1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "rcu-string.h" 21 #include "raid56.h" 22 #include "block-group.h" 23 #include "zoned.h" 24 25 /* 26 * This is only the first step towards a full-features scrub. It reads all 27 * extent and super block and verifies the checksums. In case a bad checksum 28 * is found or the extent cannot be read, good data will be written back if 29 * any can be found. 30 * 31 * Future enhancements: 32 * - In case an unrepairable extent is encountered, track which files are 33 * affected and report them 34 * - track and record media errors, throw out bad devices 35 * - add a mode to also read unallocated space 36 */ 37 38 struct scrub_block; 39 struct scrub_ctx; 40 41 /* 42 * The following three values only influence the performance. 43 * 44 * The last one configures the number of parallel and outstanding I/O 45 * operations. The first one configures an upper limit for the number 46 * of (dynamically allocated) pages that are added to a bio. 47 */ 48 #define SCRUB_SECTORS_PER_BIO 32 /* 128KiB per bio for 4KiB pages */ 49 #define SCRUB_BIOS_PER_SCTX 64 /* 8MiB per device in flight for 4KiB pages */ 50 51 /* 52 * The following value times PAGE_SIZE needs to be large enough to match the 53 * largest node/leaf/sector size that shall be supported. 54 */ 55 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 56 57 struct scrub_recover { 58 refcount_t refs; 59 struct btrfs_io_context *bioc; 60 u64 map_length; 61 }; 62 63 struct scrub_sector { 64 struct scrub_block *sblock; 65 struct page *page; 66 struct btrfs_device *dev; 67 struct list_head list; 68 u64 flags; /* extent flags */ 69 u64 generation; 70 u64 logical; 71 u64 physical; 72 u64 physical_for_dev_replace; 73 atomic_t refs; 74 u8 mirror_num; 75 unsigned int have_csum:1; 76 unsigned int io_error:1; 77 u8 csum[BTRFS_CSUM_SIZE]; 78 79 struct scrub_recover *recover; 80 }; 81 82 struct scrub_bio { 83 int index; 84 struct scrub_ctx *sctx; 85 struct btrfs_device *dev; 86 struct bio *bio; 87 blk_status_t status; 88 u64 logical; 89 u64 physical; 90 struct scrub_sector *sectors[SCRUB_SECTORS_PER_BIO]; 91 int sector_count; 92 int next_free; 93 struct work_struct work; 94 }; 95 96 struct scrub_block { 97 struct scrub_sector *sectors[SCRUB_MAX_SECTORS_PER_BLOCK]; 98 int sector_count; 99 atomic_t outstanding_sectors; 100 refcount_t refs; /* free mem on transition to zero */ 101 struct scrub_ctx *sctx; 102 struct scrub_parity *sparity; 103 struct { 104 unsigned int header_error:1; 105 unsigned int checksum_error:1; 106 unsigned int no_io_error_seen:1; 107 unsigned int generation_error:1; /* also sets header_error */ 108 109 /* The following is for the data used to check parity */ 110 /* It is for the data with checksum */ 111 unsigned int data_corrected:1; 112 }; 113 struct work_struct work; 114 }; 115 116 /* Used for the chunks with parity stripe such RAID5/6 */ 117 struct scrub_parity { 118 struct scrub_ctx *sctx; 119 120 struct btrfs_device *scrub_dev; 121 122 u64 logic_start; 123 124 u64 logic_end; 125 126 int nsectors; 127 128 u32 stripe_len; 129 130 refcount_t refs; 131 132 struct list_head sectors_list; 133 134 /* Work of parity check and repair */ 135 struct work_struct work; 136 137 /* Mark the parity blocks which have data */ 138 unsigned long *dbitmap; 139 140 /* 141 * Mark the parity blocks which have data, but errors happen when 142 * read data or check data 143 */ 144 unsigned long *ebitmap; 145 146 unsigned long bitmap[]; 147 }; 148 149 struct scrub_ctx { 150 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 151 struct btrfs_fs_info *fs_info; 152 int first_free; 153 int curr; 154 atomic_t bios_in_flight; 155 atomic_t workers_pending; 156 spinlock_t list_lock; 157 wait_queue_head_t list_wait; 158 struct list_head csum_list; 159 atomic_t cancel_req; 160 int readonly; 161 int sectors_per_bio; 162 163 /* State of IO submission throttling affecting the associated device */ 164 ktime_t throttle_deadline; 165 u64 throttle_sent; 166 167 int is_dev_replace; 168 u64 write_pointer; 169 170 struct scrub_bio *wr_curr_bio; 171 struct mutex wr_lock; 172 struct btrfs_device *wr_tgtdev; 173 bool flush_all_writes; 174 175 /* 176 * statistics 177 */ 178 struct btrfs_scrub_progress stat; 179 spinlock_t stat_lock; 180 181 /* 182 * Use a ref counter to avoid use-after-free issues. Scrub workers 183 * decrement bios_in_flight and workers_pending and then do a wakeup 184 * on the list_wait wait queue. We must ensure the main scrub task 185 * doesn't free the scrub context before or while the workers are 186 * doing the wakeup() call. 187 */ 188 refcount_t refs; 189 }; 190 191 struct scrub_warning { 192 struct btrfs_path *path; 193 u64 extent_item_size; 194 const char *errstr; 195 u64 physical; 196 u64 logical; 197 struct btrfs_device *dev; 198 }; 199 200 struct full_stripe_lock { 201 struct rb_node node; 202 u64 logical; 203 u64 refs; 204 struct mutex mutex; 205 }; 206 207 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 208 struct scrub_block *sblocks_for_recheck); 209 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 210 struct scrub_block *sblock, 211 int retry_failed_mirror); 212 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 213 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 214 struct scrub_block *sblock_good); 215 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, 216 struct scrub_block *sblock_good, 217 int sector_num, int force_write); 218 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 219 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, 220 int sector_num); 221 static int scrub_checksum_data(struct scrub_block *sblock); 222 static int scrub_checksum_tree_block(struct scrub_block *sblock); 223 static int scrub_checksum_super(struct scrub_block *sblock); 224 static void scrub_block_put(struct scrub_block *sblock); 225 static void scrub_sector_get(struct scrub_sector *sector); 226 static void scrub_sector_put(struct scrub_sector *sector); 227 static void scrub_parity_get(struct scrub_parity *sparity); 228 static void scrub_parity_put(struct scrub_parity *sparity); 229 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len, 230 u64 physical, struct btrfs_device *dev, u64 flags, 231 u64 gen, int mirror_num, u8 *csum, 232 u64 physical_for_dev_replace); 233 static void scrub_bio_end_io(struct bio *bio); 234 static void scrub_bio_end_io_worker(struct work_struct *work); 235 static void scrub_block_complete(struct scrub_block *sblock); 236 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info, 237 u64 extent_logical, u32 extent_len, 238 u64 *extent_physical, 239 struct btrfs_device **extent_dev, 240 int *extent_mirror_num); 241 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx, 242 struct scrub_sector *sector); 243 static void scrub_wr_submit(struct scrub_ctx *sctx); 244 static void scrub_wr_bio_end_io(struct bio *bio); 245 static void scrub_wr_bio_end_io_worker(struct work_struct *work); 246 static void scrub_put_ctx(struct scrub_ctx *sctx); 247 248 static inline int scrub_is_page_on_raid56(struct scrub_sector *sector) 249 { 250 return sector->recover && 251 (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 252 } 253 254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 255 { 256 refcount_inc(&sctx->refs); 257 atomic_inc(&sctx->bios_in_flight); 258 } 259 260 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 261 { 262 atomic_dec(&sctx->bios_in_flight); 263 wake_up(&sctx->list_wait); 264 scrub_put_ctx(sctx); 265 } 266 267 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 268 { 269 while (atomic_read(&fs_info->scrub_pause_req)) { 270 mutex_unlock(&fs_info->scrub_lock); 271 wait_event(fs_info->scrub_pause_wait, 272 atomic_read(&fs_info->scrub_pause_req) == 0); 273 mutex_lock(&fs_info->scrub_lock); 274 } 275 } 276 277 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 278 { 279 atomic_inc(&fs_info->scrubs_paused); 280 wake_up(&fs_info->scrub_pause_wait); 281 } 282 283 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 284 { 285 mutex_lock(&fs_info->scrub_lock); 286 __scrub_blocked_if_needed(fs_info); 287 atomic_dec(&fs_info->scrubs_paused); 288 mutex_unlock(&fs_info->scrub_lock); 289 290 wake_up(&fs_info->scrub_pause_wait); 291 } 292 293 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 294 { 295 scrub_pause_on(fs_info); 296 scrub_pause_off(fs_info); 297 } 298 299 /* 300 * Insert new full stripe lock into full stripe locks tree 301 * 302 * Return pointer to existing or newly inserted full_stripe_lock structure if 303 * everything works well. 304 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 305 * 306 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 307 * function 308 */ 309 static struct full_stripe_lock *insert_full_stripe_lock( 310 struct btrfs_full_stripe_locks_tree *locks_root, 311 u64 fstripe_logical) 312 { 313 struct rb_node **p; 314 struct rb_node *parent = NULL; 315 struct full_stripe_lock *entry; 316 struct full_stripe_lock *ret; 317 318 lockdep_assert_held(&locks_root->lock); 319 320 p = &locks_root->root.rb_node; 321 while (*p) { 322 parent = *p; 323 entry = rb_entry(parent, struct full_stripe_lock, node); 324 if (fstripe_logical < entry->logical) { 325 p = &(*p)->rb_left; 326 } else if (fstripe_logical > entry->logical) { 327 p = &(*p)->rb_right; 328 } else { 329 entry->refs++; 330 return entry; 331 } 332 } 333 334 /* 335 * Insert new lock. 336 */ 337 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 338 if (!ret) 339 return ERR_PTR(-ENOMEM); 340 ret->logical = fstripe_logical; 341 ret->refs = 1; 342 mutex_init(&ret->mutex); 343 344 rb_link_node(&ret->node, parent, p); 345 rb_insert_color(&ret->node, &locks_root->root); 346 return ret; 347 } 348 349 /* 350 * Search for a full stripe lock of a block group 351 * 352 * Return pointer to existing full stripe lock if found 353 * Return NULL if not found 354 */ 355 static struct full_stripe_lock *search_full_stripe_lock( 356 struct btrfs_full_stripe_locks_tree *locks_root, 357 u64 fstripe_logical) 358 { 359 struct rb_node *node; 360 struct full_stripe_lock *entry; 361 362 lockdep_assert_held(&locks_root->lock); 363 364 node = locks_root->root.rb_node; 365 while (node) { 366 entry = rb_entry(node, struct full_stripe_lock, node); 367 if (fstripe_logical < entry->logical) 368 node = node->rb_left; 369 else if (fstripe_logical > entry->logical) 370 node = node->rb_right; 371 else 372 return entry; 373 } 374 return NULL; 375 } 376 377 /* 378 * Helper to get full stripe logical from a normal bytenr. 379 * 380 * Caller must ensure @cache is a RAID56 block group. 381 */ 382 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) 383 { 384 u64 ret; 385 386 /* 387 * Due to chunk item size limit, full stripe length should not be 388 * larger than U32_MAX. Just a sanity check here. 389 */ 390 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 391 392 /* 393 * round_down() can only handle power of 2, while RAID56 full 394 * stripe length can be 64KiB * n, so we need to manually round down. 395 */ 396 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * 397 cache->full_stripe_len + cache->start; 398 return ret; 399 } 400 401 /* 402 * Lock a full stripe to avoid concurrency of recovery and read 403 * 404 * It's only used for profiles with parities (RAID5/6), for other profiles it 405 * does nothing. 406 * 407 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 408 * So caller must call unlock_full_stripe() at the same context. 409 * 410 * Return <0 if encounters error. 411 */ 412 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 413 bool *locked_ret) 414 { 415 struct btrfs_block_group *bg_cache; 416 struct btrfs_full_stripe_locks_tree *locks_root; 417 struct full_stripe_lock *existing; 418 u64 fstripe_start; 419 int ret = 0; 420 421 *locked_ret = false; 422 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 423 if (!bg_cache) { 424 ASSERT(0); 425 return -ENOENT; 426 } 427 428 /* Profiles not based on parity don't need full stripe lock */ 429 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 430 goto out; 431 locks_root = &bg_cache->full_stripe_locks_root; 432 433 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 434 435 /* Now insert the full stripe lock */ 436 mutex_lock(&locks_root->lock); 437 existing = insert_full_stripe_lock(locks_root, fstripe_start); 438 mutex_unlock(&locks_root->lock); 439 if (IS_ERR(existing)) { 440 ret = PTR_ERR(existing); 441 goto out; 442 } 443 mutex_lock(&existing->mutex); 444 *locked_ret = true; 445 out: 446 btrfs_put_block_group(bg_cache); 447 return ret; 448 } 449 450 /* 451 * Unlock a full stripe. 452 * 453 * NOTE: Caller must ensure it's the same context calling corresponding 454 * lock_full_stripe(). 455 * 456 * Return 0 if we unlock full stripe without problem. 457 * Return <0 for error 458 */ 459 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 460 bool locked) 461 { 462 struct btrfs_block_group *bg_cache; 463 struct btrfs_full_stripe_locks_tree *locks_root; 464 struct full_stripe_lock *fstripe_lock; 465 u64 fstripe_start; 466 bool freeit = false; 467 int ret = 0; 468 469 /* If we didn't acquire full stripe lock, no need to continue */ 470 if (!locked) 471 return 0; 472 473 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 474 if (!bg_cache) { 475 ASSERT(0); 476 return -ENOENT; 477 } 478 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 479 goto out; 480 481 locks_root = &bg_cache->full_stripe_locks_root; 482 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 483 484 mutex_lock(&locks_root->lock); 485 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 486 /* Unpaired unlock_full_stripe() detected */ 487 if (!fstripe_lock) { 488 WARN_ON(1); 489 ret = -ENOENT; 490 mutex_unlock(&locks_root->lock); 491 goto out; 492 } 493 494 if (fstripe_lock->refs == 0) { 495 WARN_ON(1); 496 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 497 fstripe_lock->logical); 498 } else { 499 fstripe_lock->refs--; 500 } 501 502 if (fstripe_lock->refs == 0) { 503 rb_erase(&fstripe_lock->node, &locks_root->root); 504 freeit = true; 505 } 506 mutex_unlock(&locks_root->lock); 507 508 mutex_unlock(&fstripe_lock->mutex); 509 if (freeit) 510 kfree(fstripe_lock); 511 out: 512 btrfs_put_block_group(bg_cache); 513 return ret; 514 } 515 516 static void scrub_free_csums(struct scrub_ctx *sctx) 517 { 518 while (!list_empty(&sctx->csum_list)) { 519 struct btrfs_ordered_sum *sum; 520 sum = list_first_entry(&sctx->csum_list, 521 struct btrfs_ordered_sum, list); 522 list_del(&sum->list); 523 kfree(sum); 524 } 525 } 526 527 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 528 { 529 int i; 530 531 if (!sctx) 532 return; 533 534 /* this can happen when scrub is cancelled */ 535 if (sctx->curr != -1) { 536 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 537 538 for (i = 0; i < sbio->sector_count; i++) { 539 WARN_ON(!sbio->sectors[i]->page); 540 scrub_block_put(sbio->sectors[i]->sblock); 541 } 542 bio_put(sbio->bio); 543 } 544 545 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 546 struct scrub_bio *sbio = sctx->bios[i]; 547 548 if (!sbio) 549 break; 550 kfree(sbio); 551 } 552 553 kfree(sctx->wr_curr_bio); 554 scrub_free_csums(sctx); 555 kfree(sctx); 556 } 557 558 static void scrub_put_ctx(struct scrub_ctx *sctx) 559 { 560 if (refcount_dec_and_test(&sctx->refs)) 561 scrub_free_ctx(sctx); 562 } 563 564 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 565 struct btrfs_fs_info *fs_info, int is_dev_replace) 566 { 567 struct scrub_ctx *sctx; 568 int i; 569 570 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 571 if (!sctx) 572 goto nomem; 573 refcount_set(&sctx->refs, 1); 574 sctx->is_dev_replace = is_dev_replace; 575 sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO; 576 sctx->curr = -1; 577 sctx->fs_info = fs_info; 578 INIT_LIST_HEAD(&sctx->csum_list); 579 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 580 struct scrub_bio *sbio; 581 582 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 583 if (!sbio) 584 goto nomem; 585 sctx->bios[i] = sbio; 586 587 sbio->index = i; 588 sbio->sctx = sctx; 589 sbio->sector_count = 0; 590 INIT_WORK(&sbio->work, scrub_bio_end_io_worker); 591 592 if (i != SCRUB_BIOS_PER_SCTX - 1) 593 sctx->bios[i]->next_free = i + 1; 594 else 595 sctx->bios[i]->next_free = -1; 596 } 597 sctx->first_free = 0; 598 atomic_set(&sctx->bios_in_flight, 0); 599 atomic_set(&sctx->workers_pending, 0); 600 atomic_set(&sctx->cancel_req, 0); 601 602 spin_lock_init(&sctx->list_lock); 603 spin_lock_init(&sctx->stat_lock); 604 init_waitqueue_head(&sctx->list_wait); 605 sctx->throttle_deadline = 0; 606 607 WARN_ON(sctx->wr_curr_bio != NULL); 608 mutex_init(&sctx->wr_lock); 609 sctx->wr_curr_bio = NULL; 610 if (is_dev_replace) { 611 WARN_ON(!fs_info->dev_replace.tgtdev); 612 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 613 sctx->flush_all_writes = false; 614 } 615 616 return sctx; 617 618 nomem: 619 scrub_free_ctx(sctx); 620 return ERR_PTR(-ENOMEM); 621 } 622 623 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 624 void *warn_ctx) 625 { 626 u32 nlink; 627 int ret; 628 int i; 629 unsigned nofs_flag; 630 struct extent_buffer *eb; 631 struct btrfs_inode_item *inode_item; 632 struct scrub_warning *swarn = warn_ctx; 633 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 634 struct inode_fs_paths *ipath = NULL; 635 struct btrfs_root *local_root; 636 struct btrfs_key key; 637 638 local_root = btrfs_get_fs_root(fs_info, root, true); 639 if (IS_ERR(local_root)) { 640 ret = PTR_ERR(local_root); 641 goto err; 642 } 643 644 /* 645 * this makes the path point to (inum INODE_ITEM ioff) 646 */ 647 key.objectid = inum; 648 key.type = BTRFS_INODE_ITEM_KEY; 649 key.offset = 0; 650 651 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 652 if (ret) { 653 btrfs_put_root(local_root); 654 btrfs_release_path(swarn->path); 655 goto err; 656 } 657 658 eb = swarn->path->nodes[0]; 659 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 660 struct btrfs_inode_item); 661 nlink = btrfs_inode_nlink(eb, inode_item); 662 btrfs_release_path(swarn->path); 663 664 /* 665 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 666 * uses GFP_NOFS in this context, so we keep it consistent but it does 667 * not seem to be strictly necessary. 