xref: /openbmc/linux/fs/btrfs/scrub.c (revision d670b479)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "check-integrity.h"
29 
30 /*
31  * This is only the first step towards a full-features scrub. It reads all
32  * extent and super block and verifies the checksums. In case a bad checksum
33  * is found or the extent cannot be read, good data will be written back if
34  * any can be found.
35  *
36  * Future enhancements:
37  *  - In case an unrepairable extent is encountered, track which files are
38  *    affected and report them
39  *  - track and record media errors, throw out bad devices
40  *  - add a mode to also read unallocated space
41  */
42 
43 struct scrub_block;
44 struct scrub_dev;
45 
46 #define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
47 #define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
48 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
49 
50 struct scrub_page {
51 	struct scrub_block	*sblock;
52 	struct page		*page;
53 	struct btrfs_device	*dev;
54 	u64			flags;  /* extent flags */
55 	u64			generation;
56 	u64			logical;
57 	u64			physical;
58 	struct {
59 		unsigned int	mirror_num:8;
60 		unsigned int	have_csum:1;
61 		unsigned int	io_error:1;
62 	};
63 	u8			csum[BTRFS_CSUM_SIZE];
64 };
65 
66 struct scrub_bio {
67 	int			index;
68 	struct scrub_dev	*sdev;
69 	struct bio		*bio;
70 	int			err;
71 	u64			logical;
72 	u64			physical;
73 	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
74 	int			page_count;
75 	int			next_free;
76 	struct btrfs_work	work;
77 };
78 
79 struct scrub_block {
80 	struct scrub_page	pagev[SCRUB_MAX_PAGES_PER_BLOCK];
81 	int			page_count;
82 	atomic_t		outstanding_pages;
83 	atomic_t		ref_count; /* free mem on transition to zero */
84 	struct scrub_dev	*sdev;
85 	struct {
86 		unsigned int	header_error:1;
87 		unsigned int	checksum_error:1;
88 		unsigned int	no_io_error_seen:1;
89 		unsigned int	generation_error:1; /* also sets header_error */
90 	};
91 };
92 
93 struct scrub_dev {
94 	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
95 	struct btrfs_device	*dev;
96 	int			first_free;
97 	int			curr;
98 	atomic_t		in_flight;
99 	atomic_t		fixup_cnt;
100 	spinlock_t		list_lock;
101 	wait_queue_head_t	list_wait;
102 	u16			csum_size;
103 	struct list_head	csum_list;
104 	atomic_t		cancel_req;
105 	int			readonly;
106 	int			pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
107 	u32			sectorsize;
108 	u32			nodesize;
109 	u32			leafsize;
110 	/*
111 	 * statistics
112 	 */
113 	struct btrfs_scrub_progress stat;
114 	spinlock_t		stat_lock;
115 };
116 
117 struct scrub_fixup_nodatasum {
118 	struct scrub_dev	*sdev;
119 	u64			logical;
120 	struct btrfs_root	*root;
121 	struct btrfs_work	work;
122 	int			mirror_num;
123 };
124 
125 struct scrub_warning {
126 	struct btrfs_path	*path;
127 	u64			extent_item_size;
128 	char			*scratch_buf;
129 	char			*msg_buf;
130 	const char		*errstr;
131 	sector_t		sector;
132 	u64			logical;
133 	struct btrfs_device	*dev;
134 	int			msg_bufsize;
135 	int			scratch_bufsize;
136 };
137 
138 
139 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
140 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
141 				     struct btrfs_mapping_tree *map_tree,
142 				     u64 length, u64 logical,
143 				     struct scrub_block *sblock);
144 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
145 			       struct scrub_block *sblock, int is_metadata,
146 			       int have_csum, u8 *csum, u64 generation,
147 			       u16 csum_size);
148 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
149 					 struct scrub_block *sblock,
150 					 int is_metadata, int have_csum,
151 					 const u8 *csum, u64 generation,
152 					 u16 csum_size);
153 static void scrub_complete_bio_end_io(struct bio *bio, int err);
154 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
155 					     struct scrub_block *sblock_good,
156 					     int force_write);
157 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
158 					    struct scrub_block *sblock_good,
159 					    int page_num, int force_write);
160 static int scrub_checksum_data(struct scrub_block *sblock);
161 static int scrub_checksum_tree_block(struct scrub_block *sblock);
162 static int scrub_checksum_super(struct scrub_block *sblock);
163 static void scrub_block_get(struct scrub_block *sblock);
164 static void scrub_block_put(struct scrub_block *sblock);
165 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
166 				 struct scrub_page *spage);
167 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
168 		       u64 physical, u64 flags, u64 gen, int mirror_num,
169 		       u8 *csum, int force);
170 static void scrub_bio_end_io(struct bio *bio, int err);
171 static void scrub_bio_end_io_worker(struct btrfs_work *work);
172 static void scrub_block_complete(struct scrub_block *sblock);
173 
174 
175 static void scrub_free_csums(struct scrub_dev *sdev)
176 {
177 	while (!list_empty(&sdev->csum_list)) {
178 		struct btrfs_ordered_sum *sum;
179 		sum = list_first_entry(&sdev->csum_list,
180 				       struct btrfs_ordered_sum, list);
181 		list_del(&sum->list);
182 		kfree(sum);
183 	}
184 }
185 
186 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
187 {
188 	int i;
189 
190 	if (!sdev)
191 		return;
192 
193 	/* this can happen when scrub is cancelled */
194 	if (sdev->curr != -1) {
195 		struct scrub_bio *sbio = sdev->bios[sdev->curr];
196 
197 		for (i = 0; i < sbio->page_count; i++) {
198 			BUG_ON(!sbio->pagev[i]);
199 			BUG_ON(!sbio->pagev[i]->page);
200 			scrub_block_put(sbio->pagev[i]->sblock);
201 		}
202 		bio_put(sbio->bio);
203 	}
204 
205 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
206 		struct scrub_bio *sbio = sdev->bios[i];
207 
208 		if (!sbio)
209 			break;
210 		kfree(sbio);
211 	}
212 
213 	scrub_free_csums(sdev);
214 	kfree(sdev);
215 }
216 
217 static noinline_for_stack
218 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
219 {
220 	struct scrub_dev *sdev;
221 	int		i;
222 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
223 	int pages_per_bio;
224 
225 	pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
226 			      bio_get_nr_vecs(dev->bdev));
227 	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
228 	if (!sdev)
229 		goto nomem;
230 	sdev->dev = dev;
231 	sdev->pages_per_bio = pages_per_bio;
232 	sdev->curr = -1;
233 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
234 		struct scrub_bio *sbio;
235 
236 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
237 		if (!sbio)
238 			goto nomem;
239 		sdev->bios[i] = sbio;
240 
241 		sbio->index = i;
242 		sbio->sdev = sdev;
243 		sbio->page_count = 0;
244 		sbio->work.func = scrub_bio_end_io_worker;
245 
246 		if (i != SCRUB_BIOS_PER_DEV-1)
247 			sdev->bios[i]->next_free = i + 1;
248 		else
249 			sdev->bios[i]->next_free = -1;
250 	}
251 	sdev->first_free = 0;
252 	sdev->nodesize = dev->dev_root->nodesize;
253 	sdev->leafsize = dev->dev_root->leafsize;
254 	sdev->sectorsize = dev->dev_root->sectorsize;
255 	atomic_set(&sdev->in_flight, 0);
256 	atomic_set(&sdev->fixup_cnt, 0);
257 	atomic_set(&sdev->cancel_req, 0);
258 	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
259 	INIT_LIST_HEAD(&sdev->csum_list);
260 
261 	spin_lock_init(&sdev->list_lock);
262 	spin_lock_init(&sdev->stat_lock);
263 	init_waitqueue_head(&sdev->list_wait);
264 	return sdev;
265 
266 nomem:
267 	scrub_free_dev(sdev);
268 	return ERR_PTR(-ENOMEM);
269 }
270 
271 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
272 {
273 	u64 isize;
274 	u32 nlink;
275 	int ret;
276 	int i;
277 	struct extent_buffer *eb;
278 	struct btrfs_inode_item *inode_item;
279 	struct scrub_warning *swarn = ctx;
280 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
281 	struct inode_fs_paths *ipath = NULL;
282 	struct btrfs_root *local_root;
283 	struct btrfs_key root_key;
284 
285 	root_key.objectid = root;
286 	root_key.type = BTRFS_ROOT_ITEM_KEY;
287 	root_key.offset = (u64)-1;
288 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
289 	if (IS_ERR(local_root)) {
290 		ret = PTR_ERR(local_root);
291 		goto err;
292 	}
293 
294 	ret = inode_item_info(inum, 0, local_root, swarn->path);
295 	if (ret) {
296 		btrfs_release_path(swarn->path);
297 		goto err;
298 	}
299 
300 	eb = swarn->path->nodes[0];
301 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
302 					struct btrfs_inode_item);
303 	isize = btrfs_inode_size(eb, inode_item);
304 	nlink = btrfs_inode_nlink(eb, inode_item);
305 	btrfs_release_path(swarn->path);
306 
307 	ipath = init_ipath(4096, local_root, swarn->path);
308 	if (IS_ERR(ipath)) {
309 		ret = PTR_ERR(ipath);
310 		ipath = NULL;
311 		goto err;
312 	}
313 	ret = paths_from_inode(inum, ipath);
314 
315 	if (ret < 0)
316 		goto err;
317 
318 	/*
319 	 * we deliberately ignore the bit ipath might have been too small to
320 	 * hold all of the paths here
321 	 */
322 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
323 		printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
324 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
325 			"length %llu, links %u (path: %s)\n", swarn->errstr,
326 			swarn->logical, swarn->dev->name,
327 			(unsigned long long)swarn->sector, root, inum, offset,
328 			min(isize - offset, (u64)PAGE_SIZE), nlink,
329 			(char *)(unsigned long)ipath->fspath->val[i]);
330 
331 	free_ipath(ipath);
332 	return 0;
333 
334 err:
335 	printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
336 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
337 		"resolving failed with ret=%d\n", swarn->errstr,
338 		swarn->logical, swarn->dev->name,
339 		(unsigned long long)swarn->sector, root, inum, offset, ret);
340 
341 	free_ipath(ipath);
342 	return 0;
343 }
344 
345 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
346 {
347 	struct btrfs_device *dev = sblock->sdev->dev;
348 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
349 	struct btrfs_path *path;
350 	struct btrfs_key found_key;
351 	struct extent_buffer *eb;
352 	struct btrfs_extent_item *ei;
