xref: /openbmc/linux/fs/btrfs/scrub.c (revision a03a8dbe20eff6d57aae3147577bf84b52aba4e6)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_recover {
67 	atomic_t		refs;
68 	struct btrfs_bio	*bbio;
69 	u64			map_length;
70 };
71 
72 struct scrub_page {
73 	struct scrub_block	*sblock;
74 	struct page		*page;
75 	struct btrfs_device	*dev;
76 	struct list_head	list;
77 	u64			flags;  /* extent flags */
78 	u64			generation;
79 	u64			logical;
80 	u64			physical;
81 	u64			physical_for_dev_replace;
82 	atomic_t		refs;
83 	struct {
84 		unsigned int	mirror_num:8;
85 		unsigned int	have_csum:1;
86 		unsigned int	io_error:1;
87 	};
88 	u8			csum[BTRFS_CSUM_SIZE];
89 
90 	struct scrub_recover	*recover;
91 };
92 
93 struct scrub_bio {
94 	int			index;
95 	struct scrub_ctx	*sctx;
96 	struct btrfs_device	*dev;
97 	struct bio		*bio;
98 	int			err;
99 	u64			logical;
100 	u64			physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 	int			page_count;
107 	int			next_free;
108 	struct btrfs_work	work;
109 };
110 
111 struct scrub_block {
112 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 	int			page_count;
114 	atomic_t		outstanding_pages;
115 	atomic_t		refs; /* free mem on transition to zero */
116 	struct scrub_ctx	*sctx;
117 	struct scrub_parity	*sparity;
118 	struct {
119 		unsigned int	header_error:1;
120 		unsigned int	checksum_error:1;
121 		unsigned int	no_io_error_seen:1;
122 		unsigned int	generation_error:1; /* also sets header_error */
123 
124 		/* The following is for the data used to check parity */
125 		/* It is for the data with checksum */
126 		unsigned int	data_corrected:1;
127 	};
128 };
129 
130 /* Used for the chunks with parity stripe such RAID5/6 */
131 struct scrub_parity {
132 	struct scrub_ctx	*sctx;
133 
134 	struct btrfs_device	*scrub_dev;
135 
136 	u64			logic_start;
137 
138 	u64			logic_end;
139 
140 	int			nsectors;
141 
142 	int			stripe_len;
143 
144 	atomic_t		refs;
145 
146 	struct list_head	spages;
147 
148 	/* Work of parity check and repair */
149 	struct btrfs_work	work;
150 
151 	/* Mark the parity blocks which have data */
152 	unsigned long		*dbitmap;
153 
154 	/*
155 	 * Mark the parity blocks which have data, but errors happen when
156 	 * read data or check data
157 	 */
158 	unsigned long		*ebitmap;
159 
160 	unsigned long		bitmap[0];
161 };
162 
163 struct scrub_wr_ctx {
164 	struct scrub_bio *wr_curr_bio;
165 	struct btrfs_device *tgtdev;
166 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
167 	atomic_t flush_all_writes;
168 	struct mutex wr_lock;
169 };
170 
171 struct scrub_ctx {
172 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
173 	struct btrfs_root	*dev_root;
174 	int			first_free;
175 	int			curr;
176 	atomic_t		bios_in_flight;
177 	atomic_t		workers_pending;
178 	spinlock_t		list_lock;
179 	wait_queue_head_t	list_wait;
180 	u16			csum_size;
181 	struct list_head	csum_list;
182 	atomic_t		cancel_req;
183 	int			readonly;
184 	int			pages_per_rd_bio;
185 	u32			sectorsize;
186 	u32			nodesize;
187 
188 	int			is_dev_replace;
189 	struct scrub_wr_ctx	wr_ctx;
190 
191 	/*
192 	 * statistics
193 	 */
194 	struct btrfs_scrub_progress stat;
195 	spinlock_t		stat_lock;
196 
197 	/*
198 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
199 	 * decrement bios_in_flight and workers_pending and then do a wakeup
200 	 * on the list_wait wait queue. We must ensure the main scrub task
201 	 * doesn't free the scrub context before or while the workers are
202 	 * doing the wakeup() call.
203 	 */
204 	atomic_t                refs;
205 };
206 
207 struct scrub_fixup_nodatasum {
208 	struct scrub_ctx	*sctx;
209 	struct btrfs_device	*dev;
210 	u64			logical;
211 	struct btrfs_root	*root;
212 	struct btrfs_work	work;
213 	int			mirror_num;
214 };
215 
216 struct scrub_nocow_inode {
217 	u64			inum;
218 	u64			offset;
219 	u64			root;
220 	struct list_head	list;
221 };
222 
223 struct scrub_copy_nocow_ctx {
224 	struct scrub_ctx	*sctx;
225 	u64			logical;
226 	u64			len;
227 	int			mirror_num;
228 	u64			physical_for_dev_replace;
229 	struct list_head	inodes;
230 	struct btrfs_work	work;
231 };
232 
233 struct scrub_warning {
234 	struct btrfs_path	*path;
235 	u64			extent_item_size;
236 	const char		*errstr;
237 	sector_t		sector;
238 	u64			logical;
239 	struct btrfs_device	*dev;
240 };
241 
242 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
243 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
244 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
246 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
247 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
248 				     struct scrub_block *sblocks_for_recheck);
249 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
250 				struct scrub_block *sblock, int is_metadata,
251 				int have_csum, u8 *csum, u64 generation,
252 				u16 csum_size, int retry_failed_mirror);
253 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
254 					 struct scrub_block *sblock,
255 					 int is_metadata, int have_csum,
256 					 const u8 *csum, u64 generation,
257 					 u16 csum_size);
258 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
259 					     struct scrub_block *sblock_good);
260 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
261 					    struct scrub_block *sblock_good,
262 					    int page_num, int force_write);
263 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
264 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
265 					   int page_num);
266 static int scrub_checksum_data(struct scrub_block *sblock);
267 static int scrub_checksum_tree_block(struct scrub_block *sblock);
268 static int scrub_checksum_super(struct scrub_block *sblock);
269 static void scrub_block_get(struct scrub_block *sblock);
270 static void scrub_block_put(struct scrub_block *sblock);
271 static void scrub_page_get(struct scrub_page *spage);
272 static void scrub_page_put(struct scrub_page *spage);
273 static void scrub_parity_get(struct scrub_parity *sparity);
274 static void scrub_parity_put(struct scrub_parity *sparity);
275 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
276 				    struct scrub_page *spage);
277 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
278 		       u64 physical, struct btrfs_device *dev, u64 flags,
279 		       u64 gen, int mirror_num, u8 *csum, int force,
280 		       u64 physical_for_dev_replace);
281 static void scrub_bio_end_io(struct bio *bio, int err);
282 static void scrub_bio_end_io_worker(struct btrfs_work *work);
283 static void scrub_block_complete(struct scrub_block *sblock);
284 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
285 			       u64 extent_logical, u64 extent_len,
286 			       u64 *extent_physical,
287 			       struct btrfs_device **extent_dev,
288 			       int *extent_mirror_num);
289 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
290 			      struct scrub_wr_ctx *wr_ctx,
291 			      struct btrfs_fs_info *fs_info,
292 			      struct btrfs_device *dev,
293 			      int is_dev_replace);
294 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
295 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
296 				    struct scrub_page *spage);
297 static void scrub_wr_submit(struct scrub_ctx *sctx);
298 static void scrub_wr_bio_end_io(struct bio *bio, int err);
299 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
300 static int write_page_nocow(struct scrub_ctx *sctx,
301 			    u64 physical_for_dev_replace, struct page *page);
302 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
303 				      struct scrub_copy_nocow_ctx *ctx);
304 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
305 			    int mirror_num, u64 physical_for_dev_replace);
306 static void copy_nocow_pages_worker(struct btrfs_work *work);
307 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
308 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
309 static void scrub_put_ctx(struct scrub_ctx *sctx);
310 
311 
312 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
313 {
314 	atomic_inc(&sctx->refs);
315 	atomic_inc(&sctx->bios_in_flight);
316 }
317 
318 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
319 {
320 	atomic_dec(&sctx->bios_in_flight);
321 	wake_up(&sctx->list_wait);
322 	scrub_put_ctx(sctx);
323 }
324 
325 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
326 {
327 	while (atomic_read(&fs_info->scrub_pause_req)) {
328 		mutex_unlock(&fs_info->scrub_lock);
329 		wait_event(fs_info->scrub_pause_wait,
330 		   atomic_read(&fs_info->scrub_pause_req) == 0);
331 		mutex_lock(&fs_info->scrub_lock);
332 	}
333 }
334 
335 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
336 {
337 	atomic_inc(&fs_info->scrubs_paused);
338 	wake_up(&fs_info->scrub_pause_wait);
339 
340 	mutex_lock(&fs_info->scrub_lock);
341 	__scrub_blocked_if_needed(fs_info);
342 	atomic_dec(&fs_info->scrubs_paused);
343 	mutex_unlock(&fs_info->scrub_lock);
344 
345 	wake_up(&fs_info->scrub_pause_wait);
346 }
347 
348 /*
349  * used for workers that require transaction commits (i.e., for the
350  * NOCOW case)
351  */
352 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
353 {
354 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
355 
356 	atomic_inc(&sctx->refs);
357 	/*
358 	 * increment scrubs_running to prevent cancel requests from
359 	 * completing as long as a worker is running. we must also
360 	 * increment scrubs_paused to prevent deadlocking on pause
361 	 * requests used for transactions commits (as the worker uses a
362 	 * transaction context). it is safe to regard the worker
363 	 * as paused for all matters practical. effectively, we only
364 	 * avoid cancellation requests from completing.
365 	 */
366 	mutex_lock(&fs_info->scrub_lock);
367 	atomic_inc(&fs_info->scrubs_running);
368 	atomic_inc(&fs_info->scrubs_paused);
369 	mutex_unlock(&fs_info->scrub_lock);
370 
371 	/*
372 	 * check if @scrubs_running=@scrubs_paused condition
373 	 * inside wait_event() is not an atomic operation.
374 	 * which means we may inc/dec @scrub_running/paused
375 	 * at any time. Let's wake up @scrub_pause_wait as
376 	 * much as we can to let commit transaction blocked less.
377 	 */
378 	wake_up(&fs_info->scrub_pause_wait);
379 
380 	atomic_inc(&sctx->workers_pending);
381 }
382 
383 /* used for workers that require transaction commits */
384 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
385 {
386 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
387 
388 	/*
389 	 * see scrub_pending_trans_workers_inc() why we're pretending
390 	 * to be paused in the scrub counters
391 	 */
392 	mutex_lock(&fs_info->scrub_lock);
393 	atomic_dec(&fs_info->scrubs_running);
394 	atomic_dec(&fs_info->scrubs_paused);
395 	mutex_unlock(&fs_info->scrub_lock);
396 	atomic_dec(&sctx->workers_pending);
397 	wake_up(&fs_info->scrub_pause_wait);
398 	wake_up(&sctx->list_wait);
399 	scrub_put_ctx(sctx);
400 }
401 
402 static void scrub_free_csums(struct scrub_ctx *sctx)
403 {
404 	while (!list_empty(&sctx->csum_list)) {
405 		struct btrfs_ordered_sum *sum;
406 		sum = list_first_entry(&sctx->csum_list,
407 				       struct btrfs_ordered_sum, list);
408 		list_del(&sum->list);
409 		kfree(sum);
410 	}
411 }
412 
413 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
414 {
415 	int i;
416 
417 	if (!sctx)
418 		return;
419 
420 	scrub_free_wr_ctx(&sctx->wr_ctx);
421 
422 	/* this can happen when scrub is cancelled */
423 	if (sctx->curr != -1) {
424 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
425 
426 		for (i = 0; i < sbio->page_count; i++) {
427 			WARN_ON(!sbio->pagev[i]->page);
428 			scrub_block_put(sbio->pagev[i]->sblock);
429 		}
430 		bio_put(sbio->bio);
431 	}
432 
433 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
434 		struct scrub_bio *sbio = sctx->bios[i];
435 
436 		if (!sbio)
437 			break;
438 		kfree(sbio);
439 	}
440 
441 	scrub_free_csums(sctx);
442 	kfree(sctx);
443 }
444 
445 static void scrub_put_ctx(struct scrub_ctx *sctx)
446 {
447 	if (atomic_dec_and_test(&sctx->refs))
448 		scrub_free_ctx(sctx);
449 }
450 
451 static noinline_for_stack
452 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
453 {
454 	struct scrub_ctx *sctx;
455 	int		i;
456 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
457 	int pages_per_rd_bio;
458 	int ret;
459 
460 	/*
461 	 * the setting of pages_per_rd_bio is correct for scrub but might
462 	 * be wrong for the dev_replace code where we might read from
463 	 * different devices in the initial huge bios. However, that
464 	 * code is able to correctly handle the case when adding a page
465 	 * to a bio fails.
466 	 */
467 	if (dev->bdev)
468 		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
469 					 bio_get_nr_vecs(dev->bdev));
470 	else
471 		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
472 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
473 	if (!sctx)
474 		goto nomem;
475 	atomic_set(&sctx->refs, 1);
476 	sctx->is_dev_replace = is_dev_replace;
477 	sctx->pages_per_rd_bio = pages_per_rd_bio;
478 	sctx->curr = -1;
479 	sctx->dev_root = dev->dev_root;
480 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
481 		struct scrub_bio *sbio;
482 
483 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
484 		if (!sbio)
485 			goto nomem;
486 		sctx->bios[i] = sbio;
487 
488 		sbio->index = i;
489 		sbio->sctx = sctx;
490 		sbio->page_count = 0;
491 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
492 				scrub_bio_end_io_worker, NULL, NULL);
493 
494 		if (i != SCRUB_BIOS_PER_SCTX - 1)
495 			sctx->bios[i]->next_free = i + 1;
496 		else
497 			sctx->bios[i]->next_free = -1;
498 	}
499 	sctx->first_free = 0;
500 	sctx->nodesize = dev->dev_root->nodesize;
501 	sctx->sectorsize = dev->dev_root->sectorsize;
502 	atomic_set(&sctx->bios_in_flight, 0);
503 	atomic_set(&sctx->workers_pending, 0);
504 	atomic_set(&sctx->cancel_req, 0);
505 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
506 	INIT_LIST_HEAD(&sctx->csum_list);
507 
508 	spin_lock_init(&sctx->list_lock);
509 	spin_lock_init(&sctx->stat_lock);
510 	init_waitqueue_head(&sctx->list_wait);
511 
512 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
513 				 fs_info->dev_replace.tgtdev, is_dev_replace);
514 	if (ret) {
515 		scrub_free_ctx(sctx);
516 		return ERR_PTR(ret);
517 	}
518 	return sctx;
519 
520 nomem:
521 	scrub_free_ctx(sctx);
522 	return ERR_PTR(-ENOMEM);
523 }
524 
525 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
526 				     void *warn_ctx)
527 {
528 	u64 isize;
529 	u32 nlink;
530 	int ret;
531 	int i;
532 	struct extent_buffer *eb;
533 	struct btrfs_inode_item *inode_item;
534 	struct scrub_warning *swarn = warn_ctx;
535 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
536 	struct inode_fs_paths *ipath = NULL;
537 	struct btrfs_root *local_root;
538 	struct btrfs_key root_key;
539 	struct btrfs_key key;
540 
541 	root_key.objectid = root;
542 	root_key.type = BTRFS_ROOT_ITEM_KEY;
543 	root_key.offset = (u64)-1;
544 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
545 	if (IS_ERR(local_root)) {
546 		ret = PTR_ERR(local_root);
547 		goto err;
548 	}
549 
550 	/*
551 	 * this makes the path point to (inum INODE_ITEM ioff)
552 	 */
553 	key.objectid = inum;
554 	key.type = BTRFS_INODE_ITEM_KEY;
555 	key.offset = 0;
556 
557 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558 	if (ret) {
559 		btrfs_release_path(swarn->path);
560 		goto err;
561 	}
562 
563 	eb = swarn->path->nodes[0];
564 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
565 					struct btrfs_inode_item);
566 	isize = btrfs_inode_size(eb, inode_item);
567 	nlink = btrfs_inode_nlink(eb, inode_item);
568 	btrfs_release_path(swarn->path);
569 
570 	ipath = init_ipath(4096, local_root, swarn->path);
571 	if (IS_ERR(ipath)) {
572 		ret = PTR_ERR(ipath);
573 		ipath = NULL;
574 		goto err;
575 	}
576 	ret = paths_from_inode(inum, ipath);
577 
578 	if (ret < 0)
579 		goto err;
580 
581 	/*
582 	 * we deliberately ignore the bit ipath might have been too small to
583 	 * hold all of the paths here
584 	 */
585 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
586 		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
587 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
588 			"length %llu, links %u (path: %s)\n", swarn->errstr,
589 			swarn->logical, rcu_str_deref(swarn->dev->name),
590 			(unsigned long long)swarn->sector, root, inum, offset,
591 			min(isize - offset, (u64)PAGE_SIZE), nlink,
592 			(char *)(unsigned long)ipath->fspath->val[i]);
593 
594 	free_ipath(ipath);
595 	return 0;
596 
597 err:
598 	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
599 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
600 		"resolving failed with ret=%d\n", swarn->errstr,
601 		swarn->logical, rcu_str_deref(swarn->dev->name),
602 		(unsigned long long)swarn->sector, root, inum, offset, ret);
603 
604 	free_ipath(ipath);
605 	return 0;
606 }
607 
608 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
609 {
610 	struct btrfs_device *dev;
611 	struct btrfs_fs_info *fs_info;
612 	struct btrfs_path *path;
613 	struct btrfs_key found_key;
614 	struct extent_buffer *eb;
615 	struct btrfs_extent_item *ei;
616 	struct scrub_warning swarn;
617 	unsigned long ptr = 0;
618 	u64 extent_item_pos;
619 	u64 flags = 0;
620 	u64 ref_root;
621 	u32 item_size;
622 	u8 ref_level;
623 	int ret;
624 
625 	WARN_ON(sblock->page_count < 1);
626 	dev = sblock->pagev[0]->dev;
627 	fs_info = sblock->sctx->dev_root->fs_info;
628 
629 	path = btrfs_alloc_path();
630 	if (!path)
631 		return;
632 
633 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
634 	swarn.logical = sblock->pagev[0]->logical;
635 	swarn.errstr = errstr;
636 	swarn.dev = NULL;
637 
638 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
639 				  &flags);
640 	if (ret < 0)
641 		goto out;
642 
643 	extent_item_pos = swarn.logical - found_key.objectid;
644 	swarn.extent_item_size = found_key.offset;
645 
646 	eb = path->nodes[0];
647 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
648 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
649 
650 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
651 		do {
652 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
653 						      item_size, &ref_root,
654 						      &ref_level);
655 			printk_in_rcu(KERN_WARNING
656 				"BTRFS: %s at logical %llu on dev %s, "
657 				"sector %llu: metadata %s (level %d) in tree "
658 				"%llu\n", errstr, swarn.logical,
659 				rcu_str_deref(dev->name),
660 				(unsigned long long)swarn.sector,
661 				ref_level ? "node" : "leaf",
662 				ret < 0 ? -1 : ref_level,
663 				ret < 0 ? -1 : ref_root);
664 		} while (ret != 1);
665 		btrfs_release_path(path);
666 	} else {
667 		btrfs_release_path(path);
668 		swarn.path = path;
669 		swarn.dev = dev;
670 		iterate_extent_inodes(fs_info, found_key.objectid,
671 					extent_item_pos, 1,
672 					scrub_print_warning_inode, &swarn);
673 	}
674 
675 out:
676 	btrfs_free_path(path);
677 }
678 
679 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
680 {
681 	struct page *page = NULL;
682 	unsigned long index;
683 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
684 	int ret;
685 	int corrected = 0;
686 	struct btrfs_key key;
687 	struct inode *inode = NULL;
688 	struct btrfs_fs_info *fs_info;
689 	u64 end = offset + PAGE_SIZE - 1;
690 	struct btrfs_root *local_root;
691 	int srcu_index;
692 
693 	key.objectid = root;
694 	key.type = BTRFS_ROOT_ITEM_KEY;
695 	key.offset = (u64)-1;
696 
697 	fs_info = fixup->root->fs_info;
698 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
699 
700 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
701 	if (IS_ERR(local_root)) {
702 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
703 		return PTR_ERR(local_root);
704 	}
705 
706 	key.type = BTRFS_INODE_ITEM_KEY;
707 	key.objectid = inum;
708 	key.offset = 0;
709 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
710 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
711 	if (IS_ERR(inode))
712 		return PTR_ERR(inode);
713 
714 	index = offset >> PAGE_CACHE_SHIFT;
715 
716 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
717 	if (!page) {
718 		ret = -ENOMEM;
719 		goto out;
720 	}
721 
722 	if (PageUptodate(page)) {
723 		if (PageDirty(page)) {
724 			/*
725 			 * we need to write the data to the defect sector. the
726 			 * data that was in that sector is not in memory,
727 			 * because the page was modified. we must not write the
728 			 * modified page to that sector.
