1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "disk-io.h" 12 #include "ordered-data.h" 13 #include "transaction.h" 14 #include "backref.h" 15 #include "extent_io.h" 16 #include "dev-replace.h" 17 #include "check-integrity.h" 18 #include "rcu-string.h" 19 #include "raid56.h" 20 21 /* 22 * This is only the first step towards a full-features scrub. It reads all 23 * extent and super block and verifies the checksums. In case a bad checksum 24 * is found or the extent cannot be read, good data will be written back if 25 * any can be found. 26 * 27 * Future enhancements: 28 * - In case an unrepairable extent is encountered, track which files are 29 * affected and report them 30 * - track and record media errors, throw out bad devices 31 * - add a mode to also read unallocated space 32 */ 33 34 struct scrub_block; 35 struct scrub_ctx; 36 37 /* 38 * the following three values only influence the performance. 39 * The last one configures the number of parallel and outstanding I/O 40 * operations. The first two values configure an upper limit for the number 41 * of (dynamically allocated) pages that are added to a bio. 42 */ 43 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 44 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 45 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 46 47 /* 48 * the following value times PAGE_SIZE needs to be large enough to match the 49 * largest node/leaf/sector size that shall be supported. 50 * Values larger than BTRFS_STRIPE_LEN are not supported. 51 */ 52 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 53 54 struct scrub_recover { 55 refcount_t refs; 56 struct btrfs_bio *bbio; 57 u64 map_length; 58 }; 59 60 struct scrub_page { 61 struct scrub_block *sblock; 62 struct page *page; 63 struct btrfs_device *dev; 64 struct list_head list; 65 u64 flags; /* extent flags */ 66 u64 generation; 67 u64 logical; 68 u64 physical; 69 u64 physical_for_dev_replace; 70 atomic_t refs; 71 struct { 72 unsigned int mirror_num:8; 73 unsigned int have_csum:1; 74 unsigned int io_error:1; 75 }; 76 u8 csum[BTRFS_CSUM_SIZE]; 77 78 struct scrub_recover *recover; 79 }; 80 81 struct scrub_bio { 82 int index; 83 struct scrub_ctx *sctx; 84 struct btrfs_device *dev; 85 struct bio *bio; 86 blk_status_t status; 87 u64 logical; 88 u64 physical; 89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 90 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 91 #else 92 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 93 #endif 94 int page_count; 95 int next_free; 96 struct btrfs_work work; 97 }; 98 99 struct scrub_block { 100 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 101 int page_count; 102 atomic_t outstanding_pages; 103 refcount_t refs; /* free mem on transition to zero */ 104 struct scrub_ctx *sctx; 105 struct scrub_parity *sparity; 106 struct { 107 unsigned int header_error:1; 108 unsigned int checksum_error:1; 109 unsigned int no_io_error_seen:1; 110 unsigned int generation_error:1; /* also sets header_error */ 111 112 /* The following is for the data used to check parity */ 113 /* It is for the data with checksum */ 114 unsigned int data_corrected:1; 115 }; 116 struct btrfs_work work; 117 }; 118 119 /* Used for the chunks with parity stripe such RAID5/6 */ 120 struct scrub_parity { 121 struct scrub_ctx *sctx; 122 123 struct btrfs_device *scrub_dev; 124 125 u64 logic_start; 126 127 u64 logic_end; 128 129 int nsectors; 130 131 u64 stripe_len; 132 133 refcount_t refs; 134 135 struct list_head spages; 136 137 /* Work of parity check and repair */ 138 struct btrfs_work work; 139 140 /* Mark the parity blocks which have data */ 141 unsigned long *dbitmap; 142 143 /* 144 * Mark the parity blocks which have data, but errors happen when 145 * read data or check data 146 */ 147 unsigned long *ebitmap; 148 149 unsigned long bitmap[0]; 150 }; 151 152 struct scrub_ctx { 153 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 154 struct btrfs_fs_info *fs_info; 155 int first_free; 156 int curr; 157 atomic_t bios_in_flight; 158 atomic_t workers_pending; 159 spinlock_t list_lock; 160 wait_queue_head_t list_wait; 161 u16 csum_size; 162 struct list_head csum_list; 163 atomic_t cancel_req; 164 int readonly; 165 int pages_per_rd_bio; 166 167 int is_dev_replace; 168 169 struct scrub_bio *wr_curr_bio; 170 struct mutex wr_lock; 171 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 172 struct btrfs_device *wr_tgtdev; 173 bool flush_all_writes; 174 175 /* 176 * statistics 177 */ 178 struct btrfs_scrub_progress stat; 179 spinlock_t stat_lock; 180 181 /* 182 * Use a ref counter to avoid use-after-free issues. Scrub workers 183 * decrement bios_in_flight and workers_pending and then do a wakeup 184 * on the list_wait wait queue. We must ensure the main scrub task 185 * doesn't free the scrub context before or while the workers are 186 * doing the wakeup() call. 187 */ 188 refcount_t refs; 189 }; 190 191 struct scrub_fixup_nodatasum { 192 struct scrub_ctx *sctx; 193 struct btrfs_device *dev; 194 u64 logical; 195 struct btrfs_root *root; 196 struct btrfs_work work; 197 int mirror_num; 198 }; 199 200 struct scrub_nocow_inode { 201 u64 inum; 202 u64 offset; 203 u64 root; 204 struct list_head list; 205 }; 206 207 struct scrub_copy_nocow_ctx { 208 struct scrub_ctx *sctx; 209 u64 logical; 210 u64 len; 211 int mirror_num; 212 u64 physical_for_dev_replace; 213 struct list_head inodes; 214 struct btrfs_work work; 215 }; 216 217 struct scrub_warning { 218 struct btrfs_path *path; 219 u64 extent_item_size; 220 const char *errstr; 221 u64 physical; 222 u64 logical; 223 struct btrfs_device *dev; 224 }; 225 226 struct full_stripe_lock { 227 struct rb_node node; 228 u64 logical; 229 u64 refs; 230 struct mutex mutex; 231 }; 232 233 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 234 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 235 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 236 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 237 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 238 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 239 struct scrub_block *sblocks_for_recheck); 240 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 241 struct scrub_block *sblock, 242 int retry_failed_mirror); 243 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 244 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 245 struct scrub_block *sblock_good); 246 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 247 struct scrub_block *sblock_good, 248 int page_num, int force_write); 249 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 250 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 251 int page_num); 252 static int scrub_checksum_data(struct scrub_block *sblock); 253 static int scrub_checksum_tree_block(struct scrub_block *sblock); 254 static int scrub_checksum_super(struct scrub_block *sblock); 255 static void scrub_block_get(struct scrub_block *sblock); 256 static void scrub_block_put(struct scrub_block *sblock); 257 static void scrub_page_get(struct scrub_page *spage); 258 static void scrub_page_put(struct scrub_page *spage); 259 static void scrub_parity_get(struct scrub_parity *sparity); 260 static void scrub_parity_put(struct scrub_parity *sparity); 261 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 262 struct scrub_page *spage); 263 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 264 u64 physical, struct btrfs_device *dev, u64 flags, 265 u64 gen, int mirror_num, u8 *csum, int force, 266 u64 physical_for_dev_replace); 267 static void scrub_bio_end_io(struct bio *bio); 268 static void scrub_bio_end_io_worker(struct btrfs_work *work); 269 static void scrub_block_complete(struct scrub_block *sblock); 270 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 271 u64 extent_logical, u64 extent_len, 272 u64 *extent_physical, 273 struct btrfs_device **extent_dev, 274 int *extent_mirror_num); 275 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 276 struct scrub_page *spage); 277 static void scrub_wr_submit(struct scrub_ctx *sctx); 278 static void scrub_wr_bio_end_io(struct bio *bio); 279 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 280 static int write_page_nocow(struct scrub_ctx *sctx, 281 u64 physical_for_dev_replace, struct page *page); 282 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 283 struct scrub_copy_nocow_ctx *ctx); 284 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 285 int mirror_num, u64 physical_for_dev_replace); 286 static void copy_nocow_pages_worker(struct btrfs_work *work); 287 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 288 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 289 static void scrub_put_ctx(struct scrub_ctx *sctx); 290 291 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 292 { 293 return page->recover && 294 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 295 } 296 297 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 298 { 299 refcount_inc(&sctx->refs); 300 atomic_inc(&sctx->bios_in_flight); 301 } 302 303 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 304 { 305 atomic_dec(&sctx->bios_in_flight); 306 wake_up(&sctx->list_wait); 307 scrub_put_ctx(sctx); 308 } 309 310 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 311 { 312 while (atomic_read(&fs_info->scrub_pause_req)) { 313 mutex_unlock(&fs_info->scrub_lock); 314 wait_event(fs_info->scrub_pause_wait, 315 atomic_read(&fs_info->scrub_pause_req) == 0); 316 mutex_lock(&fs_info->scrub_lock); 317 } 318 } 319 320 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 321 { 322 atomic_inc(&fs_info->scrubs_paused); 323 wake_up(&fs_info->scrub_pause_wait); 324 } 325 326 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 327 { 328 mutex_lock(&fs_info->scrub_lock); 329 __scrub_blocked_if_needed(fs_info); 330 atomic_dec(&fs_info->scrubs_paused); 331 mutex_unlock(&fs_info->scrub_lock); 332 333 wake_up(&fs_info->scrub_pause_wait); 334 } 335 336 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 337 { 338 scrub_pause_on(fs_info); 339 scrub_pause_off(fs_info); 340 } 341 342 /* 343 * Insert new full stripe lock into full stripe locks tree 344 * 345 * Return pointer to existing or newly inserted full_stripe_lock structure if 346 * everything works well. 347 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 348 * 349 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 350 * function 351 */ 352 static struct full_stripe_lock *insert_full_stripe_lock( 353 struct btrfs_full_stripe_locks_tree *locks_root, 354 u64 fstripe_logical) 355 { 356 struct rb_node **p; 357 struct rb_node *parent = NULL; 358 struct full_stripe_lock *entry; 359 struct full_stripe_lock *ret; 360 361 lockdep_assert_held(&locks_root->lock); 362 363 p = &locks_root->root.rb_node; 364 while (*p) { 365 parent = *p; 366 entry = rb_entry(parent, struct full_stripe_lock, node); 367 if (fstripe_logical < entry->logical) { 368 p = &(*p)->rb_left; 369 } else if (fstripe_logical > entry->logical) { 370 p = &(*p)->rb_right; 371 } else { 372 entry->refs++; 373 return entry; 374 } 375 } 376 377 /* Insert new lock */ 378 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 379 if (!ret) 380 return ERR_PTR(-ENOMEM); 381 ret->logical = fstripe_logical; 382 ret->refs = 1; 383 mutex_init(&ret->mutex); 384 385 rb_link_node(&ret->node, parent, p); 386 rb_insert_color(&ret->node, &locks_root->root); 387 return ret; 388 } 389 390 /* 391 * Search for a full stripe lock of a block group 392 * 393 * Return pointer to existing full stripe lock if found 394 * Return NULL if not found 395 */ 396 static struct full_stripe_lock *search_full_stripe_lock( 397 struct btrfs_full_stripe_locks_tree *locks_root, 398 u64 fstripe_logical) 399 { 400 struct rb_node *node; 401 struct full_stripe_lock *entry; 402 403 lockdep_assert_held(&locks_root->lock); 404 405 node = locks_root->root.rb_node; 406 while (node) { 407 entry = rb_entry(node, struct full_stripe_lock, node); 408 if (fstripe_logical < entry->logical) 409 node = node->rb_left; 410 else if (fstripe_logical > entry->logical) 411 node = node->rb_right; 412 else 413 return entry; 414 } 415 return NULL; 416 } 417 418 /* 419 * Helper to get full stripe logical from a normal bytenr. 420 * 421 * Caller must ensure @cache is a RAID56 block group. 422 */ 423 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache, 424 u64 bytenr) 425 { 426 u64 ret; 427 428 /* 429 * Due to chunk item size limit, full stripe length should not be 430 * larger than U32_MAX. Just a sanity check here. 431 */ 432 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 433 434 /* 435 * round_down() can only handle power of 2, while RAID56 full 436 * stripe length can be 64KiB * n, so we need to manually round down. 437 */ 438 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) * 439 cache->full_stripe_len + cache->key.objectid; 440 return ret; 441 } 442 443 /* 444 * Lock a full stripe to avoid concurrency of recovery and read 445 * 446 * It's only used for profiles with parities (RAID5/6), for other profiles it 447 * does nothing. 448 * 449 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 450 * So caller must call unlock_full_stripe() at the same context. 451 * 452 * Return <0 if encounters error. 453 */ 454 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 455 bool *locked_ret) 456 { 457 struct btrfs_block_group_cache *bg_cache; 458 struct btrfs_full_stripe_locks_tree *locks_root; 459 struct full_stripe_lock *existing; 460 u64 fstripe_start; 461 int ret = 0; 462 463 *locked_ret = false; 464 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 465 if (!bg_cache) { 466 ASSERT(0); 467 return -ENOENT; 468 } 469 470 /* Profiles not based on parity don't need full stripe lock */ 471 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 472 goto out; 473 locks_root = &bg_cache->full_stripe_locks_root; 474 475 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 476 477 /* Now insert the full stripe lock */ 478 mutex_lock(&locks_root->lock); 479 existing = insert_full_stripe_lock(locks_root, fstripe_start); 480 mutex_unlock(&locks_root->lock); 481 if (IS_ERR(existing)) { 482 ret = PTR_ERR(existing); 483 goto out; 484 } 485 mutex_lock(&existing->mutex); 486 *locked_ret = true; 487 out: 488 btrfs_put_block_group(bg_cache); 489 return ret; 490 } 491 492 /* 493 * Unlock a full stripe. 494 * 495 * NOTE: Caller must ensure it's the same context calling corresponding 496 * lock_full_stripe(). 497 * 498 * Return 0 if we unlock full stripe without problem. 499 * Return <0 for error 500 */ 501 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 502 bool locked) 503 { 504 struct btrfs_block_group_cache *bg_cache; 505 struct btrfs_full_stripe_locks_tree *locks_root; 506 struct full_stripe_lock *fstripe_lock; 507 u64 fstripe_start; 508 bool freeit = false; 509 int ret = 0; 510 511 /* If we didn't acquire full stripe lock, no need to continue */ 512 if (!locked) 513 return 0; 514 515 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 516 if (!bg_cache) { 517 ASSERT(0); 518 return -ENOENT; 519 } 520 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 521 goto out; 522 523 locks_root = &bg_cache->full_stripe_locks_root; 524 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 525 526 mutex_lock(&locks_root->lock); 527 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 528 /* Unpaired unlock_full_stripe() detected */ 529 if (!fstripe_lock) { 530 WARN_ON(1); 531 ret = -ENOENT; 532 mutex_unlock(&locks_root->lock); 533 goto out; 534 } 535 536 if (fstripe_lock->refs == 0) { 537 WARN_ON(1); 538 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 539 fstripe_lock->logical); 540 } else { 541 fstripe_lock->refs--; 542 } 543 544 if (fstripe_lock->refs == 0) { 545 rb_erase(&fstripe_lock->node, &locks_root->root); 546 freeit = true; 547 } 548 mutex_unlock(&locks_root->lock); 549 550 mutex_unlock(&fstripe_lock->mutex); 551 if (freeit) 552 kfree(fstripe_lock); 553 out: 554 btrfs_put_block_group(bg_cache); 555 return ret; 556 } 557 558 /* 559 * used for workers that require transaction commits (i.e., for the 560 * NOCOW case) 561 */ 562 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 563 { 564 struct btrfs_fs_info *fs_info = sctx->fs_info; 565 566 refcount_inc(&sctx->refs); 567 /* 568 * increment scrubs_running to prevent cancel requests from 569 * completing as long as a worker is running. we must also 570 * increment scrubs_paused to prevent deadlocking on pause 571 * requests used for transactions commits (as the worker uses a 572 * transaction context). it is safe to regard the worker 573 * as paused for all matters practical. effectively, we only 574 * avoid cancellation requests from completing. 575 */ 576 mutex_lock(&fs_info->scrub_lock); 577 atomic_inc(&fs_info->scrubs_running); 578 atomic_inc(&fs_info->scrubs_paused); 579 mutex_unlock(&fs_info->scrub_lock); 580 581 /* 582 * check if @scrubs_running=@scrubs_paused condition 583 * inside wait_event() is not an atomic operation. 