668 */ 669 nofs_flag = memalloc_nofs_save(); 670 ipath = init_ipath(4096, local_root, swarn->path); 671 memalloc_nofs_restore(nofs_flag); 672 if (IS_ERR(ipath)) { 673 btrfs_put_root(local_root); 674 ret = PTR_ERR(ipath); 675 ipath = NULL; 676 goto err; 677 } 678 ret = paths_from_inode(inum, ipath); 679 680 if (ret < 0) 681 goto err; 682 683 /* 684 * we deliberately ignore the bit ipath might have been too small to 685 * hold all of the paths here 686 */ 687 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 688 btrfs_warn_in_rcu(fs_info, 689 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 690 swarn->errstr, swarn->logical, 691 rcu_str_deref(swarn->dev->name), 692 swarn->physical, 693 root, inum, offset, 694 fs_info->sectorsize, nlink, 695 (char *)(unsigned long)ipath->fspath->val[i]); 696 697 btrfs_put_root(local_root); 698 free_ipath(ipath); 699 return 0; 700 701 err: 702 btrfs_warn_in_rcu(fs_info, 703 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 704 swarn->errstr, swarn->logical, 705 rcu_str_deref(swarn->dev->name), 706 swarn->physical, 707 root, inum, offset, ret); 708 709 free_ipath(ipath); 710 return 0; 711 } 712 713 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 714 { 715 struct btrfs_device *dev; 716 struct btrfs_fs_info *fs_info; 717 struct btrfs_path *path; 718 struct btrfs_key found_key; 719 struct extent_buffer *eb; 720 struct btrfs_extent_item *ei; 721 struct scrub_warning swarn; 722 unsigned long ptr = 0; 723 u64 extent_item_pos; 724 u64 flags = 0; 725 u64 ref_root; 726 u32 item_size; 727 u8 ref_level = 0; 728 int ret; 729 730 WARN_ON(sblock->sector_count < 1); 731 dev = sblock->sectors[0]->dev; 732 fs_info = sblock->sctx->fs_info; 733 734 path = btrfs_alloc_path(); 735 if (!path) 736 return; 737 738 swarn.physical = sblock->sectors[0]->physical; 739 swarn.logical = sblock->sectors[0]->logical; 740 swarn.errstr = errstr; 741 swarn.dev = NULL; 742 743 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 744 &flags); 745 if (ret < 0) 746 goto out; 747 748 extent_item_pos = swarn.logical - found_key.objectid; 749 swarn.extent_item_size = found_key.offset; 750 751 eb = path->nodes[0]; 752 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 753 item_size = btrfs_item_size(eb, path->slots[0]); 754 755 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 756 do { 757 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 758 item_size, &ref_root, 759 &ref_level); 760 btrfs_warn_in_rcu(fs_info, 761 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 762 errstr, swarn.logical, 763 rcu_str_deref(dev->name), 764 swarn.physical, 765 ref_level ? "node" : "leaf", 766 ret < 0 ? -1 : ref_level, 767 ret < 0 ? -1 : ref_root); 768 } while (ret != 1); 769 btrfs_release_path(path); 770 } else { 771 btrfs_release_path(path); 772 swarn.path = path; 773 swarn.dev = dev; 774 iterate_extent_inodes(fs_info, found_key.objectid, 775 extent_item_pos, 1, 776 scrub_print_warning_inode, &swarn, false); 777 } 778 779 out: 780 btrfs_free_path(path); 781 } 782 783 static inline void scrub_get_recover(struct scrub_recover *recover) 784 { 785 refcount_inc(&recover->refs); 786 } 787 788 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 789 struct scrub_recover *recover) 790 { 791 if (refcount_dec_and_test(&recover->refs)) { 792 btrfs_bio_counter_dec(fs_info); 793 btrfs_put_bioc(recover->bioc); 794 kfree(recover); 795 } 796 } 797 798 /* 799 * scrub_handle_errored_block gets called when either verification of the 800 * sectors failed or the bio failed to read, e.g. with EIO. In the latter 801 * case, this function handles all sectors in the bio, even though only one 802 * may be bad. 803 * The goal of this function is to repair the errored block by using the 804 * contents of one of the mirrors. 805 */ 806 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 807 { 808 struct scrub_ctx *sctx = sblock_to_check->sctx; 809 struct btrfs_device *dev; 810 struct btrfs_fs_info *fs_info; 811 u64 logical; 812 unsigned int failed_mirror_index; 813 unsigned int is_metadata; 814 unsigned int have_csum; 815 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 816 struct scrub_block *sblock_bad; 817 int ret; 818 int mirror_index; 819 int sector_num; 820 int success; 821 bool full_stripe_locked; 822 unsigned int nofs_flag; 823 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 824 DEFAULT_RATELIMIT_BURST); 825 826 BUG_ON(sblock_to_check->sector_count < 1); 827 fs_info = sctx->fs_info; 828 if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 829 /* 830 * if we find an error in a super block, we just report it. 831 * They will get written with the next transaction commit 832 * anyway 833 */ 834 spin_lock(&sctx->stat_lock); 835 ++sctx->stat.super_errors; 836 spin_unlock(&sctx->stat_lock); 837 return 0; 838 } 839 logical = sblock_to_check->sectors[0]->logical; 840 BUG_ON(sblock_to_check->sectors[0]->mirror_num < 1); 841 failed_mirror_index = sblock_to_check->sectors[0]->mirror_num - 1; 842 is_metadata = !(sblock_to_check->sectors[0]->flags & 843 BTRFS_EXTENT_FLAG_DATA); 844 have_csum = sblock_to_check->sectors[0]->have_csum; 845 dev = sblock_to_check->sectors[0]->dev; 846 847 if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical)) 848 return 0; 849 850 /* 851 * We must use GFP_NOFS because the scrub task might be waiting for a 852 * worker task executing this function and in turn a transaction commit 853 * might be waiting the scrub task to pause (which needs to wait for all 854 * the worker tasks to complete before pausing). 855 * We do allocations in the workers through insert_full_stripe_lock() 856 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of 857 * this function. 858 */ 859 nofs_flag = memalloc_nofs_save(); 860 /* 861 * For RAID5/6, race can happen for a different device scrub thread. 862 * For data corruption, Parity and Data threads will both try 863 * to recovery the data. 864 * Race can lead to doubly added csum error, or even unrecoverable 865 * error. 866 */ 867 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 868 if (ret < 0) { 869 memalloc_nofs_restore(nofs_flag); 870 spin_lock(&sctx->stat_lock); 871 if (ret == -ENOMEM) 872 sctx->stat.malloc_errors++; 873 sctx->stat.read_errors++; 874 sctx->stat.uncorrectable_errors++; 875 spin_unlock(&sctx->stat_lock); 876 return ret; 877 } 878 879 /* 880 * read all mirrors one after the other. This includes to 881 * re-read the extent or metadata block that failed (that was 882 * the cause that this fixup code is called) another time, 883 * sector by sector this time in order to know which sectors 884 * caused I/O errors and which ones are good (for all mirrors). 885 * It is the goal to handle the situation when more than one 886 * mirror contains I/O errors, but the errors do not 887 * overlap, i.e. the data can be repaired by selecting the 888 * sectors from those mirrors without I/O error on the 889 * particular sectors. One example (with blocks >= 2 * sectorsize) 890 * would be that mirror #1 has an I/O error on the first sector, 891 * the second sector is good, and mirror #2 has an I/O error on 892 * the second sector, but the first sector is good. 893 * Then the first sector of the first mirror can be repaired by 894 * taking the first sector of the second mirror, and the 895 * second sector of the second mirror can be repaired by 896 * copying the contents of the 2nd sector of the 1st mirror. 897 * One more note: if the sectors of one mirror contain I/O 898 * errors, the checksum cannot be verified. In order to get 899 * the best data for repairing, the first attempt is to find 900 * a mirror without I/O errors and with a validated checksum. 901 * Only if this is not possible, the sectors are picked from 902 * mirrors with I/O errors without considering the checksum. 903 * If the latter is the case, at the end, the checksum of the 904 * repaired area is verified in order to correctly maintain 905 * the statistics. 906 */ 907 908 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 909 sizeof(*sblocks_for_recheck), GFP_KERNEL); 910 if (!sblocks_for_recheck) { 911 spin_lock(&sctx->stat_lock); 912 sctx->stat.malloc_errors++; 913 sctx->stat.read_errors++; 914 sctx->stat.uncorrectable_errors++; 915 spin_unlock(&sctx->stat_lock); 916 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 917 goto out; 918 } 919 920 /* Setup the context, map the logical blocks and alloc the sectors */ 921 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 922 if (ret) { 923 spin_lock(&sctx->stat_lock); 924 sctx->stat.read_errors++; 925 sctx->stat.uncorrectable_errors++; 926 spin_unlock(&sctx->stat_lock); 927 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 928 goto out; 929 } 930 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 931 sblock_bad = sblocks_for_recheck + failed_mirror_index; 932 933 /* build and submit the bios for the failed mirror, check checksums */ 934 scrub_recheck_block(fs_info, sblock_bad, 1); 935 936 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 937 sblock_bad->no_io_error_seen) { 938 /* 939 * The error disappeared after reading sector by sector, or 940 * the area was part of a huge bio and other parts of the 941 * bio caused I/O errors, or the block layer merged several 942 * read requests into one and the error is caused by a 943 * different bio (usually one of the two latter cases is 944 * the cause) 945 */ 946 spin_lock(&sctx->stat_lock); 947 sctx->stat.unverified_errors++; 948 sblock_to_check->data_corrected = 1; 949 spin_unlock(&sctx->stat_lock); 950 951 if (sctx->is_dev_replace) 952 scrub_write_block_to_dev_replace(sblock_bad); 953 goto out; 954 } 955 956 if (!sblock_bad->no_io_error_seen) { 957 spin_lock(&sctx->stat_lock); 958 sctx->stat.read_errors++; 959 spin_unlock(&sctx->stat_lock); 960 if (__ratelimit(&rs)) 961 scrub_print_warning("i/o error", sblock_to_check); 962 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 963 } else if (sblock_bad->checksum_error) { 964 spin_lock(&sctx->stat_lock); 965 sctx->stat.csum_errors++; 966 spin_unlock(&sctx->stat_lock); 967 if (__ratelimit(&rs)) 968 scrub_print_warning("checksum error", sblock_to_check); 969 btrfs_dev_stat_inc_and_print(dev, 970 BTRFS_DEV_STAT_CORRUPTION_ERRS); 971 } else if (sblock_bad->header_error) { 972 spin_lock(&sctx->stat_lock); 973 sctx->stat.verify_errors++; 974 spin_unlock(&sctx->stat_lock); 975 if (__ratelimit(&rs)) 976 scrub_print_warning("checksum/header error", 977 sblock_to_check); 978 if (sblock_bad->generation_error) 979 btrfs_dev_stat_inc_and_print(dev, 980 BTRFS_DEV_STAT_GENERATION_ERRS); 981 else 982 btrfs_dev_stat_inc_and_print(dev, 983 BTRFS_DEV_STAT_CORRUPTION_ERRS); 984 } 985 986 if (sctx->readonly) { 987 ASSERT(!sctx->is_dev_replace); 988 goto out; 989 } 990 991 /* 992 * now build and submit the bios for the other mirrors, check 993 * checksums. 994 * First try to pick the mirror which is completely without I/O 995 * errors and also does not have a checksum error. 996 * If one is found, and if a checksum is present, the full block 997 * that is known to contain an error is rewritten. Afterwards 998 * the block is known to be corrected. 999 * If a mirror is found which is completely correct, and no 1000 * checksum is present, only those sectors are rewritten that had 1001 * an I/O error in the block to be repaired, since it cannot be 1002 * determined, which copy of the other sectors is better (and it 1003 * could happen otherwise that a correct sector would be 1004 * overwritten by a bad one). 1005 */ 1006 for (mirror_index = 0; ;mirror_index++) { 1007 struct scrub_block *sblock_other; 1008 1009 if (mirror_index == failed_mirror_index) 1010 continue; 1011 1012 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1013 if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) { 1014 if (mirror_index >= BTRFS_MAX_MIRRORS) 1015 break; 1016 if (!sblocks_for_recheck[mirror_index].sector_count) 1017 break; 1018 1019 sblock_other = sblocks_for_recheck + mirror_index; 1020 } else { 1021 struct scrub_recover *r = sblock_bad->sectors[0]->recover; 1022 int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs; 1023 1024 if (mirror_index >= max_allowed) 1025 break; 1026 if (!sblocks_for_recheck[1].sector_count) 1027 break; 1028 1029 ASSERT(failed_mirror_index == 0); 1030 sblock_other = sblocks_for_recheck + 1; 1031 sblock_other->sectors[0]->mirror_num = 1 + mirror_index; 1032 } 1033 1034 /* build and submit the bios, check checksums */ 1035 scrub_recheck_block(fs_info, sblock_other, 0); 1036 1037 if (!sblock_other->header_error && 1038 !sblock_other->checksum_error && 1039 sblock_other->no_io_error_seen) { 1040 if (sctx->is_dev_replace) { 1041 scrub_write_block_to_dev_replace(sblock_other); 1042 goto corrected_error; 1043 } else { 1044 ret = scrub_repair_block_from_good_copy( 1045 sblock_bad, sblock_other); 1046 if (!ret) 1047 goto corrected_error; 1048 } 1049 } 1050 } 1051 1052 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1053 goto did_not_correct_error; 1054 1055 /* 1056 * In case of I/O errors in the area that is supposed to be 1057 * repaired, continue by picking good copies of those sectors. 1058 * Select the good sectors from mirrors to rewrite bad sectors from 1059 * the area to fix. Afterwards verify the checksum of the block 1060 * that is supposed to be repaired. This verification step is 1061 * only done for the purpose of statistic counting and for the 1062 * final scrub report, whether errors remain. 1063 * A perfect algorithm could make use of the checksum and try 1064 * all possible combinations of sectors from the different mirrors 1065 * until the checksum verification succeeds. For example, when 1066 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector 1067 * of mirror #2 is readable but the final checksum test fails, 1068 * then the 2nd sector of mirror #3 could be tried, whether now 1069 * the final checksum succeeds. But this would be a rare 1070 * exception and is therefore not implemented. At least it is 1071 * avoided that the good copy is overwritten. 1072 * A more useful improvement would be to pick the sectors 1073 * without I/O error based on sector sizes (512 bytes on legacy 1074 * disks) instead of on sectorsize. Then maybe 512 byte of one 1075 * mirror could be repaired by taking 512 byte of a different 1076 * mirror, even if other 512 byte sectors in the same sectorsize 1077 * area are unreadable. 1078 */ 1079 success = 1; 1080 for (sector_num = 0; sector_num < sblock_bad->sector_count; 1081 sector_num++) { 1082 struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; 1083 struct scrub_block *sblock_other = NULL; 1084 1085 /* Skip no-io-error sectors in scrub */ 1086 if (!sector_bad->io_error && !sctx->is_dev_replace) 1087 continue; 1088 1089 if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) { 1090 /* 1091 * In case of dev replace, if raid56 rebuild process 1092 * didn't work out correct data, then copy the content 1093 * in sblock_bad to make sure target device is identical 1094 * to source device, instead of writing garbage data in 1095 * sblock_for_recheck array to target device. 