xref: /openbmc/linux/fs/btrfs/scrub.c (revision bc000245)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_page {
67 	struct scrub_block	*sblock;
68 	struct page		*page;
69 	struct btrfs_device	*dev;
70 	u64			flags;  /* extent flags */
71 	u64			generation;
72 	u64			logical;
73 	u64			physical;
74 	u64			physical_for_dev_replace;
75 	atomic_t		ref_count;
76 	struct {
77 		unsigned int	mirror_num:8;
78 		unsigned int	have_csum:1;
79 		unsigned int	io_error:1;
80 	};
81 	u8			csum[BTRFS_CSUM_SIZE];
82 };
83 
84 struct scrub_bio {
85 	int			index;
86 	struct scrub_ctx	*sctx;
87 	struct btrfs_device	*dev;
88 	struct bio		*bio;
89 	int			err;
90 	u64			logical;
91 	u64			physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 	int			page_count;
98 	int			next_free;
99 	struct btrfs_work	work;
100 };
101 
102 struct scrub_block {
103 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 	int			page_count;
105 	atomic_t		outstanding_pages;
106 	atomic_t		ref_count; /* free mem on transition to zero */
107 	struct scrub_ctx	*sctx;
108 	struct {
109 		unsigned int	header_error:1;
110 		unsigned int	checksum_error:1;
111 		unsigned int	no_io_error_seen:1;
112 		unsigned int	generation_error:1; /* also sets header_error */
113 	};
114 };
115 
116 struct scrub_wr_ctx {
117 	struct scrub_bio *wr_curr_bio;
118 	struct btrfs_device *tgtdev;
119 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 	atomic_t flush_all_writes;
121 	struct mutex wr_lock;
122 };
123 
124 struct scrub_ctx {
125 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126 	struct btrfs_root	*dev_root;
127 	int			first_free;
128 	int			curr;
129 	atomic_t		bios_in_flight;
130 	atomic_t		workers_pending;
131 	spinlock_t		list_lock;
132 	wait_queue_head_t	list_wait;
133 	u16			csum_size;
134 	struct list_head	csum_list;
135 	atomic_t		cancel_req;
136 	int			readonly;
137 	int			pages_per_rd_bio;
138 	u32			sectorsize;
139 	u32			nodesize;
140 	u32			leafsize;
141 
142 	int			is_dev_replace;
143 	struct scrub_wr_ctx	wr_ctx;
144 
145 	/*
146 	 * statistics
147 	 */
148 	struct btrfs_scrub_progress stat;
149 	spinlock_t		stat_lock;
150 };
151 
152 struct scrub_fixup_nodatasum {
153 	struct scrub_ctx	*sctx;
154 	struct btrfs_device	*dev;
155 	u64			logical;
156 	struct btrfs_root	*root;
157 	struct btrfs_work	work;
158 	int			mirror_num;
159 };
160 
161 struct scrub_nocow_inode {
162 	u64			inum;
163 	u64			offset;
164 	u64			root;
165 	struct list_head	list;
166 };
167 
168 struct scrub_copy_nocow_ctx {
169 	struct scrub_ctx	*sctx;
170 	u64			logical;
171 	u64			len;
172 	int			mirror_num;
173 	u64			physical_for_dev_replace;
174 	struct list_head	inodes;
175 	struct btrfs_work	work;
176 };
177 
178 struct scrub_warning {
179 	struct btrfs_path	*path;
180 	u64			extent_item_size;
181 	char			*scratch_buf;
182 	char			*msg_buf;
183 	const char		*errstr;
184 	sector_t		sector;
185 	u64			logical;
186 	struct btrfs_device	*dev;
187 	int			msg_bufsize;
188 	int			scratch_bufsize;
189 };
190 
191 
192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198 				     struct btrfs_fs_info *fs_info,
199 				     struct scrub_block *original_sblock,
200 				     u64 length, u64 logical,
201 				     struct scrub_block *sblocks_for_recheck);
202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203 				struct scrub_block *sblock, int is_metadata,
204 				int have_csum, u8 *csum, u64 generation,
205 				u16 csum_size);
206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207 					 struct scrub_block *sblock,
208 					 int is_metadata, int have_csum,
209 					 const u8 *csum, u64 generation,
210 					 u16 csum_size);
211 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212 					     struct scrub_block *sblock_good,
213 					     int force_write);
214 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
215 					    struct scrub_block *sblock_good,
216 					    int page_num, int force_write);
217 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
218 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
219 					   int page_num);
220 static int scrub_checksum_data(struct scrub_block *sblock);
221 static int scrub_checksum_tree_block(struct scrub_block *sblock);
222 static int scrub_checksum_super(struct scrub_block *sblock);
223 static void scrub_block_get(struct scrub_block *sblock);
224 static void scrub_block_put(struct scrub_block *sblock);
225 static void scrub_page_get(struct scrub_page *spage);
226 static void scrub_page_put(struct scrub_page *spage);
227 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
228 				    struct scrub_page *spage);
229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230 		       u64 physical, struct btrfs_device *dev, u64 flags,
231 		       u64 gen, int mirror_num, u8 *csum, int force,
232 		       u64 physical_for_dev_replace);
233 static void scrub_bio_end_io(struct bio *bio, int err);
234 static void scrub_bio_end_io_worker(struct btrfs_work *work);
235 static void scrub_block_complete(struct scrub_block *sblock);
236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237 			       u64 extent_logical, u64 extent_len,
238 			       u64 *extent_physical,
239 			       struct btrfs_device **extent_dev,
240 			       int *extent_mirror_num);
241 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
242 			      struct scrub_wr_ctx *wr_ctx,
243 			      struct btrfs_fs_info *fs_info,
244 			      struct btrfs_device *dev,
245 			      int is_dev_replace);
246 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 				    struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio, int err);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static int write_page_nocow(struct scrub_ctx *sctx,
253 			    u64 physical_for_dev_replace, struct page *page);
254 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255 				      struct scrub_copy_nocow_ctx *ctx);
256 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
257 			    int mirror_num, u64 physical_for_dev_replace);
258 static void copy_nocow_pages_worker(struct btrfs_work *work);
259 
260 
261 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
262 {
263 	atomic_inc(&sctx->bios_in_flight);
264 }
265 
266 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
267 {
268 	atomic_dec(&sctx->bios_in_flight);
269 	wake_up(&sctx->list_wait);
270 }
271 
272 /*
273  * used for workers that require transaction commits (i.e., for the
274  * NOCOW case)
275  */
276 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
277 {
278 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
279 
280 	/*
281 	 * increment scrubs_running to prevent cancel requests from
282 	 * completing as long as a worker is running. we must also
283 	 * increment scrubs_paused to prevent deadlocking on pause
284 	 * requests used for transactions commits (as the worker uses a
285 	 * transaction context). it is safe to regard the worker
286 	 * as paused for all matters practical. effectively, we only
287 	 * avoid cancellation requests from completing.
288 	 */
289 	mutex_lock(&fs_info->scrub_lock);
290 	atomic_inc(&fs_info->scrubs_running);
291 	atomic_inc(&fs_info->scrubs_paused);
292 	mutex_unlock(&fs_info->scrub_lock);
293 	atomic_inc(&sctx->workers_pending);
294 }
295 
296 /* used for workers that require transaction commits */
297 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
298 {
299 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
300 
301 	/*
302 	 * see scrub_pending_trans_workers_inc() why we're pretending
303 	 * to be paused in the scrub counters
304 	 */
305 	mutex_lock(&fs_info->scrub_lock);
306 	atomic_dec(&fs_info->scrubs_running);
307 	atomic_dec(&fs_info->scrubs_paused);
308 	mutex_unlock(&fs_info->scrub_lock);
309 	atomic_dec(&sctx->workers_pending);
310 	wake_up(&fs_info->scrub_pause_wait);
311 	wake_up(&sctx->list_wait);
312 }
313 
314 static void scrub_free_csums(struct scrub_ctx *sctx)
315 {
316 	while (!list_empty(&sctx->csum_list)) {
317 		struct btrfs_ordered_sum *sum;
318 		sum = list_first_entry(&sctx->csum_list,
319 				       struct btrfs_ordered_sum, list);
320 		list_del(&sum->list);
321 		kfree(sum);
322 	}
323 }
324 
325 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
326 {
327 	int i;
328 
329 	if (!sctx)
330 		return;
331 
332 	scrub_free_wr_ctx(&sctx->wr_ctx);
333 
334 	/* this can happen when scrub is cancelled */
335 	if (sctx->curr != -1) {
336 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
337 
338 		for (i = 0; i < sbio->page_count; i++) {
339 			WARN_ON(!sbio->pagev[i]->page);
340 			scrub_block_put(sbio->pagev[i]->sblock);
341 		}
342 		bio_put(sbio->bio);
343 	}
344 
345 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
346 		struct scrub_bio *sbio = sctx->bios[i];
347 
348 		if (!sbio)
349 			break;
350 		kfree(sbio);
351 	}
352 
353 	scrub_free_csums(sctx);
354 	kfree(sctx);
355 }
356 
357 static noinline_for_stack
358 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
359 {
360 	struct scrub_ctx *sctx;
361 	int		i;
362 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
363 	int pages_per_rd_bio;
364 	int ret;
365 
366 	/*
367 	 * the setting of pages_per_rd_bio is correct for scrub but might
368 	 * be wrong for the dev_replace code where we might read from
369 	 * different devices in the initial huge bios. However, that
370 	 * code is able to correctly handle the case when adding a page
371 	 * to a bio fails.
372 	 */
373 	if (dev->bdev)
374 		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
375 					 bio_get_nr_vecs(dev->bdev));
376 	else
377 		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
378 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
379 	if (!sctx)
380 		goto nomem;
381 	sctx->is_dev_replace = is_dev_replace;
382 	sctx->pages_per_rd_bio = pages_per_rd_bio;
383 	sctx->curr = -1;
384 	sctx->dev_root = dev->dev_root;
385 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
386 		struct scrub_bio *sbio;
387 
388 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
389 		if (!sbio)
390 			goto nomem;
391 		sctx->bios[i] = sbio;
392 
393 		sbio->index = i;
394 		sbio->sctx = sctx;
395 		sbio->page_count = 0;
396 		sbio->work.func = scrub_bio_end_io_worker;
397 
398 		if (i != SCRUB_BIOS_PER_SCTX - 1)
399 			sctx->bios[i]->next_free = i + 1;
400 		else
401 			sctx->bios[i]->next_free = -1;
402 	}
403 	sctx->first_free = 0;
404 	sctx->nodesize = dev->dev_root->nodesize;
405 	sctx->leafsize = dev->dev_root->leafsize;
406 	sctx->sectorsize = dev->dev_root->sectorsize;
407 	atomic_set(&sctx->bios_in_flight, 0);
408 	atomic_set(&sctx->workers_pending, 0);
409 	atomic_set(&sctx->cancel_req, 0);
410 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
411 	INIT_LIST_HEAD(&sctx->csum_list);
412 
413 	spin_lock_init(&sctx->list_lock);
414 	spin_lock_init(&sctx->stat_lock);
415 	init_waitqueue_head(&sctx->list_wait);
416 
417 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
418 				 fs_info->dev_replace.tgtdev, is_dev_replace);
419 	if (ret) {
420 		scrub_free_ctx(sctx);
421 		return ERR_PTR(ret);
422 	}
423 	return sctx;
424 
425 nomem:
426 	scrub_free_ctx(sctx);
427 	return ERR_PTR(-ENOMEM);
428 }
429 
430 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
431 				     void *warn_ctx)
432 {
433 	u64 isize;
434 	u32 nlink;
435 	int ret;
436 	int i;
437 	struct extent_buffer *eb;
438 	struct btrfs_inode_item *inode_item;
439 	struct scrub_warning *swarn = warn_ctx;
440 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
441 	struct inode_fs_paths *ipath = NULL;
442 	struct btrfs_root *local_root;
443 	struct btrfs_key root_key;
444 
445 	root_key.objectid = root;
446 	root_key.type = BTRFS_ROOT_ITEM_KEY;
447 	root_key.offset = (u64)-1;
448 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
449 	if (IS_ERR(local_root)) {
450 		ret = PTR_ERR(local_root);
451 		goto err;
452 	}
453 
454 	ret = inode_item_info(inum, 0, local_root, swarn->path);
455 	if (ret) {
456 		btrfs_release_path(swarn->path);
457 		goto err;
458 	}
459 
460 	eb = swarn->path->nodes[0];
461 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
462 					struct btrfs_inode_item);
463 	isize = btrfs_inode_size(eb, inode_item);
464 	nlink = btrfs_inode_nlink(eb, inode_item);
465 	btrfs_release_path(swarn->path);
466 
467 	ipath = init_ipath(4096, local_root, swarn->path);
468 	if (IS_ERR(ipath)) {
469 		ret = PTR_ERR(ipath);
470 		ipath = NULL;
471 		goto err;
472 	}
473 	ret = paths_from_inode(inum, ipath);
474 
475 	if (ret < 0)
476 		goto err;
477 
478 	/*
479 	 * we deliberately ignore the bit ipath might have been too small to
480 	 * hold all of the paths here
481 	 */
482 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
483 		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
484 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
485 			"length %llu, links %u (path: %s)\n", swarn->errstr,
486 			swarn->logical, rcu_str_deref(swarn->dev->name),
487 			(unsigned long long)swarn->sector, root, inum, offset,
488 			min(isize - offset, (u64)PAGE_SIZE), nlink,
489 			(char *)(unsigned long)ipath->fspath->val[i]);
490 
491 	free_ipath(ipath);
492 	return 0;
493 
494 err:
495 	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
496 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
497 		"resolving failed with ret=%d\n", swarn->errstr,
498 		swarn->logical, rcu_str_deref(swarn->dev->name),
499 		(unsigned long long)swarn->sector, root, inum, offset, ret);
500 
501 	free_ipath(ipath);
502 	return 0;
503 }
504 
505 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
506 {
507 	struct btrfs_device *dev;
508 	struct btrfs_fs_info *fs_info;
509 	struct btrfs_path *path;
510 	struct btrfs_key found_key;
511 	struct extent_buffer *eb;
512 	struct btrfs_extent_item *ei;
513 	struct scrub_warning swarn;
514 	unsigned long ptr = 0;
515 	u64 extent_item_pos;
516 	u64 flags = 0;
517 	u64 ref_root;
518 	u32 item_size;
519 	u8 ref_level;
520 	const int bufsize = 4096;
521 	int ret;
522 
523 	WARN_ON(sblock->page_count < 1);
524 	dev = sblock->pagev[0]->dev;
525 	fs_info = sblock->sctx->dev_root->fs_info;
526 
527 	path = btrfs_alloc_path();
528 
529 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
530 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
531 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
532 	swarn.logical = sblock->pagev[0]->logical;
533 	swarn.errstr = errstr;
534 	swarn.dev = NULL;
535 	swarn.msg_bufsize = bufsize;
536 	swarn.scratch_bufsize = bufsize;
537 
538 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
539 		goto out;
540 
541 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
542 				  &flags);
543 	if (ret < 0)
544 		goto out;
545 
546 	extent_item_pos = swarn.logical - found_key.objectid;
547 	swarn.extent_item_size = found_key.offset;
548 
549 	eb = path->nodes[0];
550 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
551 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
552 
553 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
554 		do {
555 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
556 							&ref_root, &ref_level);
557 			printk_in_rcu(KERN_WARNING
558 				"btrfs: %s at logical %llu on dev %s, "
559 				"sector %llu: metadata %s (level %d) in tree "
560 				"%llu\n", errstr, swarn.logical,
561 				rcu_str_deref(dev->name),
562 				(unsigned long long)swarn.sector,
563 				ref_level ? "node" : "leaf",
564 				ret < 0 ? -1 : ref_level,
565 				ret < 0 ? -1 : ref_root);
566 		} while (ret != 1);
567 		btrfs_release_path(path);
568 	} else {
569 		btrfs_release_path(path);
570 		swarn.path = path;
571 		swarn.dev = dev;
572 		iterate_extent_inodes(fs_info, found_key.objectid,
573 					extent_item_pos, 1,
574 					scrub_print_warning_inode, &swarn);
575 	}
576 
577 out:
578 	btrfs_free_path(path);
579 	kfree(swarn.scratch_buf);
580 	kfree(swarn.msg_buf);
581 }
582 
583 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
584 {
585 	struct page *page = NULL;
586 	unsigned long index;
587 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
588 	int ret;
589 	int corrected = 0;
590 	struct btrfs_key key;
591 	struct inode *inode = NULL;
592 	struct btrfs_fs_info *fs_info;
593 	u64 end = offset + PAGE_SIZE - 1;
594 	struct btrfs_root *local_root;
595 	int srcu_index;
596 
597 	key.objectid = root;
598 	key.type = BTRFS_ROOT_ITEM_KEY;
599 	key.offset = (u64)-1;
600 
601 	fs_info = fixup->root->fs_info;
602 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
603 
604 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
605 	if (IS_ERR(local_root)) {
606 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
607 		return PTR_ERR(local_root);
608 	}
609 
610 	key.type = BTRFS_INODE_ITEM_KEY;
611 	key.objectid = inum;
612 	key.offset = 0;
613 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
614 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
615 	if (IS_ERR(inode))
616 		return PTR_ERR(inode);
617 
618 	index = offset >> PAGE_CACHE_SHIFT;
619 
620 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
621 	if (!page) {
622 		ret = -ENOMEM;
623 		goto out;
624 	}
625 
626 	if (PageUptodate(page)) {
627 		if (PageDirty(page)) {
628 			/*
629 			 * we need to write the data to the defect sector. the
630 			 * data that was in that sector is not in memory,
631 			 * because the page was modified. we must not write the
632 			 * modified page to that sector.
