xref: /openbmc/linux/fs/btrfs/scrub.c (revision b34e08d5)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_page {
67 	struct scrub_block	*sblock;
68 	struct page		*page;
69 	struct btrfs_device	*dev;
70 	u64			flags;  /* extent flags */
71 	u64			generation;
72 	u64			logical;
73 	u64			physical;
74 	u64			physical_for_dev_replace;
75 	atomic_t		ref_count;
76 	struct {
77 		unsigned int	mirror_num:8;
78 		unsigned int	have_csum:1;
79 		unsigned int	io_error:1;
80 	};
81 	u8			csum[BTRFS_CSUM_SIZE];
82 };
83 
84 struct scrub_bio {
85 	int			index;
86 	struct scrub_ctx	*sctx;
87 	struct btrfs_device	*dev;
88 	struct bio		*bio;
89 	int			err;
90 	u64			logical;
91 	u64			physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 	int			page_count;
98 	int			next_free;
99 	struct btrfs_work	work;
100 };
101 
102 struct scrub_block {
103 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 	int			page_count;
105 	atomic_t		outstanding_pages;
106 	atomic_t		ref_count; /* free mem on transition to zero */
107 	struct scrub_ctx	*sctx;
108 	struct {
109 		unsigned int	header_error:1;
110 		unsigned int	checksum_error:1;
111 		unsigned int	no_io_error_seen:1;
112 		unsigned int	generation_error:1; /* also sets header_error */
113 	};
114 };
115 
116 struct scrub_wr_ctx {
117 	struct scrub_bio *wr_curr_bio;
118 	struct btrfs_device *tgtdev;
119 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 	atomic_t flush_all_writes;
121 	struct mutex wr_lock;
122 };
123 
124 struct scrub_ctx {
125 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126 	struct btrfs_root	*dev_root;
127 	int			first_free;
128 	int			curr;
129 	atomic_t		bios_in_flight;
130 	atomic_t		workers_pending;
131 	spinlock_t		list_lock;
132 	wait_queue_head_t	list_wait;
133 	u16			csum_size;
134 	struct list_head	csum_list;
135 	atomic_t		cancel_req;
136 	int			readonly;
137 	int			pages_per_rd_bio;
138 	u32			sectorsize;
139 	u32			nodesize;
140 	u32			leafsize;
141 
142 	int			is_dev_replace;
143 	struct scrub_wr_ctx	wr_ctx;
144 
145 	/*
146 	 * statistics
147 	 */
148 	struct btrfs_scrub_progress stat;
149 	spinlock_t		stat_lock;
150 };
151 
152 struct scrub_fixup_nodatasum {
153 	struct scrub_ctx	*sctx;
154 	struct btrfs_device	*dev;
155 	u64			logical;
156 	struct btrfs_root	*root;
157 	struct btrfs_work	work;
158 	int			mirror_num;
159 };
160 
161 struct scrub_nocow_inode {
162 	u64			inum;
163 	u64			offset;
164 	u64			root;
165 	struct list_head	list;
166 };
167 
168 struct scrub_copy_nocow_ctx {
169 	struct scrub_ctx	*sctx;
170 	u64			logical;
171 	u64			len;
172 	int			mirror_num;
173 	u64			physical_for_dev_replace;
174 	struct list_head	inodes;
175 	struct btrfs_work	work;
176 };
177 
178 struct scrub_warning {
179 	struct btrfs_path	*path;
180 	u64			extent_item_size;
181 	char			*scratch_buf;
182 	char			*msg_buf;
183 	const char		*errstr;
184 	sector_t		sector;
185 	u64			logical;
186 	struct btrfs_device	*dev;
187 	int			msg_bufsize;
188 	int			scratch_bufsize;
189 };
190 
191 
192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198 				     struct btrfs_fs_info *fs_info,
199 				     struct scrub_block *original_sblock,
200 				     u64 length, u64 logical,
201 				     struct scrub_block *sblocks_for_recheck);
202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203 				struct scrub_block *sblock, int is_metadata,
204 				int have_csum, u8 *csum, u64 generation,
205 				u16 csum_size);
206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207 					 struct scrub_block *sblock,
208 					 int is_metadata, int have_csum,
209 					 const u8 *csum, u64 generation,
210 					 u16 csum_size);
211 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212 					     struct scrub_block *sblock_good,
213 					     int force_write);
214 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
215 					    struct scrub_block *sblock_good,
216 					    int page_num, int force_write);
217 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
218 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
219 					   int page_num);
220 static int scrub_checksum_data(struct scrub_block *sblock);
221 static int scrub_checksum_tree_block(struct scrub_block *sblock);
222 static int scrub_checksum_super(struct scrub_block *sblock);
223 static void scrub_block_get(struct scrub_block *sblock);
224 static void scrub_block_put(struct scrub_block *sblock);
225 static void scrub_page_get(struct scrub_page *spage);
226 static void scrub_page_put(struct scrub_page *spage);
227 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
228 				    struct scrub_page *spage);
229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230 		       u64 physical, struct btrfs_device *dev, u64 flags,
231 		       u64 gen, int mirror_num, u8 *csum, int force,
232 		       u64 physical_for_dev_replace);
233 static void scrub_bio_end_io(struct bio *bio, int err);
234 static void scrub_bio_end_io_worker(struct btrfs_work *work);
235 static void scrub_block_complete(struct scrub_block *sblock);
236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237 			       u64 extent_logical, u64 extent_len,
238 			       u64 *extent_physical,
239 			       struct btrfs_device **extent_dev,
240 			       int *extent_mirror_num);
241 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
242 			      struct scrub_wr_ctx *wr_ctx,
243 			      struct btrfs_fs_info *fs_info,
244 			      struct btrfs_device *dev,
245 			      int is_dev_replace);
246 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 				    struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio, int err);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static int write_page_nocow(struct scrub_ctx *sctx,
253 			    u64 physical_for_dev_replace, struct page *page);
254 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255 				      struct scrub_copy_nocow_ctx *ctx);
256 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
257 			    int mirror_num, u64 physical_for_dev_replace);
258 static void copy_nocow_pages_worker(struct btrfs_work *work);
259 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
260 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
261 
262 
263 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264 {
265 	atomic_inc(&sctx->bios_in_flight);
266 }
267 
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269 {
270 	atomic_dec(&sctx->bios_in_flight);
271 	wake_up(&sctx->list_wait);
272 }
273 
274 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
275 {
276 	while (atomic_read(&fs_info->scrub_pause_req)) {
277 		mutex_unlock(&fs_info->scrub_lock);
278 		wait_event(fs_info->scrub_pause_wait,
279 		   atomic_read(&fs_info->scrub_pause_req) == 0);
280 		mutex_lock(&fs_info->scrub_lock);
281 	}
282 }
283 
284 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
285 {
286 	atomic_inc(&fs_info->scrubs_paused);
287 	wake_up(&fs_info->scrub_pause_wait);
288 
289 	mutex_lock(&fs_info->scrub_lock);
290 	__scrub_blocked_if_needed(fs_info);
291 	atomic_dec(&fs_info->scrubs_paused);
292 	mutex_unlock(&fs_info->scrub_lock);
293 
294 	wake_up(&fs_info->scrub_pause_wait);
295 }
296 
297 /*
298  * used for workers that require transaction commits (i.e., for the
299  * NOCOW case)
300  */
301 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
302 {
303 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
304 
305 	/*
306 	 * increment scrubs_running to prevent cancel requests from
307 	 * completing as long as a worker is running. we must also
308 	 * increment scrubs_paused to prevent deadlocking on pause
309 	 * requests used for transactions commits (as the worker uses a
310 	 * transaction context). it is safe to regard the worker
311 	 * as paused for all matters practical. effectively, we only
312 	 * avoid cancellation requests from completing.
313 	 */
314 	mutex_lock(&fs_info->scrub_lock);
315 	atomic_inc(&fs_info->scrubs_running);
316 	atomic_inc(&fs_info->scrubs_paused);
317 	mutex_unlock(&fs_info->scrub_lock);
318 
319 	/*
320 	 * check if @scrubs_running=@scrubs_paused condition
321 	 * inside wait_event() is not an atomic operation.
322 	 * which means we may inc/dec @scrub_running/paused
323 	 * at any time. Let's wake up @scrub_pause_wait as
324 	 * much as we can to let commit transaction blocked less.
325 	 */
326 	wake_up(&fs_info->scrub_pause_wait);
327 
328 	atomic_inc(&sctx->workers_pending);
329 }
330 
331 /* used for workers that require transaction commits */
332 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
333 {
334 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
335 
336 	/*
337 	 * see scrub_pending_trans_workers_inc() why we're pretending
338 	 * to be paused in the scrub counters
339 	 */
340 	mutex_lock(&fs_info->scrub_lock);
341 	atomic_dec(&fs_info->scrubs_running);
342 	atomic_dec(&fs_info->scrubs_paused);
343 	mutex_unlock(&fs_info->scrub_lock);
344 	atomic_dec(&sctx->workers_pending);
345 	wake_up(&fs_info->scrub_pause_wait);
346 	wake_up(&sctx->list_wait);
347 }
348 
349 static void scrub_free_csums(struct scrub_ctx *sctx)
350 {
351 	while (!list_empty(&sctx->csum_list)) {
352 		struct btrfs_ordered_sum *sum;
353 		sum = list_first_entry(&sctx->csum_list,
354 				       struct btrfs_ordered_sum, list);
355 		list_del(&sum->list);
356 		kfree(sum);
357 	}
358 }
359 
360 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
361 {
362 	int i;
363 
364 	if (!sctx)
365 		return;
366 
367 	scrub_free_wr_ctx(&sctx->wr_ctx);
368 
369 	/* this can happen when scrub is cancelled */
370 	if (sctx->curr != -1) {
371 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
372 
373 		for (i = 0; i < sbio->page_count; i++) {
374 			WARN_ON(!sbio->pagev[i]->page);
375 			scrub_block_put(sbio->pagev[i]->sblock);
376 		}
377 		bio_put(sbio->bio);
378 	}
379 
380 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
381 		struct scrub_bio *sbio = sctx->bios[i];
382 
383 		if (!sbio)
384 			break;
385 		kfree(sbio);
386 	}
387 
388 	scrub_free_csums(sctx);
389 	kfree(sctx);
390 }
391 
392 static noinline_for_stack
393 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
394 {
395 	struct scrub_ctx *sctx;
396 	int		i;
397 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
398 	int pages_per_rd_bio;
399 	int ret;
400 
401 	/*
402 	 * the setting of pages_per_rd_bio is correct for scrub but might
403 	 * be wrong for the dev_replace code where we might read from
404 	 * different devices in the initial huge bios. However, that
405 	 * code is able to correctly handle the case when adding a page
406 	 * to a bio fails.
