1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "dev-replace.h" 29 #include "check-integrity.h" 30 #include "rcu-string.h" 31 #include "raid56.h" 32 33 /* 34 * This is only the first step towards a full-features scrub. It reads all 35 * extent and super block and verifies the checksums. In case a bad checksum 36 * is found or the extent cannot be read, good data will be written back if 37 * any can be found. 38 * 39 * Future enhancements: 40 * - In case an unrepairable extent is encountered, track which files are 41 * affected and report them 42 * - track and record media errors, throw out bad devices 43 * - add a mode to also read unallocated space 44 */ 45 46 struct scrub_block; 47 struct scrub_ctx; 48 49 /* 50 * the following three values only influence the performance. 51 * The last one configures the number of parallel and outstanding I/O 52 * operations. The first two values configure an upper limit for the number 53 * of (dynamically allocated) pages that are added to a bio. 54 */ 55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 58 59 /* 60 * the following value times PAGE_SIZE needs to be large enough to match the 61 * largest node/leaf/sector size that shall be supported. 62 * Values larger than BTRFS_STRIPE_LEN are not supported. 63 */ 64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 65 66 struct scrub_page { 67 struct scrub_block *sblock; 68 struct page *page; 69 struct btrfs_device *dev; 70 u64 flags; /* extent flags */ 71 u64 generation; 72 u64 logical; 73 u64 physical; 74 u64 physical_for_dev_replace; 75 atomic_t ref_count; 76 struct { 77 unsigned int mirror_num:8; 78 unsigned int have_csum:1; 79 unsigned int io_error:1; 80 }; 81 u8 csum[BTRFS_CSUM_SIZE]; 82 }; 83 84 struct scrub_bio { 85 int index; 86 struct scrub_ctx *sctx; 87 struct btrfs_device *dev; 88 struct bio *bio; 89 int err; 90 u64 logical; 91 u64 physical; 92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 94 #else 95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 96 #endif 97 int page_count; 98 int next_free; 99 struct btrfs_work work; 100 }; 101 102 struct scrub_block { 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 104 int page_count; 105 atomic_t outstanding_pages; 106 atomic_t ref_count; /* free mem on transition to zero */ 107 struct scrub_ctx *sctx; 108 struct { 109 unsigned int header_error:1; 110 unsigned int checksum_error:1; 111 unsigned int no_io_error_seen:1; 112 unsigned int generation_error:1; /* also sets header_error */ 113 }; 114 }; 115 116 struct scrub_wr_ctx { 117 struct scrub_bio *wr_curr_bio; 118 struct btrfs_device *tgtdev; 119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 120 atomic_t flush_all_writes; 121 struct mutex wr_lock; 122 }; 123 124 struct scrub_ctx { 125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 126 struct btrfs_root *dev_root; 127 int first_free; 128 int curr; 129 atomic_t bios_in_flight; 130 atomic_t workers_pending; 131 spinlock_t list_lock; 132 wait_queue_head_t list_wait; 133 u16 csum_size; 134 struct list_head csum_list; 135 atomic_t cancel_req; 136 int readonly; 137 int pages_per_rd_bio; 138 u32 sectorsize; 139 u32 nodesize; 140 u32 leafsize; 141 142 int is_dev_replace; 143 struct scrub_wr_ctx wr_ctx; 144 145 /* 146 * statistics 147 */ 148 struct btrfs_scrub_progress stat; 149 spinlock_t stat_lock; 150 }; 151 152 struct scrub_fixup_nodatasum { 153 struct scrub_ctx *sctx; 154 struct btrfs_device *dev; 155 u64 logical; 156 struct btrfs_root *root; 157 struct btrfs_work work; 158 int mirror_num; 159 }; 160 161 struct scrub_nocow_inode { 162 u64 inum; 163 u64 offset; 164 u64 root; 165 struct list_head list; 166 }; 167 168 struct scrub_copy_nocow_ctx { 169 struct scrub_ctx *sctx; 170 u64 logical; 171 u64 len; 172 int mirror_num; 173 u64 physical_for_dev_replace; 174 struct list_head inodes; 175 struct btrfs_work work; 176 }; 177 178 struct scrub_warning { 179 struct btrfs_path *path; 180 u64 extent_item_size; 181 char *scratch_buf; 182 char *msg_buf; 183 const char *errstr; 184 sector_t sector; 185 u64 logical; 186 struct btrfs_device *dev; 187 int msg_bufsize; 188 int scratch_bufsize; 189 }; 190 191 192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx, 198 struct btrfs_fs_info *fs_info, 199 struct scrub_block *original_sblock, 200 u64 length, u64 logical, 201 struct scrub_block *sblocks_for_recheck); 202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 203 struct scrub_block *sblock, int is_metadata, 204 int have_csum, u8 *csum, u64 generation, 205 u16 csum_size); 206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 207 struct scrub_block *sblock, 208 int is_metadata, int have_csum, 209 const u8 *csum, u64 generation, 210 u16 csum_size); 211 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 212 struct scrub_block *sblock_good, 213 int force_write); 214 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 215 struct scrub_block *sblock_good, 216 int page_num, int force_write); 217 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 218 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 219 int page_num); 220 static int scrub_checksum_data(struct scrub_block *sblock); 221 static int scrub_checksum_tree_block(struct scrub_block *sblock); 222 static int scrub_checksum_super(struct scrub_block *sblock); 223 static void scrub_block_get(struct scrub_block *sblock); 224 static void scrub_block_put(struct scrub_block *sblock); 225 static void scrub_page_get(struct scrub_page *spage); 226 static void scrub_page_put(struct scrub_page *spage); 227 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 228 struct scrub_page *spage); 229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 230 u64 physical, struct btrfs_device *dev, u64 flags, 231 u64 gen, int mirror_num, u8 *csum, int force, 232 u64 physical_for_dev_replace); 233 static void scrub_bio_end_io(struct bio *bio, int err); 234 static void scrub_bio_end_io_worker(struct btrfs_work *work); 235 static void scrub_block_complete(struct scrub_block *sblock); 236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 237 u64 extent_logical, u64 extent_len, 238 u64 *extent_physical, 239 struct btrfs_device **extent_dev, 240 int *extent_mirror_num); 241 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 242 struct scrub_wr_ctx *wr_ctx, 243 struct btrfs_fs_info *fs_info, 244 struct btrfs_device *dev, 245 int is_dev_replace); 246 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); 247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 248 struct scrub_page *spage); 249 static void scrub_wr_submit(struct scrub_ctx *sctx); 250 static void scrub_wr_bio_end_io(struct bio *bio, int err); 251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 252 static int write_page_nocow(struct scrub_ctx *sctx, 253 u64 physical_for_dev_replace, struct page *page); 254 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 255 struct scrub_copy_nocow_ctx *ctx); 256 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 257 int mirror_num, u64 physical_for_dev_replace); 258 static void copy_nocow_pages_worker(struct btrfs_work *work); 259 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 260 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 261 262 263 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 264 { 265 atomic_inc(&sctx->bios_in_flight); 266 } 267 268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 269 { 270 atomic_dec(&sctx->bios_in_flight); 271 wake_up(&sctx->list_wait); 272 } 273 274 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 275 { 276 while (atomic_read(&fs_info->scrub_pause_req)) { 277 mutex_unlock(&fs_info->scrub_lock); 278 wait_event(fs_info->scrub_pause_wait, 279 atomic_read(&fs_info->scrub_pause_req) == 0); 280 mutex_lock(&fs_info->scrub_lock); 281 } 282 } 283 284 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 285 { 286 atomic_inc(&fs_info->scrubs_paused); 287 wake_up(&fs_info->scrub_pause_wait); 288 289 mutex_lock(&fs_info->scrub_lock); 290 __scrub_blocked_if_needed(fs_info); 291 atomic_dec(&fs_info->scrubs_paused); 292 mutex_unlock(&fs_info->scrub_lock); 293 294 wake_up(&fs_info->scrub_pause_wait); 295 } 296 297 /* 298 * used for workers that require transaction commits (i.e., for the 299 * NOCOW case) 300 */ 301 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 302 { 303 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 304 305 /* 306 * increment scrubs_running to prevent cancel requests from 307 * completing as long as a worker is running. we must also 308 * increment scrubs_paused to prevent deadlocking on pause 309 * requests used for transactions commits (as the worker uses a 310 * transaction context). it is safe to regard the worker 311 * as paused for all matters practical. effectively, we only 312 * avoid cancellation requests from completing. 313 */ 314 mutex_lock(&fs_info->scrub_lock); 315 atomic_inc(&fs_info->scrubs_running); 316 atomic_inc(&fs_info->scrubs_paused); 317 mutex_unlock(&fs_info->scrub_lock); 318 319 /* 320 * check if @scrubs_running=@scrubs_paused condition 321 * inside wait_event() is not an atomic operation. 322 * which means we may inc/dec @scrub_running/paused 323 * at any time. Let's wake up @scrub_pause_wait as 324 * much as we can to let commit transaction blocked less. 325 */ 326 wake_up(&fs_info->scrub_pause_wait); 327 328 atomic_inc(&sctx->workers_pending); 329 } 330 331 /* used for workers that require transaction commits */ 332 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 333 { 334 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 335 336 /* 337 * see scrub_pending_trans_workers_inc() why we're pretending 338 * to be paused in the scrub counters 339 */ 340 mutex_lock(&fs_info->scrub_lock); 341 atomic_dec(&fs_info->scrubs_running); 342 atomic_dec(&fs_info->scrubs_paused); 343 mutex_unlock(&fs_info->scrub_lock); 344 atomic_dec(&sctx->workers_pending); 345 wake_up(&fs_info->scrub_pause_wait); 346 wake_up(&sctx->list_wait); 347 } 348 349 static void scrub_free_csums(struct scrub_ctx *sctx) 350 { 351 while (!list_empty(&sctx->csum_list)) { 352 struct btrfs_ordered_sum *sum; 353 sum = list_first_entry(&sctx->csum_list, 354 struct btrfs_ordered_sum, list); 355 list_del(&sum->list); 356 kfree(sum); 357 } 358 } 359 360 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 361 { 362 int i; 363 364 if (!sctx) 365 return; 366 367 scrub_free_wr_ctx(&sctx->wr_ctx); 368 369 /* this can happen when scrub is cancelled */ 370 if (sctx->curr != -1) { 371 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 372 373 for (i = 0; i < sbio->page_count; i++) { 374 WARN_ON(!sbio->pagev[i]->page); 375 scrub_block_put(sbio->pagev[i]->sblock); 376 } 377 bio_put(sbio->bio); 378 } 379 380 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 381 struct scrub_bio *sbio = sctx->bios[i]; 382 383 if (!sbio) 384 break; 385 kfree(sbio); 386 } 387 388 scrub_free_csums(sctx); 389 kfree(sctx); 390 } 391 392 static noinline_for_stack 393 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 394 { 395 struct scrub_ctx *sctx; 396 int i; 397 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 398 int pages_per_rd_bio; 399 int ret; 400 401 /* 402 * the setting of pages_per_rd_bio is correct for scrub but might 403 * be wrong for the dev_replace code where we might read from 404 * different devices in the initial huge bios. However, that 405 * code is able to correctly handle the case when adding a page 406 * to a bio fails. 