633 			 *
634 			 * TODO: what could be done here: wait for the delalloc
635 			 *       runner to write out that page (might involve
636 			 *       COW) and see whether the sector is still
637 			 *       referenced afterwards.
638 			 *
639 			 * For the meantime, we'll treat this error
640 			 * incorrectable, although there is a chance that a
641 			 * later scrub will find the bad sector again and that
642 			 * there's no dirty page in memory, then.
643 			 */
644 			ret = -EIO;
645 			goto out;
646 		}
647 		fs_info = BTRFS_I(inode)->root->fs_info;
648 		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
649 					fixup->logical, page,
650 					fixup->mirror_num);
651 		unlock_page(page);
652 		corrected = !ret;
653 	} else {
654 		/*
655 		 * we need to get good data first. the general readpage path
656 		 * will call repair_io_failure for us, we just have to make
657 		 * sure we read the bad mirror.
658 		 */
659 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
660 					EXTENT_DAMAGED, GFP_NOFS);
661 		if (ret) {
662 			/* set_extent_bits should give proper error */
663 			WARN_ON(ret > 0);
664 			if (ret > 0)
665 				ret = -EFAULT;
666 			goto out;
667 		}
668 
669 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
670 						btrfs_get_extent,
671 						fixup->mirror_num);
672 		wait_on_page_locked(page);
673 
674 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
675 						end, EXTENT_DAMAGED, 0, NULL);
676 		if (!corrected)
677 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
678 						EXTENT_DAMAGED, GFP_NOFS);
679 	}
680 
681 out:
682 	if (page)
683 		put_page(page);
684 	if (inode)
685 		iput(inode);
686 
687 	if (ret < 0)
688 		return ret;
689 
690 	if (ret == 0 && corrected) {
691 		/*
692 		 * we only need to call readpage for one of the inodes belonging
693 		 * to this extent. so make iterate_extent_inodes stop
694 		 */
695 		return 1;
696 	}
697 
698 	return -EIO;
699 }
700 
701 static void scrub_fixup_nodatasum(struct btrfs_work *work)
702 {
703 	int ret;
704 	struct scrub_fixup_nodatasum *fixup;
705 	struct scrub_ctx *sctx;
706 	struct btrfs_trans_handle *trans = NULL;
707 	struct btrfs_fs_info *fs_info;
708 	struct btrfs_path *path;
709 	int uncorrectable = 0;
710 
711 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
712 	sctx = fixup->sctx;
713 	fs_info = fixup->root->fs_info;
714 
715 	path = btrfs_alloc_path();
716 	if (!path) {
717 		spin_lock(&sctx->stat_lock);
718 		++sctx->stat.malloc_errors;
719 		spin_unlock(&sctx->stat_lock);
720 		uncorrectable = 1;
721 		goto out;
722 	}
723 
724 	trans = btrfs_join_transaction(fixup->root);
725 	if (IS_ERR(trans)) {
726 		uncorrectable = 1;
727 		goto out;
728 	}
729 
730 	/*
731 	 * the idea is to trigger a regular read through the standard path. we
732 	 * read a page from the (failed) logical address by specifying the
733 	 * corresponding copynum of the failed sector. thus, that readpage is
734 	 * expected to fail.
735 	 * that is the point where on-the-fly error correction will kick in
736 	 * (once it's finished) and rewrite the failed sector if a good copy
737 	 * can be found.
738 	 */
739 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
740 						path, scrub_fixup_readpage,
741 						fixup);
742 	if (ret < 0) {
743 		uncorrectable = 1;
744 		goto out;
745 	}
746 	WARN_ON(ret != 1);
747 
748 	spin_lock(&sctx->stat_lock);
749 	++sctx->stat.corrected_errors;
750 	spin_unlock(&sctx->stat_lock);
751 
752 out:
753 	if (trans && !IS_ERR(trans))
754 		btrfs_end_transaction(trans, fixup->root);
755 	if (uncorrectable) {
756 		spin_lock(&sctx->stat_lock);
757 		++sctx->stat.uncorrectable_errors;
758 		spin_unlock(&sctx->stat_lock);
759 		btrfs_dev_replace_stats_inc(
760 			&sctx->dev_root->fs_info->dev_replace.
761 			num_uncorrectable_read_errors);
762 		printk_ratelimited_in_rcu(KERN_ERR
763 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
764 			fixup->logical, rcu_str_deref(fixup->dev->name));
765 	}
766 
767 	btrfs_free_path(path);
768 	kfree(fixup);
769 
770 	scrub_pending_trans_workers_dec(sctx);
771 }
772 
773 /*
774  * scrub_handle_errored_block gets called when either verification of the
775  * pages failed or the bio failed to read, e.g. with EIO. In the latter
776  * case, this function handles all pages in the bio, even though only one
777  * may be bad.
778  * The goal of this function is to repair the errored block by using the
779  * contents of one of the mirrors.
780  */
781 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
782 {
783 	struct scrub_ctx *sctx = sblock_to_check->sctx;
784 	struct btrfs_device *dev;
785 	struct btrfs_fs_info *fs_info;
786 	u64 length;
787 	u64 logical;
788 	u64 generation;
789 	unsigned int failed_mirror_index;
790 	unsigned int is_metadata;
791 	unsigned int have_csum;
792 	u8 *csum;
793 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
794 	struct scrub_block *sblock_bad;
795 	int ret;
796 	int mirror_index;
797 	int page_num;
798 	int success;
799 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
800 				      DEFAULT_RATELIMIT_BURST);
801 
802 	BUG_ON(sblock_to_check->page_count < 1);
803 	fs_info = sctx->dev_root->fs_info;
804 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
805 		/*
806 		 * if we find an error in a super block, we just report it.
807 		 * They will get written with the next transaction commit
808 		 * anyway
809 		 */
810 		spin_lock(&sctx->stat_lock);
811 		++sctx->stat.super_errors;
812 		spin_unlock(&sctx->stat_lock);
813 		return 0;
814 	}
815 	length = sblock_to_check->page_count * PAGE_SIZE;
816 	logical = sblock_to_check->pagev[0]->logical;
817 	generation = sblock_to_check->pagev[0]->generation;
818 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
819 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
820 	is_metadata = !(sblock_to_check->pagev[0]->flags &
821 			BTRFS_EXTENT_FLAG_DATA);
822 	have_csum = sblock_to_check->pagev[0]->have_csum;
823 	csum = sblock_to_check->pagev[0]->csum;
824 	dev = sblock_to_check->pagev[0]->dev;
825 
826 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
827 		sblocks_for_recheck = NULL;
828 		goto nodatasum_case;
829 	}
830 
831 	/*
832 	 * read all mirrors one after the other. This includes to
833 	 * re-read the extent or metadata block that failed (that was
834 	 * the cause that this fixup code is called) another time,
835 	 * page by page this time in order to know which pages
836 	 * caused I/O errors and which ones are good (for all mirrors).
837 	 * It is the goal to handle the situation when more than one
838 	 * mirror contains I/O errors, but the errors do not
839 	 * overlap, i.e. the data can be repaired by selecting the
840 	 * pages from those mirrors without I/O error on the
841 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
842 	 * would be that mirror #1 has an I/O error on the first page,
843 	 * the second page is good, and mirror #2 has an I/O error on
844 	 * the second page, but the first page is good.
845 	 * Then the first page of the first mirror can be repaired by
846 	 * taking the first page of the second mirror, and the
847 	 * second page of the second mirror can be repaired by
848 	 * copying the contents of the 2nd page of the 1st mirror.
849 	 * One more note: if the pages of one mirror contain I/O
850 	 * errors, the checksum cannot be verified. In order to get
851 	 * the best data for repairing, the first attempt is to find
852 	 * a mirror without I/O errors and with a validated checksum.
853 	 * Only if this is not possible, the pages are picked from
854 	 * mirrors with I/O errors without considering the checksum.
855 	 * If the latter is the case, at the end, the checksum of the
856 	 * repaired area is verified in order to correctly maintain
857 	 * the statistics.
858 	 */
859 
860 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
861 				     sizeof(*sblocks_for_recheck),
862 				     GFP_NOFS);
863 	if (!sblocks_for_recheck) {
864 		spin_lock(&sctx->stat_lock);
865 		sctx->stat.malloc_errors++;
866 		sctx->stat.read_errors++;
867 		sctx->stat.uncorrectable_errors++;
868 		spin_unlock(&sctx->stat_lock);
869 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
870 		goto out;
871 	}
872 
873 	/* setup the context, map the logical blocks and alloc the pages */
874 	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
875 					logical, sblocks_for_recheck);
876 	if (ret) {
877 		spin_lock(&sctx->stat_lock);
878 		sctx->stat.read_errors++;
879 		sctx->stat.uncorrectable_errors++;
880 		spin_unlock(&sctx->stat_lock);
881 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
882 		goto out;
883 	}
884 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
885 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
886 
887 	/* build and submit the bios for the failed mirror, check checksums */
888 	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
889 			    csum, generation, sctx->csum_size);
890 
891 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
892 	    sblock_bad->no_io_error_seen) {
893 		/*
894 		 * the error disappeared after reading page by page, or
895 		 * the area was part of a huge bio and other parts of the
896 		 * bio caused I/O errors, or the block layer merged several
897 		 * read requests into one and the error is caused by a
898 		 * different bio (usually one of the two latter cases is
899 		 * the cause)
900 		 */
901 		spin_lock(&sctx->stat_lock);
902 		sctx->stat.unverified_errors++;
903 		spin_unlock(&sctx->stat_lock);
904 
905 		if (sctx->is_dev_replace)
906 			scrub_write_block_to_dev_replace(sblock_bad);
907 		goto out;
908 	}
909 
910 	if (!sblock_bad->no_io_error_seen) {
911 		spin_lock(&sctx->stat_lock);
912 		sctx->stat.read_errors++;
913 		spin_unlock(&sctx->stat_lock);
914 		if (__ratelimit(&_rs))
915 			scrub_print_warning("i/o error", sblock_to_check);
916 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
917 	} else if (sblock_bad->checksum_error) {
918 		spin_lock(&sctx->stat_lock);
919 		sctx->stat.csum_errors++;
920 		spin_unlock(&sctx->stat_lock);
921 		if (__ratelimit(&_rs))
922 			scrub_print_warning("checksum error", sblock_to_check);
923 		btrfs_dev_stat_inc_and_print(dev,
924 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
925 	} else if (sblock_bad->header_error) {
926 		spin_lock(&sctx->stat_lock);
927 		sctx->stat.verify_errors++;
928 		spin_unlock(&sctx->stat_lock);
929 		if (__ratelimit(&_rs))
930 			scrub_print_warning("checksum/header error",
931 					    sblock_to_check);
932 		if (sblock_bad->generation_error)
933 			btrfs_dev_stat_inc_and_print(dev,
934 				BTRFS_DEV_STAT_GENERATION_ERRS);
935 		else
936 			btrfs_dev_stat_inc_and_print(dev,
937 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
938 	}
939 
940 	if (sctx->readonly) {
941 		ASSERT(!sctx->is_dev_replace);
942 		goto out;
943 	}
944 
945 	if (!is_metadata && !have_csum) {
946 		struct scrub_fixup_nodatasum *fixup_nodatasum;
947 
948 nodatasum_case:
949 		WARN_ON(sctx->is_dev_replace);
950 
951 		/*
952 		 * !is_metadata and !have_csum, this means that the data
953 		 * might not be COW'ed, that it might be modified
954 		 * concurrently. The general strategy to work on the
955 		 * commit root does not help in the case when COW is not
956 		 * used.
