1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "dev-replace.h" 29 #include "check-integrity.h" 30 #include "rcu-string.h" 31 #include "raid56.h" 32 33 /* 34 * This is only the first step towards a full-features scrub. It reads all 35 * extent and super block and verifies the checksums. In case a bad checksum 36 * is found or the extent cannot be read, good data will be written back if 37 * any can be found. 38 * 39 * Future enhancements: 40 * - In case an unrepairable extent is encountered, track which files are 41 * affected and report them 42 * - track and record media errors, throw out bad devices 43 * - add a mode to also read unallocated space 44 */ 45 46 struct scrub_block; 47 struct scrub_ctx; 48 49 /* 50 * the following three values only influence the performance. 51 * The last one configures the number of parallel and outstanding I/O 52 * operations. The first two values configure an upper limit for the number 53 * of (dynamically allocated) pages that are added to a bio. 54 */ 55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 58 59 /* 60 * the following value times PAGE_SIZE needs to be large enough to match the 61 * largest node/leaf/sector size that shall be supported. 62 * Values larger than BTRFS_STRIPE_LEN are not supported. 63 */ 64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 65 66 struct scrub_page { 67 struct scrub_block *sblock; 68 struct page *page; 69 struct btrfs_device *dev; 70 u64 flags; /* extent flags */ 71 u64 generation; 72 u64 logical; 73 u64 physical; 74 u64 physical_for_dev_replace; 75 atomic_t ref_count; 76 struct { 77 unsigned int mirror_num:8; 78 unsigned int have_csum:1; 79 unsigned int io_error:1; 80 }; 81 u8 csum[BTRFS_CSUM_SIZE]; 82 }; 83 84 struct scrub_bio { 85 int index; 86 struct scrub_ctx *sctx; 87 struct btrfs_device *dev; 88 struct bio *bio; 89 int err; 90 u64 logical; 91 u64 physical; 92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 94 #else 95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 96 #endif 97 int page_count; 98 int next_free; 99 struct btrfs_work work; 100 }; 101 102 struct scrub_block { 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 104 int page_count; 105 atomic_t outstanding_pages; 106 atomic_t ref_count; /* free mem on transition to zero */ 107 struct scrub_ctx *sctx; 108 struct { 109 unsigned int header_error:1; 110 unsigned int checksum_error:1; 111 unsigned int no_io_error_seen:1; 112 unsigned int generation_error:1; /* also sets header_error */ 113 }; 114 }; 115 116 struct scrub_wr_ctx { 117 struct scrub_bio *wr_curr_bio; 118 struct btrfs_device *tgtdev; 119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 120 atomic_t flush_all_writes; 121 struct mutex wr_lock; 122 }; 123 124 struct scrub_ctx { 125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 126 struct btrfs_root *dev_root; 127 int first_free; 128 int curr; 129 atomic_t bios_in_flight; 130 atomic_t workers_pending; 131 spinlock_t list_lock; 132 wait_queue_head_t list_wait; 133 u16 csum_size; 134 struct list_head csum_list; 135 atomic_t cancel_req; 136 int readonly; 137 int pages_per_rd_bio; 138 u32 sectorsize; 139 u32 nodesize; 140 u32 leafsize; 141 142 int is_dev_replace; 143 struct scrub_wr_ctx wr_ctx; 144 145 /* 146 * statistics 147 */ 148 struct btrfs_scrub_progress stat; 149 spinlock_t stat_lock; 150 }; 151 152 struct scrub_fixup_nodatasum { 153 struct scrub_ctx *sctx; 154 struct btrfs_device *dev; 155 u64 logical; 156 struct btrfs_root *root; 157 struct btrfs_work work; 158 int mirror_num; 159 }; 160 161 struct scrub_copy_nocow_ctx { 162 struct scrub_ctx *sctx; 163 u64 logical; 164 u64 len; 165 int mirror_num; 166 u64 physical_for_dev_replace; 167 struct btrfs_work work; 168 }; 169 170 struct scrub_warning { 171 struct btrfs_path *path; 172 u64 extent_item_size; 173 char *scratch_buf; 174 char *msg_buf; 175 const char *errstr; 176 sector_t sector; 177 u64 logical; 178 struct btrfs_device *dev; 179 int msg_bufsize; 180 int scratch_bufsize; 181 }; 182 183 184 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 185 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 186 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 187 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 188 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 189 static int scrub_setup_recheck_block(struct scrub_ctx *sctx, 190 struct btrfs_fs_info *fs_info, 191 struct scrub_block *original_sblock, 192 u64 length, u64 logical, 193 struct scrub_block *sblocks_for_recheck); 194 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 195 struct scrub_block *sblock, int is_metadata, 196 int have_csum, u8 *csum, u64 generation, 197 u16 csum_size); 198 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 199 struct scrub_block *sblock, 200 int is_metadata, int have_csum, 201 const u8 *csum, u64 generation, 202 u16 csum_size); 203 static void scrub_complete_bio_end_io(struct bio *bio, int err); 204 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 205 struct scrub_block *sblock_good, 206 int force_write); 207 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 208 struct scrub_block *sblock_good, 209 int page_num, int force_write); 210 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 211 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 212 int page_num); 213 static int scrub_checksum_data(struct scrub_block *sblock); 214 static int scrub_checksum_tree_block(struct scrub_block *sblock); 215 static int scrub_checksum_super(struct scrub_block *sblock); 216 static void scrub_block_get(struct scrub_block *sblock); 217 static void scrub_block_put(struct scrub_block *sblock); 218 static void scrub_page_get(struct scrub_page *spage); 219 static void scrub_page_put(struct scrub_page *spage); 220 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 221 struct scrub_page *spage); 222 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 223 u64 physical, struct btrfs_device *dev, u64 flags, 224 u64 gen, int mirror_num, u8 *csum, int force, 225 u64 physical_for_dev_replace); 226 static void scrub_bio_end_io(struct bio *bio, int err); 227 static void scrub_bio_end_io_worker(struct btrfs_work *work); 228 static void scrub_block_complete(struct scrub_block *sblock); 229 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 230 u64 extent_logical, u64 extent_len, 231 u64 *extent_physical, 232 struct btrfs_device **extent_dev, 233 int *extent_mirror_num); 234 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 235 struct scrub_wr_ctx *wr_ctx, 236 struct btrfs_fs_info *fs_info, 237 struct btrfs_device *dev, 238 int is_dev_replace); 239 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); 240 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 241 struct scrub_page *spage); 242 static void scrub_wr_submit(struct scrub_ctx *sctx); 243 static void scrub_wr_bio_end_io(struct bio *bio, int err); 244 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 245 static int write_page_nocow(struct scrub_ctx *sctx, 246 u64 physical_for_dev_replace, struct page *page); 247 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 248 void *ctx); 249 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 250 int mirror_num, u64 physical_for_dev_replace); 251 static void copy_nocow_pages_worker(struct btrfs_work *work); 252 253 254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 255 { 256 atomic_inc(&sctx->bios_in_flight); 257 } 258 259 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 260 { 261 atomic_dec(&sctx->bios_in_flight); 262 wake_up(&sctx->list_wait); 263 } 264 265 /* 266 * used for workers that require transaction commits (i.e., for the 267 * NOCOW case) 268 */ 269 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 270 { 271 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 272 273 /* 274 * increment scrubs_running to prevent cancel requests from 275 * completing as long as a worker is running. we must also 276 * increment scrubs_paused to prevent deadlocking on pause 277 * requests used for transactions commits (as the worker uses a 278 * transaction context). it is safe to regard the worker 279 * as paused for all matters practical. effectively, we only 280 * avoid cancellation requests from completing. 281 */ 282 mutex_lock(&fs_info->scrub_lock); 283 atomic_inc(&fs_info->scrubs_running); 284 atomic_inc(&fs_info->scrubs_paused); 285 mutex_unlock(&fs_info->scrub_lock); 286 atomic_inc(&sctx->workers_pending); 287 } 288 289 /* used for workers that require transaction commits */ 290 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 291 { 292 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 293 294 /* 295 * see scrub_pending_trans_workers_inc() why we're pretending 296 * to be paused in the scrub counters 297 */ 298 mutex_lock(&fs_info->scrub_lock); 299 atomic_dec(&fs_info->scrubs_running); 300 atomic_dec(&fs_info->scrubs_paused); 301 mutex_unlock(&fs_info->scrub_lock); 302 atomic_dec(&sctx->workers_pending); 303 wake_up(&fs_info->scrub_pause_wait); 304 wake_up(&sctx->list_wait); 305 } 306 307 static void scrub_free_csums(struct scrub_ctx *sctx) 308 { 309 while (!list_empty(&sctx->csum_list)) { 310 struct btrfs_ordered_sum *sum; 311 sum = list_first_entry(&sctx->csum_list, 312 struct btrfs_ordered_sum, list); 313 list_del(&sum->list); 314 kfree(sum); 315 } 316 } 317 318 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 319 { 320 int i; 321 322 if (!sctx) 323 return; 324 325 scrub_free_wr_ctx(&sctx->wr_ctx); 326 327 /* this can happen when scrub is cancelled */ 328 if (sctx->curr != -1) { 329 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 330 331 for (i = 0; i < sbio->page_count; i++) { 332 WARN_ON(!sbio->pagev[i]->page); 333 scrub_block_put(sbio->pagev[i]->sblock); 334 } 335 bio_put(sbio->bio); 336 } 337 338 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 339 struct scrub_bio *sbio = sctx->bios[i]; 340 341 if (!sbio) 342 break; 343 kfree(sbio); 344 } 345 346 scrub_free_csums(sctx); 347 kfree(sctx); 348 } 349 350 static noinline_for_stack 351 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 352 { 353 struct scrub_ctx *sctx; 354 int i; 355 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 356 int pages_per_rd_bio; 357 int ret; 358 359 /* 360 * the setting of pages_per_rd_bio is correct for scrub but might 361 * be wrong for the dev_replace code where we might read from 362 * different devices in the initial huge bios. However, that 363 * code is able to correctly handle the case when adding a page 364 * to a bio fails. 