407 */ 408 if (dev->bdev) 409 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO, 410 bio_get_nr_vecs(dev->bdev)); 411 else 412 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 413 sctx = kzalloc(sizeof(*sctx), GFP_NOFS); 414 if (!sctx) 415 goto nomem; 416 sctx->is_dev_replace = is_dev_replace; 417 sctx->pages_per_rd_bio = pages_per_rd_bio; 418 sctx->curr = -1; 419 sctx->dev_root = dev->dev_root; 420 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 421 struct scrub_bio *sbio; 422 423 sbio = kzalloc(sizeof(*sbio), GFP_NOFS); 424 if (!sbio) 425 goto nomem; 426 sctx->bios[i] = sbio; 427 428 sbio->index = i; 429 sbio->sctx = sctx; 430 sbio->page_count = 0; 431 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, 432 NULL, NULL); 433 434 if (i != SCRUB_BIOS_PER_SCTX - 1) 435 sctx->bios[i]->next_free = i + 1; 436 else 437 sctx->bios[i]->next_free = -1; 438 } 439 sctx->first_free = 0; 440 sctx->nodesize = dev->dev_root->nodesize; 441 sctx->leafsize = dev->dev_root->leafsize; 442 sctx->sectorsize = dev->dev_root->sectorsize; 443 atomic_set(&sctx->bios_in_flight, 0); 444 atomic_set(&sctx->workers_pending, 0); 445 atomic_set(&sctx->cancel_req, 0); 446 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 447 INIT_LIST_HEAD(&sctx->csum_list); 448 449 spin_lock_init(&sctx->list_lock); 450 spin_lock_init(&sctx->stat_lock); 451 init_waitqueue_head(&sctx->list_wait); 452 453 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info, 454 fs_info->dev_replace.tgtdev, is_dev_replace); 455 if (ret) { 456 scrub_free_ctx(sctx); 457 return ERR_PTR(ret); 458 } 459 return sctx; 460 461 nomem: 462 scrub_free_ctx(sctx); 463 return ERR_PTR(-ENOMEM); 464 } 465 466 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 467 void *warn_ctx) 468 { 469 u64 isize; 470 u32 nlink; 471 int ret; 472 int i; 473 struct extent_buffer *eb; 474 struct btrfs_inode_item *inode_item; 475 struct scrub_warning *swarn = warn_ctx; 476 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; 477 struct inode_fs_paths *ipath = NULL; 478 struct btrfs_root *local_root; 479 struct btrfs_key root_key; 480 481 root_key.objectid = root; 482 root_key.type = BTRFS_ROOT_ITEM_KEY; 483 root_key.offset = (u64)-1; 484 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 485 if (IS_ERR(local_root)) { 486 ret = PTR_ERR(local_root); 487 goto err; 488 } 489 490 ret = inode_item_info(inum, 0, local_root, swarn->path); 491 if (ret) { 492 btrfs_release_path(swarn->path); 493 goto err; 494 } 495 496 eb = swarn->path->nodes[0]; 497 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 498 struct btrfs_inode_item); 499 isize = btrfs_inode_size(eb, inode_item); 500 nlink = btrfs_inode_nlink(eb, inode_item); 501 btrfs_release_path(swarn->path); 502 503 ipath = init_ipath(4096, local_root, swarn->path); 504 if (IS_ERR(ipath)) { 505 ret = PTR_ERR(ipath); 506 ipath = NULL; 507 goto err; 508 } 509 ret = paths_from_inode(inum, ipath); 510 511 if (ret < 0) 512 goto err; 513 514 /* 515 * we deliberately ignore the bit ipath might have been too small to 516 * hold all of the paths here 517 */ 518 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 519 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev " 520 "%s, sector %llu, root %llu, inode %llu, offset %llu, " 521 "length %llu, links %u (path: %s)\n", swarn->errstr, 522 swarn->logical, rcu_str_deref(swarn->dev->name), 523 (unsigned long long)swarn->sector, root, inum, offset, 524 min(isize - offset, (u64)PAGE_SIZE), nlink, 525 (char *)(unsigned long)ipath->fspath->val[i]); 526 527 free_ipath(ipath); 528 return 0; 529 530 err: 531 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev " 532 "%s, sector %llu, root %llu, inode %llu, offset %llu: path " 533 "resolving failed with ret=%d\n", swarn->errstr, 534 swarn->logical, rcu_str_deref(swarn->dev->name), 535 (unsigned long long)swarn->sector, root, inum, offset, ret); 536 537 free_ipath(ipath); 538 return 0; 539 } 540 541 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 542 { 543 struct btrfs_device *dev; 544 struct btrfs_fs_info *fs_info; 545 struct btrfs_path *path; 546 struct btrfs_key found_key; 547 struct extent_buffer *eb; 548 struct btrfs_extent_item *ei; 549 struct scrub_warning swarn; 550 unsigned long ptr = 0; 551 u64 extent_item_pos; 552 u64 flags = 0; 553 u64 ref_root; 554 u32 item_size; 555 u8 ref_level; 556 const int bufsize = 4096; 557 int ret; 558 559 WARN_ON(sblock->page_count < 1); 560 dev = sblock->pagev[0]->dev; 561 fs_info = sblock->sctx->dev_root->fs_info; 562 563 path = btrfs_alloc_path(); 564 565 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS); 566 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS); 567 swarn.sector = (sblock->pagev[0]->physical) >> 9; 568 swarn.logical = sblock->pagev[0]->logical; 569 swarn.errstr = errstr; 570 swarn.dev = NULL; 571 swarn.msg_bufsize = bufsize; 572 swarn.scratch_bufsize = bufsize; 573 574 if (!path || !swarn.scratch_buf || !swarn.msg_buf) 575 goto out; 576 577 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 578 &flags); 579 if (ret < 0) 580 goto out; 581 582 extent_item_pos = swarn.logical - found_key.objectid; 583 swarn.extent_item_size = found_key.offset; 584 585 eb = path->nodes[0]; 586 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 587 item_size = btrfs_item_size_nr(eb, path->slots[0]); 588 589 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 590 do { 591 ret = tree_backref_for_extent(&ptr, eb, ei, item_size, 592 &ref_root, &ref_level); 593 printk_in_rcu(KERN_WARNING 594 "BTRFS: %s at logical %llu on dev %s, " 595 "sector %llu: metadata %s (level %d) in tree " 596 "%llu\n", errstr, swarn.logical, 597 rcu_str_deref(dev->name), 598 (unsigned long long)swarn.sector, 599 ref_level ? "node" : "leaf", 600 ret < 0 ? -1 : ref_level, 601 ret < 0 ? -1 : ref_root); 602 } while (ret != 1); 603 btrfs_release_path(path); 604 } else { 605 btrfs_release_path(path); 606 swarn.path = path; 607 swarn.dev = dev; 608 iterate_extent_inodes(fs_info, found_key.objectid, 609 extent_item_pos, 1, 610 scrub_print_warning_inode, &swarn); 611 } 612 613 out: 614 btrfs_free_path(path); 615 kfree(swarn.scratch_buf); 616 kfree(swarn.msg_buf); 617 } 618 619 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 620 { 621 struct page *page = NULL; 622 unsigned long index; 623 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 624 int ret; 625 int corrected = 0; 626 struct btrfs_key key; 627 struct inode *inode = NULL; 628 struct btrfs_fs_info *fs_info; 629 u64 end = offset + PAGE_SIZE - 1; 630 struct btrfs_root *local_root; 631 int srcu_index; 632 633 key.objectid = root; 634 key.type = BTRFS_ROOT_ITEM_KEY; 635 key.offset = (u64)-1; 636 637 fs_info = fixup->root->fs_info; 638 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 639 640 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 641 if (IS_ERR(local_root)) { 642 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 643 return PTR_ERR(local_root); 644 } 645 646 key.type = BTRFS_INODE_ITEM_KEY; 647 key.objectid = inum; 648 key.offset = 0; 649 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 650 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 651 if (IS_ERR(inode)) 652 return PTR_ERR(inode); 653 654 index = offset >> PAGE_CACHE_SHIFT; 655 656 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 657 if (!page) { 658 ret = -ENOMEM; 659 goto out; 660 } 661 662 if (PageUptodate(page)) { 663 if (PageDirty(page)) { 664 /* 665 * we need to write the data to the defect sector. the 666 * data that was in that sector is not in memory, 667 * because the page was modified. we must not write the 668 * modified page to that sector. 669 * 670 * TODO: what could be done here: wait for the delalloc 671 * runner to write out that page (might involve 672 * COW) and see whether the sector is still 673 * referenced afterwards. 674 * 675 * For the meantime, we'll treat this error 676 * incorrectable, although there is a chance that a 677 * later scrub will find the bad sector again and that 678 * there's no dirty page in memory, then. 679 */ 680 ret = -EIO; 681 goto out; 682 } 683 fs_info = BTRFS_I(inode)->root->fs_info; 684 ret = repair_io_failure(fs_info, offset, PAGE_SIZE, 685 fixup->logical, page, 686 fixup->mirror_num); 687 unlock_page(page); 688 corrected = !ret; 689 } else { 690 /* 691 * we need to get good data first. the general readpage path 692 * will call repair_io_failure for us, we just have to make 693 * sure we read the bad mirror. 694 */ 695 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 696 EXTENT_DAMAGED, GFP_NOFS); 697 if (ret) { 698 /* set_extent_bits should give proper error */ 699 WARN_ON(ret > 0); 700 if (ret > 0) 701 ret = -EFAULT; 702 goto out; 703 } 704 705 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 706 btrfs_get_extent, 707 fixup->mirror_num); 708 wait_on_page_locked(page); 709 710 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 711 end, EXTENT_DAMAGED, 0, NULL); 712 if (!corrected) 713 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 714 EXTENT_DAMAGED, GFP_NOFS); 715 } 716 717 out: 718 if (page) 719 put_page(page); 720 if (inode) 721 iput(inode); 722 723 if (ret < 0) 724 return ret; 725 726 if (ret == 0 && corrected) { 727 /* 728 * we only need to call readpage for one of the inodes belonging 729 * to this extent. so make iterate_extent_inodes stop 730 */ 731 return 1; 732 } 733 734 return -EIO; 735 } 736 737 static void scrub_fixup_nodatasum(struct btrfs_work *work) 738 { 739 int ret; 740 struct scrub_fixup_nodatasum *fixup; 741 struct scrub_ctx *sctx; 742 struct btrfs_trans_handle *trans = NULL; 743 struct btrfs_path *path; 744 int uncorrectable = 0; 745 746 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 747 sctx = fixup->sctx; 748 749 path = btrfs_alloc_path(); 750 if (!path) { 751 spin_lock(&sctx->stat_lock); 752 ++sctx->stat.malloc_errors; 753 spin_unlock(&sctx->stat_lock); 754 uncorrectable = 1; 755 goto out; 756 } 757 758 trans = btrfs_join_transaction(fixup->root); 759 if (IS_ERR(trans)) { 760 uncorrectable = 1; 761 goto out; 762 } 763 764 /* 765 * the idea is to trigger a regular read through the standard path. we 766 * read a page from the (failed) logical address by specifying the 767 * corresponding copynum of the failed sector. thus, that readpage is 768 * expected to fail. 769 * that is the point where on-the-fly error correction will kick in 770 * (once it's finished) and rewrite the failed sector if a good copy 771 * can be found. 772 */ 773 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, 774 path, scrub_fixup_readpage, 775 fixup); 776 if (ret < 0) { 777 uncorrectable = 1; 778 goto out; 779 } 780 WARN_ON(ret != 1); 781 782 spin_lock(&sctx->stat_lock); 783 ++sctx->stat.corrected_errors; 784 spin_unlock(&sctx->stat_lock); 785 786 out: 787 if (trans && !IS_ERR(trans)) 788 btrfs_end_transaction(trans, fixup->root); 789 if (uncorrectable) { 790 spin_lock(&sctx->stat_lock); 791 ++sctx->stat.uncorrectable_errors; 792 spin_unlock(&sctx->stat_lock); 793 btrfs_dev_replace_stats_inc( 794 &sctx->dev_root->fs_info->dev_replace. 795 num_uncorrectable_read_errors); 796 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 797 "unable to fixup (nodatasum) error at logical %llu on dev %s\n", 798 fixup->logical, rcu_str_deref(fixup->dev->name)); 799 } 800 801 btrfs_free_path(path); 802 kfree(fixup); 803 804 scrub_pending_trans_workers_dec(sctx); 805 } 806 807 /* 808 * scrub_handle_errored_block gets called when either verification of the 809 * pages failed or the bio failed to read, e.g. with EIO. In the latter 810 * case, this function handles all pages in the bio, even though only one 811 * may be bad. 812 * The goal of this function is to repair the errored block by using the 813 * contents of one of the mirrors. 814 */ 815 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 816 { 817 struct scrub_ctx *sctx = sblock_to_check->sctx; 818 struct btrfs_device *dev; 819 struct btrfs_fs_info *fs_info; 820 u64 length; 821 u64 logical; 822 u64 generation; 823 unsigned int failed_mirror_index; 824 unsigned int is_metadata; 825 unsigned int have_csum; 826 u8 *csum; 827 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 828 struct scrub_block *sblock_bad; 829 int ret; 830 int mirror_index; 831 int page_num; 832 int success; 833 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 834 DEFAULT_RATELIMIT_BURST); 835 836 BUG_ON(sblock_to_check->page_count < 1); 837 fs_info = sctx->dev_root->fs_info; 838 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 839 /* 840 * if we find an error in a super block, we just report it. 841 * They will get written with the next transaction commit 842 * anyway 843 */ 844 spin_lock(&sctx->stat_lock); 845 ++sctx->stat.super_errors; 846 spin_unlock(&sctx->stat_lock); 847 return 0; 848 } 849 length = sblock_to_check->page_count * PAGE_SIZE; 850 logical = sblock_to_check->pagev[0]->logical; 851 generation = sblock_to_check->pagev[0]->generation; 852 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 853 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 854 is_metadata = !(sblock_to_check->pagev[0]->flags & 855 BTRFS_EXTENT_FLAG_DATA); 856 have_csum = sblock_to_check->pagev[0]->have_csum; 857 csum = sblock_to_check->pagev[0]->csum; 858 dev = sblock_to_check->pagev[0]->dev; 859 860 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 861 sblocks_for_recheck = NULL; 862 goto nodatasum_case; 863 } 864 865 /* 866 * read all mirrors one after the other. This includes to 867 * re-read the extent or metadata block that failed (that was 868 * the cause that this fixup code is called) another time, 869 * page by page this time in order to know which pages 870 * caused I/O errors and which ones are good (for all mirrors). 