1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "dev-replace.h" 29 #include "check-integrity.h" 30 #include "rcu-string.h" 31 #include "raid56.h" 32 33 /* 34 * This is only the first step towards a full-features scrub. It reads all 35 * extent and super block and verifies the checksums. In case a bad checksum 36 * is found or the extent cannot be read, good data will be written back if 37 * any can be found. 38 * 39 * Future enhancements: 40 * - In case an unrepairable extent is encountered, track which files are 41 * affected and report them 42 * - track and record media errors, throw out bad devices 43 * - add a mode to also read unallocated space 44 */ 45 46 struct scrub_block; 47 struct scrub_ctx; 48 49 /* 50 * the following three values only influence the performance. 51 * The last one configures the number of parallel and outstanding I/O 52 * operations. The first two values configure an upper limit for the number 53 * of (dynamically allocated) pages that are added to a bio. 54 */ 55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 58 59 /* 60 * the following value times PAGE_SIZE needs to be large enough to match the 61 * largest node/leaf/sector size that shall be supported. 62 * Values larger than BTRFS_STRIPE_LEN are not supported. 63 */ 64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 65 66 struct scrub_page { 67 struct scrub_block *sblock; 68 struct page *page; 69 struct btrfs_device *dev; 70 u64 flags; /* extent flags */ 71 u64 generation; 72 u64 logical; 73 u64 physical; 74 u64 physical_for_dev_replace; 75 atomic_t ref_count; 76 struct { 77 unsigned int mirror_num:8; 78 unsigned int have_csum:1; 79 unsigned int io_error:1; 80 }; 81 u8 csum[BTRFS_CSUM_SIZE]; 82 }; 83 84 struct scrub_bio { 85 int index; 86 struct scrub_ctx *sctx; 87 struct btrfs_device *dev; 88 struct bio *bio; 89 int err; 90 u64 logical; 91 u64 physical; 92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 94 #else 95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 96 #endif 97 int page_count; 98 int next_free; 99 struct btrfs_work work; 100 }; 101 102 struct scrub_block { 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 104 int page_count; 105 atomic_t outstanding_pages; 106 atomic_t ref_count; /* free mem on transition to zero */ 107 struct scrub_ctx *sctx; 108 struct { 109 unsigned int header_error:1; 110 unsigned int checksum_error:1; 111 unsigned int no_io_error_seen:1; 112 unsigned int generation_error:1; /* also sets header_error */ 113 }; 114 }; 115 116 struct scrub_wr_ctx { 117 struct scrub_bio *wr_curr_bio; 118 struct btrfs_device *tgtdev; 119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 120 atomic_t flush_all_writes; 121 struct mutex wr_lock; 122 }; 123 124 struct scrub_ctx { 125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 126 struct btrfs_root *dev_root; 127 int first_free; 128 int curr; 129 atomic_t bios_in_flight; 130 atomic_t workers_pending; 131 spinlock_t list_lock; 132 wait_queue_head_t list_wait; 133 u16 csum_size; 134 struct list_head csum_list; 135 atomic_t cancel_req; 136 int readonly; 137 int pages_per_rd_bio; 138 u32 sectorsize; 139 u32 nodesize; 140 u32 leafsize; 141 142 int is_dev_replace; 143 struct scrub_wr_ctx wr_ctx; 144 145 /* 146 * statistics 147 */ 148 struct btrfs_scrub_progress stat; 149 spinlock_t stat_lock; 150 }; 151 152 struct scrub_fixup_nodatasum { 153 struct scrub_ctx *sctx; 154 struct btrfs_device *dev; 155 u64 logical; 156 struct btrfs_root *root; 157 struct btrfs_work work; 158 int mirror_num; 159 }; 160 161 struct scrub_nocow_inode { 162 u64 inum; 163 u64 offset; 164 u64 root; 165 struct list_head list; 166 }; 167 168 struct scrub_copy_nocow_ctx { 169 struct scrub_ctx *sctx; 170 u64 logical; 171 u64 len; 172 int mirror_num; 173 u64 physical_for_dev_replace; 174 struct list_head inodes; 175 struct btrfs_work work; 176 }; 177 178 struct scrub_warning { 179 struct btrfs_path *path; 180 u64 extent_item_size; 181 char *scratch_buf; 182 char *msg_buf; 183 const char *errstr; 184 sector_t sector; 185 u64 logical; 186 struct btrfs_device *dev; 187 int msg_bufsize; 188 int scratch_bufsize; 189 }; 190 191 192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx, 198 struct btrfs_fs_info *fs_info, 199 struct scrub_block *original_sblock, 200 u64 length, u64 logical, 201 struct scrub_block *sblocks_for_recheck); 202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 203 struct scrub_block *sblock, int is_metadata, 204 int have_csum, u8 *csum, u64 generation, 205 u16 csum_size); 206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 207 struct scrub_block *sblock, 208 int is_metadata, int have_csum, 209 const u8 *csum, u64 generation, 210 u16 csum_size); 211 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 212 struct scrub_block *sblock_good, 213 int force_write); 214 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 215 struct scrub_block *sblock_good, 216 int page_num, int force_write); 217 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 218 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 219 int page_num); 220 static int scrub_checksum_data(struct scrub_block *sblock); 221 static int scrub_checksum_tree_block(struct scrub_block *sblock); 222 static int scrub_checksum_super(struct scrub_block *sblock); 223 static void scrub_block_get(struct scrub_block *sblock); 224 static void scrub_block_put(struct scrub_block *sblock); 225 static void scrub_page_get(struct scrub_page *spage); 226 static void scrub_page_put(struct scrub_page *spage); 227 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 228 struct scrub_page *spage); 229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 230 u64 physical, struct btrfs_device *dev, u64 flags, 231 u64 gen, int mirror_num, u8 *csum, int force, 232 u64 physical_for_dev_replace); 233 static void scrub_bio_end_io(struct bio *bio, int err); 234 static void scrub_bio_end_io_worker(struct btrfs_work *work); 235 static void scrub_block_complete(struct scrub_block *sblock); 236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 237 u64 extent_logical, u64 extent_len, 238 u64 *extent_physical, 239 struct btrfs_device **extent_dev, 240 int *extent_mirror_num); 241 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 242 struct scrub_wr_ctx *wr_ctx, 243 struct btrfs_fs_info *fs_info, 244 struct btrfs_device *dev, 245 int is_dev_replace); 246 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); 247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 248 struct scrub_page *spage); 249 static void scrub_wr_submit(struct scrub_ctx *sctx); 250 static void scrub_wr_bio_end_io(struct bio *bio, int err); 251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 252 static int write_page_nocow(struct scrub_ctx *sctx, 253 u64 physical_for_dev_replace, struct page *page); 254 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 255 struct scrub_copy_nocow_ctx *ctx); 256 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 257 int mirror_num, u64 physical_for_dev_replace); 258 static void copy_nocow_pages_worker(struct btrfs_work *work); 259 260 261 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 262 { 263 atomic_inc(&sctx->bios_in_flight); 264 } 265 266 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 267 { 268 atomic_dec(&sctx->bios_in_flight); 269 wake_up(&sctx->list_wait); 270 } 271 272 /* 273 * used for workers that require transaction commits (i.e., for the 274 * NOCOW case) 275 */ 276 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 277 { 278 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 279 280 /* 281 * increment scrubs_running to prevent cancel requests from 282 * completing as long as a worker is running. we must also 283 * increment scrubs_paused to prevent deadlocking on pause 284 * requests used for transactions commits (as the worker uses a 285 * transaction context). it is safe to regard the worker 286 * as paused for all matters practical. effectively, we only 287 * avoid cancellation requests from completing. 288 */ 289 mutex_lock(&fs_info->scrub_lock); 290 atomic_inc(&fs_info->scrubs_running); 291 atomic_inc(&fs_info->scrubs_paused); 292 mutex_unlock(&fs_info->scrub_lock); 293 atomic_inc(&sctx->workers_pending); 294 } 295 296 /* used for workers that require transaction commits */ 297 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 298 { 299 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 300 301 /* 302 * see scrub_pending_trans_workers_inc() why we're pretending 303 * to be paused in the scrub counters 304 */ 305 mutex_lock(&fs_info->scrub_lock); 306 atomic_dec(&fs_info->scrubs_running); 307 atomic_dec(&fs_info->scrubs_paused); 308 mutex_unlock(&fs_info->scrub_lock); 309 atomic_dec(&sctx->workers_pending); 310 wake_up(&fs_info->scrub_pause_wait); 311 wake_up(&sctx->list_wait); 312 } 313 314 static void scrub_free_csums(struct scrub_ctx *sctx) 315 { 316 while (!list_empty(&sctx->csum_list)) { 317 struct btrfs_ordered_sum *sum; 318 sum = list_first_entry(&sctx->csum_list, 319 struct btrfs_ordered_sum, list); 320 list_del(&sum->list); 321 kfree(sum); 322 } 323 } 324 325 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 326 { 327 int i; 328 329 if (!sctx) 330 return; 331 332 scrub_free_wr_ctx(&sctx->wr_ctx); 333 334 /* this can happen when scrub is cancelled */ 335 if (sctx->curr != -1) { 336 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 337 338 for (i = 0; i < sbio->page_count; i++) { 339 WARN_ON(!sbio->pagev[i]->page); 340 scrub_block_put(sbio->pagev[i]->sblock); 341 } 342 bio_put(sbio->bio); 343 } 344 345 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 346 struct scrub_bio *sbio = sctx->bios[i]; 347 348 if (!sbio) 349 break; 350 kfree(sbio); 351 } 352 353 scrub_free_csums(sctx); 354 kfree(sctx); 355 } 356 357 static noinline_for_stack 358 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 359 { 360 struct scrub_ctx *sctx; 361 int i; 362 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 363 int pages_per_rd_bio; 364 int ret; 365 366 /* 367 * the setting of pages_per_rd_bio is correct for scrub but might 368 * be wrong for the dev_replace code where we might read from 369 * different devices in the initial huge bios. However, that 370 * code is able to correctly handle the case when adding a page 371 * to a bio fails. 372 */ 373 if (dev->bdev) 374 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO, 375 bio_get_nr_vecs(dev->bdev)); 376 else 377 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 378 sctx = kzalloc(sizeof(*sctx), GFP_NOFS); 379 if (!sctx) 380 goto nomem; 381 sctx->is_dev_replace = is_dev_replace; 382 sctx->pages_per_rd_bio = pages_per_rd_bio; 383 sctx->curr = -1; 384 sctx->dev_root = dev->dev_root; 385 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 386 struct scrub_bio *sbio; 387 388 sbio = kzalloc(sizeof(*sbio), GFP_NOFS); 389 if (!sbio) 390 goto nomem; 391 sctx->bios[i] = sbio; 392 393 sbio->index = i; 394 sbio->sctx = sctx; 395 sbio->page_count = 0; 396 sbio->work.func = scrub_bio_end_io_worker; 397 398 if (i != SCRUB_BIOS_PER_SCTX - 1) 399 sctx->bios[i]->next_free = i + 1; 400 else 401 sctx->bios[i]->next_free = -1; 402 } 403 sctx->first_free = 0; 404 sctx->nodesize = dev->dev_root->nodesize; 405 sctx->leafsize = dev->dev_root->leafsize; 406 sctx->sectorsize = dev->dev_root->sectorsize; 407 atomic_set(&sctx->bios_in_flight, 0); 408 atomic_set(&sctx->workers_pending, 0); 409 atomic_set(&sctx->cancel_req, 0); 410 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 411 INIT_LIST_HEAD(&sctx->csum_list); 412 413 spin_lock_init(&sctx->list_lock); 414 spin_lock_init(&sctx->stat_lock); 415 init_waitqueue_head(&sctx->list_wait); 416 417 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info, 418 fs_info->dev_replace.tgtdev, is_dev_replace); 419 if (ret) { 420 scrub_free_ctx(sctx); 421 return ERR_PTR(ret); 422 } 423 return sctx; 424 425 nomem: 426 scrub_free_ctx(sctx); 427 return ERR_PTR(-ENOMEM); 428 } 429 430 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 431 void *warn_ctx) 432 { 433 u64 isize; 434 u32 nlink; 435 int ret; 436 int i; 437 struct extent_buffer *eb; 438 struct btrfs_inode_item *inode_item; 439 struct scrub_warning *swarn = warn_ctx; 440 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; 441 struct inode_fs_paths *ipath = NULL; 442 struct btrfs_root *local_root; 443 struct btrfs_key root_key; 