407 	 */
408 	if (dev->bdev)
409 		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
410 					 bio_get_nr_vecs(dev->bdev));
411 	else
412 		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
413 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
414 	if (!sctx)
415 		goto nomem;
416 	sctx->is_dev_replace = is_dev_replace;
417 	sctx->pages_per_rd_bio = pages_per_rd_bio;
418 	sctx->curr = -1;
419 	sctx->dev_root = dev->dev_root;
420 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
421 		struct scrub_bio *sbio;
422 
423 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
424 		if (!sbio)
425 			goto nomem;
426 		sctx->bios[i] = sbio;
427 
428 		sbio->index = i;
429 		sbio->sctx = sctx;
430 		sbio->page_count = 0;
431 		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
432 				NULL, NULL);
433 
434 		if (i != SCRUB_BIOS_PER_SCTX - 1)
435 			sctx->bios[i]->next_free = i + 1;
436 		else
437 			sctx->bios[i]->next_free = -1;
438 	}
439 	sctx->first_free = 0;
440 	sctx->nodesize = dev->dev_root->nodesize;
441 	sctx->leafsize = dev->dev_root->leafsize;
442 	sctx->sectorsize = dev->dev_root->sectorsize;
443 	atomic_set(&sctx->bios_in_flight, 0);
444 	atomic_set(&sctx->workers_pending, 0);
445 	atomic_set(&sctx->cancel_req, 0);
446 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
447 	INIT_LIST_HEAD(&sctx->csum_list);
448 
449 	spin_lock_init(&sctx->list_lock);
450 	spin_lock_init(&sctx->stat_lock);
451 	init_waitqueue_head(&sctx->list_wait);
452 
453 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
454 				 fs_info->dev_replace.tgtdev, is_dev_replace);
455 	if (ret) {
456 		scrub_free_ctx(sctx);
457 		return ERR_PTR(ret);
458 	}
459 	return sctx;
460 
461 nomem:
462 	scrub_free_ctx(sctx);
463 	return ERR_PTR(-ENOMEM);
464 }
465 
466 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
467 				     void *warn_ctx)
468 {
469 	u64 isize;
470 	u32 nlink;
471 	int ret;
472 	int i;
473 	struct extent_buffer *eb;
474 	struct btrfs_inode_item *inode_item;
475 	struct scrub_warning *swarn = warn_ctx;
476 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
477 	struct inode_fs_paths *ipath = NULL;
478 	struct btrfs_root *local_root;
479 	struct btrfs_key root_key;
480 
481 	root_key.objectid = root;
482 	root_key.type = BTRFS_ROOT_ITEM_KEY;
483 	root_key.offset = (u64)-1;
484 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
485 	if (IS_ERR(local_root)) {
486 		ret = PTR_ERR(local_root);
487 		goto err;
488 	}
489 
490 	ret = inode_item_info(inum, 0, local_root, swarn->path);
491 	if (ret) {
492 		btrfs_release_path(swarn->path);
493 		goto err;
494 	}
495 
496 	eb = swarn->path->nodes[0];
497 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
498 					struct btrfs_inode_item);
499 	isize = btrfs_inode_size(eb, inode_item);
500 	nlink = btrfs_inode_nlink(eb, inode_item);
501 	btrfs_release_path(swarn->path);
502 
503 	ipath = init_ipath(4096, local_root, swarn->path);
504 	if (IS_ERR(ipath)) {
505 		ret = PTR_ERR(ipath);
506 		ipath = NULL;
507 		goto err;
508 	}
509 	ret = paths_from_inode(inum, ipath);
510 
511 	if (ret < 0)
512 		goto err;
513 
514 	/*
515 	 * we deliberately ignore the bit ipath might have been too small to
516 	 * hold all of the paths here
517 	 */
518 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
519 		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
520 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
521 			"length %llu, links %u (path: %s)\n", swarn->errstr,
522 			swarn->logical, rcu_str_deref(swarn->dev->name),
523 			(unsigned long long)swarn->sector, root, inum, offset,
524 			min(isize - offset, (u64)PAGE_SIZE), nlink,
525 			(char *)(unsigned long)ipath->fspath->val[i]);
526 
527 	free_ipath(ipath);
528 	return 0;
529 
530 err:
531 	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
532 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
533 		"resolving failed with ret=%d\n", swarn->errstr,
534 		swarn->logical, rcu_str_deref(swarn->dev->name),
535 		(unsigned long long)swarn->sector, root, inum, offset, ret);
536 
537 	free_ipath(ipath);
538 	return 0;
539 }
540 
541 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
542 {
543 	struct btrfs_device *dev;
544 	struct btrfs_fs_info *fs_info;
545 	struct btrfs_path *path;
546 	struct btrfs_key found_key;
547 	struct extent_buffer *eb;
548 	struct btrfs_extent_item *ei;
549 	struct scrub_warning swarn;
550 	unsigned long ptr = 0;
551 	u64 extent_item_pos;
552 	u64 flags = 0;
553 	u64 ref_root;
554 	u32 item_size;
555 	u8 ref_level;
556 	const int bufsize = 4096;
557 	int ret;
558 
559 	WARN_ON(sblock->page_count < 1);
560 	dev = sblock->pagev[0]->dev;
561 	fs_info = sblock->sctx->dev_root->fs_info;
562 
563 	path = btrfs_alloc_path();
564 
565 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
566 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
567 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
568 	swarn.logical = sblock->pagev[0]->logical;
569 	swarn.errstr = errstr;
570 	swarn.dev = NULL;
571 	swarn.msg_bufsize = bufsize;
572 	swarn.scratch_bufsize = bufsize;
573 
574 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
575 		goto out;
576 
577 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
578 				  &flags);
579 	if (ret < 0)
580 		goto out;
581 
582 	extent_item_pos = swarn.logical - found_key.objectid;
583 	swarn.extent_item_size = found_key.offset;
584 
585 	eb = path->nodes[0];
586 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
587 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
588 
589 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
590 		do {
591 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
592 							&ref_root, &ref_level);
593 			printk_in_rcu(KERN_WARNING
594 				"BTRFS: %s at logical %llu on dev %s, "
595 				"sector %llu: metadata %s (level %d) in tree "
596 				"%llu\n", errstr, swarn.logical,
597 				rcu_str_deref(dev->name),
598 				(unsigned long long)swarn.sector,
599 				ref_level ? "node" : "leaf",
600 				ret < 0 ? -1 : ref_level,
601 				ret < 0 ? -1 : ref_root);
602 		} while (ret != 1);
603 		btrfs_release_path(path);
604 	} else {
605 		btrfs_release_path(path);
606 		swarn.path = path;
607 		swarn.dev = dev;
608 		iterate_extent_inodes(fs_info, found_key.objectid,
609 					extent_item_pos, 1,
610 					scrub_print_warning_inode, &swarn);
611 	}
612 
613 out:
614 	btrfs_free_path(path);
615 	kfree(swarn.scratch_buf);
616 	kfree(swarn.msg_buf);
617 }
618 
619 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
620 {
621 	struct page *page = NULL;
622 	unsigned long index;
623 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
624 	int ret;
625 	int corrected = 0;
626 	struct btrfs_key key;
627 	struct inode *inode = NULL;
628 	struct btrfs_fs_info *fs_info;
629 	u64 end = offset + PAGE_SIZE - 1;
630 	struct btrfs_root *local_root;
631 	int srcu_index;
632 
633 	key.objectid = root;
634 	key.type = BTRFS_ROOT_ITEM_KEY;
635 	key.offset = (u64)-1;
636 
637 	fs_info = fixup->root->fs_info;
638 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
639 
640 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
641 	if (IS_ERR(local_root)) {
642 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
643 		return PTR_ERR(local_root);
644 	}
645 
646 	key.type = BTRFS_INODE_ITEM_KEY;
647 	key.objectid = inum;
648 	key.offset = 0;
649 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
650 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
651 	if (IS_ERR(inode))
652 		return PTR_ERR(inode);
653 
654 	index = offset >> PAGE_CACHE_SHIFT;
655 
656 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
657 	if (!page) {
658 		ret = -ENOMEM;
659 		goto out;
660 	}
661 
662 	if (PageUptodate(page)) {
663 		if (PageDirty(page)) {
664 			/*
665 			 * we need to write the data to the defect sector. the
666 			 * data that was in that sector is not in memory,
667 			 * because the page was modified. we must not write the
668 			 * modified page to that sector.
669 			 *
670 			 * TODO: what could be done here: wait for the delalloc
671 			 *       runner to write out that page (might involve
672 			 *       COW) and see whether the sector is still
673 			 *       referenced afterwards.
674 			 *
675 			 * For the meantime, we'll treat this error
676 			 * incorrectable, although there is a chance that a
677 			 * later scrub will find the bad sector again and that
678 			 * there's no dirty page in memory, then.
679 			 */
680 			ret = -EIO;
681 			goto out;
682 		}
683 		fs_info = BTRFS_I(inode)->root->fs_info;
684 		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
685 					fixup->logical, page,
686 					fixup->mirror_num);
687 		unlock_page(page);
688 		corrected = !ret;
689 	} else {
690 		/*
691 		 * we need to get good data first. the general readpage path
692 		 * will call repair_io_failure for us, we just have to make
693 		 * sure we read the bad mirror.
694 		 */
695 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
696 					EXTENT_DAMAGED, GFP_NOFS);
697 		if (ret) {
698 			/* set_extent_bits should give proper error */
699 			WARN_ON(ret > 0);
700 			if (ret > 0)
701 				ret = -EFAULT;
702 			goto out;
703 		}
704 
705 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
706 						btrfs_get_extent,
707 						fixup->mirror_num);
708 		wait_on_page_locked(page);
709 
710 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
711 						end, EXTENT_DAMAGED, 0, NULL);
712 		if (!corrected)
713 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
714 						EXTENT_DAMAGED, GFP_NOFS);
715 	}
716 
717 out:
718 	if (page)
719 		put_page(page);
720 	if (inode)
721 		iput(inode);
722 
723 	if (ret < 0)
724 		return ret;
725 
726 	if (ret == 0 && corrected) {
727 		/*
728 		 * we only need to call readpage for one of the inodes belonging
729 		 * to this extent. so make iterate_extent_inodes stop
730 		 */
731 		return 1;
732 	}
733 
734 	return -EIO;
735 }
736 
737 static void scrub_fixup_nodatasum(struct btrfs_work *work)
738 {
739 	int ret;
740 	struct scrub_fixup_nodatasum *fixup;
741 	struct scrub_ctx *sctx;
742 	struct btrfs_trans_handle *trans = NULL;
743 	struct btrfs_path *path;
744 	int uncorrectable = 0;
745 
746 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
747 	sctx = fixup->sctx;
748 
749 	path = btrfs_alloc_path();
750 	if (!path) {
751 		spin_lock(&sctx->stat_lock);
752 		++sctx->stat.malloc_errors;
753 		spin_unlock(&sctx->stat_lock);
754 		uncorrectable = 1;
755 		goto out;
756 	}
757 
758 	trans = btrfs_join_transaction(fixup->root);
759 	if (IS_ERR(trans)) {
760 		uncorrectable = 1;
761 		goto out;
762 	}
763 
764 	/*
765 	 * the idea is to trigger a regular read through the standard path. we
766 	 * read a page from the (failed) logical address by specifying the
767 	 * corresponding copynum of the failed sector. thus, that readpage is
768 	 * expected to fail.
769 	 * that is the point where on-the-fly error correction will kick in
770 	 * (once it's finished) and rewrite the failed sector if a good copy
771 	 * can be found.
772 	 */
773 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
774 						path, scrub_fixup_readpage,
775 						fixup);
776 	if (ret < 0) {
777 		uncorrectable = 1;
778 		goto out;
779 	}
780 	WARN_ON(ret != 1);
781 
782 	spin_lock(&sctx->stat_lock);
783 	++sctx->stat.corrected_errors;
784 	spin_unlock(&sctx->stat_lock);
785 
786 out:
787 	if (trans && !IS_ERR(trans))
788 		btrfs_end_transaction(trans, fixup->root);
789 	if (uncorrectable) {
790 		spin_lock(&sctx->stat_lock);
791 		++sctx->stat.uncorrectable_errors;
792 		spin_unlock(&sctx->stat_lock);
793 		btrfs_dev_replace_stats_inc(
794 			&sctx->dev_root->fs_info->dev_replace.
795 			num_uncorrectable_read_errors);
796 		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
797 		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
798 			fixup->logical, rcu_str_deref(fixup->dev->name));
799 	}
800 
801 	btrfs_free_path(path);
802 	kfree(fixup);
803 
804 	scrub_pending_trans_workers_dec(sctx);
805 }
806 
807 /*
808  * scrub_handle_errored_block gets called when either verification of the
809  * pages failed or the bio failed to read, e.g. with EIO. In the latter
810  * case, this function handles all pages in the bio, even though only one
811  * may be bad.
812  * The goal of this function is to repair the errored block by using the
813  * contents of one of the mirrors.
814  */
815 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
816 {
817 	struct scrub_ctx *sctx = sblock_to_check->sctx;
818 	struct btrfs_device *dev;
819 	struct btrfs_fs_info *fs_info;
820 	u64 length;
821 	u64 logical;
822 	u64 generation;
823 	unsigned int failed_mirror_index;
824 	unsigned int is_metadata;
825 	unsigned int have_csum;
826 	u8 *csum;
827 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
828 	struct scrub_block *sblock_bad;
829 	int ret;
830 	int mirror_index;
831 	int page_num;
832 	int success;
833 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
834 				      DEFAULT_RATELIMIT_BURST);
835 
836 	BUG_ON(sblock_to_check->page_count < 1);
837 	fs_info = sctx->dev_root->fs_info;
838 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
839 		/*
840 		 * if we find an error in a super block, we just report it.
841 		 * They will get written with the next transaction commit
842 		 * anyway
843 		 */
844 		spin_lock(&sctx->stat_lock);
845 		++sctx->stat.super_errors;
846 		spin_unlock(&sctx->stat_lock);
847 		return 0;
848 	}
849 	length = sblock_to_check->page_count * PAGE_SIZE;
850 	logical = sblock_to_check->pagev[0]->logical;
851 	generation = sblock_to_check->pagev[0]->generation;
852 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
853 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
854 	is_metadata = !(sblock_to_check->pagev[0]->flags &
855 			BTRFS_EXTENT_FLAG_DATA);
856 	have_csum = sblock_to_check->pagev[0]->have_csum;
857 	csum = sblock_to_check->pagev[0]->csum;
858 	dev = sblock_to_check->pagev[0]->dev;
859 
860 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
861 		sblocks_for_recheck = NULL;
862 		goto nodatasum_case;
863 	}
864 
865 	/*
866 	 * read all mirrors one after the other. This includes to
867 	 * re-read the extent or metadata block that failed (that was
868 	 * the cause that this fixup code is called) another time,
869 	 * page by page this time in order to know which pages
870 	 * caused I/O errors and which ones are good (for all mirrors).
871 	 * It is the goal to handle the situation when more than one
872 	 * mirror contains I/O errors, but the errors do not
873 	 * overlap, i.e. the data can be repaired by selecting the
874 	 * pages from those mirrors without I/O error on the
875 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
876 	 * would be that mirror #1 has an I/O error on the first page,
877 	 * the second page is good, and mirror #2 has an I/O error on
878 	 * the second page, but the first page is good.
879 	 * Then the first page of the first mirror can be repaired by
880 	 * taking the first page of the second mirror, and the
881 	 * second page of the second mirror can be repaired by
882 	 * copying the contents of the 2nd page of the 1st mirror.
883 	 * One more note: if the pages of one mirror contain I/O
884 	 * errors, the checksum cannot be verified. In order to get
885 	 * the best data for repairing, the first attempt is to find
886 	 * a mirror without I/O errors and with a validated checksum.
887 	 * Only if this is not possible, the pages are picked from
888 	 * mirrors with I/O errors without considering the checksum.
889 	 * If the latter is the case, at the end, the checksum of the
890 	 * repaired area is verified in order to correctly maintain
891 	 * the statistics.