871 * It is the goal to handle the situation when more than one 872 * mirror contains I/O errors, but the errors do not 873 * overlap, i.e. the data can be repaired by selecting the 874 * pages from those mirrors without I/O error on the 875 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 876 * would be that mirror #1 has an I/O error on the first page, 877 * the second page is good, and mirror #2 has an I/O error on 878 * the second page, but the first page is good. 879 * Then the first page of the first mirror can be repaired by 880 * taking the first page of the second mirror, and the 881 * second page of the second mirror can be repaired by 882 * copying the contents of the 2nd page of the 1st mirror. 883 * One more note: if the pages of one mirror contain I/O 884 * errors, the checksum cannot be verified. In order to get 885 * the best data for repairing, the first attempt is to find 886 * a mirror without I/O errors and with a validated checksum. 887 * Only if this is not possible, the pages are picked from 888 * mirrors with I/O errors without considering the checksum. 889 * If the latter is the case, at the end, the checksum of the 890 * repaired area is verified in order to correctly maintain 891 * the statistics. 892 */ 893 894 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS * 895 sizeof(*sblocks_for_recheck), 896 GFP_NOFS); 897 if (!sblocks_for_recheck) { 898 spin_lock(&sctx->stat_lock); 899 sctx->stat.malloc_errors++; 900 sctx->stat.read_errors++; 901 sctx->stat.uncorrectable_errors++; 902 spin_unlock(&sctx->stat_lock); 903 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 904 goto out; 905 } 906 907 /* setup the context, map the logical blocks and alloc the pages */ 908 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length, 909 logical, sblocks_for_recheck); 910 if (ret) { 911 spin_lock(&sctx->stat_lock); 912 sctx->stat.read_errors++; 913 sctx->stat.uncorrectable_errors++; 914 spin_unlock(&sctx->stat_lock); 915 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 916 goto out; 917 } 918 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 919 sblock_bad = sblocks_for_recheck + failed_mirror_index; 920 921 /* build and submit the bios for the failed mirror, check checksums */ 922 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, 923 csum, generation, sctx->csum_size); 924 925 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 926 sblock_bad->no_io_error_seen) { 927 /* 928 * the error disappeared after reading page by page, or 929 * the area was part of a huge bio and other parts of the 930 * bio caused I/O errors, or the block layer merged several 931 * read requests into one and the error is caused by a 932 * different bio (usually one of the two latter cases is 933 * the cause) 934 */ 935 spin_lock(&sctx->stat_lock); 936 sctx->stat.unverified_errors++; 937 spin_unlock(&sctx->stat_lock); 938 939 if (sctx->is_dev_replace) 940 scrub_write_block_to_dev_replace(sblock_bad); 941 goto out; 942 } 943 944 if (!sblock_bad->no_io_error_seen) { 945 spin_lock(&sctx->stat_lock); 946 sctx->stat.read_errors++; 947 spin_unlock(&sctx->stat_lock); 948 if (__ratelimit(&_rs)) 949 scrub_print_warning("i/o error", sblock_to_check); 950 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 951 } else if (sblock_bad->checksum_error) { 952 spin_lock(&sctx->stat_lock); 953 sctx->stat.csum_errors++; 954 spin_unlock(&sctx->stat_lock); 955 if (__ratelimit(&_rs)) 956 scrub_print_warning("checksum error", sblock_to_check); 957 btrfs_dev_stat_inc_and_print(dev, 958 BTRFS_DEV_STAT_CORRUPTION_ERRS); 959 } else if (sblock_bad->header_error) { 960 spin_lock(&sctx->stat_lock); 961 sctx->stat.verify_errors++; 962 spin_unlock(&sctx->stat_lock); 963 if (__ratelimit(&_rs)) 964 scrub_print_warning("checksum/header error", 965 sblock_to_check); 966 if (sblock_bad->generation_error) 967 btrfs_dev_stat_inc_and_print(dev, 968 BTRFS_DEV_STAT_GENERATION_ERRS); 969 else 970 btrfs_dev_stat_inc_and_print(dev, 971 BTRFS_DEV_STAT_CORRUPTION_ERRS); 972 } 973 974 if (sctx->readonly) { 975 ASSERT(!sctx->is_dev_replace); 976 goto out; 977 } 978 979 if (!is_metadata && !have_csum) { 980 struct scrub_fixup_nodatasum *fixup_nodatasum; 981 982 nodatasum_case: 983 WARN_ON(sctx->is_dev_replace); 984 985 /* 986 * !is_metadata and !have_csum, this means that the data 987 * might not be COW'ed, that it might be modified 988 * concurrently. The general strategy to work on the 989 * commit root does not help in the case when COW is not 990 * used. 991 */ 992 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 993 if (!fixup_nodatasum) 994 goto did_not_correct_error; 995 fixup_nodatasum->sctx = sctx; 996 fixup_nodatasum->dev = dev; 997 fixup_nodatasum->logical = logical; 998 fixup_nodatasum->root = fs_info->extent_root; 999 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 1000 scrub_pending_trans_workers_inc(sctx); 1001 btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum, 1002 NULL, NULL); 1003 btrfs_queue_work(fs_info->scrub_workers, 1004 &fixup_nodatasum->work); 1005 goto out; 1006 } 1007 1008 /* 1009 * now build and submit the bios for the other mirrors, check 1010 * checksums. 1011 * First try to pick the mirror which is completely without I/O 1012 * errors and also does not have a checksum error. 1013 * If one is found, and if a checksum is present, the full block 1014 * that is known to contain an error is rewritten. Afterwards 1015 * the block is known to be corrected. 1016 * If a mirror is found which is completely correct, and no 1017 * checksum is present, only those pages are rewritten that had 1018 * an I/O error in the block to be repaired, since it cannot be 1019 * determined, which copy of the other pages is better (and it 1020 * could happen otherwise that a correct page would be 1021 * overwritten by a bad one). 1022 */ 1023 for (mirror_index = 0; 1024 mirror_index < BTRFS_MAX_MIRRORS && 1025 sblocks_for_recheck[mirror_index].page_count > 0; 1026 mirror_index++) { 1027 struct scrub_block *sblock_other; 1028 1029 if (mirror_index == failed_mirror_index) 1030 continue; 1031 sblock_other = sblocks_for_recheck + mirror_index; 1032 1033 /* build and submit the bios, check checksums */ 1034 scrub_recheck_block(fs_info, sblock_other, is_metadata, 1035 have_csum, csum, generation, 1036 sctx->csum_size); 1037 1038 if (!sblock_other->header_error && 1039 !sblock_other->checksum_error && 1040 sblock_other->no_io_error_seen) { 1041 if (sctx->is_dev_replace) { 1042 scrub_write_block_to_dev_replace(sblock_other); 1043 } else { 1044 int force_write = is_metadata || have_csum; 1045 1046 ret = scrub_repair_block_from_good_copy( 1047 sblock_bad, sblock_other, 1048 force_write); 1049 } 1050 if (0 == ret) 1051 goto corrected_error; 1052 } 1053 } 1054 1055 /* 1056 * for dev_replace, pick good pages and write to the target device. 1057 */ 1058 if (sctx->is_dev_replace) { 1059 success = 1; 1060 for (page_num = 0; page_num < sblock_bad->page_count; 1061 page_num++) { 1062 int sub_success; 1063 1064 sub_success = 0; 1065 for (mirror_index = 0; 1066 mirror_index < BTRFS_MAX_MIRRORS && 1067 sblocks_for_recheck[mirror_index].page_count > 0; 1068 mirror_index++) { 1069 struct scrub_block *sblock_other = 1070 sblocks_for_recheck + mirror_index; 1071 struct scrub_page *page_other = 1072 sblock_other->pagev[page_num]; 1073 1074 if (!page_other->io_error) { 1075 ret = scrub_write_page_to_dev_replace( 1076 sblock_other, page_num); 1077 if (ret == 0) { 1078 /* succeeded for this page */ 1079 sub_success = 1; 1080 break; 1081 } else { 1082 btrfs_dev_replace_stats_inc( 1083 &sctx->dev_root-> 1084 fs_info->dev_replace. 1085 num_write_errors); 1086 } 1087 } 1088 } 1089 1090 if (!sub_success) { 1091 /* 1092 * did not find a mirror to fetch the page 1093 * from. scrub_write_page_to_dev_replace() 1094 * handles this case (page->io_error), by 1095 * filling the block with zeros before 1096 * submitting the write request 1097 */ 1098 success = 0; 1099 ret = scrub_write_page_to_dev_replace( 1100 sblock_bad, page_num); 1101 if (ret) 1102 btrfs_dev_replace_stats_inc( 1103 &sctx->dev_root->fs_info-> 1104 dev_replace.num_write_errors); 1105 } 1106 } 1107 1108 goto out; 1109 } 1110 1111 /* 1112 * for regular scrub, repair those pages that are errored. 1113 * In case of I/O errors in the area that is supposed to be 1114 * repaired, continue by picking good copies of those pages. 1115 * Select the good pages from mirrors to rewrite bad pages from 1116 * the area to fix. Afterwards verify the checksum of the block 1117 * that is supposed to be repaired. This verification step is 1118 * only done for the purpose of statistic counting and for the 1119 * final scrub report, whether errors remain. 1120 * A perfect algorithm could make use of the checksum and try 1121 * all possible combinations of pages from the different mirrors 1122 * until the checksum verification succeeds. For example, when 1123 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1124 * of mirror #2 is readable but the final checksum test fails, 1125 * then the 2nd page of mirror #3 could be tried, whether now 1126 * the final checksum succeedes. But this would be a rare 1127 * exception and is therefore not implemented. At least it is 1128 * avoided that the good copy is overwritten. 1129 * A more useful improvement would be to pick the sectors 1130 * without I/O error based on sector sizes (512 bytes on legacy 1131 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1132 * mirror could be repaired by taking 512 byte of a different 1133 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1134 * area are unreadable. 1135 */ 1136 1137 /* can only fix I/O errors from here on */ 1138 if (sblock_bad->no_io_error_seen) 1139 goto did_not_correct_error; 1140 1141 success = 1; 1142 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1143 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1144 1145 if (!page_bad->io_error) 1146 continue; 1147 1148 for (mirror_index = 0; 1149 mirror_index < BTRFS_MAX_MIRRORS && 1150 sblocks_for_recheck[mirror_index].page_count > 0; 1151 mirror_index++) { 1152 struct scrub_block *sblock_other = sblocks_for_recheck + 1153 mirror_index; 1154 struct scrub_page *page_other = sblock_other->pagev[ 1155 page_num]; 1156 1157 if (!page_other->io_error) { 1158 ret = scrub_repair_page_from_good_copy( 1159 sblock_bad, sblock_other, page_num, 0); 1160 if (0 == ret) { 1161 page_bad->io_error = 0; 1162 break; /* succeeded for this page */ 1163 } 1164 } 1165 } 1166 1167 if (page_bad->io_error) { 1168 /* did not find a mirror to copy the page from */ 1169 success = 0; 1170 } 1171 } 1172 1173 if (success) { 1174 if (is_metadata || have_csum) { 1175 /* 1176 * need to verify the checksum now that all 1177 * sectors on disk are repaired (the write 1178 * request for data to be repaired is on its way). 1179 * Just be lazy and use scrub_recheck_block() 1180 * which re-reads the data before the checksum 1181 * is verified, but most likely the data comes out 1182 * of the page cache. 1183 */ 1184 scrub_recheck_block(fs_info, sblock_bad, 1185 is_metadata, have_csum, csum, 1186 generation, sctx->csum_size); 1187 if (!sblock_bad->header_error && 1188 !sblock_bad->checksum_error && 1189 sblock_bad->no_io_error_seen) 1190 goto corrected_error; 1191 else 1192 goto did_not_correct_error; 1193 } else { 1194 corrected_error: 1195 spin_lock(&sctx->stat_lock); 1196 sctx->stat.corrected_errors++; 1197 spin_unlock(&sctx->stat_lock); 1198 printk_ratelimited_in_rcu(KERN_ERR 1199 "BTRFS: fixed up error at logical %llu on dev %s\n", 1200 logical, rcu_str_deref(dev->name)); 1201 } 1202 } else { 1203 did_not_correct_error: 1204 spin_lock(&sctx->stat_lock); 1205 sctx->stat.uncorrectable_errors++; 1206 spin_unlock(&sctx->stat_lock); 1207 printk_ratelimited_in_rcu(KERN_ERR 1208 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n", 1209 logical, rcu_str_deref(dev->name)); 1210 } 1211 1212 out: 1213 if (sblocks_for_recheck) { 1214 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1215 mirror_index++) { 1216 struct scrub_block *sblock = sblocks_for_recheck + 1217 mirror_index; 1218 int page_index; 1219 1220 for (page_index = 0; page_index < sblock->page_count; 1221 page_index++) { 1222 sblock->pagev[page_index]->sblock = NULL; 1223 scrub_page_put(sblock->pagev[page_index]); 1224 } 1225 } 1226 kfree(sblocks_for_recheck); 1227 } 1228 1229 return 0; 1230 } 1231 1232 static int scrub_setup_recheck_block(struct scrub_ctx *sctx, 1233 struct btrfs_fs_info *fs_info, 1234 struct scrub_block *original_sblock, 1235 u64 length, u64 logical, 1236 struct scrub_block *sblocks_for_recheck) 1237 { 1238 int page_index; 1239 int mirror_index; 1240 int ret; 1241 1242 /* 1243 * note: the two members ref_count and outstanding_pages 1244 * are not used (and not set) in the blocks that are used for 1245 * the recheck procedure 1246 */ 1247 1248 page_index = 0; 1249 while (length > 0) { 1250 u64 sublen = min_t(u64, length, PAGE_SIZE); 1251 u64 mapped_length = sublen; 1252 struct btrfs_bio *bbio = NULL; 1253 1254 /* 1255 * with a length of PAGE_SIZE, each returned stripe 1256 * represents one mirror 1257 */ 1258 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, 1259 &mapped_length, &bbio, 0); 1260 if (ret || !bbio || mapped_length < sublen) { 1261 kfree(bbio); 1262 return -EIO; 1263 } 1264 1265 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO); 1266 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes; 1267 mirror_index++) { 1268 struct scrub_block *sblock; 1269 struct scrub_page *page; 1270 1271 if (mirror_index >= BTRFS_MAX_MIRRORS) 1272 continue; 1273 1274 sblock = sblocks_for_recheck + mirror_index; 1275 sblock->sctx = sctx; 1276 page = kzalloc(sizeof(*page), GFP_NOFS); 1277 if (!page) { 1278 leave_nomem: 1279 spin_lock(&sctx->stat_lock); 1280 sctx->stat.malloc_errors++; 1281 spin_unlock(&sctx->stat_lock); 1282 kfree(bbio); 1283 return -ENOMEM; 1284 } 1285 scrub_page_get(page); 1286 sblock->pagev[page_index] = page; 1287 page->logical = logical; 1288 page->physical = bbio->stripes[mirror_index].physical; 1289 BUG_ON(page_index >= original_sblock->page_count); 1290 page->physical_for_dev_replace = 1291 original_sblock->pagev[page_index]-> 1292 physical_for_dev_replace; 1293 /* for missing devices, dev->bdev is NULL */ 1294 page->dev = bbio->stripes[mirror_index].dev; 1295 page->mirror_num = mirror_index + 1; 1296 sblock->page_count++; 1297 page->page = alloc_page(GFP_NOFS); 1298 if (!page->page) 1299 goto leave_nomem; 1300 } 1301 kfree(bbio); 1302 length -= sublen; 1303 logical += sublen; 1304 page_index++; 1305 } 1306 1307 return 0; 1308 } 1309 1310 /* 1311 * this function will check the on disk data for checksum errors, header 1312 * errors and read I/O errors. If any I/O errors happen, the exact pages 1313 * which are errored are marked as being bad. The goal is to enable scrub 1314 * to take those pages that are not errored from all the mirrors so that 1315 * the pages that are errored in the just handled mirror can be repaired. 1316 */ 1317 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1318 struct scrub_block *sblock, int is_metadata, 1319 int have_csum, u8 *csum, u64 generation, 1320 u16 csum_size) 1321 { 1322 int page_num; 1323 1324 sblock->no_io_error_seen = 1; 1325 sblock->header_error = 0; 1326 sblock->checksum_error = 0; 1327 1328 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1329 struct bio *bio; 1330 struct scrub_page *page = sblock->pagev[page_num]; 1331 1332 if (page->dev->bdev == NULL) { 1333 page->io_error = 1; 1334 sblock->no_io_error_seen = 0; 1335 continue; 1336 } 1337 1338 WARN_ON(!page->page); 1339 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1340 if (!bio) { 1341 page->io_error = 1; 1342 sblock->no_io_error_seen = 0; 1343 continue; 1344 } 1345 bio->bi_bdev = page->dev->bdev; 1346 bio->bi_iter.bi_sector = page->physical >> 9; 1347 1348 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1349 if (btrfsic_submit_bio_wait(READ, bio)) 1350 sblock->no_io_error_seen = 0; 1351 1352 bio_put(bio); 1353 } 1354 1355 if (sblock->no_io_error_seen) 1356 scrub_recheck_block_checksum(fs_info, sblock, is_metadata, 1357 have_csum, csum, generation, 1358 csum_size); 1359 1360 return; 1361 } 1362 1363 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 1364 struct scrub_block *sblock, 1365 int is_metadata, int have_csum, 1366 const u8 *csum, u64 generation, 1367 u16 csum_size) 1368 { 1369 int page_num; 1370 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1371 u32 crc = ~(u32)0; 1372 void *mapped_buffer; 1373 1374 WARN_ON(!sblock->pagev[0]->page); 1375 if (is_metadata) { 1376 struct btrfs_header *h; 1377 1378 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1379 h = (struct btrfs_header *)mapped_buffer; 1380 1381 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) || 1382 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) || 1383 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1384 BTRFS_UUID_SIZE)) { 1385 sblock->header_error = 1; 1386 } else if (generation != btrfs_stack_header_generation(h)) { 1387 sblock->header_error = 1; 1388 sblock->generation_error = 1; 1389 } 1390 csum = h->csum; 1391 } else { 1392 if (!have_csum) 1393 return; 1394 1395 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1396 } 1397 1398 for (page_num = 0;;) { 1399 if (page_num == 0 && is_metadata) 1400 crc = btrfs_csum_data( 1401 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, 1402 crc, PAGE_SIZE - BTRFS_CSUM_SIZE); 1403 else 1404 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE); 1405 1406 kunmap_atomic(mapped_buffer); 1407 page_num++; 1408 if (page_num >= sblock->page_count) 1409 break; 1410 WARN_ON(!sblock->pagev[page_num]->page); 1411 1412 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page); 1413 } 1414 1415 btrfs_csum_final(crc, calculated_csum); 1416 if (memcmp(calculated_csum, csum, csum_size)) 1417 sblock->checksum_error = 1; 1418 } 1419 1420 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1421 struct scrub_block *sblock_good, 1422 int force_write) 1423 { 1424 int page_num; 1425 int ret = 0; 1426 1427 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1428 int ret_sub; 1429 1430 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1431 sblock_good, 1432 page_num, 1433 force_write); 1434 if (ret_sub) 1435 ret = ret_sub; 1436 } 1437 1438 return ret; 1439 } 1440 1441 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1442 struct scrub_block *sblock_good, 1443 int page_num, int force_write) 1444 { 1445 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1446 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1447 1448 BUG_ON(page_bad->page == NULL); 1449 BUG_ON(page_good->page == NULL); 1450 if (force_write || sblock_bad->header_error || 1451 sblock_bad->checksum_error || page_bad->io_error) { 1452 struct bio *bio; 1453 int ret; 1454 1455 if (!page_bad->dev->bdev) { 1456 printk_ratelimited(KERN_WARNING "BTRFS: " 1457 "scrub_repair_page_from_good_copy(bdev == NULL) " 1458 "is unexpected!\n"); 1459 return -EIO; 1460 } 1461 1462 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1463 if (!bio) 1464 return -EIO; 1465 bio->bi_bdev = page_bad->dev->bdev; 1466 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1467 1468 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1469 if (PAGE_SIZE != ret) { 1470 bio_put(bio); 1471 return -EIO; 1472 } 1473 1474 if (btrfsic_submit_bio_wait(WRITE, bio)) { 1475 btrfs_dev_stat_inc_and_print(page_bad->dev, 1476 BTRFS_DEV_STAT_WRITE_ERRS); 1477 btrfs_dev_replace_stats_inc( 1478 &sblock_bad->sctx->dev_root->fs_info-> 1479 dev_replace.num_write_errors); 1480 bio_put(bio); 1481 return -EIO; 1482 } 1483 bio_put(bio); 1484 } 1485 1486 return 0; 1487 } 1488 1489 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1490 { 1491 int page_num; 1492 1493 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1494 int ret; 1495 1496 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1497 if (ret) 1498 btrfs_dev_replace_stats_inc( 1499 &sblock->sctx->dev_root->fs_info->dev_replace. 1500 num_write_errors); 1501 } 1502 } 1503 1504 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1505 int page_num) 1506 { 1507 struct scrub_page *spage = sblock->pagev[page_num]; 1508 1509 BUG_ON(spage->page == NULL); 1510 if (spage->io_error) { 1511 void *mapped_buffer = kmap_atomic(spage->page); 1512 1513 memset(mapped_buffer, 0, PAGE_CACHE_SIZE); 1514 flush_dcache_page(spage->page); 1515 kunmap_atomic(mapped_buffer); 1516 } 1517 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1518 } 1519 1520 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1521 struct scrub_page *spage) 1522 { 1523 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1524 struct scrub_bio *sbio; 1525 int ret; 1526 1527 mutex_lock(&wr_ctx->wr_lock); 1528 again: 1529 if (!wr_ctx->wr_curr_bio) { 1530 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), 1531 GFP_NOFS); 1532 if (!wr_ctx->wr_curr_bio) { 1533 mutex_unlock(&wr_ctx->wr_lock); 1534 return -ENOMEM; 1535 } 1536 wr_ctx->wr_curr_bio->sctx = sctx; 1537 wr_ctx->wr_curr_bio->page_count = 0; 1538 } 1539 sbio = wr_ctx->wr_curr_bio; 1540 if (sbio->page_count == 0) { 1541 struct bio *bio; 1542 1543 sbio->physical = spage->physical_for_dev_replace; 1544 sbio->logical = spage->logical; 1545 sbio->dev = wr_ctx->tgtdev; 1546 bio = sbio->bio; 1547 if (!bio) { 1548 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio); 1549 if (!bio) { 1550 mutex_unlock(&wr_ctx->wr_lock); 1551 return -ENOMEM; 1552 } 1553 sbio->bio = bio; 1554 } 1555 1556 bio->bi_private = sbio; 1557 bio->bi_end_io = scrub_wr_bio_end_io; 1558 bio->bi_bdev = sbio->dev->bdev; 1559 bio->bi_iter.bi_sector = sbio->physical >> 9; 1560 sbio->err = 0; 1561 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1562 spage->physical_for_dev_replace || 1563 sbio->logical + sbio->page_count * PAGE_SIZE != 1564 spage->logical) { 1565 scrub_wr_submit(sctx); 1566 goto again; 1567 } 1568 1569 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1570 if (ret != PAGE_SIZE) { 1571 if (sbio->page_count < 1) { 1572 bio_put(sbio->bio); 1573 sbio->bio = NULL; 1574 mutex_unlock(&wr_ctx->wr_lock); 1575 return -EIO; 1576 } 1577 scrub_wr_submit(sctx); 1578 goto again; 1579 } 1580 1581 sbio->pagev[sbio->page_count] = spage; 1582 scrub_page_get(spage); 1583 sbio->page_count++; 1584 if (sbio->page_count == wr_ctx->pages_per_wr_bio) 1585 scrub_wr_submit(sctx); 1586 mutex_unlock(&wr_ctx->wr_lock); 1587 1588 return 0; 1589 } 1590 1591 static void scrub_wr_submit(struct scrub_ctx *sctx) 1592 { 1593 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1594 struct scrub_bio *sbio; 1595 1596 if (!wr_ctx->wr_curr_bio) 1597 return; 1598 1599 sbio = wr_ctx->wr_curr_bio; 1600 wr_ctx->wr_curr_bio = NULL; 1601 WARN_ON(!sbio->bio->bi_bdev); 1602 scrub_pending_bio_inc(sctx); 1603 /* process all writes in a single worker thread. Then the block layer 1604 * orders the requests before sending them to the driver which 1605 * doubled the write performance on spinning disks when measured 1606 * with Linux 3.5 */ 1607 btrfsic_submit_bio(WRITE, sbio->bio); 1608 } 1609 1610 static void scrub_wr_bio_end_io(struct bio *bio, int err) 1611 { 1612 struct scrub_bio *sbio = bio->bi_private; 1613 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 1614 1615 sbio->err = err; 1616 sbio->bio = bio; 1617 1618 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL); 1619 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1620 } 1621 1622 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1623 { 1624 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1625 struct scrub_ctx *sctx = sbio->sctx; 1626 int i; 1627 1628 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1629 if (sbio->err) { 1630 struct btrfs_dev_replace *dev_replace = 1631 &sbio->sctx->dev_root->fs_info->dev_replace; 1632 1633 for (i = 0; i < sbio->page_count; i++) { 1634 struct scrub_page *spage = sbio->pagev[i]; 1635 1636 spage->io_error = 1; 1637 btrfs_dev_replace_stats_inc(&dev_replace-> 1638 num_write_errors); 1639 } 1640 } 1641 1642 for (i = 0; i < sbio->page_count; i++) 1643 scrub_page_put(sbio->pagev[i]); 1644 1645 bio_put(sbio->bio); 1646 kfree(sbio); 1647 scrub_pending_bio_dec(sctx); 1648 } 1649 1650 static int scrub_checksum(struct scrub_block *sblock) 1651 { 1652 u64 flags; 1653 int ret; 1654 1655 WARN_ON(sblock->page_count < 1); 1656 flags = sblock->pagev[0]->flags; 1657 ret = 0; 1658 if (flags & BTRFS_EXTENT_FLAG_DATA) 1659 ret = scrub_checksum_data(sblock); 1660 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1661 ret = scrub_checksum_tree_block(sblock); 1662 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1663 (void)scrub_checksum_super(sblock); 1664 else 1665 WARN_ON(1); 1666 if (ret) 1667 scrub_handle_errored_block(sblock); 1668 1669 return ret; 1670 } 1671 1672 static int scrub_checksum_data(struct scrub_block *sblock) 1673 { 1674 struct scrub_ctx *sctx = sblock->sctx; 1675 u8 csum[BTRFS_CSUM_SIZE]; 1676 u8 *on_disk_csum; 1677 struct page *page; 1678 void *buffer; 1679 u32 crc = ~(u32)0; 1680 int fail = 0; 1681 u64 len; 1682 int index; 1683 1684 BUG_ON(sblock->page_count < 1); 1685 if (!sblock->pagev[0]->have_csum) 1686 return 0; 1687 1688 on_disk_csum = sblock->pagev[0]->csum; 1689 page = sblock->pagev[0]->page; 1690 buffer = kmap_atomic(page); 1691 1692 len = sctx->sectorsize; 1693 index = 0; 1694 for (;;) { 1695 u64 l = min_t(u64, len, PAGE_SIZE); 1696 1697 crc = btrfs_csum_data(buffer, crc, l); 1698 kunmap_atomic(buffer); 1699 len -= l; 1700 if (len == 0) 1701 break; 1702 index++; 1703 BUG_ON(index >= sblock->page_count); 1704 BUG_ON(!sblock->pagev[index]->page); 1705 page = sblock->pagev[index]->page; 1706 buffer = kmap_atomic(page); 1707 } 1708 1709 btrfs_csum_final(crc, csum); 1710 