block 1059 * that is supposed to be repaired. This verification step is 1060 * only done for the purpose of statistic counting and for the 1061 * final scrub report, whether errors remain. 1062 * A perfect algorithm could make use of the checksum and try 1063 * all possible combinations of pages from the different mirrors 1064 * until the checksum verification succeeds. For example, when 1065 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1066 * of mirror #2 is readable but the final checksum test fails, 1067 * then the 2nd page of mirror #3 could be tried, whether now 1068 * the final checksum succeeds. But this would be a rare 1069 * exception and is therefore not implemented. At least it is 1070 * avoided that the good copy is overwritten. 1071 * A more useful improvement would be to pick the sectors 1072 * without I/O error based on sector sizes (512 bytes on legacy 1073 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1074 * mirror could be repaired by taking 512 byte of a different 1075 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1076 * area are unreadable. 1077 */ 1078 success = 1; 1079 for (page_num = 0; page_num < sblock_bad->page_count; 1080 page_num++) { 1081 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1082 struct scrub_block *sblock_other = NULL; 1083 1084 /* skip no-io-error page in scrub */ 1085 if (!page_bad->io_error && !sctx->is_dev_replace) 1086 continue; 1087 1088 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1089 /* 1090 * In case of dev replace, if raid56 rebuild process 1091 * didn't work out correct data, then copy the content 1092 * in sblock_bad to make sure target device is identical 1093 * to source device, instead of writing garbage data in 1094 * sblock_for_recheck array to target device. 1095 */ 1096 sblock_other = NULL; 1097 } else if (page_bad->io_error) { 1098 /* try to find no-io-error page in mirrors */ 1099 for (mirror_index = 0; 1100 mirror_index < BTRFS_MAX_MIRRORS && 1101 sblocks_for_recheck[mirror_index].page_count > 0; 1102 mirror_index++) { 1103 if (!sblocks_for_recheck[mirror_index]. 1104 pagev[page_num]->io_error) { 1105 sblock_other = sblocks_for_recheck + 1106 mirror_index; 1107 break; 1108 } 1109 } 1110 if (!sblock_other) 1111 success = 0; 1112 } 1113 1114 if (sctx->is_dev_replace) { 1115 /* 1116 * did not find a mirror to fetch the page 1117 * from. scrub_write_page_to_dev_replace() 1118 * handles this case (page->io_error), by 1119 * filling the block with zeros before 1120 * submitting the write request 1121 */ 1122 if (!sblock_other) 1123 sblock_other = sblock_bad; 1124 1125 if (scrub_write_page_to_dev_replace(sblock_other, 1126 page_num) != 0) { 1127 btrfs_dev_replace_stats_inc( 1128 &fs_info->dev_replace.num_write_errors); 1129 success = 0; 1130 } 1131 } else if (sblock_other) { 1132 ret = scrub_repair_page_from_good_copy(sblock_bad, 1133 sblock_other, 1134 page_num, 0); 1135 if (0 == ret) 1136 page_bad->io_error = 0; 1137 else 1138 success = 0; 1139 } 1140 } 1141 1142 if (success && !sctx->is_dev_replace) { 1143 if (is_metadata || have_csum) { 1144 /* 1145 * need to verify the checksum now that all 1146 * sectors on disk are repaired (the write 1147 * request for data to be repaired is on its way). 1148 * Just be lazy and use scrub_recheck_block() 1149 * which re-reads the data before the checksum 1150 * is verified, but most likely the data comes out 1151 * of the page cache. 1152 */ 1153 scrub_recheck_block(fs_info, sblock_bad, 1); 1154 if (!sblock_bad->header_error && 1155 !sblock_bad->checksum_error && 1156 sblock_bad->no_io_error_seen) 1157 goto corrected_error; 1158 else 1159 goto did_not_correct_error; 1160 } else { 1161 corrected_error: 1162 spin_lock(&sctx->stat_lock); 1163 sctx->stat.corrected_errors++; 1164 sblock_to_check->data_corrected = 1; 1165 spin_unlock(&sctx->stat_lock); 1166 btrfs_err_rl_in_rcu(fs_info, 1167 "fixed up error at logical %llu on dev %s", 1168 logical, rcu_str_deref(dev->name)); 1169 } 1170 } else { 1171 did_not_correct_error: 1172 spin_lock(&sctx->stat_lock); 1173 sctx->stat.uncorrectable_errors++; 1174 spin_unlock(&sctx->stat_lock); 1175 btrfs_err_rl_in_rcu(fs_info, 1176 "unable to fixup (regular) error at logical %llu on dev %s", 1177 logical, rcu_str_deref(dev->name)); 1178 } 1179 1180 out: 1181 if (sblocks_for_recheck) { 1182 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1183 mirror_index++) { 1184 struct scrub_block *sblock = sblocks_for_recheck + 1185 mirror_index; 1186 struct scrub_recover *recover; 1187 int page_index; 1188 1189 for (page_index = 0; page_index < sblock->page_count; 1190 page_index++) { 1191 sblock->pagev[page_index]->sblock = NULL; 1192 recover = sblock->pagev[page_index]->recover; 1193 if (recover) { 1194 scrub_put_recover(fs_info, recover); 1195 sblock->pagev[page_index]->recover = 1196 NULL; 1197 } 1198 scrub_page_put(sblock->pagev[page_index]); 1199 } 1200 } 1201 kfree(sblocks_for_recheck); 1202 } 1203 1204 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1205 if (ret < 0) 1206 return ret; 1207 return 0; 1208 } 1209 1210 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1211 { 1212 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1213 return 2; 1214 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1215 return 3; 1216 else 1217 return (int)bbio->num_stripes; 1218 } 1219 1220 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1221 u64 *raid_map, 1222 u64 mapped_length, 1223 int nstripes, int mirror, 1224 int *stripe_index, 1225 u64 *stripe_offset) 1226 { 1227 int i; 1228 1229 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1230 /* RAID5/6 */ 1231 for (i = 0; i < nstripes; i++) { 1232 if (raid_map[i] == RAID6_Q_STRIPE || 1233 raid_map[i] == RAID5_P_STRIPE) 1234 continue; 1235 1236 if (logical >= raid_map[i] && 1237 logical < raid_map[i] + mapped_length) 1238 break; 1239 } 1240 1241 *stripe_index = i; 1242 *stripe_offset = logical - raid_map[i]; 1243 } else { 1244 /* The other RAID type */ 1245 *stripe_index = mirror; 1246 *stripe_offset = 0; 1247 } 1248 } 1249 1250 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1251 struct scrub_block *sblocks_for_recheck) 1252 { 1253 struct scrub_ctx *sctx = original_sblock->sctx; 1254 struct btrfs_fs_info *fs_info = sctx->fs_info; 1255 u64 length = original_sblock->page_count * PAGE_SIZE; 1256 u64 logical = original_sblock->pagev[0]->logical; 1257 u64 generation = original_sblock->pagev[0]->generation; 1258 u64 flags = original_sblock->pagev[0]->flags; 1259 u64 have_csum = original_sblock->pagev[0]->have_csum; 1260 struct scrub_recover *recover; 1261 struct btrfs_bio *bbio; 1262 u64 sublen; 1263 u64 mapped_length; 1264 u64 stripe_offset; 1265 int stripe_index; 1266 int page_index = 0; 1267 int mirror_index; 1268 int nmirrors; 1269 int ret; 1270 1271 /* 1272 * note: the two members refs and outstanding_pages 1273 * are not used (and not set) in the blocks that are used for 1274 * the recheck procedure 1275 */ 1276 1277 while (length > 0) { 1278 sublen = min_t(u64, length, PAGE_SIZE); 1279 mapped_length = sublen; 1280 bbio = NULL; 1281 1282 /* 1283 * with a length of PAGE_SIZE, each returned stripe 1284 * represents one mirror 1285 */ 1286 btrfs_bio_counter_inc_blocked(fs_info); 1287 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1288 logical, &mapped_length, &bbio); 1289 if (ret || !bbio || mapped_length < sublen) { 1290 btrfs_put_bbio(bbio); 1291 btrfs_bio_counter_dec(fs_info); 1292 return -EIO; 1293 } 1294 1295 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1296 if (!recover) { 1297 btrfs_put_bbio(bbio); 1298 btrfs_bio_counter_dec(fs_info); 1299 return -ENOMEM; 1300 } 1301 1302 refcount_set(&recover->refs, 1); 1303 recover->bbio = bbio; 1304 recover->map_length = mapped_length; 1305 1306 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1307 1308 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1309 1310 for (mirror_index = 0; mirror_index < nmirrors; 1311 mirror_index++) { 1312 struct scrub_block *sblock; 1313 struct scrub_page *page; 1314 1315 sblock = sblocks_for_recheck + mirror_index; 1316 sblock->sctx = sctx; 1317 1318 page = kzalloc(sizeof(*page), GFP_NOFS); 1319 if (!page) { 1320 leave_nomem: 1321 spin_lock(&sctx->stat_lock); 1322 sctx->stat.malloc_errors++; 1323 spin_unlock(&sctx->stat_lock); 1324 scrub_put_recover(fs_info, recover); 1325 return -ENOMEM; 1326 } 1327 scrub_page_get(page); 1328 sblock->pagev[page_index] = page; 1329 page->sblock = sblock; 1330 page->flags = flags; 1331 page->generation = generation; 1332 page->logical = logical; 1333 page->have_csum = have_csum; 1334 if (have_csum) 1335 memcpy(page->csum, 1336 original_sblock->pagev[0]->csum, 1337 sctx->csum_size); 1338 1339 scrub_stripe_index_and_offset(logical, 1340 bbio->map_type, 1341 bbio->raid_map, 1342 mapped_length, 1343 bbio->num_stripes - 1344 bbio->num_tgtdevs, 1345 mirror_index, 1346 &stripe_index, 1347 &stripe_offset); 1348 page->physical = bbio->stripes[stripe_index].physical + 1349 stripe_offset; 1350 page->dev = bbio->stripes[stripe_index].dev; 1351 1352 BUG_ON(page_index >= original_sblock->page_count); 1353 page->physical_for_dev_replace = 1354 original_sblock->pagev[page_index]-> 1355 physical_for_dev_replace; 1356 /* for missing devices, dev->bdev is NULL */ 1357 page->mirror_num = mirror_index + 1; 1358 sblock->page_count++; 1359 page->page = alloc_page(GFP_NOFS); 1360 if (!page->page) 1361 goto leave_nomem; 1362 1363 scrub_get_recover(recover); 1364 page->recover = recover; 1365 } 1366 scrub_put_recover(fs_info, recover); 1367 length -= sublen; 1368 logical += sublen; 1369 page_index++; 1370 } 1371 1372 return 0; 1373 } 1374 1375 static void scrub_bio_wait_endio(struct bio *bio) 1376 { 1377 complete(bio->bi_private); 1378 } 1379 1380 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1381 struct bio *bio, 1382 struct scrub_page *page) 1383 { 1384 DECLARE_COMPLETION_ONSTACK(done); 1385 int ret; 1386 int mirror_num; 1387 1388 bio->bi_iter.bi_sector = page->logical >> 9; 1389 bio->bi_private = &done; 1390 bio->bi_end_io = scrub_bio_wait_endio; 1391 1392 mirror_num = page->sblock->pagev[0]->mirror_num; 1393 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, 1394 page->recover->map_length, 1395 mirror_num, 0); 1396 if (ret) 1397 return ret; 1398 1399 wait_for_completion_io(&done); 1400 return blk_status_to_errno(bio->bi_status); 1401 } 1402 1403 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1404 struct scrub_block *sblock) 1405 { 1406 struct scrub_page *first_page = sblock->pagev[0]; 1407 struct bio *bio; 1408 int page_num; 1409 1410 /* All pages in sblock belong to the same stripe on the same device. */ 1411 ASSERT(first_page->dev); 1412 if (!first_page->dev->bdev) 1413 goto out; 1414 1415 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES); 1416 bio_set_dev(bio, first_page->dev->bdev); 1417 1418 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1419 struct scrub_page *page = sblock->pagev[page_num]; 1420 1421 WARN_ON(!page->page); 1422 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1423 } 1424 1425 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { 1426 bio_put(bio); 1427 goto out; 1428 } 1429 1430 bio_put(bio); 1431 1432 scrub_recheck_block_checksum(sblock); 1433 1434 return; 1435 out: 1436 for (page_num = 0; page_num < sblock->page_count; page_num++) 1437 sblock->pagev[page_num]->io_error = 1; 1438 1439 sblock->no_io_error_seen = 0; 1440 } 1441 1442 /* 1443 * this function will check the on disk data for checksum errors, header 1444 * errors and read I/O errors. If any I/O errors happen, the exact pages 1445 * which are errored are marked as being bad. The goal is to enable scrub 1446 * to take those pages that are not errored from all the mirrors so that 1447 * the pages that are errored in the just handled mirror can be repaired. 