584 * which means we may inc/dec @scrub_running/paused 585 * at any time. Let's wake up @scrub_pause_wait as 586 * much as we can to let commit transaction blocked less. 587 */ 588 wake_up(&fs_info->scrub_pause_wait); 589 590 atomic_inc(&sctx->workers_pending); 591 } 592 593 /* used for workers that require transaction commits */ 594 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 595 { 596 struct btrfs_fs_info *fs_info = sctx->fs_info; 597 598 /* 599 * see scrub_pending_trans_workers_inc() why we're pretending 600 * to be paused in the scrub counters 601 */ 602 mutex_lock(&fs_info->scrub_lock); 603 atomic_dec(&fs_info->scrubs_running); 604 atomic_dec(&fs_info->scrubs_paused); 605 mutex_unlock(&fs_info->scrub_lock); 606 atomic_dec(&sctx->workers_pending); 607 wake_up(&fs_info->scrub_pause_wait); 608 wake_up(&sctx->list_wait); 609 scrub_put_ctx(sctx); 610 } 611 612 static void scrub_free_csums(struct scrub_ctx *sctx) 613 { 614 while (!list_empty(&sctx->csum_list)) { 615 struct btrfs_ordered_sum *sum; 616 sum = list_first_entry(&sctx->csum_list, 617 struct btrfs_ordered_sum, list); 618 list_del(&sum->list); 619 kfree(sum); 620 } 621 } 622 623 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 624 { 625 int i; 626 627 if (!sctx) 628 return; 629 630 /* this can happen when scrub is cancelled */ 631 if (sctx->curr != -1) { 632 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 633 634 for (i = 0; i < sbio->page_count; i++) { 635 WARN_ON(!sbio->pagev[i]->page); 636 scrub_block_put(sbio->pagev[i]->sblock); 637 } 638 bio_put(sbio->bio); 639 } 640 641 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 642 struct scrub_bio *sbio = sctx->bios[i]; 643 644 if (!sbio) 645 break; 646 kfree(sbio); 647 } 648 649 kfree(sctx->wr_curr_bio); 650 scrub_free_csums(sctx); 651 kfree(sctx); 652 } 653 654 static void scrub_put_ctx(struct scrub_ctx *sctx) 655 { 656 if (refcount_dec_and_test(&sctx->refs)) 657 scrub_free_ctx(sctx); 658 } 659 660 static noinline_for_stack 661 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 662 { 663 struct scrub_ctx *sctx; 664 int i; 665 struct btrfs_fs_info *fs_info = dev->fs_info; 666 667 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 668 if (!sctx) 669 goto nomem; 670 refcount_set(&sctx->refs, 1); 671 sctx->is_dev_replace = is_dev_replace; 672 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 673 sctx->curr = -1; 674 sctx->fs_info = dev->fs_info; 675 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 676 struct scrub_bio *sbio; 677 678 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 679 if (!sbio) 680 goto nomem; 681 sctx->bios[i] = sbio; 682 683 sbio->index = i; 684 sbio->sctx = sctx; 685 sbio->page_count = 0; 686 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 687 scrub_bio_end_io_worker, NULL, NULL); 688 689 if (i != SCRUB_BIOS_PER_SCTX - 1) 690 sctx->bios[i]->next_free = i + 1; 691 else 692 sctx->bios[i]->next_free = -1; 693 } 694 sctx->first_free = 0; 695 atomic_set(&sctx->bios_in_flight, 0); 696 atomic_set(&sctx->workers_pending, 0); 697 atomic_set(&sctx->cancel_req, 0); 698 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 699 INIT_LIST_HEAD(&sctx->csum_list); 700 701 spin_lock_init(&sctx->list_lock); 702 spin_lock_init(&sctx->stat_lock); 703 init_waitqueue_head(&sctx->list_wait); 704 705 WARN_ON(sctx->wr_curr_bio != NULL); 706 mutex_init(&sctx->wr_lock); 707 sctx->wr_curr_bio = NULL; 708 if (is_dev_replace) { 709 WARN_ON(!fs_info->dev_replace.tgtdev); 710 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 711 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 712 sctx->flush_all_writes = false; 713 } 714 715 return sctx; 716 717 nomem: 718 scrub_free_ctx(sctx); 719 return ERR_PTR(-ENOMEM); 720 } 721 722 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 723 void *warn_ctx) 724 { 725 u64 isize; 726 u32 nlink; 727 int ret; 728 int i; 729 unsigned nofs_flag; 730 struct extent_buffer *eb; 731 struct btrfs_inode_item *inode_item; 732 struct scrub_warning *swarn = warn_ctx; 733 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 734 struct inode_fs_paths *ipath = NULL; 735 struct btrfs_root *local_root; 736 struct btrfs_key root_key; 737 struct btrfs_key key; 738 739 root_key.objectid = root; 740 root_key.type = BTRFS_ROOT_ITEM_KEY; 741 root_key.offset = (u64)-1; 742 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 743 if (IS_ERR(local_root)) { 744 ret = PTR_ERR(local_root); 745 goto err; 746 } 747 748 /* 749 * this makes the path point to (inum INODE_ITEM ioff) 750 */ 751 key.objectid = inum; 752 key.type = BTRFS_INODE_ITEM_KEY; 753 key.offset = 0; 754 755 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 756 if (ret) { 757 btrfs_release_path(swarn->path); 758 goto err; 759 } 760 761 eb = swarn->path->nodes[0]; 762 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 763 struct btrfs_inode_item); 764 isize = btrfs_inode_size(eb, inode_item); 765 nlink = btrfs_inode_nlink(eb, inode_item); 766 btrfs_release_path(swarn->path); 767 768 /* 769 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 770 * uses GFP_NOFS in this context, so we keep it consistent but it does 771 * not seem to be strictly necessary. 772 */ 773 nofs_flag = memalloc_nofs_save(); 774 ipath = init_ipath(4096, local_root, swarn->path); 775 memalloc_nofs_restore(nofs_flag); 776 if (IS_ERR(ipath)) { 777 ret = PTR_ERR(ipath); 778 ipath = NULL; 779 goto err; 780 } 781 ret = paths_from_inode(inum, ipath); 782 783 if (ret < 0) 784 goto err; 785 786 /* 787 * we deliberately ignore the bit ipath might have been too small to 788 * hold all of the paths here 789 */ 790 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 791 btrfs_warn_in_rcu(fs_info, 792 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", 793 swarn->errstr, swarn->logical, 794 rcu_str_deref(swarn->dev->name), 795 swarn->physical, 796 root, inum, offset, 797 min(isize - offset, (u64)PAGE_SIZE), nlink, 798 (char *)(unsigned long)ipath->fspath->val[i]); 799 800 free_ipath(ipath); 801 return 0; 802 803 err: 804 btrfs_warn_in_rcu(fs_info, 805 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 806 swarn->errstr, swarn->logical, 807 rcu_str_deref(swarn->dev->name), 808 swarn->physical, 809 root, inum, offset, ret); 810 811 free_ipath(ipath); 812 return 0; 813 } 814 815 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 816 { 817 struct btrfs_device *dev; 818 struct btrfs_fs_info *fs_info; 819 struct btrfs_path *path; 820 struct btrfs_key found_key; 821 struct extent_buffer *eb; 822 struct btrfs_extent_item *ei; 823 struct scrub_warning swarn; 824 unsigned long ptr = 0; 825 u64 extent_item_pos; 826 u64 flags = 0; 827 u64 ref_root; 828 u32 item_size; 829 u8 ref_level = 0; 830 int ret; 831 832 WARN_ON(sblock->page_count < 1); 833 dev = sblock->pagev[0]->dev; 834 fs_info = sblock->sctx->fs_info; 835 836 path = btrfs_alloc_path(); 837 if (!path) 838 return; 839 840 swarn.physical = sblock->pagev[0]->physical; 841 swarn.logical = sblock->pagev[0]->logical; 842 swarn.errstr = errstr; 843 swarn.dev = NULL; 844 845 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 846 &flags); 847 if (ret < 0) 848 goto out; 849 850 extent_item_pos = swarn.logical - found_key.objectid; 851 swarn.extent_item_size = found_key.offset; 852 853 eb = path->nodes[0]; 854 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 855 item_size = btrfs_item_size_nr(eb, path->slots[0]); 856 857 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 858 do { 859 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 860 item_size, &ref_root, 861 &ref_level); 862 btrfs_warn_in_rcu(fs_info, 863 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 864 errstr, swarn.logical, 865 rcu_str_deref(dev->name), 866 swarn.physical, 867 ref_level ? "node" : "leaf", 868 ret < 0 ? -1 : ref_level, 869 ret < 0 ? -1 : ref_root); 870 } while (ret != 1); 871 btrfs_release_path(path); 872 } else { 873 btrfs_release_path(path); 874 swarn.path = path; 875 swarn.dev = dev; 876 iterate_extent_inodes(fs_info, found_key.objectid, 877 extent_item_pos, 1, 878 scrub_print_warning_inode, &swarn, false); 879 } 880 881 out: 882 btrfs_free_path(path); 883 } 884 885 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 886 { 887 struct page *page = NULL; 888 unsigned long index; 889 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 890 int ret; 891 int corrected = 0; 892 struct btrfs_key key; 893 struct inode *inode = NULL; 894 struct btrfs_fs_info *fs_info; 895 u64 end = offset + PAGE_SIZE - 1; 896 struct btrfs_root *local_root; 897 int srcu_index; 898 899 key.objectid = root; 900 key.type = BTRFS_ROOT_ITEM_KEY; 901 key.offset = (u64)-1; 902 903 fs_info = fixup->root->fs_info; 904 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 905 906 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 907 if (IS_ERR(local_root)) { 908 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 909 return PTR_ERR(local_root); 910 } 911 912 key.type = BTRFS_INODE_ITEM_KEY; 913 key.objectid = inum; 914 key.offset = 0; 915 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 916 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 917 if (IS_ERR(inode)) 918 return PTR_ERR(inode); 919 920 index = offset >> PAGE_SHIFT; 921 922 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 923 if (!page) { 924 ret = -ENOMEM; 925 goto out; 926 } 927 928 if (PageUptodate(page)) { 929 if (PageDirty(page)) { 930 /* 931 * we need to write the data to the defect sector. the 932 * data that was in that sector is not in memory, 933 * because the page was modified. we must not write the 934 * modified page to that sector. 935 * 936 * TODO: what could be done here: wait for the delalloc 937 * runner to write out that page (might involve 938 * COW) and see whether the sector is still 939 * referenced afterwards. 940 * 941 * For the meantime, we'll treat this error 942 * incorrectable, although there is a chance that a 943 * later scrub will find the bad sector again and that 944 * there's no dirty page in memory, then. 945 */ 946 ret = -EIO; 947 goto out; 948 } 949 ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE, 950 fixup->logical, page, 951 offset - page_offset(page), 952 fixup->mirror_num); 953 unlock_page(page); 954 corrected = !ret; 955 } else { 956 /* 957 * we need to get good data first. the general readpage path 958 * will call repair_io_failure for us, we just have to make 959 * sure we read the bad mirror. 960 */ 961 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 962 EXTENT_DAMAGED); 963 if (ret) { 964 /* set_extent_bits should give proper error */ 965 WARN_ON(ret > 0); 966 if (ret > 0) 967 ret = -EFAULT; 968 goto out; 969 } 970 971 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 972 btrfs_get_extent, 973 fixup->mirror_num); 974 wait_on_page_locked(page); 975 976 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 977 end, EXTENT_DAMAGED, 0, NULL); 978 if (!corrected) 979 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 980 EXTENT_DAMAGED); 981 } 982 983 out: 984 if (page) 985 put_page(page); 986 987 iput(inode); 988 989 if (ret < 0) 990 return ret; 991 992 if (ret == 0 && corrected) { 993 /* 994 * we only need to call readpage for one of the inodes belonging 995 * to this extent. so make iterate_extent_inodes stop 996 */ 997 return 1; 998 } 999 1000 return -EIO; 1001 } 1002 1003 static void scrub_fixup_nodatasum(struct btrfs_work *work) 1004 { 1005 struct btrfs_fs_info *fs_info; 1006 int ret; 1007 struct scrub_fixup_nodatasum *fixup; 1008 struct scrub_ctx *sctx; 1009 struct btrfs_trans_handle *trans = NULL; 1010 struct btrfs_path *path; 1011 int uncorrectable = 0; 1012 1013 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 1014 sctx = fixup->sctx; 1015 fs_info = fixup->root->fs_info; 1016 1017 path = btrfs_alloc_path(); 1018 if (!path) { 1019 spin_lock(&sctx->stat_lock); 1020 ++sctx->stat.malloc_errors; 1021 spin_unlock(&sctx->stat_lock); 1022 uncorrectable = 1; 1023 goto out; 1024 } 1025 1026 trans = btrfs_join_transaction(fixup->root); 1027 if (IS_ERR(trans)) { 1028 uncorrectable = 1; 1029 goto out; 1030 } 1031 1032 /* 1033 * the idea is to trigger a regular read through the standard path. we 1034 * read a page from the (failed) logical address by specifying the 1035 * corresponding copynum of the failed sector. thus, that readpage is 1036 * expected to fail. 1037 * that is the point where on-the-fly error correction will kick in 1038 * (once it's finished) and rewrite the failed sector if a good copy 1039 * can be found. 1040 */ 1041 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path, 1042 scrub_fixup_readpage, fixup, false); 1043 if (ret < 0) { 1044 uncorrectable = 1; 1045 goto out; 1046 } 1047 WARN_ON(ret != 1); 1048 1049 spin_lock(&sctx->stat_lock); 1050 ++sctx->stat.corrected_errors; 1051 spin_unlock(&sctx->stat_lock); 1052 1053 out: 1054 if (trans && !IS_ERR(trans)) 1055 btrfs_end_transaction(trans); 1056 if (uncorrectable) { 1057 spin_lock(&sctx->stat_lock); 1058 ++sctx->stat.uncorrectable_errors; 1059 spin_unlock(&sctx->stat_lock); 1060 btrfs_dev_replace_stats_inc( 1061 &fs_info->dev_replace.num_uncorrectable_read_errors); 1062 btrfs_err_rl_in_rcu(fs_info, 1063 "unable to fixup (nodatasum) error at logical %llu on dev %s", 1064 fixup->logical, rcu_str_deref(fixup->dev->name)); 1065 } 1066 1067 btrfs_free_path(path); 1068 kfree(fixup); 1069 1070 scrub_pending_trans_workers_dec(sctx); 1071 } 1072 1073 static inline void scrub_get_recover(struct scrub_recover *recover) 1074 { 1075 refcount_inc(&recover->refs); 1076 } 1077 1078 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 1079 struct scrub_recover *recover) 1080 { 1081 if (refcount_dec_and_test(&recover->refs)) { 1082 btrfs_bio_counter_dec(fs_info); 1083 btrfs_put_bbio(recover->bbio); 1084 kfree(recover); 1085 } 1086 } 1087 1088 /* 1089 * scrub_handle_errored_block gets called when either verification of the 1090 * pages failed or the bio failed to read, e.g. with EIO. In the latter 1091 * case, this function handles all pages in the bio, even though only one 1092 * may be bad. 1093 * The goal of this function is to repair the errored block by using the 1094 * contents of one of the mirrors. 1095 */ 1096 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 1097 { 1098 struct scrub_ctx *sctx = sblock_to_check->sctx; 1099 struct btrfs_device *dev; 1100 struct btrfs_fs_info *fs_info; 1101 u64 logical; 1102 unsigned int failed_mirror_index; 1103 unsigned int is_metadata; 1104 unsigned int have_csum; 1105 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 1106 struct scrub_block *sblock_bad; 1107 int ret; 1108 int mirror_index; 1109 int page_num; 1110 int success; 1111 bool full_stripe_locked; 1112 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 1113 DEFAULT_RATELIMIT_BURST); 1114 1115 BUG_ON(sblock_to_check->page_count < 1); 1116 fs_info = sctx->fs_info; 1117 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 1118 /* 1119 * if we find an error in a super block, we just report it. 1120 * They will get written with the next transaction commit 1121 * anyway 1122 */ 1123 spin_lock(&sctx->stat_lock); 1124 ++sctx->stat.super_errors; 1125 spin_unlock(&sctx->stat_lock); 1126 return 0; 1127 } 1128 logical = sblock_to_check->pagev[0]->logical; 1129 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 1130 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 1131 is_metadata = !(sblock_to_check->pagev[0]->flags & 1132 BTRFS_EXTENT_FLAG_DATA); 1133 have_csum = sblock_to_check->pagev[0]->have_csum; 1134 dev = sblock_to_check->pagev[0]->dev; 1135 1136 /* 1137 * For RAID5/6, race can happen for a different device scrub thread. 1138 * For data corruption, Parity and Data threads will both try 1139 * to recovery the data. 1140 * Race can lead to doubly added csum error, or even unrecoverable 1141 * error. 1142 */ 1143 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 1144 if (ret < 0) { 1145 spin_lock(&sctx->stat_lock); 1146 if (ret == -ENOMEM) 1147 sctx->stat.malloc_errors++; 1148 sctx->stat.read_errors++; 1149 sctx->stat.uncorrectable_errors++; 1150 spin_unlock(&sctx->stat_lock); 1151 return ret; 1152 } 1153 1154 /* 1155 * read all mirrors one after the other. This includes to 1156 * re-read the extent or metadata block that failed (that was 1157 * the cause that this fixup code is called) another time, 1158 * page by page this time in order to know which pages 1159 * caused I/O errors and which ones are good (for all mirrors). 1160 * It is the goal to handle the situation when more than one 1161 * mirror contains I/O errors, but the errors do not 1162 * overlap, i.e. the data can be repaired by selecting the 1163 * pages from those mirrors without I/O error on the 1164 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 1165 * would be that mirror #1 has an I/O error on the first page, 1166 * the second page is good, and mirror #2 has an I/O error on 1167 * the second page, but the first page is good. 1168 * Then the first page of the first mirror can be repaired by 1169 * taking the first page of the second mirror, and the 1170 * second page of the second mirror can be repaired by 1171 * copying the contents of the 2nd page of the 1st mirror. 