365 */ 366 if (dev->bdev) 367 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO, 368 bio_get_nr_vecs(dev->bdev)); 369 else 370 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 371 sctx = kzalloc(sizeof(*sctx), GFP_NOFS); 372 if (!sctx) 373 goto nomem; 374 sctx->is_dev_replace = is_dev_replace; 375 sctx->pages_per_rd_bio = pages_per_rd_bio; 376 sctx->curr = -1; 377 sctx->dev_root = dev->dev_root; 378 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 379 struct scrub_bio *sbio; 380 381 sbio = kzalloc(sizeof(*sbio), GFP_NOFS); 382 if (!sbio) 383 goto nomem; 384 sctx->bios[i] = sbio; 385 386 sbio->index = i; 387 sbio->sctx = sctx; 388 sbio->page_count = 0; 389 sbio->work.func = scrub_bio_end_io_worker; 390 391 if (i != SCRUB_BIOS_PER_SCTX - 1) 392 sctx->bios[i]->next_free = i + 1; 393 else 394 sctx->bios[i]->next_free = -1; 395 } 396 sctx->first_free = 0; 397 sctx->nodesize = dev->dev_root->nodesize; 398 sctx->leafsize = dev->dev_root->leafsize; 399 sctx->sectorsize = dev->dev_root->sectorsize; 400 atomic_set(&sctx->bios_in_flight, 0); 401 atomic_set(&sctx->workers_pending, 0); 402 atomic_set(&sctx->cancel_req, 0); 403 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 404 INIT_LIST_HEAD(&sctx->csum_list); 405 406 spin_lock_init(&sctx->list_lock); 407 spin_lock_init(&sctx->stat_lock); 408 init_waitqueue_head(&sctx->list_wait); 409 410 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info, 411 fs_info->dev_replace.tgtdev, is_dev_replace); 412 if (ret) { 413 scrub_free_ctx(sctx); 414 return ERR_PTR(ret); 415 } 416 return sctx; 417 418 nomem: 419 scrub_free_ctx(sctx); 420 return ERR_PTR(-ENOMEM); 421 } 422 423 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 424 void *warn_ctx) 425 { 426 u64 isize; 427 u32 nlink; 428 int ret; 429 int i; 430 struct extent_buffer *eb; 431 struct btrfs_inode_item *inode_item; 432 struct scrub_warning *swarn = warn_ctx; 433 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; 434 struct inode_fs_paths *ipath = NULL; 435 struct btrfs_root *local_root; 436 struct btrfs_key root_key; 437 438 root_key.objectid = root; 439 root_key.type = BTRFS_ROOT_ITEM_KEY; 440 root_key.offset = (u64)-1; 441 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 442 if (IS_ERR(local_root)) { 443 ret = PTR_ERR(local_root); 444 goto err; 445 } 446 447 ret = inode_item_info(inum, 0, local_root, swarn->path); 448 if (ret) { 449 btrfs_release_path(swarn->path); 450 goto err; 451 } 452 453 eb = swarn->path->nodes[0]; 454 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 455 struct btrfs_inode_item); 456 isize = btrfs_inode_size(eb, inode_item); 457 nlink = btrfs_inode_nlink(eb, inode_item); 458 btrfs_release_path(swarn->path); 459 460 ipath = init_ipath(4096, local_root, swarn->path); 461 if (IS_ERR(ipath)) { 462 ret = PTR_ERR(ipath); 463 ipath = NULL; 464 goto err; 465 } 466 ret = paths_from_inode(inum, ipath); 467 468 if (ret < 0) 469 goto err; 470 471 /* 472 * we deliberately ignore the bit ipath might have been too small to 473 * hold all of the paths here 474 */ 475 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 476 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " 477 "%s, sector %llu, root %llu, inode %llu, offset %llu, " 478 "length %llu, links %u (path: %s)\n", swarn->errstr, 479 swarn->logical, rcu_str_deref(swarn->dev->name), 480 (unsigned long long)swarn->sector, root, inum, offset, 481 min(isize - offset, (u64)PAGE_SIZE), nlink, 482 (char *)(unsigned long)ipath->fspath->val[i]); 483 484 free_ipath(ipath); 485 return 0; 486 487 err: 488 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " 489 "%s, sector %llu, root %llu, inode %llu, offset %llu: path " 490 "resolving failed with ret=%d\n", swarn->errstr, 491 swarn->logical, rcu_str_deref(swarn->dev->name), 492 (unsigned long long)swarn->sector, root, inum, offset, ret); 493 494 free_ipath(ipath); 495 return 0; 496 } 497 498 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 499 { 500 struct btrfs_device *dev; 501 struct btrfs_fs_info *fs_info; 502 struct btrfs_path *path; 503 struct btrfs_key found_key; 504 struct extent_buffer *eb; 505 struct btrfs_extent_item *ei; 506 struct scrub_warning swarn; 507 unsigned long ptr = 0; 508 u64 extent_item_pos; 509 u64 flags = 0; 510 u64 ref_root; 511 u32 item_size; 512 u8 ref_level; 513 const int bufsize = 4096; 514 int ret; 515 516 WARN_ON(sblock->page_count < 1); 517 dev = sblock->pagev[0]->dev; 518 fs_info = sblock->sctx->dev_root->fs_info; 519 520 path = btrfs_alloc_path(); 521 522 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS); 523 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS); 524 swarn.sector = (sblock->pagev[0]->physical) >> 9; 525 swarn.logical = sblock->pagev[0]->logical; 526 swarn.errstr = errstr; 527 swarn.dev = NULL; 528 swarn.msg_bufsize = bufsize; 529 swarn.scratch_bufsize = bufsize; 530 531 if (!path || !swarn.scratch_buf || !swarn.msg_buf) 532 goto out; 533 534 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 535 &flags); 536 if (ret < 0) 537 goto out; 538 539 extent_item_pos = swarn.logical - found_key.objectid; 540 swarn.extent_item_size = found_key.offset; 541 542 eb = path->nodes[0]; 543 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 544 item_size = btrfs_item_size_nr(eb, path->slots[0]); 545 546 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 547 do { 548 ret = tree_backref_for_extent(&ptr, eb, ei, item_size, 549 &ref_root, &ref_level); 550 printk_in_rcu(KERN_WARNING 551 "btrfs: %s at logical %llu on dev %s, " 552 "sector %llu: metadata %s (level %d) in tree " 553 "%llu\n", errstr, swarn.logical, 554 rcu_str_deref(dev->name), 555 (unsigned long long)swarn.sector, 556 ref_level ? "node" : "leaf", 557 ret < 0 ? -1 : ref_level, 558 ret < 0 ? -1 : ref_root); 559 } while (ret != 1); 560 btrfs_release_path(path); 561 } else { 562 btrfs_release_path(path); 563 swarn.path = path; 564 swarn.dev = dev; 565 iterate_extent_inodes(fs_info, found_key.objectid, 566 extent_item_pos, 1, 567 scrub_print_warning_inode, &swarn); 568 } 569 570 out: 571 btrfs_free_path(path); 572 kfree(swarn.scratch_buf); 573 kfree(swarn.msg_buf); 574 } 575 576 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 577 { 578 struct page *page = NULL; 579 unsigned long index; 580 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 581 int ret; 582 int corrected = 0; 583 struct btrfs_key key; 584 struct inode *inode = NULL; 585 struct btrfs_fs_info *fs_info; 586 u64 end = offset + PAGE_SIZE - 1; 587 struct btrfs_root *local_root; 588 int srcu_index; 589 590 key.objectid = root; 591 key.type = BTRFS_ROOT_ITEM_KEY; 592 key.offset = (u64)-1; 593 594 fs_info = fixup->root->fs_info; 595 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 596 597 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 598 if (IS_ERR(local_root)) { 599 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 600 return PTR_ERR(local_root); 601 } 602 603 key.type = BTRFS_INODE_ITEM_KEY; 604 key.objectid = inum; 605 key.offset = 0; 606 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 607 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 608 if (IS_ERR(inode)) 609 return PTR_ERR(inode); 610 611 index = offset >> PAGE_CACHE_SHIFT; 612 613 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 614 if (!page) { 615 ret = -ENOMEM; 616 goto out; 617 } 618 619 if (PageUptodate(page)) { 620 if (PageDirty(page)) { 621 /* 622 * we need to write the data to the defect sector. the 623 * data that was in that sector is not in memory, 624 * because the page was modified. we must not write the 625 * modified page to that sector. 626 * 627 * TODO: what could be done here: wait for the delalloc 628 * runner to write out that page (might involve 629 * COW) and see whether the sector is still 630 * referenced afterwards. 631 * 632 * For the meantime, we'll treat this error 633 * incorrectable, although there is a chance that a 634 * later scrub will find the bad sector again and that 635 * there's no dirty page in memory, then. 636 */ 637 ret = -EIO; 638 goto out; 639 } 640 fs_info = BTRFS_I(inode)->root->fs_info; 641 ret = repair_io_failure(fs_info, offset, PAGE_SIZE, 642 fixup->logical, page, 643 fixup->mirror_num); 644 unlock_page(page); 645 corrected = !ret; 646 } else { 647 /* 648 * we need to get good data first. the general readpage path 649 * will call repair_io_failure for us, we just have to make 650 * sure we read the bad mirror. 651 */ 652 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 653 EXTENT_DAMAGED, GFP_NOFS); 654 if (ret) { 655 /* set_extent_bits should give proper error */ 656 WARN_ON(ret > 0); 657 if (ret > 0) 658 ret = -EFAULT; 659 goto out; 660 } 661 662 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 663 btrfs_get_extent, 664 fixup->mirror_num); 665 wait_on_page_locked(page); 666 667 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 668 end, EXTENT_DAMAGED, 0, NULL); 669 if (!corrected) 670 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 671 EXTENT_DAMAGED, GFP_NOFS); 672 } 673 674 out: 675 if (page) 676 put_page(page); 677 if (inode) 678 iput(inode); 679 680 if (ret < 0) 681 return ret; 682 683 if (ret == 0 && corrected) { 684 /* 685 * we only need to call readpage for one of the inodes belonging 686 * to this extent. so make iterate_extent_inodes stop 687 */ 688 return 1; 689 } 690 691 return -EIO; 692 } 693 694 static void scrub_fixup_nodatasum(struct btrfs_work *work) 695 { 696 int ret; 697 struct scrub_fixup_nodatasum *fixup; 698 struct scrub_ctx *sctx; 699 struct btrfs_trans_handle *trans = NULL; 700 struct btrfs_fs_info *fs_info; 701 struct btrfs_path *path; 702 int uncorrectable = 0; 703 704 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 705 sctx = fixup->sctx; 706 fs_info = fixup->root->fs_info; 707 708 path = btrfs_alloc_path(); 709 if (!path) { 710 spin_lock(&sctx->stat_lock); 711 ++sctx->stat.malloc_errors; 712 spin_unlock(&sctx->stat_lock); 713 uncorrectable = 1; 714 goto out; 715 } 716 717 trans = btrfs_join_transaction(fixup->root); 718 if (IS_ERR(trans)) { 719 uncorrectable = 1; 720 goto out; 721 } 722 723 /* 724 * the idea is to trigger a regular read through the standard path. we 725 * read a page from the (failed) logical address by specifying the 726 * corresponding copynum of the failed sector. thus, that readpage is 727 * expected to fail. 728 * that is the point where on-the-fly error correction will kick in 729 * (once it's finished) and rewrite the failed sector if a good copy 730 * can be found. 731 */ 732 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, 733 path, scrub_fixup_readpage, 734 fixup); 735 if (ret < 0) { 736 uncorrectable = 1; 737 goto out; 738 } 739 WARN_ON(ret != 1); 740 741 spin_lock(&sctx->stat_lock); 742 ++sctx->stat.corrected_errors; 743 spin_unlock(&sctx->stat_lock); 744 745 out: 746 if (trans && !IS_ERR(trans)) 747 btrfs_end_transaction(trans, fixup->root); 748 if (uncorrectable) { 749 spin_lock(&sctx->stat_lock); 750 ++sctx->stat.uncorrectable_errors; 751 spin_unlock(&sctx->stat_lock); 752 btrfs_dev_replace_stats_inc( 753 &sctx->dev_root->fs_info->dev_replace. 754 num_uncorrectable_read_errors); 755 printk_ratelimited_in_rcu(KERN_ERR 756 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n", 757 (unsigned long long)fixup->logical, 758 rcu_str_deref(fixup->dev->name)); 759 } 760 761 btrfs_free_path(path); 762 kfree(fixup); 763 764 scrub_pending_trans_workers_dec(sctx); 765 } 766 767 /* 768 * scrub_handle_errored_block gets called when either verification of the 769 * pages failed or the bio failed to read, e.g. with EIO. In the latter 770 * case, this function handles all pages in the bio, even though only one 771 * may be bad. 772 * The goal of this function is to repair the errored block by using the 773 * contents of one of the mirrors. 774 */ 775 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 776 { 777 struct scrub_ctx *sctx = sblock_to_check->sctx; 778 struct btrfs_device *dev; 779 struct btrfs_fs_info *fs_info; 780 u64 length; 781 u64 logical; 782 u64 generation; 783 unsigned int failed_mirror_index; 784 unsigned int is_metadata; 785 unsigned int have_csum; 786 u8 *csum; 787 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 788 struct scrub_block *sblock_bad; 789 int ret; 790 int mirror_index; 791 int page_num; 792 int success; 793 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 794 DEFAULT_RATELIMIT_BURST); 795 796 BUG_ON(sblock_to_check->page_count < 1); 797 fs_info = sctx->dev_root->fs_info; 798 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 799 /* 800 * if we find an error in a super block, we just report it. 801 * They will get written with the next transaction commit 802 * anyway 803 */ 804 spin_lock(&sctx->stat_lock); 805 ++sctx->stat.super_errors; 806 spin_unlock(&sctx->stat_lock); 807 return 0; 808 } 809 length = sblock_to_check->page_count * PAGE_SIZE; 810 logical = sblock_to_check->pagev[0]->logical; 811 generation = sblock_to_check->pagev[0]->generation; 812 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 813 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 814 is_metadata = !(sblock_to_check->pagev[0]->flags & 815 BTRFS_EXTENT_FLAG_DATA); 816 have_csum = sblock_to_check->pagev[0]->have_csum; 817 csum = sblock_to_check->pagev[0]->csum; 818 dev = sblock_to_check->pagev[0]->dev; 819 820 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 821 sblocks_for_recheck = NULL; 822 goto nodatasum_case; 823 } 824 825 /* 826 * read all mirrors one after the other. This includes to 827 * re-read the extent or metadata block that failed (that was 828 * the cause that this fixup code is called) another time, 829 * page by page this time in order to know which pages 830 * caused I/O errors and which ones are good (for all mirrors). 