xref: /openbmc/linux/fs/btrfs/scrub.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 
24 /*
25  * This is only the first step towards a full-features scrub. It reads all
26  * extent and super block and verifies the checksums. In case a bad checksum
27  * is found or the extent cannot be read, good data will be written back if
28  * any can be found.
29  *
30  * Future enhancements:
31  *  - In case an unrepairable extent is encountered, track which files are
32  *    affected and report them
33  *  - track and record media errors, throw out bad devices
34  *  - add a mode to also read unallocated space
35  */
36 
37 struct scrub_block;
38 struct scrub_ctx;
39 
40 /*
41  * the following three values only influence the performance.
42  * The last one configures the number of parallel and outstanding I/O
43  * operations. The first two values configure an upper limit for the number
44  * of (dynamically allocated) pages that are added to a bio.
45  */
46 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
47 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
48 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
49 
50 /*
51  * the following value times PAGE_SIZE needs to be large enough to match the
52  * largest node/leaf/sector size that shall be supported.
53  * Values larger than BTRFS_STRIPE_LEN are not supported.
54  */
55 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
56 
57 struct scrub_recover {
58 	refcount_t		refs;
59 	struct btrfs_bio	*bbio;
60 	u64			map_length;
61 };
62 
63 struct scrub_page {
64 	struct scrub_block	*sblock;
65 	struct page		*page;
66 	struct btrfs_device	*dev;
67 	struct list_head	list;
68 	u64			flags;  /* extent flags */
69 	u64			generation;
70 	u64			logical;
71 	u64			physical;
72 	u64			physical_for_dev_replace;
73 	atomic_t		refs;
74 	struct {
75 		unsigned int	mirror_num:8;
76 		unsigned int	have_csum:1;
77 		unsigned int	io_error:1;
78 	};
79 	u8			csum[BTRFS_CSUM_SIZE];
80 
81 	struct scrub_recover	*recover;
82 };
83 
84 struct scrub_bio {
85 	int			index;
86 	struct scrub_ctx	*sctx;
87 	struct btrfs_device	*dev;
88 	struct bio		*bio;
89 	blk_status_t		status;
90 	u64			logical;
91 	u64			physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 	int			page_count;
98 	int			next_free;
99 	struct btrfs_work	work;
100 };
101 
102 struct scrub_block {
103 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 	int			page_count;
105 	atomic_t		outstanding_pages;
106 	refcount_t		refs; /* free mem on transition to zero */
107 	struct scrub_ctx	*sctx;
108 	struct scrub_parity	*sparity;
109 	struct {
110 		unsigned int	header_error:1;
111 		unsigned int	checksum_error:1;
112 		unsigned int	no_io_error_seen:1;
113 		unsigned int	generation_error:1; /* also sets header_error */
114 
115 		/* The following is for the data used to check parity */
116 		/* It is for the data with checksum */
117 		unsigned int	data_corrected:1;
118 	};
119 	struct btrfs_work	work;
120 };
121 
122 /* Used for the chunks with parity stripe such RAID5/6 */
123 struct scrub_parity {
124 	struct scrub_ctx	*sctx;
125 
126 	struct btrfs_device	*scrub_dev;
127 
128 	u64			logic_start;
129 
130 	u64			logic_end;
131 
132 	int			nsectors;
133 
134 	u64			stripe_len;
135 
136 	refcount_t		refs;
137 
138 	struct list_head	spages;
139 
140 	/* Work of parity check and repair */
141 	struct btrfs_work	work;
142 
143 	/* Mark the parity blocks which have data */
144 	unsigned long		*dbitmap;
145 
146 	/*
147 	 * Mark the parity blocks which have data, but errors happen when
148 	 * read data or check data
149 	 */
150 	unsigned long		*ebitmap;
151 
152 	unsigned long		bitmap[0];
153 };
154 
155 struct scrub_ctx {
156 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
157 	struct btrfs_fs_info	*fs_info;
158 	int			first_free;
159 	int			curr;
160 	atomic_t		bios_in_flight;
161 	atomic_t		workers_pending;
162 	spinlock_t		list_lock;
163 	wait_queue_head_t	list_wait;
164 	u16			csum_size;
165 	struct list_head	csum_list;
166 	atomic_t		cancel_req;
167 	int			readonly;
168 	int			pages_per_rd_bio;
169 
170 	int			is_dev_replace;
171 
172 	struct scrub_bio        *wr_curr_bio;
173 	struct mutex            wr_lock;
174 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
175 	struct btrfs_device     *wr_tgtdev;
176 	bool                    flush_all_writes;
177 
178 	/*
179 	 * statistics
180 	 */
181 	struct btrfs_scrub_progress stat;
182 	spinlock_t		stat_lock;
183 
184 	/*
185 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
186 	 * decrement bios_in_flight and workers_pending and then do a wakeup
187 	 * on the list_wait wait queue. We must ensure the main scrub task
188 	 * doesn't free the scrub context before or while the workers are
189 	 * doing the wakeup() call.
190 	 */
191 	refcount_t              refs;
192 };
193 
194 struct scrub_warning {
195 	struct btrfs_path	*path;
196 	u64			extent_item_size;
197 	const char		*errstr;
198 	u64			physical;
199 	u64			logical;
200 	struct btrfs_device	*dev;
201 };
202 
203 struct full_stripe_lock {
204 	struct rb_node node;
205 	u64 logical;
206 	u64 refs;
207 	struct mutex mutex;
208 };
209 
210 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
211 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
212 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
213 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
214 				     struct scrub_block *sblocks_for_recheck);
215 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
216 				struct scrub_block *sblock,
217 				int retry_failed_mirror);
218 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
219 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
220 					     struct scrub_block *sblock_good);
221 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
222 					    struct scrub_block *sblock_good,
223 					    int page_num, int force_write);
224 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
225 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
226 					   int page_num);
227 static int scrub_checksum_data(struct scrub_block *sblock);
228 static int scrub_checksum_tree_block(struct scrub_block *sblock);
229 static int scrub_checksum_super(struct scrub_block *sblock);
230 static void scrub_block_get(struct scrub_block *sblock);
231 static void scrub_block_put(struct scrub_block *sblock);
232 static void scrub_page_get(struct scrub_page *spage);
233 static void scrub_page_put(struct scrub_page *spage);
234 static void scrub_parity_get(struct scrub_parity *sparity);
235 static void scrub_parity_put(struct scrub_parity *sparity);
236 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
237 				    struct scrub_page *spage);
238 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
239 		       u64 physical, struct btrfs_device *dev, u64 flags,
240 		       u64 gen, int mirror_num, u8 *csum, int force,
241 		       u64 physical_for_dev_replace);
242 static void scrub_bio_end_io(struct bio *bio);
243 static void scrub_bio_end_io_worker(struct btrfs_work *work);
244 static void scrub_block_complete(struct scrub_block *sblock);
245 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
246 			       u64 extent_logical, u64 extent_len,
247 			       u64 *extent_physical,
248 			       struct btrfs_device **extent_dev,
249 			       int *extent_mirror_num);
250 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
251 				    struct scrub_page *spage);
252 static void scrub_wr_submit(struct scrub_ctx *sctx);
253 static void scrub_wr_bio_end_io(struct bio *bio);
254 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
255 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
257 static void scrub_put_ctx(struct scrub_ctx *sctx);
258 
259 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
260 {
261 	return page->recover &&
262 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
263 }
264 
265 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
266 {
267 	refcount_inc(&sctx->refs);
268 	atomic_inc(&sctx->bios_in_flight);
269 }
270 
271 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
272 {
273 	atomic_dec(&sctx->bios_in_flight);
274 	wake_up(&sctx->list_wait);
275 	scrub_put_ctx(sctx);
276 }
277 
278 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
279 {
280 	while (atomic_read(&fs_info->scrub_pause_req)) {
281 		mutex_unlock(&fs_info->scrub_lock);
282 		wait_event(fs_info->scrub_pause_wait,
283 		   atomic_read(&fs_info->scrub_pause_req) == 0);
284 		mutex_lock(&fs_info->scrub_lock);
285 	}
286 }
287 
288 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
289 {
290 	atomic_inc(&fs_info->scrubs_paused);
291 	wake_up(&fs_info->scrub_pause_wait);
292 }
293 
294 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
295 {
296 	mutex_lock(&fs_info->scrub_lock);
297 	__scrub_blocked_if_needed(fs_info);
298 	atomic_dec(&fs_info->scrubs_paused);
299 	mutex_unlock(&fs_info->scrub_lock);
300 
301 	wake_up(&fs_info->scrub_pause_wait);
302 }
303 
304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
305 {
306 	scrub_pause_on(fs_info);
307 	scrub_pause_off(fs_info);
308 }
309 
310 /*
311  * Insert new full stripe lock into full stripe locks tree
312  *
313  * Return pointer to existing or newly inserted full_stripe_lock structure if
314  * everything works well.
315  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
316  *
317  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
318  * function
319  */
320 static struct full_stripe_lock *insert_full_stripe_lock(
321 		struct btrfs_full_stripe_locks_tree *locks_root,
322 		u64 fstripe_logical)
323 {
324 	struct rb_node **p;
325 	struct rb_node *parent = NULL;
326 	struct full_stripe_lock *entry;
327 	struct full_stripe_lock *ret;
328 
329 	lockdep_assert_held(&locks_root->lock);
330 
331 	p = &locks_root->root.rb_node;
332 	while (*p) {
333 		parent = *p;
334 		entry = rb_entry(parent, struct full_stripe_lock, node);
335 		if (fstripe_logical < entry->logical) {
336 			p = &(*p)->rb_left;
337 		} else if (fstripe_logical > entry->logical) {
338 			p = &(*p)->rb_right;
339 		} else {
340 			entry->refs++;
341 			return entry;
342 		}
343 	}
344 
345 	/*
346 	 * Insert new lock.
347 	 */
348 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
349 	if (!ret)
350 		return ERR_PTR(-ENOMEM);
351 	ret->logical = fstripe_logical;
352 	ret->refs = 1;
353 	mutex_init(&ret->mutex);
354 
355 	rb_link_node(&ret->node, parent, p);
356 	rb_insert_color(&ret->node, &locks_root->root);
357 	return ret;
358 }
359 
360 /*
361  * Search for a full stripe lock of a block group
362  *
363  * Return pointer to existing full stripe lock if found
364  * Return NULL if not found
365  */
366 static struct full_stripe_lock *search_full_stripe_lock(
367 		struct btrfs_full_stripe_locks_tree *locks_root,
368 		u64 fstripe_logical)
369 {
370 	struct rb_node *node;
371 	struct full_stripe_lock *entry;
372 
373 	lockdep_assert_held(&locks_root->lock);
374 
375 	node = locks_root->root.rb_node;
376 	while (node) {
377 		entry = rb_entry(node, struct full_stripe_lock, node);
378 		if (fstripe_logical < entry->logical)
379 			node = node->rb_left;
380 		else if (fstripe_logical > entry->logical)
381 			node = node->rb_right;
382 		else
383 			return entry;
384 	}
385 	return NULL;
386 }
387 
388 /*
389  * Helper to get full stripe logical from a normal bytenr.
390  *
391  * Caller must ensure @cache is a RAID56 block group.
392  */
393 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
394 {
395 	u64 ret;
396 
397 	/*
398 	 * Due to chunk item size limit, full stripe length should not be
399 	 * larger than U32_MAX. Just a sanity check here.
400 	 */
401 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
402 
403 	/*
404 	 * round_down() can only handle power of 2, while RAID56 full
405 	 * stripe length can be 64KiB * n, so we need to manually round down.
406 	 */
407 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
408 			cache->full_stripe_len + cache->start;
409 	return ret;
410 }
411 
412 /*
413  * Lock a full stripe to avoid concurrency of recovery and read
414  *
415  * It's only used for profiles with parities (RAID5/6), for other profiles it
416  * does nothing.
417  *
418  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
419  * So caller must call unlock_full_stripe() at the same context.
420  *
421  * Return <0 if encounters error.
422  */
423 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
424 			    bool *locked_ret)
425 {
426 	struct btrfs_block_group *bg_cache;
427 	struct btrfs_full_stripe_locks_tree *locks_root;
428 	struct full_stripe_lock *existing;
429 	u64 fstripe_start;
430 	int ret = 0;
431 
432 	*locked_ret = false;
433 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
434 	if (!bg_cache) {
435 		ASSERT(0);
436 		return -ENOENT;
437 	}
438 
439 	/* Profiles not based on parity don't need full stripe lock */
440 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
441 		goto out;
442 	locks_root = &bg_cache->full_stripe_locks_root;
443 
444 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
445 
446 	/* Now insert the full stripe lock */
447 	mutex_lock(&locks_root->lock);
448 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
449 	mutex_unlock(&locks_root->lock);
450 	if (IS_ERR(existing)) {
451 		ret = PTR_ERR(existing);
452 		goto out;
453 	}
454 	mutex_lock(&existing->mutex);
455 	*locked_ret = true;
456 out:
457 	btrfs_put_block_group(bg_cache);
458 	return ret;
459 }
460 
461 /*
462  * Unlock a full stripe.
463  *
464  * NOTE: Caller must ensure it's the same context calling corresponding
465  * lock_full_stripe().
466  *
467  * Return 0 if we unlock full stripe without problem.