444 445 root_key.objectid = root; 446 root_key.type = BTRFS_ROOT_ITEM_KEY; 447 root_key.offset = (u64)-1; 448 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 449 if (IS_ERR(local_root)) { 450 ret = PTR_ERR(local_root); 451 goto err; 452 } 453 454 ret = inode_item_info(inum, 0, local_root, swarn->path); 455 if (ret) { 456 btrfs_release_path(swarn->path); 457 goto err; 458 } 459 460 eb = swarn->path->nodes[0]; 461 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 462 struct btrfs_inode_item); 463 isize = btrfs_inode_size(eb, inode_item); 464 nlink = btrfs_inode_nlink(eb, inode_item); 465 btrfs_release_path(swarn->path); 466 467 ipath = init_ipath(4096, local_root, swarn->path); 468 if (IS_ERR(ipath)) { 469 ret = PTR_ERR(ipath); 470 ipath = NULL; 471 goto err; 472 } 473 ret = paths_from_inode(inum, ipath); 474 475 if (ret < 0) 476 goto err; 477 478 /* 479 * we deliberately ignore the bit ipath might have been too small to 480 * hold all of the paths here 481 */ 482 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 483 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " 484 "%s, sector %llu, root %llu, inode %llu, offset %llu, " 485 "length %llu, links %u (path: %s)\n", swarn->errstr, 486 swarn->logical, rcu_str_deref(swarn->dev->name), 487 (unsigned long long)swarn->sector, root, inum, offset, 488 min(isize - offset, (u64)PAGE_SIZE), nlink, 489 (char *)(unsigned long)ipath->fspath->val[i]); 490 491 free_ipath(ipath); 492 return 0; 493 494 err: 495 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " 496 "%s, sector %llu, root %llu, inode %llu, offset %llu: path " 497 "resolving failed with ret=%d\n", swarn->errstr, 498 swarn->logical, rcu_str_deref(swarn->dev->name), 499 (unsigned long long)swarn->sector, root, inum, offset, ret); 500 501 free_ipath(ipath); 502 return 0; 503 } 504 505 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 506 { 507 struct btrfs_device *dev; 508 struct btrfs_fs_info *fs_info; 509 struct btrfs_path *path; 510 struct btrfs_key found_key; 511 struct extent_buffer *eb; 512 struct btrfs_extent_item *ei; 513 struct scrub_warning swarn; 514 unsigned long ptr = 0; 515 u64 extent_item_pos; 516 u64 flags = 0; 517 u64 ref_root; 518 u32 item_size; 519 u8 ref_level; 520 const int bufsize = 4096; 521 int ret; 522 523 WARN_ON(sblock->page_count < 1); 524 dev = sblock->pagev[0]->dev; 525 fs_info = sblock->sctx->dev_root->fs_info; 526 527 path = btrfs_alloc_path(); 528 529 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS); 530 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS); 531 swarn.sector = (sblock->pagev[0]->physical) >> 9; 532 swarn.logical = sblock->pagev[0]->logical; 533 swarn.errstr = errstr; 534 swarn.dev = NULL; 535 swarn.msg_bufsize = bufsize; 536 swarn.scratch_bufsize = bufsize; 537 538 if (!path || !swarn.scratch_buf || !swarn.msg_buf) 539 goto out; 540 541 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 542 &flags); 543 if (ret < 0) 544 goto out; 545 546 extent_item_pos = swarn.logical - found_key.objectid; 547 swarn.extent_item_size = found_key.offset; 548 549 eb = path->nodes[0]; 550 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 551 item_size = btrfs_item_size_nr(eb, path->slots[0]); 552 553 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 554 do { 555 ret = tree_backref_for_extent(&ptr, eb, ei, item_size, 556 &ref_root, &ref_level); 557 printk_in_rcu(KERN_WARNING 558 "btrfs: %s at logical %llu on dev %s, " 559 "sector %llu: metadata %s (level %d) in tree " 560 "%llu\n", errstr, swarn.logical, 561 rcu_str_deref(dev->name), 562 (unsigned long long)swarn.sector, 563 ref_level ? "node" : "leaf", 564 ret < 0 ? -1 : ref_level, 565 ret < 0 ? -1 : ref_root); 566 } while (ret != 1); 567 btrfs_release_path(path); 568 } else { 569 btrfs_release_path(path); 570 swarn.path = path; 571 swarn.dev = dev; 572 iterate_extent_inodes(fs_info, found_key.objectid, 573 extent_item_pos, 1, 574 scrub_print_warning_inode, &swarn); 575 } 576 577 out: 578 btrfs_free_path(path); 579 kfree(swarn.scratch_buf); 580 kfree(swarn.msg_buf); 581 } 582 583 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 584 { 585 struct page *page = NULL; 586 unsigned long index; 587 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 588 int ret; 589 int corrected = 0; 590 struct btrfs_key key; 591 struct inode *inode = NULL; 592 struct btrfs_fs_info *fs_info; 593 u64 end = offset + PAGE_SIZE - 1; 594 struct btrfs_root *local_root; 595 int srcu_index; 596 597 key.objectid = root; 598 key.type = BTRFS_ROOT_ITEM_KEY; 599 key.offset = (u64)-1; 600 601 fs_info = fixup->root->fs_info; 602 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 603 604 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 605 if (IS_ERR(local_root)) { 606 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 607 return PTR_ERR(local_root); 608 } 609 610 key.type = BTRFS_INODE_ITEM_KEY; 611 key.objectid = inum; 612 key.offset = 0; 613 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 614 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 615 if (IS_ERR(inode)) 616 return PTR_ERR(inode); 617 618 index = offset >> PAGE_CACHE_SHIFT; 619 620 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 621 if (!page) { 622 ret = -ENOMEM; 623 goto out; 624 } 625 626 if (PageUptodate(page)) { 627 if (PageDirty(page)) { 628 /* 629 * we need to write the data to the defect sector. the 630 * data that was in that sector is not in memory, 631 * because the page was modified. we must not write the 632 * modified page to that sector. 633 * 634 * TODO: what could be done here: wait for the delalloc 635 * runner to write out that page (might involve 636 * COW) and see whether the sector is still 637 * referenced afterwards. 638 * 639 * For the meantime, we'll treat this error 640 * incorrectable, although there is a chance that a 641 * later scrub will find the bad sector again and that 642 * there's no dirty page in memory, then. 643 */ 644 ret = -EIO; 645 goto out; 646 } 647 fs_info = BTRFS_I(inode)->root->fs_info; 648 ret = repair_io_failure(fs_info, offset, PAGE_SIZE, 649 fixup->logical, page, 650 fixup->mirror_num); 651 unlock_page(page); 652 corrected = !ret; 653 } else { 654 /* 655 * we need to get good data first. the general readpage path 656 * will call repair_io_failure for us, we just have to make 657 * sure we read the bad mirror. 658 */ 659 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 660 EXTENT_DAMAGED, GFP_NOFS); 661 if (ret) { 662 /* set_extent_bits should give proper error */ 663 WARN_ON(ret > 0); 664 if (ret > 0) 665 ret = -EFAULT; 666 goto out; 667 } 668 669 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 670 btrfs_get_extent, 671 fixup->mirror_num); 672 wait_on_page_locked(page); 673 674 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 675 end, EXTENT_DAMAGED, 0, NULL); 676 if (!corrected) 677 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 678 EXTENT_DAMAGED, GFP_NOFS); 679 } 680 681 out: 682 if (page) 683 put_page(page); 684 if (inode) 685 iput(inode); 686 687 if (ret < 0) 688 return ret; 689 690 if (ret == 0 && corrected) { 691 /* 692 * we only need to call readpage for one of the inodes belonging 693 * to this extent. so make iterate_extent_inodes stop 694 */ 695 return 1; 696 } 697 698 return -EIO; 699 } 700 701 static void scrub_fixup_nodatasum(struct btrfs_work *work) 702 { 703 int ret; 704 struct scrub_fixup_nodatasum *fixup; 705 struct scrub_ctx *sctx; 706 struct btrfs_trans_handle *trans = NULL; 707 struct btrfs_fs_info *fs_info; 708 struct btrfs_path *path; 709 int uncorrectable = 0; 710 711 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 712 sctx = fixup->sctx; 713 fs_info = fixup->root->fs_info; 714 715 path = btrfs_alloc_path(); 716 if (!path) { 717 spin_lock(&sctx->stat_lock); 718 ++sctx->stat.malloc_errors; 719 spin_unlock(&sctx->stat_lock); 720 uncorrectable = 1; 721 goto out; 722 } 723 724 trans = btrfs_join_transaction(fixup->root); 725 if (IS_ERR(trans)) { 726 uncorrectable = 1; 727 goto out; 728 } 729 730 /* 731 * the idea is to trigger a regular read through the standard path. we 732 * read a page from the (failed) logical address by specifying the 733 * corresponding copynum of the failed sector. thus, that readpage is 734 * expected to fail. 735 * that is the point where on-the-fly error correction will kick in 736 * (once it's finished) and rewrite the failed sector if a good copy 737 * can be found. 738 */ 739 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, 740 path, scrub_fixup_readpage, 741 fixup); 742 if (ret < 0) { 743 uncorrectable = 1; 744 goto out; 745 } 746 WARN_ON(ret != 1); 747 748 spin_lock(&sctx->stat_lock); 749 ++sctx->stat.corrected_errors; 750 spin_unlock(&sctx->stat_lock); 751 752 out: 753 if (trans && !IS_ERR(trans)) 754 btrfs_end_transaction(trans, fixup->root); 755 if (uncorrectable) { 756 spin_lock(&sctx->stat_lock); 757 ++sctx->stat.uncorrectable_errors; 758 spin_unlock(&sctx->stat_lock); 759 btrfs_dev_replace_stats_inc( 760 &sctx->dev_root->fs_info->dev_replace. 761 num_uncorrectable_read_errors); 762 printk_ratelimited_in_rcu(KERN_ERR 763 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n", 764 fixup->logical, rcu_str_deref(fixup->dev->name)); 765 } 766 767 btrfs_free_path(path); 768 kfree(fixup); 769 770 scrub_pending_trans_workers_dec(sctx); 771 } 772 773 /* 774 * scrub_handle_errored_block gets called when either verification of the 775 * pages failed or the bio failed to read, e.g. with EIO. In the latter 776 * case, this function handles all pages in the bio, even though only one 777 * may be bad. 778 * The goal of this function is to repair the errored block by using the 779 * contents of one of the mirrors. 780 */ 781 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 782 { 783 struct scrub_ctx *sctx = sblock_to_check->sctx; 784 struct btrfs_device *dev; 785 struct btrfs_fs_info *fs_info; 786 u64 length; 787 u64 logical; 788 u64 generation; 789 unsigned int failed_mirror_index; 790 unsigned int is_metadata; 791 unsigned int have_csum; 792 u8 *csum; 793 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 794 struct scrub_block *sblock_bad; 795 int ret; 796 int mirror_index; 797 int page_num; 798 int success; 799 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 800 DEFAULT_RATELIMIT_BURST); 801 802 BUG_ON(sblock_to_check->page_count < 1); 803 fs_info = sctx->dev_root->fs_info; 804 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 805 /* 806 * if we find an error in a super block, we just report it. 807 * They will get written with the next transaction commit 808 * anyway 809 */ 810 spin_lock(&sctx->stat_lock); 811 ++sctx->stat.super_errors; 812 spin_unlock(&sctx->stat_lock); 813 return 0; 814 } 815 length = sblock_to_check->page_count * PAGE_SIZE; 816 logical = sblock_to_check->pagev[0]->logical; 817 generation = sblock_to_check->pagev[0]->generation; 818 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 819 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 820 is_metadata = !(sblock_to_check->pagev[0]->flags & 821 BTRFS_EXTENT_FLAG_DATA); 822 have_csum = sblock_to_check->pagev[0]->have_csum; 823 csum = sblock_to_check->pagev[0]->csum; 824 dev = sblock_to_check->pagev[0]->dev; 825 826 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 827 sblocks_for_recheck = NULL; 828 goto nodatasum_case; 829 } 830 831 /* 832 * read all mirrors one after the other. This includes to 833 * re-read the extent or metadata block that failed (that was 834 * the cause that this fixup code is called) another time, 835 * page by page this time in order to know which pages 836 * caused I/O errors and which ones are good (for all mirrors). 837 * It is the goal to handle the situation when more than one 838 * mirror contains I/O errors, but the errors do not 839 * overlap, i.e. the data can be repaired by selecting the 840 * pages from those mirrors without I/O error on the 841 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 842 * would be that mirror #1 has an I/O error on the first page, 843 * the second page is good, and mirror #2 has an I/O error on 844 * the second page, but the first page is good. 845 * Then the first page of the first mirror can be repaired by 846 * taking the first page of the second mirror, and the 847 * second page of the second mirror can be repaired by 848 * copying the contents of the 2nd page of the 1st mirror. 