1172 * One more note: if the pages of one mirror contain I/O 1173 * errors, the checksum cannot be verified. In order to get 1174 * the best data for repairing, the first attempt is to find 1175 * a mirror without I/O errors and with a validated checksum. 1176 * Only if this is not possible, the pages are picked from 1177 * mirrors with I/O errors without considering the checksum. 1178 * If the latter is the case, at the end, the checksum of the 1179 * repaired area is verified in order to correctly maintain 1180 * the statistics. 1181 */ 1182 1183 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 1184 sizeof(*sblocks_for_recheck), GFP_NOFS); 1185 if (!sblocks_for_recheck) { 1186 spin_lock(&sctx->stat_lock); 1187 sctx->stat.malloc_errors++; 1188 sctx->stat.read_errors++; 1189 sctx->stat.uncorrectable_errors++; 1190 spin_unlock(&sctx->stat_lock); 1191 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1192 goto out; 1193 } 1194 1195 /* setup the context, map the logical blocks and alloc the pages */ 1196 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 1197 if (ret) { 1198 spin_lock(&sctx->stat_lock); 1199 sctx->stat.read_errors++; 1200 sctx->stat.uncorrectable_errors++; 1201 spin_unlock(&sctx->stat_lock); 1202 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1203 goto out; 1204 } 1205 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 1206 sblock_bad = sblocks_for_recheck + failed_mirror_index; 1207 1208 /* build and submit the bios for the failed mirror, check checksums */ 1209 scrub_recheck_block(fs_info, sblock_bad, 1); 1210 1211 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 1212 sblock_bad->no_io_error_seen) { 1213 /* 1214 * the error disappeared after reading page by page, or 1215 * the area was part of a huge bio and other parts of the 1216 * bio caused I/O errors, or the block layer merged several 1217 * read requests into one and the error is caused by a 1218 * different bio (usually one of the two latter cases is 1219 * the cause) 1220 */ 1221 spin_lock(&sctx->stat_lock); 1222 sctx->stat.unverified_errors++; 1223 sblock_to_check->data_corrected = 1; 1224 spin_unlock(&sctx->stat_lock); 1225 1226 if (sctx->is_dev_replace) 1227 scrub_write_block_to_dev_replace(sblock_bad); 1228 goto out; 1229 } 1230 1231 if (!sblock_bad->no_io_error_seen) { 1232 spin_lock(&sctx->stat_lock); 1233 sctx->stat.read_errors++; 1234 spin_unlock(&sctx->stat_lock); 1235 if (__ratelimit(&_rs)) 1236 scrub_print_warning("i/o error", sblock_to_check); 1237 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1238 } else if (sblock_bad->checksum_error) { 1239 spin_lock(&sctx->stat_lock); 1240 sctx->stat.csum_errors++; 1241 spin_unlock(&sctx->stat_lock); 1242 if (__ratelimit(&_rs)) 1243 scrub_print_warning("checksum error", sblock_to_check); 1244 btrfs_dev_stat_inc_and_print(dev, 1245 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1246 } else if (sblock_bad->header_error) { 1247 spin_lock(&sctx->stat_lock); 1248 sctx->stat.verify_errors++; 1249 spin_unlock(&sctx->stat_lock); 1250 if (__ratelimit(&_rs)) 1251 scrub_print_warning("checksum/header error", 1252 sblock_to_check); 1253 if (sblock_bad->generation_error) 1254 btrfs_dev_stat_inc_and_print(dev, 1255 BTRFS_DEV_STAT_GENERATION_ERRS); 1256 else 1257 btrfs_dev_stat_inc_and_print(dev, 1258 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1259 } 1260 1261 if (sctx->readonly) { 1262 ASSERT(!sctx->is_dev_replace); 1263 goto out; 1264 } 1265 1266 /* 1267 * NOTE: Even for nodatasum case, it's still possible that it's a 1268 * compressed data extent, thus scrub_fixup_nodatasum(), which write 1269 * inode page cache onto disk, could cause serious data corruption. 1270 * 1271 * So here we could only read from disk, and hope our recovery could 1272 * reach disk before the newer write. 1273 */ 1274 if (0 && !is_metadata && !have_csum) { 1275 struct scrub_fixup_nodatasum *fixup_nodatasum; 1276 1277 WARN_ON(sctx->is_dev_replace); 1278 1279 /* 1280 * !is_metadata and !have_csum, this means that the data 1281 * might not be COWed, that it might be modified 1282 * concurrently. The general strategy to work on the 1283 * commit root does not help in the case when COW is not 1284 * used. 1285 */ 1286 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 1287 if (!fixup_nodatasum) 1288 goto did_not_correct_error; 1289 fixup_nodatasum->sctx = sctx; 1290 fixup_nodatasum->dev = dev; 1291 fixup_nodatasum->logical = logical; 1292 fixup_nodatasum->root = fs_info->extent_root; 1293 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 1294 scrub_pending_trans_workers_inc(sctx); 1295 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, 1296 scrub_fixup_nodatasum, NULL, NULL); 1297 btrfs_queue_work(fs_info->scrub_workers, 1298 &fixup_nodatasum->work); 1299 goto out; 1300 } 1301 1302 /* 1303 * now build and submit the bios for the other mirrors, check 1304 * checksums. 1305 * First try to pick the mirror which is completely without I/O 1306 * errors and also does not have a checksum error. 1307 * If one is found, and if a checksum is present, the full block 1308 * that is known to contain an error is rewritten. Afterwards 1309 * the block is known to be corrected. 1310 * If a mirror is found which is completely correct, and no 1311 * checksum is present, only those pages are rewritten that had 1312 * an I/O error in the block to be repaired, since it cannot be 1313 * determined, which copy of the other pages is better (and it 1314 * could happen otherwise that a correct page would be 1315 * overwritten by a bad one). 1316 */ 1317 for (mirror_index = 0; ;mirror_index++) { 1318 struct scrub_block *sblock_other; 1319 1320 if (mirror_index == failed_mirror_index) 1321 continue; 1322 1323 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1324 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1325 if (mirror_index >= BTRFS_MAX_MIRRORS) 1326 break; 1327 if (!sblocks_for_recheck[mirror_index].page_count) 1328 break; 1329 1330 sblock_other = sblocks_for_recheck + mirror_index; 1331 } else { 1332 struct scrub_recover *r = sblock_bad->pagev[0]->recover; 1333 int max_allowed = r->bbio->num_stripes - 1334 r->bbio->num_tgtdevs; 1335 1336 if (mirror_index >= max_allowed) 1337 break; 1338 if (!sblocks_for_recheck[1].page_count) 1339 break; 1340 1341 ASSERT(failed_mirror_index == 0); 1342 sblock_other = sblocks_for_recheck + 1; 1343 sblock_other->pagev[0]->mirror_num = 1 + mirror_index; 1344 } 1345 1346 /* build and submit the bios, check checksums */ 1347 scrub_recheck_block(fs_info, sblock_other, 0); 1348 1349 if (!sblock_other->header_error && 1350 !sblock_other->checksum_error && 1351 sblock_other->no_io_error_seen) { 1352 if (sctx->is_dev_replace) { 1353 scrub_write_block_to_dev_replace(sblock_other); 1354 goto corrected_error; 1355 } else { 1356 ret = scrub_repair_block_from_good_copy( 1357 sblock_bad, sblock_other); 1358 if (!ret) 1359 goto corrected_error; 1360 } 1361 } 1362 } 1363 1364 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1365 goto did_not_correct_error; 1366 1367 /* 1368 * In case of I/O errors in the area that is supposed to be 1369 * repaired, continue by picking good copies of those pages. 1370 * Select the good pages from mirrors to rewrite bad pages from 1371 * the area to fix. Afterwards verify the checksum of the block 1372 * that is supposed to be repaired. This verification step is 1373 * only done for the purpose of statistic counting and for the 1374 * final scrub report, whether errors remain. 1375 * A perfect algorithm could make use of the checksum and try 1376 * all possible combinations of pages from the different mirrors 1377 * until the checksum verification succeeds. For example, when 1378 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1379 * of mirror #2 is readable but the final checksum test fails, 1380 * then the 2nd page of mirror #3 could be tried, whether now 1381 * the final checksum succeeds. But this would be a rare 1382 * exception and is therefore not implemented. At least it is 1383 * avoided that the good copy is overwritten. 1384 * A more useful improvement would be to pick the sectors 1385 * without I/O error based on sector sizes (512 bytes on legacy 1386 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1387 * mirror could be repaired by taking 512 byte of a different 1388 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1389 * area are unreadable. 1390 */ 1391 success = 1; 1392 for (page_num = 0; page_num < sblock_bad->page_count; 1393 page_num++) { 1394 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1395 struct scrub_block *sblock_other = NULL; 1396 1397 /* skip no-io-error page in scrub */ 1398 if (!page_bad->io_error && !sctx->is_dev_replace) 1399 continue; 1400 1401 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1402 /* 1403 * In case of dev replace, if raid56 rebuild process 1404 * didn't work out correct data, then copy the content 1405 * in sblock_bad to make sure target device is identical 1406 * to source device, instead of writing garbage data in 1407 * sblock_for_recheck array to target device. 1408 */ 1409 sblock_other = NULL; 1410 } else if (page_bad->io_error) { 1411 /* try to find no-io-error page in mirrors */ 1412 for (mirror_index = 0; 1413 mirror_index < BTRFS_MAX_MIRRORS && 1414 sblocks_for_recheck[mirror_index].page_count > 0; 1415 mirror_index++) { 1416 if (!sblocks_for_recheck[mirror_index]. 1417 pagev[page_num]->io_error) { 1418 sblock_other = sblocks_for_recheck + 1419 mirror_index; 1420 break; 1421 } 1422 } 1423 if (!sblock_other) 1424 success = 0; 1425 } 1426 1427 if (sctx->is_dev_replace) { 1428 /* 1429 * did not find a mirror to fetch the page 1430 * from. scrub_write_page_to_dev_replace() 1431 * handles this case (page->io_error), by 1432 * filling the block with zeros before 1433 * submitting the write request 1434 */ 1435 if (!sblock_other) 1436 sblock_other = sblock_bad; 1437 1438 if (scrub_write_page_to_dev_replace(sblock_other, 1439 page_num) != 0) { 1440 btrfs_dev_replace_stats_inc( 1441 &fs_info->dev_replace.num_write_errors); 1442 success = 0; 1443 } 1444 } else if (sblock_other) { 1445 ret = scrub_repair_page_from_good_copy(sblock_bad, 1446 sblock_other, 1447 page_num, 0); 1448 if (0 == ret) 1449 page_bad->io_error = 0; 1450 else 1451 success = 0; 1452 } 1453 } 1454 1455 if (success && !sctx->is_dev_replace) { 1456 if (is_metadata || have_csum) { 1457 /* 1458 * need to verify the checksum now that all 1459 * sectors on disk are repaired (the write 1460 * request for data to be repaired is on its way). 1461 * Just be lazy and use scrub_recheck_block() 1462 * which re-reads the data before the checksum 1463 * is verified, but most likely the data comes out 1464 * of the page cache. 1465 */ 1466 scrub_recheck_block(fs_info, sblock_bad, 1); 1467 if (!sblock_bad->header_error && 1468 !sblock_bad->checksum_error && 1469 sblock_bad->no_io_error_seen) 1470 goto corrected_error; 1471 else 1472 goto did_not_correct_error; 1473 } else { 1474 corrected_error: 1475 spin_lock(&sctx->stat_lock); 1476 sctx->stat.corrected_errors++; 1477 sblock_to_check->data_corrected = 1; 1478 spin_unlock(&sctx->stat_lock); 1479 btrfs_err_rl_in_rcu(fs_info, 1480 "fixed up error at logical %llu on dev %s", 1481 logical, rcu_str_deref(dev->name)); 1482 } 1483 } else { 1484 did_not_correct_error: 1485 spin_lock(&sctx->stat_lock); 1486 sctx->stat.uncorrectable_errors++; 1487 spin_unlock(&sctx->stat_lock); 1488 btrfs_err_rl_in_rcu(fs_info, 1489 "unable to fixup (regular) error at logical %llu on dev %s", 1490 logical, rcu_str_deref(dev->name)); 1491 } 1492 1493 out: 1494 if (sblocks_for_recheck) { 1495 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1496 mirror_index++) { 1497 struct scrub_block *sblock = sblocks_for_recheck + 1498 mirror_index; 1499 struct scrub_recover *recover; 1500 int page_index; 1501 1502 for (page_index = 0; page_index < sblock->page_count; 1503 page_index++) { 1504 sblock->pagev[page_index]->sblock = NULL; 1505 recover = sblock->pagev[page_index]->recover; 1506 if (recover) { 1507 scrub_put_recover(fs_info, recover); 1508 sblock->pagev[page_index]->recover = 1509 NULL; 1510 } 1511 scrub_page_put(sblock->pagev[page_index]); 1512 } 1513 } 1514 kfree(sblocks_for_recheck); 1515 } 1516 1517 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1518 if (ret < 0) 1519 return ret; 1520 return 0; 1521 } 1522 1523 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1524 { 1525 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1526 return 2; 1527 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1528 return 3; 1529 else 1530 return (int)bbio->num_stripes; 1531 } 1532 1533 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1534 u64 *raid_map, 1535 u64 mapped_length, 1536 int nstripes, int mirror, 1537 int *stripe_index, 1538 u64 *stripe_offset) 1539 { 1540 int i; 1541 1542 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1543 /* RAID5/6 */ 1544 for (i = 0; i < nstripes; i++) { 1545 if (raid_map[i] == RAID6_Q_STRIPE || 1546 raid_map[i] == RAID5_P_STRIPE) 1547 continue; 1548 1549 if (logical >= raid_map[i] && 1550 logical < raid_map[i] + mapped_length) 1551 break; 1552 } 1553 1554 *stripe_index = i; 1555 *stripe_offset = logical - raid_map[i]; 1556 } else { 1557 /* The other RAID type */ 1558 *stripe_index = mirror; 1559 *stripe_offset = 0; 1560 } 1561 } 1562 1563 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1564 struct scrub_block *sblocks_for_recheck) 1565 { 1566 struct scrub_ctx *sctx = original_sblock->sctx; 1567 struct btrfs_fs_info *fs_info = sctx->fs_info; 1568 u64 length = original_sblock->page_count * PAGE_SIZE; 1569 u64 logical = original_sblock->pagev[0]->logical; 1570 u64 generation = original_sblock->pagev[0]->generation; 1571 u64 flags = original_sblock->pagev[0]->flags; 1572 u64 have_csum = original_sblock->pagev[0]->have_csum; 1573 struct scrub_recover *recover; 1574 struct btrfs_bio *bbio; 1575 u64 sublen; 1576 u64 mapped_length; 1577 u64 stripe_offset; 1578 int stripe_index; 1579 int page_index = 0; 1580 int mirror_index; 1581 int nmirrors; 1582 int ret; 1583 1584 /* 1585 * note: the two members refs and outstanding_pages 1586 * are not used (and not set) in the blocks that are used for 1587 * the recheck procedure 1588 */ 1589 1590 while (length > 0) { 1591 sublen = min_t(u64, length, PAGE_SIZE); 1592 mapped_length = sublen; 1593 bbio = NULL; 1594 1595 /* 1596 * with a length of PAGE_SIZE, each returned stripe 1597 * represents one mirror 1598 */ 1599 btrfs_bio_counter_inc_blocked(fs_info); 1600 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1601 logical, &mapped_length, &bbio); 1602 if (ret || !bbio || mapped_length < sublen) { 1603 btrfs_put_bbio(bbio); 1604 btrfs_bio_counter_dec(fs_info); 1605 return -EIO; 1606 } 1607 1608 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1609 if (!recover) { 1610 btrfs_put_bbio(bbio); 1611 btrfs_bio_counter_dec(fs_info); 1612 return -ENOMEM; 1613 } 1614 1615 refcount_set(&recover->refs, 1); 1616 recover->bbio = bbio; 1617 recover->map_length = mapped_length; 1618 1619 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1620 1621 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1622 1623 for (mirror_index = 0; mirror_index < nmirrors; 1624 mirror_index++) { 1625 struct scrub_block *sblock; 1626 struct scrub_page *page; 1627 1628 sblock = sblocks_for_recheck + mirror_index; 1629 sblock->sctx = sctx; 1630 1631 page = kzalloc(sizeof(*page), GFP_NOFS); 1632 if (!page) { 1633 leave_nomem: 1634 spin_lock(&sctx->stat_lock); 1635 sctx->stat.malloc_errors++; 1636 spin_unlock(&sctx->stat_lock); 1637 scrub_put_recover(fs_info, recover); 1638 return -ENOMEM; 1639 } 1640 scrub_page_get(page); 1641 sblock->pagev[page_index] = page; 1642 page->sblock = sblock; 1643 page->flags = flags; 1644 page->generation = generation; 1645 page->logical = logical; 1646 page->have_csum = have_csum; 1647 if (have_csum) 1648 memcpy(page->csum, 1649 original_sblock->pagev[0]->csum, 1650 sctx->csum_size); 1651 1652 scrub_stripe_index_and_offset(logical, 1653 bbio->map_type, 1654 bbio->raid_map, 1655 mapped_length, 1656 bbio->num_stripes - 1657 bbio->num_tgtdevs, 1658 mirror_index, 1659 &stripe_index, 1660 &stripe_offset); 1661 page->physical = bbio->stripes[stripe_index].physical + 1662 stripe_offset; 1663 page->dev = bbio->stripes[stripe_index].dev; 1664 1665 BUG_ON(page_index >= original_sblock->page_count); 1666 page->physical_for_dev_replace = 1667 original_sblock->pagev[page_index]-> 1668 physical_for_dev_replace; 1669 /* for missing devices, dev->bdev is NULL */ 1670 page->mirror_num = mirror_index + 1; 1671 sblock->page_count++; 1672 page->page = alloc_page(GFP_NOFS); 1673 if (!page->page) 1674 goto leave_nomem; 1675 1676 scrub_get_recover(recover); 1677 page->recover = recover; 1678 } 1679 scrub_put_recover(fs_info, recover); 1680 length -= sublen; 1681 logical += sublen; 1682 page_index++; 1683 } 1684 1685 return 0; 1686 } 1687 1688 static void scrub_bio_wait_endio(struct bio *bio) 1689 { 1690 complete(bio->bi_private); 1691 } 1692 1693 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1694 struct bio *bio, 1695 struct scrub_page *page) 1696 { 1697 DECLARE_COMPLETION_ONSTACK(done); 1698 int ret; 1699 int mirror_num; 1700 1701 bio->bi_iter.bi_sector = page->logical >> 9; 1702 bio->bi_private = &done; 1703 bio->bi_end_io = scrub_bio_wait_endio; 1704 1705 mirror_num = page->sblock->pagev[0]->mirror_num; 1706 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, 1707 page->recover->map_length, 1708 mirror_num, 0); 1709 if (ret) 1710 return ret; 1711 1712 wait_for_completion_io(&done); 1713 return blk_status_to_errno(bio->bi_status); 1714 } 1715 1716 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1717 struct scrub_block *sblock) 1718 { 1719 struct scrub_page *first_page = sblock->pagev[0]; 1720 struct bio *bio; 1721 int page_num; 1722 1723 /* All pages in sblock belong to the same stripe on the same device. */ 1724 ASSERT(first_page->dev); 1725 if (!first_page->dev->bdev) 1726 goto out; 1727 1728 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES); 1729 bio_set_dev(bio, first_page->dev->bdev); 1730 1731 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1732 struct scrub_page *page = sblock->pagev[page_num]; 1733 1734 WARN_ON(!page->page); 1735 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1736 } 1737 1738 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { 1739 bio_put(bio); 1740 goto out; 1741 } 1742 1743 bio_put(bio); 1744 1745 scrub_recheck_block_checksum(sblock); 1746 1747 return; 1748 out: 1749 for (page_num = 0; page_num < sblock->page_count; page_num++) 1750 sblock->pagev[page_num]->io_error = 1; 1751 1752 sblock->no_io_error_seen = 0; 1753 } 1754 1755 /* 1756 * this function will check the on disk data for checksum errors, header 1757 * errors and read I/O errors. If any I/O errors happen, the exact pages 1758 * which are errored are marked as being bad. The goal is to enable scrub 1759 * to take those pages that are not errored from all the mirrors so that 1760 * the pages that are errored in the just handled mirror can be repaired. 