1096 */ 1097 sblock_other = NULL; 1098 } else if (sector_bad->io_error) { 1099 /* Try to find no-io-error sector in mirrors */ 1100 for (mirror_index = 0; 1101 mirror_index < BTRFS_MAX_MIRRORS && 1102 sblocks_for_recheck[mirror_index].sector_count > 0; 1103 mirror_index++) { 1104 if (!sblocks_for_recheck[mirror_index]. 1105 sectors[sector_num]->io_error) { 1106 sblock_other = sblocks_for_recheck + 1107 mirror_index; 1108 break; 1109 } 1110 } 1111 if (!sblock_other) 1112 success = 0; 1113 } 1114 1115 if (sctx->is_dev_replace) { 1116 /* 1117 * Did not find a mirror to fetch the sector from. 1118 * scrub_write_sector_to_dev_replace() handles this 1119 * case (sector->io_error), by filling the block with 1120 * zeros before submitting the write request 1121 */ 1122 if (!sblock_other) 1123 sblock_other = sblock_bad; 1124 1125 if (scrub_write_sector_to_dev_replace(sblock_other, 1126 sector_num) != 0) { 1127 atomic64_inc( 1128 &fs_info->dev_replace.num_write_errors); 1129 success = 0; 1130 } 1131 } else if (sblock_other) { 1132 ret = scrub_repair_sector_from_good_copy(sblock_bad, 1133 sblock_other, 1134 sector_num, 0); 1135 if (0 == ret) 1136 sector_bad->io_error = 0; 1137 else 1138 success = 0; 1139 } 1140 } 1141 1142 if (success && !sctx->is_dev_replace) { 1143 if (is_metadata || have_csum) { 1144 /* 1145 * need to verify the checksum now that all 1146 * sectors on disk are repaired (the write 1147 * request for data to be repaired is on its way). 1148 * Just be lazy and use scrub_recheck_block() 1149 * which re-reads the data before the checksum 1150 * is verified, but most likely the data comes out 1151 * of the page cache. 1152 */ 1153 scrub_recheck_block(fs_info, sblock_bad, 1); 1154 if (!sblock_bad->header_error && 1155 !sblock_bad->checksum_error && 1156 sblock_bad->no_io_error_seen) 1157 goto corrected_error; 1158 else 1159 goto did_not_correct_error; 1160 } else { 1161 corrected_error: 1162 spin_lock(&sctx->stat_lock); 1163 sctx->stat.corrected_errors++; 1164 sblock_to_check->data_corrected = 1; 1165 spin_unlock(&sctx->stat_lock); 1166 btrfs_err_rl_in_rcu(fs_info, 1167 "fixed up error at logical %llu on dev %s", 1168 logical, rcu_str_deref(dev->name)); 1169 } 1170 } else { 1171 did_not_correct_error: 1172 spin_lock(&sctx->stat_lock); 1173 sctx->stat.uncorrectable_errors++; 1174 spin_unlock(&sctx->stat_lock); 1175 btrfs_err_rl_in_rcu(fs_info, 1176 "unable to fixup (regular) error at logical %llu on dev %s", 1177 logical, rcu_str_deref(dev->name)); 1178 } 1179 1180 out: 1181 if (sblocks_for_recheck) { 1182 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1183 mirror_index++) { 1184 struct scrub_block *sblock = sblocks_for_recheck + 1185 mirror_index; 1186 struct scrub_recover *recover; 1187 int i; 1188 1189 for (i = 0; i < sblock->sector_count; i++) { 1190 sblock->sectors[i]->sblock = NULL; 1191 recover = sblock->sectors[i]->recover; 1192 if (recover) { 1193 scrub_put_recover(fs_info, recover); 1194 sblock->sectors[i]->recover = NULL; 1195 } 1196 scrub_sector_put(sblock->sectors[i]); 1197 } 1198 } 1199 kfree(sblocks_for_recheck); 1200 } 1201 1202 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1203 memalloc_nofs_restore(nofs_flag); 1204 if (ret < 0) 1205 return ret; 1206 return 0; 1207 } 1208 1209 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc) 1210 { 1211 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5) 1212 return 2; 1213 else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) 1214 return 3; 1215 else 1216 return (int)bioc->num_stripes; 1217 } 1218 1219 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1220 u64 *raid_map, 1221 u64 mapped_length, 1222 int nstripes, int mirror, 1223 int *stripe_index, 1224 u64 *stripe_offset) 1225 { 1226 int i; 1227 1228 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1229 /* RAID5/6 */ 1230 for (i = 0; i < nstripes; i++) { 1231 if (raid_map[i] == RAID6_Q_STRIPE || 1232 raid_map[i] == RAID5_P_STRIPE) 1233 continue; 1234 1235 if (logical >= raid_map[i] && 1236 logical < raid_map[i] + mapped_length) 1237 break; 1238 } 1239 1240 *stripe_index = i; 1241 *stripe_offset = logical - raid_map[i]; 1242 } else { 1243 /* The other RAID type */ 1244 *stripe_index = mirror; 1245 *stripe_offset = 0; 1246 } 1247 } 1248 1249 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1250 struct scrub_block *sblocks_for_recheck) 1251 { 1252 struct scrub_ctx *sctx = original_sblock->sctx; 1253 struct btrfs_fs_info *fs_info = sctx->fs_info; 1254 u64 length = original_sblock->sector_count << fs_info->sectorsize_bits; 1255 u64 logical = original_sblock->sectors[0]->logical; 1256 u64 generation = original_sblock->sectors[0]->generation; 1257 u64 flags = original_sblock->sectors[0]->flags; 1258 u64 have_csum = original_sblock->sectors[0]->have_csum; 1259 struct scrub_recover *recover; 1260 struct btrfs_io_context *bioc; 1261 u64 sublen; 1262 u64 mapped_length; 1263 u64 stripe_offset; 1264 int stripe_index; 1265 int sector_index = 0; 1266 int mirror_index; 1267 int nmirrors; 1268 int ret; 1269 1270 /* 1271 * Note: the two members refs and outstanding_sectors are not used (and 1272 * not set) in the blocks that are used for the recheck procedure. 1273 */ 1274 1275 while (length > 0) { 1276 sublen = min_t(u64, length, fs_info->sectorsize); 1277 mapped_length = sublen; 1278 bioc = NULL; 1279 1280 /* 1281 * With a length of sectorsize, each returned stripe represents 1282 * one mirror 1283 */ 1284 btrfs_bio_counter_inc_blocked(fs_info); 1285 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1286 logical, &mapped_length, &bioc); 1287 if (ret || !bioc || mapped_length < sublen) { 1288 btrfs_put_bioc(bioc); 1289 btrfs_bio_counter_dec(fs_info); 1290 return -EIO; 1291 } 1292 1293 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1294 if (!recover) { 1295 btrfs_put_bioc(bioc); 1296 btrfs_bio_counter_dec(fs_info); 1297 return -ENOMEM; 1298 } 1299 1300 refcount_set(&recover->refs, 1); 1301 recover->bioc = bioc; 1302 recover->map_length = mapped_length; 1303 1304 ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK); 1305 1306 nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS); 1307 1308 for (mirror_index = 0; mirror_index < nmirrors; 1309 mirror_index++) { 1310 struct scrub_block *sblock; 1311 struct scrub_sector *sector; 1312 1313 sblock = sblocks_for_recheck + mirror_index; 1314 sblock->sctx = sctx; 1315 1316 sector = kzalloc(sizeof(*sector), GFP_NOFS); 1317 if (!sector) { 1318 leave_nomem: 1319 spin_lock(&sctx->stat_lock); 1320 sctx->stat.malloc_errors++; 1321 spin_unlock(&sctx->stat_lock); 1322 scrub_put_recover(fs_info, recover); 1323 return -ENOMEM; 1324 } 1325 scrub_sector_get(sector); 1326 sblock->sectors[sector_index] = sector; 1327 sector->sblock = sblock; 1328 sector->flags = flags; 1329 sector->generation = generation; 1330 sector->logical = logical; 1331 sector->have_csum = have_csum; 1332 if (have_csum) 1333 memcpy(sector->csum, 1334 original_sblock->sectors[0]->csum, 1335 sctx->fs_info->csum_size); 1336 1337 scrub_stripe_index_and_offset(logical, 1338 bioc->map_type, 1339 bioc->raid_map, 1340 mapped_length, 1341 bioc->num_stripes - 1342 bioc->num_tgtdevs, 1343 mirror_index, 1344 &stripe_index, 1345 &stripe_offset); 1346 sector->physical = bioc->stripes[stripe_index].physical + 1347 stripe_offset; 1348 sector->dev = bioc->stripes[stripe_index].dev; 1349 1350 BUG_ON(sector_index >= original_sblock->sector_count); 1351 sector->physical_for_dev_replace = 1352 original_sblock->sectors[sector_index]-> 1353 physical_for_dev_replace; 1354 /* For missing devices, dev->bdev is NULL */ 1355 sector->mirror_num = mirror_index + 1; 1356 sblock->sector_count++; 1357 sector->page = alloc_page(GFP_NOFS); 1358 if (!sector->page) 1359 goto leave_nomem; 1360 1361 scrub_get_recover(recover); 1362 sector->recover = recover; 1363 } 1364 scrub_put_recover(fs_info, recover); 1365 length -= sublen; 1366 logical += sublen; 1367 sector_index++; 1368 } 1369 1370 return 0; 1371 } 1372 1373 static void scrub_bio_wait_endio(struct bio *bio) 1374 { 1375 complete(bio->bi_private); 1376 } 1377 1378 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1379 struct bio *bio, 1380 struct scrub_sector *sector) 1381 { 1382 DECLARE_COMPLETION_ONSTACK(done); 1383 int ret; 1384 int mirror_num; 1385 1386 bio->bi_iter.bi_sector = sector->logical >> 9; 1387 bio->bi_private = &done; 1388 bio->bi_end_io = scrub_bio_wait_endio; 1389 1390 mirror_num = sector->sblock->sectors[0]->mirror_num; 1391 ret = raid56_parity_recover(bio, sector->recover->bioc, 1392 sector->recover->map_length, 1393 mirror_num, 0); 1394 if (ret) 1395 return ret; 1396 1397 wait_for_completion_io(&done); 1398 return blk_status_to_errno(bio->bi_status); 1399 } 1400 1401 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1402 struct scrub_block *sblock) 1403 { 1404 struct scrub_sector *first_sector = sblock->sectors[0]; 1405 struct bio *bio; 1406 int i; 1407 1408 /* All sectors in sblock belong to the same stripe on the same device. */ 1409 ASSERT(first_sector->dev); 1410 if (!first_sector->dev->bdev) 1411 goto out; 1412 1413 bio = bio_alloc(first_sector->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); 1414 1415 for (i = 0; i < sblock->sector_count; i++) { 1416 struct scrub_sector *sector = sblock->sectors[i]; 1417 1418 WARN_ON(!sector->page); 1419 bio_add_page(bio, sector->page, PAGE_SIZE, 0); 1420 } 1421 1422 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) { 1423 bio_put(bio); 1424 goto out; 1425 } 1426 1427 bio_put(bio); 1428 1429 scrub_recheck_block_checksum(sblock); 1430 1431 return; 1432 out: 1433 for (i = 0; i < sblock->sector_count; i++) 1434 sblock->sectors[i]->io_error = 1; 1435 1436 sblock->no_io_error_seen = 0; 1437 } 1438 1439 /* 1440 * This function will check the on disk data for checksum errors, header errors 1441 * and read I/O errors. If any I/O errors happen, the exact sectors which are 1442 * errored are marked as being bad. The goal is to enable scrub to take those 1443 * sectors that are not errored from all the mirrors so that the sectors that 1444 * are errored in the just handled mirror can be repaired. 1445 */ 1446 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1447 struct scrub_block *sblock, 1448 int retry_failed_mirror) 1449 { 1450 int i; 1451 1452 sblock->no_io_error_seen = 1; 1453 1454 /* short cut for raid56 */ 1455 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0])) 1456 return scrub_recheck_block_on_raid56(fs_info, sblock); 1457 1458 for (i = 0; i < sblock->sector_count; i++) { 1459 struct scrub_sector *sector = sblock->sectors[i]; 1460 struct bio bio; 1461 struct bio_vec bvec; 1462 1463 if (sector->dev->bdev == NULL) { 1464 sector->io_error = 1; 1465 sblock->no_io_error_seen = 0; 1466 continue; 1467 } 1468 1469 WARN_ON(!sector->page); 1470 bio_init(&bio, sector->dev->bdev, &bvec, 1, REQ_OP_READ); 1471 bio_add_page(&bio, sector->page, fs_info->sectorsize, 0); 1472 bio.bi_iter.bi_sector = sector->physical >> 9; 1473 1474 btrfsic_check_bio(&bio); 1475 if (submit_bio_wait(&bio)) { 1476 sector->io_error = 1; 1477 sblock->no_io_error_seen = 0; 1478 } 1479 1480 bio_uninit(&bio); 1481 } 1482 1483 if (sblock->no_io_error_seen) 1484 scrub_recheck_block_checksum(sblock); 1485 } 1486 1487 static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector) 1488 { 1489 struct btrfs_fs_devices *fs_devices = sector->dev->fs_devices; 1490 int ret; 1491 1492 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1493 return !ret; 1494 } 1495 1496 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1497 { 1498 sblock->header_error = 0; 1499 sblock->checksum_error = 0; 1500 sblock->generation_error = 0; 1501 1502 if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1503 scrub_checksum_data(sblock); 1504 else 1505 scrub_checksum_tree_block(sblock); 1506 } 1507 1508 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1509 struct scrub_block *sblock_good) 1510 { 1511 int i; 1512 int ret = 0; 1513 1514 for (i = 0; i < sblock_bad->sector_count; i++) { 1515 int ret_sub; 1516 1517 ret_sub = scrub_repair_sector_from_good_copy(sblock_bad, 1518 sblock_good, i, 1); 1519 if (ret_sub) 1520 ret = ret_sub; 1521 } 1522 1523 return ret; 1524 } 1525 1526 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, 1527 struct scrub_block *sblock_good, 1528 int sector_num, int force_write) 1529 { 1530 struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; 1531 struct scrub_sector *sector_good = sblock_good->sectors[sector_num]; 1532 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1533 const u32 sectorsize = fs_info->sectorsize; 1534 1535 BUG_ON(sector_bad->page == NULL); 1536 BUG_ON(sector_good->page == NULL); 1537 if (force_write || sblock_bad->header_error || 1538 sblock_bad->checksum_error || sector_bad->io_error) { 1539 struct bio bio; 1540 struct bio_vec bvec; 1541 int ret; 1542 1543 if (!sector_bad->dev->bdev) { 1544 btrfs_warn_rl(fs_info, 1545 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1546 return -EIO; 1547 } 1548 1549 bio_init(&bio, sector_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE); 1550 bio.bi_iter.bi_sector = sector_bad->physical >> 9; 1551 __bio_add_page(&bio, sector_good->page, sectorsize, 0); 1552 1553 btrfsic_check_bio(&bio); 1554 ret = submit_bio_wait(&bio); 1555 bio_uninit(&bio); 1556 1557 if (ret) { 1558 btrfs_dev_stat_inc_and_print(sector_bad->dev, 1559 BTRFS_DEV_STAT_WRITE_ERRS); 1560 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1561 return -EIO; 1562 } 1563 } 1564 1565 return 0; 1566 } 1567 1568 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1569 { 1570 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1571 int i; 1572 1573 /* 1574 * This block is used for the check of the parity on the source device, 1575 * so the data needn't be written into the destination device. 