729 			 *
730 			 * TODO: what could be done here: wait for the delalloc
731 			 *       runner to write out that page (might involve
732 			 *       COW) and see whether the sector is still
733 			 *       referenced afterwards.
734 			 *
735 			 * For the meantime, we'll treat this error
736 			 * incorrectable, although there is a chance that a
737 			 * later scrub will find the bad sector again and that
738 			 * there's no dirty page in memory, then.
739 			 */
740 			ret = -EIO;
741 			goto out;
742 		}
743 		ret = repair_io_failure(inode, offset, PAGE_SIZE,
744 					fixup->logical, page,
745 					offset - page_offset(page),
746 					fixup->mirror_num);
747 		unlock_page(page);
748 		corrected = !ret;
749 	} else {
750 		/*
751 		 * we need to get good data first. the general readpage path
752 		 * will call repair_io_failure for us, we just have to make
753 		 * sure we read the bad mirror.
754 		 */
755 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
756 					EXTENT_DAMAGED, GFP_NOFS);
757 		if (ret) {
758 			/* set_extent_bits should give proper error */
759 			WARN_ON(ret > 0);
760 			if (ret > 0)
761 				ret = -EFAULT;
762 			goto out;
763 		}
764 
765 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
766 						btrfs_get_extent,
767 						fixup->mirror_num);
768 		wait_on_page_locked(page);
769 
770 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
771 						end, EXTENT_DAMAGED, 0, NULL);
772 		if (!corrected)
773 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
774 						EXTENT_DAMAGED, GFP_NOFS);
775 	}
776 
777 out:
778 	if (page)
779 		put_page(page);
780 
781 	iput(inode);
782 
783 	if (ret < 0)
784 		return ret;
785 
786 	if (ret == 0 && corrected) {
787 		/*
788 		 * we only need to call readpage for one of the inodes belonging
789 		 * to this extent. so make iterate_extent_inodes stop
790 		 */
791 		return 1;
792 	}
793 
794 	return -EIO;
795 }
796 
797 static void scrub_fixup_nodatasum(struct btrfs_work *work)
798 {
799 	int ret;
800 	struct scrub_fixup_nodatasum *fixup;
801 	struct scrub_ctx *sctx;
802 	struct btrfs_trans_handle *trans = NULL;
803 	struct btrfs_path *path;
804 	int uncorrectable = 0;
805 
806 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
807 	sctx = fixup->sctx;
808 
809 	path = btrfs_alloc_path();
810 	if (!path) {
811 		spin_lock(&sctx->stat_lock);
812 		++sctx->stat.malloc_errors;
813 		spin_unlock(&sctx->stat_lock);
814 		uncorrectable = 1;
815 		goto out;
816 	}
817 
818 	trans = btrfs_join_transaction(fixup->root);
819 	if (IS_ERR(trans)) {
820 		uncorrectable = 1;
821 		goto out;
822 	}
823 
824 	/*
825 	 * the idea is to trigger a regular read through the standard path. we
826 	 * read a page from the (failed) logical address by specifying the
827 	 * corresponding copynum of the failed sector. thus, that readpage is
828 	 * expected to fail.
829 	 * that is the point where on-the-fly error correction will kick in
830 	 * (once it's finished) and rewrite the failed sector if a good copy
831 	 * can be found.
832 	 */
833 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
834 						path, scrub_fixup_readpage,
835 						fixup);
836 	if (ret < 0) {
837 		uncorrectable = 1;
838 		goto out;
839 	}
840 	WARN_ON(ret != 1);
841 
842 	spin_lock(&sctx->stat_lock);
843 	++sctx->stat.corrected_errors;
844 	spin_unlock(&sctx->stat_lock);
845 
846 out:
847 	if (trans && !IS_ERR(trans))
848 		btrfs_end_transaction(trans, fixup->root);
849 	if (uncorrectable) {
850 		spin_lock(&sctx->stat_lock);
851 		++sctx->stat.uncorrectable_errors;
852 		spin_unlock(&sctx->stat_lock);
853 		btrfs_dev_replace_stats_inc(
854 			&sctx->dev_root->fs_info->dev_replace.
855 			num_uncorrectable_read_errors);
856 		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
857 		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
858 			fixup->logical, rcu_str_deref(fixup->dev->name));
859 	}
860 
861 	btrfs_free_path(path);
862 	kfree(fixup);
863 
864 	scrub_pending_trans_workers_dec(sctx);
865 }
866 
867 static inline void scrub_get_recover(struct scrub_recover *recover)
868 {
869 	atomic_inc(&recover->refs);
870 }
871 
872 static inline void scrub_put_recover(struct scrub_recover *recover)
873 {
874 	if (atomic_dec_and_test(&recover->refs)) {
875 		btrfs_put_bbio(recover->bbio);
876 		kfree(recover);
877 	}
878 }
879 
880 /*
881  * scrub_handle_errored_block gets called when either verification of the
882  * pages failed or the bio failed to read, e.g. with EIO. In the latter
883  * case, this function handles all pages in the bio, even though only one
884  * may be bad.
885  * The goal of this function is to repair the errored block by using the
886  * contents of one of the mirrors.
887  */
888 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
889 {
890 	struct scrub_ctx *sctx = sblock_to_check->sctx;
891 	struct btrfs_device *dev;
892 	struct btrfs_fs_info *fs_info;
893 	u64 length;
894 	u64 logical;
895 	u64 generation;
896 	unsigned int failed_mirror_index;
897 	unsigned int is_metadata;
898 	unsigned int have_csum;
899 	u8 *csum;
900 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
901 	struct scrub_block *sblock_bad;
902 	int ret;
903 	int mirror_index;
904 	int page_num;
905 	int success;
906 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
907 				      DEFAULT_RATELIMIT_BURST);
908 
909 	BUG_ON(sblock_to_check->page_count < 1);
910 	fs_info = sctx->dev_root->fs_info;
911 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
912 		/*
913 		 * if we find an error in a super block, we just report it.
914 		 * They will get written with the next transaction commit
915 		 * anyway
916 		 */
917 		spin_lock(&sctx->stat_lock);
918 		++sctx->stat.super_errors;
919 		spin_unlock(&sctx->stat_lock);
920 		return 0;
921 	}
922 	length = sblock_to_check->page_count * PAGE_SIZE;
923 	logical = sblock_to_check->pagev[0]->logical;
924 	generation = sblock_to_check->pagev[0]->generation;
925 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
926 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
927 	is_metadata = !(sblock_to_check->pagev[0]->flags &
928 			BTRFS_EXTENT_FLAG_DATA);
929 	have_csum = sblock_to_check->pagev[0]->have_csum;
930 	csum = sblock_to_check->pagev[0]->csum;
931 	dev = sblock_to_check->pagev[0]->dev;
932 
933 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
934 		sblocks_for_recheck = NULL;
935 		goto nodatasum_case;
936 	}
937 
938 	/*
939 	 * read all mirrors one after the other. This includes to
940 	 * re-read the extent or metadata block that failed (that was
941 	 * the cause that this fixup code is called) another time,
942 	 * page by page this time in order to know which pages
943 	 * caused I/O errors and which ones are good (for all mirrors).
944 	 * It is the goal to handle the situation when more than one
945 	 * mirror contains I/O errors, but the errors do not
946 	 * overlap, i.e. the data can be repaired by selecting the
947 	 * pages from those mirrors without I/O error on the
948 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
949 	 * would be that mirror #1 has an I/O error on the first page,
950 	 * the second page is good, and mirror #2 has an I/O error on
951 	 * the second page, but the first page is good.
952 	 * Then the first page of the first mirror can be repaired by
953 	 * taking the first page of the second mirror, and the
954 	 * second page of the second mirror can be repaired by
955 	 * copying the contents of the 2nd page of the 1st mirror.
956 	 * One more note: if the pages of one mirror contain I/O
957 	 * errors, the checksum cannot be verified. In order to get
958 	 * the best data for repairing, the first attempt is to find
959 	 * a mirror without I/O errors and with a validated checksum.
960 	 * Only if this is not possible, the pages are picked from
961 	 * mirrors with I/O errors without considering the checksum.
962 	 * If the latter is the case, at the end, the checksum of the
963 	 * repaired area is verified in order to correctly maintain
964 	 * the statistics.
965 	 */
966 
967 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
968 				     sizeof(*sblocks_for_recheck),
969 				     GFP_NOFS);
970 	if (!sblocks_for_recheck) {
971 		spin_lock(&sctx->stat_lock);
972 		sctx->stat.malloc_errors++;
973 		sctx->stat.read_errors++;
974 		sctx->stat.uncorrectable_errors++;
975 		spin_unlock(&sctx->stat_lock);
976 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
977 		goto out;
978 	}
979 
980 	/* setup the context, map the logical blocks and alloc the pages */
981 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
982 	if (ret) {
983 		spin_lock(&sctx->stat_lock);
984 		sctx->stat.read_errors++;
985 		sctx->stat.uncorrectable_errors++;
986 		spin_unlock(&sctx->stat_lock);
987 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
988 		goto out;
989 	}
990 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
991 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
992 
993 	/* build and submit the bios for the failed mirror, check checksums */
994 	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
995 			    csum, generation, sctx->csum_size, 1);
996 
997 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
998 	    sblock_bad->no_io_error_seen) {
999 		/*
1000 		 * the error disappeared after reading page by page, or
1001 		 * the area was part of a huge bio and other parts of the
1002 		 * bio caused I/O errors, or the block layer merged several
1003 		 * read requests into one and the error is caused by a
1004 		 * different bio (usually one of the two latter cases is
1005 		 * the cause)
1006 		 */
1007 		spin_lock(&sctx->stat_lock);
1008 		sctx->stat.unverified_errors++;
1009 		sblock_to_check->data_corrected = 1;
1010 		spin_unlock(&sctx->stat_lock);
1011 
1012 		if (sctx->is_dev_replace)
1013 			scrub_write_block_to_dev_replace(sblock_bad);
1014 		goto out;
1015 	}
1016 
1017 	if (!sblock_bad->no_io_error_seen) {
1018 		spin_lock(&sctx->stat_lock);
1019 		sctx->stat.read_errors++;
1020 		spin_unlock(&sctx->stat_lock);
1021 		if (__ratelimit(&_rs))
1022 			scrub_print_warning("i/o error", sblock_to_check);
1023 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1024 	} else if (sblock_bad->checksum_error) {
1025 		spin_lock(&sctx->stat_lock);
1026 		sctx->stat.csum_errors++;
1027 		spin_unlock(&sctx->stat_lock);
1028 		if (__ratelimit(&_rs))
1029 			scrub_print_warning("checksum error", sblock_to_check);
1030 		btrfs_dev_stat_inc_and_print(dev,
1031 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032 	} else if (sblock_bad->header_error) {
1033 		spin_lock(&sctx->stat_lock);
1034 		sctx->stat.verify_errors++;
1035 		spin_unlock(&sctx->stat_lock);
1036 		if (__ratelimit(&_rs))
1037 			scrub_print_warning("checksum/header error",
1038 					    sblock_to_check);
1039 		if (sblock_bad->generation_error)
1040 			btrfs_dev_stat_inc_and_print(dev,
1041 				BTRFS_DEV_STAT_GENERATION_ERRS);
1042 		else
1043 			btrfs_dev_stat_inc_and_print(dev,
1044 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1045 	}
1046 
1047 	if (sctx->readonly) {
1048 		ASSERT(!sctx->is_dev_replace);
1049 		goto out;
1050 	}
1051 
1052 	if (!is_metadata && !have_csum) {
1053 		struct scrub_fixup_nodatasum *fixup_nodatasum;
1054 
1055 		WARN_ON(sctx->is_dev_replace);
1056 
1057 nodatasum_case:
1058 
1059 		/*
1060 		 * !is_metadata and !have_csum, this means that the data
1061 		 * might not be COW'ed, that it might be modified
1062 		 * concurrently. The general strategy to work on the
1063 		 * commit root does not help in the case when COW is not
1064 		 * used.
1065 		 */
1066 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1067 		if (!fixup_nodatasum)
1068 			goto did_not_correct_error;
1069 		fixup_nodatasum->sctx = sctx;
1070 		fixup_nodatasum->dev = dev;
1071 		fixup_nodatasum->logical = logical;
1072 		fixup_nodatasum->root = fs_info->extent_root;
1073 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1074 		scrub_pending_trans_workers_inc(sctx);
1075 		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1076 				scrub_fixup_nodatasum, NULL, NULL);
1077 		btrfs_queue_work(fs_info->scrub_workers,
1078 				 &fixup_nodatasum->work);
1079 		goto out;
1080 	}
1081 
1082 	/*
1083 	 * now build and submit the bios for the other mirrors, check
1084 	 * checksums.
1085 	 * First try to pick the mirror which is completely without I/O
1086 	 * errors and also does not have a checksum error.