1761 */ 1762 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1763 struct scrub_block *sblock, 1764 int retry_failed_mirror) 1765 { 1766 int page_num; 1767 1768 sblock->no_io_error_seen = 1; 1769 1770 /* short cut for raid56 */ 1771 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) 1772 return scrub_recheck_block_on_raid56(fs_info, sblock); 1773 1774 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1775 struct bio *bio; 1776 struct scrub_page *page = sblock->pagev[page_num]; 1777 1778 if (page->dev->bdev == NULL) { 1779 page->io_error = 1; 1780 sblock->no_io_error_seen = 0; 1781 continue; 1782 } 1783 1784 WARN_ON(!page->page); 1785 bio = btrfs_io_bio_alloc(1); 1786 bio_set_dev(bio, page->dev->bdev); 1787 1788 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1789 bio->bi_iter.bi_sector = page->physical >> 9; 1790 bio->bi_opf = REQ_OP_READ; 1791 1792 if (btrfsic_submit_bio_wait(bio)) { 1793 page->io_error = 1; 1794 sblock->no_io_error_seen = 0; 1795 } 1796 1797 bio_put(bio); 1798 } 1799 1800 if (sblock->no_io_error_seen) 1801 scrub_recheck_block_checksum(sblock); 1802 } 1803 1804 static inline int scrub_check_fsid(u8 fsid[], 1805 struct scrub_page *spage) 1806 { 1807 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1808 int ret; 1809 1810 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1811 return !ret; 1812 } 1813 1814 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1815 { 1816 sblock->header_error = 0; 1817 sblock->checksum_error = 0; 1818 sblock->generation_error = 0; 1819 1820 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1821 scrub_checksum_data(sblock); 1822 else 1823 scrub_checksum_tree_block(sblock); 1824 } 1825 1826 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1827 struct scrub_block *sblock_good) 1828 { 1829 int page_num; 1830 int ret = 0; 1831 1832 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1833 int ret_sub; 1834 1835 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1836 sblock_good, 1837 page_num, 1); 1838 if (ret_sub) 1839 ret = ret_sub; 1840 } 1841 1842 return ret; 1843 } 1844 1845 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1846 struct scrub_block *sblock_good, 1847 int page_num, int force_write) 1848 { 1849 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1850 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1851 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1852 1853 BUG_ON(page_bad->page == NULL); 1854 BUG_ON(page_good->page == NULL); 1855 if (force_write || sblock_bad->header_error || 1856 sblock_bad->checksum_error || page_bad->io_error) { 1857 struct bio *bio; 1858 int ret; 1859 1860 if (!page_bad->dev->bdev) { 1861 btrfs_warn_rl(fs_info, 1862 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1863 return -EIO; 1864 } 1865 1866 bio = btrfs_io_bio_alloc(1); 1867 bio_set_dev(bio, page_bad->dev->bdev); 1868 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1869 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1870 1871 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1872 if (PAGE_SIZE != ret) { 1873 bio_put(bio); 1874 return -EIO; 1875 } 1876 1877 if (btrfsic_submit_bio_wait(bio)) { 1878 btrfs_dev_stat_inc_and_print(page_bad->dev, 1879 BTRFS_DEV_STAT_WRITE_ERRS); 1880 btrfs_dev_replace_stats_inc( 1881 &fs_info->dev_replace.num_write_errors); 1882 bio_put(bio); 1883 return -EIO; 1884 } 1885 bio_put(bio); 1886 } 1887 1888 return 0; 1889 } 1890 1891 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1892 { 1893 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1894 int page_num; 1895 1896 /* 1897 * This block is used for the check of the parity on the source device, 1898 * so the data needn't be written into the destination device. 1899 */ 1900 if (sblock->sparity) 1901 return; 1902 1903 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1904 int ret; 1905 1906 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1907 if (ret) 1908 btrfs_dev_replace_stats_inc( 1909 &fs_info->dev_replace.num_write_errors); 1910 } 1911 } 1912 1913 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1914 int page_num) 1915 { 1916 struct scrub_page *spage = sblock->pagev[page_num]; 1917 1918 BUG_ON(spage->page == NULL); 1919 if (spage->io_error) { 1920 void *mapped_buffer = kmap_atomic(spage->page); 1921 1922 clear_page(mapped_buffer); 1923 flush_dcache_page(spage->page); 1924 kunmap_atomic(mapped_buffer); 1925 } 1926 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1927 } 1928 1929 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1930 struct scrub_page *spage) 1931 { 1932 struct scrub_bio *sbio; 1933 int ret; 1934 1935 mutex_lock(&sctx->wr_lock); 1936 again: 1937 if (!sctx->wr_curr_bio) { 1938 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1939 GFP_KERNEL); 1940 if (!sctx->wr_curr_bio) { 1941 mutex_unlock(&sctx->wr_lock); 1942 return -ENOMEM; 1943 } 1944 sctx->wr_curr_bio->sctx = sctx; 1945 sctx->wr_curr_bio->page_count = 0; 1946 } 1947 sbio = sctx->wr_curr_bio; 1948 if (sbio->page_count == 0) { 1949 struct bio *bio; 1950 1951 sbio->physical = spage->physical_for_dev_replace; 1952 sbio->logical = spage->logical; 1953 sbio->dev = sctx->wr_tgtdev; 1954 bio = sbio->bio; 1955 if (!bio) { 1956 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); 1957 sbio->bio = bio; 1958 } 1959 1960 bio->bi_private = sbio; 1961 bio->bi_end_io = scrub_wr_bio_end_io; 1962 bio_set_dev(bio, sbio->dev->bdev); 1963 bio->bi_iter.bi_sector = sbio->physical >> 9; 1964 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 1965 sbio->status = 0; 1966 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1967 spage->physical_for_dev_replace || 1968 sbio->logical + sbio->page_count * PAGE_SIZE != 1969 spage->logical) { 1970 scrub_wr_submit(sctx); 1971 goto again; 1972 } 1973 1974 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1975 if (ret != PAGE_SIZE) { 1976 if (sbio->page_count < 1) { 1977 bio_put(sbio->bio); 1978 sbio->bio = NULL; 1979 mutex_unlock(&sctx->wr_lock); 1980 return -EIO; 1981 } 1982 scrub_wr_submit(sctx); 1983 goto again; 1984 } 1985 1986 sbio->pagev[sbio->page_count] = spage; 1987 scrub_page_get(spage); 1988 sbio->page_count++; 1989 if (sbio->page_count == sctx->pages_per_wr_bio) 1990 scrub_wr_submit(sctx); 1991 mutex_unlock(&sctx->wr_lock); 1992 1993 return 0; 1994 } 1995 1996 static void scrub_wr_submit(struct scrub_ctx *sctx) 1997 { 1998 struct scrub_bio *sbio; 1999 2000 if (!sctx->wr_curr_bio) 2001 return; 2002 2003 sbio = sctx->wr_curr_bio; 2004 sctx->wr_curr_bio = NULL; 2005 WARN_ON(!sbio->bio->bi_disk); 2006 scrub_pending_bio_inc(sctx); 2007 /* process all writes in a single worker thread. Then the block layer 2008 * orders the requests before sending them to the driver which 2009 * doubled the write performance on spinning disks when measured 2010 * with Linux 3.5 */ 2011 btrfsic_submit_bio(sbio->bio); 2012 } 2013 2014 static void scrub_wr_bio_end_io(struct bio *bio) 2015 { 2016 struct scrub_bio *sbio = bio->bi_private; 2017 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2018 2019 sbio->status = bio->bi_status; 2020 sbio->bio = bio; 2021 2022 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 2023 scrub_wr_bio_end_io_worker, NULL, NULL); 2024 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 2025 } 2026 2027 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 2028 { 2029 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2030 struct scrub_ctx *sctx = sbio->sctx; 2031 int i; 2032 2033 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 2034 if (sbio->status) { 2035 struct btrfs_dev_replace *dev_replace = 2036 &sbio->sctx->fs_info->dev_replace; 2037 2038 for (i = 0; i < sbio->page_count; i++) { 2039 struct scrub_page *spage = sbio->pagev[i]; 2040 2041 spage->io_error = 1; 2042 btrfs_dev_replace_stats_inc(&dev_replace-> 2043 num_write_errors); 2044 } 2045 } 2046 2047 for (i = 0; i < sbio->page_count; i++) 2048 scrub_page_put(sbio->pagev[i]); 2049 2050 bio_put(sbio->bio); 2051 kfree(sbio); 2052 scrub_pending_bio_dec(sctx); 2053 } 2054 2055 static int scrub_checksum(struct scrub_block *sblock) 2056 { 2057 u64 flags; 2058 int ret; 2059 2060 /* 2061 * No need to initialize these stats currently, 2062 * because this function only use return value 2063 * instead of these stats value. 2064 * 2065 * Todo: 2066 * always use stats 2067 */ 2068 sblock->header_error = 0; 2069 sblock->generation_error = 0; 2070 sblock->checksum_error = 0; 2071 2072 WARN_ON(sblock->page_count < 1); 2073 flags = sblock->pagev[0]->flags; 2074 ret = 0; 2075 if (flags & BTRFS_EXTENT_FLAG_DATA) 2076 ret = scrub_checksum_data(sblock); 2077 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2078 ret = scrub_checksum_tree_block(sblock); 2079 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 2080 (void)scrub_checksum_super(sblock); 2081 else 2082 WARN_ON(1); 2083 if (ret) 2084 scrub_handle_errored_block(sblock); 2085 2086 return ret; 2087 } 2088 2089 static int scrub_checksum_data(struct scrub_block *sblock) 2090 { 2091 struct scrub_ctx *sctx = sblock->sctx; 2092 u8 csum[BTRFS_CSUM_SIZE]; 2093 u8 *on_disk_csum; 2094 struct page *page; 2095 void *buffer; 2096 u32 crc = ~(u32)0; 2097 u64 len; 2098 int index; 2099 2100 BUG_ON(sblock->page_count < 1); 2101 if (!sblock->pagev[0]->have_csum) 2102 return 0; 2103 2104 on_disk_csum = sblock->pagev[0]->csum; 2105 page = sblock->pagev[0]->page; 2106 buffer = kmap_atomic(page); 2107 2108 len = sctx->fs_info->sectorsize; 2109 index = 0; 2110 for (;;) { 2111 u64 l = min_t(u64, len, PAGE_SIZE); 2112 2113 crc = btrfs_csum_data(buffer, crc, l); 2114 kunmap_atomic(buffer); 2115 len -= l; 2116 if (len == 0) 2117 break; 2118 index++; 2119 BUG_ON(index >= sblock->page_count); 2120 BUG_ON(!sblock->pagev[index]->page); 2121 page = sblock->pagev[index]->page; 2122 buffer = kmap_atomic(page); 2123 } 2124 2125 btrfs_csum_final(crc, csum); 2126 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 2127 sblock->checksum_error = 1; 2128 2129 return sblock->checksum_error; 2130 } 2131 2132 static int scrub_checksum_tree_block(struct scrub_block *sblock) 2133 { 2134 struct scrub_ctx *sctx = sblock->sctx; 2135 struct btrfs_header *h; 2136 struct btrfs_fs_info *fs_info = sctx->fs_info; 2137 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2138 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2139 struct page *page; 2140 void *mapped_buffer; 2141 u64 mapped_size; 2142 void *p; 2143 u32 crc = ~(u32)0; 2144 u64 len; 2145 int index; 2146 2147 BUG_ON(sblock->page_count < 1); 2148 page = sblock->pagev[0]->page; 2149 mapped_buffer = kmap_atomic(page); 2150 h = (struct btrfs_header *)mapped_buffer; 2151 memcpy(on_disk_csum, h->csum, sctx->csum_size); 2152 2153 /* 2154 * we don't use the getter functions here, as we 2155 * a) don't have an extent buffer and 2156 * b) the page is already kmapped 2157 */ 2158 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 2159 sblock->header_error = 1; 2160 2161 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { 2162 sblock->header_error = 1; 2163 sblock->generation_error = 1; 2164 } 2165 2166 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 2167 sblock->header_error = 1; 2168 2169 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 2170 BTRFS_UUID_SIZE)) 2171 sblock->header_error = 1; 2172 2173 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE; 2174 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2175 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2176 index = 0; 2177 for (;;) { 2178 u64 l = min_t(u64, len, mapped_size); 2179 2180 crc = btrfs_csum_data(p, crc, l); 2181 kunmap_atomic(mapped_buffer); 2182 len -= l; 2183 if (len == 0) 2184 break; 2185 index++; 2186 BUG_ON(index >= sblock->page_count); 2187 BUG_ON(!sblock->pagev[index]->page); 2188 page = sblock->pagev[index]->page; 2189 mapped_buffer = kmap_atomic(page); 2190 mapped_size = PAGE_SIZE; 2191 p = mapped_buffer; 2192 } 2193 2194 btrfs_csum_final(crc, calculated_csum); 2195 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2196 sblock->checksum_error = 1; 2197 2198 return sblock->header_error || sblock->checksum_error; 2199 } 2200 2201 static int scrub_checksum_super(struct scrub_block *sblock) 2202 { 2203 struct btrfs_super_block *s; 2204 struct scrub_ctx *sctx = sblock->sctx; 2205 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2206 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2207 struct page *page; 2208 void *mapped_buffer; 2209 u64 mapped_size; 2210 void *p; 2211 u32 crc = ~(u32)0; 2212 int fail_gen = 0; 2213 int fail_cor = 0; 2214 u64 len; 2215 int index; 2216 2217 BUG_ON(sblock->page_count < 1); 2218 page = sblock->pagev[0]->page; 2219 mapped_buffer = kmap_atomic(page); 2220 s = (struct btrfs_super_block *)mapped_buffer; 2221 memcpy(on_disk_csum, s->csum, sctx->csum_size); 2222 2223 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 2224 ++fail_cor; 2225 2226 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 2227 ++fail_gen; 2228 2229 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 2230 ++fail_cor; 2231 2232 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 2233 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 2234 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 2235 index = 0; 2236 for (;;) { 2237 u64 l = min_t(u64, len, mapped_size); 2238 2239 crc = btrfs_csum_data(p, crc, l); 2240 kunmap_atomic(mapped_buffer); 2241 len -= l; 2242 if (len == 0) 2243 break; 2244 index++; 2245 BUG_ON(index >= sblock->page_count); 2246 BUG_ON(!sblock->pagev[index]->page); 2247 page = sblock->pagev[index]->page; 2248 mapped_buffer = kmap_atomic(page); 2249 mapped_size = PAGE_SIZE; 2250 p = mapped_buffer; 2251 } 2252 2253 btrfs_csum_final(crc, calculated_csum); 2254 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 2255 ++fail_cor; 2256 2257 if (fail_cor + fail_gen) { 2258 /* 2259 * if we find an error in a super block, we just report it. 2260 * They will get written with the next transaction commit 2261 * anyway 2262 */ 2263 spin_lock(&sctx->stat_lock); 2264 ++sctx->stat.super_errors; 2265 spin_unlock(&sctx->stat_lock); 2266 if (fail_cor) 2267 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2268 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2269 else 2270 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 2271 BTRFS_DEV_STAT_GENERATION_ERRS); 2272 } 2273 2274 return fail_cor + fail_gen; 2275 } 2276 2277 static void scrub_block_get(struct scrub_block *sblock) 2278 { 2279 refcount_inc(&sblock->refs); 2280 } 2281 2282 static void scrub_block_put(struct scrub_block *sblock) 2283 { 2284 if (refcount_dec_and_test(&sblock->refs)) { 2285 int i; 2286 2287 if (sblock->sparity) 2288 scrub_parity_put(sblock->sparity); 2289 2290 for (i = 0; i < sblock->page_count; i++) 2291 scrub_page_put(sblock->pagev[i]); 2292 kfree(sblock); 2293 } 2294 } 2295 2296 static void scrub_page_get(struct scrub_page *spage) 2297 { 2298 atomic_inc(&spage->refs); 2299 } 2300 2301 static void scrub_page_put(struct scrub_page *spage) 2302 { 2303 if (atomic_dec_and_test(&spage->refs)) { 2304 if (spage->page) 2305 __free_page(spage->page); 2306 kfree(spage); 2307 } 2308 } 2309 2310 static void scrub_submit(struct scrub_ctx *sctx) 2311 { 2312 struct scrub_bio *sbio; 2313 2314 if (sctx->curr == -1) 2315 return; 2316 2317 sbio = sctx->bios[sctx->curr]; 2318 sctx->curr = -1; 2319 scrub_pending_bio_inc(sctx); 2320 btrfsic_submit_bio(sbio->bio); 2321 } 2322 2323 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2324 struct scrub_page *spage) 2325 { 2326 struct scrub_block *sblock = spage->sblock; 2327 struct scrub_bio *sbio; 2328 int ret; 2329 2330 again: 2331 /* 2332 * grab a fresh bio or wait for one to become available 2333 */ 2334 while (sctx->curr == -1) { 2335 spin_lock(&sctx->list_lock); 2336 sctx->curr = sctx->first_free; 2337 if (sctx->curr != -1) { 2338 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2339 sctx->bios[sctx->curr]->next_free = -1; 2340 sctx->bios[sctx->curr]->page_count = 0; 2341 spin_unlock(&sctx->list_lock); 2342 } else { 2343 spin_unlock(&sctx->list_lock); 2344 wait_event(sctx->list_wait, sctx->first_free != -1); 2345 } 2346 } 2347 sbio = sctx->bios[sctx->curr]; 2348 if (sbio->page_count == 0) { 2349 struct bio *bio; 2350 2351 sbio->physical = spage->physical; 2352 sbio->logical = spage->logical; 2353 sbio->dev = spage->dev; 2354 bio = sbio->bio; 2355 if (!bio) { 2356 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); 2357 sbio->bio = bio; 2358 } 2359 2360 bio->bi_private = sbio; 2361 bio->bi_end_io = scrub_bio_end_io; 2362 bio_set_dev(bio, sbio->dev->bdev); 2363 bio->bi_iter.bi_sector = sbio->physical >> 9; 2364 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2365 sbio->status = 0; 2366 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2367 spage->physical || 2368 sbio->logical + sbio->page_count * PAGE_SIZE != 2369 spage->logical || 2370 sbio->dev != spage->dev) { 2371 scrub_submit(sctx); 2372 goto again; 2373 } 2374 2375 sbio->pagev[sbio->page_count] = spage; 2376 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2377 if (ret != PAGE_SIZE) { 2378 if (sbio->page_count < 1) { 2379 bio_put(sbio->bio); 2380 sbio->bio = NULL; 2381 return -EIO; 2382 } 2383 scrub_submit(sctx); 2384 goto again; 2385 } 2386 2387 scrub_block_get(sblock); /* one for the page added to the bio */ 2388 atomic_inc(&sblock->outstanding_pages); 2389 sbio->page_count++; 2390 if (sbio->page_count == sctx->pages_per_rd_bio) 2391 scrub_submit(sctx); 2392 2393 return 0; 2394 } 2395 2396 static void scrub_missing_raid56_end_io(struct bio *bio) 2397 { 2398 struct scrub_block *sblock = bio->bi_private; 2399 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2400 2401 if (bio->bi_status) 2402 sblock->no_io_error_seen = 0; 2403 2404 bio_put(bio); 2405 2406 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2407 } 2408 2409 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2410 { 2411 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2412 struct scrub_ctx *sctx = sblock->sctx; 2413 struct btrfs_fs_info *fs_info = sctx->fs_info; 2414 u64 logical; 2415 struct btrfs_device *dev; 2416 2417 logical = sblock->pagev[0]->logical; 2418 dev = sblock->pagev[0]->dev; 2419 2420 if (sblock->no_io_error_seen) 2421 scrub_recheck_block_checksum(sblock); 2422 2423 if (!sblock->no_io_error_seen) { 2424 spin_lock(&sctx->stat_lock); 2425 sctx->stat.read_errors++; 2426 spin_unlock(&sctx->stat_lock); 2427 btrfs_err_rl_in_rcu(fs_info, 2428 "IO error rebuilding logical %llu for dev %s", 2429 logical, rcu_str_deref(dev->name)); 2430 } else if (sblock->header_error || sblock->checksum_error) { 2431 spin_lock(&sctx->stat_lock); 2432 sctx->stat.uncorrectable_errors++; 2433 spin_unlock(&sctx->stat_lock); 2434 btrfs_err_rl_in_rcu(fs_info, 2435 "failed to rebuild valid logical %llu for dev %s", 2436 logical, rcu_str_deref(dev->name)); 2437 } else { 2438 scrub_write_block_to_dev_replace(sblock); 2439 } 2440 2441 scrub_block_put(sblock); 2442 2443 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2444 mutex_lock(&sctx->wr_lock); 2445 scrub_wr_submit(sctx); 2446 mutex_unlock(&sctx->wr_lock); 2447 } 2448 2449 scrub_pending_bio_dec(sctx); 2450 } 2451 2452 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2453 { 2454 struct scrub_ctx *sctx = sblock->sctx; 2455 struct btrfs_fs_info *fs_info = sctx->fs_info; 2456 u64 length = sblock->page_count * PAGE_SIZE; 2457 u64 logical = sblock->pagev[0]->logical; 2458 struct btrfs_bio *bbio = NULL; 2459 struct bio *bio; 2460 struct btrfs_raid_bio *rbio; 2461 int ret; 2462 int i; 2463 2464 btrfs_bio_counter_inc_blocked(fs_info); 2465 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2466 &length, &bbio); 2467 if (ret || !bbio || !bbio->raid_map) 2468 goto bbio_out; 2469 2470 if (WARN_ON(!sctx->is_dev_replace || 2471 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2472 /* 2473 * We shouldn't be scrubbing a missing device. Even for dev 2474 * replace, we should only get here for RAID 5/6. We either 2475 * managed to mount something with no mirrors remaining or 2476 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2477 */ 2478 goto bbio_out; 2479 } 2480 2481 bio = btrfs_io_bio_alloc(0); 2482 bio->bi_iter.bi_sector = logical >> 9; 2483 bio->bi_private = sblock; 2484 bio->bi_end_io = scrub_missing_raid56_end_io; 2485 2486 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2487 if (!rbio) 2488 goto rbio_out; 2489 2490 for (i = 0; i < sblock->page_count; i++) { 2491 struct scrub_page *spage = sblock->pagev[i]; 2492 2493 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2494 } 2495 2496 btrfs_init_work(&sblock->work, btrfs_scrub_helper, 2497 scrub_missing_raid56_worker, NULL, NULL); 2498 scrub_block_get(sblock); 2499 scrub_pending_bio_inc(sctx); 2500 raid56_submit_missing_rbio(rbio); 2501 return; 2502 2503 rbio_out: 2504 bio_put(bio); 2505 bbio_out: 2506 btrfs_bio_counter_dec(fs_info); 2507 btrfs_put_bbio(bbio); 2508 spin_lock(&sctx->stat_lock); 2509 sctx->stat.malloc_errors++; 2510 spin_unlock(&sctx->stat_lock); 2511 } 2512 2513 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2514 u64 physical, struct btrfs_device *dev, u64 flags, 2515 u64 gen, int mirror_num, u8 *csum, int force, 2516 u64 physical_for_dev_replace) 2517 { 2518 struct scrub_block *sblock; 2519 int index; 2520 2521 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2522 if (!sblock) { 2523 spin_lock(&sctx->stat_lock); 2524 sctx->stat.malloc_errors++; 2525 spin_unlock(&sctx->stat_lock); 2526 return -ENOMEM; 2527 } 2528 2529 /* one ref inside this function, plus one for each page added to 2530 * a bio later on */ 2531 refcount_set(&sblock->refs, 1); 2532 sblock->sctx = sctx; 2533 sblock->no_io_error_seen = 1; 2534 2535 for (index = 0; len > 0; index++) { 2536 struct scrub_page *spage; 2537 u64 l = min_t(u64, len, PAGE_SIZE); 2538 2539 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2540 if (!spage) { 2541 leave_nomem: 2542 spin_lock(&sctx->stat_lock); 2543 sctx->stat.malloc_errors++; 2544 spin_unlock(&sctx->stat_lock); 2545 scrub_block_put(sblock); 2546 return -ENOMEM; 2547 } 2548 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2549 scrub_page_get(spage); 2550 sblock->pagev[index] = spage; 2551 spage->sblock = sblock; 2552 spage->dev = dev; 2553 spage->flags = flags; 2554 spage->generation = gen; 2555 spage->logical = logical; 2556 spage->physical = physical; 2557 spage->physical_for_dev_replace = physical_for_dev_replace; 2558 spage->mirror_num = mirror_num; 2559 if (csum) { 2560 spage->have_csum = 1; 2561 memcpy(spage->csum, csum, sctx->csum_size); 2562 } else { 2563 spage->have_csum = 0; 2564 } 2565 sblock->page_count++; 2566 spage->page = alloc_page(GFP_KERNEL); 2567 if (!spage->page) 2568 goto leave_nomem; 2569 len -= l; 2570 logical += l; 2571 physical += l; 2572 physical_for_dev_replace += l; 2573 } 2574 2575 WARN_ON(sblock->page_count == 0); 2576 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2577 /* 2578 * This case should only be hit for RAID 5/6 device replace. See 2579 * the comment in scrub_missing_raid56_pages() for details. 2580 */ 2581 scrub_missing_raid56_pages(sblock); 2582 } else { 2583 for (index = 0; index < sblock->page_count; index++) { 2584 struct scrub_page *spage = sblock->pagev[index]; 2585 int ret; 2586 2587 ret = scrub_add_page_to_rd_bio(sctx, spage); 2588 if (ret) { 2589 scrub_block_put(sblock); 2590 return ret; 2591 } 2592 } 2593 2594 if (force) 2595 scrub_submit(sctx); 2596 } 2597 2598 /* last one frees, either here or in bio completion for last page */ 2599 scrub_block_put(sblock); 2600 return 0; 2601 } 2602 2603 static void scrub_bio_end_io(struct bio *bio) 2604 { 2605 struct scrub_bio *sbio = bio->bi_private; 2606 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2607 2608 sbio->status = bio->bi_status; 2609 sbio->bio = bio; 2610 2611 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2612 } 2613 2614 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2615 { 2616 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2617 struct scrub_ctx *sctx = sbio->sctx; 2618 int i; 2619 2620 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2621 if (sbio->status) { 2622 for (i = 0; i < sbio->page_count; i++) { 2623 struct scrub_page *spage = sbio->pagev[i]; 2624 2625 spage->io_error = 1; 2626 spage->sblock->no_io_error_seen = 0; 2627 } 2628 } 2629 2630 /* now complete the scrub_block items that have all pages completed */ 2631 for (i = 0; i < sbio->page_count; i++) { 2632 struct scrub_page *spage = sbio->pagev[i]; 2633 struct scrub_block *sblock = spage->sblock; 2634 2635 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2636 scrub_block_complete(sblock); 2637 scrub_block_put(sblock); 2638 } 2639 2640 bio_put(sbio->bio); 2641 sbio->bio = NULL; 2642 spin_lock(&sctx->list_lock); 2643 sbio->next_free = sctx->first_free; 2644 sctx->first_free = sbio->index; 2645 spin_unlock(&sctx->list_lock); 2646 2647 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2648 mutex_lock(&sctx->wr_lock); 2649 scrub_wr_submit(sctx); 2650 mutex_unlock(&sctx->wr_lock); 2651 } 2652 2653 scrub_pending_bio_dec(sctx); 2654 } 2655 2656 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2657 unsigned long *bitmap, 2658 u64 start, u64 len) 2659 { 2660 u64 offset; 2661 u64 nsectors64; 2662 u32 nsectors; 2663 int sectorsize = sparity->sctx->fs_info->sectorsize; 2664 2665 if (len >= sparity->stripe_len) { 2666 bitmap_set(bitmap, 0, sparity->nsectors); 2667 return; 2668 } 2669 2670 start -= sparity->logic_start; 2671 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2672 offset = div_u64(offset, sectorsize); 2673 nsectors64 = div_u64(len, sectorsize); 2674 2675 ASSERT(nsectors64 < UINT_MAX); 2676 nsectors = (u32)nsectors64; 2677 2678 if (offset + nsectors <= sparity->nsectors) { 2679 bitmap_set(bitmap, offset, nsectors); 2680 return; 2681 } 2682 2683 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2684 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2685 } 2686 2687 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2688 u64 start, u64 len) 2689 { 2690 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2691 } 2692 2693 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2694 u64 start, u64 len) 2695 { 2696 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2697 } 2698 2699 static void scrub_block_complete(struct scrub_block *sblock) 2700 { 2701 int corrupted = 0; 2702 2703 if (!sblock->no_io_error_seen) { 2704 corrupted = 1; 2705 scrub_handle_errored_block(sblock); 2706 } else { 2707 /* 2708 * if has checksum error, write via repair mechanism in 2709 * dev replace case, otherwise write here in dev replace 2710 * case. 2711 */ 2712 corrupted = scrub_checksum(sblock); 2713 if (!corrupted && sblock->sctx->is_dev_replace) 2714 scrub_write_block_to_dev_replace(sblock); 2715 } 2716 2717 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2718 u64 start = sblock->pagev[0]->logical; 2719 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2720 PAGE_SIZE; 2721 2722 scrub_parity_mark_sectors_error(sblock->sparity, 2723 start, end - start); 2724 } 2725 } 2726 2727 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2728 { 2729 struct btrfs_ordered_sum *sum = NULL; 2730 unsigned long index; 2731 unsigned long num_sectors; 2732 2733 while (!list_empty(&sctx->csum_list)) { 2734 sum = list_first_entry(&sctx->csum_list, 2735 struct btrfs_ordered_sum, list); 2736 if (sum->bytenr > logical) 2737 return 0; 2738 if (sum->bytenr + sum->len > logical) 2739 break; 2740 2741 ++sctx->stat.csum_discards; 2742 list_del(&sum->list); 2743 kfree(sum); 2744 sum = NULL; 2745 } 2746 if (!sum) 2747 return 0; 2748 2749 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); 2750 ASSERT(index < UINT_MAX); 2751 2752 num_sectors = sum->len / sctx->fs_info->sectorsize; 2753 memcpy(csum, sum->sums + index, sctx->csum_size); 2754 if (index == num_sectors - 1) { 2755 list_del(&sum->list); 2756 kfree(sum); 2757 } 2758 return 1; 2759 } 2760 2761 /* scrub extent tries to collect up to 64 kB for each bio */ 2762 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2763 u64 logical, u64 len, 2764 u64 physical, struct btrfs_device *dev, u64 flags, 2765 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2766 { 2767 int ret; 2768 u8 csum[BTRFS_CSUM_SIZE]; 2769 u32 blocksize; 2770 2771 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2772 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2773 blocksize = map->stripe_len; 2774 else 2775 blocksize = sctx->fs_info->sectorsize; 2776 spin_lock(&sctx->stat_lock); 2777 sctx->stat.data_extents_scrubbed++; 2778 sctx->stat.data_bytes_scrubbed += len; 2779 spin_unlock(&sctx->stat_lock); 2780 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2781 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2782 blocksize = map->stripe_len; 2783 else 2784 blocksize = sctx->fs_info->nodesize; 2785 spin_lock(&sctx->stat_lock); 2786 sctx->stat.tree_extents_scrubbed++; 2787 sctx->stat.tree_bytes_scrubbed += len; 2788 spin_unlock(&sctx->stat_lock); 2789 } else { 2790 blocksize = sctx->fs_info->sectorsize; 2791 WARN_ON(1); 2792 } 2793 2794 while (len) { 2795 u64 l = min_t(u64, len, blocksize); 2796 int have_csum = 0; 2797 2798 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2799 /* push csums to sbio */ 2800 have_csum = scrub_find_csum(sctx, logical, csum); 2801 if (have_csum == 0) 2802 ++sctx->stat.no_csum; 2803 if (0 && sctx->is_dev_replace && !have_csum) { 2804 ret = copy_nocow_pages(sctx, logical, l, 2805 mirror_num, 2806 physical_for_dev_replace); 2807 goto behind_scrub_pages; 2808 } 2809 } 2810 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2811 mirror_num, have_csum ? csum : NULL, 0, 2812 physical_for_dev_replace); 2813 behind_scrub_pages: 2814 if (ret) 2815 return ret; 2816 len -= l; 2817 logical += l; 2818 physical += l; 2819 physical_for_dev_replace += l; 2820 } 2821 return 0; 2822 } 2823 2824 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2825 u64 logical, u64 len, 2826 u64 physical, struct btrfs_device *dev, 2827 u64 flags, u64 gen, int mirror_num, u8 *csum) 2828 { 2829 struct scrub_ctx *sctx = sparity->sctx; 2830 struct scrub_block *sblock; 2831 int index; 2832 2833 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2834 if (!sblock) { 2835 spin_lock(&sctx->stat_lock); 2836 sctx->stat.malloc_errors++; 2837 spin_unlock(&sctx->stat_lock); 2838 return -ENOMEM; 2839 } 2840 2841 /* one ref inside this function, plus one for each page added to 2842 * a bio later on */ 2843 refcount_set(&sblock->refs, 1); 2844 sblock->sctx = sctx; 2845 sblock->no_io_error_seen = 1; 2846 sblock->sparity = sparity; 2847 scrub_parity_get(sparity); 2848 2849 for (index = 0; len > 0; index++) { 2850 struct scrub_page *spage; 2851 u64 l = min_t(u64, len, PAGE_SIZE); 2852 2853 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2854 if (!spage) { 2855 leave_nomem: 2856 spin_lock(&sctx->stat_lock); 2857 sctx->stat.malloc_errors++; 2858 spin_unlock(&sctx->stat_lock); 2859 scrub_block_put(sblock); 2860 return -ENOMEM; 2861 } 2862 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2863 /* For scrub block */ 2864 scrub_page_get(spage); 2865 sblock->pagev[index] = spage; 2866 /* For scrub parity */ 2867 scrub_page_get(spage); 2868 list_add_tail(&spage->list, &sparity->spages); 2869 spage->sblock = sblock; 2870 spage->dev = dev; 2871 spage->flags = flags; 2872 spage->generation = gen; 2873 spage->logical = logical; 2874 spage->physical = physical; 2875 spage->mirror_num = mirror_num; 2876 if (csum) { 2877 spage->have_csum = 1; 2878 memcpy(spage->csum, csum, sctx->csum_size); 2879 } else { 2880 spage->have_csum = 0; 2881 } 2882 sblock->page_count++; 2883 spage->page = alloc_page(GFP_KERNEL); 2884 if (!spage->page) 2885 goto leave_nomem; 2886 len -= l; 2887 logical += l; 2888 physical += l; 2889 } 2890 2891 WARN_ON(sblock->page_count == 0); 2892 for (index = 0; index < sblock->page_count; index++) { 2893 struct scrub_page *spage = sblock->pagev[index]; 2894 int ret; 2895 2896 ret = scrub_add_page_to_rd_bio(sctx, spage); 2897 if (ret) { 2898 scrub_block_put(sblock); 2899 return ret; 2900 } 2901 } 2902 2903 /* last one frees, either here or in bio completion for last page */ 2904 scrub_block_put(sblock); 2905 return 0; 2906 } 2907 2908 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2909 u64 logical, u64 len, 2910 u64 physical, struct btrfs_device *dev, 2911 u64 flags, u64 gen, int mirror_num) 2912 { 2913 struct scrub_ctx *sctx = sparity->sctx; 2914 int ret; 2915 u8 csum[BTRFS_CSUM_SIZE]; 2916 u32 blocksize; 2917 2918 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2919 scrub_parity_mark_sectors_error(sparity, logical, len); 2920 return 0; 2921 } 2922 2923 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2924 blocksize = sparity->stripe_len; 2925 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2926 blocksize = sparity->stripe_len; 2927 } else { 2928 blocksize = sctx->fs_info->sectorsize; 2929 WARN_ON(1); 2930 } 2931 2932 while (len) { 2933 u64 l = min_t(u64, len, blocksize); 2934 int have_csum = 0; 2935 2936 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2937 /* push csums to sbio */ 2938 have_csum = scrub_find_csum(sctx, logical, csum); 2939 if (have_csum == 0) 2940 goto skip; 2941 } 2942 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2943 flags, gen, mirror_num, 2944 have_csum ? csum : NULL); 2945 if (ret) 2946 return ret; 2947 skip: 2948 len -= l; 2949 logical += l; 2950 physical += l; 2951 } 2952 return 0; 2953 } 2954 2955 /* 2956 * Given a physical address, this will calculate it's 2957 * logical offset. if this is a parity stripe, it will return 2958 * the most left data stripe's logical offset. 