892 	 */
893 
894 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
895 				     sizeof(*sblocks_for_recheck),
896 				     GFP_NOFS);
897 	if (!sblocks_for_recheck) {
898 		spin_lock(&sctx->stat_lock);
899 		sctx->stat.malloc_errors++;
900 		sctx->stat.read_errors++;
901 		sctx->stat.uncorrectable_errors++;
902 		spin_unlock(&sctx->stat_lock);
903 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
904 		goto out;
905 	}
906 
907 	/* setup the context, map the logical blocks and alloc the pages */
908 	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
909 					logical, sblocks_for_recheck);
910 	if (ret) {
911 		spin_lock(&sctx->stat_lock);
912 		sctx->stat.read_errors++;
913 		sctx->stat.uncorrectable_errors++;
914 		spin_unlock(&sctx->stat_lock);
915 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
916 		goto out;
917 	}
918 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
919 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
920 
921 	/* build and submit the bios for the failed mirror, check checksums */
922 	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
923 			    csum, generation, sctx->csum_size);
924 
925 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
926 	    sblock_bad->no_io_error_seen) {
927 		/*
928 		 * the error disappeared after reading page by page, or
929 		 * the area was part of a huge bio and other parts of the
930 		 * bio caused I/O errors, or the block layer merged several
931 		 * read requests into one and the error is caused by a
932 		 * different bio (usually one of the two latter cases is
933 		 * the cause)
934 		 */
935 		spin_lock(&sctx->stat_lock);
936 		sctx->stat.unverified_errors++;
937 		spin_unlock(&sctx->stat_lock);
938 
939 		if (sctx->is_dev_replace)
940 			scrub_write_block_to_dev_replace(sblock_bad);
941 		goto out;
942 	}
943 
944 	if (!sblock_bad->no_io_error_seen) {
945 		spin_lock(&sctx->stat_lock);
946 		sctx->stat.read_errors++;
947 		spin_unlock(&sctx->stat_lock);
948 		if (__ratelimit(&_rs))
949 			scrub_print_warning("i/o error", sblock_to_check);
950 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
951 	} else if (sblock_bad->checksum_error) {
952 		spin_lock(&sctx->stat_lock);
953 		sctx->stat.csum_errors++;
954 		spin_unlock(&sctx->stat_lock);
955 		if (__ratelimit(&_rs))
956 			scrub_print_warning("checksum error", sblock_to_check);
957 		btrfs_dev_stat_inc_and_print(dev,
958 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
959 	} else if (sblock_bad->header_error) {
960 		spin_lock(&sctx->stat_lock);
961 		sctx->stat.verify_errors++;
962 		spin_unlock(&sctx->stat_lock);
963 		if (__ratelimit(&_rs))
964 			scrub_print_warning("checksum/header error",
965 					    sblock_to_check);
966 		if (sblock_bad->generation_error)
967 			btrfs_dev_stat_inc_and_print(dev,
968 				BTRFS_DEV_STAT_GENERATION_ERRS);
969 		else
970 			btrfs_dev_stat_inc_and_print(dev,
971 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
972 	}
973 
974 	if (sctx->readonly) {
975 		ASSERT(!sctx->is_dev_replace);
976 		goto out;
977 	}
978 
979 	if (!is_metadata && !have_csum) {
980 		struct scrub_fixup_nodatasum *fixup_nodatasum;
981 
982 nodatasum_case:
983 		WARN_ON(sctx->is_dev_replace);
984 
985 		/*
986 		 * !is_metadata and !have_csum, this means that the data
987 		 * might not be COW'ed, that it might be modified
988 		 * concurrently. The general strategy to work on the
989 		 * commit root does not help in the case when COW is not
990 		 * used.
991 		 */
992 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
993 		if (!fixup_nodatasum)
994 			goto did_not_correct_error;
995 		fixup_nodatasum->sctx = sctx;
996 		fixup_nodatasum->dev = dev;
997 		fixup_nodatasum->logical = logical;
998 		fixup_nodatasum->root = fs_info->extent_root;
999 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000 		scrub_pending_trans_workers_inc(sctx);
1001 		btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1002 				NULL, NULL);
1003 		btrfs_queue_work(fs_info->scrub_workers,
1004 				 &fixup_nodatasum->work);
1005 		goto out;
1006 	}
1007 
1008 	/*
1009 	 * now build and submit the bios for the other mirrors, check
1010 	 * checksums.
1011 	 * First try to pick the mirror which is completely without I/O
1012 	 * errors and also does not have a checksum error.
1013 	 * If one is found, and if a checksum is present, the full block
1014 	 * that is known to contain an error is rewritten. Afterwards
1015 	 * the block is known to be corrected.
1016 	 * If a mirror is found which is completely correct, and no
1017 	 * checksum is present, only those pages are rewritten that had
1018 	 * an I/O error in the block to be repaired, since it cannot be
1019 	 * determined, which copy of the other pages is better (and it
1020 	 * could happen otherwise that a correct page would be
1021 	 * overwritten by a bad one).
1022 	 */
1023 	for (mirror_index = 0;
1024 	     mirror_index < BTRFS_MAX_MIRRORS &&
1025 	     sblocks_for_recheck[mirror_index].page_count > 0;
1026 	     mirror_index++) {
1027 		struct scrub_block *sblock_other;
1028 
1029 		if (mirror_index == failed_mirror_index)
1030 			continue;
1031 		sblock_other = sblocks_for_recheck + mirror_index;
1032 
1033 		/* build and submit the bios, check checksums */
1034 		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1035 				    have_csum, csum, generation,
1036 				    sctx->csum_size);
1037 
1038 		if (!sblock_other->header_error &&
1039 		    !sblock_other->checksum_error &&
1040 		    sblock_other->no_io_error_seen) {
1041 			if (sctx->is_dev_replace) {
1042 				scrub_write_block_to_dev_replace(sblock_other);
1043 			} else {
1044 				int force_write = is_metadata || have_csum;
1045 
1046 				ret = scrub_repair_block_from_good_copy(
1047 						sblock_bad, sblock_other,
1048 						force_write);
1049 			}
1050 			if (0 == ret)
1051 				goto corrected_error;
1052 		}
1053 	}
1054 
1055 	/*
1056 	 * for dev_replace, pick good pages and write to the target device.
1057 	 */
1058 	if (sctx->is_dev_replace) {
1059 		success = 1;
1060 		for (page_num = 0; page_num < sblock_bad->page_count;
1061 		     page_num++) {
1062 			int sub_success;
1063 
1064 			sub_success = 0;
1065 			for (mirror_index = 0;
1066 			     mirror_index < BTRFS_MAX_MIRRORS &&
1067 			     sblocks_for_recheck[mirror_index].page_count > 0;
1068 			     mirror_index++) {
1069 				struct scrub_block *sblock_other =
1070 					sblocks_for_recheck + mirror_index;
1071 				struct scrub_page *page_other =
1072 					sblock_other->pagev[page_num];
1073 
1074 				if (!page_other->io_error) {
1075 					ret = scrub_write_page_to_dev_replace(
1076 							sblock_other, page_num);
1077 					if (ret == 0) {
1078 						/* succeeded for this page */
1079 						sub_success = 1;
1080 						break;
1081 					} else {
1082 						btrfs_dev_replace_stats_inc(
1083 							&sctx->dev_root->
1084 							fs_info->dev_replace.
1085 							num_write_errors);
1086 					}
1087 				}
1088 			}
1089 
1090 			if (!sub_success) {
1091 				/*
1092 				 * did not find a mirror to fetch the page
1093 				 * from. scrub_write_page_to_dev_replace()
1094 				 * handles this case (page->io_error), by
1095 				 * filling the block with zeros before
1096 				 * submitting the write request
1097 				 */
1098 				success = 0;
1099 				ret = scrub_write_page_to_dev_replace(
1100 						sblock_bad, page_num);
1101 				if (ret)
1102 					btrfs_dev_replace_stats_inc(
1103 						&sctx->dev_root->fs_info->
1104 						dev_replace.num_write_errors);
1105 			}
1106 		}
1107 
1108 		goto out;
1109 	}
1110 
1111 	/*
1112 	 * for regular scrub, repair those pages that are errored.
1113 	 * In case of I/O errors in the area that is supposed to be
1114 	 * repaired, continue by picking good copies of those pages.
1115 	 * Select the good pages from mirrors to rewrite bad pages from
1116 	 * the area to fix. Afterwards verify the checksum of the block
1117 	 * that is supposed to be repaired. This verification step is
1118 	 * only done for the purpose of statistic counting and for the
1119 	 * final scrub report, whether errors remain.
1120 	 * A perfect algorithm could make use of the checksum and try
1121 	 * all possible combinations of pages from the different mirrors
1122 	 * until the checksum verification succeeds. For example, when
1123 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1124 	 * of mirror #2 is readable but the final checksum test fails,
1125 	 * then the 2nd page of mirror #3 could be tried, whether now
1126 	 * the final checksum succeedes. But this would be a rare
1127 	 * exception and is therefore not implemented. At least it is
1128 	 * avoided that the good copy is overwritten.
1129 	 * A more useful improvement would be to pick the sectors
1130 	 * without I/O error based on sector sizes (512 bytes on legacy
1131 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1132 	 * mirror could be repaired by taking 512 byte of a different
1133 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1134 	 * area are unreadable.
1135 	 */
1136 
1137 	/* can only fix I/O errors from here on */
1138 	if (sblock_bad->no_io_error_seen)
1139 		goto did_not_correct_error;
1140 
1141 	success = 1;
1142 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1143 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1144 
1145 		if (!page_bad->io_error)
1146 			continue;
1147 
1148 		for (mirror_index = 0;
1149 		     mirror_index < BTRFS_MAX_MIRRORS &&
1150 		     sblocks_for_recheck[mirror_index].page_count > 0;
1151 		     mirror_index++) {
1152 			struct scrub_block *sblock_other = sblocks_for_recheck +
1153 							   mirror_index;
1154 			struct scrub_page *page_other = sblock_other->pagev[
1155 							page_num];
1156 
1157 			if (!page_other->io_error) {
1158 				ret = scrub_repair_page_from_good_copy(
1159 					sblock_bad, sblock_other, page_num, 0);
1160 				if (0 == ret) {
1161 					page_bad->io_error = 0;
1162 					break; /* succeeded for this page */
1163 				}
1164 			}
1165 		}
1166 
1167 		if (page_bad->io_error) {
1168 			/* did not find a mirror to copy the page from */
1169 			success = 0;
1170 		}
1171 	}
1172 
1173 	if (success) {
1174 		if (is_metadata || have_csum) {
1175 			/*
1176 			 * need to verify the checksum now that all
1177 			 * sectors on disk are repaired (the write
1178 			 * request for data to be repaired is on its way).
1179 			 * Just be lazy and use scrub_recheck_block()
1180 			 * which re-reads the data before the checksum
1181 			 * is verified, but most likely the data comes out
1182 			 * of the page cache.
1183 			 */
1184 			scrub_recheck_block(fs_info, sblock_bad,
1185 					    is_metadata, have_csum, csum,
1186 					    generation, sctx->csum_size);
1187 			if (!sblock_bad->header_error &&
1188 			    !sblock_bad->checksum_error &&
1189 			    sblock_bad->no_io_error_seen)
1190 				goto corrected_error;
1191 			else
1192 				goto did_not_correct_error;
1193 		} else {
1194 corrected_error:
1195 			spin_lock(&sctx->stat_lock);
1196 			sctx->stat.corrected_errors++;
1197 			spin_unlock(&sctx->stat_lock);
1198 			printk_ratelimited_in_rcu(KERN_ERR
1199 				"BTRFS: fixed up error at logical %llu on dev %s\n",
1200 				logical, rcu_str_deref(dev->name));
1201 		}
1202 	} else {
1203 did_not_correct_error:
1204 		spin_lock(&sctx->stat_lock);
1205 		sctx->stat.uncorrectable_errors++;
1206 		spin_unlock(&sctx->stat_lock);
1207 		printk_ratelimited_in_rcu(KERN_ERR
1208 			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209 			logical, rcu_str_deref(dev->name));
1210 	}
1211 
1212 out:
1213 	if (sblocks_for_recheck) {
1214 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1215 		     mirror_index++) {
1216 			struct scrub_block *sblock = sblocks_for_recheck +
1217 						     mirror_index;
1218 			int page_index;
1219 
1220 			for (page_index = 0; page_index < sblock->page_count;
1221 			     page_index++) {
1222 				sblock->pagev[page_index]->sblock = NULL;
1223 				scrub_page_put(sblock->pagev[page_index]);
1224 			}
1225 		}
1226 		kfree(sblocks_for_recheck);
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233 				     struct btrfs_fs_info *fs_info,
1234 				     struct scrub_block *original_sblock,
1235 				     u64 length, u64 logical,
1236 				     struct scrub_block *sblocks_for_recheck)
1237 {
1238 	int page_index;
1239 	int mirror_index;
1240 	int ret;
1241 
1242 	/*
1243 	 * note: the two members ref_count and outstanding_pages
1244 	 * are not used (and not set) in the blocks that are used for
1245 	 * the recheck procedure
1246 	 */
1247 
1248 	page_index = 0;
1249 	while (length > 0) {
1250 		u64 sublen = min_t(u64, length, PAGE_SIZE);
1251 		u64 mapped_length = sublen;
1252 		struct btrfs_bio *bbio = NULL;
1253 
1254 		/*
1255 		 * with a length of PAGE_SIZE, each returned stripe
1256 		 * represents one mirror
1257 		 */
1258 		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1259 				      &mapped_length, &bbio, 0);
1260 		if (ret || !bbio || mapped_length < sublen) {
1261 			kfree(bbio);
1262 			return -EIO;
1263 		}
1264 
1265 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1267 		     mirror_index++) {
1268 			struct scrub_block *sblock;
1269 			struct scrub_page *page;
1270 
1271 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1272 				continue;
1273 
1274 			sblock = sblocks_for_recheck + mirror_index;
1275 			sblock->sctx = sctx;
1276 			page = kzalloc(sizeof(*page), GFP_NOFS);
1277 			if (!page) {
1278 leave_nomem:
1279 				spin_lock(&sctx->stat_lock);
1280 				sctx->stat.malloc_errors++;
1281 				spin_unlock(&sctx->stat_lock);
1282 				kfree(bbio);
1283 				return -ENOMEM;
1284 			}
1285 			scrub_page_get(page);
1286 			sblock->pagev[page_index] = page;
1287 			page->logical = logical;
1288 			page->physical = bbio->stripes[mirror_index].physical;
1289 			BUG_ON(page_index >= original_sblock->page_count);
1290 			page->physical_for_dev_replace =
1291 				original_sblock->pagev[page_index]->
1292 				physical_for_dev_replace;
1293 			/* for missing devices, dev->bdev is NULL */
1294 			page->dev = bbio->stripes[mirror_index].dev;
1295 			page->mirror_num = mirror_index + 1;
1296 			sblock->page_count++;
1297 			page->page = alloc_page(GFP_NOFS);
1298 			if (!page->page)
1299 				goto leave_nomem;
1300 		}
1301 		kfree(bbio);
1302 		length -= sublen;
1303 		logical += sublen;
1304 		page_index++;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 /*
1311  * this function will check the on disk data for checksum errors, header
1312  * errors and read I/O errors. If any I/O errors happen, the exact pages
1313  * which are errored are marked as being bad. The goal is to enable scrub
1314  * to take those pages that are not errored from all the mirrors so that
1315  * the pages that are errored in the just handled mirror can be repaired.