1087 	 * If one is found, and if a checksum is present, the full block
1088 	 * that is known to contain an error is rewritten. Afterwards
1089 	 * the block is known to be corrected.
1090 	 * If a mirror is found which is completely correct, and no
1091 	 * checksum is present, only those pages are rewritten that had
1092 	 * an I/O error in the block to be repaired, since it cannot be
1093 	 * determined, which copy of the other pages is better (and it
1094 	 * could happen otherwise that a correct page would be
1095 	 * overwritten by a bad one).
1096 	 */
1097 	for (mirror_index = 0;
1098 	     mirror_index < BTRFS_MAX_MIRRORS &&
1099 	     sblocks_for_recheck[mirror_index].page_count > 0;
1100 	     mirror_index++) {
1101 		struct scrub_block *sblock_other;
1102 
1103 		if (mirror_index == failed_mirror_index)
1104 			continue;
1105 		sblock_other = sblocks_for_recheck + mirror_index;
1106 
1107 		/* build and submit the bios, check checksums */
1108 		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1109 				    have_csum, csum, generation,
1110 				    sctx->csum_size, 0);
1111 
1112 		if (!sblock_other->header_error &&
1113 		    !sblock_other->checksum_error &&
1114 		    sblock_other->no_io_error_seen) {
1115 			if (sctx->is_dev_replace) {
1116 				scrub_write_block_to_dev_replace(sblock_other);
1117 				goto corrected_error;
1118 			} else {
1119 				ret = scrub_repair_block_from_good_copy(
1120 						sblock_bad, sblock_other);
1121 				if (!ret)
1122 					goto corrected_error;
1123 			}
1124 		}
1125 	}
1126 
1127 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1128 		goto did_not_correct_error;
1129 
1130 	/*
1131 	 * In case of I/O errors in the area that is supposed to be
1132 	 * repaired, continue by picking good copies of those pages.
1133 	 * Select the good pages from mirrors to rewrite bad pages from
1134 	 * the area to fix. Afterwards verify the checksum of the block
1135 	 * that is supposed to be repaired. This verification step is
1136 	 * only done for the purpose of statistic counting and for the
1137 	 * final scrub report, whether errors remain.
1138 	 * A perfect algorithm could make use of the checksum and try
1139 	 * all possible combinations of pages from the different mirrors
1140 	 * until the checksum verification succeeds. For example, when
1141 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1142 	 * of mirror #2 is readable but the final checksum test fails,
1143 	 * then the 2nd page of mirror #3 could be tried, whether now
1144 	 * the final checksum succeedes. But this would be a rare
1145 	 * exception and is therefore not implemented. At least it is
1146 	 * avoided that the good copy is overwritten.
1147 	 * A more useful improvement would be to pick the sectors
1148 	 * without I/O error based on sector sizes (512 bytes on legacy
1149 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1150 	 * mirror could be repaired by taking 512 byte of a different
1151 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1152 	 * area are unreadable.
1153 	 */
1154 	success = 1;
1155 	for (page_num = 0; page_num < sblock_bad->page_count;
1156 	     page_num++) {
1157 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1158 		struct scrub_block *sblock_other = NULL;
1159 
1160 		/* skip no-io-error page in scrub */
1161 		if (!page_bad->io_error && !sctx->is_dev_replace)
1162 			continue;
1163 
1164 		/* try to find no-io-error page in mirrors */
1165 		if (page_bad->io_error) {
1166 			for (mirror_index = 0;
1167 			     mirror_index < BTRFS_MAX_MIRRORS &&
1168 			     sblocks_for_recheck[mirror_index].page_count > 0;
1169 			     mirror_index++) {
1170 				if (!sblocks_for_recheck[mirror_index].
1171 				    pagev[page_num]->io_error) {
1172 					sblock_other = sblocks_for_recheck +
1173 						       mirror_index;
1174 					break;
1175 				}
1176 			}
1177 			if (!sblock_other)
1178 				success = 0;
1179 		}
1180 
1181 		if (sctx->is_dev_replace) {
1182 			/*
1183 			 * did not find a mirror to fetch the page
1184 			 * from. scrub_write_page_to_dev_replace()
1185 			 * handles this case (page->io_error), by
1186 			 * filling the block with zeros before
1187 			 * submitting the write request
1188 			 */
1189 			if (!sblock_other)
1190 				sblock_other = sblock_bad;
1191 
1192 			if (scrub_write_page_to_dev_replace(sblock_other,
1193 							    page_num) != 0) {
1194 				btrfs_dev_replace_stats_inc(
1195 					&sctx->dev_root->
1196 					fs_info->dev_replace.
1197 					num_write_errors);
1198 				success = 0;
1199 			}
1200 		} else if (sblock_other) {
1201 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1202 							       sblock_other,
1203 							       page_num, 0);
1204 			if (0 == ret)
1205 				page_bad->io_error = 0;
1206 			else
1207 				success = 0;
1208 		}
1209 	}
1210 
1211 	if (success && !sctx->is_dev_replace) {
1212 		if (is_metadata || have_csum) {
1213 			/*
1214 			 * need to verify the checksum now that all
1215 			 * sectors on disk are repaired (the write
1216 			 * request for data to be repaired is on its way).
1217 			 * Just be lazy and use scrub_recheck_block()
1218 			 * which re-reads the data before the checksum
1219 			 * is verified, but most likely the data comes out
1220 			 * of the page cache.
1221 			 */
1222 			scrub_recheck_block(fs_info, sblock_bad,
1223 					    is_metadata, have_csum, csum,
1224 					    generation, sctx->csum_size, 1);
1225 			if (!sblock_bad->header_error &&
1226 			    !sblock_bad->checksum_error &&
1227 			    sblock_bad->no_io_error_seen)
1228 				goto corrected_error;
1229 			else
1230 				goto did_not_correct_error;
1231 		} else {
1232 corrected_error:
1233 			spin_lock(&sctx->stat_lock);
1234 			sctx->stat.corrected_errors++;
1235 			sblock_to_check->data_corrected = 1;
1236 			spin_unlock(&sctx->stat_lock);
1237 			printk_ratelimited_in_rcu(KERN_ERR
1238 				"BTRFS: fixed up error at logical %llu on dev %s\n",
1239 				logical, rcu_str_deref(dev->name));
1240 		}
1241 	} else {
1242 did_not_correct_error:
1243 		spin_lock(&sctx->stat_lock);
1244 		sctx->stat.uncorrectable_errors++;
1245 		spin_unlock(&sctx->stat_lock);
1246 		printk_ratelimited_in_rcu(KERN_ERR
1247 			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1248 			logical, rcu_str_deref(dev->name));
1249 	}
1250 
1251 out:
1252 	if (sblocks_for_recheck) {
1253 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1254 		     mirror_index++) {
1255 			struct scrub_block *sblock = sblocks_for_recheck +
1256 						     mirror_index;
1257 			struct scrub_recover *recover;
1258 			int page_index;
1259 
1260 			for (page_index = 0; page_index < sblock->page_count;
1261 			     page_index++) {
1262 				sblock->pagev[page_index]->sblock = NULL;
1263 				recover = sblock->pagev[page_index]->recover;
1264 				if (recover) {
1265 					scrub_put_recover(recover);
1266 					sblock->pagev[page_index]->recover =
1267 									NULL;
1268 				}
1269 				scrub_page_put(sblock->pagev[page_index]);
1270 			}
1271 		}
1272 		kfree(sblocks_for_recheck);
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1279 {
1280 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1281 		return 2;
1282 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1283 		return 3;
1284 	else
1285 		return (int)bbio->num_stripes;
1286 }
1287 
1288 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1289 						 u64 *raid_map,
1290 						 u64 mapped_length,
1291 						 int nstripes, int mirror,
1292 						 int *stripe_index,
1293 						 u64 *stripe_offset)
1294 {
1295 	int i;
1296 
1297 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1298 		/* RAID5/6 */
1299 		for (i = 0; i < nstripes; i++) {
1300 			if (raid_map[i] == RAID6_Q_STRIPE ||
1301 			    raid_map[i] == RAID5_P_STRIPE)
1302 				continue;
1303 
1304 			if (logical >= raid_map[i] &&
1305 			    logical < raid_map[i] + mapped_length)
1306 				break;
1307 		}
1308 
1309 		*stripe_index = i;
1310 		*stripe_offset = logical - raid_map[i];
1311 	} else {
1312 		/* The other RAID type */
1313 		*stripe_index = mirror;
1314 		*stripe_offset = 0;
1315 	}
1316 }
1317 
1318 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1319 				     struct scrub_block *sblocks_for_recheck)
1320 {
1321 	struct scrub_ctx *sctx = original_sblock->sctx;
1322 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1323 	u64 length = original_sblock->page_count * PAGE_SIZE;
1324 	u64 logical = original_sblock->pagev[0]->logical;
1325 	struct scrub_recover *recover;
1326 	struct btrfs_bio *bbio;
1327 	u64 sublen;
1328 	u64 mapped_length;
1329 	u64 stripe_offset;
1330 	int stripe_index;
1331 	int page_index = 0;
1332 	int mirror_index;
1333 	int nmirrors;
1334 	int ret;
1335 
1336 	/*
1337 	 * note: the two members refs and outstanding_pages
1338 	 * are not used (and not set) in the blocks that are used for
1339 	 * the recheck procedure
1340 	 */
1341 
1342 	while (length > 0) {
1343 		sublen = min_t(u64, length, PAGE_SIZE);
1344 		mapped_length = sublen;
1345 		bbio = NULL;
1346 
1347 		/*
1348 		 * with a length of PAGE_SIZE, each returned stripe
1349 		 * represents one mirror
1350 		 */
1351 		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1352 				       &mapped_length, &bbio, 0, 1);
1353 		if (ret || !bbio || mapped_length < sublen) {
1354 			btrfs_put_bbio(bbio);
1355 			return -EIO;
1356 		}
1357 
1358 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1359 		if (!recover) {
1360 			btrfs_put_bbio(bbio);
1361 			return -ENOMEM;
1362 		}
1363 
1364 		atomic_set(&recover->refs, 1);
1365 		recover->bbio = bbio;
1366 		recover->map_length = mapped_length;
1367 
1368 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1369 
1370 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1371 
1372 		for (mirror_index = 0; mirror_index < nmirrors;
1373 		     mirror_index++) {
1374 			struct scrub_block *sblock;
1375 			struct scrub_page *page;
1376 
1377 			sblock = sblocks_for_recheck + mirror_index;
1378 			sblock->sctx = sctx;
1379 			page = kzalloc(sizeof(*page), GFP_NOFS);
1380 			if (!page) {
1381 leave_nomem:
1382 				spin_lock(&sctx->stat_lock);
1383 				sctx->stat.malloc_errors++;
1384 				spin_unlock(&sctx->stat_lock);
1385 				scrub_put_recover(recover);
1386 				return -ENOMEM;
1387 			}
1388 			scrub_page_get(page);
1389 			sblock->pagev[page_index] = page;
1390 			page->logical = logical;
1391 
1392 			scrub_stripe_index_and_offset(logical,
1393 						      bbio->map_type,
1394 						      bbio->raid_map,
1395 						      mapped_length,
1396 						      bbio->num_stripes -
1397 						      bbio->num_tgtdevs,
1398 						      mirror_index,
1399 						      &stripe_index,
1400 						      &stripe_offset);
1401 			page->physical = bbio->stripes[stripe_index].physical +
1402 					 stripe_offset;
1403 			page->dev = bbio->stripes[stripe_index].dev;
1404 
1405 			BUG_ON(page_index >= original_sblock->page_count);
1406 			page->physical_for_dev_replace =
1407 				original_sblock->pagev[page_index]->
1408 				physical_for_dev_replace;
1409 			/* for missing devices, dev->bdev is NULL */
1410 			page->mirror_num = mirror_index + 1;
1411 			sblock->page_count++;
1412 			page->page = alloc_page(GFP_NOFS);
1413 			if (!page->page)
1414 				goto leave_nomem;
1415 
1416 			scrub_get_recover(recover);
1417 			page->recover = recover;
1418 		}
1419 		scrub_put_recover(recover);
1420 		length -= sublen;
1421 		logical += sublen;
1422 		page_index++;
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 struct scrub_bio_ret {
1429 	struct completion event;
1430 	int error;
1431 };
1432 
1433 static void scrub_bio_wait_endio(struct bio *bio, int error)
1434 {
1435 	struct scrub_bio_ret *ret = bio->bi_private;
1436 
1437 	ret->error = error;
1438 	complete(&ret->event);
1439 }
1440 
1441 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1442 {
1443 	return page->recover &&
1444 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1445 }
1446 
1447 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1448 					struct bio *bio,
1449 					struct scrub_page *page)
1450 {
1451 	struct scrub_bio_ret done;
1452 	int ret;
1453 
1454 	init_completion(&done.event);
1455 	done.error = 0;
1456 	bio->bi_iter.bi_sector = page->logical >> 9;
1457 	bio->bi_private = &done;
1458 	bio->bi_end_io = scrub_bio_wait_endio;
1459 
1460 	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1461 				    page->recover->map_length,
1462 				    page->mirror_num, 0);
1463 	if (ret)
1464 		return ret;
1465 
1466 	wait_for_completion(&done.event);
1467 	if (done.error)
1468 		return -EIO;
1469 
1470 	return 0;
1471 }
1472 
1473 /*
1474  * this function will check the on disk data for checksum errors, header
1475  * errors and read I/O errors. If any I/O errors happen, the exact pages
1476  * which are errored are marked as being bad. The goal is to enable scrub
1477  * to take those pages that are not errored from all the mirrors so that
1478  * the pages that are errored in the just handled mirror can be repaired.
1479  */
1480 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1481 				struct scrub_block *sblock, int is_metadata,
1482 				int have_csum, u8 *csum, u64 generation,
1483 				u16 csum_size, int retry_failed_mirror)
1484 {
1485 	int page_num;
1486 
1487 	sblock->no_io_error_seen = 1;
1488 	sblock->header_error = 0;
1489 	sblock->checksum_error = 0;
1490 
1491 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1492 		struct bio *bio;
1493 		struct scrub_page *page = sblock->pagev[page_num];
1494 
1495 		if (page->dev->bdev == NULL) {
1496 			page->io_error = 1;
1497 			sblock->no_io_error_seen = 0;
1498 			continue;
1499 		}
1500 
1501 		WARN_ON(!page->page);
1502 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1503 		if (!bio) {
1504 			page->io_error = 1;
1505 			sblock->no_io_error_seen = 0;
1506 			continue;
1507 		}
1508 		bio->bi_bdev = page->dev->bdev;
1509 
1510 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1511 		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1512 			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1513 				sblock->no_io_error_seen = 0;
1514 		} else {
1515 			bio->bi_iter.bi_sector = page->physical >> 9;
1516 
1517 			if (btrfsic_submit_bio_wait(READ, bio))
1518 				sblock->no_io_error_seen = 0;
1519 		}
1520 
1521 		bio_put(bio);
1522 	}
1523 
1524 	if (sblock->no_io_error_seen)
1525 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1526 					     have_csum, csum, generation,
1527 					     csum_size);
1528 
1529 	return;
1530 }
1531 
1532 static inline int scrub_check_fsid(u8 fsid[],
1533 				   struct scrub_page *spage)
1534 {
1535 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1536 	int ret;
1537 
1538 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1539 	return !ret;
1540 }
1541 
1542 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1543 					 struct scrub_block *sblock,
1544 					 int is_metadata, int have_csum,
1545 					 const u8 *csum, u64 generation,
1546 					 u16 csum_size)
1547 {
1548 	int page_num;
1549 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1550 	u32 crc = ~(u32)0;
1551 	void *mapped_buffer;
1552 
1553 	WARN_ON(!sblock->pagev[0]->page);
1554 	if (is_metadata) {
1555 		struct btrfs_header *h;
1556 
1557 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1558 		h = (struct btrfs_header *)mapped_buffer;
1559 
1560 		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1561 		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1562 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1563 			   BTRFS_UUID_SIZE)) {
1564 			sblock->header_error = 1;
1565 		} else if (generation != btrfs_stack_header_generation(h)) {
1566 			sblock->header_error = 1;
1567 			sblock->generation_error = 1;
1568 		}
1569 		csum = h->csum;
1570 	} else {
1571 		if (!have_csum)
1572 			return;
1573 
1574 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1575 	}
1576 
1577 	for (page_num = 0;;) {
1578 		if (page_num == 0 && is_metadata)
1579 			crc = btrfs_csum_data(
1580 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1581 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1582 		else
1583 			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1584 
1585 		kunmap_atomic(mapped_buffer);
1586 		page_num++;
1587 		if (page_num >= sblock->page_count)
1588 			break;
1589 		WARN_ON(!sblock->pagev[page_num]->page);
1590 
1591 		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1592 	}
1593 
1594 	btrfs_csum_final(crc, calculated_csum);
1595 	if (memcmp(calculated_csum, csum, csum_size))
1596 		sblock->checksum_error = 1;
1597 }
1598 
1599 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1600 					     struct scrub_block *sblock_good)
1601 {
1602 	int page_num;
1603 	int ret = 0;
1604 
1605 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1606 		int ret_sub;
1607 
1608 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1609 							   sblock_good,
1610 							   page_num, 1);
1611 		if (ret_sub)
1612 			ret = ret_sub;
1613 	}
1614 
1615 	return ret;
1616 }
1617 
1618 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1619 					    struct scrub_block *sblock_good,
1620 					    int page_num, int force_write)
1621 {
1622 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1623 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1624 
1625 	BUG_ON(page_bad->page == NULL);
1626 	BUG_ON(page_good->page == NULL);
1627 	if (force_write || sblock_bad->header_error ||
1628 	    sblock_bad->checksum_error || page_bad->io_error) {
1629 		struct bio *bio;
1630 		int ret;
1631 
1632 		if (!page_bad->dev->bdev) {
1633 			printk_ratelimited(KERN_WARNING "BTRFS: "
1634 				"scrub_repair_page_from_good_copy(bdev == NULL) "
1635 				"is unexpected!\n");
1636 			return -EIO;
1637 		}
1638 
1639 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1640 		if (!bio)
1641 			return -EIO;
1642 		bio->bi_bdev = page_bad->dev->bdev;
1643 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1644 
1645 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1646 		if (PAGE_SIZE != ret) {
1647 			bio_put(bio);
1648 			return -EIO;
1649 		}
1650 
1651 		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1652 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1653 				BTRFS_DEV_STAT_WRITE_ERRS);
1654 			btrfs_dev_replace_stats_inc(
1655 				&sblock_bad->sctx->dev_root->fs_info->
1656 				dev_replace.num_write_errors);
1657 			bio_put(bio);
1658 			return -EIO;
1659 		}
1660 		bio_put(bio);
1661 	}
1662 
1663 	return 0;
1664 }
1665 
1666 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1667 {
1668 	int page_num;
1669 
1670 	/*
1671 	 * This block is used for the check of the parity on the source device,
1672 	 * so the data needn't be written into the destination device.