2959 * 2960 * return 0 if it is a data stripe, 1 means parity stripe. 2961 */ 2962 static int get_raid56_logic_offset(u64 physical, int num, 2963 struct map_lookup *map, u64 *offset, 2964 u64 *stripe_start) 2965 { 2966 int i; 2967 int j = 0; 2968 u64 stripe_nr; 2969 u64 last_offset; 2970 u32 stripe_index; 2971 u32 rot; 2972 2973 last_offset = (physical - map->stripes[num].physical) * 2974 nr_data_stripes(map); 2975 if (stripe_start) 2976 *stripe_start = last_offset; 2977 2978 *offset = last_offset; 2979 for (i = 0; i < nr_data_stripes(map); i++) { 2980 *offset = last_offset + i * map->stripe_len; 2981 2982 stripe_nr = div64_u64(*offset, map->stripe_len); 2983 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2984 2985 /* Work out the disk rotation on this stripe-set */ 2986 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2987 /* calculate which stripe this data locates */ 2988 rot += i; 2989 stripe_index = rot % map->num_stripes; 2990 if (stripe_index == num) 2991 return 0; 2992 if (stripe_index < num) 2993 j++; 2994 } 2995 *offset = last_offset + j * map->stripe_len; 2996 return 1; 2997 } 2998 2999 static void scrub_free_parity(struct scrub_parity *sparity) 3000 { 3001 struct scrub_ctx *sctx = sparity->sctx; 3002 struct scrub_page *curr, *next; 3003 int nbits; 3004 3005 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 3006 if (nbits) { 3007 spin_lock(&sctx->stat_lock); 3008 sctx->stat.read_errors += nbits; 3009 sctx->stat.uncorrectable_errors += nbits; 3010 spin_unlock(&sctx->stat_lock); 3011 } 3012 3013 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 3014 list_del_init(&curr->list); 3015 scrub_page_put(curr); 3016 } 3017 3018 kfree(sparity); 3019 } 3020 3021 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 3022 { 3023 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 3024 work); 3025 struct scrub_ctx *sctx = sparity->sctx; 3026 3027 scrub_free_parity(sparity); 3028 scrub_pending_bio_dec(sctx); 3029 } 3030 3031 static void scrub_parity_bio_endio(struct bio *bio) 3032 { 3033 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 3034 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 3035 3036 if (bio->bi_status) 3037 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 3038 sparity->nsectors); 3039 3040 bio_put(bio); 3041 3042 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 3043 scrub_parity_bio_endio_worker, NULL, NULL); 3044 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 3045 } 3046 3047 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 3048 { 3049 struct scrub_ctx *sctx = sparity->sctx; 3050 struct btrfs_fs_info *fs_info = sctx->fs_info; 3051 struct bio *bio; 3052 struct btrfs_raid_bio *rbio; 3053 struct btrfs_bio *bbio = NULL; 3054 u64 length; 3055 int ret; 3056 3057 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 3058 sparity->nsectors)) 3059 goto out; 3060 3061 length = sparity->logic_end - sparity->logic_start; 3062 3063 btrfs_bio_counter_inc_blocked(fs_info); 3064 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 3065 &length, &bbio); 3066 if (ret || !bbio || !bbio->raid_map) 3067 goto bbio_out; 3068 3069 bio = btrfs_io_bio_alloc(0); 3070 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 3071 bio->bi_private = sparity; 3072 bio->bi_end_io = scrub_parity_bio_endio; 3073 3074 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 3075 length, sparity->scrub_dev, 3076 sparity->dbitmap, 3077 sparity->nsectors); 3078 if (!rbio) 3079 goto rbio_out; 3080 3081 scrub_pending_bio_inc(sctx); 3082 raid56_parity_submit_scrub_rbio(rbio); 3083 return; 3084 3085 rbio_out: 3086 bio_put(bio); 3087 bbio_out: 3088 btrfs_bio_counter_dec(fs_info); 3089 btrfs_put_bbio(bbio); 3090 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 3091 sparity->nsectors); 3092 spin_lock(&sctx->stat_lock); 3093 sctx->stat.malloc_errors++; 3094 spin_unlock(&sctx->stat_lock); 3095 out: 3096 scrub_free_parity(sparity); 3097 } 3098 3099 static inline int scrub_calc_parity_bitmap_len(int nsectors) 3100 { 3101 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 3102 } 3103 3104 static void scrub_parity_get(struct scrub_parity *sparity) 3105 { 3106 refcount_inc(&sparity->refs); 3107 } 3108 3109 static void scrub_parity_put(struct scrub_parity *sparity) 3110 { 3111 if (!refcount_dec_and_test(&sparity->refs)) 3112 return; 3113 3114 scrub_parity_check_and_repair(sparity); 3115 } 3116 3117 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 3118 struct map_lookup *map, 3119 struct btrfs_device *sdev, 3120 struct btrfs_path *path, 3121 u64 logic_start, 3122 u64 logic_end) 3123 { 3124 struct btrfs_fs_info *fs_info = sctx->fs_info; 3125 struct btrfs_root *root = fs_info->extent_root; 3126 struct btrfs_root *csum_root = fs_info->csum_root; 3127 struct btrfs_extent_item *extent; 3128 struct btrfs_bio *bbio = NULL; 3129 u64 flags; 3130 int ret; 3131 int slot; 3132 struct extent_buffer *l; 3133 struct btrfs_key key; 3134 u64 generation; 3135 u64 extent_logical; 3136 u64 extent_physical; 3137 u64 extent_len; 3138 u64 mapped_length; 3139 struct btrfs_device *extent_dev; 3140 struct scrub_parity *sparity; 3141 int nsectors; 3142 int bitmap_len; 3143 int extent_mirror_num; 3144 int stop_loop = 0; 3145 3146 nsectors = div_u64(map->stripe_len, fs_info->sectorsize); 3147 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 3148 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 3149 GFP_NOFS); 3150 if (!sparity) { 3151 spin_lock(&sctx->stat_lock); 3152 sctx->stat.malloc_errors++; 3153 spin_unlock(&sctx->stat_lock); 3154 return -ENOMEM; 3155 } 3156 3157 sparity->stripe_len = map->stripe_len; 3158 sparity->nsectors = nsectors; 3159 sparity->sctx = sctx; 3160 sparity->scrub_dev = sdev; 3161 sparity->logic_start = logic_start; 3162 sparity->logic_end = logic_end; 3163 refcount_set(&sparity->refs, 1); 3164 INIT_LIST_HEAD(&sparity->spages); 3165 sparity->dbitmap = sparity->bitmap; 3166 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 3167 3168 ret = 0; 3169 while (logic_start < logic_end) { 3170 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3171 key.type = BTRFS_METADATA_ITEM_KEY; 3172 else 3173 key.type = BTRFS_EXTENT_ITEM_KEY; 3174 key.objectid = logic_start; 3175 key.offset = (u64)-1; 3176 3177 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3178 if (ret < 0) 3179 goto out; 3180 3181 if (ret > 0) { 3182 ret = btrfs_previous_extent_item(root, path, 0); 3183 if (ret < 0) 3184 goto out; 3185 if (ret > 0) { 3186 btrfs_release_path(path); 3187 ret = btrfs_search_slot(NULL, root, &key, 3188 path, 0, 0); 3189 if (ret < 0) 3190 goto out; 3191 } 3192 } 3193 3194 stop_loop = 0; 3195 while (1) { 3196 u64 bytes; 3197 3198 l = path->nodes[0]; 3199 slot = path->slots[0]; 3200 if (slot >= btrfs_header_nritems(l)) { 3201 ret = btrfs_next_leaf(root, path); 3202 if (ret == 0) 3203 continue; 3204 if (ret < 0) 3205 goto out; 3206 3207 stop_loop = 1; 3208 break; 3209 } 3210 btrfs_item_key_to_cpu(l, &key, slot); 3211 3212 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3213 key.type != BTRFS_METADATA_ITEM_KEY) 3214 goto next; 3215 3216 if (key.type == BTRFS_METADATA_ITEM_KEY) 3217 bytes = fs_info->nodesize; 3218 else 3219 bytes = key.offset; 3220 3221 if (key.objectid + bytes <= logic_start) 3222 goto next; 3223 3224 if (key.objectid >= logic_end) { 3225 stop_loop = 1; 3226 break; 3227 } 3228 3229 while (key.objectid >= logic_start + map->stripe_len) 3230 logic_start += map->stripe_len; 3231 3232 extent = btrfs_item_ptr(l, slot, 3233 struct btrfs_extent_item); 3234 flags = btrfs_extent_flags(l, extent); 3235 generation = btrfs_extent_generation(l, extent); 3236 3237 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3238 (key.objectid < logic_start || 3239 key.objectid + bytes > 3240 logic_start + map->stripe_len)) { 3241 btrfs_err(fs_info, 3242 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3243 key.objectid, logic_start); 3244 spin_lock(&sctx->stat_lock); 3245 sctx->stat.uncorrectable_errors++; 3246 spin_unlock(&sctx->stat_lock); 3247 goto next; 3248 } 3249 again: 3250 extent_logical = key.objectid; 3251 extent_len = bytes; 3252 3253 if (extent_logical < logic_start) { 3254 extent_len -= logic_start - extent_logical; 3255 extent_logical = logic_start; 3256 } 3257 3258 if (extent_logical + extent_len > 3259 logic_start + map->stripe_len) 3260 extent_len = logic_start + map->stripe_len - 3261 extent_logical; 3262 3263 scrub_parity_mark_sectors_data(sparity, extent_logical, 3264 extent_len); 3265 3266 mapped_length = extent_len; 3267 bbio = NULL; 3268 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 3269 extent_logical, &mapped_length, &bbio, 3270 0); 3271 if (!ret) { 3272 if (!bbio || mapped_length < extent_len) 3273 ret = -EIO; 3274 } 3275 if (ret) { 3276 btrfs_put_bbio(bbio); 3277 goto out; 3278 } 3279 extent_physical = bbio->stripes[0].physical; 3280 extent_mirror_num = bbio->mirror_num; 3281 extent_dev = bbio->stripes[0].dev; 3282 btrfs_put_bbio(bbio); 3283 3284 ret = btrfs_lookup_csums_range(csum_root, 3285 extent_logical, 3286 extent_logical + extent_len - 1, 3287 &sctx->csum_list, 1); 3288 if (ret) 3289 goto out; 3290 3291 ret = scrub_extent_for_parity(sparity, extent_logical, 3292 extent_len, 3293 extent_physical, 3294 extent_dev, flags, 3295 generation, 3296 extent_mirror_num); 3297 3298 scrub_free_csums(sctx); 3299 3300 if (ret) 3301 goto out; 3302 3303 if (extent_logical + extent_len < 3304 key.objectid + bytes) { 3305 logic_start += map->stripe_len; 3306 3307 if (logic_start >= logic_end) { 3308 stop_loop = 1; 3309 break; 3310 } 3311 3312 if (logic_start < key.objectid + bytes) { 3313 cond_resched(); 3314 goto again; 3315 } 3316 } 3317 next: 3318 path->slots[0]++; 3319 } 3320 3321 btrfs_release_path(path); 3322 3323 if (stop_loop) 3324 break; 3325 3326 logic_start += map->stripe_len; 3327 } 3328 out: 3329 if (ret < 0) 3330 scrub_parity_mark_sectors_error(sparity, logic_start, 3331 logic_end - logic_start); 3332 scrub_parity_put(sparity); 3333 scrub_submit(sctx); 3334 mutex_lock(&sctx->wr_lock); 3335 scrub_wr_submit(sctx); 3336 mutex_unlock(&sctx->wr_lock); 3337 3338 btrfs_release_path(path); 3339 return ret < 0 ? ret : 0; 3340 } 3341 3342 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3343 struct map_lookup *map, 3344 struct btrfs_device *scrub_dev, 3345 int num, u64 base, u64 length, 3346 int is_dev_replace) 3347 { 3348 struct btrfs_path *path, *ppath; 3349 struct btrfs_fs_info *fs_info = sctx->fs_info; 3350 struct btrfs_root *root = fs_info->extent_root; 3351 struct btrfs_root *csum_root = fs_info->csum_root; 3352 struct btrfs_extent_item *extent; 3353 struct blk_plug plug; 3354 u64 flags; 3355 int ret; 3356 int slot; 3357 u64 nstripes; 3358 struct extent_buffer *l; 3359 u64 physical; 3360 u64 logical; 3361 u64 logic_end; 3362 u64 physical_end; 3363 u64 generation; 3364 int mirror_num; 3365 struct reada_control *reada1; 3366 struct reada_control *reada2; 3367 struct btrfs_key key; 3368 struct btrfs_key key_end; 3369 u64 increment = map->stripe_len; 3370 u64 offset; 3371 u64 extent_logical; 3372 u64 extent_physical; 3373 u64 extent_len; 3374 u64 stripe_logical; 3375 u64 stripe_end; 3376 struct btrfs_device *extent_dev; 3377 int extent_mirror_num; 3378 int stop_loop = 0; 3379 3380 physical = map->stripes[num].physical; 3381 offset = 0; 3382 nstripes = div64_u64(length, map->stripe_len); 3383 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3384 offset = map->stripe_len * num; 3385 increment = map->stripe_len * map->num_stripes; 3386 mirror_num = 1; 3387 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3388 int factor = map->num_stripes / map->sub_stripes; 3389 offset = map->stripe_len * (num / map->sub_stripes); 3390 increment = map->stripe_len * factor; 3391 mirror_num = num % map->sub_stripes + 1; 3392 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3393 increment = map->stripe_len; 3394 mirror_num = num % map->num_stripes + 1; 3395 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3396 increment = map->stripe_len; 3397 mirror_num = num % map->num_stripes + 1; 3398 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3399 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3400 increment = map->stripe_len * nr_data_stripes(map); 3401 mirror_num = 1; 3402 } else { 3403 increment = map->stripe_len; 3404 mirror_num = 1; 3405 } 3406 3407 path = btrfs_alloc_path(); 3408 if (!path) 3409 return -ENOMEM; 3410 3411 ppath = btrfs_alloc_path(); 3412 if (!ppath) { 3413 btrfs_free_path(path); 3414 return -ENOMEM; 3415 } 3416 3417 /* 3418 * work on commit root. The related disk blocks are static as 3419 * long as COW is applied. This means, it is save to rewrite 3420 * them to repair disk errors without any race conditions 3421 */ 3422 path->search_commit_root = 1; 3423 path->skip_locking = 1; 3424 3425 ppath->search_commit_root = 1; 3426 ppath->skip_locking = 1; 3427 /* 3428 * trigger the readahead for extent tree csum tree and wait for 3429 * completion. During readahead, the scrub is officially paused 3430 * to not hold off transaction commits 3431 */ 3432 logical = base + offset; 3433 physical_end = physical + nstripes * map->stripe_len; 3434 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3435 get_raid56_logic_offset(physical_end, num, 3436 map, &logic_end, NULL); 3437 logic_end += base; 3438 } else { 3439 logic_end = logical + increment * nstripes; 3440 } 3441 wait_event(sctx->list_wait, 3442 atomic_read(&sctx->bios_in_flight) == 0); 3443 scrub_blocked_if_needed(fs_info); 3444 3445 /* FIXME it might be better to start readahead at commit root */ 3446 key.objectid = logical; 3447 key.type = BTRFS_EXTENT_ITEM_KEY; 3448 key.offset = (u64)0; 3449 key_end.objectid = logic_end; 3450 key_end.type = BTRFS_METADATA_ITEM_KEY; 3451 key_end.offset = (u64)-1; 3452 reada1 = btrfs_reada_add(root, &key, &key_end); 3453 3454 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3455 key.type = BTRFS_EXTENT_CSUM_KEY; 3456 key.offset = logical; 3457 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3458 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3459 key_end.offset = logic_end; 3460 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3461 3462 if (!IS_ERR(reada1)) 3463 btrfs_reada_wait(reada1); 3464 if (!IS_ERR(reada2)) 3465 btrfs_reada_wait(reada2); 3466 3467 3468 /* 3469 * collect all data csums for the stripe to avoid seeking during 3470 * the scrub. This might currently (crc32) end up to be about 1MB 3471 */ 3472 blk_start_plug(&plug); 3473 3474 /* 3475 * now find all extents for each stripe and scrub them 3476 */ 3477 ret = 0; 3478 while (physical < physical_end) { 3479 /* 3480 * canceled? 