849 * One more note: if the pages of one mirror contain I/O 850 * errors, the checksum cannot be verified. In order to get 851 * the best data for repairing, the first attempt is to find 852 * a mirror without I/O errors and with a validated checksum. 853 * Only if this is not possible, the pages are picked from 854 * mirrors with I/O errors without considering the checksum. 855 * If the latter is the case, at the end, the checksum of the 856 * repaired area is verified in order to correctly maintain 857 * the statistics. 858 */ 859 860 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS * 861 sizeof(*sblocks_for_recheck), 862 GFP_NOFS); 863 if (!sblocks_for_recheck) { 864 spin_lock(&sctx->stat_lock); 865 sctx->stat.malloc_errors++; 866 sctx->stat.read_errors++; 867 sctx->stat.uncorrectable_errors++; 868 spin_unlock(&sctx->stat_lock); 869 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 870 goto out; 871 } 872 873 /* setup the context, map the logical blocks and alloc the pages */ 874 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length, 875 logical, sblocks_for_recheck); 876 if (ret) { 877 spin_lock(&sctx->stat_lock); 878 sctx->stat.read_errors++; 879 sctx->stat.uncorrectable_errors++; 880 spin_unlock(&sctx->stat_lock); 881 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 882 goto out; 883 } 884 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 885 sblock_bad = sblocks_for_recheck + failed_mirror_index; 886 887 /* build and submit the bios for the failed mirror, check checksums */ 888 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, 889 csum, generation, sctx->csum_size); 890 891 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 892 sblock_bad->no_io_error_seen) { 893 /* 894 * the error disappeared after reading page by page, or 895 * the area was part of a huge bio and other parts of the 896 * bio caused I/O errors, or the block layer merged several 897 * read requests into one and the error is caused by a 898 * different bio (usually one of the two latter cases is 899 * the cause) 900 */ 901 spin_lock(&sctx->stat_lock); 902 sctx->stat.unverified_errors++; 903 spin_unlock(&sctx->stat_lock); 904 905 if (sctx->is_dev_replace) 906 scrub_write_block_to_dev_replace(sblock_bad); 907 goto out; 908 } 909 910 if (!sblock_bad->no_io_error_seen) { 911 spin_lock(&sctx->stat_lock); 912 sctx->stat.read_errors++; 913 spin_unlock(&sctx->stat_lock); 914 if (__ratelimit(&_rs)) 915 scrub_print_warning("i/o error", sblock_to_check); 916 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 917 } else if (sblock_bad->checksum_error) { 918 spin_lock(&sctx->stat_lock); 919 sctx->stat.csum_errors++; 920 spin_unlock(&sctx->stat_lock); 921 if (__ratelimit(&_rs)) 922 scrub_print_warning("checksum error", sblock_to_check); 923 btrfs_dev_stat_inc_and_print(dev, 924 BTRFS_DEV_STAT_CORRUPTION_ERRS); 925 } else if (sblock_bad->header_error) { 926 spin_lock(&sctx->stat_lock); 927 sctx->stat.verify_errors++; 928 spin_unlock(&sctx->stat_lock); 929 if (__ratelimit(&_rs)) 930 scrub_print_warning("checksum/header error", 931 sblock_to_check); 932 if (sblock_bad->generation_error) 933 btrfs_dev_stat_inc_and_print(dev, 934 BTRFS_DEV_STAT_GENERATION_ERRS); 935 else 936 btrfs_dev_stat_inc_and_print(dev, 937 BTRFS_DEV_STAT_CORRUPTION_ERRS); 938 } 939 940 if (sctx->readonly) { 941 ASSERT(!sctx->is_dev_replace); 942 goto out; 943 } 944 945 if (!is_metadata && !have_csum) { 946 struct scrub_fixup_nodatasum *fixup_nodatasum; 947 948 nodatasum_case: 949 WARN_ON(sctx->is_dev_replace); 950 951 /* 952 * !is_metadata and !have_csum, this means that the data 953 * might not be COW'ed, that it might be modified 954 * concurrently. The general strategy to work on the 955 * commit root does not help in the case when COW is not 956 * used. 957 */ 958 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 959 if (!fixup_nodatasum) 960 goto did_not_correct_error; 961 fixup_nodatasum->sctx = sctx; 962 fixup_nodatasum->dev = dev; 963 fixup_nodatasum->logical = logical; 964 fixup_nodatasum->root = fs_info->extent_root; 965 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 966 scrub_pending_trans_workers_inc(sctx); 967 fixup_nodatasum->work.func = scrub_fixup_nodatasum; 968 btrfs_queue_worker(&fs_info->scrub_workers, 969 &fixup_nodatasum->work); 970 goto out; 971 } 972 973 /* 974 * now build and submit the bios for the other mirrors, check 975 * checksums. 976 * First try to pick the mirror which is completely without I/O 977 * errors and also does not have a checksum error. 978 * If one is found, and if a checksum is present, the full block 979 * that is known to contain an error is rewritten. Afterwards 980 * the block is known to be corrected. 981 * If a mirror is found which is completely correct, and no 982 * checksum is present, only those pages are rewritten that had 983 * an I/O error in the block to be repaired, since it cannot be 984 * determined, which copy of the other pages is better (and it 985 * could happen otherwise that a correct page would be 986 * overwritten by a bad one). 987 */ 988 for (mirror_index = 0; 989 mirror_index < BTRFS_MAX_MIRRORS && 990 sblocks_for_recheck[mirror_index].page_count > 0; 991 mirror_index++) { 992 struct scrub_block *sblock_other; 993 994 if (mirror_index == failed_mirror_index) 995 continue; 996 sblock_other = sblocks_for_recheck + mirror_index; 997 998 /* build and submit the bios, check checksums */ 999 scrub_recheck_block(fs_info, sblock_other, is_metadata, 1000 have_csum, csum, generation, 1001 sctx->csum_size); 1002 1003 if (!sblock_other->header_error && 1004 !sblock_other->checksum_error && 1005 sblock_other->no_io_error_seen) { 1006 if (sctx->is_dev_replace) { 1007 scrub_write_block_to_dev_replace(sblock_other); 1008 } else { 1009 int force_write = is_metadata || have_csum; 1010 1011 ret = scrub_repair_block_from_good_copy( 1012 sblock_bad, sblock_other, 1013 force_write); 1014 } 1015 if (0 == ret) 1016 goto corrected_error; 1017 } 1018 } 1019 1020 /* 1021 * for dev_replace, pick good pages and write to the target device. 1022 */ 1023 if (sctx->is_dev_replace) { 1024 success = 1; 1025 for (page_num = 0; page_num < sblock_bad->page_count; 1026 page_num++) { 1027 int sub_success; 1028 1029 sub_success = 0; 1030 for (mirror_index = 0; 1031 mirror_index < BTRFS_MAX_MIRRORS && 1032 sblocks_for_recheck[mirror_index].page_count > 0; 1033 mirror_index++) { 1034 struct scrub_block *sblock_other = 1035 sblocks_for_recheck + mirror_index; 1036 struct scrub_page *page_other = 1037 sblock_other->pagev[page_num]; 1038 1039 if (!page_other->io_error) { 1040 ret = scrub_write_page_to_dev_replace( 1041 sblock_other, page_num); 1042 if (ret == 0) { 1043 /* succeeded for this page */ 1044 sub_success = 1; 1045 break; 1046 } else { 1047 btrfs_dev_replace_stats_inc( 1048 &sctx->dev_root-> 1049 fs_info->dev_replace. 1050 num_write_errors); 1051 } 1052 } 1053 } 1054 1055 if (!sub_success) { 1056 /* 1057 * did not find a mirror to fetch the page 1058 * from. scrub_write_page_to_dev_replace() 1059 * handles this case (page->io_error), by 1060 * filling the block with zeros before 1061 * submitting the write request 1062 */ 1063 success = 0; 1064 ret = scrub_write_page_to_dev_replace( 1065 sblock_bad, page_num); 1066 if (ret) 1067 btrfs_dev_replace_stats_inc( 1068 &sctx->dev_root->fs_info-> 1069 dev_replace.num_write_errors); 1070 } 1071 } 1072 1073 goto out; 1074 } 1075 1076 /* 1077 * for regular scrub, repair those pages that are errored. 1078 * In case of I/O errors in the area that is supposed to be 1079 * repaired, continue by picking good copies of those pages. 1080 * Select the good pages from mirrors to rewrite bad pages from 1081 * the area to fix. Afterwards verify the checksum of the block 1082 * that is supposed to be repaired. This verification step is 1083 * only done for the purpose of statistic counting and for the 1084 * final scrub report, whether errors remain. 1085 * A perfect algorithm could make use of the checksum and try 1086 * all possible combinations of pages from the different mirrors 1087 * until the checksum verification succeeds. For example, when 1088 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1089 * of mirror #2 is readable but the final checksum test fails, 1090 * then the 2nd page of mirror #3 could be tried, whether now 1091 * the final checksum succeedes. But this would be a rare 1092 * exception and is therefore not implemented. At least it is 1093 * avoided that the good copy is overwritten. 1094 * A more useful improvement would be to pick the sectors 1095 * without I/O error based on sector sizes (512 bytes on legacy 1096 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1097 * mirror could be repaired by taking 512 byte of a different 1098 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1099 * area are unreadable. 1100 */ 1101 1102 /* can only fix I/O errors from here on */ 1103 if (sblock_bad->no_io_error_seen) 1104 goto did_not_correct_error; 1105 1106 success = 1; 1107 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1108 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1109 1110 if (!page_bad->io_error) 1111 continue; 1112 1113 for (mirror_index = 0; 1114 mirror_index < BTRFS_MAX_MIRRORS && 1115 sblocks_for_recheck[mirror_index].page_count > 0; 1116 mirror_index++) { 1117 struct scrub_block *sblock_other = sblocks_for_recheck + 1118 mirror_index; 1119 struct scrub_page *page_other = sblock_other->pagev[ 1120 page_num]; 1121 1122 if (!page_other->io_error) { 1123 ret = scrub_repair_page_from_good_copy( 1124 sblock_bad, sblock_other, page_num, 0); 1125 if (0 == ret) { 1126 page_bad->io_error = 0; 1127 break; /* succeeded for this page */ 1128 } 1129 } 1130 } 1131 1132 if (page_bad->io_error) { 1133 /* did not find a mirror to copy the page from */ 1134 success = 0; 1135 } 1136 } 1137 1138 if (success) { 1139 if (is_metadata || have_csum) { 1140 /* 1141 * need to verify the checksum now that all 1142 * sectors on disk are repaired (the write 1143 * request for data to be repaired is on its way). 1144 * Just be lazy and use scrub_recheck_block() 1145 * which re-reads the data before the checksum 1146 * is verified, but most likely the data comes out 1147 * of the page cache. 1148 */ 1149 scrub_recheck_block(fs_info, sblock_bad, 1150 is_metadata, have_csum, csum, 1151 generation, sctx->csum_size); 1152 if (!sblock_bad->header_error && 1153 !sblock_bad->checksum_error && 1154 sblock_bad->no_io_error_seen) 1155 goto corrected_error; 1156 else 1157 goto did_not_correct_error; 1158 } else { 1159 corrected_error: 1160 spin_lock(&sctx->stat_lock); 1161 sctx->stat.corrected_errors++; 1162 spin_unlock(&sctx->stat_lock); 1163 printk_ratelimited_in_rcu(KERN_ERR 1164 "btrfs: fixed up error at logical %llu on dev %s\n", 1165 logical, rcu_str_deref(dev->name)); 1166 } 1167 } else { 1168 did_not_correct_error: 1169 spin_lock(&sctx->stat_lock); 1170 sctx->stat.uncorrectable_errors++; 1171 spin_unlock(&sctx->stat_lock); 1172 printk_ratelimited_in_rcu(KERN_ERR 1173 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n", 1174 logical, rcu_str_deref(dev->name)); 1175 } 1176 1177 out: 1178 if (sblocks_for_recheck) { 1179 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1180 mirror_index++) { 1181 struct scrub_block *sblock = sblocks_for_recheck + 1182 mirror_index; 1183 int page_index; 1184 1185 for (page_index = 0; page_index < sblock->page_count; 1186 page_index++) { 1187 sblock->pagev[page_index]->sblock = NULL; 1188 scrub_page_put(sblock->pagev[page_index]); 1189 } 1190 } 1191 kfree(sblocks_for_recheck); 1192 } 1193 1194 return 0; 1195 } 1196 1197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx, 1198 struct btrfs_fs_info *fs_info, 1199 struct scrub_block *original_sblock, 1200 u64 length, u64 logical, 1201 struct scrub_block *sblocks_for_recheck) 1202 { 1203 int page_index; 1204 int mirror_index; 1205 int ret; 1206 1207 /* 1208 * note: the two members ref_count and outstanding_pages 1209 * are not used (and not set) in the blocks that are used for 1210 * the recheck procedure 1211 */ 1212 1213 page_index = 0; 1214 while (length > 0) { 1215 u64 sublen = min_t(u64, length, PAGE_SIZE); 1216 u64 mapped_length = sublen; 1217 struct btrfs_bio *bbio = NULL; 1218 1219 /* 1220 * with a length of PAGE_SIZE, each returned stripe 1221 * represents