1316  */
1317 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1318 				struct scrub_block *sblock, int is_metadata,
1319 				int have_csum, u8 *csum, u64 generation,
1320 				u16 csum_size)
1321 {
1322 	int page_num;
1323 
1324 	sblock->no_io_error_seen = 1;
1325 	sblock->header_error = 0;
1326 	sblock->checksum_error = 0;
1327 
1328 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1329 		struct bio *bio;
1330 		struct scrub_page *page = sblock->pagev[page_num];
1331 
1332 		if (page->dev->bdev == NULL) {
1333 			page->io_error = 1;
1334 			sblock->no_io_error_seen = 0;
1335 			continue;
1336 		}
1337 
1338 		WARN_ON(!page->page);
1339 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1340 		if (!bio) {
1341 			page->io_error = 1;
1342 			sblock->no_io_error_seen = 0;
1343 			continue;
1344 		}
1345 		bio->bi_bdev = page->dev->bdev;
1346 		bio->bi_iter.bi_sector = page->physical >> 9;
1347 
1348 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349 		if (btrfsic_submit_bio_wait(READ, bio))
1350 			sblock->no_io_error_seen = 0;
1351 
1352 		bio_put(bio);
1353 	}
1354 
1355 	if (sblock->no_io_error_seen)
1356 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1357 					     have_csum, csum, generation,
1358 					     csum_size);
1359 
1360 	return;
1361 }
1362 
1363 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1364 					 struct scrub_block *sblock,
1365 					 int is_metadata, int have_csum,
1366 					 const u8 *csum, u64 generation,
1367 					 u16 csum_size)
1368 {
1369 	int page_num;
1370 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1371 	u32 crc = ~(u32)0;
1372 	void *mapped_buffer;
1373 
1374 	WARN_ON(!sblock->pagev[0]->page);
1375 	if (is_metadata) {
1376 		struct btrfs_header *h;
1377 
1378 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1379 		h = (struct btrfs_header *)mapped_buffer;
1380 
1381 		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1382 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1383 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1384 			   BTRFS_UUID_SIZE)) {
1385 			sblock->header_error = 1;
1386 		} else if (generation != btrfs_stack_header_generation(h)) {
1387 			sblock->header_error = 1;
1388 			sblock->generation_error = 1;
1389 		}
1390 		csum = h->csum;
1391 	} else {
1392 		if (!have_csum)
1393 			return;
1394 
1395 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1396 	}
1397 
1398 	for (page_num = 0;;) {
1399 		if (page_num == 0 && is_metadata)
1400 			crc = btrfs_csum_data(
1401 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1402 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1403 		else
1404 			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1405 
1406 		kunmap_atomic(mapped_buffer);
1407 		page_num++;
1408 		if (page_num >= sblock->page_count)
1409 			break;
1410 		WARN_ON(!sblock->pagev[page_num]->page);
1411 
1412 		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1413 	}
1414 
1415 	btrfs_csum_final(crc, calculated_csum);
1416 	if (memcmp(calculated_csum, csum, csum_size))
1417 		sblock->checksum_error = 1;
1418 }
1419 
1420 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1421 					     struct scrub_block *sblock_good,
1422 					     int force_write)
1423 {
1424 	int page_num;
1425 	int ret = 0;
1426 
1427 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1428 		int ret_sub;
1429 
1430 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1431 							   sblock_good,
1432 							   page_num,
1433 							   force_write);
1434 		if (ret_sub)
1435 			ret = ret_sub;
1436 	}
1437 
1438 	return ret;
1439 }
1440 
1441 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1442 					    struct scrub_block *sblock_good,
1443 					    int page_num, int force_write)
1444 {
1445 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1446 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1447 
1448 	BUG_ON(page_bad->page == NULL);
1449 	BUG_ON(page_good->page == NULL);
1450 	if (force_write || sblock_bad->header_error ||
1451 	    sblock_bad->checksum_error || page_bad->io_error) {
1452 		struct bio *bio;
1453 		int ret;
1454 
1455 		if (!page_bad->dev->bdev) {
1456 			printk_ratelimited(KERN_WARNING "BTRFS: "
1457 				"scrub_repair_page_from_good_copy(bdev == NULL) "
1458 				"is unexpected!\n");
1459 			return -EIO;
1460 		}
1461 
1462 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1463 		if (!bio)
1464 			return -EIO;
1465 		bio->bi_bdev = page_bad->dev->bdev;
1466 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1467 
1468 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1469 		if (PAGE_SIZE != ret) {
1470 			bio_put(bio);
1471 			return -EIO;
1472 		}
1473 
1474 		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1475 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1476 				BTRFS_DEV_STAT_WRITE_ERRS);
1477 			btrfs_dev_replace_stats_inc(
1478 				&sblock_bad->sctx->dev_root->fs_info->
1479 				dev_replace.num_write_errors);
1480 			bio_put(bio);
1481 			return -EIO;
1482 		}
1483 		bio_put(bio);
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1490 {
1491 	int page_num;
1492 
1493 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1494 		int ret;
1495 
1496 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1497 		if (ret)
1498 			btrfs_dev_replace_stats_inc(
1499 				&sblock->sctx->dev_root->fs_info->dev_replace.
1500 				num_write_errors);
1501 	}
1502 }
1503 
1504 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1505 					   int page_num)
1506 {
1507 	struct scrub_page *spage = sblock->pagev[page_num];
1508 
1509 	BUG_ON(spage->page == NULL);
1510 	if (spage->io_error) {
1511 		void *mapped_buffer = kmap_atomic(spage->page);
1512 
1513 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1514 		flush_dcache_page(spage->page);
1515 		kunmap_atomic(mapped_buffer);
1516 	}
1517 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1518 }
1519 
1520 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1521 				    struct scrub_page *spage)
1522 {
1523 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1524 	struct scrub_bio *sbio;
1525 	int ret;
1526 
1527 	mutex_lock(&wr_ctx->wr_lock);
1528 again:
1529 	if (!wr_ctx->wr_curr_bio) {
1530 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1531 					      GFP_NOFS);
1532 		if (!wr_ctx->wr_curr_bio) {
1533 			mutex_unlock(&wr_ctx->wr_lock);
1534 			return -ENOMEM;
1535 		}
1536 		wr_ctx->wr_curr_bio->sctx = sctx;
1537 		wr_ctx->wr_curr_bio->page_count = 0;
1538 	}
1539 	sbio = wr_ctx->wr_curr_bio;
1540 	if (sbio->page_count == 0) {
1541 		struct bio *bio;
1542 
1543 		sbio->physical = spage->physical_for_dev_replace;
1544 		sbio->logical = spage->logical;
1545 		sbio->dev = wr_ctx->tgtdev;
1546 		bio = sbio->bio;
1547 		if (!bio) {
1548 			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1549 			if (!bio) {
1550 				mutex_unlock(&wr_ctx->wr_lock);
1551 				return -ENOMEM;
1552 			}
1553 			sbio->bio = bio;
1554 		}
1555 
1556 		bio->bi_private = sbio;
1557 		bio->bi_end_io = scrub_wr_bio_end_io;
1558 		bio->bi_bdev = sbio->dev->bdev;
1559 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1560 		sbio->err = 0;
1561 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1562 		   spage->physical_for_dev_replace ||
1563 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1564 		   spage->logical) {
1565 		scrub_wr_submit(sctx);
1566 		goto again;
1567 	}
1568 
1569 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1570 	if (ret != PAGE_SIZE) {
1571 		if (sbio->page_count < 1) {
1572 			bio_put(sbio->bio);
1573 			sbio->bio = NULL;
1574 			mutex_unlock(&wr_ctx->wr_lock);
1575 			return -EIO;
1576 		}
1577 		scrub_wr_submit(sctx);
1578 		goto again;
1579 	}
1580 
1581 	sbio->pagev[sbio->page_count] = spage;
1582 	scrub_page_get(spage);
1583 	sbio->page_count++;
1584 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1585 		scrub_wr_submit(sctx);
1586 	mutex_unlock(&wr_ctx->wr_lock);
1587 
1588 	return 0;
1589 }
1590 
1591 static void scrub_wr_submit(struct scrub_ctx *sctx)
1592 {
1593 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1594 	struct scrub_bio *sbio;
1595 
1596 	if (!wr_ctx->wr_curr_bio)
1597 		return;
1598 
1599 	sbio = wr_ctx->wr_curr_bio;
1600 	wr_ctx->wr_curr_bio = NULL;
1601 	WARN_ON(!sbio->bio->bi_bdev);
1602 	scrub_pending_bio_inc(sctx);
1603 	/* process all writes in a single worker thread. Then the block layer
1604 	 * orders the requests before sending them to the driver which
1605 	 * doubled the write performance on spinning disks when measured
1606 	 * with Linux 3.5 */
1607 	btrfsic_submit_bio(WRITE, sbio->bio);
1608 }
1609 
1610 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1611 {
1612 	struct scrub_bio *sbio = bio->bi_private;
1613 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1614 
1615 	sbio->err = err;
1616 	sbio->bio = bio;
1617 
1618 	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1619 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1620 }
1621 
1622 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1623 {
1624 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625 	struct scrub_ctx *sctx = sbio->sctx;
1626 	int i;
1627 
1628 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1629 	if (sbio->err) {
1630 		struct btrfs_dev_replace *dev_replace =
1631 			&sbio->sctx->dev_root->fs_info->dev_replace;
1632 
1633 		for (i = 0; i < sbio->page_count; i++) {
1634 			struct scrub_page *spage = sbio->pagev[i];
1635 
1636 			spage->io_error = 1;
1637 			btrfs_dev_replace_stats_inc(&dev_replace->
1638 						    num_write_errors);
1639 		}
1640 	}
1641 
1642 	for (i = 0; i < sbio->page_count; i++)
1643 		scrub_page_put(sbio->pagev[i]);
1644 
1645 	bio_put(sbio->bio);
1646 	kfree(sbio);
1647 	scrub_pending_bio_dec(sctx);
1648 }
1649 
1650 static int scrub_checksum(struct scrub_block *sblock)
1651 {
1652 	u64 flags;
1653 	int ret;
1654 
1655 	WARN_ON(sblock->page_count < 1);
1656 	flags = sblock->pagev[0]->flags;
1657 	ret = 0;
1658 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1659 		ret = scrub_checksum_data(sblock);
1660 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661 		ret = scrub_checksum_tree_block(sblock);
1662 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663 		(void)scrub_checksum_super(sblock);
1664 	else
1665 		WARN_ON(1);
1666 	if (ret)
1667 		scrub_handle_errored_block(sblock);
1668 
1669 	return ret;
1670 }
1671 
1672 static int scrub_checksum_data(struct scrub_block *sblock)
1673 {
1674 	struct scrub_ctx *sctx = sblock->sctx;
1675 	u8 csum[BTRFS_CSUM_SIZE];
1676 	u8 *on_disk_csum;
1677 	struct page *page;
1678 	void *buffer;
1679 	u32 crc = ~(u32)0;
1680 	int fail = 0;
1681 	u64 len;
1682 	int index;
1683 
1684 	BUG_ON(sblock->page_count < 1);
1685 	if (!sblock->pagev[0]->have_csum)
1686 		return 0;
1687 
1688 	on_disk_csum = sblock->pagev[0]->csum;
1689 	page = sblock->pagev[0]->page;
1690 	buffer = kmap_atomic(page);
1691 
1692 	len = sctx->sectorsize;
1693 	index = 0;
1694 	for (;;) {
1695 		u64 l = min_t(u64, len, PAGE_SIZE);
1696 
1697 		crc = btrfs_csum_data(buffer, crc, l);
1698 		kunmap_atomic(buffer);
1699 		len -= l;
1700 		if (len == 0)
1701 			break;
1702 		index++;
1703 		BUG_ON(index >= sblock->page_count);
1704 		BUG_ON(!sblock->pagev[index]->page);
1705 		page = sblock->pagev[index]->page;
1706 		buffer = kmap_atomic(page);
1707 	}
1708 
1709 	btrfs_csum_final(crc, csum);
1710 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1711 		fail = 1;
1712 
1713 	return fail;
1714 }
1715 
1716 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1717 {
1718 	struct scrub_ctx *sctx = sblock->sctx;
1719 	struct btrfs_header *h;
1720 	struct btrfs_root *root = sctx->dev_root;
1721 	struct btrfs_fs_info *fs_info = root->fs_info;
1722 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1723 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1724 	struct page *page;
1725 	void *mapped_buffer;
1726 	u64 mapped_size;
1727 	void *p;
1728 	u32 crc = ~(u32)0;
1729 	int fail = 0;
1730 	int crc_fail = 0;
1731 	u64 len;
1732 	int index;
1733 
1734 	BUG_ON(sblock->page_count < 1);
1735 	page = sblock->pagev[0]->page;
1736 	mapped_buffer = kmap_atomic(page);
1737 	h = (struct btrfs_header *)mapped_buffer;
1738 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1739 
1740 	/*
1741 	 * we don't use the getter functions here, as we
1742 	 * a) don't have an extent buffer and
1743 	 * b) the page is already kmapped
1744 	 */
1745 
1746 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1747 		++fail;
1748 
1749 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1750 		++fail;
1751 
1752 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1753 		++fail;
1754 
1755 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1756 		   BTRFS_UUID_SIZE))
1757 		++fail;
1758 
1759 	WARN_ON(sctx->nodesize != sctx->leafsize);
1760 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1761 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1762 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1763 	index = 0;
1764 	for (;;) {
1765 		u64 l = min_t(u64, len, mapped_size);
1766 
1767 		crc = btrfs_csum_data(p, crc, l);
1768 		kunmap_atomic(mapped_buffer);
1769 		len -= l;
1770 		if (len == 0)
1771 			break;
1772 		index++;
1773 		BUG_ON(index >= sblock->page_count);
1774 		BUG_ON(!sblock->pagev[index]->page);
1775 		page = sblock->pagev[index]->page;
1776 		mapped_buffer = kmap_atomic(page);
1777 		mapped_size = PAGE_SIZE;
1778 		p = mapped_buffer;
1779 	}
1780 
1781 	btrfs_csum_final(crc, calculated_csum);
1782 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1783 		++crc_fail;
1784 
1785 	return fail || crc_fail;
1786 }
1787 
1788 static int scrub_checksum_super(struct scrub_block *sblock)
1789 {
1790 	struct btrfs_super_block *s;
1791 	struct scrub_ctx *sctx = sblock->sctx;
1792 	struct btrfs_root *root = sctx->dev_root;
1793 	struct btrfs_fs_info *fs_info = root->fs_info;
1794 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1795 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1796 	struct page *page;
1797 	void *mapped_buffer;
1798 	u64 mapped_size;
1799 	void *p;
1800 	u32 crc = ~(u32)0;
1801 	int fail_gen = 0;
1802 	int fail_cor = 0;
1803 	u64 len;
1804 	int index;
1805 
1806 	BUG_ON(sblock->page_count < 1);
1807 	page = sblock->pagev[0]->page;
1808 	mapped_buffer = kmap_atomic(page);
1809 	s = (struct btrfs_super_block *)mapped_buffer;
1810 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1811 
1812 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1813 		++fail_cor;
1814 
1815 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1816 		++fail_gen;
1817 
1818 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1819 		++fail_cor;
1820 
1821 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1822 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1823 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1824 	index = 0;
1825 	for (;;) {
1826 		u64 l = min_t(u64, len, mapped_size);
1827 
1828 		crc = btrfs_csum_data(p, crc, l);
1829 		kunmap_atomic(mapped_buffer);
1830 		len -= l;
1831 		if (len == 0)
1832 			break;
1833 		index++;
1834 		BUG_ON(index >= sblock->page_count);
1835 		BUG_ON(!sblock->pagev[index]->page);
1836 		page = sblock->pagev[index]->page;
1837 		mapped_buffer = kmap_atomic(page);
1838 		mapped_size = PAGE_SIZE;
1839 		p = mapped_buffer;
1840 	}
1841 
1842 	btrfs_csum_final(crc, calculated_csum);
1843 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1844 		++fail_cor;
1845 
1846 	if (fail_cor + fail_gen) {
1847 		/*
1848 		 * if we find an error in a super block, we just report it.