3481 */ 3482 if (atomic_read(&fs_info->scrub_cancel_req) || 3483 atomic_read(&sctx->cancel_req)) { 3484 ret = -ECANCELED; 3485 goto out; 3486 } 3487 /* 3488 * check to see if we have to pause 3489 */ 3490 if (atomic_read(&fs_info->scrub_pause_req)) { 3491 /* push queued extents */ 3492 sctx->flush_all_writes = true; 3493 scrub_submit(sctx); 3494 mutex_lock(&sctx->wr_lock); 3495 scrub_wr_submit(sctx); 3496 mutex_unlock(&sctx->wr_lock); 3497 wait_event(sctx->list_wait, 3498 atomic_read(&sctx->bios_in_flight) == 0); 3499 sctx->flush_all_writes = false; 3500 scrub_blocked_if_needed(fs_info); 3501 } 3502 3503 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3504 ret = get_raid56_logic_offset(physical, num, map, 3505 &logical, 3506 &stripe_logical); 3507 logical += base; 3508 if (ret) { 3509 /* it is parity strip */ 3510 stripe_logical += base; 3511 stripe_end = stripe_logical + increment; 3512 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3513 ppath, stripe_logical, 3514 stripe_end); 3515 if (ret) 3516 goto out; 3517 goto skip; 3518 } 3519 } 3520 3521 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3522 key.type = BTRFS_METADATA_ITEM_KEY; 3523 else 3524 key.type = BTRFS_EXTENT_ITEM_KEY; 3525 key.objectid = logical; 3526 key.offset = (u64)-1; 3527 3528 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3529 if (ret < 0) 3530 goto out; 3531 3532 if (ret > 0) { 3533 ret = btrfs_previous_extent_item(root, path, 0); 3534 if (ret < 0) 3535 goto out; 3536 if (ret > 0) { 3537 /* there's no smaller item, so stick with the 3538 * larger one */ 3539 btrfs_release_path(path); 3540 ret = btrfs_search_slot(NULL, root, &key, 3541 path, 0, 0); 3542 if (ret < 0) 3543 goto out; 3544 } 3545 } 3546 3547 stop_loop = 0; 3548 while (1) { 3549 u64 bytes; 3550 3551 l = path->nodes[0]; 3552 slot = path->slots[0]; 3553 if (slot >= btrfs_header_nritems(l)) { 3554 ret = btrfs_next_leaf(root, path); 3555 if (ret == 0) 3556 continue; 3557 if (ret < 0) 3558 goto out; 3559 3560 stop_loop = 1; 3561 break; 3562 } 3563 btrfs_item_key_to_cpu(l, &key, slot); 3564 3565 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3566 key.type != BTRFS_METADATA_ITEM_KEY) 3567 goto next; 3568 3569 if (key.type == BTRFS_METADATA_ITEM_KEY) 3570 bytes = fs_info->nodesize; 3571 else 3572 bytes = key.offset; 3573 3574 if (key.objectid + bytes <= logical) 3575 goto next; 3576 3577 if (key.objectid >= logical + map->stripe_len) { 3578 /* out of this device extent */ 3579 if (key.objectid >= logic_end) 3580 stop_loop = 1; 3581 break; 3582 } 3583 3584 extent = btrfs_item_ptr(l, slot, 3585 struct btrfs_extent_item); 3586 flags = btrfs_extent_flags(l, extent); 3587 generation = btrfs_extent_generation(l, extent); 3588 3589 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3590 (key.objectid < logical || 3591 key.objectid + bytes > 3592 logical + map->stripe_len)) { 3593 btrfs_err(fs_info, 3594 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3595 key.objectid, logical); 3596 spin_lock(&sctx->stat_lock); 3597 sctx->stat.uncorrectable_errors++; 3598 spin_unlock(&sctx->stat_lock); 3599 goto next; 3600 } 3601 3602 again: 3603 extent_logical = key.objectid; 3604 extent_len = bytes; 3605 3606 /* 3607 * trim extent to this stripe 3608 */ 3609 if (extent_logical < logical) { 3610 extent_len -= logical - extent_logical; 3611 extent_logical = logical; 3612 } 3613 if (extent_logical + extent_len > 3614 logical + map->stripe_len) { 3615 extent_len = logical + map->stripe_len - 3616 extent_logical; 3617 } 3618 3619 extent_physical = extent_logical - logical + physical; 3620 extent_dev = scrub_dev; 3621 extent_mirror_num = mirror_num; 3622 if (is_dev_replace) 3623 scrub_remap_extent(fs_info, extent_logical, 3624 extent_len, &extent_physical, 3625 &extent_dev, 3626 &extent_mirror_num); 3627 3628 ret = btrfs_lookup_csums_range(csum_root, 3629 extent_logical, 3630 extent_logical + 3631 extent_len - 1, 3632 &sctx->csum_list, 1); 3633 if (ret) 3634 goto out; 3635 3636 ret = scrub_extent(sctx, map, extent_logical, extent_len, 3637 extent_physical, extent_dev, flags, 3638 generation, extent_mirror_num, 3639 extent_logical - logical + physical); 3640 3641 scrub_free_csums(sctx); 3642 3643 if (ret) 3644 goto out; 3645 3646 if (extent_logical + extent_len < 3647 key.objectid + bytes) { 3648 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3649 /* 3650 * loop until we find next data stripe 3651 * or we have finished all stripes. 3652 */ 3653 loop: 3654 physical += map->stripe_len; 3655 ret = get_raid56_logic_offset(physical, 3656 num, map, &logical, 3657 &stripe_logical); 3658 logical += base; 3659 3660 if (ret && physical < physical_end) { 3661 stripe_logical += base; 3662 stripe_end = stripe_logical + 3663 increment; 3664 ret = scrub_raid56_parity(sctx, 3665 map, scrub_dev, ppath, 3666 stripe_logical, 3667 stripe_end); 3668 if (ret) 3669 goto out; 3670 goto loop; 3671 } 3672 } else { 3673 physical += map->stripe_len; 3674 logical += increment; 3675 } 3676 if (logical < key.objectid + bytes) { 3677 cond_resched(); 3678 goto again; 3679 } 3680 3681 if (physical >= physical_end) { 3682 stop_loop = 1; 3683 break; 3684 } 3685 } 3686 next: 3687 path->slots[0]++; 3688 } 3689 btrfs_release_path(path); 3690 skip: 3691 logical += increment; 3692 physical += map->stripe_len; 3693 spin_lock(&sctx->stat_lock); 3694 if (stop_loop) 3695 sctx->stat.last_physical = map->stripes[num].physical + 3696 length; 3697 else 3698 sctx->stat.last_physical = physical; 3699 spin_unlock(&sctx->stat_lock); 3700 if (stop_loop) 3701 break; 3702 } 3703 out: 3704 /* push queued extents */ 3705 scrub_submit(sctx); 3706 mutex_lock(&sctx->wr_lock); 3707 scrub_wr_submit(sctx); 3708 mutex_unlock(&sctx->wr_lock); 3709 3710 blk_finish_plug(&plug); 3711 btrfs_free_path(path); 3712 btrfs_free_path(ppath); 3713 return ret < 0 ? ret : 0; 3714 } 3715 3716 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3717 struct btrfs_device *scrub_dev, 3718 u64 chunk_offset, u64 length, 3719 u64 dev_offset, 3720 struct btrfs_block_group_cache *cache, 3721 int is_dev_replace) 3722 { 3723 struct btrfs_fs_info *fs_info = sctx->fs_info; 3724 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 3725 struct map_lookup *map; 3726 struct extent_map *em; 3727 int i; 3728 int ret = 0; 3729 3730 read_lock(&map_tree->map_tree.lock); 3731 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3732 read_unlock(&map_tree->map_tree.lock); 3733 3734 if (!em) { 3735 /* 3736 * Might have been an unused block group deleted by the cleaner 3737 * kthread or relocation. 3738 */ 3739 spin_lock(&cache->lock); 3740 if (!cache->removed) 3741 ret = -EINVAL; 3742 spin_unlock(&cache->lock); 3743 3744 return ret; 3745 } 3746 3747 map = em->map_lookup; 3748 if (em->start != chunk_offset) 3749 goto out; 3750 3751 if (em->len < length) 3752 goto out; 3753 3754 for (i = 0; i < map->num_stripes; ++i) { 3755 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3756 map->stripes[i].physical == dev_offset) { 3757 ret = scrub_stripe(sctx, map, scrub_dev, i, 3758 chunk_offset, length, 3759 is_dev_replace); 3760 if (ret) 3761 goto out; 3762 } 3763 } 3764 out: 3765 free_extent_map(em); 3766 3767 return ret; 3768 } 3769 3770 static noinline_for_stack 3771 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3772 struct btrfs_device *scrub_dev, u64 start, u64 end, 3773 int is_dev_replace) 3774 { 3775 struct btrfs_dev_extent *dev_extent = NULL; 3776 struct btrfs_path *path; 3777 struct btrfs_fs_info *fs_info = sctx->fs_info; 3778 struct btrfs_root *root = fs_info->dev_root; 3779 u64 length; 3780 u64 chunk_offset; 3781 int ret = 0; 3782 int ro_set; 3783 int slot; 3784 struct extent_buffer *l; 3785 struct btrfs_key key; 3786 struct btrfs_key found_key; 3787 struct btrfs_block_group_cache *cache; 3788 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3789 3790 path = btrfs_alloc_path(); 3791 if (!path) 3792 return -ENOMEM; 3793 3794 path->reada = READA_FORWARD; 3795 path->search_commit_root = 1; 3796 path->skip_locking = 1; 3797 3798 key.objectid = scrub_dev->devid; 3799 key.offset = 0ull; 3800 key.type = BTRFS_DEV_EXTENT_KEY; 3801 3802 while (1) { 3803 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3804 if (ret < 0) 3805 break; 3806 if (ret > 0) { 3807 if (path->slots[0] >= 3808 btrfs_header_nritems(path->nodes[0])) { 3809 ret = btrfs_next_leaf(root, path); 3810 if (ret < 0) 3811 break; 3812 if (ret > 0) { 3813 ret = 0; 3814 break; 3815 } 3816 } else { 3817 ret = 0; 3818 } 3819 } 3820 3821 l = path->nodes[0]; 3822 slot = path->slots[0]; 3823 3824 btrfs_item_key_to_cpu(l, &found_key, slot); 3825 3826 if (found_key.objectid != scrub_dev->devid) 3827 break; 3828 3829 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3830 break; 3831 3832 if (found_key.offset >= end) 3833 break; 3834 3835 if (found_key.offset < key.offset) 3836 break; 3837 3838 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3839 length = btrfs_dev_extent_length(l, dev_extent); 3840 3841 if (found_key.offset + length <= start) 3842 goto skip; 3843 3844 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3845 3846 /* 3847 * get a reference on the corresponding block group to prevent 3848 * the chunk from going away while we scrub it 3849 */ 3850 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3851 3852 /* some chunks are removed but not committed to disk yet, 3853 * continue scrubbing */ 3854 if (!cache) 3855 goto skip; 3856 3857 /* 3858 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3859 * to avoid deadlock caused by: 3860 * btrfs_inc_block_group_ro() 3861 * -> btrfs_wait_for_commit() 3862 * -> btrfs_commit_transaction() 3863 * -> btrfs_scrub_pause() 3864 */ 3865 scrub_pause_on(fs_info); 3866 ret = btrfs_inc_block_group_ro(fs_info, cache); 3867 if (!ret && is_dev_replace) { 3868 /* 3869 * If we are doing a device replace wait for any tasks 3870 * that started dellaloc right before we set the block 3871 * group to RO mode, as they might have just allocated 3872 * an extent from it or decided they could do a nocow 3873 * write. And if any such tasks did that, wait for their 3874 * ordered extents to complete and then commit the 3875 * current transaction, so that we can later see the new 3876 * extent items in the extent tree - the ordered extents 3877 * create delayed data references (for cow writes) when 3878 * they complete, which will be run and insert the 3879 * corresponding extent items into the extent tree when 3880 * we commit the transaction they used when running 3881 * inode.c:btrfs_finish_ordered_io(). We later use 3882 * the commit root of the extent tree to find extents 3883 * to copy from the srcdev into the tgtdev, and we don't 3884 * want to miss any new extents. 3885 */ 3886 btrfs_wait_block_group_reservations(cache); 3887 btrfs_wait_nocow_writers(cache); 3888 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX, 3889 cache->key.objectid, 3890 cache->key.offset); 3891 if (ret > 0) { 3892 struct btrfs_trans_handle *trans; 3893 3894 trans = btrfs_join_transaction(root); 3895 if (IS_ERR(trans)) 3896 ret = PTR_ERR(trans); 3897 else 3898 ret = btrfs_commit_transaction(trans); 3899 if (ret) { 3900 scrub_pause_off(fs_info); 3901 btrfs_put_block_group(cache); 3902 break; 3903 } 3904 } 3905 } 3906 scrub_pause_off(fs_info); 3907 3908 if (ret == 0) { 3909 ro_set = 1; 3910 } else if (ret == -ENOSPC) { 3911 /* 3912 * btrfs_inc_block_group_ro return -ENOSPC when it 3913 * failed in creating new chunk for metadata. 3914 * It is not a problem for scrub/replace, because 3915 * metadata are always cowed, and our scrub paused 3916 * commit_transactions. 3917 */ 3918 ro_set = 0; 3919 } else { 3920 btrfs_warn(fs_info, 3921 "failed setting block group ro: %d", ret); 3922 btrfs_put_block_group(cache); 3923 break; 3924 } 3925 3926 btrfs_dev_replace_write_lock(&fs_info->dev_replace); 3927 dev_replace->cursor_right = found_key.offset + length; 3928 dev_replace->cursor_left = found_key.offset; 3929 dev_replace->item_needs_writeback = 1; 3930 btrfs_dev_replace_write_unlock(&fs_info->dev_replace); 3931 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3932 found_key.offset, cache, is_dev_replace); 3933 3934 /* 3935 * flush, submit all pending read and write bios, afterwards 3936 * wait for them. 3937 * Note that in the dev replace case, a read request causes 3938 * write requests that are submitted in the read completion 3939 * worker. Therefore in the current situation, it is required 3940 * that all write requests are flushed, so that all read and 3941 * write requests are really completed when bios_in_flight 3942 * changes to 0. 3943 */ 3944 sctx->flush_all_writes = true; 3945 scrub_submit(sctx); 3946 mutex_lock(&sctx->wr_lock); 3947 scrub_wr_submit(sctx); 3948 mutex_unlock(&sctx->wr_lock); 3949 3950 wait_event(sctx->list_wait, 3951 atomic_read(&sctx->bios_in_flight) == 0); 3952 3953 scrub_pause_on(fs_info); 3954 3955 /* 3956 * must be called before we decrease @scrub_paused. 3957 * make sure we don't block transaction commit while 3958 * we are waiting pending workers finished. 3959 */ 3960 wait_event(sctx->list_wait, 3961 atomic_read(&sctx->workers_pending) == 0); 3962 sctx->flush_all_writes = false; 3963 3964 scrub_pause_off(fs_info); 3965 3966 btrfs_dev_replace_write_lock(&fs_info->dev_replace); 3967 dev_replace->cursor_left = dev_replace->cursor_right; 3968 dev_replace->item_needs_writeback = 1; 3969 btrfs_dev_replace_write_unlock(&fs_info->dev_replace); 3970 3971 if (ro_set) 3972 btrfs_dec_block_group_ro(cache); 3973 3974 /* 3975 * We might have prevented the cleaner kthread from deleting 3976 * this block group if it was already unused because we raced 3977 * and set it to RO mode first. So add it back to the unused 3978 * list, otherwise it might not ever be deleted unless a manual 3979 * balance is triggered or it becomes used and unused again. 3980 */ 3981 spin_lock(&cache->lock); 3982 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3983 btrfs_block_group_used(&cache->item) == 0) { 3984 spin_unlock(&cache->lock); 3985 spin_lock(&fs_info->unused_bgs_lock); 3986 if (list_empty(&cache->bg_list)) { 3987 btrfs_get_block_group(cache); 3988 trace_btrfs_add_unused_block_group(cache); 3989 list_add_tail(&cache->bg_list, 3990 &fs_info->unused_bgs); 3991 } 3992 spin_unlock(&fs_info->unused_bgs_lock); 3993 } else { 3994 spin_unlock(&cache->lock); 3995 } 3996 3997 btrfs_put_block_group(cache); 3998 if (ret) 3999 break; 4000 if (is_dev_replace && 4001 atomic64_read(&dev_replace->num_write_errors) > 0) { 4002 ret = -EIO; 4003 break; 4004 } 4005 if (sctx->stat.malloc_errors > 0) { 4006 ret = -ENOMEM; 4007 break; 4008 } 4009 skip: 4010 key.offset = found_key.offset + length; 4011 btrfs_release_path(path); 4012 } 4013 4014 btrfs_free_path(path); 4015 4016 return ret; 4017 } 4018 4019 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 4020 struct btrfs_device *scrub_dev) 4021 { 4022 int i; 4023 u64 bytenr; 4024 u64 gen; 4025 int ret; 4026 struct btrfs_fs_info *fs_info = sctx->fs_info; 4027 4028 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4029 return -EIO; 4030 4031 /* Seed devices of a new filesystem has their own generation. */ 4032 if (scrub_dev->fs_devices != fs_info->fs_devices) 4033 gen = scrub_dev->generation; 4034 else 4035 gen = fs_info->last_trans_committed; 4036 4037 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 4038 bytenr = btrfs_sb_offset(i); 4039 if (bytenr + BTRFS_SUPER_INFO_SIZE > 4040 scrub_dev->commit_total_bytes) 4041 break; 4042 4043 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 4044 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 4045 NULL, 1, bytenr); 4046 if (ret) 4047 return ret; 4048 } 4049 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4050 4051 return 0; 4052 } 4053 4054 /* 4055 * get a reference count on fs_info->scrub_workers. start worker if necessary 4056 */ 4057 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 4058 int is_dev_replace) 4059 { 4060 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 4061 int max_active = fs_info->thread_pool_size; 4062 4063 if (fs_info->scrub_workers_refcnt == 0) { 4064 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", 4065 flags, is_dev_replace ? 1 : max_active, 4); 4066 if (!fs_info->scrub_workers) 4067 goto fail_scrub_workers; 4068 4069 fs_info->scrub_wr_completion_workers = 4070 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 4071 max_active, 2); 4072 if (!fs_info->scrub_wr_completion_workers) 4073 goto fail_scrub_wr_completion_workers; 4074 4075 fs_info->scrub_nocow_workers = 4076 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0); 4077 if (!fs_info->scrub_nocow_workers) 4078 goto fail_scrub_nocow_workers; 4079 fs_info->scrub_parity_workers = 4080 btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 4081 max_active, 2); 4082 if (!fs_info->scrub_parity_workers) 4083 goto fail_scrub_parity_workers; 4084 } 4085 ++fs_info->scrub_workers_refcnt; 4086 return 0; 4087 4088 fail_scrub_parity_workers: 4089 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 4090 fail_scrub_nocow_workers: 4091 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 4092 fail_scrub_wr_completion_workers: 4093 btrfs_destroy_workqueue(fs_info->scrub_workers); 4094 fail_scrub_workers: 4095 return -ENOMEM; 4096 } 4097 4098 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 4099 { 4100 if (--fs_info->scrub_workers_refcnt == 0) { 4101 btrfs_destroy_workqueue(fs_info->scrub_workers); 4102 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 4103 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); 4104 btrfs_destroy_workqueue(fs_info->scrub_parity_workers); 4105 } 4106 WARN_ON(fs_info->scrub_workers_refcnt < 0); 4107 } 4108 4109 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4110 u64 end, struct btrfs_scrub_progress *progress, 4111 int readonly, int is_dev_replace) 4112 { 4113 struct scrub_ctx *sctx; 4114 int ret; 4115 struct btrfs_device *dev; 4116 struct rcu_string *name; 4117 4118 if (btrfs_fs_closing(fs_info)) 4119 return -EINVAL; 4120 4121 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 4122 /* 4123 * in this case scrub is unable to calculate the checksum 4124 * the way scrub is implemented. Do not handle this 4125 * situation at all because it won't ever happen. 