1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "raid56.h" 21 #include "block-group.h" 22 #include "zoned.h" 23 #include "fs.h" 24 #include "accessors.h" 25 #include "file-item.h" 26 #include "scrub.h" 27 28 /* 29 * This is only the first step towards a full-features scrub. It reads all 30 * extent and super block and verifies the checksums. In case a bad checksum 31 * is found or the extent cannot be read, good data will be written back if 32 * any can be found. 33 * 34 * Future enhancements: 35 * - In case an unrepairable extent is encountered, track which files are 36 * affected and report them 37 * - track and record media errors, throw out bad devices 38 * - add a mode to also read unallocated space 39 */ 40 41 struct scrub_ctx; 42 43 /* 44 * The following value only influences the performance. 45 * 46 * This determines the batch size for stripe submitted in one go. 47 */ 48 #define SCRUB_STRIPES_PER_SCTX 8 /* That would be 8 64K stripe per-device. */ 49 50 /* 51 * The following value times PAGE_SIZE needs to be large enough to match the 52 * largest node/leaf/sector size that shall be supported. 53 */ 54 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 55 56 /* Represent one sector and its needed info to verify the content. */ 57 struct scrub_sector_verification { 58 bool is_metadata; 59 60 union { 61 /* 62 * Csum pointer for data csum verification. Should point to a 63 * sector csum inside scrub_stripe::csums. 64 * 65 * NULL if this data sector has no csum. 66 */ 67 u8 *csum; 68 69 /* 70 * Extra info for metadata verification. All sectors inside a 71 * tree block share the same generation. 72 */ 73 u64 generation; 74 }; 75 }; 76 77 enum scrub_stripe_flags { 78 /* Set when @mirror_num, @dev, @physical and @logical are set. */ 79 SCRUB_STRIPE_FLAG_INITIALIZED, 80 81 /* Set when the read-repair is finished. */ 82 SCRUB_STRIPE_FLAG_REPAIR_DONE, 83 84 /* 85 * Set for data stripes if it's triggered from P/Q stripe. 86 * During such scrub, we should not report errors in data stripes, nor 87 * update the accounting. 88 */ 89 SCRUB_STRIPE_FLAG_NO_REPORT, 90 }; 91 92 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE) 93 94 /* 95 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. 96 */ 97 struct scrub_stripe { 98 struct scrub_ctx *sctx; 99 struct btrfs_block_group *bg; 100 101 struct page *pages[SCRUB_STRIPE_PAGES]; 102 struct scrub_sector_verification *sectors; 103 104 struct btrfs_device *dev; 105 u64 logical; 106 u64 physical; 107 108 u16 mirror_num; 109 110 /* Should be BTRFS_STRIPE_LEN / sectorsize. */ 111 u16 nr_sectors; 112 113 /* 114 * How many data/meta extents are in this stripe. Only for scrub status 115 * reporting purposes. 116 */ 117 u16 nr_data_extents; 118 u16 nr_meta_extents; 119 120 atomic_t pending_io; 121 wait_queue_head_t io_wait; 122 wait_queue_head_t repair_wait; 123 124 /* 125 * Indicate the states of the stripe. Bits are defined in 126 * scrub_stripe_flags enum. 127 */ 128 unsigned long state; 129 130 /* Indicate which sectors are covered by extent items. */ 131 unsigned long extent_sector_bitmap; 132 133 /* 134 * The errors hit during the initial read of the stripe. 135 * 136 * Would be utilized for error reporting and repair. 137 */ 138 unsigned long init_error_bitmap; 139 140 /* 141 * The following error bitmaps are all for the current status. 142 * Every time we submit a new read, these bitmaps may be updated. 143 * 144 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap; 145 * 146 * IO and csum errors can happen for both metadata and data. 147 */ 148 unsigned long error_bitmap; 149 unsigned long io_error_bitmap; 150 unsigned long csum_error_bitmap; 151 unsigned long meta_error_bitmap; 152 153 /* For writeback (repair or replace) error reporting. */ 154 unsigned long write_error_bitmap; 155 156 /* Writeback can be concurrent, thus we need to protect the bitmap. */ 157 spinlock_t write_error_lock; 158 159 /* 160 * Checksum for the whole stripe if this stripe is inside a data block 161 * group. 162 */ 163 u8 *csums; 164 165 struct work_struct work; 166 }; 167 168 struct scrub_ctx { 169 struct scrub_stripe stripes[SCRUB_STRIPES_PER_SCTX]; 170 struct scrub_stripe *raid56_data_stripes; 171 struct btrfs_fs_info *fs_info; 172 int first_free; 173 int cur_stripe; 174 struct list_head csum_list; 175 atomic_t cancel_req; 176 int readonly; 177 int sectors_per_bio; 178 179 /* State of IO submission throttling affecting the associated device */ 180 ktime_t throttle_deadline; 181 u64 throttle_sent; 182 183 int is_dev_replace; 184 u64 write_pointer; 185 186 struct mutex wr_lock; 187 struct btrfs_device *wr_tgtdev; 188 189 /* 190 * statistics 191 */ 192 struct btrfs_scrub_progress stat; 193 spinlock_t stat_lock; 194 195 /* 196 * Use a ref counter to avoid use-after-free issues. Scrub workers 197 * decrement bios_in_flight and workers_pending and then do a wakeup 198 * on the list_wait wait queue. We must ensure the main scrub task 199 * doesn't free the scrub context before or while the workers are 200 * doing the wakeup() call. 201 */ 202 refcount_t refs; 203 }; 204 205 struct scrub_warning { 206 struct btrfs_path *path; 207 u64 extent_item_size; 208 const char *errstr; 209 u64 physical; 210 u64 logical; 211 struct btrfs_device *dev; 212 }; 213 214 static void release_scrub_stripe(struct scrub_stripe *stripe) 215 { 216 if (!stripe) 217 return; 218 219 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) { 220 if (stripe->pages[i]) 221 __free_page(stripe->pages[i]); 222 stripe->pages[i] = NULL; 223 } 224 kfree(stripe->sectors); 225 kfree(stripe->csums); 226 stripe->sectors = NULL; 227 stripe->csums = NULL; 228 stripe->sctx = NULL; 229 stripe->state = 0; 230 } 231 232 static int init_scrub_stripe(struct btrfs_fs_info *fs_info, 233 struct scrub_stripe *stripe) 234 { 235 int ret; 236 237 memset(stripe, 0, sizeof(*stripe)); 238 239 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 240 stripe->state = 0; 241 242 init_waitqueue_head(&stripe->io_wait); 243 init_waitqueue_head(&stripe->repair_wait); 244 atomic_set(&stripe->pending_io, 0); 245 spin_lock_init(&stripe->write_error_lock); 246 247 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages); 248 if (ret < 0) 249 goto error; 250 251 stripe->sectors = kcalloc(stripe->nr_sectors, 252 sizeof(struct scrub_sector_verification), 253 GFP_KERNEL); 254 if (!stripe->sectors) 255 goto error; 256 257 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, 258 fs_info->csum_size, GFP_KERNEL); 259 if (!stripe->csums) 260 goto error; 261 return 0; 262 error: 263 release_scrub_stripe(stripe); 264 return -ENOMEM; 265 } 266 267 static void wait_scrub_stripe_io(struct scrub_stripe *stripe) 268 { 269 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); 270 } 271 272 static void scrub_put_ctx(struct scrub_ctx *sctx); 273 274 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 275 { 276 while (atomic_read(&fs_info->scrub_pause_req)) { 277 mutex_unlock(&fs_info->scrub_lock); 278 wait_event(fs_info->scrub_pause_wait, 279 atomic_read(&fs_info->scrub_pause_req) == 0); 280 mutex_lock(&fs_info->scrub_lock); 281 } 282 } 283 284 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 285 { 286 atomic_inc(&fs_info->scrubs_paused); 287 wake_up(&fs_info->scrub_pause_wait); 288 } 289 290 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 291 { 292 mutex_lock(&fs_info->scrub_lock); 293 __scrub_blocked_if_needed(fs_info); 294 atomic_dec(&fs_info->scrubs_paused); 295 mutex_unlock(&fs_info->scrub_lock); 296 297 wake_up(&fs_info->scrub_pause_wait); 298 } 299 300 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 301 { 302 scrub_pause_on(fs_info); 303 scrub_pause_off(fs_info); 304 } 305 306 static void scrub_free_csums(struct scrub_ctx *sctx) 307 { 308 while (!list_empty(&sctx->csum_list)) { 309 struct btrfs_ordered_sum *sum; 310 sum = list_first_entry(&sctx->csum_list, 311 struct btrfs_ordered_sum, list); 312 list_del(&sum->list); 313 kfree(sum); 314 } 315 } 316 317 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 318 { 319 int i; 320 321 if (!sctx) 322 return; 323 324 for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) 325 release_scrub_stripe(&sctx->stripes[i]); 326 327 scrub_free_csums(sctx); 328 kfree(sctx); 329 } 330 331 static void scrub_put_ctx(struct scrub_ctx *sctx) 332 { 333 if (refcount_dec_and_test(&sctx->refs)) 334 scrub_free_ctx(sctx); 335 } 336 337 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 338 struct btrfs_fs_info *fs_info, int is_dev_replace) 339 { 340 struct scrub_ctx *sctx; 341 int i; 342 343 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 344 if (!sctx) 345 goto nomem; 346 refcount_set(&sctx->refs, 1); 347 sctx->is_dev_replace = is_dev_replace; 348 sctx->fs_info = fs_info; 349 INIT_LIST_HEAD(&sctx->csum_list); 350 for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) { 351 int ret; 352 353 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); 354 if (ret < 0) 355 goto nomem; 356 sctx->stripes[i].sctx = sctx; 357 } 358 sctx->first_free = 0; 359 atomic_set(&sctx->cancel_req, 0); 360 361 spin_lock_init(&sctx->stat_lock); 362 sctx->throttle_deadline = 0; 363 364 mutex_init(&sctx->wr_lock); 365 if (is_dev_replace) { 366 WARN_ON(!fs_info->dev_replace.tgtdev); 367 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 368 } 369 370 return sctx; 371 372 nomem: 373 scrub_free_ctx(sctx); 374 return ERR_PTR(-ENOMEM); 375 } 376 377 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 378 u64 root, void *warn_ctx) 379 { 380 u32 nlink; 381 int ret; 382 int i; 383 unsigned nofs_flag; 384 struct extent_buffer *eb; 385 struct btrfs_inode_item *inode_item; 386 struct scrub_warning *swarn = warn_ctx; 387 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 388 struct inode_fs_paths *ipath = NULL; 389 struct btrfs_root *local_root; 390 struct btrfs_key key; 391 392 local_root = btrfs_get_fs_root(fs_info, root, true); 393 if (IS_ERR(local_root)) { 394 ret = PTR_ERR(local_root); 395 goto err; 396 } 397 398 /* 399 * this makes the path point to (inum INODE_ITEM ioff) 400 */ 401 key.objectid = inum; 402 key.type = BTRFS_INODE_ITEM_KEY; 403 key.offset = 0; 404 405 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 406 if (ret) { 407 btrfs_put_root(local_root); 408 btrfs_release_path(swarn->path); 409 goto err; 410 } 411 412 eb = swarn->path->nodes[0]; 413 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 414 struct btrfs_inode_item); 415 nlink = btrfs_inode_nlink(eb, inode_item); 416 btrfs_release_path(swarn->path); 417 418 /* 419 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 420 * uses GFP_NOFS in this context, so we keep it consistent but it does 421 * not seem to be strictly necessary. 