xref: /openbmc/linux/fs/btrfs/scrub.c (revision bbecb07f)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include <linux/sched/mm.h>
22 #include "ctree.h"
23 #include "volumes.h"
24 #include "disk-io.h"
25 #include "ordered-data.h"
26 #include "transaction.h"
27 #include "backref.h"
28 #include "extent_io.h"
29 #include "dev-replace.h"
30 #include "check-integrity.h"
31 #include "rcu-string.h"
32 #include "raid56.h"
33 
34 /*
35  * This is only the first step towards a full-features scrub. It reads all
36  * extent and super block and verifies the checksums. In case a bad checksum
37  * is found or the extent cannot be read, good data will be written back if
38  * any can be found.
39  *
40  * Future enhancements:
41  *  - In case an unrepairable extent is encountered, track which files are
42  *    affected and report them
43  *  - track and record media errors, throw out bad devices
44  *  - add a mode to also read unallocated space
45  */
46 
47 struct scrub_block;
48 struct scrub_ctx;
49 
50 /*
51  * the following three values only influence the performance.
52  * The last one configures the number of parallel and outstanding I/O
53  * operations. The first two values configure an upper limit for the number
54  * of (dynamically allocated) pages that are added to a bio.
55  */
56 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
57 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
58 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
59 
60 /*
61  * the following value times PAGE_SIZE needs to be large enough to match the
62  * largest node/leaf/sector size that shall be supported.
63  * Values larger than BTRFS_STRIPE_LEN are not supported.
64  */
65 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
66 
67 struct scrub_recover {
68 	refcount_t		refs;
69 	struct btrfs_bio	*bbio;
70 	u64			map_length;
71 };
72 
73 struct scrub_page {
74 	struct scrub_block	*sblock;
75 	struct page		*page;
76 	struct btrfs_device	*dev;
77 	struct list_head	list;
78 	u64			flags;  /* extent flags */
79 	u64			generation;
80 	u64			logical;
81 	u64			physical;
82 	u64			physical_for_dev_replace;
83 	atomic_t		refs;
84 	struct {
85 		unsigned int	mirror_num:8;
86 		unsigned int	have_csum:1;
87 		unsigned int	io_error:1;
88 	};
89 	u8			csum[BTRFS_CSUM_SIZE];
90 
91 	struct scrub_recover	*recover;
92 };
93 
94 struct scrub_bio {
95 	int			index;
96 	struct scrub_ctx	*sctx;
97 	struct btrfs_device	*dev;
98 	struct bio		*bio;
99 	blk_status_t		status;
100 	u64			logical;
101 	u64			physical;
102 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
103 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
104 #else
105 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
106 #endif
107 	int			page_count;
108 	int			next_free;
109 	struct btrfs_work	work;
110 };
111 
112 struct scrub_block {
113 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
114 	int			page_count;
115 	atomic_t		outstanding_pages;
116 	refcount_t		refs; /* free mem on transition to zero */
117 	struct scrub_ctx	*sctx;
118 	struct scrub_parity	*sparity;
119 	struct {
120 		unsigned int	header_error:1;
121 		unsigned int	checksum_error:1;
122 		unsigned int	no_io_error_seen:1;
123 		unsigned int	generation_error:1; /* also sets header_error */
124 
125 		/* The following is for the data used to check parity */
126 		/* It is for the data with checksum */
127 		unsigned int	data_corrected:1;
128 	};
129 	struct btrfs_work	work;
130 };
131 
132 /* Used for the chunks with parity stripe such RAID5/6 */
133 struct scrub_parity {
134 	struct scrub_ctx	*sctx;
135 
136 	struct btrfs_device	*scrub_dev;
137 
138 	u64			logic_start;
139 
140 	u64			logic_end;
141 
142 	int			nsectors;
143 
144 	u64			stripe_len;
145 
146 	refcount_t		refs;
147 
148 	struct list_head	spages;
149 
150 	/* Work of parity check and repair */
151 	struct btrfs_work	work;
152 
153 	/* Mark the parity blocks which have data */
154 	unsigned long		*dbitmap;
155 
156 	/*
157 	 * Mark the parity blocks which have data, but errors happen when
158 	 * read data or check data
159 	 */
160 	unsigned long		*ebitmap;
161 
162 	unsigned long		bitmap[0];
163 };
164 
165 struct scrub_ctx {
166 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
167 	struct btrfs_fs_info	*fs_info;
168 	int			first_free;
169 	int			curr;
170 	atomic_t		bios_in_flight;
171 	atomic_t		workers_pending;
172 	spinlock_t		list_lock;
173 	wait_queue_head_t	list_wait;
174 	u16			csum_size;
175 	struct list_head	csum_list;
176 	atomic_t		cancel_req;
177 	int			readonly;
178 	int			pages_per_rd_bio;
179 
180 	int			is_dev_replace;
181 
182 	struct scrub_bio        *wr_curr_bio;
183 	struct mutex            wr_lock;
184 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
185 	struct btrfs_device     *wr_tgtdev;
186 	bool                    flush_all_writes;
187 
188 	/*
189 	 * statistics
190 	 */
191 	struct btrfs_scrub_progress stat;
192 	spinlock_t		stat_lock;
193 
194 	/*
195 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
196 	 * decrement bios_in_flight and workers_pending and then do a wakeup
197 	 * on the list_wait wait queue. We must ensure the main scrub task
198 	 * doesn't free the scrub context before or while the workers are
199 	 * doing the wakeup() call.
200 	 */
201 	refcount_t              refs;
202 };
203 
204 struct scrub_fixup_nodatasum {
205 	struct scrub_ctx	*sctx;
206 	struct btrfs_device	*dev;
207 	u64			logical;
208 	struct btrfs_root	*root;
209 	struct btrfs_work	work;
210 	int			mirror_num;
211 };
212 
213 struct scrub_nocow_inode {
214 	u64			inum;
215 	u64			offset;
216 	u64			root;
217 	struct list_head	list;
218 };
219 
220 struct scrub_copy_nocow_ctx {
221 	struct scrub_ctx	*sctx;
222 	u64			logical;
223 	u64			len;
224 	int			mirror_num;
225 	u64			physical_for_dev_replace;
226 	struct list_head	inodes;
227 	struct btrfs_work	work;
228 };
229 
230 struct scrub_warning {
231 	struct btrfs_path	*path;
232 	u64			extent_item_size;
233 	const char		*errstr;
234 	u64			physical;
235 	u64			logical;
236 	struct btrfs_device	*dev;
237 };
238 
239 struct full_stripe_lock {
240 	struct rb_node node;
241 	u64 logical;
242 	u64 refs;
243 	struct mutex mutex;
244 };
245 
246 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
247 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
248 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
249 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
250 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
251 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
252 				     struct scrub_block *sblocks_for_recheck);
253 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
254 				struct scrub_block *sblock,
255 				int retry_failed_mirror);
256 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
257 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
258 					     struct scrub_block *sblock_good);
259 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
260 					    struct scrub_block *sblock_good,
261 					    int page_num, int force_write);
262 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
263 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
264 					   int page_num);
265 static int scrub_checksum_data(struct scrub_block *sblock);
266 static int scrub_checksum_tree_block(struct scrub_block *sblock);
267 static int scrub_checksum_super(struct scrub_block *sblock);
268 static void scrub_block_get(struct scrub_block *sblock);
269 static void scrub_block_put(struct scrub_block *sblock);
270 static void scrub_page_get(struct scrub_page *spage);
271 static void scrub_page_put(struct scrub_page *spage);
272 static void scrub_parity_get(struct scrub_parity *sparity);
273 static void scrub_parity_put(struct scrub_parity *sparity);
274 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
275 				    struct scrub_page *spage);
276 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
277 		       u64 physical, struct btrfs_device *dev, u64 flags,
278 		       u64 gen, int mirror_num, u8 *csum, int force,
279 		       u64 physical_for_dev_replace);
280 static void scrub_bio_end_io(struct bio *bio);
281 static void scrub_bio_end_io_worker(struct btrfs_work *work);
282 static void scrub_block_complete(struct scrub_block *sblock);
283 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
284 			       u64 extent_logical, u64 extent_len,
285 			       u64 *extent_physical,
286 			       struct btrfs_device **extent_dev,
287 			       int *extent_mirror_num);
288 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
289 				    struct scrub_page *spage);
290 static void scrub_wr_submit(struct scrub_ctx *sctx);
291 static void scrub_wr_bio_end_io(struct bio *bio);
292 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
293 static int write_page_nocow(struct scrub_ctx *sctx,
294 			    u64 physical_for_dev_replace, struct page *page);
295 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
296 				      struct scrub_copy_nocow_ctx *ctx);
297 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
298 			    int mirror_num, u64 physical_for_dev_replace);
299 static void copy_nocow_pages_worker(struct btrfs_work *work);
300 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
302 static void scrub_put_ctx(struct scrub_ctx *sctx);
303 
304 
305 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
306 {
307 	refcount_inc(&sctx->refs);
308 	atomic_inc(&sctx->bios_in_flight);
309 }
310 
311 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
312 {
313 	atomic_dec(&sctx->bios_in_flight);
314 	wake_up(&sctx->list_wait);
315 	scrub_put_ctx(sctx);
316 }
317 
318 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
319 {
320 	while (atomic_read(&fs_info->scrub_pause_req)) {
321 		mutex_unlock(&fs_info->scrub_lock);
322 		wait_event(fs_info->scrub_pause_wait,
323 		   atomic_read(&fs_info->scrub_pause_req) == 0);
324 		mutex_lock(&fs_info->scrub_lock);
325 	}
326 }
327 
328 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
329 {
330 	atomic_inc(&fs_info->scrubs_paused);
331 	wake_up(&fs_info->scrub_pause_wait);
332 }
333 
334 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
335 {
336 	mutex_lock(&fs_info->scrub_lock);
337 	__scrub_blocked_if_needed(fs_info);
338 	atomic_dec(&fs_info->scrubs_paused);
339 	mutex_unlock(&fs_info->scrub_lock);
340 
341 	wake_up(&fs_info->scrub_pause_wait);
342 }
343 
344 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
345 {
346 	scrub_pause_on(fs_info);
347 	scrub_pause_off(fs_info);
348 }
349 
350 /*
351  * Insert new full stripe lock into full stripe locks tree
352  *
353  * Return pointer to existing or newly inserted full_stripe_lock structure if
354  * everything works well.
355  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
356  *
357  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
358  * function
359  */
360 static struct full_stripe_lock *insert_full_stripe_lock(
361 		struct btrfs_full_stripe_locks_tree *locks_root,
362 		u64 fstripe_logical)
363 {
364 	struct rb_node **p;
365 	struct rb_node *parent = NULL;
366 	struct full_stripe_lock *entry;
367 	struct full_stripe_lock *ret;
368 
369 	WARN_ON(!mutex_is_locked(&locks_root->lock));
370 
371 	p = &locks_root->root.rb_node;
372 	while (*p) {
373 		parent = *p;
374 		entry = rb_entry(parent, struct full_stripe_lock, node);
375 		if (fstripe_logical < entry->logical) {
376 			p = &(*p)->rb_left;
377 		} else if (fstripe_logical > entry->logical) {
378 			p = &(*p)->rb_right;
379 		} else {
380 			entry->refs++;
381 			return entry;
382 		}
383 	}
384 
385 	/* Insert new lock */
386 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
387 	if (!ret)
388 		return ERR_PTR(-ENOMEM);
389 	ret->logical = fstripe_logical;
390 	ret->refs = 1;
391 	mutex_init(&ret->mutex);
392 
393 	rb_link_node(&ret->node, parent, p);
394 	rb_insert_color(&ret->node, &locks_root->root);
395 	return ret;
396 }
397 
398 /*
399  * Search for a full stripe lock of a block group
400  *
401  * Return pointer to existing full stripe lock if found
402  * Return NULL if not found
403  */
404 static struct full_stripe_lock *search_full_stripe_lock(
405 		struct btrfs_full_stripe_locks_tree *locks_root,
406 		u64 fstripe_logical)
407 {
408 	struct rb_node *node;
409 	struct full_stripe_lock *entry;
410 
411 	WARN_ON(!mutex_is_locked(&locks_root->lock));
412 
413 	node = locks_root->root.rb_node;
414 	while (node) {
415 		entry = rb_entry(node, struct full_stripe_lock, node);
416 		if (fstripe_logical < entry->logical)
417 			node = node->rb_left;
418 		else if (fstripe_logical > entry->logical)
419 			node = node->rb_right;
420 		else
421 			return entry;
422 	}
423 	return NULL;
424 }
425 
426 /*
427  * Helper to get full stripe logical from a normal bytenr.
428  *
429  * Caller must ensure @cache is a RAID56 block group.
430  */
431 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
432 				   u64 bytenr)
433 {
434 	u64 ret;
435 
436 	/*
437 	 * Due to chunk item size limit, full stripe length should not be
438 	 * larger than U32_MAX. Just a sanity check here.
439 	 */
440 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
441 
442 	/*
443 	 * round_down() can only handle power of 2, while RAID56 full
444 	 * stripe length can be 64KiB * n, so we need to manually round down.
445 	 */
446 	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
447 		cache->full_stripe_len + cache->key.objectid;
448 	return ret;
449 }
450 
451 /*
452  * Lock a full stripe to avoid concurrency of recovery and read
453  *
454  * It's only used for profiles with parities (RAID5/6), for other profiles it
455  * does nothing.
456  *
457  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
458  * So caller must call unlock_full_stripe() at the same context.
459  *
460  * Return <0 if encounters error.
461  */
462 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
463 			    bool *locked_ret)
464 {
465 	struct btrfs_block_group_cache *bg_cache;
466 	struct btrfs_full_stripe_locks_tree *locks_root;
467 	struct full_stripe_lock *existing;
468 	u64 fstripe_start;
469 	int ret = 0;
470 
471 	*locked_ret = false;
472 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
473 	if (!bg_cache) {
474 		ASSERT(0);
475 		return -ENOENT;
476 	}
477 
478 	/* Profiles not based on parity don't need full stripe lock */
479 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
480 		goto out;
481 	locks_root = &bg_cache->full_stripe_locks_root;
482 
483 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
484 
485 	/* Now insert the full stripe lock */
486 	mutex_lock(&locks_root->lock);
487 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
488 	mutex_unlock(&locks_root->lock);
489 	if (IS_ERR(existing)) {
490 		ret = PTR_ERR(existing);
491 		goto out;
492 	}
493 	mutex_lock(&existing->mutex);
494 	*locked_ret = true;
495 out:
496 	btrfs_put_block_group(bg_cache);
497 	return ret;
498 }
499 
500 /*
501  * Unlock a full stripe.
502  *
503  * NOTE: Caller must ensure it's the same context calling corresponding
504  * lock_full_stripe().
505  *
506  * Return 0 if we unlock full stripe without problem.
507  * Return <0 for error
508  */
509 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
510 			      bool locked)
511 {
512 	struct btrfs_block_group_cache *bg_cache;
513 	struct btrfs_full_stripe_locks_tree *locks_root;
514 	struct full_stripe_lock *fstripe_lock;
515 	u64 fstripe_start;
516 	bool freeit = false;
517 	int ret = 0;
518 
519 	/* If we didn't acquire full stripe lock, no need to continue */
520 	if (!locked)
521 		return 0;
522 
523 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
524 	if (!bg_cache) {
525 		ASSERT(0);
526 		return -ENOENT;
527 	}
528 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
529 		goto out;
530 
531 	locks_root = &bg_cache->full_stripe_locks_root;
532 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
533 
534 	mutex_lock(&locks_root->lock);
535 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
536 	/* Unpaired unlock_full_stripe() detected */
537 	if (!fstripe_lock) {
538 		WARN_ON(1);
539 		ret = -ENOENT;
540 		mutex_unlock(&locks_root->lock);
541 		goto out;
542 	}
543 
544 	if (fstripe_lock->refs == 0) {
545 		WARN_ON(1);
546 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
547 			fstripe_lock->logical);
548 	} else {
549 		fstripe_lock->refs--;
550 	}
551 
552 	if (fstripe_lock->refs == 0) {
553 		rb_erase(&fstripe_lock->node, &locks_root->root);
554 		freeit = true;
555 	}
556 	mutex_unlock(&locks_root->lock);
557 
558 	mutex_unlock(&fstripe_lock->mutex);
559 	if (freeit)
560 		kfree(fstripe_lock);
561 out:
562 	btrfs_put_block_group(bg_cache);
563 	return ret;
564 }
565 
566 /*
567  * used for workers that require transaction commits (i.e., for the
568  * NOCOW case)
569  */
570 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
571 {
572 	struct btrfs_fs_info *fs_info = sctx->fs_info;
573 
574 	refcount_inc(&sctx->refs);
575 	/*
576 	 * increment scrubs_running to prevent cancel requests from
577 	 * completing as long as a worker is running. we must also
578 	 * increment scrubs_paused to prevent deadlocking on pause
579 	 * requests used for transactions commits (as the worker uses a
580 	 * transaction context). it is safe to regard the worker
581 	 * as paused for all matters practical. effectively, we only
582 	 * avoid cancellation requests from completing.
583 	 */
584 	mutex_lock(&fs_info->scrub_lock);
585 	atomic_inc(&fs_info->scrubs_running);
586 	atomic_inc(&fs_info->scrubs_paused);
587 	mutex_unlock(&fs_info->scrub_lock);
588 
589 	/*
590 	 * check if @scrubs_running=@scrubs_paused condition
591 	 * inside wait_event() is not an atomic operation.
592 	 * which means we may inc/dec @scrub_running/paused
593 	 * at any time. Let's wake up @scrub_pause_wait as
594 	 * much as we can to let commit transaction blocked less.