1448 */ 1449 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1450 struct scrub_block *sblock, 1451 int retry_failed_mirror) 1452 { 1453 int page_num; 1454 1455 sblock->no_io_error_seen = 1; 1456 1457 /* short cut for raid56 */ 1458 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) 1459 return scrub_recheck_block_on_raid56(fs_info, sblock); 1460 1461 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1462 struct bio *bio; 1463 struct scrub_page *page = sblock->pagev[page_num]; 1464 1465 if (page->dev->bdev == NULL) { 1466 page->io_error = 1; 1467 sblock->no_io_error_seen = 0; 1468 continue; 1469 } 1470 1471 WARN_ON(!page->page); 1472 bio = btrfs_io_bio_alloc(1); 1473 bio_set_dev(bio, page->dev->bdev); 1474 1475 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1476 bio->bi_iter.bi_sector = page->physical >> 9; 1477 bio->bi_opf = REQ_OP_READ; 1478 1479 if (btrfsic_submit_bio_wait(bio)) { 1480 page->io_error = 1; 1481 sblock->no_io_error_seen = 0; 1482 } 1483 1484 bio_put(bio); 1485 } 1486 1487 if (sblock->no_io_error_seen) 1488 scrub_recheck_block_checksum(sblock); 1489 } 1490 1491 static inline int scrub_check_fsid(u8 fsid[], 1492 struct scrub_page *spage) 1493 { 1494 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1495 int ret; 1496 1497 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1498 return !ret; 1499 } 1500 1501 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1502 { 1503 sblock->header_error = 0; 1504 sblock->checksum_error = 0; 1505 sblock->generation_error = 0; 1506 1507 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1508 scrub_checksum_data(sblock); 1509 else 1510 scrub_checksum_tree_block(sblock); 1511 } 1512 1513 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1514 struct scrub_block *sblock_good) 1515 { 1516 int page_num; 1517 int ret = 0; 1518 1519 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1520 int ret_sub; 1521 1522 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1523 sblock_good, 1524 page_num, 1); 1525 if (ret_sub) 1526 ret = ret_sub; 1527 } 1528 1529 return ret; 1530 } 1531 1532 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1533 struct scrub_block *sblock_good, 1534 int page_num, int force_write) 1535 { 1536 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1537 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1538 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1539 1540 BUG_ON(page_bad->page == NULL); 1541 BUG_ON(page_good->page == NULL); 1542 if (force_write || sblock_bad->header_error || 1543 sblock_bad->checksum_error || page_bad->io_error) { 1544 struct bio *bio; 1545 int ret; 1546 1547 if (!page_bad->dev->bdev) { 1548 btrfs_warn_rl(fs_info, 1549 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1550 return -EIO; 1551 } 1552 1553 bio = btrfs_io_bio_alloc(1); 1554 bio_set_dev(bio, page_bad->dev->bdev); 1555 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1556 bio->bi_opf = REQ_OP_WRITE; 1557 1558 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1559 if (PAGE_SIZE != ret) { 1560 bio_put(bio); 1561 return -EIO; 1562 } 1563 1564 if (btrfsic_submit_bio_wait(bio)) { 1565 btrfs_dev_stat_inc_and_print(page_bad->dev, 1566 BTRFS_DEV_STAT_WRITE_ERRS); 1567 btrfs_dev_replace_stats_inc( 1568 &fs_info->dev_replace.num_write_errors); 1569 bio_put(bio); 1570 return -EIO; 1571 } 1572 bio_put(bio); 1573 } 1574 1575 return 0; 1576 } 1577 1578 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1579 { 1580 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1581 int page_num; 1582 1583 /* 1584 * This block is used for the check of the parity on the source device, 1585 * so the data needn't be written into the destination device. 1586 */ 1587 if (sblock->sparity) 1588 return; 1589 1590 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1591 int ret; 1592 1593 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1594 if (ret) 1595 btrfs_dev_replace_stats_inc( 1596 &fs_info->dev_replace.num_write_errors); 1597 } 1598 } 1599 1600 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1601 int page_num) 1602 { 1603 struct scrub_page *spage = sblock->pagev[page_num]; 1604 1605 BUG_ON(spage->page == NULL); 1606 if (spage->io_error) { 1607 void *mapped_buffer = kmap_atomic(spage->page); 1608 1609 clear_page(mapped_buffer); 1610 flush_dcache_page(spage->page); 1611 kunmap_atomic(mapped_buffer); 1612 } 1613 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1614 } 1615 1616 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1617 struct scrub_page *spage) 1618 { 1619 struct scrub_bio *sbio; 1620 int ret; 1621 1622 mutex_lock(&sctx->wr_lock); 1623 again: 1624 if (!sctx->wr_curr_bio) { 1625 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1626 GFP_KERNEL); 1627 if (!sctx->wr_curr_bio) { 1628 mutex_unlock(&sctx->wr_lock); 1629 return -ENOMEM; 1630 } 1631 sctx->wr_curr_bio->sctx = sctx; 1632 sctx->wr_curr_bio->page_count = 0; 1633 } 1634 sbio = sctx->wr_curr_bio; 1635 if (sbio->page_count == 0) { 1636 struct bio *bio; 1637 1638 sbio->physical = spage->physical_for_dev_replace; 1639 sbio->logical = spage->logical; 1640 sbio->dev = sctx->wr_tgtdev; 1641 bio = sbio->bio; 1642 if (!bio) { 1643 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); 1644 sbio->bio = bio; 1645 } 1646 1647 bio->bi_private = sbio; 1648 bio->bi_end_io = scrub_wr_bio_end_io; 1649 bio_set_dev(bio, sbio->dev->bdev); 1650 bio->bi_iter.bi_sector = sbio->physical >> 9; 1651 bio->bi_opf = REQ_OP_WRITE; 1652 sbio->status = 0; 1653 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1654 spage->physical_for_dev_replace || 1655 sbio->logical + sbio->page_count * PAGE_SIZE != 1656 spage->logical) { 1657 scrub_wr_submit(sctx); 1658 goto again; 1659 } 1660 1661 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1662 if (ret != PAGE_SIZE) { 1663 if (sbio->page_count < 1) { 1664 bio_put(sbio->bio); 1665 sbio->bio = NULL; 1666 mutex_unlock(&sctx->wr_lock); 1667 return -EIO; 1668 } 1669 scrub_wr_submit(sctx); 1670 goto again; 1671 } 1672 1673 sbio->pagev[sbio->page_count] = spage; 1674 scrub_page_get(spage); 1675 sbio->page_count++; 1676 if (sbio->page_count == sctx->pages_per_wr_bio) 1677 scrub_wr_submit(sctx); 1678 mutex_unlock(&sctx->wr_lock); 1679 1680 return 0; 1681 } 1682 1683 static void scrub_wr_submit(struct scrub_ctx *sctx) 1684 { 1685 struct scrub_bio *sbio; 1686 1687 if (!sctx->wr_curr_bio) 1688 return; 1689 1690 sbio = sctx->wr_curr_bio; 1691 sctx->wr_curr_bio = NULL; 1692 WARN_ON(!sbio->bio->bi_disk); 1693 scrub_pending_bio_inc(sctx); 1694 /* process all writes in a single worker thread. Then the block layer 1695 * orders the requests before sending them to the driver which 1696 * doubled the write performance on spinning disks when measured 1697 * with Linux 3.5 */ 1698 btrfsic_submit_bio(sbio->bio); 1699 } 1700 1701 static void scrub_wr_bio_end_io(struct bio *bio) 1702 { 1703 struct scrub_bio *sbio = bio->bi_private; 1704 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1705 1706 sbio->status = bio->bi_status; 1707 sbio->bio = bio; 1708 1709 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1710 scrub_wr_bio_end_io_worker, NULL, NULL); 1711 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1712 } 1713 1714 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1715 { 1716 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1717 struct scrub_ctx *sctx = sbio->sctx; 1718 int i; 1719 1720 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1721 if (sbio->status) { 1722 struct btrfs_dev_replace *dev_replace = 1723 &sbio->sctx->fs_info->dev_replace; 1724 1725 for (i = 0; i < sbio->page_count; i++) { 1726 struct scrub_page *spage = sbio->pagev[i]; 1727 1728 spage->io_error = 1; 1729 btrfs_dev_replace_stats_inc(&dev_replace-> 1730 num_write_errors); 1731 } 1732 } 1733 1734 for (i = 0; i < sbio->page_count; i++) 1735 scrub_page_put(sbio->pagev[i]); 1736 1737 bio_put(sbio->bio); 1738 kfree(sbio); 1739 scrub_pending_bio_dec(sctx); 1740 } 1741 1742 static int scrub_checksum(struct scrub_block *sblock) 1743 { 1744 u64 flags; 1745 int ret; 1746 1747 /* 1748 * No need to initialize these stats currently, 1749 * because this function only use return value 1750 * instead of these stats value. 