one mirror 1222 */ 1223 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, 1224 &mapped_length, &bbio, 0); 1225 if (ret || !bbio || mapped_length < sublen) { 1226 kfree(bbio); 1227 return -EIO; 1228 } 1229 1230 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO); 1231 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes; 1232 mirror_index++) { 1233 struct scrub_block *sblock; 1234 struct scrub_page *page; 1235 1236 if (mirror_index >= BTRFS_MAX_MIRRORS) 1237 continue; 1238 1239 sblock = sblocks_for_recheck + mirror_index; 1240 sblock->sctx = sctx; 1241 page = kzalloc(sizeof(*page), GFP_NOFS); 1242 if (!page) { 1243 leave_nomem: 1244 spin_lock(&sctx->stat_lock); 1245 sctx->stat.malloc_errors++; 1246 spin_unlock(&sctx->stat_lock); 1247 kfree(bbio); 1248 return -ENOMEM; 1249 } 1250 scrub_page_get(page); 1251 sblock->pagev[page_index] = page; 1252 page->logical = logical; 1253 page->physical = bbio->stripes[mirror_index].physical; 1254 BUG_ON(page_index >= original_sblock->page_count); 1255 page->physical_for_dev_replace = 1256 original_sblock->pagev[page_index]-> 1257 physical_for_dev_replace; 1258 /* for missing devices, dev->bdev is NULL */ 1259 page->dev = bbio->stripes[mirror_index].dev; 1260 page->mirror_num = mirror_index + 1; 1261 sblock->page_count++; 1262 page->page = alloc_page(GFP_NOFS); 1263 if (!page->page) 1264 goto leave_nomem; 1265 } 1266 kfree(bbio); 1267 length -= sublen; 1268 logical += sublen; 1269 page_index++; 1270 } 1271 1272 return 0; 1273 } 1274 1275 /* 1276 * this function will check the on disk data for checksum errors, header 1277 * errors and read I/O errors. If any I/O errors happen, the exact pages 1278 * which are errored are marked as being bad. The goal is to enable scrub 1279 * to take those pages that are not errored from all the mirrors so that 1280 * the pages that are errored in the just handled mirror can be repaired. 1281 */ 1282 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1283 struct scrub_block *sblock, int is_metadata, 1284 int have_csum, u8 *csum, u64 generation, 1285 u16 csum_size) 1286 { 1287 int page_num; 1288 1289 sblock->no_io_error_seen = 1; 1290 sblock->header_error = 0; 1291 sblock->checksum_error = 0; 1292 1293 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1294 struct bio *bio; 1295 struct scrub_page *page = sblock->pagev[page_num]; 1296 1297 if (page->dev->bdev == NULL) { 1298 page->io_error = 1; 1299 sblock->no_io_error_seen = 0; 1300 continue; 1301 } 1302 1303 WARN_ON(!page->page); 1304 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1305 if (!bio) { 1306 page->io_error = 1; 1307 sblock->no_io_error_seen = 0; 1308 continue; 1309 } 1310 bio->bi_bdev = page->dev->bdev; 1311 bio->bi_sector = page->physical >> 9; 1312 1313 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1314 if (btrfsic_submit_bio_wait(READ, bio)) 1315 sblock->no_io_error_seen = 0; 1316 1317 bio_put(bio); 1318 } 1319 1320 if (sblock->no_io_error_seen) 1321 scrub_recheck_block_checksum(fs_info, sblock, is_metadata, 1322 have_csum, csum, generation, 1323 csum_size); 1324 1325 return; 1326 } 1327 1328 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 1329 struct scrub_block *sblock, 1330 int is_metadata, int have_csum, 1331 const u8 *csum, u64 generation, 1332 u16 csum_size) 1333 { 1334 int page_num; 1335 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1336 u32 crc = ~(u32)0; 1337 void *mapped_buffer; 1338 1339 WARN_ON(!sblock->pagev[0]->page); 1340 if (is_metadata) { 1341 struct btrfs_header *h; 1342 1343 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1344 h = (struct btrfs_header *)mapped_buffer; 1345 1346 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) || 1347 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) || 1348 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1349 BTRFS_UUID_SIZE)) { 1350 sblock->header_error = 1; 1351 } else if (generation != btrfs_stack_header_generation(h)) { 1352 sblock->header_error = 1; 1353 sblock->generation_error = 1; 1354 } 1355 csum = h->csum; 1356 } else { 1357 if (!have_csum) 1358 return; 1359 1360 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1361 } 1362 1363 for (page_num = 0;;) { 1364 if (page_num == 0 && is_metadata) 1365 crc = btrfs_csum_data( 1366 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, 1367 crc, PAGE_SIZE - BTRFS_CSUM_SIZE); 1368 else 1369 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE); 1370 1371 kunmap_atomic(mapped_buffer); 1372 page_num++; 1373 if (page_num >= sblock->page_count) 1374 break; 1375 WARN_ON(!sblock->pagev[page_num]->page); 1376 1377 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page); 1378 } 1379 1380 btrfs_csum_final(crc, calculated_csum); 1381 if (memcmp(calculated_csum, csum, csum_size)) 1382 sblock->checksum_error = 1; 1383 } 1384 1385 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1386 struct scrub_block *sblock_good, 1387 int force_write) 1388 { 1389 int page_num; 1390 int ret = 0; 1391 1392 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1393 int ret_sub; 1394 1395 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1396 sblock_good, 1397 page_num, 1398 force_write); 1399 if (ret_sub) 1400 ret = ret_sub; 1401 } 1402 1403 return ret; 1404 } 1405 1406 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1407 struct scrub_block *sblock_good, 1408 int page_num, int force_write) 1409 { 1410 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1411 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1412 1413 BUG_ON(page_bad->page == NULL); 1414 BUG_ON(page_good->page == NULL); 1415 if (force_write || sblock_bad->header_error || 1416 sblock_bad->checksum_error || page_bad->io_error) { 1417 struct bio *bio; 1418 int ret; 1419 1420 if (!page_bad->dev->bdev) { 1421 printk_ratelimited(KERN_WARNING 1422 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n"); 1423 return -EIO; 1424 } 1425 1426 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1427 if (!bio) 1428 return -EIO; 1429 bio->bi_bdev = page_bad->dev->bdev; 1430 bio->bi_sector = page_bad->physical >> 9; 1431 1432 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1433 if (PAGE_SIZE != ret) { 1434 bio_put(bio); 1435 return -EIO; 1436 } 1437 1438 if (btrfsic_submit_bio_wait(WRITE, bio)) { 1439 btrfs_dev_stat_inc_and_print(page_bad->dev, 1440 BTRFS_DEV_STAT_WRITE_ERRS); 1441 btrfs_dev_replace_stats_inc( 1442 &sblock_bad->sctx->dev_root->fs_info-> 1443 dev_replace.num_write_errors); 1444 bio_put(bio); 1445 return -EIO; 1446 } 1447 bio_put(bio); 1448 } 1449 1450 return 0; 1451 } 1452 1453 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1454 { 1455 int page_num; 1456 1457 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1458 int ret; 1459 1460 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1461 if (ret) 1462 btrfs_dev_replace_stats_inc( 1463 &sblock->sctx->dev_root->fs_info->dev_replace. 1464 num_write_errors); 1465 } 1466 } 1467 1468 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1469 int page_num) 1470 { 1471 struct scrub_page *spage = sblock->pagev[page_num]; 1472 1473 BUG_ON(spage->page == NULL); 1474 if (spage->io_error) { 1475 void *mapped_buffer = kmap_atomic(spage->page); 1476 1477 memset(mapped_buffer, 0, PAGE_CACHE_SIZE); 1478 flush_dcache_page(spage->page); 1479 kunmap_atomic(mapped_buffer); 1480 } 1481 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1482 } 1483 1484 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1485 struct scrub_page *spage) 1486 { 1487 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1488 struct scrub_bio *sbio; 1489 int ret; 1490 1491 mutex_lock(&wr_ctx->wr_lock); 1492 again: 1493 if (!wr_ctx->wr_curr_bio) { 1494 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), 1495 GFP_NOFS); 1496 if (!wr_ctx->wr_curr_bio) { 1497 mutex_unlock(&wr_ctx->wr_lock); 1498 return -ENOMEM; 1499 } 1500 wr_ctx->wr_curr_bio->sctx = sctx; 1501 wr_ctx->wr_curr_bio->page_count = 0; 1502 } 1503 sbio = wr_ctx->wr_curr_bio; 1504 if (sbio->page_count == 0) { 1505 struct bio *bio; 1506 1507 sbio->physical = spage->physical_for_dev_replace; 1508 sbio->logical = spage->logical; 1509 sbio->dev = wr_ctx->tgtdev; 1510 bio = sbio->bio; 1511 if (!bio) { 1512 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio); 1513 if (!bio) { 1514 mutex_unlock(&wr_ctx->wr_lock); 1515 return -ENOMEM; 1516 } 1517 sbio->bio = bio; 1518 } 1519 1520 bio->bi_private = sbio; 1521 bio->bi_end_io = scrub_wr_bio_end_io; 1522 bio->bi_bdev = sbio->dev->bdev; 1523 bio->bi_sector = sbio->physical >> 9; 1524 sbio->err = 0; 1525 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1526 spage->physical_for_dev_replace || 1527 sbio->logical + sbio->page_count * PAGE_SIZE != 1528 spage->logical) { 1529 scrub_wr_submit(sctx); 1530 goto again; 1531 } 1532 1533 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1534 if (ret != PAGE_SIZE) { 1535 if (sbio->page_count < 1) { 1536 bio_put(sbio->bio); 1537 sbio->bio = NULL; 1538 mutex_unlock(&wr_ctx->wr_lock); 1539 return -EIO; 1540 } 1541 scrub_wr_submit(sctx); 1542 goto again; 1543 } 1544 1545 sbio->pagev[sbio->page_count] = spage; 1546 scrub_page_get(spage); 1547 sbio->page_count++; 1548 if (sbio->page_count == wr_ctx->pages_per_wr_bio) 1549 scrub_wr_submit(sctx); 1550 mutex_unlock(&wr_ctx->wr_lock); 1551 1552 return 0; 1553 } 1554 1555 static void scrub_wr_submit(struct scrub_ctx *sctx) 1556 { 1557 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1558 struct scrub_bio *sbio; 1559 1560 if (!wr_ctx->wr_curr_bio) 1561 return; 1562 1563 sbio = wr_ctx->wr_curr_bio; 1564 wr_ctx->wr_curr_bio = NULL; 1565 WARN_ON(!sbio->bio->bi_bdev); 1566 scrub_pending_bio_inc(sctx); 1567 /* process all writes in a single worker thread. Then the block layer 1568 * orders the requests before sending them to the driver which 1569 * doubled the write performance on spinning disks when measured 1570 * with Linux 3.5 */ 1571 btrfsic_submit_bio(WRITE, sbio->bio); 1572 } 1573 1574 static void scrub_wr_bio_end_io(struct bio *bio, int err) 1575 { 1576 struct scrub_bio *sbio = bio->bi_private; 1577 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 1578 1579 sbio->err = err; 1580 sbio->bio = bio; 1581 1582 sbio->work.func = scrub_wr_bio_end_io_worker; 1583 btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work); 1584 } 1585 1586 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1587 { 1588 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1589 struct scrub_ctx *sctx = sbio->sctx; 1590 int i; 1591 1592 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1593 if (sbio->err) { 1594 struct btrfs_dev_replace *dev_replace = 1595 &sbio->sctx->dev_root->fs_info->dev_replace; 1596 1597 for (i = 0; i < sbio->page_count; i++) { 1598 struct scrub_page *spage = sbio->pagev[i]; 1599 1600 spage->io_error = 1; 1601 btrfs_dev_replace_stats_inc(&dev_replace-> 1602 num_write_errors); 1603 } 1604 } 1605 1606 for (i = 0; i < sbio->page_count; i++) 1607 scrub_page_put(sbio->pagev[i]); 1608 1609 bio_put(sbio->bio); 1610 kfree(sbio); 1611 scrub_pending_bio_dec(sctx); 1612 } 1613 1614 static int scrub_checksum(struct scrub_block *sblock) 1615 { 1616 u64 flags; 1617 int ret; 1618 1619 WARN_ON(sblock->page_count < 1); 1620 flags = sblock->pagev[0]->flags; 1621 ret = 0; 1622 if (flags & BTRFS_EXTENT_FLAG_DATA) 1623 ret = scrub_checksum_data(sblock); 1624 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1625 ret = scrub_checksum_tree_block(sblock); 1626 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1627 (void)scrub_checksum_super(sblock); 1628 else 1629 WARN_ON(1); 1630 if (ret) 1631 scrub_handle_errored_block(sblock); 1632 1633 return ret; 1634 } 1635 1636 static int scrub_checksum_data(struct scrub_block *sblock) 1637 { 1638 struct scrub_ctx *sctx = sblock->sctx; 1639 u8 csum[BTRFS_CSUM_SIZE]; 1640 u8 *on_disk_csum; 1641 struct page *page; 1642 void *buffer; 1643 u32 crc = ~(u32)0; 1644 int fail = 0; 1645 u64 len; 1646 int index; 1647 1648 BUG_ON(sblock->page_count < 1); 1649 if (!sblock->pagev[0]->have_csum) 1650 return 0; 1651 1652 on_disk_csum = sblock->pagev[0]->csum; 1653 page = sblock->pagev[0]->page; 1654 buffer = kmap_atomic(page); 1655 1656 len = sctx->sectorsize; 1657 index = 0; 1658 for (;;) { 1659 u64 l = min_t(u64, len, PAGE_SIZE); 1660 1661 crc = btrfs_csum_data(buffer, crc, l); 1662 kunmap_atomic(buffer); 1663 len -= l; 1664 if (len == 0) 1665 