468  * Return <0 for error
469  */
470 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
471 			      bool locked)
472 {
473 	struct btrfs_block_group *bg_cache;
474 	struct btrfs_full_stripe_locks_tree *locks_root;
475 	struct full_stripe_lock *fstripe_lock;
476 	u64 fstripe_start;
477 	bool freeit = false;
478 	int ret = 0;
479 
480 	/* If we didn't acquire full stripe lock, no need to continue */
481 	if (!locked)
482 		return 0;
483 
484 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
485 	if (!bg_cache) {
486 		ASSERT(0);
487 		return -ENOENT;
488 	}
489 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
490 		goto out;
491 
492 	locks_root = &bg_cache->full_stripe_locks_root;
493 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
494 
495 	mutex_lock(&locks_root->lock);
496 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
497 	/* Unpaired unlock_full_stripe() detected */
498 	if (!fstripe_lock) {
499 		WARN_ON(1);
500 		ret = -ENOENT;
501 		mutex_unlock(&locks_root->lock);
502 		goto out;
503 	}
504 
505 	if (fstripe_lock->refs == 0) {
506 		WARN_ON(1);
507 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
508 			fstripe_lock->logical);
509 	} else {
510 		fstripe_lock->refs--;
511 	}
512 
513 	if (fstripe_lock->refs == 0) {
514 		rb_erase(&fstripe_lock->node, &locks_root->root);
515 		freeit = true;
516 	}
517 	mutex_unlock(&locks_root->lock);
518 
519 	mutex_unlock(&fstripe_lock->mutex);
520 	if (freeit)
521 		kfree(fstripe_lock);
522 out:
523 	btrfs_put_block_group(bg_cache);
524 	return ret;
525 }
526 
527 static void scrub_free_csums(struct scrub_ctx *sctx)
528 {
529 	while (!list_empty(&sctx->csum_list)) {
530 		struct btrfs_ordered_sum *sum;
531 		sum = list_first_entry(&sctx->csum_list,
532 				       struct btrfs_ordered_sum, list);
533 		list_del(&sum->list);
534 		kfree(sum);
535 	}
536 }
537 
538 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
539 {
540 	int i;
541 
542 	if (!sctx)
543 		return;
544 
545 	/* this can happen when scrub is cancelled */
546 	if (sctx->curr != -1) {
547 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
548 
549 		for (i = 0; i < sbio->page_count; i++) {
550 			WARN_ON(!sbio->pagev[i]->page);
551 			scrub_block_put(sbio->pagev[i]->sblock);
552 		}
553 		bio_put(sbio->bio);
554 	}
555 
556 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
557 		struct scrub_bio *sbio = sctx->bios[i];
558 
559 		if (!sbio)
560 			break;
561 		kfree(sbio);
562 	}
563 
564 	kfree(sctx->wr_curr_bio);
565 	scrub_free_csums(sctx);
566 	kfree(sctx);
567 }
568 
569 static void scrub_put_ctx(struct scrub_ctx *sctx)
570 {
571 	if (refcount_dec_and_test(&sctx->refs))
572 		scrub_free_ctx(sctx);
573 }
574 
575 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
576 		struct btrfs_fs_info *fs_info, int is_dev_replace)
577 {
578 	struct scrub_ctx *sctx;
579 	int		i;
580 
581 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
582 	if (!sctx)
583 		goto nomem;
584 	refcount_set(&sctx->refs, 1);
585 	sctx->is_dev_replace = is_dev_replace;
586 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
587 	sctx->curr = -1;
588 	sctx->fs_info = fs_info;
589 	INIT_LIST_HEAD(&sctx->csum_list);
590 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
591 		struct scrub_bio *sbio;
592 
593 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
594 		if (!sbio)
595 			goto nomem;
596 		sctx->bios[i] = sbio;
597 
598 		sbio->index = i;
599 		sbio->sctx = sctx;
600 		sbio->page_count = 0;
601 		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
602 				NULL);
603 
604 		if (i != SCRUB_BIOS_PER_SCTX - 1)
605 			sctx->bios[i]->next_free = i + 1;
606 		else
607 			sctx->bios[i]->next_free = -1;
608 	}
609 	sctx->first_free = 0;
610 	atomic_set(&sctx->bios_in_flight, 0);
611 	atomic_set(&sctx->workers_pending, 0);
612 	atomic_set(&sctx->cancel_req, 0);
613 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
614 
615 	spin_lock_init(&sctx->list_lock);
616 	spin_lock_init(&sctx->stat_lock);
617 	init_waitqueue_head(&sctx->list_wait);
618 
619 	WARN_ON(sctx->wr_curr_bio != NULL);
620 	mutex_init(&sctx->wr_lock);
621 	sctx->wr_curr_bio = NULL;
622 	if (is_dev_replace) {
623 		WARN_ON(!fs_info->dev_replace.tgtdev);
624 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
625 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
626 		sctx->flush_all_writes = false;
627 	}
628 
629 	return sctx;
630 
631 nomem:
632 	scrub_free_ctx(sctx);
633 	return ERR_PTR(-ENOMEM);
634 }
635 
636 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
637 				     void *warn_ctx)
638 {
639 	u64 isize;
640 	u32 nlink;
641 	int ret;
642 	int i;
643 	unsigned nofs_flag;
644 	struct extent_buffer *eb;
645 	struct btrfs_inode_item *inode_item;
646 	struct scrub_warning *swarn = warn_ctx;
647 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
648 	struct inode_fs_paths *ipath = NULL;
649 	struct btrfs_root *local_root;
650 	struct btrfs_key root_key;
651 	struct btrfs_key key;
652 
653 	root_key.objectid = root;
654 	root_key.type = BTRFS_ROOT_ITEM_KEY;
655 	root_key.offset = (u64)-1;
656 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
657 	if (IS_ERR(local_root)) {
658 		ret = PTR_ERR(local_root);
659 		goto err;
660 	}
661 
662 	/*
663 	 * this makes the path point to (inum INODE_ITEM ioff)
664 	 */
665 	key.objectid = inum;
666 	key.type = BTRFS_INODE_ITEM_KEY;
667 	key.offset = 0;
668 
669 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
670 	if (ret) {
671 		btrfs_release_path(swarn->path);
672 		goto err;
673 	}
674 
675 	eb = swarn->path->nodes[0];
676 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
677 					struct btrfs_inode_item);
678 	isize = btrfs_inode_size(eb, inode_item);
679 	nlink = btrfs_inode_nlink(eb, inode_item);
680 	btrfs_release_path(swarn->path);
681 
682 	/*
683 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
684 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
685 	 * not seem to be strictly necessary.
686 	 */
687 	nofs_flag = memalloc_nofs_save();
688 	ipath = init_ipath(4096, local_root, swarn->path);
689 	memalloc_nofs_restore(nofs_flag);
690 	if (IS_ERR(ipath)) {
691 		ret = PTR_ERR(ipath);
692 		ipath = NULL;
693 		goto err;
694 	}
695 	ret = paths_from_inode(inum, ipath);
696 
697 	if (ret < 0)
698 		goto err;
699 
700 	/*
701 	 * we deliberately ignore the bit ipath might have been too small to
702 	 * hold all of the paths here
703 	 */
704 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
705 		btrfs_warn_in_rcu(fs_info,
706 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
707 				  swarn->errstr, swarn->logical,
708 				  rcu_str_deref(swarn->dev->name),
709 				  swarn->physical,
710 				  root, inum, offset,
711 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
712 				  (char *)(unsigned long)ipath->fspath->val[i]);
713 
714 	free_ipath(ipath);
715 	return 0;
716 
717 err:
718 	btrfs_warn_in_rcu(fs_info,
719 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
720 			  swarn->errstr, swarn->logical,
721 			  rcu_str_deref(swarn->dev->name),
722 			  swarn->physical,
723 			  root, inum, offset, ret);
724 
725 	free_ipath(ipath);
726 	return 0;
727 }
728 
729 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
730 {
731 	struct btrfs_device *dev;
732 	struct btrfs_fs_info *fs_info;
733 	struct btrfs_path *path;
734 	struct btrfs_key found_key;
735 	struct extent_buffer *eb;
736 	struct btrfs_extent_item *ei;
737 	struct scrub_warning swarn;
738 	unsigned long ptr = 0;
739 	u64 extent_item_pos;
740 	u64 flags = 0;
741 	u64 ref_root;
742 	u32 item_size;
743 	u8 ref_level = 0;
744 	int ret;
745 
746 	WARN_ON(sblock->page_count < 1);
747 	dev = sblock->pagev[0]->dev;
748 	fs_info = sblock->sctx->fs_info;
749 
750 	path = btrfs_alloc_path();
751 	if (!path)
752 		return;
753 
754 	swarn.physical = sblock->pagev[0]->physical;
755 	swarn.logical = sblock->pagev[0]->logical;
756 	swarn.errstr = errstr;
757 	swarn.dev = NULL;
758 
759 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
760 				  &flags);
761 	if (ret < 0)
762 		goto out;
763 
764 	extent_item_pos = swarn.logical - found_key.objectid;
765 	swarn.extent_item_size = found_key.offset;
766 
767 	eb = path->nodes[0];
768 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
769 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
770 
771 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
772 		do {
773 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
774 						      item_size, &ref_root,
775 						      &ref_level);
776 			btrfs_warn_in_rcu(fs_info,
777 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
778 				errstr, swarn.logical,
779 				rcu_str_deref(dev->name),
780 				swarn.physical,
781 				ref_level ? "node" : "leaf",
782 				ret < 0 ? -1 : ref_level,
783 				ret < 0 ? -1 : ref_root);
784 		} while (ret != 1);
785 		btrfs_release_path(path);
786 	} else {
787 		btrfs_release_path(path);
788 		swarn.path = path;
789 		swarn.dev = dev;
790 		iterate_extent_inodes(fs_info, found_key.objectid,
791 					extent_item_pos, 1,
792 					scrub_print_warning_inode, &swarn, false);
793 	}
794 
795 out:
796 	btrfs_free_path(path);
797 }
798 
799 static inline void scrub_get_recover(struct scrub_recover *recover)
800 {
801 	refcount_inc(&recover->refs);
802 }
803 
804 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
805 				     struct scrub_recover *recover)
806 {
807 	if (refcount_dec_and_test(&recover->refs)) {
808 		btrfs_bio_counter_dec(fs_info);
809 		btrfs_put_bbio(recover->bbio);
810 		kfree(recover);
811 	}
812 }
813 
814 /*
815  * scrub_handle_errored_block gets called when either verification of the
816  * pages failed or the bio failed to read, e.g. with EIO. In the latter
817  * case, this function handles all pages in the bio, even though only one
818  * may be bad.
819  * The goal of this function is to repair the errored block by using the
820  * contents of one of the mirrors.
821  */
822 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
823 {
824 	struct scrub_ctx *sctx = sblock_to_check->sctx;
825 	struct btrfs_device *dev;
826 	struct btrfs_fs_info *fs_info;
827 	u64 logical;
828 	unsigned int failed_mirror_index;
829 	unsigned int is_metadata;
830 	unsigned int have_csum;
831 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
832 	struct scrub_block *sblock_bad;
833 	int ret;
834 	int mirror_index;
835 	int page_num;
836 	int success;
837 	bool full_stripe_locked;
838 	unsigned int nofs_flag;
839 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
840 				      DEFAULT_RATELIMIT_BURST);
841 
842 	BUG_ON(sblock_to_check->page_count < 1);
843 	fs_info = sctx->fs_info;
844 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
845 		/*
846 		 * if we find an error in a super block, we just report it.
847 		 * They will get written with the next transaction commit
848 		 * anyway
849 		 */
850 		spin_lock(&sctx->stat_lock);
851 		++sctx->stat.super_errors;
852 		spin_unlock(&sctx->stat_lock);
853 		return 0;
854 	}
855 	logical = sblock_to_check->pagev[0]->logical;
856 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
857 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
858 	is_metadata = !(sblock_to_check->pagev[0]->flags &
859 			BTRFS_EXTENT_FLAG_DATA);
860 	have_csum = sblock_to_check->pagev[0]->have_csum;
861 	dev = sblock_to_check->pagev[0]->dev;
862 
863 	/*
864 	 * We must use GFP_NOFS because the scrub task might be waiting for a
865 	 * worker task executing this function and in turn a transaction commit
866 	 * might be waiting the scrub task to pause (which needs to wait for all
867 	 * the worker tasks to complete before pausing).
868 	 * We do allocations in the workers through insert_full_stripe_lock()
869 	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
870 	 * this function.
871 	 */
872 	nofs_flag = memalloc_nofs_save();
873 	/*
874 	 * For RAID5/6, race can happen for a different device scrub thread.
875 	 * For data corruption, Parity and Data threads will both try
876 	 * to recovery the data.
877 	 * Race can lead to doubly added csum error, or even unrecoverable
878 	 * error.
879 	 */
880 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
881 	if (ret < 0) {
882 		memalloc_nofs_restore(nofs_flag);
883 		spin_lock(&sctx->stat_lock);
884 		if (ret == -ENOMEM)
885 			sctx->stat.malloc_errors++;
886 		sctx->stat.read_errors++;
887 		sctx->stat.uncorrectable_errors++;
888 		spin_unlock(&sctx->stat_lock);
889 		return ret;
890 	}
891 
892 	/*
893 	 * read all mirrors one after the other. This includes to
894 	 * re-read the extent or metadata block that failed (that was
895 	 * the cause that this fixup code is called) another time,
896 	 * page by page this time in order to know which pages
897 	 * caused I/O errors and which ones are good (for all mirrors).
898 	 * It is the goal to handle the situation when more than one
899 	 * mirror contains I/O errors, but the errors do not
900 	 * overlap, i.e. the data can be repaired by selecting the
901 	 * pages from those mirrors without I/O error on the
902 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
903 	 * would be that mirror #1 has an I/O error on the first page,
904 	 * the second page is good, and mirror #2 has an I/O error on
905 	 * the second page, but the first page is good.
906 	 * Then the first page of the first mirror can be repaired by
907 	 * taking the first page of the second mirror, and the
908 	 * second page of the second mirror can be repaired by
909 	 * copying the contents of the 2nd page of the 1st mirror.
910 	 * One more note: if the pages of one mirror contain I/O
911 	 * errors, the checksum cannot be verified. In order to get
912 	 * the best data for repairing, the first attempt is to find
913 	 * a mirror without I/O errors and with a validated checksum.
914 	 * Only if this is not possible, the pages are picked from
915 	 * mirrors with I/O errors without considering the checksum.
916 	 * If the latter is the case, at the end, the checksum of the
917 	 * repaired area is verified in order to correctly maintain
918 	 * the statistics.
919 	 */
920 
921 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
922 				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
923 	if (!sblocks_for_recheck) {
924 		spin_lock(&sctx->stat_lock);
925 		sctx->stat.malloc_errors++;
926 		sctx->stat.read_errors++;
927 		sctx->stat.uncorrectable_errors++;
928 		spin_unlock(&sctx->stat_lock);
929 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
930 		goto out;
931 	}
932 
933 	/* setup the context, map the logical blocks and alloc the pages */
934 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
935 	if (ret) {
936 		spin_lock(&sctx->stat_lock);
937 		sctx->stat.read_errors++;
938 		sctx->stat.uncorrectable_errors++;
939 		spin_unlock(&sctx->stat_lock);
940 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
941 		goto out;
942 	}
943 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
944 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
945 
946 	/* build and submit the bios for the failed mirror, check checksums */
947 	scrub_recheck_block(fs_info, sblock_bad, 1);
948 
949 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
950 	    sblock_bad->no_io_error_seen) {
951 		/*
952 		 * the error disappeared after reading page by page, or
953 		 * the area was part of a huge bio and other parts of the
954 		 * bio caused I/O errors, or the block layer merged several
955 		 * read requests into one and the error is caused by a
956 		 * different bio (usually one of the two latter cases is
957 		 * the cause)
958 		 */
959 		spin_lock(&sctx->stat_lock);
960 		sctx->stat.unverified_errors++;
961 		sblock_to_check->data_corrected = 1;
962 		spin_unlock(&sctx->stat_lock);
963 
964 		if (sctx->is_dev_replace)
965 			scrub_write_block_to_dev_replace(sblock_bad);
966 		goto out;
967 	}
968 
969 	if (!sblock_bad->no_io_error_seen) {
970 		spin_lock(&sctx->stat_lock);
971 		sctx->stat.read_errors++;
972 		spin_unlock(&sctx->stat_lock);
973 		if (__ratelimit(&_rs))
974 			scrub_print_warning("i/o error", sblock_to_check);
975 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976 	} else if (sblock_bad->checksum_error) {
977 		spin_lock(&sctx->stat_lock);
978 		sctx->stat.csum_errors++;
979 		spin_unlock(&sctx->stat_lock);
980 		if (__ratelimit(&_rs))
981 			scrub_print_warning("checksum error", sblock_to_check);
982 		btrfs_dev_stat_inc_and_print(dev,
983 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
984 	} else if (sblock_bad->header_error) {
985 		spin_lock(&sctx->stat_lock);
986 		sctx->stat.verify_errors++;
987 		spin_unlock(&sctx->stat_lock);
988 		if (__ratelimit(&_rs))
989 			scrub_print_warning("checksum/header error",
990 					    sblock_to_check);
991 		if (sblock_bad->generation_error)
992 			btrfs_dev_stat_inc_and_print(dev,
993 				BTRFS_DEV_STAT_GENERATION_ERRS);
994 		else
995 			btrfs_dev_stat_inc_and_print(dev,
996 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
997 	}
998 
999 	if (sctx->readonly) {
1000 		ASSERT(!sctx->is_dev_replace);
1001 		goto out;
1002 	}
1003 
1004 	/*
1005 	 * now build and submit the bios for the other mirrors, check
1006 	 * checksums.
1007 	 * First try to pick the mirror which is completely without I/O
1008 	 * errors and also does not have a checksum error.
1009 	 * If one is found, and if a checksum is present, the full block
1010 	 * that is known to contain an error is rewritten. Afterwards
1011 	 * the block is known to be corrected.
1012 	 * If a mirror is found which is completely correct, and no
1013 	 * checksum is present, only those pages are rewritten that had
1014 	 * an I/O error in the block to be repaired, since it cannot be
1015 	 * determined, which copy of the other pages is better (and it
1016 	 * could happen otherwise that a correct page would be
1017 	 * overwritten by a bad one).
1018 	 */
1019 	for (mirror_index = 0; ;mirror_index++) {
1020 		struct scrub_block *sblock_other;
1021 
1022 		if (mirror_index == failed_mirror_index)
1023 			continue;
1024 
1025 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1026 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1027 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1028 				break;
1029 			if (!sblocks_for_recheck[mirror_index].page_count)
1030 				break;
1031 
1032 			sblock_other = sblocks_for_recheck + mirror_index;
1033 		} else {
1034 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1035 			int max_allowed = r->bbio->num_stripes -
1036 						r->bbio->num_tgtdevs;
1037 
1038 			if (mirror_index >= max_allowed)
1039 				break;
1040 			if (!sblocks_for_recheck[1].page_count)
1041 				break;
1042 
1043 			ASSERT(failed_mirror_index == 0);
1044 			sblock_other = sblocks_for_recheck + 1;
1045 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1046 		}
1047 
1048 		/* build and submit the bios, check checksums */
1049 		scrub_recheck_block(fs_info, sblock_other, 0);
1050 
1051 		if (!sblock_other->header_error &&
1052 		    !sblock_other->checksum_error &&
1053 		    sblock_other->no_io_error_seen) {
1054 			if (sctx->is_dev_replace) {
1055 				scrub_write_block_to_dev_replace(sblock_other);
1056 				goto corrected_error;
1057 			} else {
1058 				ret = scrub_repair_block_from_good_copy(
1059 						sblock_bad, sblock_other);
1060 				if (!ret)
1061 					goto corrected_error;
1062 			}
1063 		}
1064 	}
1065 
1066 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1067 		goto did_not_correct_error;
1068 
1069 	/*
1070 	 * In case of I/O errors in the area that is supposed to be
1071 	 * repaired, continue by picking good copies of those pages.
