xref: /openbmc/linux/fs/btrfs/scrub.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 #include "zoned.h"
24 
25 /*
26  * This is only the first step towards a full-features scrub. It reads all
27  * extent and super block and verifies the checksums. In case a bad checksum
28  * is found or the extent cannot be read, good data will be written back if
29  * any can be found.
30  *
31  * Future enhancements:
32  *  - In case an unrepairable extent is encountered, track which files are
33  *    affected and report them
34  *  - track and record media errors, throw out bad devices
35  *  - add a mode to also read unallocated space
36  */
37 
38 struct scrub_block;
39 struct scrub_ctx;
40 
41 /*
42  * the following three values only influence the performance.
43  * The last one configures the number of parallel and outstanding I/O
44  * operations. The first two values configure an upper limit for the number
45  * of (dynamically allocated) pages that are added to a bio.
46  */
47 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
48 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
49 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
50 
51 /*
52  * the following value times PAGE_SIZE needs to be large enough to match the
53  * largest node/leaf/sector size that shall be supported.
54  * Values larger than BTRFS_STRIPE_LEN are not supported.
55  */
56 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
57 
58 struct scrub_recover {
59 	refcount_t		refs;
60 	struct btrfs_bio	*bbio;
61 	u64			map_length;
62 };
63 
64 struct scrub_page {
65 	struct scrub_block	*sblock;
66 	struct page		*page;
67 	struct btrfs_device	*dev;
68 	struct list_head	list;
69 	u64			flags;  /* extent flags */
70 	u64			generation;
71 	u64			logical;
72 	u64			physical;
73 	u64			physical_for_dev_replace;
74 	atomic_t		refs;
75 	u8			mirror_num;
76 	int			have_csum:1;
77 	int			io_error:1;
78 	u8			csum[BTRFS_CSUM_SIZE];
79 
80 	struct scrub_recover	*recover;
81 };
82 
83 struct scrub_bio {
84 	int			index;
85 	struct scrub_ctx	*sctx;
86 	struct btrfs_device	*dev;
87 	struct bio		*bio;
88 	blk_status_t		status;
89 	u64			logical;
90 	u64			physical;
91 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
92 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
93 #else
94 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
95 #endif
96 	int			page_count;
97 	int			next_free;
98 	struct btrfs_work	work;
99 };
100 
101 struct scrub_block {
102 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 	int			page_count;
104 	atomic_t		outstanding_pages;
105 	refcount_t		refs; /* free mem on transition to zero */
106 	struct scrub_ctx	*sctx;
107 	struct scrub_parity	*sparity;
108 	struct {
109 		unsigned int	header_error:1;
110 		unsigned int	checksum_error:1;
111 		unsigned int	no_io_error_seen:1;
112 		unsigned int	generation_error:1; /* also sets header_error */
113 
114 		/* The following is for the data used to check parity */
115 		/* It is for the data with checksum */
116 		unsigned int	data_corrected:1;
117 	};
118 	struct btrfs_work	work;
119 };
120 
121 /* Used for the chunks with parity stripe such RAID5/6 */
122 struct scrub_parity {
123 	struct scrub_ctx	*sctx;
124 
125 	struct btrfs_device	*scrub_dev;
126 
127 	u64			logic_start;
128 
129 	u64			logic_end;
130 
131 	int			nsectors;
132 
133 	u32			stripe_len;
134 
135 	refcount_t		refs;
136 
137 	struct list_head	spages;
138 
139 	/* Work of parity check and repair */
140 	struct btrfs_work	work;
141 
142 	/* Mark the parity blocks which have data */
143 	unsigned long		*dbitmap;
144 
145 	/*
146 	 * Mark the parity blocks which have data, but errors happen when
147 	 * read data or check data
148 	 */
149 	unsigned long		*ebitmap;
150 
151 	unsigned long		bitmap[];
152 };
153 
154 struct scrub_ctx {
155 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
156 	struct btrfs_fs_info	*fs_info;
157 	int			first_free;
158 	int			curr;
159 	atomic_t		bios_in_flight;
160 	atomic_t		workers_pending;
161 	spinlock_t		list_lock;
162 	wait_queue_head_t	list_wait;
163 	struct list_head	csum_list;
164 	atomic_t		cancel_req;
165 	int			readonly;
166 	int			pages_per_rd_bio;
167 
168 	int			is_dev_replace;
169 	u64			write_pointer;
170 
171 	struct scrub_bio        *wr_curr_bio;
172 	struct mutex            wr_lock;
173 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
174 	struct btrfs_device     *wr_tgtdev;
175 	bool                    flush_all_writes;
176 
177 	/*
178 	 * statistics
179 	 */
180 	struct btrfs_scrub_progress stat;
181 	spinlock_t		stat_lock;
182 
183 	/*
184 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
185 	 * decrement bios_in_flight and workers_pending and then do a wakeup
186 	 * on the list_wait wait queue. We must ensure the main scrub task
187 	 * doesn't free the scrub context before or while the workers are
188 	 * doing the wakeup() call.
189 	 */
190 	refcount_t              refs;
191 };
192 
193 struct scrub_warning {
194 	struct btrfs_path	*path;
195 	u64			extent_item_size;
196 	const char		*errstr;
197 	u64			physical;
198 	u64			logical;
199 	struct btrfs_device	*dev;
200 };
201 
202 struct full_stripe_lock {
203 	struct rb_node node;
204 	u64 logical;
205 	u64 refs;
206 	struct mutex mutex;
207 };
208 
209 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
210 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
211 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
212 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
213 				     struct scrub_block *sblocks_for_recheck);
214 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
215 				struct scrub_block *sblock,
216 				int retry_failed_mirror);
217 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
218 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
219 					     struct scrub_block *sblock_good);
220 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
221 					    struct scrub_block *sblock_good,
222 					    int page_num, int force_write);
223 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
224 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
225 					   int page_num);
226 static int scrub_checksum_data(struct scrub_block *sblock);
227 static int scrub_checksum_tree_block(struct scrub_block *sblock);
228 static int scrub_checksum_super(struct scrub_block *sblock);
229 static void scrub_block_get(struct scrub_block *sblock);
230 static void scrub_block_put(struct scrub_block *sblock);
231 static void scrub_page_get(struct scrub_page *spage);
232 static void scrub_page_put(struct scrub_page *spage);
233 static void scrub_parity_get(struct scrub_parity *sparity);
234 static void scrub_parity_put(struct scrub_parity *sparity);
235 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
236 				    struct scrub_page *spage);
237 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
238 		       u64 physical, struct btrfs_device *dev, u64 flags,
239 		       u64 gen, int mirror_num, u8 *csum,
240 		       u64 physical_for_dev_replace);
241 static void scrub_bio_end_io(struct bio *bio);
242 static void scrub_bio_end_io_worker(struct btrfs_work *work);
243 static void scrub_block_complete(struct scrub_block *sblock);
244 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
245 			       u64 extent_logical, u32 extent_len,
246 			       u64 *extent_physical,
247 			       struct btrfs_device **extent_dev,
248 			       int *extent_mirror_num);
249 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
250 				    struct scrub_page *spage);
251 static void scrub_wr_submit(struct scrub_ctx *sctx);
252 static void scrub_wr_bio_end_io(struct bio *bio);
253 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
254 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
255 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256 static void scrub_put_ctx(struct scrub_ctx *sctx);
257 
258 static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
259 {
260 	return spage->recover &&
261 	       (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
262 }
263 
264 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
265 {
266 	refcount_inc(&sctx->refs);
267 	atomic_inc(&sctx->bios_in_flight);
268 }
269 
270 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
271 {
272 	atomic_dec(&sctx->bios_in_flight);
273 	wake_up(&sctx->list_wait);
274 	scrub_put_ctx(sctx);
275 }
276 
277 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
278 {
279 	while (atomic_read(&fs_info->scrub_pause_req)) {
280 		mutex_unlock(&fs_info->scrub_lock);
281 		wait_event(fs_info->scrub_pause_wait,
282 		   atomic_read(&fs_info->scrub_pause_req) == 0);
283 		mutex_lock(&fs_info->scrub_lock);
284 	}
285 }
286 
287 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
288 {
289 	atomic_inc(&fs_info->scrubs_paused);
290 	wake_up(&fs_info->scrub_pause_wait);
291 }
292 
293 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
294 {
295 	mutex_lock(&fs_info->scrub_lock);
296 	__scrub_blocked_if_needed(fs_info);
297 	atomic_dec(&fs_info->scrubs_paused);
298 	mutex_unlock(&fs_info->scrub_lock);
299 
300 	wake_up(&fs_info->scrub_pause_wait);
301 }
302 
303 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
304 {
305 	scrub_pause_on(fs_info);
306 	scrub_pause_off(fs_info);
307 }
308 
309 /*
310  * Insert new full stripe lock into full stripe locks tree
311  *
312  * Return pointer to existing or newly inserted full_stripe_lock structure if
313  * everything works well.
314  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
315  *
316  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
317  * function
318  */
319 static struct full_stripe_lock *insert_full_stripe_lock(
320 		struct btrfs_full_stripe_locks_tree *locks_root,
321 		u64 fstripe_logical)
322 {
323 	struct rb_node **p;
324 	struct rb_node *parent = NULL;
325 	struct full_stripe_lock *entry;
326 	struct full_stripe_lock *ret;
327 
328 	lockdep_assert_held(&locks_root->lock);
329 
330 	p = &locks_root->root.rb_node;
331 	while (*p) {
332 		parent = *p;
333 		entry = rb_entry(parent, struct full_stripe_lock, node);
334 		if (fstripe_logical < entry->logical) {
335 			p = &(*p)->rb_left;
336 		} else if (fstripe_logical > entry->logical) {
337 			p = &(*p)->rb_right;
338 		} else {
339 			entry->refs++;
340 			return entry;
341 		}
342 	}
343 
344 	/*
345 	 * Insert new lock.
346 	 */
347 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
348 	if (!ret)
349 		return ERR_PTR(-ENOMEM);
350 	ret->logical = fstripe_logical;
351 	ret->refs = 1;
352 	mutex_init(&ret->mutex);
353 
354 	rb_link_node(&ret->node, parent, p);
355 	rb_insert_color(&ret->node, &locks_root->root);
356 	return ret;
357 }
358 
359 /*
360  * Search for a full stripe lock of a block group
361  *
362  * Return pointer to existing full stripe lock if found
363  * Return NULL if not found
364  */
365 static struct full_stripe_lock *search_full_stripe_lock(
366 		struct btrfs_full_stripe_locks_tree *locks_root,
367 		u64 fstripe_logical)
368 {
369 	struct rb_node *node;
370 	struct full_stripe_lock *entry;
371 
372 	lockdep_assert_held(&locks_root->lock);
373 
374 	node = locks_root->root.rb_node;
375 	while (node) {
376 		entry = rb_entry(node, struct full_stripe_lock, node);
377 		if (fstripe_logical < entry->logical)
378 			node = node->rb_left;
379 		else if (fstripe_logical > entry->logical)
380 			node = node->rb_right;
381 		else
382 			return entry;
383 	}
384 	return NULL;
385 }
386 
387 /*
388  * Helper to get full stripe logical from a normal bytenr.
389  *
390  * Caller must ensure @cache is a RAID56 block group.
391  */
392 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
393 {
394 	u64 ret;
395 
396 	/*
397 	 * Due to chunk item size limit, full stripe length should not be
398 	 * larger than U32_MAX. Just a sanity check here.
399 	 */
400 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
401 
402 	/*
403 	 * round_down() can only handle power of 2, while RAID56 full
404 	 * stripe length can be 64KiB * n, so we need to manually round down.
405 	 */
406 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
407 			cache->full_stripe_len + cache->start;
408 	return ret;
409 }
410 
411 /*
412  * Lock a full stripe to avoid concurrency of recovery and read
413  *
414  * It's only used for profiles with parities (RAID5/6), for other profiles it
415  * does nothing.
416  *
417  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
418  * So caller must call unlock_full_stripe() at the same context.
419  *
420  * Return <0 if encounters error.
421  */
422 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
423 			    bool *locked_ret)
424 {
425 	struct btrfs_block_group *bg_cache;
426 	struct btrfs_full_stripe_locks_tree *locks_root;
427 	struct full_stripe_lock *existing;
428 	u64 fstripe_start;
429 	int ret = 0;
430 
431 	*locked_ret = false;
432 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
433 	if (!bg_cache) {
434 		ASSERT(0);
435 		return -ENOENT;
436 	}
437 
438 	/* Profiles not based on parity don't need full stripe lock */
439 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
440 		goto out;
441 	locks_root = &bg_cache->full_stripe_locks_root;
442 
443 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
444 
445 	/* Now insert the full stripe lock */
446 	mutex_lock(&locks_root->lock);
447 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
448 	mutex_unlock(&locks_root->lock);
449 	if (IS_ERR(existing)) {
450 		ret = PTR_ERR(existing);
451 		goto out;
452 	}
453 	mutex_lock(&existing->mutex);
454 	*locked_ret = true;
455 out:
456 	btrfs_put_block_group(bg_cache);
457 	return ret;
458 }
459 
460 /*
461  * Unlock a full stripe.
462  *
463  * NOTE: Caller must ensure it's the same context calling corresponding
464  * lock_full_stripe().
465  *
466  * Return 0 if we unlock full stripe without problem.
467  * Return <0 for error
468  */
469 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
470 			      bool locked)
471 {
472 	struct btrfs_block_group *bg_cache;
473 	struct btrfs_full_stripe_locks_tree *locks_root;
474 	struct full_stripe_lock *fstripe_lock;
475 	u64 fstripe_start;
476 	bool freeit = false;
477 	int ret = 0;
478 
479 	/* If we didn't acquire full stripe lock, no need to continue */
480 	if (!locked)
481 		return 0;
482 
483 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
484 	if (!bg_cache) {
485 		ASSERT(0);
486 		return -ENOENT;
487 	}
488 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
489 		goto out;
490 
491 	locks_root = &bg_cache->full_stripe_locks_root;
492 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
493 
494 	mutex_lock(&locks_root->lock);
495 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
496 	/* Unpaired unlock_full_stripe() detected */
497 	if (!fstripe_lock) {
498 		WARN_ON(1);
499 		ret = -ENOENT;
500 		mutex_unlock(&locks_root->lock);
501 		goto out;
502 	}
503 
504 	if (fstripe_lock->refs == 0) {
505 		WARN_ON(1);
506 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
507 			fstripe_lock->logical);
508 	} else {
509 		fstripe_lock->refs--;
510 	}
511 
512 	if (fstripe_lock->refs == 0) {
513 		rb_erase(&fstripe_lock->node, &locks_root->root);
514 		freeit = true;
515 	}
516 	mutex_unlock(&locks_root->lock);
517 
518 	mutex_unlock(&fstripe_lock->mutex);
519 	if (freeit)
520 		kfree(fstripe_lock);
521 out:
522 	btrfs_put_block_group(bg_cache);
523 	return ret;
524 }
525 
526 static void scrub_free_csums(struct scrub_ctx *sctx)
527 {
528 	while (!list_empty(&sctx->csum_list)) {
529 		struct btrfs_ordered_sum *sum;
530 		sum = list_first_entry(&sctx->csum_list,
531 				       struct btrfs_ordered_sum, list);
532 		list_del(&sum->list);
533 		kfree(sum);
534 	}
535 }
536 
537 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
538 {
539 	int i;
540 
541 	if (!sctx)
542 		return;
543 
544 	/* this can happen when scrub is cancelled */
545 	if (sctx->curr != -1) {
546 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
547 
548 		for (i = 0; i < sbio->page_count; i++) {
549 			WARN_ON(!sbio->pagev[i]->page);
550 			scrub_block_put(sbio->pagev[i]->sblock);
551 		}
552 		bio_put(sbio->bio);
553 	}
554 
555 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
556 		struct scrub_bio *sbio = sctx->bios[i];
557 
558 		if (!sbio)
559 			break;
560 		kfree(sbio);
561 	}
562 
563 	kfree(sctx->wr_curr_bio);
564 	scrub_free_csums(sctx);
565 	kfree(sctx);
566 }
567 
568 static void scrub_put_ctx(struct scrub_ctx *sctx)
569 {
570 	if (refcount_dec_and_test(&sctx->refs))
571 		scrub_free_ctx(sctx);
572 }
573 
574 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
575 		struct btrfs_fs_info *fs_info, int is_dev_replace)
576 {
577 	struct scrub_ctx *sctx;
578 	int		i;
579 
580 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
581 	if (!sctx)
582 		goto nomem;
583 	refcount_set(&sctx->refs, 1);
584 	sctx->is_dev_replace = is_dev_replace;
585 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
586 	sctx->curr = -1;
587 	sctx->fs_info = fs_info;
588 	INIT_LIST_HEAD(&sctx->csum_list);
589 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
590 		struct scrub_bio *sbio;
591 
592 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
593 		if (!sbio)
594 			goto nomem;
595 		sctx->bios[i] = sbio;
596 
597 		sbio->index = i;
598 		sbio->sctx = sctx;
599 		sbio->page_count = 0;
600 		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
601 				NULL);
602 
603 		if (i != SCRUB_BIOS_PER_SCTX - 1)
604 			sctx->bios[i]->next_free = i + 1;
605 		else
606 			sctx->bios[i]->next_free = -1;
607 	}
608 	sctx->first_free = 0;
609 	atomic_set(&sctx->bios_in_flight, 0);
610 	atomic_set(&sctx->workers_pending, 0);
611 	atomic_set(&sctx->cancel_req, 0);
612 
613 	spin_lock_init(&sctx->list_lock);
614 	spin_lock_init(&sctx->stat_lock);
615 	init_waitqueue_head(&sctx->list_wait);
616 
617 	WARN_ON(sctx->wr_curr_bio != NULL);
618 	mutex_init(&sctx->wr_lock);
619 	sctx->wr_curr_bio = NULL;
620 	if (is_dev_replace) {
621 		WARN_ON(!fs_info->dev_replace.tgtdev);
622 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
623 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
624 		sctx->flush_all_writes = false;
625 	}
626 
627 	return sctx;
628 
629 nomem:
630 	scrub_free_ctx(sctx);
631 	return ERR_PTR(-ENOMEM);
632 }
633 
634 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
635 				     void *warn_ctx)
636 {
637 	u64 isize;
638 	u32 nlink;
639 	int ret;
640 	int i;
641 	unsigned nofs_flag;
642 	struct extent_buffer *eb;
643 	struct btrfs_inode_item *inode_item;
644 	struct scrub_warning *swarn = warn_ctx;
645 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
646 	struct inode_fs_paths *ipath = NULL;
647 	struct btrfs_root *local_root;
648 	struct btrfs_key key;
649 
650 	local_root = btrfs_get_fs_root(fs_info, root, true);
651 	if (IS_ERR(local_root)) {
652 		ret = PTR_ERR(local_root);
653 		goto err;
654 	}
655 
656 	/*
657 	 * this makes the path point to (inum INODE_ITEM ioff)
658 	 */
659 	key.objectid = inum;
660 	key.type = BTRFS_INODE_ITEM_KEY;
661 	key.offset = 0;
662 
663 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
664 	if (ret) {
665 		btrfs_put_root(local_root);
666 		btrfs_release_path(swarn->path);
667 		goto err;
668 	}
669 
670 	eb = swarn->path->nodes[0];
671 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
672 					struct btrfs_inode_item);
673 	isize = btrfs_inode_size(eb, inode_item);
674 	nlink = btrfs_inode_nlink(eb, inode_item);
675 	btrfs_release_path(swarn->path);
676 
677 	/*
678 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
679 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
680 	 * not seem to be strictly necessary.