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1711 fail = 1; 1712 1713 return fail; 1714 } 1715 1716 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1717 { 1718 struct scrub_ctx *sctx = sblock->sctx; 1719 struct btrfs_header *h; 1720 struct btrfs_root *root = sctx->dev_root; 1721 struct btrfs_fs_info *fs_info = root->fs_info; 1722 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1723 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1724 struct page *page; 1725 void *mapped_buffer; 1726 u64 mapped_size; 1727 void *p; 1728 u32 crc = ~(u32)0; 1729 int fail = 0; 1730 int crc_fail = 0; 1731 u64 len; 1732 int index; 1733 1734 BUG_ON(sblock->page_count < 1); 1735 page = sblock->pagev[0]->page; 1736 mapped_buffer = kmap_atomic(page); 1737 h = (struct btrfs_header *)mapped_buffer; 1738 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1739 1740 /* 1741 * we don't use the getter functions here, as we 1742 * a) don't have an extent buffer and 1743 * b) the page is already kmapped 1744 */ 1745 1746 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1747 ++fail; 1748 1749 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) 1750 ++fail; 1751 1752 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) 1753 ++fail; 1754 1755 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1756 BTRFS_UUID_SIZE)) 1757 ++fail; 1758 1759 WARN_ON(sctx->nodesize != sctx->leafsize); 1760 len = sctx->nodesize - BTRFS_CSUM_SIZE; 1761 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1762 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1763 index = 0; 1764 for (;;) { 1765 u64 l = min_t(u64, len, mapped_size); 1766 1767 crc = btrfs_csum_data(p, crc, l); 1768 kunmap_atomic(mapped_buffer); 1769 len -= l; 1770 if (len == 0) 1771 break; 1772 index++; 1773 BUG_ON(index >= sblock->page_count); 1774 BUG_ON(!sblock->pagev[index]->page); 1775 page = sblock->pagev[index]->page; 1776 mapped_buffer = kmap_atomic(page); 1777 mapped_size = PAGE_SIZE; 1778 p = mapped_buffer; 1779 } 1780 1781 btrfs_csum_final(crc, calculated_csum); 1782 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1783 ++crc_fail; 1784 1785 return fail || crc_fail; 1786 } 1787 1788 static int scrub_checksum_super(struct scrub_block *sblock) 1789 { 1790 struct btrfs_super_block *s; 1791 struct scrub_ctx *sctx = sblock->sctx; 1792 struct btrfs_root *root = sctx->dev_root; 1793 struct btrfs_fs_info *fs_info = root->fs_info; 1794 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1795 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1796 struct page *page; 1797 void *mapped_buffer; 1798 u64 mapped_size; 1799 void *p; 1800 u32 crc = ~(u32)0; 1801 int fail_gen = 0; 1802 int fail_cor = 0; 1803 u64 len; 1804 int index; 1805 1806 BUG_ON(sblock->page_count < 1); 1807 page = sblock->pagev[0]->page; 1808 mapped_buffer = kmap_atomic(page); 1809 s = (struct btrfs_super_block *)mapped_buffer; 1810 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1811 1812 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1813 ++fail_cor; 1814 1815 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1816 ++fail_gen; 1817 1818 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) 1819 ++fail_cor; 1820 1821 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1822 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1823 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1824 index = 0; 1825 for (;;) { 1826 u64 l = min_t(u64, len, mapped_size); 1827 1828 crc = btrfs_csum_data(p, crc, l); 1829 kunmap_atomic(mapped_buffer); 1830 len -= l; 1831 if (len == 0) 1832 break; 1833 index++; 1834 BUG_ON(index >= sblock->page_count); 1835 BUG_ON(!sblock->pagev[index]->page); 1836 page = sblock->pagev[index]->page; 1837 mapped_buffer = kmap_atomic(page); 1838 mapped_size = PAGE_SIZE; 1839 p = mapped_buffer; 1840 } 1841 1842 btrfs_csum_final(crc, calculated_csum); 1843 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1844 ++fail_cor; 1845 1846 if (fail_cor + fail_gen) { 1847 /* 1848 * if we find an error in a super block, we just report it. 1849 * They will get written with the next transaction commit 1850 * anyway 1851 */ 1852 spin_lock(&sctx->stat_lock); 1853 ++sctx->stat.super_errors; 1854 spin_unlock(&sctx->stat_lock); 1855 if (fail_cor) 1856 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1857 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1858 else 1859 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1860 BTRFS_DEV_STAT_GENERATION_ERRS); 1861 } 1862 1863 return fail_cor + fail_gen; 1864 } 1865 1866 static void scrub_block_get(struct scrub_block *sblock) 1867 { 1868 atomic_inc(&sblock->ref_count); 1869 } 1870 1871 static void scrub_block_put(struct scrub_block *sblock) 1872 { 1873 if (atomic_dec_and_test(&sblock->ref_count)) { 1874 int i; 1875 1876 for (i = 0; i < sblock->page_count; i++) 1877 scrub_page_put(sblock->pagev[i]); 1878 kfree(sblock); 1879 } 1880 } 1881 1882 static void scrub_page_get(struct scrub_page *spage) 1883 { 1884 atomic_inc(&spage->ref_count); 1885 } 1886 1887 static void scrub_page_put(struct scrub_page *spage) 1888 { 1889 if (atomic_dec_and_test(&spage->ref_count)) { 1890 if (spage->page) 1891 __free_page(spage->page); 1892 kfree(spage); 1893 } 1894 } 1895 1896 static void scrub_submit(struct scrub_ctx *sctx) 1897 { 1898 struct scrub_bio *sbio; 1899 1900 if (sctx->curr == -1) 1901 return; 1902 1903 sbio = sctx->bios[sctx->curr]; 1904 sctx->curr = -1; 1905 scrub_pending_bio_inc(sctx); 1906 1907 if (!sbio->bio->bi_bdev) { 1908 /* 1909 * this case should not happen. If btrfs_map_block() is 1910 * wrong, it could happen for dev-replace operations on 1911 * missing devices when no mirrors are available, but in 1912 * this case it should already fail the mount. 1913 * This case is handled correctly (but _very_ slowly). 1914 */ 1915 printk_ratelimited(KERN_WARNING 1916 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n"); 1917 bio_endio(sbio->bio, -EIO); 1918 } else { 1919 btrfsic_submit_bio(READ, sbio->bio); 1920 } 1921 } 1922 1923 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 1924 struct scrub_page *spage) 1925 { 1926 struct scrub_block *sblock = spage->sblock; 1927 struct scrub_bio *sbio; 1928 int ret; 1929 1930 again: 1931 /* 1932 * grab a fresh bio or wait for one to become available 1933 */ 1934 while (sctx->curr == -1) { 1935 spin_lock(&sctx->list_lock); 1936 sctx->curr = sctx->first_free; 1937 if (sctx->curr != -1) { 1938 sctx->first_free = sctx->bios[sctx->curr]->next_free; 1939 sctx->bios[sctx->curr]->next_free = -1; 1940 sctx->bios[sctx->curr]->page_count = 0; 1941 spin_unlock(&sctx->list_lock); 1942 } else { 1943 spin_unlock(&sctx->list_lock); 1944 wait_event(sctx->list_wait, sctx->first_free != -1); 1945 } 1946 } 1947 sbio = sctx->bios[sctx->curr]; 1948 if (sbio->page_count == 0) { 1949 struct bio *bio; 1950 1951 sbio->physical = spage->physical; 1952 sbio->logical = spage->logical; 1953 sbio->dev = spage->dev; 1954 bio = sbio->bio; 1955 if (!bio) { 1956 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio); 1957 if (!bio) 1958 return -ENOMEM; 1959 sbio->bio = bio; 1960 } 1961 1962 bio->bi_private = sbio; 1963 bio->bi_end_io = scrub_bio_end_io; 1964 bio->bi_bdev = sbio->dev->bdev; 1965 bio->bi_iter.bi_sector = sbio->physical >> 9; 1966 sbio->err = 0; 1967 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1968 spage->physical || 1969 sbio->logical + sbio->page_count * PAGE_SIZE != 1970 spage->logical || 1971 sbio->dev != spage->dev) { 1972 scrub_submit(sctx); 1973 goto again; 1974 } 1975 1976 sbio->pagev[sbio->page_count] = spage; 1977 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1978 if (ret != PAGE_SIZE) { 1979 if (sbio->page_count < 1) { 1980 bio_put(sbio->bio); 1981 sbio->bio = NULL; 1982 return -EIO; 1983 } 1984 scrub_submit(sctx); 1985 goto again; 1986 } 1987 1988 scrub_block_get(sblock); /* one for the page added to the bio */ 1989 atomic_inc(&sblock->outstanding_pages); 1990 sbio->page_count++; 1991 if (sbio->page_count == sctx->pages_per_rd_bio) 1992 scrub_submit(sctx); 1993 1994 return 0; 1995 } 1996 1997 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 1998 u64 physical, struct btrfs_device *dev, u64 flags, 1999 u64 gen, int mirror_num, u8 *csum, int force, 2000 u64 physical_for_dev_replace) 2001 { 2002 struct scrub_block *sblock; 2003 int index; 2004 2005 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 2006 if (!sblock) { 2007 spin_lock(&sctx->stat_lock); 2008 sctx->stat.malloc_errors++; 2009 spin_unlock(&sctx->stat_lock); 2010 return -ENOMEM; 2011 } 2012 2013 /* one ref inside this function, plus one for each page added to 2014 * a bio later on */ 2015 atomic_set(&sblock->ref_count, 1); 2016 sblock->sctx = sctx; 2017 sblock->no_io_error_seen = 1; 2018 2019 for (index = 0; len > 0; index++) { 2020 struct scrub_page *spage; 2021 u64 l = min_t(u64, len, PAGE_SIZE); 2022 2023 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2024 if (!spage) { 2025 leave_nomem: 2026 spin_lock(&sctx->stat_lock); 2027 sctx->stat.malloc_errors++; 2028 spin_unlock(&sctx->stat_lock); 2029 scrub_block_put(sblock); 2030 return -ENOMEM; 2031 } 2032 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2033 scrub_page_get(spage); 2034 sblock->pagev[index] = spage; 2035 spage->sblock = sblock; 2036 spage->dev = dev; 2037 spage->flags = flags; 2038 spage->generation = gen; 2039 spage->logical = logical; 2040 spage->physical = physical; 2041 spage->physical_for_dev_replace = physical_for_dev_replace; 2042 spage->mirror_num = mirror_num; 2043 if (csum) { 2044 spage->have_csum = 1; 2045 memcpy(spage->csum, csum, sctx->csum_size); 2046 } else { 2047 spage->have_csum = 0; 2048 } 2049 sblock->page_count++; 2050 spage->page = alloc_page(GFP_NOFS); 2051 if (!spage->page) 2052 goto leave_nomem; 2053 len -= l; 2054 logical += l; 2055 physical += l; 2056 physical_for_dev_replace += l; 2057 } 2058 2059 WARN_ON(sblock->page_count == 0); 2060 for (index = 0; index < sblock->page_count; index++) { 2061 struct scrub_page *spage = sblock->pagev[index]; 2062 int ret; 2063 2064 ret = scrub_add_page_to_rd_bio(sctx, spage); 2065 if (ret) { 2066 scrub_block_put(sblock); 2067 return ret; 2068 } 2069 } 2070 2071 if (force) 2072 scrub_submit(sctx); 2073 2074 /* last one frees, either here or in bio completion for last page */ 2075 scrub_block_put(sblock); 2076 return 0; 2077 } 2078 2079 static void scrub_bio_end_io(struct bio *bio, int err) 2080 { 2081 struct scrub_bio *sbio = bio->bi_private; 2082 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 2083 2084 sbio->err = err; 2085 sbio->bio = bio; 2086 2087 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2088 } 2089 2090 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2091 { 2092 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2093 struct scrub_ctx *sctx = sbio->sctx; 2094 int i; 2095 2096 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2097 if (sbio->err) { 2098 for (i = 0; i < sbio->page_count; i++) { 2099 struct scrub_page *spage = sbio->pagev[i]; 2100 2101 spage->io_error = 1; 2102 spage->sblock->no_io_error_seen = 0; 2103 } 2104 } 2105 2106 /* now complete the scrub_block items that have all pages completed */ 2107 for (i = 0; i < sbio->page_count; i++) { 2108 struct scrub_page *spage = sbio->pagev[i]; 2109 struct scrub_block *sblock = spage->sblock; 2110 2111 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2112 scrub_block_complete(sblock); 2113 scrub_block_put(sblock); 2114 } 2115 2116 bio_put(sbio->bio); 2117 sbio->bio = NULL; 2118 spin_lock(&sctx->list_lock); 2119 sbio->next_free = sctx->first_free; 2120 sctx->first_free = sbio->index; 2121 spin_unlock(&sctx->list_lock); 2122 2123 if (sctx->is_dev_replace && 2124 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2125 mutex_lock(&sctx->wr_ctx.wr_lock); 2126 scrub_wr_submit(sctx); 2127 mutex_unlock(&sctx->wr_ctx.wr_lock); 2128 } 2129 2130 scrub_pending_bio_dec(sctx); 2131 } 2132 2133 static void scrub_block_complete(struct scrub_block *sblock) 2134 { 2135 if (!sblock->no_io_error_seen) { 2136 scrub_handle_errored_block(sblock); 2137 } else { 2138 /* 2139 * if has checksum error, write via repair mechanism in 2140 * dev replace case, otherwise write here in dev replace 2141 * case. 2142 */ 2143 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace) 2144 scrub_write_block_to_dev_replace(sblock); 2145 } 2146 } 2147 2148 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len, 2149 u8 *csum) 2150 { 2151 struct btrfs_ordered_sum *sum = NULL; 2152 unsigned long index; 2153 unsigned long num_sectors; 2154 2155 while (!list_empty(&sctx->csum_list)) { 2156 sum = list_first_entry(&sctx->csum_list, 2157 struct btrfs_ordered_sum, list); 2158 if (sum->bytenr > logical) 2159 return 0; 2160 if (sum->bytenr + sum->len > logical) 2161 break; 2162 2163 ++sctx->stat.csum_discards; 2164 list_del(&sum->list); 2165 kfree(sum); 2166 sum = NULL; 2167 } 2168 if (!sum) 2169 return 0; 2170 2171 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize; 2172 num_sectors = sum->len / sctx->sectorsize; 2173 memcpy(csum, sum->sums + index, sctx->csum_size); 2174 if (index == num_sectors - 1) { 2175 list_del(&sum->list); 2176 kfree(sum); 2177 } 2178 return 1; 2179 } 2180 2181 /* scrub extent tries to collect up to 64 kB for each bio */ 2182 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2183 u64 physical, struct btrfs_device *dev, u64 flags, 2184 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2185 { 2186 int ret; 2187 u8 csum[BTRFS_CSUM_SIZE]; 2188 u32 blocksize; 2189 2190 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2191 blocksize = sctx->sectorsize; 2192 spin_lock(&sctx->stat_lock); 2193 sctx->stat.data_extents_scrubbed++; 2194 sctx->stat.data_bytes_scrubbed += len; 2195 spin_unlock(&sctx->stat_lock); 2196 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2197 WARN_ON(sctx->nodesize != sctx->leafsize); 2198 blocksize = sctx->nodesize; 2199 spin_lock(&sctx->stat_lock); 2200 sctx->stat.tree_extents_scrubbed++; 2201 sctx->stat.tree_bytes_scrubbed += len; 2202 spin_unlock(&sctx->stat_lock); 2203 } else { 2204 blocksize = sctx->sectorsize; 2205 WARN_ON(1); 2206 } 2207 2208 while (len) { 2209 u64 l = min_t(u64, len, blocksize); 2210 int have_csum = 0; 2211 2212 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2213 /* push csums to sbio */ 2214 have_csum = scrub_find_csum(sctx, logical, l, csum); 2215 if (have_csum == 0) 2216 ++sctx->stat.no_csum; 2217 if (sctx->is_dev_replace && !have_csum) { 2218 ret = copy_nocow_pages(sctx, logical, l, 2219 mirror_num, 2220 physical_for_dev_replace); 2221 goto behind_scrub_pages; 2222 } 2223 } 2224 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2225 mirror_num, have_csum ? csum : NULL, 0, 2226 physical_for_dev_replace); 2227 behind_scrub_pages: 2228 if (ret) 2229 return ret; 2230 len -= l; 2231 logical += l; 2232 physical += l; 2233 physical_for_dev_replace += l; 2234 } 2235 return 0; 2236 } 2237 2238 /* 2239 * Given a physical address, this will calculate it's 2240 * logical offset. if this is a parity stripe, it will return 2241 * the most left data stripe's logical offset. 2242 * 2243 * return 0 if it is a data stripe, 1 means parity stripe. 2244 */ 2245 static int get_raid56_logic_offset(u64 physical, int num, 2246 struct map_lookup *map, u64 *offset) 2247 { 2248 int i; 2249 int j = 0; 2250 u64 stripe_nr; 2251 u64 last_offset; 2252 int stripe_index; 2253 int rot; 2254 2255 last_offset = (physical - map->stripes[num].physical) * 2256 nr_data_stripes(map); 2257 *offset = last_offset; 2258 for (i = 0; i < nr_data_stripes(map); i++) { 2259 *offset = last_offset + i * map->stripe_len; 2260 2261 stripe_nr = *offset; 2262 do_div(stripe_nr, map->stripe_len); 2263 do_div(stripe_nr, nr_data_stripes(map)); 2264 2265 /* Work out the disk rotation on this stripe-set */ 2266 rot = do_div(stripe_nr, map->num_stripes); 2267 /* calculate which stripe this data locates */ 2268 rot += i; 2269 stripe_index = rot % map->num_stripes; 2270 if (stripe_index == num) 2271 return 0; 2272 if (stripe_index < num) 2273 j++; 2274 } 2275 *offset = last_offset + j * map->stripe_len; 2276 return 1; 2277 } 2278 2279 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2280 struct map_lookup *map, 2281 struct btrfs_device *scrub_dev, 2282 int num, u64 base, u64 length, 2283 int is_dev_replace) 2284 { 2285 struct btrfs_path *path; 2286 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2287 struct btrfs_root *root = fs_info->extent_root; 2288 struct btrfs_root *csum_root = fs_info->csum_root; 2289 struct btrfs_extent_item *extent; 2290 struct blk_plug plug; 2291 u64 flags; 2292 int ret; 2293 int slot; 2294 u64 nstripes; 2295 struct extent_buffer *l; 2296 struct btrfs_key key; 2297 u64 physical; 2298 u64 logical; 2299 u64 logic_end; 2300 u64 physical_end; 2301 u64 generation; 2302 int mirror_num; 2303 struct reada_control *reada1; 2304 struct reada_control *reada2; 2305 struct btrfs_key key_start; 2306 struct btrfs_key key_end; 2307 u64 increment = map->stripe_len; 2308 u64 offset; 2309 u64 extent_logical; 2310 u64 extent_physical; 2311 u64 extent_len; 2312 struct btrfs_device *extent_dev; 2313 int extent_mirror_num; 2314 int stop_loop = 0; 2315 2316 nstripes = length; 2317 physical = map->stripes[num].physical; 2318 offset = 0; 2319 do_div(nstripes, map->stripe_len); 2320 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 2321 offset = map->stripe_len * num; 2322 increment = map->stripe_len * map->num_stripes; 2323 mirror_num = 1; 2324 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 2325 int factor = map->num_stripes / map->sub_stripes; 2326 offset = map->stripe_len * (num / map->sub_stripes); 2327 increment = map->stripe_len * factor; 2328 mirror_num = num % map->sub_stripes + 1; 2329 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 2330 increment = map->stripe_len; 2331 mirror_num = num % map->num_stripes + 1; 2332 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 2333 increment = map->stripe_len; 2334 mirror_num = num % map->num_stripes + 1; 2335 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 2336 BTRFS_BLOCK_GROUP_RAID6)) { 2337 get_raid56_logic_offset(physical, num, map, &offset); 2338 increment = map->stripe_len * nr_data_stripes(map); 2339 mirror_num = 1; 2340 } else { 2341 increment = map->stripe_len; 2342 mirror_num = 1; 2343 } 2344 2345 path = btrfs_alloc_path(); 2346 if (!path) 2347 return -ENOMEM; 2348 2349 /* 2350 * work on commit root. The related disk blocks are static as 2351 * long as COW is applied. This means, it is save to rewrite 2352 * them to repair disk errors without any race conditions 2353 */ 2354 path->search_commit_root = 1; 2355 path->skip_locking = 1; 2356 2357 /* 2358 * trigger the readahead for extent tree csum tree and wait for 2359 * completion. During readahead, the scrub is officially paused 2360 * to not hold off transaction commits 2361 */ 2362 logical = base + offset; 2363 physical_end = physical + nstripes * map->stripe_len; 2364 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 2365 BTRFS_BLOCK_GROUP_RAID6)) { 2366 get_raid56_logic_offset(physical_end, num, 2367 map, &logic_end); 2368 logic_end += base; 2369 } else { 2370 logic_end = logical + increment * nstripes; 2371 } 2372 wait_event(sctx->list_wait, 2373 atomic_read(&sctx->bios_in_flight) == 0); 2374 scrub_blocked_if_needed(fs_info); 2375 2376 /* FIXME it might be better to start readahead at commit root */ 2377 key_start.objectid = logical; 2378 key_start.type = BTRFS_EXTENT_ITEM_KEY; 2379 key_start.offset = (u64)0; 2380 key_end.objectid = logic_end; 2381 key_end.type = BTRFS_METADATA_ITEM_KEY; 2382 key_end.offset = (u64)-1; 2383 reada1 = btrfs_reada_add(root, &key_start, &key_end); 2384 2385 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 2386 key_start.type = BTRFS_EXTENT_CSUM_KEY; 2387 key_start.offset = logical; 2388 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 2389 key_end.type = BTRFS_EXTENT_CSUM_KEY; 2390 key_end.offset = logic_end; 2391 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); 2392 2393 if (!IS_ERR(reada1)) 2394 btrfs_reada_wait(reada1); 2395 if (!IS_ERR(reada2)) 2396 btrfs_reada_wait(reada2); 2397 2398 2399 /* 2400 * collect all data csums for the stripe to avoid seeking during 2401 * the scrub. This might currently (crc32) end up to be about 1MB 2402 */ 2403 blk_start_plug(&plug); 2404 2405 /* 2406 * now find all extents for each stripe and scrub them 2407 */ 2408 ret = 0; 2409 while (physical < physical_end) { 2410 /* for raid56, we skip parity stripe */ 2411 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 2412 BTRFS_BLOCK_GROUP_RAID6)) { 2413 ret = get_raid56_logic_offset(physical, num, 2414 map, &logical); 2415 logical += base; 2416 if (ret) 2417 goto skip; 2418 } 2419 /* 2420 * canceled? 2421 */ 2422 if (atomic_read(&fs_info->scrub_cancel_req) || 2423 atomic_read(&sctx->cancel_req)) { 2424 ret = -ECANCELED; 2425 goto out; 2426 } 2427 /* 2428 * check to see if we have to pause 2429 */ 2430 if (atomic_read(&fs_info->scrub_pause_req)) { 2431 /* push queued extents */ 2432 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 2433 scrub_submit(sctx); 2434 mutex_lock(&sctx->wr_ctx.wr_lock); 2435 scrub_wr_submit(sctx); 2436 mutex_unlock(&sctx->wr_ctx.wr_lock); 2437 wait_event(sctx->list_wait, 2438 atomic_read(&sctx->bios_in_flight) == 0); 2439 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 2440 scrub_blocked_if_needed(fs_info); 2441 } 2442 2443 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2444 key.type = BTRFS_METADATA_ITEM_KEY; 2445 else 2446 key.type = BTRFS_EXTENT_ITEM_KEY; 2447 key.objectid = logical; 2448 key.offset = (u64)-1; 2449 2450 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2451 if (ret < 0) 2452 goto out; 2453 2454 if (ret > 0) { 2455 ret = btrfs_previous_extent_item(root, path, 0); 2456 if (ret < 0) 2457 goto out; 2458 if (ret > 0) { 2459 /* there's no smaller item, so stick with the 2460 * larger one */ 2461 btrfs_release_path(path); 2462 ret = btrfs_search_slot(NULL, root, &key, 2463 path, 0, 0); 2464 if (ret < 0) 2465 goto out; 2466 } 2467 } 2468 2469 stop_loop = 0; 2470 while (1) { 2471 u64 bytes; 2472 2473 l = path->nodes[0]; 2474 slot = path->slots[0]; 2475 if (slot >= btrfs_header_nritems(l)) { 2476 ret = btrfs_next_leaf(root, path); 2477 if (ret == 0) 2478 continue; 2479 if (ret < 0) 2480 goto out; 2481 2482 stop_loop = 1; 2483 break; 2484 } 2485 btrfs_item_key_to_cpu(l, &key, slot); 2486 2487 if (key.type == BTRFS_METADATA_ITEM_KEY) 2488 bytes = root->leafsize; 2489 else 2490 bytes = key.offset; 2491 2492 if (key.objectid + bytes <= logical) 2493 goto next; 2494 2495 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2496 key.type != BTRFS_METADATA_ITEM_KEY) 2497 goto next; 2498 2499 if (key.objectid >= logical + map->stripe_len) { 2500 /* out of this device extent */ 2501 if (key.objectid >= logic_end) 2502 stop_loop = 1; 2503 break; 2504 } 2505 2506 extent = btrfs_item_ptr(l, slot, 2507 struct btrfs_extent_item); 2508 flags = btrfs_extent_flags(l, extent); 2509 generation = btrfs_extent_generation(l, extent); 2510 2511 if (key.objectid < logical && 2512 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { 2513 btrfs_err(fs_info, 2514 "scrub: tree block %llu spanning " 2515 "stripes, ignored. logical=%llu", 2516 key.objectid, logical); 2517 goto next; 2518 } 2519 2520 again: 2521 extent_logical = key.objectid; 2522 extent_len = bytes; 2523 2524 /* 2525 * trim extent to this stripe 2526 */ 2527 if (extent_logical < logical) { 2528 extent_len -= logical - extent_logical; 2529 extent_logical = logical; 2530 } 2531 if (extent_logical + extent_len > 2532 logical + map->stripe_len) { 2533 extent_len = logical + map->stripe_len - 2534 extent_logical; 2535 } 2536 2537 extent_physical = extent_logical - logical + physical; 2538 extent_dev = scrub_dev; 2539 extent_mirror_num = mirror_num; 2540 if (is_dev_replace) 2541 scrub_remap_extent(fs_info, extent_logical, 2542 extent_len, &extent_physical, 2543 &extent_dev, 2544 &extent_mirror_num); 2545 2546 ret = btrfs_lookup_csums_range(csum_root, logical, 2547 logical + map->stripe_len - 1, 2548 &sctx->csum_list, 1); 2549 if (ret) 2550 goto out; 2551 2552 ret = scrub_extent(sctx, extent_logical, extent_len, 2553 extent_physical, extent_dev, flags, 2554 generation, extent_mirror_num, 2555 extent_logical - logical + physical); 2556 if (ret) 2557 goto out; 2558 2559 scrub_free_csums(sctx); 2560 if (extent_logical + extent_len < 2561 key.objectid + bytes) { 2562 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 2563 BTRFS_BLOCK_GROUP_RAID6)) { 2564 /* 2565 * loop until we find next data stripe 2566 * or we have finished all stripes. 