595 	 */
596 	wake_up(&fs_info->scrub_pause_wait);
597 
598 	atomic_inc(&sctx->workers_pending);
599 }
600 
601 /* used for workers that require transaction commits */
602 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
603 {
604 	struct btrfs_fs_info *fs_info = sctx->fs_info;
605 
606 	/*
607 	 * see scrub_pending_trans_workers_inc() why we're pretending
608 	 * to be paused in the scrub counters
609 	 */
610 	mutex_lock(&fs_info->scrub_lock);
611 	atomic_dec(&fs_info->scrubs_running);
612 	atomic_dec(&fs_info->scrubs_paused);
613 	mutex_unlock(&fs_info->scrub_lock);
614 	atomic_dec(&sctx->workers_pending);
615 	wake_up(&fs_info->scrub_pause_wait);
616 	wake_up(&sctx->list_wait);
617 	scrub_put_ctx(sctx);
618 }
619 
620 static void scrub_free_csums(struct scrub_ctx *sctx)
621 {
622 	while (!list_empty(&sctx->csum_list)) {
623 		struct btrfs_ordered_sum *sum;
624 		sum = list_first_entry(&sctx->csum_list,
625 				       struct btrfs_ordered_sum, list);
626 		list_del(&sum->list);
627 		kfree(sum);
628 	}
629 }
630 
631 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
632 {
633 	int i;
634 
635 	if (!sctx)
636 		return;
637 
638 	/* this can happen when scrub is cancelled */
639 	if (sctx->curr != -1) {
640 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
641 
642 		for (i = 0; i < sbio->page_count; i++) {
643 			WARN_ON(!sbio->pagev[i]->page);
644 			scrub_block_put(sbio->pagev[i]->sblock);
645 		}
646 		bio_put(sbio->bio);
647 	}
648 
649 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
650 		struct scrub_bio *sbio = sctx->bios[i];
651 
652 		if (!sbio)
653 			break;
654 		kfree(sbio);
655 	}
656 
657 	kfree(sctx->wr_curr_bio);
658 	scrub_free_csums(sctx);
659 	kfree(sctx);
660 }
661 
662 static void scrub_put_ctx(struct scrub_ctx *sctx)
663 {
664 	if (refcount_dec_and_test(&sctx->refs))
665 		scrub_free_ctx(sctx);
666 }
667 
668 static noinline_for_stack
669 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
670 {
671 	struct scrub_ctx *sctx;
672 	int		i;
673 	struct btrfs_fs_info *fs_info = dev->fs_info;
674 
675 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
676 	if (!sctx)
677 		goto nomem;
678 	refcount_set(&sctx->refs, 1);
679 	sctx->is_dev_replace = is_dev_replace;
680 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
681 	sctx->curr = -1;
682 	sctx->fs_info = dev->fs_info;
683 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
684 		struct scrub_bio *sbio;
685 
686 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
687 		if (!sbio)
688 			goto nomem;
689 		sctx->bios[i] = sbio;
690 
691 		sbio->index = i;
692 		sbio->sctx = sctx;
693 		sbio->page_count = 0;
694 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
695 				scrub_bio_end_io_worker, NULL, NULL);
696 
697 		if (i != SCRUB_BIOS_PER_SCTX - 1)
698 			sctx->bios[i]->next_free = i + 1;
699 		else
700 			sctx->bios[i]->next_free = -1;
701 	}
702 	sctx->first_free = 0;
703 	atomic_set(&sctx->bios_in_flight, 0);
704 	atomic_set(&sctx->workers_pending, 0);
705 	atomic_set(&sctx->cancel_req, 0);
706 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
707 	INIT_LIST_HEAD(&sctx->csum_list);
708 
709 	spin_lock_init(&sctx->list_lock);
710 	spin_lock_init(&sctx->stat_lock);
711 	init_waitqueue_head(&sctx->list_wait);
712 
713 	WARN_ON(sctx->wr_curr_bio != NULL);
714 	mutex_init(&sctx->wr_lock);
715 	sctx->wr_curr_bio = NULL;
716 	if (is_dev_replace) {
717 		WARN_ON(!fs_info->dev_replace.tgtdev);
718 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
719 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
720 		sctx->flush_all_writes = false;
721 	}
722 
723 	return sctx;
724 
725 nomem:
726 	scrub_free_ctx(sctx);
727 	return ERR_PTR(-ENOMEM);
728 }
729 
730 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
731 				     void *warn_ctx)
732 {
733 	u64 isize;
734 	u32 nlink;
735 	int ret;
736 	int i;
737 	unsigned nofs_flag;
738 	struct extent_buffer *eb;
739 	struct btrfs_inode_item *inode_item;
740 	struct scrub_warning *swarn = warn_ctx;
741 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
742 	struct inode_fs_paths *ipath = NULL;
743 	struct btrfs_root *local_root;
744 	struct btrfs_key root_key;
745 	struct btrfs_key key;
746 
747 	root_key.objectid = root;
748 	root_key.type = BTRFS_ROOT_ITEM_KEY;
749 	root_key.offset = (u64)-1;
750 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
751 	if (IS_ERR(local_root)) {
752 		ret = PTR_ERR(local_root);
753 		goto err;
754 	}
755 
756 	/*
757 	 * this makes the path point to (inum INODE_ITEM ioff)
758 	 */
759 	key.objectid = inum;
760 	key.type = BTRFS_INODE_ITEM_KEY;
761 	key.offset = 0;
762 
763 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
764 	if (ret) {
765 		btrfs_release_path(swarn->path);
766 		goto err;
767 	}
768 
769 	eb = swarn->path->nodes[0];
770 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
771 					struct btrfs_inode_item);
772 	isize = btrfs_inode_size(eb, inode_item);
773 	nlink = btrfs_inode_nlink(eb, inode_item);
774 	btrfs_release_path(swarn->path);
775 
776 	/*
777 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
778 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
779 	 * not seem to be strictly necessary.
780 	 */
781 	nofs_flag = memalloc_nofs_save();
782 	ipath = init_ipath(4096, local_root, swarn->path);
783 	memalloc_nofs_restore(nofs_flag);
784 	if (IS_ERR(ipath)) {
785 		ret = PTR_ERR(ipath);
786 		ipath = NULL;
787 		goto err;
788 	}
789 	ret = paths_from_inode(inum, ipath);
790 
791 	if (ret < 0)
792 		goto err;
793 
794 	/*
795 	 * we deliberately ignore the bit ipath might have been too small to
796 	 * hold all of the paths here
797 	 */
798 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
799 		btrfs_warn_in_rcu(fs_info,
800 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
801 				  swarn->errstr, swarn->logical,
802 				  rcu_str_deref(swarn->dev->name),
803 				  swarn->physical,
804 				  root, inum, offset,
805 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
806 				  (char *)(unsigned long)ipath->fspath->val[i]);
807 
808 	free_ipath(ipath);
809 	return 0;
810 
811 err:
812 	btrfs_warn_in_rcu(fs_info,
813 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
814 			  swarn->errstr, swarn->logical,
815 			  rcu_str_deref(swarn->dev->name),
816 			  swarn->physical,
817 			  root, inum, offset, ret);
818 
819 	free_ipath(ipath);
820 	return 0;
821 }
822 
823 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
824 {
825 	struct btrfs_device *dev;
826 	struct btrfs_fs_info *fs_info;
827 	struct btrfs_path *path;
828 	struct btrfs_key found_key;
829 	struct extent_buffer *eb;
830 	struct btrfs_extent_item *ei;
831 	struct scrub_warning swarn;
832 	unsigned long ptr = 0;
833 	u64 extent_item_pos;
834 	u64 flags = 0;
835 	u64 ref_root;
836 	u32 item_size;
837 	u8 ref_level = 0;
838 	int ret;
839 
840 	WARN_ON(sblock->page_count < 1);
841 	dev = sblock->pagev[0]->dev;
842 	fs_info = sblock->sctx->fs_info;
843 
844 	path = btrfs_alloc_path();
845 	if (!path)
846 		return;
847 
848 	swarn.physical = sblock->pagev[0]->physical;
849 	swarn.logical = sblock->pagev[0]->logical;
850 	swarn.errstr = errstr;
851 	swarn.dev = NULL;
852 
853 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
854 				  &flags);
855 	if (ret < 0)
856 		goto out;
857 
858 	extent_item_pos = swarn.logical - found_key.objectid;
859 	swarn.extent_item_size = found_key.offset;
860 
861 	eb = path->nodes[0];
862 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
863 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
864 
865 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
866 		do {
867 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
868 						      item_size, &ref_root,
869 						      &ref_level);
870 			btrfs_warn_in_rcu(fs_info,
871 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
872 				errstr, swarn.logical,
873 				rcu_str_deref(dev->name),
874 				swarn.physical,
875 				ref_level ? "node" : "leaf",
876 				ret < 0 ? -1 : ref_level,
877 				ret < 0 ? -1 : ref_root);
878 		} while (ret != 1);
879 		btrfs_release_path(path);
880 	} else {
881 		btrfs_release_path(path);
882 		swarn.path = path;
883 		swarn.dev = dev;
884 		iterate_extent_inodes(fs_info, found_key.objectid,
885 					extent_item_pos, 1,
886 					scrub_print_warning_inode, &swarn, false);
887 	}
888 
889 out:
890 	btrfs_free_path(path);
891 }
892 
893 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
894 {
895 	struct page *page = NULL;
896 	unsigned long index;
897 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
898 	int ret;
899 	int corrected = 0;
900 	struct btrfs_key key;
901 	struct inode *inode = NULL;
902 	struct btrfs_fs_info *fs_info;
903 	u64 end = offset + PAGE_SIZE - 1;
904 	struct btrfs_root *local_root;
905 	int srcu_index;
906 
907 	key.objectid = root;
908 	key.type = BTRFS_ROOT_ITEM_KEY;
909 	key.offset = (u64)-1;
910 
911 	fs_info = fixup->root->fs_info;
912 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
913 
914 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
915 	if (IS_ERR(local_root)) {
916 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
917 		return PTR_ERR(local_root);
918 	}
919 
920 	key.type = BTRFS_INODE_ITEM_KEY;
921 	key.objectid = inum;
922 	key.offset = 0;
923 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
924 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
925 	if (IS_ERR(inode))
926 		return PTR_ERR(inode);
927 
928 	index = offset >> PAGE_SHIFT;
929 
930 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
931 	if (!page) {
932 		ret = -ENOMEM;
933 		goto out;
934 	}
935 
936 	if (PageUptodate(page)) {
937 		if (PageDirty(page)) {
938 			/*
939 			 * we need to write the data to the defect sector. the
940 			 * data that was in that sector is not in memory,
941 			 * because the page was modified. we must not write the
942 			 * modified page to that sector.
943 			 *
944 			 * TODO: what could be done here: wait for the delalloc
945 			 *       runner to write out that page (might involve
946 			 *       COW) and see whether the sector is still
947 			 *       referenced afterwards.
948 			 *
949 			 * For the meantime, we'll treat this error
950 			 * incorrectable, although there is a chance that a
951 			 * later scrub will find the bad sector again and that
952 			 * there's no dirty page in memory, then.
953 			 */
954 			ret = -EIO;
955 			goto out;
956 		}
957 		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
958 					fixup->logical, page,
959 					offset - page_offset(page),
960 					fixup->mirror_num);
961 		unlock_page(page);
962 		corrected = !ret;
963 	} else {
964 		/*
965 		 * we need to get good data first. the general readpage path
966 		 * will call repair_io_failure for us, we just have to make
967 		 * sure we read the bad mirror.
968 		 */
969 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
970 					EXTENT_DAMAGED);
971 		if (ret) {
972 			/* set_extent_bits should give proper error */
973 			WARN_ON(ret > 0);
974 			if (ret > 0)
975 				ret = -EFAULT;
976 			goto out;
977 		}
978 
979 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
980 						btrfs_get_extent,
981 						fixup->mirror_num);
982 		wait_on_page_locked(page);
983 
984 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
985 						end, EXTENT_DAMAGED, 0, NULL);
986 		if (!corrected)
987 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
988 						EXTENT_DAMAGED);
989 	}
990 
991 out:
992 	if (page)
993 		put_page(page);
994 
995 	iput(inode);
996 
997 	if (ret < 0)
998 		return ret;
999 
1000 	if (ret == 0 && corrected) {
1001 		/*
1002 		 * we only need to call readpage for one of the inodes belonging
1003 		 * to this extent. so make iterate_extent_inodes stop
1004 		 */
1005 		return 1;
1006 	}
1007 
1008 	return -EIO;
1009 }
1010 
1011 static void scrub_fixup_nodatasum(struct btrfs_work *work)
1012 {
1013 	struct btrfs_fs_info *fs_info;
1014 	int ret;
1015 	struct scrub_fixup_nodatasum *fixup;
1016 	struct scrub_ctx *sctx;
1017 	struct btrfs_trans_handle *trans = NULL;
1018 	struct btrfs_path *path;
1019 	int uncorrectable = 0;
1020 
1021 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1022 	sctx = fixup->sctx;
1023 	fs_info = fixup->root->fs_info;
1024 
1025 	path = btrfs_alloc_path();
1026 	if (!path) {
1027 		spin_lock(&sctx->stat_lock);
1028 		++sctx->stat.malloc_errors;
1029 		spin_unlock(&sctx->stat_lock);
1030 		uncorrectable = 1;
1031 		goto out;
1032 	}
1033 
1034 	trans = btrfs_join_transaction(fixup->root);
1035 	if (IS_ERR(trans)) {
1036 		uncorrectable = 1;
1037 		goto out;
1038 	}
1039 
1040 	/*
1041 	 * the idea is to trigger a regular read through the standard path. we
1042 	 * read a page from the (failed) logical address by specifying the
1043 	 * corresponding copynum of the failed sector. thus, that readpage is
1044 	 * expected to fail.
1045 	 * that is the point where on-the-fly error correction will kick in
1046 	 * (once it's finished) and rewrite the failed sector if a good copy
1047 	 * can be found.
1048 	 */
1049 	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1050 					  scrub_fixup_readpage, fixup, false);
1051 	if (ret < 0) {
1052 		uncorrectable = 1;
1053 		goto out;
1054 	}
1055 	WARN_ON(ret != 1);
1056 
1057 	spin_lock(&sctx->stat_lock);
1058 	++sctx->stat.corrected_errors;
1059 	spin_unlock(&sctx->stat_lock);
1060 
1061 out:
1062 	if (trans && !IS_ERR(trans))
1063 		btrfs_end_transaction(trans);
1064 	if (uncorrectable) {
1065 		spin_lock(&sctx->stat_lock);
1066 		++sctx->stat.uncorrectable_errors;
1067 		spin_unlock(&sctx->stat_lock);
1068 		btrfs_dev_replace_stats_inc(
1069 			&fs_info->dev_replace.num_uncorrectable_read_errors);
1070 		btrfs_err_rl_in_rcu(fs_info,
1071 		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1072 			fixup->logical, rcu_str_deref(fixup->dev->name));
1073 	}
1074 
1075 	btrfs_free_path(path);
1076 	kfree(fixup);
1077 
1078 	scrub_pending_trans_workers_dec(sctx);
1079 }
1080 
1081 static inline void scrub_get_recover(struct scrub_recover *recover)
1082 {
1083 	refcount_inc(&recover->refs);
1084 }
1085 
1086 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1087 				     struct scrub_recover *recover)
1088 {
1089 	if (refcount_dec_and_test(&recover->refs)) {
1090 		btrfs_bio_counter_dec(fs_info);
1091 		btrfs_put_bbio(recover->bbio);
1092 		kfree(recover);
1093 	}
1094 }
1095 
1096 /*
1097  * scrub_handle_errored_block gets called when either verification of the
1098  * pages failed or the bio failed to read, e.g. with EIO. In the latter
1099  * case, this function handles all pages in the bio, even though only one
1100  * may be bad.
1101  * The goal of this function is to repair the errored block by using the
1102  * contents of one of the mirrors.
1103  */
1104 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1105 {
1106 	struct scrub_ctx *sctx = sblock_to_check->sctx;
1107 	struct btrfs_device *dev;
1108 	struct btrfs_fs_info *fs_info;
1109 	u64 length;
1110 	u64 logical;
1111 	unsigned int failed_mirror_index;
1112 	unsigned int is_metadata;
1113 	unsigned int have_csum;
1114 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1115 	struct scrub_block *sblock_bad;
1116 	int ret;
1117 	int mirror_index;
1118 	int page_num;
1119 	int success;
1120 	bool full_stripe_locked;
1121 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1122 				      DEFAULT_RATELIMIT_BURST);
1123 
1124 	BUG_ON(sblock_to_check->page_count < 1);
1125 	fs_info = sctx->fs_info;
1126 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1127 		/*
1128 		 * if we find an error in a super block, we just report it.
1129 		 * They will get written with the next transaction commit
1130 		 * anyway
1131 		 */
1132 		spin_lock(&sctx->stat_lock);
1133 		++sctx->stat.super_errors;
1134 		spin_unlock(&sctx->stat_lock);
1135 		return 0;
1136 	}
1137 	length = sblock_to_check->page_count * PAGE_SIZE;
1138 	logical = sblock_to_check->pagev[0]->logical;
1139 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1140 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1141 	is_metadata = !(sblock_to_check->pagev[0]->flags &
1142 			BTRFS_EXTENT_FLAG_DATA);
1143 	have_csum = sblock_to_check->pagev[0]->have_csum;
1144 	dev = sblock_to_check->pagev[0]->dev;
1145 
1146 	/*
1147 	 * For RAID5/6, race can happen for a different device scrub thread.
1148 	 * For data corruption, Parity and Data threads will both try
1149 	 * to recovery the data.
1150 	 * Race can lead to doubly added csum error, or even unrecoverable
1151 	 * error.
1152 	 */
1153 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1154 	if (ret < 0) {
1155 		spin_lock(&sctx->stat_lock);
1156 		if (ret == -ENOMEM)
1157 			sctx->stat.malloc_errors++;
1158 		sctx->stat.read_errors++;
1159 		sctx->stat.uncorrectable_errors++;
1160 		spin_unlock(&sctx->stat_lock);
1161 		return ret;
1162 	}
1163 
1164 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1165 		sblocks_for_recheck = NULL;
1166 		goto nodatasum_case;
1167 	}
1168 
1169 	/*
1170 	 * read all mirrors one after the other. This includes to
1171 	 * re-read the extent or metadata block that failed (that was
1172 	 * the cause that this fixup code is called) another time,
1173 	 * page by page this time in order to know which pages
1174 	 * caused I/O errors and which ones are good (for all mirrors).
1175 	 * It is the goal to handle the situation when more than one
1176 	 * mirror contains I/O errors, but the errors do not
1177 	 * overlap, i.e. the data can be repaired by selecting the
1178 	 * pages from those mirrors without I/O error on the
1179 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1180 	 * would be that mirror #1 has an I/O error on the first page,
1181 	 * the second page is good, and mirror #2 has an I/O error on
1182 	 * the second page, but the first page is good.
1183 	 * Then the first page of the first mirror can be repaired by
1184 	 * taking the first page of the second mirror, and the
1185 	 * second page of the second mirror can be repaired by
1186 	 * copying the contents of the 2nd page of the 1st mirror.
1187 	 * One more note: if the pages of one mirror contain I/O
1188 	 * errors, the checksum cannot be verified. In order to get
1189 	 * the best data for repairing, the first attempt is to find
1190 	 * a mirror without I/O errors and with a validated checksum.
1191 	 * Only if this is not possible, the pages are picked from
1192 	 * mirrors with I/O errors without considering the checksum.
1193 	 * If the latter is the case, at the end, the checksum of the
1194 	 * repaired area is verified in order to correctly maintain
1195 	 * the statistics.