1673 	 */
1674 	if (sblock->sparity)
1675 		return;
1676 
1677 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1678 		int ret;
1679 
1680 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1681 		if (ret)
1682 			btrfs_dev_replace_stats_inc(
1683 				&sblock->sctx->dev_root->fs_info->dev_replace.
1684 				num_write_errors);
1685 	}
1686 }
1687 
1688 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1689 					   int page_num)
1690 {
1691 	struct scrub_page *spage = sblock->pagev[page_num];
1692 
1693 	BUG_ON(spage->page == NULL);
1694 	if (spage->io_error) {
1695 		void *mapped_buffer = kmap_atomic(spage->page);
1696 
1697 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1698 		flush_dcache_page(spage->page);
1699 		kunmap_atomic(mapped_buffer);
1700 	}
1701 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1702 }
1703 
1704 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1705 				    struct scrub_page *spage)
1706 {
1707 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1708 	struct scrub_bio *sbio;
1709 	int ret;
1710 
1711 	mutex_lock(&wr_ctx->wr_lock);
1712 again:
1713 	if (!wr_ctx->wr_curr_bio) {
1714 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1715 					      GFP_NOFS);
1716 		if (!wr_ctx->wr_curr_bio) {
1717 			mutex_unlock(&wr_ctx->wr_lock);
1718 			return -ENOMEM;
1719 		}
1720 		wr_ctx->wr_curr_bio->sctx = sctx;
1721 		wr_ctx->wr_curr_bio->page_count = 0;
1722 	}
1723 	sbio = wr_ctx->wr_curr_bio;
1724 	if (sbio->page_count == 0) {
1725 		struct bio *bio;
1726 
1727 		sbio->physical = spage->physical_for_dev_replace;
1728 		sbio->logical = spage->logical;
1729 		sbio->dev = wr_ctx->tgtdev;
1730 		bio = sbio->bio;
1731 		if (!bio) {
1732 			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1733 			if (!bio) {
1734 				mutex_unlock(&wr_ctx->wr_lock);
1735 				return -ENOMEM;
1736 			}
1737 			sbio->bio = bio;
1738 		}
1739 
1740 		bio->bi_private = sbio;
1741 		bio->bi_end_io = scrub_wr_bio_end_io;
1742 		bio->bi_bdev = sbio->dev->bdev;
1743 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1744 		sbio->err = 0;
1745 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1746 		   spage->physical_for_dev_replace ||
1747 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1748 		   spage->logical) {
1749 		scrub_wr_submit(sctx);
1750 		goto again;
1751 	}
1752 
1753 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1754 	if (ret != PAGE_SIZE) {
1755 		if (sbio->page_count < 1) {
1756 			bio_put(sbio->bio);
1757 			sbio->bio = NULL;
1758 			mutex_unlock(&wr_ctx->wr_lock);
1759 			return -EIO;
1760 		}
1761 		scrub_wr_submit(sctx);
1762 		goto again;
1763 	}
1764 
1765 	sbio->pagev[sbio->page_count] = spage;
1766 	scrub_page_get(spage);
1767 	sbio->page_count++;
1768 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1769 		scrub_wr_submit(sctx);
1770 	mutex_unlock(&wr_ctx->wr_lock);
1771 
1772 	return 0;
1773 }
1774 
1775 static void scrub_wr_submit(struct scrub_ctx *sctx)
1776 {
1777 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1778 	struct scrub_bio *sbio;
1779 
1780 	if (!wr_ctx->wr_curr_bio)
1781 		return;
1782 
1783 	sbio = wr_ctx->wr_curr_bio;
1784 	wr_ctx->wr_curr_bio = NULL;
1785 	WARN_ON(!sbio->bio->bi_bdev);
1786 	scrub_pending_bio_inc(sctx);
1787 	/* process all writes in a single worker thread. Then the block layer
1788 	 * orders the requests before sending them to the driver which
1789 	 * doubled the write performance on spinning disks when measured
1790 	 * with Linux 3.5 */
1791 	btrfsic_submit_bio(WRITE, sbio->bio);
1792 }
1793 
1794 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1795 {
1796 	struct scrub_bio *sbio = bio->bi_private;
1797 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1798 
1799 	sbio->err = err;
1800 	sbio->bio = bio;
1801 
1802 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1803 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1804 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1805 }
1806 
1807 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1808 {
1809 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1810 	struct scrub_ctx *sctx = sbio->sctx;
1811 	int i;
1812 
1813 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1814 	if (sbio->err) {
1815 		struct btrfs_dev_replace *dev_replace =
1816 			&sbio->sctx->dev_root->fs_info->dev_replace;
1817 
1818 		for (i = 0; i < sbio->page_count; i++) {
1819 			struct scrub_page *spage = sbio->pagev[i];
1820 
1821 			spage->io_error = 1;
1822 			btrfs_dev_replace_stats_inc(&dev_replace->
1823 						    num_write_errors);
1824 		}
1825 	}
1826 
1827 	for (i = 0; i < sbio->page_count; i++)
1828 		scrub_page_put(sbio->pagev[i]);
1829 
1830 	bio_put(sbio->bio);
1831 	kfree(sbio);
1832 	scrub_pending_bio_dec(sctx);
1833 }
1834 
1835 static int scrub_checksum(struct scrub_block *sblock)
1836 {
1837 	u64 flags;
1838 	int ret;
1839 
1840 	WARN_ON(sblock->page_count < 1);
1841 	flags = sblock->pagev[0]->flags;
1842 	ret = 0;
1843 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1844 		ret = scrub_checksum_data(sblock);
1845 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1846 		ret = scrub_checksum_tree_block(sblock);
1847 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1848 		(void)scrub_checksum_super(sblock);
1849 	else
1850 		WARN_ON(1);
1851 	if (ret)
1852 		scrub_handle_errored_block(sblock);
1853 
1854 	return ret;
1855 }
1856 
1857 static int scrub_checksum_data(struct scrub_block *sblock)
1858 {
1859 	struct scrub_ctx *sctx = sblock->sctx;
1860 	u8 csum[BTRFS_CSUM_SIZE];
1861 	u8 *on_disk_csum;
1862 	struct page *page;
1863 	void *buffer;
1864 	u32 crc = ~(u32)0;
1865 	int fail = 0;
1866 	u64 len;
1867 	int index;
1868 
1869 	BUG_ON(sblock->page_count < 1);
1870 	if (!sblock->pagev[0]->have_csum)
1871 		return 0;
1872 
1873 	on_disk_csum = sblock->pagev[0]->csum;
1874 	page = sblock->pagev[0]->page;
1875 	buffer = kmap_atomic(page);
1876 
1877 	len = sctx->sectorsize;
1878 	index = 0;
1879 	for (;;) {
1880 		u64 l = min_t(u64, len, PAGE_SIZE);
1881 
1882 		crc = btrfs_csum_data(buffer, crc, l);
1883 		kunmap_atomic(buffer);
1884 		len -= l;
1885 		if (len == 0)
1886 			break;
1887 		index++;
1888 		BUG_ON(index >= sblock->page_count);
1889 		BUG_ON(!sblock->pagev[index]->page);
1890 		page = sblock->pagev[index]->page;
1891 		buffer = kmap_atomic(page);
1892 	}
1893 
1894 	btrfs_csum_final(crc, csum);
1895 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1896 		fail = 1;
1897 
1898 	return fail;
1899 }
1900 
1901 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1902 {
1903 	struct scrub_ctx *sctx = sblock->sctx;
1904 	struct btrfs_header *h;
1905 	struct btrfs_root *root = sctx->dev_root;
1906 	struct btrfs_fs_info *fs_info = root->fs_info;
1907 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1908 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1909 	struct page *page;
1910 	void *mapped_buffer;
1911 	u64 mapped_size;
1912 	void *p;
1913 	u32 crc = ~(u32)0;
1914 	int fail = 0;
1915 	int crc_fail = 0;
1916 	u64 len;
1917 	int index;
1918 
1919 	BUG_ON(sblock->page_count < 1);
1920 	page = sblock->pagev[0]->page;
1921 	mapped_buffer = kmap_atomic(page);
1922 	h = (struct btrfs_header *)mapped_buffer;
1923 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1924 
1925 	/*
1926 	 * we don't use the getter functions here, as we
1927 	 * a) don't have an extent buffer and
1928 	 * b) the page is already kmapped
1929 	 */
1930 
1931 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1932 		++fail;
1933 
1934 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1935 		++fail;
1936 
1937 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1938 		++fail;
1939 
1940 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1941 		   BTRFS_UUID_SIZE))
1942 		++fail;
1943 
1944 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1945 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1946 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1947 	index = 0;
1948 	for (;;) {
1949 		u64 l = min_t(u64, len, mapped_size);
1950 
1951 		crc = btrfs_csum_data(p, crc, l);
1952 		kunmap_atomic(mapped_buffer);
1953 		len -= l;
1954 		if (len == 0)
1955 			break;
1956 		index++;
1957 		BUG_ON(index >= sblock->page_count);
1958 		BUG_ON(!sblock->pagev[index]->page);
1959 		page = sblock->pagev[index]->page;
1960 		mapped_buffer = kmap_atomic(page);
1961 		mapped_size = PAGE_SIZE;
1962 		p = mapped_buffer;
1963 	}
1964 
1965 	btrfs_csum_final(crc, calculated_csum);
1966 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1967 		++crc_fail;
1968 
1969 	return fail || crc_fail;
1970 }
1971 
1972 static int scrub_checksum_super(struct scrub_block *sblock)
1973 {
1974 	struct btrfs_super_block *s;
1975 	struct scrub_ctx *sctx = sblock->sctx;
1976 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1977 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1978 	struct page *page;
1979 	void *mapped_buffer;
1980 	u64 mapped_size;
1981 	void *p;
1982 	u32 crc = ~(u32)0;
1983 	int fail_gen = 0;
1984 	int fail_cor = 0;
1985 	u64 len;
1986 	int index;
1987 
1988 	BUG_ON(sblock->page_count < 1);
1989 	page = sblock->pagev[0]->page;
1990 	mapped_buffer = kmap_atomic(page);
1991 	s = (struct btrfs_super_block *)mapped_buffer;
1992 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1993 
1994 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1995 		++fail_cor;
1996 
1997 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1998 		++fail_gen;
1999 
2000 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2001 		++fail_cor;
2002 
2003 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2004 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2005 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2006 	index = 0;
2007 	for (;;) {
2008 		u64 l = min_t(u64, len, mapped_size);
2009 
2010 		crc = btrfs_csum_data(p, crc, l);
2011 		kunmap_atomic(mapped_buffer);
2012 		len -= l;
2013 		if (len == 0)
2014 			break;
2015 		index++;
2016 		BUG_ON(index >= sblock->page_count);
2017 		BUG_ON(!sblock->pagev[index]->page);
2018 		page = sblock->pagev[index]->page;
2019 		mapped_buffer = kmap_atomic(page);
2020 		mapped_size = PAGE_SIZE;
2021 		p = mapped_buffer;
2022 	}
2023 
2024 	btrfs_csum_final(crc, calculated_csum);
2025 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2026 		++fail_cor;
2027 
2028 	if (fail_cor + fail_gen) {
2029 		/*
2030 		 * if we find an error in a super block, we just report it.
2031 		 * They will get written with the next transaction commit
2032 		 * anyway
2033 		 */
2034 		spin_lock(&sctx->stat_lock);
2035 		++sctx->stat.super_errors;
2036 		spin_unlock(&sctx->stat_lock);
2037 		if (fail_cor)
2038 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2039 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
2040 		else
2041 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2042 				BTRFS_DEV_STAT_GENERATION_ERRS);
2043 	}
2044 
2045 	return fail_cor + fail_gen;
2046 }
2047 
2048 static void scrub_block_get(struct scrub_block *sblock)
2049 {
2050 	atomic_inc(&sblock->refs);
2051 }
2052 
2053 static void scrub_block_put(struct scrub_block *sblock)
2054 {
2055 	if (atomic_dec_and_test(&sblock->refs)) {
2056 		int i;
2057 
2058 		if (sblock->sparity)
2059 			scrub_parity_put(sblock->sparity);
2060 
2061 		for (i = 0; i < sblock->page_count; i++)
2062 			scrub_page_put(sblock->pagev[i]);
2063 		kfree(sblock);
2064 	}
2065 }
2066 
2067 static void scrub_page_get(struct scrub_page *spage)
2068 {
2069 	atomic_inc(&spage->refs);
2070 }
2071 
2072 static void scrub_page_put(struct scrub_page *spage)
2073 {
2074 	if (atomic_dec_and_test(&spage->refs)) {
2075 		if (spage->page)
2076 			__free_page(spage->page);
2077 		kfree(spage);
2078 	}
2079 }
2080 
2081 static void scrub_submit(struct scrub_ctx *sctx)
2082 {
2083 	struct scrub_bio *sbio;
2084 
2085 	if (sctx->curr == -1)
2086 		return;
2087 
2088 	sbio = sctx->bios[sctx->curr];
2089 	sctx->curr = -1;
2090 	scrub_pending_bio_inc(sctx);
2091 
2092 	if (!sbio->bio->bi_bdev) {
2093 		/*
2094 		 * this case should not happen. If btrfs_map_block() is
2095 		 * wrong, it could happen for dev-replace operations on
2096 		 * missing devices when no mirrors are available, but in
2097 		 * this case it should already fail the mount.
2098 		 * This case is handled correctly (but _very_ slowly).