957 		 */
958 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
959 		if (!fixup_nodatasum)
960 			goto did_not_correct_error;
961 		fixup_nodatasum->sctx = sctx;
962 		fixup_nodatasum->dev = dev;
963 		fixup_nodatasum->logical = logical;
964 		fixup_nodatasum->root = fs_info->extent_root;
965 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
966 		scrub_pending_trans_workers_inc(sctx);
967 		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
968 		btrfs_queue_worker(&fs_info->scrub_workers,
969 				   &fixup_nodatasum->work);
970 		goto out;
971 	}
972 
973 	/*
974 	 * now build and submit the bios for the other mirrors, check
975 	 * checksums.
976 	 * First try to pick the mirror which is completely without I/O
977 	 * errors and also does not have a checksum error.
978 	 * If one is found, and if a checksum is present, the full block
979 	 * that is known to contain an error is rewritten. Afterwards
980 	 * the block is known to be corrected.
981 	 * If a mirror is found which is completely correct, and no
982 	 * checksum is present, only those pages are rewritten that had
983 	 * an I/O error in the block to be repaired, since it cannot be
984 	 * determined, which copy of the other pages is better (and it
985 	 * could happen otherwise that a correct page would be
986 	 * overwritten by a bad one).
987 	 */
988 	for (mirror_index = 0;
989 	     mirror_index < BTRFS_MAX_MIRRORS &&
990 	     sblocks_for_recheck[mirror_index].page_count > 0;
991 	     mirror_index++) {
992 		struct scrub_block *sblock_other;
993 
994 		if (mirror_index == failed_mirror_index)
995 			continue;
996 		sblock_other = sblocks_for_recheck + mirror_index;
997 
998 		/* build and submit the bios, check checksums */
999 		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1000 				    have_csum, csum, generation,
1001 				    sctx->csum_size);
1002 
1003 		if (!sblock_other->header_error &&
1004 		    !sblock_other->checksum_error &&
1005 		    sblock_other->no_io_error_seen) {
1006 			if (sctx->is_dev_replace) {
1007 				scrub_write_block_to_dev_replace(sblock_other);
1008 			} else {
1009 				int force_write = is_metadata || have_csum;
1010 
1011 				ret = scrub_repair_block_from_good_copy(
1012 						sblock_bad, sblock_other,
1013 						force_write);
1014 			}
1015 			if (0 == ret)
1016 				goto corrected_error;
1017 		}
1018 	}
1019 
1020 	/*
1021 	 * for dev_replace, pick good pages and write to the target device.
1022 	 */
1023 	if (sctx->is_dev_replace) {
1024 		success = 1;
1025 		for (page_num = 0; page_num < sblock_bad->page_count;
1026 		     page_num++) {
1027 			int sub_success;
1028 
1029 			sub_success = 0;
1030 			for (mirror_index = 0;
1031 			     mirror_index < BTRFS_MAX_MIRRORS &&
1032 			     sblocks_for_recheck[mirror_index].page_count > 0;
1033 			     mirror_index++) {
1034 				struct scrub_block *sblock_other =
1035 					sblocks_for_recheck + mirror_index;
1036 				struct scrub_page *page_other =
1037 					sblock_other->pagev[page_num];
1038 
1039 				if (!page_other->io_error) {
1040 					ret = scrub_write_page_to_dev_replace(
1041 							sblock_other, page_num);
1042 					if (ret == 0) {
1043 						/* succeeded for this page */
1044 						sub_success = 1;
1045 						break;
1046 					} else {
1047 						btrfs_dev_replace_stats_inc(
1048 							&sctx->dev_root->
1049 							fs_info->dev_replace.
1050 							num_write_errors);
1051 					}
1052 				}
1053 			}
1054 
1055 			if (!sub_success) {
1056 				/*
1057 				 * did not find a mirror to fetch the page
1058 				 * from. scrub_write_page_to_dev_replace()
1059 				 * handles this case (page->io_error), by
1060 				 * filling the block with zeros before
1061 				 * submitting the write request
1062 				 */
1063 				success = 0;
1064 				ret = scrub_write_page_to_dev_replace(
1065 						sblock_bad, page_num);
1066 				if (ret)
1067 					btrfs_dev_replace_stats_inc(
1068 						&sctx->dev_root->fs_info->
1069 						dev_replace.num_write_errors);
1070 			}
1071 		}
1072 
1073 		goto out;
1074 	}
1075 
1076 	/*
1077 	 * for regular scrub, repair those pages that are errored.
1078 	 * In case of I/O errors in the area that is supposed to be
1079 	 * repaired, continue by picking good copies of those pages.
1080 	 * Select the good pages from mirrors to rewrite bad pages from
1081 	 * the area to fix. Afterwards verify the checksum of the block
1082 	 * that is supposed to be repaired. This verification step is
1083 	 * only done for the purpose of statistic counting and for the
1084 	 * final scrub report, whether errors remain.
1085 	 * A perfect algorithm could make use of the checksum and try
1086 	 * all possible combinations of pages from the different mirrors
1087 	 * until the checksum verification succeeds. For example, when
1088 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1089 	 * of mirror #2 is readable but the final checksum test fails,
1090 	 * then the 2nd page of mirror #3 could be tried, whether now
1091 	 * the final checksum succeedes. But this would be a rare
1092 	 * exception and is therefore not implemented. At least it is
1093 	 * avoided that the good copy is overwritten.
1094 	 * A more useful improvement would be to pick the sectors
1095 	 * without I/O error based on sector sizes (512 bytes on legacy
1096 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1097 	 * mirror could be repaired by taking 512 byte of a different
1098 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1099 	 * area are unreadable.
1100 	 */
1101 
1102 	/* can only fix I/O errors from here on */
1103 	if (sblock_bad->no_io_error_seen)
1104 		goto did_not_correct_error;
1105 
1106 	success = 1;
1107 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1108 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1109 
1110 		if (!page_bad->io_error)
1111 			continue;
1112 
1113 		for (mirror_index = 0;
1114 		     mirror_index < BTRFS_MAX_MIRRORS &&
1115 		     sblocks_for_recheck[mirror_index].page_count > 0;
1116 		     mirror_index++) {
1117 			struct scrub_block *sblock_other = sblocks_for_recheck +
1118 							   mirror_index;
1119 			struct scrub_page *page_other = sblock_other->pagev[
1120 							page_num];
1121 
1122 			if (!page_other->io_error) {
1123 				ret = scrub_repair_page_from_good_copy(
1124 					sblock_bad, sblock_other, page_num, 0);
1125 				if (0 == ret) {
1126 					page_bad->io_error = 0;
1127 					break; /* succeeded for this page */
1128 				}
1129 			}
1130 		}
1131 
1132 		if (page_bad->io_error) {
1133 			/* did not find a mirror to copy the page from */
1134 			success = 0;
1135 		}
1136 	}
1137 
1138 	if (success) {
1139 		if (is_metadata || have_csum) {
1140 			/*
1141 			 * need to verify the checksum now that all
1142 			 * sectors on disk are repaired (the write
1143 			 * request for data to be repaired is on its way).
1144 			 * Just be lazy and use scrub_recheck_block()
1145 			 * which re-reads the data before the checksum
1146 			 * is verified, but most likely the data comes out
1147 			 * of the page cache.
1148 			 */
1149 			scrub_recheck_block(fs_info, sblock_bad,
1150 					    is_metadata, have_csum, csum,
1151 					    generation, sctx->csum_size);
1152 			if (!sblock_bad->header_error &&
1153 			    !sblock_bad->checksum_error &&
1154 			    sblock_bad->no_io_error_seen)
1155 				goto corrected_error;
1156 			else
1157 				goto did_not_correct_error;
1158 		} else {
1159 corrected_error:
1160 			spin_lock(&sctx->stat_lock);
1161 			sctx->stat.corrected_errors++;
1162 			spin_unlock(&sctx->stat_lock);
1163 			printk_ratelimited_in_rcu(KERN_ERR
1164 				"btrfs: fixed up error at logical %llu on dev %s\n",
1165 				logical, rcu_str_deref(dev->name));
1166 		}
1167 	} else {
1168 did_not_correct_error:
1169 		spin_lock(&sctx->stat_lock);
1170 		sctx->stat.uncorrectable_errors++;
1171 		spin_unlock(&sctx->stat_lock);
1172 		printk_ratelimited_in_rcu(KERN_ERR
1173 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1174 			logical, rcu_str_deref(dev->name));
1175 	}
1176 
1177 out:
1178 	if (sblocks_for_recheck) {
1179 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1180 		     mirror_index++) {
1181 			struct scrub_block *sblock = sblocks_for_recheck +
1182 						     mirror_index;
1183 			int page_index;
1184 
1185 			for (page_index = 0; page_index < sblock->page_count;
1186 			     page_index++) {
1187 				sblock->pagev[page_index]->sblock = NULL;
1188 				scrub_page_put(sblock->pagev[page_index]);
1189 			}
1190 		}
1191 		kfree(sblocks_for_recheck);
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1198 				     struct btrfs_fs_info *fs_info,
1199 				     struct scrub_block *original_sblock,
1200 				     u64 length, u64 logical,
1201 				     struct scrub_block *sblocks_for_recheck)
1202 {
1203 	int page_index;
1204 	int mirror_index;
1205 	int ret;
1206 
1207 	/*
1208 	 * note: the two members ref_count and outstanding_pages
1209 	 * are not used (and not set) in the blocks that are used for
1210 	 * the recheck procedure
1211 	 */
1212 
1213 	page_index = 0;
1214 	while (length > 0) {
1215 		u64 sublen = min_t(u64, length, PAGE_SIZE);
1216 		u64 mapped_length = sublen;
1217 		struct btrfs_bio *bbio = NULL;
1218 
1219 		/*
1220 		 * with a length of PAGE_SIZE, each returned stripe
1221 		 * represents one mirror
1222 		 */
1223 		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1224 				      &mapped_length, &bbio, 0);
1225 		if (ret || !bbio || mapped_length < sublen) {
1226 			kfree(bbio);
1227 			return -EIO;
1228 		}
1229 
1230 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1231 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1232 		     mirror_index++) {
1233 			struct scrub_block *sblock;
1234 			struct scrub_page *page;
1235 
1236 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1237 				continue;
1238 
1239 			sblock = sblocks_for_recheck + mirror_index;
1240 			sblock->sctx = sctx;
1241 			page = kzalloc(sizeof(*page), GFP_NOFS);
1242 			if (!page) {
1243 leave_nomem:
1244 				spin_lock(&sctx->stat_lock);
1245 				sctx->stat.malloc_errors++;
1246 				spin_unlock(&sctx->stat_lock);
1247 				kfree(bbio);
1248 				return -ENOMEM;
1249 			}
1250 			scrub_page_get(page);
1251 			sblock->pagev[page_index] = page;
1252 			page->logical = logical;
1253 			page->physical = bbio->stripes[mirror_index].physical;
1254 			BUG_ON(page_index >= original_sblock->page_count);
1255 			page->physical_for_dev_replace =
1256 				original_sblock->pagev[page_index]->
1257 				physical_for_dev_replace;
1258 			/* for missing devices, dev->bdev is NULL */
1259 			page->dev = bbio->stripes[mirror_index].dev;
1260 			page->mirror_num = mirror_index + 1;
1261 			sblock->page_count++;
1262 			page->page = alloc_page(GFP_NOFS);
1263 			if (!page->page)
1264 				goto leave_nomem;
1265 		}
1266 		kfree(bbio);
1267 		length -= sublen;
1268 		logical += sublen;
1269 		page_index++;
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 /*
1276  * this function will check the on disk data for checksum errors, header
1277  * errors and read I/O errors. If any I/O errors happen, the exact pages
1278  * which are errored are marked as being bad. The goal is to enable scrub
1279  * to take those pages that are not errored from all the mirrors so that
1280  * the pages that are errored in the just handled mirror can be repaired.