1751 * 1752 * Todo: 1753 * always use stats 1754 */ 1755 sblock->header_error = 0; 1756 sblock->generation_error = 0; 1757 sblock->checksum_error = 0; 1758 1759 WARN_ON(sblock->page_count < 1); 1760 flags = sblock->pagev[0]->flags; 1761 ret = 0; 1762 if (flags & BTRFS_EXTENT_FLAG_DATA) 1763 ret = scrub_checksum_data(sblock); 1764 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1765 ret = scrub_checksum_tree_block(sblock); 1766 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1767 (void)scrub_checksum_super(sblock); 1768 else 1769 WARN_ON(1); 1770 if (ret) 1771 scrub_handle_errored_block(sblock); 1772 1773 return ret; 1774 } 1775 1776 static int scrub_checksum_data(struct scrub_block *sblock) 1777 { 1778 struct scrub_ctx *sctx = sblock->sctx; 1779 u8 csum[BTRFS_CSUM_SIZE]; 1780 u8 *on_disk_csum; 1781 struct page *page; 1782 void *buffer; 1783 u32 crc = ~(u32)0; 1784 u64 len; 1785 int index; 1786 1787 BUG_ON(sblock->page_count < 1); 1788 if (!sblock->pagev[0]->have_csum) 1789 return 0; 1790 1791 on_disk_csum = sblock->pagev[0]->csum; 1792 page = sblock->pagev[0]->page; 1793 buffer = kmap_atomic(page); 1794 1795 len = sctx->fs_info->sectorsize; 1796 index = 0; 1797 for (;;) { 1798 u64 l = min_t(u64, len, PAGE_SIZE); 1799 1800 crc = btrfs_csum_data(buffer, crc, l); 1801 kunmap_atomic(buffer); 1802 len -= l; 1803 if (len == 0) 1804 break; 1805 index++; 1806 BUG_ON(index >= sblock->page_count); 1807 BUG_ON(!sblock->pagev[index]->page); 1808 page = sblock->pagev[index]->page; 1809 buffer = kmap_atomic(page); 1810 } 1811 1812 btrfs_csum_final(crc, csum); 1813 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1814 sblock->checksum_error = 1; 1815 1816 return sblock->checksum_error; 1817 } 1818 1819 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1820 { 1821 struct scrub_ctx *sctx = sblock->sctx; 1822 struct btrfs_header *h; 1823 struct btrfs_fs_info *fs_info = sctx->fs_info; 1824 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1825 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1826 struct page *page; 1827 void *mapped_buffer; 1828 u64 mapped_size; 1829 void *p; 1830 u32 crc = ~(u32)0; 1831 u64 len; 1832 int index; 1833 1834 BUG_ON(sblock->page_count < 1); 1835 page = sblock->pagev[0]->page; 1836 mapped_buffer = kmap_atomic(page); 1837 h = (struct btrfs_header *)mapped_buffer; 1838 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1839 1840 /* 1841 * we don't use the getter functions here, as we 1842 * a) don't have an extent buffer and 1843 * b) the page is already kmapped 1844 */ 1845 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1846 sblock->header_error = 1; 1847 1848 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { 1849 sblock->header_error = 1; 1850 sblock->generation_error = 1; 1851 } 1852 1853 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 1854 sblock->header_error = 1; 1855 1856 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1857 BTRFS_UUID_SIZE)) 1858 sblock->header_error = 1; 1859 1860 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE; 1861 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1862 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1863 index = 0; 1864 for (;;) { 1865 u64 l = min_t(u64, len, mapped_size); 1866 1867 crc = btrfs_csum_data(p, crc, l); 1868 kunmap_atomic(mapped_buffer); 1869 len -= l; 1870 if (len == 0) 1871 break; 1872 index++; 1873 BUG_ON(index >= sblock->page_count); 1874 BUG_ON(!sblock->pagev[index]->page); 1875 page = sblock->pagev[index]->page; 1876 mapped_buffer = kmap_atomic(page); 1877 mapped_size = PAGE_SIZE; 1878 p = mapped_buffer; 1879 } 1880 1881 btrfs_csum_final(crc, calculated_csum); 1882 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1883 sblock->checksum_error = 1; 1884 1885 return sblock->header_error || sblock->checksum_error; 1886 } 1887 1888 static int scrub_checksum_super(struct scrub_block *sblock) 1889 { 1890 struct btrfs_super_block *s; 1891 struct scrub_ctx *sctx = sblock->sctx; 1892 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1893 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1894 struct page *page; 1895 void *mapped_buffer; 1896 u64 mapped_size; 1897 void *p; 1898 u32 crc = ~(u32)0; 1899 int fail_gen = 0; 1900 int fail_cor = 0; 1901 u64 len; 1902 int index; 1903 1904 BUG_ON(sblock->page_count < 1); 1905 page = sblock->pagev[0]->page; 1906 mapped_buffer = kmap_atomic(page); 1907 s = (struct btrfs_super_block *)mapped_buffer; 1908 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1909 1910 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1911 ++fail_cor; 1912 1913 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1914 ++fail_gen; 1915 1916 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 1917 ++fail_cor; 1918 1919 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1920 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1921 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1922 index = 0; 1923 for (;;) { 1924 u64 l = min_t(u64, len, mapped_size); 1925 1926 crc = btrfs_csum_data(p, crc, l); 1927 kunmap_atomic(mapped_buffer); 1928 len -= l; 1929 if (len == 0) 1930 break; 1931 index++; 1932 BUG_ON(index >= sblock->page_count); 1933 BUG_ON(!sblock->pagev[index]->page); 1934 page = sblock->pagev[index]->page; 1935 mapped_buffer = kmap_atomic(page); 1936 mapped_size = PAGE_SIZE; 1937 p = mapped_buffer; 1938 } 1939 1940 btrfs_csum_final(crc, calculated_csum); 1941 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1942 ++fail_cor; 1943 1944 if (fail_cor + fail_gen) { 1945 /* 1946 * if we find an error in a super block, we just report it. 1947 * They will get written with the next transaction commit 1948 * anyway 1949 */ 1950 spin_lock(&sctx->stat_lock); 1951 ++sctx->stat.super_errors; 1952 spin_unlock(&sctx->stat_lock); 1953 if (fail_cor) 1954 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1955 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1956 else 1957 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1958 BTRFS_DEV_STAT_GENERATION_ERRS); 1959 } 1960 1961 return fail_cor + fail_gen; 1962 } 1963 1964 static void scrub_block_get(struct scrub_block *sblock) 1965 { 1966 refcount_inc(&sblock->refs); 1967 } 1968 1969 static void scrub_block_put(struct scrub_block *sblock) 1970 { 1971 if (refcount_dec_and_test(&sblock->refs)) { 1972 int i; 1973 1974 if (sblock->sparity) 1975 scrub_parity_put(sblock->sparity); 1976 1977 for (i = 0; i < sblock->page_count; i++) 1978 scrub_page_put(sblock->pagev[i]); 1979 kfree(sblock); 1980 } 1981 } 1982 1983 static void scrub_page_get(struct scrub_page *spage) 1984 { 1985 atomic_inc(&spage->refs); 1986 } 1987 1988 static void scrub_page_put(struct scrub_page *spage) 1989 { 1990 if (atomic_dec_and_test(&spage->refs)) { 1991 if (spage->page) 1992 __free_page(spage->page); 1993 kfree(spage); 1994 } 1995 } 1996 1997 static void scrub_submit(struct scrub_ctx *sctx) 1998 { 1999 struct scrub_bio *sbio; 2000 2001 if (sctx->curr == -1) 2002 return; 2003 2004 sbio = sctx->bios[sctx->curr]; 2005 sctx->curr = -1; 2006 scrub_pending_bio_inc(sctx); 2007 btrfsic_submit_bio(sbio->bio); 2008 } 2009 2010 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2011 struct scrub_page *spage) 2012 { 2013 struct scrub_block *sblock = spage->sblock; 2014 struct scrub_bio *sbio; 2015 int ret; 2016 2017 again: 2018 /* 2019 * grab a fresh bio or wait for one to become available 2020 */ 2021 while (sctx->curr == -1) { 2022 spin_lock(&sctx->list_lock); 2023 sctx->curr = sctx->first_free; 2024 if (sctx->curr != -1) { 2025 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2026 sctx->bios[sctx->curr]->next_free = -1; 2027 sctx->bios[sctx->curr]->page_count = 0; 2028 spin_unlock(&sctx->list_lock); 2029 } else { 2030 spin_unlock(&sctx->list_lock); 2031 wait_event(sctx->list_wait, sctx->first_free != -1); 2032 } 2033 } 2034 sbio = sctx->bios[sctx->curr]; 2035 if (sbio->page_count == 0) { 2036 struct bio *bio; 2037 2038 sbio->physical = spage->physical; 2039 sbio->logical = spage->logical; 2040 sbio->dev = spage->dev; 2041 bio = sbio->bio; 2042 if (!bio) { 2043 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); 2044 sbio->bio = bio; 2045 } 2046 2047 bio->bi_private = sbio; 2048 bio->bi_end_io = scrub_bio_end_io; 2049 bio_set_dev(bio, sbio->dev->bdev); 2050 bio->bi_iter.bi_sector = sbio->physical >> 9; 2051 bio->bi_opf = REQ_OP_READ; 2052 sbio->status = 0; 2053 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2054 spage->physical || 2055 sbio->logical + sbio->page_count * PAGE_SIZE != 2056 spage->logical || 2057 sbio->dev != spage->dev) { 2058 scrub_submit(sctx); 2059 goto again; 2060 } 2061 2062 sbio->pagev[sbio->page_count] = spage; 2063 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2064 if (ret != PAGE_SIZE) { 2065 if (sbio->page_count < 1) { 2066 bio_put(sbio->bio); 2067 sbio->bio = NULL; 2068 return -EIO; 2069 } 2070 scrub_submit(sctx); 2071 goto again; 2072 } 2073 2074 scrub_block_get(sblock); /* one for the page added to the bio */ 2075 atomic_inc(&sblock->outstanding_pages); 2076 sbio->page_count++; 2077 if (sbio->page_count == sctx->pages_per_rd_bio) 2078 scrub_submit(sctx); 2079 2080 return 0; 2081 } 2082 2083 static void scrub_missing_raid56_end_io(struct bio *bio) 2084 { 2085 struct scrub_block *sblock = bio->bi_private; 2086 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2087 2088 if (bio->bi_status) 2089 sblock->no_io_error_seen = 0; 2090 2091 bio_put(bio); 2092 2093 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2094 } 2095 2096 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2097 { 2098 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2099 struct scrub_ctx *sctx = sblock->sctx; 2100 struct btrfs_fs_info *fs_info = sctx->fs_info; 2101 u64 logical; 2102 struct btrfs_device *dev; 2103 2104 logical = sblock->pagev[0]->logical; 2105 dev = sblock->pagev[0]->dev; 2106 2107 if (sblock->no_io_error_seen) 2108 scrub_recheck_block_checksum(sblock); 2109 2110 if (!sblock->no_io_error_seen) { 2111 spin_lock(&sctx->stat_lock); 2112 sctx->stat.read_errors++; 2113 spin_unlock(&sctx->stat_lock); 2114 btrfs_err_rl_in_rcu(fs_info, 2115 "IO error rebuilding logical %llu for dev %s", 2116 logical, rcu_str_deref(dev->name)); 2117 } else if (sblock->header_error || sblock->checksum_error) { 2118 spin_lock(&sctx->stat_lock); 2119 sctx->stat.uncorrectable_errors++; 2120 spin_unlock(&sctx->stat_lock); 2121 btrfs_err_rl_in_rcu(fs_info, 2122 "failed to rebuild valid logical %llu for dev %s", 2123 logical, rcu_str_deref(dev->name)); 2124 } else { 2125 scrub_write_block_to_dev_replace(sblock); 2126 } 2127 2128 scrub_block_put(sblock); 2129 2130 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2131 mutex_lock(&sctx->wr_lock); 2132 scrub_wr_submit(sctx); 2133 mutex_unlock(&sctx->wr_lock); 2134 } 2135 2136 scrub_pending_bio_dec(sctx); 2137 } 2138 2139 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2140 { 2141 struct scrub_ctx *sctx = sblock->sctx; 2142 struct btrfs_fs_info *fs_info = sctx->fs_info; 2143 u64 length = sblock->page_count * PAGE_SIZE; 2144 u64 logical = sblock->pagev[0]->logical; 2145 struct btrfs_bio *bbio = NULL; 2146 struct bio *bio; 2147 struct btrfs_raid_bio *rbio; 2148 int ret; 2149 int i; 2150 2151 btrfs_bio_counter_inc_blocked(fs_info); 2152 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2153 &length, &bbio); 2154 if (ret || !bbio || !bbio->raid_map) 2155 goto bbio_out; 2156 2157 if (WARN_ON(!sctx->is_dev_replace || 2158 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2159 /* 2160 * We shouldn't be scrubbing a missing device. Even for dev 2161 * replace, we should only get here for RAID 5/6. We either 2162 * managed to mount something with no mirrors remaining or 2163 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2164 */ 2165 goto bbio_out; 2166 } 2167 2168 bio = btrfs_io_bio_alloc(0); 2169 bio->bi_iter.bi_sector = logical >> 9; 2170 bio->bi_private = sblock; 2171 bio->bi_end_io = scrub_missing_raid56_end_io; 2172 2173 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2174 if (!rbio) 2175 goto rbio_out; 2176 2177 for (i = 0; i < sblock->page_count; i++) { 2178 struct scrub_page *spage = sblock->pagev[i]; 2179 2180 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2181 } 2182 2183 btrfs_init_work(&sblock->work, btrfs_scrub_helper, 2184 scrub_missing_raid56_worker, NULL, NULL); 2185 scrub_block_get(sblock); 2186 scrub_pending_bio_inc(sctx); 2187 raid56_submit_missing_rbio(rbio); 2188 return; 2189 2190 rbio_out: 2191 bio_put(bio); 2192 bbio_out: 2193 btrfs_bio_counter_dec(fs_info); 2194 btrfs_put_bbio(bbio); 2195 spin_lock(&sctx->stat_lock); 2196 sctx->stat.malloc_errors++; 2197 spin_unlock(&sctx->stat_lock); 2198 } 2199 2200 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2201 u64 physical, struct btrfs_device *dev, u64 flags, 2202 u64 gen, int mirror_num, u8 *csum, int force, 2203 u64 physical_for_dev_replace) 2204 { 2205 struct scrub_block *sblock; 2206 int index; 2207 2208 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2209 if (!sblock) { 2210 spin_lock(&sctx->stat_lock); 2211 sctx->stat.malloc_errors++; 2212 spin_unlock(&sctx->stat_lock); 2213 return -ENOMEM; 2214 } 2215 2216 /* one ref inside this function, plus one for each page added to 2217 * a bio later on */ 2218 refcount_set(&sblock->refs, 1); 2219 sblock->sctx = sctx; 2220 sblock->no_io_error_seen = 1; 2221 2222 for (index = 0; len > 0; index++) { 2223 struct scrub_page *spage; 2224 u64 l = min_t(u64, len, PAGE_SIZE); 2225 2226 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2227 if (!spage) { 2228 leave_nomem: 2229 spin_lock(&sctx->stat_lock); 2230 sctx->stat.malloc_errors++; 2231 spin_unlock(&sctx->stat_lock); 2232 scrub_block_put(sblock); 2233 return -ENOMEM; 2234 } 2235 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2236 scrub_page_get(spage); 2237 sblock->pagev[index] = spage; 2238 spage->sblock = sblock; 2239 spage->dev = dev; 2240 spage->flags = flags; 2241 spage->generation = gen; 2242 spage->logical = logical; 2243 spage->physical = physical; 2244 spage->physical_for_dev_replace = physical_for_dev_replace; 2245 spage->mirror_num = mirror_num; 2246 if (csum) { 2247 spage->have_csum = 1; 2248 memcpy(spage->csum, csum, sctx->csum_size); 2249 } else { 2250 spage->have_csum = 0; 2251 } 2252 sblock->page_count++; 2253 spage->page = alloc_page(GFP_KERNEL); 2254 if (!spage->page) 2255 goto leave_nomem; 2256 len -= l; 2257 logical += l; 2258 physical += l; 2259 physical_for_dev_replace += l; 2260 } 2261 2262 WARN_ON(sblock->page_count == 0); 2263 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2264 /* 2265 * This case should only be hit for RAID 5/6 device replace. See 2266 * the comment in scrub_missing_raid56_pages() for details. 2267 */ 2268 scrub_missing_raid56_pages(sblock); 2269 } else { 2270 for (index = 0; index < sblock->page_count; index++) { 2271 struct scrub_page *spage = sblock->pagev[index]; 2272 int ret; 2273 2274 ret = scrub_add_page_to_rd_bio(sctx, spage); 2275 if (ret) { 2276 scrub_block_put(sblock); 2277 return ret; 2278 } 2279 } 2280 2281 if (force) 2282 scrub_submit(sctx); 2283 } 2284 2285 /* last one frees, either here or in bio completion for last page */ 2286 scrub_block_put(sblock); 2287 return 0; 2288 } 2289 2290 static void scrub_bio_end_io(struct bio *bio) 2291 { 2292 struct scrub_bio *sbio = bio->bi_private; 2293 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2294 2295 sbio->status = bio->bi_status; 2296 sbio->bio = bio; 2297 2298 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2299 } 2300 2301 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2302 { 2303 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2304 struct scrub_ctx *sctx = sbio->sctx; 2305 int i; 2306 2307 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2308 if (sbio->status) { 2309 for (i = 0; i < sbio->page_count; i++) { 2310 struct scrub_page *spage = sbio->pagev[i]; 2311 2312 spage->io_error = 1; 2313 spage->sblock->no_io_error_seen = 0; 2314 } 2315 } 2316 2317 /* now complete the scrub_block items that have all pages completed */ 2318 for (i = 0; i < sbio->page_count; i++) { 2319 struct scrub_page *spage = sbio->pagev[i]; 2320 struct scrub_block *sblock = spage->sblock; 2321 2322 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2323 scrub_block_complete(sblock); 2324 scrub_block_put(sblock); 2325 } 2326 2327 bio_put(sbio->bio); 2328 sbio->bio = NULL; 2329 spin_lock(&sctx->list_lock); 2330 sbio->next_free = sctx->first_free; 2331 sctx->first_free = sbio->index; 2332 spin_unlock(&sctx->list_lock); 2333 2334 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2335 mutex_lock(&sctx->wr_lock); 2336 scrub_wr_submit(sctx); 2337 mutex_unlock(&sctx->wr_lock); 2338 } 2339 2340 scrub_pending_bio_dec(sctx); 2341 } 2342 2343 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2344 unsigned long *bitmap, 2345 u64 start, u64 len) 2346 { 2347 u64 offset; 2348 u64 nsectors64; 2349 u32 nsectors; 2350 int sectorsize = sparity->sctx->fs_info->sectorsize; 2351 2352 if (len >= sparity->stripe_len) { 2353 bitmap_set(bitmap, 0, sparity->nsectors); 2354 return; 2355 } 2356 2357 start -= sparity->logic_start; 2358 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2359 offset = div_u64(offset, sectorsize); 2360 nsectors64 = div_u64(len, sectorsize); 2361 2362 ASSERT(nsectors64 < UINT_MAX); 2363 nsectors = (u32)nsectors64; 2364 2365 if (offset + nsectors <= sparity->nsectors) { 2366 bitmap_set(bitmap, offset, nsectors); 2367 return; 2368 } 2369 2370 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2371 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2372 } 2373 2374 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2375 u64 start, u64 len) 2376 { 2377 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2378 } 2379 2380 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2381 u64 start, u64 len) 2382 { 2383 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2384 } 2385 2386 static void scrub_block_complete(struct scrub_block *sblock) 2387 { 2388 int corrupted = 0; 2389 2390 if (!sblock->no_io_error_seen) { 2391 corrupted = 1; 2392 scrub_handle_errored_block(sblock); 2393 } else { 2394 /* 2395 * if has checksum error, write via repair mechanism in 2396 * dev replace case, otherwise write here in dev replace 2397 * case. 2398 */ 2399 corrupted = scrub_checksum(sblock); 2400 if (!corrupted && sblock->sctx->is_dev_replace) 2401 scrub_write_block_to_dev_replace(sblock); 2402 } 2403 2404 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2405 u64 start = sblock->pagev[0]->logical; 2406 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2407 PAGE_SIZE; 2408 2409 scrub_parity_mark_sectors_error(sblock->sparity, 2410 start, end - start); 2411 } 2412 } 2413 2414 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2415 { 2416 struct btrfs_ordered_sum *sum = NULL; 2417 unsigned long index; 2418 unsigned long num_sectors; 2419 2420 while (!list_empty(&sctx->csum_list)) { 2421 sum = list_first_entry(&sctx->csum_list, 2422 struct btrfs_ordered_sum, list); 2423 if (sum->bytenr > logical) 2424 return 0; 2425 if (sum->bytenr + sum->len > logical) 2426 break; 2427 2428 ++sctx->stat.csum_discards; 2429 list_del(&sum->list); 2430 kfree(sum); 2431 sum = NULL; 2432 } 2433 if (!sum) 2434 return 0; 2435 2436 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); 2437 ASSERT(index < UINT_MAX); 2438 2439 num_sectors = sum->len / sctx->fs_info->sectorsize; 2440 memcpy(csum, sum->sums + index, sctx->csum_size); 2441 if (index == num_sectors - 1) { 2442 list_del(&sum->list); 2443 kfree(sum); 2444 } 2445 return 1; 2446 } 2447 2448 /* scrub extent tries to collect up to 64 kB for each bio */ 2449 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2450 u64 logical, u64 len, 2451 u64 physical, struct btrfs_device *dev, u64 flags, 2452 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2453 { 2454 int ret; 2455 u8 csum[BTRFS_CSUM_SIZE]; 2456 u32 blocksize; 2457 2458 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2459 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2460 blocksize = map->stripe_len; 2461 else 2462 blocksize = sctx->fs_info->sectorsize; 2463 spin_lock(&sctx->stat_lock); 2464 sctx->stat.data_extents_scrubbed++; 2465 sctx->stat.data_bytes_scrubbed += len; 2466 spin_unlock(&sctx->stat_lock); 2467 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2468 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2469 blocksize = map->stripe_len; 2470 else 2471 blocksize = sctx->fs_info->nodesize; 2472 spin_lock(&sctx->stat_lock); 2473 sctx->stat.tree_extents_scrubbed++; 2474 sctx->stat.tree_bytes_scrubbed += len; 2475 spin_unlock(&sctx->stat_lock); 2476 } else { 2477 blocksize = sctx->fs_info->sectorsize; 2478 WARN_ON(1); 2479 } 2480 2481 while (len) { 2482 u64 l = min_t(u64, len, blocksize); 2483 int have_csum = 0; 2484 2485 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2486 /* push csums to sbio */ 2487 have_csum = scrub_find_csum(sctx, logical, csum); 2488 if (have_csum == 0) 2489 ++sctx->stat.no_csum; 2490 } 2491 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2492 mirror_num, have_csum ? csum : NULL, 0, 2493 physical_for_dev_replace); 2494 if (ret) 2495 return ret; 2496 len -= l; 2497 logical += l; 2498 physical += l; 2499 physical_for_dev_replace += l; 2500 } 2501 return 0; 2502 } 2503 2504 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2505 u64 logical, u64 len, 2506 u64 physical, struct btrfs_device *dev, 2507 u64 flags, u64 gen, int mirror_num, u8 *csum) 2508 { 2509 struct scrub_ctx *sctx = sparity->sctx; 2510 struct scrub_block *sblock; 2511 int index; 2512 2513 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2514 if (!sblock) { 2515 spin_lock(&sctx->stat_lock); 2516 sctx->stat.malloc_errors++; 2517 spin_unlock(&sctx->stat_lock); 2518 return -ENOMEM; 2519 } 2520 2521 /* one ref inside this function, plus one for each page added to 2522 * a bio later on */ 2523 refcount_set(&sblock->refs, 1); 2524 sblock->sctx = sctx; 2525 sblock->no_io_error_seen = 1; 2526 sblock->sparity = sparity; 2527 scrub_parity_get(sparity); 2528 2529 for (index = 0; len > 0; index++) { 2530 struct scrub_page *spage; 2531 u64 l = min_t(u64, len, PAGE_SIZE); 