422 */ 423 nofs_flag = memalloc_nofs_save(); 424 ipath = init_ipath(4096, local_root, swarn->path); 425 memalloc_nofs_restore(nofs_flag); 426 if (IS_ERR(ipath)) { 427 btrfs_put_root(local_root); 428 ret = PTR_ERR(ipath); 429 ipath = NULL; 430 goto err; 431 } 432 ret = paths_from_inode(inum, ipath); 433 434 if (ret < 0) 435 goto err; 436 437 /* 438 * we deliberately ignore the bit ipath might have been too small to 439 * hold all of the paths here 440 */ 441 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 442 btrfs_warn_in_rcu(fs_info, 443 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 444 swarn->errstr, swarn->logical, 445 btrfs_dev_name(swarn->dev), 446 swarn->physical, 447 root, inum, offset, 448 fs_info->sectorsize, nlink, 449 (char *)(unsigned long)ipath->fspath->val[i]); 450 451 btrfs_put_root(local_root); 452 free_ipath(ipath); 453 return 0; 454 455 err: 456 btrfs_warn_in_rcu(fs_info, 457 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 458 swarn->errstr, swarn->logical, 459 btrfs_dev_name(swarn->dev), 460 swarn->physical, 461 root, inum, offset, ret); 462 463 free_ipath(ipath); 464 return 0; 465 } 466 467 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, 468 bool is_super, u64 logical, u64 physical) 469 { 470 struct btrfs_fs_info *fs_info = dev->fs_info; 471 struct btrfs_path *path; 472 struct btrfs_key found_key; 473 struct extent_buffer *eb; 474 struct btrfs_extent_item *ei; 475 struct scrub_warning swarn; 476 unsigned long ptr = 0; 477 u64 flags = 0; 478 u64 ref_root; 479 u32 item_size; 480 u8 ref_level = 0; 481 int ret; 482 483 /* Super block error, no need to search extent tree. */ 484 if (is_super) { 485 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", 486 errstr, btrfs_dev_name(dev), physical); 487 return; 488 } 489 path = btrfs_alloc_path(); 490 if (!path) 491 return; 492 493 swarn.physical = physical; 494 swarn.logical = logical; 495 swarn.errstr = errstr; 496 swarn.dev = NULL; 497 498 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 499 &flags); 500 if (ret < 0) 501 goto out; 502 503 swarn.extent_item_size = found_key.offset; 504 505 eb = path->nodes[0]; 506 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 507 item_size = btrfs_item_size(eb, path->slots[0]); 508 509 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 510 do { 511 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 512 item_size, &ref_root, 513 &ref_level); 514 btrfs_warn_in_rcu(fs_info, 515 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 516 errstr, swarn.logical, 517 btrfs_dev_name(dev), 518 swarn.physical, 519 ref_level ? "node" : "leaf", 520 ret < 0 ? -1 : ref_level, 521 ret < 0 ? -1 : ref_root); 522 } while (ret != 1); 523 btrfs_release_path(path); 524 } else { 525 struct btrfs_backref_walk_ctx ctx = { 0 }; 526 527 btrfs_release_path(path); 528 529 ctx.bytenr = found_key.objectid; 530 ctx.extent_item_pos = swarn.logical - found_key.objectid; 531 ctx.fs_info = fs_info; 532 533 swarn.path = path; 534 swarn.dev = dev; 535 536 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); 537 } 538 539 out: 540 btrfs_free_path(path); 541 } 542 543 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc) 544 { 545 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5) 546 return 2; 547 else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) 548 return 3; 549 else 550 return (int)bioc->num_stripes; 551 } 552 553 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 554 u64 full_stripe_logical, 555 int nstripes, int mirror, 556 int *stripe_index, 557 u64 *stripe_offset) 558 { 559 int i; 560 561 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 562 const int nr_data_stripes = (map_type & BTRFS_BLOCK_GROUP_RAID5) ? 563 nstripes - 1 : nstripes - 2; 564 565 /* RAID5/6 */ 566 for (i = 0; i < nr_data_stripes; i++) { 567 const u64 data_stripe_start = full_stripe_logical + 568 (i * BTRFS_STRIPE_LEN); 569 570 if (logical >= data_stripe_start && 571 logical < data_stripe_start + BTRFS_STRIPE_LEN) 572 break; 573 } 574 575 *stripe_index = i; 576 *stripe_offset = (logical - full_stripe_logical) & 577 BTRFS_STRIPE_LEN_MASK; 578 } else { 579 /* The other RAID type */ 580 *stripe_index = mirror; 581 *stripe_offset = 0; 582 } 583 } 584 585 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 586 { 587 int ret = 0; 588 u64 length; 589 590 if (!btrfs_is_zoned(sctx->fs_info)) 591 return 0; 592 593 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 594 return 0; 595 596 if (sctx->write_pointer < physical) { 597 length = physical - sctx->write_pointer; 598 599 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 600 sctx->write_pointer, length); 601 if (!ret) 602 sctx->write_pointer = physical; 603 } 604 return ret; 605 } 606 607 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr) 608 { 609 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 610 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT; 611 612 return stripe->pages[page_index]; 613 } 614 615 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe, 616 int sector_nr) 617 { 618 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 619 620 return offset_in_page(sector_nr << fs_info->sectorsize_bits); 621 } 622 623 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) 624 { 625 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 626 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 627 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); 628 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr); 629 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr); 630 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 631 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 632 u8 calculated_csum[BTRFS_CSUM_SIZE]; 633 struct btrfs_header *header; 634 635 /* 636 * Here we don't have a good way to attach the pages (and subpages) 637 * to a dummy extent buffer, thus we have to directly grab the members 638 * from pages. 639 */ 640 header = (struct btrfs_header *)(page_address(first_page) + first_off); 641 memcpy(on_disk_csum, header->csum, fs_info->csum_size); 642 643 if (logical != btrfs_stack_header_bytenr(header)) { 644 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 645 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 646 btrfs_warn_rl(fs_info, 647 "tree block %llu mirror %u has bad bytenr, has %llu want %llu", 648 logical, stripe->mirror_num, 649 btrfs_stack_header_bytenr(header), logical); 650 return; 651 } 652 if (memcmp(header->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE) != 0) { 653 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 654 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 655 btrfs_warn_rl(fs_info, 656 "tree block %llu mirror %u has bad fsid, has %pU want %pU", 657 logical, stripe->mirror_num, 658 header->fsid, fs_info->fs_devices->fsid); 659 return; 660 } 661 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, 662 BTRFS_UUID_SIZE) != 0) { 663 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 664 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 665 btrfs_warn_rl(fs_info, 666 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", 667 logical, stripe->mirror_num, 668 header->chunk_tree_uuid, fs_info->chunk_tree_uuid); 669 return; 670 } 671 672 /* Now check tree block csum. */ 673 shash->tfm = fs_info->csum_shash; 674 crypto_shash_init(shash); 675 crypto_shash_update(shash, page_address(first_page) + first_off + 676 BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE); 677 678 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { 679 struct page *page = scrub_stripe_get_page(stripe, i); 680 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i); 681 682 crypto_shash_update(shash, page_address(page) + page_off, 683 fs_info->sectorsize); 684 } 685 686 crypto_shash_final(shash, calculated_csum); 687 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { 688 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 689 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 690 btrfs_warn_rl(fs_info, 691 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, 692 logical, stripe->mirror_num, 693 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), 694 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); 695 return; 696 } 697 if (stripe->sectors[sector_nr].generation != 698 btrfs_stack_header_generation(header)) { 699 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 700 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 701 btrfs_warn_rl(fs_info, 702 "tree block %llu mirror %u has bad generation, has %llu want %llu", 703 logical, stripe->mirror_num, 704 btrfs_stack_header_generation(header), 705 stripe->sectors[sector_nr].generation); 706 return; 707 } 708 bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree); 709 bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 710 bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 711 } 712 713 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) 714 { 715 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 716 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; 717 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 718 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 719 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 720 u8 csum_buf[BTRFS_CSUM_SIZE]; 721 int ret; 722 723 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); 724 725 /* Sector not utilized, skip it. */ 726 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap)) 727 return; 728 729 /* IO error, no need to check. */ 730 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 731 return; 732 733 /* Metadata, verify the full tree block. */ 734 if (sector->is_metadata) { 735 /* 736 * Check if the tree block crosses the stripe boudary. If 737 * crossed the boundary, we cannot verify it but only give a 738 * warning. 739 * 740 * This can only happen on a very old filesystem where chunks 741 * are not ensured to be stripe aligned. 742 */ 743 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { 744 btrfs_warn_rl(fs_info, 745 "tree block at %llu crosses stripe boundary %llu", 746 stripe->logical + 747 (sector_nr << fs_info->sectorsize_bits), 748 stripe->logical); 749 return; 750 } 751 scrub_verify_one_metadata(stripe, sector_nr); 752 return; 753 } 754 755 /* 756 * Data is easier, we just verify the data csum (if we have it). For 757 * cases without csum, we have no other choice but to trust it. 758 */ 759 if (!sector->csum) { 760 clear_bit(sector_nr, &stripe->error_bitmap); 761 return; 762 } 763 764 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum); 765 if (ret < 0) { 766 set_bit(sector_nr, &stripe->csum_error_bitmap); 767 set_bit(sector_nr, &stripe->error_bitmap); 768 } else { 769 clear_bit(sector_nr, &stripe->csum_error_bitmap); 770 clear_bit(sector_nr, &stripe->error_bitmap); 771 } 772 } 773 774 /* Verify specified sectors of a stripe. */ 775 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) 776 { 777 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 778 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 779 int sector_nr; 780 781 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { 782 scrub_verify_one_sector(stripe, sector_nr); 783 if (stripe->sectors[sector_nr].is_metadata) 784 sector_nr += sectors_per_tree - 1; 785 } 786 } 787 788 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) 789 { 790 int i; 791 792 for (i = 0; i < stripe->nr_sectors; i++) { 793 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page && 794 scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset) 795 break; 796 } 797 ASSERT(i < stripe->nr_sectors); 798 return i; 799 } 800 801 /* 802 * Repair read is different to the regular read: 803 * 804 * - Only reads the failed sectors 805 * - May have extra blocksize limits 806 */ 807 static void scrub_repair_read_endio(struct btrfs_bio *bbio) 808 { 809 struct scrub_stripe *stripe = bbio->private; 810 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 811 struct bio_vec *bvec; 812 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 813 u32 bio_size = 0; 814 int i; 815 816 ASSERT(sector_nr < stripe->nr_sectors); 817 818 bio_for_each_bvec_all(bvec, &bbio->bio, i) 819 bio_size += bvec->bv_len; 820 821 if (bbio->bio.bi_status) { 822 bitmap_set(&stripe->io_error_bitmap, sector_nr, 823 bio_size >> fs_info->sectorsize_bits); 824 bitmap_set(&stripe->error_bitmap, sector_nr, 825 bio_size >> fs_info->sectorsize_bits); 826 } else { 827 bitmap_clear(&stripe->io_error_bitmap, sector_nr, 828 bio_size >> fs_info->sectorsize_bits); 829 } 830 bio_put(&bbio->bio); 831 if (atomic_dec_and_test(&stripe->pending_io)) 832 wake_up(&stripe->io_wait); 833 } 834 835 static int calc_next_mirror(int mirror, int num_copies) 836 { 837 ASSERT(mirror <= num_copies); 838 return (mirror + 1 > num_copies) ? 