1281  */
1282 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1283 				struct scrub_block *sblock, int is_metadata,
1284 				int have_csum, u8 *csum, u64 generation,
1285 				u16 csum_size)
1286 {
1287 	int page_num;
1288 
1289 	sblock->no_io_error_seen = 1;
1290 	sblock->header_error = 0;
1291 	sblock->checksum_error = 0;
1292 
1293 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1294 		struct bio *bio;
1295 		struct scrub_page *page = sblock->pagev[page_num];
1296 
1297 		if (page->dev->bdev == NULL) {
1298 			page->io_error = 1;
1299 			sblock->no_io_error_seen = 0;
1300 			continue;
1301 		}
1302 
1303 		WARN_ON(!page->page);
1304 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1305 		if (!bio) {
1306 			page->io_error = 1;
1307 			sblock->no_io_error_seen = 0;
1308 			continue;
1309 		}
1310 		bio->bi_bdev = page->dev->bdev;
1311 		bio->bi_sector = page->physical >> 9;
1312 
1313 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1314 		if (btrfsic_submit_bio_wait(READ, bio))
1315 			sblock->no_io_error_seen = 0;
1316 
1317 		bio_put(bio);
1318 	}
1319 
1320 	if (sblock->no_io_error_seen)
1321 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1322 					     have_csum, csum, generation,
1323 					     csum_size);
1324 
1325 	return;
1326 }
1327 
1328 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1329 					 struct scrub_block *sblock,
1330 					 int is_metadata, int have_csum,
1331 					 const u8 *csum, u64 generation,
1332 					 u16 csum_size)
1333 {
1334 	int page_num;
1335 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1336 	u32 crc = ~(u32)0;
1337 	void *mapped_buffer;
1338 
1339 	WARN_ON(!sblock->pagev[0]->page);
1340 	if (is_metadata) {
1341 		struct btrfs_header *h;
1342 
1343 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1344 		h = (struct btrfs_header *)mapped_buffer;
1345 
1346 		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1347 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1348 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1349 			   BTRFS_UUID_SIZE)) {
1350 			sblock->header_error = 1;
1351 		} else if (generation != btrfs_stack_header_generation(h)) {
1352 			sblock->header_error = 1;
1353 			sblock->generation_error = 1;
1354 		}
1355 		csum = h->csum;
1356 	} else {
1357 		if (!have_csum)
1358 			return;
1359 
1360 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1361 	}
1362 
1363 	for (page_num = 0;;) {
1364 		if (page_num == 0 && is_metadata)
1365 			crc = btrfs_csum_data(
1366 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1367 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1368 		else
1369 			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1370 
1371 		kunmap_atomic(mapped_buffer);
1372 		page_num++;
1373 		if (page_num >= sblock->page_count)
1374 			break;
1375 		WARN_ON(!sblock->pagev[page_num]->page);
1376 
1377 		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1378 	}
1379 
1380 	btrfs_csum_final(crc, calculated_csum);
1381 	if (memcmp(calculated_csum, csum, csum_size))
1382 		sblock->checksum_error = 1;
1383 }
1384 
1385 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1386 					     struct scrub_block *sblock_good,
1387 					     int force_write)
1388 {
1389 	int page_num;
1390 	int ret = 0;
1391 
1392 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1393 		int ret_sub;
1394 
1395 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1396 							   sblock_good,
1397 							   page_num,
1398 							   force_write);
1399 		if (ret_sub)
1400 			ret = ret_sub;
1401 	}
1402 
1403 	return ret;
1404 }
1405 
1406 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1407 					    struct scrub_block *sblock_good,
1408 					    int page_num, int force_write)
1409 {
1410 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1411 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1412 
1413 	BUG_ON(page_bad->page == NULL);
1414 	BUG_ON(page_good->page == NULL);
1415 	if (force_write || sblock_bad->header_error ||
1416 	    sblock_bad->checksum_error || page_bad->io_error) {
1417 		struct bio *bio;
1418 		int ret;
1419 
1420 		if (!page_bad->dev->bdev) {
1421 			printk_ratelimited(KERN_WARNING
1422 				"btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1423 			return -EIO;
1424 		}
1425 
1426 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1427 		if (!bio)
1428 			return -EIO;
1429 		bio->bi_bdev = page_bad->dev->bdev;
1430 		bio->bi_sector = page_bad->physical >> 9;
1431 
1432 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1433 		if (PAGE_SIZE != ret) {
1434 			bio_put(bio);
1435 			return -EIO;
1436 		}
1437 
1438 		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1439 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1440 				BTRFS_DEV_STAT_WRITE_ERRS);
1441 			btrfs_dev_replace_stats_inc(
1442 				&sblock_bad->sctx->dev_root->fs_info->
1443 				dev_replace.num_write_errors);
1444 			bio_put(bio);
1445 			return -EIO;
1446 		}
1447 		bio_put(bio);
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1454 {
1455 	int page_num;
1456 
1457 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1458 		int ret;
1459 
1460 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1461 		if (ret)
1462 			btrfs_dev_replace_stats_inc(
1463 				&sblock->sctx->dev_root->fs_info->dev_replace.
1464 				num_write_errors);
1465 	}
1466 }
1467 
1468 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1469 					   int page_num)
1470 {
1471 	struct scrub_page *spage = sblock->pagev[page_num];
1472 
1473 	BUG_ON(spage->page == NULL);
1474 	if (spage->io_error) {
1475 		void *mapped_buffer = kmap_atomic(spage->page);
1476 
1477 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1478 		flush_dcache_page(spage->page);
1479 		kunmap_atomic(mapped_buffer);
1480 	}
1481 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1482 }
1483 
1484 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1485 				    struct scrub_page *spage)
1486 {
1487 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1488 	struct scrub_bio *sbio;
1489 	int ret;
1490 
1491 	mutex_lock(&wr_ctx->wr_lock);
1492 again:
1493 	if (!wr_ctx->wr_curr_bio) {
1494 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1495 					      GFP_NOFS);
1496 		if (!wr_ctx->wr_curr_bio) {
1497 			mutex_unlock(&wr_ctx->wr_lock);
1498 			return -ENOMEM;
1499 		}
1500 		wr_ctx->wr_curr_bio->sctx = sctx;
1501 		wr_ctx->wr_curr_bio->page_count = 0;
1502 	}
1503 	sbio = wr_ctx->wr_curr_bio;
1504 	if (sbio->page_count == 0) {
1505 		struct bio *bio;
1506 
1507 		sbio->physical = spage->physical_for_dev_replace;
1508 		sbio->logical = spage->logical;
1509 		sbio->dev = wr_ctx->tgtdev;
1510 		bio = sbio->bio;
1511 		if (!bio) {
1512 			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1513 			if (!bio) {
1514 				mutex_unlock(&wr_ctx->wr_lock);
1515 				return -ENOMEM;
1516 			}
1517 			sbio->bio = bio;
1518 		}
1519 
1520 		bio->bi_private = sbio;
1521 		bio->bi_end_io = scrub_wr_bio_end_io;
1522 		bio->bi_bdev = sbio->dev->bdev;
1523 		bio->bi_sector = sbio->physical >> 9;
1524 		sbio->err = 0;
1525 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1526 		   spage->physical_for_dev_replace ||
1527 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1528 		   spage->logical) {
1529 		scrub_wr_submit(sctx);
1530 		goto again;
1531 	}
1532 
1533 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1534 	if (ret != PAGE_SIZE) {
1535 		if (sbio->page_count < 1) {
1536 			bio_put(sbio->bio);
1537 			sbio->bio = NULL;
1538 			mutex_unlock(&wr_ctx->wr_lock);
1539 			return -EIO;
1540 		}
1541 		scrub_wr_submit(sctx);
1542 		goto again;
1543 	}
1544 
1545 	sbio->pagev[sbio->page_count] = spage;
1546 	scrub_page_get(spage);
1547 	sbio->page_count++;
1548 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1549 		scrub_wr_submit(sctx);
1550 	mutex_unlock(&wr_ctx->wr_lock);
1551 
1552 	return 0;
1553 }
1554 
1555 static void scrub_wr_submit(struct scrub_ctx *sctx)
1556 {
1557 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1558 	struct scrub_bio *sbio;
1559 
1560 	if (!wr_ctx->wr_curr_bio)
1561 		return;
1562 
1563 	sbio = wr_ctx->wr_curr_bio;
1564 	wr_ctx->wr_curr_bio = NULL;
1565 	WARN_ON(!sbio->bio->bi_bdev);
1566 	scrub_pending_bio_inc(sctx);
1567 	/* process all writes in a single worker thread. Then the block layer
1568 	 * orders the requests before sending them to the driver which
1569 	 * doubled the write performance on spinning disks when measured
1570 	 * with Linux 3.5 */
1571 	btrfsic_submit_bio(WRITE, sbio->bio);
1572 }
1573 
1574 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1575 {
1576 	struct scrub_bio *sbio = bio->bi_private;
1577 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1578 
1579 	sbio->err = err;
1580 	sbio->bio = bio;
1581 
1582 	sbio->work.func = scrub_wr_bio_end_io_worker;
1583 	btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1584 }
1585 
1586 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1587 {
1588 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1589 	struct scrub_ctx *sctx = sbio->sctx;
1590 	int i;
1591 
1592 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1593 	if (sbio->err) {
1594 		struct btrfs_dev_replace *dev_replace =
1595 			&sbio->sctx->dev_root->fs_info->dev_replace;
1596 
1597 		for (i = 0; i < sbio->page_count; i++) {
1598 			struct scrub_page *spage = sbio->pagev[i];
1599 
1600 			spage->io_error = 1;
1601 			btrfs_dev_replace_stats_inc(&dev_replace->
1602 						    num_write_errors);
1603 		}
1604 	}
1605 
1606 	for (i = 0; i < sbio->page_count; i++)
1607 		scrub_page_put(sbio->pagev[i]);
1608 
1609 	bio_put(sbio->bio);
1610 	kfree(sbio);
1611 	scrub_pending_bio_dec(sctx);
1612 }
1613 
1614 static int scrub_checksum(struct scrub_block *sblock)
1615 {
1616 	u64 flags;
1617 	int ret;
1618 
1619 	WARN_ON(sblock->page_count < 1);
1620 	flags = sblock->pagev[0]->flags;
1621 	ret = 0;
1622 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1623 		ret = scrub_checksum_data(sblock);
1624 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1625 		ret = scrub_checksum_tree_block(sblock);
1626 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1627 		(void)scrub_checksum_super(sblock);
1628 	else
1629 		WARN_ON(1);
1630 	if (ret)
1631 		scrub_handle_errored_block(sblock);
1632 
1633 	return ret;
1634 }
1635 
1636 static int scrub_checksum_data(struct scrub_block *sblock)
1637 {
1638 	struct scrub_ctx *sctx = sblock->sctx;
1639 	u8 csum[BTRFS_CSUM_SIZE];
1640 	u8 *on_disk_csum;
1641 	struct page *page;
1642 	void *buffer;
1643 	u32 crc = ~(u32)0;
1644 	int fail = 0;
1645 	u64 len;
1646 	int index;
1647 
1648 	BUG_ON(sblock->page_count < 1);
1649 	if (!sblock->pagev[0]->have_csum)
1650 		return 0;
1651 
1652 	on_disk_csum = sblock->pagev[0]->csum;
1653 	page = sblock->pagev[0]->page;
1654 	buffer = kmap_atomic(page);
1655 
1656 	len = sctx->sectorsize;
1657 	index = 0;
1658 	for (;;) {
1659 		u64 l = min_t(u64, len, PAGE_SIZE);
1660 
1661 		crc = btrfs_csum_data(buffer, crc, l);
1662 		kunmap_atomic(buffer);
1663 		len -= l;
1664 		if (len == 0)
1665 			break;
1666 		index++;
1667 		BUG_ON(index >= sblock->page_count);
1668 		BUG_ON(!sblock->pagev[index]->page);
1669 		page = sblock->pagev[index]->page;
1670 		buffer = kmap_atomic(page);
1671 	}
1672 
1673 	btrfs_csum_final(crc, csum);
1674 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1675 		fail = 1;
1676 
1677 	return fail;
1678 }
1679 
1680 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1681 {
1682 	struct scrub_ctx *sctx = sblock->sctx;
1683 	struct btrfs_header *h;
1684 	struct btrfs_root *root = sctx->dev_root;
1685 	struct btrfs_fs_info *fs_info = root->fs_info;
1686 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1687 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1688 	struct page *page;
1689 	void *mapped_buffer;
1690 	u64 mapped_size;
1691 	void *p;
1692 	u32 crc = ~(u32)0;
1693 	int fail = 0;
1694 	int crc_fail = 0;
1695 	u64 len;
1696 	int index;
1697 
1698 	BUG_ON(sblock->page_count < 1);
1699 	page = sblock->pagev[0]->page;
1700 	mapped_buffer = kmap_atomic(page);
1701 	h = (struct btrfs_header *)mapped_buffer;
1702 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1703 
1704 	/*
1705 	 * we don't use the getter functions here, as we
1706 	 * a) don't have an extent buffer and
1707 	 * b) the page is already kmapped
1708 	 */
1709 
1710 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1711 		++fail;
1712 
1713 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1714 		++fail;
1715 
1716 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1717 		++fail;
1718 
1719 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1720 		   BTRFS_UUID_SIZE))
1721 		++fail;
1722 
1723 	WARN_ON(sctx->nodesize != sctx->leafsize);
1724 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1725 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1726 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1727 	index = 0;
1728 	for (;;) {
1729 		u64 l = min_t(u64, len, mapped_size);
1730 
1731 		crc = btrfs_csum_data(p, crc, l);
1732 		kunmap_atomic(mapped_buffer);
1733 		len -= l;
1734 		if (len == 0)
1735 			break;
1736 		index++;
1737 		BUG_ON(index >= sblock->page_count);
1738 		BUG_ON(!sblock->pagev[index]->page);
1739 		page = sblock->pagev[index]->page;
1740 		mapped_buffer = kmap_atomic(page);
1741 		mapped_size = PAGE_SIZE;
1742 		p = mapped_buffer;
1743 	}
1744 
1745 	btrfs_csum_final(crc, calculated_csum);
1746 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1747 		++crc_fail;
1748 
1749 	return fail || crc_fail;
1750 }
1751 
1752 static int scrub_checksum_super(struct scrub_block *sblock)
1753 {
1754 	struct btrfs_super_block *s;
1755 	struct scrub_ctx *sctx = sblock->sctx;
1756 	struct btrfs_root *root = sctx->dev_root;
1757 	struct btrfs_fs_info *fs_info = root->fs_info;
1758 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1759 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1760 	struct page *page;
1761 	void *mapped_buffer;
1762 	u64 mapped_size;
1763 	void *p;
1764 	u32 crc = ~(u32)0;
1765 	int fail_gen = 0;
1766 	int fail_cor = 0;
1767 	u64 len;
1768 	int index;
1769 
1770 	BUG_ON(sblock->page_count < 1);
1771 	page = sblock->pagev[0]->page;
1772 	mapped_buffer = kmap_atomic(page);
1773 	s = (struct btrfs_super_block *)mapped_buffer;
1774 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1775 
1776 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1777 		++fail_cor;
1778 
1779 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1780 		++fail_gen;
1781 
1782 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1783 		++fail_cor;
1784 
1785 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1786 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1787 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1788 	index = 0;
1789 	for (;;) {
1790 		u64 l = min_t(u64, len, mapped_size);
1791 
1792 		crc = btrfs_csum_data(p, crc, l);
1793 		kunmap_atomic(mapped_buffer);
1794 		len -= l;
1795 		if (len == 0)
1796 			break;
1797 		index++;
1798 		BUG_ON(index >= sblock->page_count);
1799 		BUG_ON(!sblock->pagev[index]->page);
1800 		page = sblock->pagev[index]->page;
1801 		mapped_buffer = kmap_atomic(page);
1802 		mapped_size = PAGE_SIZE;
1803 		p = mapped_buffer;
1804 	}
1805 
1806 	btrfs_csum_final(crc, calculated_csum);
1807 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1808 		++fail_cor;
1809 
1810 	if (fail_cor + fail_gen) {
1811 		/*
1812 		 * if we find an error in a super block, we just report it.