353 	struct scrub_warning swarn;
354 	u32 item_size;
355 	int ret;
356 	u64 ref_root;
357 	u8 ref_level;
358 	unsigned long ptr = 0;
359 	const int bufsize = 4096;
360 	u64 extent_item_pos;
361 
362 	path = btrfs_alloc_path();
363 
364 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
365 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
366 	BUG_ON(sblock->page_count < 1);
367 	swarn.sector = (sblock->pagev[0].physical) >> 9;
368 	swarn.logical = sblock->pagev[0].logical;
369 	swarn.errstr = errstr;
370 	swarn.dev = dev;
371 	swarn.msg_bufsize = bufsize;
372 	swarn.scratch_bufsize = bufsize;
373 
374 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
375 		goto out;
376 
377 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
378 	if (ret < 0)
379 		goto out;
380 
381 	extent_item_pos = swarn.logical - found_key.objectid;
382 	swarn.extent_item_size = found_key.offset;
383 
384 	eb = path->nodes[0];
385 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
386 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
387 	btrfs_release_path(path);
388 
389 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
390 		do {
391 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
392 							&ref_root, &ref_level);
393 			printk(KERN_WARNING
394 				"btrfs: %s at logical %llu on dev %s, "
395 				"sector %llu: metadata %s (level %d) in tree "
396 				"%llu\n", errstr, swarn.logical, dev->name,
397 				(unsigned long long)swarn.sector,
398 				ref_level ? "node" : "leaf",
399 				ret < 0 ? -1 : ref_level,
400 				ret < 0 ? -1 : ref_root);
401 		} while (ret != 1);
402 	} else {
403 		swarn.path = path;
404 		iterate_extent_inodes(fs_info, found_key.objectid,
405 					extent_item_pos, 1,
406 					scrub_print_warning_inode, &swarn);
407 	}
408 
409 out:
410 	btrfs_free_path(path);
411 	kfree(swarn.scratch_buf);
412 	kfree(swarn.msg_buf);
413 }
414 
415 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
416 {
417 	struct page *page = NULL;
418 	unsigned long index;
419 	struct scrub_fixup_nodatasum *fixup = ctx;
420 	int ret;
421 	int corrected = 0;
422 	struct btrfs_key key;
423 	struct inode *inode = NULL;
424 	u64 end = offset + PAGE_SIZE - 1;
425 	struct btrfs_root *local_root;
426 
427 	key.objectid = root;
428 	key.type = BTRFS_ROOT_ITEM_KEY;
429 	key.offset = (u64)-1;
430 	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
431 	if (IS_ERR(local_root))
432 		return PTR_ERR(local_root);
433 
434 	key.type = BTRFS_INODE_ITEM_KEY;
435 	key.objectid = inum;
436 	key.offset = 0;
437 	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
438 	if (IS_ERR(inode))
439 		return PTR_ERR(inode);
440 
441 	index = offset >> PAGE_CACHE_SHIFT;
442 
443 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
444 	if (!page) {
445 		ret = -ENOMEM;
446 		goto out;
447 	}
448 
449 	if (PageUptodate(page)) {
450 		struct btrfs_mapping_tree *map_tree;
451 		if (PageDirty(page)) {
452 			/*
453 			 * we need to write the data to the defect sector. the
454 			 * data that was in that sector is not in memory,
455 			 * because the page was modified. we must not write the
456 			 * modified page to that sector.
457 			 *
458 			 * TODO: what could be done here: wait for the delalloc
459 			 *       runner to write out that page (might involve
460 			 *       COW) and see whether the sector is still
461 			 *       referenced afterwards.
462 			 *
463 			 * For the meantime, we'll treat this error
464 			 * incorrectable, although there is a chance that a
465 			 * later scrub will find the bad sector again and that
466 			 * there's no dirty page in memory, then.
467 			 */
468 			ret = -EIO;
469 			goto out;
470 		}
471 		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
472 		ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
473 					fixup->logical, page,
474 					fixup->mirror_num);
475 		unlock_page(page);
476 		corrected = !ret;
477 	} else {
478 		/*
479 		 * we need to get good data first. the general readpage path
480 		 * will call repair_io_failure for us, we just have to make
481 		 * sure we read the bad mirror.
482 		 */
483 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
484 					EXTENT_DAMAGED, GFP_NOFS);
485 		if (ret) {
486 			/* set_extent_bits should give proper error */
487 			WARN_ON(ret > 0);
488 			if (ret > 0)
489 				ret = -EFAULT;
490 			goto out;
491 		}
492 
493 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
494 						btrfs_get_extent,
495 						fixup->mirror_num);
496 		wait_on_page_locked(page);
497 
498 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
499 						end, EXTENT_DAMAGED, 0, NULL);
500 		if (!corrected)
501 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
502 						EXTENT_DAMAGED, GFP_NOFS);
503 	}
504 
505 out:
506 	if (page)
507 		put_page(page);
508 	if (inode)
509 		iput(inode);
510 
511 	if (ret < 0)
512 		return ret;
513 
514 	if (ret == 0 && corrected) {
515 		/*
516 		 * we only need to call readpage for one of the inodes belonging
517 		 * to this extent. so make iterate_extent_inodes stop
518 		 */
519 		return 1;
520 	}
521 
522 	return -EIO;
523 }
524 
525 static void scrub_fixup_nodatasum(struct btrfs_work *work)
526 {
527 	int ret;
528 	struct scrub_fixup_nodatasum *fixup;
529 	struct scrub_dev *sdev;
530 	struct btrfs_trans_handle *trans = NULL;
531 	struct btrfs_fs_info *fs_info;
532 	struct btrfs_path *path;
533 	int uncorrectable = 0;
534 
535 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
536 	sdev = fixup->sdev;
537 	fs_info = fixup->root->fs_info;
538 
539 	path = btrfs_alloc_path();
540 	if (!path) {
541 		spin_lock(&sdev->stat_lock);
542 		++sdev->stat.malloc_errors;
543 		spin_unlock(&sdev->stat_lock);
544 		uncorrectable = 1;
545 		goto out;
546 	}
547 
548 	trans = btrfs_join_transaction(fixup->root);
549 	if (IS_ERR(trans)) {
550 		uncorrectable = 1;
551 		goto out;
552 	}
553 
554 	/*
555 	 * the idea is to trigger a regular read through the standard path. we
556 	 * read a page from the (failed) logical address by specifying the
557 	 * corresponding copynum of the failed sector. thus, that readpage is
558 	 * expected to fail.
559 	 * that is the point where on-the-fly error correction will kick in
560 	 * (once it's finished) and rewrite the failed sector if a good copy
561 	 * can be found.
562 	 */
563 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
564 						path, scrub_fixup_readpage,
565 						fixup);
566 	if (ret < 0) {
567 		uncorrectable = 1;
568 		goto out;
569 	}
570 	WARN_ON(ret != 1);
571 
572 	spin_lock(&sdev->stat_lock);
573 	++sdev->stat.corrected_errors;
574 	spin_unlock(&sdev->stat_lock);
575 
576 out:
577 	if (trans && !IS_ERR(trans))
578 		btrfs_end_transaction(trans, fixup->root);
579 	if (uncorrectable) {
580 		spin_lock(&sdev->stat_lock);
581 		++sdev->stat.uncorrectable_errors;
582 		spin_unlock(&sdev->stat_lock);
583 		printk_ratelimited(KERN_ERR
584 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
585 			(unsigned long long)fixup->logical, sdev->dev->name);
586 	}
587 
588 	btrfs_free_path(path);
589 	kfree(fixup);
590 
591 	/* see caller why we're pretending to be paused in the scrub counters */
592 	mutex_lock(&fs_info->scrub_lock);
593 	atomic_dec(&fs_info->scrubs_running);
594 	atomic_dec(&fs_info->scrubs_paused);
595 	mutex_unlock(&fs_info->scrub_lock);
596 	atomic_dec(&sdev->fixup_cnt);
597 	wake_up(&fs_info->scrub_pause_wait);
598 	wake_up(&sdev->list_wait);
599 }
600 
601 /*
602  * scrub_handle_errored_block gets called when either verification of the
603  * pages failed or the bio failed to read, e.g. with EIO. In the latter
604  * case, this function handles all pages in the bio, even though only one
605  * may be bad.
606  * The goal of this function is to repair the errored block by using the
607  * contents of one of the mirrors.
608  */
609 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
610 {
611 	struct scrub_dev *sdev = sblock_to_check->sdev;
612 	struct btrfs_fs_info *fs_info;
613 	u64 length;
614 	u64 logical;
615 	u64 generation;
616 	unsigned int failed_mirror_index;
617 	unsigned int is_metadata;
618 	unsigned int have_csum;
619 	u8 *csum;
620 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
621 	struct scrub_block *sblock_bad;
622 	int ret;
623 	int mirror_index;
624 	int page_num;
625 	int success;
626 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
627 				      DEFAULT_RATELIMIT_BURST);
628 
629 	BUG_ON(sblock_to_check->page_count < 1);
630 	fs_info = sdev->dev->dev_root->fs_info;
631 	length = sblock_to_check->page_count * PAGE_SIZE;
632 	logical = sblock_to_check->pagev[0].logical;
633 	generation = sblock_to_check->pagev[0].generation;
634 	BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
635 	failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
636 	is_metadata = !(sblock_to_check->pagev[0].flags &
637 			BTRFS_EXTENT_FLAG_DATA);
638 	have_csum = sblock_to_check->pagev[0].have_csum;
639 	csum = sblock_to_check->pagev[0].csum;
640 
641 	/*
642 	 * read all mirrors one after the other. This includes to
643 	 * re-read the extent or metadata block that failed (that was
644 	 * the cause that this fixup code is called) another time,
645 	 * page by page this time in order to know which pages
646 	 * caused I/O errors and which ones are good (for all mirrors).
647 	 * It is the goal to handle the situation when more than one
648 	 * mirror contains I/O errors, but the errors do not
649 	 * overlap, i.e. the data can be repaired by selecting the
650 	 * pages from those mirrors without I/O error on the
651 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
652 	 * would be that mirror #1 has an I/O error on the first page,
653 	 * the second page is good, and mirror #2 has an I/O error on
654 	 * the second page, but the first page is good.
655 	 * Then the first page of the first mirror can be repaired by
656 	 * taking the first page of the second mirror, and the
657 	 * second page of the second mirror can be repaired by
658 	 * copying the contents of the 2nd page of the 1st mirror.