681 	 */
682 	nofs_flag = memalloc_nofs_save();
683 	ipath = init_ipath(4096, local_root, swarn->path);
684 	memalloc_nofs_restore(nofs_flag);
685 	if (IS_ERR(ipath)) {
686 		btrfs_put_root(local_root);
687 		ret = PTR_ERR(ipath);
688 		ipath = NULL;
689 		goto err;
690 	}
691 	ret = paths_from_inode(inum, ipath);
692 
693 	if (ret < 0)
694 		goto err;
695 
696 	/*
697 	 * we deliberately ignore the bit ipath might have been too small to
698 	 * hold all of the paths here
699 	 */
700 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
701 		btrfs_warn_in_rcu(fs_info,
702 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
703 				  swarn->errstr, swarn->logical,
704 				  rcu_str_deref(swarn->dev->name),
705 				  swarn->physical,
706 				  root, inum, offset,
707 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
708 				  (char *)(unsigned long)ipath->fspath->val[i]);
709 
710 	btrfs_put_root(local_root);
711 	free_ipath(ipath);
712 	return 0;
713 
714 err:
715 	btrfs_warn_in_rcu(fs_info,
716 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
717 			  swarn->errstr, swarn->logical,
718 			  rcu_str_deref(swarn->dev->name),
719 			  swarn->physical,
720 			  root, inum, offset, ret);
721 
722 	free_ipath(ipath);
723 	return 0;
724 }
725 
726 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
727 {
728 	struct btrfs_device *dev;
729 	struct btrfs_fs_info *fs_info;
730 	struct btrfs_path *path;
731 	struct btrfs_key found_key;
732 	struct extent_buffer *eb;
733 	struct btrfs_extent_item *ei;
734 	struct scrub_warning swarn;
735 	unsigned long ptr = 0;
736 	u64 extent_item_pos;
737 	u64 flags = 0;
738 	u64 ref_root;
739 	u32 item_size;
740 	u8 ref_level = 0;
741 	int ret;
742 
743 	WARN_ON(sblock->page_count < 1);
744 	dev = sblock->pagev[0]->dev;
745 	fs_info = sblock->sctx->fs_info;
746 
747 	path = btrfs_alloc_path();
748 	if (!path)
749 		return;
750 
751 	swarn.physical = sblock->pagev[0]->physical;
752 	swarn.logical = sblock->pagev[0]->logical;
753 	swarn.errstr = errstr;
754 	swarn.dev = NULL;
755 
756 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
757 				  &flags);
758 	if (ret < 0)
759 		goto out;
760 
761 	extent_item_pos = swarn.logical - found_key.objectid;
762 	swarn.extent_item_size = found_key.offset;
763 
764 	eb = path->nodes[0];
765 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
766 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
767 
768 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
769 		do {
770 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
771 						      item_size, &ref_root,
772 						      &ref_level);
773 			btrfs_warn_in_rcu(fs_info,
774 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
775 				errstr, swarn.logical,
776 				rcu_str_deref(dev->name),
777 				swarn.physical,
778 				ref_level ? "node" : "leaf",
779 				ret < 0 ? -1 : ref_level,
780 				ret < 0 ? -1 : ref_root);
781 		} while (ret != 1);
782 		btrfs_release_path(path);
783 	} else {
784 		btrfs_release_path(path);
785 		swarn.path = path;
786 		swarn.dev = dev;
787 		iterate_extent_inodes(fs_info, found_key.objectid,
788 					extent_item_pos, 1,
789 					scrub_print_warning_inode, &swarn, false);
790 	}
791 
792 out:
793 	btrfs_free_path(path);
794 }
795 
796 static inline void scrub_get_recover(struct scrub_recover *recover)
797 {
798 	refcount_inc(&recover->refs);
799 }
800 
801 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
802 				     struct scrub_recover *recover)
803 {
804 	if (refcount_dec_and_test(&recover->refs)) {
805 		btrfs_bio_counter_dec(fs_info);
806 		btrfs_put_bbio(recover->bbio);
807 		kfree(recover);
808 	}
809 }
810 
811 /*
812  * scrub_handle_errored_block gets called when either verification of the
813  * pages failed or the bio failed to read, e.g. with EIO. In the latter
814  * case, this function handles all pages in the bio, even though only one
815  * may be bad.
816  * The goal of this function is to repair the errored block by using the
817  * contents of one of the mirrors.
818  */
819 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
820 {
821 	struct scrub_ctx *sctx = sblock_to_check->sctx;
822 	struct btrfs_device *dev;
823 	struct btrfs_fs_info *fs_info;
824 	u64 logical;
825 	unsigned int failed_mirror_index;
826 	unsigned int is_metadata;
827 	unsigned int have_csum;
828 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
829 	struct scrub_block *sblock_bad;
830 	int ret;
831 	int mirror_index;
832 	int page_num;
833 	int success;
834 	bool full_stripe_locked;
835 	unsigned int nofs_flag;
836 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
837 				      DEFAULT_RATELIMIT_BURST);
838 
839 	BUG_ON(sblock_to_check->page_count < 1);
840 	fs_info = sctx->fs_info;
841 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
842 		/*
843 		 * if we find an error in a super block, we just report it.
844 		 * They will get written with the next transaction commit
845 		 * anyway
846 		 */
847 		spin_lock(&sctx->stat_lock);
848 		++sctx->stat.super_errors;
849 		spin_unlock(&sctx->stat_lock);
850 		return 0;
851 	}
852 	logical = sblock_to_check->pagev[0]->logical;
853 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
854 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
855 	is_metadata = !(sblock_to_check->pagev[0]->flags &
856 			BTRFS_EXTENT_FLAG_DATA);
857 	have_csum = sblock_to_check->pagev[0]->have_csum;
858 	dev = sblock_to_check->pagev[0]->dev;
859 
860 	if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
861 		return btrfs_repair_one_zone(fs_info, logical);
862 
863 	/*
864 	 * We must use GFP_NOFS because the scrub task might be waiting for a
865 	 * worker task executing this function and in turn a transaction commit
866 	 * might be waiting the scrub task to pause (which needs to wait for all
867 	 * the worker tasks to complete before pausing).
868 	 * We do allocations in the workers through insert_full_stripe_lock()
869 	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
870 	 * this function.
871 	 */
872 	nofs_flag = memalloc_nofs_save();
873 	/*
874 	 * For RAID5/6, race can happen for a different device scrub thread.
875 	 * For data corruption, Parity and Data threads will both try
876 	 * to recovery the data.
877 	 * Race can lead to doubly added csum error, or even unrecoverable
878 	 * error.
879 	 */
880 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
881 	if (ret < 0) {
882 		memalloc_nofs_restore(nofs_flag);
883 		spin_lock(&sctx->stat_lock);
884 		if (ret == -ENOMEM)
885 			sctx->stat.malloc_errors++;
886 		sctx->stat.read_errors++;
887 		sctx->stat.uncorrectable_errors++;
888 		spin_unlock(&sctx->stat_lock);
889 		return ret;
890 	}
891 
892 	/*
893 	 * read all mirrors one after the other. This includes to
894 	 * re-read the extent or metadata block that failed (that was
895 	 * the cause that this fixup code is called) another time,
896 	 * page by page this time in order to know which pages
897 	 * caused I/O errors and which ones are good (for all mirrors).
898 	 * It is the goal to handle the situation when more than one
899 	 * mirror contains I/O errors, but the errors do not
900 	 * overlap, i.e. the data can be repaired by selecting the
901 	 * pages from those mirrors without I/O error on the
902 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
903 	 * would be that mirror #1 has an I/O error on the first page,
904 	 * the second page is good, and mirror #2 has an I/O error on
905 	 * the second page, but the first page is good.
906 	 * Then the first page of the first mirror can be repaired by
907 	 * taking the first page of the second mirror, and the
908 	 * second page of the second mirror can be repaired by
909 	 * copying the contents of the 2nd page of the 1st mirror.
910 	 * One more note: if the pages of one mirror contain I/O
911 	 * errors, the checksum cannot be verified. In order to get
912 	 * the best data for repairing, the first attempt is to find
913 	 * a mirror without I/O errors and with a validated checksum.
914 	 * Only if this is not possible, the pages are picked from
915 	 * mirrors with I/O errors without considering the checksum.
916 	 * If the latter is the case, at the end, the checksum of the
917 	 * repaired area is verified in order to correctly maintain
918 	 * the statistics.
919 	 */
920 
921 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
922 				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
923 	if (!sblocks_for_recheck) {
924 		spin_lock(&sctx->stat_lock);
925 		sctx->stat.malloc_errors++;
926 		sctx->stat.read_errors++;
927 		sctx->stat.uncorrectable_errors++;
928 		spin_unlock(&sctx->stat_lock);
929 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
930 		goto out;
931 	}
932 
933 	/* setup the context, map the logical blocks and alloc the pages */
934 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
935 	if (ret) {
936 		spin_lock(&sctx->stat_lock);
937 		sctx->stat.read_errors++;
938 		sctx->stat.uncorrectable_errors++;
939 		spin_unlock(&sctx->stat_lock);
940 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
941 		goto out;
942 	}
943 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
944 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
945 
946 	/* build and submit the bios for the failed mirror, check checksums */
947 	scrub_recheck_block(fs_info, sblock_bad, 1);
948 
949 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
950 	    sblock_bad->no_io_error_seen) {
951 		/*
952 		 * the error disappeared after reading page by page, or
953 		 * the area was part of a huge bio and other parts of the
954 		 * bio caused I/O errors, or the block layer merged several
955 		 * read requests into one and the error is caused by a
956 		 * different bio (usually one of the two latter cases is
957 		 * the cause)
958 		 */
959 		spin_lock(&sctx->stat_lock);
960 		sctx->stat.unverified_errors++;
961 		sblock_to_check->data_corrected = 1;
962 		spin_unlock(&sctx->stat_lock);
963 
964 		if (sctx->is_dev_replace)
965 			scrub_write_block_to_dev_replace(sblock_bad);
966 		goto out;
967 	}
968 
969 	if (!sblock_bad->no_io_error_seen) {
970 		spin_lock(&sctx->stat_lock);
971 		sctx->stat.read_errors++;
972 		spin_unlock(&sctx->stat_lock);
973 		if (__ratelimit(&rs))
974 			scrub_print_warning("i/o error", sblock_to_check);
975 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976 	} else if (sblock_bad->checksum_error) {
977 		spin_lock(&sctx->stat_lock);
978 		sctx->stat.csum_errors++;
979 		spin_unlock(&sctx->stat_lock);
980 		if (__ratelimit(&rs))
981 			scrub_print_warning("checksum error", sblock_to_check);
982 		btrfs_dev_stat_inc_and_print(dev,
983 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
984 	} else if (sblock_bad->header_error) {
985 		spin_lock(&sctx->stat_lock);
986 		sctx->stat.verify_errors++;
987 		spin_unlock(&sctx->stat_lock);
988 		if (__ratelimit(&rs))
989 			scrub_print_warning("checksum/header error",
990 					    sblock_to_check);
991 		if (sblock_bad->generation_error)
992 			btrfs_dev_stat_inc_and_print(dev,
993 				BTRFS_DEV_STAT_GENERATION_ERRS);
994 		else
995 			btrfs_dev_stat_inc_and_print(dev,
996 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
997 	}
998 
999 	if (sctx->readonly) {
1000 		ASSERT(!sctx->is_dev_replace);
1001 		goto out;
1002 	}
1003 
1004 	/*
1005 	 * now build and submit the bios for the other mirrors, check
1006 	 * checksums.
1007 	 * First try to pick the mirror which is completely without I/O
1008 	 * errors and also does not have a checksum error.
1009 	 * If one is found, and if a checksum is present, the full block
1010 	 * that is known to contain an error is rewritten. Afterwards
1011 	 * the block is known to be corrected.
1012 	 * If a mirror is found which is completely correct, and no
1013 	 * checksum is present, only those pages are rewritten that had
1014 	 * an I/O error in the block to be repaired, since it cannot be
1015 	 * determined, which copy of the other pages is better (and it
1016 	 * could happen otherwise that a correct page would be
1017 	 * overwritten by a bad one).
1018 	 */
1019 	for (mirror_index = 0; ;mirror_index++) {
1020 		struct scrub_block *sblock_other;
1021 
1022 		if (mirror_index == failed_mirror_index)
1023 			continue;
1024 
1025 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1026 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1027 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1028 				break;
1029 			if (!sblocks_for_recheck[mirror_index].page_count)
1030 				break;
1031 
1032 			sblock_other = sblocks_for_recheck + mirror_index;
1033 		} else {
1034 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1035 			int max_allowed = r->bbio->num_stripes -
1036 						r->bbio->num_tgtdevs;
1037 
1038 			if (mirror_index >= max_allowed)
1039 				break;
1040 			if (!sblocks_for_recheck[1].page_count)
1041 				break;
1042 
1043 			ASSERT(failed_mirror_index == 0);
1044 			sblock_other = sblocks_for_recheck + 1;
1045 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1046 		}
1047 
1048 		/* build and submit the bios, check checksums */
1049 		scrub_recheck_block(fs_info, sblock_other, 0);
1050 
1051 		if (!sblock_other->header_error &&
1052 		    !sblock_other->checksum_error &&
1053 		    sblock_other->no_io_error_seen) {
1054 			if (sctx->is_dev_replace) {
1055 				scrub_write_block_to_dev_replace(sblock_other);
1056 				goto corrected_error;
1057 			} else {
1058 				ret = scrub_repair_block_from_good_copy(
1059 						sblock_bad, sblock_other);
1060 				if (!ret)
1061 					goto corrected_error;
1062 			}
1063 		}
1064 	}
1065 
1066 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1067 		goto did_not_correct_error;
1068 
1069 	/*
1070 	 * In case of I/O errors in the area that is supposed to be
1071 	 * repaired, continue by picking good copies of those pages.
1072 	 * Select the good pages from mirrors to rewrite bad pages from
1073 	 * the area to fix. Afterwards verify the checksum of the block
1074 	 * that is supposed to be repaired. This verification step is
1075 	 * only done for the purpose of statistic counting and for the
1076 	 * final scrub report, whether errors remain.
1077 	 * A perfect algorithm could make use of the checksum and try
1078 	 * all possible combinations of pages from the different mirrors
1079 	 * until the checksum verification succeeds. For example, when
1080 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081 	 * of mirror #2 is readable but the final checksum test fails,
1082 	 * then the 2nd page of mirror #3 could be tried, whether now
1083 	 * the final checksum succeeds. But this would be a rare
1084 	 * exception and is therefore not implemented. At least it is
1085 	 * avoided that the good copy is overwritten.
1086 	 * A more useful improvement would be to pick the sectors
1087 	 * without I/O error based on sector sizes (512 bytes on legacy
1088 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089 	 * mirror could be repaired by taking 512 byte of a different
1090 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091 	 * area are unreadable.