1813 		 * They will get written with the next transaction commit
1814 		 * anyway
1815 		 */
1816 		spin_lock(&sctx->stat_lock);
1817 		++sctx->stat.super_errors;
1818 		spin_unlock(&sctx->stat_lock);
1819 		if (fail_cor)
1820 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1821 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1822 		else
1823 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1824 				BTRFS_DEV_STAT_GENERATION_ERRS);
1825 	}
1826 
1827 	return fail_cor + fail_gen;
1828 }
1829 
1830 static void scrub_block_get(struct scrub_block *sblock)
1831 {
1832 	atomic_inc(&sblock->ref_count);
1833 }
1834 
1835 static void scrub_block_put(struct scrub_block *sblock)
1836 {
1837 	if (atomic_dec_and_test(&sblock->ref_count)) {
1838 		int i;
1839 
1840 		for (i = 0; i < sblock->page_count; i++)
1841 			scrub_page_put(sblock->pagev[i]);
1842 		kfree(sblock);
1843 	}
1844 }
1845 
1846 static void scrub_page_get(struct scrub_page *spage)
1847 {
1848 	atomic_inc(&spage->ref_count);
1849 }
1850 
1851 static void scrub_page_put(struct scrub_page *spage)
1852 {
1853 	if (atomic_dec_and_test(&spage->ref_count)) {
1854 		if (spage->page)
1855 			__free_page(spage->page);
1856 		kfree(spage);
1857 	}
1858 }
1859 
1860 static void scrub_submit(struct scrub_ctx *sctx)
1861 {
1862 	struct scrub_bio *sbio;
1863 
1864 	if (sctx->curr == -1)
1865 		return;
1866 
1867 	sbio = sctx->bios[sctx->curr];
1868 	sctx->curr = -1;
1869 	scrub_pending_bio_inc(sctx);
1870 
1871 	if (!sbio->bio->bi_bdev) {
1872 		/*
1873 		 * this case should not happen. If btrfs_map_block() is
1874 		 * wrong, it could happen for dev-replace operations on
1875 		 * missing devices when no mirrors are available, but in
1876 		 * this case it should already fail the mount.
1877 		 * This case is handled correctly (but _very_ slowly).
1878 		 */
1879 		printk_ratelimited(KERN_WARNING
1880 			"btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1881 		bio_endio(sbio->bio, -EIO);
1882 	} else {
1883 		btrfsic_submit_bio(READ, sbio->bio);
1884 	}
1885 }
1886 
1887 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1888 				    struct scrub_page *spage)
1889 {
1890 	struct scrub_block *sblock = spage->sblock;
1891 	struct scrub_bio *sbio;
1892 	int ret;
1893 
1894 again:
1895 	/*
1896 	 * grab a fresh bio or wait for one to become available
1897 	 */
1898 	while (sctx->curr == -1) {
1899 		spin_lock(&sctx->list_lock);
1900 		sctx->curr = sctx->first_free;
1901 		if (sctx->curr != -1) {
1902 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1903 			sctx->bios[sctx->curr]->next_free = -1;
1904 			sctx->bios[sctx->curr]->page_count = 0;
1905 			spin_unlock(&sctx->list_lock);
1906 		} else {
1907 			spin_unlock(&sctx->list_lock);
1908 			wait_event(sctx->list_wait, sctx->first_free != -1);
1909 		}
1910 	}
1911 	sbio = sctx->bios[sctx->curr];
1912 	if (sbio->page_count == 0) {
1913 		struct bio *bio;
1914 
1915 		sbio->physical = spage->physical;
1916 		sbio->logical = spage->logical;
1917 		sbio->dev = spage->dev;
1918 		bio = sbio->bio;
1919 		if (!bio) {
1920 			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1921 			if (!bio)
1922 				return -ENOMEM;
1923 			sbio->bio = bio;
1924 		}
1925 
1926 		bio->bi_private = sbio;
1927 		bio->bi_end_io = scrub_bio_end_io;
1928 		bio->bi_bdev = sbio->dev->bdev;
1929 		bio->bi_sector = sbio->physical >> 9;
1930 		sbio->err = 0;
1931 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1932 		   spage->physical ||
1933 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1934 		   spage->logical ||
1935 		   sbio->dev != spage->dev) {
1936 		scrub_submit(sctx);
1937 		goto again;
1938 	}
1939 
1940 	sbio->pagev[sbio->page_count] = spage;
1941 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1942 	if (ret != PAGE_SIZE) {
1943 		if (sbio->page_count < 1) {
1944 			bio_put(sbio->bio);
1945 			sbio->bio = NULL;
1946 			return -EIO;
1947 		}
1948 		scrub_submit(sctx);
1949 		goto again;
1950 	}
1951 
1952 	scrub_block_get(sblock); /* one for the page added to the bio */
1953 	atomic_inc(&sblock->outstanding_pages);
1954 	sbio->page_count++;
1955 	if (sbio->page_count == sctx->pages_per_rd_bio)
1956 		scrub_submit(sctx);
1957 
1958 	return 0;
1959 }
1960 
1961 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1962 		       u64 physical, struct btrfs_device *dev, u64 flags,
1963 		       u64 gen, int mirror_num, u8 *csum, int force,
1964 		       u64 physical_for_dev_replace)
1965 {
1966 	struct scrub_block *sblock;
1967 	int index;
1968 
1969 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1970 	if (!sblock) {
1971 		spin_lock(&sctx->stat_lock);
1972 		sctx->stat.malloc_errors++;
1973 		spin_unlock(&sctx->stat_lock);
1974 		return -ENOMEM;
1975 	}
1976 
1977 	/* one ref inside this function, plus one for each page added to
1978 	 * a bio later on */
1979 	atomic_set(&sblock->ref_count, 1);
1980 	sblock->sctx = sctx;
1981 	sblock->no_io_error_seen = 1;
1982 
1983 	for (index = 0; len > 0; index++) {
1984 		struct scrub_page *spage;
1985 		u64 l = min_t(u64, len, PAGE_SIZE);
1986 
1987 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
1988 		if (!spage) {
1989 leave_nomem:
1990 			spin_lock(&sctx->stat_lock);
1991 			sctx->stat.malloc_errors++;
1992 			spin_unlock(&sctx->stat_lock);
1993 			scrub_block_put(sblock);
1994 			return -ENOMEM;
1995 		}
1996 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1997 		scrub_page_get(spage);
1998 		sblock->pagev[index] = spage;
1999 		spage->sblock = sblock;
2000 		spage->dev = dev;
2001 		spage->flags = flags;
2002 		spage->generation = gen;
2003 		spage->logical = logical;
2004 		spage->physical = physical;
2005 		spage->physical_for_dev_replace = physical_for_dev_replace;
2006 		spage->mirror_num = mirror_num;
2007 		if (csum) {
2008 			spage->have_csum = 1;
2009 			memcpy(spage->csum, csum, sctx->csum_size);
2010 		} else {
2011 			spage->have_csum = 0;
2012 		}
2013 		sblock->page_count++;
2014 		spage->page = alloc_page(GFP_NOFS);
2015 		if (!spage->page)
2016 			goto leave_nomem;
2017 		len -= l;
2018 		logical += l;
2019 		physical += l;
2020 		physical_for_dev_replace += l;
2021 	}
2022 
2023 	WARN_ON(sblock->page_count == 0);
2024 	for (index = 0; index < sblock->page_count; index++) {
2025 		struct scrub_page *spage = sblock->pagev[index];
2026 		int ret;
2027 
2028 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2029 		if (ret) {
2030 			scrub_block_put(sblock);
2031 			return ret;
2032 		}
2033 	}
2034 
2035 	if (force)
2036 		scrub_submit(sctx);
2037 
2038 	/* last one frees, either here or in bio completion for last page */
2039 	scrub_block_put(sblock);
2040 	return 0;
2041 }
2042 
2043 static void scrub_bio_end_io(struct bio *bio, int err)
2044 {
2045 	struct scrub_bio *sbio = bio->bi_private;
2046 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2047 
2048 	sbio->err = err;
2049 	sbio->bio = bio;
2050 
2051 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2052 }
2053 
2054 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2055 {
2056 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2057 	struct scrub_ctx *sctx = sbio->sctx;
2058 	int i;
2059 
2060 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2061 	if (sbio->err) {
2062 		for (i = 0; i < sbio->page_count; i++) {
2063 			struct scrub_page *spage = sbio->pagev[i];
2064 
2065 			spage->io_error = 1;
2066 			spage->sblock->no_io_error_seen = 0;
2067 		}
2068 	}
2069 
2070 	/* now complete the scrub_block items that have all pages completed */
2071 	for (i = 0; i < sbio->page_count; i++) {
2072 		struct scrub_page *spage = sbio->pagev[i];
2073 		struct scrub_block *sblock = spage->sblock;
2074 
2075 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2076 			scrub_block_complete(sblock);
2077 		scrub_block_put(sblock);
2078 	}
2079 
2080 	bio_put(sbio->bio);
2081 	sbio->bio = NULL;
2082 	spin_lock(&sctx->list_lock);
2083 	sbio->next_free = sctx->first_free;
2084 	sctx->first_free = sbio->index;
2085 	spin_unlock(&sctx->list_lock);
2086 
2087 	if (sctx->is_dev_replace &&
2088 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2089 		mutex_lock(&sctx->wr_ctx.wr_lock);
2090 		scrub_wr_submit(sctx);
2091 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2092 	}
2093 
2094 	scrub_pending_bio_dec(sctx);
2095 }
2096 
2097 static void scrub_block_complete(struct scrub_block *sblock)
2098 {
2099 	if (!sblock->no_io_error_seen) {
2100 		scrub_handle_errored_block(sblock);
2101 	} else {
2102 		/*
2103 		 * if has checksum error, write via repair mechanism in
2104 		 * dev replace case, otherwise write here in dev replace
2105 		 * case.