659 	 * One more note: if the pages of one mirror contain I/O
660 	 * errors, the checksum cannot be verified. In order to get
661 	 * the best data for repairing, the first attempt is to find
662 	 * a mirror without I/O errors and with a validated checksum.
663 	 * Only if this is not possible, the pages are picked from
664 	 * mirrors with I/O errors without considering the checksum.
665 	 * If the latter is the case, at the end, the checksum of the
666 	 * repaired area is verified in order to correctly maintain
667 	 * the statistics.
668 	 */
669 
670 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
671 				     sizeof(*sblocks_for_recheck),
672 				     GFP_NOFS);
673 	if (!sblocks_for_recheck) {
674 		spin_lock(&sdev->stat_lock);
675 		sdev->stat.malloc_errors++;
676 		sdev->stat.read_errors++;
677 		sdev->stat.uncorrectable_errors++;
678 		spin_unlock(&sdev->stat_lock);
679 		btrfs_dev_stat_inc_and_print(sdev->dev,
680 					     BTRFS_DEV_STAT_READ_ERRS);
681 		goto out;
682 	}
683 
684 	/* setup the context, map the logical blocks and alloc the pages */
685 	ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
686 					logical, sblocks_for_recheck);
687 	if (ret) {
688 		spin_lock(&sdev->stat_lock);
689 		sdev->stat.read_errors++;
690 		sdev->stat.uncorrectable_errors++;
691 		spin_unlock(&sdev->stat_lock);
692 		btrfs_dev_stat_inc_and_print(sdev->dev,
693 					     BTRFS_DEV_STAT_READ_ERRS);
694 		goto out;
695 	}
696 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
697 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
698 
699 	/* build and submit the bios for the failed mirror, check checksums */
700 	ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
701 				  csum, generation, sdev->csum_size);
702 	if (ret) {
703 		spin_lock(&sdev->stat_lock);
704 		sdev->stat.read_errors++;
705 		sdev->stat.uncorrectable_errors++;
706 		spin_unlock(&sdev->stat_lock);
707 		btrfs_dev_stat_inc_and_print(sdev->dev,
708 					     BTRFS_DEV_STAT_READ_ERRS);
709 		goto out;
710 	}
711 
712 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
713 	    sblock_bad->no_io_error_seen) {
714 		/*
715 		 * the error disappeared after reading page by page, or
716 		 * the area was part of a huge bio and other parts of the
717 		 * bio caused I/O errors, or the block layer merged several
718 		 * read requests into one and the error is caused by a
719 		 * different bio (usually one of the two latter cases is
720 		 * the cause)
721 		 */
722 		spin_lock(&sdev->stat_lock);
723 		sdev->stat.unverified_errors++;
724 		spin_unlock(&sdev->stat_lock);
725 
726 		goto out;
727 	}
728 
729 	if (!sblock_bad->no_io_error_seen) {
730 		spin_lock(&sdev->stat_lock);
731 		sdev->stat.read_errors++;
732 		spin_unlock(&sdev->stat_lock);
733 		if (__ratelimit(&_rs))
734 			scrub_print_warning("i/o error", sblock_to_check);
735 		btrfs_dev_stat_inc_and_print(sdev->dev,
736 					     BTRFS_DEV_STAT_READ_ERRS);
737 	} else if (sblock_bad->checksum_error) {
738 		spin_lock(&sdev->stat_lock);
739 		sdev->stat.csum_errors++;
740 		spin_unlock(&sdev->stat_lock);
741 		if (__ratelimit(&_rs))
742 			scrub_print_warning("checksum error", sblock_to_check);
743 		btrfs_dev_stat_inc_and_print(sdev->dev,
744 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
745 	} else if (sblock_bad->header_error) {
746 		spin_lock(&sdev->stat_lock);
747 		sdev->stat.verify_errors++;
748 		spin_unlock(&sdev->stat_lock);
749 		if (__ratelimit(&_rs))
750 			scrub_print_warning("checksum/header error",
751 					    sblock_to_check);
752 		if (sblock_bad->generation_error)
753 			btrfs_dev_stat_inc_and_print(sdev->dev,
754 				BTRFS_DEV_STAT_GENERATION_ERRS);
755 		else
756 			btrfs_dev_stat_inc_and_print(sdev->dev,
757 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
758 	}
759 
760 	if (sdev->readonly)
761 		goto did_not_correct_error;
762 
763 	if (!is_metadata && !have_csum) {
764 		struct scrub_fixup_nodatasum *fixup_nodatasum;
765 
766 		/*
767 		 * !is_metadata and !have_csum, this means that the data
768 		 * might not be COW'ed, that it might be modified
769 		 * concurrently. The general strategy to work on the
770 		 * commit root does not help in the case when COW is not
771 		 * used.
772 		 */
773 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
774 		if (!fixup_nodatasum)
775 			goto did_not_correct_error;
776 		fixup_nodatasum->sdev = sdev;
777 		fixup_nodatasum->logical = logical;
778 		fixup_nodatasum->root = fs_info->extent_root;
779 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
780 		/*
781 		 * increment scrubs_running to prevent cancel requests from
782 		 * completing as long as a fixup worker is running. we must also
783 		 * increment scrubs_paused to prevent deadlocking on pause
784 		 * requests used for transactions commits (as the worker uses a
785 		 * transaction context). it is safe to regard the fixup worker
786 		 * as paused for all matters practical. effectively, we only
787 		 * avoid cancellation requests from completing.
788 		 */
789 		mutex_lock(&fs_info->scrub_lock);
790 		atomic_inc(&fs_info->scrubs_running);
791 		atomic_inc(&fs_info->scrubs_paused);
792 		mutex_unlock(&fs_info->scrub_lock);
793 		atomic_inc(&sdev->fixup_cnt);
794 		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
795 		btrfs_queue_worker(&fs_info->scrub_workers,
796 				   &fixup_nodatasum->work);
797 		goto out;
798 	}
799 
800 	/*
801 	 * now build and submit the bios for the other mirrors, check
802 	 * checksums
803 	 */
804 	for (mirror_index = 0;
805 	     mirror_index < BTRFS_MAX_MIRRORS &&
806 	     sblocks_for_recheck[mirror_index].page_count > 0;
807 	     mirror_index++) {
808 		if (mirror_index == failed_mirror_index)
809 			continue;
810 
811 		/* build and submit the bios, check checksums */
812 		ret = scrub_recheck_block(fs_info,
813 					  sblocks_for_recheck + mirror_index,
814 					  is_metadata, have_csum, csum,
815 					  generation, sdev->csum_size);
816 		if (ret)
817 			goto did_not_correct_error;
818 	}
819 
820 	/*
821 	 * first try to pick the mirror which is completely without I/O
822 	 * errors and also does not have a checksum error.
823 	 * If one is found, and if a checksum is present, the full block
824 	 * that is known to contain an error is rewritten. Afterwards
825 	 * the block is known to be corrected.
826 	 * If a mirror is found which is completely correct, and no
827 	 * checksum is present, only those pages are rewritten that had
828 	 * an I/O error in the block to be repaired, since it cannot be
829 	 * determined, which copy of the other pages is better (and it
830 	 * could happen otherwise that a correct page would be
831 	 * overwritten by a bad one).
832 	 */
833 	for (mirror_index = 0;
834 	     mirror_index < BTRFS_MAX_MIRRORS &&
835 	     sblocks_for_recheck[mirror_index].page_count > 0;
836 	     mirror_index++) {
837 		struct scrub_block *sblock_other = sblocks_for_recheck +
838 						   mirror_index;
839 
840 		if (!sblock_other->header_error &&
841 		    !sblock_other->checksum_error &&
842 		    sblock_other->no_io_error_seen) {
843 			int force_write = is_metadata || have_csum;
844 
845 			ret = scrub_repair_block_from_good_copy(sblock_bad,
846 								sblock_other,
847 								force_write);
848 			if (0 == ret)
849 				goto corrected_error;
850 		}
851 	}
852 
853 	/*
854 	 * in case of I/O errors in the area that is supposed to be
855 	 * repaired, continue by picking good copies of those pages.
856 	 * Select the good pages from mirrors to rewrite bad pages from
857 	 * the area to fix. Afterwards verify the checksum of the block
858 	 * that is supposed to be repaired. This verification step is
859 	 * only done for the purpose of statistic counting and for the
860 	 * final scrub report, whether errors remain.
861 	 * A perfect algorithm could make use of the checksum and try
862 	 * all possible combinations of pages from the different mirrors
863 	 * until the checksum verification succeeds. For example, when
864 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
865 	 * of mirror #2 is readable but the final checksum test fails,
866 	 * then the 2nd page of mirror #3 could be tried, whether now
867 	 * the final checksum succeedes. But this would be a rare
868 	 * exception and is therefore not implemented. At least it is
869 	 * avoided that the good copy is overwritten.
870 	 * A more useful improvement would be to pick the sectors
871 	 * without I/O error based on sector sizes (512 bytes on legacy
872 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
873 	 * mirror could be repaired by taking 512 byte of a different
874 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
875 	 * area are unreadable.
876 	 */
877 
878 	/* can only fix I/O errors from here on */
879 	if (sblock_bad->no_io_error_seen)
880 		goto did_not_correct_error;
881 
882 	success = 1;
883 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
884 		struct scrub_page *page_bad = sblock_bad->pagev + page_num;
885 
886 		if (!page_bad->io_error)
887 			continue;
888 
889 		for (mirror_index = 0;
890 		     mirror_index < BTRFS_MAX_MIRRORS &&
891 		     sblocks_for_recheck[mirror_index].page_count > 0;
892 		     mirror_index++) {
893 			struct scrub_block *sblock_other = sblocks_for_recheck +
894 							   mirror_index;
895 			struct scrub_page *page_other = sblock_other->pagev +
896 							page_num;
897 
898 			if (!page_other->io_error) {
899 				ret = scrub_repair_page_from_good_copy(
900 					sblock_bad, sblock_other, page_num, 0);
901 				if (0 == ret) {
902 					page_bad->io_error = 0;
903 					break; /* succeeded for this page */
904 				}
905 			}
906 		}
907 
908 		if (page_bad->io_error) {
909 			/* did not find a mirror to copy the page from */
910 			success = 0;
911 		}
912 	}
913 
914 	if (success) {
915 		if (is_metadata || have_csum) {
916 			/*
917 			 * need to verify the checksum now that all
918 			 * sectors on disk are repaired (the write
919 			 * request for data to be repaired is on its way).