1576 */ 1577 if (sblock->sparity) 1578 return; 1579 1580 for (i = 0; i < sblock->sector_count; i++) { 1581 int ret; 1582 1583 ret = scrub_write_sector_to_dev_replace(sblock, i); 1584 if (ret) 1585 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1586 } 1587 } 1588 1589 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num) 1590 { 1591 struct scrub_sector *sector = sblock->sectors[sector_num]; 1592 1593 BUG_ON(sector->page == NULL); 1594 if (sector->io_error) 1595 clear_page(page_address(sector->page)); 1596 1597 return scrub_add_sector_to_wr_bio(sblock->sctx, sector); 1598 } 1599 1600 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 1601 { 1602 int ret = 0; 1603 u64 length; 1604 1605 if (!btrfs_is_zoned(sctx->fs_info)) 1606 return 0; 1607 1608 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 1609 return 0; 1610 1611 if (sctx->write_pointer < physical) { 1612 length = physical - sctx->write_pointer; 1613 1614 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 1615 sctx->write_pointer, length); 1616 if (!ret) 1617 sctx->write_pointer = physical; 1618 } 1619 return ret; 1620 } 1621 1622 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx, 1623 struct scrub_sector *sector) 1624 { 1625 struct scrub_bio *sbio; 1626 int ret; 1627 const u32 sectorsize = sctx->fs_info->sectorsize; 1628 1629 mutex_lock(&sctx->wr_lock); 1630 again: 1631 if (!sctx->wr_curr_bio) { 1632 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1633 GFP_KERNEL); 1634 if (!sctx->wr_curr_bio) { 1635 mutex_unlock(&sctx->wr_lock); 1636 return -ENOMEM; 1637 } 1638 sctx->wr_curr_bio->sctx = sctx; 1639 sctx->wr_curr_bio->sector_count = 0; 1640 } 1641 sbio = sctx->wr_curr_bio; 1642 if (sbio->sector_count == 0) { 1643 ret = fill_writer_pointer_gap(sctx, sector->physical_for_dev_replace); 1644 if (ret) { 1645 mutex_unlock(&sctx->wr_lock); 1646 return ret; 1647 } 1648 1649 sbio->physical = sector->physical_for_dev_replace; 1650 sbio->logical = sector->logical; 1651 sbio->dev = sctx->wr_tgtdev; 1652 if (!sbio->bio) { 1653 sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio, 1654 REQ_OP_WRITE, GFP_NOFS); 1655 } 1656 sbio->bio->bi_private = sbio; 1657 sbio->bio->bi_end_io = scrub_wr_bio_end_io; 1658 sbio->bio->bi_iter.bi_sector = sbio->physical >> 9; 1659 sbio->status = 0; 1660 } else if (sbio->physical + sbio->sector_count * sectorsize != 1661 sector->physical_for_dev_replace || 1662 sbio->logical + sbio->sector_count * sectorsize != 1663 sector->logical) { 1664 scrub_wr_submit(sctx); 1665 goto again; 1666 } 1667 1668 ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0); 1669 if (ret != sectorsize) { 1670 if (sbio->sector_count < 1) { 1671 bio_put(sbio->bio); 1672 sbio->bio = NULL; 1673 mutex_unlock(&sctx->wr_lock); 1674 return -EIO; 1675 } 1676 scrub_wr_submit(sctx); 1677 goto again; 1678 } 1679 1680 sbio->sectors[sbio->sector_count] = sector; 1681 scrub_sector_get(sector); 1682 sbio->sector_count++; 1683 if (sbio->sector_count == sctx->sectors_per_bio) 1684 scrub_wr_submit(sctx); 1685 mutex_unlock(&sctx->wr_lock); 1686 1687 return 0; 1688 } 1689 1690 static void scrub_wr_submit(struct scrub_ctx *sctx) 1691 { 1692 struct scrub_bio *sbio; 1693 1694 if (!sctx->wr_curr_bio) 1695 return; 1696 1697 sbio = sctx->wr_curr_bio; 1698 sctx->wr_curr_bio = NULL; 1699 scrub_pending_bio_inc(sctx); 1700 /* process all writes in a single worker thread. Then the block layer 1701 * orders the requests before sending them to the driver which 1702 * doubled the write performance on spinning disks when measured 1703 * with Linux 3.5 */ 1704 btrfsic_check_bio(sbio->bio); 1705 submit_bio(sbio->bio); 1706 1707 if (btrfs_is_zoned(sctx->fs_info)) 1708 sctx->write_pointer = sbio->physical + sbio->sector_count * 1709 sctx->fs_info->sectorsize; 1710 } 1711 1712 static void scrub_wr_bio_end_io(struct bio *bio) 1713 { 1714 struct scrub_bio *sbio = bio->bi_private; 1715 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1716 1717 sbio->status = bio->bi_status; 1718 sbio->bio = bio; 1719 1720 INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker); 1721 queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1722 } 1723 1724 static void scrub_wr_bio_end_io_worker(struct work_struct *work) 1725 { 1726 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1727 struct scrub_ctx *sctx = sbio->sctx; 1728 int i; 1729 1730 ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO); 1731 if (sbio->status) { 1732 struct btrfs_dev_replace *dev_replace = 1733 &sbio->sctx->fs_info->dev_replace; 1734 1735 for (i = 0; i < sbio->sector_count; i++) { 1736 struct scrub_sector *sector = sbio->sectors[i]; 1737 1738 sector->io_error = 1; 1739 atomic64_inc(&dev_replace->num_write_errors); 1740 } 1741 } 1742 1743 for (i = 0; i < sbio->sector_count; i++) 1744 scrub_sector_put(sbio->sectors[i]); 1745 1746 bio_put(sbio->bio); 1747 kfree(sbio); 1748 scrub_pending_bio_dec(sctx); 1749 } 1750 1751 static int scrub_checksum(struct scrub_block *sblock) 1752 { 1753 u64 flags; 1754 int ret; 1755 1756 /* 1757 * No need to initialize these stats currently, 1758 * because this function only use return value 1759 * instead of these stats value. 1760 * 1761 * Todo: 1762 * always use stats 1763 */ 1764 sblock->header_error = 0; 1765 sblock->generation_error = 0; 1766 sblock->checksum_error = 0; 1767 1768 WARN_ON(sblock->sector_count < 1); 1769 flags = sblock->sectors[0]->flags; 1770 ret = 0; 1771 if (flags & BTRFS_EXTENT_FLAG_DATA) 1772 ret = scrub_checksum_data(sblock); 1773 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1774 ret = scrub_checksum_tree_block(sblock); 1775 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1776 (void)scrub_checksum_super(sblock); 1777 else 1778 WARN_ON(1); 1779 if (ret) 1780 scrub_handle_errored_block(sblock); 1781 1782 return ret; 1783 } 1784 1785 static int scrub_checksum_data(struct scrub_block *sblock) 1786 { 1787 struct scrub_ctx *sctx = sblock->sctx; 1788 struct btrfs_fs_info *fs_info = sctx->fs_info; 1789 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1790 u8 csum[BTRFS_CSUM_SIZE]; 1791 struct scrub_sector *sector; 1792 char *kaddr; 1793 1794 BUG_ON(sblock->sector_count < 1); 1795 sector = sblock->sectors[0]; 1796 if (!sector->have_csum) 1797 return 0; 1798 1799 kaddr = page_address(sector->page); 1800 1801 shash->tfm = fs_info->csum_shash; 1802 crypto_shash_init(shash); 1803 1804 /* 1805 * In scrub_sectors() and scrub_sectors_for_parity() we ensure each sector 1806 * only contains one sector of data. 1807 */ 1808 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 1809 1810 if (memcmp(csum, sector->csum, fs_info->csum_size)) 1811 sblock->checksum_error = 1; 1812 return sblock->checksum_error; 1813 } 1814 1815 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1816 { 1817 struct scrub_ctx *sctx = sblock->sctx; 1818 struct btrfs_header *h; 1819 struct btrfs_fs_info *fs_info = sctx->fs_info; 1820 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1821 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1822 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1823 /* 1824 * This is done in sectorsize steps even for metadata as there's a 1825 * constraint for nodesize to be aligned to sectorsize. This will need 1826 * to change so we don't misuse data and metadata units like that. 1827 */ 1828 const u32 sectorsize = sctx->fs_info->sectorsize; 1829 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits; 1830 int i; 1831 struct scrub_sector *sector; 1832 char *kaddr; 1833 1834 BUG_ON(sblock->sector_count < 1); 1835 1836 /* Each member in sectors is just one sector */ 1837 ASSERT(sblock->sector_count == num_sectors); 1838 1839 sector = sblock->sectors[0]; 1840 kaddr = page_address(sector->page); 1841 h = (struct btrfs_header *)kaddr; 1842 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size); 1843 1844 /* 1845 * we don't use the getter functions here, as we 1846 * a) don't have an extent buffer and 1847 * b) the page is already kmapped 1848 */ 1849 if (sector->logical != btrfs_stack_header_bytenr(h)) 1850 sblock->header_error = 1; 1851 1852 if (sector->generation != btrfs_stack_header_generation(h)) { 1853 sblock->header_error = 1; 1854 sblock->generation_error = 1; 1855 } 1856 1857 if (!scrub_check_fsid(h->fsid, sector)) 1858 sblock->header_error = 1; 1859 1860 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1861 BTRFS_UUID_SIZE)) 1862 sblock->header_error = 1; 1863 1864 shash->tfm = fs_info->csum_shash; 1865 crypto_shash_init(shash); 1866 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 1867 sectorsize - BTRFS_CSUM_SIZE); 1868 1869 for (i = 1; i < num_sectors; i++) { 1870 kaddr = page_address(sblock->sectors[i]->page); 1871 crypto_shash_update(shash, kaddr, sectorsize); 1872 } 1873 1874 crypto_shash_final(shash, calculated_csum); 1875 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) 1876 sblock->checksum_error = 1; 1877 1878 return sblock->header_error || sblock->checksum_error; 1879 } 1880 1881 static int scrub_checksum_super(struct scrub_block *sblock) 1882 { 1883 struct btrfs_super_block *s; 1884 struct scrub_ctx *sctx = sblock->sctx; 1885 struct btrfs_fs_info *fs_info = sctx->fs_info; 1886 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1887 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1888 struct scrub_sector *sector; 1889 char *kaddr; 1890 int fail_gen = 0; 1891 int fail_cor = 0; 1892 1893 BUG_ON(sblock->sector_count < 1); 1894 sector = sblock->sectors[0]; 1895 kaddr = page_address(sector->page); 1896 s = (struct btrfs_super_block *)kaddr; 1897 1898 if (sector->logical != btrfs_super_bytenr(s)) 1899 ++fail_cor; 1900 1901 if (sector->generation != btrfs_super_generation(s)) 1902 ++fail_gen; 1903 1904 if (!scrub_check_fsid(s->fsid, sector)) 1905 ++fail_cor; 1906 1907 shash->tfm = fs_info->csum_shash; 1908 crypto_shash_init(shash); 1909 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, 1910 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); 1911 1912 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size)) 1913 ++fail_cor; 1914 1915 if (fail_cor + fail_gen) { 1916 /* 1917 * if we find an error in a super block, we just report it. 1918 * They will get written with the next transaction commit 1919 * anyway 1920 */ 1921 spin_lock(&sctx->stat_lock); 1922 ++sctx->stat.super_errors; 1923 spin_unlock(&sctx->stat_lock); 1924 if (fail_cor) 1925 btrfs_dev_stat_inc_and_print(sector->dev, 1926 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1927 else 1928 btrfs_dev_stat_inc_and_print(sector->dev, 1929 BTRFS_DEV_STAT_GENERATION_ERRS); 1930 } 1931 1932 return fail_cor + fail_gen; 1933 } 1934 1935 static void scrub_block_get(struct scrub_block *sblock) 1936 { 1937 refcount_inc(&sblock->refs); 1938 } 1939 1940 static void scrub_block_put(struct scrub_block *sblock) 1941 { 1942 if (refcount_dec_and_test(&sblock->refs)) { 1943 int i; 1944 1945 if (sblock->sparity) 1946 scrub_parity_put(sblock->sparity); 1947 1948 for (i = 0; i < sblock->sector_count; i++) 1949 scrub_sector_put(sblock->sectors[i]); 1950 kfree(sblock); 1951 } 1952 } 1953 1954 static void scrub_sector_get(struct scrub_sector *sector) 1955 { 1956 atomic_inc(§or->refs); 1957 } 1958 1959 static void scrub_sector_put(struct scrub_sector *sector) 1960 { 1961 if (atomic_dec_and_test(§or->refs)) { 1962 if (sector->page) 1963 __free_page(sector->page); 1964 kfree(sector); 1965 } 1966 } 1967 1968 /* 1969 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1970 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1971 */ 1972 static void scrub_throttle(struct scrub_ctx *sctx) 1973 { 1974 const int time_slice = 1000; 1975 struct scrub_bio *sbio; 1976 struct btrfs_device *device; 1977 s64 delta; 1978 ktime_t now; 1979 u32 div; 1980 u64 bwlimit; 1981 1982 sbio = sctx->bios[sctx->curr]; 1983 device = sbio->dev; 1984 bwlimit = READ_ONCE(device->scrub_speed_max); 1985 if (bwlimit == 0) 1986 return; 1987 1988 /* 1989 * Slice is divided into intervals when the IO is submitted, adjust by 1990 * bwlimit and maximum of 64 intervals. 1991 */ 1992 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 1993 div = min_t(u32, 64, div); 1994 1995 /* Start new epoch, set deadline */ 1996 now = ktime_get(); 1997 if (sctx->throttle_deadline == 0) { 1998 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 1999 sctx->throttle_sent = 0; 2000 } 2001 2002 /* Still in the time to send? */ 2003 if (ktime_before(now, sctx->throttle_deadline)) { 2004 /* If current bio is within the limit, send it */ 2005 sctx->throttle_sent += sbio->bio->bi_iter.bi_size; 2006 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 2007 return; 2008 2009 /* We're over the limit, sleep until the rest of the slice */ 2010 delta = ktime_ms_delta(sctx->throttle_deadline, now); 2011 } else { 2012 /* New request after deadline, start new epoch */ 2013 delta = 0; 2014 } 2015 2016 if (delta) { 2017 long timeout; 2018 2019 timeout = div_u64(delta * HZ, 1000); 2020 schedule_timeout_interruptible(timeout); 2021 } 2022 2023 /* Next call will start the deadline period */ 2024 sctx->throttle_deadline = 0; 2025 } 2026 2027 static void scrub_submit(struct scrub_ctx *sctx) 2028 { 2029 struct scrub_bio *sbio; 2030 2031 if (sctx->curr == -1) 2032 return; 2033 2034 scrub_throttle(sctx); 2035 2036 sbio = sctx->bios[sctx->curr]; 2037 sctx->curr = -1; 2038 scrub_pending_bio_inc(sctx); 2039 btrfsic_check_bio(sbio->bio); 2040 submit_bio(sbio->bio); 2041 } 2042 2043 static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx, 2044 struct scrub_sector *sector) 2045 { 2046 struct scrub_block *sblock = sector->sblock; 2047 struct scrub_bio *sbio; 2048 const u32 sectorsize = sctx->fs_info->sectorsize; 2049 int ret; 2050 2051 again: 2052 /* 2053 * grab a fresh bio or wait for one to become available 2054 */ 2055 while (sctx->curr == -1) { 2056 spin_lock(&sctx->list_lock); 2057 sctx->curr = sctx->first_free; 2058 if (sctx->curr != -1) { 2059 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2060 sctx->bios[sctx->curr]->next_free = -1; 2061 sctx->bios[sctx->curr]->sector_count = 0; 2062 spin_unlock(&sctx->list_lock); 2063 } else { 2064 spin_unlock(&sctx->list_lock); 2065 wait_event(sctx->list_wait, sctx->first_free != -1); 2066 } 2067 } 2068 sbio = sctx->bios[sctx->curr]; 2069 if (sbio->sector_count == 0) { 2070 sbio->physical = sector->physical; 2071 sbio->logical = sector->logical; 2072 sbio->dev = sector->dev; 2073 if (!sbio->bio) { 2074 sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio, 2075 REQ_OP_READ, GFP_NOFS); 2076 } 2077 sbio->bio->bi_private = sbio; 2078 sbio->bio->bi_end_io = scrub_bio_end_io; 2079 sbio->bio->bi_iter.bi_sector = sbio->physical >> 9; 2080 sbio->status = 0; 2081 } else if (sbio->physical + sbio->sector_count * sectorsize != 2082 sector->physical || 2083 sbio->logical + sbio->sector_count * sectorsize != 2084 sector->logical || 2085 sbio->dev != sector->dev) { 2086 scrub_submit(sctx); 2087 goto again; 2088 } 2089 2090 sbio->sectors[sbio->sector_count] = sector; 2091 ret = bio_add_page(sbio->bio, sector->page, sectorsize, 0); 2092 if (ret != sectorsize) { 2093 if (sbio->sector_count < 1) { 2094 bio_put(sbio->bio); 2095 sbio->bio = NULL; 2096 return -EIO; 2097 } 2098 scrub_submit(sctx); 2099 goto again; 2100 } 2101 2102 scrub_block_get(sblock); /* one for the page added to the bio */ 2103 atomic_inc(&sblock->outstanding_sectors); 2104 sbio->sector_count++; 2105 if (sbio->sector_count == sctx->sectors_per_bio) 2106 scrub_submit(sctx); 2107 2108 return 0; 2109 } 2110 2111 static void scrub_missing_raid56_end_io(struct bio *bio) 2112 { 2113 struct scrub_block *sblock = bio->bi_private; 2114 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2115 2116 if (bio->bi_status) 2117 sblock->no_io_error_seen = 0; 2118 2119 bio_put(bio); 2120 2121 queue_work(fs_info->scrub_workers, &sblock->work); 2122 } 2123 2124 static void scrub_missing_raid56_worker(struct work_struct *work) 2125 { 2126 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2127 struct scrub_ctx *sctx = sblock->sctx; 2128 struct btrfs_fs_info *fs_info = sctx->fs_info; 2129 u64 logical; 2130 struct btrfs_device *dev; 2131 2132 logical = sblock->sectors[0]->logical; 2133 dev = sblock->sectors[0]->dev; 2134 2135 if (sblock->no_io_error_seen) 2136 scrub_recheck_block_checksum(sblock); 2137 2138 if (!sblock->no_io_error_seen) { 2139 spin_lock(&sctx->stat_lock); 2140 sctx->stat.read_errors++; 2141 spin_unlock(&sctx->stat_lock); 2142 btrfs_err_rl_in_rcu(fs_info, 2143 "IO error rebuilding logical %llu for dev %s", 2144 logical, rcu_str_deref(dev->name)); 2145 } else if (sblock->header_error || sblock->checksum_error) { 2146 spin_lock(&sctx->stat_lock); 2147 sctx->stat.uncorrectable_errors++; 2148 spin_unlock(&sctx->stat_lock); 2149 btrfs_err_rl_in_rcu(fs_info, 2150 "failed to rebuild valid logical %llu for dev %s", 2151 logical, rcu_str_deref(dev->name)); 2152 } else { 2153 scrub_write_block_to_dev_replace(sblock); 2154 } 2155 2156 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2157 mutex_lock(&sctx->wr_lock); 2158 scrub_wr_submit(sctx); 2159 mutex_unlock(&sctx->wr_lock); 2160 } 2161 2162 scrub_block_put(sblock); 2163 scrub_pending_bio_dec(sctx); 2164 } 2165 2166 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2167 { 2168 struct scrub_ctx *sctx = sblock->sctx; 2169 struct btrfs_fs_info *fs_info = sctx->fs_info; 2170 u64 length = sblock->sector_count << fs_info->sectorsize_bits; 2171 u64 logical = sblock->sectors[0]->logical; 2172 struct btrfs_io_context *bioc = NULL; 2173 struct bio *bio; 2174 struct btrfs_raid_bio *rbio; 2175 int ret; 2176 int i; 2177 2178 btrfs_bio_counter_inc_blocked(fs_info); 2179 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2180 &length, &bioc); 2181 if (ret || !bioc || !bioc->raid_map) 2182 goto bioc_out; 2183 2184 if (WARN_ON(!sctx->is_dev_replace || 2185 !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2186 /* 2187 * We shouldn't be scrubbing a missing device. Even for dev 2188 * replace, we should only get here for RAID 5/6. We either 2189 * managed to mount something with no mirrors remaining or 2190 * there's a bug in scrub_find_good_copy()/btrfs_map_block(). 2191 */ 2192 goto bioc_out; 2193 } 2194 2195 bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); 2196 bio->bi_iter.bi_sector = logical >> 9; 2197 bio->bi_private = sblock; 2198 bio->bi_end_io = scrub_missing_raid56_end_io; 2199 2200 rbio = raid56_alloc_missing_rbio(bio, bioc, length); 2201 if (!rbio) 2202 goto rbio_out; 2203 2204 for (i = 0; i < sblock->sector_count; i++) { 2205 struct scrub_sector *sector = sblock->sectors[i]; 2206 2207 /* 2208 * For now, our scrub is still one page per sector, so pgoff 2209 * is always 0. 