1196 	 */
1197 
1198 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1199 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1200 	if (!sblocks_for_recheck) {
1201 		spin_lock(&sctx->stat_lock);
1202 		sctx->stat.malloc_errors++;
1203 		sctx->stat.read_errors++;
1204 		sctx->stat.uncorrectable_errors++;
1205 		spin_unlock(&sctx->stat_lock);
1206 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1207 		goto out;
1208 	}
1209 
1210 	/* setup the context, map the logical blocks and alloc the pages */
1211 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1212 	if (ret) {
1213 		spin_lock(&sctx->stat_lock);
1214 		sctx->stat.read_errors++;
1215 		sctx->stat.uncorrectable_errors++;
1216 		spin_unlock(&sctx->stat_lock);
1217 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1218 		goto out;
1219 	}
1220 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1221 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1222 
1223 	/* build and submit the bios for the failed mirror, check checksums */
1224 	scrub_recheck_block(fs_info, sblock_bad, 1);
1225 
1226 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1227 	    sblock_bad->no_io_error_seen) {
1228 		/*
1229 		 * the error disappeared after reading page by page, or
1230 		 * the area was part of a huge bio and other parts of the
1231 		 * bio caused I/O errors, or the block layer merged several
1232 		 * read requests into one and the error is caused by a
1233 		 * different bio (usually one of the two latter cases is
1234 		 * the cause)
1235 		 */
1236 		spin_lock(&sctx->stat_lock);
1237 		sctx->stat.unverified_errors++;
1238 		sblock_to_check->data_corrected = 1;
1239 		spin_unlock(&sctx->stat_lock);
1240 
1241 		if (sctx->is_dev_replace)
1242 			scrub_write_block_to_dev_replace(sblock_bad);
1243 		goto out;
1244 	}
1245 
1246 	if (!sblock_bad->no_io_error_seen) {
1247 		spin_lock(&sctx->stat_lock);
1248 		sctx->stat.read_errors++;
1249 		spin_unlock(&sctx->stat_lock);
1250 		if (__ratelimit(&_rs))
1251 			scrub_print_warning("i/o error", sblock_to_check);
1252 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1253 	} else if (sblock_bad->checksum_error) {
1254 		spin_lock(&sctx->stat_lock);
1255 		sctx->stat.csum_errors++;
1256 		spin_unlock(&sctx->stat_lock);
1257 		if (__ratelimit(&_rs))
1258 			scrub_print_warning("checksum error", sblock_to_check);
1259 		btrfs_dev_stat_inc_and_print(dev,
1260 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1261 	} else if (sblock_bad->header_error) {
1262 		spin_lock(&sctx->stat_lock);
1263 		sctx->stat.verify_errors++;
1264 		spin_unlock(&sctx->stat_lock);
1265 		if (__ratelimit(&_rs))
1266 			scrub_print_warning("checksum/header error",
1267 					    sblock_to_check);
1268 		if (sblock_bad->generation_error)
1269 			btrfs_dev_stat_inc_and_print(dev,
1270 				BTRFS_DEV_STAT_GENERATION_ERRS);
1271 		else
1272 			btrfs_dev_stat_inc_and_print(dev,
1273 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1274 	}
1275 
1276 	if (sctx->readonly) {
1277 		ASSERT(!sctx->is_dev_replace);
1278 		goto out;
1279 	}
1280 
1281 	if (!is_metadata && !have_csum) {
1282 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1283 
1284 		WARN_ON(sctx->is_dev_replace);
1285 
1286 nodatasum_case:
1287 
1288 		/*
1289 		 * !is_metadata and !have_csum, this means that the data
1290 		 * might not be COWed, that it might be modified
1291 		 * concurrently. The general strategy to work on the
1292 		 * commit root does not help in the case when COW is not
1293 		 * used.
1294 		 */
1295 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1296 		if (!fixup_nodatasum)
1297 			goto did_not_correct_error;
1298 		fixup_nodatasum->sctx = sctx;
1299 		fixup_nodatasum->dev = dev;
1300 		fixup_nodatasum->logical = logical;
1301 		fixup_nodatasum->root = fs_info->extent_root;
1302 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1303 		scrub_pending_trans_workers_inc(sctx);
1304 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1305 				scrub_fixup_nodatasum, NULL, NULL);
1306 		btrfs_queue_work(fs_info->scrub_workers,
1307 				 &fixup_nodatasum->work);
1308 		goto out;
1309 	}
1310 
1311 	/*
1312 	 * now build and submit the bios for the other mirrors, check
1313 	 * checksums.
1314 	 * First try to pick the mirror which is completely without I/O
1315 	 * errors and also does not have a checksum error.
1316 	 * If one is found, and if a checksum is present, the full block
1317 	 * that is known to contain an error is rewritten. Afterwards
1318 	 * the block is known to be corrected.
1319 	 * If a mirror is found which is completely correct, and no
1320 	 * checksum is present, only those pages are rewritten that had
1321 	 * an I/O error in the block to be repaired, since it cannot be
1322 	 * determined, which copy of the other pages is better (and it
1323 	 * could happen otherwise that a correct page would be
1324 	 * overwritten by a bad one).
1325 	 */
1326 	for (mirror_index = 0;
1327 	     mirror_index < BTRFS_MAX_MIRRORS &&
1328 	     sblocks_for_recheck[mirror_index].page_count > 0;
1329 	     mirror_index++) {
1330 		struct scrub_block *sblock_other;
1331 
1332 		if (mirror_index == failed_mirror_index)
1333 			continue;
1334 		sblock_other = sblocks_for_recheck + mirror_index;
1335 
1336 		/* build and submit the bios, check checksums */
1337 		scrub_recheck_block(fs_info, sblock_other, 0);
1338 
1339 		if (!sblock_other->header_error &&
1340 		    !sblock_other->checksum_error &&
1341 		    sblock_other->no_io_error_seen) {
1342 			if (sctx->is_dev_replace) {
1343 				scrub_write_block_to_dev_replace(sblock_other);
1344 				goto corrected_error;
1345 			} else {
1346 				ret = scrub_repair_block_from_good_copy(
1347 						sblock_bad, sblock_other);
1348 				if (!ret)
1349 					goto corrected_error;
1350 			}
1351 		}
1352 	}
1353 
1354 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1355 		goto did_not_correct_error;
1356 
1357 	/*
1358 	 * In case of I/O errors in the area that is supposed to be
1359 	 * repaired, continue by picking good copies of those pages.
1360 	 * Select the good pages from mirrors to rewrite bad pages from
1361 	 * the area to fix. Afterwards verify the checksum of the block
1362 	 * that is supposed to be repaired. This verification step is
1363 	 * only done for the purpose of statistic counting and for the
1364 	 * final scrub report, whether errors remain.
1365 	 * A perfect algorithm could make use of the checksum and try
1366 	 * all possible combinations of pages from the different mirrors
1367 	 * until the checksum verification succeeds. For example, when
1368 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1369 	 * of mirror #2 is readable but the final checksum test fails,
1370 	 * then the 2nd page of mirror #3 could be tried, whether now
1371 	 * the final checksum succeeds. But this would be a rare
1372 	 * exception and is therefore not implemented. At least it is
1373 	 * avoided that the good copy is overwritten.
1374 	 * A more useful improvement would be to pick the sectors
1375 	 * without I/O error based on sector sizes (512 bytes on legacy
1376 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1377 	 * mirror could be repaired by taking 512 byte of a different
1378 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1379 	 * area are unreadable.
1380 	 */
1381 	success = 1;
1382 	for (page_num = 0; page_num < sblock_bad->page_count;
1383 	     page_num++) {
1384 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1385 		struct scrub_block *sblock_other = NULL;
1386 
1387 		/* skip no-io-error page in scrub */
1388 		if (!page_bad->io_error && !sctx->is_dev_replace)
1389 			continue;
1390 
1391 		/* try to find no-io-error page in mirrors */
1392 		if (page_bad->io_error) {
1393 			for (mirror_index = 0;
1394 			     mirror_index < BTRFS_MAX_MIRRORS &&
1395 			     sblocks_for_recheck[mirror_index].page_count > 0;
1396 			     mirror_index++) {
1397 				if (!sblocks_for_recheck[mirror_index].
1398 				    pagev[page_num]->io_error) {
1399 					sblock_other = sblocks_for_recheck +
1400 						       mirror_index;
1401 					break;
1402 				}
1403 			}
1404 			if (!sblock_other)
1405 				success = 0;
1406 		}
1407 
1408 		if (sctx->is_dev_replace) {
1409 			/*
1410 			 * did not find a mirror to fetch the page
1411 			 * from. scrub_write_page_to_dev_replace()
1412 			 * handles this case (page->io_error), by
1413 			 * filling the block with zeros before
1414 			 * submitting the write request
1415 			 */
1416 			if (!sblock_other)
1417 				sblock_other = sblock_bad;
1418 
1419 			if (scrub_write_page_to_dev_replace(sblock_other,
1420 							    page_num) != 0) {
1421 				btrfs_dev_replace_stats_inc(
1422 					&fs_info->dev_replace.num_write_errors);
1423 				success = 0;
1424 			}
1425 		} else if (sblock_other) {
1426 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1427 							       sblock_other,
1428 							       page_num, 0);
1429 			if (0 == ret)
1430 				page_bad->io_error = 0;
1431 			else
1432 				success = 0;
1433 		}
1434 	}
1435 
1436 	if (success && !sctx->is_dev_replace) {
1437 		if (is_metadata || have_csum) {
1438 			/*
1439 			 * need to verify the checksum now that all
1440 			 * sectors on disk are repaired (the write
1441 			 * request for data to be repaired is on its way).
1442 			 * Just be lazy and use scrub_recheck_block()
1443 			 * which re-reads the data before the checksum
1444 			 * is verified, but most likely the data comes out
1445 			 * of the page cache.
1446 			 */
1447 			scrub_recheck_block(fs_info, sblock_bad, 1);
1448 			if (!sblock_bad->header_error &&
1449 			    !sblock_bad->checksum_error &&
1450 			    sblock_bad->no_io_error_seen)
1451 				goto corrected_error;
1452 			else
1453 				goto did_not_correct_error;
1454 		} else {
1455 corrected_error:
1456 			spin_lock(&sctx->stat_lock);
1457 			sctx->stat.corrected_errors++;
1458 			sblock_to_check->data_corrected = 1;
1459 			spin_unlock(&sctx->stat_lock);
1460 			btrfs_err_rl_in_rcu(fs_info,
1461 				"fixed up error at logical %llu on dev %s",
1462 				logical, rcu_str_deref(dev->name));
1463 		}
1464 	} else {
1465 did_not_correct_error:
1466 		spin_lock(&sctx->stat_lock);
1467 		sctx->stat.uncorrectable_errors++;
1468 		spin_unlock(&sctx->stat_lock);
1469 		btrfs_err_rl_in_rcu(fs_info,
1470 			"unable to fixup (regular) error at logical %llu on dev %s",
1471 			logical, rcu_str_deref(dev->name));
1472 	}
1473 
1474 out:
1475 	if (sblocks_for_recheck) {
1476 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1477 		     mirror_index++) {
1478 			struct scrub_block *sblock = sblocks_for_recheck +
1479 						     mirror_index;
1480 			struct scrub_recover *recover;
1481 			int page_index;
1482 
1483 			for (page_index = 0; page_index < sblock->page_count;
1484 			     page_index++) {
1485 				sblock->pagev[page_index]->sblock = NULL;
1486 				recover = sblock->pagev[page_index]->recover;
1487 				if (recover) {
1488 					scrub_put_recover(fs_info, recover);
1489 					sblock->pagev[page_index]->recover =
1490 									NULL;
1491 				}
1492 				scrub_page_put(sblock->pagev[page_index]);
1493 			}
1494 		}
1495 		kfree(sblocks_for_recheck);
1496 	}
1497 
1498 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1499 	if (ret < 0)
1500 		return ret;
1501 	return 0;
1502 }
1503 
1504 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1505 {
1506 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1507 		return 2;
1508 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1509 		return 3;
1510 	else
1511 		return (int)bbio->num_stripes;
1512 }
1513 
1514 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1515 						 u64 *raid_map,
1516 						 u64 mapped_length,
1517 						 int nstripes, int mirror,
1518 						 int *stripe_index,
1519 						 u64 *stripe_offset)
1520 {
1521 	int i;
1522 
1523 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1524 		/* RAID5/6 */
1525 		for (i = 0; i < nstripes; i++) {
1526 			if (raid_map[i] == RAID6_Q_STRIPE ||
1527 			    raid_map[i] == RAID5_P_STRIPE)
1528 				continue;
1529 
1530 			if (logical >= raid_map[i] &&
1531 			    logical < raid_map[i] + mapped_length)
1532 				break;
1533 		}
1534 
1535 		*stripe_index = i;
1536 		*stripe_offset = logical - raid_map[i];
1537 	} else {
1538 		/* The other RAID type */
1539 		*stripe_index = mirror;
1540 		*stripe_offset = 0;
1541 	}
1542 }
1543 
1544 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1545 				     struct scrub_block *sblocks_for_recheck)
1546 {
1547 	struct scrub_ctx *sctx = original_sblock->sctx;
1548 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1549 	u64 length = original_sblock->page_count * PAGE_SIZE;
1550 	u64 logical = original_sblock->pagev[0]->logical;
1551 	u64 generation = original_sblock->pagev[0]->generation;
1552 	u64 flags = original_sblock->pagev[0]->flags;
1553 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1554 	struct scrub_recover *recover;
1555 	struct btrfs_bio *bbio;
1556 	u64 sublen;
1557 	u64 mapped_length;
1558 	u64 stripe_offset;
1559 	int stripe_index;
1560 	int page_index = 0;
1561 	int mirror_index;
1562 	int nmirrors;
1563 	int ret;
1564 
1565 	/*
1566 	 * note: the two members refs and outstanding_pages
1567 	 * are not used (and not set) in the blocks that are used for
1568 	 * the recheck procedure
1569 	 */
1570 
1571 	while (length > 0) {
1572 		sublen = min_t(u64, length, PAGE_SIZE);
1573 		mapped_length = sublen;
1574 		bbio = NULL;
1575 
1576 		/*
1577 		 * with a length of PAGE_SIZE, each returned stripe
1578 		 * represents one mirror
1579 		 */
1580 		btrfs_bio_counter_inc_blocked(fs_info);
1581 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1582 				logical, &mapped_length, &bbio);
1583 		if (ret || !bbio || mapped_length < sublen) {
1584 			btrfs_put_bbio(bbio);
1585 			btrfs_bio_counter_dec(fs_info);
1586 			return -EIO;
1587 		}
1588 
1589 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1590 		if (!recover) {
1591 			btrfs_put_bbio(bbio);
1592 			btrfs_bio_counter_dec(fs_info);
1593 			return -ENOMEM;
1594 		}
1595 
1596 		refcount_set(&recover->refs, 1);
1597 		recover->bbio = bbio;
1598 		recover->map_length = mapped_length;
1599 
1600 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1601 
1602 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1603 
1604 		for (mirror_index = 0; mirror_index < nmirrors;
1605 		     mirror_index++) {
1606 			struct scrub_block *sblock;
1607 			struct scrub_page *page;
1608 
1609 			sblock = sblocks_for_recheck + mirror_index;
1610 			sblock->sctx = sctx;
1611 
1612 			page = kzalloc(sizeof(*page), GFP_NOFS);
1613 			if (!page) {
1614 leave_nomem:
1615 				spin_lock(&sctx->stat_lock);
1616 				sctx->stat.malloc_errors++;
1617 				spin_unlock(&sctx->stat_lock);
1618 				scrub_put_recover(fs_info, recover);
1619 				return -ENOMEM;
1620 			}
1621 			scrub_page_get(page);
1622 			sblock->pagev[page_index] = page;
1623 			page->sblock = sblock;
1624 			page->flags = flags;
1625 			page->generation = generation;
1626 			page->logical = logical;
1627 			page->have_csum = have_csum;
1628 			if (have_csum)
1629 				memcpy(page->csum,
1630 				       original_sblock->pagev[0]->csum,
1631 				       sctx->csum_size);
1632 
1633 			scrub_stripe_index_and_offset(logical,
1634 						      bbio->map_type,
1635 						      bbio->raid_map,
1636 						      mapped_length,
1637 						      bbio->num_stripes -
1638 						      bbio->num_tgtdevs,
1639 						      mirror_index,
1640 						      &stripe_index,
1641 						      &stripe_offset);
1642 			page->physical = bbio->stripes[stripe_index].physical +
1643 					 stripe_offset;
1644 			page->dev = bbio->stripes[stripe_index].dev;
1645 
1646 			BUG_ON(page_index >= original_sblock->page_count);
1647 			page->physical_for_dev_replace =
1648 				original_sblock->pagev[page_index]->
1649 				physical_for_dev_replace;
1650 			/* for missing devices, dev->bdev is NULL */
1651 			page->mirror_num = mirror_index + 1;
1652 			sblock->page_count++;
1653 			page->page = alloc_page(GFP_NOFS);
1654 			if (!page->page)
1655 				goto leave_nomem;
1656 
1657 			scrub_get_recover(recover);
1658 			page->recover = recover;
1659 		}
1660 		scrub_put_recover(fs_info, recover);
1661 		length -= sublen;
1662 		logical += sublen;
1663 		page_index++;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 struct scrub_bio_ret {
1670 	struct completion event;
1671 	blk_status_t status;
1672 };
1673 
1674 static void scrub_bio_wait_endio(struct bio *bio)
1675 {
1676 	struct scrub_bio_ret *ret = bio->bi_private;
1677 
1678 	ret->status = bio->bi_status;
1679 	complete(&ret->event);
1680 }
1681 
1682 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1683 {
1684 	return page->recover &&
1685 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1686 }
1687 
1688 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1689 					struct bio *bio,
1690 					struct scrub_page *page)
1691 {
1692 	struct scrub_bio_ret done;
1693 	int ret;
1694 
1695 	init_completion(&done.event);
1696 	done.status = 0;
1697 	bio->bi_iter.bi_sector = page->logical >> 9;
1698 	bio->bi_private = &done;
1699 	bio->bi_end_io = scrub_bio_wait_endio;
1700 
1701 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1702 				    page->recover->map_length,
1703 				    page->mirror_num, 0);
1704 	if (ret)
1705 		return ret;
1706 
1707 	wait_for_completion_io(&done.event);
1708 	if (done.status)
1709 		return -EIO;
1710 
1711 	return 0;
1712 }
1713 
1714 /*
1715  * this function will check the on disk data for checksum errors, header
1716  * errors and read I/O errors. If any I/O errors happen, the exact pages
1717  * which are errored are marked as being bad. The goal is to enable scrub
1718  * to take those pages that are not errored from all the mirrors so that
1719  * the pages that are errored in the just handled mirror can be repaired.