1 : mirror + 1; 839 } 840 841 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, 842 int mirror, int blocksize, bool wait) 843 { 844 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 845 struct btrfs_bio *bbio = NULL; 846 const unsigned long old_error_bitmap = stripe->error_bitmap; 847 int i; 848 849 ASSERT(stripe->mirror_num >= 1); 850 ASSERT(atomic_read(&stripe->pending_io) == 0); 851 852 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { 853 struct page *page; 854 int pgoff; 855 int ret; 856 857 page = scrub_stripe_get_page(stripe, i); 858 pgoff = scrub_stripe_get_page_offset(stripe, i); 859 860 /* The current sector cannot be merged, submit the bio. */ 861 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) || 862 bbio->bio.bi_iter.bi_size >= blocksize)) { 863 ASSERT(bbio->bio.bi_iter.bi_size); 864 atomic_inc(&stripe->pending_io); 865 btrfs_submit_bio(bbio, mirror); 866 if (wait) 867 wait_scrub_stripe_io(stripe); 868 bbio = NULL; 869 } 870 871 if (!bbio) { 872 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 873 fs_info, scrub_repair_read_endio, stripe); 874 bbio->bio.bi_iter.bi_sector = (stripe->logical + 875 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; 876 } 877 878 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 879 ASSERT(ret == fs_info->sectorsize); 880 } 881 if (bbio) { 882 ASSERT(bbio->bio.bi_iter.bi_size); 883 atomic_inc(&stripe->pending_io); 884 btrfs_submit_bio(bbio, mirror); 885 if (wait) 886 wait_scrub_stripe_io(stripe); 887 } 888 } 889 890 static void scrub_stripe_report_errors(struct scrub_ctx *sctx, 891 struct scrub_stripe *stripe) 892 { 893 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 894 DEFAULT_RATELIMIT_BURST); 895 struct btrfs_fs_info *fs_info = sctx->fs_info; 896 struct btrfs_device *dev = NULL; 897 u64 physical = 0; 898 int nr_data_sectors = 0; 899 int nr_meta_sectors = 0; 900 int nr_nodatacsum_sectors = 0; 901 int nr_repaired_sectors = 0; 902 int sector_nr; 903 904 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) 905 return; 906 907 /* 908 * Init needed infos for error reporting. 909 * 910 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio() 911 * thus no need for dev/physical, error reporting still needs dev and physical. 912 */ 913 if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) { 914 u64 mapped_len = fs_info->sectorsize; 915 struct btrfs_io_context *bioc = NULL; 916 int stripe_index = stripe->mirror_num - 1; 917 int ret; 918 919 /* For scrub, our mirror_num should always start at 1. */ 920 ASSERT(stripe->mirror_num >= 1); 921 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 922 stripe->logical, &mapped_len, &bioc); 923 /* 924 * If we failed, dev will be NULL, and later detailed reports 925 * will just be skipped. 926 */ 927 if (ret < 0) 928 goto skip; 929 physical = bioc->stripes[stripe_index].physical; 930 dev = bioc->stripes[stripe_index].dev; 931 btrfs_put_bioc(bioc); 932 } 933 934 skip: 935 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) { 936 bool repaired = false; 937 938 if (stripe->sectors[sector_nr].is_metadata) { 939 nr_meta_sectors++; 940 } else { 941 nr_data_sectors++; 942 if (!stripe->sectors[sector_nr].csum) 943 nr_nodatacsum_sectors++; 944 } 945 946 if (test_bit(sector_nr, &stripe->init_error_bitmap) && 947 !test_bit(sector_nr, &stripe->error_bitmap)) { 948 nr_repaired_sectors++; 949 repaired = true; 950 } 951 952 /* Good sector from the beginning, nothing need to be done. */ 953 if (!test_bit(sector_nr, &stripe->init_error_bitmap)) 954 continue; 955 956 /* 957 * Report error for the corrupted sectors. If repaired, just 958 * output the message of repaired message. 959 */ 960 if (repaired) { 961 if (dev) { 962 btrfs_err_rl_in_rcu(fs_info, 963 "fixed up error at logical %llu on dev %s physical %llu", 964 stripe->logical, btrfs_dev_name(dev), 965 physical); 966 } else { 967 btrfs_err_rl_in_rcu(fs_info, 968 "fixed up error at logical %llu on mirror %u", 969 stripe->logical, stripe->mirror_num); 970 } 971 continue; 972 } 973 974 /* The remaining are all for unrepaired. */ 975 if (dev) { 976 btrfs_err_rl_in_rcu(fs_info, 977 "unable to fixup (regular) error at logical %llu on dev %s physical %llu", 978 stripe->logical, btrfs_dev_name(dev), 979 physical); 980 } else { 981 btrfs_err_rl_in_rcu(fs_info, 982 "unable to fixup (regular) error at logical %llu on mirror %u", 983 stripe->logical, stripe->mirror_num); 984 } 985 986 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 987 if (__ratelimit(&rs) && dev) 988 scrub_print_common_warning("i/o error", dev, false, 989 stripe->logical, physical); 990 if (test_bit(sector_nr, &stripe->csum_error_bitmap)) 991 if (__ratelimit(&rs) && dev) 992 scrub_print_common_warning("checksum error", dev, false, 993 stripe->logical, physical); 994 if (test_bit(sector_nr, &stripe->meta_error_bitmap)) 995 if (__ratelimit(&rs) && dev) 996 scrub_print_common_warning("header error", dev, false, 997 stripe->logical, physical); 998 } 999 1000 spin_lock(&sctx->stat_lock); 1001 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; 1002 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; 1003 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; 1004 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; 1005 sctx->stat.no_csum += nr_nodatacsum_sectors; 1006 sctx->stat.read_errors += 1007 bitmap_weight(&stripe->io_error_bitmap, stripe->nr_sectors); 1008 sctx->stat.csum_errors += 1009 bitmap_weight(&stripe->csum_error_bitmap, stripe->nr_sectors); 1010 sctx->stat.verify_errors += 1011 bitmap_weight(&stripe->meta_error_bitmap, stripe->nr_sectors); 1012 sctx->stat.uncorrectable_errors += 1013 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors); 1014 sctx->stat.corrected_errors += nr_repaired_sectors; 1015 spin_unlock(&sctx->stat_lock); 1016 } 1017 1018 /* 1019 * The main entrance for all read related scrub work, including: 1020 * 1021 * - Wait for the initial read to finish 1022 * - Verify and locate any bad sectors 1023 * - Go through the remaining mirrors and try to read as large blocksize as 1024 * possible 1025 * - Go through all mirrors (including the failed mirror) sector-by-sector 1026 * 1027 * Writeback does not happen here, it needs extra synchronization. 1028 */ 1029 static void scrub_stripe_read_repair_worker(struct work_struct *work) 1030 { 1031 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); 1032 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1033 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1034 stripe->bg->length); 1035 int mirror; 1036 int i; 1037 1038 ASSERT(stripe->mirror_num > 0); 1039 1040 wait_scrub_stripe_io(stripe); 1041 scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap); 1042 /* Save the initial failed bitmap for later repair and report usage. */ 1043 stripe->init_error_bitmap = stripe->error_bitmap; 1044 1045 if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) 1046 goto out; 1047 1048 /* 1049 * Try all remaining mirrors. 1050 * 1051 * Here we still try to read as large block as possible, as this is 1052 * faster and we have extra safety nets to rely on. 1053 */ 1054 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); 1055 mirror != stripe->mirror_num; 1056 mirror = calc_next_mirror(mirror, num_copies)) { 1057 const unsigned long old_error_bitmap = stripe->error_bitmap; 1058 1059 scrub_stripe_submit_repair_read(stripe, mirror, 1060 BTRFS_STRIPE_LEN, false); 1061 wait_scrub_stripe_io(stripe); 1062 scrub_verify_one_stripe(stripe, old_error_bitmap); 1063 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1064 goto out; 1065 } 1066 1067 /* 1068 * Last safety net, try re-checking all mirrors, including the failed 1069 * one, sector-by-sector. 1070 * 1071 * As if one sector failed the drive's internal csum, the whole read 1072 * containing the offending sector would be marked as error. 1073 * Thus here we do sector-by-sector read. 1074 * 1075 * This can be slow, thus we only try it as the last resort. 1076 */ 1077 1078 for (i = 0, mirror = stripe->mirror_num; 1079 i < num_copies; 1080 i++, mirror = calc_next_mirror(mirror, num_copies)) { 1081 const unsigned long old_error_bitmap = stripe->error_bitmap; 1082 1083 scrub_stripe_submit_repair_read(stripe, mirror, 1084 fs_info->sectorsize, true); 1085 wait_scrub_stripe_io(stripe); 1086 scrub_verify_one_stripe(stripe, old_error_bitmap); 1087 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1088 goto out; 1089 } 1090 out: 1091 scrub_stripe_report_errors(stripe->sctx, stripe); 1092 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); 1093 wake_up(&stripe->repair_wait); 1094 } 1095 1096 static void scrub_read_endio(struct btrfs_bio *bbio) 1097 { 1098 struct scrub_stripe *stripe = bbio->private; 1099 1100 if (bbio->bio.bi_status) { 1101 bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors); 1102 bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors); 1103 } else { 1104 bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors); 1105 } 1106 bio_put(&bbio->bio); 1107 if (atomic_dec_and_test(&stripe->pending_io)) { 1108 wake_up(&stripe->io_wait); 1109 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1110 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1111 } 1112 } 1113 1114 static void scrub_write_endio(struct btrfs_bio *bbio) 1115 { 1116 struct scrub_stripe *stripe = bbio->private; 1117 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1118 struct bio_vec *bvec; 1119 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1120 u32 bio_size = 0; 1121 int i; 1122 1123 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1124 bio_size += bvec->bv_len; 1125 1126 if (bbio->bio.bi_status) { 1127 unsigned long flags; 1128 1129 spin_lock_irqsave(&stripe->write_error_lock, flags); 1130 bitmap_set(&stripe->write_error_bitmap, sector_nr, 1131 bio_size >> fs_info->sectorsize_bits); 1132 spin_unlock_irqrestore(&stripe->write_error_lock, flags); 1133 } 1134 bio_put(&bbio->bio); 1135 1136 if (atomic_dec_and_test(&stripe->pending_io)) 1137 wake_up(&stripe->io_wait); 1138 } 1139 1140 static void scrub_submit_write_bio(struct scrub_ctx *sctx, 1141 struct scrub_stripe *stripe, 1142 struct btrfs_bio *bbio, bool dev_replace) 1143 { 1144 struct btrfs_fs_info *fs_info = sctx->fs_info; 1145 u32 bio_len = bbio->bio.bi_iter.bi_size; 1146 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) - 1147 stripe->logical; 1148 1149 fill_writer_pointer_gap(sctx, stripe->physical + bio_off); 1150 atomic_inc(&stripe->pending_io); 1151 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); 1152 if (!btrfs_is_zoned(fs_info)) 1153 return; 1154 /* 1155 * For zoned writeback, queue depth must be 1, thus we must wait for 1156 * the write to finish before the next write. 1157 */ 1158 wait_scrub_stripe_io(stripe); 1159 1160 /* 1161 * And also need to update the write pointer if write finished 1162 * successfully. 1163 */ 1164 if (!test_bit(bio_off >> fs_info->sectorsize_bits, 1165 &stripe->write_error_bitmap)) 1166 sctx->write_pointer += bio_len; 1167 } 1168 1169 /* 1170 * Submit the write bio(s) for the sectors specified by @write_bitmap. 