1849 		 * They will get written with the next transaction commit
1850 		 * anyway
1851 		 */
1852 		spin_lock(&sctx->stat_lock);
1853 		++sctx->stat.super_errors;
1854 		spin_unlock(&sctx->stat_lock);
1855 		if (fail_cor)
1856 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1857 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1858 		else
1859 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1860 				BTRFS_DEV_STAT_GENERATION_ERRS);
1861 	}
1862 
1863 	return fail_cor + fail_gen;
1864 }
1865 
1866 static void scrub_block_get(struct scrub_block *sblock)
1867 {
1868 	atomic_inc(&sblock->ref_count);
1869 }
1870 
1871 static void scrub_block_put(struct scrub_block *sblock)
1872 {
1873 	if (atomic_dec_and_test(&sblock->ref_count)) {
1874 		int i;
1875 
1876 		for (i = 0; i < sblock->page_count; i++)
1877 			scrub_page_put(sblock->pagev[i]);
1878 		kfree(sblock);
1879 	}
1880 }
1881 
1882 static void scrub_page_get(struct scrub_page *spage)
1883 {
1884 	atomic_inc(&spage->ref_count);
1885 }
1886 
1887 static void scrub_page_put(struct scrub_page *spage)
1888 {
1889 	if (atomic_dec_and_test(&spage->ref_count)) {
1890 		if (spage->page)
1891 			__free_page(spage->page);
1892 		kfree(spage);
1893 	}
1894 }
1895 
1896 static void scrub_submit(struct scrub_ctx *sctx)
1897 {
1898 	struct scrub_bio *sbio;
1899 
1900 	if (sctx->curr == -1)
1901 		return;
1902 
1903 	sbio = sctx->bios[sctx->curr];
1904 	sctx->curr = -1;
1905 	scrub_pending_bio_inc(sctx);
1906 
1907 	if (!sbio->bio->bi_bdev) {
1908 		/*
1909 		 * this case should not happen. If btrfs_map_block() is
1910 		 * wrong, it could happen for dev-replace operations on
1911 		 * missing devices when no mirrors are available, but in
1912 		 * this case it should already fail the mount.
1913 		 * This case is handled correctly (but _very_ slowly).
1914 		 */
1915 		printk_ratelimited(KERN_WARNING
1916 			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1917 		bio_endio(sbio->bio, -EIO);
1918 	} else {
1919 		btrfsic_submit_bio(READ, sbio->bio);
1920 	}
1921 }
1922 
1923 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1924 				    struct scrub_page *spage)
1925 {
1926 	struct scrub_block *sblock = spage->sblock;
1927 	struct scrub_bio *sbio;
1928 	int ret;
1929 
1930 again:
1931 	/*
1932 	 * grab a fresh bio or wait for one to become available
1933 	 */
1934 	while (sctx->curr == -1) {
1935 		spin_lock(&sctx->list_lock);
1936 		sctx->curr = sctx->first_free;
1937 		if (sctx->curr != -1) {
1938 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1939 			sctx->bios[sctx->curr]->next_free = -1;
1940 			sctx->bios[sctx->curr]->page_count = 0;
1941 			spin_unlock(&sctx->list_lock);
1942 		} else {
1943 			spin_unlock(&sctx->list_lock);
1944 			wait_event(sctx->list_wait, sctx->first_free != -1);
1945 		}
1946 	}
1947 	sbio = sctx->bios[sctx->curr];
1948 	if (sbio->page_count == 0) {
1949 		struct bio *bio;
1950 
1951 		sbio->physical = spage->physical;
1952 		sbio->logical = spage->logical;
1953 		sbio->dev = spage->dev;
1954 		bio = sbio->bio;
1955 		if (!bio) {
1956 			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1957 			if (!bio)
1958 				return -ENOMEM;
1959 			sbio->bio = bio;
1960 		}
1961 
1962 		bio->bi_private = sbio;
1963 		bio->bi_end_io = scrub_bio_end_io;
1964 		bio->bi_bdev = sbio->dev->bdev;
1965 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1966 		sbio->err = 0;
1967 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1968 		   spage->physical ||
1969 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1970 		   spage->logical ||
1971 		   sbio->dev != spage->dev) {
1972 		scrub_submit(sctx);
1973 		goto again;
1974 	}
1975 
1976 	sbio->pagev[sbio->page_count] = spage;
1977 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1978 	if (ret != PAGE_SIZE) {
1979 		if (sbio->page_count < 1) {
1980 			bio_put(sbio->bio);
1981 			sbio->bio = NULL;
1982 			return -EIO;
1983 		}
1984 		scrub_submit(sctx);
1985 		goto again;
1986 	}
1987 
1988 	scrub_block_get(sblock); /* one for the page added to the bio */
1989 	atomic_inc(&sblock->outstanding_pages);
1990 	sbio->page_count++;
1991 	if (sbio->page_count == sctx->pages_per_rd_bio)
1992 		scrub_submit(sctx);
1993 
1994 	return 0;
1995 }
1996 
1997 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1998 		       u64 physical, struct btrfs_device *dev, u64 flags,
1999 		       u64 gen, int mirror_num, u8 *csum, int force,
2000 		       u64 physical_for_dev_replace)
2001 {
2002 	struct scrub_block *sblock;
2003 	int index;
2004 
2005 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2006 	if (!sblock) {
2007 		spin_lock(&sctx->stat_lock);
2008 		sctx->stat.malloc_errors++;
2009 		spin_unlock(&sctx->stat_lock);
2010 		return -ENOMEM;
2011 	}
2012 
2013 	/* one ref inside this function, plus one for each page added to
2014 	 * a bio later on */
2015 	atomic_set(&sblock->ref_count, 1);
2016 	sblock->sctx = sctx;
2017 	sblock->no_io_error_seen = 1;
2018 
2019 	for (index = 0; len > 0; index++) {
2020 		struct scrub_page *spage;
2021 		u64 l = min_t(u64, len, PAGE_SIZE);
2022 
2023 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2024 		if (!spage) {
2025 leave_nomem:
2026 			spin_lock(&sctx->stat_lock);
2027 			sctx->stat.malloc_errors++;
2028 			spin_unlock(&sctx->stat_lock);
2029 			scrub_block_put(sblock);
2030 			return -ENOMEM;
2031 		}
2032 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2033 		scrub_page_get(spage);
2034 		sblock->pagev[index] = spage;
2035 		spage->sblock = sblock;
2036 		spage->dev = dev;
2037 		spage->flags = flags;
2038 		spage->generation = gen;
2039 		spage->logical = logical;
2040 		spage->physical = physical;
2041 		spage->physical_for_dev_replace = physical_for_dev_replace;
2042 		spage->mirror_num = mirror_num;
2043 		if (csum) {
2044 			spage->have_csum = 1;
2045 			memcpy(spage->csum, csum, sctx->csum_size);
2046 		} else {
2047 			spage->have_csum = 0;
2048 		}
2049 		sblock->page_count++;
2050 		spage->page = alloc_page(GFP_NOFS);
2051 		if (!spage->page)
2052 			goto leave_nomem;
2053 		len -= l;
2054 		logical += l;
2055 		physical += l;
2056 		physical_for_dev_replace += l;
2057 	}
2058 
2059 	WARN_ON(sblock->page_count == 0);
2060 	for (index = 0; index < sblock->page_count; index++) {
2061 		struct scrub_page *spage = sblock->pagev[index];
2062 		int ret;
2063 
2064 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2065 		if (ret) {
2066 			scrub_block_put(sblock);
2067 			return ret;
2068 		}
2069 	}
2070 
2071 	if (force)
2072 		scrub_submit(sctx);
2073 
2074 	/* last one frees, either here or in bio completion for last page */
2075 	scrub_block_put(sblock);
2076 	return 0;
2077 }
2078 
2079 static void scrub_bio_end_io(struct bio *bio, int err)
2080 {
2081 	struct scrub_bio *sbio = bio->bi_private;
2082 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2083 
2084 	sbio->err = err;
2085 	sbio->bio = bio;
2086 
2087 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2088 }
2089 
2090 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2091 {
2092 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2093 	struct scrub_ctx *sctx = sbio->sctx;
2094 	int i;
2095 
2096 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2097 	if (sbio->err) {
2098 		for (i = 0; i < sbio->page_count; i++) {
2099 			struct scrub_page *spage = sbio->pagev[i];
2100 
2101 			spage->io_error = 1;
2102 			spage->sblock->no_io_error_seen = 0;
2103 		}
2104 	}
2105 
2106 	/* now complete the scrub_block items that have all pages completed */
2107 	for (i = 0; i < sbio->page_count; i++) {
2108 		struct scrub_page *spage = sbio->pagev[i];
2109 		struct scrub_block *sblock = spage->sblock;
2110 
2111 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2112 			scrub_block_complete(sblock);
2113 		scrub_block_put(sblock);
2114 	}
2115 
2116 	bio_put(sbio->bio);
2117 	sbio->bio = NULL;
2118 	spin_lock(&sctx->list_lock);
2119 	sbio->next_free = sctx->first_free;
2120 	sctx->first_free = sbio->index;
2121 	spin_unlock(&sctx->list_lock);
2122 
2123 	if (sctx->is_dev_replace &&
2124 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2125 		mutex_lock(&sctx->wr_ctx.wr_lock);
2126 		scrub_wr_submit(sctx);
2127 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2128 	}
2129 
2130 	scrub_pending_bio_dec(sctx);
2131 }
2132 
2133 static void scrub_block_complete(struct scrub_block *sblock)
2134 {
2135 	if (!sblock->no_io_error_seen) {
2136 		scrub_handle_errored_block(sblock);
2137 	} else {
2138 		/*
2139 		 * if has checksum error, write via repair mechanism in
2140 		 * dev replace case, otherwise write here in dev replace
2141 		 * case.
2142 		 */
2143 		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2144 			scrub_write_block_to_dev_replace(sblock);
2145 	}
2146 }
2147 
2148 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2149 			   u8 *csum)
2150 {
2151 	struct btrfs_ordered_sum *sum = NULL;
2152 	unsigned long index;
2153 	unsigned long num_sectors;
2154 
2155 	while (!list_empty(&sctx->csum_list)) {
2156 		sum = list_first_entry(&sctx->csum_list,
2157 				       struct btrfs_ordered_sum, list);
2158 		if (sum->bytenr > logical)
2159 			return 0;
2160 		if (sum->bytenr + sum->len > logical)
2161 			break;
2162 
2163 		++sctx->stat.csum_discards;
2164 		list_del(&sum->list);
2165 		kfree(sum);
2166 		sum = NULL;
2167 	}
2168 	if (!sum)
2169 		return 0;
2170 
2171 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2172 	num_sectors = sum->len / sctx->sectorsize;
2173 	memcpy(csum, sum->sums + index, sctx->csum_size);
2174 	if (index == num_sectors - 1) {
2175 		list_del(&sum->list);
2176 		kfree(sum);
2177 	}
2178 	return 1;
2179 }
2180 
2181 /* scrub extent tries to collect up to 64 kB for each bio */
2182 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2183 			u64 physical, struct btrfs_device *dev, u64 flags,
2184 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2185 {
2186 	int ret;
2187 	u8 csum[BTRFS_CSUM_SIZE];
2188 	u32 blocksize;
2189 
2190 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2191 		blocksize = sctx->sectorsize;
2192 		spin_lock(&sctx->stat_lock);
2193 		sctx->stat.data_extents_scrubbed++;
2194 		sctx->stat.data_bytes_scrubbed += len;
2195 		spin_unlock(&sctx->stat_lock);
2196 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2197 		WARN_ON(sctx->nodesize != sctx->leafsize);
2198 		blocksize = sctx->nodesize;
2199 		spin_lock(&sctx->stat_lock);
2200 		sctx->stat.tree_extents_scrubbed++;
2201 		sctx->stat.tree_bytes_scrubbed += len;
2202 		spin_unlock(&sctx->stat_lock);
2203 	} else {
2204 		blocksize = sctx->sectorsize;
2205 		WARN_ON(1);
2206 	}
2207 
2208 	while (len) {
2209 		u64 l = min_t(u64, len, blocksize);
2210 		int have_csum = 0;
2211 
2212 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2213 			/* push csums to sbio */
2214 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2215 			if (have_csum == 0)
2216 				++sctx->stat.no_csum;
2217 			if (sctx->is_dev_replace && !have_csum) {
2218 				ret = copy_nocow_pages(sctx, logical, l,
2219 						       mirror_num,
2220 						      physical_for_dev_replace);
2221 				goto behind_scrub_pages;
2222 			}
2223 		}
2224 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2225 				  mirror_num, have_csum ? csum : NULL, 0,
2226 				  physical_for_dev_replace);
2227 behind_scrub_pages:
2228 		if (ret)
2229 			return ret;
2230 		len -= l;
2231 		logical += l;
2232 		physical += l;
2233 		physical_for_dev_replace += l;
2234 	}
2235 	return 0;
2236 }
2237 
2238 /*
2239  * Given a physical address, this will calculate it's
2240  * logical offset. if this is a parity stripe, it will return
2241  * the most left data stripe's logical offset.