1720  */
1721 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1722 				struct scrub_block *sblock,
1723 				int retry_failed_mirror)
1724 {
1725 	int page_num;
1726 
1727 	sblock->no_io_error_seen = 1;
1728 
1729 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1730 		struct bio *bio;
1731 		struct scrub_page *page = sblock->pagev[page_num];
1732 
1733 		if (page->dev->bdev == NULL) {
1734 			page->io_error = 1;
1735 			sblock->no_io_error_seen = 0;
1736 			continue;
1737 		}
1738 
1739 		WARN_ON(!page->page);
1740 		bio = btrfs_io_bio_alloc(1);
1741 		bio_set_dev(bio, page->dev->bdev);
1742 
1743 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1744 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1745 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
1746 				page->io_error = 1;
1747 				sblock->no_io_error_seen = 0;
1748 			}
1749 		} else {
1750 			bio->bi_iter.bi_sector = page->physical >> 9;
1751 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1752 
1753 			if (btrfsic_submit_bio_wait(bio)) {
1754 				page->io_error = 1;
1755 				sblock->no_io_error_seen = 0;
1756 			}
1757 		}
1758 
1759 		bio_put(bio);
1760 	}
1761 
1762 	if (sblock->no_io_error_seen)
1763 		scrub_recheck_block_checksum(sblock);
1764 }
1765 
1766 static inline int scrub_check_fsid(u8 fsid[],
1767 				   struct scrub_page *spage)
1768 {
1769 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1770 	int ret;
1771 
1772 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1773 	return !ret;
1774 }
1775 
1776 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1777 {
1778 	sblock->header_error = 0;
1779 	sblock->checksum_error = 0;
1780 	sblock->generation_error = 0;
1781 
1782 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1783 		scrub_checksum_data(sblock);
1784 	else
1785 		scrub_checksum_tree_block(sblock);
1786 }
1787 
1788 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1789 					     struct scrub_block *sblock_good)
1790 {
1791 	int page_num;
1792 	int ret = 0;
1793 
1794 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1795 		int ret_sub;
1796 
1797 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1798 							   sblock_good,
1799 							   page_num, 1);
1800 		if (ret_sub)
1801 			ret = ret_sub;
1802 	}
1803 
1804 	return ret;
1805 }
1806 
1807 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1808 					    struct scrub_block *sblock_good,
1809 					    int page_num, int force_write)
1810 {
1811 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1812 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1813 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1814 
1815 	BUG_ON(page_bad->page == NULL);
1816 	BUG_ON(page_good->page == NULL);
1817 	if (force_write || sblock_bad->header_error ||
1818 	    sblock_bad->checksum_error || page_bad->io_error) {
1819 		struct bio *bio;
1820 		int ret;
1821 
1822 		if (!page_bad->dev->bdev) {
1823 			btrfs_warn_rl(fs_info,
1824 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1825 			return -EIO;
1826 		}
1827 
1828 		bio = btrfs_io_bio_alloc(1);
1829 		bio_set_dev(bio, page_bad->dev->bdev);
1830 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1831 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1832 
1833 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1834 		if (PAGE_SIZE != ret) {
1835 			bio_put(bio);
1836 			return -EIO;
1837 		}
1838 
1839 		if (btrfsic_submit_bio_wait(bio)) {
1840 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1841 				BTRFS_DEV_STAT_WRITE_ERRS);
1842 			btrfs_dev_replace_stats_inc(
1843 				&fs_info->dev_replace.num_write_errors);
1844 			bio_put(bio);
1845 			return -EIO;
1846 		}
1847 		bio_put(bio);
1848 	}
1849 
1850 	return 0;
1851 }
1852 
1853 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1854 {
1855 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1856 	int page_num;
1857 
1858 	/*
1859 	 * This block is used for the check of the parity on the source device,
1860 	 * so the data needn't be written into the destination device.
1861 	 */
1862 	if (sblock->sparity)
1863 		return;
1864 
1865 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1866 		int ret;
1867 
1868 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1869 		if (ret)
1870 			btrfs_dev_replace_stats_inc(
1871 				&fs_info->dev_replace.num_write_errors);
1872 	}
1873 }
1874 
1875 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1876 					   int page_num)
1877 {
1878 	struct scrub_page *spage = sblock->pagev[page_num];
1879 
1880 	BUG_ON(spage->page == NULL);
1881 	if (spage->io_error) {
1882 		void *mapped_buffer = kmap_atomic(spage->page);
1883 
1884 		clear_page(mapped_buffer);
1885 		flush_dcache_page(spage->page);
1886 		kunmap_atomic(mapped_buffer);
1887 	}
1888 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1889 }
1890 
1891 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1892 				    struct scrub_page *spage)
1893 {
1894 	struct scrub_bio *sbio;
1895 	int ret;
1896 
1897 	mutex_lock(&sctx->wr_lock);
1898 again:
1899 	if (!sctx->wr_curr_bio) {
1900 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1901 					      GFP_KERNEL);
1902 		if (!sctx->wr_curr_bio) {
1903 			mutex_unlock(&sctx->wr_lock);
1904 			return -ENOMEM;
1905 		}
1906 		sctx->wr_curr_bio->sctx = sctx;
1907 		sctx->wr_curr_bio->page_count = 0;
1908 	}
1909 	sbio = sctx->wr_curr_bio;
1910 	if (sbio->page_count == 0) {
1911 		struct bio *bio;
1912 
1913 		sbio->physical = spage->physical_for_dev_replace;
1914 		sbio->logical = spage->logical;
1915 		sbio->dev = sctx->wr_tgtdev;
1916 		bio = sbio->bio;
1917 		if (!bio) {
1918 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1919 			sbio->bio = bio;
1920 		}
1921 
1922 		bio->bi_private = sbio;
1923 		bio->bi_end_io = scrub_wr_bio_end_io;
1924 		bio_set_dev(bio, sbio->dev->bdev);
1925 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1926 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1927 		sbio->status = 0;
1928 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1929 		   spage->physical_for_dev_replace ||
1930 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1931 		   spage->logical) {
1932 		scrub_wr_submit(sctx);
1933 		goto again;
1934 	}
1935 
1936 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1937 	if (ret != PAGE_SIZE) {
1938 		if (sbio->page_count < 1) {
1939 			bio_put(sbio->bio);
1940 			sbio->bio = NULL;
1941 			mutex_unlock(&sctx->wr_lock);
1942 			return -EIO;
1943 		}
1944 		scrub_wr_submit(sctx);
1945 		goto again;
1946 	}
1947 
1948 	sbio->pagev[sbio->page_count] = spage;
1949 	scrub_page_get(spage);
1950 	sbio->page_count++;
1951 	if (sbio->page_count == sctx->pages_per_wr_bio)
1952 		scrub_wr_submit(sctx);
1953 	mutex_unlock(&sctx->wr_lock);
1954 
1955 	return 0;
1956 }
1957 
1958 static void scrub_wr_submit(struct scrub_ctx *sctx)
1959 {
1960 	struct scrub_bio *sbio;
1961 
1962 	if (!sctx->wr_curr_bio)
1963 		return;
1964 
1965 	sbio = sctx->wr_curr_bio;
1966 	sctx->wr_curr_bio = NULL;
1967 	WARN_ON(!sbio->bio->bi_disk);
1968 	scrub_pending_bio_inc(sctx);
1969 	/* process all writes in a single worker thread. Then the block layer
1970 	 * orders the requests before sending them to the driver which
1971 	 * doubled the write performance on spinning disks when measured
1972 	 * with Linux 3.5 */
1973 	btrfsic_submit_bio(sbio->bio);
1974 }
1975 
1976 static void scrub_wr_bio_end_io(struct bio *bio)
1977 {
1978 	struct scrub_bio *sbio = bio->bi_private;
1979 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1980 
1981 	sbio->status = bio->bi_status;
1982 	sbio->bio = bio;
1983 
1984 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1985 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1986 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1987 }
1988 
1989 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1990 {
1991 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1992 	struct scrub_ctx *sctx = sbio->sctx;
1993 	int i;
1994 
1995 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1996 	if (sbio->status) {
1997 		struct btrfs_dev_replace *dev_replace =
1998 			&sbio->sctx->fs_info->dev_replace;
1999 
2000 		for (i = 0; i < sbio->page_count; i++) {
2001 			struct scrub_page *spage = sbio->pagev[i];
2002 
2003 			spage->io_error = 1;
2004 			btrfs_dev_replace_stats_inc(&dev_replace->
2005 						    num_write_errors);
2006 		}
2007 	}
2008 
2009 	for (i = 0; i < sbio->page_count; i++)
2010 		scrub_page_put(sbio->pagev[i]);
2011 
2012 	bio_put(sbio->bio);
2013 	kfree(sbio);
2014 	scrub_pending_bio_dec(sctx);
2015 }
2016 
2017 static int scrub_checksum(struct scrub_block *sblock)
2018 {
2019 	u64 flags;
2020 	int ret;
2021 
2022 	/*
2023 	 * No need to initialize these stats currently,
2024 	 * because this function only use return value
2025 	 * instead of these stats value.
2026 	 *
2027 	 * Todo:
2028 	 * always use stats
2029 	 */
2030 	sblock->header_error = 0;
2031 	sblock->generation_error = 0;
2032 	sblock->checksum_error = 0;
2033 
2034 	WARN_ON(sblock->page_count < 1);
2035 	flags = sblock->pagev[0]->flags;
2036 	ret = 0;
2037 	if (flags & BTRFS_EXTENT_FLAG_DATA)
2038 		ret = scrub_checksum_data(sblock);
2039 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2040 		ret = scrub_checksum_tree_block(sblock);
2041 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2042 		(void)scrub_checksum_super(sblock);
2043 	else
2044 		WARN_ON(1);
2045 	if (ret)
2046 		scrub_handle_errored_block(sblock);
2047 
2048 	return ret;
2049 }
2050 
2051 static int scrub_checksum_data(struct scrub_block *sblock)
2052 {
2053 	struct scrub_ctx *sctx = sblock->sctx;
2054 	u8 csum[BTRFS_CSUM_SIZE];
2055 	u8 *on_disk_csum;
2056 	struct page *page;
2057 	void *buffer;
2058 	u32 crc = ~(u32)0;
2059 	u64 len;
2060 	int index;
2061 
2062 	BUG_ON(sblock->page_count < 1);
2063 	if (!sblock->pagev[0]->have_csum)
2064 		return 0;
2065 
2066 	on_disk_csum = sblock->pagev[0]->csum;
2067 	page = sblock->pagev[0]->page;
2068 	buffer = kmap_atomic(page);
2069 
2070 	len = sctx->fs_info->sectorsize;
2071 	index = 0;
2072 	for (;;) {
2073 		u64 l = min_t(u64, len, PAGE_SIZE);
2074 
2075 		crc = btrfs_csum_data(buffer, crc, l);
2076 		kunmap_atomic(buffer);
2077 		len -= l;
2078 		if (len == 0)
2079 			break;
2080 		index++;
2081 		BUG_ON(index >= sblock->page_count);
2082 		BUG_ON(!sblock->pagev[index]->page);
2083 		page = sblock->pagev[index]->page;
2084 		buffer = kmap_atomic(page);
2085 	}
2086 
2087 	btrfs_csum_final(crc, csum);
2088 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2089 		sblock->checksum_error = 1;
2090 
2091 	return sblock->checksum_error;
2092 }
2093 
2094 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2095 {
2096 	struct scrub_ctx *sctx = sblock->sctx;
2097 	struct btrfs_header *h;
2098 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2099 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2100 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2101 	struct page *page;
2102 	void *mapped_buffer;
2103 	u64 mapped_size;
2104 	void *p;
2105 	u32 crc = ~(u32)0;
2106 	u64 len;
2107 	int index;
2108 
2109 	BUG_ON(sblock->page_count < 1);
2110 	page = sblock->pagev[0]->page;
2111 	mapped_buffer = kmap_atomic(page);
2112 	h = (struct btrfs_header *)mapped_buffer;
2113 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
2114 
2115 	/*
2116 	 * we don't use the getter functions here, as we
2117 	 * a) don't have an extent buffer and
2118 	 * b) the page is already kmapped
2119 	 */
2120 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2121 		sblock->header_error = 1;
2122 
2123 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2124 		sblock->header_error = 1;
2125 		sblock->generation_error = 1;
2126 	}
2127 
2128 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2129 		sblock->header_error = 1;
2130 
2131 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2132 		   BTRFS_UUID_SIZE))
2133 		sblock->header_error = 1;
2134 
2135 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2136 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2137 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2138 	index = 0;
2139 	for (;;) {
2140 		u64 l = min_t(u64, len, mapped_size);
2141 
2142 		crc = btrfs_csum_data(p, crc, l);
2143 		kunmap_atomic(mapped_buffer);
2144 		len -= l;
2145 		if (len == 0)
2146 			break;
2147 		index++;
2148 		BUG_ON(index >= sblock->page_count);
2149 		BUG_ON(!sblock->pagev[index]->page);
2150 		page = sblock->pagev[index]->page;
2151 		mapped_buffer = kmap_atomic(page);
2152 		mapped_size = PAGE_SIZE;
2153 		p = mapped_buffer;
2154 	}
2155 
2156 	btrfs_csum_final(crc, calculated_csum);
2157 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2158 		sblock->checksum_error = 1;
2159 
2160 	return sblock->header_error || sblock->checksum_error;
2161 }
2162 
2163 static int scrub_checksum_super(struct scrub_block *sblock)
2164 {
2165 	struct btrfs_super_block *s;
2166 	struct scrub_ctx *sctx = sblock->sctx;
2167 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2168 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2169 	struct page *page;
2170 	void *mapped_buffer;
2171 	u64 mapped_size;
2172 	void *p;
2173 	u32 crc = ~(u32)0;
2174 	int fail_gen = 0;
2175 	int fail_cor = 0;
2176 	u64 len;
2177 	int index;
2178 
2179 	BUG_ON(sblock->page_count < 1);
2180 	page = sblock->pagev[0]->page;
2181 	mapped_buffer = kmap_atomic(page);
2182 	s = (struct btrfs_super_block *)mapped_buffer;
2183 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
2184 
2185 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2186 		++fail_cor;
2187 
2188 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2189 		++fail_gen;
2190 
2191 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2192 		++fail_cor;
2193 
2194 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2195 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2196 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2197 	index = 0;
2198 	for (;;) {
2199 		u64 l = min_t(u64, len, mapped_size);
2200 
2201 		crc = btrfs_csum_data(p, crc, l);
2202 		kunmap_atomic(mapped_buffer);
2203 		len -= l;
2204 		if (len == 0)
2205 			break;
2206 		index++;
2207 		BUG_ON(index >= sblock->page_count);
2208 		BUG_ON(!sblock->pagev[index]->page);
2209 		page = sblock->pagev[index]->page;
2210 		mapped_buffer = kmap_atomic(page);
2211 		mapped_size = PAGE_SIZE;
2212 		p = mapped_buffer;
2213 	}
2214 
2215 	btrfs_csum_final(crc, calculated_csum);
2216 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2217 		++fail_cor;
2218 
2219 	if (fail_cor + fail_gen) {
2220 		/*
2221 		 * if we find an error in a super block, we just report it.