1072 	 * Select the good pages from mirrors to rewrite bad pages from
1073 	 * the area to fix. Afterwards verify the checksum of the block
1074 	 * that is supposed to be repaired. This verification step is
1075 	 * only done for the purpose of statistic counting and for the
1076 	 * final scrub report, whether errors remain.
1077 	 * A perfect algorithm could make use of the checksum and try
1078 	 * all possible combinations of pages from the different mirrors
1079 	 * until the checksum verification succeeds. For example, when
1080 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081 	 * of mirror #2 is readable but the final checksum test fails,
1082 	 * then the 2nd page of mirror #3 could be tried, whether now
1083 	 * the final checksum succeeds. But this would be a rare
1084 	 * exception and is therefore not implemented. At least it is
1085 	 * avoided that the good copy is overwritten.
1086 	 * A more useful improvement would be to pick the sectors
1087 	 * without I/O error based on sector sizes (512 bytes on legacy
1088 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089 	 * mirror could be repaired by taking 512 byte of a different
1090 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091 	 * area are unreadable.
1092 	 */
1093 	success = 1;
1094 	for (page_num = 0; page_num < sblock_bad->page_count;
1095 	     page_num++) {
1096 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1097 		struct scrub_block *sblock_other = NULL;
1098 
1099 		/* skip no-io-error page in scrub */
1100 		if (!page_bad->io_error && !sctx->is_dev_replace)
1101 			continue;
1102 
1103 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1104 			/*
1105 			 * In case of dev replace, if raid56 rebuild process
1106 			 * didn't work out correct data, then copy the content
1107 			 * in sblock_bad to make sure target device is identical
1108 			 * to source device, instead of writing garbage data in
1109 			 * sblock_for_recheck array to target device.
1110 			 */
1111 			sblock_other = NULL;
1112 		} else if (page_bad->io_error) {
1113 			/* try to find no-io-error page in mirrors */
1114 			for (mirror_index = 0;
1115 			     mirror_index < BTRFS_MAX_MIRRORS &&
1116 			     sblocks_for_recheck[mirror_index].page_count > 0;
1117 			     mirror_index++) {
1118 				if (!sblocks_for_recheck[mirror_index].
1119 				    pagev[page_num]->io_error) {
1120 					sblock_other = sblocks_for_recheck +
1121 						       mirror_index;
1122 					break;
1123 				}
1124 			}
1125 			if (!sblock_other)
1126 				success = 0;
1127 		}
1128 
1129 		if (sctx->is_dev_replace) {
1130 			/*
1131 			 * did not find a mirror to fetch the page
1132 			 * from. scrub_write_page_to_dev_replace()
1133 			 * handles this case (page->io_error), by
1134 			 * filling the block with zeros before
1135 			 * submitting the write request
1136 			 */
1137 			if (!sblock_other)
1138 				sblock_other = sblock_bad;
1139 
1140 			if (scrub_write_page_to_dev_replace(sblock_other,
1141 							    page_num) != 0) {
1142 				atomic64_inc(
1143 					&fs_info->dev_replace.num_write_errors);
1144 				success = 0;
1145 			}
1146 		} else if (sblock_other) {
1147 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1148 							       sblock_other,
1149 							       page_num, 0);
1150 			if (0 == ret)
1151 				page_bad->io_error = 0;
1152 			else
1153 				success = 0;
1154 		}
1155 	}
1156 
1157 	if (success && !sctx->is_dev_replace) {
1158 		if (is_metadata || have_csum) {
1159 			/*
1160 			 * need to verify the checksum now that all
1161 			 * sectors on disk are repaired (the write
1162 			 * request for data to be repaired is on its way).
1163 			 * Just be lazy and use scrub_recheck_block()
1164 			 * which re-reads the data before the checksum
1165 			 * is verified, but most likely the data comes out
1166 			 * of the page cache.
1167 			 */
1168 			scrub_recheck_block(fs_info, sblock_bad, 1);
1169 			if (!sblock_bad->header_error &&
1170 			    !sblock_bad->checksum_error &&
1171 			    sblock_bad->no_io_error_seen)
1172 				goto corrected_error;
1173 			else
1174 				goto did_not_correct_error;
1175 		} else {
1176 corrected_error:
1177 			spin_lock(&sctx->stat_lock);
1178 			sctx->stat.corrected_errors++;
1179 			sblock_to_check->data_corrected = 1;
1180 			spin_unlock(&sctx->stat_lock);
1181 			btrfs_err_rl_in_rcu(fs_info,
1182 				"fixed up error at logical %llu on dev %s",
1183 				logical, rcu_str_deref(dev->name));
1184 		}
1185 	} else {
1186 did_not_correct_error:
1187 		spin_lock(&sctx->stat_lock);
1188 		sctx->stat.uncorrectable_errors++;
1189 		spin_unlock(&sctx->stat_lock);
1190 		btrfs_err_rl_in_rcu(fs_info,
1191 			"unable to fixup (regular) error at logical %llu on dev %s",
1192 			logical, rcu_str_deref(dev->name));
1193 	}
1194 
1195 out:
1196 	if (sblocks_for_recheck) {
1197 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1198 		     mirror_index++) {
1199 			struct scrub_block *sblock = sblocks_for_recheck +
1200 						     mirror_index;
1201 			struct scrub_recover *recover;
1202 			int page_index;
1203 
1204 			for (page_index = 0; page_index < sblock->page_count;
1205 			     page_index++) {
1206 				sblock->pagev[page_index]->sblock = NULL;
1207 				recover = sblock->pagev[page_index]->recover;
1208 				if (recover) {
1209 					scrub_put_recover(fs_info, recover);
1210 					sblock->pagev[page_index]->recover =
1211 									NULL;
1212 				}
1213 				scrub_page_put(sblock->pagev[page_index]);
1214 			}
1215 		}
1216 		kfree(sblocks_for_recheck);
1217 	}
1218 
1219 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1220 	memalloc_nofs_restore(nofs_flag);
1221 	if (ret < 0)
1222 		return ret;
1223 	return 0;
1224 }
1225 
1226 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1227 {
1228 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1229 		return 2;
1230 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1231 		return 3;
1232 	else
1233 		return (int)bbio->num_stripes;
1234 }
1235 
1236 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1237 						 u64 *raid_map,
1238 						 u64 mapped_length,
1239 						 int nstripes, int mirror,
1240 						 int *stripe_index,
1241 						 u64 *stripe_offset)
1242 {
1243 	int i;
1244 
1245 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1246 		/* RAID5/6 */
1247 		for (i = 0; i < nstripes; i++) {
1248 			if (raid_map[i] == RAID6_Q_STRIPE ||
1249 			    raid_map[i] == RAID5_P_STRIPE)
1250 				continue;
1251 
1252 			if (logical >= raid_map[i] &&
1253 			    logical < raid_map[i] + mapped_length)
1254 				break;
1255 		}
1256 
1257 		*stripe_index = i;
1258 		*stripe_offset = logical - raid_map[i];
1259 	} else {
1260 		/* The other RAID type */
1261 		*stripe_index = mirror;
1262 		*stripe_offset = 0;
1263 	}
1264 }
1265 
1266 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1267 				     struct scrub_block *sblocks_for_recheck)
1268 {
1269 	struct scrub_ctx *sctx = original_sblock->sctx;
1270 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1271 	u64 length = original_sblock->page_count * PAGE_SIZE;
1272 	u64 logical = original_sblock->pagev[0]->logical;
1273 	u64 generation = original_sblock->pagev[0]->generation;
1274 	u64 flags = original_sblock->pagev[0]->flags;
1275 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1276 	struct scrub_recover *recover;
1277 	struct btrfs_bio *bbio;
1278 	u64 sublen;
1279 	u64 mapped_length;
1280 	u64 stripe_offset;
1281 	int stripe_index;
1282 	int page_index = 0;
1283 	int mirror_index;
1284 	int nmirrors;
1285 	int ret;
1286 
1287 	/*
1288 	 * note: the two members refs and outstanding_pages
1289 	 * are not used (and not set) in the blocks that are used for
1290 	 * the recheck procedure
1291 	 */
1292 
1293 	while (length > 0) {
1294 		sublen = min_t(u64, length, PAGE_SIZE);
1295 		mapped_length = sublen;
1296 		bbio = NULL;
1297 
1298 		/*
1299 		 * with a length of PAGE_SIZE, each returned stripe
1300 		 * represents one mirror
1301 		 */
1302 		btrfs_bio_counter_inc_blocked(fs_info);
1303 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1304 				logical, &mapped_length, &bbio);
1305 		if (ret || !bbio || mapped_length < sublen) {
1306 			btrfs_put_bbio(bbio);
1307 			btrfs_bio_counter_dec(fs_info);
1308 			return -EIO;
1309 		}
1310 
1311 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1312 		if (!recover) {
1313 			btrfs_put_bbio(bbio);
1314 			btrfs_bio_counter_dec(fs_info);
1315 			return -ENOMEM;
1316 		}
1317 
1318 		refcount_set(&recover->refs, 1);
1319 		recover->bbio = bbio;
1320 		recover->map_length = mapped_length;
1321 
1322 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1323 
1324 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1325 
1326 		for (mirror_index = 0; mirror_index < nmirrors;
1327 		     mirror_index++) {
1328 			struct scrub_block *sblock;
1329 			struct scrub_page *page;
1330 
1331 			sblock = sblocks_for_recheck + mirror_index;
1332 			sblock->sctx = sctx;
1333 
1334 			page = kzalloc(sizeof(*page), GFP_NOFS);
1335 			if (!page) {
1336 leave_nomem:
1337 				spin_lock(&sctx->stat_lock);
1338 				sctx->stat.malloc_errors++;
1339 				spin_unlock(&sctx->stat_lock);
1340 				scrub_put_recover(fs_info, recover);
1341 				return -ENOMEM;
1342 			}
1343 			scrub_page_get(page);
1344 			sblock->pagev[page_index] = page;
1345 			page->sblock = sblock;
1346 			page->flags = flags;
1347 			page->generation = generation;
1348 			page->logical = logical;
1349 			page->have_csum = have_csum;
1350 			if (have_csum)
1351 				memcpy(page->csum,
1352 				       original_sblock->pagev[0]->csum,
1353 				       sctx->csum_size);
1354 
1355 			scrub_stripe_index_and_offset(logical,
1356 						      bbio->map_type,
1357 						      bbio->raid_map,
1358 						      mapped_length,
1359 						      bbio->num_stripes -
1360 						      bbio->num_tgtdevs,
1361 						      mirror_index,
1362 						      &stripe_index,
1363 						      &stripe_offset);
1364 			page->physical = bbio->stripes[stripe_index].physical +
1365 					 stripe_offset;
1366 			page->dev = bbio->stripes[stripe_index].dev;
1367 
1368 			BUG_ON(page_index >= original_sblock->page_count);
1369 			page->physical_for_dev_replace =
1370 				original_sblock->pagev[page_index]->
1371 				physical_for_dev_replace;
1372 			/* for missing devices, dev->bdev is NULL */
1373 			page->mirror_num = mirror_index + 1;
1374 			sblock->page_count++;
1375 			page->page = alloc_page(GFP_NOFS);
1376 			if (!page->page)
1377 				goto leave_nomem;
1378 
1379 			scrub_get_recover(recover);
1380 			page->recover = recover;
1381 		}
1382 		scrub_put_recover(fs_info, recover);
1383 		length -= sublen;
1384 		logical += sublen;
1385 		page_index++;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static void scrub_bio_wait_endio(struct bio *bio)
1392 {
1393 	complete(bio->bi_private);
1394 }
1395 
1396 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1397 					struct bio *bio,
1398 					struct scrub_page *page)
1399 {
1400 	DECLARE_COMPLETION_ONSTACK(done);
1401 	int ret;
1402 	int mirror_num;
1403 
1404 	bio->bi_iter.bi_sector = page->logical >> 9;
1405 	bio->bi_private = &done;
1406 	bio->bi_end_io = scrub_bio_wait_endio;
1407 
1408 	mirror_num = page->sblock->pagev[0]->mirror_num;
1409 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1410 				    page->recover->map_length,
1411 				    mirror_num, 0);
1412 	if (ret)
1413 		return ret;
1414 
1415 	wait_for_completion_io(&done);
1416 	return blk_status_to_errno(bio->bi_status);
1417 }
1418 
1419 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1420 					  struct scrub_block *sblock)
1421 {
1422 	struct scrub_page *first_page = sblock->pagev[0];
1423 	struct bio *bio;
1424 	int page_num;
1425 
1426 	/* All pages in sblock belong to the same stripe on the same device. */
1427 	ASSERT(first_page->dev);
1428 	if (!first_page->dev->bdev)
1429 		goto out;
1430 
1431 	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1432 	bio_set_dev(bio, first_page->dev->bdev);
1433 
1434 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1435 		struct scrub_page *page = sblock->pagev[page_num];
1436 
1437 		WARN_ON(!page->page);
1438 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1439 	}
1440 
1441 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1442 		bio_put(bio);
1443 		goto out;
1444 	}
1445 
1446 	bio_put(bio);
1447 
1448 	scrub_recheck_block_checksum(sblock);
1449 
1450 	return;
1451 out:
1452 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1453 		sblock->pagev[page_num]->io_error = 1;
1454 
1455 	sblock->no_io_error_seen = 0;
1456 }
1457 
1458 /*
1459  * this function will check the on disk data for checksum errors, header
1460  * errors and read I/O errors. If any I/O errors happen, the exact pages
1461  * which are errored are marked as being bad. The goal is to enable scrub
1462  * to take those pages that are not errored from all the mirrors so that
1463  * the pages that are errored in the just handled mirror can be repaired.
1464  */
1465 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1466 				struct scrub_block *sblock,
1467 				int retry_failed_mirror)
1468 {
1469 	int page_num;
1470 
1471 	sblock->no_io_error_seen = 1;
1472 
1473 	/* short cut for raid56 */
1474 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1475 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1476 
1477 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1478 		struct bio *bio;
1479 		struct scrub_page *page = sblock->pagev[page_num];
1480 
1481 		if (page->dev->bdev == NULL) {
1482 			page->io_error = 1;
1483 			sblock->no_io_error_seen = 0;
1484 			continue;
1485 		}
1486 
1487 		WARN_ON(!page->page);
1488 		bio = btrfs_io_bio_alloc(1);
1489 		bio_set_dev(bio, page->dev->bdev);
1490 
1491 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1492 		bio->bi_iter.bi_sector = page->physical >> 9;
1493 		bio->bi_opf = REQ_OP_READ;
1494 
1495 		if (btrfsic_submit_bio_wait(bio)) {
1496 			page->io_error = 1;
1497 			sblock->no_io_error_seen = 0;
1498 		}
1499 
1500 		bio_put(bio);
1501 	}
1502 
1503 	if (sblock->no_io_error_seen)
1504 		scrub_recheck_block_checksum(sblock);
1505 }
1506 
1507 static inline int scrub_check_fsid(u8 fsid[],
1508 				   struct scrub_page *spage)
1509 {
1510 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1511 	int ret;
1512 
1513 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1514 	return !ret;
1515 }
1516 
1517 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1518 {
1519 	sblock->header_error = 0;
1520 	sblock->checksum_error = 0;
1521 	sblock->generation_error = 0;
1522 
1523 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1524 		scrub_checksum_data(sblock);
1525 	else
1526 		scrub_checksum_tree_block(sblock);
1527 }
1528 
1529 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1530 					     struct scrub_block *sblock_good)
1531 {
1532 	int page_num;
1533 	int ret = 0;
1534 
1535 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1536 		int ret_sub;
1537 
1538 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1539 							   sblock_good,
1540 							   page_num, 1);
1541 		if (ret_sub)
1542 			ret = ret_sub;
1543 	}
1544 
1545 	return ret;
1546 }
1547 
1548 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1549 					    struct scrub_block *sblock_good,
1550 					    int page_num, int force_write)
1551 {
1552 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1553 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1554 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1555 
1556 	BUG_ON(page_bad->page == NULL);
1557 	BUG_ON(page_good->page == NULL);
1558 	if (force_write || sblock_bad->header_error ||
1559 	    sblock_bad->checksum_error || page_bad->io_error) {
1560 		struct bio *bio;
1561 		int ret;
1562 
1563 		if (!page_bad->dev->bdev) {
1564 			btrfs_warn_rl(fs_info,
1565 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1566 			return -EIO;
1567 		}
1568 
1569 		bio = btrfs_io_bio_alloc(1);
1570 		bio_set_dev(bio, page_bad->dev->bdev);
1571 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1572 		bio->bi_opf = REQ_OP_WRITE;
1573 
1574 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1575 		if (PAGE_SIZE != ret) {
1576 			bio_put(bio);
1577 			return -EIO;
1578 		}
1579 
1580 		if (btrfsic_submit_bio_wait(bio)) {
1581 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1582 				BTRFS_DEV_STAT_WRITE_ERRS);
1583 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1584 			bio_put(bio);
1585 			return -EIO;
1586 		}
1587 		bio_put(bio);
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1594 {
1595 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1596 	int page_num;
1597 
1598 	/*
1599 	 * This block is used for the check of the parity on the source device,
1600 	 * so the data needn't be written into the destination device.