2242  *
2243  * return 0 if it is a data stripe, 1 means parity stripe.
2244  */
2245 static int get_raid56_logic_offset(u64 physical, int num,
2246 				   struct map_lookup *map, u64 *offset)
2247 {
2248 	int i;
2249 	int j = 0;
2250 	u64 stripe_nr;
2251 	u64 last_offset;
2252 	int stripe_index;
2253 	int rot;
2254 
2255 	last_offset = (physical - map->stripes[num].physical) *
2256 		      nr_data_stripes(map);
2257 	*offset = last_offset;
2258 	for (i = 0; i < nr_data_stripes(map); i++) {
2259 		*offset = last_offset + i * map->stripe_len;
2260 
2261 		stripe_nr = *offset;
2262 		do_div(stripe_nr, map->stripe_len);
2263 		do_div(stripe_nr, nr_data_stripes(map));
2264 
2265 		/* Work out the disk rotation on this stripe-set */
2266 		rot = do_div(stripe_nr, map->num_stripes);
2267 		/* calculate which stripe this data locates */
2268 		rot += i;
2269 		stripe_index = rot % map->num_stripes;
2270 		if (stripe_index == num)
2271 			return 0;
2272 		if (stripe_index < num)
2273 			j++;
2274 	}
2275 	*offset = last_offset + j * map->stripe_len;
2276 	return 1;
2277 }
2278 
2279 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2280 					   struct map_lookup *map,
2281 					   struct btrfs_device *scrub_dev,
2282 					   int num, u64 base, u64 length,
2283 					   int is_dev_replace)
2284 {
2285 	struct btrfs_path *path;
2286 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2287 	struct btrfs_root *root = fs_info->extent_root;
2288 	struct btrfs_root *csum_root = fs_info->csum_root;
2289 	struct btrfs_extent_item *extent;
2290 	struct blk_plug plug;
2291 	u64 flags;
2292 	int ret;
2293 	int slot;
2294 	u64 nstripes;
2295 	struct extent_buffer *l;
2296 	struct btrfs_key key;
2297 	u64 physical;
2298 	u64 logical;
2299 	u64 logic_end;
2300 	u64 physical_end;
2301 	u64 generation;
2302 	int mirror_num;
2303 	struct reada_control *reada1;
2304 	struct reada_control *reada2;
2305 	struct btrfs_key key_start;
2306 	struct btrfs_key key_end;
2307 	u64 increment = map->stripe_len;
2308 	u64 offset;
2309 	u64 extent_logical;
2310 	u64 extent_physical;
2311 	u64 extent_len;
2312 	struct btrfs_device *extent_dev;
2313 	int extent_mirror_num;
2314 	int stop_loop = 0;
2315 
2316 	nstripes = length;
2317 	physical = map->stripes[num].physical;
2318 	offset = 0;
2319 	do_div(nstripes, map->stripe_len);
2320 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2321 		offset = map->stripe_len * num;
2322 		increment = map->stripe_len * map->num_stripes;
2323 		mirror_num = 1;
2324 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2325 		int factor = map->num_stripes / map->sub_stripes;
2326 		offset = map->stripe_len * (num / map->sub_stripes);
2327 		increment = map->stripe_len * factor;
2328 		mirror_num = num % map->sub_stripes + 1;
2329 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2330 		increment = map->stripe_len;
2331 		mirror_num = num % map->num_stripes + 1;
2332 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2333 		increment = map->stripe_len;
2334 		mirror_num = num % map->num_stripes + 1;
2335 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2336 				BTRFS_BLOCK_GROUP_RAID6)) {
2337 		get_raid56_logic_offset(physical, num, map, &offset);
2338 		increment = map->stripe_len * nr_data_stripes(map);
2339 		mirror_num = 1;
2340 	} else {
2341 		increment = map->stripe_len;
2342 		mirror_num = 1;
2343 	}
2344 
2345 	path = btrfs_alloc_path();
2346 	if (!path)
2347 		return -ENOMEM;
2348 
2349 	/*
2350 	 * work on commit root. The related disk blocks are static as
2351 	 * long as COW is applied. This means, it is save to rewrite
2352 	 * them to repair disk errors without any race conditions
2353 	 */
2354 	path->search_commit_root = 1;
2355 	path->skip_locking = 1;
2356 
2357 	/*
2358 	 * trigger the readahead for extent tree csum tree and wait for
2359 	 * completion. During readahead, the scrub is officially paused
2360 	 * to not hold off transaction commits
2361 	 */
2362 	logical = base + offset;
2363 	physical_end = physical + nstripes * map->stripe_len;
2364 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2365 			 BTRFS_BLOCK_GROUP_RAID6)) {
2366 		get_raid56_logic_offset(physical_end, num,
2367 					map, &logic_end);
2368 		logic_end += base;
2369 	} else {
2370 		logic_end = logical + increment * nstripes;
2371 	}
2372 	wait_event(sctx->list_wait,
2373 		   atomic_read(&sctx->bios_in_flight) == 0);
2374 	scrub_blocked_if_needed(fs_info);
2375 
2376 	/* FIXME it might be better to start readahead at commit root */
2377 	key_start.objectid = logical;
2378 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2379 	key_start.offset = (u64)0;
2380 	key_end.objectid = logic_end;
2381 	key_end.type = BTRFS_METADATA_ITEM_KEY;
2382 	key_end.offset = (u64)-1;
2383 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2384 
2385 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2386 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2387 	key_start.offset = logical;
2388 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2389 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2390 	key_end.offset = logic_end;
2391 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2392 
2393 	if (!IS_ERR(reada1))
2394 		btrfs_reada_wait(reada1);
2395 	if (!IS_ERR(reada2))
2396 		btrfs_reada_wait(reada2);
2397 
2398 
2399 	/*
2400 	 * collect all data csums for the stripe to avoid seeking during
2401 	 * the scrub. This might currently (crc32) end up to be about 1MB
2402 	 */
2403 	blk_start_plug(&plug);
2404 
2405 	/*
2406 	 * now find all extents for each stripe and scrub them
2407 	 */
2408 	ret = 0;
2409 	while (physical < physical_end) {
2410 		/* for raid56, we skip parity stripe */
2411 		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2412 				BTRFS_BLOCK_GROUP_RAID6)) {
2413 			ret = get_raid56_logic_offset(physical, num,
2414 					map, &logical);
2415 			logical += base;
2416 			if (ret)
2417 				goto skip;
2418 		}
2419 		/*
2420 		 * canceled?
2421 		 */
2422 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2423 		    atomic_read(&sctx->cancel_req)) {
2424 			ret = -ECANCELED;
2425 			goto out;
2426 		}
2427 		/*
2428 		 * check to see if we have to pause
2429 		 */
2430 		if (atomic_read(&fs_info->scrub_pause_req)) {
2431 			/* push queued extents */
2432 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2433 			scrub_submit(sctx);
2434 			mutex_lock(&sctx->wr_ctx.wr_lock);
2435 			scrub_wr_submit(sctx);
2436 			mutex_unlock(&sctx->wr_ctx.wr_lock);
2437 			wait_event(sctx->list_wait,
2438 				   atomic_read(&sctx->bios_in_flight) == 0);
2439 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2440 			scrub_blocked_if_needed(fs_info);
2441 		}
2442 
2443 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2444 			key.type = BTRFS_METADATA_ITEM_KEY;
2445 		else
2446 			key.type = BTRFS_EXTENT_ITEM_KEY;
2447 		key.objectid = logical;
2448 		key.offset = (u64)-1;
2449 
2450 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2451 		if (ret < 0)
2452 			goto out;
2453 
2454 		if (ret > 0) {
2455 			ret = btrfs_previous_extent_item(root, path, 0);
2456 			if (ret < 0)
2457 				goto out;
2458 			if (ret > 0) {
2459 				/* there's no smaller item, so stick with the
2460 				 * larger one */
2461 				btrfs_release_path(path);
2462 				ret = btrfs_search_slot(NULL, root, &key,
2463 							path, 0, 0);
2464 				if (ret < 0)
2465 					goto out;
2466 			}
2467 		}
2468 
2469 		stop_loop = 0;
2470 		while (1) {
2471 			u64 bytes;
2472 
2473 			l = path->nodes[0];
2474 			slot = path->slots[0];
2475 			if (slot >= btrfs_header_nritems(l)) {
2476 				ret = btrfs_next_leaf(root, path);
2477 				if (ret == 0)
2478 					continue;
2479 				if (ret < 0)
2480 					goto out;
2481 
2482 				stop_loop = 1;
2483 				break;
2484 			}
2485 			btrfs_item_key_to_cpu(l, &key, slot);
2486 
2487 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2488 				bytes = root->leafsize;
2489 			else
2490 				bytes = key.offset;
2491 
2492 			if (key.objectid + bytes <= logical)
2493 				goto next;
2494 
2495 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2496 			    key.type != BTRFS_METADATA_ITEM_KEY)
2497 				goto next;
2498 
2499 			if (key.objectid >= logical + map->stripe_len) {
2500 				/* out of this device extent */
2501 				if (key.objectid >= logic_end)
2502 					stop_loop = 1;
2503 				break;
2504 			}
2505 
2506 			extent = btrfs_item_ptr(l, slot,
2507 						struct btrfs_extent_item);
2508 			flags = btrfs_extent_flags(l, extent);
2509 			generation = btrfs_extent_generation(l, extent);
2510 
2511 			if (key.objectid < logical &&
2512 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2513 				btrfs_err(fs_info,
2514 					   "scrub: tree block %llu spanning "
2515 					   "stripes, ignored. logical=%llu",
2516 				       key.objectid, logical);
2517 				goto next;
2518 			}
2519 
2520 again:
2521 			extent_logical = key.objectid;
2522 			extent_len = bytes;
2523 
2524 			/*
2525 			 * trim extent to this stripe
2526 			 */
2527 			if (extent_logical < logical) {
2528 				extent_len -= logical - extent_logical;
2529 				extent_logical = logical;
2530 			}
2531 			if (extent_logical + extent_len >
2532 			    logical + map->stripe_len) {
2533 				extent_len = logical + map->stripe_len -
2534 					     extent_logical;
2535 			}
2536 
2537 			extent_physical = extent_logical - logical + physical;
2538 			extent_dev = scrub_dev;
2539 			extent_mirror_num = mirror_num;
2540 			if (is_dev_replace)
2541 				scrub_remap_extent(fs_info, extent_logical,
2542 						   extent_len, &extent_physical,
2543 						   &extent_dev,
2544 						   &extent_mirror_num);
2545 
2546 			ret = btrfs_lookup_csums_range(csum_root, logical,
2547 						logical + map->stripe_len - 1,
2548 						&sctx->csum_list, 1);
2549 			if (ret)
2550 				goto out;
2551 
2552 			ret = scrub_extent(sctx, extent_logical, extent_len,
2553 					   extent_physical, extent_dev, flags,
2554 					   generation, extent_mirror_num,
2555 					   extent_logical - logical + physical);
2556 			if (ret)
2557 				goto out;
2558 
2559 			scrub_free_csums(sctx);
2560 			if (extent_logical + extent_len <
2561 			    key.objectid + bytes) {
2562 				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2563 					BTRFS_BLOCK_GROUP_RAID6)) {
2564 					/*
2565 					 * loop until we find next data stripe
2566 					 * or we have finished all stripes.