2222 		 * They will get written with the next transaction commit
2223 		 * anyway
2224 		 */
2225 		spin_lock(&sctx->stat_lock);
2226 		++sctx->stat.super_errors;
2227 		spin_unlock(&sctx->stat_lock);
2228 		if (fail_cor)
2229 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2230 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2231 		else
2232 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2233 				BTRFS_DEV_STAT_GENERATION_ERRS);
2234 	}
2235 
2236 	return fail_cor + fail_gen;
2237 }
2238 
2239 static void scrub_block_get(struct scrub_block *sblock)
2240 {
2241 	refcount_inc(&sblock->refs);
2242 }
2243 
2244 static void scrub_block_put(struct scrub_block *sblock)
2245 {
2246 	if (refcount_dec_and_test(&sblock->refs)) {
2247 		int i;
2248 
2249 		if (sblock->sparity)
2250 			scrub_parity_put(sblock->sparity);
2251 
2252 		for (i = 0; i < sblock->page_count; i++)
2253 			scrub_page_put(sblock->pagev[i]);
2254 		kfree(sblock);
2255 	}
2256 }
2257 
2258 static void scrub_page_get(struct scrub_page *spage)
2259 {
2260 	atomic_inc(&spage->refs);
2261 }
2262 
2263 static void scrub_page_put(struct scrub_page *spage)
2264 {
2265 	if (atomic_dec_and_test(&spage->refs)) {
2266 		if (spage->page)
2267 			__free_page(spage->page);
2268 		kfree(spage);
2269 	}
2270 }
2271 
2272 static void scrub_submit(struct scrub_ctx *sctx)
2273 {
2274 	struct scrub_bio *sbio;
2275 
2276 	if (sctx->curr == -1)
2277 		return;
2278 
2279 	sbio = sctx->bios[sctx->curr];
2280 	sctx->curr = -1;
2281 	scrub_pending_bio_inc(sctx);
2282 	btrfsic_submit_bio(sbio->bio);
2283 }
2284 
2285 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2286 				    struct scrub_page *spage)
2287 {
2288 	struct scrub_block *sblock = spage->sblock;
2289 	struct scrub_bio *sbio;
2290 	int ret;
2291 
2292 again:
2293 	/*
2294 	 * grab a fresh bio or wait for one to become available
2295 	 */
2296 	while (sctx->curr == -1) {
2297 		spin_lock(&sctx->list_lock);
2298 		sctx->curr = sctx->first_free;
2299 		if (sctx->curr != -1) {
2300 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2301 			sctx->bios[sctx->curr]->next_free = -1;
2302 			sctx->bios[sctx->curr]->page_count = 0;
2303 			spin_unlock(&sctx->list_lock);
2304 		} else {
2305 			spin_unlock(&sctx->list_lock);
2306 			wait_event(sctx->list_wait, sctx->first_free != -1);
2307 		}
2308 	}
2309 	sbio = sctx->bios[sctx->curr];
2310 	if (sbio->page_count == 0) {
2311 		struct bio *bio;
2312 
2313 		sbio->physical = spage->physical;
2314 		sbio->logical = spage->logical;
2315 		sbio->dev = spage->dev;
2316 		bio = sbio->bio;
2317 		if (!bio) {
2318 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2319 			sbio->bio = bio;
2320 		}
2321 
2322 		bio->bi_private = sbio;
2323 		bio->bi_end_io = scrub_bio_end_io;
2324 		bio_set_dev(bio, sbio->dev->bdev);
2325 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2326 		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2327 		sbio->status = 0;
2328 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2329 		   spage->physical ||
2330 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2331 		   spage->logical ||
2332 		   sbio->dev != spage->dev) {
2333 		scrub_submit(sctx);
2334 		goto again;
2335 	}
2336 
2337 	sbio->pagev[sbio->page_count] = spage;
2338 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2339 	if (ret != PAGE_SIZE) {
2340 		if (sbio->page_count < 1) {
2341 			bio_put(sbio->bio);
2342 			sbio->bio = NULL;
2343 			return -EIO;
2344 		}
2345 		scrub_submit(sctx);
2346 		goto again;
2347 	}
2348 
2349 	scrub_block_get(sblock); /* one for the page added to the bio */
2350 	atomic_inc(&sblock->outstanding_pages);
2351 	sbio->page_count++;
2352 	if (sbio->page_count == sctx->pages_per_rd_bio)
2353 		scrub_submit(sctx);
2354 
2355 	return 0;
2356 }
2357 
2358 static void scrub_missing_raid56_end_io(struct bio *bio)
2359 {
2360 	struct scrub_block *sblock = bio->bi_private;
2361 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2362 
2363 	if (bio->bi_status)
2364 		sblock->no_io_error_seen = 0;
2365 
2366 	bio_put(bio);
2367 
2368 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2369 }
2370 
2371 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2372 {
2373 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2374 	struct scrub_ctx *sctx = sblock->sctx;
2375 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2376 	u64 logical;
2377 	struct btrfs_device *dev;
2378 
2379 	logical = sblock->pagev[0]->logical;
2380 	dev = sblock->pagev[0]->dev;
2381 
2382 	if (sblock->no_io_error_seen)
2383 		scrub_recheck_block_checksum(sblock);
2384 
2385 	if (!sblock->no_io_error_seen) {
2386 		spin_lock(&sctx->stat_lock);
2387 		sctx->stat.read_errors++;
2388 		spin_unlock(&sctx->stat_lock);
2389 		btrfs_err_rl_in_rcu(fs_info,
2390 			"IO error rebuilding logical %llu for dev %s",
2391 			logical, rcu_str_deref(dev->name));
2392 	} else if (sblock->header_error || sblock->checksum_error) {
2393 		spin_lock(&sctx->stat_lock);
2394 		sctx->stat.uncorrectable_errors++;
2395 		spin_unlock(&sctx->stat_lock);
2396 		btrfs_err_rl_in_rcu(fs_info,
2397 			"failed to rebuild valid logical %llu for dev %s",
2398 			logical, rcu_str_deref(dev->name));
2399 	} else {
2400 		scrub_write_block_to_dev_replace(sblock);
2401 	}
2402 
2403 	scrub_block_put(sblock);
2404 
2405 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2406 		mutex_lock(&sctx->wr_lock);
2407 		scrub_wr_submit(sctx);
2408 		mutex_unlock(&sctx->wr_lock);
2409 	}
2410 
2411 	scrub_pending_bio_dec(sctx);
2412 }
2413 
2414 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2415 {
2416 	struct scrub_ctx *sctx = sblock->sctx;
2417 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2418 	u64 length = sblock->page_count * PAGE_SIZE;
2419 	u64 logical = sblock->pagev[0]->logical;
2420 	struct btrfs_bio *bbio = NULL;
2421 	struct bio *bio;
2422 	struct btrfs_raid_bio *rbio;
2423 	int ret;
2424 	int i;
2425 
2426 	btrfs_bio_counter_inc_blocked(fs_info);
2427 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2428 			&length, &bbio);
2429 	if (ret || !bbio || !bbio->raid_map)
2430 		goto bbio_out;
2431 
2432 	if (WARN_ON(!sctx->is_dev_replace ||
2433 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2434 		/*
2435 		 * We shouldn't be scrubbing a missing device. Even for dev
2436 		 * replace, we should only get here for RAID 5/6. We either
2437 		 * managed to mount something with no mirrors remaining or
2438 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2439 		 */
2440 		goto bbio_out;
2441 	}
2442 
2443 	bio = btrfs_io_bio_alloc(0);
2444 	bio->bi_iter.bi_sector = logical >> 9;
2445 	bio->bi_private = sblock;
2446 	bio->bi_end_io = scrub_missing_raid56_end_io;
2447 
2448 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2449 	if (!rbio)
2450 		goto rbio_out;
2451 
2452 	for (i = 0; i < sblock->page_count; i++) {
2453 		struct scrub_page *spage = sblock->pagev[i];
2454 
2455 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2456 	}
2457 
2458 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2459 			scrub_missing_raid56_worker, NULL, NULL);
2460 	scrub_block_get(sblock);
2461 	scrub_pending_bio_inc(sctx);
2462 	raid56_submit_missing_rbio(rbio);
2463 	return;
2464 
2465 rbio_out:
2466 	bio_put(bio);
2467 bbio_out:
2468 	btrfs_bio_counter_dec(fs_info);
2469 	btrfs_put_bbio(bbio);
2470 	spin_lock(&sctx->stat_lock);
2471 	sctx->stat.malloc_errors++;
2472 	spin_unlock(&sctx->stat_lock);
2473 }
2474 
2475 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2476 		       u64 physical, struct btrfs_device *dev, u64 flags,
2477 		       u64 gen, int mirror_num, u8 *csum, int force,
2478 		       u64 physical_for_dev_replace)
2479 {
2480 	struct scrub_block *sblock;
2481 	int index;
2482 
2483 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2484 	if (!sblock) {
2485 		spin_lock(&sctx->stat_lock);
2486 		sctx->stat.malloc_errors++;
2487 		spin_unlock(&sctx->stat_lock);
2488 		return -ENOMEM;
2489 	}
2490 
2491 	/* one ref inside this function, plus one for each page added to
2492 	 * a bio later on */
2493 	refcount_set(&sblock->refs, 1);
2494 	sblock->sctx = sctx;
2495 	sblock->no_io_error_seen = 1;
2496 
2497 	for (index = 0; len > 0; index++) {
2498 		struct scrub_page *spage;
2499 		u64 l = min_t(u64, len, PAGE_SIZE);
2500 
2501 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2502 		if (!spage) {
2503 leave_nomem:
2504 			spin_lock(&sctx->stat_lock);
2505 			sctx->stat.malloc_errors++;
2506 			spin_unlock(&sctx->stat_lock);
2507 			scrub_block_put(sblock);
2508 			return -ENOMEM;
2509 		}
2510 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2511 		scrub_page_get(spage);
2512 		sblock->pagev[index] = spage;
2513 		spage->sblock = sblock;
2514 		spage->dev = dev;
2515 		spage->flags = flags;
2516 		spage->generation = gen;
2517 		spage->logical = logical;
2518 		spage->physical = physical;
2519 		spage->physical_for_dev_replace = physical_for_dev_replace;
2520 		spage->mirror_num = mirror_num;
2521 		if (csum) {
2522 			spage->have_csum = 1;
2523 			memcpy(spage->csum, csum, sctx->csum_size);
2524 		} else {
2525 			spage->have_csum = 0;
2526 		}
2527 		sblock->page_count++;
2528 		spage->page = alloc_page(GFP_KERNEL);
2529 		if (!spage->page)
2530 			goto leave_nomem;
2531 		len -= l;
2532 		logical += l;
2533 		physical += l;
2534 		physical_for_dev_replace += l;
2535 	}
2536 
2537 	WARN_ON(sblock->page_count == 0);
2538 	if (dev->missing) {
2539 		/*
2540 		 * This case should only be hit for RAID 5/6 device replace. See
2541 		 * the comment in scrub_missing_raid56_pages() for details.
2542 		 */
2543 		scrub_missing_raid56_pages(sblock);
2544 	} else {
2545 		for (index = 0; index < sblock->page_count; index++) {
2546 			struct scrub_page *spage = sblock->pagev[index];
2547 			int ret;
2548 
2549 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2550 			if (ret) {
2551 				scrub_block_put(sblock);
2552 				return ret;
2553 			}
2554 		}
2555 
2556 		if (force)
2557 			scrub_submit(sctx);
2558 	}
2559 
2560 	/* last one frees, either here or in bio completion for last page */
2561 	scrub_block_put(sblock);
2562 	return 0;
2563 }
2564 
2565 static void scrub_bio_end_io(struct bio *bio)
2566 {
2567 	struct scrub_bio *sbio = bio->bi_private;
2568 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2569 
2570 	sbio->status = bio->bi_status;
2571 	sbio->bio = bio;
2572 
2573 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2574 }
2575 
2576 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2577 {
2578 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2579 	struct scrub_ctx *sctx = sbio->sctx;
2580 	int i;
2581 
2582 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2583 	if (sbio->status) {
2584 		for (i = 0; i < sbio->page_count; i++) {
2585 			struct scrub_page *spage = sbio->pagev[i];
2586 
2587 			spage->io_error = 1;
2588 			spage->sblock->no_io_error_seen = 0;
2589 		}
2590 	}
2591 
2592 	/* now complete the scrub_block items that have all pages completed */
2593 	for (i = 0; i < sbio->page_count; i++) {
2594 		struct scrub_page *spage = sbio->pagev[i];
2595 		struct scrub_block *sblock = spage->sblock;
2596 
2597 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2598 			scrub_block_complete(sblock);
2599 		scrub_block_put(sblock);
2600 	}
2601 
2602 	bio_put(sbio->bio);
2603 	sbio->bio = NULL;
2604 	spin_lock(&sctx->list_lock);
2605 	sbio->next_free = sctx->first_free;
2606 	sctx->first_free = sbio->index;
2607 	spin_unlock(&sctx->list_lock);
2608 
2609 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2610 		mutex_lock(&sctx->wr_lock);
2611 		scrub_wr_submit(sctx);
2612 		mutex_unlock(&sctx->wr_lock);
2613 	}
2614 
2615 	scrub_pending_bio_dec(sctx);
2616 }
2617 
2618 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2619 				       unsigned long *bitmap,
2620 				       u64 start, u64 len)
2621 {
2622 	u64 offset;
2623 	u64 nsectors64;
2624 	u32 nsectors;
2625 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2626 
2627 	if (len >= sparity->stripe_len) {
2628 		bitmap_set(bitmap, 0, sparity->nsectors);
2629 		return;
2630 	}
2631 
2632 	start -= sparity->logic_start;
2633 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2634 	offset = div_u64(offset, sectorsize);
2635 	nsectors64 = div_u64(len, sectorsize);
2636 
2637 	ASSERT(nsectors64 < UINT_MAX);
2638 	nsectors = (u32)nsectors64;
2639 
2640 	if (offset + nsectors <= sparity->nsectors) {
2641 		bitmap_set(bitmap, offset, nsectors);
2642 		return;
2643 	}
2644 
2645 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2646 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2647 }
2648 
2649 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2650 						   u64 start, u64 len)
2651 {
2652 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2653 }
2654 
2655 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2656 						  u64 start, u64 len)
2657 {
2658 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2659 }
2660 
2661 static void scrub_block_complete(struct scrub_block *sblock)
2662 {
2663 	int corrupted = 0;
2664 
2665 	if (!sblock->no_io_error_seen) {
2666 		corrupted = 1;
2667 		scrub_handle_errored_block(sblock);
2668 	} else {
2669 		/*
2670 		 * if has checksum error, write via repair mechanism in
2671 		 * dev replace case, otherwise write here in dev replace
2672 		 * case.
2673 		 */
2674 		corrupted = scrub_checksum(sblock);
2675 		if (!corrupted && sblock->sctx->is_dev_replace)
2676 			scrub_write_block_to_dev_replace(sblock);
2677 	}
2678 
2679 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2680 		u64 start = sblock->pagev[0]->logical;
2681 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2682 			  PAGE_SIZE;
2683 
2684 		scrub_parity_mark_sectors_error(sblock->sparity,
2685 						start, end - start);
2686 	}
2687 }
2688 
2689 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2690 {
2691 	struct btrfs_ordered_sum *sum = NULL;
2692 	unsigned long index;
2693 	unsigned long num_sectors;
2694 
2695 	while (!list_empty(&sctx->csum_list)) {
2696 		sum = list_first_entry(&sctx->csum_list,
2697 				       struct btrfs_ordered_sum, list);
2698 		if (sum->bytenr > logical)
2699 			return 0;
2700 		if (sum->bytenr + sum->len > logical)
2701 			break;
2702 
2703 		++sctx->stat.csum_discards;
2704 		list_del(&sum->list);
2705 		kfree(sum);
2706 		sum = NULL;
2707 	}
2708 	if (!sum)
2709 		return 0;
2710 
2711 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2712 	ASSERT(index < UINT_MAX);
2713 
2714 	num_sectors = sum->len / sctx->fs_info->sectorsize;
2715 	memcpy(csum, sum->sums + index, sctx->csum_size);
2716 	if (index == num_sectors - 1) {
2717 		list_del(&sum->list);
2718 		kfree(sum);
2719 	}
2720 	return 1;
2721 }
2722 
2723 /* scrub extent tries to collect up to 64 kB for each bio */
2724 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2725 			u64 physical, struct btrfs_device *dev, u64 flags,
2726 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2727 {
2728 	int ret;
2729 	u8 csum[BTRFS_CSUM_SIZE];
2730 	u32 blocksize;
2731 
2732 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2733 		blocksize = sctx->fs_info->sectorsize;
2734 		spin_lock(&sctx->stat_lock);
2735 		sctx->stat.data_extents_scrubbed++;
2736 		sctx->stat.data_bytes_scrubbed += len;
2737 		spin_unlock(&sctx->stat_lock);
2738 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2739 		blocksize = sctx->fs_info->nodesize;
2740 		spin_lock(&sctx->stat_lock);
2741 		sctx->stat.tree_extents_scrubbed++;
2742 		sctx->stat.tree_bytes_scrubbed += len;
2743 		spin_unlock(&sctx->stat_lock);
2744 	} else {
2745 		blocksize = sctx->fs_info->sectorsize;
2746 		WARN_ON(1);
2747 	}
2748 
2749 	while (len) {
2750 		u64 l = min_t(u64, len, blocksize);
2751 		int have_csum = 0;
2752 
2753 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2754 			/* push csums to sbio */
2755 			have_csum = scrub_find_csum(sctx, logical, csum);
2756 			if (have_csum == 0)
2757 				++sctx->stat.no_csum;
2758 			if (sctx->is_dev_replace && !have_csum) {
2759 				ret = copy_nocow_pages(sctx, logical, l,
2760 						       mirror_num,
2761 						      physical_for_dev_replace);
2762 				goto behind_scrub_pages;
2763 			}
2764 		}
2765 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2766 				  mirror_num, have_csum ? csum : NULL, 0,
2767 				  physical_for_dev_replace);
2768 behind_scrub_pages:
2769 		if (ret)
2770 			return ret;
2771 		len -= l;
2772 		logical += l;
2773 		physical += l;
2774 		physical_for_dev_replace += l;
2775 	}
2776 	return 0;
2777 }
2778 
2779 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2780 				  u64 logical, u64 len,
2781 				  u64 physical, struct btrfs_device *dev,
2782 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2783 {
2784 	struct scrub_ctx *sctx = sparity->sctx;
2785 	struct scrub_block *sblock;
2786 	int index;
2787 
2788 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2789 	if (!sblock) {
2790 		spin_lock(&sctx->stat_lock);
2791 		sctx->stat.malloc_errors++;
2792 		spin_unlock(&sctx->stat_lock);
2793 		return -ENOMEM;
2794 	}
2795 
2796 	/* one ref inside this function, plus one for each page added to
2797 	 * a bio later on */
2798 	refcount_set(&sblock->refs, 1);
2799 	sblock->sctx = sctx;
2800 	sblock->no_io_error_seen = 1;
2801 	sblock->sparity = sparity;
2802 	scrub_parity_get(sparity);
2803 
2804 	for (index = 0; len > 0; index++) {
2805 		struct scrub_page *spage;
2806 		u64 l = min_t(u64, len, PAGE_SIZE);
2807 
2808 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2809 		if (!spage) {
2810 leave_nomem:
2811 			spin_lock(&sctx->stat_lock);
2812 			sctx->stat.malloc_errors++;
2813 			spin_unlock(&sctx->stat_lock);
2814 			scrub_block_put(sblock);
2815 			return -ENOMEM;
2816 		}
2817 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2818 		/* For scrub block */
2819 		scrub_page_get(spage);
2820 		sblock->pagev[index] = spage;
2821 		/* For scrub parity */
2822 		scrub_page_get(spage);
2823 		list_add_tail(&spage->list, &sparity->spages);
2824 		spage->sblock = sblock;
2825 		spage->dev = dev;
2826 		spage->flags = flags;
2827 		spage->generation = gen;
2828 		spage->logical = logical;
2829 		spage->physical = physical;
2830 		spage->mirror_num = mirror_num;
2831 		if (csum) {
2832 			spage->have_csum = 1;
2833 			memcpy(spage->csum, csum, sctx->csum_size);
2834 		} else {
2835 			spage->have_csum = 0;
2836 		}
2837 		sblock->page_count++;
2838 		spage->page = alloc_page(GFP_KERNEL);
2839 		if (!spage->page)
2840 			goto leave_nomem;
2841 		len -= l;
2842 		logical += l;
2843 		physical += l;
2844 	}
2845 
2846 	WARN_ON(sblock->page_count == 0);
2847 	for (index = 0; index < sblock->page_count; index++) {
2848 		struct scrub_page *spage = sblock->pagev[index];
2849 		int ret;
2850 
2851 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2852 		if (ret) {
2853 			scrub_block_put(sblock);
2854 			return ret;
2855 		}
2856 	}
2857 
2858 	/* last one frees, either here or in bio completion for last page */
2859 	scrub_block_put(sblock);
2860 	return 0;
2861 }
2862 
2863 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2864 				   u64 logical, u64 len,
2865 				   u64 physical, struct btrfs_device *dev,
2866 				   u64 flags, u64 gen, int mirror_num)
2867 {
2868 	struct scrub_ctx *sctx = sparity->sctx;
2869 	int ret;
2870 	u8 csum[BTRFS_CSUM_SIZE];
2871 	u32 blocksize;
2872 
2873 	if (dev->missing) {
2874 		scrub_parity_mark_sectors_error(sparity, logical, len);
2875 		return 0;
2876 	}
2877 
2878 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2879 		blocksize = sctx->fs_info->sectorsize;
2880 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2881 		blocksize = sctx->fs_info->nodesize;
2882 	} else {
2883 		blocksize = sctx->fs_info->sectorsize;
2884 		WARN_ON(1);
2885 	}
2886 
2887 	while (len) {
2888 		u64 l = min_t(u64, len, blocksize);
2889 		int have_csum = 0;
2890 
2891 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2892 			/* push csums to sbio */
2893 			have_csum = scrub_find_csum(sctx, logical, csum);
2894 			if (have_csum == 0)
2895 				goto skip;
2896 		}
2897 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2898 					     flags, gen, mirror_num,
2899 					     have_csum ? csum : NULL);
2900 		if (ret)
2901 			return ret;
2902 skip:
2903 		len -= l;
2904 		logical += l;
2905 		physical += l;
2906 	}
2907 	return 0;
2908 }
2909 
2910 /*
2911  * Given a physical address, this will calculate it's
2912  * logical offset. if this is a parity stripe, it will return
2913  * the most left data stripe's logical offset.