2532 2533 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2534 if (!spage) { 2535 leave_nomem: 2536 spin_lock(&sctx->stat_lock); 2537 sctx->stat.malloc_errors++; 2538 spin_unlock(&sctx->stat_lock); 2539 scrub_block_put(sblock); 2540 return -ENOMEM; 2541 } 2542 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2543 /* For scrub block */ 2544 scrub_page_get(spage); 2545 sblock->pagev[index] = spage; 2546 /* For scrub parity */ 2547 scrub_page_get(spage); 2548 list_add_tail(&spage->list, &sparity->spages); 2549 spage->sblock = sblock; 2550 spage->dev = dev; 2551 spage->flags = flags; 2552 spage->generation = gen; 2553 spage->logical = logical; 2554 spage->physical = physical; 2555 spage->mirror_num = mirror_num; 2556 if (csum) { 2557 spage->have_csum = 1; 2558 memcpy(spage->csum, csum, sctx->csum_size); 2559 } else { 2560 spage->have_csum = 0; 2561 } 2562 sblock->page_count++; 2563 spage->page = alloc_page(GFP_KERNEL); 2564 if (!spage->page) 2565 goto leave_nomem; 2566 len -= l; 2567 logical += l; 2568 physical += l; 2569 } 2570 2571 WARN_ON(sblock->page_count == 0); 2572 for (index = 0; index < sblock->page_count; index++) { 2573 struct scrub_page *spage = sblock->pagev[index]; 2574 int ret; 2575 2576 ret = scrub_add_page_to_rd_bio(sctx, spage); 2577 if (ret) { 2578 scrub_block_put(sblock); 2579 return ret; 2580 } 2581 } 2582 2583 /* last one frees, either here or in bio completion for last page */ 2584 scrub_block_put(sblock); 2585 return 0; 2586 } 2587 2588 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2589 u64 logical, u64 len, 2590 u64 physical, struct btrfs_device *dev, 2591 u64 flags, u64 gen, int mirror_num) 2592 { 2593 struct scrub_ctx *sctx = sparity->sctx; 2594 int ret; 2595 u8 csum[BTRFS_CSUM_SIZE]; 2596 u32 blocksize; 2597 2598 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2599 scrub_parity_mark_sectors_error(sparity, logical, len); 2600 return 0; 2601 } 2602 2603 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2604 blocksize = sparity->stripe_len; 2605 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2606 blocksize = sparity->stripe_len; 2607 } else { 2608 blocksize = sctx->fs_info->sectorsize; 2609 WARN_ON(1); 2610 } 2611 2612 while (len) { 2613 u64 l = min_t(u64, len, blocksize); 2614 int have_csum = 0; 2615 2616 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2617 /* push csums to sbio */ 2618 have_csum = scrub_find_csum(sctx, logical, csum); 2619 if (have_csum == 0) 2620 goto skip; 2621 } 2622 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2623 flags, gen, mirror_num, 2624 have_csum ? csum : NULL); 2625 if (ret) 2626 return ret; 2627 skip: 2628 len -= l; 2629 logical += l; 2630 physical += l; 2631 } 2632 return 0; 2633 } 2634 2635 /* 2636 * Given a physical address, this will calculate it's 2637 * logical offset. if this is a parity stripe, it will return 2638 * the most left data stripe's logical offset. 2639 * 2640 * return 0 if it is a data stripe, 1 means parity stripe. 2641 */ 2642 static int get_raid56_logic_offset(u64 physical, int num, 2643 struct map_lookup *map, u64 *offset, 2644 u64 *stripe_start) 2645 { 2646 int i; 2647 int j = 0; 2648 u64 stripe_nr; 2649 u64 last_offset; 2650 u32 stripe_index; 2651 u32 rot; 2652 2653 last_offset = (physical - map->stripes[num].physical) * 2654 nr_data_stripes(map); 2655 if (stripe_start) 2656 *stripe_start = last_offset; 2657 2658 *offset = last_offset; 2659 for (i = 0; i < nr_data_stripes(map); i++) { 2660 *offset = last_offset + i * map->stripe_len; 2661 2662 stripe_nr = div64_u64(*offset, map->stripe_len); 2663 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2664 2665 /* Work out the disk rotation on this stripe-set */ 2666 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2667 /* calculate which stripe this data locates */ 2668 rot += i; 2669 stripe_index = rot % map->num_stripes; 2670 if (stripe_index == num) 2671 return 0; 2672 if (stripe_index < num) 2673 j++; 2674 } 2675 *offset = last_offset + j * map->stripe_len; 2676 return 1; 2677 } 2678 2679 static void scrub_free_parity(struct scrub_parity *sparity) 2680 { 2681 struct scrub_ctx *sctx = sparity->sctx; 2682 struct scrub_page *curr, *next; 2683 int nbits; 2684 2685 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2686 if (nbits) { 2687 spin_lock(&sctx->stat_lock); 2688 sctx->stat.read_errors += nbits; 2689 sctx->stat.uncorrectable_errors += nbits; 2690 spin_unlock(&sctx->stat_lock); 2691 } 2692 2693 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2694 list_del_init(&curr->list); 2695 scrub_page_put(curr); 2696 } 2697 2698 kfree(sparity); 2699 } 2700 2701 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2702 { 2703 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2704 work); 2705 struct scrub_ctx *sctx = sparity->sctx; 2706 2707 scrub_free_parity(sparity); 2708 scrub_pending_bio_dec(sctx); 2709 } 2710 2711 static void scrub_parity_bio_endio(struct bio *bio) 2712 { 2713 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2714 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2715 2716 if (bio->bi_status) 2717 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2718 sparity->nsectors); 2719 2720 bio_put(bio); 2721 2722 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 2723 scrub_parity_bio_endio_worker, NULL, NULL); 2724 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 2725 } 2726 2727 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2728 { 2729 struct scrub_ctx *sctx = sparity->sctx; 2730 struct btrfs_fs_info *fs_info = sctx->fs_info; 2731 struct bio *bio; 2732 struct btrfs_raid_bio *rbio; 2733 struct btrfs_bio *bbio = NULL; 2734 u64 length; 2735 int ret; 2736 2737 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2738 sparity->nsectors)) 2739 goto out; 2740 2741 length = sparity->logic_end - sparity->logic_start; 2742 2743 btrfs_bio_counter_inc_blocked(fs_info); 2744 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2745 &length, &bbio); 2746 if (ret || !bbio || !bbio->raid_map) 2747 goto bbio_out; 2748 2749 bio = btrfs_io_bio_alloc(0); 2750 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2751 bio->bi_private = sparity; 2752 bio->bi_end_io = scrub_parity_bio_endio; 2753 2754 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 2755 length, sparity->scrub_dev, 2756 sparity->dbitmap, 2757 sparity->nsectors); 2758 if (!rbio) 2759 goto rbio_out; 2760 2761 scrub_pending_bio_inc(sctx); 2762 raid56_parity_submit_scrub_rbio(rbio); 2763 return; 2764 2765 rbio_out: 2766 bio_put(bio); 2767 bbio_out: 2768 btrfs_bio_counter_dec(fs_info); 2769 btrfs_put_bbio(bbio); 2770 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2771 sparity->nsectors); 2772 spin_lock(&sctx->stat_lock); 2773 sctx->stat.malloc_errors++; 2774 spin_unlock(&sctx->stat_lock); 2775 out: 2776 scrub_free_parity(sparity); 2777 } 2778 2779 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2780 { 2781 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2782 } 2783 2784 static void scrub_parity_get(struct scrub_parity *sparity) 2785 { 2786 refcount_inc(&sparity->refs); 2787 } 2788 2789 static void scrub_parity_put(struct scrub_parity *sparity) 2790 { 2791 if (!refcount_dec_and_test(&sparity->refs)) 2792 return; 2793 2794 scrub_parity_check_and_repair(sparity); 2795 } 2796 2797 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2798 struct map_lookup *map, 2799 struct btrfs_device *sdev, 2800 struct btrfs_path *path, 2801 u64 logic_start, 2802 u64 logic_end) 2803 { 2804 struct btrfs_fs_info *fs_info = sctx->fs_info; 2805 struct btrfs_root *root = fs_info->extent_root; 2806 struct btrfs_root *csum_root = fs_info->csum_root; 2807 struct btrfs_extent_item *extent; 2808 struct btrfs_bio *bbio = NULL; 2809 u64 flags; 2810 int ret; 2811 int slot; 2812 struct extent_buffer *l; 2813 struct btrfs_key key; 2814 u64 generation; 2815 u64 extent_logical; 2816 u64 extent_physical; 2817 u64 extent_len; 2818 u64 mapped_length; 2819 struct btrfs_device *extent_dev; 2820 struct scrub_parity *sparity; 2821 int nsectors; 2822 int bitmap_len; 2823 int extent_mirror_num; 2824 int stop_loop = 0; 2825 2826 nsectors = div_u64(map->stripe_len, fs_info->sectorsize); 2827 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2828 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2829 GFP_NOFS); 2830 if (!sparity) { 2831 spin_lock(&sctx->stat_lock); 2832 sctx->stat.malloc_errors++; 2833 spin_unlock(&sctx->stat_lock); 2834 return -ENOMEM; 2835 } 2836 2837 sparity->stripe_len = map->stripe_len; 2838 sparity->nsectors = nsectors; 2839 sparity->sctx = sctx; 2840 sparity->scrub_dev = sdev; 2841 sparity->logic_start = logic_start; 2842 sparity->logic_end = logic_end; 2843 refcount_set(&sparity->refs, 1); 2844 INIT_LIST_HEAD(&sparity->spages); 2845 sparity->dbitmap = sparity->bitmap; 2846 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2847 2848 ret = 0; 2849 while (logic_start < logic_end) { 2850 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2851 key.type = BTRFS_METADATA_ITEM_KEY; 2852 else 2853 key.type = BTRFS_EXTENT_ITEM_KEY; 2854 key.objectid = logic_start; 2855 key.offset = (u64)-1; 2856 2857 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2858 if (ret < 0) 2859 goto out; 2860 2861 if (ret > 0) { 2862 ret = btrfs_previous_extent_item(root, path, 0); 2863 if (ret < 0) 2864 goto out; 2865 if (ret > 0) { 2866 btrfs_release_path(path); 2867 ret = btrfs_search_slot(NULL, root, &key, 2868 path, 0, 0); 2869 if (ret < 0) 2870 goto out; 2871 } 2872 } 2873 2874 stop_loop = 0; 2875 while (1) { 2876 u64 bytes; 2877 2878 l = path->nodes[0]; 2879 slot = path->slots[0]; 2880 if (slot >= btrfs_header_nritems(l)) { 2881 ret = btrfs_next_leaf(root, path); 2882 if (ret == 0) 2883 continue; 2884 if (ret < 0) 2885 goto out; 2886 2887 stop_loop = 1; 2888 break; 2889 } 2890 btrfs_item_key_to_cpu(l, &key, slot); 2891 2892 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2893 key.type != BTRFS_METADATA_ITEM_KEY) 2894 goto next; 2895 2896 if (key.type == BTRFS_METADATA_ITEM_KEY) 2897 bytes = fs_info->nodesize; 2898 else 2899 bytes = key.offset; 2900 2901 if (key.objectid + bytes <= logic_start) 2902 goto next; 2903 2904 if (key.objectid >= logic_end) { 2905 stop_loop = 1; 2906 break; 2907 } 2908 2909 while (key.objectid >= logic_start + map->stripe_len) 2910 logic_start += map->stripe_len; 2911 2912 extent = btrfs_item_ptr(l, slot, 2913 struct btrfs_extent_item); 2914 flags = btrfs_extent_flags(l, extent); 2915 generation = btrfs_extent_generation(l, extent); 2916 2917 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 