2106 		 */
2107 		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2108 			scrub_write_block_to_dev_replace(sblock);
2109 	}
2110 }
2111 
2112 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2113 			   u8 *csum)
2114 {
2115 	struct btrfs_ordered_sum *sum = NULL;
2116 	unsigned long index;
2117 	unsigned long num_sectors;
2118 
2119 	while (!list_empty(&sctx->csum_list)) {
2120 		sum = list_first_entry(&sctx->csum_list,
2121 				       struct btrfs_ordered_sum, list);
2122 		if (sum->bytenr > logical)
2123 			return 0;
2124 		if (sum->bytenr + sum->len > logical)
2125 			break;
2126 
2127 		++sctx->stat.csum_discards;
2128 		list_del(&sum->list);
2129 		kfree(sum);
2130 		sum = NULL;
2131 	}
2132 	if (!sum)
2133 		return 0;
2134 
2135 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2136 	num_sectors = sum->len / sctx->sectorsize;
2137 	memcpy(csum, sum->sums + index, sctx->csum_size);
2138 	if (index == num_sectors - 1) {
2139 		list_del(&sum->list);
2140 		kfree(sum);
2141 	}
2142 	return 1;
2143 }
2144 
2145 /* scrub extent tries to collect up to 64 kB for each bio */
2146 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2147 			u64 physical, struct btrfs_device *dev, u64 flags,
2148 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2149 {
2150 	int ret;
2151 	u8 csum[BTRFS_CSUM_SIZE];
2152 	u32 blocksize;
2153 
2154 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2155 		blocksize = sctx->sectorsize;
2156 		spin_lock(&sctx->stat_lock);
2157 		sctx->stat.data_extents_scrubbed++;
2158 		sctx->stat.data_bytes_scrubbed += len;
2159 		spin_unlock(&sctx->stat_lock);
2160 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2161 		WARN_ON(sctx->nodesize != sctx->leafsize);
2162 		blocksize = sctx->nodesize;
2163 		spin_lock(&sctx->stat_lock);
2164 		sctx->stat.tree_extents_scrubbed++;
2165 		sctx->stat.tree_bytes_scrubbed += len;
2166 		spin_unlock(&sctx->stat_lock);
2167 	} else {
2168 		blocksize = sctx->sectorsize;
2169 		WARN_ON(1);
2170 	}
2171 
2172 	while (len) {
2173 		u64 l = min_t(u64, len, blocksize);
2174 		int have_csum = 0;
2175 
2176 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2177 			/* push csums to sbio */
2178 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2179 			if (have_csum == 0)
2180 				++sctx->stat.no_csum;
2181 			if (sctx->is_dev_replace && !have_csum) {
2182 				ret = copy_nocow_pages(sctx, logical, l,
2183 						       mirror_num,
2184 						      physical_for_dev_replace);
2185 				goto behind_scrub_pages;
2186 			}
2187 		}
2188 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2189 				  mirror_num, have_csum ? csum : NULL, 0,
2190 				  physical_for_dev_replace);
2191 behind_scrub_pages:
2192 		if (ret)
2193 			return ret;
2194 		len -= l;
2195 		logical += l;
2196 		physical += l;
2197 		physical_for_dev_replace += l;
2198 	}
2199 	return 0;
2200 }
2201 
2202 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2203 					   struct map_lookup *map,
2204 					   struct btrfs_device *scrub_dev,
2205 					   int num, u64 base, u64 length,
2206 					   int is_dev_replace)
2207 {
2208 	struct btrfs_path *path;
2209 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2210 	struct btrfs_root *root = fs_info->extent_root;
2211 	struct btrfs_root *csum_root = fs_info->csum_root;
2212 	struct btrfs_extent_item *extent;
2213 	struct blk_plug plug;
2214 	u64 flags;
2215 	int ret;
2216 	int slot;
2217 	u64 nstripes;
2218 	struct extent_buffer *l;
2219 	struct btrfs_key key;
2220 	u64 physical;
2221 	u64 logical;
2222 	u64 logic_end;
2223 	u64 generation;
2224 	int mirror_num;
2225 	struct reada_control *reada1;
2226 	struct reada_control *reada2;
2227 	struct btrfs_key key_start;
2228 	struct btrfs_key key_end;
2229 	u64 increment = map->stripe_len;
2230 	u64 offset;
2231 	u64 extent_logical;
2232 	u64 extent_physical;
2233 	u64 extent_len;
2234 	struct btrfs_device *extent_dev;
2235 	int extent_mirror_num;
2236 	int stop_loop;
2237 
2238 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2239 			 BTRFS_BLOCK_GROUP_RAID6)) {
2240 		if (num >= nr_data_stripes(map)) {
2241 			return 0;
2242 		}
2243 	}
2244 
2245 	nstripes = length;
2246 	offset = 0;
2247 	do_div(nstripes, map->stripe_len);
2248 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2249 		offset = map->stripe_len * num;
2250 		increment = map->stripe_len * map->num_stripes;
2251 		mirror_num = 1;
2252 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2253 		int factor = map->num_stripes / map->sub_stripes;
2254 		offset = map->stripe_len * (num / map->sub_stripes);
2255 		increment = map->stripe_len * factor;
2256 		mirror_num = num % map->sub_stripes + 1;
2257 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2258 		increment = map->stripe_len;
2259 		mirror_num = num % map->num_stripes + 1;
2260 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2261 		increment = map->stripe_len;
2262 		mirror_num = num % map->num_stripes + 1;
2263 	} else {
2264 		increment = map->stripe_len;
2265 		mirror_num = 1;
2266 	}
2267 
2268 	path = btrfs_alloc_path();
2269 	if (!path)
2270 		return -ENOMEM;
2271 
2272 	/*
2273 	 * work on commit root. The related disk blocks are static as
2274 	 * long as COW is applied. This means, it is save to rewrite
2275 	 * them to repair disk errors without any race conditions
2276 	 */
2277 	path->search_commit_root = 1;
2278 	path->skip_locking = 1;
2279 
2280 	/*
2281 	 * trigger the readahead for extent tree csum tree and wait for
2282 	 * completion. During readahead, the scrub is officially paused
2283 	 * to not hold off transaction commits
2284 	 */
2285 	logical = base + offset;
2286 
2287 	wait_event(sctx->list_wait,
2288 		   atomic_read(&sctx->bios_in_flight) == 0);
2289 	atomic_inc(&fs_info->scrubs_paused);
2290 	wake_up(&fs_info->scrub_pause_wait);
2291 
2292 	/* FIXME it might be better to start readahead at commit root */
2293 	key_start.objectid = logical;
2294 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2295 	key_start.offset = (u64)0;
2296 	key_end.objectid = base + offset + nstripes * increment;
2297 	key_end.type = BTRFS_METADATA_ITEM_KEY;
2298 	key_end.offset = (u64)-1;
2299 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2300 
2301 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2302 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2303 	key_start.offset = logical;
2304 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2305 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2306 	key_end.offset = base + offset + nstripes * increment;
2307 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2308 
2309 	if (!IS_ERR(reada1))
2310 		btrfs_reada_wait(reada1);
2311 	if (!IS_ERR(reada2))
2312 		btrfs_reada_wait(reada2);
2313 
2314 	mutex_lock(&fs_info->scrub_lock);
2315 	while (atomic_read(&fs_info->scrub_pause_req)) {
2316 		mutex_unlock(&fs_info->scrub_lock);
2317 		wait_event(fs_info->scrub_pause_wait,
2318 		   atomic_read(&fs_info->scrub_pause_req) == 0);
2319 		mutex_lock(&fs_info->scrub_lock);
2320 	}
2321 	atomic_dec(&fs_info->scrubs_paused);
2322 	mutex_unlock(&fs_info->scrub_lock);
2323 	wake_up(&fs_info->scrub_pause_wait);
2324 
2325 	/*
2326 	 * collect all data csums for the stripe to avoid seeking during
2327 	 * the scrub. This might currently (crc32) end up to be about 1MB
2328 	 */
2329 	blk_start_plug(&plug);
2330 
2331 	/*
2332 	 * now find all extents for each stripe and scrub them
2333 	 */
2334 	logical = base + offset;
2335 	physical = map->stripes[num].physical;
2336 	logic_end = logical + increment * nstripes;
2337 	ret = 0;
2338 	while (logical < logic_end) {
2339 		/*
2340 		 * canceled?
2341 		 */
2342 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2343 		    atomic_read(&sctx->cancel_req)) {
2344 			ret = -ECANCELED;
2345 			goto out;
2346 		}
2347 		/*
2348 		 * check to see if we have to pause
2349 		 */
2350 		if (atomic_read(&fs_info->scrub_pause_req)) {
2351 			/* push queued extents */
2352 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2353 			scrub_submit(sctx);
2354 			mutex_lock(&sctx->wr_ctx.wr_lock);
2355 			scrub_wr_submit(sctx);
2356 			mutex_unlock(&sctx->wr_ctx.wr_lock);
2357 			wait_event(sctx->list_wait,
2358 				   atomic_read(&sctx->bios_in_flight) == 0);
2359 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2360 			atomic_inc(&fs_info->scrubs_paused);
2361 			wake_up(&fs_info->scrub_pause_wait);
2362 			mutex_lock(&fs_info->scrub_lock);
2363 			while (atomic_read(&fs_info->scrub_pause_req)) {
2364 				mutex_unlock(&fs_info->scrub_lock);
2365 				wait_event(fs_info->scrub_pause_wait,
2366 				   atomic_read(&fs_info->scrub_pause_req) == 0);
2367 				mutex_lock(&fs_info->scrub_lock);
2368 			}
2369 			atomic_dec(&fs_info->scrubs_paused);
2370 			mutex_unlock(&fs_info->scrub_lock);
2371 			wake_up(&fs_info->scrub_pause_wait);
2372 		}
2373 
2374 		key.objectid = logical;
2375 		key.type = BTRFS_EXTENT_ITEM_KEY;
2376 		key.offset = (u64)-1;
2377 
2378 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2379 		if (ret < 0)
2380 			goto out;
2381 
2382 		if (ret > 0) {
2383 			ret = btrfs_previous_item(root, path, 0,
2384 						  BTRFS_EXTENT_ITEM_KEY);
2385 			if (ret < 0)
2386 				goto out;
2387 			if (ret > 0) {
2388 				/* there's no smaller item, so stick with the
2389 				 * larger one */
2390 				btrfs_release_path(path);
2391 				ret = btrfs_search_slot(NULL, root, &key,
2392 							path, 0, 0);
2393 				if (ret < 0)
2394 					goto out;
2395 			}
2396 		}
2397 
2398 		stop_loop = 0;
2399 		while (1) {
2400 			u64 bytes;
2401 
2402 			l = path->nodes[0];
2403 			slot = path->slots[0];
2404 			if (slot >= btrfs_header_nritems(l)) {
2405 				ret = btrfs_next_leaf(root, path);
2406 				if (ret == 0)
2407 					continue;
2408 				if (ret < 0)
2409 					goto out;
2410 
2411 				stop_loop = 1;
2412 				break;
2413 			}
2414 			btrfs_item_key_to_cpu(l, &key, slot);
2415 
2416 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2417 				bytes = root->leafsize;
2418 			else
2419 				bytes = key.offset;
2420 
2421 			if (key.objectid + bytes <= logical)
2422 				goto next;
2423 
2424 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2425 			    key.type != BTRFS_METADATA_ITEM_KEY)
2426 				goto next;
2427 
2428 			if (key.objectid >= logical + map->stripe_len) {
2429 				/* out of this device extent */
2430 				if (key.objectid >= logic_end)
2431 					stop_loop = 1;
2432 				break;
2433 			}
2434 
2435 			extent = btrfs_item_ptr(l, slot,
2436 						struct btrfs_extent_item);
2437 			flags = btrfs_extent_flags(l, extent);
2438 			generation = btrfs_extent_generation(l, extent);
2439 
2440 			if (key.objectid < logical &&
2441 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2442 				printk(KERN_ERR
2443 				       "btrfs scrub: tree block %llu spanning "
2444 				       "stripes, ignored. logical=%llu\n",
2445 				       key.objectid, logical);
2446 				goto next;
2447 			}
2448 
2449 again:
2450 			extent_logical = key.objectid;
2451 			extent_len = bytes;
2452 
2453 			/*
2454 			 * trim extent to this stripe
2455 			 */
2456 			if (extent_logical < logical) {
2457 				extent_len -= logical - extent_logical;
2458 				extent_logical = logical;
2459 			}
2460 			if (extent_logical + extent_len >
2461 			    logical + map->stripe_len) {
2462 				extent_len = logical + map->stripe_len -
2463 					     extent_logical;
2464 			}
2465 
2466 			extent_physical = extent_logical - logical + physical;
2467 			extent_dev = scrub_dev;
2468 			extent_mirror_num = mirror_num;
2469 			if (is_dev_replace)
2470 				scrub_remap_extent(fs_info, extent_logical,
2471 						   extent_len, &extent_physical,
2472 						   &extent_dev,
2473 						   &extent_mirror_num);
2474 
2475 			ret = btrfs_lookup_csums_range(csum_root, logical,
2476 						logical + map->stripe_len - 1,
2477 						&sctx->csum_list, 1);
2478 			if (ret)
2479 				goto out;
2480 
2481 			ret = scrub_extent(sctx, extent_logical, extent_len,
2482 					   extent_physical, extent_dev, flags,
2483 					   generation, extent_mirror_num,
2484 					   extent_logical - logical + physical);
2485 			if (ret)
2486 				goto out;
2487 
2488 			scrub_free_csums(sctx);
2489 			if (extent_logical + extent_len <
2490 			    key.objectid + bytes) {
2491 				logical += increment;
2492 				physical += map->stripe_len;
2493 
2494 				if (logical < key.objectid + bytes) {
2495 					cond_resched();
2496 					goto again;
2497 				}
2498 
2499 				if (logical >= logic_end) {
2500 					stop_loop = 1;
2501 					break;
2502 				}
2503 			}
2504 next:
2505 			path->slots[0]++;
2506 		}
2507 		btrfs_release_path(path);
2508 		logical += increment;
2509 		physical += map->stripe_len;
2510 		spin_lock(&sctx->stat_lock);
2511 		if (stop_loop)
2512 			sctx->stat.last_physical = map->stripes[num].physical +
2513 						   length;
2514 		else
2515 			sctx->stat.last_physical = physical;
2516 		spin_unlock(&sctx->stat_lock);
2517 		if (stop_loop)
2518 			break;
2519 	}
2520 out:
2521 	/* push queued extents */
2522 	scrub_submit(sctx);
2523 	mutex_lock(&sctx->wr_ctx.wr_lock);
2524 	scrub_wr_submit(sctx);
2525 	mutex_unlock(&sctx->wr_ctx.wr_lock);
2526 
2527 	blk_finish_plug(&plug);
2528 	btrfs_free_path(path);
2529 	return ret < 0 ? ret : 0;
2530 }
2531 
2532 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2533 					  struct btrfs_device *scrub_dev,
2534 					  u64 chunk_tree, u64 chunk_objectid,
2535 					  u64 chunk_offset, u64 length,
2536 					  u64 dev_offset, int is_dev_replace)
2537 {
2538 	struct btrfs_mapping_tree *map_tree =
2539 		&sctx->dev_root->fs_info->mapping_tree;
2540 	struct map_lookup *map;
2541 	struct extent_map *em;
2542 	int i;
2543 	int ret = 0;
2544 
2545 	read_lock(&map_tree->map_tree.lock);
2546 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2547 	read_unlock(&map_tree->map_tree.lock);
2548 
2549 	if (!em)
2550 		return -EINVAL;
2551 
2552 	map = (struct map_lookup *)em->bdev;
2553 	if (em->start != chunk_offset)
2554 		goto out;
2555 
2556 	if (em->len < length)
2557 		goto out;
2558 
2559 	for (i = 0; i < map->num_stripes; ++i) {
2560 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2561 		    map->stripes[i].physical == dev_offset) {
2562 			ret = scrub_stripe(sctx, map, scrub_dev, i,
2563 					   chunk_offset, length,
2564 					   is_dev_replace);
2565 			if (ret)
2566 				goto out;
2567 		}
2568 	}
2569 out:
2570 	free_extent_map(em);
2571 
2572 	return ret;
2573 }
2574 
2575 static noinline_for_stack
2576 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2577 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2578 			   int is_dev_replace)
2579 {
2580 	struct btrfs_dev_extent *dev_extent = NULL;
2581 	struct btrfs_path *path;
2582 	struct btrfs_root *root = sctx->dev_root;
2583 	struct btrfs_fs_info *fs_info = root->fs_info;
2584 	u64 length;
2585 	u64 chunk_tree;
2586 	u64 chunk_objectid;
2587 	u64 chunk_offset;
2588 	int ret;
2589 	int slot;
2590 	struct extent_buffer *l;
2591 	struct btrfs_key key;
2592 	struct btrfs_key found_key;
2593 	struct btrfs_block_group_cache *cache;
2594 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2595 
2596 	path = btrfs_alloc_path();
2597 	if (!path)
2598 		return -ENOMEM;
2599 
2600 	path->reada = 2;
2601 	path->search_commit_root = 1;
2602 	path->skip_locking = 1;
2603 
2604 	key.objectid = scrub_dev->devid;
2605 	key.offset = 0ull;
2606 	key.type = BTRFS_DEV_EXTENT_KEY;
2607 
2608 	while (1) {
2609 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2610 		if (ret < 0)
2611 			break;
2612 		if (ret > 0) {
2613 			if (path->slots[0] >=
2614 			    btrfs_header_nritems(path->nodes[0])) {
2615 				ret = btrfs_next_leaf(root, path);
2616 				if (ret)
2617 					break;
2618 			}
2619 		}
2620 
2621 		l = path->nodes[0];
2622 		slot = path->slots[0];
2623 
2624 		btrfs_item_key_to_cpu(l, &found_key, slot);
2625 
2626 		if (found_key.objectid != scrub_dev->devid)
2627 			break;
2628 
2629 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2630 			break;
2631 
2632 		if (found_key.offset >= end)
2633 			break;
2634 
2635 		if (found_key.offset < key.offset)
2636 			break;
2637 
2638 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2639 		length = btrfs_dev_extent_length(l, dev_extent);
2640 
2641 		if (found_key.offset + length <= start) {
2642 			key.offset = found_key.offset + length;
2643 			btrfs_release_path(path);
2644 			continue;
2645 		}
2646 
2647 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2648 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2649 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2650 
2651 		/*
2652 		 * get a reference on the corresponding block group to prevent
2653 		 * the chunk from going away while we scrub it
2654 		 */
2655 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2656 		if (!cache) {
2657 			ret = -ENOENT;
2658 			break;
2659 		}
2660 		dev_replace->cursor_right = found_key.offset + length;
2661 		dev_replace->cursor_left = found_key.offset;
2662 		dev_replace->item_needs_writeback = 1;
2663 		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2664 				  chunk_offset, length, found_key.offset,
2665 				  is_dev_replace);
2666 
2667 		/*
2668 		 * flush, submit all pending read and write bios, afterwards
2669 		 * wait for them.