2567 					 */
2568 					do {
2569 						physical += map->stripe_len;
2570 						ret = get_raid56_logic_offset(
2571 								physical, num,
2572 								map, &logical);
2573 						logical += base;
2574 					} while (physical < physical_end && ret);
2575 				} else {
2576 					physical += map->stripe_len;
2577 					logical += increment;
2578 				}
2579 				if (logical < key.objectid + bytes) {
2580 					cond_resched();
2581 					goto again;
2582 				}
2583 
2584 				if (physical >= physical_end) {
2585 					stop_loop = 1;
2586 					break;
2587 				}
2588 			}
2589 next:
2590 			path->slots[0]++;
2591 		}
2592 		btrfs_release_path(path);
2593 skip:
2594 		logical += increment;
2595 		physical += map->stripe_len;
2596 		spin_lock(&sctx->stat_lock);
2597 		if (stop_loop)
2598 			sctx->stat.last_physical = map->stripes[num].physical +
2599 						   length;
2600 		else
2601 			sctx->stat.last_physical = physical;
2602 		spin_unlock(&sctx->stat_lock);
2603 		if (stop_loop)
2604 			break;
2605 	}
2606 out:
2607 	/* push queued extents */
2608 	scrub_submit(sctx);
2609 	mutex_lock(&sctx->wr_ctx.wr_lock);
2610 	scrub_wr_submit(sctx);
2611 	mutex_unlock(&sctx->wr_ctx.wr_lock);
2612 
2613 	blk_finish_plug(&plug);
2614 	btrfs_free_path(path);
2615 	return ret < 0 ? ret : 0;
2616 }
2617 
2618 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2619 					  struct btrfs_device *scrub_dev,
2620 					  u64 chunk_tree, u64 chunk_objectid,
2621 					  u64 chunk_offset, u64 length,
2622 					  u64 dev_offset, int is_dev_replace)
2623 {
2624 	struct btrfs_mapping_tree *map_tree =
2625 		&sctx->dev_root->fs_info->mapping_tree;
2626 	struct map_lookup *map;
2627 	struct extent_map *em;
2628 	int i;
2629 	int ret = 0;
2630 
2631 	read_lock(&map_tree->map_tree.lock);
2632 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2633 	read_unlock(&map_tree->map_tree.lock);
2634 
2635 	if (!em)
2636 		return -EINVAL;
2637 
2638 	map = (struct map_lookup *)em->bdev;
2639 	if (em->start != chunk_offset)
2640 		goto out;
2641 
2642 	if (em->len < length)
2643 		goto out;
2644 
2645 	for (i = 0; i < map->num_stripes; ++i) {
2646 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2647 		    map->stripes[i].physical == dev_offset) {
2648 			ret = scrub_stripe(sctx, map, scrub_dev, i,
2649 					   chunk_offset, length,
2650 					   is_dev_replace);
2651 			if (ret)
2652 				goto out;
2653 		}
2654 	}
2655 out:
2656 	free_extent_map(em);
2657 
2658 	return ret;
2659 }
2660 
2661 static noinline_for_stack
2662 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2663 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2664 			   int is_dev_replace)
2665 {
2666 	struct btrfs_dev_extent *dev_extent = NULL;
2667 	struct btrfs_path *path;
2668 	struct btrfs_root *root = sctx->dev_root;
2669 	struct btrfs_fs_info *fs_info = root->fs_info;
2670 	u64 length;
2671 	u64 chunk_tree;
2672 	u64 chunk_objectid;
2673 	u64 chunk_offset;
2674 	int ret;
2675 	int slot;
2676 	struct extent_buffer *l;
2677 	struct btrfs_key key;
2678 	struct btrfs_key found_key;
2679 	struct btrfs_block_group_cache *cache;
2680 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2681 
2682 	path = btrfs_alloc_path();
2683 	if (!path)
2684 		return -ENOMEM;
2685 
2686 	path->reada = 2;
2687 	path->search_commit_root = 1;
2688 	path->skip_locking = 1;
2689 
2690 	key.objectid = scrub_dev->devid;
2691 	key.offset = 0ull;
2692 	key.type = BTRFS_DEV_EXTENT_KEY;
2693 
2694 	while (1) {
2695 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2696 		if (ret < 0)
2697 			break;
2698 		if (ret > 0) {
2699 			if (path->slots[0] >=
2700 			    btrfs_header_nritems(path->nodes[0])) {
2701 				ret = btrfs_next_leaf(root, path);
2702 				if (ret)
2703 					break;
2704 			}
2705 		}
2706 
2707 		l = path->nodes[0];
2708 		slot = path->slots[0];
2709 
2710 		btrfs_item_key_to_cpu(l, &found_key, slot);
2711 
2712 		if (found_key.objectid != scrub_dev->devid)
2713 			break;
2714 
2715 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2716 			break;
2717 
2718 		if (found_key.offset >= end)
2719 			break;
2720 
2721 		if (found_key.offset < key.offset)
2722 			break;
2723 
2724 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2725 		length = btrfs_dev_extent_length(l, dev_extent);
2726 
2727 		if (found_key.offset + length <= start) {
2728 			key.offset = found_key.offset + length;
2729 			btrfs_release_path(path);
2730 			continue;
2731 		}
2732 
2733 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2734 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2735 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2736 
2737 		/*
2738 		 * get a reference on the corresponding block group to prevent
2739 		 * the chunk from going away while we scrub it
2740 		 */
2741 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2742 		if (!cache) {
2743 			ret = -ENOENT;
2744 			break;
2745 		}
2746 		dev_replace->cursor_right = found_key.offset + length;
2747 		dev_replace->cursor_left = found_key.offset;
2748 		dev_replace->item_needs_writeback = 1;
2749 		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2750 				  chunk_offset, length, found_key.offset,
2751 				  is_dev_replace);
2752 
2753 		/*
2754 		 * flush, submit all pending read and write bios, afterwards
2755 		 * wait for them.
2756 		 * Note that in the dev replace case, a read request causes
2757 		 * write requests that are submitted in the read completion
2758 		 * worker. Therefore in the current situation, it is required
2759 		 * that all write requests are flushed, so that all read and
2760 		 * write requests are really completed when bios_in_flight
2761 		 * changes to 0.
2762 		 */
2763 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2764 		scrub_submit(sctx);
2765 		mutex_lock(&sctx->wr_ctx.wr_lock);
2766 		scrub_wr_submit(sctx);
2767 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2768 
2769 		wait_event(sctx->list_wait,
2770 			   atomic_read(&sctx->bios_in_flight) == 0);
2771 		atomic_inc(&fs_info->scrubs_paused);
2772 		wake_up(&fs_info->scrub_pause_wait);
2773 
2774 		/*
2775 		 * must be called before we decrease @scrub_paused.
2776 		 * make sure we don't block transaction commit while
2777 		 * we are waiting pending workers finished.
2778 		 */
2779 		wait_event(sctx->list_wait,
2780 			   atomic_read(&sctx->workers_pending) == 0);
2781 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2782 
2783 		mutex_lock(&fs_info->scrub_lock);
2784 		__scrub_blocked_if_needed(fs_info);
2785 		atomic_dec(&fs_info->scrubs_paused);
2786 		mutex_unlock(&fs_info->scrub_lock);
2787 		wake_up(&fs_info->scrub_pause_wait);
2788 
2789 		btrfs_put_block_group(cache);
2790 		if (ret)
2791 			break;
2792 		if (is_dev_replace &&
2793 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2794 			ret = -EIO;
2795 			break;
2796 		}
2797 		if (sctx->stat.malloc_errors > 0) {
2798 			ret = -ENOMEM;
2799 			break;
2800 		}
2801 
2802 		dev_replace->cursor_left = dev_replace->cursor_right;
2803 		dev_replace->item_needs_writeback = 1;
2804 
2805 		key.offset = found_key.offset + length;
2806 		btrfs_release_path(path);
2807 	}
2808 
2809 	btrfs_free_path(path);
2810 
2811 	/*
2812 	 * ret can still be 1 from search_slot or next_leaf,
2813 	 * that's not an error
2814 	 */
2815 	return ret < 0 ? ret : 0;
2816 }
2817 
2818 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2819 					   struct btrfs_device *scrub_dev)
2820 {
2821 	int	i;
2822 	u64	bytenr;
2823 	u64	gen;
2824 	int	ret;
2825 	struct btrfs_root *root = sctx->dev_root;
2826 
2827 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2828 		return -EIO;
2829 
2830 	gen = root->fs_info->last_trans_committed;
2831 
2832 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2833 		bytenr = btrfs_sb_offset(i);
2834 		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2835 			break;
2836 
2837 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2838 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2839 				  NULL, 1, bytenr);
2840 		if (ret)
2841 			return ret;
2842 	}
2843 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2844 
2845 	return 0;
2846 }
2847 
2848 /*
2849  * get a reference count on fs_info->scrub_workers. start worker if necessary
2850  */
2851 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2852 						int is_dev_replace)
2853 {
2854 	int ret = 0;
2855 	int flags = WQ_FREEZABLE | WQ_UNBOUND;
2856 	int max_active = fs_info->thread_pool_size;
2857 
2858 	if (fs_info->scrub_workers_refcnt == 0) {
2859 		if (is_dev_replace)
2860 			fs_info->scrub_workers =
2861 				btrfs_alloc_workqueue("btrfs-scrub", flags,
2862 						      1, 4);
2863 		else
2864 			fs_info->scrub_workers =
2865 				btrfs_alloc_workqueue("btrfs-scrub", flags,
2866 						      max_active, 4);
2867 		if (!fs_info->scrub_workers) {
2868 			ret = -ENOMEM;
2869 			goto out;
2870 		}
2871 		fs_info->scrub_wr_completion_workers =
2872 			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2873 					      max_active, 2);
2874 		if (!fs_info->scrub_wr_completion_workers) {
2875 			ret = -ENOMEM;
2876 			goto out;
2877 		}
2878 		fs_info->scrub_nocow_workers =
2879 			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2880 		if (!fs_info->scrub_nocow_workers) {
2881 			ret = -ENOMEM;
2882 			goto out;
2883 		}
2884 	}
2885 	++fs_info->scrub_workers_refcnt;
2886 out:
2887 	return ret;
2888 }
2889 
2890 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2891 {
2892 	if (--fs_info->scrub_workers_refcnt == 0) {
2893 		btrfs_destroy_workqueue(fs_info->scrub_workers);
2894 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2895 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2896 	}
2897 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2898 }
2899 
2900 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2901 		    u64 end, struct btrfs_scrub_progress *progress,
2902 		    int readonly, int is_dev_replace)
2903 {
2904 	struct scrub_ctx *sctx;
2905 	int ret;
2906 	struct btrfs_device *dev;
2907 
2908 	if (btrfs_fs_closing(fs_info))
2909 		return -EINVAL;
2910 
2911 	/*
2912 	 * check some assumptions
2913 	 */
2914 	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2915 		btrfs_err(fs_info,
2916 			   "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2917 		       fs_info->chunk_root->nodesize,
2918 		       fs_info->chunk_root->leafsize);
2919 		return -EINVAL;
2920 	}
2921 
2922 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2923 		/*
2924 		 * in this case scrub is unable to calculate the checksum
2925 		 * the way scrub is implemented. Do not handle this
2926 		 * situation at all because it won't ever happen.
2927 		 */
2928 		btrfs_err(fs_info,
2929 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2930 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2931 		return -EINVAL;
2932 	}
2933 
2934 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2935 		/* not supported for data w/o checksums */
2936 		btrfs_err(fs_info,
2937 			   "scrub: size assumption sectorsize != PAGE_SIZE "
2938 			   "(%d != %lu) fails",
2939 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2940 		return -EINVAL;
2941 	}
2942 
2943 	if (fs_info->chunk_root->nodesize >
2944 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2945 	    fs_info->chunk_root->sectorsize >
2946 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2947 		/*
2948 		 * would exhaust the array bounds of pagev member in
2949 		 * struct scrub_block
2950 		 */
2951 		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2952 			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2953 		       fs_info->chunk_root->nodesize,
2954 		       SCRUB_MAX_PAGES_PER_BLOCK,
2955 		       fs_info->chunk_root->sectorsize,
2956 		       SCRUB_MAX_PAGES_PER_BLOCK);
2957 		return -EINVAL;
2958 	}
2959 
2960 
2961 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2963 	if (!dev || (dev->missing && !is_dev_replace)) {
2964 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2965 		return -ENODEV;
2966 	}
2967 
2968 	mutex_lock(&fs_info->scrub_lock);
2969 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2970 		mutex_unlock(&fs_info->scrub_lock);
2971 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2972 		return -EIO;
2973 	}
2974 
2975 	btrfs_dev_replace_lock(&fs_info->dev_replace);
2976 	if (dev->scrub_device ||
2977 	    (!is_dev_replace &&
2978 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2979 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2980 		mutex_unlock(&fs_info->scrub_lock);
2981 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2982 		return -EINPROGRESS;
2983 	}
2984 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2985 
2986 	ret = scrub_workers_get(fs_info, is_dev_replace);
2987 	if (ret) {
2988 		mutex_unlock(&fs_info->scrub_lock);
2989 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990 		return ret;
2991 	}
2992 
2993 	sctx = scrub_setup_ctx(dev, is_dev_replace);
2994 	if (IS_ERR(sctx)) {
2995 		mutex_unlock(&fs_info->scrub_lock);
2996 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2997 		scrub_workers_put(fs_info);
2998 		return PTR_ERR(sctx);
2999 	}
3000 	sctx->readonly = readonly;
3001 	dev->scrub_device = sctx;
3002 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003 
3004 	/*
3005 	 * checking @scrub_pause_req here, we can avoid
3006 	 * race between committing transaction and scrubbing.
3007 	 */
3008 	__scrub_blocked_if_needed(fs_info);
3009 	atomic_inc(&fs_info->scrubs_running);
3010 	mutex_unlock(&fs_info->scrub_lock);
3011 
3012 	if (!is_dev_replace) {
3013 		/*
3014 		 * by holding device list mutex, we can
3015 		 * kick off writing super in log tree sync.