920 			 * Just be lazy and use scrub_recheck_block()
921 			 * which re-reads the data before the checksum
922 			 * is verified, but most likely the data comes out
923 			 * of the page cache.
924 			 */
925 			ret = scrub_recheck_block(fs_info, sblock_bad,
926 						  is_metadata, have_csum, csum,
927 						  generation, sdev->csum_size);
928 			if (!ret && !sblock_bad->header_error &&
929 			    !sblock_bad->checksum_error &&
930 			    sblock_bad->no_io_error_seen)
931 				goto corrected_error;
932 			else
933 				goto did_not_correct_error;
934 		} else {
935 corrected_error:
936 			spin_lock(&sdev->stat_lock);
937 			sdev->stat.corrected_errors++;
938 			spin_unlock(&sdev->stat_lock);
939 			printk_ratelimited(KERN_ERR
940 				"btrfs: fixed up error at logical %llu on dev %s\n",
941 				(unsigned long long)logical, sdev->dev->name);
942 		}
943 	} else {
944 did_not_correct_error:
945 		spin_lock(&sdev->stat_lock);
946 		sdev->stat.uncorrectable_errors++;
947 		spin_unlock(&sdev->stat_lock);
948 		printk_ratelimited(KERN_ERR
949 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
950 			(unsigned long long)logical, sdev->dev->name);
951 	}
952 
953 out:
954 	if (sblocks_for_recheck) {
955 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
956 		     mirror_index++) {
957 			struct scrub_block *sblock = sblocks_for_recheck +
958 						     mirror_index;
959 			int page_index;
960 
961 			for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
962 			     page_index++)
963 				if (sblock->pagev[page_index].page)
964 					__free_page(
965 						sblock->pagev[page_index].page);
966 		}
967 		kfree(sblocks_for_recheck);
968 	}
969 
970 	return 0;
971 }
972 
973 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
974 				     struct btrfs_mapping_tree *map_tree,
975 				     u64 length, u64 logical,
976 				     struct scrub_block *sblocks_for_recheck)
977 {
978 	int page_index;
979 	int mirror_index;
980 	int ret;
981 
982 	/*
983 	 * note: the three members sdev, ref_count and outstanding_pages
984 	 * are not used (and not set) in the blocks that are used for
985 	 * the recheck procedure
986 	 */
987 
988 	page_index = 0;
989 	while (length > 0) {
990 		u64 sublen = min_t(u64, length, PAGE_SIZE);
991 		u64 mapped_length = sublen;
992 		struct btrfs_bio *bbio = NULL;
993 
994 		/*
995 		 * with a length of PAGE_SIZE, each returned stripe
996 		 * represents one mirror
997 		 */
998 		ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
999 				      &bbio, 0);
1000 		if (ret || !bbio || mapped_length < sublen) {
1001 			kfree(bbio);
1002 			return -EIO;
1003 		}
1004 
1005 		BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
1006 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1007 		     mirror_index++) {
1008 			struct scrub_block *sblock;
1009 			struct scrub_page *page;
1010 
1011 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1012 				continue;
1013 
1014 			sblock = sblocks_for_recheck + mirror_index;
1015 			page = sblock->pagev + page_index;
1016 			page->logical = logical;
1017 			page->physical = bbio->stripes[mirror_index].physical;
1018 			/* for missing devices, dev->bdev is NULL */
1019 			page->dev = bbio->stripes[mirror_index].dev;
1020 			page->mirror_num = mirror_index + 1;
1021 			page->page = alloc_page(GFP_NOFS);
1022 			if (!page->page) {
1023 				spin_lock(&sdev->stat_lock);
1024 				sdev->stat.malloc_errors++;
1025 				spin_unlock(&sdev->stat_lock);
1026 				return -ENOMEM;
1027 			}
1028 			sblock->page_count++;
1029 		}
1030 		kfree(bbio);
1031 		length -= sublen;
1032 		logical += sublen;
1033 		page_index++;
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 /*
1040  * this function will check the on disk data for checksum errors, header
1041  * errors and read I/O errors. If any I/O errors happen, the exact pages
1042  * which are errored are marked as being bad. The goal is to enable scrub
1043  * to take those pages that are not errored from all the mirrors so that
1044  * the pages that are errored in the just handled mirror can be repaired.
1045  */
1046 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1047 			       struct scrub_block *sblock, int is_metadata,
1048 			       int have_csum, u8 *csum, u64 generation,
1049 			       u16 csum_size)
1050 {
1051 	int page_num;
1052 
1053 	sblock->no_io_error_seen = 1;
1054 	sblock->header_error = 0;
1055 	sblock->checksum_error = 0;
1056 
1057 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1058 		struct bio *bio;
1059 		int ret;
1060 		struct scrub_page *page = sblock->pagev + page_num;
1061 		DECLARE_COMPLETION_ONSTACK(complete);
1062 
1063 		if (page->dev->bdev == NULL) {
1064 			page->io_error = 1;
1065 			sblock->no_io_error_seen = 0;
1066 			continue;
1067 		}
1068 
1069 		BUG_ON(!page->page);
1070 		bio = bio_alloc(GFP_NOFS, 1);
1071 		if (!bio)
1072 			return -EIO;
1073 		bio->bi_bdev = page->dev->bdev;
1074 		bio->bi_sector = page->physical >> 9;
1075 		bio->bi_end_io = scrub_complete_bio_end_io;
1076 		bio->bi_private = &complete;
1077 
1078 		ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1079 		if (PAGE_SIZE != ret) {
1080 			bio_put(bio);
1081 			return -EIO;
1082 		}
1083 		btrfsic_submit_bio(READ, bio);
1084 
1085 		/* this will also unplug the queue */
1086 		wait_for_completion(&complete);
1087 
1088 		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1089 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1090 			sblock->no_io_error_seen = 0;
1091 		bio_put(bio);
1092 	}
1093 
1094 	if (sblock->no_io_error_seen)
1095 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1096 					     have_csum, csum, generation,
1097 					     csum_size);
1098 
1099 	return 0;
1100 }
1101 
1102 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1103 					 struct scrub_block *sblock,
1104 					 int is_metadata, int have_csum,
1105 					 const u8 *csum, u64 generation,
1106 					 u16 csum_size)
1107 {
1108 	int page_num;
1109 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1110 	u32 crc = ~(u32)0;
1111 	struct btrfs_root *root = fs_info->extent_root;
1112 	void *mapped_buffer;
1113 
1114 	BUG_ON(!sblock->pagev[0].page);
1115 	if (is_metadata) {
1116 		struct btrfs_header *h;
1117 
1118 		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1119 		h = (struct btrfs_header *)mapped_buffer;
1120 
1121 		if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1122 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1123 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1124 			   BTRFS_UUID_SIZE)) {
1125 			sblock->header_error = 1;
1126 		} else if (generation != le64_to_cpu(h->generation)) {
1127 			sblock->header_error = 1;
1128 			sblock->generation_error = 1;
1129 		}
1130 		csum = h->csum;
1131 	} else {
1132 		if (!have_csum)
1133 			return;
1134 
1135 		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1136 	}
1137 
1138 	for (page_num = 0;;) {
1139 		if (page_num == 0 && is_metadata)
1140 			crc = btrfs_csum_data(root,
1141 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1142 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1143 		else
1144 			crc = btrfs_csum_data(root, mapped_buffer, crc,
1145 					      PAGE_SIZE);
1146 
1147 		kunmap_atomic(mapped_buffer);
1148 		page_num++;
1149 		if (page_num >= sblock->page_count)
1150 			break;
1151 		BUG_ON(!sblock->pagev[page_num].page);
1152 
1153 		mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1154 	}
1155 
1156 	btrfs_csum_final(crc, calculated_csum);
1157 	if (memcmp(calculated_csum, csum, csum_size))
1158 		sblock->checksum_error = 1;
1159 }
1160 
1161 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1162 {
1163 	complete((struct completion *)bio->bi_private);
1164 }
1165 
1166 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1167 					     struct scrub_block *sblock_good,
1168 					     int force_write)
1169 {
1170 	int page_num;
1171 	int ret = 0;
1172 
1173 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1174 		int ret_sub;
1175 
1176 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1177 							   sblock_good,
1178 							   page_num,
1179 							   force_write);
1180 		if (ret_sub)
1181 			ret = ret_sub;
1182 	}
1183 
1184 	return ret;
1185 }
1186 
1187 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1188 					    struct scrub_block *sblock_good,
1189 					    int page_num, int force_write)
1190 {
1191 	struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1192 	struct scrub_page *page_good = sblock_good->pagev + page_num;
1193 
1194 	BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1195 	BUG_ON(sblock_good->pagev[page_num].page == NULL);
1196 	if (force_write || sblock_bad->header_error ||
1197 	    sblock_bad->checksum_error || page_bad->io_error) {
1198 		struct bio *bio;
1199 		int ret;
1200 		DECLARE_COMPLETION_ONSTACK(complete);
1201 
1202 		bio = bio_alloc(GFP_NOFS, 1);
1203 		if (!bio)
1204 			return -EIO;
1205 		bio->bi_bdev = page_bad->dev->bdev;
1206 		bio->bi_sector = page_bad->physical >> 9;
1207 		bio->bi_end_io = scrub_complete_bio_end_io;
1208 		bio->bi_private = &complete;
1209 
1210 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1211 		if (PAGE_SIZE != ret) {
1212 			bio_put(bio);
1213 			return -EIO;
1214 		}
1215 		btrfsic_submit_bio(WRITE, bio);
1216 
1217 		/* this will also unplug the queue */
1218 		wait_for_completion(&complete);
1219 		if (!bio_flagged(bio, BIO_UPTODATE)) {
1220 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1221 				BTRFS_DEV_STAT_WRITE_ERRS);
1222 			bio_put(bio);
1223 			return -EIO;
1224 		}
1225 		bio_put(bio);
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 static void scrub_checksum(struct scrub_block *sblock)
1232 {
1233 	u64 flags;
1234 	int ret;
1235 
1236 	BUG_ON(sblock->page_count < 1);
1237 	flags = sblock->pagev[0].flags;
1238 	ret = 0;
1239 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1240 		ret = scrub_checksum_data(sblock);