1092 	 */
1093 	success = 1;
1094 	for (page_num = 0; page_num < sblock_bad->page_count;
1095 	     page_num++) {
1096 		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1097 		struct scrub_block *sblock_other = NULL;
1098 
1099 		/* skip no-io-error page in scrub */
1100 		if (!spage_bad->io_error && !sctx->is_dev_replace)
1101 			continue;
1102 
1103 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1104 			/*
1105 			 * In case of dev replace, if raid56 rebuild process
1106 			 * didn't work out correct data, then copy the content
1107 			 * in sblock_bad to make sure target device is identical
1108 			 * to source device, instead of writing garbage data in
1109 			 * sblock_for_recheck array to target device.
1110 			 */
1111 			sblock_other = NULL;
1112 		} else if (spage_bad->io_error) {
1113 			/* try to find no-io-error page in mirrors */
1114 			for (mirror_index = 0;
1115 			     mirror_index < BTRFS_MAX_MIRRORS &&
1116 			     sblocks_for_recheck[mirror_index].page_count > 0;
1117 			     mirror_index++) {
1118 				if (!sblocks_for_recheck[mirror_index].
1119 				    pagev[page_num]->io_error) {
1120 					sblock_other = sblocks_for_recheck +
1121 						       mirror_index;
1122 					break;
1123 				}
1124 			}
1125 			if (!sblock_other)
1126 				success = 0;
1127 		}
1128 
1129 		if (sctx->is_dev_replace) {
1130 			/*
1131 			 * did not find a mirror to fetch the page
1132 			 * from. scrub_write_page_to_dev_replace()
1133 			 * handles this case (page->io_error), by
1134 			 * filling the block with zeros before
1135 			 * submitting the write request
1136 			 */
1137 			if (!sblock_other)
1138 				sblock_other = sblock_bad;
1139 
1140 			if (scrub_write_page_to_dev_replace(sblock_other,
1141 							    page_num) != 0) {
1142 				atomic64_inc(
1143 					&fs_info->dev_replace.num_write_errors);
1144 				success = 0;
1145 			}
1146 		} else if (sblock_other) {
1147 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1148 							       sblock_other,
1149 							       page_num, 0);
1150 			if (0 == ret)
1151 				spage_bad->io_error = 0;
1152 			else
1153 				success = 0;
1154 		}
1155 	}
1156 
1157 	if (success && !sctx->is_dev_replace) {
1158 		if (is_metadata || have_csum) {
1159 			/*
1160 			 * need to verify the checksum now that all
1161 			 * sectors on disk are repaired (the write
1162 			 * request for data to be repaired is on its way).
1163 			 * Just be lazy and use scrub_recheck_block()
1164 			 * which re-reads the data before the checksum
1165 			 * is verified, but most likely the data comes out
1166 			 * of the page cache.
1167 			 */
1168 			scrub_recheck_block(fs_info, sblock_bad, 1);
1169 			if (!sblock_bad->header_error &&
1170 			    !sblock_bad->checksum_error &&
1171 			    sblock_bad->no_io_error_seen)
1172 				goto corrected_error;
1173 			else
1174 				goto did_not_correct_error;
1175 		} else {
1176 corrected_error:
1177 			spin_lock(&sctx->stat_lock);
1178 			sctx->stat.corrected_errors++;
1179 			sblock_to_check->data_corrected = 1;
1180 			spin_unlock(&sctx->stat_lock);
1181 			btrfs_err_rl_in_rcu(fs_info,
1182 				"fixed up error at logical %llu on dev %s",
1183 				logical, rcu_str_deref(dev->name));
1184 		}
1185 	} else {
1186 did_not_correct_error:
1187 		spin_lock(&sctx->stat_lock);
1188 		sctx->stat.uncorrectable_errors++;
1189 		spin_unlock(&sctx->stat_lock);
1190 		btrfs_err_rl_in_rcu(fs_info,
1191 			"unable to fixup (regular) error at logical %llu on dev %s",
1192 			logical, rcu_str_deref(dev->name));
1193 	}
1194 
1195 out:
1196 	if (sblocks_for_recheck) {
1197 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1198 		     mirror_index++) {
1199 			struct scrub_block *sblock = sblocks_for_recheck +
1200 						     mirror_index;
1201 			struct scrub_recover *recover;
1202 			int page_index;
1203 
1204 			for (page_index = 0; page_index < sblock->page_count;
1205 			     page_index++) {
1206 				sblock->pagev[page_index]->sblock = NULL;
1207 				recover = sblock->pagev[page_index]->recover;
1208 				if (recover) {
1209 					scrub_put_recover(fs_info, recover);
1210 					sblock->pagev[page_index]->recover =
1211 									NULL;
1212 				}
1213 				scrub_page_put(sblock->pagev[page_index]);
1214 			}
1215 		}
1216 		kfree(sblocks_for_recheck);
1217 	}
1218 
1219 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1220 	memalloc_nofs_restore(nofs_flag);
1221 	if (ret < 0)
1222 		return ret;
1223 	return 0;
1224 }
1225 
1226 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1227 {
1228 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1229 		return 2;
1230 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1231 		return 3;
1232 	else
1233 		return (int)bbio->num_stripes;
1234 }
1235 
1236 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1237 						 u64 *raid_map,
1238 						 u64 mapped_length,
1239 						 int nstripes, int mirror,
1240 						 int *stripe_index,
1241 						 u64 *stripe_offset)
1242 {
1243 	int i;
1244 
1245 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1246 		/* RAID5/6 */
1247 		for (i = 0; i < nstripes; i++) {
1248 			if (raid_map[i] == RAID6_Q_STRIPE ||
1249 			    raid_map[i] == RAID5_P_STRIPE)
1250 				continue;
1251 
1252 			if (logical >= raid_map[i] &&
1253 			    logical < raid_map[i] + mapped_length)
1254 				break;
1255 		}
1256 
1257 		*stripe_index = i;
1258 		*stripe_offset = logical - raid_map[i];
1259 	} else {
1260 		/* The other RAID type */
1261 		*stripe_index = mirror;
1262 		*stripe_offset = 0;
1263 	}
1264 }
1265 
1266 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1267 				     struct scrub_block *sblocks_for_recheck)
1268 {
1269 	struct scrub_ctx *sctx = original_sblock->sctx;
1270 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1271 	u64 length = original_sblock->page_count * PAGE_SIZE;
1272 	u64 logical = original_sblock->pagev[0]->logical;
1273 	u64 generation = original_sblock->pagev[0]->generation;
1274 	u64 flags = original_sblock->pagev[0]->flags;
1275 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1276 	struct scrub_recover *recover;
1277 	struct btrfs_bio *bbio;
1278 	u64 sublen;
1279 	u64 mapped_length;
1280 	u64 stripe_offset;
1281 	int stripe_index;
1282 	int page_index = 0;
1283 	int mirror_index;
1284 	int nmirrors;
1285 	int ret;
1286 
1287 	/*
1288 	 * note: the two members refs and outstanding_pages
1289 	 * are not used (and not set) in the blocks that are used for
1290 	 * the recheck procedure
1291 	 */
1292 
1293 	while (length > 0) {
1294 		sublen = min_t(u64, length, PAGE_SIZE);
1295 		mapped_length = sublen;
1296 		bbio = NULL;
1297 
1298 		/*
1299 		 * with a length of PAGE_SIZE, each returned stripe
1300 		 * represents one mirror
1301 		 */
1302 		btrfs_bio_counter_inc_blocked(fs_info);
1303 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1304 				logical, &mapped_length, &bbio);
1305 		if (ret || !bbio || mapped_length < sublen) {
1306 			btrfs_put_bbio(bbio);
1307 			btrfs_bio_counter_dec(fs_info);
1308 			return -EIO;
1309 		}
1310 
1311 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1312 		if (!recover) {
1313 			btrfs_put_bbio(bbio);
1314 			btrfs_bio_counter_dec(fs_info);
1315 			return -ENOMEM;
1316 		}
1317 
1318 		refcount_set(&recover->refs, 1);
1319 		recover->bbio = bbio;
1320 		recover->map_length = mapped_length;
1321 
1322 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1323 
1324 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1325 
1326 		for (mirror_index = 0; mirror_index < nmirrors;
1327 		     mirror_index++) {
1328 			struct scrub_block *sblock;
1329 			struct scrub_page *spage;
1330 
1331 			sblock = sblocks_for_recheck + mirror_index;
1332 			sblock->sctx = sctx;
1333 
1334 			spage = kzalloc(sizeof(*spage), GFP_NOFS);
1335 			if (!spage) {
1336 leave_nomem:
1337 				spin_lock(&sctx->stat_lock);
1338 				sctx->stat.malloc_errors++;
1339 				spin_unlock(&sctx->stat_lock);
1340 				scrub_put_recover(fs_info, recover);
1341 				return -ENOMEM;
1342 			}
1343 			scrub_page_get(spage);
1344 			sblock->pagev[page_index] = spage;
1345 			spage->sblock = sblock;
1346 			spage->flags = flags;
1347 			spage->generation = generation;
1348 			spage->logical = logical;
1349 			spage->have_csum = have_csum;
1350 			if (have_csum)
1351 				memcpy(spage->csum,
1352 				       original_sblock->pagev[0]->csum,
1353 				       sctx->fs_info->csum_size);
1354 
1355 			scrub_stripe_index_and_offset(logical,
1356 						      bbio->map_type,
1357 						      bbio->raid_map,
1358 						      mapped_length,
1359 						      bbio->num_stripes -
1360 						      bbio->num_tgtdevs,
1361 						      mirror_index,
1362 						      &stripe_index,
1363 						      &stripe_offset);
1364 			spage->physical = bbio->stripes[stripe_index].physical +
1365 					 stripe_offset;
1366 			spage->dev = bbio->stripes[stripe_index].dev;
1367 
1368 			BUG_ON(page_index >= original_sblock->page_count);
1369 			spage->physical_for_dev_replace =
1370 				original_sblock->pagev[page_index]->
1371 				physical_for_dev_replace;
1372 			/* for missing devices, dev->bdev is NULL */
1373 			spage->mirror_num = mirror_index + 1;
1374 			sblock->page_count++;
1375 			spage->page = alloc_page(GFP_NOFS);
1376 			if (!spage->page)
1377 				goto leave_nomem;
1378 
1379 			scrub_get_recover(recover);
1380 			spage->recover = recover;
1381 		}
1382 		scrub_put_recover(fs_info, recover);
1383 		length -= sublen;
1384 		logical += sublen;
1385 		page_index++;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static void scrub_bio_wait_endio(struct bio *bio)
1392 {
1393 	complete(bio->bi_private);
1394 }
1395 
1396 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1397 					struct bio *bio,
1398 					struct scrub_page *spage)
1399 {
1400 	DECLARE_COMPLETION_ONSTACK(done);
1401 	int ret;
1402 	int mirror_num;
1403 
1404 	bio->bi_iter.bi_sector = spage->logical >> 9;
1405 	bio->bi_private = &done;
1406 	bio->bi_end_io = scrub_bio_wait_endio;
1407 
1408 	mirror_num = spage->sblock->pagev[0]->mirror_num;
1409 	ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
1410 				    spage->recover->map_length,
1411 				    mirror_num, 0);
1412 	if (ret)
1413 		return ret;
1414 
1415 	wait_for_completion_io(&done);
1416 	return blk_status_to_errno(bio->bi_status);
1417 }
1418 
1419 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1420 					  struct scrub_block *sblock)
1421 {
1422 	struct scrub_page *first_page = sblock->pagev[0];
1423 	struct bio *bio;
1424 	int page_num;
1425 
1426 	/* All pages in sblock belong to the same stripe on the same device. */
1427 	ASSERT(first_page->dev);
1428 	if (!first_page->dev->bdev)
1429 		goto out;
1430 
1431 	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1432 	bio_set_dev(bio, first_page->dev->bdev);
1433 
1434 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1435 		struct scrub_page *spage = sblock->pagev[page_num];
1436 
1437 		WARN_ON(!spage->page);
1438 		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1439 	}
1440 
1441 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1442 		bio_put(bio);
1443 		goto out;
1444 	}
1445 
1446 	bio_put(bio);
1447 
1448 	scrub_recheck_block_checksum(sblock);
1449 
1450 	return;
1451 out:
1452 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1453 		sblock->pagev[page_num]->io_error = 1;
1454 
1455 	sblock->no_io_error_seen = 0;
1456 }
1457 
1458 /*
1459  * this function will check the on disk data for checksum errors, header
1460  * errors and read I/O errors. If any I/O errors happen, the exact pages
1461  * which are errored are marked as being bad. The goal is to enable scrub
1462  * to take those pages that are not errored from all the mirrors so that
1463  * the pages that are errored in the just handled mirror can be repaired.
1464  */
1465 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1466 				struct scrub_block *sblock,
1467 				int retry_failed_mirror)
1468 {
1469 	int page_num;
1470 
1471 	sblock->no_io_error_seen = 1;
1472 
1473 	/* short cut for raid56 */
1474 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1475 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1476 
1477 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1478 		struct bio *bio;
1479 		struct scrub_page *spage = sblock->pagev[page_num];
1480 
1481 		if (spage->dev->bdev == NULL) {
1482 			spage->io_error = 1;
1483 			sblock->no_io_error_seen = 0;
1484 			continue;
1485 		}
1486 
1487 		WARN_ON(!spage->page);
1488 		bio = btrfs_io_bio_alloc(1);
1489 		bio_set_dev(bio, spage->dev->bdev);
1490 
1491 		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1492 		bio->bi_iter.bi_sector = spage->physical >> 9;
1493 		bio->bi_opf = REQ_OP_READ;
1494 
1495 		if (btrfsic_submit_bio_wait(bio)) {
1496 			spage->io_error = 1;
1497 			sblock->no_io_error_seen = 0;
1498 		}
1499 
1500 		bio_put(bio);
1501 	}
1502 
1503 	if (sblock->no_io_error_seen)
1504 		scrub_recheck_block_checksum(sblock);
1505 }
1506 
1507 static inline int scrub_check_fsid(u8 fsid[],
1508 				   struct scrub_page *spage)
1509 {
1510 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1511 	int ret;
1512 
1513 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1514 	return !ret;
1515 }
1516 
1517 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1518 {
1519 	sblock->header_error = 0;
1520 	sblock->checksum_error = 0;
1521 	sblock->generation_error = 0;
1522 
1523 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1524 		scrub_checksum_data(sblock);
1525 	else
1526 		scrub_checksum_tree_block(sblock);
1527 }
1528 
1529 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1530 					     struct scrub_block *sblock_good)
1531 {
1532 	int page_num;
1533 	int ret = 0;
1534 
1535 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1536 		int ret_sub;
1537 
1538 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1539 							   sblock_good,
1540 							   page_num, 1);
1541 		if (ret_sub)
1542 			ret = ret_sub;
1543 	}
1544 
1545 	return ret;
1546 }
1547 
1548 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1549 					    struct scrub_block *sblock_good,
1550 					    int page_num, int force_write)
1551 {
1552 	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1553 	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1554 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1555 
1556 	BUG_ON(spage_bad->page == NULL);
1557 	BUG_ON(spage_good->page == NULL);
1558 	if (force_write || sblock_bad->header_error ||
1559 	    sblock_bad->checksum_error || spage_bad->io_error) {
1560 		struct bio *bio;
1561 		int ret;
1562 
1563 		if (!spage_bad->dev->bdev) {
1564 			btrfs_warn_rl(fs_info,
1565 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1566 			return -EIO;
1567 		}
1568 
1569 		bio = btrfs_io_bio_alloc(1);
1570 		bio_set_dev(bio, spage_bad->dev->bdev);
1571 		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
1572 		bio->bi_opf = REQ_OP_WRITE;
1573 
1574 		ret = bio_add_page(bio, spage_good->page, PAGE_SIZE, 0);
1575 		if (PAGE_SIZE != ret) {
1576 			bio_put(bio);
1577 			return -EIO;
1578 		}
1579 
1580 		if (btrfsic_submit_bio_wait(bio)) {
1581 			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1582 				BTRFS_DEV_STAT_WRITE_ERRS);
1583 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1584 			bio_put(bio);
1585 			return -EIO;
1586 		}
1587 		bio_put(bio);
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1594 {
1595 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1596 	int page_num;
1597 
1598 	/*
1599 	 * This block is used for the check of the parity on the source device,
1600 	 * so the data needn't be written into the destination device.