4126 */ 4127 btrfs_err(fs_info, 4128 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 4129 fs_info->nodesize, 4130 BTRFS_STRIPE_LEN); 4131 return -EINVAL; 4132 } 4133 4134 if (fs_info->sectorsize != PAGE_SIZE) { 4135 /* not supported for data w/o checksums */ 4136 btrfs_err_rl(fs_info, 4137 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", 4138 fs_info->sectorsize, PAGE_SIZE); 4139 return -EINVAL; 4140 } 4141 4142 if (fs_info->nodesize > 4143 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 4144 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 4145 /* 4146 * would exhaust the array bounds of pagev member in 4147 * struct scrub_block 4148 */ 4149 btrfs_err(fs_info, 4150 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 4151 fs_info->nodesize, 4152 SCRUB_MAX_PAGES_PER_BLOCK, 4153 fs_info->sectorsize, 4154 SCRUB_MAX_PAGES_PER_BLOCK); 4155 return -EINVAL; 4156 } 4157 4158 4159 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4160 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 4161 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 4162 !is_dev_replace)) { 4163 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4164 return -ENODEV; 4165 } 4166 4167 if (!is_dev_replace && !readonly && 4168 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 4169 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4170 rcu_read_lock(); 4171 name = rcu_dereference(dev->name); 4172 btrfs_err(fs_info, "scrub: device %s is not writable", 4173 name->str); 4174 rcu_read_unlock(); 4175 return -EROFS; 4176 } 4177 4178 mutex_lock(&fs_info->scrub_lock); 4179 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4180 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 4181 mutex_unlock(&fs_info->scrub_lock); 4182 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4183 return -EIO; 4184 } 4185 4186 btrfs_dev_replace_read_lock(&fs_info->dev_replace); 4187 if (dev->scrub_ctx || 4188 (!is_dev_replace && 4189 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4190 btrfs_dev_replace_read_unlock(&fs_info->dev_replace); 4191 mutex_unlock(&fs_info->scrub_lock); 4192 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4193 return -EINPROGRESS; 4194 } 4195 btrfs_dev_replace_read_unlock(&fs_info->dev_replace); 4196 4197 ret = scrub_workers_get(fs_info, is_dev_replace); 4198 if (ret) { 4199 mutex_unlock(&fs_info->scrub_lock); 4200 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4201 return ret; 4202 } 4203 4204 sctx = scrub_setup_ctx(dev, is_dev_replace); 4205 if (IS_ERR(sctx)) { 4206 mutex_unlock(&fs_info->scrub_lock); 4207 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4208 scrub_workers_put(fs_info); 4209 return PTR_ERR(sctx); 4210 } 4211 sctx->readonly = readonly; 4212 dev->scrub_ctx = sctx; 4213 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4214 4215 /* 4216 * checking @scrub_pause_req here, we can avoid 4217 * race between committing transaction and scrubbing. 4218 */ 4219 __scrub_blocked_if_needed(fs_info); 4220 atomic_inc(&fs_info->scrubs_running); 4221 mutex_unlock(&fs_info->scrub_lock); 4222 4223 if (!is_dev_replace) { 4224 /* 4225 * by holding device list mutex, we can 4226 * kick off writing super in log tree sync. 4227 */ 4228 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4229 ret = scrub_supers(sctx, dev); 4230 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4231 } 4232 4233 if (!ret) 4234 ret = scrub_enumerate_chunks(sctx, dev, start, end, 4235 is_dev_replace); 4236 4237 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4238 atomic_dec(&fs_info->scrubs_running); 4239 wake_up(&fs_info->scrub_pause_wait); 4240 4241 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4242 4243 if (progress) 4244 memcpy(progress, &sctx->stat, sizeof(*progress)); 4245 4246 mutex_lock(&fs_info->scrub_lock); 4247 dev->scrub_ctx = NULL; 4248 scrub_workers_put(fs_info); 4249 mutex_unlock(&fs_info->scrub_lock); 4250 4251 scrub_put_ctx(sctx); 4252 4253 return ret; 4254 } 4255 4256 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4257 { 4258 mutex_lock(&fs_info->scrub_lock); 4259 atomic_inc(&fs_info->scrub_pause_req); 4260 while (atomic_read(&fs_info->scrubs_paused) != 4261 atomic_read(&fs_info->scrubs_running)) { 4262 mutex_unlock(&fs_info->scrub_lock); 4263 wait_event(fs_info->scrub_pause_wait, 4264 atomic_read(&fs_info->scrubs_paused) == 4265 atomic_read(&fs_info->scrubs_running)); 4266 mutex_lock(&fs_info->scrub_lock); 4267 } 4268 mutex_unlock(&fs_info->scrub_lock); 4269 } 4270 4271 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4272 { 4273 atomic_dec(&fs_info->scrub_pause_req); 4274 wake_up(&fs_info->scrub_pause_wait); 4275 } 4276 4277 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4278 { 4279 mutex_lock(&fs_info->scrub_lock); 4280 if (!atomic_read(&fs_info->scrubs_running)) { 4281 mutex_unlock(&fs_info->scrub_lock); 4282 return -ENOTCONN; 4283 } 4284 4285 atomic_inc(&fs_info->scrub_cancel_req); 4286 while (atomic_read(&fs_info->scrubs_running)) { 4287 mutex_unlock(&fs_info->scrub_lock); 4288 wait_event(fs_info->scrub_pause_wait, 4289 atomic_read(&fs_info->scrubs_running) == 0); 4290 mutex_lock(&fs_info->scrub_lock); 4291 } 4292 atomic_dec(&fs_info->scrub_cancel_req); 4293 mutex_unlock(&fs_info->scrub_lock); 4294 4295 return 0; 4296 } 4297 4298 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 4299 struct btrfs_device *dev) 4300 { 4301 struct scrub_ctx *sctx; 4302 4303 mutex_lock(&fs_info->scrub_lock); 4304 sctx = dev->scrub_ctx; 4305 if (!sctx) { 4306 mutex_unlock(&fs_info->scrub_lock); 4307 return -ENOTCONN; 4308 } 4309 atomic_inc(&sctx->cancel_req); 4310 while (dev->scrub_ctx) { 4311 mutex_unlock(&fs_info->scrub_lock); 4312 wait_event(fs_info->scrub_pause_wait, 4313 dev->scrub_ctx == NULL); 4314 mutex_lock(&fs_info->scrub_lock); 4315 } 4316 mutex_unlock(&fs_info->scrub_lock); 4317 4318 return 0; 4319 } 4320 4321 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4322 struct btrfs_scrub_progress *progress) 4323 { 4324 struct btrfs_device *dev; 4325 struct scrub_ctx *sctx = NULL; 4326 4327 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4328 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 4329 if (dev) 4330 sctx = dev->scrub_ctx; 4331 if (sctx) 4332 memcpy(progress, &sctx->stat, sizeof(*progress)); 4333 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4334 4335 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4336 } 4337 4338 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4339 u64 extent_logical, u64 extent_len, 4340 u64 *extent_physical, 4341 struct btrfs_device **extent_dev, 4342 int *extent_mirror_num) 4343 { 4344 u64 mapped_length; 4345 struct btrfs_bio *bbio = NULL; 4346 int ret; 4347 4348 mapped_length = extent_len; 4349 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4350 &mapped_length, &bbio, 0); 4351 if (ret || !bbio || mapped_length < extent_len || 4352 !bbio->stripes[0].dev->bdev) { 4353 btrfs_put_bbio(bbio); 4354 return; 4355 } 4356 4357 *extent_physical = bbio->stripes[0].physical; 4358 *extent_mirror_num = bbio->mirror_num; 4359 *extent_dev = bbio->stripes[0].dev; 4360 btrfs_put_bbio(bbio); 4361 } 4362 4363 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 4364 int mirror_num, u64 physical_for_dev_replace) 4365 { 4366 struct scrub_copy_nocow_ctx *nocow_ctx; 4367 struct btrfs_fs_info *fs_info = sctx->fs_info; 4368 4369 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 4370 if (!nocow_ctx) { 4371 spin_lock(&sctx->stat_lock); 4372 sctx->stat.malloc_errors++; 4373 spin_unlock(&sctx->stat_lock); 4374 return -ENOMEM; 4375 } 4376 4377 scrub_pending_trans_workers_inc(sctx); 4378 4379 nocow_ctx->sctx = sctx; 4380 nocow_ctx->logical = logical; 4381 nocow_ctx->len = len; 4382 nocow_ctx->mirror_num = mirror_num; 4383 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 4384 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, 4385 copy_nocow_pages_worker, NULL, NULL); 4386 INIT_LIST_HEAD(&nocow_ctx->inodes); 4387 btrfs_queue_work(fs_info->scrub_nocow_workers, 4388 &nocow_ctx->work); 4389 4390 return 0; 4391 } 4392 4393 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) 4394 { 4395 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 4396 struct scrub_nocow_inode *nocow_inode; 4397 4398 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); 4399 if (!nocow_inode) 4400 return -ENOMEM; 4401 nocow_inode->inum = inum; 4402 nocow_inode->offset = offset; 4403 nocow_inode->root = root; 4404 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); 4405 return 0; 4406 } 4407 4408 #define COPY_COMPLETE 1 4409 4410 static void copy_nocow_pages_worker(struct btrfs_work *work) 4411 { 4412 struct scrub_copy_nocow_ctx *nocow_ctx = 4413 container_of(work, struct scrub_copy_nocow_ctx, work); 4414 struct scrub_ctx *sctx = nocow_ctx->sctx; 4415 struct btrfs_fs_info *fs_info = sctx->fs_info; 4416 struct btrfs_root *root = fs_info->extent_root; 4417 u64 logical = nocow_ctx->logical; 4418 u64 len = nocow_ctx->len; 4419 int mirror_num = nocow_ctx->mirror_num; 4420 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4421 int ret; 4422 struct btrfs_trans_handle *trans = NULL; 4423 struct btrfs_path *path; 4424 int not_written = 0; 4425 4426 path = btrfs_alloc_path(); 4427 if (!path) { 4428 spin_lock(&sctx->stat_lock); 4429 sctx->stat.malloc_errors++; 4430 spin_unlock(&sctx->stat_lock); 4431 not_written = 1; 4432 goto out; 4433 } 4434 4435 trans = btrfs_join_transaction(root); 4436 if (IS_ERR(trans)) { 4437 not_written = 1; 4438 goto out; 4439 } 4440 4441 ret = iterate_inodes_from_logical(logical, fs_info, path, 4442 record_inode_for_nocow, nocow_ctx, false); 4443 if (ret != 0 && ret != -ENOENT) { 4444 btrfs_warn(fs_info, 4445 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d", 4446 logical, physical_for_dev_replace, len, mirror_num, 4447 ret); 4448 not_written = 1; 4449 goto out; 4450 } 4451 4452 btrfs_end_transaction(trans); 4453 trans = NULL; 4454 while (!list_empty(&nocow_ctx->inodes)) { 4455 struct scrub_nocow_inode *entry; 4456 entry = list_first_entry(&nocow_ctx->inodes, 4457 struct scrub_nocow_inode, 4458 list); 4459 list_del_init(&entry->list); 4460 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, 4461 entry->root, nocow_ctx); 4462 kfree(entry); 4463 if (ret == COPY_COMPLETE) { 4464 ret = 0; 4465 break; 4466 } else if (ret) { 4467 break; 4468 } 4469 } 4470 out: 4471 while (!list_empty(&nocow_ctx->inodes)) { 4472 struct scrub_nocow_inode *entry; 4473 entry = list_first_entry(&nocow_ctx->inodes, 4474 struct scrub_nocow_inode, 4475 list); 4476 list_del_init(&entry->list); 4477 kfree(entry); 4478 } 4479 if (trans && !IS_ERR(trans)) 4480 btrfs_end_transaction(trans); 4481 if (not_written) 4482 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 4483 num_uncorrectable_read_errors); 4484 4485 btrfs_free_path(path); 4486 kfree(nocow_ctx); 4487 4488 scrub_pending_trans_workers_dec(sctx); 4489 } 4490 4491 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len, 4492 u64 logical) 4493 { 4494 struct extent_state *cached_state = NULL; 4495 struct btrfs_ordered_extent *ordered; 4496 struct extent_io_tree *io_tree; 4497 struct extent_map *em; 4498 u64 lockstart = start, lockend = start + len - 1; 4499 int ret = 0; 4500 4501 io_tree = &inode->io_tree; 4502 4503 lock_extent_bits(io_tree, lockstart, lockend, &cached_state); 4504 ordered = btrfs_lookup_ordered_range(inode, lockstart, len); 4505 if (ordered) { 4506 btrfs_put_ordered_extent(ordered); 4507 ret = 1; 4508 goto out_unlock; 4509 } 4510 4511 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 4512 if (IS_ERR(em)) { 4513 ret = PTR_ERR(em); 4514 goto out_unlock; 4515 } 4516 4517 /* 4518 * This extent does not actually cover the logical extent anymore, 4519 * move on to the next inode. 4520 */ 4521 if (em->block_start > logical || 4522 em->block_start + em->block_len < logical + len || 4523 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4524 free_extent_map(em); 4525 ret = 1; 4526 goto out_unlock; 4527 } 4528 free_extent_map(em); 4529 4530 out_unlock: 4531 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state); 4532 return ret; 4533 } 4534 4535 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 4536 struct scrub_copy_nocow_ctx *nocow_ctx) 4537 { 4538 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info; 4539 struct btrfs_key key; 4540 struct inode *inode; 4541 struct page *page; 4542 struct btrfs_root *local_root; 4543 struct extent_io_tree *io_tree; 4544 u64 physical_for_dev_replace; 4545 u64 nocow_ctx_logical; 4546 u64 len = nocow_ctx->len; 4547 unsigned long index; 4548 int srcu_index; 4549 int ret = 0; 4550 int err = 0; 4551 4552 key.objectid = root; 4553 key.type = BTRFS_ROOT_ITEM_KEY; 4554 key.offset = (u64)-1; 4555 4556 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 4557 4558 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 4559 if (IS_ERR(local_root)) { 4560 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4561 return PTR_ERR(local_root); 4562 } 4563 4564 key.type = BTRFS_INODE_ITEM_KEY; 4565 key.objectid = inum; 4566 key.offset = 0; 4567 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 4568 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 4569 if (IS_ERR(inode)) 4570 return PTR_ERR(inode); 4571 4572 /* Avoid truncate/dio/punch hole.. */ 4573 inode_lock(inode); 4574 inode_dio_wait(inode); 4575 4576 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 4577 io_tree = &BTRFS_I(inode)->io_tree; 4578 nocow_ctx_logical = nocow_ctx->logical; 4579 4580 ret = check_extent_to_block(BTRFS_I(inode), offset, len, 4581 nocow_ctx_logical); 4582 if (ret) { 4583 ret = ret > 0 ? 0 : ret; 4584 goto out; 4585 } 4586 4587 while (len >= PAGE_SIZE) { 4588 index = offset >> PAGE_SHIFT; 4589 again: 4590 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4591 if (!page) { 4592 btrfs_err(fs_info, "find_or_create_page() failed"); 4593 ret = -ENOMEM; 4594 goto out; 4595 } 4596 4597 if (PageUptodate(page)) { 4598 if (PageDirty(page)) 4599 goto next_page; 4600 } else { 4601 ClearPageError(page); 4602 err = extent_read_full_page(io_tree, page, 4603 btrfs_get_extent, 4604 nocow_ctx->mirror_num); 4605 if (err) { 4606 ret = err; 4607 goto next_page; 4608 } 4609 4610 lock_page(page); 4611 /* 4612 * If the page has been remove from the page cache, 4613 * the data on it is meaningless, because it may be 4614 * old one, the new data may be written into the new 4615 * page in the page cache. 4616 */ 4617 if (page->mapping != inode->i_mapping) { 4618 unlock_page(page); 4619 put_page(page); 4620 goto again; 4621 } 4622 if (!PageUptodate(page)) { 4623 ret = -EIO; 4624 goto next_page; 4625 } 4626 } 4627 4628 ret = check_extent_to_block(BTRFS_I(inode), offset, len, 4629 nocow_ctx_logical); 4630 if (ret) { 4631 ret = ret > 0 ? 0 : ret; 4632 goto next_page; 4633 } 4634 4635 err = write_page_nocow(nocow_ctx->sctx, 4636 physical_for_dev_replace, page); 4637 if (err) 4638 ret = err; 4639 next_page: 4640 unlock_page(page); 4641 put_page(page); 4642 4643 if (ret) 4644 break; 4645 4646 offset += PAGE_SIZE; 4647 physical_for_dev_replace += PAGE_SIZE; 4648 nocow_ctx_logical += PAGE_SIZE; 4649 len -= PAGE_SIZE; 4650 } 4651 ret = COPY_COMPLETE; 4652 out: 4653 inode_unlock(inode); 4654 iput(inode); 4655 return ret; 4656 } 4657 4658 static int write_page_nocow(struct scrub_ctx *sctx, 4659 u64 physical_for_dev_replace, struct page *page) 4660 { 4661 struct bio *bio; 4662 struct btrfs_device *dev; 4663 4664 dev = sctx->wr_tgtdev; 4665 if (!dev) 4666 return -EIO; 4667 if (!dev->bdev) { 4668 btrfs_warn_rl(dev->fs_info, 4669 "scrub write_page_nocow(bdev == NULL) is unexpected"); 4670 return -EIO; 4671 } 4672 bio = btrfs_io_bio_alloc(1); 4673 bio->bi_iter.bi_size = 0; 4674 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; 4675 bio_set_dev(bio, dev->bdev); 4676 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 4677 /* bio_add_page won't fail on a freshly allocated bio */ 4678 bio_add_page(bio, page, PAGE_SIZE, 0); 4679 4680 if (btrfsic_submit_bio_wait(bio)) { 4681 bio_put(bio); 4682 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 4683 return -EIO; 4684 } 4685 4686 bio_put(bio); 4687 return 0; 4688 } 4689