2210 */ 2211 raid56_add_scrub_pages(rbio, sector->page, 0, sector->logical); 2212 } 2213 2214 INIT_WORK(&sblock->work, scrub_missing_raid56_worker); 2215 scrub_block_get(sblock); 2216 scrub_pending_bio_inc(sctx); 2217 raid56_submit_missing_rbio(rbio); 2218 return; 2219 2220 rbio_out: 2221 bio_put(bio); 2222 bioc_out: 2223 btrfs_bio_counter_dec(fs_info); 2224 btrfs_put_bioc(bioc); 2225 spin_lock(&sctx->stat_lock); 2226 sctx->stat.malloc_errors++; 2227 spin_unlock(&sctx->stat_lock); 2228 } 2229 2230 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len, 2231 u64 physical, struct btrfs_device *dev, u64 flags, 2232 u64 gen, int mirror_num, u8 *csum, 2233 u64 physical_for_dev_replace) 2234 { 2235 struct scrub_block *sblock; 2236 const u32 sectorsize = sctx->fs_info->sectorsize; 2237 int index; 2238 2239 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2240 if (!sblock) { 2241 spin_lock(&sctx->stat_lock); 2242 sctx->stat.malloc_errors++; 2243 spin_unlock(&sctx->stat_lock); 2244 return -ENOMEM; 2245 } 2246 2247 /* one ref inside this function, plus one for each page added to 2248 * a bio later on */ 2249 refcount_set(&sblock->refs, 1); 2250 sblock->sctx = sctx; 2251 sblock->no_io_error_seen = 1; 2252 2253 for (index = 0; len > 0; index++) { 2254 struct scrub_sector *sector; 2255 /* 2256 * Here we will allocate one page for one sector to scrub. 2257 * This is fine if PAGE_SIZE == sectorsize, but will cost 2258 * more memory for PAGE_SIZE > sectorsize case. 2259 */ 2260 u32 l = min(sectorsize, len); 2261 2262 sector = kzalloc(sizeof(*sector), GFP_KERNEL); 2263 if (!sector) { 2264 leave_nomem: 2265 spin_lock(&sctx->stat_lock); 2266 sctx->stat.malloc_errors++; 2267 spin_unlock(&sctx->stat_lock); 2268 scrub_block_put(sblock); 2269 return -ENOMEM; 2270 } 2271 ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK); 2272 scrub_sector_get(sector); 2273 sblock->sectors[index] = sector; 2274 sector->sblock = sblock; 2275 sector->dev = dev; 2276 sector->flags = flags; 2277 sector->generation = gen; 2278 sector->logical = logical; 2279 sector->physical = physical; 2280 sector->physical_for_dev_replace = physical_for_dev_replace; 2281 sector->mirror_num = mirror_num; 2282 if (csum) { 2283 sector->have_csum = 1; 2284 memcpy(sector->csum, csum, sctx->fs_info->csum_size); 2285 } else { 2286 sector->have_csum = 0; 2287 } 2288 sblock->sector_count++; 2289 sector->page = alloc_page(GFP_KERNEL); 2290 if (!sector->page) 2291 goto leave_nomem; 2292 len -= l; 2293 logical += l; 2294 physical += l; 2295 physical_for_dev_replace += l; 2296 } 2297 2298 WARN_ON(sblock->sector_count == 0); 2299 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2300 /* 2301 * This case should only be hit for RAID 5/6 device replace. See 2302 * the comment in scrub_missing_raid56_pages() for details. 2303 */ 2304 scrub_missing_raid56_pages(sblock); 2305 } else { 2306 for (index = 0; index < sblock->sector_count; index++) { 2307 struct scrub_sector *sector = sblock->sectors[index]; 2308 int ret; 2309 2310 ret = scrub_add_sector_to_rd_bio(sctx, sector); 2311 if (ret) { 2312 scrub_block_put(sblock); 2313 return ret; 2314 } 2315 } 2316 2317 if (flags & BTRFS_EXTENT_FLAG_SUPER) 2318 scrub_submit(sctx); 2319 } 2320 2321 /* last one frees, either here or in bio completion for last page */ 2322 scrub_block_put(sblock); 2323 return 0; 2324 } 2325 2326 static void scrub_bio_end_io(struct bio *bio) 2327 { 2328 struct scrub_bio *sbio = bio->bi_private; 2329 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2330 2331 sbio->status = bio->bi_status; 2332 sbio->bio = bio; 2333 2334 queue_work(fs_info->scrub_workers, &sbio->work); 2335 } 2336 2337 static void scrub_bio_end_io_worker(struct work_struct *work) 2338 { 2339 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2340 struct scrub_ctx *sctx = sbio->sctx; 2341 int i; 2342 2343 ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO); 2344 if (sbio->status) { 2345 for (i = 0; i < sbio->sector_count; i++) { 2346 struct scrub_sector *sector = sbio->sectors[i]; 2347 2348 sector->io_error = 1; 2349 sector->sblock->no_io_error_seen = 0; 2350 } 2351 } 2352 2353 /* Now complete the scrub_block items that have all pages completed */ 2354 for (i = 0; i < sbio->sector_count; i++) { 2355 struct scrub_sector *sector = sbio->sectors[i]; 2356 struct scrub_block *sblock = sector->sblock; 2357 2358 if (atomic_dec_and_test(&sblock->outstanding_sectors)) 2359 scrub_block_complete(sblock); 2360 scrub_block_put(sblock); 2361 } 2362 2363 bio_put(sbio->bio); 2364 sbio->bio = NULL; 2365 spin_lock(&sctx->list_lock); 2366 sbio->next_free = sctx->first_free; 2367 sctx->first_free = sbio->index; 2368 spin_unlock(&sctx->list_lock); 2369 2370 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2371 mutex_lock(&sctx->wr_lock); 2372 scrub_wr_submit(sctx); 2373 mutex_unlock(&sctx->wr_lock); 2374 } 2375 2376 scrub_pending_bio_dec(sctx); 2377 } 2378 2379 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2380 unsigned long *bitmap, 2381 u64 start, u32 len) 2382 { 2383 u64 offset; 2384 u32 nsectors; 2385 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits; 2386 2387 if (len >= sparity->stripe_len) { 2388 bitmap_set(bitmap, 0, sparity->nsectors); 2389 return; 2390 } 2391 2392 start -= sparity->logic_start; 2393 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2394 offset = offset >> sectorsize_bits; 2395 nsectors = len >> sectorsize_bits; 2396 2397 if (offset + nsectors <= sparity->nsectors) { 2398 bitmap_set(bitmap, offset, nsectors); 2399 return; 2400 } 2401 2402 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2403 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2404 } 2405 2406 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2407 u64 start, u32 len) 2408 { 2409 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2410 } 2411 2412 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2413 u64 start, u32 len) 2414 { 2415 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2416 } 2417 2418 static void scrub_block_complete(struct scrub_block *sblock) 2419 { 2420 int corrupted = 0; 2421 2422 if (!sblock->no_io_error_seen) { 2423 corrupted = 1; 2424 scrub_handle_errored_block(sblock); 2425 } else { 2426 /* 2427 * if has checksum error, write via repair mechanism in 2428 * dev replace case, otherwise write here in dev replace 2429 * case. 2430 */ 2431 corrupted = scrub_checksum(sblock); 2432 if (!corrupted && sblock->sctx->is_dev_replace) 2433 scrub_write_block_to_dev_replace(sblock); 2434 } 2435 2436 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2437 u64 start = sblock->sectors[0]->logical; 2438 u64 end = sblock->sectors[sblock->sector_count - 1]->logical + 2439 sblock->sctx->fs_info->sectorsize; 2440 2441 ASSERT(end - start <= U32_MAX); 2442 scrub_parity_mark_sectors_error(sblock->sparity, 2443 start, end - start); 2444 } 2445 } 2446 2447 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum) 2448 { 2449 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits; 2450 list_del(&sum->list); 2451 kfree(sum); 2452 } 2453 2454 /* 2455 * Find the desired csum for range [logical, logical + sectorsize), and store 2456 * the csum into @csum. 2457 * 2458 * The search source is sctx->csum_list, which is a pre-populated list 2459 * storing bytenr ordered csum ranges. We're responsible to cleanup any range 2460 * that is before @logical. 2461 * 2462 * Return 0 if there is no csum for the range. 2463 * Return 1 if there is csum for the range and copied to @csum. 2464 */ 2465 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2466 { 2467 bool found = false; 2468 2469 while (!list_empty(&sctx->csum_list)) { 2470 struct btrfs_ordered_sum *sum = NULL; 2471 unsigned long index; 2472 unsigned long num_sectors; 2473 2474 sum = list_first_entry(&sctx->csum_list, 2475 struct btrfs_ordered_sum, list); 2476 /* The current csum range is beyond our range, no csum found */ 2477 if (sum->bytenr > logical) 2478 break; 2479 2480 /* 2481 * The current sum is before our bytenr, since scrub is always 2482 * done in bytenr order, the csum will never be used anymore, 2483 * clean it up so that later calls won't bother with the range, 2484 * and continue search the next range. 2485 */ 2486 if (sum->bytenr + sum->len <= logical) { 2487 drop_csum_range(sctx, sum); 2488 continue; 2489 } 2490 2491 /* Now the csum range covers our bytenr, copy the csum */ 2492 found = true; 2493 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits; 2494 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits; 2495 2496 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size, 2497 sctx->fs_info->csum_size); 2498 2499 /* Cleanup the range if we're at the end of the csum range */ 2500 if (index == num_sectors - 1) 2501 drop_csum_range(sctx, sum); 2502 break; 2503 } 2504 if (!found) 2505 return 0; 2506 return 1; 2507 } 2508 2509 /* scrub extent tries to collect up to 64 kB for each bio */ 2510 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2511 u64 logical, u32 len, 2512 u64 physical, struct btrfs_device *dev, u64 flags, 2513 u64 gen, int mirror_num) 2514 { 2515 struct btrfs_device *src_dev = dev; 2516 u64 src_physical = physical; 2517 int src_mirror = mirror_num; 2518 int ret; 2519 u8 csum[BTRFS_CSUM_SIZE]; 2520 u32 blocksize; 2521 2522 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2523 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2524 blocksize = map->stripe_len; 2525 else 2526 blocksize = sctx->fs_info->sectorsize; 2527 spin_lock(&sctx->stat_lock); 2528 sctx->stat.data_extents_scrubbed++; 2529 sctx->stat.data_bytes_scrubbed += len; 2530 spin_unlock(&sctx->stat_lock); 2531 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2532 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2533 blocksize = map->stripe_len; 2534 else 2535 blocksize = sctx->fs_info->nodesize; 2536 spin_lock(&sctx->stat_lock); 2537 sctx->stat.tree_extents_scrubbed++; 2538 sctx->stat.tree_bytes_scrubbed += len; 2539 spin_unlock(&sctx->stat_lock); 2540 } else { 2541 blocksize = sctx->fs_info->sectorsize; 2542 WARN_ON(1); 2543 } 2544 2545 /* 2546 * For dev-replace case, we can have @dev being a missing device. 2547 * Regular scrub will avoid its execution on missing device at all, 2548 * as that would trigger tons of read error. 2549 * 2550 * Reading from missing device will cause read error counts to 2551 * increase unnecessarily. 2552 * So here we change the read source to a good mirror. 2553 */ 2554 if (sctx->is_dev_replace && !dev->bdev) 2555 scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical, 2556 &src_dev, &src_mirror); 2557 while (len) { 2558 u32 l = min(len, blocksize); 2559 int have_csum = 0; 2560 2561 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2562 /* push csums to sbio */ 2563 have_csum = scrub_find_csum(sctx, logical, csum); 2564 if (have_csum == 0) 2565 ++sctx->stat.no_csum; 2566 } 2567 ret = scrub_sectors(sctx, logical, l, src_physical, src_dev, 2568 flags, gen, src_mirror, 2569 have_csum ? csum : NULL, physical); 2570 if (ret) 2571 return ret; 2572 len -= l; 2573 logical += l; 2574 physical += l; 2575 src_physical += l; 2576 } 2577 return 0; 2578 } 2579 2580 static int scrub_sectors_for_parity(struct scrub_parity *sparity, 2581 u64 logical, u32 len, 2582 u64 physical, struct btrfs_device *dev, 2583 u64 flags, u64 gen, int mirror_num, u8 *csum) 2584 { 2585 struct scrub_ctx *sctx = sparity->sctx; 2586 struct scrub_block *sblock; 2587 const u32 sectorsize = sctx->fs_info->sectorsize; 2588 int index; 2589 2590 ASSERT(IS_ALIGNED(len, sectorsize)); 2591 2592 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2593 if (!sblock) { 2594 spin_lock(&sctx->stat_lock); 2595 sctx->stat.malloc_errors++; 2596 spin_unlock(&sctx->stat_lock); 2597 return -ENOMEM; 2598 } 2599 2600 /* one ref inside this function, plus one for each page added to 2601 * a bio later on */ 2602 refcount_set(&sblock->refs, 1); 2603 sblock->sctx = sctx; 2604 sblock->no_io_error_seen = 1; 2605 sblock->sparity = sparity; 2606 scrub_parity_get(sparity); 2607 2608 for (index = 0; len > 0; index++) { 2609 struct scrub_sector *sector; 2610 2611 sector = kzalloc(sizeof(*sector), GFP_KERNEL); 2612 if (!sector) { 2613 leave_nomem: 2614 spin_lock(&sctx->stat_lock); 2615 sctx->stat.malloc_errors++; 2616 spin_unlock(&sctx->stat_lock); 2617 scrub_block_put(sblock); 2618 return -ENOMEM; 2619 } 2620 ASSERT(index < SCRUB_MAX_SECTORS_PER_BLOCK); 2621 /* For scrub block */ 2622 scrub_sector_get(sector); 2623 sblock->sectors[index] = sector; 2624 /* For scrub parity */ 2625 scrub_sector_get(sector); 2626 list_add_tail(§or->list, &sparity->sectors_list); 2627 sector->sblock = sblock; 2628 sector->dev = dev; 2629 sector->flags = flags; 2630 sector->generation = gen; 2631 sector->logical = logical; 2632 sector->physical = physical; 2633 sector->mirror_num = mirror_num; 2634 if (csum) { 2635 sector->have_csum = 1; 2636 memcpy(sector->csum, csum, sctx->fs_info->csum_size); 2637 } else { 2638 sector->have_csum = 0; 2639 } 2640 sblock->sector_count++; 2641 sector->page = alloc_page(GFP_KERNEL); 2642 if (!sector->page) 2643 goto leave_nomem; 2644 2645 2646 /* Iterate over the stripe range in sectorsize steps */ 2647 len -= sectorsize; 2648 logical += sectorsize; 2649 physical += sectorsize; 2650 } 2651 2652 WARN_ON(sblock->sector_count == 0); 2653 for (index = 0; index < sblock->sector_count; index++) { 2654 struct scrub_sector *sector = sblock->sectors[index]; 2655 int ret; 2656 2657 ret = scrub_add_sector_to_rd_bio(sctx, sector); 2658 if (ret) { 2659 scrub_block_put(sblock); 2660 return ret; 2661 } 2662 } 2663 2664 /* Last one frees, either here or in bio completion for last sector */ 2665 scrub_block_put(sblock); 2666 return 0; 2667 } 2668 2669 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2670 u64 logical, u32 len, 2671 u64 physical, struct btrfs_device *dev, 2672 u64 flags, u64 gen, int mirror_num) 2673 { 2674 struct scrub_ctx *sctx = sparity->sctx; 2675 int ret; 2676 u8 csum[BTRFS_CSUM_SIZE]; 2677 u32 blocksize; 2678 2679 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2680 scrub_parity_mark_sectors_error(sparity, logical, len); 2681 return 0; 2682 } 2683 2684 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2685 blocksize = sparity->stripe_len; 2686 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2687 blocksize = sparity->stripe_len; 2688 } else { 2689 blocksize = sctx->fs_info->sectorsize; 2690 WARN_ON(1); 2691 } 2692 2693 while (len) { 2694 u32 l = min(len, blocksize); 2695 int have_csum = 0; 2696 2697 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2698 /* push csums to sbio */ 2699 have_csum = scrub_find_csum(sctx, logical, csum); 2700 if (have_csum == 0) 2701 goto skip; 2702 } 2703 ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev, 2704 flags, gen, mirror_num, 2705 have_csum ? csum : NULL); 2706 if (ret) 2707 return ret; 2708 skip: 2709 len -= l; 2710 logical += l; 2711 physical += l; 2712 } 2713 return 0; 2714 } 2715 2716 /* 2717 * Given a physical address, this will calculate it's 2718 * logical offset. if this is a parity stripe, it will return 2719 * the most left data stripe's logical offset. 2720 * 2721 * return 0 if it is a data stripe, 1 means parity stripe. 