1241 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1242 		ret = scrub_checksum_tree_block(sblock);
1243 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1244 		(void)scrub_checksum_super(sblock);
1245 	else
1246 		WARN_ON(1);
1247 	if (ret)
1248 		scrub_handle_errored_block(sblock);
1249 }
1250 
1251 static int scrub_checksum_data(struct scrub_block *sblock)
1252 {
1253 	struct scrub_dev *sdev = sblock->sdev;
1254 	u8 csum[BTRFS_CSUM_SIZE];
1255 	u8 *on_disk_csum;
1256 	struct page *page;
1257 	void *buffer;
1258 	u32 crc = ~(u32)0;
1259 	int fail = 0;
1260 	struct btrfs_root *root = sdev->dev->dev_root;
1261 	u64 len;
1262 	int index;
1263 
1264 	BUG_ON(sblock->page_count < 1);
1265 	if (!sblock->pagev[0].have_csum)
1266 		return 0;
1267 
1268 	on_disk_csum = sblock->pagev[0].csum;
1269 	page = sblock->pagev[0].page;
1270 	buffer = kmap_atomic(page);
1271 
1272 	len = sdev->sectorsize;
1273 	index = 0;
1274 	for (;;) {
1275 		u64 l = min_t(u64, len, PAGE_SIZE);
1276 
1277 		crc = btrfs_csum_data(root, buffer, crc, l);
1278 		kunmap_atomic(buffer);
1279 		len -= l;
1280 		if (len == 0)
1281 			break;
1282 		index++;
1283 		BUG_ON(index >= sblock->page_count);
1284 		BUG_ON(!sblock->pagev[index].page);
1285 		page = sblock->pagev[index].page;
1286 		buffer = kmap_atomic(page);
1287 	}
1288 
1289 	btrfs_csum_final(crc, csum);
1290 	if (memcmp(csum, on_disk_csum, sdev->csum_size))
1291 		fail = 1;
1292 
1293 	return fail;
1294 }
1295 
1296 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1297 {
1298 	struct scrub_dev *sdev = sblock->sdev;
1299 	struct btrfs_header *h;
1300 	struct btrfs_root *root = sdev->dev->dev_root;
1301 	struct btrfs_fs_info *fs_info = root->fs_info;
1302 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1303 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1304 	struct page *page;
1305 	void *mapped_buffer;
1306 	u64 mapped_size;
1307 	void *p;
1308 	u32 crc = ~(u32)0;
1309 	int fail = 0;
1310 	int crc_fail = 0;
1311 	u64 len;
1312 	int index;
1313 
1314 	BUG_ON(sblock->page_count < 1);
1315 	page = sblock->pagev[0].page;
1316 	mapped_buffer = kmap_atomic(page);
1317 	h = (struct btrfs_header *)mapped_buffer;
1318 	memcpy(on_disk_csum, h->csum, sdev->csum_size);
1319 
1320 	/*
1321 	 * we don't use the getter functions here, as we
1322 	 * a) don't have an extent buffer and
1323 	 * b) the page is already kmapped
1324 	 */
1325 
1326 	if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1327 		++fail;
1328 
1329 	if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1330 		++fail;
1331 
1332 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1333 		++fail;
1334 
1335 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1336 		   BTRFS_UUID_SIZE))
1337 		++fail;
1338 
1339 	BUG_ON(sdev->nodesize != sdev->leafsize);
1340 	len = sdev->nodesize - BTRFS_CSUM_SIZE;
1341 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1342 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1343 	index = 0;
1344 	for (;;) {
1345 		u64 l = min_t(u64, len, mapped_size);
1346 
1347 		crc = btrfs_csum_data(root, p, crc, l);
1348 		kunmap_atomic(mapped_buffer);
1349 		len -= l;
1350 		if (len == 0)
1351 			break;
1352 		index++;
1353 		BUG_ON(index >= sblock->page_count);
1354 		BUG_ON(!sblock->pagev[index].page);
1355 		page = sblock->pagev[index].page;
1356 		mapped_buffer = kmap_atomic(page);
1357 		mapped_size = PAGE_SIZE;
1358 		p = mapped_buffer;
1359 	}
1360 
1361 	btrfs_csum_final(crc, calculated_csum);
1362 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1363 		++crc_fail;
1364 
1365 	return fail || crc_fail;
1366 }
1367 
1368 static int scrub_checksum_super(struct scrub_block *sblock)
1369 {
1370 	struct btrfs_super_block *s;
1371 	struct scrub_dev *sdev = sblock->sdev;
1372 	struct btrfs_root *root = sdev->dev->dev_root;
1373 	struct btrfs_fs_info *fs_info = root->fs_info;
1374 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1375 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1376 	struct page *page;
1377 	void *mapped_buffer;
1378 	u64 mapped_size;
1379 	void *p;
1380 	u32 crc = ~(u32)0;
1381 	int fail_gen = 0;
1382 	int fail_cor = 0;
1383 	u64 len;
1384 	int index;
1385 
1386 	BUG_ON(sblock->page_count < 1);
1387 	page = sblock->pagev[0].page;
1388 	mapped_buffer = kmap_atomic(page);
1389 	s = (struct btrfs_super_block *)mapped_buffer;
1390 	memcpy(on_disk_csum, s->csum, sdev->csum_size);
1391 
1392 	if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1393 		++fail_cor;
1394 
1395 	if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1396 		++fail_gen;
1397 
1398 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1399 		++fail_cor;
1400 
1401 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1402 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1403 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1404 	index = 0;
1405 	for (;;) {
1406 		u64 l = min_t(u64, len, mapped_size);
1407 
1408 		crc = btrfs_csum_data(root, p, crc, l);
1409 		kunmap_atomic(mapped_buffer);
1410 		len -= l;
1411 		if (len == 0)
1412 			break;
1413 		index++;
1414 		BUG_ON(index >= sblock->page_count);
1415 		BUG_ON(!sblock->pagev[index].page);
1416 		page = sblock->pagev[index].page;
1417 		mapped_buffer = kmap_atomic(page);
1418 		mapped_size = PAGE_SIZE;
1419 		p = mapped_buffer;
1420 	}
1421 
1422 	btrfs_csum_final(crc, calculated_csum);
1423 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1424 		++fail_cor;
1425 
1426 	if (fail_cor + fail_gen) {
1427 		/*
1428 		 * if we find an error in a super block, we just report it.
1429 		 * They will get written with the next transaction commit
1430 		 * anyway
1431 		 */
1432 		spin_lock(&sdev->stat_lock);
1433 		++sdev->stat.super_errors;
1434 		spin_unlock(&sdev->stat_lock);
1435 		if (fail_cor)
1436 			btrfs_dev_stat_inc_and_print(sdev->dev,
1437 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1438 		else
1439 			btrfs_dev_stat_inc_and_print(sdev->dev,
1440 				BTRFS_DEV_STAT_GENERATION_ERRS);
1441 	}
1442 
1443 	return fail_cor + fail_gen;
1444 }
1445 
1446 static void scrub_block_get(struct scrub_block *sblock)
1447 {
1448 	atomic_inc(&sblock->ref_count);
1449 }
1450 
1451 static void scrub_block_put(struct scrub_block *sblock)
1452 {
1453 	if (atomic_dec_and_test(&sblock->ref_count)) {
1454 		int i;
1455 
1456 		for (i = 0; i < sblock->page_count; i++)
1457 			if (sblock->pagev[i].page)
1458 				__free_page(sblock->pagev[i].page);
1459 		kfree(sblock);
1460 	}
1461 }
1462 
1463 static void scrub_submit(struct scrub_dev *sdev)
1464 {
1465 	struct scrub_bio *sbio;
1466 
1467 	if (sdev->curr == -1)
1468 		return;
1469 
1470 	sbio = sdev->bios[sdev->curr];
1471 	sdev->curr = -1;
1472 	atomic_inc(&sdev->in_flight);
1473 
1474 	btrfsic_submit_bio(READ, sbio->bio);
1475 }
1476 
1477 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1478 				 struct scrub_page *spage)
1479 {
1480 	struct scrub_block *sblock = spage->sblock;
1481 	struct scrub_bio *sbio;
1482 	int ret;
1483 
1484 again:
1485 	/*
1486 	 * grab a fresh bio or wait for one to become available
1487 	 */
1488 	while (sdev->curr == -1) {
1489 		spin_lock(&sdev->list_lock);
1490 		sdev->curr = sdev->first_free;
1491 		if (sdev->curr != -1) {
1492 			sdev->first_free = sdev->bios[sdev->curr]->next_free;
1493 			sdev->bios[sdev->curr]->next_free = -1;
1494 			sdev->bios[sdev->curr]->page_count = 0;
1495 			spin_unlock(&sdev->list_lock);
1496 		} else {
1497 			spin_unlock(&sdev->list_lock);
1498 			wait_event(sdev->list_wait, sdev->first_free != -1);
1499 		}
1500 	}
1501 	sbio = sdev->bios[sdev->curr];
1502 	if (sbio->page_count == 0) {
1503 		struct bio *bio;
1504 
1505 		sbio->physical = spage->physical;
1506 		sbio->logical = spage->logical;
1507 		bio = sbio->bio;
1508 		if (!bio) {
1509 			bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1510 			if (!bio)
1511 				return -ENOMEM;
1512 			sbio->bio = bio;
1513 		}
1514 
1515 		bio->bi_private = sbio;
1516 		bio->bi_end_io = scrub_bio_end_io;
1517 		bio->bi_bdev = sdev->dev->bdev;
1518 		bio->bi_sector = spage->physical >> 9;
1519 		sbio->err = 0;
1520 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1521 		   spage->physical ||
1522 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1523 		   spage->logical) {
1524 		scrub_submit(sdev);
1525 		goto again;
1526 	}
1527 
1528 	sbio->pagev[sbio->page_count] = spage;
1529 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1530 	if (ret != PAGE_SIZE) {
1531 		if (sbio->page_count < 1) {
1532 			bio_put(sbio->bio);
1533 			sbio->bio = NULL;
1534 			return -EIO;
1535 		}
1536 		scrub_submit(sdev);
1537 		goto again;
1538 	}
1539 
1540 	scrub_block_get(sblock); /* one for the added page */
1541 	atomic_inc(&sblock->outstanding_pages);
1542 	sbio->page_count++;
1543 	if (sbio->page_count == sdev->pages_per_bio)
1544 		scrub_submit(sdev);
1545 
1546 	return 0;
1547 }
1548 
1549 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1550 		       u64 physical, u64 flags, u64 gen, int mirror_num,
1551 		       u8 *csum, int force)
1552 {
1553 	struct scrub_block *sblock;
1554 	int index;
1555 
1556 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1557 	if (!sblock) {
1558 		spin_lock(&sdev->stat_lock);
1559 		sdev->stat.malloc_errors++;
1560 		spin_unlock(&sdev->stat_lock);
1561 		return -ENOMEM;
1562 	}
1563 
1564 	/* one ref inside this function, plus one for each page later on */
1565 	atomic_set(&sblock->ref_count, 1);
1566 	sblock->sdev = sdev;
1567 	sblock->no_io_error_seen = 1;
1568 
1569 	for (index = 0; len > 0; index++) {
1570 		struct scrub_page *spage = sblock->pagev + index;
1571 		u64 l = min_t(u64, len, PAGE_SIZE);
1572 
1573 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1574 		spage->page = alloc_page(GFP_NOFS);
1575 		if (!spage->page) {
1576 			spin_lock(&sdev->stat_lock);
1577 			sdev->stat.malloc_errors++;
1578 			spin_unlock(&sdev->stat_lock);
1579 			while (index > 0) {
1580 				index--;
1581 				__free_page(sblock->pagev[index].page);