2099 		 */
2100 		printk_ratelimited(KERN_WARNING
2101 			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2102 		bio_endio(sbio->bio, -EIO);
2103 	} else {
2104 		btrfsic_submit_bio(READ, sbio->bio);
2105 	}
2106 }
2107 
2108 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2109 				    struct scrub_page *spage)
2110 {
2111 	struct scrub_block *sblock = spage->sblock;
2112 	struct scrub_bio *sbio;
2113 	int ret;
2114 
2115 again:
2116 	/*
2117 	 * grab a fresh bio or wait for one to become available
2118 	 */
2119 	while (sctx->curr == -1) {
2120 		spin_lock(&sctx->list_lock);
2121 		sctx->curr = sctx->first_free;
2122 		if (sctx->curr != -1) {
2123 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2124 			sctx->bios[sctx->curr]->next_free = -1;
2125 			sctx->bios[sctx->curr]->page_count = 0;
2126 			spin_unlock(&sctx->list_lock);
2127 		} else {
2128 			spin_unlock(&sctx->list_lock);
2129 			wait_event(sctx->list_wait, sctx->first_free != -1);
2130 		}
2131 	}
2132 	sbio = sctx->bios[sctx->curr];
2133 	if (sbio->page_count == 0) {
2134 		struct bio *bio;
2135 
2136 		sbio->physical = spage->physical;
2137 		sbio->logical = spage->logical;
2138 		sbio->dev = spage->dev;
2139 		bio = sbio->bio;
2140 		if (!bio) {
2141 			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2142 			if (!bio)
2143 				return -ENOMEM;
2144 			sbio->bio = bio;
2145 		}
2146 
2147 		bio->bi_private = sbio;
2148 		bio->bi_end_io = scrub_bio_end_io;
2149 		bio->bi_bdev = sbio->dev->bdev;
2150 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2151 		sbio->err = 0;
2152 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2153 		   spage->physical ||
2154 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2155 		   spage->logical ||
2156 		   sbio->dev != spage->dev) {
2157 		scrub_submit(sctx);
2158 		goto again;
2159 	}
2160 
2161 	sbio->pagev[sbio->page_count] = spage;
2162 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2163 	if (ret != PAGE_SIZE) {
2164 		if (sbio->page_count < 1) {
2165 			bio_put(sbio->bio);
2166 			sbio->bio = NULL;
2167 			return -EIO;
2168 		}
2169 		scrub_submit(sctx);
2170 		goto again;
2171 	}
2172 
2173 	scrub_block_get(sblock); /* one for the page added to the bio */
2174 	atomic_inc(&sblock->outstanding_pages);
2175 	sbio->page_count++;
2176 	if (sbio->page_count == sctx->pages_per_rd_bio)
2177 		scrub_submit(sctx);
2178 
2179 	return 0;
2180 }
2181 
2182 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2183 		       u64 physical, struct btrfs_device *dev, u64 flags,
2184 		       u64 gen, int mirror_num, u8 *csum, int force,
2185 		       u64 physical_for_dev_replace)
2186 {
2187 	struct scrub_block *sblock;
2188 	int index;
2189 
2190 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2191 	if (!sblock) {
2192 		spin_lock(&sctx->stat_lock);
2193 		sctx->stat.malloc_errors++;
2194 		spin_unlock(&sctx->stat_lock);
2195 		return -ENOMEM;
2196 	}
2197 
2198 	/* one ref inside this function, plus one for each page added to
2199 	 * a bio later on */
2200 	atomic_set(&sblock->refs, 1);
2201 	sblock->sctx = sctx;
2202 	sblock->no_io_error_seen = 1;
2203 
2204 	for (index = 0; len > 0; index++) {
2205 		struct scrub_page *spage;
2206 		u64 l = min_t(u64, len, PAGE_SIZE);
2207 
2208 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2209 		if (!spage) {
2210 leave_nomem:
2211 			spin_lock(&sctx->stat_lock);
2212 			sctx->stat.malloc_errors++;
2213 			spin_unlock(&sctx->stat_lock);
2214 			scrub_block_put(sblock);
2215 			return -ENOMEM;
2216 		}
2217 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2218 		scrub_page_get(spage);
2219 		sblock->pagev[index] = spage;
2220 		spage->sblock = sblock;
2221 		spage->dev = dev;
2222 		spage->flags = flags;
2223 		spage->generation = gen;
2224 		spage->logical = logical;
2225 		spage->physical = physical;
2226 		spage->physical_for_dev_replace = physical_for_dev_replace;
2227 		spage->mirror_num = mirror_num;
2228 		if (csum) {
2229 			spage->have_csum = 1;
2230 			memcpy(spage->csum, csum, sctx->csum_size);
2231 		} else {
2232 			spage->have_csum = 0;
2233 		}
2234 		sblock->page_count++;
2235 		spage->page = alloc_page(GFP_NOFS);
2236 		if (!spage->page)
2237 			goto leave_nomem;
2238 		len -= l;
2239 		logical += l;
2240 		physical += l;
2241 		physical_for_dev_replace += l;
2242 	}
2243 
2244 	WARN_ON(sblock->page_count == 0);
2245 	for (index = 0; index < sblock->page_count; index++) {
2246 		struct scrub_page *spage = sblock->pagev[index];
2247 		int ret;
2248 
2249 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2250 		if (ret) {
2251 			scrub_block_put(sblock);
2252 			return ret;
2253 		}
2254 	}
2255 
2256 	if (force)
2257 		scrub_submit(sctx);
2258 
2259 	/* last one frees, either here or in bio completion for last page */
2260 	scrub_block_put(sblock);
2261 	return 0;
2262 }
2263 
2264 static void scrub_bio_end_io(struct bio *bio, int err)
2265 {
2266 	struct scrub_bio *sbio = bio->bi_private;
2267 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2268 
2269 	sbio->err = err;
2270 	sbio->bio = bio;
2271 
2272 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2273 }
2274 
2275 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2276 {
2277 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2278 	struct scrub_ctx *sctx = sbio->sctx;
2279 	int i;
2280 
2281 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2282 	if (sbio->err) {
2283 		for (i = 0; i < sbio->page_count; i++) {
2284 			struct scrub_page *spage = sbio->pagev[i];
2285 
2286 			spage->io_error = 1;
2287 			spage->sblock->no_io_error_seen = 0;
2288 		}
2289 	}
2290 
2291 	/* now complete the scrub_block items that have all pages completed */
2292 	for (i = 0; i < sbio->page_count; i++) {
2293 		struct scrub_page *spage = sbio->pagev[i];
2294 		struct scrub_block *sblock = spage->sblock;
2295 
2296 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2297 			scrub_block_complete(sblock);
2298 		scrub_block_put(sblock);
2299 	}
2300 
2301 	bio_put(sbio->bio);
2302 	sbio->bio = NULL;
2303 	spin_lock(&sctx->list_lock);
2304 	sbio->next_free = sctx->first_free;
2305 	sctx->first_free = sbio->index;
2306 	spin_unlock(&sctx->list_lock);
2307 
2308 	if (sctx->is_dev_replace &&
2309 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2310 		mutex_lock(&sctx->wr_ctx.wr_lock);
2311 		scrub_wr_submit(sctx);
2312 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2313 	}
2314 
2315 	scrub_pending_bio_dec(sctx);
2316 }
2317 
2318 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2319 				       unsigned long *bitmap,
2320 				       u64 start, u64 len)
2321 {
2322 	int offset;
2323 	int nsectors;
2324 	int sectorsize = sparity->sctx->dev_root->sectorsize;
2325 
2326 	if (len >= sparity->stripe_len) {
2327 		bitmap_set(bitmap, 0, sparity->nsectors);
2328 		return;
2329 	}
2330 
2331 	start -= sparity->logic_start;
2332 	offset = (int)do_div(start, sparity->stripe_len);
2333 	offset /= sectorsize;
2334 	nsectors = (int)len / sectorsize;
2335 
2336 	if (offset + nsectors <= sparity->nsectors) {
2337 		bitmap_set(bitmap, offset, nsectors);
2338 		return;
2339 	}
2340 
2341 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2342 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2343 }
2344 
2345 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2346 						   u64 start, u64 len)
2347 {
2348 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2349 }
2350 
2351 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2352 						  u64 start, u64 len)
2353 {
2354 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2355 }
2356 
2357 static void scrub_block_complete(struct scrub_block *sblock)
2358 {
2359 	int corrupted = 0;
2360 
2361 	if (!sblock->no_io_error_seen) {
2362 		corrupted = 1;
2363 		scrub_handle_errored_block(sblock);
2364 	} else {
2365 		/*
2366 		 * if has checksum error, write via repair mechanism in
2367 		 * dev replace case, otherwise write here in dev replace
2368 		 * case.
2369 		 */
2370 		corrupted = scrub_checksum(sblock);
2371 		if (!corrupted && sblock->sctx->is_dev_replace)
2372 			scrub_write_block_to_dev_replace(sblock);
2373 	}
2374 
2375 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2376 		u64 start = sblock->pagev[0]->logical;
2377 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2378 			  PAGE_SIZE;
2379 
2380 		scrub_parity_mark_sectors_error(sblock->sparity,
2381 						start, end - start);
2382 	}
2383 }
2384 
2385 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2386 			   u8 *csum)
2387 {
2388 	struct btrfs_ordered_sum *sum = NULL;
2389 	unsigned long index;
2390 	unsigned long num_sectors;
2391 
2392 	while (!list_empty(&sctx->csum_list)) {
2393 		sum = list_first_entry(&sctx->csum_list,
2394 				       struct btrfs_ordered_sum, list);
2395 		if (sum->bytenr > logical)
2396 			return 0;
2397 		if (sum->bytenr + sum->len > logical)
2398 			break;
2399 
2400 		++sctx->stat.csum_discards;
2401 		list_del(&sum->list);
2402 		kfree(sum);
2403 		sum = NULL;
2404 	}
2405 	if (!sum)
2406 		return 0;
2407 
2408 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2409 	num_sectors = sum->len / sctx->sectorsize;
2410 	memcpy(csum, sum->sums + index, sctx->csum_size);
2411 	if (index == num_sectors - 1) {
2412 		list_del(&sum->list);
2413 		kfree(sum);
2414 	}
2415 	return 1;
2416 }
2417 
2418 /* scrub extent tries to collect up to 64 kB for each bio */
2419 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2420 			u64 physical, struct btrfs_device *dev, u64 flags,
2421 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2422 {
2423 	int ret;
2424 	u8 csum[BTRFS_CSUM_SIZE];
2425 	u32 blocksize;
2426 
2427 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2428 		blocksize = sctx->sectorsize;
2429 		spin_lock(&sctx->stat_lock);
2430 		sctx->stat.data_extents_scrubbed++;
2431 		sctx->stat.data_bytes_scrubbed += len;
2432 		spin_unlock(&sctx->stat_lock);
2433 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2434 		blocksize = sctx->nodesize;
2435 		spin_lock(&sctx->stat_lock);
2436 		sctx->stat.tree_extents_scrubbed++;
2437 		sctx->stat.tree_bytes_scrubbed += len;
2438 		spin_unlock(&sctx->stat_lock);
2439 	} else {
2440 		blocksize = sctx->sectorsize;
2441 		WARN_ON(1);
2442 	}
2443 
2444 	while (len) {
2445 		u64 l = min_t(u64, len, blocksize);
2446 		int have_csum = 0;
2447 
2448 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2449 			/* push csums to sbio */
2450 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2451 			if (have_csum == 0)
2452 				++sctx->stat.no_csum;
2453 			if (sctx->is_dev_replace && !have_csum) {
2454 				ret = copy_nocow_pages(sctx, logical, l,
2455 						       mirror_num,
2456 						      physical_for_dev_replace);
2457 				goto behind_scrub_pages;
2458 			}
2459 		}
2460 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2461 				  mirror_num, have_csum ? csum : NULL, 0,
2462 				  physical_for_dev_replace);
2463 behind_scrub_pages:
2464 		if (ret)
2465 			return ret;
2466 		len -= l;
2467 		logical += l;
2468 		physical += l;
2469 		physical_for_dev_replace += l;
2470 	}
2471 	return 0;
2472 }
2473 
2474 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2475 				  u64 logical, u64 len,
2476 				  u64 physical, struct btrfs_device *dev,
2477 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2478 {
2479 	struct scrub_ctx *sctx = sparity->sctx;
2480 	struct scrub_block *sblock;
2481 	int index;
2482 
2483 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2484 	if (!sblock) {
2485 		spin_lock(&sctx->stat_lock);
2486 		sctx->stat.malloc_errors++;
2487 		spin_unlock(&sctx->stat_lock);
2488 		return -ENOMEM;
2489 	}
2490 
2491 	/* one ref inside this function, plus one for each page added to
2492 	 * a bio later on */
2493 	atomic_set(&sblock->refs, 1);
2494 	sblock->sctx = sctx;
2495 	sblock->no_io_error_seen = 1;
2496 	sblock->sparity = sparity;
2497 	scrub_parity_get(sparity);
2498 
2499 	for (index = 0; len > 0; index++) {
2500 		struct scrub_page *spage;
2501 		u64 l = min_t(u64, len, PAGE_SIZE);
2502 
2503 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2504 		if (!spage) {
2505 leave_nomem:
2506 			spin_lock(&sctx->stat_lock);
2507 			sctx->stat.malloc_errors++;
2508 			spin_unlock(&sctx->stat_lock);
2509 			scrub_block_put(sblock);
2510 			return -ENOMEM;
2511 		}
2512 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2513 		/* For scrub block */
2514 		scrub_page_get(spage);
2515 		sblock->pagev[index] = spage;
2516 		/* For scrub parity */
2517 		scrub_page_get(spage);
2518 		list_add_tail(&spage->list, &sparity->spages);
2519 		spage->sblock = sblock;
2520 		spage->dev = dev;
2521 		spage->flags = flags;
2522 		spage->generation = gen;
2523 		spage->logical = logical;
2524 		spage->physical = physical;
2525 		spage->mirror_num = mirror_num;
2526 		if (csum) {
2527 			spage->have_csum = 1;
2528 			memcpy(spage->csum, csum, sctx->csum_size);
2529 		} else {
2530 			spage->have_csum = 0;
2531 		}
2532 		sblock->page_count++;
2533 		spage->page = alloc_page(GFP_NOFS);
2534 		if (!spage->page)
2535 			goto leave_nomem;
2536 		len -= l;
2537 		logical += l;
2538 		physical += l;
2539 	}
2540 
2541 	WARN_ON(sblock->page_count == 0);
2542 	for (index = 0; index < sblock->page_count; index++) {
2543 		struct scrub_page *spage = sblock->pagev[index];
2544 		int ret;
2545 
2546 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2547 		if (ret) {
2548 			scrub_block_put(sblock);
2549 			return ret;
2550 		}
2551 	}
2552 
2553 	/* last one frees, either here or in bio completion for last page */
2554 	scrub_block_put(sblock);
2555 	return 0;
2556 }
2557 
2558 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2559 				   u64 logical, u64 len,
2560 				   u64 physical, struct btrfs_device *dev,
2561 				   u64 flags, u64 gen, int mirror_num)
2562 {
2563 	struct scrub_ctx *sctx = sparity->sctx;
2564 	int ret;
2565 	u8 csum[BTRFS_CSUM_SIZE];
2566 	u32 blocksize;
2567 
2568 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2569 		blocksize = sctx->sectorsize;
2570 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2571 		blocksize = sctx->nodesize;
2572 	} else {
2573 		blocksize = sctx->sectorsize;
2574 		WARN_ON(1);
2575 	}
2576 
2577 	while (len) {
2578 		u64 l = min_t(u64, len, blocksize);
2579 		int have_csum = 0;
2580 
2581 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2582 			/* push csums to sbio */
2583 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2584 			if (have_csum == 0)
2585 				goto skip;
2586 		}
2587 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2588 					     flags, gen, mirror_num,
2589 					     have_csum ? csum : NULL);
2590 		if (ret)
2591 			return ret;
2592 skip:
2593 		len -= l;
2594 		logical += l;
2595 		physical += l;
2596 	}
2597 	return 0;
2598 }
2599 
2600 /*
2601  * Given a physical address, this will calculate it's
2602  * logical offset. if this is a parity stripe, it will return
2603  * the most left data stripe's logical offset.
2604  *
2605  * return 0 if it is a data stripe, 1 means parity stripe.