1601 	 */
1602 	if (sblock->sparity)
1603 		return;
1604 
1605 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1606 		int ret;
1607 
1608 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1609 		if (ret)
1610 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1611 	}
1612 }
1613 
1614 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1615 					   int page_num)
1616 {
1617 	struct scrub_page *spage = sblock->pagev[page_num];
1618 
1619 	BUG_ON(spage->page == NULL);
1620 	if (spage->io_error)
1621 		clear_page(page_address(spage->page));
1622 
1623 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1624 }
1625 
1626 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1627 {
1628 	int ret = 0;
1629 	u64 length;
1630 
1631 	if (!btrfs_is_zoned(sctx->fs_info))
1632 		return 0;
1633 
1634 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1635 		return 0;
1636 
1637 	if (sctx->write_pointer < physical) {
1638 		length = physical - sctx->write_pointer;
1639 
1640 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1641 						sctx->write_pointer, length);
1642 		if (!ret)
1643 			sctx->write_pointer = physical;
1644 	}
1645 	return ret;
1646 }
1647 
1648 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1649 				    struct scrub_page *spage)
1650 {
1651 	struct scrub_bio *sbio;
1652 	int ret;
1653 
1654 	mutex_lock(&sctx->wr_lock);
1655 again:
1656 	if (!sctx->wr_curr_bio) {
1657 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1658 					      GFP_KERNEL);
1659 		if (!sctx->wr_curr_bio) {
1660 			mutex_unlock(&sctx->wr_lock);
1661 			return -ENOMEM;
1662 		}
1663 		sctx->wr_curr_bio->sctx = sctx;
1664 		sctx->wr_curr_bio->page_count = 0;
1665 	}
1666 	sbio = sctx->wr_curr_bio;
1667 	if (sbio->page_count == 0) {
1668 		struct bio *bio;
1669 
1670 		ret = fill_writer_pointer_gap(sctx,
1671 					      spage->physical_for_dev_replace);
1672 		if (ret) {
1673 			mutex_unlock(&sctx->wr_lock);
1674 			return ret;
1675 		}
1676 
1677 		sbio->physical = spage->physical_for_dev_replace;
1678 		sbio->logical = spage->logical;
1679 		sbio->dev = sctx->wr_tgtdev;
1680 		bio = sbio->bio;
1681 		if (!bio) {
1682 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1683 			sbio->bio = bio;
1684 		}
1685 
1686 		bio->bi_private = sbio;
1687 		bio->bi_end_io = scrub_wr_bio_end_io;
1688 		bio_set_dev(bio, sbio->dev->bdev);
1689 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1690 		bio->bi_opf = REQ_OP_WRITE;
1691 		sbio->status = 0;
1692 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1693 		   spage->physical_for_dev_replace ||
1694 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1695 		   spage->logical) {
1696 		scrub_wr_submit(sctx);
1697 		goto again;
1698 	}
1699 
1700 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1701 	if (ret != PAGE_SIZE) {
1702 		if (sbio->page_count < 1) {
1703 			bio_put(sbio->bio);
1704 			sbio->bio = NULL;
1705 			mutex_unlock(&sctx->wr_lock);
1706 			return -EIO;
1707 		}
1708 		scrub_wr_submit(sctx);
1709 		goto again;
1710 	}
1711 
1712 	sbio->pagev[sbio->page_count] = spage;
1713 	scrub_page_get(spage);
1714 	sbio->page_count++;
1715 	if (sbio->page_count == sctx->pages_per_wr_bio)
1716 		scrub_wr_submit(sctx);
1717 	mutex_unlock(&sctx->wr_lock);
1718 
1719 	return 0;
1720 }
1721 
1722 static void scrub_wr_submit(struct scrub_ctx *sctx)
1723 {
1724 	struct scrub_bio *sbio;
1725 
1726 	if (!sctx->wr_curr_bio)
1727 		return;
1728 
1729 	sbio = sctx->wr_curr_bio;
1730 	sctx->wr_curr_bio = NULL;
1731 	WARN_ON(!sbio->bio->bi_bdev);
1732 	scrub_pending_bio_inc(sctx);
1733 	/* process all writes in a single worker thread. Then the block layer
1734 	 * orders the requests before sending them to the driver which
1735 	 * doubled the write performance on spinning disks when measured
1736 	 * with Linux 3.5 */
1737 	btrfsic_submit_bio(sbio->bio);
1738 
1739 	if (btrfs_is_zoned(sctx->fs_info))
1740 		sctx->write_pointer = sbio->physical + sbio->page_count * PAGE_SIZE;
1741 }
1742 
1743 static void scrub_wr_bio_end_io(struct bio *bio)
1744 {
1745 	struct scrub_bio *sbio = bio->bi_private;
1746 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1747 
1748 	sbio->status = bio->bi_status;
1749 	sbio->bio = bio;
1750 
1751 	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1752 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1753 }
1754 
1755 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1756 {
1757 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1758 	struct scrub_ctx *sctx = sbio->sctx;
1759 	int i;
1760 
1761 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1762 	if (sbio->status) {
1763 		struct btrfs_dev_replace *dev_replace =
1764 			&sbio->sctx->fs_info->dev_replace;
1765 
1766 		for (i = 0; i < sbio->page_count; i++) {
1767 			struct scrub_page *spage = sbio->pagev[i];
1768 
1769 			spage->io_error = 1;
1770 			atomic64_inc(&dev_replace->num_write_errors);
1771 		}
1772 	}
1773 
1774 	for (i = 0; i < sbio->page_count; i++)
1775 		scrub_page_put(sbio->pagev[i]);
1776 
1777 	bio_put(sbio->bio);
1778 	kfree(sbio);
1779 	scrub_pending_bio_dec(sctx);
1780 }
1781 
1782 static int scrub_checksum(struct scrub_block *sblock)
1783 {
1784 	u64 flags;
1785 	int ret;
1786 
1787 	/*
1788 	 * No need to initialize these stats currently,
1789 	 * because this function only use return value
1790 	 * instead of these stats value.
1791 	 *
1792 	 * Todo:
1793 	 * always use stats
1794 	 */
1795 	sblock->header_error = 0;
1796 	sblock->generation_error = 0;
1797 	sblock->checksum_error = 0;
1798 
1799 	WARN_ON(sblock->page_count < 1);
1800 	flags = sblock->pagev[0]->flags;
1801 	ret = 0;
1802 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1803 		ret = scrub_checksum_data(sblock);
1804 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1805 		ret = scrub_checksum_tree_block(sblock);
1806 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1807 		(void)scrub_checksum_super(sblock);
1808 	else
1809 		WARN_ON(1);
1810 	if (ret)
1811 		scrub_handle_errored_block(sblock);
1812 
1813 	return ret;
1814 }
1815 
1816 static int scrub_checksum_data(struct scrub_block *sblock)
1817 {
1818 	struct scrub_ctx *sctx = sblock->sctx;
1819 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1820 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1821 	u8 csum[BTRFS_CSUM_SIZE];
1822 	struct scrub_page *spage;
1823 	char *kaddr;
1824 
1825 	BUG_ON(sblock->page_count < 1);
1826 	spage = sblock->pagev[0];
1827 	if (!spage->have_csum)
1828 		return 0;
1829 
1830 	kaddr = page_address(spage->page);
1831 
1832 	shash->tfm = fs_info->csum_shash;
1833 	crypto_shash_init(shash);
1834 
1835 	/*
1836 	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
1837 	 * only contains one sector of data.
1838 	 */
1839 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1840 
1841 	if (memcmp(csum, spage->csum, fs_info->csum_size))
1842 		sblock->checksum_error = 1;
1843 	return sblock->checksum_error;
1844 }
1845 
1846 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1847 {
1848 	struct scrub_ctx *sctx = sblock->sctx;
1849 	struct btrfs_header *h;
1850 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1851 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1852 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1853 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1854 	/*
1855 	 * This is done in sectorsize steps even for metadata as there's a
1856 	 * constraint for nodesize to be aligned to sectorsize. This will need
1857 	 * to change so we don't misuse data and metadata units like that.
1858 	 */
1859 	const u32 sectorsize = sctx->fs_info->sectorsize;
1860 	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1861 	int i;
1862 	struct scrub_page *spage;
1863 	char *kaddr;
1864 
1865 	BUG_ON(sblock->page_count < 1);
1866 
1867 	/* Each member in pagev is just one block, not a full page */
1868 	ASSERT(sblock->page_count == num_sectors);
1869 
1870 	spage = sblock->pagev[0];
1871 	kaddr = page_address(spage->page);
1872 	h = (struct btrfs_header *)kaddr;
1873 	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
1874 
1875 	/*
1876 	 * we don't use the getter functions here, as we
1877 	 * a) don't have an extent buffer and
1878 	 * b) the page is already kmapped
1879 	 */
1880 	if (spage->logical != btrfs_stack_header_bytenr(h))
1881 		sblock->header_error = 1;
1882 
1883 	if (spage->generation != btrfs_stack_header_generation(h)) {
1884 		sblock->header_error = 1;
1885 		sblock->generation_error = 1;
1886 	}
1887 
1888 	if (!scrub_check_fsid(h->fsid, spage))
1889 		sblock->header_error = 1;
1890 
1891 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1892 		   BTRFS_UUID_SIZE))
1893 		sblock->header_error = 1;
1894 
1895 	shash->tfm = fs_info->csum_shash;
1896 	crypto_shash_init(shash);
1897 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1898 			    sectorsize - BTRFS_CSUM_SIZE);
1899 
1900 	for (i = 1; i < num_sectors; i++) {
1901 		kaddr = page_address(sblock->pagev[i]->page);
1902 		crypto_shash_update(shash, kaddr, sectorsize);
1903 	}
1904 
1905 	crypto_shash_final(shash, calculated_csum);
1906 	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1907 		sblock->checksum_error = 1;
1908 
1909 	return sblock->header_error || sblock->checksum_error;
1910 }
1911 
1912 static int scrub_checksum_super(struct scrub_block *sblock)
1913 {
1914 	struct btrfs_super_block *s;
1915 	struct scrub_ctx *sctx = sblock->sctx;
1916 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1917 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1918 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1919 	struct scrub_page *spage;
1920 	char *kaddr;
1921 	int fail_gen = 0;
1922 	int fail_cor = 0;
1923 
1924 	BUG_ON(sblock->page_count < 1);
1925 	spage = sblock->pagev[0];
1926 	kaddr = page_address(spage->page);
1927 	s = (struct btrfs_super_block *)kaddr;
1928 
1929 	if (spage->logical != btrfs_super_bytenr(s))
1930 		++fail_cor;
1931 
1932 	if (spage->generation != btrfs_super_generation(s))
1933 		++fail_gen;
1934 
1935 	if (!scrub_check_fsid(s->fsid, spage))
1936 		++fail_cor;
1937 
1938 	shash->tfm = fs_info->csum_shash;
1939 	crypto_shash_init(shash);
1940 	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1941 			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1942 
1943 	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1944 		++fail_cor;
1945 
1946 	if (fail_cor + fail_gen) {
1947 		/*
1948 		 * if we find an error in a super block, we just report it.
1949 		 * They will get written with the next transaction commit
1950 		 * anyway
1951 		 */
1952 		spin_lock(&sctx->stat_lock);
1953 		++sctx->stat.super_errors;
1954 		spin_unlock(&sctx->stat_lock);
1955 		if (fail_cor)
1956 			btrfs_dev_stat_inc_and_print(spage->dev,
1957 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1958 		else
1959 			btrfs_dev_stat_inc_and_print(spage->dev,
1960 				BTRFS_DEV_STAT_GENERATION_ERRS);
1961 	}
1962 
1963 	return fail_cor + fail_gen;
1964 }
1965 
1966 static void scrub_block_get(struct scrub_block *sblock)
1967 {
1968 	refcount_inc(&sblock->refs);
1969 }
1970 
1971 static void scrub_block_put(struct scrub_block *sblock)
1972 {
1973 	if (refcount_dec_and_test(&sblock->refs)) {
1974 		int i;
1975 
1976 		if (sblock->sparity)
1977 			scrub_parity_put(sblock->sparity);
1978 
1979 		for (i = 0; i < sblock->page_count; i++)
1980 			scrub_page_put(sblock->pagev[i]);
1981 		kfree(sblock);
1982 	}
1983 }
1984 
1985 static void scrub_page_get(struct scrub_page *spage)
1986 {
1987 	atomic_inc(&spage->refs);
1988 }
1989 
1990 static void scrub_page_put(struct scrub_page *spage)
1991 {
1992 	if (atomic_dec_and_test(&spage->refs)) {
1993 		if (spage->page)
1994 			__free_page(spage->page);
1995 		kfree(spage);
1996 	}
1997 }
1998 
1999 static void scrub_submit(struct scrub_ctx *sctx)
2000 {
2001 	struct scrub_bio *sbio;
2002 
2003 	if (sctx->curr == -1)
2004 		return;
2005 
2006 	sbio = sctx->bios[sctx->curr];
2007 	sctx->curr = -1;
2008 	scrub_pending_bio_inc(sctx);
2009 	btrfsic_submit_bio(sbio->bio);
2010 }
2011 
2012 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2013 				    struct scrub_page *spage)
2014 {
2015 	struct scrub_block *sblock = spage->sblock;
2016 	struct scrub_bio *sbio;
2017 	int ret;
2018 
2019 again:
2020 	/*
2021 	 * grab a fresh bio or wait for one to become available
2022 	 */
2023 	while (sctx->curr == -1) {
2024 		spin_lock(&sctx->list_lock);
2025 		sctx->curr = sctx->first_free;
2026 		if (sctx->curr != -1) {
2027 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2028 			sctx->bios[sctx->curr]->next_free = -1;
2029 			sctx->bios[sctx->curr]->page_count = 0;
2030 			spin_unlock(&sctx->list_lock);
2031 		} else {
2032 			spin_unlock(&sctx->list_lock);
2033 			wait_event(sctx->list_wait, sctx->first_free != -1);
2034 		}
2035 	}
2036 	sbio = sctx->bios[sctx->curr];
2037 	if (sbio->page_count == 0) {
2038 		struct bio *bio;
2039 
2040 		sbio->physical = spage->physical;
2041 		sbio->logical = spage->logical;
2042 		sbio->dev = spage->dev;
2043 		bio = sbio->bio;
2044 		if (!bio) {
2045 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2046 			sbio->bio = bio;
2047 		}
2048 
2049 		bio->bi_private = sbio;
2050 		bio->bi_end_io = scrub_bio_end_io;
2051 		bio_set_dev(bio, sbio->dev->bdev);
2052 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2053 		bio->bi_opf = REQ_OP_READ;
2054 		sbio->status = 0;
2055 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2056 		   spage->physical ||
2057 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2058 		   spage->logical ||
2059 		   sbio->dev != spage->dev) {
2060 		scrub_submit(sctx);
2061 		goto again;
2062 	}
2063 
2064 	sbio->pagev[sbio->page_count] = spage;
2065 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2066 	if (ret != PAGE_SIZE) {
2067 		if (sbio->page_count < 1) {
2068 			bio_put(sbio->bio);
2069 			sbio->bio = NULL;
2070 			return -EIO;
2071 		}
2072 		scrub_submit(sctx);
2073 		goto again;
2074 	}
2075 
2076 	scrub_block_get(sblock); /* one for the page added to the bio */
2077 	atomic_inc(&sblock->outstanding_pages);
2078 	sbio->page_count++;
2079 	if (sbio->page_count == sctx->pages_per_rd_bio)
2080 		scrub_submit(sctx);
2081 
2082 	return 0;
2083 }
2084 
2085 static void scrub_missing_raid56_end_io(struct bio *bio)
2086 {
2087 	struct scrub_block *sblock = bio->bi_private;
2088 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2089 
2090 	if (bio->bi_status)
2091 		sblock->no_io_error_seen = 0;
2092 
2093 	bio_put(bio);
2094 
2095 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2096 }
2097 
2098 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2099 {
2100 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2101 	struct scrub_ctx *sctx = sblock->sctx;
2102 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2103 	u64 logical;
2104 	struct btrfs_device *dev;
2105 
2106 	logical = sblock->pagev[0]->logical;
2107 	dev = sblock->pagev[0]->dev;
2108 
2109 	if (sblock->no_io_error_seen)
2110 		scrub_recheck_block_checksum(sblock);
2111 
2112 	if (!sblock->no_io_error_seen) {
2113 		spin_lock(&sctx->stat_lock);
2114 		sctx->stat.read_errors++;
2115 		spin_unlock(&sctx->stat_lock);
2116 		btrfs_err_rl_in_rcu(fs_info,
2117 			"IO error rebuilding logical %llu for dev %s",
2118 			logical, rcu_str_deref(dev->name));
2119 	} else if (sblock->header_error || sblock->checksum_error) {
2120 		spin_lock(&sctx->stat_lock);
2121 		sctx->stat.uncorrectable_errors++;
2122 		spin_unlock(&sctx->stat_lock);
2123 		btrfs_err_rl_in_rcu(fs_info,
2124 			"failed to rebuild valid logical %llu for dev %s",
2125 			logical, rcu_str_deref(dev->name));
2126 	} else {
2127 		scrub_write_block_to_dev_replace(sblock);
2128 	}
2129 
2130 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2131 		mutex_lock(&sctx->wr_lock);
2132 		scrub_wr_submit(sctx);
2133 		mutex_unlock(&sctx->wr_lock);
2134 	}
2135 
2136 	scrub_block_put(sblock);
2137 	scrub_pending_bio_dec(sctx);
2138 }
2139 
2140 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2141 {
2142 	struct scrub_ctx *sctx = sblock->sctx;
2143 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2144 	u64 length = sblock->page_count * PAGE_SIZE;
2145 	u64 logical = sblock->pagev[0]->logical;
2146 	struct btrfs_bio *bbio = NULL;
2147 	struct bio *bio;
2148 	struct btrfs_raid_bio *rbio;
2149 	int ret;
2150 	int i;
2151 
2152 	btrfs_bio_counter_inc_blocked(fs_info);
2153 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2154 			&length, &bbio);
2155 	if (ret || !bbio || !bbio->raid_map)
2156 		goto bbio_out;
2157 
2158 	if (WARN_ON(!sctx->is_dev_replace ||
2159 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2160 		/*
2161 		 * We shouldn't be scrubbing a missing device. Even for dev
2162 		 * replace, we should only get here for RAID 5/6. We either
2163 		 * managed to mount something with no mirrors remaining or
2164 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2165 		 */
2166 		goto bbio_out;
2167 	}
2168 
2169 	bio = btrfs_io_bio_alloc(0);
2170 	bio->bi_iter.bi_sector = logical >> 9;
2171 	bio->bi_private = sblock;
2172 	bio->bi_end_io = scrub_missing_raid56_end_io;
2173 
2174 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2175 	if (!rbio)
2176 		goto rbio_out;
2177 
2178 	for (i = 0; i < sblock->page_count; i++) {
2179 		struct scrub_page *spage = sblock->pagev[i];
2180 
2181 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2182 	}
2183 
2184 	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2185 	scrub_block_get(sblock);
2186 	scrub_pending_bio_inc(sctx);
2187 	raid56_submit_missing_rbio(rbio);
2188 	return;
2189 
2190 rbio_out:
2191 	bio_put(bio);
2192 bbio_out:
2193 	btrfs_bio_counter_dec(fs_info);
2194 	btrfs_put_bbio(bbio);
2195 	spin_lock(&sctx->stat_lock);
2196 	sctx->stat.malloc_errors++;
2197 	spin_unlock(&sctx->stat_lock);
2198 }
2199 
2200 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2201 		       u64 physical, struct btrfs_device *dev, u64 flags,
2202 		       u64 gen, int mirror_num, u8 *csum,
2203 		       u64 physical_for_dev_replace)
2204 {
2205 	struct scrub_block *sblock;
2206 	const u32 sectorsize = sctx->fs_info->sectorsize;
2207 	int index;
2208 
2209 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2210 	if (!sblock) {
2211 		spin_lock(&sctx->stat_lock);
2212 		sctx->stat.malloc_errors++;
2213 		spin_unlock(&sctx->stat_lock);
2214 		return -ENOMEM;
2215 	}
2216 
2217 	/* one ref inside this function, plus one for each page added to
2218 	 * a bio later on */
2219 	refcount_set(&sblock->refs, 1);
2220 	sblock->sctx = sctx;
2221 	sblock->no_io_error_seen = 1;
2222 
2223 	for (index = 0; len > 0; index++) {
2224 		struct scrub_page *spage;
2225 		/*
2226 		 * Here we will allocate one page for one sector to scrub.