1171 * 1172 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: 1173 * 1174 * - Only needs logical bytenr and mirror_num 1175 * Just like the scrub read path 1176 * 1177 * - Would only result in writes to the specified mirror 1178 * Unlike the regular writeback path, which would write back to all stripes 1179 * 1180 * - Handle dev-replace and read-repair writeback differently 1181 */ 1182 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 1183 unsigned long write_bitmap, bool dev_replace) 1184 { 1185 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1186 struct btrfs_bio *bbio = NULL; 1187 int sector_nr; 1188 1189 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { 1190 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 1191 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 1192 int ret; 1193 1194 /* We should only writeback sectors covered by an extent. */ 1195 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap)); 1196 1197 /* Cannot merge with previous sector, submit the current one. */ 1198 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { 1199 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1200 bbio = NULL; 1201 } 1202 if (!bbio) { 1203 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, 1204 fs_info, scrub_write_endio, stripe); 1205 bbio->bio.bi_iter.bi_sector = (stripe->logical + 1206 (sector_nr << fs_info->sectorsize_bits)) >> 1207 SECTOR_SHIFT; 1208 } 1209 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 1210 ASSERT(ret == fs_info->sectorsize); 1211 } 1212 if (bbio) 1213 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1214 } 1215 1216 /* 1217 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1218 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1219 */ 1220 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, 1221 unsigned int bio_size) 1222 { 1223 const int time_slice = 1000; 1224 s64 delta; 1225 ktime_t now; 1226 u32 div; 1227 u64 bwlimit; 1228 1229 bwlimit = READ_ONCE(device->scrub_speed_max); 1230 if (bwlimit == 0) 1231 return; 1232 1233 /* 1234 * Slice is divided into intervals when the IO is submitted, adjust by 1235 * bwlimit and maximum of 64 intervals. 1236 */ 1237 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 1238 div = min_t(u32, 64, div); 1239 1240 /* Start new epoch, set deadline */ 1241 now = ktime_get(); 1242 if (sctx->throttle_deadline == 0) { 1243 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 1244 sctx->throttle_sent = 0; 1245 } 1246 1247 /* Still in the time to send? */ 1248 if (ktime_before(now, sctx->throttle_deadline)) { 1249 /* If current bio is within the limit, send it */ 1250 sctx->throttle_sent += bio_size; 1251 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 1252 return; 1253 1254 /* We're over the limit, sleep until the rest of the slice */ 1255 delta = ktime_ms_delta(sctx->throttle_deadline, now); 1256 } else { 1257 /* New request after deadline, start new epoch */ 1258 delta = 0; 1259 } 1260 1261 if (delta) { 1262 long timeout; 1263 1264 timeout = div_u64(delta * HZ, 1000); 1265 schedule_timeout_interruptible(timeout); 1266 } 1267 1268 /* Next call will start the deadline period */ 1269 sctx->throttle_deadline = 0; 1270 } 1271 1272 /* 1273 * Given a physical address, this will calculate it's 1274 * logical offset. if this is a parity stripe, it will return 1275 * the most left data stripe's logical offset. 1276 * 1277 * return 0 if it is a data stripe, 1 means parity stripe. 1278 */ 1279 static int get_raid56_logic_offset(u64 physical, int num, 1280 struct map_lookup *map, u64 *offset, 1281 u64 *stripe_start) 1282 { 1283 int i; 1284 int j = 0; 1285 u64 last_offset; 1286 const int data_stripes = nr_data_stripes(map); 1287 1288 last_offset = (physical - map->stripes[num].physical) * data_stripes; 1289 if (stripe_start) 1290 *stripe_start = last_offset; 1291 1292 *offset = last_offset; 1293 for (i = 0; i < data_stripes; i++) { 1294 u32 stripe_nr; 1295 u32 stripe_index; 1296 u32 rot; 1297 1298 *offset = last_offset + (i << BTRFS_STRIPE_LEN_SHIFT); 1299 1300 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; 1301 1302 /* Work out the disk rotation on this stripe-set */ 1303 rot = stripe_nr % map->num_stripes; 1304 stripe_nr /= map->num_stripes; 1305 /* calculate which stripe this data locates */ 1306 rot += i; 1307 stripe_index = rot % map->num_stripes; 1308 if (stripe_index == num) 1309 return 0; 1310 if (stripe_index < num) 1311 j++; 1312 } 1313 *offset = last_offset + (j << BTRFS_STRIPE_LEN_SHIFT); 1314 return 1; 1315 } 1316 1317 /* 1318 * Return 0 if the extent item range covers any byte of the range. 1319 * Return <0 if the extent item is before @search_start. 1320 * Return >0 if the extent item is after @start_start + @search_len. 1321 */ 1322 static int compare_extent_item_range(struct btrfs_path *path, 1323 u64 search_start, u64 search_len) 1324 { 1325 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 1326 u64 len; 1327 struct btrfs_key key; 1328 1329 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1330 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 1331 key.type == BTRFS_METADATA_ITEM_KEY); 1332 if (key.type == BTRFS_METADATA_ITEM_KEY) 1333 len = fs_info->nodesize; 1334 else 1335 len = key.offset; 1336 1337 if (key.objectid + len <= search_start) 1338 return -1; 1339 if (key.objectid >= search_start + search_len) 1340 return 1; 1341 return 0; 1342 } 1343 1344 /* 1345 * Locate one extent item which covers any byte in range 1346 * [@search_start, @search_start + @search_length) 1347 * 1348 * If the path is not initialized, we will initialize the search by doing 1349 * a btrfs_search_slot(). 1350 * If the path is already initialized, we will use the path as the initial 1351 * slot, to avoid duplicated btrfs_search_slot() calls. 1352 * 1353 * NOTE: If an extent item starts before @search_start, we will still 1354 * return the extent item. This is for data extent crossing stripe boundary. 1355 * 1356 * Return 0 if we found such extent item, and @path will point to the extent item. 1357 * Return >0 if no such extent item can be found, and @path will be released. 1358 * Return <0 if hit fatal error, and @path will be released. 1359 */ 1360 static int find_first_extent_item(struct btrfs_root *extent_root, 1361 struct btrfs_path *path, 1362 u64 search_start, u64 search_len) 1363 { 1364 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1365 struct btrfs_key key; 1366 int ret; 1367 1368 /* Continue using the existing path */ 1369 if (path->nodes[0]) 1370 goto search_forward; 1371 1372 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1373 key.type = BTRFS_METADATA_ITEM_KEY; 1374 else 1375 key.type = BTRFS_EXTENT_ITEM_KEY; 1376 key.objectid = search_start; 1377 key.offset = (u64)-1; 1378 1379 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1380 if (ret < 0) 1381 return ret; 1382 1383 ASSERT(ret > 0); 1384 /* 1385 * Here we intentionally pass 0 as @min_objectid, as there could be 1386 * an extent item starting before @search_start. 1387 */ 1388 ret = btrfs_previous_extent_item(extent_root, path, 0); 1389 if (ret < 0) 1390 return ret; 1391 /* 1392 * No matter whether we have found an extent item, the next loop will 1393 * properly do every check on the key. 1394 */ 1395 search_forward: 1396 while (true) { 1397 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1398 if (key.objectid >= search_start + search_len) 1399 break; 1400 if (key.type != BTRFS_METADATA_ITEM_KEY && 1401 key.type != BTRFS_EXTENT_ITEM_KEY) 1402 goto next; 1403 1404 ret = compare_extent_item_range(path, search_start, search_len); 1405 if (ret == 0) 1406 return ret; 1407 if (ret > 0) 1408 break; 1409 next: 1410 path->slots[0]++; 1411 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 1412 ret = btrfs_next_leaf(extent_root, path); 1413 if (ret) { 1414 /* Either no more item or fatal error */ 1415 btrfs_release_path(path); 1416 return ret; 1417 } 1418 } 1419 } 1420 btrfs_release_path(path); 1421 return 1; 1422 } 1423 1424 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 1425 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 1426 { 1427 struct btrfs_key key; 1428 struct btrfs_extent_item *ei; 1429 1430 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1431 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 1432 key.type == BTRFS_EXTENT_ITEM_KEY); 1433 *extent_start_ret = key.objectid; 1434 if (key.type == BTRFS_METADATA_ITEM_KEY) 1435 *size_ret = path->nodes[0]->fs_info->nodesize; 1436 else 1437 *size_ret = key.offset; 1438 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 1439 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 1440 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 1441 } 1442 1443 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 1444 u64 physical, u64 physical_end) 1445 { 1446 struct btrfs_fs_info *fs_info = sctx->fs_info; 1447 int ret = 0; 1448 1449 if (!btrfs_is_zoned(fs_info)) 1450 return 0; 1451 1452 mutex_lock(&sctx->wr_lock); 1453 if (sctx->write_pointer < physical_end) { 1454 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 1455 physical, 1456 sctx->write_pointer); 1457 if (ret) 1458 btrfs_err(fs_info, 1459 "zoned: failed to recover write pointer"); 1460 } 1461 mutex_unlock(&sctx->wr_lock); 1462 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 1463 1464 return ret; 1465 } 1466 1467 static void fill_one_extent_info(struct btrfs_fs_info *fs_info, 1468 struct scrub_stripe *stripe, 1469 u64 extent_start, u64 extent_len, 1470 u64 extent_flags, u64 extent_gen) 1471 { 1472 for (u64 cur_logical = max(stripe->logical, extent_start); 1473 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, 1474 extent_start + extent_len); 1475 cur_logical += fs_info->sectorsize) { 1476 const int nr_sector = (cur_logical - stripe->logical) >> 1477 fs_info->sectorsize_bits; 1478 struct scrub_sector_verification *sector = 1479 &stripe->sectors[nr_sector]; 1480 1481 set_bit(nr_sector, &stripe->extent_sector_bitmap); 1482 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1483 sector->is_metadata = true; 1484 sector->generation = extent_gen; 1485 } 1486 } 1487 } 1488 1489 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) 1490 { 1491 stripe->extent_sector_bitmap = 0; 1492 stripe->init_error_bitmap = 0; 1493 stripe->error_bitmap = 0; 1494 stripe->io_error_bitmap = 0; 1495 stripe->csum_error_bitmap = 0; 1496 stripe->meta_error_bitmap = 0; 1497 } 1498 1499 /* 1500 * Locate one stripe which has at least one extent in its range. 1501 * 1502 * Return 0 if found such stripe, and store its info into @stripe. 1503 * Return >0 if there is no such stripe in the specified range. 1504 * Return <0 for error. 1505 */ 1506 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, 1507 struct btrfs_device *dev, u64 physical, 1508 int mirror_num, u64 logical_start, 1509 u32 logical_len, 1510 struct scrub_stripe *stripe) 1511 { 1512 struct btrfs_fs_info *fs_info = bg->fs_info; 1513 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); 1514 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); 1515 const u64 logical_end = logical_start + logical_len; 1516 struct btrfs_path path = { 0 }; 1517 u64 cur_logical = logical_start; 1518 u64 stripe_end; 1519 u64 extent_start; 1520 u64 extent_len; 1521 u64 extent_flags; 1522 u64 extent_gen; 1523 int ret; 1524 1525 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * 1526 stripe->nr_sectors); 1527 scrub_stripe_reset_bitmaps(stripe); 1528 1529 /* The range must be inside the bg. */ 1530 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1531 1532 path.search_commit_root = 1; 1533 path.skip_locking = 1; 1534 1535 ret = find_first_extent_item(extent_root, &path, logical_start, logical_len); 1536 /* Either error or not found. */ 1537 if (ret) 1538 goto out; 1539 get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen); 1540 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1541 stripe->nr_meta_extents++; 1542 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1543 stripe->nr_data_extents++; 1544 cur_logical = max(extent_start, cur_logical); 1545 1546 /* 1547 * Round down to stripe boundary. 