2606  */
2607 static int get_raid56_logic_offset(u64 physical, int num,
2608 				   struct map_lookup *map, u64 *offset,
2609 				   u64 *stripe_start)
2610 {
2611 	int i;
2612 	int j = 0;
2613 	u64 stripe_nr;
2614 	u64 last_offset;
2615 	int stripe_index;
2616 	int rot;
2617 
2618 	last_offset = (physical - map->stripes[num].physical) *
2619 		      nr_data_stripes(map);
2620 	if (stripe_start)
2621 		*stripe_start = last_offset;
2622 
2623 	*offset = last_offset;
2624 	for (i = 0; i < nr_data_stripes(map); i++) {
2625 		*offset = last_offset + i * map->stripe_len;
2626 
2627 		stripe_nr = *offset;
2628 		do_div(stripe_nr, map->stripe_len);
2629 		do_div(stripe_nr, nr_data_stripes(map));
2630 
2631 		/* Work out the disk rotation on this stripe-set */
2632 		rot = do_div(stripe_nr, map->num_stripes);
2633 		/* calculate which stripe this data locates */
2634 		rot += i;
2635 		stripe_index = rot % map->num_stripes;
2636 		if (stripe_index == num)
2637 			return 0;
2638 		if (stripe_index < num)
2639 			j++;
2640 	}
2641 	*offset = last_offset + j * map->stripe_len;
2642 	return 1;
2643 }
2644 
2645 static void scrub_free_parity(struct scrub_parity *sparity)
2646 {
2647 	struct scrub_ctx *sctx = sparity->sctx;
2648 	struct scrub_page *curr, *next;
2649 	int nbits;
2650 
2651 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2652 	if (nbits) {
2653 		spin_lock(&sctx->stat_lock);
2654 		sctx->stat.read_errors += nbits;
2655 		sctx->stat.uncorrectable_errors += nbits;
2656 		spin_unlock(&sctx->stat_lock);
2657 	}
2658 
2659 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2660 		list_del_init(&curr->list);
2661 		scrub_page_put(curr);
2662 	}
2663 
2664 	kfree(sparity);
2665 }
2666 
2667 static void scrub_parity_bio_endio(struct bio *bio, int error)
2668 {
2669 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2670 	struct scrub_ctx *sctx = sparity->sctx;
2671 
2672 	if (error)
2673 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2674 			  sparity->nsectors);
2675 
2676 	scrub_free_parity(sparity);
2677 	scrub_pending_bio_dec(sctx);
2678 	bio_put(bio);
2679 }
2680 
2681 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2682 {
2683 	struct scrub_ctx *sctx = sparity->sctx;
2684 	struct bio *bio;
2685 	struct btrfs_raid_bio *rbio;
2686 	struct scrub_page *spage;
2687 	struct btrfs_bio *bbio = NULL;
2688 	u64 length;
2689 	int ret;
2690 
2691 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2692 			   sparity->nsectors))
2693 		goto out;
2694 
2695 	length = sparity->logic_end - sparity->logic_start + 1;
2696 	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2697 			       sparity->logic_start,
2698 			       &length, &bbio, 0, 1);
2699 	if (ret || !bbio || !bbio->raid_map)
2700 		goto bbio_out;
2701 
2702 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2703 	if (!bio)
2704 		goto bbio_out;
2705 
2706 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2707 	bio->bi_private = sparity;
2708 	bio->bi_end_io = scrub_parity_bio_endio;
2709 
2710 	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2711 					      length, sparity->scrub_dev,
2712 					      sparity->dbitmap,
2713 					      sparity->nsectors);
2714 	if (!rbio)
2715 		goto rbio_out;
2716 
2717 	list_for_each_entry(spage, &sparity->spages, list)
2718 		raid56_parity_add_scrub_pages(rbio, spage->page,
2719 					      spage->logical);
2720 
2721 	scrub_pending_bio_inc(sctx);
2722 	raid56_parity_submit_scrub_rbio(rbio);
2723 	return;
2724 
2725 rbio_out:
2726 	bio_put(bio);
2727 bbio_out:
2728 	btrfs_put_bbio(bbio);
2729 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2730 		  sparity->nsectors);
2731 	spin_lock(&sctx->stat_lock);
2732 	sctx->stat.malloc_errors++;
2733 	spin_unlock(&sctx->stat_lock);
2734 out:
2735 	scrub_free_parity(sparity);
2736 }
2737 
2738 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2739 {
2740 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
2741 }
2742 
2743 static void scrub_parity_get(struct scrub_parity *sparity)
2744 {
2745 	atomic_inc(&sparity->refs);
2746 }
2747 
2748 static void scrub_parity_put(struct scrub_parity *sparity)
2749 {
2750 	if (!atomic_dec_and_test(&sparity->refs))
2751 		return;
2752 
2753 	scrub_parity_check_and_repair(sparity);
2754 }
2755 
2756 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2757 						  struct map_lookup *map,
2758 						  struct btrfs_device *sdev,
2759 						  struct btrfs_path *path,
2760 						  u64 logic_start,
2761 						  u64 logic_end)
2762 {
2763 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2764 	struct btrfs_root *root = fs_info->extent_root;
2765 	struct btrfs_root *csum_root = fs_info->csum_root;
2766 	struct btrfs_extent_item *extent;
2767 	u64 flags;
2768 	int ret;
2769 	int slot;
2770 	struct extent_buffer *l;
2771 	struct btrfs_key key;
2772 	u64 generation;
2773 	u64 extent_logical;
2774 	u64 extent_physical;
2775 	u64 extent_len;
2776 	struct btrfs_device *extent_dev;
2777 	struct scrub_parity *sparity;
2778 	int nsectors;
2779 	int bitmap_len;
2780 	int extent_mirror_num;
2781 	int stop_loop = 0;
2782 
2783 	nsectors = map->stripe_len / root->sectorsize;
2784 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2785 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2786 			  GFP_NOFS);
2787 	if (!sparity) {
2788 		spin_lock(&sctx->stat_lock);
2789 		sctx->stat.malloc_errors++;
2790 		spin_unlock(&sctx->stat_lock);
2791 		return -ENOMEM;
2792 	}
2793 
2794 	sparity->stripe_len = map->stripe_len;
2795 	sparity->nsectors = nsectors;
2796 	sparity->sctx = sctx;
2797 	sparity->scrub_dev = sdev;
2798 	sparity->logic_start = logic_start;
2799 	sparity->logic_end = logic_end;
2800 	atomic_set(&sparity->refs, 1);
2801 	INIT_LIST_HEAD(&sparity->spages);
2802 	sparity->dbitmap = sparity->bitmap;
2803 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2804 
2805 	ret = 0;
2806 	while (logic_start < logic_end) {
2807 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2808 			key.type = BTRFS_METADATA_ITEM_KEY;
2809 		else
2810 			key.type = BTRFS_EXTENT_ITEM_KEY;
2811 		key.objectid = logic_start;
2812 		key.offset = (u64)-1;
2813 
2814 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2815 		if (ret < 0)
2816 			goto out;
2817 
2818 		if (ret > 0) {
2819 			ret = btrfs_previous_extent_item(root, path, 0);
2820 			if (ret < 0)
2821 				goto out;
2822 			if (ret > 0) {
2823 				btrfs_release_path(path);
2824 				ret = btrfs_search_slot(NULL, root, &key,
2825 							path, 0, 0);
2826 				if (ret < 0)
2827 					goto out;
2828 			}
2829 		}
2830 
2831 		stop_loop = 0;
2832 		while (1) {
2833 			u64 bytes;
2834 
2835 			l = path->nodes[0];
2836 			slot = path->slots[0];
2837 			if (slot >= btrfs_header_nritems(l)) {
2838 				ret = btrfs_next_leaf(root, path);
2839 				if (ret == 0)
2840 					continue;
2841 				if (ret < 0)
2842 					goto out;
2843 
2844 				stop_loop = 1;
2845 				break;
2846 			}
2847 			btrfs_item_key_to_cpu(l, &key, slot);
2848 
2849 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2850 				bytes = root->nodesize;
2851 			else
2852 				bytes = key.offset;
2853 
2854 			if (key.objectid + bytes <= logic_start)
2855 				goto next;
2856 
2857 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2858 			    key.type != BTRFS_METADATA_ITEM_KEY)
2859 				goto next;
2860 
2861 			if (key.objectid > logic_end) {
2862 				stop_loop = 1;
2863 				break;
2864 			}
2865 
2866 			while (key.objectid >= logic_start + map->stripe_len)
2867 				logic_start += map->stripe_len;
2868 
2869 			extent = btrfs_item_ptr(l, slot,
2870 						struct btrfs_extent_item);
2871 			flags = btrfs_extent_flags(l, extent);
2872 			generation = btrfs_extent_generation(l, extent);
2873 
2874 			if (key.objectid < logic_start &&
2875 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2876 				btrfs_err(fs_info,
2877 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2878 					   key.objectid, logic_start);
2879 				goto next;
2880 			}
2881 again:
2882 			extent_logical = key.objectid;
2883 			extent_len = bytes;
2884 
2885 			if (extent_logical < logic_start) {
2886 				extent_len -= logic_start - extent_logical;
2887 				extent_logical = logic_start;
2888 			}
2889 
2890 			if (extent_logical + extent_len >
2891 			    logic_start + map->stripe_len)
2892 				extent_len = logic_start + map->stripe_len -
2893 					     extent_logical;
2894 
2895 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2896 						       extent_len);
2897 
2898 			scrub_remap_extent(fs_info, extent_logical,
2899 					   extent_len, &extent_physical,
2900 					   &extent_dev,
2901 					   &extent_mirror_num);
2902 
2903 			ret = btrfs_lookup_csums_range(csum_root,
2904 						extent_logical,
2905 						extent_logical + extent_len - 1,
2906 						&sctx->csum_list, 1);
2907 			if (ret)
2908 				goto out;
2909 
2910 			ret = scrub_extent_for_parity(sparity, extent_logical,
2911 						      extent_len,
2912 						      extent_physical,
2913 						      extent_dev, flags,
2914 						      generation,
2915 						      extent_mirror_num);
2916 			if (ret)
2917 				goto out;
2918 
2919 			scrub_free_csums(sctx);
2920 			if (extent_logical + extent_len <
2921 			    key.objectid + bytes) {
2922 				logic_start += map->stripe_len;
2923 
2924 				if (logic_start >= logic_end) {
2925 					stop_loop = 1;
2926 					break;
2927 				}
2928 
2929 				if (logic_start < key.objectid + bytes) {
2930 					cond_resched();
2931 					goto again;
2932 				}
2933 			}
2934 next:
2935 			path->slots[0]++;
2936 		}
2937 
2938 		btrfs_release_path(path);
2939 
2940 		if (stop_loop)
2941 			break;
2942 
2943 		logic_start += map->stripe_len;
2944 	}
2945 out:
2946 	if (ret < 0)
2947 		scrub_parity_mark_sectors_error(sparity, logic_start,
2948 						logic_end - logic_start + 1);
2949 	scrub_parity_put(sparity);
2950 	scrub_submit(sctx);
2951 	mutex_lock(&sctx->wr_ctx.wr_lock);
2952 	scrub_wr_submit(sctx);
2953 	mutex_unlock(&sctx->wr_ctx.wr_lock);
2954 
2955 	btrfs_release_path(path);
2956 	return ret < 0 ? ret : 0;
2957 }
2958 
2959 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2960 					   struct map_lookup *map,
2961 					   struct btrfs_device *scrub_dev,
2962 					   int num, u64 base, u64 length,
2963 					   int is_dev_replace)
2964 {
2965 	struct btrfs_path *path, *ppath;
2966 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2967 	struct btrfs_root *root = fs_info->extent_root;
2968 	struct btrfs_root *csum_root = fs_info->csum_root;
2969 	struct btrfs_extent_item *extent;
2970 	struct blk_plug plug;
2971 	u64 flags;
2972 	int ret;
2973 	int slot;
2974 	u64 nstripes;
2975 	struct extent_buffer *l;
2976 	struct btrfs_key key;
2977 	u64 physical;
2978 	u64 logical;
2979 	u64 logic_end;
2980 	u64 physical_end;
2981 	u64 generation;
2982 	int mirror_num;
2983 	struct reada_control *reada1;
2984 	struct reada_control *reada2;
2985 	struct btrfs_key key_start;
2986 	struct btrfs_key key_end;
2987 	u64 increment = map->stripe_len;
2988 	u64 offset;
2989 	u64 extent_logical;
2990 	u64 extent_physical;
2991 	u64 extent_len;
2992 	u64 stripe_logical;
2993 	u64 stripe_end;
2994 	struct btrfs_device *extent_dev;
2995 	int extent_mirror_num;
2996 	int stop_loop = 0;
2997 
2998 	nstripes = length;
2999 	physical = map->stripes[num].physical;
3000 	offset = 0;
3001 	do_div(nstripes, map->stripe_len);
3002 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3003 		offset = map->stripe_len * num;
3004 		increment = map->stripe_len * map->num_stripes;
3005 		mirror_num = 1;
3006 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3007 		int factor = map->num_stripes / map->sub_stripes;
3008 		offset = map->stripe_len * (num / map->sub_stripes);
3009 		increment = map->stripe_len * factor;
3010 		mirror_num = num % map->sub_stripes + 1;
3011 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3012 		increment = map->stripe_len;
3013 		mirror_num = num % map->num_stripes + 1;
3014 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3015 		increment = map->stripe_len;
3016 		mirror_num = num % map->num_stripes + 1;
3017 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3018 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3019 		increment = map->stripe_len * nr_data_stripes(map);
3020 		mirror_num = 1;
3021 	} else {
3022 		increment = map->stripe_len;
3023 		mirror_num = 1;
3024 	}
3025 
3026 	path = btrfs_alloc_path();
3027 	if (!path)
3028 		return -ENOMEM;
3029 
3030 	ppath = btrfs_alloc_path();
3031 	if (!ppath) {
3032 		btrfs_free_path(path);
3033 		return -ENOMEM;
3034 	}
3035 
3036 	/*
3037 	 * work on commit root. The related disk blocks are static as
3038 	 * long as COW is applied. This means, it is save to rewrite
3039 	 * them to repair disk errors without any race conditions
3040 	 */
3041 	path->search_commit_root = 1;
3042 	path->skip_locking = 1;
3043 
3044 	ppath->search_commit_root = 1;
3045 	ppath->skip_locking = 1;
3046 	/*
3047 	 * trigger the readahead for extent tree csum tree and wait for
3048 	 * completion. During readahead, the scrub is officially paused
3049 	 * to not hold off transaction commits
3050 	 */
3051 	logical = base + offset;
3052 	physical_end = physical + nstripes * map->stripe_len;
3053 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3054 		get_raid56_logic_offset(physical_end, num,
3055 					map, &logic_end, NULL);
3056 		logic_end += base;
3057 	} else {
3058 		logic_end = logical + increment * nstripes;
3059 	}
3060 	wait_event(sctx->list_wait,
3061 		   atomic_read(&sctx->bios_in_flight) == 0);
3062 	scrub_blocked_if_needed(fs_info);
3063 
3064 	/* FIXME it might be better to start readahead at commit root */
3065 	key_start.objectid = logical;
3066 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
3067 	key_start.offset = (u64)0;
3068 	key_end.objectid = logic_end;
3069 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3070 	key_end.offset = (u64)-1;
3071 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
3072 
3073 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3074 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
3075 	key_start.offset = logical;
3076 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3077 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3078 	key_end.offset = logic_end;
3079 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3080 
3081 	if (!IS_ERR(reada1))
3082 		btrfs_reada_wait(reada1);
3083 	if (!IS_ERR(reada2))
3084 		btrfs_reada_wait(reada2);
3085 
3086 
3087 	/*
3088 	 * collect all data csums for the stripe to avoid seeking during
3089 	 * the scrub. This might currently (crc32) end up to be about 1MB
3090 	 */
3091 	blk_start_plug(&plug);
3092 
3093 	/*
3094 	 * now find all extents for each stripe and scrub them
3095 	 */
3096 	ret = 0;
3097 	while (physical < physical_end) {
3098 		/* for raid56, we skip parity stripe */
3099 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3100 			ret = get_raid56_logic_offset(physical, num,
3101 					map, &logical, &stripe_logical);
3102 			logical += base;
3103 			if (ret) {
3104 				stripe_logical += base;
3105 				stripe_end = stripe_logical + increment - 1;
3106 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3107 						ppath, stripe_logical,
3108 						stripe_end);
3109 				if (ret)
3110 					goto out;
3111 				goto skip;
3112 			}
3113 		}
3114 		/*
3115 		 * canceled?
3116 		 */
3117 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3118 		    atomic_read(&sctx->cancel_req)) {
3119 			ret = -ECANCELED;
3120 			goto out;
3121 		}
3122 		/*
3123 		 * check to see if we have to pause
3124 		 */
3125 		if (atomic_read(&fs_info->scrub_pause_req)) {
3126 			/* push queued extents */
3127 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3128 			scrub_submit(sctx);
3129 			mutex_lock(&sctx->wr_ctx.wr_lock);
3130 			scrub_wr_submit(sctx);
3131 			mutex_unlock(&sctx->wr_ctx.wr_lock);
3132 			wait_event(sctx->list_wait,
3133 				   atomic_read(&sctx->bios_in_flight) == 0);
3134 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3135 			scrub_blocked_if_needed(fs_info);
3136 		}
3137 
3138 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3139 			key.type = BTRFS_METADATA_ITEM_KEY;
3140 		else
3141 			key.type = BTRFS_EXTENT_ITEM_KEY;
3142 		key.objectid = logical;
3143 		key.offset = (u64)-1;
3144 
3145 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3146 		if (ret < 0)
3147 			goto out;
3148 
3149 		if (ret > 0) {
3150 			ret = btrfs_previous_extent_item(root, path, 0);
3151 			if (ret < 0)
3152 				goto out;
3153 			if (ret > 0) {
3154 				/* there's no smaller item, so stick with the
3155 				 * larger one */
3156 				btrfs_release_path(path);
3157 				ret = btrfs_search_slot(NULL, root, &key,
3158 							path, 0, 0);
3159 				if (ret < 0)
3160 					goto out;
3161 			}
3162 		}
3163 
3164 		stop_loop = 0;
3165 		while (1) {
3166 			u64 bytes;
3167 
3168 			l = path->nodes[0];
3169 			slot = path->slots[0];
3170 			if (slot >= btrfs_header_nritems(l)) {
3171 				ret = btrfs_next_leaf(root, path);
3172 				if (ret == 0)
3173 					continue;
3174 				if (ret < 0)
3175 					goto out;
3176 
3177 				stop_loop = 1;
3178 				break;
3179 			}
3180 			btrfs_item_key_to_cpu(l, &key, slot);
3181 
3182 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3183 				bytes = root->nodesize;
3184 			else
3185 				bytes = key.offset;
3186 
3187 			if (key.objectid + bytes <= logical)
3188 				goto next;
3189 
3190 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3191 			    key.type != BTRFS_METADATA_ITEM_KEY)
3192 				goto next;
3193 
3194 			if (key.objectid >= logical + map->stripe_len) {
3195 				/* out of this device extent */
3196 				if (key.objectid >= logic_end)
3197 					stop_loop = 1;
3198 				break;
3199 			}
3200 
3201 			extent = btrfs_item_ptr(l, slot,
3202 						struct btrfs_extent_item);
3203 			flags = btrfs_extent_flags(l, extent);
3204 			generation = btrfs_extent_generation(l, extent);
3205 
3206 			if (key.objectid < logical &&
3207 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3208 				btrfs_err(fs_info,
3209 					   "scrub: tree block %llu spanning "
3210 					   "stripes, ignored. logical=%llu",
3211 				       key.objectid, logical);
3212 				goto next;
3213 			}
3214 
3215 again:
3216 			extent_logical = key.objectid;
3217 			extent_len = bytes;
3218 
3219 			/*
3220 			 * trim extent to this stripe
3221 			 */
3222 			if (extent_logical < logical) {
3223 				extent_len -= logical - extent_logical;
3224 				extent_logical = logical;
3225 			}
3226 			if (extent_logical + extent_len >
3227 			    logical + map->stripe_len) {
3228 				extent_len = logical + map->stripe_len -
3229 					     extent_logical;
3230 			}
3231 
3232 			extent_physical = extent_logical - logical + physical;
3233 			extent_dev = scrub_dev;
3234 			extent_mirror_num = mirror_num;
3235 			if (is_dev_replace)
3236 				scrub_remap_extent(fs_info, extent_logical,
3237 						   extent_len, &extent_physical,
3238 						   &extent_dev,
3239 						   &extent_mirror_num);
3240 
3241 			ret = btrfs_lookup_csums_range(csum_root, logical,
3242 						logical + map->stripe_len - 1,
3243 						&sctx->csum_list, 1);
3244 			if (ret)
3245 				goto out;
3246 
3247 			ret = scrub_extent(sctx, extent_logical, extent_len,
3248 					   extent_physical, extent_dev, flags,
3249 					   generation, extent_mirror_num,
3250 					   extent_logical - logical + physical);
3251 			if (ret)
3252 				goto out;
3253 
3254 			scrub_free_csums(sctx);
3255 			if (extent_logical + extent_len <
3256 			    key.objectid + bytes) {
3257 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3258 					/*
3259 					 * loop until we find next data stripe
3260 					 * or we have finished all stripes.