2227 		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2228 		 * more memory for PAGE_SIZE > sectorsize case.
2229 		 */
2230 		u32 l = min(sectorsize, len);
2231 
2232 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2233 		if (!spage) {
2234 leave_nomem:
2235 			spin_lock(&sctx->stat_lock);
2236 			sctx->stat.malloc_errors++;
2237 			spin_unlock(&sctx->stat_lock);
2238 			scrub_block_put(sblock);
2239 			return -ENOMEM;
2240 		}
2241 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2242 		scrub_page_get(spage);
2243 		sblock->pagev[index] = spage;
2244 		spage->sblock = sblock;
2245 		spage->dev = dev;
2246 		spage->flags = flags;
2247 		spage->generation = gen;
2248 		spage->logical = logical;
2249 		spage->physical = physical;
2250 		spage->physical_for_dev_replace = physical_for_dev_replace;
2251 		spage->mirror_num = mirror_num;
2252 		if (csum) {
2253 			spage->have_csum = 1;
2254 			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2255 		} else {
2256 			spage->have_csum = 0;
2257 		}
2258 		sblock->page_count++;
2259 		spage->page = alloc_page(GFP_KERNEL);
2260 		if (!spage->page)
2261 			goto leave_nomem;
2262 		len -= l;
2263 		logical += l;
2264 		physical += l;
2265 		physical_for_dev_replace += l;
2266 	}
2267 
2268 	WARN_ON(sblock->page_count == 0);
2269 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2270 		/*
2271 		 * This case should only be hit for RAID 5/6 device replace. See
2272 		 * the comment in scrub_missing_raid56_pages() for details.
2273 		 */
2274 		scrub_missing_raid56_pages(sblock);
2275 	} else {
2276 		for (index = 0; index < sblock->page_count; index++) {
2277 			struct scrub_page *spage = sblock->pagev[index];
2278 			int ret;
2279 
2280 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2281 			if (ret) {
2282 				scrub_block_put(sblock);
2283 				return ret;
2284 			}
2285 		}
2286 
2287 		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2288 			scrub_submit(sctx);
2289 	}
2290 
2291 	/* last one frees, either here or in bio completion for last page */
2292 	scrub_block_put(sblock);
2293 	return 0;
2294 }
2295 
2296 static void scrub_bio_end_io(struct bio *bio)
2297 {
2298 	struct scrub_bio *sbio = bio->bi_private;
2299 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2300 
2301 	sbio->status = bio->bi_status;
2302 	sbio->bio = bio;
2303 
2304 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2305 }
2306 
2307 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2308 {
2309 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2310 	struct scrub_ctx *sctx = sbio->sctx;
2311 	int i;
2312 
2313 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2314 	if (sbio->status) {
2315 		for (i = 0; i < sbio->page_count; i++) {
2316 			struct scrub_page *spage = sbio->pagev[i];
2317 
2318 			spage->io_error = 1;
2319 			spage->sblock->no_io_error_seen = 0;
2320 		}
2321 	}
2322 
2323 	/* now complete the scrub_block items that have all pages completed */
2324 	for (i = 0; i < sbio->page_count; i++) {
2325 		struct scrub_page *spage = sbio->pagev[i];
2326 		struct scrub_block *sblock = spage->sblock;
2327 
2328 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2329 			scrub_block_complete(sblock);
2330 		scrub_block_put(sblock);
2331 	}
2332 
2333 	bio_put(sbio->bio);
2334 	sbio->bio = NULL;
2335 	spin_lock(&sctx->list_lock);
2336 	sbio->next_free = sctx->first_free;
2337 	sctx->first_free = sbio->index;
2338 	spin_unlock(&sctx->list_lock);
2339 
2340 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2341 		mutex_lock(&sctx->wr_lock);
2342 		scrub_wr_submit(sctx);
2343 		mutex_unlock(&sctx->wr_lock);
2344 	}
2345 
2346 	scrub_pending_bio_dec(sctx);
2347 }
2348 
2349 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2350 				       unsigned long *bitmap,
2351 				       u64 start, u32 len)
2352 {
2353 	u64 offset;
2354 	u32 nsectors;
2355 	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2356 
2357 	if (len >= sparity->stripe_len) {
2358 		bitmap_set(bitmap, 0, sparity->nsectors);
2359 		return;
2360 	}
2361 
2362 	start -= sparity->logic_start;
2363 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2364 	offset = offset >> sectorsize_bits;
2365 	nsectors = len >> sectorsize_bits;
2366 
2367 	if (offset + nsectors <= sparity->nsectors) {
2368 		bitmap_set(bitmap, offset, nsectors);
2369 		return;
2370 	}
2371 
2372 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2373 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2374 }
2375 
2376 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2377 						   u64 start, u32 len)
2378 {
2379 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2380 }
2381 
2382 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2383 						  u64 start, u32 len)
2384 {
2385 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2386 }
2387 
2388 static void scrub_block_complete(struct scrub_block *sblock)
2389 {
2390 	int corrupted = 0;
2391 
2392 	if (!sblock->no_io_error_seen) {
2393 		corrupted = 1;
2394 		scrub_handle_errored_block(sblock);
2395 	} else {
2396 		/*
2397 		 * if has checksum error, write via repair mechanism in
2398 		 * dev replace case, otherwise write here in dev replace
2399 		 * case.
2400 		 */
2401 		corrupted = scrub_checksum(sblock);
2402 		if (!corrupted && sblock->sctx->is_dev_replace)
2403 			scrub_write_block_to_dev_replace(sblock);
2404 	}
2405 
2406 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2407 		u64 start = sblock->pagev[0]->logical;
2408 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2409 			  PAGE_SIZE;
2410 
2411 		ASSERT(end - start <= U32_MAX);
2412 		scrub_parity_mark_sectors_error(sblock->sparity,
2413 						start, end - start);
2414 	}
2415 }
2416 
2417 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2418 {
2419 	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2420 	list_del(&sum->list);
2421 	kfree(sum);
2422 }
2423 
2424 /*
2425  * Find the desired csum for range [logical, logical + sectorsize), and store
2426  * the csum into @csum.
2427  *
2428  * The search source is sctx->csum_list, which is a pre-populated list
2429  * storing bytenr ordered csum ranges.  We're reponsible to cleanup any range
2430  * that is before @logical.
2431  *
2432  * Return 0 if there is no csum for the range.
2433  * Return 1 if there is csum for the range and copied to @csum.
2434  */
2435 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2436 {
2437 	bool found = false;
2438 
2439 	while (!list_empty(&sctx->csum_list)) {
2440 		struct btrfs_ordered_sum *sum = NULL;
2441 		unsigned long index;
2442 		unsigned long num_sectors;
2443 
2444 		sum = list_first_entry(&sctx->csum_list,
2445 				       struct btrfs_ordered_sum, list);
2446 		/* The current csum range is beyond our range, no csum found */
2447 		if (sum->bytenr > logical)
2448 			break;
2449 
2450 		/*
2451 		 * The current sum is before our bytenr, since scrub is always
2452 		 * done in bytenr order, the csum will never be used anymore,
2453 		 * clean it up so that later calls won't bother with the range,
2454 		 * and continue search the next range.
2455 		 */
2456 		if (sum->bytenr + sum->len <= logical) {
2457 			drop_csum_range(sctx, sum);
2458 			continue;
2459 		}
2460 
2461 		/* Now the csum range covers our bytenr, copy the csum */
2462 		found = true;
2463 		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2464 		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2465 
2466 		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2467 		       sctx->fs_info->csum_size);
2468 
2469 		/* Cleanup the range if we're at the end of the csum range */
2470 		if (index == num_sectors - 1)
2471 			drop_csum_range(sctx, sum);
2472 		break;
2473 	}
2474 	if (!found)
2475 		return 0;
2476 	return 1;
2477 }
2478 
2479 /* scrub extent tries to collect up to 64 kB for each bio */
2480 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2481 			u64 logical, u32 len,
2482 			u64 physical, struct btrfs_device *dev, u64 flags,
2483 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2484 {
2485 	int ret;
2486 	u8 csum[BTRFS_CSUM_SIZE];
2487 	u32 blocksize;
2488 
2489 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2490 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2491 			blocksize = map->stripe_len;
2492 		else
2493 			blocksize = sctx->fs_info->sectorsize;
2494 		spin_lock(&sctx->stat_lock);
2495 		sctx->stat.data_extents_scrubbed++;
2496 		sctx->stat.data_bytes_scrubbed += len;
2497 		spin_unlock(&sctx->stat_lock);
2498 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2499 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2500 			blocksize = map->stripe_len;
2501 		else
2502 			blocksize = sctx->fs_info->nodesize;
2503 		spin_lock(&sctx->stat_lock);
2504 		sctx->stat.tree_extents_scrubbed++;
2505 		sctx->stat.tree_bytes_scrubbed += len;
2506 		spin_unlock(&sctx->stat_lock);
2507 	} else {
2508 		blocksize = sctx->fs_info->sectorsize;
2509 		WARN_ON(1);
2510 	}
2511 
2512 	while (len) {
2513 		u32 l = min(len, blocksize);
2514 		int have_csum = 0;
2515 
2516 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2517 			/* push csums to sbio */
2518 			have_csum = scrub_find_csum(sctx, logical, csum);
2519 			if (have_csum == 0)
2520 				++sctx->stat.no_csum;
2521 		}
2522 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2523 				  mirror_num, have_csum ? csum : NULL,
2524 				  physical_for_dev_replace);
2525 		if (ret)
2526 			return ret;
2527 		len -= l;
2528 		logical += l;
2529 		physical += l;
2530 		physical_for_dev_replace += l;
2531 	}
2532 	return 0;
2533 }
2534 
2535 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2536 				  u64 logical, u32 len,
2537 				  u64 physical, struct btrfs_device *dev,
2538 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2539 {
2540 	struct scrub_ctx *sctx = sparity->sctx;
2541 	struct scrub_block *sblock;
2542 	const u32 sectorsize = sctx->fs_info->sectorsize;
2543 	int index;
2544 
2545 	ASSERT(IS_ALIGNED(len, sectorsize));
2546 
2547 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2548 	if (!sblock) {
2549 		spin_lock(&sctx->stat_lock);
2550 		sctx->stat.malloc_errors++;
2551 		spin_unlock(&sctx->stat_lock);
2552 		return -ENOMEM;
2553 	}
2554 
2555 	/* one ref inside this function, plus one for each page added to
2556 	 * a bio later on */
2557 	refcount_set(&sblock->refs, 1);
2558 	sblock->sctx = sctx;
2559 	sblock->no_io_error_seen = 1;
2560 	sblock->sparity = sparity;
2561 	scrub_parity_get(sparity);
2562 
2563 	for (index = 0; len > 0; index++) {
2564 		struct scrub_page *spage;
2565 
2566 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2567 		if (!spage) {
2568 leave_nomem:
2569 			spin_lock(&sctx->stat_lock);
2570 			sctx->stat.malloc_errors++;
2571 			spin_unlock(&sctx->stat_lock);
2572 			scrub_block_put(sblock);
2573 			return -ENOMEM;
2574 		}
2575 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2576 		/* For scrub block */
2577 		scrub_page_get(spage);
2578 		sblock->pagev[index] = spage;
2579 		/* For scrub parity */
2580 		scrub_page_get(spage);
2581 		list_add_tail(&spage->list, &sparity->spages);
2582 		spage->sblock = sblock;
2583 		spage->dev = dev;
2584 		spage->flags = flags;
2585 		spage->generation = gen;
2586 		spage->logical = logical;
2587 		spage->physical = physical;
2588 		spage->mirror_num = mirror_num;
2589 		if (csum) {
2590 			spage->have_csum = 1;
2591 			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2592 		} else {
2593 			spage->have_csum = 0;
2594 		}
2595 		sblock->page_count++;
2596 		spage->page = alloc_page(GFP_KERNEL);
2597 		if (!spage->page)
2598 			goto leave_nomem;
2599 
2600 
2601 		/* Iterate over the stripe range in sectorsize steps */
2602 		len -= sectorsize;
2603 		logical += sectorsize;
2604 		physical += sectorsize;
2605 	}
2606 
2607 	WARN_ON(sblock->page_count == 0);
2608 	for (index = 0; index < sblock->page_count; index++) {
2609 		struct scrub_page *spage = sblock->pagev[index];
2610 		int ret;
2611 
2612 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2613 		if (ret) {
2614 			scrub_block_put(sblock);
2615 			return ret;
2616 		}
2617 	}
2618 
2619 	/* last one frees, either here or in bio completion for last page */
2620 	scrub_block_put(sblock);
2621 	return 0;
2622 }
2623 
2624 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2625 				   u64 logical, u32 len,
2626 				   u64 physical, struct btrfs_device *dev,
2627 				   u64 flags, u64 gen, int mirror_num)
2628 {
2629 	struct scrub_ctx *sctx = sparity->sctx;
2630 	int ret;
2631 	u8 csum[BTRFS_CSUM_SIZE];
2632 	u32 blocksize;
2633 
2634 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2635 		scrub_parity_mark_sectors_error(sparity, logical, len);
2636 		return 0;
2637 	}
2638 
2639 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2640 		blocksize = sparity->stripe_len;
2641 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2642 		blocksize = sparity->stripe_len;
2643 	} else {
2644 		blocksize = sctx->fs_info->sectorsize;
2645 		WARN_ON(1);
2646 	}
2647 
2648 	while (len) {
2649 		u32 l = min(len, blocksize);
2650 		int have_csum = 0;
2651 
2652 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2653 			/* push csums to sbio */
2654 			have_csum = scrub_find_csum(sctx, logical, csum);
2655 			if (have_csum == 0)
2656 				goto skip;
2657 		}
2658 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2659 					     flags, gen, mirror_num,
2660 					     have_csum ? csum : NULL);
2661 		if (ret)
2662 			return ret;
2663 skip:
2664 		len -= l;
2665 		logical += l;
2666 		physical += l;
2667 	}
2668 	return 0;
2669 }
2670 
2671 /*
2672  * Given a physical address, this will calculate it's
2673  * logical offset. if this is a parity stripe, it will return
2674  * the most left data stripe's logical offset.
2675  *
2676  * return 0 if it is a data stripe, 1 means parity stripe.