1601 	 */
1602 	if (sblock->sparity)
1603 		return;
1604 
1605 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1606 		int ret;
1607 
1608 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1609 		if (ret)
1610 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1611 	}
1612 }
1613 
1614 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1615 					   int page_num)
1616 {
1617 	struct scrub_page *spage = sblock->pagev[page_num];
1618 
1619 	BUG_ON(spage->page == NULL);
1620 	if (spage->io_error) {
1621 		void *mapped_buffer = kmap_atomic(spage->page);
1622 
1623 		clear_page(mapped_buffer);
1624 		flush_dcache_page(spage->page);
1625 		kunmap_atomic(mapped_buffer);
1626 	}
1627 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1628 }
1629 
1630 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1631 				    struct scrub_page *spage)
1632 {
1633 	struct scrub_bio *sbio;
1634 	int ret;
1635 
1636 	mutex_lock(&sctx->wr_lock);
1637 again:
1638 	if (!sctx->wr_curr_bio) {
1639 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1640 					      GFP_KERNEL);
1641 		if (!sctx->wr_curr_bio) {
1642 			mutex_unlock(&sctx->wr_lock);
1643 			return -ENOMEM;
1644 		}
1645 		sctx->wr_curr_bio->sctx = sctx;
1646 		sctx->wr_curr_bio->page_count = 0;
1647 	}
1648 	sbio = sctx->wr_curr_bio;
1649 	if (sbio->page_count == 0) {
1650 		struct bio *bio;
1651 
1652 		sbio->physical = spage->physical_for_dev_replace;
1653 		sbio->logical = spage->logical;
1654 		sbio->dev = sctx->wr_tgtdev;
1655 		bio = sbio->bio;
1656 		if (!bio) {
1657 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1658 			sbio->bio = bio;
1659 		}
1660 
1661 		bio->bi_private = sbio;
1662 		bio->bi_end_io = scrub_wr_bio_end_io;
1663 		bio_set_dev(bio, sbio->dev->bdev);
1664 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1665 		bio->bi_opf = REQ_OP_WRITE;
1666 		sbio->status = 0;
1667 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1668 		   spage->physical_for_dev_replace ||
1669 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1670 		   spage->logical) {
1671 		scrub_wr_submit(sctx);
1672 		goto again;
1673 	}
1674 
1675 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1676 	if (ret != PAGE_SIZE) {
1677 		if (sbio->page_count < 1) {
1678 			bio_put(sbio->bio);
1679 			sbio->bio = NULL;
1680 			mutex_unlock(&sctx->wr_lock);
1681 			return -EIO;
1682 		}
1683 		scrub_wr_submit(sctx);
1684 		goto again;
1685 	}
1686 
1687 	sbio->pagev[sbio->page_count] = spage;
1688 	scrub_page_get(spage);
1689 	sbio->page_count++;
1690 	if (sbio->page_count == sctx->pages_per_wr_bio)
1691 		scrub_wr_submit(sctx);
1692 	mutex_unlock(&sctx->wr_lock);
1693 
1694 	return 0;
1695 }
1696 
1697 static void scrub_wr_submit(struct scrub_ctx *sctx)
1698 {
1699 	struct scrub_bio *sbio;
1700 
1701 	if (!sctx->wr_curr_bio)
1702 		return;
1703 
1704 	sbio = sctx->wr_curr_bio;
1705 	sctx->wr_curr_bio = NULL;
1706 	WARN_ON(!sbio->bio->bi_disk);
1707 	scrub_pending_bio_inc(sctx);
1708 	/* process all writes in a single worker thread. Then the block layer
1709 	 * orders the requests before sending them to the driver which
1710 	 * doubled the write performance on spinning disks when measured
1711 	 * with Linux 3.5 */
1712 	btrfsic_submit_bio(sbio->bio);
1713 }
1714 
1715 static void scrub_wr_bio_end_io(struct bio *bio)
1716 {
1717 	struct scrub_bio *sbio = bio->bi_private;
1718 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1719 
1720 	sbio->status = bio->bi_status;
1721 	sbio->bio = bio;
1722 
1723 	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1724 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1725 }
1726 
1727 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1728 {
1729 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1730 	struct scrub_ctx *sctx = sbio->sctx;
1731 	int i;
1732 
1733 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1734 	if (sbio->status) {
1735 		struct btrfs_dev_replace *dev_replace =
1736 			&sbio->sctx->fs_info->dev_replace;
1737 
1738 		for (i = 0; i < sbio->page_count; i++) {
1739 			struct scrub_page *spage = sbio->pagev[i];
1740 
1741 			spage->io_error = 1;
1742 			atomic64_inc(&dev_replace->num_write_errors);
1743 		}
1744 	}
1745 
1746 	for (i = 0; i < sbio->page_count; i++)
1747 		scrub_page_put(sbio->pagev[i]);
1748 
1749 	bio_put(sbio->bio);
1750 	kfree(sbio);
1751 	scrub_pending_bio_dec(sctx);
1752 }
1753 
1754 static int scrub_checksum(struct scrub_block *sblock)
1755 {
1756 	u64 flags;
1757 	int ret;
1758 
1759 	/*
1760 	 * No need to initialize these stats currently,
1761 	 * because this function only use return value
1762 	 * instead of these stats value.
1763 	 *
1764 	 * Todo:
1765 	 * always use stats
1766 	 */
1767 	sblock->header_error = 0;
1768 	sblock->generation_error = 0;
1769 	sblock->checksum_error = 0;
1770 
1771 	WARN_ON(sblock->page_count < 1);
1772 	flags = sblock->pagev[0]->flags;
1773 	ret = 0;
1774 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1775 		ret = scrub_checksum_data(sblock);
1776 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1777 		ret = scrub_checksum_tree_block(sblock);
1778 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1779 		(void)scrub_checksum_super(sblock);
1780 	else
1781 		WARN_ON(1);
1782 	if (ret)
1783 		scrub_handle_errored_block(sblock);
1784 
1785 	return ret;
1786 }
1787 
1788 static int scrub_checksum_data(struct scrub_block *sblock)
1789 {
1790 	struct scrub_ctx *sctx = sblock->sctx;
1791 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1792 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1793 	u8 csum[BTRFS_CSUM_SIZE];
1794 	u8 *on_disk_csum;
1795 	struct page *page;
1796 	void *buffer;
1797 	u64 len;
1798 	int index;
1799 
1800 	BUG_ON(sblock->page_count < 1);
1801 	if (!sblock->pagev[0]->have_csum)
1802 		return 0;
1803 
1804 	shash->tfm = fs_info->csum_shash;
1805 	crypto_shash_init(shash);
1806 
1807 	on_disk_csum = sblock->pagev[0]->csum;
1808 	page = sblock->pagev[0]->page;
1809 	buffer = kmap_atomic(page);
1810 
1811 	len = sctx->fs_info->sectorsize;
1812 	index = 0;
1813 	for (;;) {
1814 		u64 l = min_t(u64, len, PAGE_SIZE);
1815 
1816 		crypto_shash_update(shash, buffer, l);
1817 		kunmap_atomic(buffer);
1818 		len -= l;
1819 		if (len == 0)
1820 			break;
1821 		index++;
1822 		BUG_ON(index >= sblock->page_count);
1823 		BUG_ON(!sblock->pagev[index]->page);
1824 		page = sblock->pagev[index]->page;
1825 		buffer = kmap_atomic(page);
1826 	}
1827 
1828 	crypto_shash_final(shash, csum);
1829 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1830 		sblock->checksum_error = 1;
1831 
1832 	return sblock->checksum_error;
1833 }
1834 
1835 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1836 {
1837 	struct scrub_ctx *sctx = sblock->sctx;
1838 	struct btrfs_header *h;
1839 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1840 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1841 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1842 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1843 	struct page *page;
1844 	void *mapped_buffer;
1845 	u64 mapped_size;
1846 	void *p;
1847 	u64 len;
1848 	int index;
1849 
1850 	shash->tfm = fs_info->csum_shash;
1851 	crypto_shash_init(shash);
1852 
1853 	BUG_ON(sblock->page_count < 1);
1854 	page = sblock->pagev[0]->page;
1855 	mapped_buffer = kmap_atomic(page);
1856 	h = (struct btrfs_header *)mapped_buffer;
1857 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1858 
1859 	/*
1860 	 * we don't use the getter functions here, as we
1861 	 * a) don't have an extent buffer and
1862 	 * b) the page is already kmapped
1863 	 */
1864 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1865 		sblock->header_error = 1;
1866 
1867 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1868 		sblock->header_error = 1;
1869 		sblock->generation_error = 1;
1870 	}
1871 
1872 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1873 		sblock->header_error = 1;
1874 
1875 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1876 		   BTRFS_UUID_SIZE))
1877 		sblock->header_error = 1;
1878 
1879 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1880 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1881 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1882 	index = 0;
1883 	for (;;) {
1884 		u64 l = min_t(u64, len, mapped_size);
1885 
1886 		crypto_shash_update(shash, p, l);
1887 		kunmap_atomic(mapped_buffer);
1888 		len -= l;
1889 		if (len == 0)
1890 			break;
1891 		index++;
1892 		BUG_ON(index >= sblock->page_count);
1893 		BUG_ON(!sblock->pagev[index]->page);
1894 		page = sblock->pagev[index]->page;
1895 		mapped_buffer = kmap_atomic(page);
1896 		mapped_size = PAGE_SIZE;
1897 		p = mapped_buffer;
1898 	}
1899 
1900 	crypto_shash_final(shash, calculated_csum);
1901 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1902 		sblock->checksum_error = 1;
1903 
1904 	return sblock->header_error || sblock->checksum_error;
1905 }
1906 
1907 static int scrub_checksum_super(struct scrub_block *sblock)
1908 {
1909 	struct btrfs_super_block *s;
1910 	struct scrub_ctx *sctx = sblock->sctx;
1911 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1912 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1913 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1914 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1915 	struct page *page;
1916 	void *mapped_buffer;
1917 	u64 mapped_size;
1918 	void *p;
1919 	int fail_gen = 0;
1920 	int fail_cor = 0;
1921 	u64 len;
1922 	int index;
1923 
1924 	shash->tfm = fs_info->csum_shash;
1925 	crypto_shash_init(shash);
1926 
1927 	BUG_ON(sblock->page_count < 1);
1928 	page = sblock->pagev[0]->page;
1929 	mapped_buffer = kmap_atomic(page);
1930 	s = (struct btrfs_super_block *)mapped_buffer;
1931 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1932 
1933 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1934 		++fail_cor;
1935 
1936 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1937 		++fail_gen;
1938 
1939 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1940 		++fail_cor;
1941 
1942 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1943 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1944 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1945 	index = 0;
1946 	for (;;) {
1947 		u64 l = min_t(u64, len, mapped_size);
1948 
1949 		crypto_shash_update(shash, p, l);
1950 		kunmap_atomic(mapped_buffer);
1951 		len -= l;
1952 		if (len == 0)
1953 			break;
1954 		index++;
1955 		BUG_ON(index >= sblock->page_count);
1956 		BUG_ON(!sblock->pagev[index]->page);
1957 		page = sblock->pagev[index]->page;
1958 		mapped_buffer = kmap_atomic(page);
1959 		mapped_size = PAGE_SIZE;
1960 		p = mapped_buffer;
1961 	}
1962 
1963 	crypto_shash_final(shash, calculated_csum);
1964 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1965 		++fail_cor;
1966 
1967 	if (fail_cor + fail_gen) {
1968 		/*
1969 		 * if we find an error in a super block, we just report it.