2918 (key.objectid < logic_start || 2919 key.objectid + bytes > 2920 logic_start + map->stripe_len)) { 2921 btrfs_err(fs_info, 2922 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 2923 key.objectid, logic_start); 2924 spin_lock(&sctx->stat_lock); 2925 sctx->stat.uncorrectable_errors++; 2926 spin_unlock(&sctx->stat_lock); 2927 goto next; 2928 } 2929 again: 2930 extent_logical = key.objectid; 2931 extent_len = bytes; 2932 2933 if (extent_logical < logic_start) { 2934 extent_len -= logic_start - extent_logical; 2935 extent_logical = logic_start; 2936 } 2937 2938 if (extent_logical + extent_len > 2939 logic_start + map->stripe_len) 2940 extent_len = logic_start + map->stripe_len - 2941 extent_logical; 2942 2943 scrub_parity_mark_sectors_data(sparity, extent_logical, 2944 extent_len); 2945 2946 mapped_length = extent_len; 2947 bbio = NULL; 2948 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 2949 extent_logical, &mapped_length, &bbio, 2950 0); 2951 if (!ret) { 2952 if (!bbio || mapped_length < extent_len) 2953 ret = -EIO; 2954 } 2955 if (ret) { 2956 btrfs_put_bbio(bbio); 2957 goto out; 2958 } 2959 extent_physical = bbio->stripes[0].physical; 2960 extent_mirror_num = bbio->mirror_num; 2961 extent_dev = bbio->stripes[0].dev; 2962 btrfs_put_bbio(bbio); 2963 2964 ret = btrfs_lookup_csums_range(csum_root, 2965 extent_logical, 2966 extent_logical + extent_len - 1, 2967 &sctx->csum_list, 1); 2968 if (ret) 2969 goto out; 2970 2971 ret = scrub_extent_for_parity(sparity, extent_logical, 2972 extent_len, 2973 extent_physical, 2974 extent_dev, flags, 2975 generation, 2976 extent_mirror_num); 2977 2978 scrub_free_csums(sctx); 2979 2980 if (ret) 2981 goto out; 2982 2983 if (extent_logical + extent_len < 2984 key.objectid + bytes) { 2985 logic_start += map->stripe_len; 2986 2987 if (logic_start >= logic_end) { 2988 stop_loop = 1; 2989 break; 2990 } 2991 2992 if (logic_start < key.objectid + bytes) { 2993 cond_resched(); 2994 goto again; 2995 } 2996 } 2997 next: 2998 path->slots[0]++; 2999 } 3000 3001 btrfs_release_path(path); 3002 3003 if (stop_loop) 3004 break; 3005 3006 logic_start += map->stripe_len; 3007 } 3008 out: 3009 if (ret < 0) 3010 scrub_parity_mark_sectors_error(sparity, logic_start, 3011 logic_end - logic_start); 3012 scrub_parity_put(sparity); 3013 scrub_submit(sctx); 3014 mutex_lock(&sctx->wr_lock); 3015 scrub_wr_submit(sctx); 3016 mutex_unlock(&sctx->wr_lock); 3017 3018 btrfs_release_path(path); 3019 return ret < 0 ? ret : 0; 3020 } 3021 3022 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3023 struct map_lookup *map, 3024 struct btrfs_device *scrub_dev, 3025 int num, u64 base, u64 length, 3026 int is_dev_replace) 3027 { 3028 struct btrfs_path *path, *ppath; 3029 struct btrfs_fs_info *fs_info = sctx->fs_info; 3030 struct btrfs_root *root = fs_info->extent_root; 3031 struct btrfs_root *csum_root = fs_info->csum_root; 3032 struct btrfs_extent_item *extent; 3033 struct blk_plug plug; 3034 u64 flags; 3035 int ret; 3036 int slot; 3037 u64 nstripes; 3038 struct extent_buffer *l; 3039 u64 physical; 3040 u64 logical; 3041 u64 logic_end; 3042 u64 physical_end; 3043 u64 generation; 3044 int mirror_num; 3045 struct reada_control *reada1; 3046 struct reada_control *reada2; 3047 struct btrfs_key key; 3048 struct btrfs_key key_end; 3049 u64 increment = map->stripe_len; 3050 u64 offset; 3051 u64 extent_logical; 3052 u64 extent_physical; 3053 u64 extent_len; 3054 u64 stripe_logical; 3055 u64 stripe_end; 3056 struct btrfs_device *extent_dev; 3057 int extent_mirror_num; 3058 int stop_loop = 0; 3059 3060 physical = map->stripes[num].physical; 3061 offset = 0; 3062 nstripes = div64_u64(length, map->stripe_len); 3063 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3064 offset = map->stripe_len * num; 3065 increment = map->stripe_len * map->num_stripes; 3066 mirror_num = 1; 3067 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3068 int factor = map->num_stripes / map->sub_stripes; 3069 offset = map->stripe_len * (num / map->sub_stripes); 3070 increment = map->stripe_len * factor; 3071 mirror_num = num % map->sub_stripes + 1; 3072 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3073 increment = map->stripe_len; 3074 mirror_num = num % map->num_stripes + 1; 3075 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3076 increment = map->stripe_len; 3077 mirror_num = num % map->num_stripes + 1; 3078 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3079 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3080 increment = map->stripe_len * nr_data_stripes(map); 3081 mirror_num = 1; 3082 } else { 3083 increment = map->stripe_len; 3084 mirror_num = 1; 3085 } 3086 3087 path = btrfs_alloc_path(); 3088 if (!path) 3089 return -ENOMEM; 3090 3091 ppath = btrfs_alloc_path(); 3092 if (!ppath) { 3093 btrfs_free_path(path); 3094 return -ENOMEM; 3095 } 3096 3097 /* 3098 * work on commit root. The related disk blocks are static as 3099 * long as COW is applied. This means, it is save to rewrite 3100 * them to repair disk errors without any race conditions 3101 */ 3102 path->search_commit_root = 1; 3103 path->skip_locking = 1; 3104 3105 ppath->search_commit_root = 1; 3106 ppath->skip_locking = 1; 3107 /* 3108 * trigger the readahead for extent tree csum tree and wait for 3109 * completion. During readahead, the scrub is officially paused 3110 * to not hold off transaction commits 3111 */ 3112 logical = base + offset; 3113 physical_end = physical + nstripes * map->stripe_len; 3114 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3115 get_raid56_logic_offset(physical_end, num, 3116 map, &logic_end, NULL); 3117 logic_end += base; 3118 } else { 3119 logic_end = logical + increment * nstripes; 3120 } 3121 wait_event(sctx->list_wait, 3122 atomic_read(&sctx->bios_in_flight) == 0); 3123 scrub_blocked_if_needed(fs_info); 3124 3125 /* FIXME it might be better to start readahead at commit root */ 3126 key.objectid = logical; 3127 key.type = BTRFS_EXTENT_ITEM_KEY; 3128 key.offset = (u64)0; 3129 key_end.objectid = logic_end; 3130 key_end.type = BTRFS_METADATA_ITEM_KEY; 3131 key_end.offset = (u64)-1; 3132 reada1 = btrfs_reada_add(root, &key, &key_end); 3133 3134 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3135 key.type = BTRFS_EXTENT_CSUM_KEY; 3136 key.offset = logical; 3137 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3138 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3139 key_end.offset = logic_end; 3140 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3141 3142 if (!IS_ERR(reada1)) 3143 btrfs_reada_wait(reada1); 3144 if (!IS_ERR(reada2)) 3145 btrfs_reada_wait(reada2); 3146 3147 3148 /* 3149 * collect all data csums for the stripe to avoid seeking during 3150 * the scrub. This might currently (crc32) end up to be about 1MB 3151 */ 3152 blk_start_plug(&plug); 3153 3154 /* 3155 * now find all extents for each stripe and scrub them 3156 */ 3157 ret = 0; 3158 while (physical < physical_end) { 3159 /* 3160 * canceled? 3161 */ 3162 if (atomic_read(&fs_info->scrub_cancel_req) || 3163 atomic_read(&sctx->cancel_req)) { 3164 ret = -ECANCELED; 3165 goto out; 3166 } 3167 /* 3168 * check to see if we have to pause 3169 */ 3170 if (atomic_read(&fs_info->scrub_pause_req)) { 3171 /* push queued extents */ 3172 sctx->flush_all_writes = true; 3173 scrub_submit(sctx); 3174 mutex_lock(&sctx->wr_lock); 3175 scrub_wr_submit(sctx); 3176 mutex_unlock(&sctx->wr_lock); 3177 wait_event(sctx->list_wait, 3178 atomic_read(&sctx->bios_in_flight) == 0); 3179 sctx->flush_all_writes = false; 3180 scrub_blocked_if_needed(fs_info); 3181 } 3182 3183 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3184 ret = get_raid56_logic_offset(physical, num, map, 3185 &logical, 3186 &stripe_logical); 3187 logical += base; 3188 if (ret) { 3189 /* it is parity strip */ 3190 stripe_logical += base; 3191 stripe_end = stripe_logical + increment; 3192 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3193 ppath, stripe_logical, 3194 stripe_end); 3195 if (ret) 3196 goto out; 3197 goto skip; 3198 } 3199 } 3200 3201 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3202 key.type = BTRFS_METADATA_ITEM_KEY; 3203 else 3204 key.type = BTRFS_EXTENT_ITEM_KEY; 3205 key.objectid = logical; 3206 key.offset = (u64)-1; 3207 3208 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3209 if (ret < 0) 3210 goto out; 3211 3212 if (ret > 0) { 3213 ret = btrfs_previous_extent_item(root, path, 0); 3214 if (ret < 0) 3215 goto out; 3216 if (ret > 0) { 3217 /* there's no smaller item, so stick with the 3218 * larger one */ 3219 btrfs_release_path(path); 3220 ret = btrfs_search_slot(NULL, root, &key, 3221 path, 0, 0); 3222 if (ret < 0) 3223 goto out; 3224 } 3225 } 3226 3227 stop_loop = 0; 3228 while (1) { 3229 u64 bytes; 3230 3231 l = path->nodes[0]; 3232 slot = path->slots[0]; 3233 if (slot >= btrfs_header_nritems(l)) { 3234 ret = btrfs_next_leaf(root, path); 3235 if (ret == 0) 3236 continue; 3237 if (ret < 0) 3238 goto out; 3239 3240 stop_loop = 1; 3241 break; 3242 } 3243 btrfs_item_key_to_cpu(l, &key, slot); 3244 3245 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3246 key.type != BTRFS_METADATA_ITEM_KEY) 3247 goto next; 3248 3249 if (key.type == BTRFS_METADATA_ITEM_KEY) 3250 bytes = fs_info->nodesize; 3251 else 3252 bytes = key.offset; 3253 3254 if (key.objectid + bytes <= logical) 3255 goto next; 3256 3257 if (key.objectid >= logical + map->stripe_len) { 3258 /* out of this device extent */ 3259 if (key.objectid >= logic_end) 3260 stop_loop = 1; 3261 break; 3262 } 3263 3264 extent = btrfs_item_ptr(l, slot, 3265 struct btrfs_extent_item); 3266 flags = btrfs_extent_flags(l, extent); 3267 generation = btrfs_extent_generation(l, extent); 3268 3269 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3270 (key.objectid < logical || 3271 key.objectid + bytes > 3272 logical + map->stripe_len)) { 3273 btrfs_err(fs_info, 3274 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3275 key.objectid, logical); 3276 spin_lock(&sctx->stat_lock); 3277 sctx->stat.uncorrectable_errors++; 3278 spin_unlock(&sctx->stat_lock); 3279 goto next; 3280 } 3281 3282 again: 3283 extent_logical = key.objectid; 3284 extent_len = bytes; 3285 3286 /* 3287 * trim extent to this stripe 3288 */ 3289 if (extent_logical < logical) { 3290 extent_len -= logical - extent_logical; 3291 extent_logical = logical; 3292 } 3293 if (extent_logical + extent_len > 3294 logical + map->stripe_len) { 3295 extent_len = logical + map->stripe_len - 3296 extent_logical; 3297 } 3298 3299 extent_physical = extent_logical - logical + physical; 3300 extent_dev = scrub_dev; 3301 extent_mirror_num = mirror_num; 3302 if (is_dev_replace) 3303 scrub_remap_extent(fs_info, extent_logical, 3304 extent_len, &extent_physical, 3305 &extent_dev, 3306 &extent_mirror_num); 3307 3308 ret = btrfs_lookup_csums_range(csum_root, 3309 extent_logical, 3310 extent_logical + 3311 extent_len - 1, 3312 &sctx->csum_list, 1); 3313 if (ret) 3314 goto out; 3315 3316 ret = scrub_extent(sctx, map, extent_logical, extent_len, 3317 extent_physical, extent_dev, flags, 3318 generation, extent_mirror_num, 3319 extent_logical - logical + physical); 3320 3321 scrub_free_csums(sctx); 3322 3323 if (ret) 3324 goto out; 3325 3326 if (extent_logical + extent_len < 3327 key.objectid + bytes) { 3328 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3329 /* 3330 * loop until we find next data stripe 3331 * or we have finished all stripes. 