1582 			}
1583 			kfree(sblock);
1584 			return -ENOMEM;
1585 		}
1586 		spage->sblock = sblock;
1587 		spage->dev = sdev->dev;
1588 		spage->flags = flags;
1589 		spage->generation = gen;
1590 		spage->logical = logical;
1591 		spage->physical = physical;
1592 		spage->mirror_num = mirror_num;
1593 		if (csum) {
1594 			spage->have_csum = 1;
1595 			memcpy(spage->csum, csum, sdev->csum_size);
1596 		} else {
1597 			spage->have_csum = 0;
1598 		}
1599 		sblock->page_count++;
1600 		len -= l;
1601 		logical += l;
1602 		physical += l;
1603 	}
1604 
1605 	BUG_ON(sblock->page_count == 0);
1606 	for (index = 0; index < sblock->page_count; index++) {
1607 		struct scrub_page *spage = sblock->pagev + index;
1608 		int ret;
1609 
1610 		ret = scrub_add_page_to_bio(sdev, spage);
1611 		if (ret) {
1612 			scrub_block_put(sblock);
1613 			return ret;
1614 		}
1615 	}
1616 
1617 	if (force)
1618 		scrub_submit(sdev);
1619 
1620 	/* last one frees, either here or in bio completion for last page */
1621 	scrub_block_put(sblock);
1622 	return 0;
1623 }
1624 
1625 static void scrub_bio_end_io(struct bio *bio, int err)
1626 {
1627 	struct scrub_bio *sbio = bio->bi_private;
1628 	struct scrub_dev *sdev = sbio->sdev;
1629 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1630 
1631 	sbio->err = err;
1632 	sbio->bio = bio;
1633 
1634 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1635 }
1636 
1637 static void scrub_bio_end_io_worker(struct btrfs_work *work)
1638 {
1639 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1640 	struct scrub_dev *sdev = sbio->sdev;
1641 	int i;
1642 
1643 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1644 	if (sbio->err) {
1645 		for (i = 0; i < sbio->page_count; i++) {
1646 			struct scrub_page *spage = sbio->pagev[i];
1647 
1648 			spage->io_error = 1;
1649 			spage->sblock->no_io_error_seen = 0;
1650 		}
1651 	}
1652 
1653 	/* now complete the scrub_block items that have all pages completed */
1654 	for (i = 0; i < sbio->page_count; i++) {
1655 		struct scrub_page *spage = sbio->pagev[i];
1656 		struct scrub_block *sblock = spage->sblock;
1657 
1658 		if (atomic_dec_and_test(&sblock->outstanding_pages))
1659 			scrub_block_complete(sblock);
1660 		scrub_block_put(sblock);
1661 	}
1662 
1663 	if (sbio->err) {
1664 		/* what is this good for??? */
1665 		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1666 		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1667 		sbio->bio->bi_phys_segments = 0;
1668 		sbio->bio->bi_idx = 0;
1669 
1670 		for (i = 0; i < sbio->page_count; i++) {
1671 			struct bio_vec *bi;
1672 			bi = &sbio->bio->bi_io_vec[i];
1673 			bi->bv_offset = 0;
1674 			bi->bv_len = PAGE_SIZE;
1675 		}
1676 	}
1677 
1678 	bio_put(sbio->bio);
1679 	sbio->bio = NULL;
1680 	spin_lock(&sdev->list_lock);
1681 	sbio->next_free = sdev->first_free;
1682 	sdev->first_free = sbio->index;
1683 	spin_unlock(&sdev->list_lock);
1684 	atomic_dec(&sdev->in_flight);
1685 	wake_up(&sdev->list_wait);
1686 }
1687 
1688 static void scrub_block_complete(struct scrub_block *sblock)
1689 {
1690 	if (!sblock->no_io_error_seen)
1691 		scrub_handle_errored_block(sblock);
1692 	else
1693 		scrub_checksum(sblock);
1694 }
1695 
1696 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1697 			   u8 *csum)
1698 {
1699 	struct btrfs_ordered_sum *sum = NULL;
1700 	int ret = 0;
1701 	unsigned long i;
1702 	unsigned long num_sectors;
1703 
1704 	while (!list_empty(&sdev->csum_list)) {
1705 		sum = list_first_entry(&sdev->csum_list,
1706 				       struct btrfs_ordered_sum, list);
1707 		if (sum->bytenr > logical)
1708 			return 0;
1709 		if (sum->bytenr + sum->len > logical)
1710 			break;
1711 
1712 		++sdev->stat.csum_discards;
1713 		list_del(&sum->list);
1714 		kfree(sum);
1715 		sum = NULL;
1716 	}
1717 	if (!sum)
1718 		return 0;
1719 
1720 	num_sectors = sum->len / sdev->sectorsize;
1721 	for (i = 0; i < num_sectors; ++i) {
1722 		if (sum->sums[i].bytenr == logical) {
1723 			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1724 			ret = 1;
1725 			break;
1726 		}
1727 	}
1728 	if (ret && i == num_sectors - 1) {
1729 		list_del(&sum->list);
1730 		kfree(sum);
1731 	}
1732 	return ret;
1733 }
1734 
1735 /* scrub extent tries to collect up to 64 kB for each bio */
1736 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1737 			u64 physical, u64 flags, u64 gen, int mirror_num)
1738 {
1739 	int ret;
1740 	u8 csum[BTRFS_CSUM_SIZE];
1741 	u32 blocksize;
1742 
1743 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
1744 		blocksize = sdev->sectorsize;
1745 		spin_lock(&sdev->stat_lock);
1746 		sdev->stat.data_extents_scrubbed++;
1747 		sdev->stat.data_bytes_scrubbed += len;
1748 		spin_unlock(&sdev->stat_lock);
1749 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1750 		BUG_ON(sdev->nodesize != sdev->leafsize);
1751 		blocksize = sdev->nodesize;
1752 		spin_lock(&sdev->stat_lock);
1753 		sdev->stat.tree_extents_scrubbed++;
1754 		sdev->stat.tree_bytes_scrubbed += len;
1755 		spin_unlock(&sdev->stat_lock);
1756 	} else {
1757 		blocksize = sdev->sectorsize;
1758 		BUG_ON(1);
1759 	}
1760 
1761 	while (len) {
1762 		u64 l = min_t(u64, len, blocksize);
1763 		int have_csum = 0;
1764 
1765 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
1766 			/* push csums to sbio */
1767 			have_csum = scrub_find_csum(sdev, logical, l, csum);
1768 			if (have_csum == 0)
1769 				++sdev->stat.no_csum;
1770 		}
1771 		ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1772 				  mirror_num, have_csum ? csum : NULL, 0);
1773 		if (ret)
1774 			return ret;
1775 		len -= l;
1776 		logical += l;
1777 		physical += l;
1778 	}
1779 	return 0;
1780 }
1781 
1782 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1783 	struct map_lookup *map, int num, u64 base, u64 length)
1784 {
1785 	struct btrfs_path *path;
1786 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1787 	struct btrfs_root *root = fs_info->extent_root;
1788 	struct btrfs_root *csum_root = fs_info->csum_root;
1789 	struct btrfs_extent_item *extent;
1790 	struct blk_plug plug;
1791 	u64 flags;
1792 	int ret;
1793 	int slot;
1794 	int i;
1795 	u64 nstripes;
1796 	struct extent_buffer *l;
1797 	struct btrfs_key key;
1798 	u64 physical;
1799 	u64 logical;
1800 	u64 generation;
1801 	int mirror_num;
1802 	struct reada_control *reada1;
1803 	struct reada_control *reada2;
1804 	struct btrfs_key key_start;
1805 	struct btrfs_key key_end;
1806 
1807 	u64 increment = map->stripe_len;
1808 	u64 offset;
1809 
1810 	nstripes = length;
1811 	offset = 0;
1812 	do_div(nstripes, map->stripe_len);
1813 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1814 		offset = map->stripe_len * num;
1815 		increment = map->stripe_len * map->num_stripes;
1816 		mirror_num = 1;
1817 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1818 		int factor = map->num_stripes / map->sub_stripes;
1819 		offset = map->stripe_len * (num / map->sub_stripes);
1820 		increment = map->stripe_len * factor;
1821 		mirror_num = num % map->sub_stripes + 1;
1822 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1823 		increment = map->stripe_len;
1824 		mirror_num = num % map->num_stripes + 1;
1825 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1826 		increment = map->stripe_len;
1827 		mirror_num = num % map->num_stripes + 1;
1828 	} else {
1829 		increment = map->stripe_len;
1830 		mirror_num = 1;
1831 	}
1832 
1833 	path = btrfs_alloc_path();
1834 	if (!path)
1835 		return -ENOMEM;
1836 
1837 	/*
1838 	 * work on commit root. The related disk blocks are static as
1839 	 * long as COW is applied. This means, it is save to rewrite
1840 	 * them to repair disk errors without any race conditions
1841 	 */
1842 	path->search_commit_root = 1;
1843 	path->skip_locking = 1;
1844 
1845 	/*
1846 	 * trigger the readahead for extent tree csum tree and wait for
1847 	 * completion. During readahead, the scrub is officially paused
1848 	 * to not hold off transaction commits
1849 	 */
1850 	logical = base + offset;
1851 
1852 	wait_event(sdev->list_wait,
1853 		   atomic_read(&sdev->in_flight) == 0);
1854 	atomic_inc(&fs_info->scrubs_paused);
1855 	wake_up(&fs_info->scrub_pause_wait);
1856 
1857 	/* FIXME it might be better to start readahead at commit root */
1858 	key_start.objectid = logical;
1859 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
1860 	key_start.offset = (u64)0;
1861 	key_end.objectid = base + offset + nstripes * increment;
1862 	key_end.type = BTRFS_EXTENT_ITEM_KEY;
1863 	key_end.offset = (u64)0;
1864 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
1865 
1866 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1867 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
1868 	key_start.offset = logical;
1869 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1870 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
1871 	key_end.offset = base + offset + nstripes * increment;
1872 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1873 
1874 	if (!IS_ERR(reada1))
1875 		btrfs_reada_wait(reada1);
1876 	if (!IS_ERR(reada2))
1877 		btrfs_reada_wait(reada2);
1878 
1879 	mutex_lock(&fs_info->scrub_lock);
1880 	while (atomic_read(&fs_info->scrub_pause_req)) {
1881 		mutex_unlock(&fs_info->scrub_lock);
1882 		wait_event(fs_info->scrub_pause_wait,
1883 		   atomic_read(&fs_info->scrub_pause_req) == 0);
1884 		mutex_lock(&fs_info->scrub_lock);
1885 	}
1886 	atomic_dec(&fs_info->scrubs_paused);
1887 	mutex_unlock(&fs_info->scrub_lock);
1888 	wake_up(&fs_info->scrub_pause_wait);
1889 
1890 	/*
1891 	 * collect all data csums for the stripe to avoid seeking during
1892 	 * the scrub. This might currently (crc32) end up to be about 1MB
1893 	 */
1894 	blk_start_plug(&plug);
1895 
1896 	/*
1897 	 * now find all extents for each stripe and scrub them
1898 	 */
1899 	logical = base + offset;
1900 	physical = map->stripes[num].physical;
1901 	ret = 0;
1902 	for (i = 0; i < nstripes; ++i) {
1903 		/*
1904 		 * canceled?