2567 */ 2568 do { 2569 physical += map->stripe_len; 2570 ret = get_raid56_logic_offset( 2571 physical, num, 2572 map, &logical); 2573 logical += base; 2574 } while (physical < physical_end && ret); 2575 } else { 2576 physical += map->stripe_len; 2577 logical += increment; 2578 } 2579 if (logical < key.objectid + bytes) { 2580 cond_resched(); 2581 goto again; 2582 } 2583 2584 if (physical >= physical_end) { 2585 stop_loop = 1; 2586 break; 2587 } 2588 } 2589 next: 2590 path->slots[0]++; 2591 } 2592 btrfs_release_path(path); 2593 skip: 2594 logical += increment; 2595 physical += map->stripe_len; 2596 spin_lock(&sctx->stat_lock); 2597 if (stop_loop) 2598 sctx->stat.last_physical = map->stripes[num].physical + 2599 length; 2600 else 2601 sctx->stat.last_physical = physical; 2602 spin_unlock(&sctx->stat_lock); 2603 if (stop_loop) 2604 break; 2605 } 2606 out: 2607 /* push queued extents */ 2608 scrub_submit(sctx); 2609 mutex_lock(&sctx->wr_ctx.wr_lock); 2610 scrub_wr_submit(sctx); 2611 mutex_unlock(&sctx->wr_ctx.wr_lock); 2612 2613 blk_finish_plug(&plug); 2614 btrfs_free_path(path); 2615 return ret < 0 ? ret : 0; 2616 } 2617 2618 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2619 struct btrfs_device *scrub_dev, 2620 u64 chunk_tree, u64 chunk_objectid, 2621 u64 chunk_offset, u64 length, 2622 u64 dev_offset, int is_dev_replace) 2623 { 2624 struct btrfs_mapping_tree *map_tree = 2625 &sctx->dev_root->fs_info->mapping_tree; 2626 struct map_lookup *map; 2627 struct extent_map *em; 2628 int i; 2629 int ret = 0; 2630 2631 read_lock(&map_tree->map_tree.lock); 2632 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 2633 read_unlock(&map_tree->map_tree.lock); 2634 2635 if (!em) 2636 return -EINVAL; 2637 2638 map = (struct map_lookup *)em->bdev; 2639 if (em->start != chunk_offset) 2640 goto out; 2641 2642 if (em->len < length) 2643 goto out; 2644 2645 for (i = 0; i < map->num_stripes; ++i) { 2646 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2647 map->stripes[i].physical == dev_offset) { 2648 ret = scrub_stripe(sctx, map, scrub_dev, i, 2649 chunk_offset, length, 2650 is_dev_replace); 2651 if (ret) 2652 goto out; 2653 } 2654 } 2655 out: 2656 free_extent_map(em); 2657 2658 return ret; 2659 } 2660 2661 static noinline_for_stack 2662 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2663 struct btrfs_device *scrub_dev, u64 start, u64 end, 2664 int is_dev_replace) 2665 { 2666 struct btrfs_dev_extent *dev_extent = NULL; 2667 struct btrfs_path *path; 2668 struct btrfs_root *root = sctx->dev_root; 2669 struct btrfs_fs_info *fs_info = root->fs_info; 2670 u64 length; 2671 u64 chunk_tree; 2672 u64 chunk_objectid; 2673 u64 chunk_offset; 2674 int ret; 2675 int slot; 2676 struct extent_buffer *l; 2677 struct btrfs_key key; 2678 struct btrfs_key found_key; 2679 struct btrfs_block_group_cache *cache; 2680 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2681 2682 path = btrfs_alloc_path(); 2683 if (!path) 2684 return -ENOMEM; 2685 2686 path->reada = 2; 2687 path->search_commit_root = 1; 2688 path->skip_locking = 1; 2689 2690 key.objectid = scrub_dev->devid; 2691 key.offset = 0ull; 2692 key.type = BTRFS_DEV_EXTENT_KEY; 2693 2694 while (1) { 2695 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2696 if (ret < 0) 2697 break; 2698 if (ret > 0) { 2699 if (path->slots[0] >= 2700 btrfs_header_nritems(path->nodes[0])) { 2701 ret = btrfs_next_leaf(root, path); 2702 if (ret) 2703 break; 2704 } 2705 } 2706 2707 l = path->nodes[0]; 2708 slot = path->slots[0]; 2709 2710 btrfs_item_key_to_cpu(l, &found_key, slot); 2711 2712 if (found_key.objectid != scrub_dev->devid) 2713 break; 2714 2715 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY) 2716 break; 2717 2718 if (found_key.offset >= end) 2719 break; 2720 2721 if (found_key.offset < key.offset) 2722 break; 2723 2724 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2725 length = btrfs_dev_extent_length(l, dev_extent); 2726 2727 if (found_key.offset + length <= start) { 2728 key.offset = found_key.offset + length; 2729 btrfs_release_path(path); 2730 continue; 2731 } 2732 2733 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 2734 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 2735 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2736 2737 /* 2738 * get a reference on the corresponding block group to prevent 2739 * the chunk from going away while we scrub it 2740 */ 2741 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2742 if (!cache) { 2743 ret = -ENOENT; 2744 break; 2745 } 2746 dev_replace->cursor_right = found_key.offset + length; 2747 dev_replace->cursor_left = found_key.offset; 2748 dev_replace->item_needs_writeback = 1; 2749 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid, 2750 chunk_offset, length, found_key.offset, 2751 is_dev_replace); 2752 2753 /* 2754 * flush, submit all pending read and write bios, afterwards 2755 * wait for them. 2756 * Note that in the dev replace case, a read request causes 2757 * write requests that are submitted in the read completion 2758 * worker. Therefore in the current situation, it is required 2759 * that all write requests are flushed, so that all read and 2760 * write requests are really completed when bios_in_flight 2761 * changes to 0. 2762 */ 2763 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 2764 scrub_submit(sctx); 2765 mutex_lock(&sctx->wr_ctx.wr_lock); 2766 scrub_wr_submit(sctx); 2767 mutex_unlock(&sctx->wr_ctx.wr_lock); 2768 2769 wait_event(sctx->list_wait, 2770 atomic_read(&sctx->bios_in_flight) == 0); 2771 atomic_inc(&fs_info->scrubs_paused); 2772 wake_up(&fs_info->scrub_pause_wait); 2773 2774 /* 2775 * must be called before we decrease @scrub_paused. 2776 * make sure we don't block transaction commit while 2777 * we are waiting pending workers finished. 2778 */ 2779 wait_event(sctx->list_wait, 2780 atomic_read(&sctx->workers_pending) == 0); 2781 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 2782 2783 mutex_lock(&fs_info->scrub_lock); 2784 __scrub_blocked_if_needed(fs_info); 2785 atomic_dec(&fs_info->scrubs_paused); 2786 mutex_unlock(&fs_info->scrub_lock); 2787 wake_up(&fs_info->scrub_pause_wait); 2788 2789 btrfs_put_block_group(cache); 2790 if (ret) 2791 break; 2792 if (is_dev_replace && 2793 atomic64_read(&dev_replace->num_write_errors) > 0) { 2794 ret = -EIO; 2795 break; 2796 } 2797 if (sctx->stat.malloc_errors > 0) { 2798 ret = -ENOMEM; 2799 break; 2800 } 2801 2802 dev_replace->cursor_left = dev_replace->cursor_right; 2803 dev_replace->item_needs_writeback = 1; 2804 2805 key.offset = found_key.offset + length; 2806 btrfs_release_path(path); 2807 } 2808 2809 btrfs_free_path(path); 2810 2811 /* 2812 * ret can still be 1 from search_slot or next_leaf, 2813 * that's not an error 2814 */ 2815 return ret < 0 ? ret : 0; 2816 } 2817 2818 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2819 struct btrfs_device *scrub_dev) 2820 { 2821 int i; 2822 u64 bytenr; 2823 u64 gen; 2824 int ret; 2825 struct btrfs_root *root = sctx->dev_root; 2826 2827 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 2828 return -EIO; 2829 2830 gen = root->fs_info->last_trans_committed; 2831 2832 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2833 bytenr = btrfs_sb_offset(i); 2834 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes) 2835 break; 2836 2837 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 2838 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 2839 NULL, 1, bytenr); 2840 if (ret) 2841 return ret; 2842 } 2843 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 2844 2845 return 0; 2846 } 2847 2848 /* 2849 * get a reference count on fs_info->scrub_workers. start worker if necessary 2850 */ 2851 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 2852 int is_dev_replace) 2853 { 2854 int ret = 0; 2855 int flags = WQ_FREEZABLE | WQ_UNBOUND; 2856 int max_active = fs_info->thread_pool_size; 2857 2858 if (fs_info->scrub_workers_refcnt == 0) { 2859 if (is_dev_replace) 2860 fs_info->scrub_workers = 2861 btrfs_alloc_workqueue("btrfs-scrub", flags, 2862 1, 4); 2863 else 2864 fs_info->scrub_workers = 2865 btrfs_alloc_workqueue("btrfs-scrub", flags, 2866 max_active, 4); 2867 if (!fs_info->scrub_workers) { 2868 ret = -ENOMEM; 2869 goto out; 2870 } 2871 fs_info->scrub_wr_completion_workers = 2872 btrfs_alloc_workqueue("btrfs-scrubwrc", flags, 2873 max_active, 2); 2874 if (!fs_info->scrub_wr_completion_workers) { 2875 ret = -ENOMEM; 2876 goto out; 2877 } 2878 fs_info->scrub_nocow_workers = 2879 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0); 2880 if (!fs_info->scrub_nocow_workers) { 2881 ret = -ENOMEM; 2882 goto out; 2883 } 2884 } 2885 ++fs_info->scrub_workers_refcnt; 2886 out: 2887 return ret; 2888 } 2889 2890 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 2891 { 2892 if (--fs_info->scrub_workers_refcnt == 0) { 2893 btrfs_destroy_workqueue(fs_info->scrub_workers); 2894 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 2895 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 2896 } 2897 WARN_ON(fs_info->scrub_workers_refcnt < 0); 2898 } 2899 2900 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2901 u64 end, struct btrfs_scrub_progress *progress, 2902 int readonly, int is_dev_replace) 2903 { 2904 struct scrub_ctx *sctx; 2905 int ret; 2906 struct btrfs_device *dev; 2907 2908 if (btrfs_fs_closing(fs_info)) 2909 return -EINVAL; 2910 2911 /* 2912 * check some assumptions 2913 */ 2914 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) { 2915 btrfs_err(fs_info, 2916 "scrub: size assumption nodesize == leafsize (%d == %d) fails", 2917 fs_info->chunk_root->nodesize, 2918 fs_info->chunk_root->leafsize); 2919 return -EINVAL; 2920 } 2921 2922 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) { 2923 /* 2924 * in this case scrub is unable to calculate the checksum 2925 * the way scrub is implemented. Do not handle this 2926 * situation at all because it won't ever happen. 2927 */ 2928 btrfs_err(fs_info, 2929 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 2930 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN); 2931 return -EINVAL; 2932 } 2933 2934 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) { 2935 /* not supported for data w/o checksums */ 2936 btrfs_err(fs_info, 2937 "scrub: size assumption sectorsize != PAGE_SIZE " 2938 "(%d != %lu) fails", 2939 fs_info->chunk_root->sectorsize, PAGE_SIZE); 2940 return -EINVAL; 2941 } 2942 2943 if (fs_info->chunk_root->nodesize > 2944 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 2945 fs_info->chunk_root->sectorsize > 2946 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 2947 /* 2948 * would exhaust the array bounds of pagev member in 2949 * struct scrub_block 2950 */ 2951 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize " 2952 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 2953 fs_info->chunk_root->nodesize, 2954 SCRUB_MAX_PAGES_PER_BLOCK, 2955 fs_info->chunk_root->sectorsize, 2956 SCRUB_MAX_PAGES_PER_BLOCK); 2957 return -EINVAL; 2958 } 2959 2960 2961 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2962 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 2963 if (!dev || (dev->missing && !is_dev_replace)) { 2964 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2965 return -ENODEV; 2966 } 2967 2968 mutex_lock(&fs_info->scrub_lock); 2969 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 2970 mutex_unlock(&fs_info->scrub_lock); 2971 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2972 return -EIO; 2973 } 2974 2975 btrfs_dev_replace_lock(&fs_info->dev_replace); 2976 if (dev->scrub_device || 2977 (!is_dev_replace && 2978 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2979 btrfs_dev_replace_unlock(&fs_info->dev_replace); 2980 mutex_unlock(&fs_info->scrub_lock); 2981 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2982 return -EINPROGRESS; 2983 } 2984 btrfs_dev_replace_unlock(&fs_info->dev_replace); 2985 2986 ret = scrub_workers_get(fs_info, is_dev_replace); 2987 if (ret) { 2988 mutex_unlock(&fs_info->scrub_lock); 2989 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2990 return ret; 2991 } 2992 2993 sctx = scrub_setup_ctx(dev, is_dev_replace); 2994 if (IS_ERR(sctx)) { 2995 mutex_unlock(&fs_info->scrub_lock); 2996 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2997 scrub_workers_put(fs_info); 2998 return PTR_ERR(sctx); 2999 } 3000 sctx->readonly = readonly; 3001 dev->scrub_device = sctx; 3002 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3003 3004 /* 3005 * checking @scrub_pause_req here, we can avoid 3006 * race between committing transaction and scrubbing. 