1970 		 * They will get written with the next transaction commit
1971 		 * anyway
1972 		 */
1973 		spin_lock(&sctx->stat_lock);
1974 		++sctx->stat.super_errors;
1975 		spin_unlock(&sctx->stat_lock);
1976 		if (fail_cor)
1977 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1978 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1979 		else
1980 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1981 				BTRFS_DEV_STAT_GENERATION_ERRS);
1982 	}
1983 
1984 	return fail_cor + fail_gen;
1985 }
1986 
1987 static void scrub_block_get(struct scrub_block *sblock)
1988 {
1989 	refcount_inc(&sblock->refs);
1990 }
1991 
1992 static void scrub_block_put(struct scrub_block *sblock)
1993 {
1994 	if (refcount_dec_and_test(&sblock->refs)) {
1995 		int i;
1996 
1997 		if (sblock->sparity)
1998 			scrub_parity_put(sblock->sparity);
1999 
2000 		for (i = 0; i < sblock->page_count; i++)
2001 			scrub_page_put(sblock->pagev[i]);
2002 		kfree(sblock);
2003 	}
2004 }
2005 
2006 static void scrub_page_get(struct scrub_page *spage)
2007 {
2008 	atomic_inc(&spage->refs);
2009 }
2010 
2011 static void scrub_page_put(struct scrub_page *spage)
2012 {
2013 	if (atomic_dec_and_test(&spage->refs)) {
2014 		if (spage->page)
2015 			__free_page(spage->page);
2016 		kfree(spage);
2017 	}
2018 }
2019 
2020 static void scrub_submit(struct scrub_ctx *sctx)
2021 {
2022 	struct scrub_bio *sbio;
2023 
2024 	if (sctx->curr == -1)
2025 		return;
2026 
2027 	sbio = sctx->bios[sctx->curr];
2028 	sctx->curr = -1;
2029 	scrub_pending_bio_inc(sctx);
2030 	btrfsic_submit_bio(sbio->bio);
2031 }
2032 
2033 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2034 				    struct scrub_page *spage)
2035 {
2036 	struct scrub_block *sblock = spage->sblock;
2037 	struct scrub_bio *sbio;
2038 	int ret;
2039 
2040 again:
2041 	/*
2042 	 * grab a fresh bio or wait for one to become available
2043 	 */
2044 	while (sctx->curr == -1) {
2045 		spin_lock(&sctx->list_lock);
2046 		sctx->curr = sctx->first_free;
2047 		if (sctx->curr != -1) {
2048 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2049 			sctx->bios[sctx->curr]->next_free = -1;
2050 			sctx->bios[sctx->curr]->page_count = 0;
2051 			spin_unlock(&sctx->list_lock);
2052 		} else {
2053 			spin_unlock(&sctx->list_lock);
2054 			wait_event(sctx->list_wait, sctx->first_free != -1);
2055 		}
2056 	}
2057 	sbio = sctx->bios[sctx->curr];
2058 	if (sbio->page_count == 0) {
2059 		struct bio *bio;
2060 
2061 		sbio->physical = spage->physical;
2062 		sbio->logical = spage->logical;
2063 		sbio->dev = spage->dev;
2064 		bio = sbio->bio;
2065 		if (!bio) {
2066 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2067 			sbio->bio = bio;
2068 		}
2069 
2070 		bio->bi_private = sbio;
2071 		bio->bi_end_io = scrub_bio_end_io;
2072 		bio_set_dev(bio, sbio->dev->bdev);
2073 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2074 		bio->bi_opf = REQ_OP_READ;
2075 		sbio->status = 0;
2076 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2077 		   spage->physical ||
2078 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2079 		   spage->logical ||
2080 		   sbio->dev != spage->dev) {
2081 		scrub_submit(sctx);
2082 		goto again;
2083 	}
2084 
2085 	sbio->pagev[sbio->page_count] = spage;
2086 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2087 	if (ret != PAGE_SIZE) {
2088 		if (sbio->page_count < 1) {
2089 			bio_put(sbio->bio);
2090 			sbio->bio = NULL;
2091 			return -EIO;
2092 		}
2093 		scrub_submit(sctx);
2094 		goto again;
2095 	}
2096 
2097 	scrub_block_get(sblock); /* one for the page added to the bio */
2098 	atomic_inc(&sblock->outstanding_pages);
2099 	sbio->page_count++;
2100 	if (sbio->page_count == sctx->pages_per_rd_bio)
2101 		scrub_submit(sctx);
2102 
2103 	return 0;
2104 }
2105 
2106 static void scrub_missing_raid56_end_io(struct bio *bio)
2107 {
2108 	struct scrub_block *sblock = bio->bi_private;
2109 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2110 
2111 	if (bio->bi_status)
2112 		sblock->no_io_error_seen = 0;
2113 
2114 	bio_put(bio);
2115 
2116 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2117 }
2118 
2119 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2120 {
2121 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2122 	struct scrub_ctx *sctx = sblock->sctx;
2123 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2124 	u64 logical;
2125 	struct btrfs_device *dev;
2126 
2127 	logical = sblock->pagev[0]->logical;
2128 	dev = sblock->pagev[0]->dev;
2129 
2130 	if (sblock->no_io_error_seen)
2131 		scrub_recheck_block_checksum(sblock);
2132 
2133 	if (!sblock->no_io_error_seen) {
2134 		spin_lock(&sctx->stat_lock);
2135 		sctx->stat.read_errors++;
2136 		spin_unlock(&sctx->stat_lock);
2137 		btrfs_err_rl_in_rcu(fs_info,
2138 			"IO error rebuilding logical %llu for dev %s",
2139 			logical, rcu_str_deref(dev->name));
2140 	} else if (sblock->header_error || sblock->checksum_error) {
2141 		spin_lock(&sctx->stat_lock);
2142 		sctx->stat.uncorrectable_errors++;
2143 		spin_unlock(&sctx->stat_lock);
2144 		btrfs_err_rl_in_rcu(fs_info,
2145 			"failed to rebuild valid logical %llu for dev %s",
2146 			logical, rcu_str_deref(dev->name));
2147 	} else {
2148 		scrub_write_block_to_dev_replace(sblock);
2149 	}
2150 
2151 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2152 		mutex_lock(&sctx->wr_lock);
2153 		scrub_wr_submit(sctx);
2154 		mutex_unlock(&sctx->wr_lock);
2155 	}
2156 
2157 	scrub_block_put(sblock);
2158 	scrub_pending_bio_dec(sctx);
2159 }
2160 
2161 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2162 {
2163 	struct scrub_ctx *sctx = sblock->sctx;
2164 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2165 	u64 length = sblock->page_count * PAGE_SIZE;
2166 	u64 logical = sblock->pagev[0]->logical;
2167 	struct btrfs_bio *bbio = NULL;
2168 	struct bio *bio;
2169 	struct btrfs_raid_bio *rbio;
2170 	int ret;
2171 	int i;
2172 
2173 	btrfs_bio_counter_inc_blocked(fs_info);
2174 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2175 			&length, &bbio);
2176 	if (ret || !bbio || !bbio->raid_map)
2177 		goto bbio_out;
2178 
2179 	if (WARN_ON(!sctx->is_dev_replace ||
2180 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2181 		/*
2182 		 * We shouldn't be scrubbing a missing device. Even for dev
2183 		 * replace, we should only get here for RAID 5/6. We either
2184 		 * managed to mount something with no mirrors remaining or
2185 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2186 		 */
2187 		goto bbio_out;
2188 	}
2189 
2190 	bio = btrfs_io_bio_alloc(0);
2191 	bio->bi_iter.bi_sector = logical >> 9;
2192 	bio->bi_private = sblock;
2193 	bio->bi_end_io = scrub_missing_raid56_end_io;
2194 
2195 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2196 	if (!rbio)
2197 		goto rbio_out;
2198 
2199 	for (i = 0; i < sblock->page_count; i++) {
2200 		struct scrub_page *spage = sblock->pagev[i];
2201 
2202 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2203 	}
2204 
2205 	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2206 	scrub_block_get(sblock);
2207 	scrub_pending_bio_inc(sctx);
2208 	raid56_submit_missing_rbio(rbio);
2209 	return;
2210 
2211 rbio_out:
2212 	bio_put(bio);
2213 bbio_out:
2214 	btrfs_bio_counter_dec(fs_info);
2215 	btrfs_put_bbio(bbio);
2216 	spin_lock(&sctx->stat_lock);
2217 	sctx->stat.malloc_errors++;
2218 	spin_unlock(&sctx->stat_lock);
2219 }
2220 
2221 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2222 		       u64 physical, struct btrfs_device *dev, u64 flags,
2223 		       u64 gen, int mirror_num, u8 *csum, int force,
2224 		       u64 physical_for_dev_replace)
2225 {
2226 	struct scrub_block *sblock;
2227 	int index;
2228 
2229 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2230 	if (!sblock) {
2231 		spin_lock(&sctx->stat_lock);
2232 		sctx->stat.malloc_errors++;
2233 		spin_unlock(&sctx->stat_lock);
2234 		return -ENOMEM;
2235 	}
2236 
2237 	/* one ref inside this function, plus one for each page added to
2238 	 * a bio later on */
2239 	refcount_set(&sblock->refs, 1);
2240 	sblock->sctx = sctx;
2241 	sblock->no_io_error_seen = 1;
2242 
2243 	for (index = 0; len > 0; index++) {
2244 		struct scrub_page *spage;
2245 		u64 l = min_t(u64, len, PAGE_SIZE);
2246 
2247 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2248 		if (!spage) {
2249 leave_nomem:
2250 			spin_lock(&sctx->stat_lock);
2251 			sctx->stat.malloc_errors++;
2252 			spin_unlock(&sctx->stat_lock);
2253 			scrub_block_put(sblock);
2254 			return -ENOMEM;
2255 		}
2256 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2257 		scrub_page_get(spage);
2258 		sblock->pagev[index] = spage;
2259 		spage->sblock = sblock;
2260 		spage->dev = dev;
2261 		spage->flags = flags;
2262 		spage->generation = gen;
2263 		spage->logical = logical;
2264 		spage->physical = physical;
2265 		spage->physical_for_dev_replace = physical_for_dev_replace;
2266 		spage->mirror_num = mirror_num;
2267 		if (csum) {
2268 			spage->have_csum = 1;
2269 			memcpy(spage->csum, csum, sctx->csum_size);
2270 		} else {
2271 			spage->have_csum = 0;
2272 		}
2273 		sblock->page_count++;
2274 		spage->page = alloc_page(GFP_KERNEL);
2275 		if (!spage->page)
2276 			goto leave_nomem;
2277 		len -= l;
2278 		logical += l;
2279 		physical += l;
2280 		physical_for_dev_replace += l;
2281 	}
2282 
2283 	WARN_ON(sblock->page_count == 0);
2284 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2285 		/*
2286 		 * This case should only be hit for RAID 5/6 device replace. See
2287 		 * the comment in scrub_missing_raid56_pages() for details.
2288 		 */
2289 		scrub_missing_raid56_pages(sblock);
2290 	} else {
2291 		for (index = 0; index < sblock->page_count; index++) {
2292 			struct scrub_page *spage = sblock->pagev[index];
2293 			int ret;
2294 
2295 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2296 			if (ret) {
2297 				scrub_block_put(sblock);
2298 				return ret;
2299 			}
2300 		}
2301 
2302 		if (force)
2303 			scrub_submit(sctx);
2304 	}
2305 
2306 	/* last one frees, either here or in bio completion for last page */
2307 	scrub_block_put(sblock);
2308 	return 0;
2309 }
2310 
2311 static void scrub_bio_end_io(struct bio *bio)
2312 {
2313 	struct scrub_bio *sbio = bio->bi_private;
2314 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2315 
2316 	sbio->status = bio->bi_status;
2317 	sbio->bio = bio;
2318 
2319 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2320 }
2321 
2322 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2323 {
2324 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2325 	struct scrub_ctx *sctx = sbio->sctx;
2326 	int i;
2327 
2328 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2329 	if (sbio->status) {
2330 		for (i = 0; i < sbio->page_count; i++) {
2331 			struct scrub_page *spage = sbio->pagev[i];
2332 
2333 			spage->io_error = 1;
2334 			spage->sblock->no_io_error_seen = 0;
2335 		}
2336 	}
2337 
2338 	/* now complete the scrub_block items that have all pages completed */
2339 	for (i = 0; i < sbio->page_count; i++) {
2340 		struct scrub_page *spage = sbio->pagev[i];
2341 		struct scrub_block *sblock = spage->sblock;
2342 
2343 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2344 			scrub_block_complete(sblock);
2345 		scrub_block_put(sblock);
2346 	}
2347 
2348 	bio_put(sbio->bio);
2349 	sbio->bio = NULL;
2350 	spin_lock(&sctx->list_lock);
2351 	sbio->next_free = sctx->first_free;
2352 	sctx->first_free = sbio->index;
2353 	spin_unlock(&sctx->list_lock);
2354 
2355 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2356 		mutex_lock(&sctx->wr_lock);
2357 		scrub_wr_submit(sctx);
2358 		mutex_unlock(&sctx->wr_lock);
2359 	}
2360 
2361 	scrub_pending_bio_dec(sctx);
2362 }
2363 
2364 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2365 				       unsigned long *bitmap,
2366 				       u64 start, u64 len)
2367 {
2368 	u64 offset;
2369 	u64 nsectors64;
2370 	u32 nsectors;
2371 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2372 
2373 	if (len >= sparity->stripe_len) {
2374 		bitmap_set(bitmap, 0, sparity->nsectors);
2375 		return;
2376 	}
2377 
2378 	start -= sparity->logic_start;
2379 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2380 	offset = div_u64(offset, sectorsize);
2381 	nsectors64 = div_u64(len, sectorsize);
2382 
2383 	ASSERT(nsectors64 < UINT_MAX);
2384 	nsectors = (u32)nsectors64;
2385 
2386 	if (offset + nsectors <= sparity->nsectors) {
2387 		bitmap_set(bitmap, offset, nsectors);
2388 		return;
2389 	}
2390 
2391 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2392 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2393 }
2394 
2395 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2396 						   u64 start, u64 len)
2397 {
2398 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2399 }
2400 
2401 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2402 						  u64 start, u64 len)
2403 {
2404 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2405 }
2406 
2407 static void scrub_block_complete(struct scrub_block *sblock)
2408 {
2409 	int corrupted = 0;
2410 
2411 	if (!sblock->no_io_error_seen) {
2412 		corrupted = 1;
2413 		scrub_handle_errored_block(sblock);
2414 	} else {
2415 		/*
2416 		 * if has checksum error, write via repair mechanism in
2417 		 * dev replace case, otherwise write here in dev replace
2418 		 * case.
2419 		 */
2420 		corrupted = scrub_checksum(sblock);
2421 		if (!corrupted && sblock->sctx->is_dev_replace)
2422 			scrub_write_block_to_dev_replace(sblock);
2423 	}
2424 
2425 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2426 		u64 start = sblock->pagev[0]->logical;
2427 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2428 			  PAGE_SIZE;
2429 
2430 		scrub_parity_mark_sectors_error(sblock->sparity,
2431 						start, end - start);
2432 	}
2433 }
2434 
2435 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2436 {
2437 	struct btrfs_ordered_sum *sum = NULL;
2438 	unsigned long index;
2439 	unsigned long num_sectors;
2440 
2441 	while (!list_empty(&sctx->csum_list)) {
2442 		sum = list_first_entry(&sctx->csum_list,
2443 				       struct btrfs_ordered_sum, list);
2444 		if (sum->bytenr > logical)
2445 			return 0;
2446 		if (sum->bytenr + sum->len > logical)
2447 			break;
2448 
2449 		++sctx->stat.csum_discards;
2450 		list_del(&sum->list);
2451 		kfree(sum);
2452 		sum = NULL;
2453 	}
2454 	if (!sum)
2455 		return 0;
2456 
2457 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2458 	ASSERT(index < UINT_MAX);
2459 
2460 	num_sectors = sum->len / sctx->fs_info->sectorsize;
2461 	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2462 	if (index == num_sectors - 1) {
2463 		list_del(&sum->list);
2464 		kfree(sum);
2465 	}
2466 	return 1;
2467 }
2468 
2469 /* scrub extent tries to collect up to 64 kB for each bio */
2470 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2471 			u64 logical, u64 len,
2472 			u64 physical, struct btrfs_device *dev, u64 flags,
2473 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2474 {
2475 	int ret;
2476 	u8 csum[BTRFS_CSUM_SIZE];
2477 	u32 blocksize;
2478 
2479 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2480 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2481 			blocksize = map->stripe_len;
2482 		else
2483 			blocksize = sctx->fs_info->sectorsize;
2484 		spin_lock(&sctx->stat_lock);
2485 		sctx->stat.data_extents_scrubbed++;
2486 		sctx->stat.data_bytes_scrubbed += len;
2487 		spin_unlock(&sctx->stat_lock);
2488 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2489 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2490 			blocksize = map->stripe_len;
2491 		else
2492 			blocksize = sctx->fs_info->nodesize;
2493 		spin_lock(&sctx->stat_lock);
2494 		sctx->stat.tree_extents_scrubbed++;
2495 		sctx->stat.tree_bytes_scrubbed += len;
2496 		spin_unlock(&sctx->stat_lock);
2497 	} else {
2498 		blocksize = sctx->fs_info->sectorsize;
2499 		WARN_ON(1);
2500 	}
2501 
2502 	while (len) {
2503 		u64 l = min_t(u64, len, blocksize);
2504 		int have_csum = 0;
2505 
2506 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2507 			/* push csums to sbio */
2508 			have_csum = scrub_find_csum(sctx, logical, csum);
2509 			if (have_csum == 0)
2510 				++sctx->stat.no_csum;
2511 		}
2512 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2513 				  mirror_num, have_csum ? csum : NULL, 0,
2514 				  physical_for_dev_replace);
2515 		if (ret)
2516 			return ret;
2517 		len -= l;
2518 		logical += l;
2519 		physical += l;
2520 		physical_for_dev_replace += l;
2521 	}
2522 	return 0;
2523 }
2524 
2525 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2526 				  u64 logical, u64 len,
2527 				  u64 physical, struct btrfs_device *dev,
2528 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2529 {
2530 	struct scrub_ctx *sctx = sparity->sctx;
2531 	struct scrub_block *sblock;
2532 	int index;
2533 
2534 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2535 	if (!sblock) {
2536 		spin_lock(&sctx->stat_lock);
2537 		sctx->stat.malloc_errors++;
2538 		spin_unlock(&sctx->stat_lock);
2539 		return -ENOMEM;
2540 	}
2541 
2542 	/* one ref inside this function, plus one for each page added to
2543 	 * a bio later on */
2544 	refcount_set(&sblock->refs, 1);
2545 	sblock->sctx = sctx;
2546 	sblock->no_io_error_seen = 1;
2547 	sblock->sparity = sparity;
2548 	scrub_parity_get(sparity);
2549 
2550 	for (index = 0; len > 0; index++) {
2551 		struct scrub_page *spage;
2552 		u64 l = min_t(u64, len, PAGE_SIZE);
2553 
2554 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2555 		if (!spage) {
2556 leave_nomem:
2557 			spin_lock(&sctx->stat_lock);
2558 			sctx->stat.malloc_errors++;
2559 			spin_unlock(&sctx->stat_lock);
2560 			scrub_block_put(sblock);
2561 			return -ENOMEM;
2562 		}
2563 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2564 		/* For scrub block */
2565 		scrub_page_get(spage);
2566 		sblock->pagev[index] = spage;
2567 		/* For scrub parity */
2568 		scrub_page_get(spage);
2569 		list_add_tail(&spage->list, &sparity->spages);
2570 		spage->sblock = sblock;
2571 		spage->dev = dev;
2572 		spage->flags = flags;
2573 		spage->generation = gen;
2574 		spage->logical = logical;
2575 		spage->physical = physical;
2576 		spage->mirror_num = mirror_num;
2577 		if (csum) {
2578 			spage->have_csum = 1;
2579 			memcpy(spage->csum, csum, sctx->csum_size);
2580 		} else {
2581 			spage->have_csum = 0;
2582 		}
2583 		sblock->page_count++;
2584 		spage->page = alloc_page(GFP_KERNEL);
2585 		if (!spage->page)
2586 			goto leave_nomem;
2587 		len -= l;
2588 		logical += l;
2589 		physical += l;
2590 	}
2591 
2592 	WARN_ON(sblock->page_count == 0);
2593 	for (index = 0; index < sblock->page_count; index++) {
2594 		struct scrub_page *spage = sblock->pagev[index];
2595 		int ret;
2596 
2597 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2598 		if (ret) {
2599 			scrub_block_put(sblock);
2600 			return ret;
2601 		}
2602 	}
2603 
2604 	/* last one frees, either here or in bio completion for last page */
2605 	scrub_block_put(sblock);
2606 	return 0;
2607 }
2608 
2609 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2610 				   u64 logical, u64 len,
2611 				   u64 physical, struct btrfs_device *dev,
2612 				   u64 flags, u64 gen, int mirror_num)
2613 {
2614 	struct scrub_ctx *sctx = sparity->sctx;
2615 	int ret;
2616 	u8 csum[BTRFS_CSUM_SIZE];
2617 	u32 blocksize;
2618 
2619 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2620 		scrub_parity_mark_sectors_error(sparity, logical, len);
2621 		return 0;
2622 	}
2623 
2624 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2625 		blocksize = sparity->stripe_len;
2626 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2627 		blocksize = sparity->stripe_len;
2628 	} else {
2629 		blocksize = sctx->fs_info->sectorsize;
2630 		WARN_ON(1);
2631 	}
2632 
2633 	while (len) {
2634 		u64 l = min_t(u64, len, blocksize);
2635 		int have_csum = 0;
2636 
2637 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2638 			/* push csums to sbio */
2639 			have_csum = scrub_find_csum(sctx, logical, csum);
2640 			if (have_csum == 0)
2641 				goto skip;
2642 		}
2643 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2644 					     flags, gen, mirror_num,
2645 					     have_csum ? csum : NULL);
2646 		if (ret)
2647 			return ret;
2648 skip:
2649 		len -= l;
2650 		logical += l;
2651 		physical += l;
2652 	}
2653 	return 0;
2654 }
2655 
2656 /*
2657  * Given a physical address, this will calculate it's
2658  * logical offset. if this is a parity stripe, it will return
2659  * the most left data stripe's logical offset.