2670 		 * Note that in the dev replace case, a read request causes
2671 		 * write requests that are submitted in the read completion
2672 		 * worker. Therefore in the current situation, it is required
2673 		 * that all write requests are flushed, so that all read and
2674 		 * write requests are really completed when bios_in_flight
2675 		 * changes to 0.
2676 		 */
2677 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2678 		scrub_submit(sctx);
2679 		mutex_lock(&sctx->wr_ctx.wr_lock);
2680 		scrub_wr_submit(sctx);
2681 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2682 
2683 		wait_event(sctx->list_wait,
2684 			   atomic_read(&sctx->bios_in_flight) == 0);
2685 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2686 		atomic_inc(&fs_info->scrubs_paused);
2687 		wake_up(&fs_info->scrub_pause_wait);
2688 		wait_event(sctx->list_wait,
2689 			   atomic_read(&sctx->workers_pending) == 0);
2690 
2691 		mutex_lock(&fs_info->scrub_lock);
2692 		while (atomic_read(&fs_info->scrub_pause_req)) {
2693 			mutex_unlock(&fs_info->scrub_lock);
2694 			wait_event(fs_info->scrub_pause_wait,
2695 			   atomic_read(&fs_info->scrub_pause_req) == 0);
2696 			mutex_lock(&fs_info->scrub_lock);
2697 		}
2698 		atomic_dec(&fs_info->scrubs_paused);
2699 		mutex_unlock(&fs_info->scrub_lock);
2700 		wake_up(&fs_info->scrub_pause_wait);
2701 
2702 		btrfs_put_block_group(cache);
2703 		if (ret)
2704 			break;
2705 		if (is_dev_replace &&
2706 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2707 			ret = -EIO;
2708 			break;
2709 		}
2710 		if (sctx->stat.malloc_errors > 0) {
2711 			ret = -ENOMEM;
2712 			break;
2713 		}
2714 
2715 		dev_replace->cursor_left = dev_replace->cursor_right;
2716 		dev_replace->item_needs_writeback = 1;
2717 
2718 		key.offset = found_key.offset + length;
2719 		btrfs_release_path(path);
2720 	}
2721 
2722 	btrfs_free_path(path);
2723 
2724 	/*
2725 	 * ret can still be 1 from search_slot or next_leaf,
2726 	 * that's not an error
2727 	 */
2728 	return ret < 0 ? ret : 0;
2729 }
2730 
2731 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2732 					   struct btrfs_device *scrub_dev)
2733 {
2734 	int	i;
2735 	u64	bytenr;
2736 	u64	gen;
2737 	int	ret;
2738 	struct btrfs_root *root = sctx->dev_root;
2739 
2740 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2741 		return -EIO;
2742 
2743 	gen = root->fs_info->last_trans_committed;
2744 
2745 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2746 		bytenr = btrfs_sb_offset(i);
2747 		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2748 			break;
2749 
2750 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2751 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2752 				  NULL, 1, bytenr);
2753 		if (ret)
2754 			return ret;
2755 	}
2756 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2757 
2758 	return 0;
2759 }
2760 
2761 /*
2762  * get a reference count on fs_info->scrub_workers. start worker if necessary
2763  */
2764 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2765 						int is_dev_replace)
2766 {
2767 	int ret = 0;
2768 
2769 	if (fs_info->scrub_workers_refcnt == 0) {
2770 		if (is_dev_replace)
2771 			btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2772 					&fs_info->generic_worker);
2773 		else
2774 			btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2775 					fs_info->thread_pool_size,
2776 					&fs_info->generic_worker);
2777 		fs_info->scrub_workers.idle_thresh = 4;
2778 		ret = btrfs_start_workers(&fs_info->scrub_workers);
2779 		if (ret)
2780 			goto out;
2781 		btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2782 				   "scrubwrc",
2783 				   fs_info->thread_pool_size,
2784 				   &fs_info->generic_worker);
2785 		fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2786 		ret = btrfs_start_workers(
2787 				&fs_info->scrub_wr_completion_workers);
2788 		if (ret)
2789 			goto out;
2790 		btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2791 				   &fs_info->generic_worker);
2792 		ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2793 		if (ret)
2794 			goto out;
2795 	}
2796 	++fs_info->scrub_workers_refcnt;
2797 out:
2798 	return ret;
2799 }
2800 
2801 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2802 {
2803 	if (--fs_info->scrub_workers_refcnt == 0) {
2804 		btrfs_stop_workers(&fs_info->scrub_workers);
2805 		btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2806 		btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2807 	}
2808 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2809 }
2810 
2811 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2812 		    u64 end, struct btrfs_scrub_progress *progress,
2813 		    int readonly, int is_dev_replace)
2814 {
2815 	struct scrub_ctx *sctx;
2816 	int ret;
2817 	struct btrfs_device *dev;
2818 
2819 	if (btrfs_fs_closing(fs_info))
2820 		return -EINVAL;
2821 
2822 	/*
2823 	 * check some assumptions
2824 	 */
2825 	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2826 		printk(KERN_ERR
2827 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2828 		       fs_info->chunk_root->nodesize,
2829 		       fs_info->chunk_root->leafsize);
2830 		return -EINVAL;
2831 	}
2832 
2833 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2834 		/*
2835 		 * in this case scrub is unable to calculate the checksum
2836 		 * the way scrub is implemented. Do not handle this
2837 		 * situation at all because it won't ever happen.
2838 		 */
2839 		printk(KERN_ERR
2840 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2841 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2842 		return -EINVAL;
2843 	}
2844 
2845 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2846 		/* not supported for data w/o checksums */
2847 		printk(KERN_ERR
2848 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n",
2849 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2850 		return -EINVAL;
2851 	}
2852 
2853 	if (fs_info->chunk_root->nodesize >
2854 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2855 	    fs_info->chunk_root->sectorsize >
2856 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2857 		/*
2858 		 * would exhaust the array bounds of pagev member in
2859 		 * struct scrub_block
2860 		 */
2861 		pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2862 		       fs_info->chunk_root->nodesize,
2863 		       SCRUB_MAX_PAGES_PER_BLOCK,
2864 		       fs_info->chunk_root->sectorsize,
2865 		       SCRUB_MAX_PAGES_PER_BLOCK);
2866 		return -EINVAL;
2867 	}
2868 
2869 
2870 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2871 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2872 	if (!dev || (dev->missing && !is_dev_replace)) {
2873 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2874 		return -ENODEV;
2875 	}
2876 
2877 	mutex_lock(&fs_info->scrub_lock);
2878 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2879 		mutex_unlock(&fs_info->scrub_lock);
2880 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2881 		return -EIO;
2882 	}
2883 
2884 	btrfs_dev_replace_lock(&fs_info->dev_replace);
2885 	if (dev->scrub_device ||
2886 	    (!is_dev_replace &&
2887 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2888 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2889 		mutex_unlock(&fs_info->scrub_lock);
2890 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2891 		return -EINPROGRESS;
2892 	}
2893 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2894 
2895 	ret = scrub_workers_get(fs_info, is_dev_replace);
2896 	if (ret) {
2897 		mutex_unlock(&fs_info->scrub_lock);
2898 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2899 		return ret;
2900 	}
2901 
2902 	sctx = scrub_setup_ctx(dev, is_dev_replace);
2903 	if (IS_ERR(sctx)) {
2904 		mutex_unlock(&fs_info->scrub_lock);
2905 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2906 		scrub_workers_put(fs_info);
2907 		return PTR_ERR(sctx);
2908 	}
2909 	sctx->readonly = readonly;
2910 	dev->scrub_device = sctx;
2911 
2912 	atomic_inc(&fs_info->scrubs_running);
2913 	mutex_unlock(&fs_info->scrub_lock);
2914 
2915 	if (!is_dev_replace) {
2916 		/*
2917 		 * by holding device list mutex, we can
2918 		 * kick off writing super in log tree sync.