2677  */
2678 static int get_raid56_logic_offset(u64 physical, int num,
2679 				   struct map_lookup *map, u64 *offset,
2680 				   u64 *stripe_start)
2681 {
2682 	int i;
2683 	int j = 0;
2684 	u64 stripe_nr;
2685 	u64 last_offset;
2686 	u32 stripe_index;
2687 	u32 rot;
2688 	const int data_stripes = nr_data_stripes(map);
2689 
2690 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2691 	if (stripe_start)
2692 		*stripe_start = last_offset;
2693 
2694 	*offset = last_offset;
2695 	for (i = 0; i < data_stripes; i++) {
2696 		*offset = last_offset + i * map->stripe_len;
2697 
2698 		stripe_nr = div64_u64(*offset, map->stripe_len);
2699 		stripe_nr = div_u64(stripe_nr, data_stripes);
2700 
2701 		/* Work out the disk rotation on this stripe-set */
2702 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2703 		/* calculate which stripe this data locates */
2704 		rot += i;
2705 		stripe_index = rot % map->num_stripes;
2706 		if (stripe_index == num)
2707 			return 0;
2708 		if (stripe_index < num)
2709 			j++;
2710 	}
2711 	*offset = last_offset + j * map->stripe_len;
2712 	return 1;
2713 }
2714 
2715 static void scrub_free_parity(struct scrub_parity *sparity)
2716 {
2717 	struct scrub_ctx *sctx = sparity->sctx;
2718 	struct scrub_page *curr, *next;
2719 	int nbits;
2720 
2721 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2722 	if (nbits) {
2723 		spin_lock(&sctx->stat_lock);
2724 		sctx->stat.read_errors += nbits;
2725 		sctx->stat.uncorrectable_errors += nbits;
2726 		spin_unlock(&sctx->stat_lock);
2727 	}
2728 
2729 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2730 		list_del_init(&curr->list);
2731 		scrub_page_put(curr);
2732 	}
2733 
2734 	kfree(sparity);
2735 }
2736 
2737 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2738 {
2739 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2740 						    work);
2741 	struct scrub_ctx *sctx = sparity->sctx;
2742 
2743 	scrub_free_parity(sparity);
2744 	scrub_pending_bio_dec(sctx);
2745 }
2746 
2747 static void scrub_parity_bio_endio(struct bio *bio)
2748 {
2749 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2750 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2751 
2752 	if (bio->bi_status)
2753 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2754 			  sparity->nsectors);
2755 
2756 	bio_put(bio);
2757 
2758 	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2759 			NULL);
2760 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2761 }
2762 
2763 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2764 {
2765 	struct scrub_ctx *sctx = sparity->sctx;
2766 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2767 	struct bio *bio;
2768 	struct btrfs_raid_bio *rbio;
2769 	struct btrfs_bio *bbio = NULL;
2770 	u64 length;
2771 	int ret;
2772 
2773 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2774 			   sparity->nsectors))
2775 		goto out;
2776 
2777 	length = sparity->logic_end - sparity->logic_start;
2778 
2779 	btrfs_bio_counter_inc_blocked(fs_info);
2780 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2781 			       &length, &bbio);
2782 	if (ret || !bbio || !bbio->raid_map)
2783 		goto bbio_out;
2784 
2785 	bio = btrfs_io_bio_alloc(0);
2786 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2787 	bio->bi_private = sparity;
2788 	bio->bi_end_io = scrub_parity_bio_endio;
2789 
2790 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2791 					      length, sparity->scrub_dev,
2792 					      sparity->dbitmap,
2793 					      sparity->nsectors);
2794 	if (!rbio)
2795 		goto rbio_out;
2796 
2797 	scrub_pending_bio_inc(sctx);
2798 	raid56_parity_submit_scrub_rbio(rbio);
2799 	return;
2800 
2801 rbio_out:
2802 	bio_put(bio);
2803 bbio_out:
2804 	btrfs_bio_counter_dec(fs_info);
2805 	btrfs_put_bbio(bbio);
2806 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2807 		  sparity->nsectors);
2808 	spin_lock(&sctx->stat_lock);
2809 	sctx->stat.malloc_errors++;
2810 	spin_unlock(&sctx->stat_lock);
2811 out:
2812 	scrub_free_parity(sparity);
2813 }
2814 
2815 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2816 {
2817 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2818 }
2819 
2820 static void scrub_parity_get(struct scrub_parity *sparity)
2821 {
2822 	refcount_inc(&sparity->refs);
2823 }
2824 
2825 static void scrub_parity_put(struct scrub_parity *sparity)
2826 {
2827 	if (!refcount_dec_and_test(&sparity->refs))
2828 		return;
2829 
2830 	scrub_parity_check_and_repair(sparity);
2831 }
2832 
2833 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2834 						  struct map_lookup *map,
2835 						  struct btrfs_device *sdev,
2836 						  struct btrfs_path *path,
2837 						  u64 logic_start,
2838 						  u64 logic_end)
2839 {
2840 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2841 	struct btrfs_root *root = fs_info->extent_root;
2842 	struct btrfs_root *csum_root = fs_info->csum_root;
2843 	struct btrfs_extent_item *extent;
2844 	struct btrfs_bio *bbio = NULL;
2845 	u64 flags;
2846 	int ret;
2847 	int slot;
2848 	struct extent_buffer *l;
2849 	struct btrfs_key key;
2850 	u64 generation;
2851 	u64 extent_logical;
2852 	u64 extent_physical;
2853 	/* Check the comment in scrub_stripe() for why u32 is enough here */
2854 	u32 extent_len;
2855 	u64 mapped_length;
2856 	struct btrfs_device *extent_dev;
2857 	struct scrub_parity *sparity;
2858 	int nsectors;
2859 	int bitmap_len;
2860 	int extent_mirror_num;
2861 	int stop_loop = 0;
2862 
2863 	ASSERT(map->stripe_len <= U32_MAX);
2864 	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2865 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2866 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2867 			  GFP_NOFS);
2868 	if (!sparity) {
2869 		spin_lock(&sctx->stat_lock);
2870 		sctx->stat.malloc_errors++;
2871 		spin_unlock(&sctx->stat_lock);
2872 		return -ENOMEM;
2873 	}
2874 
2875 	ASSERT(map->stripe_len <= U32_MAX);
2876 	sparity->stripe_len = map->stripe_len;
2877 	sparity->nsectors = nsectors;
2878 	sparity->sctx = sctx;
2879 	sparity->scrub_dev = sdev;
2880 	sparity->logic_start = logic_start;
2881 	sparity->logic_end = logic_end;
2882 	refcount_set(&sparity->refs, 1);
2883 	INIT_LIST_HEAD(&sparity->spages);
2884 	sparity->dbitmap = sparity->bitmap;
2885 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2886 
2887 	ret = 0;
2888 	while (logic_start < logic_end) {
2889 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2890 			key.type = BTRFS_METADATA_ITEM_KEY;
2891 		else
2892 			key.type = BTRFS_EXTENT_ITEM_KEY;
2893 		key.objectid = logic_start;
2894 		key.offset = (u64)-1;
2895 
2896 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2897 		if (ret < 0)
2898 			goto out;
2899 
2900 		if (ret > 0) {
2901 			ret = btrfs_previous_extent_item(root, path, 0);
2902 			if (ret < 0)
2903 				goto out;
2904 			if (ret > 0) {
2905 				btrfs_release_path(path);
2906 				ret = btrfs_search_slot(NULL, root, &key,
2907 							path, 0, 0);
2908 				if (ret < 0)
2909 					goto out;
2910 			}
2911 		}
2912 
2913 		stop_loop = 0;
2914 		while (1) {
2915 			u64 bytes;
2916 
2917 			l = path->nodes[0];
2918 			slot = path->slots[0];
2919 			if (slot >= btrfs_header_nritems(l)) {
2920 				ret = btrfs_next_leaf(root, path);
2921 				if (ret == 0)
2922 					continue;
2923 				if (ret < 0)
2924 					goto out;
2925 
2926 				stop_loop = 1;
2927 				break;
2928 			}
2929 			btrfs_item_key_to_cpu(l, &key, slot);
2930 
2931 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2932 			    key.type != BTRFS_METADATA_ITEM_KEY)
2933 				goto next;
2934 
2935 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2936 				bytes = fs_info->nodesize;
2937 			else
2938 				bytes = key.offset;
2939 
2940 			if (key.objectid + bytes <= logic_start)
2941 				goto next;
2942 
2943 			if (key.objectid >= logic_end) {
2944 				stop_loop = 1;
2945 				break;
2946 			}
2947 
2948 			while (key.objectid >= logic_start + map->stripe_len)
2949 				logic_start += map->stripe_len;
2950 
2951 			extent = btrfs_item_ptr(l, slot,
2952 						struct btrfs_extent_item);
2953 			flags = btrfs_extent_flags(l, extent);
2954 			generation = btrfs_extent_generation(l, extent);
2955 
2956 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2957 			    (key.objectid < logic_start ||
2958 			     key.objectid + bytes >
2959 			     logic_start + map->stripe_len)) {
2960 				btrfs_err(fs_info,
2961 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2962 					  key.objectid, logic_start);
2963 				spin_lock(&sctx->stat_lock);
2964 				sctx->stat.uncorrectable_errors++;
2965 				spin_unlock(&sctx->stat_lock);
2966 				goto next;
2967 			}
2968 again:
2969 			extent_logical = key.objectid;
2970 			ASSERT(bytes <= U32_MAX);
2971 			extent_len = bytes;
2972 
2973 			if (extent_logical < logic_start) {
2974 				extent_len -= logic_start - extent_logical;
2975 				extent_logical = logic_start;
2976 			}
2977 
2978 			if (extent_logical + extent_len >
2979 			    logic_start + map->stripe_len)
2980 				extent_len = logic_start + map->stripe_len -
2981 					     extent_logical;
2982 
2983 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2984 						       extent_len);
2985 
2986 			mapped_length = extent_len;
2987 			bbio = NULL;
2988 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2989 					extent_logical, &mapped_length, &bbio,
2990 					0);
2991 			if (!ret) {
2992 				if (!bbio || mapped_length < extent_len)
2993 					ret = -EIO;
2994 			}
2995 			if (ret) {
2996 				btrfs_put_bbio(bbio);
2997 				goto out;
2998 			}
2999 			extent_physical = bbio->stripes[0].physical;
3000 			extent_mirror_num = bbio->mirror_num;
3001 			extent_dev = bbio->stripes[0].dev;
3002 			btrfs_put_bbio(bbio);
3003 
3004 			ret = btrfs_lookup_csums_range(csum_root,
3005 						extent_logical,
3006 						extent_logical + extent_len - 1,
3007 						&sctx->csum_list, 1);
3008 			if (ret)
3009 				goto out;
3010 
3011 			ret = scrub_extent_for_parity(sparity, extent_logical,
3012 						      extent_len,
3013 						      extent_physical,
3014 						      extent_dev, flags,
3015 						      generation,
3016 						      extent_mirror_num);
3017 
3018 			scrub_free_csums(sctx);
3019 
3020 			if (ret)
3021 				goto out;
3022 
3023 			if (extent_logical + extent_len <
3024 			    key.objectid + bytes) {
3025 				logic_start += map->stripe_len;
3026 
3027 				if (logic_start >= logic_end) {
3028 					stop_loop = 1;
3029 					break;
3030 				}
3031 
3032 				if (logic_start < key.objectid + bytes) {
3033 					cond_resched();
3034 					goto again;
3035 				}
3036 			}
3037 next:
3038 			path->slots[0]++;
3039 		}
3040 
3041 		btrfs_release_path(path);
3042 
3043 		if (stop_loop)
3044 			break;
3045 
3046 		logic_start += map->stripe_len;
3047 	}
3048 out:
3049 	if (ret < 0) {
3050 		ASSERT(logic_end - logic_start <= U32_MAX);
3051 		scrub_parity_mark_sectors_error(sparity, logic_start,
3052 						logic_end - logic_start);
3053 	}
3054 	scrub_parity_put(sparity);
3055 	scrub_submit(sctx);
3056 	mutex_lock(&sctx->wr_lock);
3057 	scrub_wr_submit(sctx);
3058 	mutex_unlock(&sctx->wr_lock);
3059 
3060 	btrfs_release_path(path);
3061 	return ret < 0 ? ret : 0;
3062 }
3063 
3064 static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3065 {
3066 	if (!btrfs_is_zoned(sctx->fs_info))
3067 		return;
3068 
3069 	sctx->flush_all_writes = true;
3070 	scrub_submit(sctx);
3071 	mutex_lock(&sctx->wr_lock);
3072 	scrub_wr_submit(sctx);
3073 	mutex_unlock(&sctx->wr_lock);
3074 
3075 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3076 }
3077 
3078 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3079 					u64 physical, u64 physical_end)
3080 {
3081 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3082 	int ret = 0;
3083 
3084 	if (!btrfs_is_zoned(fs_info))
3085 		return 0;
3086 
3087 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3088 
3089 	mutex_lock(&sctx->wr_lock);
3090 	if (sctx->write_pointer < physical_end) {
3091 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3092 						    physical,
3093 						    sctx->write_pointer);
3094 		if (ret)
3095 			btrfs_err(fs_info,
3096 				  "zoned: failed to recover write pointer");
3097 	}
3098 	mutex_unlock(&sctx->wr_lock);
3099 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3100 
3101 	return ret;
3102 }
3103 
3104 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3105 					   struct map_lookup *map,
3106 					   struct btrfs_device *scrub_dev,
3107 					   int num, u64 base, u64 length,
3108 					   struct btrfs_block_group *cache)
3109 {
3110 	struct btrfs_path *path, *ppath;
3111 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3112 	struct btrfs_root *root = fs_info->extent_root;
3113 	struct btrfs_root *csum_root = fs_info->csum_root;
3114 	struct btrfs_extent_item *extent;
3115 	struct blk_plug plug;
3116 	u64 flags;
3117 	int ret;
3118 	int slot;
3119 	u64 nstripes;
3120 	struct extent_buffer *l;
3121 	u64 physical;
3122 	u64 logical;
3123 	u64 logic_end;
3124 	u64 physical_end;
3125 	u64 generation;
3126 	int mirror_num;
3127 	struct reada_control *reada1;
3128 	struct reada_control *reada2;
3129 	struct btrfs_key key;
3130 	struct btrfs_key key_end;
3131 	u64 increment = map->stripe_len;
3132 	u64 offset;
3133 	u64 extent_logical;
3134 	u64 extent_physical;
3135 	/*
3136 	 * Unlike chunk length, extent length should never go beyond
3137 	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
3138 	 */
3139 	u32 extent_len;
3140 	u64 stripe_logical;
3141 	u64 stripe_end;
3142 	struct btrfs_device *extent_dev;
3143 	int extent_mirror_num;
3144 	int stop_loop = 0;
3145 
3146 	physical = map->stripes[num].physical;
3147 	offset = 0;
3148 	nstripes = div64_u64(length, map->stripe_len);
3149 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3150 		offset = map->stripe_len * num;
3151 		increment = map->stripe_len * map->num_stripes;
3152 		mirror_num = 1;
3153 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3154 		int factor = map->num_stripes / map->sub_stripes;
3155 		offset = map->stripe_len * (num / map->sub_stripes);
3156 		increment = map->stripe_len * factor;
3157 		mirror_num = num % map->sub_stripes + 1;
3158 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3159 		increment = map->stripe_len;
3160 		mirror_num = num % map->num_stripes + 1;
3161 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3162 		increment = map->stripe_len;
3163 		mirror_num = num % map->num_stripes + 1;
3164 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3165 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3166 		increment = map->stripe_len * nr_data_stripes(map);
3167 		mirror_num = 1;
3168 	} else {
3169 		increment = map->stripe_len;
3170 		mirror_num = 1;
3171 	}
3172 
3173 	path = btrfs_alloc_path();
3174 	if (!path)
3175 		return -ENOMEM;
3176 
3177 	ppath = btrfs_alloc_path();
3178 	if (!ppath) {
3179 		btrfs_free_path(path);
3180 		return -ENOMEM;
3181 	}
3182 
3183 	/*
3184 	 * work on commit root. The related disk blocks are static as
3185 	 * long as COW is applied. This means, it is save to rewrite
3186 	 * them to repair disk errors without any race conditions
3187 	 */
3188 	path->search_commit_root = 1;
3189 	path->skip_locking = 1;
3190 
3191 	ppath->search_commit_root = 1;
3192 	ppath->skip_locking = 1;
3193 	/*
3194 	 * trigger the readahead for extent tree csum tree and wait for
3195 	 * completion. During readahead, the scrub is officially paused
3196 	 * to not hold off transaction commits
3197 	 */
3198 	logical = base + offset;
3199 	physical_end = physical + nstripes * map->stripe_len;
3200 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3201 		get_raid56_logic_offset(physical_end, num,
3202 					map, &logic_end, NULL);
3203 		logic_end += base;
3204 	} else {
3205 		logic_end = logical + increment * nstripes;
3206 	}
3207 	wait_event(sctx->list_wait,
3208 		   atomic_read(&sctx->bios_in_flight) == 0);
3209 	scrub_blocked_if_needed(fs_info);
3210 
3211 	/* FIXME it might be better to start readahead at commit root */
3212 	key.objectid = logical;
3213 	key.type = BTRFS_EXTENT_ITEM_KEY;
3214 	key.offset = (u64)0;
3215 	key_end.objectid = logic_end;
3216 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3217 	key_end.offset = (u64)-1;
3218 	reada1 = btrfs_reada_add(root, &key, &key_end);
3219 
3220 	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
3221 		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3222 		key.type = BTRFS_EXTENT_CSUM_KEY;
3223 		key.offset = logical;
3224 		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3225 		key_end.type = BTRFS_EXTENT_CSUM_KEY;
3226 		key_end.offset = logic_end;
3227 		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3228 	} else {
3229 		reada2 = NULL;
3230 	}
3231 
3232 	if (!IS_ERR(reada1))
3233 		btrfs_reada_wait(reada1);
3234 	if (!IS_ERR_OR_NULL(reada2))
3235 		btrfs_reada_wait(reada2);
3236 
3237 
3238 	/*
3239 	 * collect all data csums for the stripe to avoid seeking during
3240 	 * the scrub. This might currently (crc32) end up to be about 1MB
3241 	 */
3242 	blk_start_plug(&plug);
3243 
3244 	if (sctx->is_dev_replace &&
3245 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3246 		mutex_lock(&sctx->wr_lock);
3247 		sctx->write_pointer = physical;
3248 		mutex_unlock(&sctx->wr_lock);
3249 		sctx->flush_all_writes = true;
3250 	}
3251 
3252 	/*
3253 	 * now find all extents for each stripe and scrub them
3254 	 */
3255 	ret = 0;
3256 	while (physical < physical_end) {
3257 		/*
3258 		 * canceled?