1548 * 1549 * The extra calculation against bg->start is to handle block groups 1550 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. 1551 */ 1552 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + 1553 bg->start; 1554 stripe->physical = physical + stripe->logical - logical_start; 1555 stripe->dev = dev; 1556 stripe->bg = bg; 1557 stripe->mirror_num = mirror_num; 1558 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; 1559 1560 /* Fill the first extent info into stripe->sectors[] array. */ 1561 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1562 extent_flags, extent_gen); 1563 cur_logical = extent_start + extent_len; 1564 1565 /* Fill the extent info for the remaining sectors. */ 1566 while (cur_logical <= stripe_end) { 1567 ret = find_first_extent_item(extent_root, &path, cur_logical, 1568 stripe_end - cur_logical + 1); 1569 if (ret < 0) 1570 goto out; 1571 if (ret > 0) { 1572 ret = 0; 1573 break; 1574 } 1575 get_extent_info(&path, &extent_start, &extent_len, 1576 &extent_flags, &extent_gen); 1577 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1578 stripe->nr_meta_extents++; 1579 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1580 stripe->nr_data_extents++; 1581 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1582 extent_flags, extent_gen); 1583 cur_logical = extent_start + extent_len; 1584 } 1585 1586 /* Now fill the data csum. */ 1587 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { 1588 int sector_nr; 1589 unsigned long csum_bitmap = 0; 1590 1591 /* Csum space should have already been allocated. */ 1592 ASSERT(stripe->csums); 1593 1594 /* 1595 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN 1596 * should contain at most 16 sectors. 1597 */ 1598 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1599 1600 ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical, 1601 stripe_end, stripe->csums, 1602 &csum_bitmap, true); 1603 if (ret < 0) 1604 goto out; 1605 if (ret > 0) 1606 ret = 0; 1607 1608 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { 1609 stripe->sectors[sector_nr].csum = stripe->csums + 1610 sector_nr * fs_info->csum_size; 1611 } 1612 } 1613 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1614 out: 1615 btrfs_release_path(&path); 1616 return ret; 1617 } 1618 1619 static void scrub_reset_stripe(struct scrub_stripe *stripe) 1620 { 1621 scrub_stripe_reset_bitmaps(stripe); 1622 1623 stripe->nr_meta_extents = 0; 1624 stripe->nr_data_extents = 0; 1625 stripe->state = 0; 1626 1627 for (int i = 0; i < stripe->nr_sectors; i++) { 1628 stripe->sectors[i].is_metadata = false; 1629 stripe->sectors[i].csum = NULL; 1630 stripe->sectors[i].generation = 0; 1631 } 1632 } 1633 1634 static void scrub_submit_initial_read(struct scrub_ctx *sctx, 1635 struct scrub_stripe *stripe) 1636 { 1637 struct btrfs_fs_info *fs_info = sctx->fs_info; 1638 struct btrfs_bio *bbio; 1639 int mirror = stripe->mirror_num; 1640 1641 ASSERT(stripe->bg); 1642 ASSERT(stripe->mirror_num > 0); 1643 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1644 1645 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info, 1646 scrub_read_endio, stripe); 1647 1648 /* Read the whole stripe. */ 1649 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; 1650 for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) { 1651 int ret; 1652 1653 ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0); 1654 /* We should have allocated enough bio vectors. */ 1655 ASSERT(ret == PAGE_SIZE); 1656 } 1657 atomic_inc(&stripe->pending_io); 1658 1659 /* 1660 * For dev-replace, either user asks to avoid the source dev, or 1661 * the device is missing, we try the next mirror instead. 1662 */ 1663 if (sctx->is_dev_replace && 1664 (fs_info->dev_replace.cont_reading_from_srcdev_mode == 1665 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || 1666 !stripe->dev->bdev)) { 1667 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1668 stripe->bg->length); 1669 1670 mirror = calc_next_mirror(mirror, num_copies); 1671 } 1672 btrfs_submit_bio(bbio, mirror); 1673 } 1674 1675 static bool stripe_has_metadata_error(struct scrub_stripe *stripe) 1676 { 1677 int i; 1678 1679 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) { 1680 if (stripe->sectors[i].is_metadata) { 1681 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1682 1683 btrfs_err(fs_info, 1684 "stripe %llu has unrepaired metadata sector at %llu", 1685 stripe->logical, 1686 stripe->logical + (i << fs_info->sectorsize_bits)); 1687 return true; 1688 } 1689 } 1690 return false; 1691 } 1692 1693 static int flush_scrub_stripes(struct scrub_ctx *sctx) 1694 { 1695 struct btrfs_fs_info *fs_info = sctx->fs_info; 1696 struct scrub_stripe *stripe; 1697 const int nr_stripes = sctx->cur_stripe; 1698 int ret = 0; 1699 1700 if (!nr_stripes) 1701 return 0; 1702 1703 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); 1704 1705 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, 1706 nr_stripes << BTRFS_STRIPE_LEN_SHIFT); 1707 for (int i = 0; i < nr_stripes; i++) { 1708 stripe = &sctx->stripes[i]; 1709 scrub_submit_initial_read(sctx, stripe); 1710 } 1711 1712 for (int i = 0; i < nr_stripes; i++) { 1713 stripe = &sctx->stripes[i]; 1714 1715 wait_event(stripe->repair_wait, 1716 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1717 } 1718 1719 /* 1720 * Submit the repaired sectors. For zoned case, we cannot do repair 1721 * in-place, but queue the bg to be relocated. 1722 */ 1723 if (btrfs_is_zoned(fs_info)) { 1724 for (int i = 0; i < nr_stripes; i++) { 1725 stripe = &sctx->stripes[i]; 1726 1727 if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) { 1728 btrfs_repair_one_zone(fs_info, 1729 sctx->stripes[0].bg->start); 1730 break; 1731 } 1732 } 1733 } else { 1734 for (int i = 0; i < nr_stripes; i++) { 1735 unsigned long repaired; 1736 1737 stripe = &sctx->stripes[i]; 1738 1739 bitmap_andnot(&repaired, &stripe->init_error_bitmap, 1740 &stripe->error_bitmap, stripe->nr_sectors); 1741 scrub_write_sectors(sctx, stripe, repaired, false); 1742 } 1743 } 1744 1745 /* Submit for dev-replace. */ 1746 if (sctx->is_dev_replace) { 1747 /* 1748 * For dev-replace, if we know there is something wrong with 1749 * metadata, we should immedately abort. 1750 */ 1751 for (int i = 0; i < nr_stripes; i++) { 1752 if (stripe_has_metadata_error(&sctx->stripes[i])) { 1753 ret = -EIO; 1754 goto out; 1755 } 1756 } 1757 for (int i = 0; i < nr_stripes; i++) { 1758 unsigned long good; 1759 1760 stripe = &sctx->stripes[i]; 1761 1762 ASSERT(stripe->dev == fs_info->dev_replace.srcdev); 1763 1764 bitmap_andnot(&good, &stripe->extent_sector_bitmap, 1765 &stripe->error_bitmap, stripe->nr_sectors); 1766 scrub_write_sectors(sctx, stripe, good, true); 1767 } 1768 } 1769 1770 /* Wait for the above writebacks to finish. */ 1771 for (int i = 0; i < nr_stripes; i++) { 1772 stripe = &sctx->stripes[i]; 1773 1774 wait_scrub_stripe_io(stripe); 1775 scrub_reset_stripe(stripe); 1776 } 1777 out: 1778 sctx->cur_stripe = 0; 1779 return ret; 1780 } 1781 1782 static void raid56_scrub_wait_endio(struct bio *bio) 1783 { 1784 complete(bio->bi_private); 1785 } 1786 1787 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, 1788 struct btrfs_device *dev, int mirror_num, 1789 u64 logical, u32 length, u64 physical) 1790 { 1791 struct scrub_stripe *stripe; 1792 int ret; 1793 1794 /* No available slot, submit all stripes and wait for them. */ 1795 if (sctx->cur_stripe >= SCRUB_STRIPES_PER_SCTX) { 1796 ret = flush_scrub_stripes(sctx); 1797 if (ret < 0) 1798 return ret; 1799 } 1800 1801 stripe = &sctx->stripes[sctx->cur_stripe]; 1802 1803 /* We can queue one stripe using the remaining slot. */ 1804 scrub_reset_stripe(stripe); 1805 ret = scrub_find_fill_first_stripe(bg, dev, physical, mirror_num, 1806 logical, length, stripe); 1807 /* Either >0 as no more extents or <0 for error. */ 1808 if (ret) 1809 return ret; 1810 sctx->cur_stripe++; 1811 return 0; 1812 } 1813 1814 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, 1815 struct btrfs_device *scrub_dev, 1816 struct btrfs_block_group *bg, 1817 struct map_lookup *map, 1818 u64 full_stripe_start) 1819 { 1820 DECLARE_COMPLETION_ONSTACK(io_done); 1821 struct btrfs_fs_info *fs_info = sctx->fs_info; 1822 struct btrfs_raid_bio *rbio; 1823 struct btrfs_io_context *bioc = NULL; 1824 struct bio *bio; 1825 struct scrub_stripe *stripe; 1826 bool all_empty = true; 1827 const int data_stripes = nr_data_stripes(map); 1828 unsigned long extent_bitmap = 0; 1829 u64 length = data_stripes << BTRFS_STRIPE_LEN_SHIFT; 1830 int ret; 1831 1832 ASSERT(sctx->raid56_data_stripes); 1833 1834 for (int i = 0; i < data_stripes; i++) { 1835 int stripe_index; 1836 int rot; 1837 u64 physical; 1838 1839 stripe = &sctx->raid56_data_stripes[i]; 1840 rot = div_u64(full_stripe_start - bg->start, 1841 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; 1842 stripe_index = (i + rot) % map->num_stripes; 1843 physical = map->stripes[stripe_index].physical + 1844 (rot << BTRFS_STRIPE_LEN_SHIFT); 1845 1846 scrub_reset_stripe(stripe); 1847 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); 1848 ret = scrub_find_fill_first_stripe(bg, 1849 map->stripes[stripe_index].dev, physical, 1, 1850 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT), 1851 BTRFS_STRIPE_LEN, stripe); 1852 if (ret < 0) 1853 goto out; 1854 /* 1855 * No extent in this data stripe, need to manually mark them 1856 * initialized to make later read submission happy. 1857 */ 1858 if (ret > 0) { 1859 stripe->logical = full_stripe_start + 1860 (i << BTRFS_STRIPE_LEN_SHIFT); 1861 stripe->dev = map->stripes[stripe_index].dev; 1862 stripe->mirror_num = 1; 1863 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1864 } 1865 } 1866 1867 /* Check if all data stripes are empty. */ 1868 for (int i = 0; i < data_stripes; i++) { 1869 stripe = &sctx->raid56_data_stripes[i]; 1870 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) { 1871 all_empty = false; 1872 break; 1873 } 1874 } 1875 if (all_empty) { 1876 ret = 0; 1877 goto out; 1878 } 1879 1880 for (int i = 0; i < data_stripes; i++) { 1881 stripe = &sctx->raid56_data_stripes[i]; 1882 scrub_submit_initial_read(sctx, stripe); 1883 } 1884 for (int i = 0; i < data_stripes; i++) { 1885 stripe = &sctx->raid56_data_stripes[i]; 1886 1887 wait_event(stripe->repair_wait, 1888 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1889 } 1890 /* For now, no zoned support for RAID56. */ 1891 ASSERT(!btrfs_is_zoned(sctx->fs_info)); 1892 1893 /* Writeback for the repaired sectors. */ 1894 for (int i = 0; i < data_stripes; i++) { 1895 unsigned long repaired; 1896 1897 stripe = &sctx->raid56_data_stripes[i]; 1898 1899 bitmap_andnot(&repaired, &stripe->init_error_bitmap, 1900 &stripe->error_bitmap, stripe->nr_sectors); 1901 scrub_write_sectors(sctx, stripe, repaired, false); 1902 } 1903 1904 /* Wait for the above writebacks to finish. */ 1905 for (int i = 0; i < data_stripes; i++) { 1906 stripe = &sctx->raid56_data_stripes[i]; 1907 1908 wait_scrub_stripe_io(stripe); 1909 } 1910 1911 /* 1912 * Now all data stripes are properly verified. Check if we have any 1913 * unrepaired, if so abort immediately or we could further corrupt the 1914 * P/Q stripes. 1915 * 1916 * During the loop, also populate extent_bitmap. 1917 */ 1918 for (int i = 0; i < data_stripes; i++) { 1919 unsigned long error; 1920 1921 stripe = &sctx->raid56_data_stripes[i]; 1922 1923 /* 1924 * We should only check the errors where there is an extent. 1925 * As we may hit an empty data stripe while it's missing. 