2722 */ 2723 static int get_raid56_logic_offset(u64 physical, int num, 2724 struct map_lookup *map, u64 *offset, 2725 u64 *stripe_start) 2726 { 2727 int i; 2728 int j = 0; 2729 u64 stripe_nr; 2730 u64 last_offset; 2731 u32 stripe_index; 2732 u32 rot; 2733 const int data_stripes = nr_data_stripes(map); 2734 2735 last_offset = (physical - map->stripes[num].physical) * data_stripes; 2736 if (stripe_start) 2737 *stripe_start = last_offset; 2738 2739 *offset = last_offset; 2740 for (i = 0; i < data_stripes; i++) { 2741 *offset = last_offset + i * map->stripe_len; 2742 2743 stripe_nr = div64_u64(*offset, map->stripe_len); 2744 stripe_nr = div_u64(stripe_nr, data_stripes); 2745 2746 /* Work out the disk rotation on this stripe-set */ 2747 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2748 /* calculate which stripe this data locates */ 2749 rot += i; 2750 stripe_index = rot % map->num_stripes; 2751 if (stripe_index == num) 2752 return 0; 2753 if (stripe_index < num) 2754 j++; 2755 } 2756 *offset = last_offset + j * map->stripe_len; 2757 return 1; 2758 } 2759 2760 static void scrub_free_parity(struct scrub_parity *sparity) 2761 { 2762 struct scrub_ctx *sctx = sparity->sctx; 2763 struct scrub_sector *curr, *next; 2764 int nbits; 2765 2766 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2767 if (nbits) { 2768 spin_lock(&sctx->stat_lock); 2769 sctx->stat.read_errors += nbits; 2770 sctx->stat.uncorrectable_errors += nbits; 2771 spin_unlock(&sctx->stat_lock); 2772 } 2773 2774 list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) { 2775 list_del_init(&curr->list); 2776 scrub_sector_put(curr); 2777 } 2778 2779 kfree(sparity); 2780 } 2781 2782 static void scrub_parity_bio_endio_worker(struct work_struct *work) 2783 { 2784 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2785 work); 2786 struct scrub_ctx *sctx = sparity->sctx; 2787 2788 scrub_free_parity(sparity); 2789 scrub_pending_bio_dec(sctx); 2790 } 2791 2792 static void scrub_parity_bio_endio(struct bio *bio) 2793 { 2794 struct scrub_parity *sparity = bio->bi_private; 2795 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2796 2797 if (bio->bi_status) 2798 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2799 sparity->nsectors); 2800 2801 bio_put(bio); 2802 2803 INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker); 2804 queue_work(fs_info->scrub_parity_workers, &sparity->work); 2805 } 2806 2807 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2808 { 2809 struct scrub_ctx *sctx = sparity->sctx; 2810 struct btrfs_fs_info *fs_info = sctx->fs_info; 2811 struct bio *bio; 2812 struct btrfs_raid_bio *rbio; 2813 struct btrfs_io_context *bioc = NULL; 2814 u64 length; 2815 int ret; 2816 2817 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2818 sparity->nsectors)) 2819 goto out; 2820 2821 length = sparity->logic_end - sparity->logic_start; 2822 2823 btrfs_bio_counter_inc_blocked(fs_info); 2824 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2825 &length, &bioc); 2826 if (ret || !bioc || !bioc->raid_map) 2827 goto bioc_out; 2828 2829 bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); 2830 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2831 bio->bi_private = sparity; 2832 bio->bi_end_io = scrub_parity_bio_endio; 2833 2834 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length, 2835 sparity->scrub_dev, 2836 sparity->dbitmap, 2837 sparity->nsectors); 2838 if (!rbio) 2839 goto rbio_out; 2840 2841 scrub_pending_bio_inc(sctx); 2842 raid56_parity_submit_scrub_rbio(rbio); 2843 return; 2844 2845 rbio_out: 2846 bio_put(bio); 2847 bioc_out: 2848 btrfs_bio_counter_dec(fs_info); 2849 btrfs_put_bioc(bioc); 2850 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2851 sparity->nsectors); 2852 spin_lock(&sctx->stat_lock); 2853 sctx->stat.malloc_errors++; 2854 spin_unlock(&sctx->stat_lock); 2855 out: 2856 scrub_free_parity(sparity); 2857 } 2858 2859 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2860 { 2861 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2862 } 2863 2864 static void scrub_parity_get(struct scrub_parity *sparity) 2865 { 2866 refcount_inc(&sparity->refs); 2867 } 2868 2869 static void scrub_parity_put(struct scrub_parity *sparity) 2870 { 2871 if (!refcount_dec_and_test(&sparity->refs)) 2872 return; 2873 2874 scrub_parity_check_and_repair(sparity); 2875 } 2876 2877 /* 2878 * Return 0 if the extent item range covers any byte of the range. 2879 * Return <0 if the extent item is before @search_start. 2880 * Return >0 if the extent item is after @start_start + @search_len. 2881 */ 2882 static int compare_extent_item_range(struct btrfs_path *path, 2883 u64 search_start, u64 search_len) 2884 { 2885 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 2886 u64 len; 2887 struct btrfs_key key; 2888 2889 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2890 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 2891 key.type == BTRFS_METADATA_ITEM_KEY); 2892 if (key.type == BTRFS_METADATA_ITEM_KEY) 2893 len = fs_info->nodesize; 2894 else 2895 len = key.offset; 2896 2897 if (key.objectid + len <= search_start) 2898 return -1; 2899 if (key.objectid >= search_start + search_len) 2900 return 1; 2901 return 0; 2902 } 2903 2904 /* 2905 * Locate one extent item which covers any byte in range 2906 * [@search_start, @search_start + @search_length) 2907 * 2908 * If the path is not initialized, we will initialize the search by doing 2909 * a btrfs_search_slot(). 2910 * If the path is already initialized, we will use the path as the initial 2911 * slot, to avoid duplicated btrfs_search_slot() calls. 2912 * 2913 * NOTE: If an extent item starts before @search_start, we will still 2914 * return the extent item. This is for data extent crossing stripe boundary. 2915 * 2916 * Return 0 if we found such extent item, and @path will point to the extent item. 2917 * Return >0 if no such extent item can be found, and @path will be released. 2918 * Return <0 if hit fatal error, and @path will be released. 2919 */ 2920 static int find_first_extent_item(struct btrfs_root *extent_root, 2921 struct btrfs_path *path, 2922 u64 search_start, u64 search_len) 2923 { 2924 struct btrfs_fs_info *fs_info = extent_root->fs_info; 2925 struct btrfs_key key; 2926 int ret; 2927 2928 /* Continue using the existing path */ 2929 if (path->nodes[0]) 2930 goto search_forward; 2931 2932 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2933 key.type = BTRFS_METADATA_ITEM_KEY; 2934 else 2935 key.type = BTRFS_EXTENT_ITEM_KEY; 2936 key.objectid = search_start; 2937 key.offset = (u64)-1; 2938 2939 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2940 if (ret < 0) 2941 return ret; 2942 2943 ASSERT(ret > 0); 2944 /* 2945 * Here we intentionally pass 0 as @min_objectid, as there could be 2946 * an extent item starting before @search_start. 2947 */ 2948 ret = btrfs_previous_extent_item(extent_root, path, 0); 2949 if (ret < 0) 2950 return ret; 2951 /* 2952 * No matter whether we have found an extent item, the next loop will 2953 * properly do every check on the key. 2954 */ 2955 search_forward: 2956 while (true) { 2957 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2958 if (key.objectid >= search_start + search_len) 2959 break; 2960 if (key.type != BTRFS_METADATA_ITEM_KEY && 2961 key.type != BTRFS_EXTENT_ITEM_KEY) 2962 goto next; 2963 2964 ret = compare_extent_item_range(path, search_start, search_len); 2965 if (ret == 0) 2966 return ret; 2967 if (ret > 0) 2968 break; 2969 next: 2970 path->slots[0]++; 2971 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2972 ret = btrfs_next_leaf(extent_root, path); 2973 if (ret) { 2974 /* Either no more item or fatal error */ 2975 btrfs_release_path(path); 2976 return ret; 2977 } 2978 } 2979 } 2980 btrfs_release_path(path); 2981 return 1; 2982 } 2983 2984 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 2985 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 2986 { 2987 struct btrfs_key key; 2988 struct btrfs_extent_item *ei; 2989 2990 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2991 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 2992 key.type == BTRFS_EXTENT_ITEM_KEY); 2993 *extent_start_ret = key.objectid; 2994 if (key.type == BTRFS_METADATA_ITEM_KEY) 2995 *size_ret = path->nodes[0]->fs_info->nodesize; 2996 else 2997 *size_ret = key.offset; 2998 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 2999 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 3000 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 3001 } 3002 3003 static bool does_range_cross_boundary(u64 extent_start, u64 extent_len, 3004 u64 boundary_start, u64 boudary_len) 3005 { 3006 return (extent_start < boundary_start && 3007 extent_start + extent_len > boundary_start) || 3008 (extent_start < boundary_start + boudary_len && 3009 extent_start + extent_len > boundary_start + boudary_len); 3010 } 3011 3012 static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx, 3013 struct scrub_parity *sparity, 3014 struct map_lookup *map, 3015 struct btrfs_device *sdev, 3016 struct btrfs_path *path, 3017 u64 logical) 3018 { 3019 struct btrfs_fs_info *fs_info = sctx->fs_info; 3020 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 3021 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical); 3022 u64 cur_logical = logical; 3023 int ret; 3024 3025 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 3026 3027 /* Path must not be populated */ 3028 ASSERT(!path->nodes[0]); 3029 3030 while (cur_logical < logical + map->stripe_len) { 3031 struct btrfs_io_context *bioc = NULL; 3032 struct btrfs_device *extent_dev; 3033 u64 extent_start; 3034 u64 extent_size; 3035 u64 mapped_length; 3036 u64 extent_flags; 3037 u64 extent_gen; 3038 u64 extent_physical; 3039 u64 extent_mirror_num; 3040 3041 ret = find_first_extent_item(extent_root, path, cur_logical, 3042 logical + map->stripe_len - cur_logical); 3043 /* No more extent item in this data stripe */ 3044 if (ret > 0) { 3045 ret = 0; 3046 break; 3047 } 3048 if (ret < 0) 3049 break; 3050 get_extent_info(path, &extent_start, &extent_size, &extent_flags, 3051 &extent_gen); 3052 3053 /* Metadata should not cross stripe boundaries */ 3054 if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3055 does_range_cross_boundary(extent_start, extent_size, 3056 logical, map->stripe_len)) { 3057 btrfs_err(fs_info, 3058 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3059 extent_start, logical); 3060 spin_lock(&sctx->stat_lock); 3061 sctx->stat.uncorrectable_errors++; 3062 spin_unlock(&sctx->stat_lock); 3063 cur_logical += extent_size; 3064 continue; 3065 } 3066 3067 /* Skip hole range which doesn't have any extent */ 3068 cur_logical = max(extent_start, cur_logical); 3069 3070 /* Truncate the range inside this data stripe */ 3071 extent_size = min(extent_start + extent_size, 3072 logical + map->stripe_len) - cur_logical; 3073 extent_start = cur_logical; 3074 ASSERT(extent_size <= U32_MAX); 3075 3076 scrub_parity_mark_sectors_data(sparity, extent_start, extent_size); 3077 3078 mapped_length = extent_size; 3079 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start, 3080 &mapped_length, &bioc, 0); 3081 if (!ret && (!bioc || mapped_length < extent_size)) 3082 ret = -EIO; 3083 if (ret) { 3084 btrfs_put_bioc(bioc); 3085 scrub_parity_mark_sectors_error(sparity, extent_start, 3086 extent_size); 3087 break; 3088 } 3089 extent_physical = bioc->stripes[0].physical; 3090 extent_mirror_num = bioc->mirror_num; 3091 extent_dev = bioc->stripes[0].dev; 3092 btrfs_put_bioc(bioc); 3093 3094 ret = btrfs_lookup_csums_range(csum_root, extent_start, 3095 extent_start + extent_size - 1, 3096 &sctx->csum_list, 1); 3097 if (ret) { 3098 scrub_parity_mark_sectors_error(sparity, extent_start, 3099 extent_size); 3100 break; 3101 } 3102 3103 ret = scrub_extent_for_parity(sparity, extent_start, 3104 extent_size, extent_physical, 3105 extent_dev, extent_flags, 3106 extent_gen, extent_mirror_num); 3107 scrub_free_csums(sctx); 3108 3109 if (ret) { 3110 scrub_parity_mark_sectors_error(sparity, extent_start, 3111 extent_size); 3112 break; 3113 } 3114 3115 cond_resched(); 3116 cur_logical += extent_size; 3117 } 3118 btrfs_release_path(path); 3119 return ret; 3120 } 3121 3122 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 3123 struct map_lookup *map, 3124 struct btrfs_device *sdev, 3125 u64 logic_start, 3126 u64 logic_end) 3127 { 3128 struct btrfs_fs_info *fs_info = sctx->fs_info; 3129 struct btrfs_path *path; 3130 u64 cur_logical; 3131 int ret; 3132 struct scrub_parity *sparity; 3133 int nsectors; 3134 int bitmap_len; 3135 3136 path = btrfs_alloc_path(); 3137 if (!path) { 3138 spin_lock(&sctx->stat_lock); 3139 sctx->stat.malloc_errors++; 3140 spin_unlock(&sctx->stat_lock); 3141 return -ENOMEM; 3142 } 3143 path->search_commit_root = 1; 3144 path->skip_locking = 1; 3145 3146 ASSERT(map->stripe_len <= U32_MAX); 3147 nsectors = map->stripe_len >> fs_info->sectorsize_bits; 3148 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 3149 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 3150 GFP_NOFS); 3151 if (!sparity) { 3152 spin_lock(&sctx->stat_lock); 3153 sctx->stat.malloc_errors++; 3154 spin_unlock(&sctx->stat_lock); 3155 btrfs_free_path(path); 3156 return -ENOMEM; 3157 } 3158 3159 ASSERT(map->stripe_len <= U32_MAX); 3160 sparity->stripe_len = map->stripe_len; 3161 sparity->nsectors = nsectors; 3162 sparity->sctx = sctx; 3163 sparity->scrub_dev = sdev; 3164 sparity->logic_start = logic_start; 3165 sparity->logic_end = logic_end; 3166 refcount_set(&sparity->refs, 1); 3167 INIT_LIST_HEAD(&sparity->sectors_list); 3168 sparity->dbitmap = sparity->bitmap; 3169 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 3170 3171 ret = 0; 3172 for (cur_logical = logic_start; cur_logical < logic_end; 3173 cur_logical += map->stripe_len) { 3174 ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map, 3175 sdev, path, cur_logical); 3176 if (ret < 0) 3177 break; 3178 } 3179 3180 scrub_parity_put(sparity); 3181 scrub_submit(sctx); 3182 mutex_lock(&sctx->wr_lock); 3183 scrub_wr_submit(sctx); 3184 mutex_unlock(&sctx->wr_lock); 3185 3186 btrfs_free_path(path); 3187 return ret < 0 ? ret : 0; 3188 } 3189 3190 static void sync_replace_for_zoned(struct scrub_ctx *sctx) 3191 { 3192 if (!btrfs_is_zoned(sctx->fs_info)) 3193 return; 3194 3195 sctx->flush_all_writes = true; 3196 scrub_submit(sctx); 3197 mutex_lock(&sctx->wr_lock); 3198 scrub_wr_submit(sctx); 3199 mutex_unlock(&sctx->wr_lock); 3200 3201 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3202 } 3203 3204 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 3205 u64 physical, u64 physical_end) 3206 { 3207 struct btrfs_fs_info *fs_info = sctx->fs_info; 3208 int ret = 0; 3209 3210 if (!btrfs_is_zoned(fs_info)) 3211 return 0; 3212 3213 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3214 3215 mutex_lock(&sctx->wr_lock); 3216 if (sctx->write_pointer < physical_end) { 3217 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 3218 physical, 3219 sctx->write_pointer); 3220 if (ret) 3221 btrfs_err(fs_info, 3222 "zoned: failed to recover write pointer"); 3223 } 3224 mutex_unlock(&sctx->wr_lock); 3225 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 3226 3227 return ret; 3228 } 3229 3230 /* 3231 * Scrub one range which can only has simple mirror based profile. 3232 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 3233 * RAID0/RAID10). 3234 * 3235 * Since we may need to handle a subset of block group, we need @logical_start 3236 * and @logical_length parameter. 3237 */ 3238 static int scrub_simple_mirror(struct scrub_ctx *sctx, 3239 struct btrfs_root *extent_root, 3240 struct btrfs_root *csum_root, 3241 struct btrfs_block_group *bg, 3242 struct map_lookup *map, 3243 u64 logical_start, u64 logical_length, 3244 struct btrfs_device *device, 3245 u64 physical, int mirror_num) 3246 { 3247 struct btrfs_fs_info *fs_info = sctx->fs_info; 3248 const u64 logical_end = logical_start + logical_length; 3249 /* An artificial limit, inherit from old scrub behavior */ 3250 const u32 max_length = SZ_64K; 3251 struct btrfs_path path = { 0 }; 3252 u64 cur_logical = logical_start; 3253 int ret; 3254 3255 /* The range must be inside the bg */ 3256 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 3257 3258 path.search_commit_root = 1; 3259 path.skip_locking = 1; 3260 /* Go through each extent items inside the logical range */ 3261 while (cur_logical < logical_end) { 3262 u64 extent_start; 3263 u64 extent_len; 3264 u64 extent_flags; 3265 u64 extent_gen; 3266 u64 scrub_len; 3267 3268 /* Canceled? */ 3269 if (atomic_read(&fs_info->scrub_cancel_req) || 3270 atomic_read(&sctx->cancel_req)) { 3271 ret = -ECANCELED; 3272 break; 3273 } 3274 /* Paused? */ 3275 if (atomic_read(&fs_info->scrub_pause_req)) { 3276 /* Push queued extents */ 3277 sctx->flush_all_writes = true; 3278 scrub_submit(sctx); 3279 mutex_lock(&sctx->wr_lock); 3280 scrub_wr_submit(sctx); 3281 mutex_unlock(&sctx->wr_lock); 3282 wait_event(sctx->list_wait, 3283 atomic_read(&sctx->bios_in_flight) == 0); 3284 sctx->flush_all_writes = false; 3285 scrub_blocked_if_needed(fs_info); 3286 } 3287 /* Block group removed? */ 3288 spin_lock(&bg->lock); 3289 if (bg->removed) { 3290 spin_unlock(&bg->lock); 3291 ret = 0; 3292 break; 3293 } 3294 spin_unlock(&bg->lock); 3295 3296 ret = find_first_extent_item(extent_root, &path, cur_logical, 3297 logical_end - cur_logical); 3298 if (ret > 0) { 3299 /* No more extent, just update the accounting */ 3300 sctx->stat.last_physical = physical + logical_length; 3301 ret = 0; 3302 break; 3303 } 3304 if (ret < 0) 3305 break; 3306 get_extent_info(&path, &extent_start, &extent_len, 3307 &extent_flags, &extent_gen); 3308 /* Skip hole range which doesn't have any extent */ 3309 cur_logical = max(extent_start, cur_logical); 3310 3311 /* 3312 * Scrub len has three limits: 3313 * - Extent size limit 3314 * - Scrub range limit 3315 * This is especially imporatant for RAID0/RAID10 to reuse 3316 * this function 3317 * - Max scrub size limit 3318 */ 3319 scrub_len = min(min(extent_start + extent_len, 3320 logical_end), cur_logical + max_length) - 3321 cur_logical; 3322 3323 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) { 