2660  *
2661  * return 0 if it is a data stripe, 1 means parity stripe.
2662  */
2663 static int get_raid56_logic_offset(u64 physical, int num,
2664 				   struct map_lookup *map, u64 *offset,
2665 				   u64 *stripe_start)
2666 {
2667 	int i;
2668 	int j = 0;
2669 	u64 stripe_nr;
2670 	u64 last_offset;
2671 	u32 stripe_index;
2672 	u32 rot;
2673 	const int data_stripes = nr_data_stripes(map);
2674 
2675 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2676 	if (stripe_start)
2677 		*stripe_start = last_offset;
2678 
2679 	*offset = last_offset;
2680 	for (i = 0; i < data_stripes; i++) {
2681 		*offset = last_offset + i * map->stripe_len;
2682 
2683 		stripe_nr = div64_u64(*offset, map->stripe_len);
2684 		stripe_nr = div_u64(stripe_nr, data_stripes);
2685 
2686 		/* Work out the disk rotation on this stripe-set */
2687 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2688 		/* calculate which stripe this data locates */
2689 		rot += i;
2690 		stripe_index = rot % map->num_stripes;
2691 		if (stripe_index == num)
2692 			return 0;
2693 		if (stripe_index < num)
2694 			j++;
2695 	}
2696 	*offset = last_offset + j * map->stripe_len;
2697 	return 1;
2698 }
2699 
2700 static void scrub_free_parity(struct scrub_parity *sparity)
2701 {
2702 	struct scrub_ctx *sctx = sparity->sctx;
2703 	struct scrub_page *curr, *next;
2704 	int nbits;
2705 
2706 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2707 	if (nbits) {
2708 		spin_lock(&sctx->stat_lock);
2709 		sctx->stat.read_errors += nbits;
2710 		sctx->stat.uncorrectable_errors += nbits;
2711 		spin_unlock(&sctx->stat_lock);
2712 	}
2713 
2714 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2715 		list_del_init(&curr->list);
2716 		scrub_page_put(curr);
2717 	}
2718 
2719 	kfree(sparity);
2720 }
2721 
2722 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2723 {
2724 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2725 						    work);
2726 	struct scrub_ctx *sctx = sparity->sctx;
2727 
2728 	scrub_free_parity(sparity);
2729 	scrub_pending_bio_dec(sctx);
2730 }
2731 
2732 static void scrub_parity_bio_endio(struct bio *bio)
2733 {
2734 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2735 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2736 
2737 	if (bio->bi_status)
2738 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2739 			  sparity->nsectors);
2740 
2741 	bio_put(bio);
2742 
2743 	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2744 			NULL);
2745 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2746 }
2747 
2748 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2749 {
2750 	struct scrub_ctx *sctx = sparity->sctx;
2751 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2752 	struct bio *bio;
2753 	struct btrfs_raid_bio *rbio;
2754 	struct btrfs_bio *bbio = NULL;
2755 	u64 length;
2756 	int ret;
2757 
2758 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2759 			   sparity->nsectors))
2760 		goto out;
2761 
2762 	length = sparity->logic_end - sparity->logic_start;
2763 
2764 	btrfs_bio_counter_inc_blocked(fs_info);
2765 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2766 			       &length, &bbio);
2767 	if (ret || !bbio || !bbio->raid_map)
2768 		goto bbio_out;
2769 
2770 	bio = btrfs_io_bio_alloc(0);
2771 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2772 	bio->bi_private = sparity;
2773 	bio->bi_end_io = scrub_parity_bio_endio;
2774 
2775 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2776 					      length, sparity->scrub_dev,
2777 					      sparity->dbitmap,
2778 					      sparity->nsectors);
2779 	if (!rbio)
2780 		goto rbio_out;
2781 
2782 	scrub_pending_bio_inc(sctx);
2783 	raid56_parity_submit_scrub_rbio(rbio);
2784 	return;
2785 
2786 rbio_out:
2787 	bio_put(bio);
2788 bbio_out:
2789 	btrfs_bio_counter_dec(fs_info);
2790 	btrfs_put_bbio(bbio);
2791 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2792 		  sparity->nsectors);
2793 	spin_lock(&sctx->stat_lock);
2794 	sctx->stat.malloc_errors++;
2795 	spin_unlock(&sctx->stat_lock);
2796 out:
2797 	scrub_free_parity(sparity);
2798 }
2799 
2800 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2801 {
2802 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2803 }
2804 
2805 static void scrub_parity_get(struct scrub_parity *sparity)
2806 {
2807 	refcount_inc(&sparity->refs);
2808 }
2809 
2810 static void scrub_parity_put(struct scrub_parity *sparity)
2811 {
2812 	if (!refcount_dec_and_test(&sparity->refs))
2813 		return;
2814 
2815 	scrub_parity_check_and_repair(sparity);
2816 }
2817 
2818 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2819 						  struct map_lookup *map,
2820 						  struct btrfs_device *sdev,
2821 						  struct btrfs_path *path,
2822 						  u64 logic_start,
2823 						  u64 logic_end)
2824 {
2825 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2826 	struct btrfs_root *root = fs_info->extent_root;
2827 	struct btrfs_root *csum_root = fs_info->csum_root;
2828 	struct btrfs_extent_item *extent;
2829 	struct btrfs_bio *bbio = NULL;
2830 	u64 flags;
2831 	int ret;
2832 	int slot;
2833 	struct extent_buffer *l;
2834 	struct btrfs_key key;
2835 	u64 generation;
2836 	u64 extent_logical;
2837 	u64 extent_physical;
2838 	u64 extent_len;
2839 	u64 mapped_length;
2840 	struct btrfs_device *extent_dev;
2841 	struct scrub_parity *sparity;
2842 	int nsectors;
2843 	int bitmap_len;
2844 	int extent_mirror_num;
2845 	int stop_loop = 0;
2846 
2847 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2848 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2849 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2850 			  GFP_NOFS);
2851 	if (!sparity) {
2852 		spin_lock(&sctx->stat_lock);
2853 		sctx->stat.malloc_errors++;
2854 		spin_unlock(&sctx->stat_lock);
2855 		return -ENOMEM;
2856 	}
2857 
2858 	sparity->stripe_len = map->stripe_len;
2859 	sparity->nsectors = nsectors;
2860 	sparity->sctx = sctx;
2861 	sparity->scrub_dev = sdev;
2862 	sparity->logic_start = logic_start;
2863 	sparity->logic_end = logic_end;
2864 	refcount_set(&sparity->refs, 1);
2865 	INIT_LIST_HEAD(&sparity->spages);
2866 	sparity->dbitmap = sparity->bitmap;
2867 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2868 
2869 	ret = 0;
2870 	while (logic_start < logic_end) {
2871 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2872 			key.type = BTRFS_METADATA_ITEM_KEY;
2873 		else
2874 			key.type = BTRFS_EXTENT_ITEM_KEY;
2875 		key.objectid = logic_start;
2876 		key.offset = (u64)-1;
2877 
2878 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2879 		if (ret < 0)
2880 			goto out;
2881 
2882 		if (ret > 0) {
2883 			ret = btrfs_previous_extent_item(root, path, 0);
2884 			if (ret < 0)
2885 				goto out;
2886 			if (ret > 0) {
2887 				btrfs_release_path(path);
2888 				ret = btrfs_search_slot(NULL, root, &key,
2889 							path, 0, 0);
2890 				if (ret < 0)
2891 					goto out;
2892 			}
2893 		}
2894 
2895 		stop_loop = 0;
2896 		while (1) {
2897 			u64 bytes;
2898 
2899 			l = path->nodes[0];
2900 			slot = path->slots[0];
2901 			if (slot >= btrfs_header_nritems(l)) {
2902 				ret = btrfs_next_leaf(root, path);
2903 				if (ret == 0)
2904 					continue;
2905 				if (ret < 0)
2906 					goto out;
2907 
2908 				stop_loop = 1;
2909 				break;
2910 			}
2911 			btrfs_item_key_to_cpu(l, &key, slot);
2912 
2913 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2914 			    key.type != BTRFS_METADATA_ITEM_KEY)
2915 				goto next;
2916 
2917 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2918 				bytes = fs_info->nodesize;
2919 			else
2920 				bytes = key.offset;
2921 
2922 			if (key.objectid + bytes <= logic_start)
2923 				goto next;
2924 
2925 			if (key.objectid >= logic_end) {
2926 				stop_loop = 1;
2927 				break;
2928 			}
2929 
2930 			while (key.objectid >= logic_start + map->stripe_len)
2931 				logic_start += map->stripe_len;
2932 
2933 			extent = btrfs_item_ptr(l, slot,
2934 						struct btrfs_extent_item);
2935 			flags = btrfs_extent_flags(l, extent);
2936 			generation = btrfs_extent_generation(l, extent);
2937 
2938 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2939 			    (key.objectid < logic_start ||
2940 			     key.objectid + bytes >
2941 			     logic_start + map->stripe_len)) {
2942 				btrfs_err(fs_info,
2943 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2944 					  key.objectid, logic_start);
2945 				spin_lock(&sctx->stat_lock);
2946 				sctx->stat.uncorrectable_errors++;
2947 				spin_unlock(&sctx->stat_lock);
2948 				goto next;
2949 			}
2950 again:
2951 			extent_logical = key.objectid;
2952 			extent_len = bytes;
2953 
2954 			if (extent_logical < logic_start) {
2955 				extent_len -= logic_start - extent_logical;
2956 				extent_logical = logic_start;
2957 			}
2958 
2959 			if (extent_logical + extent_len >
2960 			    logic_start + map->stripe_len)
2961 				extent_len = logic_start + map->stripe_len -
2962 					     extent_logical;
2963 
2964 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2965 						       extent_len);
2966 
2967 			mapped_length = extent_len;
2968 			bbio = NULL;
2969 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2970 					extent_logical, &mapped_length, &bbio,
2971 					0);
2972 			if (!ret) {
2973 				if (!bbio || mapped_length < extent_len)
2974 					ret = -EIO;
2975 			}
2976 			if (ret) {
2977 				btrfs_put_bbio(bbio);
2978 				goto out;
2979 			}
2980 			extent_physical = bbio->stripes[0].physical;
2981 			extent_mirror_num = bbio->mirror_num;
2982 			extent_dev = bbio->stripes[0].dev;
2983 			btrfs_put_bbio(bbio);
2984 
2985 			ret = btrfs_lookup_csums_range(csum_root,
2986 						extent_logical,
2987 						extent_logical + extent_len - 1,
2988 						&sctx->csum_list, 1);
2989 			if (ret)
2990 				goto out;
2991 
2992 			ret = scrub_extent_for_parity(sparity, extent_logical,
2993 						      extent_len,
2994 						      extent_physical,
2995 						      extent_dev, flags,
2996 						      generation,
2997 						      extent_mirror_num);
2998 
2999 			scrub_free_csums(sctx);
3000 
3001 			if (ret)
3002 				goto out;
3003 
3004 			if (extent_logical + extent_len <
3005 			    key.objectid + bytes) {
3006 				logic_start += map->stripe_len;
3007 
3008 				if (logic_start >= logic_end) {
3009 					stop_loop = 1;
3010 					break;
3011 				}
3012 
3013 				if (logic_start < key.objectid + bytes) {
3014 					cond_resched();
3015 					goto again;
3016 				}
3017 			}
3018 next:
3019 			path->slots[0]++;
3020 		}
3021 
3022 		btrfs_release_path(path);
3023 
3024 		if (stop_loop)
3025 			break;
3026 
3027 		logic_start += map->stripe_len;
3028 	}
3029 out:
3030 	if (ret < 0)
3031 		scrub_parity_mark_sectors_error(sparity, logic_start,
3032 						logic_end - logic_start);
3033 	scrub_parity_put(sparity);
3034 	scrub_submit(sctx);
3035 	mutex_lock(&sctx->wr_lock);
3036 	scrub_wr_submit(sctx);
3037 	mutex_unlock(&sctx->wr_lock);
3038 
3039 	btrfs_release_path(path);
3040 	return ret < 0 ? ret : 0;
3041 }
3042 
3043 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3044 					   struct map_lookup *map,
3045 					   struct btrfs_device *scrub_dev,
3046 					   int num, u64 base, u64 length)
3047 {
3048 	struct btrfs_path *path, *ppath;
3049 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3050 	struct btrfs_root *root = fs_info->extent_root;
3051 	struct btrfs_root *csum_root = fs_info->csum_root;
3052 	struct btrfs_extent_item *extent;
3053 	struct blk_plug plug;
3054 	u64 flags;
3055 	int ret;
3056 	int slot;
3057 	u64 nstripes;
3058 	struct extent_buffer *l;
3059 	u64 physical;
3060 	u64 logical;
3061 	u64 logic_end;
3062 	u64 physical_end;
3063 	u64 generation;
3064 	int mirror_num;
3065 	struct reada_control *reada1;
3066 	struct reada_control *reada2;
3067 	struct btrfs_key key;
3068 	struct btrfs_key key_end;
3069 	u64 increment = map->stripe_len;
3070 	u64 offset;
3071 	u64 extent_logical;
3072 	u64 extent_physical;
3073 	u64 extent_len;
3074 	u64 stripe_logical;
3075 	u64 stripe_end;
3076 	struct btrfs_device *extent_dev;
3077 	int extent_mirror_num;
3078 	int stop_loop = 0;
3079 
3080 	physical = map->stripes[num].physical;
3081 	offset = 0;
3082 	nstripes = div64_u64(length, map->stripe_len);
3083 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3084 		offset = map->stripe_len * num;
3085 		increment = map->stripe_len * map->num_stripes;
3086 		mirror_num = 1;
3087 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3088 		int factor = map->num_stripes / map->sub_stripes;
3089 		offset = map->stripe_len * (num / map->sub_stripes);
3090 		increment = map->stripe_len * factor;
3091 		mirror_num = num % map->sub_stripes + 1;
3092 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3093 		increment = map->stripe_len;
3094 		mirror_num = num % map->num_stripes + 1;
3095 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3096 		increment = map->stripe_len;
3097 		mirror_num = num % map->num_stripes + 1;
3098 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3099 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3100 		increment = map->stripe_len * nr_data_stripes(map);
3101 		mirror_num = 1;
3102 	} else {
3103 		increment = map->stripe_len;
3104 		mirror_num = 1;
3105 	}
3106 
3107 	path = btrfs_alloc_path();
3108 	if (!path)
3109 		return -ENOMEM;
3110 
3111 	ppath = btrfs_alloc_path();
3112 	if (!ppath) {
3113 		btrfs_free_path(path);
3114 		return -ENOMEM;
3115 	}
3116 
3117 	/*
3118 	 * work on commit root. The related disk blocks are static as
3119 	 * long as COW is applied. This means, it is save to rewrite
3120 	 * them to repair disk errors without any race conditions
3121 	 */
3122 	path->search_commit_root = 1;
3123 	path->skip_locking = 1;
3124 
3125 	ppath->search_commit_root = 1;
3126 	ppath->skip_locking = 1;
3127 	/*
3128 	 * trigger the readahead for extent tree csum tree and wait for
3129 	 * completion. During readahead, the scrub is officially paused
3130 	 * to not hold off transaction commits
3131 	 */
3132 	logical = base + offset;
3133 	physical_end = physical + nstripes * map->stripe_len;
3134 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3135 		get_raid56_logic_offset(physical_end, num,
3136 					map, &logic_end, NULL);
3137 		logic_end += base;
3138 	} else {
3139 		logic_end = logical + increment * nstripes;
3140 	}
3141 	wait_event(sctx->list_wait,
3142 		   atomic_read(&sctx->bios_in_flight) == 0);
3143 	scrub_blocked_if_needed(fs_info);
3144 
3145 	/* FIXME it might be better to start readahead at commit root */
3146 	key.objectid = logical;
3147 	key.type = BTRFS_EXTENT_ITEM_KEY;
3148 	key.offset = (u64)0;
3149 	key_end.objectid = logic_end;
3150 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3151 	key_end.offset = (u64)-1;
3152 	reada1 = btrfs_reada_add(root, &key, &key_end);
3153 
3154 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3155 	key.type = BTRFS_EXTENT_CSUM_KEY;
3156 	key.offset = logical;
3157 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3158 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3159 	key_end.offset = logic_end;
3160 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3161 
3162 	if (!IS_ERR(reada1))
3163 		btrfs_reada_wait(reada1);
3164 	if (!IS_ERR(reada2))
3165 		btrfs_reada_wait(reada2);
3166 
3167 
3168 	/*
3169 	 * collect all data csums for the stripe to avoid seeking during
3170 	 * the scrub. This might currently (crc32) end up to be about 1MB
3171 	 */
3172 	blk_start_plug(&plug);
3173 
3174 	/*
3175 	 * now find all extents for each stripe and scrub them
3176 	 */
3177 	ret = 0;
3178 	while (physical < physical_end) {
3179 		/*
3180 		 * canceled?