break; 1666 index++; 1667 BUG_ON(index >= sblock->page_count); 1668 BUG_ON(!sblock->pagev[index]->page); 1669 page = sblock->pagev[index]->page; 1670 buffer = kmap_atomic(page); 1671 } 1672 1673 btrfs_csum_final(crc, csum); 1674 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1675 fail = 1; 1676 1677 return fail; 1678 } 1679 1680 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1681 { 1682 struct scrub_ctx *sctx = sblock->sctx; 1683 struct btrfs_header *h; 1684 struct btrfs_root *root = sctx->dev_root; 1685 struct btrfs_fs_info *fs_info = root->fs_info; 1686 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1687 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1688 struct page *page; 1689 void *mapped_buffer; 1690 u64 mapped_size; 1691 void *p; 1692 u32 crc = ~(u32)0; 1693 int fail = 0; 1694 int crc_fail = 0; 1695 u64 len; 1696 int index; 1697 1698 BUG_ON(sblock->page_count < 1); 1699 page = sblock->pagev[0]->page; 1700 mapped_buffer = kmap_atomic(page); 1701 h = (struct btrfs_header *)mapped_buffer; 1702 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1703 1704 /* 1705 * we don't use the getter functions here, as we 1706 * a) don't have an extent buffer and 1707 * b) the page is already kmapped 1708 */ 1709 1710 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1711 ++fail; 1712 1713 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) 1714 ++fail; 1715 1716 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) 1717 ++fail; 1718 1719 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1720 BTRFS_UUID_SIZE)) 1721 ++fail; 1722 1723 WARN_ON(sctx->nodesize != sctx->leafsize); 1724 len = sctx->nodesize - BTRFS_CSUM_SIZE; 1725 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1726 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1727 index = 0; 1728 for (;;) { 1729 u64 l = min_t(u64, len, mapped_size); 1730 1731 crc = btrfs_csum_data(p, crc, l); 1732 kunmap_atomic(mapped_buffer); 1733 len -= l; 1734 if (len == 0) 1735 break; 1736 index++; 1737 BUG_ON(index >= sblock->page_count); 1738 BUG_ON(!sblock->pagev[index]->page); 1739 page = sblock->pagev[index]->page; 1740 mapped_buffer = kmap_atomic(page); 1741 mapped_size = PAGE_SIZE; 1742 p = mapped_buffer; 1743 } 1744 1745 btrfs_csum_final(crc, calculated_csum); 1746 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1747 ++crc_fail; 1748 1749 return fail || crc_fail; 1750 } 1751 1752 static int scrub_checksum_super(struct scrub_block *sblock) 1753 { 1754 struct btrfs_super_block *s; 1755 struct scrub_ctx *sctx = sblock->sctx; 1756 struct btrfs_root *root = sctx->dev_root; 1757 struct btrfs_fs_info *fs_info = root->fs_info; 1758 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1759 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1760 struct page *page; 1761 void *mapped_buffer; 1762 u64 mapped_size; 1763 void *p; 1764 u32 crc = ~(u32)0; 1765 int fail_gen = 0; 1766 int fail_cor = 0; 1767 u64 len; 1768 int index; 1769 1770 BUG_ON(sblock->page_count < 1); 1771 page = sblock->pagev[0]->page; 1772 mapped_buffer = kmap_atomic(page); 1773 s = (struct btrfs_super_block *)mapped_buffer; 1774 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1775 1776 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1777 ++fail_cor; 1778 1779 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1780 ++fail_gen; 1781 1782 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) 1783 ++fail_cor; 1784 1785 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1786 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1787 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1788 index = 0; 1789 for (;;) { 1790 u64 l = min_t(u64, len, mapped_size); 1791 1792 crc = btrfs_csum_data(p, crc, l); 1793 kunmap_atomic(mapped_buffer); 1794 len -= l; 1795 if (len == 0) 1796 break; 1797 index++; 1798 BUG_ON(index >= sblock->page_count); 1799 BUG_ON(!sblock->pagev[index]->page); 1800 page = sblock->pagev[index]->page; 1801 mapped_buffer = kmap_atomic(page); 1802 mapped_size = PAGE_SIZE; 1803 p = mapped_buffer; 1804 } 1805 1806 btrfs_csum_final(crc, calculated_csum); 1807 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1808 ++fail_cor; 1809 1810 if (fail_cor + fail_gen) { 1811 /* 1812 * if we find an error in a super block, we just report it. 1813 * They will get written with the next transaction commit 1814 * anyway 1815 */ 1816 spin_lock(&sctx->stat_lock); 1817 ++sctx->stat.super_errors; 1818 spin_unlock(&sctx->stat_lock); 1819 if (fail_cor) 1820 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1821 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1822 else 1823 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1824 BTRFS_DEV_STAT_GENERATION_ERRS); 1825 } 1826 1827 return fail_cor + fail_gen; 1828 } 1829 1830 static void scrub_block_get(struct scrub_block *sblock) 1831 { 1832 atomic_inc(&sblock->ref_count); 1833 } 1834 1835 static void scrub_block_put(struct scrub_block *sblock) 1836 { 1837 if (atomic_dec_and_test(&sblock->ref_count)) { 1838 int i; 1839 1840 for (i = 0; i < sblock->page_count; i++) 1841 scrub_page_put(sblock->pagev[i]); 1842 kfree(sblock); 1843 } 1844 } 1845 1846 static void scrub_page_get(struct scrub_page *spage) 1847 { 1848 atomic_inc(&spage->ref_count); 1849 } 1850 1851 static void scrub_page_put(struct scrub_page *spage) 1852 { 1853 if (atomic_dec_and_test(&spage->ref_count)) { 1854 if (spage->page) 1855 __free_page(spage->page); 1856 kfree(spage); 1857 } 1858 } 1859 1860 static void scrub_submit(struct scrub_ctx *sctx) 1861 { 1862 struct scrub_bio *sbio; 1863 1864 if (sctx->curr == -1) 1865 return; 1866 1867 sbio = sctx->bios[sctx->curr]; 1868 sctx->curr = -1; 1869 scrub_pending_bio_inc(sctx); 1870 1871 if (!sbio->bio->bi_bdev) { 1872 /* 1873 * this case should not happen. If btrfs_map_block() is 1874 * wrong, it could happen for dev-replace operations on 1875 * missing devices when no mirrors are available, but in 1876 * this case it should already fail the mount. 1877 * This case is handled correctly (but _very_ slowly). 1878 */ 1879 printk_ratelimited(KERN_WARNING 1880 "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n"); 1881 bio_endio(sbio->bio, -EIO); 1882 } else { 1883 btrfsic_submit_bio(READ, sbio->bio); 1884 } 1885 } 1886 1887 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 1888 struct scrub_page *spage) 1889 { 1890 struct scrub_block *sblock = spage->sblock; 1891 struct scrub_bio *sbio; 1892 int ret; 1893 1894 again: 1895 /* 1896 * grab a fresh bio or wait for one to become available 1897 */ 1898 while (sctx->curr == -1) { 1899 spin_lock(&sctx->list_lock); 1900 sctx->curr = sctx->first_free; 1901 if (sctx->curr != -1) { 1902 sctx->first_free = sctx->bios[sctx->curr]->next_free; 1903 sctx->bios[sctx->curr]->next_free = -1; 1904 sctx->bios[sctx->curr]->page_count = 0; 1905 spin_unlock(&sctx->list_lock); 1906 } else { 1907 spin_unlock(&sctx->list_lock); 1908 wait_event(sctx->list_wait, sctx->first_free != -1); 1909 } 1910 } 1911 sbio = sctx->bios[sctx->curr]; 1912 if (sbio->page_count == 0) { 1913 struct bio *bio; 1914 1915 sbio->physical = spage->physical; 1916 sbio->logical = spage->logical; 1917 sbio->dev = spage->dev; 1918 bio = sbio->bio; 1919 if (!bio) { 1920 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio); 1921 if (!bio) 1922 return -ENOMEM; 1923 sbio->bio = bio; 1924 } 1925 1926 bio->bi_private = sbio; 1927 bio->bi_end_io = scrub_bio_end_io; 1928 bio->bi_bdev = sbio->dev->bdev; 1929 bio->bi_sector = sbio->physical >> 9; 1930 sbio->err = 0; 1931 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1932 spage->physical || 1933 sbio->logical + sbio->page_count * PAGE_SIZE != 1934 spage->logical || 1935 sbio->dev != spage->dev) { 1936 scrub_submit(sctx); 1937 goto again; 1938 } 1939 1940 sbio->pagev[sbio->page_count] = spage; 1941 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1942 if (ret != PAGE_SIZE) { 1943 if (sbio->page_count < 1) { 1944 bio_put(sbio->bio); 1945 sbio->bio = NULL; 1946 return -EIO; 1947 } 1948 scrub_submit(sctx); 1949 goto again; 1950 } 1951 1952 scrub_block_get(sblock); /* one for the page added to the bio */ 1953 atomic_inc(&sblock->outstanding_pages); 1954 sbio->page_count++; 1955 if (sbio->page_count == sctx->pages_per_rd_bio) 1956 scrub_submit(sctx); 1957 1958 return 0; 1959 } 1960 1961 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 1962 u64 physical, struct btrfs_device *dev, u64 flags, 1963 u64 gen, int mirror_num, u8 *csum, int force, 1964 u64 physical_for_dev_replace) 1965 { 1966 struct scrub_block *sblock; 1967 int index; 1968 1969 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 1970 if (!sblock) { 1971 spin_lock(&sctx->stat_lock); 1972 sctx->stat.malloc_errors++; 1973 spin_unlock(&sctx->stat_lock); 1974 return -ENOMEM; 1975 } 1976 1977 /* one ref inside this function, plus one for each page added to 1978 * a bio later on */ 1979 atomic_set(&sblock->ref_count, 1); 1980 sblock->sctx = sctx; 1981 sblock->no_io_error_seen = 1; 1982 1983 for (index = 0; len > 0; index++) { 1984 struct scrub_page *spage; 1985 u64 l = min_t(u64, len, PAGE_SIZE); 1986 1987 spage = kzalloc(sizeof(*spage), GFP_NOFS); 1988 if (!spage) { 1989 leave_nomem: 1990 spin_lock(&sctx->stat_lock); 1991 sctx->stat.malloc_errors++; 1992 spin_unlock(&sctx->stat_lock); 1993 scrub_block_put(sblock); 1994 return -ENOMEM; 1995 } 1996 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 1997 scrub_page_get(spage); 1998 sblock->pagev[index] = spage; 1999 spage->sblock = sblock; 2000 spage->dev = dev; 2001 spage->flags = flags; 2002 spage->generation = gen; 2003 spage->logical = logical; 2004 spage->physical = physical; 2005 spage->physical_for_dev_replace = physical_for_dev_replace; 2006 spage->mirror_num = mirror_num; 2007 if (csum) { 2008 spage->have_csum = 1; 2009 memcpy(spage->csum, csum, sctx->csum_size); 2010 } else { 2011 spage->have_csum = 0; 2012 } 2013 sblock->page_count++; 2014 spage->page = alloc_page(GFP_NOFS); 2015 if (!spage->page) 2016 goto leave_nomem; 2017 len -= l; 2018 logical += l; 2019 physical += l; 2020 physical_for_dev_replace += l; 2021 } 2022 2023 WARN_ON(sblock->page_count == 0); 2024 for (index = 0; index < sblock->page_count; index++) { 2025 struct scrub_page *spage = sblock->pagev[index]; 2026 int ret; 2027 2028 ret = scrub_add_page_to_rd_bio(sctx, spage); 2029 if (ret) { 2030 scrub_block_put(sblock); 2031 return ret; 2032 } 2033 } 2034 2035 if (force) 2036 scrub_submit(sctx); 2037 2038 /* last one frees, either here or in bio completion for last page */ 2039 scrub_block_put(sblock); 2040 return 0; 2041 } 2042 2043 static void scrub_bio_end_io(struct bio *bio, int err) 2044 { 2045 struct scrub_bio *sbio = bio->bi_private; 2046 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 2047 2048 sbio->err = err; 2049 sbio->bio = bio; 2050 2051 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work); 2052 } 2053 2054 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2055 { 2056 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2057 struct scrub_ctx *sctx = sbio->sctx; 2058 int i; 2059 2060 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2061 if (sbio->err) { 2062 for (i = 0; i < sbio->page_count; i++) { 2063 struct scrub_page *spage = sbio->pagev[i]; 2064 2065 spage->io_error = 1; 2066 spage->sblock->no_io_error_seen = 0; 2067 } 2068 } 2069 2070 /* now complete the scrub_block items that have all pages completed */ 2071 for (i = 0; i < sbio->page_count; i++) { 2072 struct scrub_page *spage = sbio->pagev[i]; 2073 struct scrub_block *sblock = spage->sblock; 2074 2075 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2076 scrub_block_complete(sblock); 2077 scrub_block_put(sblock); 2078 } 2079 2080 bio_put(sbio->bio); 2081 sbio->bio = NULL; 2082 spin_lock(&sctx->list_lock); 2083 sbio->next_free = sctx->first_free; 2084 sctx->first_free = sbio->index; 2085 spin_unlock(&sctx->list_lock); 2086 2087 if (sctx->is_dev_replace && 2088 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2089 mutex_lock(&sctx->wr_ctx.wr_lock); 2090 scrub_wr_submit(sctx); 2091 mutex_unlock(&sctx->wr_ctx.wr_lock); 2092 } 2093 2094 scrub_pending_bio_dec(sctx); 2095 } 2096 2097 static void scrub_block_complete(struct scrub_block *sblock) 2098 { 2099 if (!sblock->no_io_error_seen) { 2100 scrub_handle_errored_block(sblock); 2101 } else { 2102 /* 2103 * if has checksum error, write via repair mechanism in 