3324 ret = btrfs_lookup_csums_range(csum_root, cur_logical, 3325 cur_logical + scrub_len - 1, 3326 &sctx->csum_list, 1); 3327 if (ret) 3328 break; 3329 } 3330 if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3331 does_range_cross_boundary(extent_start, extent_len, 3332 logical_start, logical_length)) { 3333 btrfs_err(fs_info, 3334 "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)", 3335 extent_start, logical_start, logical_end); 3336 spin_lock(&sctx->stat_lock); 3337 sctx->stat.uncorrectable_errors++; 3338 spin_unlock(&sctx->stat_lock); 3339 cur_logical += scrub_len; 3340 continue; 3341 } 3342 ret = scrub_extent(sctx, map, cur_logical, scrub_len, 3343 cur_logical - logical_start + physical, 3344 device, extent_flags, extent_gen, 3345 mirror_num); 3346 scrub_free_csums(sctx); 3347 if (ret) 3348 break; 3349 if (sctx->is_dev_replace) 3350 sync_replace_for_zoned(sctx); 3351 cur_logical += scrub_len; 3352 /* Don't hold CPU for too long time */ 3353 cond_resched(); 3354 } 3355 btrfs_release_path(&path); 3356 return ret; 3357 } 3358 3359 /* Calculate the full stripe length for simple stripe based profiles */ 3360 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map) 3361 { 3362 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3363 BTRFS_BLOCK_GROUP_RAID10)); 3364 3365 return map->num_stripes / map->sub_stripes * map->stripe_len; 3366 } 3367 3368 /* Get the logical bytenr for the stripe */ 3369 static u64 simple_stripe_get_logical(struct map_lookup *map, 3370 struct btrfs_block_group *bg, 3371 int stripe_index) 3372 { 3373 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3374 BTRFS_BLOCK_GROUP_RAID10)); 3375 ASSERT(stripe_index < map->num_stripes); 3376 3377 /* 3378 * (stripe_index / sub_stripes) gives how many data stripes we need to 3379 * skip. 3380 */ 3381 return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start; 3382 } 3383 3384 /* Get the mirror number for the stripe */ 3385 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index) 3386 { 3387 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3388 BTRFS_BLOCK_GROUP_RAID10)); 3389 ASSERT(stripe_index < map->num_stripes); 3390 3391 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 3392 return stripe_index % map->sub_stripes + 1; 3393 } 3394 3395 static int scrub_simple_stripe(struct scrub_ctx *sctx, 3396 struct btrfs_root *extent_root, 3397 struct btrfs_root *csum_root, 3398 struct btrfs_block_group *bg, 3399 struct map_lookup *map, 3400 struct btrfs_device *device, 3401 int stripe_index) 3402 { 3403 const u64 logical_increment = simple_stripe_full_stripe_len(map); 3404 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 3405 const u64 orig_physical = map->stripes[stripe_index].physical; 3406 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 3407 u64 cur_logical = orig_logical; 3408 u64 cur_physical = orig_physical; 3409 int ret = 0; 3410 3411 while (cur_logical < bg->start + bg->length) { 3412 /* 3413 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 3414 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 3415 * this stripe. 3416 */ 3417 ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map, 3418 cur_logical, map->stripe_len, device, 3419 cur_physical, mirror_num); 3420 if (ret) 3421 return ret; 3422 /* Skip to next stripe which belongs to the target device */ 3423 cur_logical += logical_increment; 3424 /* For physical offset, we just go to next stripe */ 3425 cur_physical += map->stripe_len; 3426 } 3427 return ret; 3428 } 3429 3430 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3431 struct btrfs_block_group *bg, 3432 struct map_lookup *map, 3433 struct btrfs_device *scrub_dev, 3434 int stripe_index, u64 dev_extent_len) 3435 { 3436 struct btrfs_path *path; 3437 struct btrfs_fs_info *fs_info = sctx->fs_info; 3438 struct btrfs_root *root; 3439 struct btrfs_root *csum_root; 3440 struct blk_plug plug; 3441 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 3442 const u64 chunk_logical = bg->start; 3443 int ret; 3444 u64 physical = map->stripes[stripe_index].physical; 3445 const u64 physical_end = physical + dev_extent_len; 3446 u64 logical; 3447 u64 logic_end; 3448 /* The logical increment after finishing one stripe */ 3449 u64 increment; 3450 /* Offset inside the chunk */ 3451 u64 offset; 3452 u64 stripe_logical; 3453 u64 stripe_end; 3454 int stop_loop = 0; 3455 3456 path = btrfs_alloc_path(); 3457 if (!path) 3458 return -ENOMEM; 3459 3460 /* 3461 * work on commit root. The related disk blocks are static as 3462 * long as COW is applied. This means, it is save to rewrite 3463 * them to repair disk errors without any race conditions 3464 */ 3465 path->search_commit_root = 1; 3466 path->skip_locking = 1; 3467 path->reada = READA_FORWARD; 3468 3469 wait_event(sctx->list_wait, 3470 atomic_read(&sctx->bios_in_flight) == 0); 3471 scrub_blocked_if_needed(fs_info); 3472 3473 root = btrfs_extent_root(fs_info, bg->start); 3474 csum_root = btrfs_csum_root(fs_info, bg->start); 3475 3476 /* 3477 * collect all data csums for the stripe to avoid seeking during 3478 * the scrub. This might currently (crc32) end up to be about 1MB 3479 */ 3480 blk_start_plug(&plug); 3481 3482 if (sctx->is_dev_replace && 3483 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 3484 mutex_lock(&sctx->wr_lock); 3485 sctx->write_pointer = physical; 3486 mutex_unlock(&sctx->wr_lock); 3487 sctx->flush_all_writes = true; 3488 } 3489 3490 /* 3491 * There used to be a big double loop to handle all profiles using the 3492 * same routine, which grows larger and more gross over time. 3493 * 3494 * So here we handle each profile differently, so simpler profiles 3495 * have simpler scrubbing function. 3496 */ 3497 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 3498 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 3499 /* 3500 * Above check rules out all complex profile, the remaining 3501 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 3502 * mirrored duplication without stripe. 3503 * 3504 * Only @physical and @mirror_num needs to calculated using 3505 * @stripe_index. 3506 */ 3507 ret = scrub_simple_mirror(sctx, root, csum_root, bg, map, 3508 bg->start, bg->length, scrub_dev, 3509 map->stripes[stripe_index].physical, 3510 stripe_index + 1); 3511 offset = 0; 3512 goto out; 3513 } 3514 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 3515 ret = scrub_simple_stripe(sctx, root, csum_root, bg, map, 3516 scrub_dev, stripe_index); 3517 offset = map->stripe_len * (stripe_index / map->sub_stripes); 3518 goto out; 3519 } 3520 3521 /* Only RAID56 goes through the old code */ 3522 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 3523 ret = 0; 3524 3525 /* Calculate the logical end of the stripe */ 3526 get_raid56_logic_offset(physical_end, stripe_index, 3527 map, &logic_end, NULL); 3528 logic_end += chunk_logical; 3529 3530 /* Initialize @offset in case we need to go to out: label */ 3531 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 3532 increment = map->stripe_len * nr_data_stripes(map); 3533 3534 /* 3535 * Due to the rotation, for RAID56 it's better to iterate each stripe 3536 * using their physical offset. 3537 */ 3538 while (physical < physical_end) { 3539 ret = get_raid56_logic_offset(physical, stripe_index, map, 3540 &logical, &stripe_logical); 3541 logical += chunk_logical; 3542 if (ret) { 3543 /* it is parity strip */ 3544 stripe_logical += chunk_logical; 3545 stripe_end = stripe_logical + increment; 3546 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3547 stripe_logical, 3548 stripe_end); 3549 if (ret) 3550 goto out; 3551 goto next; 3552 } 3553 3554 /* 3555 * Now we're at a data stripe, scrub each extents in the range. 3556 * 3557 * At this stage, if we ignore the repair part, inside each data 3558 * stripe it is no different than SINGLE profile. 3559 * We can reuse scrub_simple_mirror() here, as the repair part 3560 * is still based on @mirror_num. 3561 */ 3562 ret = scrub_simple_mirror(sctx, root, csum_root, bg, map, 3563 logical, map->stripe_len, 3564 scrub_dev, physical, 1); 3565 if (ret < 0) 3566 goto out; 3567 next: 3568 logical += increment; 3569 physical += map->stripe_len; 3570 spin_lock(&sctx->stat_lock); 3571 if (stop_loop) 3572 sctx->stat.last_physical = map->stripes[stripe_index].physical + 3573 dev_extent_len; 3574 else 3575 sctx->stat.last_physical = physical; 3576 spin_unlock(&sctx->stat_lock); 3577 if (stop_loop) 3578 break; 3579 } 3580 out: 3581 /* push queued extents */ 3582 scrub_submit(sctx); 3583 mutex_lock(&sctx->wr_lock); 3584 scrub_wr_submit(sctx); 3585 mutex_unlock(&sctx->wr_lock); 3586 3587 blk_finish_plug(&plug); 3588 btrfs_free_path(path); 3589 3590 if (sctx->is_dev_replace && ret >= 0) { 3591 int ret2; 3592 3593 ret2 = sync_write_pointer_for_zoned(sctx, 3594 chunk_logical + offset, 3595 map->stripes[stripe_index].physical, 3596 physical_end); 3597 if (ret2) 3598 ret = ret2; 3599 } 3600 3601 return ret < 0 ? ret : 0; 3602 } 3603 3604 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3605 struct btrfs_block_group *bg, 3606 struct btrfs_device *scrub_dev, 3607 u64 dev_offset, 3608 u64 dev_extent_len) 3609 { 3610 struct btrfs_fs_info *fs_info = sctx->fs_info; 3611 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 3612 struct map_lookup *map; 3613 struct extent_map *em; 3614 int i; 3615 int ret = 0; 3616 3617 read_lock(&map_tree->lock); 3618 em = lookup_extent_mapping(map_tree, bg->start, bg->length); 3619 read_unlock(&map_tree->lock); 3620 3621 if (!em) { 3622 /* 3623 * Might have been an unused block group deleted by the cleaner 3624 * kthread or relocation. 3625 */ 3626 spin_lock(&bg->lock); 3627 if (!bg->removed) 3628 ret = -EINVAL; 3629 spin_unlock(&bg->lock); 3630 3631 return ret; 3632 } 3633 if (em->start != bg->start) 3634 goto out; 3635 if (em->len < dev_extent_len) 3636 goto out; 3637 3638 map = em->map_lookup; 3639 for (i = 0; i < map->num_stripes; ++i) { 3640 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3641 map->stripes[i].physical == dev_offset) { 3642 ret = scrub_stripe(sctx, bg, map, scrub_dev, i, 3643 dev_extent_len); 3644 if (ret) 3645 goto out; 3646 } 3647 } 3648 out: 3649 free_extent_map(em); 3650 3651 return ret; 3652 } 3653 3654 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 3655 struct btrfs_block_group *cache) 3656 { 3657 struct btrfs_fs_info *fs_info = cache->fs_info; 3658 struct btrfs_trans_handle *trans; 3659 3660 if (!btrfs_is_zoned(fs_info)) 3661 return 0; 3662 3663 btrfs_wait_block_group_reservations(cache); 3664 btrfs_wait_nocow_writers(cache); 3665 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 3666 3667 trans = btrfs_join_transaction(root); 3668 if (IS_ERR(trans)) 3669 return PTR_ERR(trans); 3670 return btrfs_commit_transaction(trans); 3671 } 3672 3673 static noinline_for_stack 3674 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3675 struct btrfs_device *scrub_dev, u64 start, u64 end) 3676 { 3677 struct btrfs_dev_extent *dev_extent = NULL; 3678 struct btrfs_path *path; 3679 struct btrfs_fs_info *fs_info = sctx->fs_info; 3680 struct btrfs_root *root = fs_info->dev_root; 3681 u64 chunk_offset; 3682 int ret = 0; 3683 int ro_set; 3684 int slot; 3685 struct extent_buffer *l; 3686 struct btrfs_key key; 3687 struct btrfs_key found_key; 3688 struct btrfs_block_group *cache; 3689 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3690 3691 path = btrfs_alloc_path(); 3692 if (!path) 3693 return -ENOMEM; 3694 3695 path->reada = READA_FORWARD; 3696 path->search_commit_root = 1; 3697 path->skip_locking = 1; 3698 3699 key.objectid = scrub_dev->devid; 3700 key.offset = 0ull; 3701 key.type = BTRFS_DEV_EXTENT_KEY; 3702 3703 while (1) { 3704 u64 dev_extent_len; 3705 3706 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3707 if (ret < 0) 3708 break; 3709 if (ret > 0) { 3710 if (path->slots[0] >= 3711 btrfs_header_nritems(path->nodes[0])) { 3712 ret = btrfs_next_leaf(root, path); 3713 if (ret < 0) 3714 break; 3715 if (ret > 0) { 3716 ret = 0; 3717 break; 3718 } 3719 } else { 3720 ret = 0; 3721 } 3722 } 3723 3724 l = path->nodes[0]; 3725 slot = path->slots[0]; 3726 3727 btrfs_item_key_to_cpu(l, &found_key, slot); 3728 3729 if (found_key.objectid != scrub_dev->devid) 3730 break; 3731 3732 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3733 break; 3734 3735 if (found_key.offset >= end) 3736 break; 3737 3738 if (found_key.offset < key.offset) 3739 break; 3740 3741 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3742 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 3743 3744 if (found_key.offset + dev_extent_len <= start) 3745 goto skip; 3746 3747 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3748 3749 /* 3750 * get a reference on the corresponding block group to prevent 3751 * the chunk from going away while we scrub it 3752 */ 3753 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3754 3755 /* some chunks are removed but not committed to disk yet, 3756 * continue scrubbing */ 3757 if (!cache) 3758 goto skip; 3759 3760 ASSERT(cache->start <= chunk_offset); 3761 /* 3762 * We are using the commit root to search for device extents, so 3763 * that means we could have found a device extent item from a 3764 * block group that was deleted in the current transaction. The 3765 * logical start offset of the deleted block group, stored at 3766 * @chunk_offset, might be part of the logical address range of 3767 * a new block group (which uses different physical extents). 3768 * In this case btrfs_lookup_block_group() has returned the new 3769 * block group, and its start address is less than @chunk_offset. 3770 * 3771 * We skip such new block groups, because it's pointless to 3772 * process them, as we won't find their extents because we search 3773 * for them using the commit root of the extent tree. For a device 3774 * replace it's also fine to skip it, we won't miss copying them 3775 * to the target device because we have the write duplication 3776 * setup through the regular write path (by btrfs_map_block()), 3777 * and we have committed a transaction when we started the device 3778 * replace, right after setting up the device replace state. 3779 */ 3780 if (cache->start < chunk_offset) { 3781 btrfs_put_block_group(cache); 3782 goto skip; 3783 } 3784 3785 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 3786 spin_lock(&cache->lock); 3787 if (!cache->to_copy) { 3788 spin_unlock(&cache->lock); 3789 btrfs_put_block_group(cache); 3790 goto skip; 3791 } 3792 spin_unlock(&cache->lock); 3793 } 3794 3795 /* 3796 * Make sure that while we are scrubbing the corresponding block 3797 * group doesn't get its logical address and its device extents 3798 * reused for another block group, which can possibly be of a 3799 * different type and different profile. We do this to prevent 3800 * false error detections and crashes due to bogus attempts to 3801 * repair extents. 3802 */ 3803 spin_lock(&cache->lock); 3804 if (cache->removed) { 3805 spin_unlock(&cache->lock); 3806 btrfs_put_block_group(cache); 3807 goto skip; 3808 } 3809 btrfs_freeze_block_group(cache); 3810 spin_unlock(&cache->lock); 3811 3812 /* 3813 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3814 * to avoid deadlock caused by: 3815 * btrfs_inc_block_group_ro() 3816 * -> btrfs_wait_for_commit() 3817 * -> btrfs_commit_transaction() 3818 * -> btrfs_scrub_pause() 3819 */ 3820 scrub_pause_on(fs_info); 3821 3822 /* 3823 * Don't do chunk preallocation for scrub. 3824 * 3825 * This is especially important for SYSTEM bgs, or we can hit 3826 * -EFBIG from btrfs_finish_chunk_alloc() like: 3827 * 1. The only SYSTEM bg is marked RO. 3828 * Since SYSTEM bg is small, that's pretty common. 3829 * 2. New SYSTEM bg will be allocated 3830 * Due to regular version will allocate new chunk. 3831 * 3. New SYSTEM bg is empty and will get cleaned up 3832 * Before cleanup really happens, it's marked RO again. 3833 * 4. Empty SYSTEM bg get scrubbed 3834 * We go back to 2. 3835 * 3836 * This can easily boost the amount of SYSTEM chunks if cleaner 3837 * thread can't be triggered fast enough, and use up all space 3838 * of btrfs_super_block::sys_chunk_array 3839 * 3840 * While for dev replace, we need to try our best to mark block 3841 * group RO, to prevent race between: 3842 * - Write duplication 3843 * Contains latest data 3844 * - Scrub copy 3845 * Contains data from commit tree 3846 * 3847 * If target block group is not marked RO, nocow writes can 3848 * be overwritten by scrub copy, causing data corruption. 