831 * It is the goal to handle the situation when more than one 832 * mirror contains I/O errors, but the errors do not 833 * overlap, i.e. the data can be repaired by selecting the 834 * pages from those mirrors without I/O error on the 835 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 836 * would be that mirror #1 has an I/O error on the first page, 837 * the second page is good, and mirror #2 has an I/O error on 838 * the second page, but the first page is good. 839 * Then the first page of the first mirror can be repaired by 840 * taking the first page of the second mirror, and the 841 * second page of the second mirror can be repaired by 842 * copying the contents of the 2nd page of the 1st mirror. 843 * One more note: if the pages of one mirror contain I/O 844 * errors, the checksum cannot be verified. In order to get 845 * the best data for repairing, the first attempt is to find 846 * a mirror without I/O errors and with a validated checksum. 847 * Only if this is not possible, the pages are picked from 848 * mirrors with I/O errors without considering the checksum. 849 * If the latter is the case, at the end, the checksum of the 850 * repaired area is verified in order to correctly maintain 851 * the statistics. 852 */ 853 854 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS * 855 sizeof(*sblocks_for_recheck), 856 GFP_NOFS); 857 if (!sblocks_for_recheck) { 858 spin_lock(&sctx->stat_lock); 859 sctx->stat.malloc_errors++; 860 sctx->stat.read_errors++; 861 sctx->stat.uncorrectable_errors++; 862 spin_unlock(&sctx->stat_lock); 863 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 864 goto out; 865 } 866 867 /* setup the context, map the logical blocks and alloc the pages */ 868 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length, 869 logical, sblocks_for_recheck); 870 if (ret) { 871 spin_lock(&sctx->stat_lock); 872 sctx->stat.read_errors++; 873 sctx->stat.uncorrectable_errors++; 874 spin_unlock(&sctx->stat_lock); 875 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 876 goto out; 877 } 878 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 879 sblock_bad = sblocks_for_recheck + failed_mirror_index; 880 881 /* build and submit the bios for the failed mirror, check checksums */ 882 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, 883 csum, generation, sctx->csum_size); 884 885 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 886 sblock_bad->no_io_error_seen) { 887 /* 888 * the error disappeared after reading page by page, or 889 * the area was part of a huge bio and other parts of the 890 * bio caused I/O errors, or the block layer merged several 891 * read requests into one and the error is caused by a 892 * different bio (usually one of the two latter cases is 893 * the cause) 894 */ 895 spin_lock(&sctx->stat_lock); 896 sctx->stat.unverified_errors++; 897 spin_unlock(&sctx->stat_lock); 898 899 if (sctx->is_dev_replace) 900 scrub_write_block_to_dev_replace(sblock_bad); 901 goto out; 902 } 903 904 if (!sblock_bad->no_io_error_seen) { 905 spin_lock(&sctx->stat_lock); 906 sctx->stat.read_errors++; 907 spin_unlock(&sctx->stat_lock); 908 if (__ratelimit(&_rs)) 909 scrub_print_warning("i/o error", sblock_to_check); 910 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 911 } else if (sblock_bad->checksum_error) { 912 spin_lock(&sctx->stat_lock); 913 sctx->stat.csum_errors++; 914 spin_unlock(&sctx->stat_lock); 915 if (__ratelimit(&_rs)) 916 scrub_print_warning("checksum error", sblock_to_check); 917 btrfs_dev_stat_inc_and_print(dev, 918 BTRFS_DEV_STAT_CORRUPTION_ERRS); 919 } else if (sblock_bad->header_error) { 920 spin_lock(&sctx->stat_lock); 921 sctx->stat.verify_errors++; 922 spin_unlock(&sctx->stat_lock); 923 if (__ratelimit(&_rs)) 924 scrub_print_warning("checksum/header error", 925 sblock_to_check); 926 if (sblock_bad->generation_error) 927 btrfs_dev_stat_inc_and_print(dev, 928 BTRFS_DEV_STAT_GENERATION_ERRS); 929 else 930 btrfs_dev_stat_inc_and_print(dev, 931 BTRFS_DEV_STAT_CORRUPTION_ERRS); 932 } 933 934 if (sctx->readonly && !sctx->is_dev_replace) 935 goto did_not_correct_error; 936 937 if (!is_metadata && !have_csum) { 938 struct scrub_fixup_nodatasum *fixup_nodatasum; 939 940 nodatasum_case: 941 WARN_ON(sctx->is_dev_replace); 942 943 /* 944 * !is_metadata and !have_csum, this means that the data 945 * might not be COW'ed, that it might be modified 946 * concurrently. The general strategy to work on the 947 * commit root does not help in the case when COW is not 948 * used. 949 */ 950 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 951 if (!fixup_nodatasum) 952 goto did_not_correct_error; 953 fixup_nodatasum->sctx = sctx; 954 fixup_nodatasum->dev = dev; 955 fixup_nodatasum->logical = logical; 956 fixup_nodatasum->root = fs_info->extent_root; 957 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 958 scrub_pending_trans_workers_inc(sctx); 959 fixup_nodatasum->work.func = scrub_fixup_nodatasum; 960 btrfs_queue_worker(&fs_info->scrub_workers, 961 &fixup_nodatasum->work); 962 goto out; 963 } 964 965 /* 966 * now build and submit the bios for the other mirrors, check 967 * checksums. 968 * First try to pick the mirror which is completely without I/O 969 * errors and also does not have a checksum error. 970 * If one is found, and if a checksum is present, the full block 971 * that is known to contain an error is rewritten. Afterwards 972 * the block is known to be corrected. 973 * If a mirror is found which is completely correct, and no 974 * checksum is present, only those pages are rewritten that had 975 * an I/O error in the block to be repaired, since it cannot be 976 * determined, which copy of the other pages is better (and it 977 * could happen otherwise that a correct page would be 978 * overwritten by a bad one). 979 */ 980 for (mirror_index = 0; 981 mirror_index < BTRFS_MAX_MIRRORS && 982 sblocks_for_recheck[mirror_index].page_count > 0; 983 mirror_index++) { 984 struct scrub_block *sblock_other; 985 986 if (mirror_index == failed_mirror_index) 987 continue; 988 sblock_other = sblocks_for_recheck + mirror_index; 989 990 /* build and submit the bios, check checksums */ 991 scrub_recheck_block(fs_info, sblock_other, is_metadata, 992 have_csum, csum, generation, 993 sctx->csum_size); 994 995 if (!sblock_other->header_error && 996 !sblock_other->checksum_error && 997 sblock_other->no_io_error_seen) { 998 if (sctx->is_dev_replace) { 999 scrub_write_block_to_dev_replace(sblock_other); 1000 } else { 1001 int force_write = is_metadata || have_csum; 1002 1003 ret = scrub_repair_block_from_good_copy( 1004 sblock_bad, sblock_other, 1005 force_write); 1006 } 1007 if (0 == ret) 1008 goto corrected_error; 1009 } 1010 } 1011 1012 /* 1013 * for dev_replace, pick good pages and write to the target device. 1014 */ 1015 if (sctx->is_dev_replace) { 1016 success = 1; 1017 for (page_num = 0; page_num < sblock_bad->page_count; 1018 page_num++) { 1019 int sub_success; 1020 1021 sub_success = 0; 1022 for (mirror_index = 0; 1023 mirror_index < BTRFS_MAX_MIRRORS && 1024 sblocks_for_recheck[mirror_index].page_count > 0; 1025 mirror_index++) { 1026 struct scrub_block *sblock_other = 1027 sblocks_for_recheck + mirror_index; 1028 struct scrub_page *page_other = 1029 sblock_other->pagev[page_num]; 1030 1031 if (!page_other->io_error) { 1032 ret = scrub_write_page_to_dev_replace( 1033 sblock_other, page_num); 1034 if (ret == 0) { 1035 /* succeeded for this page */ 1036 sub_success = 1; 1037 break; 1038 } else { 1039 btrfs_dev_replace_stats_inc( 1040 &sctx->dev_root-> 1041 fs_info->dev_replace. 1042 num_write_errors); 1043 } 1044 } 1045 } 1046 1047 if (!sub_success) { 1048 /* 1049 * did not find a mirror to fetch the page 1050 * from. scrub_write_page_to_dev_replace() 1051 * handles this case (page->io_error), by 1052 * filling the block with zeros before 1053 * submitting the write request 1054 */ 1055 success = 0; 1056 ret = scrub_write_page_to_dev_replace( 1057 sblock_bad, page_num); 1058 if (ret) 1059 btrfs_dev_replace_stats_inc( 1060 &sctx->dev_root->fs_info-> 1061 dev_replace.num_write_errors); 1062 } 1063 } 1064 1065 goto out; 1066 } 1067 1068 /* 1069 * for regular scrub, repair those pages that are errored. 1070 * In case of I/O errors in the area that is supposed to be 1071 * repaired, continue by picking good copies of those pages. 1072 * Select the good pages from mirrors to rewrite bad pages from 1073 * the area to fix. Afterwards verify the checksum of the block 1074 * that is supposed to be repaired. This verification step is 1075 * only done for the purpose of statistic counting and for the 1076 * final scrub report, whether errors remain. 1077 * A perfect algorithm could make use of the checksum and try 1078 * all possible combinations of pages from the different mirrors 1079 * until the checksum verification succeeds. For example, when 1080 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1081 * of mirror #2 is readable but the final checksum test fails, 1082 * then the 2nd page of mirror #3 could be tried, whether now 1083 * the final checksum succeedes. But this would be a rare 1084 * exception and is therefore not implemented. At least it is 1085 * avoided that the good copy is overwritten. 1086 * A more useful improvement would be to pick the sectors 1087 * without I/O error based on sector sizes (512 bytes on legacy 1088 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1089 * mirror could be repaired by taking 512 byte of a different 1090 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1091 * area are unreadable. 1092 */ 1093 1094 /* can only fix I/O errors from here on */ 1095 if (sblock_bad->no_io_error_seen) 1096 goto did_not_correct_error; 1097 1098 success = 1; 1099 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1100 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1101 1102 if (!page_bad->io_error) 1103 continue; 1104 1105 for (mirror_index = 0; 1106 mirror_index < BTRFS_MAX_MIRRORS && 1107 sblocks_for_recheck[mirror_index].page_count > 0; 1108 mirror_index++) { 1109 struct scrub_block *sblock_other = sblocks_for_recheck + 1110 mirror_index; 1111 struct scrub_page *page_other = sblock_other->pagev[ 1112 page_num]; 1113 1114 if (!page_other->io_error) { 1115 ret = scrub_repair_page_from_good_copy( 1116 sblock_bad, sblock_other, page_num, 0); 1117 if (0 == ret) { 1118 page_bad->io_error = 0; 1119 break; /* succeeded for this page */ 1120 } 1121 } 1122 } 1123 1124 if (page_bad->io_error) { 1125 /* did not find a mirror to copy the page from */ 1126 success = 0; 1127 } 1128 } 1129 1130 if (success) { 1131 if (is_metadata || have_csum) { 1132 /* 1133 * need to verify the checksum now that all 1134 * sectors on disk are repaired (the write 1135 * request for data to be repaired is on its way). 1136 * Just be lazy and use scrub_recheck_block() 1137 * which re-reads the data before the checksum 1138 * is verified, but most likely the data comes out 1139 * of the page cache. 