3016 		 */
3017 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018 		ret = scrub_supers(sctx, dev);
3019 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3020 	}
3021 
3022 	if (!ret)
3023 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3024 					     is_dev_replace);
3025 
3026 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3027 	atomic_dec(&fs_info->scrubs_running);
3028 	wake_up(&fs_info->scrub_pause_wait);
3029 
3030 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3031 
3032 	if (progress)
3033 		memcpy(progress, &sctx->stat, sizeof(*progress));
3034 
3035 	mutex_lock(&fs_info->scrub_lock);
3036 	dev->scrub_device = NULL;
3037 	scrub_workers_put(fs_info);
3038 	mutex_unlock(&fs_info->scrub_lock);
3039 
3040 	scrub_free_ctx(sctx);
3041 
3042 	return ret;
3043 }
3044 
3045 void btrfs_scrub_pause(struct btrfs_root *root)
3046 {
3047 	struct btrfs_fs_info *fs_info = root->fs_info;
3048 
3049 	mutex_lock(&fs_info->scrub_lock);
3050 	atomic_inc(&fs_info->scrub_pause_req);
3051 	while (atomic_read(&fs_info->scrubs_paused) !=
3052 	       atomic_read(&fs_info->scrubs_running)) {
3053 		mutex_unlock(&fs_info->scrub_lock);
3054 		wait_event(fs_info->scrub_pause_wait,
3055 			   atomic_read(&fs_info->scrubs_paused) ==
3056 			   atomic_read(&fs_info->scrubs_running));
3057 		mutex_lock(&fs_info->scrub_lock);
3058 	}
3059 	mutex_unlock(&fs_info->scrub_lock);
3060 }
3061 
3062 void btrfs_scrub_continue(struct btrfs_root *root)
3063 {
3064 	struct btrfs_fs_info *fs_info = root->fs_info;
3065 
3066 	atomic_dec(&fs_info->scrub_pause_req);
3067 	wake_up(&fs_info->scrub_pause_wait);
3068 }
3069 
3070 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3071 {
3072 	mutex_lock(&fs_info->scrub_lock);
3073 	if (!atomic_read(&fs_info->scrubs_running)) {
3074 		mutex_unlock(&fs_info->scrub_lock);
3075 		return -ENOTCONN;
3076 	}
3077 
3078 	atomic_inc(&fs_info->scrub_cancel_req);
3079 	while (atomic_read(&fs_info->scrubs_running)) {
3080 		mutex_unlock(&fs_info->scrub_lock);
3081 		wait_event(fs_info->scrub_pause_wait,
3082 			   atomic_read(&fs_info->scrubs_running) == 0);
3083 		mutex_lock(&fs_info->scrub_lock);
3084 	}
3085 	atomic_dec(&fs_info->scrub_cancel_req);
3086 	mutex_unlock(&fs_info->scrub_lock);
3087 
3088 	return 0;
3089 }
3090 
3091 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3092 			   struct btrfs_device *dev)
3093 {
3094 	struct scrub_ctx *sctx;
3095 
3096 	mutex_lock(&fs_info->scrub_lock);
3097 	sctx = dev->scrub_device;
3098 	if (!sctx) {
3099 		mutex_unlock(&fs_info->scrub_lock);
3100 		return -ENOTCONN;
3101 	}
3102 	atomic_inc(&sctx->cancel_req);
3103 	while (dev->scrub_device) {
3104 		mutex_unlock(&fs_info->scrub_lock);
3105 		wait_event(fs_info->scrub_pause_wait,
3106 			   dev->scrub_device == NULL);
3107 		mutex_lock(&fs_info->scrub_lock);
3108 	}
3109 	mutex_unlock(&fs_info->scrub_lock);
3110 
3111 	return 0;
3112 }
3113 
3114 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3115 			 struct btrfs_scrub_progress *progress)
3116 {
3117 	struct btrfs_device *dev;
3118 	struct scrub_ctx *sctx = NULL;
3119 
3120 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3121 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3122 	if (dev)
3123 		sctx = dev->scrub_device;
3124 	if (sctx)
3125 		memcpy(progress, &sctx->stat, sizeof(*progress));
3126 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3127 
3128 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3129 }
3130 
3131 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3132 			       u64 extent_logical, u64 extent_len,
3133 			       u64 *extent_physical,
3134 			       struct btrfs_device **extent_dev,
3135 			       int *extent_mirror_num)
3136 {
3137 	u64 mapped_length;
3138 	struct btrfs_bio *bbio = NULL;
3139 	int ret;
3140 
3141 	mapped_length = extent_len;
3142 	ret = btrfs_map_block(fs_info, READ, extent_logical,
3143 			      &mapped_length, &bbio, 0);
3144 	if (ret || !bbio || mapped_length < extent_len ||
3145 	    !bbio->stripes[0].dev->bdev) {
3146 		kfree(bbio);
3147 		return;
3148 	}
3149 
3150 	*extent_physical = bbio->stripes[0].physical;
3151 	*extent_mirror_num = bbio->mirror_num;
3152 	*extent_dev = bbio->stripes[0].dev;
3153 	kfree(bbio);
3154 }
3155 
3156 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3157 			      struct scrub_wr_ctx *wr_ctx,
3158 			      struct btrfs_fs_info *fs_info,
3159 			      struct btrfs_device *dev,
3160 			      int is_dev_replace)
3161 {
3162 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3163 
3164 	mutex_init(&wr_ctx->wr_lock);
3165 	wr_ctx->wr_curr_bio = NULL;
3166 	if (!is_dev_replace)
3167 		return 0;
3168 
3169 	WARN_ON(!dev->bdev);
3170 	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3171 					 bio_get_nr_vecs(dev->bdev));
3172 	wr_ctx->tgtdev = dev;
3173 	atomic_set(&wr_ctx->flush_all_writes, 0);
3174 	return 0;
3175 }
3176 
3177 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3178 {
3179 	mutex_lock(&wr_ctx->wr_lock);
3180 	kfree(wr_ctx->wr_curr_bio);
3181 	wr_ctx->wr_curr_bio = NULL;
3182 	mutex_unlock(&wr_ctx->wr_lock);
3183 }
3184 
3185 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3186 			    int mirror_num, u64 physical_for_dev_replace)
3187 {
3188 	struct scrub_copy_nocow_ctx *nocow_ctx;
3189 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3190 
3191 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3192 	if (!nocow_ctx) {
3193 		spin_lock(&sctx->stat_lock);
3194 		sctx->stat.malloc_errors++;
3195 		spin_unlock(&sctx->stat_lock);
3196 		return -ENOMEM;
3197 	}
3198 
3199 	scrub_pending_trans_workers_inc(sctx);
3200 
3201 	nocow_ctx->sctx = sctx;
3202 	nocow_ctx->logical = logical;
3203 	nocow_ctx->len = len;
3204 	nocow_ctx->mirror_num = mirror_num;
3205 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3206 	btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
3207 	INIT_LIST_HEAD(&nocow_ctx->inodes);
3208 	btrfs_queue_work(fs_info->scrub_nocow_workers,
3209 			 &nocow_ctx->work);
3210 
3211 	return 0;
3212 }
3213 
3214 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3215 {
3216 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3217 	struct scrub_nocow_inode *nocow_inode;
3218 
3219 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3220 	if (!nocow_inode)
3221 		return -ENOMEM;
3222 	nocow_inode->inum = inum;
3223 	nocow_inode->offset = offset;
3224 	nocow_inode->root = root;
3225 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3226 	return 0;
3227 }
3228 
3229 #define COPY_COMPLETE 1
3230 
3231 static void copy_nocow_pages_worker(struct btrfs_work *work)
3232 {
3233 	struct scrub_copy_nocow_ctx *nocow_ctx =
3234 		container_of(work, struct scrub_copy_nocow_ctx, work);
3235 	struct scrub_ctx *sctx = nocow_ctx->sctx;
3236 	u64 logical = nocow_ctx->logical;
3237 	u64 len = nocow_ctx->len;
3238 	int mirror_num = nocow_ctx->mirror_num;
3239 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3240 	int ret;
3241 	struct btrfs_trans_handle *trans = NULL;
3242 	struct btrfs_fs_info *fs_info;
3243 	struct btrfs_path *path;
3244 	struct btrfs_root *root;
3245 	int not_written = 0;
3246 
3247 	fs_info = sctx->dev_root->fs_info;
3248 	root = fs_info->extent_root;
3249 
3250 	path = btrfs_alloc_path();
3251 	if (!path) {
3252 		spin_lock(&sctx->stat_lock);
3253 		sctx->stat.malloc_errors++;
3254 		spin_unlock(&sctx->stat_lock);
3255 		not_written = 1;
3256 		goto out;
3257 	}
3258 
3259 	trans = btrfs_join_transaction(root);
3260 	if (IS_ERR(trans)) {
3261 		not_written = 1;
3262 		goto out;
3263 	}
3264 
3265 	ret = iterate_inodes_from_logical(logical, fs_info, path,
3266 					  record_inode_for_nocow, nocow_ctx);
3267 	if (ret != 0 && ret != -ENOENT) {
3268 		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3269 			"phys %llu, len %llu, mir %u, ret %d",
3270 			logical, physical_for_dev_replace, len, mirror_num,
3271 			ret);
3272 		not_written = 1;
3273 		goto out;
3274 	}
3275 
3276 	btrfs_end_transaction(trans, root);
3277 	trans = NULL;
3278 	while (!list_empty(&nocow_ctx->inodes)) {
3279 		struct scrub_nocow_inode *entry;
3280 		entry = list_first_entry(&nocow_ctx->inodes,
3281 					 struct scrub_nocow_inode,
3282 					 list);
3283 		list_del_init(&entry->list);
3284 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3285 						 entry->root, nocow_ctx);
3286 		kfree(entry);
3287 		if (ret == COPY_COMPLETE) {
3288 			ret = 0;
3289 			break;
3290 		} else if (ret) {
3291 			break;
3292 		}
3293 	}
3294 out:
3295 	while (!list_empty(&nocow_ctx->inodes)) {
3296 		struct scrub_nocow_inode *entry;
3297 		entry = list_first_entry(&nocow_ctx->inodes,
3298 					 struct scrub_nocow_inode,
3299 					 list);
3300 		list_del_init(&entry->list);
3301 		kfree(entry);
3302 	}
3303 	if (trans && !IS_ERR(trans))
3304 		btrfs_end_transaction(trans, root);
3305 	if (not_written)
3306 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3307 					    num_uncorrectable_read_errors);
3308 
3309 	btrfs_free_path(path);
3310 	kfree(nocow_ctx);
3311 
3312 	scrub_pending_trans_workers_dec(sctx);
3313 }
3314 
3315 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3316 				      struct scrub_copy_nocow_ctx *nocow_ctx)
3317 {
3318 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3319 	struct btrfs_key key;
3320 	struct inode *inode;
3321 	struct page *page;
3322 	struct btrfs_root *local_root;
3323 	struct btrfs_ordered_extent *ordered;
3324 	struct extent_map *em;
3325 	struct extent_state *cached_state = NULL;
3326 	struct extent_io_tree *io_tree;
3327 	u64 physical_for_dev_replace;
3328 	u64 len = nocow_ctx->len;
3329 	u64 lockstart = offset, lockend = offset + len - 1;
3330 	unsigned long index;
3331 	int srcu_index;
3332 	int ret = 0;
3333 	int err = 0;
3334 
3335 	key.objectid = root;
3336 	key.type = BTRFS_ROOT_ITEM_KEY;
3337 	key.offset = (u64)-1;
3338 
3339 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3340 
3341 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3342 	if (IS_ERR(local_root)) {
3343 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3344 		return PTR_ERR(local_root);
3345 	}
3346 
3347 	key.type = BTRFS_INODE_ITEM_KEY;
3348 	key.objectid = inum;
3349 	key.offset = 0;
3350 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3351 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3352 	if (IS_ERR(inode))
3353 		return PTR_ERR(inode);
3354 
3355 	/* Avoid truncate/dio/punch hole.. */
3356 	mutex_lock(&inode->i_mutex);
3357 	inode_dio_wait(inode);
3358 
3359 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3360 	io_tree = &BTRFS_I(inode)->io_tree;
3361 
3362 	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3363 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3364 	if (ordered) {
3365 		btrfs_put_ordered_extent(ordered);
3366 		goto out_unlock;
3367 	}
3368 
3369 	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3370 	if (IS_ERR(em)) {
3371 		ret = PTR_ERR(em);
3372 		goto out_unlock;
3373 	}
3374 
3375 	/*
3376 	 * This extent does not actually cover the logical extent anymore,
3377 	 * move on to the next inode.
3378 	 */
3379 	if (em->block_start > nocow_ctx->logical ||
3380 	    em->block_start + em->block_len < nocow_ctx->logical + len) {
3381 		free_extent_map(em);
3382 		goto out_unlock;
3383 	}
3384 	free_extent_map(em);
3385 
3386 	while (len >= PAGE_CACHE_SIZE) {
3387 		index = offset >> PAGE_CACHE_SHIFT;
3388 again:
3389 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3390 		if (!page) {
3391 			btrfs_err(fs_info, "find_or_create_page() failed");
3392 			ret = -ENOMEM;
3393 			goto out;
3394 		}
3395 
3396 		if (PageUptodate(page)) {
3397 			if (PageDirty(page))
3398 				goto next_page;
3399 		} else {
3400 			ClearPageError(page);
3401 			err = extent_read_full_page_nolock(io_tree, page,
3402 							   btrfs_get_extent,
3403 							   nocow_ctx->mirror_num);
3404 			if (err) {
3405 				ret = err;
3406 				goto next_page;
3407 			}
3408 
3409 			lock_page(page);
3410 			/*
3411 			 * If the page has been remove from the page cache,
3412 			 * the data on it is meaningless, because it may be
3413 			 * old one, the new data may be written into the new
3414 			 * page in the page cache.
3415 			 */
3416 			if (page->mapping != inode->i_mapping) {
3417 				unlock_page(page);
3418 				page_cache_release(page);
3419 				goto again;
3420 			}
3421 			if (!PageUptodate(page)) {
3422 				ret = -EIO;
3423 				goto next_page;
3424 			}
3425 		}
3426 		err = write_page_nocow(nocow_ctx->sctx,
3427 				       physical_for_dev_replace, page);
3428 		if (err)
3429 			ret = err;
3430 next_page:
3431 		unlock_page(page);
3432 		page_cache_release(page);
3433 
3434 		if (ret)
3435 			break;
3436 
3437 		offset += PAGE_CACHE_SIZE;
3438 		physical_for_dev_replace += PAGE_CACHE_SIZE;
3439 		len -= PAGE_CACHE_SIZE;
3440 	}
3441 	ret = COPY_COMPLETE;
3442 out_unlock:
3443 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3444 			     GFP_NOFS);
3445 out:
3446 	mutex_unlock(&inode->i_mutex);
3447 	iput(inode);
3448 	return ret;
3449 }
3450 
3451 static int write_page_nocow(struct scrub_ctx *sctx,
3452 			    u64 physical_for_dev_replace, struct page *page)
3453 {
3454 	struct bio *bio;
3455 	struct btrfs_device *dev;
3456 	int ret;
3457 
3458 	dev = sctx->wr_ctx.tgtdev;
3459 	if (!dev)
3460 		return -EIO;
3461 	if (!dev->bdev) {
3462 		printk_ratelimited(KERN_WARNING
3463 			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3464 		return -EIO;
3465 	}
3466 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3467 	if (!bio) {
3468 		spin_lock(&sctx->stat_lock);
3469 		sctx->stat.malloc_errors++;
3470 		spin_unlock(&sctx->stat_lock);
3471 		return -ENOMEM;
3472 	}
3473 	bio->bi_iter.bi_size = 0;
3474 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3475 	bio->bi_bdev = dev->bdev;
3476 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3477 	if (ret != PAGE_CACHE_SIZE) {
3478 leave_with_eio:
3479 		bio_put(bio);
3480 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3481 		return -EIO;
3482 	}
3483 
3484 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3485 		goto leave_with_eio;
3486 
3487 	bio_put(bio);
3488 	return 0;
3489 }
3490