3849 * So for dev-replace, it's not allowed to continue if a block 3850 * group is not RO. 3851 */ 3852 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 3853 if (!ret && sctx->is_dev_replace) { 3854 ret = finish_extent_writes_for_zoned(root, cache); 3855 if (ret) { 3856 btrfs_dec_block_group_ro(cache); 3857 scrub_pause_off(fs_info); 3858 btrfs_put_block_group(cache); 3859 break; 3860 } 3861 } 3862 3863 if (ret == 0) { 3864 ro_set = 1; 3865 } else if (ret == -ENOSPC && !sctx->is_dev_replace) { 3866 /* 3867 * btrfs_inc_block_group_ro return -ENOSPC when it 3868 * failed in creating new chunk for metadata. 3869 * It is not a problem for scrub, because 3870 * metadata are always cowed, and our scrub paused 3871 * commit_transactions. 3872 */ 3873 ro_set = 0; 3874 } else if (ret == -ETXTBSY) { 3875 btrfs_warn(fs_info, 3876 "skipping scrub of block group %llu due to active swapfile", 3877 cache->start); 3878 scrub_pause_off(fs_info); 3879 ret = 0; 3880 goto skip_unfreeze; 3881 } else { 3882 btrfs_warn(fs_info, 3883 "failed setting block group ro: %d", ret); 3884 btrfs_unfreeze_block_group(cache); 3885 btrfs_put_block_group(cache); 3886 scrub_pause_off(fs_info); 3887 break; 3888 } 3889 3890 /* 3891 * Now the target block is marked RO, wait for nocow writes to 3892 * finish before dev-replace. 3893 * COW is fine, as COW never overwrites extents in commit tree. 3894 */ 3895 if (sctx->is_dev_replace) { 3896 btrfs_wait_nocow_writers(cache); 3897 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 3898 cache->length); 3899 } 3900 3901 scrub_pause_off(fs_info); 3902 down_write(&dev_replace->rwsem); 3903 dev_replace->cursor_right = found_key.offset + dev_extent_len; 3904 dev_replace->cursor_left = found_key.offset; 3905 dev_replace->item_needs_writeback = 1; 3906 up_write(&dev_replace->rwsem); 3907 3908 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 3909 dev_extent_len); 3910 3911 /* 3912 * flush, submit all pending read and write bios, afterwards 3913 * wait for them. 3914 * Note that in the dev replace case, a read request causes 3915 * write requests that are submitted in the read completion 3916 * worker. Therefore in the current situation, it is required 3917 * that all write requests are flushed, so that all read and 3918 * write requests are really completed when bios_in_flight 3919 * changes to 0. 3920 */ 3921 sctx->flush_all_writes = true; 3922 scrub_submit(sctx); 3923 mutex_lock(&sctx->wr_lock); 3924 scrub_wr_submit(sctx); 3925 mutex_unlock(&sctx->wr_lock); 3926 3927 wait_event(sctx->list_wait, 3928 atomic_read(&sctx->bios_in_flight) == 0); 3929 3930 scrub_pause_on(fs_info); 3931 3932 /* 3933 * must be called before we decrease @scrub_paused. 3934 * make sure we don't block transaction commit while 3935 * we are waiting pending workers finished. 3936 */ 3937 wait_event(sctx->list_wait, 3938 atomic_read(&sctx->workers_pending) == 0); 3939 sctx->flush_all_writes = false; 3940 3941 scrub_pause_off(fs_info); 3942 3943 if (sctx->is_dev_replace && 3944 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 3945 cache, found_key.offset)) 3946 ro_set = 0; 3947 3948 down_write(&dev_replace->rwsem); 3949 dev_replace->cursor_left = dev_replace->cursor_right; 3950 dev_replace->item_needs_writeback = 1; 3951 up_write(&dev_replace->rwsem); 3952 3953 if (ro_set) 3954 btrfs_dec_block_group_ro(cache); 3955 3956 /* 3957 * We might have prevented the cleaner kthread from deleting 3958 * this block group if it was already unused because we raced 3959 * and set it to RO mode first. So add it back to the unused 3960 * list, otherwise it might not ever be deleted unless a manual 3961 * balance is triggered or it becomes used and unused again. 3962 */ 3963 spin_lock(&cache->lock); 3964 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3965 cache->used == 0) { 3966 spin_unlock(&cache->lock); 3967 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 3968 btrfs_discard_queue_work(&fs_info->discard_ctl, 3969 cache); 3970 else 3971 btrfs_mark_bg_unused(cache); 3972 } else { 3973 spin_unlock(&cache->lock); 3974 } 3975 skip_unfreeze: 3976 btrfs_unfreeze_block_group(cache); 3977 btrfs_put_block_group(cache); 3978 if (ret) 3979 break; 3980 if (sctx->is_dev_replace && 3981 atomic64_read(&dev_replace->num_write_errors) > 0) { 3982 ret = -EIO; 3983 break; 3984 } 3985 if (sctx->stat.malloc_errors > 0) { 3986 ret = -ENOMEM; 3987 break; 3988 } 3989 skip: 3990 key.offset = found_key.offset + dev_extent_len; 3991 btrfs_release_path(path); 3992 } 3993 3994 btrfs_free_path(path); 3995 3996 return ret; 3997 } 3998 3999 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 4000 struct btrfs_device *scrub_dev) 4001 { 4002 int i; 4003 u64 bytenr; 4004 u64 gen; 4005 int ret; 4006 struct btrfs_fs_info *fs_info = sctx->fs_info; 4007 4008 if (BTRFS_FS_ERROR(fs_info)) 4009 return -EROFS; 4010 4011 /* Seed devices of a new filesystem has their own generation. */ 4012 if (scrub_dev->fs_devices != fs_info->fs_devices) 4013 gen = scrub_dev->generation; 4014 else 4015 gen = fs_info->last_trans_committed; 4016 4017 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 4018 bytenr = btrfs_sb_offset(i); 4019 if (bytenr + BTRFS_SUPER_INFO_SIZE > 4020 scrub_dev->commit_total_bytes) 4021 break; 4022 if (!btrfs_check_super_location(scrub_dev, bytenr)) 4023 continue; 4024 4025 ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 4026 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 4027 NULL, bytenr); 4028 if (ret) 4029 return ret; 4030 } 4031 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4032 4033 return 0; 4034 } 4035 4036 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 4037 { 4038 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 4039 &fs_info->scrub_lock)) { 4040 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 4041 struct workqueue_struct *scrub_wr_comp = 4042 fs_info->scrub_wr_completion_workers; 4043 struct workqueue_struct *scrub_parity = 4044 fs_info->scrub_parity_workers; 4045 4046 fs_info->scrub_workers = NULL; 4047 fs_info->scrub_wr_completion_workers = NULL; 4048 fs_info->scrub_parity_workers = NULL; 4049 mutex_unlock(&fs_info->scrub_lock); 4050 4051 if (scrub_workers) 4052 destroy_workqueue(scrub_workers); 4053 if (scrub_wr_comp) 4054 destroy_workqueue(scrub_wr_comp); 4055 if (scrub_parity) 4056 destroy_workqueue(scrub_parity); 4057 } 4058 } 4059 4060 /* 4061 * get a reference count on fs_info->scrub_workers. start worker if necessary 4062 */ 4063 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 4064 int is_dev_replace) 4065 { 4066 struct workqueue_struct *scrub_workers = NULL; 4067 struct workqueue_struct *scrub_wr_comp = NULL; 4068 struct workqueue_struct *scrub_parity = NULL; 4069 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 4070 int max_active = fs_info->thread_pool_size; 4071 int ret = -ENOMEM; 4072 4073 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 4074 return 0; 4075 4076 scrub_workers = alloc_workqueue("btrfs-scrub", flags, 4077 is_dev_replace ? 1 : max_active); 4078 if (!scrub_workers) 4079 goto fail_scrub_workers; 4080 4081 scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active); 4082 if (!scrub_wr_comp) 4083 goto fail_scrub_wr_completion_workers; 4084 4085 scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active); 4086 if (!scrub_parity) 4087 goto fail_scrub_parity_workers; 4088 4089 mutex_lock(&fs_info->scrub_lock); 4090 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 4091 ASSERT(fs_info->scrub_workers == NULL && 4092 fs_info->scrub_wr_completion_workers == NULL && 4093 fs_info->scrub_parity_workers == NULL); 4094 fs_info->scrub_workers = scrub_workers; 4095 fs_info->scrub_wr_completion_workers = scrub_wr_comp; 4096 fs_info->scrub_parity_workers = scrub_parity; 4097 refcount_set(&fs_info->scrub_workers_refcnt, 1); 4098 mutex_unlock(&fs_info->scrub_lock); 4099 return 0; 4100 } 4101 /* Other thread raced in and created the workers for us */ 4102 refcount_inc(&fs_info->scrub_workers_refcnt); 4103 mutex_unlock(&fs_info->scrub_lock); 4104 4105 ret = 0; 4106 destroy_workqueue(scrub_parity); 4107 fail_scrub_parity_workers: 4108 destroy_workqueue(scrub_wr_comp); 4109 fail_scrub_wr_completion_workers: 4110 destroy_workqueue(scrub_workers); 4111 fail_scrub_workers: 4112 return ret; 4113 } 4114 4115 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4116 u64 end, struct btrfs_scrub_progress *progress, 4117 int readonly, int is_dev_replace) 4118 { 4119 struct btrfs_dev_lookup_args args = { .devid = devid }; 4120 struct scrub_ctx *sctx; 4121 int ret; 4122 struct btrfs_device *dev; 4123 unsigned int nofs_flag; 4124 4125 if (btrfs_fs_closing(fs_info)) 4126 return -EAGAIN; 4127 4128 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 4129 /* 4130 * in this case scrub is unable to calculate the checksum 4131 * the way scrub is implemented. Do not handle this 4132 * situation at all because it won't ever happen. 4133 */ 4134 btrfs_err(fs_info, 4135 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 4136 fs_info->nodesize, 4137 BTRFS_STRIPE_LEN); 4138 return -EINVAL; 4139 } 4140 4141 if (fs_info->nodesize > 4142 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits || 4143 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_SECTORS_PER_BLOCK) { 4144 /* 4145 * Would exhaust the array bounds of sectorv member in 4146 * struct scrub_block 4147 */ 4148 btrfs_err(fs_info, 4149 "scrub: nodesize and sectorsize <= SCRUB_MAX_SECTORS_PER_BLOCK (%d <= %d && %d <= %d) fails", 4150 fs_info->nodesize, SCRUB_MAX_SECTORS_PER_BLOCK, 4151 fs_info->sectorsize, SCRUB_MAX_SECTORS_PER_BLOCK); 4152 return -EINVAL; 4153 } 4154 4155 /* Allocate outside of device_list_mutex */ 4156 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 4157 if (IS_ERR(sctx)) 4158 return PTR_ERR(sctx); 4159 4160 ret = scrub_workers_get(fs_info, is_dev_replace); 4161 if (ret) 4162 goto out_free_ctx; 4163 4164 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4165 dev = btrfs_find_device(fs_info->fs_devices, &args); 4166 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 4167 !is_dev_replace)) { 4168 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4169 ret = -ENODEV; 4170 goto out; 4171 } 4172 4173 if (!is_dev_replace && !readonly && 4174 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 4175 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4176 btrfs_err_in_rcu(fs_info, 4177 "scrub on devid %llu: filesystem on %s is not writable", 4178 devid, rcu_str_deref(dev->name)); 4179 ret = -EROFS; 4180 goto out; 4181 } 4182 4183 mutex_lock(&fs_info->scrub_lock); 4184 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4185 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 4186 mutex_unlock(&fs_info->scrub_lock); 4187 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4188 ret = -EIO; 4189 goto out; 4190 } 4191 4192 down_read(&fs_info->dev_replace.rwsem); 4193 if (dev->scrub_ctx || 4194 (!is_dev_replace && 4195 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4196 up_read(&fs_info->dev_replace.rwsem); 4197 mutex_unlock(&fs_info->scrub_lock); 4198 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4199 ret = -EINPROGRESS; 4200 goto out; 4201 } 4202 up_read(&fs_info->dev_replace.rwsem); 4203 4204 sctx->readonly = readonly; 4205 dev->scrub_ctx = sctx; 4206 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4207 4208 /* 4209 * checking @scrub_pause_req here, we can avoid 4210 * race between committing transaction and scrubbing. 4211 */ 4212 __scrub_blocked_if_needed(fs_info); 4213 atomic_inc(&fs_info->scrubs_running); 4214 mutex_unlock(&fs_info->scrub_lock); 4215 4216 /* 4217 * In order to avoid deadlock with reclaim when there is a transaction 4218 * trying to pause scrub, make sure we use GFP_NOFS for all the 4219 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 4220 * invoked by our callees. The pausing request is done when the 4221 * transaction commit starts, and it blocks the transaction until scrub 4222 * is paused (done at specific points at scrub_stripe() or right above 4223 * before incrementing fs_info->scrubs_running). 4224 */ 4225 nofs_flag = memalloc_nofs_save(); 4226 if (!is_dev_replace) { 4227 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 4228 /* 4229 * by holding device list mutex, we can 4230 * kick off writing super in log tree sync. 4231 */ 4232 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4233 ret = scrub_supers(sctx, dev); 4234 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4235 } 4236 4237 if (!ret) 4238 ret = scrub_enumerate_chunks(sctx, dev, start, end); 4239 memalloc_nofs_restore(nofs_flag); 4240 4241 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4242 atomic_dec(&fs_info->scrubs_running); 4243 wake_up(&fs_info->scrub_pause_wait); 4244 4245 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4246 4247 if (progress) 4248 memcpy(progress, &sctx->stat, sizeof(*progress)); 4249 4250 if (!is_dev_replace) 4251 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 4252 ret ? "not finished" : "finished", devid, ret); 4253 4254 mutex_lock(&fs_info->scrub_lock); 4255 dev->scrub_ctx = NULL; 4256 mutex_unlock(&fs_info->scrub_lock); 4257 4258 scrub_workers_put(fs_info); 4259 scrub_put_ctx(sctx); 4260 4261 return ret; 4262 out: 4263 scrub_workers_put(fs_info); 4264 out_free_ctx: 4265 scrub_free_ctx(sctx); 4266 4267 return ret; 4268 } 4269 4270 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4271 { 4272 mutex_lock(&fs_info->scrub_lock); 4273 atomic_inc(&fs_info->scrub_pause_req); 4274 while (atomic_read(&fs_info->scrubs_paused) != 4275 atomic_read(&fs_info->scrubs_running)) { 4276 mutex_unlock(&fs_info->scrub_lock); 4277 wait_event(fs_info->scrub_pause_wait, 4278 atomic_read(&fs_info->scrubs_paused) == 4279 atomic_read(&fs_info->scrubs_running)); 4280 mutex_lock(&fs_info->scrub_lock); 4281 } 4282 mutex_unlock(&fs_info->scrub_lock); 4283 } 4284 4285 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4286 { 4287 atomic_dec(&fs_info->scrub_pause_req); 4288 wake_up(&fs_info->scrub_pause_wait); 4289 } 4290 4291 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4292 { 4293 mutex_lock(&fs_info->scrub_lock); 4294 if (!atomic_read(&fs_info->scrubs_running)) { 4295 mutex_unlock(&fs_info->scrub_lock); 4296 return -ENOTCONN; 4297 } 4298 4299 atomic_inc(&fs_info->scrub_cancel_req); 4300 while (atomic_read(&fs_info->scrubs_running)) { 4301 mutex_unlock(&fs_info->scrub_lock); 4302 wait_event(fs_info->scrub_pause_wait, 4303 atomic_read(&fs_info->scrubs_running) == 0); 4304 mutex_lock(&fs_info->scrub_lock); 4305 } 4306 atomic_dec(&fs_info->scrub_cancel_req); 4307 mutex_unlock(&fs_info->scrub_lock); 4308 4309 return 0; 4310 } 4311 4312 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 4313 { 4314 struct btrfs_fs_info *fs_info = dev->fs_info; 4315 struct scrub_ctx *sctx; 4316 4317 mutex_lock(&fs_info->scrub_lock); 4318 sctx = dev->scrub_ctx; 4319 if (!sctx) { 4320 mutex_unlock(&fs_info->scrub_lock); 4321 return -ENOTCONN; 4322 } 4323 atomic_inc(&sctx->cancel_req); 4324 while (dev->scrub_ctx) { 4325 mutex_unlock(&fs_info->scrub_lock); 4326 wait_event(fs_info->scrub_pause_wait, 4327 dev->scrub_ctx == NULL); 4328 mutex_lock(&fs_info->scrub_lock); 4329 } 4330 mutex_unlock(&fs_info->scrub_lock); 4331 4332 return 0; 4333 } 4334 4335 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4336 struct btrfs_scrub_progress *progress) 4337 { 4338 struct btrfs_dev_lookup_args args = { .devid = devid }; 4339 struct btrfs_device *dev; 4340 struct scrub_ctx *sctx = NULL; 4341 4342 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4343 dev = btrfs_find_device(fs_info->fs_devices, &args); 4344 if (dev) 4345 sctx = dev->scrub_ctx; 4346 if (sctx) 4347 memcpy(progress, &sctx->stat, sizeof(*progress)); 4348 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4349 4350 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4351 } 4352 4353 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info, 4354 u64 extent_logical, u32 extent_len, 4355 u64 *extent_physical, 4356 struct btrfs_device **extent_dev, 4357 int *extent_mirror_num) 4358 { 4359 u64 mapped_length; 4360 struct btrfs_io_context *bioc = NULL; 4361 int ret; 4362 4363 mapped_length = extent_len; 4364 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4365 &mapped_length, &bioc, 0); 4366 if (ret || !bioc || mapped_length < extent_len || 4367 !bioc->stripes[0].dev->bdev) { 4368 btrfs_put_bioc(bioc); 4369 return; 4370 } 4371 4372 *extent_physical = bioc->stripes[0].physical; 4373 *extent_mirror_num = bioc->mirror_num; 4374 *extent_dev = bioc->stripes[0].dev; 4375 btrfs_put_bioc(bioc); 4376 } 4377