1926 */ 1927 bitmap_and(&error, &stripe->error_bitmap, 1928 &stripe->extent_sector_bitmap, stripe->nr_sectors); 1929 if (!bitmap_empty(&error, stripe->nr_sectors)) { 1930 btrfs_err(fs_info, 1931 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", 1932 full_stripe_start, i, stripe->nr_sectors, 1933 &error); 1934 ret = -EIO; 1935 goto out; 1936 } 1937 bitmap_or(&extent_bitmap, &extent_bitmap, 1938 &stripe->extent_sector_bitmap, stripe->nr_sectors); 1939 } 1940 1941 /* Now we can check and regenerate the P/Q stripe. */ 1942 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); 1943 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; 1944 bio->bi_private = &io_done; 1945 bio->bi_end_io = raid56_scrub_wait_endio; 1946 1947 btrfs_bio_counter_inc_blocked(fs_info); 1948 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, full_stripe_start, 1949 &length, &bioc); 1950 if (ret < 0) { 1951 btrfs_put_bioc(bioc); 1952 btrfs_bio_counter_dec(fs_info); 1953 goto out; 1954 } 1955 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, 1956 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1957 btrfs_put_bioc(bioc); 1958 if (!rbio) { 1959 ret = -ENOMEM; 1960 btrfs_bio_counter_dec(fs_info); 1961 goto out; 1962 } 1963 raid56_parity_submit_scrub_rbio(rbio); 1964 wait_for_completion_io(&io_done); 1965 ret = blk_status_to_errno(bio->bi_status); 1966 bio_put(bio); 1967 btrfs_bio_counter_dec(fs_info); 1968 1969 out: 1970 return ret; 1971 } 1972 1973 /* 1974 * Scrub one range which can only has simple mirror based profile. 1975 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 1976 * RAID0/RAID10). 1977 * 1978 * Since we may need to handle a subset of block group, we need @logical_start 1979 * and @logical_length parameter. 1980 */ 1981 static int scrub_simple_mirror(struct scrub_ctx *sctx, 1982 struct btrfs_block_group *bg, 1983 struct map_lookup *map, 1984 u64 logical_start, u64 logical_length, 1985 struct btrfs_device *device, 1986 u64 physical, int mirror_num) 1987 { 1988 struct btrfs_fs_info *fs_info = sctx->fs_info; 1989 const u64 logical_end = logical_start + logical_length; 1990 /* An artificial limit, inherit from old scrub behavior */ 1991 struct btrfs_path path = { 0 }; 1992 u64 cur_logical = logical_start; 1993 int ret; 1994 1995 /* The range must be inside the bg */ 1996 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1997 1998 path.search_commit_root = 1; 1999 path.skip_locking = 1; 2000 /* Go through each extent items inside the logical range */ 2001 while (cur_logical < logical_end) { 2002 u64 cur_physical = physical + cur_logical - logical_start; 2003 2004 /* Canceled? */ 2005 if (atomic_read(&fs_info->scrub_cancel_req) || 2006 atomic_read(&sctx->cancel_req)) { 2007 ret = -ECANCELED; 2008 break; 2009 } 2010 /* Paused? */ 2011 if (atomic_read(&fs_info->scrub_pause_req)) { 2012 /* Push queued extents */ 2013 scrub_blocked_if_needed(fs_info); 2014 } 2015 /* Block group removed? */ 2016 spin_lock(&bg->lock); 2017 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { 2018 spin_unlock(&bg->lock); 2019 ret = 0; 2020 break; 2021 } 2022 spin_unlock(&bg->lock); 2023 2024 ret = queue_scrub_stripe(sctx, bg, device, mirror_num, 2025 cur_logical, logical_end - cur_logical, 2026 cur_physical); 2027 if (ret > 0) { 2028 /* No more extent, just update the accounting */ 2029 sctx->stat.last_physical = physical + logical_length; 2030 ret = 0; 2031 break; 2032 } 2033 if (ret < 0) 2034 break; 2035 2036 ASSERT(sctx->cur_stripe > 0); 2037 cur_logical = sctx->stripes[sctx->cur_stripe - 1].logical 2038 + BTRFS_STRIPE_LEN; 2039 2040 /* Don't hold CPU for too long time */ 2041 cond_resched(); 2042 } 2043 btrfs_release_path(&path); 2044 return ret; 2045 } 2046 2047 /* Calculate the full stripe length for simple stripe based profiles */ 2048 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map) 2049 { 2050 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2051 BTRFS_BLOCK_GROUP_RAID10)); 2052 2053 return (map->num_stripes / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT; 2054 } 2055 2056 /* Get the logical bytenr for the stripe */ 2057 static u64 simple_stripe_get_logical(struct map_lookup *map, 2058 struct btrfs_block_group *bg, 2059 int stripe_index) 2060 { 2061 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2062 BTRFS_BLOCK_GROUP_RAID10)); 2063 ASSERT(stripe_index < map->num_stripes); 2064 2065 /* 2066 * (stripe_index / sub_stripes) gives how many data stripes we need to 2067 * skip. 2068 */ 2069 return ((stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT) + 2070 bg->start; 2071 } 2072 2073 /* Get the mirror number for the stripe */ 2074 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index) 2075 { 2076 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2077 BTRFS_BLOCK_GROUP_RAID10)); 2078 ASSERT(stripe_index < map->num_stripes); 2079 2080 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 2081 return stripe_index % map->sub_stripes + 1; 2082 } 2083 2084 static int scrub_simple_stripe(struct scrub_ctx *sctx, 2085 struct btrfs_block_group *bg, 2086 struct map_lookup *map, 2087 struct btrfs_device *device, 2088 int stripe_index) 2089 { 2090 const u64 logical_increment = simple_stripe_full_stripe_len(map); 2091 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 2092 const u64 orig_physical = map->stripes[stripe_index].physical; 2093 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 2094 u64 cur_logical = orig_logical; 2095 u64 cur_physical = orig_physical; 2096 int ret = 0; 2097 2098 while (cur_logical < bg->start + bg->length) { 2099 /* 2100 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 2101 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 2102 * this stripe. 2103 */ 2104 ret = scrub_simple_mirror(sctx, bg, map, cur_logical, 2105 BTRFS_STRIPE_LEN, device, cur_physical, 2106 mirror_num); 2107 if (ret) 2108 return ret; 2109 /* Skip to next stripe which belongs to the target device */ 2110 cur_logical += logical_increment; 2111 /* For physical offset, we just go to next stripe */ 2112 cur_physical += BTRFS_STRIPE_LEN; 2113 } 2114 return ret; 2115 } 2116 2117 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2118 struct btrfs_block_group *bg, 2119 struct extent_map *em, 2120 struct btrfs_device *scrub_dev, 2121 int stripe_index) 2122 { 2123 struct btrfs_fs_info *fs_info = sctx->fs_info; 2124 struct map_lookup *map = em->map_lookup; 2125 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 2126 const u64 chunk_logical = bg->start; 2127 int ret; 2128 int ret2; 2129 u64 physical = map->stripes[stripe_index].physical; 2130 const u64 dev_stripe_len = btrfs_calc_stripe_length(em); 2131 const u64 physical_end = physical + dev_stripe_len; 2132 u64 logical; 2133 u64 logic_end; 2134 /* The logical increment after finishing one stripe */ 2135 u64 increment; 2136 /* Offset inside the chunk */ 2137 u64 offset; 2138 u64 stripe_logical; 2139 int stop_loop = 0; 2140 2141 scrub_blocked_if_needed(fs_info); 2142 2143 if (sctx->is_dev_replace && 2144 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 2145 mutex_lock(&sctx->wr_lock); 2146 sctx->write_pointer = physical; 2147 mutex_unlock(&sctx->wr_lock); 2148 } 2149 2150 /* Prepare the extra data stripes used by RAID56. */ 2151 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2152 ASSERT(sctx->raid56_data_stripes == NULL); 2153 2154 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), 2155 sizeof(struct scrub_stripe), 2156 GFP_KERNEL); 2157 if (!sctx->raid56_data_stripes) { 2158 ret = -ENOMEM; 2159 goto out; 2160 } 2161 for (int i = 0; i < nr_data_stripes(map); i++) { 2162 ret = init_scrub_stripe(fs_info, 2163 &sctx->raid56_data_stripes[i]); 2164 if (ret < 0) 2165 goto out; 2166 sctx->raid56_data_stripes[i].bg = bg; 2167 sctx->raid56_data_stripes[i].sctx = sctx; 2168 } 2169 } 2170 /* 2171 * There used to be a big double loop to handle all profiles using the 2172 * same routine, which grows larger and more gross over time. 2173 * 2174 * So here we handle each profile differently, so simpler profiles 2175 * have simpler scrubbing function. 2176 */ 2177 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 2178 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2179 /* 2180 * Above check rules out all complex profile, the remaining 2181 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 2182 * mirrored duplication without stripe. 2183 * 2184 * Only @physical and @mirror_num needs to calculated using 2185 * @stripe_index. 2186 */ 2187 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length, 2188 scrub_dev, map->stripes[stripe_index].physical, 2189 stripe_index + 1); 2190 offset = 0; 2191 goto out; 2192 } 2193 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 2194 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); 2195 offset = (stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT; 2196 goto out; 2197 } 2198 2199 /* Only RAID56 goes through the old code */ 2200 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 2201 ret = 0; 2202 2203 /* Calculate the logical end of the stripe */ 2204 get_raid56_logic_offset(physical_end, stripe_index, 2205 map, &logic_end, NULL); 2206 logic_end += chunk_logical; 2207 2208 /* Initialize @offset in case we need to go to out: label */ 2209 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 2210 increment = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT; 2211 2212 /* 2213 * Due to the rotation, for RAID56 it's better to iterate each stripe 2214 * using their physical offset. 2215 */ 2216 while (physical < physical_end) { 2217 ret = get_raid56_logic_offset(physical, stripe_index, map, 2218 &logical, &stripe_logical); 2219 logical += chunk_logical; 2220 if (ret) { 2221 /* it is parity strip */ 2222 stripe_logical += chunk_logical; 2223 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, 2224 map, stripe_logical); 2225 if (ret) 2226 goto out; 2227 goto next; 2228 } 2229 2230 /* 2231 * Now we're at a data stripe, scrub each extents in the range. 2232 * 2233 * At this stage, if we ignore the repair part, inside each data 2234 * stripe it is no different than SINGLE profile. 2235 * We can reuse scrub_simple_mirror() here, as the repair part 2236 * is still based on @mirror_num. 2237 */ 2238 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN, 2239 scrub_dev, physical, 1); 2240 if (ret < 0) 2241 goto out; 2242 next: 2243 logical += increment; 2244 physical += BTRFS_STRIPE_LEN; 2245 spin_lock(&sctx->stat_lock); 2246 if (stop_loop) 2247 sctx->stat.last_physical = 2248 map->stripes[stripe_index].physical + dev_stripe_len; 2249 else 2250 sctx->stat.last_physical = physical; 2251 spin_unlock(&sctx->stat_lock); 2252 if (stop_loop) 2253 break; 2254 } 2255 out: 2256 ret2 = flush_scrub_stripes(sctx); 2257 if (!ret2) 2258 ret = ret2; 2259 if (sctx->raid56_data_stripes) { 2260 for (int i = 0; i < nr_data_stripes(map); i++) 2261 release_scrub_stripe(&sctx->raid56_data_stripes[i]); 2262 kfree(sctx->raid56_data_stripes); 2263 sctx->raid56_data_stripes = NULL; 2264 } 2265 2266 if (sctx->is_dev_replace && ret >= 0) { 2267 int ret2; 2268 2269 ret2 = sync_write_pointer_for_zoned(sctx, 2270 chunk_logical + offset, 2271 map->stripes[stripe_index].physical, 2272 physical_end); 2273 if (ret2) 2274 ret = ret2; 2275 } 2276 2277 return ret < 0 ? ret : 0; 2278 } 2279 2280 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2281 struct btrfs_block_group *bg, 2282 struct btrfs_device *scrub_dev, 2283 u64 dev_offset, 2284 u64 dev_extent_len) 2285 { 2286 struct btrfs_fs_info *fs_info = sctx->fs_info; 2287 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2288 struct map_lookup *map; 2289 struct extent_map *em; 2290 int i; 2291 int ret = 0; 2292 2293 read_lock(&map_tree->lock); 2294 em = lookup_extent_mapping(map_tree, bg->start, bg->length); 2295 read_unlock(&map_tree->lock); 2296 2297 if (!em) { 2298 /* 2299 * Might have been an unused block group deleted by the cleaner 2300 * kthread or relocation. 