2914  *
2915  * return 0 if it is a data stripe, 1 means parity stripe.
2916  */
2917 static int get_raid56_logic_offset(u64 physical, int num,
2918 				   struct map_lookup *map, u64 *offset,
2919 				   u64 *stripe_start)
2920 {
2921 	int i;
2922 	int j = 0;
2923 	u64 stripe_nr;
2924 	u64 last_offset;
2925 	u32 stripe_index;
2926 	u32 rot;
2927 
2928 	last_offset = (physical - map->stripes[num].physical) *
2929 		      nr_data_stripes(map);
2930 	if (stripe_start)
2931 		*stripe_start = last_offset;
2932 
2933 	*offset = last_offset;
2934 	for (i = 0; i < nr_data_stripes(map); i++) {
2935 		*offset = last_offset + i * map->stripe_len;
2936 
2937 		stripe_nr = div64_u64(*offset, map->stripe_len);
2938 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2939 
2940 		/* Work out the disk rotation on this stripe-set */
2941 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2942 		/* calculate which stripe this data locates */
2943 		rot += i;
2944 		stripe_index = rot % map->num_stripes;
2945 		if (stripe_index == num)
2946 			return 0;
2947 		if (stripe_index < num)
2948 			j++;
2949 	}
2950 	*offset = last_offset + j * map->stripe_len;
2951 	return 1;
2952 }
2953 
2954 static void scrub_free_parity(struct scrub_parity *sparity)
2955 {
2956 	struct scrub_ctx *sctx = sparity->sctx;
2957 	struct scrub_page *curr, *next;
2958 	int nbits;
2959 
2960 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2961 	if (nbits) {
2962 		spin_lock(&sctx->stat_lock);
2963 		sctx->stat.read_errors += nbits;
2964 		sctx->stat.uncorrectable_errors += nbits;
2965 		spin_unlock(&sctx->stat_lock);
2966 	}
2967 
2968 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2969 		list_del_init(&curr->list);
2970 		scrub_page_put(curr);
2971 	}
2972 
2973 	kfree(sparity);
2974 }
2975 
2976 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2977 {
2978 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2979 						    work);
2980 	struct scrub_ctx *sctx = sparity->sctx;
2981 
2982 	scrub_free_parity(sparity);
2983 	scrub_pending_bio_dec(sctx);
2984 }
2985 
2986 static void scrub_parity_bio_endio(struct bio *bio)
2987 {
2988 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2989 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2990 
2991 	if (bio->bi_status)
2992 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2993 			  sparity->nsectors);
2994 
2995 	bio_put(bio);
2996 
2997 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2998 			scrub_parity_bio_endio_worker, NULL, NULL);
2999 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3000 }
3001 
3002 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3003 {
3004 	struct scrub_ctx *sctx = sparity->sctx;
3005 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3006 	struct bio *bio;
3007 	struct btrfs_raid_bio *rbio;
3008 	struct btrfs_bio *bbio = NULL;
3009 	u64 length;
3010 	int ret;
3011 
3012 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3013 			   sparity->nsectors))
3014 		goto out;
3015 
3016 	length = sparity->logic_end - sparity->logic_start;
3017 
3018 	btrfs_bio_counter_inc_blocked(fs_info);
3019 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3020 			       &length, &bbio);
3021 	if (ret || !bbio || !bbio->raid_map)
3022 		goto bbio_out;
3023 
3024 	bio = btrfs_io_bio_alloc(0);
3025 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3026 	bio->bi_private = sparity;
3027 	bio->bi_end_io = scrub_parity_bio_endio;
3028 
3029 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3030 					      length, sparity->scrub_dev,
3031 					      sparity->dbitmap,
3032 					      sparity->nsectors);
3033 	if (!rbio)
3034 		goto rbio_out;
3035 
3036 	scrub_pending_bio_inc(sctx);
3037 	raid56_parity_submit_scrub_rbio(rbio);
3038 	return;
3039 
3040 rbio_out:
3041 	bio_put(bio);
3042 bbio_out:
3043 	btrfs_bio_counter_dec(fs_info);
3044 	btrfs_put_bbio(bbio);
3045 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3046 		  sparity->nsectors);
3047 	spin_lock(&sctx->stat_lock);
3048 	sctx->stat.malloc_errors++;
3049 	spin_unlock(&sctx->stat_lock);
3050 out:
3051 	scrub_free_parity(sparity);
3052 }
3053 
3054 static inline int scrub_calc_parity_bitmap_len(int nsectors)
3055 {
3056 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3057 }
3058 
3059 static void scrub_parity_get(struct scrub_parity *sparity)
3060 {
3061 	refcount_inc(&sparity->refs);
3062 }
3063 
3064 static void scrub_parity_put(struct scrub_parity *sparity)
3065 {
3066 	if (!refcount_dec_and_test(&sparity->refs))
3067 		return;
3068 
3069 	scrub_parity_check_and_repair(sparity);
3070 }
3071 
3072 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3073 						  struct map_lookup *map,
3074 						  struct btrfs_device *sdev,
3075 						  struct btrfs_path *path,
3076 						  u64 logic_start,
3077 						  u64 logic_end)
3078 {
3079 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3080 	struct btrfs_root *root = fs_info->extent_root;
3081 	struct btrfs_root *csum_root = fs_info->csum_root;
3082 	struct btrfs_extent_item *extent;
3083 	struct btrfs_bio *bbio = NULL;
3084 	u64 flags;
3085 	int ret;
3086 	int slot;
3087 	struct extent_buffer *l;
3088 	struct btrfs_key key;
3089 	u64 generation;
3090 	u64 extent_logical;
3091 	u64 extent_physical;
3092 	u64 extent_len;
3093 	u64 mapped_length;
3094 	struct btrfs_device *extent_dev;
3095 	struct scrub_parity *sparity;
3096 	int nsectors;
3097 	int bitmap_len;
3098 	int extent_mirror_num;
3099 	int stop_loop = 0;
3100 
3101 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3102 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3103 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3104 			  GFP_NOFS);
3105 	if (!sparity) {
3106 		spin_lock(&sctx->stat_lock);
3107 		sctx->stat.malloc_errors++;
3108 		spin_unlock(&sctx->stat_lock);
3109 		return -ENOMEM;
3110 	}
3111 
3112 	sparity->stripe_len = map->stripe_len;
3113 	sparity->nsectors = nsectors;
3114 	sparity->sctx = sctx;
3115 	sparity->scrub_dev = sdev;
3116 	sparity->logic_start = logic_start;
3117 	sparity->logic_end = logic_end;
3118 	refcount_set(&sparity->refs, 1);
3119 	INIT_LIST_HEAD(&sparity->spages);
3120 	sparity->dbitmap = sparity->bitmap;
3121 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3122 
3123 	ret = 0;
3124 	while (logic_start < logic_end) {
3125 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3126 			key.type = BTRFS_METADATA_ITEM_KEY;
3127 		else
3128 			key.type = BTRFS_EXTENT_ITEM_KEY;
3129 		key.objectid = logic_start;
3130 		key.offset = (u64)-1;
3131 
3132 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3133 		if (ret < 0)
3134 			goto out;
3135 
3136 		if (ret > 0) {
3137 			ret = btrfs_previous_extent_item(root, path, 0);
3138 			if (ret < 0)
3139 				goto out;
3140 			if (ret > 0) {
3141 				btrfs_release_path(path);
3142 				ret = btrfs_search_slot(NULL, root, &key,
3143 							path, 0, 0);
3144 				if (ret < 0)
3145 					goto out;
3146 			}
3147 		}
3148 
3149 		stop_loop = 0;
3150 		while (1) {
3151 			u64 bytes;
3152 
3153 			l = path->nodes[0];
3154 			slot = path->slots[0];
3155 			if (slot >= btrfs_header_nritems(l)) {
3156 				ret = btrfs_next_leaf(root, path);
3157 				if (ret == 0)
3158 					continue;
3159 				if (ret < 0)
3160 					goto out;
3161 
3162 				stop_loop = 1;
3163 				break;
3164 			}
3165 			btrfs_item_key_to_cpu(l, &key, slot);
3166 
3167 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3168 			    key.type != BTRFS_METADATA_ITEM_KEY)
3169 				goto next;
3170 
3171 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3172 				bytes = fs_info->nodesize;
3173 			else
3174 				bytes = key.offset;
3175 
3176 			if (key.objectid + bytes <= logic_start)
3177 				goto next;
3178 
3179 			if (key.objectid >= logic_end) {
3180 				stop_loop = 1;
3181 				break;
3182 			}
3183 
3184 			while (key.objectid >= logic_start + map->stripe_len)
3185 				logic_start += map->stripe_len;
3186 
3187 			extent = btrfs_item_ptr(l, slot,
3188 						struct btrfs_extent_item);
3189 			flags = btrfs_extent_flags(l, extent);
3190 			generation = btrfs_extent_generation(l, extent);
3191 
3192 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3193 			    (key.objectid < logic_start ||
3194 			     key.objectid + bytes >
3195 			     logic_start + map->stripe_len)) {
3196 				btrfs_err(fs_info,
3197 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3198 					  key.objectid, logic_start);
3199 				spin_lock(&sctx->stat_lock);
3200 				sctx->stat.uncorrectable_errors++;
3201 				spin_unlock(&sctx->stat_lock);
3202 				goto next;
3203 			}
3204 again:
3205 			extent_logical = key.objectid;
3206 			extent_len = bytes;
3207 
3208 			if (extent_logical < logic_start) {
3209 				extent_len -= logic_start - extent_logical;
3210 				extent_logical = logic_start;
3211 			}
3212 
3213 			if (extent_logical + extent_len >
3214 			    logic_start + map->stripe_len)
3215 				extent_len = logic_start + map->stripe_len -
3216 					     extent_logical;
3217 
3218 			scrub_parity_mark_sectors_data(sparity, extent_logical,
3219 						       extent_len);
3220 
3221 			mapped_length = extent_len;
3222 			bbio = NULL;
3223 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3224 					extent_logical, &mapped_length, &bbio,
3225 					0);
3226 			if (!ret) {
3227 				if (!bbio || mapped_length < extent_len)
3228 					ret = -EIO;
3229 			}
3230 			if (ret) {
3231 				btrfs_put_bbio(bbio);
3232 				goto out;
3233 			}
3234 			extent_physical = bbio->stripes[0].physical;
3235 			extent_mirror_num = bbio->mirror_num;
3236 			extent_dev = bbio->stripes[0].dev;
3237 			btrfs_put_bbio(bbio);
3238 
3239 			ret = btrfs_lookup_csums_range(csum_root,
3240 						extent_logical,
3241 						extent_logical + extent_len - 1,
3242 						&sctx->csum_list, 1);
3243 			if (ret)
3244 				goto out;
3245 
3246 			ret = scrub_extent_for_parity(sparity, extent_logical,
3247 						      extent_len,
3248 						      extent_physical,
3249 						      extent_dev, flags,
3250 						      generation,
3251 						      extent_mirror_num);
3252 
3253 			scrub_free_csums(sctx);
3254 
3255 			if (ret)
3256 				goto out;
3257 
3258 			if (extent_logical + extent_len <
3259 			    key.objectid + bytes) {
3260 				logic_start += map->stripe_len;
3261 
3262 				if (logic_start >= logic_end) {
3263 					stop_loop = 1;
3264 					break;
3265 				}
3266 
3267 				if (logic_start < key.objectid + bytes) {
3268 					cond_resched();
3269 					goto again;
3270 				}
3271 			}
3272 next:
3273 			path->slots[0]++;
3274 		}
3275 
3276 		btrfs_release_path(path);
3277 
3278 		if (stop_loop)
3279 			break;
3280 
3281 		logic_start += map->stripe_len;
3282 	}
3283 out:
3284 	if (ret < 0)
3285 		scrub_parity_mark_sectors_error(sparity, logic_start,
3286 						logic_end - logic_start);
3287 	scrub_parity_put(sparity);
3288 	scrub_submit(sctx);
3289 	mutex_lock(&sctx->wr_lock);
3290 	scrub_wr_submit(sctx);
3291 	mutex_unlock(&sctx->wr_lock);
3292 
3293 	btrfs_release_path(path);
3294 	return ret < 0 ? ret : 0;
3295 }
3296 
3297 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3298 					   struct map_lookup *map,
3299 					   struct btrfs_device *scrub_dev,
3300 					   int num, u64 base, u64 length,
3301 					   int is_dev_replace)
3302 {
3303 	struct btrfs_path *path, *ppath;
3304 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3305 	struct btrfs_root *root = fs_info->extent_root;
3306 	struct btrfs_root *csum_root = fs_info->csum_root;
3307 	struct btrfs_extent_item *extent;
3308 	struct blk_plug plug;
3309 	u64 flags;
3310 	int ret;
3311 	int slot;
3312 	u64 nstripes;
3313 	struct extent_buffer *l;
3314 	u64 physical;
3315 	u64 logical;
3316 	u64 logic_end;
3317 	u64 physical_end;
3318 	u64 generation;
3319 	int mirror_num;
3320 	struct reada_control *reada1;
3321 	struct reada_control *reada2;
3322 	struct btrfs_key key;
3323 	struct btrfs_key key_end;
3324 	u64 increment = map->stripe_len;
3325 	u64 offset;
3326 	u64 extent_logical;
3327 	u64 extent_physical;
3328 	u64 extent_len;
3329 	u64 stripe_logical;
3330 	u64 stripe_end;
3331 	struct btrfs_device *extent_dev;
3332 	int extent_mirror_num;
3333 	int stop_loop = 0;
3334 
3335 	physical = map->stripes[num].physical;
3336 	offset = 0;
3337 	nstripes = div64_u64(length, map->stripe_len);
3338 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3339 		offset = map->stripe_len * num;
3340 		increment = map->stripe_len * map->num_stripes;
3341 		mirror_num = 1;
3342 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3343 		int factor = map->num_stripes / map->sub_stripes;
3344 		offset = map->stripe_len * (num / map->sub_stripes);
3345 		increment = map->stripe_len * factor;
3346 		mirror_num = num % map->sub_stripes + 1;
3347 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3348 		increment = map->stripe_len;
3349 		mirror_num = num % map->num_stripes + 1;
3350 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3351 		increment = map->stripe_len;
3352 		mirror_num = num % map->num_stripes + 1;
3353 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3354 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3355 		increment = map->stripe_len * nr_data_stripes(map);
3356 		mirror_num = 1;
3357 	} else {
3358 		increment = map->stripe_len;
3359 		mirror_num = 1;
3360 	}
3361 
3362 	path = btrfs_alloc_path();
3363 	if (!path)
3364 		return -ENOMEM;
3365 
3366 	ppath = btrfs_alloc_path();
3367 	if (!ppath) {
3368 		btrfs_free_path(path);
3369 		return -ENOMEM;
3370 	}
3371 
3372 	/*
3373 	 * work on commit root. The related disk blocks are static as
3374 	 * long as COW is applied. This means, it is save to rewrite
3375 	 * them to repair disk errors without any race conditions
3376 	 */
3377 	path->search_commit_root = 1;
3378 	path->skip_locking = 1;
3379 
3380 	ppath->search_commit_root = 1;
3381 	ppath->skip_locking = 1;
3382 	/*
3383 	 * trigger the readahead for extent tree csum tree and wait for
3384 	 * completion. During readahead, the scrub is officially paused
3385 	 * to not hold off transaction commits
3386 	 */
3387 	logical = base + offset;
3388 	physical_end = physical + nstripes * map->stripe_len;
3389 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3390 		get_raid56_logic_offset(physical_end, num,
3391 					map, &logic_end, NULL);
3392 		logic_end += base;
3393 	} else {
3394 		logic_end = logical + increment * nstripes;
3395 	}
3396 	wait_event(sctx->list_wait,
3397 		   atomic_read(&sctx->bios_in_flight) == 0);
3398 	scrub_blocked_if_needed(fs_info);
3399 
3400 	/* FIXME it might be better to start readahead at commit root */
3401 	key.objectid = logical;
3402 	key.type = BTRFS_EXTENT_ITEM_KEY;
3403 	key.offset = (u64)0;
3404 	key_end.objectid = logic_end;
3405 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3406 	key_end.offset = (u64)-1;
3407 	reada1 = btrfs_reada_add(root, &key, &key_end);
3408 
3409 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3410 	key.type = BTRFS_EXTENT_CSUM_KEY;
3411 	key.offset = logical;
3412 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3413 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3414 	key_end.offset = logic_end;
3415 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3416 
3417 	if (!IS_ERR(reada1))
3418 		btrfs_reada_wait(reada1);
3419 	if (!IS_ERR(reada2))
3420 		btrfs_reada_wait(reada2);
3421 
3422 
3423 	/*
3424 	 * collect all data csums for the stripe to avoid seeking during
3425 	 * the scrub. This might currently (crc32) end up to be about 1MB
3426 	 */
3427 	blk_start_plug(&plug);
3428 
3429 	/*
3430 	 * now find all extents for each stripe and scrub them
3431 	 */
3432 	ret = 0;
3433 	while (physical < physical_end) {
3434 		/*
3435 		 * canceled?