2919 		 */
2920 		ret = scrub_supers(sctx, dev);
2921 	}
2922 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2923 
2924 	if (!ret)
2925 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
2926 					     is_dev_replace);
2927 
2928 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2929 	atomic_dec(&fs_info->scrubs_running);
2930 	wake_up(&fs_info->scrub_pause_wait);
2931 
2932 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2933 
2934 	if (progress)
2935 		memcpy(progress, &sctx->stat, sizeof(*progress));
2936 
2937 	mutex_lock(&fs_info->scrub_lock);
2938 	dev->scrub_device = NULL;
2939 	scrub_workers_put(fs_info);
2940 	mutex_unlock(&fs_info->scrub_lock);
2941 
2942 	scrub_free_ctx(sctx);
2943 
2944 	return ret;
2945 }
2946 
2947 void btrfs_scrub_pause(struct btrfs_root *root)
2948 {
2949 	struct btrfs_fs_info *fs_info = root->fs_info;
2950 
2951 	mutex_lock(&fs_info->scrub_lock);
2952 	atomic_inc(&fs_info->scrub_pause_req);
2953 	while (atomic_read(&fs_info->scrubs_paused) !=
2954 	       atomic_read(&fs_info->scrubs_running)) {
2955 		mutex_unlock(&fs_info->scrub_lock);
2956 		wait_event(fs_info->scrub_pause_wait,
2957 			   atomic_read(&fs_info->scrubs_paused) ==
2958 			   atomic_read(&fs_info->scrubs_running));
2959 		mutex_lock(&fs_info->scrub_lock);
2960 	}
2961 	mutex_unlock(&fs_info->scrub_lock);
2962 }
2963 
2964 void btrfs_scrub_continue(struct btrfs_root *root)
2965 {
2966 	struct btrfs_fs_info *fs_info = root->fs_info;
2967 
2968 	atomic_dec(&fs_info->scrub_pause_req);
2969 	wake_up(&fs_info->scrub_pause_wait);
2970 }
2971 
2972 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2973 {
2974 	mutex_lock(&fs_info->scrub_lock);
2975 	if (!atomic_read(&fs_info->scrubs_running)) {
2976 		mutex_unlock(&fs_info->scrub_lock);
2977 		return -ENOTCONN;
2978 	}
2979 
2980 	atomic_inc(&fs_info->scrub_cancel_req);
2981 	while (atomic_read(&fs_info->scrubs_running)) {
2982 		mutex_unlock(&fs_info->scrub_lock);
2983 		wait_event(fs_info->scrub_pause_wait,
2984 			   atomic_read(&fs_info->scrubs_running) == 0);
2985 		mutex_lock(&fs_info->scrub_lock);
2986 	}
2987 	atomic_dec(&fs_info->scrub_cancel_req);
2988 	mutex_unlock(&fs_info->scrub_lock);
2989 
2990 	return 0;
2991 }
2992 
2993 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
2994 			   struct btrfs_device *dev)
2995 {
2996 	struct scrub_ctx *sctx;
2997 
2998 	mutex_lock(&fs_info->scrub_lock);
2999 	sctx = dev->scrub_device;
3000 	if (!sctx) {
3001 		mutex_unlock(&fs_info->scrub_lock);
3002 		return -ENOTCONN;
3003 	}
3004 	atomic_inc(&sctx->cancel_req);
3005 	while (dev->scrub_device) {
3006 		mutex_unlock(&fs_info->scrub_lock);
3007 		wait_event(fs_info->scrub_pause_wait,
3008 			   dev->scrub_device == NULL);
3009 		mutex_lock(&fs_info->scrub_lock);
3010 	}
3011 	mutex_unlock(&fs_info->scrub_lock);
3012 
3013 	return 0;
3014 }
3015 
3016 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3017 			 struct btrfs_scrub_progress *progress)
3018 {
3019 	struct btrfs_device *dev;
3020 	struct scrub_ctx *sctx = NULL;
3021 
3022 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3023 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3024 	if (dev)
3025 		sctx = dev->scrub_device;
3026 	if (sctx)
3027 		memcpy(progress, &sctx->stat, sizeof(*progress));
3028 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3029 
3030 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3031 }
3032 
3033 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3034 			       u64 extent_logical, u64 extent_len,
3035 			       u64 *extent_physical,
3036 			       struct btrfs_device **extent_dev,
3037 			       int *extent_mirror_num)
3038 {
3039 	u64 mapped_length;
3040 	struct btrfs_bio *bbio = NULL;
3041 	int ret;
3042 
3043 	mapped_length = extent_len;
3044 	ret = btrfs_map_block(fs_info, READ, extent_logical,
3045 			      &mapped_length, &bbio, 0);
3046 	if (ret || !bbio || mapped_length < extent_len ||
3047 	    !bbio->stripes[0].dev->bdev) {
3048 		kfree(bbio);
3049 		return;
3050 	}
3051 
3052 	*extent_physical = bbio->stripes[0].physical;
3053 	*extent_mirror_num = bbio->mirror_num;
3054 	*extent_dev = bbio->stripes[0].dev;
3055 	kfree(bbio);
3056 }
3057 
3058 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3059 			      struct scrub_wr_ctx *wr_ctx,
3060 			      struct btrfs_fs_info *fs_info,
3061 			      struct btrfs_device *dev,
3062 			      int is_dev_replace)
3063 {
3064 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3065 
3066 	mutex_init(&wr_ctx->wr_lock);
3067 	wr_ctx->wr_curr_bio = NULL;
3068 	if (!is_dev_replace)
3069 		return 0;
3070 
3071 	WARN_ON(!dev->bdev);
3072 	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3073 					 bio_get_nr_vecs(dev->bdev));
3074 	wr_ctx->tgtdev = dev;
3075 	atomic_set(&wr_ctx->flush_all_writes, 0);
3076 	return 0;
3077 }
3078 
3079 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3080 {
3081 	mutex_lock(&wr_ctx->wr_lock);
3082 	kfree(wr_ctx->wr_curr_bio);
3083 	wr_ctx->wr_curr_bio = NULL;
3084 	mutex_unlock(&wr_ctx->wr_lock);
3085 }
3086 
3087 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3088 			    int mirror_num, u64 physical_for_dev_replace)
3089 {
3090 	struct scrub_copy_nocow_ctx *nocow_ctx;
3091 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3092 
3093 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3094 	if (!nocow_ctx) {
3095 		spin_lock(&sctx->stat_lock);
3096 		sctx->stat.malloc_errors++;
3097 		spin_unlock(&sctx->stat_lock);
3098 		return -ENOMEM;
3099 	}
3100 
3101 	scrub_pending_trans_workers_inc(sctx);
3102 
3103 	nocow_ctx->sctx = sctx;
3104 	nocow_ctx->logical = logical;
3105 	nocow_ctx->len = len;
3106 	nocow_ctx->mirror_num = mirror_num;
3107 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3108 	nocow_ctx->work.func = copy_nocow_pages_worker;
3109 	INIT_LIST_HEAD(&nocow_ctx->inodes);
3110 	btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3111 			   &nocow_ctx->work);
3112 
3113 	return 0;
3114 }
3115 
3116 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3117 {
3118 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3119 	struct scrub_nocow_inode *nocow_inode;
3120 
3121 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3122 	if (!nocow_inode)
3123 		return -ENOMEM;
3124 	nocow_inode->inum = inum;
3125 	nocow_inode->offset = offset;
3126 	nocow_inode->root = root;
3127 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3128 	return 0;
3129 }
3130 
3131 #define COPY_COMPLETE 1
3132 
3133 static void copy_nocow_pages_worker(struct btrfs_work *work)
3134 {
3135 	struct scrub_copy_nocow_ctx *nocow_ctx =
3136 		container_of(work, struct scrub_copy_nocow_ctx, work);
3137 	struct scrub_ctx *sctx = nocow_ctx->sctx;
3138 	u64 logical = nocow_ctx->logical;
3139 	u64 len = nocow_ctx->len;
3140 	int mirror_num = nocow_ctx->mirror_num;
3141 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3142 	int ret;
3143 	struct btrfs_trans_handle *trans = NULL;
3144 	struct btrfs_fs_info *fs_info;
3145 	struct btrfs_path *path;
3146 	struct btrfs_root *root;
3147 	int not_written = 0;
3148 
3149 	fs_info = sctx->dev_root->fs_info;
3150 	root = fs_info->extent_root;
3151 
3152 	path = btrfs_alloc_path();
3153 	if (!path) {
3154 		spin_lock(&sctx->stat_lock);
3155 		sctx->stat.malloc_errors++;
3156 		spin_unlock(&sctx->stat_lock);
3157 		not_written = 1;
3158 		goto out;
3159 	}
3160 
3161 	trans = btrfs_join_transaction(root);
3162 	if (IS_ERR(trans)) {
3163 		not_written = 1;
3164 		goto out;
3165 	}
3166 
3167 	ret = iterate_inodes_from_logical(logical, fs_info, path,
3168 					  record_inode_for_nocow, nocow_ctx);
3169 	if (ret != 0 && ret != -ENOENT) {
3170 		pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d\n",
3171 			logical, physical_for_dev_replace, len, mirror_num,
3172 			ret);
3173 		not_written = 1;
3174 		goto out;
3175 	}
3176 
3177 	btrfs_end_transaction(trans, root);
3178 	trans = NULL;
3179 	while (!list_empty(&nocow_ctx->inodes)) {
3180 		struct scrub_nocow_inode *entry;
3181 		entry = list_first_entry(&nocow_ctx->inodes,
3182 					 struct scrub_nocow_inode,
3183 					 list);
3184 		list_del_init(&entry->list);
3185 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3186 						 entry->root, nocow_ctx);
3187 		kfree(entry);
3188 		if (ret == COPY_COMPLETE) {
3189 			ret = 0;
3190 			break;
3191 		} else if (ret) {
3192 			break;
3193 		}
3194 	}
3195 out:
3196 	while (!list_empty(&nocow_ctx->inodes)) {
3197 		struct scrub_nocow_inode *entry;
3198 		entry = list_first_entry(&nocow_ctx->inodes,
3199 					 struct scrub_nocow_inode,
3200 					 list);
3201 		list_del_init(&entry->list);
3202 		kfree(entry);
3203 	}
3204 	if (trans && !IS_ERR(trans))
3205 		btrfs_end_transaction(trans, root);
3206 	if (not_written)
3207 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3208 					    num_uncorrectable_read_errors);
3209 
3210 	btrfs_free_path(path);
3211 	kfree(nocow_ctx);
3212 
3213 	scrub_pending_trans_workers_dec(sctx);
3214 }
3215 
3216 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3217 				      struct scrub_copy_nocow_ctx *nocow_ctx)
3218 {
3219 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3220 	struct btrfs_key key;
3221 	struct inode *inode;
3222 	struct page *page;
3223 	struct btrfs_root *local_root;
3224 	struct btrfs_ordered_extent *ordered;
3225 	struct extent_map *em;
3226 	struct extent_state *cached_state = NULL;
3227 	struct extent_io_tree *io_tree;
3228 	u64 physical_for_dev_replace;
3229 	u64 len = nocow_ctx->len;
3230 	u64 lockstart = offset, lockend = offset + len - 1;
3231 	unsigned long index;
3232 	int srcu_index;
3233 	int ret = 0;
3234 	int err = 0;
3235 
3236 	key.objectid = root;
3237 	key.type = BTRFS_ROOT_ITEM_KEY;
3238 	key.offset = (u64)-1;
3239 
3240 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3241 
3242 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3243 	if (IS_ERR(local_root)) {
3244 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3245 		return PTR_ERR(local_root);
3246 	}
3247 
3248 	key.type = BTRFS_INODE_ITEM_KEY;
3249 	key.objectid = inum;
3250 	key.offset = 0;
3251 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3252 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3253 	if (IS_ERR(inode))
3254 		return PTR_ERR(inode);
3255 
3256 	/* Avoid truncate/dio/punch hole.. */
3257 	mutex_lock(&inode->i_mutex);
3258 	inode_dio_wait(inode);
3259 
3260 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3261 	io_tree = &BTRFS_I(inode)->io_tree;
3262 
3263 	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3264 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3265 	if (ordered) {
3266 		btrfs_put_ordered_extent(ordered);
3267 		goto out_unlock;
3268 	}
3269 
3270 	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3271 	if (IS_ERR(em)) {
3272 		ret = PTR_ERR(em);
3273 		goto out_unlock;
3274 	}
3275 
3276 	/*
3277 	 * This extent does not actually cover the logical extent anymore,
3278 	 * move on to the next inode.
3279 	 */
3280 	if (em->block_start > nocow_ctx->logical ||
3281 	    em->block_start + em->block_len < nocow_ctx->logical + len) {
3282 		free_extent_map(em);
3283 		goto out_unlock;
3284 	}
3285 	free_extent_map(em);
3286 
3287 	while (len >= PAGE_CACHE_SIZE) {
3288 		index = offset >> PAGE_CACHE_SHIFT;
3289 again:
3290 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3291 		if (!page) {
3292 			pr_err("find_or_create_page() failed\n");
3293 			ret = -ENOMEM;
3294 			goto out;
3295 		}
3296 
3297 		if (PageUptodate(page)) {
3298 			if (PageDirty(page))
3299 				goto next_page;
3300 		} else {
3301 			ClearPageError(page);
3302 			err = extent_read_full_page_nolock(io_tree, page,
3303 							   btrfs_get_extent,
3304 							   nocow_ctx->mirror_num);
3305 			if (err) {
3306 				ret = err;
3307 				goto next_page;
3308 			}
3309 
3310 			lock_page(page);
3311 			/*
3312 			 * If the page has been remove from the page cache,
3313 			 * the data on it is meaningless, because it may be
3314 			 * old one, the new data may be written into the new
3315 			 * page in the page cache.
3316 			 */
3317 			if (page->mapping != inode->i_mapping) {
3318 				unlock_page(page);
3319 				page_cache_release(page);
3320 				goto again;
3321 			}
3322 			if (!PageUptodate(page)) {
3323 				ret = -EIO;
3324 				goto next_page;
3325 			}
3326 		}
3327 		err = write_page_nocow(nocow_ctx->sctx,
3328 				       physical_for_dev_replace, page);
3329 		if (err)
3330 			ret = err;
3331 next_page:
3332 		unlock_page(page);
3333 		page_cache_release(page);
3334 
3335 		if (ret)
3336 			break;
3337 
3338 		offset += PAGE_CACHE_SIZE;
3339 		physical_for_dev_replace += PAGE_CACHE_SIZE;
3340 		len -= PAGE_CACHE_SIZE;
3341 	}
3342 	ret = COPY_COMPLETE;
3343 out_unlock:
3344 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3345 			     GFP_NOFS);
3346 out:
3347 	mutex_unlock(&inode->i_mutex);
3348 	iput(inode);
3349 	return ret;
3350 }
3351 
3352 static int write_page_nocow(struct scrub_ctx *sctx,
3353 			    u64 physical_for_dev_replace, struct page *page)
3354 {
3355 	struct bio *bio;
3356 	struct btrfs_device *dev;
3357 	int ret;
3358 
3359 	dev = sctx->wr_ctx.tgtdev;
3360 	if (!dev)
3361 		return -EIO;
3362 	if (!dev->bdev) {
3363 		printk_ratelimited(KERN_WARNING
3364 			"btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3365 		return -EIO;
3366 	}
3367 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3368 	if (!bio) {
3369 		spin_lock(&sctx->stat_lock);
3370 		sctx->stat.malloc_errors++;
3371 		spin_unlock(&sctx->stat_lock);
3372 		return -ENOMEM;
3373 	}
3374 	bio->bi_size = 0;
3375 	bio->bi_sector = physical_for_dev_replace >> 9;
3376 	bio->bi_bdev = dev->bdev;
3377 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3378 	if (ret != PAGE_CACHE_SIZE) {
3379 leave_with_eio:
3380 		bio_put(bio);
3381 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3382 		return -EIO;
3383 	}
3384 
3385 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3386 		goto leave_with_eio;
3387 
3388 	bio_put(bio);
3389 	return 0;
3390 }
3391