3332 */ 3333 loop: 3334 physical += map->stripe_len; 3335 ret = get_raid56_logic_offset(physical, 3336 num, map, &logical, 3337 &stripe_logical); 3338 logical += base; 3339 3340 if (ret && physical < physical_end) { 3341 stripe_logical += base; 3342 stripe_end = stripe_logical + 3343 increment; 3344 ret = scrub_raid56_parity(sctx, 3345 map, scrub_dev, ppath, 3346 stripe_logical, 3347 stripe_end); 3348 if (ret) 3349 goto out; 3350 goto loop; 3351 } 3352 } else { 3353 physical += map->stripe_len; 3354 logical += increment; 3355 } 3356 if (logical < key.objectid + bytes) { 3357 cond_resched(); 3358 goto again; 3359 } 3360 3361 if (physical >= physical_end) { 3362 stop_loop = 1; 3363 break; 3364 } 3365 } 3366 next: 3367 path->slots[0]++; 3368 } 3369 btrfs_release_path(path); 3370 skip: 3371 logical += increment; 3372 physical += map->stripe_len; 3373 spin_lock(&sctx->stat_lock); 3374 if (stop_loop) 3375 sctx->stat.last_physical = map->stripes[num].physical + 3376 length; 3377 else 3378 sctx->stat.last_physical = physical; 3379 spin_unlock(&sctx->stat_lock); 3380 if (stop_loop) 3381 break; 3382 } 3383 out: 3384 /* push queued extents */ 3385 scrub_submit(sctx); 3386 mutex_lock(&sctx->wr_lock); 3387 scrub_wr_submit(sctx); 3388 mutex_unlock(&sctx->wr_lock); 3389 3390 blk_finish_plug(&plug); 3391 btrfs_free_path(path); 3392 btrfs_free_path(ppath); 3393 return ret < 0 ? ret : 0; 3394 } 3395 3396 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3397 struct btrfs_device *scrub_dev, 3398 u64 chunk_offset, u64 length, 3399 u64 dev_offset, 3400 struct btrfs_block_group_cache *cache, 3401 int is_dev_replace) 3402 { 3403 struct btrfs_fs_info *fs_info = sctx->fs_info; 3404 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 3405 struct map_lookup *map; 3406 struct extent_map *em; 3407 int i; 3408 int ret = 0; 3409 3410 read_lock(&map_tree->map_tree.lock); 3411 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3412 read_unlock(&map_tree->map_tree.lock); 3413 3414 if (!em) { 3415 /* 3416 * Might have been an unused block group deleted by the cleaner 3417 * kthread or relocation. 3418 */ 3419 spin_lock(&cache->lock); 3420 if (!cache->removed) 3421 ret = -EINVAL; 3422 spin_unlock(&cache->lock); 3423 3424 return ret; 3425 } 3426 3427 map = em->map_lookup; 3428 if (em->start != chunk_offset) 3429 goto out; 3430 3431 if (em->len < length) 3432 goto out; 3433 3434 for (i = 0; i < map->num_stripes; ++i) { 3435 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3436 map->stripes[i].physical == dev_offset) { 3437 ret = scrub_stripe(sctx, map, scrub_dev, i, 3438 chunk_offset, length, 3439 is_dev_replace); 3440 if (ret) 3441 goto out; 3442 } 3443 } 3444 out: 3445 free_extent_map(em); 3446 3447 return ret; 3448 } 3449 3450 static noinline_for_stack 3451 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3452 struct btrfs_device *scrub_dev, u64 start, u64 end, 3453 int is_dev_replace) 3454 { 3455 struct btrfs_dev_extent *dev_extent = NULL; 3456 struct btrfs_path *path; 3457 struct btrfs_fs_info *fs_info = sctx->fs_info; 3458 struct btrfs_root *root = fs_info->dev_root; 3459 u64 length; 3460 u64 chunk_offset; 3461 int ret = 0; 3462 int ro_set; 3463 int slot; 3464 struct extent_buffer *l; 3465 struct btrfs_key key; 3466 struct btrfs_key found_key; 3467 struct btrfs_block_group_cache *cache; 3468 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3469 3470 path = btrfs_alloc_path(); 3471 if (!path) 3472 return -ENOMEM; 3473 3474 path->reada = READA_FORWARD; 3475 path->search_commit_root = 1; 3476 path->skip_locking = 1; 3477 3478 key.objectid = scrub_dev->devid; 3479 key.offset = 0ull; 3480 key.type = BTRFS_DEV_EXTENT_KEY; 3481 3482 while (1) { 3483 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3484 if (ret < 0) 3485 break; 3486 if (ret > 0) { 3487 if (path->slots[0] >= 3488 btrfs_header_nritems(path->nodes[0])) { 3489 ret = btrfs_next_leaf(root, path); 3490 if (ret < 0) 3491 break; 3492 if (ret > 0) { 3493 ret = 0; 3494 break; 3495 } 3496 } else { 3497 ret = 0; 3498 } 3499 } 3500 3501 l = path->nodes[0]; 3502 slot = path->slots[0]; 3503 3504 btrfs_item_key_to_cpu(l, &found_key, slot); 3505 3506 if (found_key.objectid != scrub_dev->devid) 3507 break; 3508 3509 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3510 break; 3511 3512 if (found_key.offset >= end) 3513 break; 3514 3515 if (found_key.offset < key.offset) 3516 break; 3517 3518 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3519 length = btrfs_dev_extent_length(l, dev_extent); 3520 3521 if (found_key.offset + length <= start) 3522 goto skip; 3523 3524 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3525 3526 /* 3527 * get a reference on the corresponding block group to prevent 3528 * the chunk from going away while we scrub it 3529 */ 3530 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3531 3532 /* some chunks are removed but not committed to disk yet, 3533 * continue scrubbing */ 3534 if (!cache) 3535 goto skip; 3536 3537 /* 3538 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3539 * to avoid deadlock caused by: 3540 * btrfs_inc_block_group_ro() 3541 * -> btrfs_wait_for_commit() 3542 * -> btrfs_commit_transaction() 3543 * -> btrfs_scrub_pause() 3544 */ 3545 scrub_pause_on(fs_info); 3546 ret = btrfs_inc_block_group_ro(cache); 3547 if (!ret && is_dev_replace) { 3548 /* 3549 * If we are doing a device replace wait for any tasks 3550 * that started dellaloc right before we set the block 3551 * group to RO mode, as they might have just allocated 3552 * an extent from it or decided they could do a nocow 3553 * write. And if any such tasks did that, wait for their 3554 * ordered extents to complete and then commit the 3555 * current transaction, so that we can later see the new 3556 * extent items in the extent tree - the ordered extents 3557 * create delayed data references (for cow writes) when 3558 * they complete, which will be run and insert the 3559 * corresponding extent items into the extent tree when 3560 * we commit the transaction they used when running 3561 * inode.c:btrfs_finish_ordered_io(). We later use 3562 * the commit root of the extent tree to find extents 3563 * to copy from the srcdev into the tgtdev, and we don't 3564 * want to miss any new extents. 3565 */ 3566 btrfs_wait_block_group_reservations(cache); 3567 btrfs_wait_nocow_writers(cache); 3568 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX, 3569 cache->key.objectid, 3570 cache->key.offset); 3571 if (ret > 0) { 3572 struct btrfs_trans_handle *trans; 3573 3574 trans = btrfs_join_transaction(root); 3575 if (IS_ERR(trans)) 3576 ret = PTR_ERR(trans); 3577 else 3578 ret = btrfs_commit_transaction(trans); 3579 if (ret) { 3580 scrub_pause_off(fs_info); 3581 btrfs_put_block_group(cache); 3582 break; 3583 } 3584 } 3585 } 3586 scrub_pause_off(fs_info); 3587 3588 if (ret == 0) { 3589 ro_set = 1; 3590 } else if (ret == -ENOSPC) { 3591 /* 3592 * btrfs_inc_block_group_ro return -ENOSPC when it 3593 * failed in creating new chunk for metadata. 3594 * It is not a problem for scrub/replace, because 3595 * metadata are always cowed, and our scrub paused 3596 * commit_transactions. 3597 */ 3598 ro_set = 0; 3599 } else { 3600 btrfs_warn(fs_info, 3601 "failed setting block group ro: %d", ret); 3602 btrfs_put_block_group(cache); 3603 break; 3604 } 3605 3606 btrfs_dev_replace_write_lock(&fs_info->dev_replace); 3607 dev_replace->cursor_right = found_key.offset + length; 3608 dev_replace->cursor_left = found_key.offset; 3609 dev_replace->item_needs_writeback = 1; 3610 btrfs_dev_replace_write_unlock(&fs_info->dev_replace); 3611 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3612 found_key.offset, cache, is_dev_replace); 3613 3614 /* 3615 * flush, submit all pending read and write bios, afterwards 3616 * wait for them. 3617 * Note that in the dev replace case, a read request causes 3618 * write requests that are submitted in the read completion 3619 * worker. Therefore in the current situation, it is required 3620 * that all write requests are flushed, so that all read and 3621 * write requests are really completed when bios_in_flight 3622 * changes to 0. 3623 */ 3624 sctx->flush_all_writes = true; 3625 scrub_submit(sctx); 3626 mutex_lock(&sctx->wr_lock); 3627 scrub_wr_submit(sctx); 3628 mutex_unlock(&sctx->wr_lock); 3629 3630 wait_event(sctx->list_wait, 3631 atomic_read(&sctx->bios_in_flight) == 0); 3632 3633 scrub_pause_on(fs_info); 3634 3635 /* 3636 * must be called before we decrease @scrub_paused. 3637 * make sure we don't block transaction commit while 3638 * we are waiting pending workers finished. 3639 */ 3640 wait_event(sctx->list_wait, 3641 atomic_read(&sctx->workers_pending) == 0); 3642 sctx->flush_all_writes = false; 3643 3644 scrub_pause_off(fs_info); 3645 3646 btrfs_dev_replace_write_lock(&fs_info->dev_replace); 3647 dev_replace->cursor_left = dev_replace->cursor_right; 3648 dev_replace->item_needs_writeback = 1; 3649 btrfs_dev_replace_write_unlock(&fs_info->dev_replace); 3650 3651 if (ro_set) 3652 btrfs_dec_block_group_ro(cache); 3653 3654 /* 3655 * We might have prevented the cleaner kthread from deleting 3656 * this block group if it was already unused because we raced 3657 * and set it to RO mode first. So add it back to the unused 3658 * list, otherwise it might not ever be deleted unless a manual 3659 * balance is triggered or it becomes used and unused again. 