1140 */ 1141 scrub_recheck_block(fs_info, sblock_bad, 1142 is_metadata, have_csum, csum, 1143 generation, sctx->csum_size); 1144 if (!sblock_bad->header_error && 1145 !sblock_bad->checksum_error && 1146 sblock_bad->no_io_error_seen) 1147 goto corrected_error; 1148 else 1149 goto did_not_correct_error; 1150 } else { 1151 corrected_error: 1152 spin_lock(&sctx->stat_lock); 1153 sctx->stat.corrected_errors++; 1154 spin_unlock(&sctx->stat_lock); 1155 printk_ratelimited_in_rcu(KERN_ERR 1156 "btrfs: fixed up error at logical %llu on dev %s\n", 1157 (unsigned long long)logical, 1158 rcu_str_deref(dev->name)); 1159 } 1160 } else { 1161 did_not_correct_error: 1162 spin_lock(&sctx->stat_lock); 1163 sctx->stat.uncorrectable_errors++; 1164 spin_unlock(&sctx->stat_lock); 1165 printk_ratelimited_in_rcu(KERN_ERR 1166 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n", 1167 (unsigned long long)logical, 1168 rcu_str_deref(dev->name)); 1169 } 1170 1171 out: 1172 if (sblocks_for_recheck) { 1173 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1174 mirror_index++) { 1175 struct scrub_block *sblock = sblocks_for_recheck + 1176 mirror_index; 1177 int page_index; 1178 1179 for (page_index = 0; page_index < sblock->page_count; 1180 page_index++) { 1181 sblock->pagev[page_index]->sblock = NULL; 1182 scrub_page_put(sblock->pagev[page_index]); 1183 } 1184 } 1185 kfree(sblocks_for_recheck); 1186 } 1187 1188 return 0; 1189 } 1190 1191 static int scrub_setup_recheck_block(struct scrub_ctx *sctx, 1192 struct btrfs_fs_info *fs_info, 1193 struct scrub_block *original_sblock, 1194 u64 length, u64 logical, 1195 struct scrub_block *sblocks_for_recheck) 1196 { 1197 int page_index; 1198 int mirror_index; 1199 int ret; 1200 1201 /* 1202 * note: the two members ref_count and outstanding_pages 1203 * are not used (and not set) in the blocks that are used for 1204 * the recheck procedure 1205 */ 1206 1207 page_index = 0; 1208 while (length > 0) { 1209 u64 sublen = min_t(u64, length, PAGE_SIZE); 1210 u64 mapped_length = sublen; 1211 struct btrfs_bio *bbio = NULL; 1212 1213 /* 1214 * with a length of PAGE_SIZE, each returned stripe 1215 * represents one mirror 1216 */ 1217 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, 1218 &mapped_length, &bbio, 0); 1219 if (ret || !bbio || mapped_length < sublen) { 1220 kfree(bbio); 1221 return -EIO; 1222 } 1223 1224 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO); 1225 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes; 1226 mirror_index++) { 1227 struct scrub_block *sblock; 1228 struct scrub_page *page; 1229 1230 if (mirror_index >= BTRFS_MAX_MIRRORS) 1231 continue; 1232 1233 sblock = sblocks_for_recheck + mirror_index; 1234 sblock->sctx = sctx; 1235 page = kzalloc(sizeof(*page), GFP_NOFS); 1236 if (!page) { 1237 leave_nomem: 1238 spin_lock(&sctx->stat_lock); 1239 sctx->stat.malloc_errors++; 1240 spin_unlock(&sctx->stat_lock); 1241 kfree(bbio); 1242 return -ENOMEM; 1243 } 1244 scrub_page_get(page); 1245 sblock->pagev[page_index] = page; 1246 page->logical = logical; 1247 page->physical = bbio->stripes[mirror_index].physical; 1248 BUG_ON(page_index >= original_sblock->page_count); 1249 page->physical_for_dev_replace = 1250 original_sblock->pagev[page_index]-> 1251 physical_for_dev_replace; 1252 /* for missing devices, dev->bdev is NULL */ 1253 page->dev = bbio->stripes[mirror_index].dev; 1254 page->mirror_num = mirror_index + 1; 1255 sblock->page_count++; 1256 page->page = alloc_page(GFP_NOFS); 1257 if (!page->page) 1258 goto leave_nomem; 1259 } 1260 kfree(bbio); 1261 length -= sublen; 1262 logical += sublen; 1263 page_index++; 1264 } 1265 1266 return 0; 1267 } 1268 1269 /* 1270 * this function will check the on disk data for checksum errors, header 1271 * errors and read I/O errors. If any I/O errors happen, the exact pages 1272 * which are errored are marked as being bad. The goal is to enable scrub 1273 * to take those pages that are not errored from all the mirrors so that 1274 * the pages that are errored in the just handled mirror can be repaired. 1275 */ 1276 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1277 struct scrub_block *sblock, int is_metadata, 1278 int have_csum, u8 *csum, u64 generation, 1279 u16 csum_size) 1280 { 1281 int page_num; 1282 1283 sblock->no_io_error_seen = 1; 1284 sblock->header_error = 0; 1285 sblock->checksum_error = 0; 1286 1287 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1288 struct bio *bio; 1289 struct scrub_page *page = sblock->pagev[page_num]; 1290 DECLARE_COMPLETION_ONSTACK(complete); 1291 1292 if (page->dev->bdev == NULL) { 1293 page->io_error = 1; 1294 sblock->no_io_error_seen = 0; 1295 continue; 1296 } 1297 1298 WARN_ON(!page->page); 1299 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1300 if (!bio) { 1301 page->io_error = 1; 1302 sblock->no_io_error_seen = 0; 1303 continue; 1304 } 1305 bio->bi_bdev = page->dev->bdev; 1306 bio->bi_sector = page->physical >> 9; 1307 bio->bi_end_io = scrub_complete_bio_end_io; 1308 bio->bi_private = &complete; 1309 1310 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1311 btrfsic_submit_bio(READ, bio); 1312 1313 /* this will also unplug the queue */ 1314 wait_for_completion(&complete); 1315 1316 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags); 1317 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 1318 sblock->no_io_error_seen = 0; 1319 bio_put(bio); 1320 } 1321 1322 if (sblock->no_io_error_seen) 1323 scrub_recheck_block_checksum(fs_info, sblock, is_metadata, 1324 have_csum, csum, generation, 1325 csum_size); 1326 1327 return; 1328 } 1329 1330 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 1331 struct scrub_block *sblock, 1332 int is_metadata, int have_csum, 1333 const u8 *csum, u64 generation, 1334 u16 csum_size) 1335 { 1336 int page_num; 1337 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1338 u32 crc = ~(u32)0; 1339 void *mapped_buffer; 1340 1341 WARN_ON(!sblock->pagev[0]->page); 1342 if (is_metadata) { 1343 struct btrfs_header *h; 1344 1345 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1346 h = (struct btrfs_header *)mapped_buffer; 1347 1348 if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr) || 1349 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) || 1350 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1351 BTRFS_UUID_SIZE)) { 1352 sblock->header_error = 1; 1353 } else if (generation != le64_to_cpu(h->generation)) { 1354 sblock->header_error = 1; 1355 sblock->generation_error = 1; 1356 } 1357 csum = h->csum; 1358 } else { 1359 if (!have_csum) 1360 return; 1361 1362 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1363 } 1364 1365 for (page_num = 0;;) { 1366 if (page_num == 0 && is_metadata) 1367 crc = btrfs_csum_data( 1368 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, 1369 crc, PAGE_SIZE - BTRFS_CSUM_SIZE); 1370 else 1371 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE); 1372 1373 kunmap_atomic(mapped_buffer); 1374 page_num++; 1375 if (page_num >= sblock->page_count) 1376 break; 1377 WARN_ON(!sblock->pagev[page_num]->page); 1378 1379 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page); 1380 } 1381 1382 btrfs_csum_final(crc, calculated_csum); 1383 if (memcmp(calculated_csum, csum, csum_size)) 1384 sblock->checksum_error = 1; 1385 } 1386 1387 static void scrub_complete_bio_end_io(struct bio *bio, int err) 1388 { 1389 complete((struct completion *)bio->bi_private); 1390 } 1391 1392 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1393 struct scrub_block *sblock_good, 1394 int force_write) 1395 { 1396 int page_num; 1397 int ret = 0; 1398 1399 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1400 int ret_sub; 1401 1402 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1403 sblock_good, 1404 page_num, 1405 force_write); 1406 if (ret_sub) 1407 ret = ret_sub; 1408 } 1409 1410 return ret; 1411 } 1412 1413 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1414 struct scrub_block *sblock_good, 1415 int page_num, int force_write) 1416 { 1417 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1418 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1419 1420 BUG_ON(page_bad->page == NULL); 1421 BUG_ON(page_good->page == NULL); 1422 if (force_write || sblock_bad->header_error || 1423 sblock_bad->checksum_error || page_bad->io_error) { 1424 struct bio *bio; 1425 int ret; 1426 DECLARE_COMPLETION_ONSTACK(complete); 1427 1428 if (!page_bad->dev->bdev) { 1429 printk_ratelimited(KERN_WARNING 1430 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n"); 1431 return -EIO; 1432 } 1433 1434 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1435 if (!bio) 1436 return -EIO; 1437 bio->bi_bdev = page_bad->dev->bdev; 1438 bio->bi_sector = page_bad->physical >> 9; 1439 bio->bi_end_io = scrub_complete_bio_end_io; 1440 bio->bi_private = &complete; 1441 1442 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1443 if (PAGE_SIZE != ret) { 1444 bio_put(bio); 1445 return -EIO; 1446 } 1447 btrfsic_submit_bio(WRITE, bio); 1448 1449 /* this will also unplug the queue */ 1450 wait_for_completion(&complete); 1451 if (!bio_flagged(bio, BIO_UPTODATE)) { 1452 btrfs_dev_stat_inc_and_print(page_bad->dev, 1453 BTRFS_DEV_STAT_WRITE_ERRS); 1454 btrfs_dev_replace_stats_inc( 1455 &sblock_bad->sctx->dev_root->fs_info-> 1456 dev_replace.num_write_errors); 1457 bio_put(bio); 1458 return -EIO; 1459 } 1460 bio_put(bio); 1461 } 1462 1463 return 0; 1464 } 1465 1466 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1467 { 1468 int page_num; 1469 1470 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1471 int ret; 1472 1473 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1474 if (ret) 1475 btrfs_dev_replace_stats_inc( 1476 &sblock->sctx->dev_root->fs_info->dev_replace. 1477 num_write_errors); 1478 } 1479 } 1480 1481 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1482 int page_num) 1483 { 1484 struct scrub_page *spage = sblock->pagev[page_num]; 1485 1486 BUG_ON(spage->page == NULL); 1487 if (spage->io_error) { 1488 void *mapped_buffer = kmap_atomic(spage->page); 1489 1490 memset(mapped_buffer, 0, PAGE_CACHE_SIZE); 1491 flush_dcache_page(spage->page); 1492 kunmap_atomic(mapped_buffer); 1493 } 1494 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1495 } 1496 1497 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1498 struct scrub_page *spage) 1499 { 1500 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1501 struct scrub_bio *sbio; 1502 int ret; 1503 1504 mutex_lock(&wr_ctx->wr_lock); 1505 again: 1506 if (!wr_ctx->wr_curr_bio) { 1507 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), 1508 GFP_NOFS); 1509 if (!wr_ctx->wr_curr_bio) { 1510 mutex_unlock(&wr_ctx->wr_lock); 1511 return -ENOMEM; 1512 } 1513 wr_ctx->wr_curr_bio->sctx = sctx; 1514 wr_ctx->wr_curr_bio->page_count = 0; 1515 } 1516 sbio = wr_ctx->wr_curr_bio; 1517 if (sbio->page_count == 0) { 1518 struct bio *bio; 1519 1520 sbio->physical = spage->physical_for_dev_replace; 1521 sbio->logical = spage->logical; 1522 sbio->dev = wr_ctx->tgtdev; 1523 bio = sbio->bio; 1524 if (!bio) { 1525 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio); 1526 if (!bio) { 1527 mutex_unlock(&wr_ctx->wr_lock); 1528 return -ENOMEM; 1529 } 1530 sbio->bio = bio; 1531 } 1532 1533 bio->bi_private = sbio; 1534 bio->bi_end_io = scrub_wr_bio_end_io; 1535 bio->bi_bdev = sbio->dev->bdev; 1536 bio->bi_sector = sbio->physical >> 9; 1537 sbio->err = 0; 1538 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1539 spage->physical_for_dev_replace || 1540 sbio->logical + sbio->page_count * PAGE_SIZE != 1541 spage->logical) { 1542 scrub_wr_submit(sctx); 1543 goto again; 1544 } 1545 1546 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1547 if (ret != PAGE_SIZE) { 1548 if (sbio->page_count < 1) { 1549 bio_put(sbio->bio); 1550 sbio->bio = NULL; 1551 mutex_unlock(&wr_ctx->wr_lock); 1552 return -EIO; 1553 } 1554 scrub_wr_submit(sctx); 1555 goto again; 1556 } 1557 1558 sbio->pagev[sbio->page_count] = spage; 1559 scrub_page_get(spage); 1560 sbio->page_count++; 1561 if (sbio->page_count == wr_ctx->pages_per_wr_bio) 1562 scrub_wr_submit(sctx); 1563 mutex_unlock(&wr_ctx->wr_lock); 1564 1565 return 0; 1566 } 1567 1568 static void scrub_wr_submit(struct scrub_ctx *sctx) 1569 { 1570 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1571 struct scrub_bio *sbio; 1572 1573 if (!wr_ctx->wr_curr_bio) 1574 return; 1575 1576 sbio = wr_ctx->wr_curr_bio; 1577 wr_ctx->wr_curr_bio = NULL; 1578 WARN_ON(!sbio->bio->bi_bdev); 1579 scrub_pending_bio_inc(sctx); 1580 /* process all writes in a single worker thread. Then the block layer 1581 * orders the requests before sending them to the driver which 1582 * doubled the write performance on spinning disks when measured 1583 * with Linux 3.5 */ 1584 btrfsic_submit_bio(WRITE, sbio->bio); 1585 } 1586 1587 static void scrub_wr_bio_end_io(struct bio *bio, int err) 1588 { 1589 struct scrub_bio *sbio = bio->bi_private; 1590 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 1591 1592 sbio->err = err; 1593 sbio->bio = bio; 1594 1595 sbio->work.func = scrub_wr_bio_end_io_worker; 1596 btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work); 1597 } 1598 1599 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1600 { 1601 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1602 struct scrub_ctx *sctx = sbio->sctx; 1603 int i; 1604 1605 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1606 if (sbio->err) { 1607 struct btrfs_dev_replace *dev_replace = 1608 &sbio->sctx->dev_root->fs_info->dev_replace; 1609 1610 for (i = 0; i < sbio->page_count; i++) { 1611 struct scrub_page *spage = sbio->pagev[i]; 1612 1613 spage->io_error = 1; 1614 btrfs_dev_replace_stats_inc(&dev_replace-> 1615 num_write_errors); 1616 } 1617 } 1618 1619 for (i = 0; i < sbio->page_count; i++) 1620 