3436 		 */
3437 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3438 		    atomic_read(&sctx->cancel_req)) {
3439 			ret = -ECANCELED;
3440 			goto out;
3441 		}
3442 		/*
3443 		 * check to see if we have to pause
3444 		 */
3445 		if (atomic_read(&fs_info->scrub_pause_req)) {
3446 			/* push queued extents */
3447 			sctx->flush_all_writes = true;
3448 			scrub_submit(sctx);
3449 			mutex_lock(&sctx->wr_lock);
3450 			scrub_wr_submit(sctx);
3451 			mutex_unlock(&sctx->wr_lock);
3452 			wait_event(sctx->list_wait,
3453 				   atomic_read(&sctx->bios_in_flight) == 0);
3454 			sctx->flush_all_writes = false;
3455 			scrub_blocked_if_needed(fs_info);
3456 		}
3457 
3458 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3459 			ret = get_raid56_logic_offset(physical, num, map,
3460 						      &logical,
3461 						      &stripe_logical);
3462 			logical += base;
3463 			if (ret) {
3464 				/* it is parity strip */
3465 				stripe_logical += base;
3466 				stripe_end = stripe_logical + increment;
3467 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3468 							  ppath, stripe_logical,
3469 							  stripe_end);
3470 				if (ret)
3471 					goto out;
3472 				goto skip;
3473 			}
3474 		}
3475 
3476 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3477 			key.type = BTRFS_METADATA_ITEM_KEY;
3478 		else
3479 			key.type = BTRFS_EXTENT_ITEM_KEY;
3480 		key.objectid = logical;
3481 		key.offset = (u64)-1;
3482 
3483 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3484 		if (ret < 0)
3485 			goto out;
3486 
3487 		if (ret > 0) {
3488 			ret = btrfs_previous_extent_item(root, path, 0);
3489 			if (ret < 0)
3490 				goto out;
3491 			if (ret > 0) {
3492 				/* there's no smaller item, so stick with the
3493 				 * larger one */
3494 				btrfs_release_path(path);
3495 				ret = btrfs_search_slot(NULL, root, &key,
3496 							path, 0, 0);
3497 				if (ret < 0)
3498 					goto out;
3499 			}
3500 		}
3501 
3502 		stop_loop = 0;
3503 		while (1) {
3504 			u64 bytes;
3505 
3506 			l = path->nodes[0];
3507 			slot = path->slots[0];
3508 			if (slot >= btrfs_header_nritems(l)) {
3509 				ret = btrfs_next_leaf(root, path);
3510 				if (ret == 0)
3511 					continue;
3512 				if (ret < 0)
3513 					goto out;
3514 
3515 				stop_loop = 1;
3516 				break;
3517 			}
3518 			btrfs_item_key_to_cpu(l, &key, slot);
3519 
3520 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3521 			    key.type != BTRFS_METADATA_ITEM_KEY)
3522 				goto next;
3523 
3524 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3525 				bytes = fs_info->nodesize;
3526 			else
3527 				bytes = key.offset;
3528 
3529 			if (key.objectid + bytes <= logical)
3530 				goto next;
3531 
3532 			if (key.objectid >= logical + map->stripe_len) {
3533 				/* out of this device extent */
3534 				if (key.objectid >= logic_end)
3535 					stop_loop = 1;
3536 				break;
3537 			}
3538 
3539 			extent = btrfs_item_ptr(l, slot,
3540 						struct btrfs_extent_item);
3541 			flags = btrfs_extent_flags(l, extent);
3542 			generation = btrfs_extent_generation(l, extent);
3543 
3544 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3545 			    (key.objectid < logical ||
3546 			     key.objectid + bytes >
3547 			     logical + map->stripe_len)) {
3548 				btrfs_err(fs_info,
3549 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3550 				       key.objectid, logical);
3551 				spin_lock(&sctx->stat_lock);
3552 				sctx->stat.uncorrectable_errors++;
3553 				spin_unlock(&sctx->stat_lock);
3554 				goto next;
3555 			}
3556 
3557 again:
3558 			extent_logical = key.objectid;
3559 			extent_len = bytes;
3560 
3561 			/*
3562 			 * trim extent to this stripe
3563 			 */
3564 			if (extent_logical < logical) {
3565 				extent_len -= logical - extent_logical;
3566 				extent_logical = logical;
3567 			}
3568 			if (extent_logical + extent_len >
3569 			    logical + map->stripe_len) {
3570 				extent_len = logical + map->stripe_len -
3571 					     extent_logical;
3572 			}
3573 
3574 			extent_physical = extent_logical - logical + physical;
3575 			extent_dev = scrub_dev;
3576 			extent_mirror_num = mirror_num;
3577 			if (is_dev_replace)
3578 				scrub_remap_extent(fs_info, extent_logical,
3579 						   extent_len, &extent_physical,
3580 						   &extent_dev,
3581 						   &extent_mirror_num);
3582 
3583 			ret = btrfs_lookup_csums_range(csum_root,
3584 						       extent_logical,
3585 						       extent_logical +
3586 						       extent_len - 1,
3587 						       &sctx->csum_list, 1);
3588 			if (ret)
3589 				goto out;
3590 
3591 			ret = scrub_extent(sctx, extent_logical, extent_len,
3592 					   extent_physical, extent_dev, flags,
3593 					   generation, extent_mirror_num,
3594 					   extent_logical - logical + physical);
3595 
3596 			scrub_free_csums(sctx);
3597 
3598 			if (ret)
3599 				goto out;
3600 
3601 			if (extent_logical + extent_len <
3602 			    key.objectid + bytes) {
3603 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3604 					/*
3605 					 * loop until we find next data stripe
3606 					 * or we have finished all stripes.
3607 					 */
3608 loop:
3609 					physical += map->stripe_len;
3610 					ret = get_raid56_logic_offset(physical,
3611 							num, map, &logical,
3612 							&stripe_logical);
3613 					logical += base;
3614 
3615 					if (ret && physical < physical_end) {
3616 						stripe_logical += base;
3617 						stripe_end = stripe_logical +
3618 								increment;
3619 						ret = scrub_raid56_parity(sctx,
3620 							map, scrub_dev, ppath,
3621 							stripe_logical,
3622 							stripe_end);
3623 						if (ret)
3624 							goto out;
3625 						goto loop;
3626 					}
3627 				} else {
3628 					physical += map->stripe_len;
3629 					logical += increment;
3630 				}
3631 				if (logical < key.objectid + bytes) {
3632 					cond_resched();
3633 					goto again;
3634 				}
3635 
3636 				if (physical >= physical_end) {
3637 					stop_loop = 1;
3638 					break;
3639 				}
3640 			}
3641 next:
3642 			path->slots[0]++;
3643 		}
3644 		btrfs_release_path(path);
3645 skip:
3646 		logical += increment;
3647 		physical += map->stripe_len;
3648 		spin_lock(&sctx->stat_lock);
3649 		if (stop_loop)
3650 			sctx->stat.last_physical = map->stripes[num].physical +
3651 						   length;
3652 		else
3653 			sctx->stat.last_physical = physical;
3654 		spin_unlock(&sctx->stat_lock);
3655 		if (stop_loop)
3656 			break;
3657 	}
3658 out:
3659 	/* push queued extents */
3660 	scrub_submit(sctx);
3661 	mutex_lock(&sctx->wr_lock);
3662 	scrub_wr_submit(sctx);
3663 	mutex_unlock(&sctx->wr_lock);
3664 
3665 	blk_finish_plug(&plug);
3666 	btrfs_free_path(path);
3667 	btrfs_free_path(ppath);
3668 	return ret < 0 ? ret : 0;
3669 }
3670 
3671 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3672 					  struct btrfs_device *scrub_dev,
3673 					  u64 chunk_offset, u64 length,
3674 					  u64 dev_offset,
3675 					  struct btrfs_block_group_cache *cache,
3676 					  int is_dev_replace)
3677 {
3678 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3679 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3680 	struct map_lookup *map;
3681 	struct extent_map *em;
3682 	int i;
3683 	int ret = 0;
3684 
3685 	read_lock(&map_tree->map_tree.lock);
3686 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3687 	read_unlock(&map_tree->map_tree.lock);
3688 
3689 	if (!em) {
3690 		/*
3691 		 * Might have been an unused block group deleted by the cleaner
3692 		 * kthread or relocation.
3693 		 */
3694 		spin_lock(&cache->lock);
3695 		if (!cache->removed)
3696 			ret = -EINVAL;
3697 		spin_unlock(&cache->lock);
3698 
3699 		return ret;
3700 	}
3701 
3702 	map = em->map_lookup;
3703 	if (em->start != chunk_offset)
3704 		goto out;
3705 
3706 	if (em->len < length)
3707 		goto out;
3708 
3709 	for (i = 0; i < map->num_stripes; ++i) {
3710 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3711 		    map->stripes[i].physical == dev_offset) {
3712 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3713 					   chunk_offset, length,
3714 					   is_dev_replace);
3715 			if (ret)
3716 				goto out;
3717 		}
3718 	}
3719 out:
3720 	free_extent_map(em);
3721 
3722 	return ret;
3723 }
3724 
3725 static noinline_for_stack
3726 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3727 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3728 			   int is_dev_replace)
3729 {
3730 	struct btrfs_dev_extent *dev_extent = NULL;
3731 	struct btrfs_path *path;
3732 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3733 	struct btrfs_root *root = fs_info->dev_root;
3734 	u64 length;
3735 	u64 chunk_offset;
3736 	int ret = 0;
3737 	int ro_set;
3738 	int slot;
3739 	struct extent_buffer *l;
3740 	struct btrfs_key key;
3741 	struct btrfs_key found_key;
3742 	struct btrfs_block_group_cache *cache;
3743 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3744 
3745 	path = btrfs_alloc_path();
3746 	if (!path)
3747 		return -ENOMEM;
3748 
3749 	path->reada = READA_FORWARD;
3750 	path->search_commit_root = 1;
3751 	path->skip_locking = 1;
3752 
3753 	key.objectid = scrub_dev->devid;
3754 	key.offset = 0ull;
3755 	key.type = BTRFS_DEV_EXTENT_KEY;
3756 
3757 	while (1) {
3758 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3759 		if (ret < 0)
3760 			break;
3761 		if (ret > 0) {
3762 			if (path->slots[0] >=
3763 			    btrfs_header_nritems(path->nodes[0])) {
3764 				ret = btrfs_next_leaf(root, path);
3765 				if (ret < 0)
3766 					break;
3767 				if (ret > 0) {
3768 					ret = 0;
3769 					break;
3770 				}
3771 			} else {
3772 				ret = 0;
3773 			}
3774 		}
3775 
3776 		l = path->nodes[0];
3777 		slot = path->slots[0];
3778 
3779 		btrfs_item_key_to_cpu(l, &found_key, slot);
3780 
3781 		if (found_key.objectid != scrub_dev->devid)
3782 			break;
3783 
3784 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3785 			break;
3786 
3787 		if (found_key.offset >= end)
3788 			break;
3789 
3790 		if (found_key.offset < key.offset)
3791 			break;
3792 
3793 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3794 		length = btrfs_dev_extent_length(l, dev_extent);
3795 
3796 		if (found_key.offset + length <= start)
3797 			goto skip;
3798 
3799 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3800 
3801 		/*
3802 		 * get a reference on the corresponding block group to prevent
3803 		 * the chunk from going away while we scrub it
3804 		 */
3805 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3806 
3807 		/* some chunks are removed but not committed to disk yet,
3808 		 * continue scrubbing */
3809 		if (!cache)
3810 			goto skip;
3811 
3812 		/*
3813 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3814 		 * to avoid deadlock caused by:
3815 		 * btrfs_inc_block_group_ro()
3816 		 * -> btrfs_wait_for_commit()
3817 		 * -> btrfs_commit_transaction()
3818 		 * -> btrfs_scrub_pause()
3819 		 */
3820 		scrub_pause_on(fs_info);
3821 		ret = btrfs_inc_block_group_ro(fs_info, cache);
3822 		if (!ret && is_dev_replace) {
3823 			/*
3824 			 * If we are doing a device replace wait for any tasks
3825 			 * that started dellaloc right before we set the block
3826 			 * group to RO mode, as they might have just allocated
3827 			 * an extent from it or decided they could do a nocow
3828 			 * write. And if any such tasks did that, wait for their
3829 			 * ordered extents to complete and then commit the
3830 			 * current transaction, so that we can later see the new
3831 			 * extent items in the extent tree - the ordered extents
3832 			 * create delayed data references (for cow writes) when
3833 			 * they complete, which will be run and insert the
3834 			 * corresponding extent items into the extent tree when
3835 			 * we commit the transaction they used when running
3836 			 * inode.c:btrfs_finish_ordered_io(). We later use
3837 			 * the commit root of the extent tree to find extents
3838 			 * to copy from the srcdev into the tgtdev, and we don't
3839 			 * want to miss any new extents.
3840 			 */
3841 			btrfs_wait_block_group_reservations(cache);
3842 			btrfs_wait_nocow_writers(cache);
3843 			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3844 						       cache->key.objectid,
3845 						       cache->key.offset);
3846 			if (ret > 0) {
3847 				struct btrfs_trans_handle *trans;
3848 
3849 				trans = btrfs_join_transaction(root);
3850 				if (IS_ERR(trans))
3851 					ret = PTR_ERR(trans);
3852 				else
3853 					ret = btrfs_commit_transaction(trans);
3854 				if (ret) {
3855 					scrub_pause_off(fs_info);
3856 					btrfs_put_block_group(cache);
3857 					break;
3858 				}
3859 			}
3860 		}
3861 		scrub_pause_off(fs_info);
3862 
3863 		if (ret == 0) {
3864 			ro_set = 1;
3865 		} else if (ret == -ENOSPC) {
3866 			/*
3867 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3868 			 * failed in creating new chunk for metadata.
3869 			 * It is not a problem for scrub/replace, because
3870 			 * metadata are always cowed, and our scrub paused
3871 			 * commit_transactions.
3872 			 */
3873 			ro_set = 0;
3874 		} else {
3875 			btrfs_warn(fs_info,
3876 				   "failed setting block group ro: %d", ret);
3877 			btrfs_put_block_group(cache);
3878 			break;
3879 		}
3880 
3881 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3882 		dev_replace->cursor_right = found_key.offset + length;
3883 		dev_replace->cursor_left = found_key.offset;
3884 		dev_replace->item_needs_writeback = 1;
3885 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3886 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3887 				  found_key.offset, cache, is_dev_replace);
3888 
3889 		/*
3890 		 * flush, submit all pending read and write bios, afterwards
3891 		 * wait for them.
3892 		 * Note that in the dev replace case, a read request causes
3893 		 * write requests that are submitted in the read completion
3894 		 * worker. Therefore in the current situation, it is required
3895 		 * that all write requests are flushed, so that all read and
3896 		 * write requests are really completed when bios_in_flight
3897 		 * changes to 0.
3898 		 */
3899 		sctx->flush_all_writes = true;
3900 		scrub_submit(sctx);
3901 		mutex_lock(&sctx->wr_lock);
3902 		scrub_wr_submit(sctx);
3903 		mutex_unlock(&sctx->wr_lock);
3904 
3905 		wait_event(sctx->list_wait,
3906 			   atomic_read(&sctx->bios_in_flight) == 0);
3907 
3908 		scrub_pause_on(fs_info);
3909 
3910 		/*
3911 		 * must be called before we decrease @scrub_paused.
3912 		 * make sure we don't block transaction commit while
3913 		 * we are waiting pending workers finished.
3914 		 */
3915 		wait_event(sctx->list_wait,
3916 			   atomic_read(&sctx->workers_pending) == 0);
3917 		sctx->flush_all_writes = false;
3918 
3919 		scrub_pause_off(fs_info);
3920 
3921 		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3922 		dev_replace->cursor_left = dev_replace->cursor_right;
3923 		dev_replace->item_needs_writeback = 1;
3924 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3925 
3926 		if (ro_set)
3927 			btrfs_dec_block_group_ro(cache);
3928 
3929 		/*
3930 		 * We might have prevented the cleaner kthread from deleting
3931 		 * this block group if it was already unused because we raced
3932 		 * and set it to RO mode first. So add it back to the unused
3933 		 * list, otherwise it might not ever be deleted unless a manual
3934 		 * balance is triggered or it becomes used and unused again.
3935 		 */
3936 		spin_lock(&cache->lock);
3937 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3938 		    btrfs_block_group_used(&cache->item) == 0) {
3939 			spin_unlock(&cache->lock);
3940 			spin_lock(&fs_info->unused_bgs_lock);
3941 			if (list_empty(&cache->bg_list)) {
3942 				btrfs_get_block_group(cache);
3943 				list_add_tail(&cache->bg_list,
3944 					      &fs_info->unused_bgs);
3945 			}
3946 			spin_unlock(&fs_info->unused_bgs_lock);
3947 		} else {
3948 			spin_unlock(&cache->lock);
3949 		}
3950 
3951 		btrfs_put_block_group(cache);
3952 		if (ret)
3953 			break;
3954 		if (is_dev_replace &&
3955 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3956 			ret = -EIO;
3957 			break;
3958 		}
3959 		if (sctx->stat.malloc_errors > 0) {
3960 			ret = -ENOMEM;
3961 			break;
3962 		}
3963 skip:
3964 		key.offset = found_key.offset + length;
3965 		btrfs_release_path(path);
3966 	}
3967 
3968 	btrfs_free_path(path);
3969 
3970 	return ret;
3971 }
3972 
3973 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3974 					   struct btrfs_device *scrub_dev)
3975 {
3976 	int	i;
3977 	u64	bytenr;
3978 	u64	gen;
3979 	int	ret;
3980 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3981 
3982 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3983 		return -EIO;
3984 
3985 	/* Seed devices of a new filesystem has their own generation. */
3986 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3987 		gen = scrub_dev->generation;
3988 	else
3989 		gen = fs_info->last_trans_committed;
3990 
3991 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3992 		bytenr = btrfs_sb_offset(i);
3993 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3994 		    scrub_dev->commit_total_bytes)
3995 			break;
3996 
3997 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3998 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3999 				  NULL, 1, bytenr);
4000 		if (ret)
4001 			return ret;
4002 	}
4003 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4004 
4005 	return 0;
4006 }
4007 
4008 /*
4009  * get a reference count on fs_info->scrub_workers. start worker if necessary
4010  */
4011 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4012 						int is_dev_replace)
4013 {
4014 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4015 	int max_active = fs_info->thread_pool_size;
4016 
4017 	if (fs_info->scrub_workers_refcnt == 0) {
4018 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4019 				flags, is_dev_replace ? 1 : max_active, 4);
4020 		if (!fs_info->scrub_workers)
4021 			goto fail_scrub_workers;
4022 
4023 		fs_info->scrub_wr_completion_workers =
4024 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4025 					      max_active, 2);
4026 		if (!fs_info->scrub_wr_completion_workers)
4027 			goto fail_scrub_wr_completion_workers;
4028 
4029 		fs_info->scrub_nocow_workers =
4030 			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4031 		if (!fs_info->scrub_nocow_workers)
4032 			goto fail_scrub_nocow_workers;
4033 		fs_info->scrub_parity_workers =
4034 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4035 					      max_active, 2);
4036 		if (!fs_info->scrub_parity_workers)
4037 			goto fail_scrub_parity_workers;
4038 	}
4039 	++fs_info->scrub_workers_refcnt;
4040 	return 0;
4041 
4042 fail_scrub_parity_workers:
4043 	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4044 fail_scrub_nocow_workers:
4045 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4046 fail_scrub_wr_completion_workers:
4047 	btrfs_destroy_workqueue(fs_info->scrub_workers);
4048 fail_scrub_workers:
4049 	return -ENOMEM;
4050 }
4051 
4052 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4053 {
4054 	if (--fs_info->scrub_workers_refcnt == 0) {
4055 		btrfs_destroy_workqueue(fs_info->scrub_workers);
4056 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4057 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4058 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4059 	}
4060 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
4061 }
4062 
4063 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4064 		    u64 end, struct btrfs_scrub_progress *progress,
4065 		    int readonly, int is_dev_replace)
4066 {
4067 	struct scrub_ctx *sctx;
4068 	int ret;
4069 	struct btrfs_device *dev;
4070 	struct rcu_string *name;
4071 
4072 	if (btrfs_fs_closing(fs_info))
4073 		return -EINVAL;
4074 
4075 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4076 		/*
4077 		 * in this case scrub is unable to calculate the checksum
4078 		 * the way scrub is implemented. Do not handle this
4079 		 * situation at all because it won't ever happen.