3181 		 */
3182 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3183 		    atomic_read(&sctx->cancel_req)) {
3184 			ret = -ECANCELED;
3185 			goto out;
3186 		}
3187 		/*
3188 		 * check to see if we have to pause
3189 		 */
3190 		if (atomic_read(&fs_info->scrub_pause_req)) {
3191 			/* push queued extents */
3192 			sctx->flush_all_writes = true;
3193 			scrub_submit(sctx);
3194 			mutex_lock(&sctx->wr_lock);
3195 			scrub_wr_submit(sctx);
3196 			mutex_unlock(&sctx->wr_lock);
3197 			wait_event(sctx->list_wait,
3198 				   atomic_read(&sctx->bios_in_flight) == 0);
3199 			sctx->flush_all_writes = false;
3200 			scrub_blocked_if_needed(fs_info);
3201 		}
3202 
3203 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3204 			ret = get_raid56_logic_offset(physical, num, map,
3205 						      &logical,
3206 						      &stripe_logical);
3207 			logical += base;
3208 			if (ret) {
3209 				/* it is parity strip */
3210 				stripe_logical += base;
3211 				stripe_end = stripe_logical + increment;
3212 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3213 							  ppath, stripe_logical,
3214 							  stripe_end);
3215 				if (ret)
3216 					goto out;
3217 				goto skip;
3218 			}
3219 		}
3220 
3221 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3222 			key.type = BTRFS_METADATA_ITEM_KEY;
3223 		else
3224 			key.type = BTRFS_EXTENT_ITEM_KEY;
3225 		key.objectid = logical;
3226 		key.offset = (u64)-1;
3227 
3228 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3229 		if (ret < 0)
3230 			goto out;
3231 
3232 		if (ret > 0) {
3233 			ret = btrfs_previous_extent_item(root, path, 0);
3234 			if (ret < 0)
3235 				goto out;
3236 			if (ret > 0) {
3237 				/* there's no smaller item, so stick with the
3238 				 * larger one */
3239 				btrfs_release_path(path);
3240 				ret = btrfs_search_slot(NULL, root, &key,
3241 							path, 0, 0);
3242 				if (ret < 0)
3243 					goto out;
3244 			}
3245 		}
3246 
3247 		stop_loop = 0;
3248 		while (1) {
3249 			u64 bytes;
3250 
3251 			l = path->nodes[0];
3252 			slot = path->slots[0];
3253 			if (slot >= btrfs_header_nritems(l)) {
3254 				ret = btrfs_next_leaf(root, path);
3255 				if (ret == 0)
3256 					continue;
3257 				if (ret < 0)
3258 					goto out;
3259 
3260 				stop_loop = 1;
3261 				break;
3262 			}
3263 			btrfs_item_key_to_cpu(l, &key, slot);
3264 
3265 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3266 			    key.type != BTRFS_METADATA_ITEM_KEY)
3267 				goto next;
3268 
3269 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3270 				bytes = fs_info->nodesize;
3271 			else
3272 				bytes = key.offset;
3273 
3274 			if (key.objectid + bytes <= logical)
3275 				goto next;
3276 
3277 			if (key.objectid >= logical + map->stripe_len) {
3278 				/* out of this device extent */
3279 				if (key.objectid >= logic_end)
3280 					stop_loop = 1;
3281 				break;
3282 			}
3283 
3284 			extent = btrfs_item_ptr(l, slot,
3285 						struct btrfs_extent_item);
3286 			flags = btrfs_extent_flags(l, extent);
3287 			generation = btrfs_extent_generation(l, extent);
3288 
3289 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3290 			    (key.objectid < logical ||
3291 			     key.objectid + bytes >
3292 			     logical + map->stripe_len)) {
3293 				btrfs_err(fs_info,
3294 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3295 				       key.objectid, logical);
3296 				spin_lock(&sctx->stat_lock);
3297 				sctx->stat.uncorrectable_errors++;
3298 				spin_unlock(&sctx->stat_lock);
3299 				goto next;
3300 			}
3301 
3302 again:
3303 			extent_logical = key.objectid;
3304 			extent_len = bytes;
3305 
3306 			/*
3307 			 * trim extent to this stripe
3308 			 */
3309 			if (extent_logical < logical) {
3310 				extent_len -= logical - extent_logical;
3311 				extent_logical = logical;
3312 			}
3313 			if (extent_logical + extent_len >
3314 			    logical + map->stripe_len) {
3315 				extent_len = logical + map->stripe_len -
3316 					     extent_logical;
3317 			}
3318 
3319 			extent_physical = extent_logical - logical + physical;
3320 			extent_dev = scrub_dev;
3321 			extent_mirror_num = mirror_num;
3322 			if (sctx->is_dev_replace)
3323 				scrub_remap_extent(fs_info, extent_logical,
3324 						   extent_len, &extent_physical,
3325 						   &extent_dev,
3326 						   &extent_mirror_num);
3327 
3328 			ret = btrfs_lookup_csums_range(csum_root,
3329 						       extent_logical,
3330 						       extent_logical +
3331 						       extent_len - 1,
3332 						       &sctx->csum_list, 1);
3333 			if (ret)
3334 				goto out;
3335 
3336 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3337 					   extent_physical, extent_dev, flags,
3338 					   generation, extent_mirror_num,
3339 					   extent_logical - logical + physical);
3340 
3341 			scrub_free_csums(sctx);
3342 
3343 			if (ret)
3344 				goto out;
3345 
3346 			if (extent_logical + extent_len <
3347 			    key.objectid + bytes) {
3348 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3349 					/*
3350 					 * loop until we find next data stripe
3351 					 * or we have finished all stripes.
3352 					 */
3353 loop:
3354 					physical += map->stripe_len;
3355 					ret = get_raid56_logic_offset(physical,
3356 							num, map, &logical,
3357 							&stripe_logical);
3358 					logical += base;
3359 
3360 					if (ret && physical < physical_end) {
3361 						stripe_logical += base;
3362 						stripe_end = stripe_logical +
3363 								increment;
3364 						ret = scrub_raid56_parity(sctx,
3365 							map, scrub_dev, ppath,
3366 							stripe_logical,
3367 							stripe_end);
3368 						if (ret)
3369 							goto out;
3370 						goto loop;
3371 					}
3372 				} else {
3373 					physical += map->stripe_len;
3374 					logical += increment;
3375 				}
3376 				if (logical < key.objectid + bytes) {
3377 					cond_resched();
3378 					goto again;
3379 				}
3380 
3381 				if (physical >= physical_end) {
3382 					stop_loop = 1;
3383 					break;
3384 				}
3385 			}
3386 next:
3387 			path->slots[0]++;
3388 		}
3389 		btrfs_release_path(path);
3390 skip:
3391 		logical += increment;
3392 		physical += map->stripe_len;
3393 		spin_lock(&sctx->stat_lock);
3394 		if (stop_loop)
3395 			sctx->stat.last_physical = map->stripes[num].physical +
3396 						   length;
3397 		else
3398 			sctx->stat.last_physical = physical;
3399 		spin_unlock(&sctx->stat_lock);
3400 		if (stop_loop)
3401 			break;
3402 	}
3403 out:
3404 	/* push queued extents */
3405 	scrub_submit(sctx);
3406 	mutex_lock(&sctx->wr_lock);
3407 	scrub_wr_submit(sctx);
3408 	mutex_unlock(&sctx->wr_lock);
3409 
3410 	blk_finish_plug(&plug);
3411 	btrfs_free_path(path);
3412 	btrfs_free_path(ppath);
3413 	return ret < 0 ? ret : 0;
3414 }
3415 
3416 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3417 					  struct btrfs_device *scrub_dev,
3418 					  u64 chunk_offset, u64 length,
3419 					  u64 dev_offset,
3420 					  struct btrfs_block_group *cache)
3421 {
3422 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3423 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3424 	struct map_lookup *map;
3425 	struct extent_map *em;
3426 	int i;
3427 	int ret = 0;
3428 
3429 	read_lock(&map_tree->lock);
3430 	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3431 	read_unlock(&map_tree->lock);
3432 
3433 	if (!em) {
3434 		/*
3435 		 * Might have been an unused block group deleted by the cleaner
3436 		 * kthread or relocation.
3437 		 */
3438 		spin_lock(&cache->lock);
3439 		if (!cache->removed)
3440 			ret = -EINVAL;
3441 		spin_unlock(&cache->lock);
3442 
3443 		return ret;
3444 	}
3445 
3446 	map = em->map_lookup;
3447 	if (em->start != chunk_offset)
3448 		goto out;
3449 
3450 	if (em->len < length)
3451 		goto out;
3452 
3453 	for (i = 0; i < map->num_stripes; ++i) {
3454 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3455 		    map->stripes[i].physical == dev_offset) {
3456 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3457 					   chunk_offset, length);
3458 			if (ret)
3459 				goto out;
3460 		}
3461 	}
3462 out:
3463 	free_extent_map(em);
3464 
3465 	return ret;
3466 }
3467 
3468 static noinline_for_stack
3469 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3470 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3471 {
3472 	struct btrfs_dev_extent *dev_extent = NULL;
3473 	struct btrfs_path *path;
3474 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3475 	struct btrfs_root *root = fs_info->dev_root;
3476 	u64 length;
3477 	u64 chunk_offset;
3478 	int ret = 0;
3479 	int ro_set;
3480 	int slot;
3481 	struct extent_buffer *l;
3482 	struct btrfs_key key;
3483 	struct btrfs_key found_key;
3484 	struct btrfs_block_group *cache;
3485 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3486 
3487 	path = btrfs_alloc_path();
3488 	if (!path)
3489 		return -ENOMEM;
3490 
3491 	path->reada = READA_FORWARD;
3492 	path->search_commit_root = 1;
3493 	path->skip_locking = 1;
3494 
3495 	key.objectid = scrub_dev->devid;
3496 	key.offset = 0ull;
3497 	key.type = BTRFS_DEV_EXTENT_KEY;
3498 
3499 	while (1) {
3500 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3501 		if (ret < 0)
3502 			break;
3503 		if (ret > 0) {
3504 			if (path->slots[0] >=
3505 			    btrfs_header_nritems(path->nodes[0])) {
3506 				ret = btrfs_next_leaf(root, path);
3507 				if (ret < 0)
3508 					break;
3509 				if (ret > 0) {
3510 					ret = 0;
3511 					break;
3512 				}
3513 			} else {
3514 				ret = 0;
3515 			}
3516 		}
3517 
3518 		l = path->nodes[0];
3519 		slot = path->slots[0];
3520 
3521 		btrfs_item_key_to_cpu(l, &found_key, slot);
3522 
3523 		if (found_key.objectid != scrub_dev->devid)
3524 			break;
3525 
3526 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3527 			break;
3528 
3529 		if (found_key.offset >= end)
3530 			break;
3531 
3532 		if (found_key.offset < key.offset)
3533 			break;
3534 
3535 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3536 		length = btrfs_dev_extent_length(l, dev_extent);
3537 
3538 		if (found_key.offset + length <= start)
3539 			goto skip;
3540 
3541 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3542 
3543 		/*
3544 		 * get a reference on the corresponding block group to prevent
3545 		 * the chunk from going away while we scrub it
3546 		 */
3547 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3548 
3549 		/* some chunks are removed but not committed to disk yet,
3550 		 * continue scrubbing */
3551 		if (!cache)
3552 			goto skip;
3553 
3554 		/*
3555 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3556 		 * to avoid deadlock caused by:
3557 		 * btrfs_inc_block_group_ro()
3558 		 * -> btrfs_wait_for_commit()
3559 		 * -> btrfs_commit_transaction()
3560 		 * -> btrfs_scrub_pause()
3561 		 */
3562 		scrub_pause_on(fs_info);
3563 
3564 		/*
3565 		 * Don't do chunk preallocation for scrub.
3566 		 *
3567 		 * This is especially important for SYSTEM bgs, or we can hit
3568 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3569 		 * 1. The only SYSTEM bg is marked RO.
3570 		 *    Since SYSTEM bg is small, that's pretty common.
3571 		 * 2. New SYSTEM bg will be allocated
3572 		 *    Due to regular version will allocate new chunk.
3573 		 * 3. New SYSTEM bg is empty and will get cleaned up
3574 		 *    Before cleanup really happens, it's marked RO again.
3575 		 * 4. Empty SYSTEM bg get scrubbed
3576 		 *    We go back to 2.
3577 		 *
3578 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3579 		 * thread can't be triggered fast enough, and use up all space
3580 		 * of btrfs_super_block::sys_chunk_array
3581 		 *
3582 		 * While for dev replace, we need to try our best to mark block
3583 		 * group RO, to prevent race between:
3584 		 * - Write duplication
3585 		 *   Contains latest data
3586 		 * - Scrub copy
3587 		 *   Contains data from commit tree
3588 		 *
3589 		 * If target block group is not marked RO, nocow writes can
3590 		 * be overwritten by scrub copy, causing data corruption.
3591 		 * So for dev-replace, it's not allowed to continue if a block
3592 		 * group is not RO.
3593 		 */
3594 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3595 		if (ret == 0) {
3596 			ro_set = 1;
3597 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3598 			/*
3599 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3600 			 * failed in creating new chunk for metadata.