2104 * dev replace case, otherwise write here in dev replace 2105 * case. 2106 */ 2107 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace) 2108 scrub_write_block_to_dev_replace(sblock); 2109 } 2110 } 2111 2112 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len, 2113 u8 *csum) 2114 { 2115 struct btrfs_ordered_sum *sum = NULL; 2116 unsigned long index; 2117 unsigned long num_sectors; 2118 2119 while (!list_empty(&sctx->csum_list)) { 2120 sum = list_first_entry(&sctx->csum_list, 2121 struct btrfs_ordered_sum, list); 2122 if (sum->bytenr > logical) 2123 return 0; 2124 if (sum->bytenr + sum->len > logical) 2125 break; 2126 2127 ++sctx->stat.csum_discards; 2128 list_del(&sum->list); 2129 kfree(sum); 2130 sum = NULL; 2131 } 2132 if (!sum) 2133 return 0; 2134 2135 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize; 2136 num_sectors = sum->len / sctx->sectorsize; 2137 memcpy(csum, sum->sums + index, sctx->csum_size); 2138 if (index == num_sectors - 1) { 2139 list_del(&sum->list); 2140 kfree(sum); 2141 } 2142 return 1; 2143 } 2144 2145 /* scrub extent tries to collect up to 64 kB for each bio */ 2146 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2147 u64 physical, struct btrfs_device *dev, u64 flags, 2148 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2149 { 2150 int ret; 2151 u8 csum[BTRFS_CSUM_SIZE]; 2152 u32 blocksize; 2153 2154 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2155 blocksize = sctx->sectorsize; 2156 spin_lock(&sctx->stat_lock); 2157 sctx->stat.data_extents_scrubbed++; 2158 sctx->stat.data_bytes_scrubbed += len; 2159 spin_unlock(&sctx->stat_lock); 2160 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2161 WARN_ON(sctx->nodesize != sctx->leafsize); 2162 blocksize = sctx->nodesize; 2163 spin_lock(&sctx->stat_lock); 2164 sctx->stat.tree_extents_scrubbed++; 2165 sctx->stat.tree_bytes_scrubbed += len; 2166 spin_unlock(&sctx->stat_lock); 2167 } else { 2168 blocksize = sctx->sectorsize; 2169 WARN_ON(1); 2170 } 2171 2172 while (len) { 2173 u64 l = min_t(u64, len, blocksize); 2174 int have_csum = 0; 2175 2176 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2177 /* push csums to sbio */ 2178 have_csum = scrub_find_csum(sctx, logical, l, csum); 2179 if (have_csum == 0) 2180 ++sctx->stat.no_csum; 2181 if (sctx->is_dev_replace && !have_csum) { 2182 ret = copy_nocow_pages(sctx, logical, l, 2183 mirror_num, 2184 physical_for_dev_replace); 2185 goto behind_scrub_pages; 2186 } 2187 } 2188 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2189 mirror_num, have_csum ? csum : NULL, 0, 2190 physical_for_dev_replace); 2191 behind_scrub_pages: 2192 if (ret) 2193 return ret; 2194 len -= l; 2195 logical += l; 2196 physical += l; 2197 physical_for_dev_replace += l; 2198 } 2199 return 0; 2200 } 2201 2202 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2203 struct map_lookup *map, 2204 struct btrfs_device *scrub_dev, 2205 int num, u64 base, u64 length, 2206 int is_dev_replace) 2207 { 2208 struct btrfs_path *path; 2209 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2210 struct btrfs_root *root = fs_info->extent_root; 2211 struct btrfs_root *csum_root = fs_info->csum_root; 2212 struct btrfs_extent_item *extent; 2213 struct blk_plug plug; 2214 u64 flags; 2215 int ret; 2216 int slot; 2217 u64 nstripes; 2218 struct extent_buffer *l; 2219 struct btrfs_key key; 2220 u64 physical; 2221 u64 logical; 2222 u64 logic_end; 2223 u64 generation; 2224 int mirror_num; 2225 struct reada_control *reada1; 2226 struct reada_control *reada2; 2227 struct btrfs_key key_start; 2228 struct btrfs_key key_end; 2229 u64 increment = map->stripe_len; 2230 u64 offset; 2231 u64 extent_logical; 2232 u64 extent_physical; 2233 u64 extent_len; 2234 struct btrfs_device *extent_dev; 2235 int extent_mirror_num; 2236 int stop_loop; 2237 2238 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 2239 BTRFS_BLOCK_GROUP_RAID6)) { 2240 if (num >= nr_data_stripes(map)) { 2241 return 0; 2242 } 2243 } 2244 2245 nstripes = length; 2246 offset = 0; 2247 do_div(nstripes, map->stripe_len); 2248 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 2249 offset = map->stripe_len * num; 2250 increment = map->stripe_len * map->num_stripes; 2251 mirror_num = 1; 2252 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 2253 int factor = map->num_stripes / map->sub_stripes; 2254 offset = map->stripe_len * (num / map->sub_stripes); 2255 increment = map->stripe_len * factor; 2256 mirror_num = num % map->sub_stripes + 1; 2257 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 2258 increment = map->stripe_len; 2259 mirror_num = num % map->num_stripes + 1; 2260 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 2261 increment = map->stripe_len; 2262 mirror_num = num % map->num_stripes + 1; 2263 } else { 2264 increment = map->stripe_len; 2265 mirror_num = 1; 2266 } 2267 2268 path = btrfs_alloc_path(); 2269 if (!path) 2270 return -ENOMEM; 2271 2272 /* 2273 * work on commit root. The related disk blocks are static as 2274 * long as COW is applied. This means, it is save to rewrite 2275 * them to repair disk errors without any race conditions 2276 */ 2277 path->search_commit_root = 1; 2278 path->skip_locking = 1; 2279 2280 /* 2281 * trigger the readahead for extent tree csum tree and wait for 2282 * completion. During readahead, the scrub is officially paused 2283 * to not hold off transaction commits 2284 */ 2285 logical = base + offset; 2286 2287 wait_event(sctx->list_wait, 2288 atomic_read(&sctx->bios_in_flight) == 0); 2289 atomic_inc(&fs_info->scrubs_paused); 2290 wake_up(&fs_info->scrub_pause_wait); 2291 2292 /* FIXME it might be better to start readahead at commit root */ 2293 key_start.objectid = logical; 2294 key_start.type = BTRFS_EXTENT_ITEM_KEY; 2295 key_start.offset = (u64)0; 2296 key_end.objectid = base + offset + nstripes * increment; 2297 key_end.type = BTRFS_METADATA_ITEM_KEY; 2298 key_end.offset = (u64)-1; 2299 reada1 = btrfs_reada_add(root, &key_start, &key_end); 2300 2301 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 2302 key_start.type = BTRFS_EXTENT_CSUM_KEY; 2303 key_start.offset = logical; 2304 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 2305 key_end.type = BTRFS_EXTENT_CSUM_KEY; 2306 key_end.offset = base + offset + nstripes * increment; 2307 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); 2308 2309 if (!IS_ERR(reada1)) 2310 btrfs_reada_wait(reada1); 2311 if (!IS_ERR(reada2)) 2312 btrfs_reada_wait(reada2); 2313 2314 mutex_lock(&fs_info->scrub_lock); 2315 while (atomic_read(&fs_info->scrub_pause_req)) { 2316 mutex_unlock(&fs_info->scrub_lock); 2317 wait_event(fs_info->scrub_pause_wait, 2318 atomic_read(&fs_info->scrub_pause_req) == 0); 2319 mutex_lock(&fs_info->scrub_lock); 2320 } 2321 atomic_dec(&fs_info->scrubs_paused); 2322 mutex_unlock(&fs_info->scrub_lock); 2323 wake_up(&fs_info->scrub_pause_wait); 2324 2325 /* 2326 * collect all data csums for the stripe to avoid seeking during 2327 * the scrub. This might currently (crc32) end up to be about 1MB 2328 */ 2329 blk_start_plug(&plug); 2330 2331 /* 2332 * now find all extents for each stripe and scrub them 2333 */ 2334 logical = base + offset; 2335 physical = map->stripes[num].physical; 2336 logic_end = logical + increment * nstripes; 2337 ret = 0; 2338 while (logical < logic_end) { 2339 /* 2340 * canceled? 2341 */ 2342 if (atomic_read(&fs_info->scrub_cancel_req) || 2343 atomic_read(&sctx->cancel_req)) { 2344 ret = -ECANCELED; 2345 goto out; 2346 } 2347 /* 2348 * check to see if we have to pause 2349 */ 2350 if (atomic_read(&fs_info->scrub_pause_req)) { 2351 /* push queued extents */ 2352 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 2353 scrub_submit(sctx); 2354 mutex_lock(&sctx->wr_ctx.wr_lock); 2355 scrub_wr_submit(sctx); 2356 mutex_unlock(&sctx->wr_ctx.wr_lock); 2357 wait_event(sctx->list_wait, 2358 atomic_read(&sctx->bios_in_flight) == 0); 2359 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 2360 atomic_inc(&fs_info->scrubs_paused); 2361 wake_up(&fs_info->scrub_pause_wait); 2362 mutex_lock(&fs_info->scrub_lock); 2363 while (atomic_read(&fs_info->scrub_pause_req)) { 2364 mutex_unlock(&fs_info->scrub_lock); 2365 wait_event(fs_info->scrub_pause_wait, 2366 atomic_read(&fs_info->scrub_pause_req) == 0); 2367 mutex_lock(&fs_info->scrub_lock); 2368 } 2369 atomic_dec(&fs_info->scrubs_paused); 2370 mutex_unlock(&fs_info->scrub_lock); 2371 wake_up(&fs_info->scrub_pause_wait); 2372 } 2373 2374 key.objectid = logical; 2375 key.type = BTRFS_EXTENT_ITEM_KEY; 2376 key.offset = (u64)-1; 2377 2378 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2379 if (ret < 0) 2380 goto out; 2381 2382 if (ret > 0) { 2383 ret = btrfs_previous_item(root, path, 0, 2384 BTRFS_EXTENT_ITEM_KEY); 2385 if (ret < 0) 2386 goto out; 2387 if (ret > 0) { 2388 /* there's no smaller item, so stick with the 2389 * larger one */ 2390 btrfs_release_path(path); 2391 ret = btrfs_search_slot(NULL, root, &key, 2392 path, 0, 0); 2393 if (ret < 0) 2394 goto out; 2395 } 2396 } 2397 2398 stop_loop = 0; 2399 while (1) { 2400 u64 bytes; 2401 2402 l = path->nodes[0]; 2403 slot = path->slots[0]; 2404 if (slot >= btrfs_header_nritems(l)) { 2405 ret = btrfs_next_leaf(root, path); 2406 if (ret == 0) 2407 continue; 2408 if (ret < 0) 2409 goto out; 2410 2411 stop_loop = 1; 2412 break; 2413 } 2414 btrfs_item_key_to_cpu(l, &key, slot); 2415 2416 if (key.type == BTRFS_METADATA_ITEM_KEY) 2417 bytes = root->leafsize; 2418 else 2419 bytes = key.offset; 2420 2421 if (key.objectid + bytes <= logical) 2422 goto next; 2423 2424 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2425 key.type != BTRFS_METADATA_ITEM_KEY) 2426 goto next; 2427 2428 if (key.objectid >= logical + map->stripe_len) { 2429 /* out of this device extent */ 2430 if (key.objectid >= logic_end) 2431 stop_loop = 1; 2432 break; 2433 } 2434 2435 extent = btrfs_item_ptr(l, slot, 2436 struct btrfs_extent_item); 2437 flags = btrfs_extent_flags(l, extent); 2438 generation = btrfs_extent_generation(l, extent); 2439 2440 if (key.objectid < logical && 2441 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { 2442 printk(KERN_ERR 2443 "btrfs scrub: tree block %llu spanning " 2444 "stripes, ignored. logical=%llu\n", 2445 key.objectid, logical); 2446 goto next; 2447 } 2448 2449 again: 2450 extent_logical = key.objectid; 2451 extent_len = bytes; 2452 2453 /* 2454 * trim extent to this stripe 2455 */ 2456 if (extent_logical < logical) { 2457 extent_len -= logical - extent_logical; 2458 extent_logical = logical; 2459 } 2460 if (extent_logical + extent_len > 2461 logical + map->stripe_len) { 2462 extent_len = logical + map->stripe_len - 2463 extent_logical; 2464 } 2465 2466 extent_physical = extent_logical - logical + physical; 2467 extent_dev = scrub_dev; 2468 extent_mirror_num = mirror_num; 2469 if (is_dev_replace) 2470 scrub_remap_extent(fs_info, extent_logical, 2471 extent_len, &extent_physical, 2472 &extent_dev, 2473 &extent_mirror_num); 2474 2475 ret = btrfs_lookup_csums_range(csum_root, logical, 2476 logical + map->stripe_len - 1, 2477 &sctx->csum_list, 1); 2478 if (ret) 2479 goto out; 2480 2481 ret = scrub_extent(sctx, extent_logical, extent_len, 2482 extent_physical, extent_dev, flags, 2483 generation, extent_mirror_num, 2484 extent_logical - logical + physical); 2485 if (ret) 2486 goto out; 2487 2488 scrub_free_csums(sctx); 2489 if (extent_logical + extent_len < 2490 key.objectid + bytes) { 2491 logical += increment; 2492 physical += map->stripe_len; 2493 2494 if (logical < key.objectid + bytes) { 2495 cond_resched(); 2496 goto again; 2497 } 2498 2499 if (logical >= logic_end) { 2500 stop_loop = 1; 2501 break; 2502 } 2503 } 2504 next: 2505 path->slots[0]++; 2506 } 2507 btrfs_release_path(path); 2508 logical += increment; 2509 physical += map->stripe_len; 2510 spin_lock(&sctx->stat_lock); 2511 if (stop_loop) 2512 sctx->stat.last_physical = map->stripes[num].physical + 2513 length; 2514 else 2515 sctx->stat.last_physical = physical; 2516 spin_unlock(&sctx->stat_lock); 2517 if (stop_loop) 2518 break; 2519 } 2520 out: 2521 /* push queued extents */ 2522 scrub_submit(sctx); 2523 mutex_lock(&sctx->wr_ctx.wr_lock); 2524 scrub_wr_submit(sctx); 2525 mutex_unlock(&sctx->wr_ctx.wr_lock); 2526 2527 blk_finish_plug(&plug); 2528 btrfs_free_path(path); 2529 return ret < 0 ? ret : 0; 2530 } 2531 2532 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2533 