1905 		 */
1906 		if (atomic_read(&fs_info->scrub_cancel_req) ||
1907 		    atomic_read(&sdev->cancel_req)) {
1908 			ret = -ECANCELED;
1909 			goto out;
1910 		}
1911 		/*
1912 		 * check to see if we have to pause
1913 		 */
1914 		if (atomic_read(&fs_info->scrub_pause_req)) {
1915 			/* push queued extents */
1916 			scrub_submit(sdev);
1917 			wait_event(sdev->list_wait,
1918 				   atomic_read(&sdev->in_flight) == 0);
1919 			atomic_inc(&fs_info->scrubs_paused);
1920 			wake_up(&fs_info->scrub_pause_wait);
1921 			mutex_lock(&fs_info->scrub_lock);
1922 			while (atomic_read(&fs_info->scrub_pause_req)) {
1923 				mutex_unlock(&fs_info->scrub_lock);
1924 				wait_event(fs_info->scrub_pause_wait,
1925 				   atomic_read(&fs_info->scrub_pause_req) == 0);
1926 				mutex_lock(&fs_info->scrub_lock);
1927 			}
1928 			atomic_dec(&fs_info->scrubs_paused);
1929 			mutex_unlock(&fs_info->scrub_lock);
1930 			wake_up(&fs_info->scrub_pause_wait);
1931 		}
1932 
1933 		ret = btrfs_lookup_csums_range(csum_root, logical,
1934 					       logical + map->stripe_len - 1,
1935 					       &sdev->csum_list, 1);
1936 		if (ret)
1937 			goto out;
1938 
1939 		key.objectid = logical;
1940 		key.type = BTRFS_EXTENT_ITEM_KEY;
1941 		key.offset = (u64)0;
1942 
1943 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1944 		if (ret < 0)
1945 			goto out;
1946 		if (ret > 0) {
1947 			ret = btrfs_previous_item(root, path, 0,
1948 						  BTRFS_EXTENT_ITEM_KEY);
1949 			if (ret < 0)
1950 				goto out;
1951 			if (ret > 0) {
1952 				/* there's no smaller item, so stick with the
1953 				 * larger one */
1954 				btrfs_release_path(path);
1955 				ret = btrfs_search_slot(NULL, root, &key,
1956 							path, 0, 0);
1957 				if (ret < 0)
1958 					goto out;
1959 			}
1960 		}
1961 
1962 		while (1) {
1963 			l = path->nodes[0];
1964 			slot = path->slots[0];
1965 			if (slot >= btrfs_header_nritems(l)) {
1966 				ret = btrfs_next_leaf(root, path);
1967 				if (ret == 0)
1968 					continue;
1969 				if (ret < 0)
1970 					goto out;
1971 
1972 				break;
1973 			}
1974 			btrfs_item_key_to_cpu(l, &key, slot);
1975 
1976 			if (key.objectid + key.offset <= logical)
1977 				goto next;
1978 
1979 			if (key.objectid >= logical + map->stripe_len)
1980 				break;
1981 
1982 			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1983 				goto next;
1984 
1985 			extent = btrfs_item_ptr(l, slot,
1986 						struct btrfs_extent_item);
1987 			flags = btrfs_extent_flags(l, extent);
1988 			generation = btrfs_extent_generation(l, extent);
1989 
1990 			if (key.objectid < logical &&
1991 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1992 				printk(KERN_ERR
1993 				       "btrfs scrub: tree block %llu spanning "
1994 				       "stripes, ignored. logical=%llu\n",
1995 				       (unsigned long long)key.objectid,
1996 				       (unsigned long long)logical);
1997 				goto next;
1998 			}
1999 
2000 			/*
2001 			 * trim extent to this stripe
2002 			 */
2003 			if (key.objectid < logical) {
2004 				key.offset -= logical - key.objectid;
2005 				key.objectid = logical;
2006 			}
2007 			if (key.objectid + key.offset >
2008 			    logical + map->stripe_len) {
2009 				key.offset = logical + map->stripe_len -
2010 					     key.objectid;
2011 			}
2012 
2013 			ret = scrub_extent(sdev, key.objectid, key.offset,
2014 					   key.objectid - logical + physical,
2015 					   flags, generation, mirror_num);
2016 			if (ret)
2017 				goto out;
2018 
2019 next:
2020 			path->slots[0]++;
2021 		}
2022 		btrfs_release_path(path);
2023 		logical += increment;
2024 		physical += map->stripe_len;
2025 		spin_lock(&sdev->stat_lock);
2026 		sdev->stat.last_physical = physical;
2027 		spin_unlock(&sdev->stat_lock);
2028 	}
2029 	/* push queued extents */
2030 	scrub_submit(sdev);
2031 
2032 out:
2033 	blk_finish_plug(&plug);
2034 	btrfs_free_path(path);
2035 	return ret < 0 ? ret : 0;
2036 }
2037 
2038 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2039 	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2040 	u64 dev_offset)
2041 {
2042 	struct btrfs_mapping_tree *map_tree =
2043 		&sdev->dev->dev_root->fs_info->mapping_tree;
2044 	struct map_lookup *map;
2045 	struct extent_map *em;
2046 	int i;
2047 	int ret = -EINVAL;
2048 
2049 	read_lock(&map_tree->map_tree.lock);
2050 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2051 	read_unlock(&map_tree->map_tree.lock);
2052 
2053 	if (!em)
2054 		return -EINVAL;
2055 
2056 	map = (struct map_lookup *)em->bdev;
2057 	if (em->start != chunk_offset)
2058 		goto out;
2059 
2060 	if (em->len < length)
2061 		goto out;
2062 
2063 	for (i = 0; i < map->num_stripes; ++i) {
2064 		if (map->stripes[i].dev == sdev->dev &&
2065 		    map->stripes[i].physical == dev_offset) {
2066 			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2067 			if (ret)
2068 				goto out;
2069 		}
2070 	}
2071 out:
2072 	free_extent_map(em);
2073 
2074 	return ret;
2075 }
2076 
2077 static noinline_for_stack
2078 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2079 {
2080 	struct btrfs_dev_extent *dev_extent = NULL;
2081 	struct btrfs_path *path;
2082 	struct btrfs_root *root = sdev->dev->dev_root;
2083 	struct btrfs_fs_info *fs_info = root->fs_info;
2084 	u64 length;
2085 	u64 chunk_tree;
2086 	u64 chunk_objectid;
2087 	u64 chunk_offset;
2088 	int ret;
2089 	int slot;
2090 	struct extent_buffer *l;
2091 	struct btrfs_key key;
2092 	struct btrfs_key found_key;
2093 	struct btrfs_block_group_cache *cache;
2094 
2095 	path = btrfs_alloc_path();
2096 	if (!path)
2097 		return -ENOMEM;
2098 
2099 	path->reada = 2;
2100 	path->search_commit_root = 1;
2101 	path->skip_locking = 1;
2102 
2103 	key.objectid = sdev->dev->devid;
2104 	key.offset = 0ull;
2105 	key.type = BTRFS_DEV_EXTENT_KEY;
2106 
2107 
2108 	while (1) {
2109 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2110 		if (ret < 0)
2111 			break;
2112 		if (ret > 0) {
2113 			if (path->slots[0] >=
2114 			    btrfs_header_nritems(path->nodes[0])) {
2115 				ret = btrfs_next_leaf(root, path);
2116 				if (ret)
2117 					break;
2118 			}
2119 		}
2120 
2121 		l = path->nodes[0];
2122 		slot = path->slots[0];
2123 
2124 		btrfs_item_key_to_cpu(l, &found_key, slot);
2125 
2126 		if (found_key.objectid != sdev->dev->devid)
2127 			break;
2128 
2129 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2130 			break;
2131 
2132 		if (found_key.offset >= end)
2133 			break;
2134 
2135 		if (found_key.offset < key.offset)
2136 			break;
2137 
2138 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2139 		length = btrfs_dev_extent_length(l, dev_extent);
2140 
2141 		if (found_key.offset + length <= start) {
2142 			key.offset = found_key.offset + length;
2143 			btrfs_release_path(path);
2144 			continue;
2145 		}
2146 
2147 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2148 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2149 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2150 
2151 		/*
2152 		 * get a reference on the corresponding block group to prevent
2153 		 * the chunk from going away while we scrub it
2154 		 */
2155 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2156 		if (!cache) {
2157 			ret = -ENOENT;
2158 			break;
2159 		}
2160 		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2161 				  chunk_offset, length, found_key.offset);
2162 		btrfs_put_block_group(cache);
2163 		if (ret)
2164 			break;
2165 
2166 		key.offset = found_key.offset + length;
2167 		btrfs_release_path(path);
2168 	}
2169 
2170 	btrfs_free_path(path);
2171 
2172 	/*
2173 	 * ret can still be 1 from search_slot or next_leaf,
2174 	 * that's not an error
2175 	 */
2176 	return ret < 0 ? ret : 0;
2177 }
2178 
2179 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2180 {
2181 	int	i;
2182 	u64	bytenr;
2183 	u64	gen;
2184 	int	ret;
2185 	struct btrfs_device *device = sdev->dev;
2186 	struct btrfs_root *root = device->dev_root;
2187 
2188 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2189 		return -EIO;
2190 
2191 	gen = root->fs_info->last_trans_committed;
2192 
2193 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2194 		bytenr = btrfs_sb_offset(i);
2195 		if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2196 			break;
2197 
2198 		ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2199 				     BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2200 		if (ret)