3660 */ 3661 spin_lock(&cache->lock); 3662 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3663 btrfs_block_group_used(&cache->item) == 0) { 3664 spin_unlock(&cache->lock); 3665 btrfs_mark_bg_unused(cache); 3666 } else { 3667 spin_unlock(&cache->lock); 3668 } 3669 3670 btrfs_put_block_group(cache); 3671 if (ret) 3672 break; 3673 if (is_dev_replace && 3674 atomic64_read(&dev_replace->num_write_errors) > 0) { 3675 ret = -EIO; 3676 break; 3677 } 3678 if (sctx->stat.malloc_errors > 0) { 3679 ret = -ENOMEM; 3680 break; 3681 } 3682 skip: 3683 key.offset = found_key.offset + length; 3684 btrfs_release_path(path); 3685 } 3686 3687 btrfs_free_path(path); 3688 3689 return ret; 3690 } 3691 3692 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3693 struct btrfs_device *scrub_dev) 3694 { 3695 int i; 3696 u64 bytenr; 3697 u64 gen; 3698 int ret; 3699 struct btrfs_fs_info *fs_info = sctx->fs_info; 3700 3701 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3702 return -EIO; 3703 3704 /* Seed devices of a new filesystem has their own generation. */ 3705 if (scrub_dev->fs_devices != fs_info->fs_devices) 3706 gen = scrub_dev->generation; 3707 else 3708 gen = fs_info->last_trans_committed; 3709 3710 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3711 bytenr = btrfs_sb_offset(i); 3712 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3713 scrub_dev->commit_total_bytes) 3714 break; 3715 3716 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3717 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3718 NULL, 1, bytenr); 3719 if (ret) 3720 return ret; 3721 } 3722 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3723 3724 return 0; 3725 } 3726 3727 /* 3728 * get a reference count on fs_info->scrub_workers. start worker if necessary 3729 */ 3730 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 3731 int is_dev_replace) 3732 { 3733 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3734 int max_active = fs_info->thread_pool_size; 3735 3736 if (fs_info->scrub_workers_refcnt == 0) { 3737 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", 3738 flags, is_dev_replace ? 1 : max_active, 4); 3739 if (!fs_info->scrub_workers) 3740 goto fail_scrub_workers; 3741 3742 fs_info->scrub_wr_completion_workers = 3743 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 3744 max_active, 2); 3745 if (!fs_info->scrub_wr_completion_workers) 3746 goto fail_scrub_wr_completion_workers; 3747 3748 fs_info->scrub_parity_workers = 3749 btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 3750 max_active, 2); 3751 if (!fs_info->scrub_parity_workers) 3752 goto fail_scrub_parity_workers; 3753 } 3754 ++fs_info->scrub_workers_refcnt; 3755 return 0; 3756 3757 fail_scrub_parity_workers: 3758 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3759 fail_scrub_wr_completion_workers: 3760 btrfs_destroy_workqueue(fs_info->scrub_workers); 3761 fail_scrub_workers: 3762 return -ENOMEM; 3763 } 3764 3765 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 3766 { 3767 if (--fs_info->scrub_workers_refcnt == 0) { 3768 btrfs_destroy_workqueue(fs_info->scrub_workers); 3769 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3770 btrfs_destroy_workqueue(fs_info->scrub_parity_workers); 3771 } 3772 WARN_ON(fs_info->scrub_workers_refcnt < 0); 3773 } 3774 3775 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3776 u64 end, struct btrfs_scrub_progress *progress, 3777 int readonly, int is_dev_replace) 3778 { 3779 struct scrub_ctx *sctx; 3780 int ret; 3781 struct btrfs_device *dev; 3782 3783 if (btrfs_fs_closing(fs_info)) 3784 return -EINVAL; 3785 3786 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 3787 /* 3788 * in this case scrub is unable to calculate the checksum 3789 * the way scrub is implemented. Do not handle this 3790 * situation at all because it won't ever happen. 3791 */ 3792 btrfs_err(fs_info, 3793 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 3794 fs_info->nodesize, 3795 BTRFS_STRIPE_LEN); 3796 return -EINVAL; 3797 } 3798 3799 if (fs_info->sectorsize != PAGE_SIZE) { 3800 /* not supported for data w/o checksums */ 3801 btrfs_err_rl(fs_info, 3802 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", 3803 fs_info->sectorsize, PAGE_SIZE); 3804 return -EINVAL; 3805 } 3806 3807 if (fs_info->nodesize > 3808 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 3809 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 3810 /* 3811 * would exhaust the array bounds of pagev member in 3812 * struct scrub_block 3813 */ 3814 btrfs_err(fs_info, 3815 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 3816 fs_info->nodesize, 3817 SCRUB_MAX_PAGES_PER_BLOCK, 3818 fs_info->sectorsize, 3819 SCRUB_MAX_PAGES_PER_BLOCK); 3820 return -EINVAL; 3821 } 3822 3823 3824 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3825 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 3826 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 3827 !is_dev_replace)) { 3828 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3829 return -ENODEV; 3830 } 3831 3832 if (!is_dev_replace && !readonly && 3833 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 3834 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3835 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable", 3836 rcu_str_deref(dev->name)); 3837 return -EROFS; 3838 } 3839 3840 mutex_lock(&fs_info->scrub_lock); 3841 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3842 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 3843 mutex_unlock(&fs_info->scrub_lock); 3844 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3845 return -EIO; 3846 } 3847 3848 btrfs_dev_replace_read_lock(&fs_info->dev_replace); 3849 if (dev->scrub_ctx || 3850 (!is_dev_replace && 3851 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3852 btrfs_dev_replace_read_unlock(&fs_info->dev_replace); 3853 mutex_unlock(&fs_info->scrub_lock); 3854 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3855 return -EINPROGRESS; 3856 } 3857 btrfs_dev_replace_read_unlock(&fs_info->dev_replace); 3858 3859 ret = scrub_workers_get(fs_info, is_dev_replace); 3860 if (ret) { 3861 mutex_unlock(&fs_info->scrub_lock); 3862 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3863 return ret; 3864 } 3865 3866 sctx = scrub_setup_ctx(dev, is_dev_replace); 3867 if (IS_ERR(sctx)) { 3868 mutex_unlock(&fs_info->scrub_lock); 3869 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3870 scrub_workers_put(fs_info); 3871 return PTR_ERR(sctx); 3872 } 3873 sctx->readonly = readonly; 3874 dev->scrub_ctx = sctx; 3875 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3876 3877 /* 3878 * checking @scrub_pause_req here, we can avoid 3879 * race between committing transaction and scrubbing. 3880 */ 3881 __scrub_blocked_if_needed(fs_info); 3882 atomic_inc(&fs_info->scrubs_running); 3883 mutex_unlock(&fs_info->scrub_lock); 3884 3885 if (!is_dev_replace) { 3886 /* 3887 * by holding device list mutex, we can 3888 * kick off writing super in log tree sync. 3889 */ 3890 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3891 ret = scrub_supers(sctx, dev); 3892 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3893 } 3894 3895 if (!ret) 3896 ret = scrub_enumerate_chunks(sctx, dev, start, end, 3897 is_dev_replace); 3898 3899 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3900 atomic_dec(&fs_info->scrubs_running); 3901 wake_up(&fs_info->scrub_pause_wait); 3902 3903 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3904 3905 if (progress) 3906 memcpy(progress, &sctx->stat, sizeof(*progress)); 3907 3908 mutex_lock(&fs_info->scrub_lock); 3909 dev->scrub_ctx = NULL; 3910 scrub_workers_put(fs_info); 3911 mutex_unlock(&fs_info->scrub_lock); 3912 3913 scrub_put_ctx(sctx); 3914 3915 return ret; 3916 } 3917 3918 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 3919 { 3920 mutex_lock(&fs_info->scrub_lock); 3921 atomic_inc(&fs_info->scrub_pause_req); 3922 while (atomic_read(&fs_info->scrubs_paused) != 3923 atomic_read(&fs_info->scrubs_running)) { 3924 mutex_unlock(&fs_info->scrub_lock); 3925 wait_event(fs_info->scrub_pause_wait, 3926 atomic_read(&fs_info->scrubs_paused) == 3927 atomic_read(&fs_info->scrubs_running)); 3928 mutex_lock(&fs_info->scrub_lock); 3929 } 3930 mutex_unlock(&fs_info->scrub_lock); 3931 } 3932 3933 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 3934 { 3935 atomic_dec(&fs_info->scrub_pause_req); 3936 wake_up(&fs_info->scrub_pause_wait); 3937 } 3938 3939 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3940 { 3941 mutex_lock(&fs_info->scrub_lock); 3942 if (!atomic_read(&fs_info->scrubs_running)) { 3943 mutex_unlock(&fs_info->scrub_lock); 3944 return -ENOTCONN; 3945 } 3946 3947 atomic_inc(&fs_info->scrub_cancel_req); 3948 while (atomic_read(&fs_info->scrubs_running)) { 3949 mutex_unlock(&fs_info->scrub_lock); 3950 wait_event(fs_info->scrub_pause_wait, 3951 atomic_read(&fs_info->scrubs_running) == 0); 3952 mutex_lock(&fs_info->scrub_lock); 3953 } 3954 atomic_dec(&fs_info->scrub_cancel_req); 3955 mutex_unlock(&fs_info->scrub_lock); 3956 3957 return 0; 3958 } 3959 3960 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 3961 struct btrfs_device *dev) 3962 { 3963 struct scrub_ctx *sctx; 3964 3965 mutex_lock(&fs_info->scrub_lock); 3966 sctx = dev->scrub_ctx; 3967 if (!sctx) { 3968 mutex_unlock(&fs_info->scrub_lock); 3969 return -ENOTCONN; 3970 } 3971 atomic_inc(&sctx->cancel_req); 3972 while (dev->scrub_ctx) { 3973 mutex_unlock(&fs_info->scrub_lock); 3974 wait_event(fs_info->scrub_pause_wait, 3975 dev->scrub_ctx == NULL); 3976 mutex_lock(&fs_info->scrub_lock); 3977 } 3978 mutex_unlock(&fs_info->scrub_lock); 3979 3980 return 0; 3981 } 3982 3983 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3984 struct btrfs_scrub_progress *progress) 3985 { 3986 struct btrfs_device *dev; 3987 struct scrub_ctx *sctx = NULL; 3988 3989 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3990 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 3991 if (dev) 3992 sctx = dev->scrub_ctx; 3993 if (sctx) 3994 memcpy(progress, &sctx->stat, sizeof(*progress)); 3995 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3996 3997 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3998 } 3999 4000 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4001 u64 extent_logical, u64 extent_len, 4002 u64 *extent_physical, 4003 struct btrfs_device **extent_dev, 4004 int *extent_mirror_num) 4005 { 4006 u64 mapped_length; 4007 struct btrfs_bio *bbio = NULL; 4008 int ret; 4009 4010 mapped_length = extent_len; 4011 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4012 &mapped_length, &bbio, 0); 4013 if (ret || !bbio || mapped_length < extent_len || 4014 !bbio->stripes[0].dev->bdev) { 4015 btrfs_put_bbio(bbio); 4016 return; 4017 } 4018 4019 *extent_physical = bbio->stripes[0].physical; 4020 *extent_mirror_num = bbio->mirror_num; 4021 *extent_dev = bbio->stripes[0].dev; 4022 btrfs_put_bbio(bbio); 4023 } 4024