struct btrfs_device *scrub_dev, 2534 u64 chunk_tree, u64 chunk_objectid, 2535 u64 chunk_offset, u64 length, 2536 u64 dev_offset, int is_dev_replace) 2537 { 2538 struct btrfs_mapping_tree *map_tree = 2539 &sctx->dev_root->fs_info->mapping_tree; 2540 struct map_lookup *map; 2541 struct extent_map *em; 2542 int i; 2543 int ret = 0; 2544 2545 read_lock(&map_tree->map_tree.lock); 2546 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 2547 read_unlock(&map_tree->map_tree.lock); 2548 2549 if (!em) 2550 return -EINVAL; 2551 2552 map = (struct map_lookup *)em->bdev; 2553 if (em->start != chunk_offset) 2554 goto out; 2555 2556 if (em->len < length) 2557 goto out; 2558 2559 for (i = 0; i < map->num_stripes; ++i) { 2560 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2561 map->stripes[i].physical == dev_offset) { 2562 ret = scrub_stripe(sctx, map, scrub_dev, i, 2563 chunk_offset, length, 2564 is_dev_replace); 2565 if (ret) 2566 goto out; 2567 } 2568 } 2569 out: 2570 free_extent_map(em); 2571 2572 return ret; 2573 } 2574 2575 static noinline_for_stack 2576 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2577 struct btrfs_device *scrub_dev, u64 start, u64 end, 2578 int is_dev_replace) 2579 { 2580 struct btrfs_dev_extent *dev_extent = NULL; 2581 struct btrfs_path *path; 2582 struct btrfs_root *root = sctx->dev_root; 2583 struct btrfs_fs_info *fs_info = root->fs_info; 2584 u64 length; 2585 u64 chunk_tree; 2586 u64 chunk_objectid; 2587 u64 chunk_offset; 2588 int ret; 2589 int slot; 2590 struct extent_buffer *l; 2591 struct btrfs_key key; 2592 struct btrfs_key found_key; 2593 struct btrfs_block_group_cache *cache; 2594 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2595 2596 path = btrfs_alloc_path(); 2597 if (!path) 2598 return -ENOMEM; 2599 2600 path->reada = 2; 2601 path->search_commit_root = 1; 2602 path->skip_locking = 1; 2603 2604 key.objectid = scrub_dev->devid; 2605 key.offset = 0ull; 2606 key.type = BTRFS_DEV_EXTENT_KEY; 2607 2608 while (1) { 2609 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2610 if (ret < 0) 2611 break; 2612 if (ret > 0) { 2613 if (path->slots[0] >= 2614 btrfs_header_nritems(path->nodes[0])) { 2615 ret = btrfs_next_leaf(root, path); 2616 if (ret) 2617 break; 2618 } 2619 } 2620 2621 l = path->nodes[0]; 2622 slot = path->slots[0]; 2623 2624 btrfs_item_key_to_cpu(l, &found_key, slot); 2625 2626 if (found_key.objectid != scrub_dev->devid) 2627 break; 2628 2629 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY) 2630 break; 2631 2632 if (found_key.offset >= end) 2633 break; 2634 2635 if (found_key.offset < key.offset) 2636 break; 2637 2638 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2639 length = btrfs_dev_extent_length(l, dev_extent); 2640 2641 if (found_key.offset + length <= start) { 2642 key.offset = found_key.offset + length; 2643 btrfs_release_path(path); 2644 continue; 2645 } 2646 2647 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 2648 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 2649 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2650 2651 /* 2652 * get a reference on the corresponding block group to prevent 2653 * the chunk from going away while we scrub it 2654 */ 2655 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2656 if (!cache) { 2657 ret = -ENOENT; 2658 break; 2659 } 2660 dev_replace->cursor_right = found_key.offset + length; 2661 dev_replace->cursor_left = found_key.offset; 2662 dev_replace->item_needs_writeback = 1; 2663 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid, 2664 chunk_offset, length, found_key.offset, 2665 is_dev_replace); 2666 2667 /* 2668 * flush, submit all pending read and write bios, afterwards 2669 * wait for them. 2670 * Note that in the dev replace case, a read request causes 2671 * write requests that are submitted in the read completion 2672 * worker. Therefore in the current situation, it is required 2673 * that all write requests are flushed, so that all read and 2674 * write requests are really completed when bios_in_flight 2675 * changes to 0. 2676 */ 2677 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 2678 scrub_submit(sctx); 2679 mutex_lock(&sctx->wr_ctx.wr_lock); 2680 scrub_wr_submit(sctx); 2681 mutex_unlock(&sctx->wr_ctx.wr_lock); 2682 2683 wait_event(sctx->list_wait, 2684 atomic_read(&sctx->bios_in_flight) == 0); 2685 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 2686 atomic_inc(&fs_info->scrubs_paused); 2687 wake_up(&fs_info->scrub_pause_wait); 2688 wait_event(sctx->list_wait, 2689 atomic_read(&sctx->workers_pending) == 0); 2690 2691 mutex_lock(&fs_info->scrub_lock); 2692 while (atomic_read(&fs_info->scrub_pause_req)) { 2693 mutex_unlock(&fs_info->scrub_lock); 2694 wait_event(fs_info->scrub_pause_wait, 2695 atomic_read(&fs_info->scrub_pause_req) == 0); 2696 mutex_lock(&fs_info->scrub_lock); 2697 } 2698 atomic_dec(&fs_info->scrubs_paused); 2699 mutex_unlock(&fs_info->scrub_lock); 2700 wake_up(&fs_info->scrub_pause_wait); 2701 2702 btrfs_put_block_group(cache); 2703 if (ret) 2704 break; 2705 if (is_dev_replace && 2706 atomic64_read(&dev_replace->num_write_errors) > 0) { 2707 ret = -EIO; 2708 break; 2709 } 2710 if (sctx->stat.malloc_errors > 0) { 2711 ret = -ENOMEM; 2712 break; 2713 } 2714 2715 dev_replace->cursor_left = dev_replace->cursor_right; 2716 dev_replace->item_needs_writeback = 1; 2717 2718 key.offset = found_key.offset + length; 2719 btrfs_release_path(path); 2720 } 2721 2722 btrfs_free_path(path); 2723 2724 /* 2725 * ret can still be 1 from search_slot or next_leaf, 2726 * that's not an error 2727 */ 2728 return ret < 0 ? ret : 0; 2729 } 2730 2731 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2732 struct btrfs_device *scrub_dev) 2733 { 2734 int i; 2735 u64 bytenr; 2736 u64 gen; 2737 int ret; 2738 struct btrfs_root *root = sctx->dev_root; 2739 2740 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 2741 return -EIO; 2742 2743 gen = root->fs_info->last_trans_committed; 2744 2745 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2746 bytenr = btrfs_sb_offset(i); 2747 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes) 2748 break; 2749 2750 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 2751 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 2752 NULL, 1, bytenr); 2753 if (ret) 2754 return ret; 2755 } 2756 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 2757 2758 return 0; 2759 } 2760 2761 /* 2762 * get a reference count on fs_info->scrub_workers. start worker if necessary 2763 */ 2764 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 2765 int is_dev_replace) 2766 { 2767 int ret = 0; 2768 2769 if (fs_info->scrub_workers_refcnt == 0) { 2770 if (is_dev_replace) 2771 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1, 2772 &fs_info->generic_worker); 2773 else 2774 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 2775 fs_info->thread_pool_size, 2776 &fs_info->generic_worker); 2777 fs_info->scrub_workers.idle_thresh = 4; 2778 ret = btrfs_start_workers(&fs_info->scrub_workers); 2779 if (ret) 2780 goto out; 2781 btrfs_init_workers(&fs_info->scrub_wr_completion_workers, 2782 "scrubwrc", 2783 fs_info->thread_pool_size, 2784 &fs_info->generic_worker); 2785 fs_info->scrub_wr_completion_workers.idle_thresh = 2; 2786 ret = btrfs_start_workers( 2787 &fs_info->scrub_wr_completion_workers); 2788 if (ret) 2789 goto out; 2790 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1, 2791 &fs_info->generic_worker); 2792 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers); 2793 if (ret) 2794 goto out; 2795 } 2796 ++fs_info->scrub_workers_refcnt; 2797 out: 2798 return ret; 2799 } 2800 2801 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 2802 { 2803 if (--fs_info->scrub_workers_refcnt == 0) { 2804 btrfs_stop_workers(&fs_info->scrub_workers); 2805 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers); 2806 btrfs_stop_workers(&fs_info->scrub_nocow_workers); 2807 } 2808 WARN_ON(fs_info->scrub_workers_refcnt < 0); 2809 } 2810 2811 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2812 u64 end, struct btrfs_scrub_progress *progress, 2813 int readonly, int is_dev_replace) 2814 { 2815 struct scrub_ctx *sctx; 2816 int ret; 2817 struct btrfs_device *dev; 2818 2819 if (btrfs_fs_closing(fs_info)) 2820 return -EINVAL; 2821 2822 /* 2823 * check some assumptions 2824 */ 2825 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) { 2826 printk(KERN_ERR 2827 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n", 2828 fs_info->chunk_root->nodesize, 2829 fs_info->chunk_root->leafsize); 2830 return -EINVAL; 2831 } 2832 2833 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) { 2834 /* 2835 * in this case scrub is unable to calculate the checksum 2836 * the way scrub is implemented. Do not handle this 2837 * situation at all because it won't ever happen. 2838 */ 2839 printk(KERN_ERR 2840 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n", 2841 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN); 2842 return -EINVAL; 2843 } 2844 2845 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) { 2846 /* not supported for data w/o checksums */ 2847 printk(KERN_ERR 2848 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n", 2849 fs_info->chunk_root->sectorsize, PAGE_SIZE); 2850 return -EINVAL; 2851 } 2852 2853 if (fs_info->chunk_root->nodesize > 2854 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 2855 fs_info->chunk_root->sectorsize > 2856 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 2857 /* 2858 * would exhaust the array bounds of pagev member in 2859 * struct scrub_block 2860 */ 2861 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n", 2862 fs_info->chunk_root->nodesize, 2863 SCRUB_MAX_PAGES_PER_BLOCK, 2864 fs_info->chunk_root->sectorsize, 2865 SCRUB_MAX_PAGES_PER_BLOCK); 2866 return -EINVAL; 2867 } 2868 2869 2870 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2871 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 2872 if (!dev || (dev->missing && !is_dev_replace)) { 2873 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2874 return -ENODEV; 2875 } 2876 2877 mutex_lock(&fs_info->scrub_lock); 2878 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 2879 mutex_unlock(&fs_info->scrub_lock); 2880 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2881 return -EIO; 2882 } 2883 2884 btrfs_dev_replace_lock(&fs_info->dev_replace); 2885 if (dev->scrub_device || 2886 (!is_dev_replace && 2887 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2888 btrfs_dev_replace_unlock(&fs_info->dev_replace); 2889 mutex_unlock(&fs_info->scrub_lock); 2890 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2891 return -EINPROGRESS; 2892 } 2893 btrfs_dev_replace_unlock(&fs_info->dev_replace); 2894 2895 ret = scrub_workers_get(fs_info, is_dev_replace); 2896 if (ret) { 2897 mutex_unlock(&fs_info->scrub_lock); 2898 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2899 return ret; 2900 } 2901 2902 sctx = scrub_setup_ctx(dev, is_dev_replace); 2903 if (IS_ERR(sctx)) { 2904 mutex_unlock(&fs_info->scrub_lock); 2905 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2906 scrub_workers_put(fs_info); 2907 return PTR_ERR(sctx); 2908 } 2909 sctx->readonly = readonly; 2910 dev->scrub_device = sctx; 2911 2912 atomic_inc(&fs_info->scrubs_running); 2913 mutex_unlock(&fs_info->scrub_lock); 2914 2915 if (!is_dev_replace) { 2916 /* 2917 * by holding device list mutex, we can 2918 * kick off writing super in log tree sync. 2919 */ 2920 ret = scrub_supers(sctx, dev); 2921 } 2922 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2923 2924 if (!ret) 2925 ret = scrub_enumerate_chunks(sctx, dev, start, end, 2926 is_dev_replace); 2927 2928 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 2929 atomic_dec(&fs_info->scrubs_running); 2930 wake_up(&fs_info->scrub_pause_wait); 2931 2932 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 2933 2934 if (progress) 2935 memcpy(progress, &sctx->stat, sizeof(*progress)); 2936 2937 mutex_lock(&fs_info->scrub_lock); 2938 dev->scrub_device = NULL; 2939 scrub_workers_put(fs_info); 2940 mutex_unlock(&fs_info->scrub_lock); 2941 2942 scrub_free_ctx(sctx); 2943 2944 return ret; 2945 } 2946 2947 void btrfs_scrub_pause(struct btrfs_root *root) 2948 { 2949 struct btrfs_fs_info *fs_info = root->fs_info; 2950 2951 mutex_lock(&fs_info->scrub_lock); 2952 atomic_inc(&fs_info->scrub_pause_req); 2953 while (atomic_read(&fs_info->scrubs_paused) != 2954 atomic_read(&fs_info->scrubs_running)) { 2955 mutex_unlock(&fs_info->scrub_lock); 2956 wait_event(fs_info->scrub_pause_wait, 2957 atomic_read(&fs_info->scrubs_paused) == 2958 atomic_read(&fs_info->scrubs_running)); 2959 mutex_lock(&fs_info->scrub_lock); 2960 } 2961 mutex_unlock(&fs_info->scrub_lock); 2962 } 2963 2964 void btrfs_scrub_continue(struct btrfs_root *root) 2965 { 2966 struct btrfs_fs_info *fs_info = root->fs_info; 2967 2968 atomic_dec(&fs_info->scrub_pause_req); 2969 wake_up(&fs_info->scrub_pause_wait); 2970 } 2971 2972 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 2973 { 2974 mutex_lock(&fs_info->scrub_lock); 2975 if (!atomic_read(&fs_info->scrubs_running)) { 2976 mutex_unlock(&fs_info->scrub_lock); 2977 return -ENOTCONN; 2978 } 2979 2980 atomic_inc(&fs_info->scrub_cancel_req); 2981 while (atomic_read(&fs_info->scrubs_running)) { 2982 mutex_unlock(&fs_info->scrub_lock); 2983 wait_event(fs_info->scrub_pause_wait, 2984 atomic_read(&fs_info->scrubs_running) == 0); 2985 mutex_lock(&fs_info->scrub_lock); 2986 } 2987 atomic_dec(&fs_info->scrub_cancel_req); 2988 mutex_unlock(&fs_info->scrub_lock); 2989 2990 return 0; 2991 } 2992 2993 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 2994 struct btrfs_device *dev) 2995 { 2996 struct scrub_ctx *sctx; 2997 2998 mutex_lock(&fs_info->scrub_lock); 2999 sctx = dev->scrub_device; 3000 if (!sctx) { 3001 mutex_unlock(&fs_info->scrub_lock); 3002 return -ENOTCONN; 3003 } 3004 atomic_inc(&sctx->cancel_req); 3005 while (dev->scrub_device) { 3006 mutex_unlock(&fs_info->scrub_lock); 3007 wait_event(fs_info->scrub_pause_wait, 3008 dev->scrub_device == NULL); 3009 mutex_lock(&fs_info->scrub_lock); 3010 } 3011 mutex_unlock(&fs_info->scrub_lock); 3012 3013 return 0; 3014 } 3015 3016 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 3017 struct btrfs_scrub_progress *progress) 3018 { 3019 struct btrfs_device *dev; 3020 struct scrub_ctx *sctx = NULL; 3021 3022 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3023 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL); 3024 if (dev) 3025 sctx = dev->scrub_device; 3026 if (sctx) 3027 memcpy(progress, &sctx->stat, sizeof(*progress)); 3028 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3029 3030 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3031 } 3032 3033 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 3034 u64 extent_logical, u64 extent_len, 3035 u64 *extent_physical, 3036 struct btrfs_device **extent_dev, 3037 int *extent_mirror_num) 3038 { 3039 u64 mapped_length; 3040 struct btrfs_bio *bbio = NULL; 3041 int ret; 3042 3043 mapped_length = extent_len; 3044 ret = btrfs_map_block(fs_info, READ, extent_logical, 3045 &mapped_length, &bbio, 0); 3046 if (ret || !bbio || mapped_length < extent_len || 3047 !bbio->stripes[0].dev->bdev) { 3048 kfree(bbio); 3049 return; 3050 } 3051 3052 *extent_physical = bbio->stripes[0].physical; 3053 *extent_mirror_num = bbio->mirror_num; 3054 *extent_dev = bbio->stripes[0].dev; 3055 kfree(bbio); 3056 } 3057 3058 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 3059 struct scrub_wr_ctx *wr_ctx, 3060 struct btrfs_fs_info *fs_info, 3061 struct btrfs_device *dev, 3062 int is_dev_replace) 3063 { 3064 WARN_ON(wr_ctx->wr_curr_bio != NULL); 3065 3066 mutex_init(&wr_ctx->wr_lock); 3067 wr_ctx->wr_curr_bio = NULL; 3068 if (!is_dev_replace) 3069 return 0; 3070 3071 WARN_ON(!dev->bdev); 3072 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO, 3073 bio_get_nr_vecs(dev->bdev)); 3074 wr_ctx->tgtdev = dev; 3075 atomic_set(&wr_ctx->flush_all_writes, 0); 3076 return 0; 3077 } 3078 3079 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) 3080 { 3081 mutex_lock(&wr_ctx->wr_lock); 3082 kfree(wr_ctx->wr_curr_bio); 3083 wr_ctx->wr_curr_bio = NULL; 3084 mutex_unlock(&wr_ctx->wr_lock); 3085 } 3086 3087 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 3088 int mirror_num, u64 physical_for_dev_replace) 3089 { 3090 struct scrub_copy_nocow_ctx *nocow_ctx; 3091 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 3092 3093 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 3094 if (!nocow_ctx) { 3095 spin_lock(&sctx->stat_lock); 3096 sctx->stat.malloc_errors++; 3097 spin_unlock(&sctx->stat_lock); 3098 return -ENOMEM; 3099 } 3100 3101 scrub_pending_trans_workers_inc(sctx); 3102 3103 nocow_ctx->sctx = sctx; 3104 nocow_ctx->logical = logical; 3105 nocow_ctx->len = len; 3106 nocow_ctx->mirror_num = mirror_num; 3107 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 3108 nocow_ctx->work.func = copy_nocow_pages_worker; 3109 INIT_LIST_HEAD(&nocow_ctx->inodes); 3110 btrfs_queue_worker(&fs_info->scrub_nocow_workers, 3111 &nocow_ctx->work); 3112 3113 return 0; 3114 } 3115 3116 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 3117 { 3118 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 3119 struct scrub_nocow_inode *nocow_inode; 3120 3121 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 3122 if (!nocow_inode) 3123 return -ENOMEM; 3124 nocow_inode->inum = inum; 3125 nocow_inode->offset = offset; 3126 nocow_inode->root = root; 3127 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 3128 return 0; 3129 } 3130 3131 #define COPY_COMPLETE 1 3132 3133 static void copy_nocow_pages_worker(struct btrfs_work *work) 3134 { 3135 struct scrub_copy_nocow_ctx *nocow_ctx = 3136 container_of(work, struct scrub_copy_nocow_ctx, work); 3137 struct scrub_ctx *sctx = nocow_ctx->sctx; 3138 u64 logical = nocow_ctx->logical; 3139 u64 len = nocow_ctx->len; 3140 int mirror_num = nocow_ctx->mirror_num; 3141 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3142 int ret; 3143 struct btrfs_trans_handle *trans = NULL; 3144 struct btrfs_fs_info *fs_info; 3145 struct btrfs_path *path; 3146 struct btrfs_root *root; 3147 int not_written = 0; 3148 3149 fs_info = sctx->dev_root->fs_info; 3150 root = fs_info->extent_root; 3151 3152 path = btrfs_alloc_path(); 3153 if (!path) { 3154 spin_lock(&sctx->stat_lock); 3155 sctx->stat.malloc_errors++; 3156 spin_unlock(&sctx->stat_lock); 3157 not_written = 1; 3158 goto out; 3159 } 3160 3161 trans = btrfs_join_transaction(root); 3162 if (IS_ERR(trans)) { 3163 not_written = 1; 3164 goto out; 3165 } 3166 3167 ret = iterate_inodes_from_logical(logical, fs_info, path, 3168 record_inode_for_nocow, nocow_ctx); 3169 if (ret != 0 && ret != -ENOENT) { 3170 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d\n", 3171 logical, physical_for_dev_replace, len, mirror_num, 3172 ret); 3173 not_written = 1; 3174 goto out; 3175 } 3176 3177 btrfs_end_transaction(trans, root); 3178 trans = NULL; 3179 while (!list_empty(&nocow_ctx->inodes)) { 3180 struct scrub_nocow_inode *entry; 3181 entry = list_first_entry(&nocow_ctx->inodes, 3182 struct scrub_nocow_inode, 3183 list); 3184 list_del_init(&entry->list); 3185 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 3186 entry->root, nocow_ctx); 3187 kfree(entry); 3188 if (ret == COPY_COMPLETE) { 3189 ret = 0; 3190 break; 3191 } else if (ret) { 3192 break; 3193 } 3194 } 3195 out: 3196 while (!list_empty(&nocow_ctx->inodes)) { 3197 struct scrub_nocow_inode *entry; 3198 entry = list_first_entry(&nocow_ctx->inodes, 3199 struct scrub_nocow_inode, 3200 list); 3201 list_del_init(&entry->list); 3202 kfree(entry); 3203 } 3204 if (trans && !IS_ERR(trans)) 3205 btrfs_end_transaction(trans, root); 3206 if (not_written) 3207 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 3208 num_uncorrectable_read_errors); 3209 3210 btrfs_free_path(path); 3211 kfree(nocow_ctx); 3212 3213 scrub_pending_trans_workers_dec(sctx); 3214 } 3215 3216 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 3217 struct scrub_copy_nocow_ctx *nocow_ctx) 3218 { 3219 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info; 3220 struct btrfs_key key; 3221 struct inode *inode; 3222 struct page *page; 3223 struct btrfs_root *local_root; 3224 struct btrfs_ordered_extent *ordered; 3225 struct extent_map *em; 3226 struct extent_state *cached_state = NULL; 3227 struct extent_io_tree *io_tree; 3228 u64 physical_for_dev_replace; 3229 u64 len = nocow_ctx->len; 3230 u64 lockstart = offset, lockend = offset + len - 1; 3231 unsigned long index; 3232 int srcu_index; 3233 int ret = 0; 3234 int err = 0; 3235 3236 key.objectid = root; 3237 key.type = BTRFS_ROOT_ITEM_KEY; 3238 key.offset = (u64)-1; 3239 3240 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 3241 3242 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 3243 if (IS_ERR(local_root)) { 3244 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 3245 return PTR_ERR(local_root); 3246 } 3247 3248 key.type = BTRFS_INODE_ITEM_KEY; 3249 key.objectid = inum; 3250 key.offset = 0; 3251 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 3252 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 3253 if (IS_ERR(inode)) 3254 return PTR_ERR(inode); 3255 3256 /* Avoid truncate/dio/punch hole.. */ 3257 mutex_lock(&inode->i_mutex); 3258 inode_dio_wait(inode); 3259 3260 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3261 io_tree = &BTRFS_I(inode)->io_tree; 3262 3263 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state); 3264 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 3265 if (ordered) { 3266 btrfs_put_ordered_extent(ordered); 3267 goto out_unlock; 3268 } 3269 3270 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0); 3271 if (IS_ERR(em)) { 3272 ret = PTR_ERR(em); 3273 goto out_unlock; 3274 } 3275 3276 /* 3277 * This extent does not actually cover the logical extent anymore, 3278 * move on to the next inode. 3279 */ 3280 if (em->block_start > nocow_ctx->logical || 3281 em->block_start + em->block_len < nocow_ctx->logical + len) { 3282 free_extent_map(em); 3283 goto out_unlock; 3284 } 3285 free_extent_map(em); 3286 3287 while (len >= PAGE_CACHE_SIZE) { 3288 index = offset >> PAGE_CACHE_SHIFT; 3289 again: 3290 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 3291 if (!page) { 3292 pr_err("find_or_create_page() failed\n"); 3293 ret = -ENOMEM; 3294 goto out; 3295 } 3296 3297 if (PageUptodate(page)) { 3298 if (PageDirty(page)) 3299 goto next_page; 3300 } else { 3301 ClearPageError(page); 3302 err = extent_read_full_page_nolock(io_tree, page, 3303 btrfs_get_extent, 3304 nocow_ctx->mirror_num); 3305 if (err) { 3306 ret = err; 3307 goto next_page; 3308 } 3309 3310 lock_page(page); 3311 /* 3312 * If the page has been remove from the page cache, 3313 * the data on it is meaningless, because it may be 3314 * old one, the new data may be written into the new 3315 * page in the page cache. 3316 */ 3317 if (page->mapping != inode->i_mapping) { 3318 unlock_page(page); 3319 page_cache_release(page); 3320 goto again; 3321 } 3322 if (!PageUptodate(page)) { 3323 ret = -EIO; 3324 goto next_page; 3325 } 3326 } 3327 err = write_page_nocow(nocow_ctx->sctx, 3328 physical_for_dev_replace, page); 3329 if (err) 3330 ret = err; 3331 next_page: 3332 unlock_page(page); 3333 page_cache_release(page); 3334 3335 if (ret) 3336 break; 3337 3338 offset += PAGE_CACHE_SIZE; 3339 physical_for_dev_replace += PAGE_CACHE_SIZE; 3340 len -= PAGE_CACHE_SIZE; 3341 } 3342 ret = COPY_COMPLETE; 3343 out_unlock: 3344 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state, 3345 GFP_NOFS); 3346 out: 3347 mutex_unlock(&inode->i_mutex); 3348 iput(inode); 3349 return ret; 3350 } 3351 3352 static int write_page_nocow(struct scrub_ctx *sctx, 3353 u64 physical_for_dev_replace, struct page *page) 3354 { 3355 struct bio *bio; 3356 struct btrfs_device *dev; 3357 int ret; 3358 3359 dev = sctx->wr_ctx.tgtdev; 3360 if (!dev) 3361 return -EIO; 3362 if (!dev->bdev) { 3363 printk_ratelimited(KERN_WARNING 3364 "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n"); 3365 return -EIO; 3366 } 3367 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 3368 if (!bio) { 3369 spin_lock(&sctx->stat_lock); 3370 sctx->stat.malloc_errors++; 3371 spin_unlock(&sctx->stat_lock); 3372 return -ENOMEM; 3373 } 3374 bio->bi_size = 0; 3375 bio->bi_sector = physical_for_dev_replace >> 9; 3376 bio->bi_bdev = dev->bdev; 3377 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 3378 if (ret != PAGE_CACHE_SIZE) { 3379 leave_with_eio: 3380 bio_put(bio); 3381 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 3382 return -EIO; 3383 } 3384 3385 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) 3386 goto leave_with_eio; 3387 3388 bio_put(bio); 3389 return 0; 3390 } 3391