3261 					 */
3262 loop:
3263 					physical += map->stripe_len;
3264 					ret = get_raid56_logic_offset(physical,
3265 							num, map, &logical,
3266 							&stripe_logical);
3267 					logical += base;
3268 
3269 					if (ret && physical < physical_end) {
3270 						stripe_logical += base;
3271 						stripe_end = stripe_logical +
3272 								increment - 1;
3273 						ret = scrub_raid56_parity(sctx,
3274 							map, scrub_dev, ppath,
3275 							stripe_logical,
3276 							stripe_end);
3277 						if (ret)
3278 							goto out;
3279 						goto loop;
3280 					}
3281 				} else {
3282 					physical += map->stripe_len;
3283 					logical += increment;
3284 				}
3285 				if (logical < key.objectid + bytes) {
3286 					cond_resched();
3287 					goto again;
3288 				}
3289 
3290 				if (physical >= physical_end) {
3291 					stop_loop = 1;
3292 					break;
3293 				}
3294 			}
3295 next:
3296 			path->slots[0]++;
3297 		}
3298 		btrfs_release_path(path);
3299 skip:
3300 		logical += increment;
3301 		physical += map->stripe_len;
3302 		spin_lock(&sctx->stat_lock);
3303 		if (stop_loop)
3304 			sctx->stat.last_physical = map->stripes[num].physical +
3305 						   length;
3306 		else
3307 			sctx->stat.last_physical = physical;
3308 		spin_unlock(&sctx->stat_lock);
3309 		if (stop_loop)
3310 			break;
3311 	}
3312 out:
3313 	/* push queued extents */
3314 	scrub_submit(sctx);
3315 	mutex_lock(&sctx->wr_ctx.wr_lock);
3316 	scrub_wr_submit(sctx);
3317 	mutex_unlock(&sctx->wr_ctx.wr_lock);
3318 
3319 	blk_finish_plug(&plug);
3320 	btrfs_free_path(path);
3321 	btrfs_free_path(ppath);
3322 	return ret < 0 ? ret : 0;
3323 }
3324 
3325 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3326 					  struct btrfs_device *scrub_dev,
3327 					  u64 chunk_tree, u64 chunk_objectid,
3328 					  u64 chunk_offset, u64 length,
3329 					  u64 dev_offset, int is_dev_replace)
3330 {
3331 	struct btrfs_mapping_tree *map_tree =
3332 		&sctx->dev_root->fs_info->mapping_tree;
3333 	struct map_lookup *map;
3334 	struct extent_map *em;
3335 	int i;
3336 	int ret = 0;
3337 
3338 	read_lock(&map_tree->map_tree.lock);
3339 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3340 	read_unlock(&map_tree->map_tree.lock);
3341 
3342 	if (!em)
3343 		return -EINVAL;
3344 
3345 	map = (struct map_lookup *)em->bdev;
3346 	if (em->start != chunk_offset)
3347 		goto out;
3348 
3349 	if (em->len < length)
3350 		goto out;
3351 
3352 	for (i = 0; i < map->num_stripes; ++i) {
3353 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3354 		    map->stripes[i].physical == dev_offset) {
3355 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3356 					   chunk_offset, length,
3357 					   is_dev_replace);
3358 			if (ret)
3359 				goto out;
3360 		}
3361 	}
3362 out:
3363 	free_extent_map(em);
3364 
3365 	return ret;
3366 }
3367 
3368 static noinline_for_stack
3369 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3370 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3371 			   int is_dev_replace)
3372 {
3373 	struct btrfs_dev_extent *dev_extent = NULL;
3374 	struct btrfs_path *path;
3375 	struct btrfs_root *root = sctx->dev_root;
3376 	struct btrfs_fs_info *fs_info = root->fs_info;
3377 	u64 length;
3378 	u64 chunk_tree;
3379 	u64 chunk_objectid;
3380 	u64 chunk_offset;
3381 	int ret;
3382 	int slot;
3383 	struct extent_buffer *l;
3384 	struct btrfs_key key;
3385 	struct btrfs_key found_key;
3386 	struct btrfs_block_group_cache *cache;
3387 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3388 
3389 	path = btrfs_alloc_path();
3390 	if (!path)
3391 		return -ENOMEM;
3392 
3393 	path->reada = 2;
3394 	path->search_commit_root = 1;
3395 	path->skip_locking = 1;
3396 
3397 	key.objectid = scrub_dev->devid;
3398 	key.offset = 0ull;
3399 	key.type = BTRFS_DEV_EXTENT_KEY;
3400 
3401 	while (1) {
3402 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3403 		if (ret < 0)
3404 			break;
3405 		if (ret > 0) {
3406 			if (path->slots[0] >=
3407 			    btrfs_header_nritems(path->nodes[0])) {
3408 				ret = btrfs_next_leaf(root, path);
3409 				if (ret)
3410 					break;
3411 			}
3412 		}
3413 
3414 		l = path->nodes[0];
3415 		slot = path->slots[0];
3416 
3417 		btrfs_item_key_to_cpu(l, &found_key, slot);
3418 
3419 		if (found_key.objectid != scrub_dev->devid)
3420 			break;
3421 
3422 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3423 			break;
3424 
3425 		if (found_key.offset >= end)
3426 			break;
3427 
3428 		if (found_key.offset < key.offset)
3429 			break;
3430 
3431 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3432 		length = btrfs_dev_extent_length(l, dev_extent);
3433 
3434 		if (found_key.offset + length <= start)
3435 			goto skip;
3436 
3437 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3438 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3439 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3440 
3441 		/*
3442 		 * get a reference on the corresponding block group to prevent
3443 		 * the chunk from going away while we scrub it
3444 		 */
3445 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3446 
3447 		/* some chunks are removed but not committed to disk yet,
3448 		 * continue scrubbing */
3449 		if (!cache)
3450 			goto skip;
3451 
3452 		dev_replace->cursor_right = found_key.offset + length;
3453 		dev_replace->cursor_left = found_key.offset;
3454 		dev_replace->item_needs_writeback = 1;
3455 		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3456 				  chunk_offset, length, found_key.offset,
3457 				  is_dev_replace);
3458 
3459 		/*
3460 		 * flush, submit all pending read and write bios, afterwards
3461 		 * wait for them.
3462 		 * Note that in the dev replace case, a read request causes
3463 		 * write requests that are submitted in the read completion
3464 		 * worker. Therefore in the current situation, it is required
3465 		 * that all write requests are flushed, so that all read and
3466 		 * write requests are really completed when bios_in_flight
3467 		 * changes to 0.
3468 		 */
3469 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3470 		scrub_submit(sctx);
3471 		mutex_lock(&sctx->wr_ctx.wr_lock);
3472 		scrub_wr_submit(sctx);
3473 		mutex_unlock(&sctx->wr_ctx.wr_lock);
3474 
3475 		wait_event(sctx->list_wait,
3476 			   atomic_read(&sctx->bios_in_flight) == 0);
3477 		atomic_inc(&fs_info->scrubs_paused);
3478 		wake_up(&fs_info->scrub_pause_wait);
3479 
3480 		/*
3481 		 * must be called before we decrease @scrub_paused.
3482 		 * make sure we don't block transaction commit while
3483 		 * we are waiting pending workers finished.
3484 		 */
3485 		wait_event(sctx->list_wait,
3486 			   atomic_read(&sctx->workers_pending) == 0);
3487 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3488 
3489 		mutex_lock(&fs_info->scrub_lock);
3490 		__scrub_blocked_if_needed(fs_info);
3491 		atomic_dec(&fs_info->scrubs_paused);
3492 		mutex_unlock(&fs_info->scrub_lock);
3493 		wake_up(&fs_info->scrub_pause_wait);
3494 
3495 		btrfs_put_block_group(cache);
3496 		if (ret)
3497 			break;
3498 		if (is_dev_replace &&
3499 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3500 			ret = -EIO;
3501 			break;
3502 		}
3503 		if (sctx->stat.malloc_errors > 0) {
3504 			ret = -ENOMEM;
3505 			break;
3506 		}
3507 
3508 		dev_replace->cursor_left = dev_replace->cursor_right;
3509 		dev_replace->item_needs_writeback = 1;
3510 skip:
3511 		key.offset = found_key.offset + length;
3512 		btrfs_release_path(path);
3513 	}
3514 
3515 	btrfs_free_path(path);
3516 
3517 	/*
3518 	 * ret can still be 1 from search_slot or next_leaf,
3519 	 * that's not an error
3520 	 */
3521 	return ret < 0 ? ret : 0;
3522 }
3523 
3524 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3525 					   struct btrfs_device *scrub_dev)
3526 {
3527 	int	i;
3528 	u64	bytenr;
3529 	u64	gen;
3530 	int	ret;
3531 	struct btrfs_root *root = sctx->dev_root;
3532 
3533 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3534 		return -EIO;
3535 
3536 	/* Seed devices of a new filesystem has their own generation. */
3537 	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3538 		gen = scrub_dev->generation;
3539 	else
3540 		gen = root->fs_info->last_trans_committed;
3541 
3542 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3543 		bytenr = btrfs_sb_offset(i);
3544 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3545 		    scrub_dev->commit_total_bytes)
3546 			break;
3547 
3548 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3549 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3550 				  NULL, 1, bytenr);
3551 		if (ret)
3552 			return ret;
3553 	}
3554 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3555 
3556 	return 0;
3557 }
3558 
3559 /*
3560  * get a reference count on fs_info->scrub_workers. start worker if necessary
3561  */
3562 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3563 						int is_dev_replace)
3564 {
3565 	int ret = 0;
3566 	int flags = WQ_FREEZABLE | WQ_UNBOUND;
3567 	int max_active = fs_info->thread_pool_size;
3568 
3569 	if (fs_info->scrub_workers_refcnt == 0) {
3570 		if (is_dev_replace)
3571 			fs_info->scrub_workers =
3572 				btrfs_alloc_workqueue("btrfs-scrub", flags,
3573 						      1, 4);
3574 		else
3575 			fs_info->scrub_workers =
3576 				btrfs_alloc_workqueue("btrfs-scrub", flags,
3577 						      max_active, 4);
3578 		if (!fs_info->scrub_workers) {
3579 			ret = -ENOMEM;
3580 			goto out;
3581 		}
3582 		fs_info->scrub_wr_completion_workers =
3583 			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
3584 					      max_active, 2);
3585 		if (!fs_info->scrub_wr_completion_workers) {
3586 			ret = -ENOMEM;
3587 			goto out;
3588 		}
3589 		fs_info->scrub_nocow_workers =
3590 			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3591 		if (!fs_info->scrub_nocow_workers) {
3592 			ret = -ENOMEM;
3593 			goto out;
3594 		}
3595 	}
3596 	++fs_info->scrub_workers_refcnt;
3597 out:
3598 	return ret;
3599 }
3600 
3601 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3602 {
3603 	if (--fs_info->scrub_workers_refcnt == 0) {
3604 		btrfs_destroy_workqueue(fs_info->scrub_workers);
3605 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3606 		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3607 	}
3608 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3609 }
3610 
3611 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3612 		    u64 end, struct btrfs_scrub_progress *progress,
3613 		    int readonly, int is_dev_replace)
3614 {
3615 	struct scrub_ctx *sctx;
3616 	int ret;
3617 	struct btrfs_device *dev;
3618 	struct rcu_string *name;
3619 
3620 	if (btrfs_fs_closing(fs_info))
3621 		return -EINVAL;
3622 
3623 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3624 		/*
3625 		 * in this case scrub is unable to calculate the checksum
3626 		 * the way scrub is implemented. Do not handle this
3627 		 * situation at all because it won't ever happen.
3628 		 */
3629 		btrfs_err(fs_info,
3630 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3631 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3632 		return -EINVAL;
3633 	}
3634 
3635 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3636 		/* not supported for data w/o checksums */
3637 		btrfs_err(fs_info,
3638 			   "scrub: size assumption sectorsize != PAGE_SIZE "
3639 			   "(%d != %lu) fails",
3640 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
3641 		return -EINVAL;
3642 	}
3643 
3644 	if (fs_info->chunk_root->nodesize >
3645 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3646 	    fs_info->chunk_root->sectorsize >
3647 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3648 		/*
3649 		 * would exhaust the array bounds of pagev member in
3650 		 * struct scrub_block
3651 		 */
3652 		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3653 			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3654 		       fs_info->chunk_root->nodesize,
3655 		       SCRUB_MAX_PAGES_PER_BLOCK,
3656 		       fs_info->chunk_root->sectorsize,
3657 		       SCRUB_MAX_PAGES_PER_BLOCK);
3658 		return -EINVAL;
3659 	}
3660 
3661 
3662 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3663 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3664 	if (!dev || (dev->missing && !is_dev_replace)) {
3665 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3666 		return -ENODEV;
3667 	}
3668 
3669 	if (!is_dev_replace && !readonly && !dev->writeable) {
3670 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3671 		rcu_read_lock();
3672 		name = rcu_dereference(dev->name);
3673 		btrfs_err(fs_info, "scrub: device %s is not writable",
3674 			  name->str);
3675 		rcu_read_unlock();
3676 		return -EROFS;
3677 	}
3678 
3679 	mutex_lock(&fs_info->scrub_lock);
3680 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3681 		mutex_unlock(&fs_info->scrub_lock);
3682 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3683 		return -EIO;
3684 	}
3685 
3686 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3687 	if (dev->scrub_device ||
3688 	    (!is_dev_replace &&
3689 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3690 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
3691 		mutex_unlock(&fs_info->scrub_lock);
3692 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3693 		return -EINPROGRESS;
3694 	}
3695 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3696 
3697 	ret = scrub_workers_get(fs_info, is_dev_replace);
3698 	if (ret) {
3699 		mutex_unlock(&fs_info->scrub_lock);
3700 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3701 		return ret;
3702 	}
3703 
3704 	sctx = scrub_setup_ctx(dev, is_dev_replace);
3705 	if (IS_ERR(sctx)) {
3706 		mutex_unlock(&fs_info->scrub_lock);
3707 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3708 		scrub_workers_put(fs_info);
3709 		return PTR_ERR(sctx);
3710 	}
3711 	sctx->readonly = readonly;
3712 	dev->scrub_device = sctx;
3713 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3714 
3715 	/*
3716 	 * checking @scrub_pause_req here, we can avoid
3717 	 * race between committing transaction and scrubbing.
3718 	 */
3719 	__scrub_blocked_if_needed(fs_info);
3720 	atomic_inc(&fs_info->scrubs_running);
3721 	mutex_unlock(&fs_info->scrub_lock);
3722 
3723 	if (!is_dev_replace) {
3724 		/*
3725 		 * by holding device list mutex, we can
3726 		 * kick off writing super in log tree sync.