3259 		 */
3260 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3261 		    atomic_read(&sctx->cancel_req)) {
3262 			ret = -ECANCELED;
3263 			goto out;
3264 		}
3265 		/*
3266 		 * check to see if we have to pause
3267 		 */
3268 		if (atomic_read(&fs_info->scrub_pause_req)) {
3269 			/* push queued extents */
3270 			sctx->flush_all_writes = true;
3271 			scrub_submit(sctx);
3272 			mutex_lock(&sctx->wr_lock);
3273 			scrub_wr_submit(sctx);
3274 			mutex_unlock(&sctx->wr_lock);
3275 			wait_event(sctx->list_wait,
3276 				   atomic_read(&sctx->bios_in_flight) == 0);
3277 			sctx->flush_all_writes = false;
3278 			scrub_blocked_if_needed(fs_info);
3279 		}
3280 
3281 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3282 			ret = get_raid56_logic_offset(physical, num, map,
3283 						      &logical,
3284 						      &stripe_logical);
3285 			logical += base;
3286 			if (ret) {
3287 				/* it is parity strip */
3288 				stripe_logical += base;
3289 				stripe_end = stripe_logical + increment;
3290 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3291 							  ppath, stripe_logical,
3292 							  stripe_end);
3293 				if (ret)
3294 					goto out;
3295 				goto skip;
3296 			}
3297 		}
3298 
3299 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3300 			key.type = BTRFS_METADATA_ITEM_KEY;
3301 		else
3302 			key.type = BTRFS_EXTENT_ITEM_KEY;
3303 		key.objectid = logical;
3304 		key.offset = (u64)-1;
3305 
3306 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3307 		if (ret < 0)
3308 			goto out;
3309 
3310 		if (ret > 0) {
3311 			ret = btrfs_previous_extent_item(root, path, 0);
3312 			if (ret < 0)
3313 				goto out;
3314 			if (ret > 0) {
3315 				/* there's no smaller item, so stick with the
3316 				 * larger one */
3317 				btrfs_release_path(path);
3318 				ret = btrfs_search_slot(NULL, root, &key,
3319 							path, 0, 0);
3320 				if (ret < 0)
3321 					goto out;
3322 			}
3323 		}
3324 
3325 		stop_loop = 0;
3326 		while (1) {
3327 			u64 bytes;
3328 
3329 			l = path->nodes[0];
3330 			slot = path->slots[0];
3331 			if (slot >= btrfs_header_nritems(l)) {
3332 				ret = btrfs_next_leaf(root, path);
3333 				if (ret == 0)
3334 					continue;
3335 				if (ret < 0)
3336 					goto out;
3337 
3338 				stop_loop = 1;
3339 				break;
3340 			}
3341 			btrfs_item_key_to_cpu(l, &key, slot);
3342 
3343 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3344 			    key.type != BTRFS_METADATA_ITEM_KEY)
3345 				goto next;
3346 
3347 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3348 				bytes = fs_info->nodesize;
3349 			else
3350 				bytes = key.offset;
3351 
3352 			if (key.objectid + bytes <= logical)
3353 				goto next;
3354 
3355 			if (key.objectid >= logical + map->stripe_len) {
3356 				/* out of this device extent */
3357 				if (key.objectid >= logic_end)
3358 					stop_loop = 1;
3359 				break;
3360 			}
3361 
3362 			/*
3363 			 * If our block group was removed in the meanwhile, just
3364 			 * stop scrubbing since there is no point in continuing.
3365 			 * Continuing would prevent reusing its device extents
3366 			 * for new block groups for a long time.
3367 			 */
3368 			spin_lock(&cache->lock);
3369 			if (cache->removed) {
3370 				spin_unlock(&cache->lock);
3371 				ret = 0;
3372 				goto out;
3373 			}
3374 			spin_unlock(&cache->lock);
3375 
3376 			extent = btrfs_item_ptr(l, slot,
3377 						struct btrfs_extent_item);
3378 			flags = btrfs_extent_flags(l, extent);
3379 			generation = btrfs_extent_generation(l, extent);
3380 
3381 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3382 			    (key.objectid < logical ||
3383 			     key.objectid + bytes >
3384 			     logical + map->stripe_len)) {
3385 				btrfs_err(fs_info,
3386 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3387 				       key.objectid, logical);
3388 				spin_lock(&sctx->stat_lock);
3389 				sctx->stat.uncorrectable_errors++;
3390 				spin_unlock(&sctx->stat_lock);
3391 				goto next;
3392 			}
3393 
3394 again:
3395 			extent_logical = key.objectid;
3396 			ASSERT(bytes <= U32_MAX);
3397 			extent_len = bytes;
3398 
3399 			/*
3400 			 * trim extent to this stripe
3401 			 */
3402 			if (extent_logical < logical) {
3403 				extent_len -= logical - extent_logical;
3404 				extent_logical = logical;
3405 			}
3406 			if (extent_logical + extent_len >
3407 			    logical + map->stripe_len) {
3408 				extent_len = logical + map->stripe_len -
3409 					     extent_logical;
3410 			}
3411 
3412 			extent_physical = extent_logical - logical + physical;
3413 			extent_dev = scrub_dev;
3414 			extent_mirror_num = mirror_num;
3415 			if (sctx->is_dev_replace)
3416 				scrub_remap_extent(fs_info, extent_logical,
3417 						   extent_len, &extent_physical,
3418 						   &extent_dev,
3419 						   &extent_mirror_num);
3420 
3421 			if (flags & BTRFS_EXTENT_FLAG_DATA) {
3422 				ret = btrfs_lookup_csums_range(csum_root,
3423 						extent_logical,
3424 						extent_logical + extent_len - 1,
3425 						&sctx->csum_list, 1);
3426 				if (ret)
3427 					goto out;
3428 			}
3429 
3430 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3431 					   extent_physical, extent_dev, flags,
3432 					   generation, extent_mirror_num,
3433 					   extent_logical - logical + physical);
3434 
3435 			scrub_free_csums(sctx);
3436 
3437 			if (ret)
3438 				goto out;
3439 
3440 			if (sctx->is_dev_replace)
3441 				sync_replace_for_zoned(sctx);
3442 
3443 			if (extent_logical + extent_len <
3444 			    key.objectid + bytes) {
3445 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3446 					/*
3447 					 * loop until we find next data stripe
3448 					 * or we have finished all stripes.
3449 					 */
3450 loop:
3451 					physical += map->stripe_len;
3452 					ret = get_raid56_logic_offset(physical,
3453 							num, map, &logical,
3454 							&stripe_logical);
3455 					logical += base;
3456 
3457 					if (ret && physical < physical_end) {
3458 						stripe_logical += base;
3459 						stripe_end = stripe_logical +
3460 								increment;
3461 						ret = scrub_raid56_parity(sctx,
3462 							map, scrub_dev, ppath,
3463 							stripe_logical,
3464 							stripe_end);
3465 						if (ret)
3466 							goto out;
3467 						goto loop;
3468 					}
3469 				} else {
3470 					physical += map->stripe_len;
3471 					logical += increment;
3472 				}
3473 				if (logical < key.objectid + bytes) {
3474 					cond_resched();
3475 					goto again;
3476 				}
3477 
3478 				if (physical >= physical_end) {
3479 					stop_loop = 1;
3480 					break;
3481 				}
3482 			}
3483 next:
3484 			path->slots[0]++;
3485 		}
3486 		btrfs_release_path(path);
3487 skip:
3488 		logical += increment;
3489 		physical += map->stripe_len;
3490 		spin_lock(&sctx->stat_lock);
3491 		if (stop_loop)
3492 			sctx->stat.last_physical = map->stripes[num].physical +
3493 						   length;
3494 		else
3495 			sctx->stat.last_physical = physical;
3496 		spin_unlock(&sctx->stat_lock);
3497 		if (stop_loop)
3498 			break;
3499 	}
3500 out:
3501 	/* push queued extents */
3502 	scrub_submit(sctx);
3503 	mutex_lock(&sctx->wr_lock);
3504 	scrub_wr_submit(sctx);
3505 	mutex_unlock(&sctx->wr_lock);
3506 
3507 	blk_finish_plug(&plug);
3508 	btrfs_free_path(path);
3509 	btrfs_free_path(ppath);
3510 
3511 	if (sctx->is_dev_replace && ret >= 0) {
3512 		int ret2;
3513 
3514 		ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
3515 						    map->stripes[num].physical,
3516 						    physical_end);
3517 		if (ret2)
3518 			ret = ret2;
3519 	}
3520 
3521 	return ret < 0 ? ret : 0;
3522 }
3523 
3524 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3525 					  struct btrfs_device *scrub_dev,
3526 					  u64 chunk_offset, u64 length,
3527 					  u64 dev_offset,
3528 					  struct btrfs_block_group *cache)
3529 {
3530 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3531 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3532 	struct map_lookup *map;
3533 	struct extent_map *em;
3534 	int i;
3535 	int ret = 0;
3536 
3537 	read_lock(&map_tree->lock);
3538 	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3539 	read_unlock(&map_tree->lock);
3540 
3541 	if (!em) {
3542 		/*
3543 		 * Might have been an unused block group deleted by the cleaner
3544 		 * kthread or relocation.
3545 		 */
3546 		spin_lock(&cache->lock);
3547 		if (!cache->removed)
3548 			ret = -EINVAL;
3549 		spin_unlock(&cache->lock);
3550 
3551 		return ret;
3552 	}
3553 
3554 	map = em->map_lookup;
3555 	if (em->start != chunk_offset)
3556 		goto out;
3557 
3558 	if (em->len < length)
3559 		goto out;
3560 
3561 	for (i = 0; i < map->num_stripes; ++i) {
3562 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3563 		    map->stripes[i].physical == dev_offset) {
3564 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3565 					   chunk_offset, length, cache);
3566 			if (ret)
3567 				goto out;
3568 		}
3569 	}
3570 out:
3571 	free_extent_map(em);
3572 
3573 	return ret;
3574 }
3575 
3576 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3577 					  struct btrfs_block_group *cache)
3578 {
3579 	struct btrfs_fs_info *fs_info = cache->fs_info;
3580 	struct btrfs_trans_handle *trans;
3581 
3582 	if (!btrfs_is_zoned(fs_info))
3583 		return 0;
3584 
3585 	btrfs_wait_block_group_reservations(cache);
3586 	btrfs_wait_nocow_writers(cache);
3587 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3588 
3589 	trans = btrfs_join_transaction(root);
3590 	if (IS_ERR(trans))
3591 		return PTR_ERR(trans);
3592 	return btrfs_commit_transaction(trans);
3593 }
3594 
3595 static noinline_for_stack
3596 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3597 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3598 {
3599 	struct btrfs_dev_extent *dev_extent = NULL;
3600 	struct btrfs_path *path;
3601 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3602 	struct btrfs_root *root = fs_info->dev_root;
3603 	u64 length;
3604 	u64 chunk_offset;
3605 	int ret = 0;
3606 	int ro_set;
3607 	int slot;
3608 	struct extent_buffer *l;
3609 	struct btrfs_key key;
3610 	struct btrfs_key found_key;
3611 	struct btrfs_block_group *cache;
3612 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3613 
3614 	path = btrfs_alloc_path();
3615 	if (!path)
3616 		return -ENOMEM;
3617 
3618 	path->reada = READA_FORWARD;
3619 	path->search_commit_root = 1;
3620 	path->skip_locking = 1;
3621 
3622 	key.objectid = scrub_dev->devid;
3623 	key.offset = 0ull;
3624 	key.type = BTRFS_DEV_EXTENT_KEY;
3625 
3626 	while (1) {
3627 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3628 		if (ret < 0)
3629 			break;
3630 		if (ret > 0) {
3631 			if (path->slots[0] >=
3632 			    btrfs_header_nritems(path->nodes[0])) {
3633 				ret = btrfs_next_leaf(root, path);
3634 				if (ret < 0)
3635 					break;
3636 				if (ret > 0) {
3637 					ret = 0;
3638 					break;
3639 				}
3640 			} else {
3641 				ret = 0;
3642 			}
3643 		}
3644 
3645 		l = path->nodes[0];
3646 		slot = path->slots[0];
3647 
3648 		btrfs_item_key_to_cpu(l, &found_key, slot);
3649 
3650 		if (found_key.objectid != scrub_dev->devid)
3651 			break;
3652 
3653 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3654 			break;
3655 
3656 		if (found_key.offset >= end)
3657 			break;
3658 
3659 		if (found_key.offset < key.offset)
3660 			break;
3661 
3662 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3663 		length = btrfs_dev_extent_length(l, dev_extent);
3664 
3665 		if (found_key.offset + length <= start)
3666 			goto skip;
3667 
3668 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3669 
3670 		/*
3671 		 * get a reference on the corresponding block group to prevent
3672 		 * the chunk from going away while we scrub it
3673 		 */
3674 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3675 
3676 		/* some chunks are removed but not committed to disk yet,
3677 		 * continue scrubbing */
3678 		if (!cache)
3679 			goto skip;
3680 
3681 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3682 			spin_lock(&cache->lock);
3683 			if (!cache->to_copy) {
3684 				spin_unlock(&cache->lock);
3685 				ro_set = 0;
3686 				goto done;
3687 			}
3688 			spin_unlock(&cache->lock);
3689 		}
3690 
3691 		/*
3692 		 * Make sure that while we are scrubbing the corresponding block
3693 		 * group doesn't get its logical address and its device extents
3694 		 * reused for another block group, which can possibly be of a
3695 		 * different type and different profile. We do this to prevent
3696 		 * false error detections and crashes due to bogus attempts to
3697 		 * repair extents.
3698 		 */
3699 		spin_lock(&cache->lock);
3700 		if (cache->removed) {
3701 			spin_unlock(&cache->lock);
3702 			btrfs_put_block_group(cache);
3703 			goto skip;
3704 		}
3705 		btrfs_freeze_block_group(cache);
3706 		spin_unlock(&cache->lock);
3707 
3708 		/*
3709 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3710 		 * to avoid deadlock caused by:
3711 		 * btrfs_inc_block_group_ro()
3712 		 * -> btrfs_wait_for_commit()
3713 		 * -> btrfs_commit_transaction()
3714 		 * -> btrfs_scrub_pause()
3715 		 */
3716 		scrub_pause_on(fs_info);
3717 
3718 		/*
3719 		 * Don't do chunk preallocation for scrub.
3720 		 *
3721 		 * This is especially important for SYSTEM bgs, or we can hit
3722 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3723 		 * 1. The only SYSTEM bg is marked RO.
3724 		 *    Since SYSTEM bg is small, that's pretty common.
3725 		 * 2. New SYSTEM bg will be allocated
3726 		 *    Due to regular version will allocate new chunk.
3727 		 * 3. New SYSTEM bg is empty and will get cleaned up
3728 		 *    Before cleanup really happens, it's marked RO again.
3729 		 * 4. Empty SYSTEM bg get scrubbed
3730 		 *    We go back to 2.
3731 		 *
3732 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3733 		 * thread can't be triggered fast enough, and use up all space
3734 		 * of btrfs_super_block::sys_chunk_array
3735 		 *
3736 		 * While for dev replace, we need to try our best to mark block
3737 		 * group RO, to prevent race between:
3738 		 * - Write duplication
3739 		 *   Contains latest data
3740 		 * - Scrub copy
3741 		 *   Contains data from commit tree
3742 		 *
3743 		 * If target block group is not marked RO, nocow writes can
3744 		 * be overwritten by scrub copy, causing data corruption.
3745 		 * So for dev-replace, it's not allowed to continue if a block
3746 		 * group is not RO.
3747 		 */
3748 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3749 		if (!ret && sctx->is_dev_replace) {
3750 			ret = finish_extent_writes_for_zoned(root, cache);
3751 			if (ret) {
3752 				btrfs_dec_block_group_ro(cache);
3753 				scrub_pause_off(fs_info);
3754 				btrfs_put_block_group(cache);
3755 				break;
3756 			}
3757 		}
3758 
3759 		if (ret == 0) {
3760 			ro_set = 1;
3761 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3762 			/*
3763 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3764 			 * failed in creating new chunk for metadata.
3765 			 * It is not a problem for scrub, because
3766 			 * metadata are always cowed, and our scrub paused
3767 			 * commit_transactions.