2201 			return ret;
2202 	}
2203 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2204 
2205 	return 0;
2206 }
2207 
2208 /*
2209  * get a reference count on fs_info->scrub_workers. start worker if necessary
2210  */
2211 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2212 {
2213 	struct btrfs_fs_info *fs_info = root->fs_info;
2214 	int ret = 0;
2215 
2216 	mutex_lock(&fs_info->scrub_lock);
2217 	if (fs_info->scrub_workers_refcnt == 0) {
2218 		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2219 			   fs_info->thread_pool_size, &fs_info->generic_worker);
2220 		fs_info->scrub_workers.idle_thresh = 4;
2221 		ret = btrfs_start_workers(&fs_info->scrub_workers);
2222 		if (ret)
2223 			goto out;
2224 	}
2225 	++fs_info->scrub_workers_refcnt;
2226 out:
2227 	mutex_unlock(&fs_info->scrub_lock);
2228 
2229 	return ret;
2230 }
2231 
2232 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2233 {
2234 	struct btrfs_fs_info *fs_info = root->fs_info;
2235 
2236 	mutex_lock(&fs_info->scrub_lock);
2237 	if (--fs_info->scrub_workers_refcnt == 0)
2238 		btrfs_stop_workers(&fs_info->scrub_workers);
2239 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2240 	mutex_unlock(&fs_info->scrub_lock);
2241 }
2242 
2243 
2244 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2245 		    struct btrfs_scrub_progress *progress, int readonly)
2246 {
2247 	struct scrub_dev *sdev;
2248 	struct btrfs_fs_info *fs_info = root->fs_info;
2249 	int ret;
2250 	struct btrfs_device *dev;
2251 
2252 	if (btrfs_fs_closing(root->fs_info))
2253 		return -EINVAL;
2254 
2255 	/*
2256 	 * check some assumptions
2257 	 */
2258 	if (root->nodesize != root->leafsize) {
2259 		printk(KERN_ERR
2260 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2261 		       root->nodesize, root->leafsize);
2262 		return -EINVAL;
2263 	}
2264 
2265 	if (root->nodesize > BTRFS_STRIPE_LEN) {
2266 		/*
2267 		 * in this case scrub is unable to calculate the checksum
2268 		 * the way scrub is implemented. Do not handle this
2269 		 * situation at all because it won't ever happen.
2270 		 */
2271 		printk(KERN_ERR
2272 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2273 		       root->nodesize, BTRFS_STRIPE_LEN);
2274 		return -EINVAL;
2275 	}
2276 
2277 	if (root->sectorsize != PAGE_SIZE) {
2278 		/* not supported for data w/o checksums */
2279 		printk(KERN_ERR
2280 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2281 		       root->sectorsize, (unsigned long long)PAGE_SIZE);
2282 		return -EINVAL;
2283 	}
2284 
2285 	ret = scrub_workers_get(root);
2286 	if (ret)
2287 		return ret;
2288 
2289 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2290 	dev = btrfs_find_device(root, devid, NULL, NULL);
2291 	if (!dev || dev->missing) {
2292 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2293 		scrub_workers_put(root);
2294 		return -ENODEV;
2295 	}
2296 	mutex_lock(&fs_info->scrub_lock);
2297 
2298 	if (!dev->in_fs_metadata) {
2299 		mutex_unlock(&fs_info->scrub_lock);
2300 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2301 		scrub_workers_put(root);
2302 		return -ENODEV;
2303 	}
2304 
2305 	if (dev->scrub_device) {
2306 		mutex_unlock(&fs_info->scrub_lock);
2307 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2308 		scrub_workers_put(root);
2309 		return -EINPROGRESS;
2310 	}
2311 	sdev = scrub_setup_dev(dev);
2312 	if (IS_ERR(sdev)) {
2313 		mutex_unlock(&fs_info->scrub_lock);
2314 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2315 		scrub_workers_put(root);
2316 		return PTR_ERR(sdev);
2317 	}
2318 	sdev->readonly = readonly;
2319 	dev->scrub_device = sdev;
2320 
2321 	atomic_inc(&fs_info->scrubs_running);
2322 	mutex_unlock(&fs_info->scrub_lock);
2323 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2324 
2325 	down_read(&fs_info->scrub_super_lock);
2326 	ret = scrub_supers(sdev);
2327 	up_read(&fs_info->scrub_super_lock);
2328 
2329 	if (!ret)
2330 		ret = scrub_enumerate_chunks(sdev, start, end);
2331 
2332 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2333 	atomic_dec(&fs_info->scrubs_running);
2334 	wake_up(&fs_info->scrub_pause_wait);
2335 
2336 	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2337 
2338 	if (progress)
2339 		memcpy(progress, &sdev->stat, sizeof(*progress));
2340 
2341 	mutex_lock(&fs_info->scrub_lock);
2342 	dev->scrub_device = NULL;
2343 	mutex_unlock(&fs_info->scrub_lock);
2344 
2345 	scrub_free_dev(sdev);
2346 	scrub_workers_put(root);
2347 
2348 	return ret;
2349 }
2350 
2351 void btrfs_scrub_pause(struct btrfs_root *root)
2352 {
2353 	struct btrfs_fs_info *fs_info = root->fs_info;
2354 
2355 	mutex_lock(&fs_info->scrub_lock);
2356 	atomic_inc(&fs_info->scrub_pause_req);
2357 	while (atomic_read(&fs_info->scrubs_paused) !=
2358 	       atomic_read(&fs_info->scrubs_running)) {
2359 		mutex_unlock(&fs_info->scrub_lock);
2360 		wait_event(fs_info->scrub_pause_wait,
2361 			   atomic_read(&fs_info->scrubs_paused) ==
2362 			   atomic_read(&fs_info->scrubs_running));
2363 		mutex_lock(&fs_info->scrub_lock);
2364 	}
2365 	mutex_unlock(&fs_info->scrub_lock);
2366 }
2367 
2368 void btrfs_scrub_continue(struct btrfs_root *root)
2369 {
2370 	struct btrfs_fs_info *fs_info = root->fs_info;
2371 
2372 	atomic_dec(&fs_info->scrub_pause_req);
2373 	wake_up(&fs_info->scrub_pause_wait);
2374 }
2375 
2376 void btrfs_scrub_pause_super(struct btrfs_root *root)
2377 {
2378 	down_write(&root->fs_info->scrub_super_lock);
2379 }
2380 
2381 void btrfs_scrub_continue_super(struct btrfs_root *root)
2382 {
2383 	up_write(&root->fs_info->scrub_super_lock);
2384 }
2385 
2386 int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2387 {
2388 
2389 	mutex_lock(&fs_info->scrub_lock);
2390 	if (!atomic_read(&fs_info->scrubs_running)) {
2391 		mutex_unlock(&fs_info->scrub_lock);
2392 		return -ENOTCONN;
2393 	}
2394 
2395 	atomic_inc(&fs_info->scrub_cancel_req);
2396 	while (atomic_read(&fs_info->scrubs_running)) {
2397 		mutex_unlock(&fs_info->scrub_lock);
2398 		wait_event(fs_info->scrub_pause_wait,
2399 			   atomic_read(&fs_info->scrubs_running) == 0);
2400 		mutex_lock(&fs_info->scrub_lock);
2401 	}
2402 	atomic_dec(&fs_info->scrub_cancel_req);
2403 	mutex_unlock(&fs_info->scrub_lock);
2404 
2405 	return 0;
2406 }
2407 
2408 int btrfs_scrub_cancel(struct btrfs_root *root)
2409 {
2410 	return __btrfs_scrub_cancel(root->fs_info);
2411 }
2412 
2413 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2414 {
2415 	struct btrfs_fs_info *fs_info = root->fs_info;
2416 	struct scrub_dev *sdev;
2417 
2418 	mutex_lock(&fs_info->scrub_lock);
2419 	sdev = dev->scrub_device;
2420 	if (!sdev) {
2421 		mutex_unlock(&fs_info->scrub_lock);
2422 		return -ENOTCONN;
2423 	}
2424 	atomic_inc(&sdev->cancel_req);
2425 	while (dev->scrub_device) {
2426 		mutex_unlock(&fs_info->scrub_lock);
2427 		wait_event(fs_info->scrub_pause_wait,
2428 			   dev->scrub_device == NULL);
2429 		mutex_lock(&fs_info->scrub_lock);
2430 	}
2431 	mutex_unlock(&fs_info->scrub_lock);
2432 
2433 	return 0;
2434 }
2435 
2436 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2437 {
2438 	struct btrfs_fs_info *fs_info = root->fs_info;
2439 	struct btrfs_device *dev;
2440 	int ret;
2441 
2442 	/*
2443 	 * we have to hold the device_list_mutex here so the device
2444 	 * does not go away in cancel_dev. FIXME: find a better solution
2445 	 */
2446 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2447 	dev = btrfs_find_device(root, devid, NULL, NULL);
2448 	if (!dev) {
2449 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2450 		return -ENODEV;
2451 	}
2452 	ret = btrfs_scrub_cancel_dev(root, dev);
2453 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2454 
2455 	return ret;
2456 }
2457 
2458 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2459 			 struct btrfs_scrub_progress *progress)
2460 {
2461 	struct btrfs_device *dev;
2462 	struct scrub_dev *sdev = NULL;
2463 
2464 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2465 	dev = btrfs_find_device(root, devid, NULL, NULL);
2466 	if (dev)
2467 		sdev = dev->scrub_device;
2468 	if (sdev)
2469 		memcpy(progress, &sdev->stat, sizeof(*progress));
2470 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2471 
2472 	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2473 }
2474