scrub_page_put(sbio->pagev[i]); 1621 1622 bio_put(sbio->bio); 1623 kfree(sbio); 1624 scrub_pending_bio_dec(sctx); 1625 } 1626 1627 static int scrub_checksum(struct scrub_block *sblock) 1628 { 1629 u64 flags; 1630 int ret; 1631 1632 WARN_ON(sblock->page_count < 1); 1633 flags = sblock->pagev[0]->flags; 1634 ret = 0; 1635 if (flags & BTRFS_EXTENT_FLAG_DATA) 1636 ret = scrub_checksum_data(sblock); 1637 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1638 ret = scrub_checksum_tree_block(sblock); 1639 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1640 (void)scrub_checksum_super(sblock); 1641 else 1642 WARN_ON(1); 1643 if (ret) 1644 scrub_handle_errored_block(sblock); 1645 1646 return ret; 1647 } 1648 1649 static int scrub_checksum_data(struct scrub_block *sblock) 1650 { 1651 struct scrub_ctx *sctx = sblock->sctx; 1652 u8 csum[BTRFS_CSUM_SIZE]; 1653 u8 *on_disk_csum; 1654 struct page *page; 1655 void *buffer; 1656 u32 crc = ~(u32)0; 1657 int fail = 0; 1658 u64 len; 1659 int index; 1660 1661 BUG_ON(sblock->page_count < 1); 1662 if (!sblock->pagev[0]->have_csum) 1663 return 0; 1664 1665 on_disk_csum = sblock->pagev[0]->csum; 1666 page = sblock->pagev[0]->page; 1667 buffer = kmap_atomic(page); 1668 1669 len = sctx->sectorsize; 1670 index = 0; 1671 for (;;) { 1672 u64 l = min_t(u64, len, PAGE_SIZE); 1673 1674 crc = btrfs_csum_data(buffer, crc, l); 1675 kunmap_atomic(buffer); 1676 len -= l; 1677 if (len == 0) 1678 break; 1679 index++; 1680 BUG_ON(index >= sblock->page_count); 1681 BUG_ON(!sblock->pagev[index]->page); 1682 page = sblock->pagev[index]->page; 1683 buffer = kmap_atomic(page); 1684 } 1685 1686 btrfs_csum_final(crc, csum); 1687 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1688 fail = 1; 1689 1690 return fail; 1691 } 1692 1693 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1694 { 1695 struct scrub_ctx *sctx = sblock->sctx; 1696 struct btrfs_header *h; 1697 struct btrfs_root *root = sctx->dev_root; 1698 struct btrfs_fs_info *fs_info = root->fs_info; 1699 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1700 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1701 struct page *page; 1702 void *mapped_buffer; 1703 u64 mapped_size; 1704 void *p; 1705 u32 crc = ~(u32)0; 1706 int fail = 0; 1707 int crc_fail = 0; 1708 u64 len; 1709 int index; 1710 1711 BUG_ON(sblock->page_count < 1); 1712 page = sblock->pagev[0]->page; 1713 mapped_buffer = kmap_atomic(page); 1714 h = (struct btrfs_header *)mapped_buffer; 1715 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1716 1717 /* 1718 * we don't use the getter functions here, as we 1719 * a) don't have an extent buffer and 1720 * b) the page is already kmapped 1721 */ 1722 1723 if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr)) 1724 ++fail; 1725 1726 if (sblock->pagev[0]->generation != le64_to_cpu(h->generation)) 1727 ++fail; 1728 1729 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) 1730 ++fail; 1731 1732 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1733 BTRFS_UUID_SIZE)) 1734 ++fail; 1735 1736 WARN_ON(sctx->nodesize != sctx->leafsize); 1737 len = sctx->nodesize - BTRFS_CSUM_SIZE; 1738 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1739 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1740 index = 0; 1741 for (;;) { 1742 u64 l = min_t(u64, len, mapped_size); 1743 1744 crc = btrfs_csum_data(p, crc, l); 1745 kunmap_atomic(mapped_buffer); 1746 len -= l; 1747 if (len == 0) 1748 break; 1749 index++; 1750 BUG_ON(index >= sblock->page_count); 1751 BUG_ON(!sblock->pagev[index]->page); 1752 page = sblock->pagev[index]->page; 1753 mapped_buffer = kmap_atomic(page); 1754 mapped_size = PAGE_SIZE; 1755 p = mapped_buffer; 1756 } 1757 1758 btrfs_csum_final(crc, calculated_csum); 1759 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1760 ++crc_fail; 1761 1762 return fail || crc_fail; 1763 } 1764 1765 static int scrub_checksum_super(struct scrub_block *sblock) 1766 { 1767 struct btrfs_super_block *s; 1768 struct scrub_ctx *sctx = sblock->sctx; 1769 struct btrfs_root *root = sctx->dev_root; 1770 struct btrfs_fs_info *fs_info = root->fs_info; 1771 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1772 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1773 struct page *page; 1774 void *mapped_buffer; 1775 u64 mapped_size; 1776 void *p; 1777 u32 crc = ~(u32)0; 1778 int fail_gen = 0; 1779 int fail_cor = 0; 1780 u64 len; 1781 int index; 1782 1783 BUG_ON(sblock->page_count < 1); 1784 page = sblock->pagev[0]->page; 1785 mapped_buffer = kmap_atomic(page); 1786 s = (struct btrfs_super_block *)mapped_buffer; 1787 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1788 1789 if (sblock->pagev[0]->logical != le64_to_cpu(s->bytenr)) 1790 ++fail_cor; 1791 1792 if (sblock->pagev[0]->generation != le64_to_cpu(s->generation)) 1793 ++fail_gen; 1794 1795 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) 1796 ++fail_cor; 1797 1798 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1799 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1800 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1801 index = 0; 1802 for (;;) { 1803 u64 l = min_t(u64, len, mapped_size); 1804 1805 crc = btrfs_csum_data(p, crc, l); 1806 kunmap_atomic(mapped_buffer); 1807 len -= l; 1808 if (len == 0) 1809 break; 1810 index++; 1811 BUG_ON(index >= sblock->page_count); 1812 BUG_ON(!sblock->pagev[index]->page); 1813 page = sblock->pagev[index]->page; 1814 mapped_buffer = kmap_atomic(page); 1815 mapped_size = PAGE_SIZE; 1816 p = mapped_buffer; 1817 } 1818 1819 btrfs_csum_final(crc, calculated_csum); 1820 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1821 ++fail_cor; 1822 1823 if (fail_cor + fail_gen) { 1824 /* 1825 * if we find an error in a super block, we just report it. 1826 * They will get written with the next transaction commit 1827 * anyway 1828 */ 1829 spin_lock(&sctx->stat_lock); 1830 ++sctx->stat.super_errors; 1831 spin_unlock(&sctx->stat_lock); 1832 if (fail_cor) 1833 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1834 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1835 else 1836 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1837 BTRFS_DEV_STAT_GENERATION_ERRS); 1838 } 1839 1840 return fail_cor + fail_gen; 1841 } 1842 1843 static void scrub_block_get(struct scrub_block *sblock) 1844 { 1845 atomic_inc(&sblock->ref_count); 1846 } 1847 1848 static void scrub_block_put(struct scrub_block *sblock) 1849 { 1850 if (atomic_dec_and_test(&sblock->ref_count)) { 1851 int i; 1852 1853 for (i = 0; i < sblock->page_count; i++) 1854 scrub_page_put(sblock->pagev[i]); 1855 kfree(sblock); 1856 } 1857 } 1858 1859 static void scrub_page_get(struct scrub_page *spage) 1860 { 1861 atomic_inc(&spage->ref_count); 1862 } 1863 1864 static void scrub_page_put(struct scrub_page *spage) 1865 { 1866 if (atomic_dec_and_test(&spage->ref_count)) { 1867 if (spage->page) 1868 __free_page(spage->page); 1869 kfree(spage); 1870 } 1871 } 1872 1873 static void scrub_submit(struct scrub_ctx *sctx) 1874 { 1875 struct scrub_bio *sbio; 1876 1877 if (sctx->curr == -1) 1878 return; 1879 1880 sbio = sctx->bios[sctx->curr]; 1881 sctx->curr = -1; 1882 scrub_pending_bio_inc(sctx); 1883 1884 if (!sbio->bio->bi_bdev) { 1885 /* 1886 * this case should not happen. If btrfs_map_block() is 1887 * wrong, it could happen for dev-replace operations on 1888 * missing devices when no mirrors are available, but in 1889 * this case it should already fail the mount. 1890 * This case is handled correctly (but _very_ slowly). 1891 */ 1892 printk_ratelimited(KERN_WARNING 1893 "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n"); 1894 bio_endio(sbio->bio, -EIO); 1895 } else { 1896 btrfsic_submit_bio(READ, sbio->bio); 1897 } 1898 } 1899 1900 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 1901 struct scrub_page *spage) 1902 { 1903 struct scrub_block *sblock = spage->sblock; 1904 struct scrub_bio *sbio; 1905 int ret; 1906 1907 again: 1908 /* 1909 * grab a fresh bio or wait for one to become available 1910 */ 1911 while (sctx->curr == -1) { 1912 spin_lock(&sctx->list_lock); 1913 sctx->curr = sctx->first_free; 1914 if (sctx->curr != -1) { 1915 sctx->first_free = sctx->bios[sctx->curr]->next_free; 1916 sctx->bios[sctx->curr]->next_free = -1; 1917 sctx->bios[sctx->curr]->page_count = 0; 1918 spin_unlock(&sctx->list_lock); 1919 } else { 1920 spin_unlock(&sctx->list_lock); 1921 wait_event(sctx->list_wait, sctx->first_free != -1); 1922 } 1923 } 1924 sbio = sctx->bios[sctx->curr]; 1925 if (sbio->page_count == 0) { 1926 struct bio *bio; 1927 1928 sbio->physical = spage->physical; 1929 sbio->logical = spage->logical; 1930 sbio->dev = spage->dev; 1931 bio = sbio->bio; 1932 if (!bio) { 1933 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio); 1934 if (!bio) 1935 return -ENOMEM; 1936 sbio->bio = bio; 1937 } 1938 1939 bio->bi_private = sbio; 1940 bio->bi_end_io = scrub_bio_end_io; 1941 bio->bi_bdev = sbio->dev->bdev; 1942 bio->bi_sector = sbio->physical >> 9; 1943 sbio->err = 0; 1944 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1945 spage->physical || 1946 sbio->logical + sbio->page_count * PAGE_SIZE != 1947 spage->logical || 1948 sbio->dev != spage->dev) { 1949 scrub_submit(sctx); 1950 goto again; 1951 } 1952 1953 sbio->pagev[sbio->page_count] = spage; 1954 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1955 if (ret != PAGE_SIZE) { 1956 if (sbio->page_count < 1) { 1957 bio_put(sbio->bio); 1958 sbio->bio = NULL; 1959 return -EIO; 1960 } 1961 scrub_submit(sctx); 1962 goto again; 1963 } 1964 1965 scrub_block_get(sblock); /* one for the page added to the bio */ 1966 atomic_inc(&sblock->outstanding_pages); 1967 sbio->page_count++; 1968 if (sbio->page_count == sctx->pages_per_rd_bio) 1969 scrub_submit(sctx); 1970 1971 return 0; 1972 } 1973 1974 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 1975 u64 physical, struct btrfs_device *dev, u64 flags, 1976 u64 gen, int mirror_num, u8 *csum, int force, 1977 u64 physical_for_dev_replace) 1978 { 1979 struct scrub_block *sblock; 1980 int index; 1981 1982 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 1983 if (!sblock) { 1984 spin_lock(&sctx->stat_lock); 1985 sctx->stat.malloc_errors++; 1986 spin_unlock(&sctx->stat_lock); 1987 return -ENOMEM; 1988 } 1989 1990 /* one ref inside this function, plus one for each page added to 1991 * a bio later on */ 1992 atomic_set(&sblock->ref_count, 1); 1993 sblock->sctx = sctx; 1994 sblock->no_io_error_seen = 1; 1995 1996 for (index = 0; len > 0; index++) { 1997 struct scrub_page *spage; 1998 u64 l = min_t(u64, len, PAGE_SIZE); 1999 2000 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2001 if (!spage) { 2002 leave_nomem: 2003 spin_lock(&sctx->stat_lock); 2004 sctx->stat.malloc_errors++; 2005 spin_unlock(&sctx->stat_lock); 2006 scrub_block_put(sblock); 2007 return -ENOMEM; 2008 } 2009 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2010 scrub_page_get(spage); 2011 sblock->pagev[index] = spage; 2012 spage->sblock = sblock; 2013 spage->dev = dev; 2014 spage->flags = flags; 2015 spage->generation = gen; 2016 spage->logical = logical; 2017 spage->physical = physical; 2018 spage->physical_for_dev_replace = physical_for_dev_replace; 2019 spage->mirror_num = mirror_num; 2020 if (csum) { 2021 spage->have_csum = 1; 2022 memcpy(spage->csum, csum, sctx->csum_size); 2023 } else { 2024 spage->have_csum = 0; 2025 } 2026 sblock->page_count++; 2027 spage->page = alloc_page(GFP_NOFS); 2028 if (!spage->page) 2029 goto leave_nomem; 2030 len -= l; 2031 logical += l; 2032 physical += l; 2033 physical_for_dev_replace += l; 2034 } 2035 2036 WARN_ON(sblock->page_count == 0); 2037 for (index = 0; index < sblock->page_count; index++) { 2038 struct scrub_page *spage = sblock->pagev[index]; 2039 int ret; 2040 2041 ret = scrub_add_page_to_rd_bio(sctx, spage); 2042 if (ret) { 2043 scrub_block_put(sblock); 2044 return ret; 2045 } 2046 } 2047 2048 if (force) 2049 scrub_submit(sctx); 2050 2051 /* last one frees, either here or in bio completion for last page */ 2052 scrub_block_put(sblock); 2053 return 0; 2054 } 2055 2056 static void scrub_bio_end_io(struct bio *bio, int err) 2057 { 2058 struct scrub_bio *sbio = bio->bi_private; 2059 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 2060 2061 sbio->err = err; 2062 sbio->bio = bio; 2063 2064 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work); 2065 } 2066 2067 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2068 { 2069 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2070 struct scrub_ctx *sctx = sbio->sctx; 2071 int i; 2072 2073 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2074 if (sbio->err) { 2075 for (i = 0; i < sbio->page_count; i++) { 2076 struct scrub_page *spage = sbio->pagev[i]; 2077 2078 spage->io_error = 1; 2079 spage->sblock->no_io_error_seen = 0; 2080 } 2081 } 2082 2083 /* now complete the scrub_block items that have all pages completed */ 2084 for (i = 0; i < sbio->page_count; i++) { 2085 struct scrub_page *spage = sbio->pagev[i]; 2086 struct scrub_block *sblock = spage->sblock; 2087 2088 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2089 scrub_block_complete(sblock); 2090 scrub_block_put(sblock); 2091 } 2092 2093 bio_put(sbio->bio); 2094 sbio->bio = NULL; 2095 spin_lock(&sctx->list_lock); 2096 sbio->next_free = sctx->first_free; 2097 sctx->first_free = sbio->index; 2098 spin_unlock(&sctx->list_lock); 2099 2100 if (sctx->is_dev_replace && 2101 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2102 mutex_lock(&sctx->wr_ctx.wr_lock); 2103 scrub_wr_submit(sctx); 2104 mutex_unlock(&sctx->wr_ctx.wr_lock); 2105 } 2106 2107 scrub_pending_bio_dec(sctx); 2108 } 2109 2110 static void scrub_block_complete(struct scrub_block *sblock) 2111 { 2112 if (!sblock->no_io_error_seen) { 2113 scrub_handle_errored_block(sblock); 2114 } else { 2115 /* 2116 * if has checksum error, write via repair mechanism in 2117 * dev replace case, otherwise write here in dev replace 2118 * case. 2119 */ 2120 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace) 2121 scrub_write_block_to_dev_replace(sblock); 2122 } 2123 } 2124 2125 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len, 2126 u8 *csum) 2127 { 2128 struct btrfs_ordered_sum *sum = NULL; 2129 int ret = 0; 2130 unsigned long i; 2131 unsigned long num_sectors; 2132 2133 while (!list_empty(&sctx->csum_list)) { 2134 sum = list_first_entry(&sctx->csum_list, 2135 struct btrfs_ordered_sum, list); 2136 if (sum->bytenr > logical) 2137 return 0; 2138 if (sum->bytenr + sum->len > logical) 2139 break; 2140 2141 ++sctx->stat.csum_discards; 2142 list_del(&sum->list); 2143 kfree(sum); 2144 sum = NULL; 2145 } 2146 if (!sum) 2147 return 0; 2148 2149 num_sectors = sum->len / sctx->sectorsize; 2150 for (i = 0; i < num_sectors; ++i) { 2151 if (sum->sums[i].bytenr == logical) { 2152 memcpy(csum, &sum->sums[i].sum, sctx->csum_size); 2153 ret = 1; 2154 break; 2155 } 2156 } 2157 if (ret && i == num_sectors - 1) { 2158 list_del(&sum->list); 2159 kfree(sum); 2160 } 2161 return ret; 2162 } 2163 2164 /* scrub extent tries to collect up to 64 kB for each bio */ 2165 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2166 u64 physical, struct btrfs_device *dev, u64 flags, 2167 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2168 { 2169 int ret; 2170 u8 csum[BTRFS_CSUM_SIZE]; 2171 u32 blocksize; 2172 2173 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2174 blocksize = sctx->sectorsize; 2175 spin_lock(&sctx->stat_lock); 2176 sctx->stat.data_extents_scrubbed++; 2177 sctx->stat.data_bytes_scrubbed += len; 2178 spin_unlock(&sctx->stat_lock); 2179 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2180 WARN_ON(sctx->nodesize != sctx->leafsize); 2181 blocksize = sctx->nodesize; 2182 spin_lock(&sctx->stat_lock); 2183 sctx->stat.tree_extents_scrubbed++; 2184 sctx->stat.tree_bytes_scrubbed += len; 2185 spin_unlock(&sctx->stat_lock); 2186 } else { 2187 blocksize = sctx->sectorsize; 2188 WARN_ON(1); 2189 } 2190 2191 while (len) { 2192 u64 l = min_t(u64, len, blocksize); 2193 int have_csum = 0; 2194 2195 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2196 /* push csums to sbio */ 2197 have_csum = scrub_find_csum(sctx, logical, l, csum); 2198 if (have_csum == 0) 2199 ++sctx->stat.no_csum; 2200 if (sctx->is_dev_replace && !have_csum) { 2201 ret = copy_nocow_pages(sctx, logical, l, 2202 mirror_num, 2203 physical_for_dev_replace); 2204 goto behind_scrub_pages; 2205 } 2206 } 2207 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2208 mirror_num, have_csum ? csum : NULL, 0, 2209 physical_for_dev_replace); 2210 behind_scrub_pages: 2211 if (ret) 2212 return ret; 2213 len -= l; 2214 logical += l; 2215 physical += l; 2216 physical_for_dev_replace += l; 2217 } 2218 return 0; 2219 } 2220 2221 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2222 struct map_lookup *map, 2223 struct btrfs_device *scrub_dev, 2224 int num, u64 base, u64 length, 2225 int is_dev_replace) 2226 { 2227 struct btrfs_path *path; 2228 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2229 struct btrfs_root *root = fs_info->extent_root; 2230 struct btrfs_root *csum_root = fs_info->csum_root; 2231 struct btrfs_extent_item *extent; 2232 struct blk_plug plug; 2233 u64 flags; 2234 int ret; 2235 int slot; 2236 u64 nstripes; 2237 struct extent_buffer *l; 2238 struct btrfs_key key; 2239 u64 physical; 2240 u64 logical; 2241 u64 logic_end; 2242 u64 generation; 2243 int mirror_num; 2244 struct reada_control *reada1; 2245 struct reada_control *reada2; 2246 struct btrfs_key key_start; 2247 struct btrfs_key key_end; 2248 u64 increment = map->stripe_len; 2249 u64 offset; 2250 u64 extent_logical; 2251 u64 extent_physical; 2252 u64 extent_len; 2253 struct btrfs_device *extent_dev; 2254 int extent_mirror_num; 2255 int stop_loop; 2256 2257 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 2258 BTRFS_BLOCK_GROUP_RAID6)) { 2259 if (num >= nr_data_stripes(map)) { 2260 return 0; 2261 } 2262 } 2263 2264 nstripes = length; 2265 offset = 0; 2266 do_div(nstripes, map->stripe_len); 2267 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 2268 offset = map->stripe_len * num; 2269 increment = map->stripe_len * map->num_stripes; 2270 mirror_num = 1; 2271 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 2272 int factor = map->num_stripes / map->sub_stripes; 2273 offset = map->stripe_len * (num / map->sub_stripes); 2274 increment = map->stripe_len * factor; 2275 mirror_num = num % map->sub_stripes + 1; 2276 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 2277 increment = map->stripe_len; 2278 mirror_num = num % map->num_stripes + 1; 2279 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 2280 increment = map->stripe_len; 2281 mirror_num = num % map->num_stripes + 1; 2282 } else { 2283 increment = map->stripe_len; 2284 mirror_num = 1; 2285 } 2286 2287 path = btrfs_alloc_path(); 2288 if (!path) 2289 return -ENOMEM; 2290 2291 /* 2292 * work on commit root. The related disk blocks are static as 2293 * long as COW is applied. This means, it is save to rewrite 2294 * them to repair disk errors without any race conditions 2295 */ 2296 path->search_commit_root = 1; 2297 path->skip_locking = 1; 2298 2299 /* 2300 * trigger the readahead for extent tree csum tree and wait for 2301 * completion. During readahead, the scrub is officially paused 2302 * to not hold off transaction commits 2303 */ 2304 logical = base + offset; 2305 2306 wait_event(sctx->list_wait, 2307 atomic_read(&sctx->bios_in_flight) == 0); 2308 atomic_inc(&fs_info->scrubs_paused); 2309 wake_up(&fs_info->scrub_pause_wait); 2310 2311 /* FIXME it might be better to start readahead at commit root */ 2312 key_start.objectid = logical; 2313 key_start.type = BTRFS_EXTENT_ITEM_KEY; 2314 key_start.offset = (u64)0; 2315 key_end.objectid = base + offset + nstripes * increment; 2316 key_end.type = BTRFS_METADATA_ITEM_KEY; 2317 key_end.offset = (u64)-1; 2318 reada1 = btrfs_reada_add(root, &key_start, &key_end); 2319 2320 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 2321 key_start.type = BTRFS_EXTENT_CSUM_KEY; 2322 key_start.offset = logical; 2323 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 2324 key_end.type = BTRFS_EXTENT_CSUM_KEY; 2325 key_end.offset = base + offset + nstripes * increment; 2326 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); 2327 2328 if (!IS_ERR(reada1)) 2329 btrfs_reada_wait(reada1); 2330 if (!IS_ERR(reada2)) 2331 btrfs_reada_wait(reada2); 2332 2333 mutex_lock(&fs_info->scrub_lock); 2334 while (atomic_read(&fs_info->scrub_pause_req)) { 2335 mutex_unlock(&fs_info->scrub_lock); 2336 wait_event(fs_info->scrub_pause_wait, 2337 atomic_read(&fs_info->scrub_pause_req) == 0); 2338 mutex_lock(&fs_info->scrub_lock); 2339 } 2340 atomic_dec(&fs_info->scrubs_paused); 2341 mutex_unlock(&fs_info->scrub_lock); 2342 wake_up(&fs_info->scrub_pause_wait); 2343 2344 /* 2345 * collect all data csums for the stripe to avoid seeking during 2346 * the scrub. This might currently (crc32) end up to be about 1MB 2347 */ 2348 blk_start_plug(&plug); 2349 2350 /* 2351 * now find all extents for each stripe and scrub them 2352 */ 2353 logical = base + offset; 2354 physical = map->stripes[num].physical; 2355 logic_end = logical + increment * nstripes; 2356 ret = 0; 2357 while (logical < logic_end) { 2358 /* 2359 * canceled? 2360 */ 2361 if (atomic_read(&fs_info->scrub_cancel_req) || 2362 atomic_read(&sctx->cancel_req)) { 2363 ret = -ECANCELED; 2364 goto out; 2365 } 2366 /* 2367 * check to see if we have to pause 2368 */ 2369 if (atomic_read(&fs_info->scrub_pause_req)) { 2370 /* push queued extents */ 2371 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 2372 scrub_submit(sctx); 2373 mutex_lock(&sctx->wr_ctx.wr_lock); 2374 scrub_wr_submit(sctx); 2375 mutex_unlock(&sctx->wr_ctx.wr_lock); 2376 wait_event(sctx->list_wait, 2377 atomic_read(&sctx->bios_in_flight) == 0); 2378 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 2379 atomic_inc(&fs_info->scrubs_paused); 2380 wake_up(&fs_info->scrub_pause_wait); 2381 mutex_lock(&fs_info->scrub_lock); 2382 while (atomic_read(&fs_info->scrub_pause_req)) { 2383 mutex_unlock(&fs_info->scrub_lock); 2384 wait_event(fs_info->scrub_pause_wait, 2385 atomic_read(&fs_info->scrub_pause_req) == 0); 2386 mutex_lock(&fs_info->scrub_lock); 2387 } 2388 atomic_dec(&fs_info->scrubs_paused); 2389 mutex_unlock(&fs_info->scrub_lock); 2390 wake_up(&fs_info->scrub_pause_wait); 2391 } 2392 2393 key.objectid = logical; 2394 key.type = BTRFS_EXTENT_ITEM_KEY; 2395 key.offset = (u64)-1; 2396 2397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2398 if (ret < 0) 2399 goto out; 2400 2401 if (ret > 0) { 2402 ret = btrfs_previous_item(root, path, 0, 2403 BTRFS_EXTENT_ITEM_KEY); 2404 if (ret < 0) 2405 goto out; 2406 if (ret > 0) { 2407 /* there's no smaller item, so stick with the 2408 * larger one */ 2409 btrfs_release_path(path); 2410 ret = btrfs_search_slot(NULL, root, &key, 2411 path, 0, 0); 2412 if (ret < 0) 2413 goto out; 2414 } 2415 } 2416 2417 stop_loop = 0; 2418 while (1) { 2419 u64 bytes; 2420 2421 l = path->nodes[0]; 2422 slot = path->slots[0]; 2423 if (slot >= btrfs_header_nritems(l)) { 2424 ret = btrfs_next_leaf(root, path); 2425 if (ret == 0) 2426 continue; 2427 if (ret < 0) 2428 goto out; 2429 2430 stop_loop = 1; 2431 break; 2432 } 2433 btrfs_item_key_to_cpu(l, &key, slot); 2434 2435 if (key.type == BTRFS_METADATA_ITEM_KEY) 2436 bytes = root->leafsize; 2437 else 2438 bytes = key.offset; 2439 2440 if (key.objectid + bytes <= logical) 2441 goto next; 2442 2443 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2444 key.type != BTRFS_METADATA_ITEM_KEY) 2445 goto next; 2446 2447 if (key.objectid >= logical + map->stripe_len) { 2448 /* out of this device extent */ 2449 if (key.objectid >= logic_end) 2450 stop_loop = 1; 2451 break; 2452 } 2453 2454 extent = btrfs_item_ptr(l, slot, 2455 struct btrfs_extent_item); 2456 flags = btrfs_extent_flags(l, extent); 2457 generation = btrfs_extent_generation(l, extent); 2458 2459 if (key.objectid < logical && 2460 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { 2461 printk(KERN_ERR 2462 "btrfs scrub: tree block %llu spanning " 2463 "stripes, ignored. logical=%llu\n", 2464 (unsigned long long)key.objectid, 2465 (unsigned long long)logical); 2466 goto next; 2467 } 2468 2469 again: 2470 extent_logical = key.objectid; 2471 extent_len = bytes; 2472 2473 /* 2474 * trim extent to this stripe 2475 */ 2476 if (extent_logical < logical) { 2477 extent_len -= logical - extent_logical; 2478 extent_logical = logical; 2479 } 2480 if (extent_logical + extent_len > 2481 logical + map->stripe_len) { 2482 extent_len = logical + map->stripe_len - 2483 extent_logical; 2484 } 2485 2486 extent_physical = extent_logical - logical + physical; 2487 extent_dev = scrub_dev; 2488 extent_mirror_num = mirror_num; 2489 if (is_dev_replace) 2490 scrub_remap_extent(fs_info, extent_logical, 2491 extent_len, &extent_physical, 2492 &extent_dev, 2493 &extent_mirror_num); 2494 2495 ret = btrfs_lookup_csums_range(csum_root, logical, 2496 logical + map->stripe_len - 1, 2497 &sctx->csum_list, 1); 2498 if (ret) 2499 goto out; 2500 2501 ret = scrub_extent(sctx, extent_logical, extent_len, 2502 extent_physical, extent_dev, flags, 2503 generation, extent_mirror_num, 2504 extent_physical); 2505 if (ret) 2506 goto out; 2507 2508 if (extent_logical + extent_len < 2509 key.objectid + bytes) { 2510 logical += increment; 2511 physical += map->stripe_len; 2512 2513 if (logical < key.objectid + bytes) { 2514 cond_resched(); 2515 goto again; 2516 } 2517 2518 if (logical >= logic_end) { 2519 stop_loop = 1; 2520 break; 2521 } 2522 } 2523 next: 2524 path->slots[0]++; 2525 } 2526 btrfs_release_path(path); 2527 logical += increment; 2528 physical += map->stripe_len; 2529 spin_lock(&sctx->stat_lock); 2530 if (stop_loop) 2531 sctx->stat.last_physical = map->stripes[num].physical + 2532 length; 2533 else 2534 sctx->stat.last_physical = physical; 2535 spin_unlock(&sctx->stat_lock); 2536 if (stop_loop) 2537 break; 2538 } 2539 out: 2540 /* push queued extents */ 2541 scrub_submit(sctx); 2542 mutex_lock(&sctx->wr_ctx.wr_lock); 2543 scrub_wr_submit(sctx); 2544 mutex_unlock(&sctx->wr_ctx.wr_lock); 2545 2546 blk_finish_plug(&plug); 2547 btrfs_free_path(path); 2548 return ret < 0 ? ret : 0; 2549 } 2550 2551 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2552 struct btrfs_device *scrub_dev, 2553 u64 chunk_tree, u64 chunk_objectid, 2554 u64 chunk_offset, u64 length, 2555 u64 dev_offset, int is_dev_replace) 2556 { 2557 struct btrfs_mapping_tree *map_tree = 2558 &sctx->dev_root->fs_info->mapping_tree; 2559 struct map_lookup *map; 2560 struct extent_map *em; 2561 int i; 2562 int ret = 0; 2563 2564 read_lock(&map_tree->map_tree.lock); 2565 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 2566 read_unlock(&map_tree->map_tree.lock); 2567 2568 if (!em) 2569 return -EINVAL; 2570 2571 map = (struct map_lookup *)em->bdev; 2572 if (em->start != chunk_offset) 2573 goto out; 2574 2575 if (em->len < length) 2576 goto out; 2577 2578 for (i = 0; i < map->num_stripes; ++i) { 2579 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2580 map->stripes[i].physical == dev_offset) { 2581 ret = scrub_stripe(sctx, map, scrub_dev, i, 2582 chunk_offset, length, 2583 is_dev_replace); 2584 if (ret) 2585 goto out; 2586 } 2587 } 2588 out: 2589 free_extent_map(em); 2590 2591 return ret; 2592 } 2593 2594 static noinline_for_stack 2595 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2596 struct btrfs_device *scrub_dev, u64 start, u64 end, 2597 int is_dev_replace) 2598 { 2599 struct btrfs_dev_extent *dev_extent = NULL; 2600 struct btrfs_path *path; 2601 struct btrfs_root *root = sctx->dev_root; 2602 struct btrfs_fs_info *fs_info = root->fs_info; 2603 u64 length; 2604 u64 chunk_tree; 2605 u64 chunk_objectid; 2606 u64 chunk_offset; 2607 int ret; 2608 int slot; 2609 struct extent_buffer *l; 2610 struct btrfs_key key; 2611 struct btrfs_key found_key; 2612 struct btrfs_block_group_cache *cache; 2613 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2614 2615 path = btrfs_alloc_path(); 2616 if (!path) 2617 return -ENOMEM; 2618 2619 path->reada = 2; 2620 path->search_commit_root = 1; 2621 path->skip_locking = 1; 2622 2623 key.objectid = scrub_dev->devid; 2624 key.offset = 0ull; 2625 key.type = BTRFS_DEV_EXTENT_KEY; 2626 2627 while (1) { 2628 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2629 if (ret < 0) 2630 break; 2631 if (ret > 0) { 2632 if (path->slots[0] >= 2633 btrfs_header_nritems(path->nodes[0])) { 2634 ret = btrfs_next_leaf(root, path); 2635 if (ret) 2636 break; 2637 } 2638 } 2639 2640 l = path->nodes[0]; 2641 slot = path->slots[0]; 2642 2643 btrfs_item_key_to_cpu(l, &found_key, slot); 2644 2645 if (found_key.objectid != scrub_dev->devid) 2646 break; 2647 2648 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY) 2649 break; 2650 2651 if (found_key.offset >= end) 2652 break; 2653 2654 if (found_key.offset < key.offset) 2655 break; 2656 2657 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2658 length = btrfs_dev_extent_length(l, dev_extent); 2659 2660 if (found_key.offset + length <= start) { 2661 key.offset = found_key.offset + length; 2662 btrfs_release_path(path); 2663 continue; 2664 } 2665 2666 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 2667 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 2668 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2669 2670 /* 2671 * get a reference on the corresponding block group to prevent 2672 * the chunk from going away while we scrub it 2673 */ 2674 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2675 if (!cache) { 2676 ret = -ENOENT; 2677 break; 2678 } 2679 dev_replace->cursor_right = found_key.offset + length; 2680 dev_replace->cursor_left = found_key.offset; 2681 dev_replace->item_needs_writeback = 1; 2682 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid, 2683 chunk_offset, length, found_key.offset, 2684 is_dev_replace); 2685 2686 /* 2687 * flush, submit all pending read and write bios, afterwards 2688 * wait for them. 2689 * Note that in the dev replace case, a read request causes 2690 * write requests that are submitted in the read completion 2691 * worker. Therefore in the current situation, it is required 2692 * that all write requests are flushed, so that all read and 2693 * write requests are really completed when bios_in_flight 2694 * changes to 0. 2695 */ 2696 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 2697 scrub_submit(sctx); 2698 mutex_lock(&sctx->wr_ctx.wr_lock); 2699 scrub_wr_submit(sctx); 2700 mutex_unlock(&sctx->wr_ctx.wr_lock); 2701 2702 wait_event(sctx->list_wait, 2703 atomic_read(&sctx->bios_in_flight) == 0); 2704 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 2705 atomic_inc(&fs_info->scrubs_paused); 2706 wake_up(&fs_info->scrub_pause_wait); 2707 wait_event(sctx->list_wait, 2708 atomic_read(&sctx->workers_pending) == 0); 2709 2710 mutex_lock(&fs_info->scrub_lock); 2711 while (atomic_read(&fs_info->scrub_pause_req)) { 2712 mutex_unlock(&fs_info->scrub_lock); 2713 wait_event(fs_info->scrub_pause_wait, 2714 atomic_read(&fs_info->scrub_pause_req) == 0); 2715 mutex_lock(&fs_info->scrub_lock); 2716 } 2717 atomic_dec(&fs_info->scrubs_paused); 2718 mutex_unlock(&fs_info->scrub_lock); 2719 wake_up(&fs_info->scrub_pause_wait); 2720 2721 dev_replace->cursor_left = dev_replace->cursor_right; 2722 dev_replace->item_needs_writeback = 1; 2723 btrfs_put_block_group(cache); 2724 if (ret) 2725 break; 2726 if (is_dev_replace && 2727 atomic64_read(&dev_replace->num_write_errors) > 0) { 2728 ret = -EIO; 2729 break; 2730 } 2731 if (sctx->stat.malloc_errors > 0) { 2732 ret = -ENOMEM; 2733 break; 2734 } 2735 2736 key.offset = found_key.offset + length; 2737 btrfs_release_path(path); 2738 } 2739 2740 btrfs_free_path(path); 2741 2742 /* 2743 * ret can still be 1 from search_slot or next_leaf, 2744 * that's not an error 2745 */ 2746 return ret < 0 ? ret : 0; 2747 } 2748 2749 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2750 struct btrfs_device *scrub_dev) 2751 { 2752 int i; 2753 u64 bytenr; 2754 u64 gen; 2755 int ret; 2756 struct btrfs_root *root = sctx->dev_root; 2757 2758 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 2759 return -EIO; 2760 2761 gen = root->fs_info->last_trans_committed; 2762 2763 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2764 bytenr = btrfs_sb_offset(i); 2765 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes) 2766 break; 2767 2768 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 2769 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 2770 NULL, 1, bytenr); 2771 if (ret) 2772 return ret; 2773 } 2774 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 2775 2776 return 0; 2777 } 2778 2779 /* 2780 * get a reference count on fs_info->scrub_workers. start worker if necessary 2781 */ 2782 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 2783 int is_dev_replace) 2784 { 2785 int ret = 0; 2786 2787 mutex_lock(&fs_info->scrub_lock); 2788 if (fs_info->scrub_workers_refcnt == 0) { 2789 if (is_dev_replace) 2790 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1, 2791 &fs_info->generic_worker); 2792 else 2793 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 2794 fs_info->thread_pool_size, 2795 &fs_info->generic_worker); 2796 fs_info->scrub_workers.idle_thresh = 4; 2797 ret = btrfs_start_workers(&fs_info->scrub_workers); 2798 if (ret) 2799 goto out; 2800 btrfs_init_workers(&fs_info->scrub_wr_completion_workers, 2801 "scrubwrc", 2802 fs_info->thread_pool_size, 2803 &fs_info->generic_worker); 2804 fs_info->scrub_wr_completion_workers.idle_thresh = 2; 2805 ret = btrfs_start_workers( 2806 &fs_info->scrub_wr_completion_workers); 2807 if (ret) 2808 goto out; 2809 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1, 2810 &fs_info->generic_worker); 2811 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers); 2812 if (ret) 2813 goto out; 2814 } 2815 ++fs_info->scrub_workers_refcnt; 2816 out: 2817 mutex_unlock(&fs_info->scrub_lock); 2818 2819 return ret; 2820 } 2821 2822 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 2823 { 2824 mutex_lock(&fs_info->scrub_lock); 2825 if (--fs_info->scrub_workers_refcnt == 0) { 2826 btrfs_stop_workers(&fs_info->scrub_workers); 2827 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers); 2828 btrfs_stop_workers(&fs_info->scrub_nocow_workers); 2829 } 2830 WARN_ON(fs_info->scrub_workers_refcnt < 0); 2831 mutex_unlock(&fs_info->scrub_lock); 2832 } 2833 2834 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2835 u64 end, struct btrfs_scrub_progress *progress, 2836 int readonly, int is_dev_replace) 2837 { 2838 struct scrub_ctx *sctx; 2839 int ret; 2840 struct btrfs_device *dev; 2841 2842 if (btrfs_fs_closing(fs_info)) 2843 return -EINVAL; 2844 2845 /* 2846 * check some assumptions 2847 */ 2848 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) { 2849 printk(KERN_ERR 2850 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n", 2851 fs_info->chunk_root->nodesize, 2852 fs_info->chunk_root->leafsize); 2853 return -EINVAL; 2854 } 2855 2856 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) { 2857 /* 2858 * in this case scrub is unable to calculate the checksum 2859 * the way scrub is implemented. Do not handle this 2860 * situation at all because it won't ever happen. 