3007 */ 3008 __scrub_blocked_if_needed(fs_info); 3009 atomic_inc(&fs_info->scrubs_running); 3010 mutex_unlock(&fs_info->scrub_lock); 3011 3012 if (!is_dev_replace) { 3013 /* 3014 * by holding device list mutex, we can 3015 * kick off writing super in log tree sync. 3016 */ 3017 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3018 ret = scrub_supers(sctx, dev); 3019 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3020 } 3021 3022 if (!ret) 3023 ret = scrub_enumerate_chunks(sctx, dev, start, end, 3024 is_dev_replace); 3025 3026 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3027 atomic_dec(&fs_info->scrubs_running); 3028 wake_up(&fs_info->scrub_pause_wait); 3029 3030 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3031 3032 if (progress) 3033 memcpy(progress, &sctx->stat, sizeof(*progress)); 3034 3035 mutex_lock(&fs_info->scrub_lock); 3036 dev->scrub_device = NULL; 3037 scrub_workers_put(fs_info); 3038 mutex_unlock(&fs_info->scrub_lock); 3039 3040 scrub_free_ctx(sctx); 3041 3042 return ret; 3043 } 3044 3045 void btrfs_scrub_pause(struct btrfs_root *root) 3046 { 3047 struct btrfs_fs_info *fs_info = root->fs_info; 3048 3049 mutex_lock(&fs_info->scrub_lock); 3050 atomic_inc(&fs_info->scrub_pause_req); 3051 while (atomic_read(&fs_info->scrubs_paused) != 3052 atomic_read(&fs_info->scrubs_running)) { 3053 mutex_unlock(&fs_info->scrub_lock); 3054 wait_event(fs_info->scrub_pause_wait, 3055 atomic_read(&fs_info->scrubs_paused) == 3056 atomic_read(&fs_info->scrubs_running)); 3057 mutex_lock(&fs_info->scrub_lock); 3058 } 3059 mutex_unlock(&fs_info->scrub_lock); 3060 } 3061 3062 void btrfs_scrub_continue(struct btrfs_root *root) 3063 { 3064 struct btrfs_fs_info *fs_info = root->fs_info; 3065 3066 atomic_dec(&fs_info->scrub_pause_req); 3067 wake_up(&fs_info->scrub_pause_wait); 3068 } 3069 3070 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3071 { 3072 mutex_lock(&fs_info->scrub_lock); 3073 if (!atomic_read(&fs_info->scrubs_running)) { 3074 mutex_unlock(&fs_info->scrub_lock); 3075 return -ENOTCONN; 3076 } 3077 3078 atomic_inc(&fs_info->scrub_cancel_req); 3079 while (atomic_read(&fs_info->scrubs_running)) { 3080 mutex_unlock(&fs_info->scrub_lock); 3081 wait_event(fs_info->scrub_pause_wait, 3082 atomic_read(&fs_info->scrubs_running) == 0); 3083 mutex_lock(&fs_info->scrub_lock); 3084 } 3085 atomic_dec(&fs_info->scrub_cancel_req); 3086 mutex_unlock(&fs_info->scrub_lock); 3087 3088 return 0; 3089 } 3090 3091 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 3092 struct btrfs_device *dev) 3093 { 3094 struct scrub_ctx *sctx; 3095 3096 mutex_lock(&fs_info->scrub_lock); 3097 sctx = dev->scrub_device; 3098 if (!sctx) { 3099 mutex_unlock(&fs_info->scrub_lock); 3100 return -ENOTCONN; 3101 } 3102 atomic_inc(&sctx->cancel_req); 3103 while (dev->scrub_device) { 3104 mutex_unlock(&fs_info->scrub_lock); 3105 wait_event(fs_info->scrub_pause_wait, 3106 dev->scrub_device == NULL); 3107 mutex_lock(&fs_info->scrub_lock); 3108 } 3109 mutex_unlock(&fs_info->scrub_lock); 3110 3111 return 0; 3112 } 3113 3114 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 3115 struct btrfs_scrub_progress *progress) 3116 { 3117 struct btrfs_device *dev; 3118 struct scrub_ctx *sctx = NULL; 3119 3120 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3121 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL); 3122 if (dev) 3123 sctx = dev->scrub_device; 3124 if (sctx) 3125 memcpy(progress, &sctx->stat, sizeof(*progress)); 3126 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3127 3128 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3129 } 3130 3131 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 3132 u64 extent_logical, u64 extent_len, 3133 u64 *extent_physical, 3134 struct btrfs_device **extent_dev, 3135 int *extent_mirror_num) 3136 { 3137 u64 mapped_length; 3138 struct btrfs_bio *bbio = NULL; 3139 int ret; 3140 3141 mapped_length = extent_len; 3142 ret = btrfs_map_block(fs_info, READ, extent_logical, 3143 &mapped_length, &bbio, 0); 3144 if (ret || !bbio || mapped_length < extent_len || 3145 !bbio->stripes[0].dev->bdev) { 3146 kfree(bbio); 3147 return; 3148 } 3149 3150 *extent_physical = bbio->stripes[0].physical; 3151 *extent_mirror_num = bbio->mirror_num; 3152 *extent_dev = bbio->stripes[0].dev; 3153 kfree(bbio); 3154 } 3155 3156 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 3157 struct scrub_wr_ctx *wr_ctx, 3158 struct btrfs_fs_info *fs_info, 3159 struct btrfs_device *dev, 3160 int is_dev_replace) 3161 { 3162 WARN_ON(wr_ctx->wr_curr_bio != NULL); 3163 3164 mutex_init(&wr_ctx->wr_lock); 3165 wr_ctx->wr_curr_bio = NULL; 3166 if (!is_dev_replace) 3167 return 0; 3168 3169 WARN_ON(!dev->bdev); 3170 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO, 3171 bio_get_nr_vecs(dev->bdev)); 3172 wr_ctx->tgtdev = dev; 3173 atomic_set(&wr_ctx->flush_all_writes, 0); 3174 return 0; 3175 } 3176 3177 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) 3178 { 3179 mutex_lock(&wr_ctx->wr_lock); 3180 kfree(wr_ctx->wr_curr_bio); 3181 wr_ctx->wr_curr_bio = NULL; 3182 mutex_unlock(&wr_ctx->wr_lock); 3183 } 3184 3185 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 3186 int mirror_num, u64 physical_for_dev_replace) 3187 { 3188 struct scrub_copy_nocow_ctx *nocow_ctx; 3189 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 3190 3191 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 3192 if (!nocow_ctx) { 3193 spin_lock(&sctx->stat_lock); 3194 sctx->stat.malloc_errors++; 3195 spin_unlock(&sctx->stat_lock); 3196 return -ENOMEM; 3197 } 3198 3199 scrub_pending_trans_workers_inc(sctx); 3200 3201 nocow_ctx->sctx = sctx; 3202 nocow_ctx->logical = logical; 3203 nocow_ctx->len = len; 3204 nocow_ctx->mirror_num = mirror_num; 3205 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 3206 btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL); 3207 INIT_LIST_HEAD(&nocow_ctx->inodes); 3208 btrfs_queue_work(fs_info->scrub_nocow_workers, 3209 &nocow_ctx->work); 3210 3211 return 0; 3212 } 3213 3214 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 3215 { 3216 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 3217 struct scrub_nocow_inode *nocow_inode; 3218 3219 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 3220 if (!nocow_inode) 3221 return -ENOMEM; 3222 nocow_inode->inum = inum; 3223 nocow_inode->offset = offset; 3224 nocow_inode->root = root; 3225 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 3226 return 0; 3227 } 3228 3229 #define COPY_COMPLETE 1 3230 3231 static void copy_nocow_pages_worker(struct btrfs_work *work) 3232 { 3233 struct scrub_copy_nocow_ctx *nocow_ctx = 3234 container_of(work, struct scrub_copy_nocow_ctx, work); 3235 struct scrub_ctx *sctx = nocow_ctx->sctx; 3236 u64 logical = nocow_ctx->logical; 3237 u64 len = nocow_ctx->len; 3238 int mirror_num = nocow_ctx->mirror_num; 3239 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3240 int ret; 3241 struct btrfs_trans_handle *trans = NULL; 3242 struct btrfs_fs_info *fs_info; 3243 struct btrfs_path *path; 3244 struct btrfs_root *root; 3245 int not_written = 0; 3246 3247 fs_info = sctx->dev_root->fs_info; 3248 root = fs_info->extent_root; 3249 3250 path = btrfs_alloc_path(); 3251 if (!path) { 3252 spin_lock(&sctx->stat_lock); 3253 sctx->stat.malloc_errors++; 3254 spin_unlock(&sctx->stat_lock); 3255 not_written = 1; 3256 goto out; 3257 } 3258 3259 trans = btrfs_join_transaction(root); 3260 if (IS_ERR(trans)) { 3261 not_written = 1; 3262 goto out; 3263 } 3264 3265 ret = iterate_inodes_from_logical(logical, fs_info, path, 3266 record_inode_for_nocow, nocow_ctx); 3267 if (ret != 0 && ret != -ENOENT) { 3268 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, " 3269 "phys %llu, len %llu, mir %u, ret %d", 3270 logical, physical_for_dev_replace, len, mirror_num, 3271 ret); 3272 not_written = 1; 3273 goto out; 3274 } 3275 3276 btrfs_end_transaction(trans, root); 3277 trans = NULL; 3278 while (!list_empty(&nocow_ctx->inodes)) { 3279 struct scrub_nocow_inode *entry; 3280 entry = list_first_entry(&nocow_ctx->inodes, 3281 struct scrub_nocow_inode, 3282 list); 3283 list_del_init(&entry->list); 3284 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 3285 entry->root, nocow_ctx); 3286 kfree(entry); 3287 if (ret == COPY_COMPLETE) { 3288 ret = 0; 3289 break; 3290 } else if (ret) { 3291 break; 3292 } 3293 } 3294 out: 3295 while (!list_empty(&nocow_ctx->inodes)) { 3296 struct scrub_nocow_inode *entry; 3297 entry = list_first_entry(&nocow_ctx->inodes, 3298 struct scrub_nocow_inode, 3299 list); 3300 list_del_init(&entry->list); 3301 kfree(entry); 3302 } 3303 if (trans && !IS_ERR(trans)) 3304 btrfs_end_transaction(trans, root); 3305 if (not_written) 3306 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 3307 num_uncorrectable_read_errors); 3308 3309 btrfs_free_path(path); 3310 kfree(nocow_ctx); 3311 3312 scrub_pending_trans_workers_dec(sctx); 3313 } 3314 3315 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 3316 struct scrub_copy_nocow_ctx *nocow_ctx) 3317 { 3318 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info; 3319 struct btrfs_key key; 3320 struct inode *inode; 3321 struct page *page; 3322 struct btrfs_root *local_root; 3323 struct btrfs_ordered_extent *ordered; 3324 struct extent_map *em; 3325 struct extent_state *cached_state = NULL; 3326 struct extent_io_tree *io_tree; 3327 u64 physical_for_dev_replace; 3328 u64 len = nocow_ctx->len; 3329 u64 lockstart = offset, lockend = offset + len - 1; 3330 unsigned long index; 3331 int srcu_index; 3332 int ret = 0; 3333 int err = 0; 3334 3335 key.objectid = root; 3336 key.type = BTRFS_ROOT_ITEM_KEY; 3337 key.offset = (u64)-1; 3338 3339 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 3340 3341 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 3342 if (IS_ERR(local_root)) { 3343 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 3344 return PTR_ERR(local_root); 3345 } 3346 3347 key.type = BTRFS_INODE_ITEM_KEY; 3348 key.objectid = inum; 3349 key.offset = 0; 3350 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 3351 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 3352 if (IS_ERR(inode)) 3353 return PTR_ERR(inode); 3354 3355 /* Avoid truncate/dio/punch hole.. */ 3356 mutex_lock(&inode->i_mutex); 3357 inode_dio_wait(inode); 3358 3359 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3360 io_tree = &BTRFS_I(inode)->io_tree; 3361 3362 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state); 3363 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 3364 if (ordered) { 3365 btrfs_put_ordered_extent(ordered); 3366 goto out_unlock; 3367 } 3368 3369 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0); 3370 if (IS_ERR(em)) { 3371 ret = PTR_ERR(em); 3372 goto out_unlock; 3373 } 3374 3375 /* 3376 * This extent does not actually cover the logical extent anymore, 3377 * move on to the next inode. 3378 */ 3379 if (em->block_start > nocow_ctx->logical || 3380 em->block_start + em->block_len < nocow_ctx->logical + len) { 3381 free_extent_map(em); 3382 goto out_unlock; 3383 } 3384 free_extent_map(em); 3385 3386 while (len >= PAGE_CACHE_SIZE) { 3387 index = offset >> PAGE_CACHE_SHIFT; 3388 again: 3389 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 3390 if (!page) { 3391 btrfs_err(fs_info, "find_or_create_page() failed"); 3392 ret = -ENOMEM; 3393 goto out; 3394 } 3395 3396 if (PageUptodate(page)) { 3397 if (PageDirty(page)) 3398 goto next_page; 3399 } else { 3400 ClearPageError(page); 3401 err = extent_read_full_page_nolock(io_tree, page, 3402 btrfs_get_extent, 3403 nocow_ctx->mirror_num); 3404 if (err) { 3405 ret = err; 3406 goto next_page; 3407 } 3408 3409 lock_page(page); 3410 /* 3411 * If the page has been remove from the page cache, 3412 * the data on it is meaningless, because it may be 3413 * old one, the new data may be written into the new 3414 * page in the page cache. 3415 */ 3416 if (page->mapping != inode->i_mapping) { 3417 unlock_page(page); 3418 page_cache_release(page); 3419 goto again; 3420 } 3421 if (!PageUptodate(page)) { 3422 ret = -EIO; 3423 goto next_page; 3424 } 3425 } 3426 err = write_page_nocow(nocow_ctx->sctx, 3427 physical_for_dev_replace, page); 3428 if (err) 3429 ret = err; 3430 next_page: 3431 unlock_page(page); 3432 page_cache_release(page); 3433 3434 if (ret) 3435 break; 3436 3437 offset += PAGE_CACHE_SIZE; 3438 physical_for_dev_replace += PAGE_CACHE_SIZE; 3439 len -= PAGE_CACHE_SIZE; 3440 } 3441 ret = COPY_COMPLETE; 3442 out_unlock: 3443 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state, 3444 GFP_NOFS); 3445 out: 3446 mutex_unlock(&inode->i_mutex); 3447 iput(inode); 3448 return ret; 3449 } 3450 3451 static int write_page_nocow(struct scrub_ctx *sctx, 3452 u64 physical_for_dev_replace, struct page *page) 3453 { 3454 struct bio *bio; 3455 struct btrfs_device *dev; 3456 int ret; 3457 3458 dev = sctx->wr_ctx.tgtdev; 3459 if (!dev) 3460 return -EIO; 3461 if (!dev->bdev) { 3462 printk_ratelimited(KERN_WARNING 3463 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n"); 3464 return -EIO; 3465 } 3466 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 3467 if (!bio) { 3468 spin_lock(&sctx->stat_lock); 3469 sctx->stat.malloc_errors++; 3470 spin_unlock(&sctx->stat_lock); 3471 return -ENOMEM; 3472 } 3473 bio->bi_iter.bi_size = 0; 3474 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 3475 bio->bi_bdev = dev->bdev; 3476 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 3477 if (ret != PAGE_CACHE_SIZE) { 3478 leave_with_eio: 3479 bio_put(bio); 3480 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 3481 return -EIO; 3482 } 3483 3484 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) 3485 goto leave_with_eio; 3486 3487 bio_put(bio); 3488 return 0; 3489 } 3490