3768 			 */
3769 			ro_set = 0;
3770 		} else if (ret == -ETXTBSY) {
3771 			btrfs_warn(fs_info,
3772 		   "skipping scrub of block group %llu due to active swapfile",
3773 				   cache->start);
3774 			scrub_pause_off(fs_info);
3775 			ret = 0;
3776 			goto skip_unfreeze;
3777 		} else {
3778 			btrfs_warn(fs_info,
3779 				   "failed setting block group ro: %d", ret);
3780 			btrfs_unfreeze_block_group(cache);
3781 			btrfs_put_block_group(cache);
3782 			scrub_pause_off(fs_info);
3783 			break;
3784 		}
3785 
3786 		/*
3787 		 * Now the target block is marked RO, wait for nocow writes to
3788 		 * finish before dev-replace.
3789 		 * COW is fine, as COW never overwrites extents in commit tree.
3790 		 */
3791 		if (sctx->is_dev_replace) {
3792 			btrfs_wait_nocow_writers(cache);
3793 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3794 					cache->length);
3795 		}
3796 
3797 		scrub_pause_off(fs_info);
3798 		down_write(&dev_replace->rwsem);
3799 		dev_replace->cursor_right = found_key.offset + length;
3800 		dev_replace->cursor_left = found_key.offset;
3801 		dev_replace->item_needs_writeback = 1;
3802 		up_write(&dev_replace->rwsem);
3803 
3804 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3805 				  found_key.offset, cache);
3806 
3807 		/*
3808 		 * flush, submit all pending read and write bios, afterwards
3809 		 * wait for them.
3810 		 * Note that in the dev replace case, a read request causes
3811 		 * write requests that are submitted in the read completion
3812 		 * worker. Therefore in the current situation, it is required
3813 		 * that all write requests are flushed, so that all read and
3814 		 * write requests are really completed when bios_in_flight
3815 		 * changes to 0.
3816 		 */
3817 		sctx->flush_all_writes = true;
3818 		scrub_submit(sctx);
3819 		mutex_lock(&sctx->wr_lock);
3820 		scrub_wr_submit(sctx);
3821 		mutex_unlock(&sctx->wr_lock);
3822 
3823 		wait_event(sctx->list_wait,
3824 			   atomic_read(&sctx->bios_in_flight) == 0);
3825 
3826 		scrub_pause_on(fs_info);
3827 
3828 		/*
3829 		 * must be called before we decrease @scrub_paused.
3830 		 * make sure we don't block transaction commit while
3831 		 * we are waiting pending workers finished.
3832 		 */
3833 		wait_event(sctx->list_wait,
3834 			   atomic_read(&sctx->workers_pending) == 0);
3835 		sctx->flush_all_writes = false;
3836 
3837 		scrub_pause_off(fs_info);
3838 
3839 		if (sctx->is_dev_replace &&
3840 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
3841 						      cache, found_key.offset))
3842 			ro_set = 0;
3843 
3844 done:
3845 		down_write(&dev_replace->rwsem);
3846 		dev_replace->cursor_left = dev_replace->cursor_right;
3847 		dev_replace->item_needs_writeback = 1;
3848 		up_write(&dev_replace->rwsem);
3849 
3850 		if (ro_set)
3851 			btrfs_dec_block_group_ro(cache);
3852 
3853 		/*
3854 		 * We might have prevented the cleaner kthread from deleting
3855 		 * this block group if it was already unused because we raced
3856 		 * and set it to RO mode first. So add it back to the unused
3857 		 * list, otherwise it might not ever be deleted unless a manual
3858 		 * balance is triggered or it becomes used and unused again.
3859 		 */
3860 		spin_lock(&cache->lock);
3861 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3862 		    cache->used == 0) {
3863 			spin_unlock(&cache->lock);
3864 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3865 				btrfs_discard_queue_work(&fs_info->discard_ctl,
3866 							 cache);
3867 			else
3868 				btrfs_mark_bg_unused(cache);
3869 		} else {
3870 			spin_unlock(&cache->lock);
3871 		}
3872 skip_unfreeze:
3873 		btrfs_unfreeze_block_group(cache);
3874 		btrfs_put_block_group(cache);
3875 		if (ret)
3876 			break;
3877 		if (sctx->is_dev_replace &&
3878 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3879 			ret = -EIO;
3880 			break;
3881 		}
3882 		if (sctx->stat.malloc_errors > 0) {
3883 			ret = -ENOMEM;
3884 			break;
3885 		}
3886 skip:
3887 		key.offset = found_key.offset + length;
3888 		btrfs_release_path(path);
3889 	}
3890 
3891 	btrfs_free_path(path);
3892 
3893 	return ret;
3894 }
3895 
3896 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3897 					   struct btrfs_device *scrub_dev)
3898 {
3899 	int	i;
3900 	u64	bytenr;
3901 	u64	gen;
3902 	int	ret;
3903 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3904 
3905 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3906 		return -EROFS;
3907 
3908 	/* Seed devices of a new filesystem has their own generation. */
3909 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3910 		gen = scrub_dev->generation;
3911 	else
3912 		gen = fs_info->last_trans_committed;
3913 
3914 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3915 		bytenr = btrfs_sb_offset(i);
3916 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3917 		    scrub_dev->commit_total_bytes)
3918 			break;
3919 		if (!btrfs_check_super_location(scrub_dev, bytenr))
3920 			continue;
3921 
3922 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3923 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3924 				  NULL, bytenr);
3925 		if (ret)
3926 			return ret;
3927 	}
3928 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3929 
3930 	return 0;
3931 }
3932 
3933 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3934 {
3935 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3936 					&fs_info->scrub_lock)) {
3937 		struct btrfs_workqueue *scrub_workers = NULL;
3938 		struct btrfs_workqueue *scrub_wr_comp = NULL;
3939 		struct btrfs_workqueue *scrub_parity = NULL;
3940 
3941 		scrub_workers = fs_info->scrub_workers;
3942 		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3943 		scrub_parity = fs_info->scrub_parity_workers;
3944 
3945 		fs_info->scrub_workers = NULL;
3946 		fs_info->scrub_wr_completion_workers = NULL;
3947 		fs_info->scrub_parity_workers = NULL;
3948 		mutex_unlock(&fs_info->scrub_lock);
3949 
3950 		btrfs_destroy_workqueue(scrub_workers);
3951 		btrfs_destroy_workqueue(scrub_wr_comp);
3952 		btrfs_destroy_workqueue(scrub_parity);
3953 	}
3954 }
3955 
3956 /*
3957  * get a reference count on fs_info->scrub_workers. start worker if necessary
3958  */
3959 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3960 						int is_dev_replace)
3961 {
3962 	struct btrfs_workqueue *scrub_workers = NULL;
3963 	struct btrfs_workqueue *scrub_wr_comp = NULL;
3964 	struct btrfs_workqueue *scrub_parity = NULL;
3965 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3966 	int max_active = fs_info->thread_pool_size;
3967 	int ret = -ENOMEM;
3968 
3969 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
3970 		return 0;
3971 
3972 	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
3973 					      is_dev_replace ? 1 : max_active, 4);
3974 	if (!scrub_workers)
3975 		goto fail_scrub_workers;
3976 
3977 	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3978 					      max_active, 2);
3979 	if (!scrub_wr_comp)
3980 		goto fail_scrub_wr_completion_workers;
3981 
3982 	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3983 					     max_active, 2);
3984 	if (!scrub_parity)
3985 		goto fail_scrub_parity_workers;
3986 
3987 	mutex_lock(&fs_info->scrub_lock);
3988 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3989 		ASSERT(fs_info->scrub_workers == NULL &&
3990 		       fs_info->scrub_wr_completion_workers == NULL &&
3991 		       fs_info->scrub_parity_workers == NULL);
3992 		fs_info->scrub_workers = scrub_workers;
3993 		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
3994 		fs_info->scrub_parity_workers = scrub_parity;
3995 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3996 		mutex_unlock(&fs_info->scrub_lock);
3997 		return 0;
3998 	}
3999 	/* Other thread raced in and created the workers for us */
4000 	refcount_inc(&fs_info->scrub_workers_refcnt);
4001 	mutex_unlock(&fs_info->scrub_lock);
4002 
4003 	ret = 0;
4004 	btrfs_destroy_workqueue(scrub_parity);
4005 fail_scrub_parity_workers:
4006 	btrfs_destroy_workqueue(scrub_wr_comp);
4007 fail_scrub_wr_completion_workers:
4008 	btrfs_destroy_workqueue(scrub_workers);
4009 fail_scrub_workers:
4010 	return ret;
4011 }
4012 
4013 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4014 		    u64 end, struct btrfs_scrub_progress *progress,
4015 		    int readonly, int is_dev_replace)
4016 {
4017 	struct scrub_ctx *sctx;
4018 	int ret;
4019 	struct btrfs_device *dev;
4020 	unsigned int nofs_flag;
4021 
4022 	if (btrfs_fs_closing(fs_info))
4023 		return -EAGAIN;
4024 
4025 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4026 		/*
4027 		 * in this case scrub is unable to calculate the checksum
4028 		 * the way scrub is implemented. Do not handle this
4029 		 * situation at all because it won't ever happen.
4030 		 */
4031 		btrfs_err(fs_info,
4032 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4033 		       fs_info->nodesize,
4034 		       BTRFS_STRIPE_LEN);
4035 		return -EINVAL;
4036 	}
4037 
4038 	if (fs_info->nodesize >
4039 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4040 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4041 		/*
4042 		 * would exhaust the array bounds of pagev member in
4043 		 * struct scrub_block
4044 		 */
4045 		btrfs_err(fs_info,
4046 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4047 		       fs_info->nodesize,
4048 		       SCRUB_MAX_PAGES_PER_BLOCK,
4049 		       fs_info->sectorsize,
4050 		       SCRUB_MAX_PAGES_PER_BLOCK);
4051 		return -EINVAL;
4052 	}
4053 
4054 	/* Allocate outside of device_list_mutex */
4055 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4056 	if (IS_ERR(sctx))
4057 		return PTR_ERR(sctx);
4058 
4059 	ret = scrub_workers_get(fs_info, is_dev_replace);
4060 	if (ret)
4061 		goto out_free_ctx;
4062 
4063 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4064 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4065 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4066 		     !is_dev_replace)) {
4067 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4068 		ret = -ENODEV;
4069 		goto out;
4070 	}
4071 
4072 	if (!is_dev_replace && !readonly &&
4073 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4074 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4075 		btrfs_err_in_rcu(fs_info,
4076 			"scrub on devid %llu: filesystem on %s is not writable",
4077 				 devid, rcu_str_deref(dev->name));
4078 		ret = -EROFS;
4079 		goto out;
4080 	}
4081 
4082 	mutex_lock(&fs_info->scrub_lock);
4083 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4084 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4085 		mutex_unlock(&fs_info->scrub_lock);
4086 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4087 		ret = -EIO;
4088 		goto out;
4089 	}
4090 
4091 	down_read(&fs_info->dev_replace.rwsem);
4092 	if (dev->scrub_ctx ||
4093 	    (!is_dev_replace &&
4094 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4095 		up_read(&fs_info->dev_replace.rwsem);
4096 		mutex_unlock(&fs_info->scrub_lock);
4097 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4098 		ret = -EINPROGRESS;
4099 		goto out;
4100 	}
4101 	up_read(&fs_info->dev_replace.rwsem);
4102 
4103 	sctx->readonly = readonly;
4104 	dev->scrub_ctx = sctx;
4105 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4106 
4107 	/*
4108 	 * checking @scrub_pause_req here, we can avoid
4109 	 * race between committing transaction and scrubbing.
4110 	 */
4111 	__scrub_blocked_if_needed(fs_info);
4112 	atomic_inc(&fs_info->scrubs_running);
4113 	mutex_unlock(&fs_info->scrub_lock);
4114 
4115 	/*
4116 	 * In order to avoid deadlock with reclaim when there is a transaction
4117 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4118 	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
4119 	 * invoked by our callees. The pausing request is done when the
4120 	 * transaction commit starts, and it blocks the transaction until scrub
4121 	 * is paused (done at specific points at scrub_stripe() or right above
4122 	 * before incrementing fs_info->scrubs_running).
4123 	 */
4124 	nofs_flag = memalloc_nofs_save();
4125 	if (!is_dev_replace) {
4126 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4127 		/*
4128 		 * by holding device list mutex, we can
4129 		 * kick off writing super in log tree sync.
4130 		 */
4131 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4132 		ret = scrub_supers(sctx, dev);
4133 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4134 	}
4135 
4136 	if (!ret)
4137 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4138 	memalloc_nofs_restore(nofs_flag);
4139 
4140 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4141 	atomic_dec(&fs_info->scrubs_running);
4142 	wake_up(&fs_info->scrub_pause_wait);
4143 
4144 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4145 
4146 	if (progress)
4147 		memcpy(progress, &sctx->stat, sizeof(*progress));
4148 
4149 	if (!is_dev_replace)
4150 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4151 			ret ? "not finished" : "finished", devid, ret);
4152 
4153 	mutex_lock(&fs_info->scrub_lock);
4154 	dev->scrub_ctx = NULL;
4155 	mutex_unlock(&fs_info->scrub_lock);
4156 
4157 	scrub_workers_put(fs_info);
4158 	scrub_put_ctx(sctx);
4159 
4160 	return ret;
4161 out:
4162 	scrub_workers_put(fs_info);
4163 out_free_ctx:
4164 	scrub_free_ctx(sctx);
4165 
4166 	return ret;
4167 }
4168 
4169 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4170 {
4171 	mutex_lock(&fs_info->scrub_lock);
4172 	atomic_inc(&fs_info->scrub_pause_req);
4173 	while (atomic_read(&fs_info->scrubs_paused) !=
4174 	       atomic_read(&fs_info->scrubs_running)) {
4175 		mutex_unlock(&fs_info->scrub_lock);
4176 		wait_event(fs_info->scrub_pause_wait,
4177 			   atomic_read(&fs_info->scrubs_paused) ==
4178 			   atomic_read(&fs_info->scrubs_running));
4179 		mutex_lock(&fs_info->scrub_lock);
4180 	}
4181 	mutex_unlock(&fs_info->scrub_lock);
4182 }
4183 
4184 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4185 {
4186 	atomic_dec(&fs_info->scrub_pause_req);
4187 	wake_up(&fs_info->scrub_pause_wait);
4188 }
4189 
4190 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4191 {
4192 	mutex_lock(&fs_info->scrub_lock);
4193 	if (!atomic_read(&fs_info->scrubs_running)) {
4194 		mutex_unlock(&fs_info->scrub_lock);
4195 		return -ENOTCONN;
4196 	}
4197 
4198 	atomic_inc(&fs_info->scrub_cancel_req);
4199 	while (atomic_read(&fs_info->scrubs_running)) {
4200 		mutex_unlock(&fs_info->scrub_lock);
4201 		wait_event(fs_info->scrub_pause_wait,
4202 			   atomic_read(&fs_info->scrubs_running) == 0);
4203 		mutex_lock(&fs_info->scrub_lock);
4204 	}
4205 	atomic_dec(&fs_info->scrub_cancel_req);
4206 	mutex_unlock(&fs_info->scrub_lock);
4207 
4208 	return 0;
4209 }
4210 
4211 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4212 {
4213 	struct btrfs_fs_info *fs_info = dev->fs_info;
4214 	struct scrub_ctx *sctx;
4215 
4216 	mutex_lock(&fs_info->scrub_lock);
4217 	sctx = dev->scrub_ctx;
4218 	if (!sctx) {
4219 		mutex_unlock(&fs_info->scrub_lock);
4220 		return -ENOTCONN;
4221 	}
4222 	atomic_inc(&sctx->cancel_req);
4223 	while (dev->scrub_ctx) {
4224 		mutex_unlock(&fs_info->scrub_lock);
4225 		wait_event(fs_info->scrub_pause_wait,
4226 			   dev->scrub_ctx == NULL);
4227 		mutex_lock(&fs_info->scrub_lock);
4228 	}
4229 	mutex_unlock(&fs_info->scrub_lock);
4230 
4231 	return 0;
4232 }
4233 
4234 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4235 			 struct btrfs_scrub_progress *progress)
4236 {
4237 	struct btrfs_device *dev;
4238 	struct scrub_ctx *sctx = NULL;
4239 
4240 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4241 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4242 	if (dev)
4243 		sctx = dev->scrub_ctx;
4244 	if (sctx)
4245 		memcpy(progress, &sctx->stat, sizeof(*progress));
4246 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4247 
4248 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4249 }
4250 
4251 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4252 			       u64 extent_logical, u32 extent_len,
4253 			       u64 *extent_physical,
4254 			       struct btrfs_device **extent_dev,
4255 			       int *extent_mirror_num)
4256 {
4257 	u64 mapped_length;
4258 	struct btrfs_bio *bbio = NULL;
4259 	int ret;
4260 
4261 	mapped_length = extent_len;
4262 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4263 			      &mapped_length, &bbio, 0);
4264 	if (ret || !bbio || mapped_length < extent_len ||
4265 	    !bbio->stripes[0].dev->bdev) {
4266 		btrfs_put_bbio(bbio);
4267 		return;
4268 	}
4269 
4270 	*extent_physical = bbio->stripes[0].physical;
4271 	*extent_mirror_num = bbio->mirror_num;
4272 	*extent_dev = bbio->stripes[0].dev;
4273 	btrfs_put_bbio(bbio);
4274 }
4275