2861 */ 2862 printk(KERN_ERR 2863 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n", 2864 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN); 2865 return -EINVAL; 2866 } 2867 2868 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) { 2869 /* not supported for data w/o checksums */ 2870 printk(KERN_ERR 2871 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n", 2872 fs_info->chunk_root->sectorsize, 2873 (unsigned long long)PAGE_SIZE); 2874 return -EINVAL; 2875 } 2876 2877 if (fs_info->chunk_root->nodesize > 2878 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 2879 fs_info->chunk_root->sectorsize > 2880 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 2881 /* 2882 * would exhaust the array bounds of pagev member in 2883 * struct scrub_block 2884 */ 2885 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n", 2886 fs_info->chunk_root->nodesize, 2887 SCRUB_MAX_PAGES_PER_BLOCK, 2888 fs_info->chunk_root->sectorsize, 2889 SCRUB_MAX_PAGES_PER_BLOCK); 2890 return -EINVAL; 2891 } 2892 2893 ret = scrub_workers_get(fs_info, is_dev_replace); 2894 if (ret) 2895 return ret; 2896 2897 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2898 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 2899 if (!dev || (dev->missing && !is_dev_replace)) { 2900 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2901 scrub_workers_put(fs_info); 2902 return -ENODEV; 2903 } 2904 mutex_lock(&fs_info->scrub_lock); 2905 2906 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 2907 mutex_unlock(&fs_info->scrub_lock); 2908 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2909 scrub_workers_put(fs_info); 2910 return -EIO; 2911 } 2912 2913 btrfs_dev_replace_lock(&fs_info->dev_replace); 2914 if (dev->scrub_device || 2915 (!is_dev_replace && 2916 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2917 btrfs_dev_replace_unlock(&fs_info->dev_replace); 2918 mutex_unlock(&fs_info->scrub_lock); 2919 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2920 scrub_workers_put(fs_info); 2921 return -EINPROGRESS; 2922 } 2923 btrfs_dev_replace_unlock(&fs_info->dev_replace); 2924 sctx = scrub_setup_ctx(dev, is_dev_replace); 2925 if (IS_ERR(sctx)) { 2926 mutex_unlock(&fs_info->scrub_lock); 2927 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2928 scrub_workers_put(fs_info); 2929 return PTR_ERR(sctx); 2930 } 2931 sctx->readonly = readonly; 2932 dev->scrub_device = sctx; 2933 2934 atomic_inc(&fs_info->scrubs_running); 2935 mutex_unlock(&fs_info->scrub_lock); 2936 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2937 2938 if (!is_dev_replace) { 2939 down_read(&fs_info->scrub_super_lock); 2940 ret = scrub_supers(sctx, dev); 2941 up_read(&fs_info->scrub_super_lock); 2942 } 2943 2944 if (!ret) 2945 ret = scrub_enumerate_chunks(sctx, dev, start, end, 2946 is_dev_replace); 2947 2948 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 2949 atomic_dec(&fs_info->scrubs_running); 2950 wake_up(&fs_info->scrub_pause_wait); 2951 2952 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 2953 2954 if (progress) 2955 memcpy(progress, &sctx->stat, sizeof(*progress)); 2956 2957 mutex_lock(&fs_info->scrub_lock); 2958 dev->scrub_device = NULL; 2959 mutex_unlock(&fs_info->scrub_lock); 2960 2961 scrub_free_ctx(sctx); 2962 scrub_workers_put(fs_info); 2963 2964 return ret; 2965 } 2966 2967 void btrfs_scrub_pause(struct btrfs_root *root) 2968 { 2969 struct btrfs_fs_info *fs_info = root->fs_info; 2970 2971 mutex_lock(&fs_info->scrub_lock); 2972 atomic_inc(&fs_info->scrub_pause_req); 2973 while (atomic_read(&fs_info->scrubs_paused) != 2974 atomic_read(&fs_info->scrubs_running)) { 2975 mutex_unlock(&fs_info->scrub_lock); 2976 wait_event(fs_info->scrub_pause_wait, 2977 atomic_read(&fs_info->scrubs_paused) == 2978 atomic_read(&fs_info->scrubs_running)); 2979 mutex_lock(&fs_info->scrub_lock); 2980 } 2981 mutex_unlock(&fs_info->scrub_lock); 2982 } 2983 2984 void btrfs_scrub_continue(struct btrfs_root *root) 2985 { 2986 struct btrfs_fs_info *fs_info = root->fs_info; 2987 2988 atomic_dec(&fs_info->scrub_pause_req); 2989 wake_up(&fs_info->scrub_pause_wait); 2990 } 2991 2992 void btrfs_scrub_pause_super(struct btrfs_root *root) 2993 { 2994 down_write(&root->fs_info->scrub_super_lock); 2995 } 2996 2997 void btrfs_scrub_continue_super(struct btrfs_root *root) 2998 { 2999 up_write(&root->fs_info->scrub_super_lock); 3000 } 3001 3002 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3003 { 3004 mutex_lock(&fs_info->scrub_lock); 3005 if (!atomic_read(&fs_info->scrubs_running)) { 3006 mutex_unlock(&fs_info->scrub_lock); 3007 return -ENOTCONN; 3008 } 3009 3010 atomic_inc(&fs_info->scrub_cancel_req); 3011 while (atomic_read(&fs_info->scrubs_running)) { 3012 mutex_unlock(&fs_info->scrub_lock); 3013 wait_event(fs_info->scrub_pause_wait, 3014 atomic_read(&fs_info->scrubs_running) == 0); 3015 mutex_lock(&fs_info->scrub_lock); 3016 } 3017 atomic_dec(&fs_info->scrub_cancel_req); 3018 mutex_unlock(&fs_info->scrub_lock); 3019 3020 return 0; 3021 } 3022 3023 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 3024 struct btrfs_device *dev) 3025 { 3026 struct scrub_ctx *sctx; 3027 3028 mutex_lock(&fs_info->scrub_lock); 3029 sctx = dev->scrub_device; 3030 if (!sctx) { 3031 mutex_unlock(&fs_info->scrub_lock); 3032 return -ENOTCONN; 3033 } 3034 atomic_inc(&sctx->cancel_req); 3035 while (dev->scrub_device) { 3036 mutex_unlock(&fs_info->scrub_lock); 3037 wait_event(fs_info->scrub_pause_wait, 3038 dev->scrub_device == NULL); 3039 mutex_lock(&fs_info->scrub_lock); 3040 } 3041 mutex_unlock(&fs_info->scrub_lock); 3042 3043 return 0; 3044 } 3045 3046 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 3047 struct btrfs_scrub_progress *progress) 3048 { 3049 struct btrfs_device *dev; 3050 struct scrub_ctx *sctx = NULL; 3051 3052 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3053 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL); 3054 if (dev) 3055 sctx = dev->scrub_device; 3056 if (sctx) 3057 memcpy(progress, &sctx->stat, sizeof(*progress)); 3058 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3059 3060 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3061 } 3062 3063 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 3064 u64 extent_logical, u64 extent_len, 3065 u64 *extent_physical, 3066 struct btrfs_device **extent_dev, 3067 int *extent_mirror_num) 3068 { 3069 u64 mapped_length; 3070 struct btrfs_bio *bbio = NULL; 3071 int ret; 3072 3073 mapped_length = extent_len; 3074 ret = btrfs_map_block(fs_info, READ, extent_logical, 3075 &mapped_length, &bbio, 0); 3076 if (ret || !bbio || mapped_length < extent_len || 3077 !bbio->stripes[0].dev->bdev) { 3078 kfree(bbio); 3079 return; 3080 } 3081 3082 *extent_physical = bbio->stripes[0].physical; 3083 *extent_mirror_num = bbio->mirror_num; 3084 *extent_dev = bbio->stripes[0].dev; 3085 kfree(bbio); 3086 } 3087 3088 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 3089 struct scrub_wr_ctx *wr_ctx, 3090 struct btrfs_fs_info *fs_info, 3091 struct btrfs_device *dev, 3092 int is_dev_replace) 3093 { 3094 WARN_ON(wr_ctx->wr_curr_bio != NULL); 3095 3096 mutex_init(&wr_ctx->wr_lock); 3097 wr_ctx->wr_curr_bio = NULL; 3098 if (!is_dev_replace) 3099 return 0; 3100 3101 WARN_ON(!dev->bdev); 3102 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO, 3103 bio_get_nr_vecs(dev->bdev)); 3104 wr_ctx->tgtdev = dev; 3105 atomic_set(&wr_ctx->flush_all_writes, 0); 3106 return 0; 3107 } 3108 3109 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) 3110 { 3111 mutex_lock(&wr_ctx->wr_lock); 3112 kfree(wr_ctx->wr_curr_bio); 3113 wr_ctx->wr_curr_bio = NULL; 3114 mutex_unlock(&wr_ctx->wr_lock); 3115 } 3116 3117 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 3118 int mirror_num, u64 physical_for_dev_replace) 3119 { 3120 struct scrub_copy_nocow_ctx *nocow_ctx; 3121 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 3122 3123 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 3124 if (!nocow_ctx) { 3125 spin_lock(&sctx->stat_lock); 3126 sctx->stat.malloc_errors++; 3127 spin_unlock(&sctx->stat_lock); 3128 return -ENOMEM; 3129 } 3130 3131 scrub_pending_trans_workers_inc(sctx); 3132 3133 nocow_ctx->sctx = sctx; 3134 nocow_ctx->logical = logical; 3135 nocow_ctx->len = len; 3136 nocow_ctx->mirror_num = mirror_num; 3137 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 3138 nocow_ctx->work.func = copy_nocow_pages_worker; 3139 btrfs_queue_worker(&fs_info->scrub_nocow_workers, 3140 &nocow_ctx->work); 3141 3142 return 0; 3143 } 3144 3145 static void copy_nocow_pages_worker(struct btrfs_work *work) 3146 { 3147 struct scrub_copy_nocow_ctx *nocow_ctx = 3148 container_of(work, struct scrub_copy_nocow_ctx, work); 3149 struct scrub_ctx *sctx = nocow_ctx->sctx; 3150 u64 logical = nocow_ctx->logical; 3151 u64 len = nocow_ctx->len; 3152 int mirror_num = nocow_ctx->mirror_num; 3153 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3154 int ret; 3155 struct btrfs_trans_handle *trans = NULL; 3156 struct btrfs_fs_info *fs_info; 3157 struct btrfs_path *path; 3158 struct btrfs_root *root; 3159 int not_written = 0; 3160 3161 fs_info = sctx->dev_root->fs_info; 3162 root = fs_info->extent_root; 3163 3164 path = btrfs_alloc_path(); 3165 if (!path) { 3166 spin_lock(&sctx->stat_lock); 3167 sctx->stat.malloc_errors++; 3168 spin_unlock(&sctx->stat_lock); 3169 not_written = 1; 3170 goto out; 3171 } 3172 3173 trans = btrfs_join_transaction(root); 3174 if (IS_ERR(trans)) { 3175 not_written = 1; 3176 goto out; 3177 } 3178 3179 ret = iterate_inodes_from_logical(logical, fs_info, path, 3180 copy_nocow_pages_for_inode, 3181 nocow_ctx); 3182 if (ret != 0 && ret != -ENOENT) { 3183 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n", 3184 (unsigned long long)logical, 3185 (unsigned long long)physical_for_dev_replace, 3186 (unsigned long long)len, 3187 (unsigned long long)mirror_num, ret); 3188 not_written = 1; 3189 goto out; 3190 } 3191 3192 out: 3193 if (trans && !IS_ERR(trans)) 3194 btrfs_end_transaction(trans, root); 3195 if (not_written) 3196 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 3197 num_uncorrectable_read_errors); 3198 3199 btrfs_free_path(path); 3200 kfree(nocow_ctx); 3201 3202 scrub_pending_trans_workers_dec(sctx); 3203 } 3204 3205 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx) 3206 { 3207 unsigned long index; 3208 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 3209 int ret = 0; 3210 struct btrfs_key key; 3211 struct inode *inode = NULL; 3212 struct btrfs_root *local_root; 3213 u64 physical_for_dev_replace; 3214 u64 len; 3215 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info; 3216 int srcu_index; 3217 3218 key.objectid = root; 3219 key.type = BTRFS_ROOT_ITEM_KEY; 3220 key.offset = (u64)-1; 3221 3222 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 3223 3224 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 3225 if (IS_ERR(local_root)) { 3226 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 3227 return PTR_ERR(local_root); 3228 } 3229 3230 key.type = BTRFS_INODE_ITEM_KEY; 3231 key.objectid = inum; 3232 key.offset = 0; 3233 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 3234 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 3235 if (IS_ERR(inode)) 3236 return PTR_ERR(inode); 3237 3238 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3239 len = nocow_ctx->len; 3240 while (len >= PAGE_CACHE_SIZE) { 3241 struct page *page = NULL; 3242 int ret_sub; 3243 3244 index = offset >> PAGE_CACHE_SHIFT; 3245 3246 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 3247 if (!page) { 3248 pr_err("find_or_create_page() failed\n"); 3249 ret = -ENOMEM; 3250 goto next_page; 3251 } 3252 3253 if (PageUptodate(page)) { 3254 if (PageDirty(page)) 3255 goto next_page; 3256 } else { 3257 ClearPageError(page); 3258 ret_sub = extent_read_full_page(&BTRFS_I(inode)-> 3259 io_tree, 3260 page, btrfs_get_extent, 3261 nocow_ctx->mirror_num); 3262 if (ret_sub) { 3263 ret = ret_sub; 3264 goto next_page; 3265 } 3266 wait_on_page_locked(page); 3267 if (!PageUptodate(page)) { 3268 ret = -EIO; 3269 goto next_page; 3270 } 3271 } 3272 ret_sub = write_page_nocow(nocow_ctx->sctx, 3273 physical_for_dev_replace, page); 3274 if (ret_sub) { 3275 ret = ret_sub; 3276 goto next_page; 3277 } 3278 3279 next_page: 3280 if (page) { 3281 unlock_page(page); 3282 put_page(page); 3283 } 3284 offset += PAGE_CACHE_SIZE; 3285 physical_for_dev_replace += PAGE_CACHE_SIZE; 3286 len -= PAGE_CACHE_SIZE; 3287 } 3288 3289 if (inode) 3290 iput(inode); 3291 return ret; 3292 } 3293 3294 static int write_page_nocow(struct scrub_ctx *sctx, 3295 u64 physical_for_dev_replace, struct page *page) 3296 { 3297 struct bio *bio; 3298 struct btrfs_device *dev; 3299 int ret; 3300 DECLARE_COMPLETION_ONSTACK(compl); 3301 3302 dev = sctx->wr_ctx.tgtdev; 3303 if (!dev) 3304 return -EIO; 3305 if (!dev->bdev) { 3306 printk_ratelimited(KERN_WARNING 3307 "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n"); 3308 return -EIO; 3309 } 3310 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 3311 if (!bio) { 3312 spin_lock(&sctx->stat_lock); 3313 sctx->stat.malloc_errors++; 3314 spin_unlock(&sctx->stat_lock); 3315 return -ENOMEM; 3316 } 3317 bio->bi_private = &compl; 3318 bio->bi_end_io = scrub_complete_bio_end_io; 3319 bio->bi_size = 0; 3320 bio->bi_sector = physical_for_dev_replace >> 9; 3321 bio->bi_bdev = dev->bdev; 3322 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 3323 if (ret != PAGE_CACHE_SIZE) { 3324 leave_with_eio: 3325 bio_put(bio); 3326 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 3327 return -EIO; 3328 } 3329 btrfsic_submit_bio(WRITE_SYNC, bio); 3330 wait_for_completion(&compl); 3331 3332 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 3333 goto leave_with_eio; 3334 3335 bio_put(bio); 3336 return 0; 3337 } 3338