3727 		 */
3728 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3729 		ret = scrub_supers(sctx, dev);
3730 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3731 	}
3732 
3733 	if (!ret)
3734 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3735 					     is_dev_replace);
3736 
3737 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3738 	atomic_dec(&fs_info->scrubs_running);
3739 	wake_up(&fs_info->scrub_pause_wait);
3740 
3741 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3742 
3743 	if (progress)
3744 		memcpy(progress, &sctx->stat, sizeof(*progress));
3745 
3746 	mutex_lock(&fs_info->scrub_lock);
3747 	dev->scrub_device = NULL;
3748 	scrub_workers_put(fs_info);
3749 	mutex_unlock(&fs_info->scrub_lock);
3750 
3751 	scrub_put_ctx(sctx);
3752 
3753 	return ret;
3754 }
3755 
3756 void btrfs_scrub_pause(struct btrfs_root *root)
3757 {
3758 	struct btrfs_fs_info *fs_info = root->fs_info;
3759 
3760 	mutex_lock(&fs_info->scrub_lock);
3761 	atomic_inc(&fs_info->scrub_pause_req);
3762 	while (atomic_read(&fs_info->scrubs_paused) !=
3763 	       atomic_read(&fs_info->scrubs_running)) {
3764 		mutex_unlock(&fs_info->scrub_lock);
3765 		wait_event(fs_info->scrub_pause_wait,
3766 			   atomic_read(&fs_info->scrubs_paused) ==
3767 			   atomic_read(&fs_info->scrubs_running));
3768 		mutex_lock(&fs_info->scrub_lock);
3769 	}
3770 	mutex_unlock(&fs_info->scrub_lock);
3771 }
3772 
3773 void btrfs_scrub_continue(struct btrfs_root *root)
3774 {
3775 	struct btrfs_fs_info *fs_info = root->fs_info;
3776 
3777 	atomic_dec(&fs_info->scrub_pause_req);
3778 	wake_up(&fs_info->scrub_pause_wait);
3779 }
3780 
3781 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3782 {
3783 	mutex_lock(&fs_info->scrub_lock);
3784 	if (!atomic_read(&fs_info->scrubs_running)) {
3785 		mutex_unlock(&fs_info->scrub_lock);
3786 		return -ENOTCONN;
3787 	}
3788 
3789 	atomic_inc(&fs_info->scrub_cancel_req);
3790 	while (atomic_read(&fs_info->scrubs_running)) {
3791 		mutex_unlock(&fs_info->scrub_lock);
3792 		wait_event(fs_info->scrub_pause_wait,
3793 			   atomic_read(&fs_info->scrubs_running) == 0);
3794 		mutex_lock(&fs_info->scrub_lock);
3795 	}
3796 	atomic_dec(&fs_info->scrub_cancel_req);
3797 	mutex_unlock(&fs_info->scrub_lock);
3798 
3799 	return 0;
3800 }
3801 
3802 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3803 			   struct btrfs_device *dev)
3804 {
3805 	struct scrub_ctx *sctx;
3806 
3807 	mutex_lock(&fs_info->scrub_lock);
3808 	sctx = dev->scrub_device;
3809 	if (!sctx) {
3810 		mutex_unlock(&fs_info->scrub_lock);
3811 		return -ENOTCONN;
3812 	}
3813 	atomic_inc(&sctx->cancel_req);
3814 	while (dev->scrub_device) {
3815 		mutex_unlock(&fs_info->scrub_lock);
3816 		wait_event(fs_info->scrub_pause_wait,
3817 			   dev->scrub_device == NULL);
3818 		mutex_lock(&fs_info->scrub_lock);
3819 	}
3820 	mutex_unlock(&fs_info->scrub_lock);
3821 
3822 	return 0;
3823 }
3824 
3825 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3826 			 struct btrfs_scrub_progress *progress)
3827 {
3828 	struct btrfs_device *dev;
3829 	struct scrub_ctx *sctx = NULL;
3830 
3831 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3832 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3833 	if (dev)
3834 		sctx = dev->scrub_device;
3835 	if (sctx)
3836 		memcpy(progress, &sctx->stat, sizeof(*progress));
3837 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3838 
3839 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3840 }
3841 
3842 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3843 			       u64 extent_logical, u64 extent_len,
3844 			       u64 *extent_physical,
3845 			       struct btrfs_device **extent_dev,
3846 			       int *extent_mirror_num)
3847 {
3848 	u64 mapped_length;
3849 	struct btrfs_bio *bbio = NULL;
3850 	int ret;
3851 
3852 	mapped_length = extent_len;
3853 	ret = btrfs_map_block(fs_info, READ, extent_logical,
3854 			      &mapped_length, &bbio, 0);
3855 	if (ret || !bbio || mapped_length < extent_len ||
3856 	    !bbio->stripes[0].dev->bdev) {
3857 		btrfs_put_bbio(bbio);
3858 		return;
3859 	}
3860 
3861 	*extent_physical = bbio->stripes[0].physical;
3862 	*extent_mirror_num = bbio->mirror_num;
3863 	*extent_dev = bbio->stripes[0].dev;
3864 	btrfs_put_bbio(bbio);
3865 }
3866 
3867 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3868 			      struct scrub_wr_ctx *wr_ctx,
3869 			      struct btrfs_fs_info *fs_info,
3870 			      struct btrfs_device *dev,
3871 			      int is_dev_replace)
3872 {
3873 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3874 
3875 	mutex_init(&wr_ctx->wr_lock);
3876 	wr_ctx->wr_curr_bio = NULL;
3877 	if (!is_dev_replace)
3878 		return 0;
3879 
3880 	WARN_ON(!dev->bdev);
3881 	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3882 					 bio_get_nr_vecs(dev->bdev));
3883 	wr_ctx->tgtdev = dev;
3884 	atomic_set(&wr_ctx->flush_all_writes, 0);
3885 	return 0;
3886 }
3887 
3888 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3889 {
3890 	mutex_lock(&wr_ctx->wr_lock);
3891 	kfree(wr_ctx->wr_curr_bio);
3892 	wr_ctx->wr_curr_bio = NULL;
3893 	mutex_unlock(&wr_ctx->wr_lock);
3894 }
3895 
3896 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3897 			    int mirror_num, u64 physical_for_dev_replace)
3898 {
3899 	struct scrub_copy_nocow_ctx *nocow_ctx;
3900 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3901 
3902 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3903 	if (!nocow_ctx) {
3904 		spin_lock(&sctx->stat_lock);
3905 		sctx->stat.malloc_errors++;
3906 		spin_unlock(&sctx->stat_lock);
3907 		return -ENOMEM;
3908 	}
3909 
3910 	scrub_pending_trans_workers_inc(sctx);
3911 
3912 	nocow_ctx->sctx = sctx;
3913 	nocow_ctx->logical = logical;
3914 	nocow_ctx->len = len;
3915 	nocow_ctx->mirror_num = mirror_num;
3916 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3917 	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3918 			copy_nocow_pages_worker, NULL, NULL);
3919 	INIT_LIST_HEAD(&nocow_ctx->inodes);
3920 	btrfs_queue_work(fs_info->scrub_nocow_workers,
3921 			 &nocow_ctx->work);
3922 
3923 	return 0;
3924 }
3925 
3926 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3927 {
3928 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3929 	struct scrub_nocow_inode *nocow_inode;
3930 
3931 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3932 	if (!nocow_inode)
3933 		return -ENOMEM;
3934 	nocow_inode->inum = inum;
3935 	nocow_inode->offset = offset;
3936 	nocow_inode->root = root;
3937 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3938 	return 0;
3939 }
3940 
3941 #define COPY_COMPLETE 1
3942 
3943 static void copy_nocow_pages_worker(struct btrfs_work *work)
3944 {
3945 	struct scrub_copy_nocow_ctx *nocow_ctx =
3946 		container_of(work, struct scrub_copy_nocow_ctx, work);
3947 	struct scrub_ctx *sctx = nocow_ctx->sctx;
3948 	u64 logical = nocow_ctx->logical;
3949 	u64 len = nocow_ctx->len;
3950 	int mirror_num = nocow_ctx->mirror_num;
3951 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3952 	int ret;
3953 	struct btrfs_trans_handle *trans = NULL;
3954 	struct btrfs_fs_info *fs_info;
3955 	struct btrfs_path *path;
3956 	struct btrfs_root *root;
3957 	int not_written = 0;
3958 
3959 	fs_info = sctx->dev_root->fs_info;
3960 	root = fs_info->extent_root;
3961 
3962 	path = btrfs_alloc_path();
3963 	if (!path) {
3964 		spin_lock(&sctx->stat_lock);
3965 		sctx->stat.malloc_errors++;
3966 		spin_unlock(&sctx->stat_lock);
3967 		not_written = 1;
3968 		goto out;
3969 	}
3970 
3971 	trans = btrfs_join_transaction(root);
3972 	if (IS_ERR(trans)) {
3973 		not_written = 1;
3974 		goto out;
3975 	}
3976 
3977 	ret = iterate_inodes_from_logical(logical, fs_info, path,
3978 					  record_inode_for_nocow, nocow_ctx);
3979 	if (ret != 0 && ret != -ENOENT) {
3980 		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3981 			"phys %llu, len %llu, mir %u, ret %d",
3982 			logical, physical_for_dev_replace, len, mirror_num,
3983 			ret);
3984 		not_written = 1;
3985 		goto out;
3986 	}
3987 
3988 	btrfs_end_transaction(trans, root);
3989 	trans = NULL;
3990 	while (!list_empty(&nocow_ctx->inodes)) {
3991 		struct scrub_nocow_inode *entry;
3992 		entry = list_first_entry(&nocow_ctx->inodes,
3993 					 struct scrub_nocow_inode,
3994 					 list);
3995 		list_del_init(&entry->list);
3996 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3997 						 entry->root, nocow_ctx);
3998 		kfree(entry);
3999 		if (ret == COPY_COMPLETE) {
4000 			ret = 0;
4001 			break;
4002 		} else if (ret) {
4003 			break;
4004 		}
4005 	}
4006 out:
4007 	while (!list_empty(&nocow_ctx->inodes)) {
4008 		struct scrub_nocow_inode *entry;
4009 		entry = list_first_entry(&nocow_ctx->inodes,
4010 					 struct scrub_nocow_inode,
4011 					 list);
4012 		list_del_init(&entry->list);
4013 		kfree(entry);
4014 	}
4015 	if (trans && !IS_ERR(trans))
4016 		btrfs_end_transaction(trans, root);
4017 	if (not_written)
4018 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4019 					    num_uncorrectable_read_errors);
4020 
4021 	btrfs_free_path(path);
4022 	kfree(nocow_ctx);
4023 
4024 	scrub_pending_trans_workers_dec(sctx);
4025 }
4026 
4027 static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4028 				 u64 logical)
4029 {
4030 	struct extent_state *cached_state = NULL;
4031 	struct btrfs_ordered_extent *ordered;
4032 	struct extent_io_tree *io_tree;
4033 	struct extent_map *em;
4034 	u64 lockstart = start, lockend = start + len - 1;
4035 	int ret = 0;
4036 
4037 	io_tree = &BTRFS_I(inode)->io_tree;
4038 
4039 	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
4040 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4041 	if (ordered) {
4042 		btrfs_put_ordered_extent(ordered);
4043 		ret = 1;
4044 		goto out_unlock;
4045 	}
4046 
4047 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4048 	if (IS_ERR(em)) {
4049 		ret = PTR_ERR(em);
4050 		goto out_unlock;
4051 	}
4052 
4053 	/*
4054 	 * This extent does not actually cover the logical extent anymore,
4055 	 * move on to the next inode.
4056 	 */
4057 	if (em->block_start > logical ||
4058 	    em->block_start + em->block_len < logical + len) {
4059 		free_extent_map(em);
4060 		ret = 1;
4061 		goto out_unlock;
4062 	}
4063 	free_extent_map(em);
4064 
4065 out_unlock:
4066 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4067 			     GFP_NOFS);
4068 	return ret;
4069 }
4070 
4071 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4072 				      struct scrub_copy_nocow_ctx *nocow_ctx)
4073 {
4074 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4075 	struct btrfs_key key;
4076 	struct inode *inode;
4077 	struct page *page;
4078 	struct btrfs_root *local_root;
4079 	struct extent_io_tree *io_tree;
4080 	u64 physical_for_dev_replace;
4081 	u64 nocow_ctx_logical;
4082 	u64 len = nocow_ctx->len;
4083 	unsigned long index;
4084 	int srcu_index;
4085 	int ret = 0;
4086 	int err = 0;
4087 
4088 	key.objectid = root;
4089 	key.type = BTRFS_ROOT_ITEM_KEY;
4090 	key.offset = (u64)-1;
4091 
4092 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4093 
4094 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4095 	if (IS_ERR(local_root)) {
4096 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4097 		return PTR_ERR(local_root);
4098 	}
4099 
4100 	key.type = BTRFS_INODE_ITEM_KEY;
4101 	key.objectid = inum;
4102 	key.offset = 0;
4103 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4104 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4105 	if (IS_ERR(inode))
4106 		return PTR_ERR(inode);
4107 
4108 	/* Avoid truncate/dio/punch hole.. */
4109 	mutex_lock(&inode->i_mutex);
4110 	inode_dio_wait(inode);
4111 
4112 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4113 	io_tree = &BTRFS_I(inode)->io_tree;
4114 	nocow_ctx_logical = nocow_ctx->logical;
4115 
4116 	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4117 	if (ret) {
4118 		ret = ret > 0 ? 0 : ret;
4119 		goto out;
4120 	}
4121 
4122 	while (len >= PAGE_CACHE_SIZE) {
4123 		index = offset >> PAGE_CACHE_SHIFT;
4124 again:
4125 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4126 		if (!page) {
4127 			btrfs_err(fs_info, "find_or_create_page() failed");
4128 			ret = -ENOMEM;
4129 			goto out;
4130 		}
4131 
4132 		if (PageUptodate(page)) {
4133 			if (PageDirty(page))
4134 				goto next_page;
4135 		} else {
4136 			ClearPageError(page);
4137 			err = extent_read_full_page(io_tree, page,
4138 							   btrfs_get_extent,
4139 							   nocow_ctx->mirror_num);
4140 			if (err) {
4141 				ret = err;
4142 				goto next_page;
4143 			}
4144 
4145 			lock_page(page);
4146 			/*
4147 			 * If the page has been remove from the page cache,
4148 			 * the data on it is meaningless, because it may be
4149 			 * old one, the new data may be written into the new
4150 			 * page in the page cache.
4151 			 */
4152 			if (page->mapping != inode->i_mapping) {
4153 				unlock_page(page);
4154 				page_cache_release(page);
4155 				goto again;
4156 			}
4157 			if (!PageUptodate(page)) {
4158 				ret = -EIO;
4159 				goto next_page;
4160 			}
4161 		}
4162 
4163 		ret = check_extent_to_block(inode, offset, len,
4164 					    nocow_ctx_logical);
4165 		if (ret) {
4166 			ret = ret > 0 ? 0 : ret;
4167 			goto next_page;
4168 		}
4169 
4170 		err = write_page_nocow(nocow_ctx->sctx,
4171 				       physical_for_dev_replace, page);
4172 		if (err)
4173 			ret = err;
4174 next_page:
4175 		unlock_page(page);
4176 		page_cache_release(page);
4177 
4178 		if (ret)
4179 			break;
4180 
4181 		offset += PAGE_CACHE_SIZE;
4182 		physical_for_dev_replace += PAGE_CACHE_SIZE;
4183 		nocow_ctx_logical += PAGE_CACHE_SIZE;
4184 		len -= PAGE_CACHE_SIZE;
4185 	}
4186 	ret = COPY_COMPLETE;
4187 out:
4188 	mutex_unlock(&inode->i_mutex);
4189 	iput(inode);
4190 	return ret;
4191 }
4192 
4193 static int write_page_nocow(struct scrub_ctx *sctx,
4194 			    u64 physical_for_dev_replace, struct page *page)
4195 {
4196 	struct bio *bio;
4197 	struct btrfs_device *dev;
4198 	int ret;
4199 
4200 	dev = sctx->wr_ctx.tgtdev;
4201 	if (!dev)
4202 		return -EIO;
4203 	if (!dev->bdev) {
4204 		printk_ratelimited(KERN_WARNING
4205 			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4206 		return -EIO;
4207 	}
4208 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4209 	if (!bio) {
4210 		spin_lock(&sctx->stat_lock);
4211 		sctx->stat.malloc_errors++;
4212 		spin_unlock(&sctx->stat_lock);
4213 		return -ENOMEM;
4214 	}
4215 	bio->bi_iter.bi_size = 0;
4216 	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4217 	bio->bi_bdev = dev->bdev;
4218 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
4219 	if (ret != PAGE_CACHE_SIZE) {
4220 leave_with_eio:
4221 		bio_put(bio);
4222 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4223 		return -EIO;
4224 	}
4225 
4226 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4227 		goto leave_with_eio;
4228 
4229 	bio_put(bio);
4230 	return 0;
4231 }
4232