2301 */ 2302 spin_lock(&bg->lock); 2303 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) 2304 ret = -EINVAL; 2305 spin_unlock(&bg->lock); 2306 2307 return ret; 2308 } 2309 if (em->start != bg->start) 2310 goto out; 2311 if (em->len < dev_extent_len) 2312 goto out; 2313 2314 map = em->map_lookup; 2315 for (i = 0; i < map->num_stripes; ++i) { 2316 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2317 map->stripes[i].physical == dev_offset) { 2318 ret = scrub_stripe(sctx, bg, em, scrub_dev, i); 2319 if (ret) 2320 goto out; 2321 } 2322 } 2323 out: 2324 free_extent_map(em); 2325 2326 return ret; 2327 } 2328 2329 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 2330 struct btrfs_block_group *cache) 2331 { 2332 struct btrfs_fs_info *fs_info = cache->fs_info; 2333 struct btrfs_trans_handle *trans; 2334 2335 if (!btrfs_is_zoned(fs_info)) 2336 return 0; 2337 2338 btrfs_wait_block_group_reservations(cache); 2339 btrfs_wait_nocow_writers(cache); 2340 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 2341 2342 trans = btrfs_join_transaction(root); 2343 if (IS_ERR(trans)) 2344 return PTR_ERR(trans); 2345 return btrfs_commit_transaction(trans); 2346 } 2347 2348 static noinline_for_stack 2349 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2350 struct btrfs_device *scrub_dev, u64 start, u64 end) 2351 { 2352 struct btrfs_dev_extent *dev_extent = NULL; 2353 struct btrfs_path *path; 2354 struct btrfs_fs_info *fs_info = sctx->fs_info; 2355 struct btrfs_root *root = fs_info->dev_root; 2356 u64 chunk_offset; 2357 int ret = 0; 2358 int ro_set; 2359 int slot; 2360 struct extent_buffer *l; 2361 struct btrfs_key key; 2362 struct btrfs_key found_key; 2363 struct btrfs_block_group *cache; 2364 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2365 2366 path = btrfs_alloc_path(); 2367 if (!path) 2368 return -ENOMEM; 2369 2370 path->reada = READA_FORWARD; 2371 path->search_commit_root = 1; 2372 path->skip_locking = 1; 2373 2374 key.objectid = scrub_dev->devid; 2375 key.offset = 0ull; 2376 key.type = BTRFS_DEV_EXTENT_KEY; 2377 2378 while (1) { 2379 u64 dev_extent_len; 2380 2381 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2382 if (ret < 0) 2383 break; 2384 if (ret > 0) { 2385 if (path->slots[0] >= 2386 btrfs_header_nritems(path->nodes[0])) { 2387 ret = btrfs_next_leaf(root, path); 2388 if (ret < 0) 2389 break; 2390 if (ret > 0) { 2391 ret = 0; 2392 break; 2393 } 2394 } else { 2395 ret = 0; 2396 } 2397 } 2398 2399 l = path->nodes[0]; 2400 slot = path->slots[0]; 2401 2402 btrfs_item_key_to_cpu(l, &found_key, slot); 2403 2404 if (found_key.objectid != scrub_dev->devid) 2405 break; 2406 2407 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 2408 break; 2409 2410 if (found_key.offset >= end) 2411 break; 2412 2413 if (found_key.offset < key.offset) 2414 break; 2415 2416 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2417 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 2418 2419 if (found_key.offset + dev_extent_len <= start) 2420 goto skip; 2421 2422 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2423 2424 /* 2425 * get a reference on the corresponding block group to prevent 2426 * the chunk from going away while we scrub it 2427 */ 2428 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2429 2430 /* some chunks are removed but not committed to disk yet, 2431 * continue scrubbing */ 2432 if (!cache) 2433 goto skip; 2434 2435 ASSERT(cache->start <= chunk_offset); 2436 /* 2437 * We are using the commit root to search for device extents, so 2438 * that means we could have found a device extent item from a 2439 * block group that was deleted in the current transaction. The 2440 * logical start offset of the deleted block group, stored at 2441 * @chunk_offset, might be part of the logical address range of 2442 * a new block group (which uses different physical extents). 2443 * In this case btrfs_lookup_block_group() has returned the new 2444 * block group, and its start address is less than @chunk_offset. 2445 * 2446 * We skip such new block groups, because it's pointless to 2447 * process them, as we won't find their extents because we search 2448 * for them using the commit root of the extent tree. For a device 2449 * replace it's also fine to skip it, we won't miss copying them 2450 * to the target device because we have the write duplication 2451 * setup through the regular write path (by btrfs_map_block()), 2452 * and we have committed a transaction when we started the device 2453 * replace, right after setting up the device replace state. 2454 */ 2455 if (cache->start < chunk_offset) { 2456 btrfs_put_block_group(cache); 2457 goto skip; 2458 } 2459 2460 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 2461 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { 2462 btrfs_put_block_group(cache); 2463 goto skip; 2464 } 2465 } 2466 2467 /* 2468 * Make sure that while we are scrubbing the corresponding block 2469 * group doesn't get its logical address and its device extents 2470 * reused for another block group, which can possibly be of a 2471 * different type and different profile. We do this to prevent 2472 * false error detections and crashes due to bogus attempts to 2473 * repair extents. 2474 */ 2475 spin_lock(&cache->lock); 2476 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { 2477 spin_unlock(&cache->lock); 2478 btrfs_put_block_group(cache); 2479 goto skip; 2480 } 2481 btrfs_freeze_block_group(cache); 2482 spin_unlock(&cache->lock); 2483 2484 /* 2485 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 2486 * to avoid deadlock caused by: 2487 * btrfs_inc_block_group_ro() 2488 * -> btrfs_wait_for_commit() 2489 * -> btrfs_commit_transaction() 2490 * -> btrfs_scrub_pause() 2491 */ 2492 scrub_pause_on(fs_info); 2493 2494 /* 2495 * Don't do chunk preallocation for scrub. 2496 * 2497 * This is especially important for SYSTEM bgs, or we can hit 2498 * -EFBIG from btrfs_finish_chunk_alloc() like: 2499 * 1. The only SYSTEM bg is marked RO. 2500 * Since SYSTEM bg is small, that's pretty common. 2501 * 2. New SYSTEM bg will be allocated 2502 * Due to regular version will allocate new chunk. 2503 * 3. New SYSTEM bg is empty and will get cleaned up 2504 * Before cleanup really happens, it's marked RO again. 2505 * 4. Empty SYSTEM bg get scrubbed 2506 * We go back to 2. 2507 * 2508 * This can easily boost the amount of SYSTEM chunks if cleaner 2509 * thread can't be triggered fast enough, and use up all space 2510 * of btrfs_super_block::sys_chunk_array 2511 * 2512 * While for dev replace, we need to try our best to mark block 2513 * group RO, to prevent race between: 2514 * - Write duplication 2515 * Contains latest data 2516 * - Scrub copy 2517 * Contains data from commit tree 2518 * 2519 * If target block group is not marked RO, nocow writes can 2520 * be overwritten by scrub copy, causing data corruption. 2521 * So for dev-replace, it's not allowed to continue if a block 2522 * group is not RO. 2523 */ 2524 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 2525 if (!ret && sctx->is_dev_replace) { 2526 ret = finish_extent_writes_for_zoned(root, cache); 2527 if (ret) { 2528 btrfs_dec_block_group_ro(cache); 2529 scrub_pause_off(fs_info); 2530 btrfs_put_block_group(cache); 2531 break; 2532 } 2533 } 2534 2535 if (ret == 0) { 2536 ro_set = 1; 2537 } else if (ret == -ENOSPC && !sctx->is_dev_replace && 2538 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { 2539 /* 2540 * btrfs_inc_block_group_ro return -ENOSPC when it 2541 * failed in creating new chunk for metadata. 2542 * It is not a problem for scrub, because 2543 * metadata are always cowed, and our scrub paused 2544 * commit_transactions. 2545 * 2546 * For RAID56 chunks, we have to mark them read-only 2547 * for scrub, as later we would use our own cache 2548 * out of RAID56 realm. 2549 * Thus we want the RAID56 bg to be marked RO to 2550 * prevent RMW from screwing up out cache. 2551 */ 2552 ro_set = 0; 2553 } else if (ret == -ETXTBSY) { 2554 btrfs_warn(fs_info, 2555 "skipping scrub of block group %llu due to active swapfile", 2556 cache->start); 2557 scrub_pause_off(fs_info); 2558 ret = 0; 2559 goto skip_unfreeze; 2560 } else { 2561 btrfs_warn(fs_info, 2562 "failed setting block group ro: %d", ret); 2563 btrfs_unfreeze_block_group(cache); 2564 btrfs_put_block_group(cache); 2565 scrub_pause_off(fs_info); 2566 break; 2567 } 2568 2569 /* 2570 * Now the target block is marked RO, wait for nocow writes to 2571 * finish before dev-replace. 2572 * COW is fine, as COW never overwrites extents in commit tree. 2573 */ 2574 if (sctx->is_dev_replace) { 2575 btrfs_wait_nocow_writers(cache); 2576 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 2577 cache->length); 2578 } 2579 2580 scrub_pause_off(fs_info); 2581 down_write(&dev_replace->rwsem); 2582 dev_replace->cursor_right = found_key.offset + dev_extent_len; 2583 dev_replace->cursor_left = found_key.offset; 2584 dev_replace->item_needs_writeback = 1; 2585 up_write(&dev_replace->rwsem); 2586 2587 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 2588 dev_extent_len); 2589 if (sctx->is_dev_replace && 2590 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 2591 cache, found_key.offset)) 2592 ro_set = 0; 2593 2594 down_write(&dev_replace->rwsem); 2595 dev_replace->cursor_left = dev_replace->cursor_right; 2596 dev_replace->item_needs_writeback = 1; 2597 up_write(&dev_replace->rwsem); 2598 2599 if (ro_set) 2600 btrfs_dec_block_group_ro(cache); 2601 2602 /* 2603 * We might have prevented the cleaner kthread from deleting 2604 * this block group if it was already unused because we raced 2605 * and set it to RO mode first. So add it back to the unused 2606 * list, otherwise it might not ever be deleted unless a manual 2607 * balance is triggered or it becomes used and unused again. 2608 */ 2609 spin_lock(&cache->lock); 2610 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && 2611 !cache->ro && cache->reserved == 0 && cache->used == 0) { 2612 spin_unlock(&cache->lock); 2613 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 2614 btrfs_discard_queue_work(&fs_info->discard_ctl, 2615 cache); 2616 else 2617 btrfs_mark_bg_unused(cache); 2618 } else { 2619 spin_unlock(&cache->lock); 2620 } 2621 skip_unfreeze: 2622 btrfs_unfreeze_block_group(cache); 2623 btrfs_put_block_group(cache); 2624 if (ret) 2625 break; 2626 if (sctx->is_dev_replace && 2627 atomic64_read(&dev_replace->num_write_errors) > 0) { 2628 ret = -EIO; 2629 break; 2630 } 2631 if (sctx->stat.malloc_errors > 0) { 2632 ret = -ENOMEM; 2633 break; 2634 } 2635 skip: 2636 key.offset = found_key.offset + dev_extent_len; 2637 btrfs_release_path(path); 2638 } 2639 2640 btrfs_free_path(path); 2641 2642 return ret; 2643 } 2644 2645 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, 2646 struct page *page, u64 physical, u64 generation) 2647 { 2648 struct btrfs_fs_info *fs_info = sctx->fs_info; 2649 struct bio_vec bvec; 2650 struct bio bio; 2651 struct btrfs_super_block *sb = page_address(page); 2652 int ret; 2653 2654 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ); 2655 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT; 2656 __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0); 2657 ret = submit_bio_wait(&bio); 2658 bio_uninit(&bio); 2659 2660 if (ret < 0) 2661 return ret; 2662 ret = btrfs_check_super_csum(fs_info, sb); 2663 if (ret != 0) { 2664 btrfs_err_rl(fs_info, 2665 "super block at physical %llu devid %llu has bad csum", 2666 physical, dev->devid); 2667 return -EIO; 2668 } 2669 if (btrfs_super_generation(sb) != generation) { 2670 btrfs_err_rl(fs_info, 2671 "super block at physical %llu devid %llu has bad generation %llu expect %llu", 2672 physical, dev->devid, 2673 btrfs_super_generation(sb), generation); 2674 return -EUCLEAN; 2675 } 2676 2677 return btrfs_validate_super(fs_info, sb, -1); 2678 } 2679 2680 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2681 struct btrfs_device *scrub_dev) 2682 { 2683 int i; 2684 u64 bytenr; 2685 u64 gen; 2686 int ret = 0; 2687 struct page *page; 2688 struct btrfs_fs_info *fs_info = sctx->fs_info; 2689 2690 if (BTRFS_FS_ERROR(fs_info)) 2691 return -EROFS; 2692 2693 page = alloc_page(GFP_KERNEL); 2694 if (!page) { 2695 spin_lock(&sctx->stat_lock); 2696 sctx->stat.malloc_errors++; 2697 spin_unlock(&sctx->stat_lock); 2698 return -ENOMEM; 2699 } 2700 2701 /* Seed devices of a new filesystem has their own generation. */ 2702 if (scrub_dev->fs_devices != fs_info->fs_devices) 2703 gen = scrub_dev->generation; 2704 else 2705 gen = fs_info->last_trans_committed; 2706 2707 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2708 bytenr = btrfs_sb_offset(i); 2709 if (bytenr + BTRFS_SUPER_INFO_SIZE > 2710 scrub_dev->commit_total_bytes) 2711 break; 2712 if (!btrfs_check_super_location(scrub_dev, bytenr)) 2713 continue; 2714 2715 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); 2716 if (ret) { 2717 spin_lock(&sctx->stat_lock); 2718 sctx->stat.super_errors++; 2719 spin_unlock(&sctx->stat_lock); 2720 } 2721 } 2722 __free_page(page); 2723 return 0; 2724 } 2725 2726 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 2727 { 2728 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 2729 &fs_info->scrub_lock)) { 2730 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 2731 struct workqueue_struct *scrub_wr_comp = 2732 fs_info->scrub_wr_completion_workers; 2733 2734 fs_info->scrub_workers = NULL; 2735 fs_info->scrub_wr_completion_workers = NULL; 2736 mutex_unlock(&fs_info->scrub_lock); 2737 2738 if (scrub_workers) 2739 destroy_workqueue(scrub_workers); 2740 if (scrub_wr_comp) 2741 destroy_workqueue(scrub_wr_comp); 2742 } 2743 } 2744 2745 /* 2746 * get a reference count on fs_info->scrub_workers. start worker if necessary 2747 */ 2748 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 2749 int is_dev_replace) 2750 { 2751 struct workqueue_struct *scrub_workers = NULL; 2752 struct workqueue_struct *scrub_wr_comp = NULL; 2753 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 2754 int max_active = fs_info->thread_pool_size; 2755 int ret = -ENOMEM; 2756 2757 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 2758 return 0; 2759 2760 scrub_workers = alloc_workqueue("btrfs-scrub", flags, 2761 is_dev_replace ? 1 : max_active); 2762 if (!scrub_workers) 2763 goto fail_scrub_workers; 2764 2765 scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active); 2766 if (!scrub_wr_comp) 2767 goto fail_scrub_wr_completion_workers; 2768 2769 mutex_lock(&fs_info->scrub_lock); 2770 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 2771 ASSERT(fs_info->scrub_workers == NULL && 2772 fs_info->scrub_wr_completion_workers == NULL); 2773 fs_info->scrub_workers = scrub_workers; 2774 fs_info->scrub_wr_completion_workers = scrub_wr_comp; 2775 refcount_set(&fs_info->scrub_workers_refcnt, 1); 2776 mutex_unlock(&fs_info->scrub_lock); 2777 return 0; 2778 } 2779 /* Other thread raced in and created the workers for us */ 2780 refcount_inc(&fs_info->scrub_workers_refcnt); 2781 mutex_unlock(&fs_info->scrub_lock); 2782 2783 ret = 0; 2784 2785 destroy_workqueue(scrub_wr_comp); 2786 fail_scrub_wr_completion_workers: 2787 destroy_workqueue(scrub_workers); 2788 fail_scrub_workers: 2789 return ret; 2790 } 2791 2792 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2793 u64 end, struct btrfs_scrub_progress *progress, 2794 int readonly, int is_dev_replace) 2795 { 2796 struct btrfs_dev_lookup_args args = { .devid = devid }; 2797 struct scrub_ctx *sctx; 2798 int ret; 2799 struct btrfs_device *dev; 2800 unsigned int nofs_flag; 2801 bool need_commit = false; 2802 2803 if (btrfs_fs_closing(fs_info)) 2804 return -EAGAIN; 2805 2806 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ 2807 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); 2808 2809 /* 2810 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible 2811 * value (max nodesize / min sectorsize), thus nodesize should always 2812 * be fine. 2813 */ 2814 ASSERT(fs_info->nodesize <= 2815 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); 2816 2817 /* Allocate outside of device_list_mutex */ 2818 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 2819 if (IS_ERR(sctx)) 2820 return PTR_ERR(sctx); 2821 2822 ret = scrub_workers_get(fs_info, is_dev_replace); 2823 if (ret) 2824 goto out_free_ctx; 2825 2826 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2827 dev = btrfs_find_device(fs_info->fs_devices, &args); 2828 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 2829 !is_dev_replace)) { 2830 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2831 ret = -ENODEV; 2832 goto out; 2833 } 2834 2835 if (!is_dev_replace && !readonly && 2836 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2837 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2838 btrfs_err_in_rcu(fs_info, 2839 "scrub on devid %llu: filesystem on %s is not writable", 2840 devid, btrfs_dev_name(dev)); 2841 ret = -EROFS; 2842 goto out; 2843 } 2844 2845 mutex_lock(&fs_info->scrub_lock); 2846 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 2847 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 2848 mutex_unlock(&fs_info->scrub_lock); 2849 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2850 ret = -EIO; 2851 goto out; 2852 } 2853 2854 down_read(&fs_info->dev_replace.rwsem); 2855 if (dev->scrub_ctx || 2856 (!is_dev_replace && 2857 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2858 up_read(&fs_info->dev_replace.rwsem); 2859 mutex_unlock(&fs_info->scrub_lock); 2860 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2861 ret = -EINPROGRESS; 2862 goto out; 2863 } 2864 up_read(&fs_info->dev_replace.rwsem); 2865 2866 sctx->readonly = readonly; 2867 dev->scrub_ctx = sctx; 2868 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2869 2870 /* 2871 * checking @scrub_pause_req here, we can avoid 2872 * race between committing transaction and scrubbing. 2873 */ 2874 __scrub_blocked_if_needed(fs_info); 2875 atomic_inc(&fs_info->scrubs_running); 2876 mutex_unlock(&fs_info->scrub_lock); 2877 2878 /* 2879 * In order to avoid deadlock with reclaim when there is a transaction 2880 * trying to pause scrub, make sure we use GFP_NOFS for all the 2881 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 2882 * invoked by our callees. The pausing request is done when the 2883 * transaction commit starts, and it blocks the transaction until scrub 2884 * is paused (done at specific points at scrub_stripe() or right above 2885 * before incrementing fs_info->scrubs_running). 2886 */ 2887 nofs_flag = memalloc_nofs_save(); 2888 if (!is_dev_replace) { 2889 u64 old_super_errors; 2890 2891 spin_lock(&sctx->stat_lock); 2892 old_super_errors = sctx->stat.super_errors; 2893 spin_unlock(&sctx->stat_lock); 2894 2895 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 2896 /* 2897 * by holding device list mutex, we can 2898 * kick off writing super in log tree sync. 2899 */ 2900 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2901 ret = scrub_supers(sctx, dev); 2902 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2903 2904 spin_lock(&sctx->stat_lock); 2905 /* 2906 * Super block errors found, but we can not commit transaction 2907 * at current context, since btrfs_commit_transaction() needs 2908 * to pause the current running scrub (hold by ourselves). 2909 */ 2910 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) 2911 need_commit = true; 2912 spin_unlock(&sctx->stat_lock); 2913 } 2914 2915 if (!ret) 2916 ret = scrub_enumerate_chunks(sctx, dev, start, end); 2917 memalloc_nofs_restore(nofs_flag); 2918 2919 atomic_dec(&fs_info->scrubs_running); 2920 wake_up(&fs_info->scrub_pause_wait); 2921 2922 if (progress) 2923 memcpy(progress, &sctx->stat, sizeof(*progress)); 2924 2925 if (!is_dev_replace) 2926 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 2927 ret ? "not finished" : "finished", devid, ret); 2928 2929 mutex_lock(&fs_info->scrub_lock); 2930 dev->scrub_ctx = NULL; 2931 mutex_unlock(&fs_info->scrub_lock); 2932 2933 scrub_workers_put(fs_info); 2934 scrub_put_ctx(sctx); 2935 2936 /* 2937 * We found some super block errors before, now try to force a 2938 * transaction commit, as scrub has finished. 2939 */ 2940 if (need_commit) { 2941 struct btrfs_trans_handle *trans; 2942 2943 trans = btrfs_start_transaction(fs_info->tree_root, 0); 2944 if (IS_ERR(trans)) { 2945 ret = PTR_ERR(trans); 2946 btrfs_err(fs_info, 2947 "scrub: failed to start transaction to fix super block errors: %d", ret); 2948 return ret; 2949 } 2950 ret = btrfs_commit_transaction(trans); 2951 if (ret < 0) 2952 btrfs_err(fs_info, 2953 "scrub: failed to commit transaction to fix super block errors: %d", ret); 2954 } 2955 return ret; 2956 out: 2957 scrub_workers_put(fs_info); 2958 out_free_ctx: 2959 scrub_free_ctx(sctx); 2960 2961 return ret; 2962 } 2963 2964 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 2965 { 2966 mutex_lock(&fs_info->scrub_lock); 2967 atomic_inc(&fs_info->scrub_pause_req); 2968 while (atomic_read(&fs_info->scrubs_paused) != 2969 atomic_read(&fs_info->scrubs_running)) { 2970 mutex_unlock(&fs_info->scrub_lock); 2971 wait_event(fs_info->scrub_pause_wait, 2972 atomic_read(&fs_info->scrubs_paused) == 2973 atomic_read(&fs_info->scrubs_running)); 2974 mutex_lock(&fs_info->scrub_lock); 2975 } 2976 mutex_unlock(&fs_info->scrub_lock); 2977 } 2978 2979 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 2980 { 2981 atomic_dec(&fs_info->scrub_pause_req); 2982 wake_up(&fs_info->scrub_pause_wait); 2983 } 2984 2985 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 2986 { 2987 mutex_lock(&fs_info->scrub_lock); 2988 if (!atomic_read(&fs_info->scrubs_running)) { 2989 mutex_unlock(&fs_info->scrub_lock); 2990 return -ENOTCONN; 2991 } 2992 2993 atomic_inc(&fs_info->scrub_cancel_req); 2994 while (atomic_read(&fs_info->scrubs_running)) { 2995 mutex_unlock(&fs_info->scrub_lock); 2996 wait_event(fs_info->scrub_pause_wait, 2997 atomic_read(&fs_info->scrubs_running) == 0); 2998 mutex_lock(&fs_info->scrub_lock); 2999 } 3000 atomic_dec(&fs_info->scrub_cancel_req); 3001 mutex_unlock(&fs_info->scrub_lock); 3002 3003 return 0; 3004 } 3005 3006 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 3007 { 3008 struct btrfs_fs_info *fs_info = dev->fs_info; 3009 struct scrub_ctx *sctx; 3010 3011 mutex_lock(&fs_info->scrub_lock); 3012 sctx = dev->scrub_ctx; 3013 if (!sctx) { 3014 mutex_unlock(&fs_info->scrub_lock); 3015 return -ENOTCONN; 3016 } 3017 atomic_inc(&sctx->cancel_req); 3018 while (dev->scrub_ctx) { 3019 mutex_unlock(&fs_info->scrub_lock); 3020 wait_event(fs_info->scrub_pause_wait, 3021 dev->scrub_ctx == NULL); 3022 mutex_lock(&fs_info->scrub_lock); 3023 } 3024 mutex_unlock(&fs_info->scrub_lock); 3025 3026 return 0; 3027 } 3028 3029 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3030 struct btrfs_scrub_progress *progress) 3031 { 3032 struct btrfs_dev_lookup_args args = { .devid = devid }; 3033 struct btrfs_device *dev; 3034 struct scrub_ctx *sctx = NULL; 3035 3036 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3037 dev = btrfs_find_device(fs_info->fs_devices, &args); 3038 if (dev) 3039 sctx = dev->scrub_ctx; 3040 if (sctx) 3041 memcpy(progress, &sctx->stat, sizeof(*progress)); 3042 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3043 3044 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3045 } 3046