3601 			 * It is not a problem for scrub, because
3602 			 * metadata are always cowed, and our scrub paused
3603 			 * commit_transactions.
3604 			 */
3605 			ro_set = 0;
3606 		} else {
3607 			btrfs_warn(fs_info,
3608 				   "failed setting block group ro: %d", ret);
3609 			btrfs_put_block_group(cache);
3610 			scrub_pause_off(fs_info);
3611 			break;
3612 		}
3613 
3614 		/*
3615 		 * Now the target block is marked RO, wait for nocow writes to
3616 		 * finish before dev-replace.
3617 		 * COW is fine, as COW never overwrites extents in commit tree.
3618 		 */
3619 		if (sctx->is_dev_replace) {
3620 			btrfs_wait_nocow_writers(cache);
3621 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3622 					cache->length);
3623 		}
3624 
3625 		scrub_pause_off(fs_info);
3626 		down_write(&dev_replace->rwsem);
3627 		dev_replace->cursor_right = found_key.offset + length;
3628 		dev_replace->cursor_left = found_key.offset;
3629 		dev_replace->item_needs_writeback = 1;
3630 		up_write(&dev_replace->rwsem);
3631 
3632 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3633 				  found_key.offset, cache);
3634 
3635 		/*
3636 		 * flush, submit all pending read and write bios, afterwards
3637 		 * wait for them.
3638 		 * Note that in the dev replace case, a read request causes
3639 		 * write requests that are submitted in the read completion
3640 		 * worker. Therefore in the current situation, it is required
3641 		 * that all write requests are flushed, so that all read and
3642 		 * write requests are really completed when bios_in_flight
3643 		 * changes to 0.
3644 		 */
3645 		sctx->flush_all_writes = true;
3646 		scrub_submit(sctx);
3647 		mutex_lock(&sctx->wr_lock);
3648 		scrub_wr_submit(sctx);
3649 		mutex_unlock(&sctx->wr_lock);
3650 
3651 		wait_event(sctx->list_wait,
3652 			   atomic_read(&sctx->bios_in_flight) == 0);
3653 
3654 		scrub_pause_on(fs_info);
3655 
3656 		/*
3657 		 * must be called before we decrease @scrub_paused.
3658 		 * make sure we don't block transaction commit while
3659 		 * we are waiting pending workers finished.
3660 		 */
3661 		wait_event(sctx->list_wait,
3662 			   atomic_read(&sctx->workers_pending) == 0);
3663 		sctx->flush_all_writes = false;
3664 
3665 		scrub_pause_off(fs_info);
3666 
3667 		down_write(&dev_replace->rwsem);
3668 		dev_replace->cursor_left = dev_replace->cursor_right;
3669 		dev_replace->item_needs_writeback = 1;
3670 		up_write(&dev_replace->rwsem);
3671 
3672 		if (ro_set)
3673 			btrfs_dec_block_group_ro(cache);
3674 
3675 		/*
3676 		 * We might have prevented the cleaner kthread from deleting
3677 		 * this block group if it was already unused because we raced
3678 		 * and set it to RO mode first. So add it back to the unused
3679 		 * list, otherwise it might not ever be deleted unless a manual
3680 		 * balance is triggered or it becomes used and unused again.
3681 		 */
3682 		spin_lock(&cache->lock);
3683 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3684 		    cache->used == 0) {
3685 			spin_unlock(&cache->lock);
3686 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3687 				btrfs_discard_queue_work(&fs_info->discard_ctl,
3688 							 cache);
3689 			else
3690 				btrfs_mark_bg_unused(cache);
3691 		} else {
3692 			spin_unlock(&cache->lock);
3693 		}
3694 
3695 		btrfs_put_block_group(cache);
3696 		if (ret)
3697 			break;
3698 		if (sctx->is_dev_replace &&
3699 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3700 			ret = -EIO;
3701 			break;
3702 		}
3703 		if (sctx->stat.malloc_errors > 0) {
3704 			ret = -ENOMEM;
3705 			break;
3706 		}
3707 skip:
3708 		key.offset = found_key.offset + length;
3709 		btrfs_release_path(path);
3710 	}
3711 
3712 	btrfs_free_path(path);
3713 
3714 	return ret;
3715 }
3716 
3717 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3718 					   struct btrfs_device *scrub_dev)
3719 {
3720 	int	i;
3721 	u64	bytenr;
3722 	u64	gen;
3723 	int	ret;
3724 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3725 
3726 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3727 		return -EIO;
3728 
3729 	/* Seed devices of a new filesystem has their own generation. */
3730 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3731 		gen = scrub_dev->generation;
3732 	else
3733 		gen = fs_info->last_trans_committed;
3734 
3735 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3736 		bytenr = btrfs_sb_offset(i);
3737 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3738 		    scrub_dev->commit_total_bytes)
3739 			break;
3740 
3741 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3742 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3743 				  NULL, 1, bytenr);
3744 		if (ret)
3745 			return ret;
3746 	}
3747 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3748 
3749 	return 0;
3750 }
3751 
3752 /*
3753  * get a reference count on fs_info->scrub_workers. start worker if necessary
3754  */
3755 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3756 						int is_dev_replace)
3757 {
3758 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3759 	int max_active = fs_info->thread_pool_size;
3760 
3761 	lockdep_assert_held(&fs_info->scrub_lock);
3762 
3763 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3764 		ASSERT(fs_info->scrub_workers == NULL);
3765 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3766 				flags, is_dev_replace ? 1 : max_active, 4);
3767 		if (!fs_info->scrub_workers)
3768 			goto fail_scrub_workers;
3769 
3770 		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3771 		fs_info->scrub_wr_completion_workers =
3772 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3773 					      max_active, 2);
3774 		if (!fs_info->scrub_wr_completion_workers)
3775 			goto fail_scrub_wr_completion_workers;
3776 
3777 		ASSERT(fs_info->scrub_parity_workers == NULL);
3778 		fs_info->scrub_parity_workers =
3779 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3780 					      max_active, 2);
3781 		if (!fs_info->scrub_parity_workers)
3782 			goto fail_scrub_parity_workers;
3783 
3784 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3785 	} else {
3786 		refcount_inc(&fs_info->scrub_workers_refcnt);
3787 	}
3788 	return 0;
3789 
3790 fail_scrub_parity_workers:
3791 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3792 fail_scrub_wr_completion_workers:
3793 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3794 fail_scrub_workers:
3795 	return -ENOMEM;
3796 }
3797 
3798 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3799 		    u64 end, struct btrfs_scrub_progress *progress,
3800 		    int readonly, int is_dev_replace)
3801 {
3802 	struct scrub_ctx *sctx;
3803 	int ret;
3804 	struct btrfs_device *dev;
3805 	unsigned int nofs_flag;
3806 	struct btrfs_workqueue *scrub_workers = NULL;
3807 	struct btrfs_workqueue *scrub_wr_comp = NULL;
3808 	struct btrfs_workqueue *scrub_parity = NULL;
3809 
3810 	if (btrfs_fs_closing(fs_info))
3811 		return -EAGAIN;
3812 
3813 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3814 		/*
3815 		 * in this case scrub is unable to calculate the checksum
3816 		 * the way scrub is implemented. Do not handle this
3817 		 * situation at all because it won't ever happen.
3818 		 */
3819 		btrfs_err(fs_info,
3820 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3821 		       fs_info->nodesize,
3822 		       BTRFS_STRIPE_LEN);
3823 		return -EINVAL;
3824 	}
3825 
3826 	if (fs_info->sectorsize != PAGE_SIZE) {
3827 		/* not supported for data w/o checksums */
3828 		btrfs_err_rl(fs_info,
3829 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3830 		       fs_info->sectorsize, PAGE_SIZE);
3831 		return -EINVAL;
3832 	}
3833 
3834 	if (fs_info->nodesize >
3835 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3836 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3837 		/*
3838 		 * would exhaust the array bounds of pagev member in
3839 		 * struct scrub_block
3840 		 */
3841 		btrfs_err(fs_info,
3842 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3843 		       fs_info->nodesize,
3844 		       SCRUB_MAX_PAGES_PER_BLOCK,
3845 		       fs_info->sectorsize,
3846 		       SCRUB_MAX_PAGES_PER_BLOCK);
3847 		return -EINVAL;
3848 	}
3849 
3850 	/* Allocate outside of device_list_mutex */
3851 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3852 	if (IS_ERR(sctx))
3853 		return PTR_ERR(sctx);
3854 
3855 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3856 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3857 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3858 		     !is_dev_replace)) {
3859 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3860 		ret = -ENODEV;
3861 		goto out_free_ctx;
3862 	}
3863 
3864 	if (!is_dev_replace && !readonly &&
3865 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3866 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3867 		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3868 				rcu_str_deref(dev->name));
3869 		ret = -EROFS;
3870 		goto out_free_ctx;
3871 	}
3872 
3873 	mutex_lock(&fs_info->scrub_lock);
3874 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3875 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3876 		mutex_unlock(&fs_info->scrub_lock);
3877 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3878 		ret = -EIO;
3879 		goto out_free_ctx;
3880 	}
3881 
3882 	down_read(&fs_info->dev_replace.rwsem);
3883 	if (dev->scrub_ctx ||
3884 	    (!is_dev_replace &&
3885 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3886 		up_read(&fs_info->dev_replace.rwsem);
3887 		mutex_unlock(&fs_info->scrub_lock);
3888 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3889 		ret = -EINPROGRESS;
3890 		goto out_free_ctx;
3891 	}
3892 	up_read(&fs_info->dev_replace.rwsem);
3893 
3894 	ret = scrub_workers_get(fs_info, is_dev_replace);
3895 	if (ret) {
3896 		mutex_unlock(&fs_info->scrub_lock);
3897 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3898 		goto out_free_ctx;
3899 	}
3900 
3901 	sctx->readonly = readonly;
3902 	dev->scrub_ctx = sctx;
3903 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3904 
3905 	/*
3906 	 * checking @scrub_pause_req here, we can avoid
3907 	 * race between committing transaction and scrubbing.
3908 	 */
3909 	__scrub_blocked_if_needed(fs_info);
3910 	atomic_inc(&fs_info->scrubs_running);
3911 	mutex_unlock(&fs_info->scrub_lock);
3912 
3913 	/*
3914 	 * In order to avoid deadlock with reclaim when there is a transaction
3915 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
3916 	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3917 	 * invoked by our callees. The pausing request is done when the
3918 	 * transaction commit starts, and it blocks the transaction until scrub
3919 	 * is paused (done at specific points at scrub_stripe() or right above
3920 	 * before incrementing fs_info->scrubs_running).
3921 	 */
3922 	nofs_flag = memalloc_nofs_save();
3923 	if (!is_dev_replace) {
3924 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3925 		/*
3926 		 * by holding device list mutex, we can
3927 		 * kick off writing super in log tree sync.
3928 		 */
3929 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3930 		ret = scrub_supers(sctx, dev);
3931 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3932 	}
3933 
3934 	if (!ret)
3935 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3936 	memalloc_nofs_restore(nofs_flag);
3937 
3938 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3939 	atomic_dec(&fs_info->scrubs_running);
3940 	wake_up(&fs_info->scrub_pause_wait);
3941 
3942 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3943 
3944 	if (progress)
3945 		memcpy(progress, &sctx->stat, sizeof(*progress));
3946 
3947 	if (!is_dev_replace)
3948 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3949 			ret ? "not finished" : "finished", devid, ret);
3950 
3951 	mutex_lock(&fs_info->scrub_lock);
3952 	dev->scrub_ctx = NULL;
3953 	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3954 		scrub_workers = fs_info->scrub_workers;
3955 		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3956 		scrub_parity = fs_info->scrub_parity_workers;
3957 
3958 		fs_info->scrub_workers = NULL;
3959 		fs_info->scrub_wr_completion_workers = NULL;
3960 		fs_info->scrub_parity_workers = NULL;
3961 	}
3962 	mutex_unlock(&fs_info->scrub_lock);
3963 
3964 	btrfs_destroy_workqueue(scrub_workers);
3965 	btrfs_destroy_workqueue(scrub_wr_comp);
3966 	btrfs_destroy_workqueue(scrub_parity);
3967 	scrub_put_ctx(sctx);
3968 
3969 	return ret;
3970 
3971 out_free_ctx:
3972 	scrub_free_ctx(sctx);
3973 
3974 	return ret;
3975 }
3976 
3977 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3978 {
3979 	mutex_lock(&fs_info->scrub_lock);
3980 	atomic_inc(&fs_info->scrub_pause_req);
3981 	while (atomic_read(&fs_info->scrubs_paused) !=
3982 	       atomic_read(&fs_info->scrubs_running)) {
3983 		mutex_unlock(&fs_info->scrub_lock);
3984 		wait_event(fs_info->scrub_pause_wait,
3985 			   atomic_read(&fs_info->scrubs_paused) ==
3986 			   atomic_read(&fs_info->scrubs_running));
3987 		mutex_lock(&fs_info->scrub_lock);
3988 	}
3989 	mutex_unlock(&fs_info->scrub_lock);
3990 }
3991 
3992 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3993 {
3994 	atomic_dec(&fs_info->scrub_pause_req);
3995 	wake_up(&fs_info->scrub_pause_wait);
3996 }
3997 
3998 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3999 {
4000 	mutex_lock(&fs_info->scrub_lock);
4001 	if (!atomic_read(&fs_info->scrubs_running)) {
4002 		mutex_unlock(&fs_info->scrub_lock);
4003 		return -ENOTCONN;
4004 	}
4005 
4006 	atomic_inc(&fs_info->scrub_cancel_req);
4007 	while (atomic_read(&fs_info->scrubs_running)) {
4008 		mutex_unlock(&fs_info->scrub_lock);
4009 		wait_event(fs_info->scrub_pause_wait,
4010 			   atomic_read(&fs_info->scrubs_running) == 0);
4011 		mutex_lock(&fs_info->scrub_lock);
4012 	}
4013 	atomic_dec(&fs_info->scrub_cancel_req);
4014 	mutex_unlock(&fs_info->scrub_lock);
4015 
4016 	return 0;
4017 }
4018 
4019 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4020 {
4021 	struct btrfs_fs_info *fs_info = dev->fs_info;
4022 	struct scrub_ctx *sctx;
4023 
4024 	mutex_lock(&fs_info->scrub_lock);
4025 	sctx = dev->scrub_ctx;
4026 	if (!sctx) {
4027 		mutex_unlock(&fs_info->scrub_lock);
4028 		return -ENOTCONN;
4029 	}
4030 	atomic_inc(&sctx->cancel_req);
4031 	while (dev->scrub_ctx) {
4032 		mutex_unlock(&fs_info->scrub_lock);
4033 		wait_event(fs_info->scrub_pause_wait,
4034 			   dev->scrub_ctx == NULL);
4035 		mutex_lock(&fs_info->scrub_lock);
4036 	}
4037 	mutex_unlock(&fs_info->scrub_lock);
4038 
4039 	return 0;
4040 }
4041 
4042 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4043 			 struct btrfs_scrub_progress *progress)
4044 {
4045 	struct btrfs_device *dev;
4046 	struct scrub_ctx *sctx = NULL;
4047 
4048 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4049 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4050 	if (dev)
4051 		sctx = dev->scrub_ctx;
4052 	if (sctx)
4053 		memcpy(progress, &sctx->stat, sizeof(*progress));
4054 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4055 
4056 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4057 }
4058 
4059 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4060 			       u64 extent_logical, u64 extent_len,
4061 			       u64 *extent_physical,
4062 			       struct btrfs_device **extent_dev,
4063 			       int *extent_mirror_num)
4064 {
4065 	u64 mapped_length;
4066 	struct btrfs_bio *bbio = NULL;
4067 	int ret;
4068 
4069 	mapped_length = extent_len;
4070 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4071 			      &mapped_length, &bbio, 0);
4072 	if (ret || !bbio || mapped_length < extent_len ||
4073 	    !bbio->stripes[0].dev->bdev) {
4074 		btrfs_put_bbio(bbio);
4075 		return;
4076 	}
4077 
4078 	*extent_physical = bbio->stripes[0].physical;
4079 	*extent_mirror_num = bbio->mirror_num;
4080 	*extent_dev = bbio->stripes[0].dev;
4081 	btrfs_put_bbio(bbio);
4082 }
4083