4080 		 */
4081 		btrfs_err(fs_info,
4082 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4083 		       fs_info->nodesize,
4084 		       BTRFS_STRIPE_LEN);
4085 		return -EINVAL;
4086 	}
4087 
4088 	if (fs_info->sectorsize != PAGE_SIZE) {
4089 		/* not supported for data w/o checksums */
4090 		btrfs_err_rl(fs_info,
4091 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4092 		       fs_info->sectorsize, PAGE_SIZE);
4093 		return -EINVAL;
4094 	}
4095 
4096 	if (fs_info->nodesize >
4097 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4098 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4099 		/*
4100 		 * would exhaust the array bounds of pagev member in
4101 		 * struct scrub_block
4102 		 */
4103 		btrfs_err(fs_info,
4104 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4105 		       fs_info->nodesize,
4106 		       SCRUB_MAX_PAGES_PER_BLOCK,
4107 		       fs_info->sectorsize,
4108 		       SCRUB_MAX_PAGES_PER_BLOCK);
4109 		return -EINVAL;
4110 	}
4111 
4112 
4113 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4114 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4115 	if (!dev || (dev->missing && !is_dev_replace)) {
4116 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4117 		return -ENODEV;
4118 	}
4119 
4120 	if (!is_dev_replace && !readonly && !dev->writeable) {
4121 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122 		rcu_read_lock();
4123 		name = rcu_dereference(dev->name);
4124 		btrfs_err(fs_info, "scrub: device %s is not writable",
4125 			  name->str);
4126 		rcu_read_unlock();
4127 		return -EROFS;
4128 	}
4129 
4130 	mutex_lock(&fs_info->scrub_lock);
4131 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
4132 		mutex_unlock(&fs_info->scrub_lock);
4133 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4134 		return -EIO;
4135 	}
4136 
4137 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
4138 	if (dev->scrub_device ||
4139 	    (!is_dev_replace &&
4140 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4141 		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4142 		mutex_unlock(&fs_info->scrub_lock);
4143 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4144 		return -EINPROGRESS;
4145 	}
4146 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4147 
4148 	ret = scrub_workers_get(fs_info, is_dev_replace);
4149 	if (ret) {
4150 		mutex_unlock(&fs_info->scrub_lock);
4151 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4152 		return ret;
4153 	}
4154 
4155 	sctx = scrub_setup_ctx(dev, is_dev_replace);
4156 	if (IS_ERR(sctx)) {
4157 		mutex_unlock(&fs_info->scrub_lock);
4158 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4159 		scrub_workers_put(fs_info);
4160 		return PTR_ERR(sctx);
4161 	}
4162 	sctx->readonly = readonly;
4163 	dev->scrub_device = sctx;
4164 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4165 
4166 	/*
4167 	 * checking @scrub_pause_req here, we can avoid
4168 	 * race between committing transaction and scrubbing.
4169 	 */
4170 	__scrub_blocked_if_needed(fs_info);
4171 	atomic_inc(&fs_info->scrubs_running);
4172 	mutex_unlock(&fs_info->scrub_lock);
4173 
4174 	if (!is_dev_replace) {
4175 		/*
4176 		 * by holding device list mutex, we can
4177 		 * kick off writing super in log tree sync.
4178 		 */
4179 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4180 		ret = scrub_supers(sctx, dev);
4181 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4182 	}
4183 
4184 	if (!ret)
4185 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
4186 					     is_dev_replace);
4187 
4188 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4189 	atomic_dec(&fs_info->scrubs_running);
4190 	wake_up(&fs_info->scrub_pause_wait);
4191 
4192 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4193 
4194 	if (progress)
4195 		memcpy(progress, &sctx->stat, sizeof(*progress));
4196 
4197 	mutex_lock(&fs_info->scrub_lock);
4198 	dev->scrub_device = NULL;
4199 	scrub_workers_put(fs_info);
4200 	mutex_unlock(&fs_info->scrub_lock);
4201 
4202 	scrub_put_ctx(sctx);
4203 
4204 	return ret;
4205 }
4206 
4207 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4208 {
4209 	mutex_lock(&fs_info->scrub_lock);
4210 	atomic_inc(&fs_info->scrub_pause_req);
4211 	while (atomic_read(&fs_info->scrubs_paused) !=
4212 	       atomic_read(&fs_info->scrubs_running)) {
4213 		mutex_unlock(&fs_info->scrub_lock);
4214 		wait_event(fs_info->scrub_pause_wait,
4215 			   atomic_read(&fs_info->scrubs_paused) ==
4216 			   atomic_read(&fs_info->scrubs_running));
4217 		mutex_lock(&fs_info->scrub_lock);
4218 	}
4219 	mutex_unlock(&fs_info->scrub_lock);
4220 }
4221 
4222 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4223 {
4224 	atomic_dec(&fs_info->scrub_pause_req);
4225 	wake_up(&fs_info->scrub_pause_wait);
4226 }
4227 
4228 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4229 {
4230 	mutex_lock(&fs_info->scrub_lock);
4231 	if (!atomic_read(&fs_info->scrubs_running)) {
4232 		mutex_unlock(&fs_info->scrub_lock);
4233 		return -ENOTCONN;
4234 	}
4235 
4236 	atomic_inc(&fs_info->scrub_cancel_req);
4237 	while (atomic_read(&fs_info->scrubs_running)) {
4238 		mutex_unlock(&fs_info->scrub_lock);
4239 		wait_event(fs_info->scrub_pause_wait,
4240 			   atomic_read(&fs_info->scrubs_running) == 0);
4241 		mutex_lock(&fs_info->scrub_lock);
4242 	}
4243 	atomic_dec(&fs_info->scrub_cancel_req);
4244 	mutex_unlock(&fs_info->scrub_lock);
4245 
4246 	return 0;
4247 }
4248 
4249 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4250 			   struct btrfs_device *dev)
4251 {
4252 	struct scrub_ctx *sctx;
4253 
4254 	mutex_lock(&fs_info->scrub_lock);
4255 	sctx = dev->scrub_device;
4256 	if (!sctx) {
4257 		mutex_unlock(&fs_info->scrub_lock);
4258 		return -ENOTCONN;
4259 	}
4260 	atomic_inc(&sctx->cancel_req);
4261 	while (dev->scrub_device) {
4262 		mutex_unlock(&fs_info->scrub_lock);
4263 		wait_event(fs_info->scrub_pause_wait,
4264 			   dev->scrub_device == NULL);
4265 		mutex_lock(&fs_info->scrub_lock);
4266 	}
4267 	mutex_unlock(&fs_info->scrub_lock);
4268 
4269 	return 0;
4270 }
4271 
4272 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4273 			 struct btrfs_scrub_progress *progress)
4274 {
4275 	struct btrfs_device *dev;
4276 	struct scrub_ctx *sctx = NULL;
4277 
4278 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4279 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4280 	if (dev)
4281 		sctx = dev->scrub_device;
4282 	if (sctx)
4283 		memcpy(progress, &sctx->stat, sizeof(*progress));
4284 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4285 
4286 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4287 }
4288 
4289 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4290 			       u64 extent_logical, u64 extent_len,
4291 			       u64 *extent_physical,
4292 			       struct btrfs_device **extent_dev,
4293 			       int *extent_mirror_num)
4294 {
4295 	u64 mapped_length;
4296 	struct btrfs_bio *bbio = NULL;
4297 	int ret;
4298 
4299 	mapped_length = extent_len;
4300 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4301 			      &mapped_length, &bbio, 0);
4302 	if (ret || !bbio || mapped_length < extent_len ||
4303 	    !bbio->stripes[0].dev->bdev) {
4304 		btrfs_put_bbio(bbio);
4305 		return;
4306 	}
4307 
4308 	*extent_physical = bbio->stripes[0].physical;
4309 	*extent_mirror_num = bbio->mirror_num;
4310 	*extent_dev = bbio->stripes[0].dev;
4311 	btrfs_put_bbio(bbio);
4312 }
4313 
4314 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4315 			    int mirror_num, u64 physical_for_dev_replace)
4316 {
4317 	struct scrub_copy_nocow_ctx *nocow_ctx;
4318 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4319 
4320 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4321 	if (!nocow_ctx) {
4322 		spin_lock(&sctx->stat_lock);
4323 		sctx->stat.malloc_errors++;
4324 		spin_unlock(&sctx->stat_lock);
4325 		return -ENOMEM;
4326 	}
4327 
4328 	scrub_pending_trans_workers_inc(sctx);
4329 
4330 	nocow_ctx->sctx = sctx;
4331 	nocow_ctx->logical = logical;
4332 	nocow_ctx->len = len;
4333 	nocow_ctx->mirror_num = mirror_num;
4334 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4335 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4336 			copy_nocow_pages_worker, NULL, NULL);
4337 	INIT_LIST_HEAD(&nocow_ctx->inodes);
4338 	btrfs_queue_work(fs_info->scrub_nocow_workers,
4339 			 &nocow_ctx->work);
4340 
4341 	return 0;
4342 }
4343 
4344 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4345 {
4346 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4347 	struct scrub_nocow_inode *nocow_inode;
4348 
4349 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4350 	if (!nocow_inode)
4351 		return -ENOMEM;
4352 	nocow_inode->inum = inum;
4353 	nocow_inode->offset = offset;
4354 	nocow_inode->root = root;
4355 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4356 	return 0;
4357 }
4358 
4359 #define COPY_COMPLETE 1
4360 
4361 static void copy_nocow_pages_worker(struct btrfs_work *work)
4362 {
4363 	struct scrub_copy_nocow_ctx *nocow_ctx =
4364 		container_of(work, struct scrub_copy_nocow_ctx, work);
4365 	struct scrub_ctx *sctx = nocow_ctx->sctx;
4366 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4367 	struct btrfs_root *root = fs_info->extent_root;
4368 	u64 logical = nocow_ctx->logical;
4369 	u64 len = nocow_ctx->len;
4370 	int mirror_num = nocow_ctx->mirror_num;
4371 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4372 	int ret;
4373 	struct btrfs_trans_handle *trans = NULL;
4374 	struct btrfs_path *path;
4375 	int not_written = 0;
4376 
4377 	path = btrfs_alloc_path();
4378 	if (!path) {
4379 		spin_lock(&sctx->stat_lock);
4380 		sctx->stat.malloc_errors++;
4381 		spin_unlock(&sctx->stat_lock);
4382 		not_written = 1;
4383 		goto out;
4384 	}
4385 
4386 	trans = btrfs_join_transaction(root);
4387 	if (IS_ERR(trans)) {
4388 		not_written = 1;
4389 		goto out;
4390 	}
4391 
4392 	ret = iterate_inodes_from_logical(logical, fs_info, path,
4393 			record_inode_for_nocow, nocow_ctx, false);
4394 	if (ret != 0 && ret != -ENOENT) {
4395 		btrfs_warn(fs_info,
4396 			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4397 			   logical, physical_for_dev_replace, len, mirror_num,
4398 			   ret);
4399 		not_written = 1;
4400 		goto out;
4401 	}
4402 
4403 	btrfs_end_transaction(trans);
4404 	trans = NULL;
4405 	while (!list_empty(&nocow_ctx->inodes)) {
4406 		struct scrub_nocow_inode *entry;
4407 		entry = list_first_entry(&nocow_ctx->inodes,
4408 					 struct scrub_nocow_inode,
4409 					 list);
4410 		list_del_init(&entry->list);
4411 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4412 						 entry->root, nocow_ctx);
4413 		kfree(entry);
4414 		if (ret == COPY_COMPLETE) {
4415 			ret = 0;
4416 			break;
4417 		} else if (ret) {
4418 			break;
4419 		}
4420 	}
4421 out:
4422 	while (!list_empty(&nocow_ctx->inodes)) {
4423 		struct scrub_nocow_inode *entry;
4424 		entry = list_first_entry(&nocow_ctx->inodes,
4425 					 struct scrub_nocow_inode,
4426 					 list);
4427 		list_del_init(&entry->list);
4428 		kfree(entry);
4429 	}
4430 	if (trans && !IS_ERR(trans))
4431 		btrfs_end_transaction(trans);
4432 	if (not_written)
4433 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4434 					    num_uncorrectable_read_errors);
4435 
4436 	btrfs_free_path(path);
4437 	kfree(nocow_ctx);
4438 
4439 	scrub_pending_trans_workers_dec(sctx);
4440 }
4441 
4442 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4443 				 u64 logical)
4444 {
4445 	struct extent_state *cached_state = NULL;
4446 	struct btrfs_ordered_extent *ordered;
4447 	struct extent_io_tree *io_tree;
4448 	struct extent_map *em;
4449 	u64 lockstart = start, lockend = start + len - 1;
4450 	int ret = 0;
4451 
4452 	io_tree = &inode->io_tree;
4453 
4454 	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4455 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4456 	if (ordered) {
4457 		btrfs_put_ordered_extent(ordered);
4458 		ret = 1;
4459 		goto out_unlock;
4460 	}
4461 
4462 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4463 	if (IS_ERR(em)) {
4464 		ret = PTR_ERR(em);
4465 		goto out_unlock;
4466 	}
4467 
4468 	/*
4469 	 * This extent does not actually cover the logical extent anymore,
4470 	 * move on to the next inode.
4471 	 */
4472 	if (em->block_start > logical ||
4473 	    em->block_start + em->block_len < logical + len) {
4474 		free_extent_map(em);
4475 		ret = 1;
4476 		goto out_unlock;
4477 	}
4478 	free_extent_map(em);
4479 
4480 out_unlock:
4481 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4482 			     GFP_NOFS);
4483 	return ret;
4484 }
4485 
4486 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4487 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4488 {
4489 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4490 	struct btrfs_key key;
4491 	struct inode *inode;
4492 	struct page *page;
4493 	struct btrfs_root *local_root;
4494 	struct extent_io_tree *io_tree;
4495 	u64 physical_for_dev_replace;
4496 	u64 nocow_ctx_logical;
4497 	u64 len = nocow_ctx->len;
4498 	unsigned long index;
4499 	int srcu_index;
4500 	int ret = 0;
4501 	int err = 0;
4502 
4503 	key.objectid = root;
4504 	key.type = BTRFS_ROOT_ITEM_KEY;
4505 	key.offset = (u64)-1;
4506 
4507 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4508 
4509 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4510 	if (IS_ERR(local_root)) {
4511 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4512 		return PTR_ERR(local_root);
4513 	}
4514 
4515 	key.type = BTRFS_INODE_ITEM_KEY;
4516 	key.objectid = inum;
4517 	key.offset = 0;
4518 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4519 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4520 	if (IS_ERR(inode))
4521 		return PTR_ERR(inode);
4522 
4523 	/* Avoid truncate/dio/punch hole.. */
4524 	inode_lock(inode);
4525 	inode_dio_wait(inode);
4526 
4527 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4528 	io_tree = &BTRFS_I(inode)->io_tree;
4529 	nocow_ctx_logical = nocow_ctx->logical;
4530 
4531 	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4532 			nocow_ctx_logical);
4533 	if (ret) {
4534 		ret = ret > 0 ? 0 : ret;
4535 		goto out;
4536 	}
4537 
4538 	while (len >= PAGE_SIZE) {
4539 		index = offset >> PAGE_SHIFT;
4540 again:
4541 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4542 		if (!page) {
4543 			btrfs_err(fs_info, "find_or_create_page() failed");
4544 			ret = -ENOMEM;
4545 			goto out;
4546 		}
4547 
4548 		if (PageUptodate(page)) {
4549 			if (PageDirty(page))
4550 				goto next_page;
4551 		} else {
4552 			ClearPageError(page);
4553 			err = extent_read_full_page(io_tree, page,
4554 							   btrfs_get_extent,
4555 							   nocow_ctx->mirror_num);
4556 			if (err) {
4557 				ret = err;
4558 				goto next_page;
4559 			}
4560 
4561 			lock_page(page);
4562 			/*
4563 			 * If the page has been remove from the page cache,
4564 			 * the data on it is meaningless, because it may be
4565 			 * old one, the new data may be written into the new
4566 			 * page in the page cache.
4567 			 */
4568 			if (page->mapping != inode->i_mapping) {
4569 				unlock_page(page);
4570 				put_page(page);
4571 				goto again;
4572 			}
4573 			if (!PageUptodate(page)) {
4574 				ret = -EIO;
4575 				goto next_page;
4576 			}
4577 		}
4578 
4579 		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4580 					    nocow_ctx_logical);
4581 		if (ret) {
4582 			ret = ret > 0 ? 0 : ret;
4583 			goto next_page;
4584 		}
4585 
4586 		err = write_page_nocow(nocow_ctx->sctx,
4587 				       physical_for_dev_replace, page);
4588 		if (err)
4589 			ret = err;
4590 next_page:
4591 		unlock_page(page);
4592 		put_page(page);
4593 
4594 		if (ret)
4595 			break;
4596 
4597 		offset += PAGE_SIZE;
4598 		physical_for_dev_replace += PAGE_SIZE;
4599 		nocow_ctx_logical += PAGE_SIZE;
4600 		len -= PAGE_SIZE;
4601 	}
4602 	ret = COPY_COMPLETE;
4603 out:
4604 	inode_unlock(inode);
4605 	iput(inode);
4606 	return ret;
4607 }
4608 
4609 static int write_page_nocow(struct scrub_ctx *sctx,
4610 			    u64 physical_for_dev_replace, struct page *page)
4611 {
4612 	struct bio *bio;
4613 	struct btrfs_device *dev;
4614 	int ret;
4615 
4616 	dev = sctx->wr_tgtdev;
4617 	if (!dev)
4618 		return -EIO;
4619 	if (!dev->bdev) {
4620 		btrfs_warn_rl(dev->fs_info,
4621 			"scrub write_page_nocow(bdev == NULL) is unexpected");
4622 		return -EIO;
4623 	}
4624 	bio = btrfs_io_bio_alloc(1);
4625 	bio->bi_iter.bi_size = 0;
4626 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4627 	bio_set_dev(bio, dev->bdev);
4628 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4629 	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4630 	if (ret != PAGE_SIZE) {
4631 leave_with_eio:
4632 		bio_put(bio);
4633 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4634 		return -EIO;
4635 	}
4636 
4637 	if (btrfsic_submit_bio_wait(bio))
4638 		goto leave_with_eio;
4639 
4640 	bio_put(bio);
4641 	return 0;
4642 }
4643