1 /* 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/ratelimit.h> 21 #include "ctree.h" 22 #include "volumes.h" 23 #include "disk-io.h" 24 #include "ordered-data.h" 25 #include "transaction.h" 26 #include "backref.h" 27 #include "extent_io.h" 28 #include "dev-replace.h" 29 #include "check-integrity.h" 30 #include "rcu-string.h" 31 #include "raid56.h" 32 33 /* 34 * This is only the first step towards a full-features scrub. It reads all 35 * extent and super block and verifies the checksums. In case a bad checksum 36 * is found or the extent cannot be read, good data will be written back if 37 * any can be found. 38 * 39 * Future enhancements: 40 * - In case an unrepairable extent is encountered, track which files are 41 * affected and report them 42 * - track and record media errors, throw out bad devices 43 * - add a mode to also read unallocated space 44 */ 45 46 struct scrub_block; 47 struct scrub_ctx; 48 49 /* 50 * the following three values only influence the performance. 51 * The last one configures the number of parallel and outstanding I/O 52 * operations. The first two values configure an upper limit for the number 53 * of (dynamically allocated) pages that are added to a bio. 54 */ 55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 58 59 /* 60 * the following value times PAGE_SIZE needs to be large enough to match the 61 * largest node/leaf/sector size that shall be supported. 62 * Values larger than BTRFS_STRIPE_LEN are not supported. 63 */ 64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 65 66 struct scrub_page { 67 struct scrub_block *sblock; 68 struct page *page; 69 struct btrfs_device *dev; 70 u64 flags; /* extent flags */ 71 u64 generation; 72 u64 logical; 73 u64 physical; 74 u64 physical_for_dev_replace; 75 atomic_t ref_count; 76 struct { 77 unsigned int mirror_num:8; 78 unsigned int have_csum:1; 79 unsigned int io_error:1; 80 }; 81 u8 csum[BTRFS_CSUM_SIZE]; 82 }; 83 84 struct scrub_bio { 85 int index; 86 struct scrub_ctx *sctx; 87 struct btrfs_device *dev; 88 struct bio *bio; 89 int err; 90 u64 logical; 91 u64 physical; 92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 94 #else 95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 96 #endif 97 int page_count; 98 int next_free; 99 struct btrfs_work work; 100 }; 101 102 struct scrub_block { 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 104 int page_count; 105 atomic_t outstanding_pages; 106 atomic_t ref_count; /* free mem on transition to zero */ 107 struct scrub_ctx *sctx; 108 struct { 109 unsigned int header_error:1; 110 unsigned int checksum_error:1; 111 unsigned int no_io_error_seen:1; 112 unsigned int generation_error:1; /* also sets header_error */ 113 }; 114 }; 115 116 struct scrub_wr_ctx { 117 struct scrub_bio *wr_curr_bio; 118 struct btrfs_device *tgtdev; 119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 120 atomic_t flush_all_writes; 121 struct mutex wr_lock; 122 }; 123 124 struct scrub_ctx { 125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 126 struct btrfs_root *dev_root; 127 int first_free; 128 int curr; 129 atomic_t bios_in_flight; 130 atomic_t workers_pending; 131 spinlock_t list_lock; 132 wait_queue_head_t list_wait; 133 u16 csum_size; 134 struct list_head csum_list; 135 atomic_t cancel_req; 136 int readonly; 137 int pages_per_rd_bio; 138 u32 sectorsize; 139 u32 nodesize; 140 u32 leafsize; 141 142 int is_dev_replace; 143 struct scrub_wr_ctx wr_ctx; 144 145 /* 146 * statistics 147 */ 148 struct btrfs_scrub_progress stat; 149 spinlock_t stat_lock; 150 }; 151 152 struct scrub_fixup_nodatasum { 153 struct scrub_ctx *sctx; 154 struct btrfs_device *dev; 155 u64 logical; 156 struct btrfs_root *root; 157 struct btrfs_work work; 158 int mirror_num; 159 }; 160 161 struct scrub_copy_nocow_ctx { 162 struct scrub_ctx *sctx; 163 u64 logical; 164 u64 len; 165 int mirror_num; 166 u64 physical_for_dev_replace; 167 struct btrfs_work work; 168 }; 169 170 struct scrub_warning { 171 struct btrfs_path *path; 172 u64 extent_item_size; 173 char *scratch_buf; 174 char *msg_buf; 175 const char *errstr; 176 sector_t sector; 177 u64 logical; 178 struct btrfs_device *dev; 179 int msg_bufsize; 180 int scratch_bufsize; 181 }; 182 183 184 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 185 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 186 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); 187 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); 188 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 189 static int scrub_setup_recheck_block(struct scrub_ctx *sctx, 190 struct btrfs_fs_info *fs_info, 191 struct scrub_block *original_sblock, 192 u64 length, u64 logical, 193 struct scrub_block *sblocks_for_recheck); 194 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 195 struct scrub_block *sblock, int is_metadata, 196 int have_csum, u8 *csum, u64 generation, 197 u16 csum_size); 198 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 199 struct scrub_block *sblock, 200 int is_metadata, int have_csum, 201 const u8 *csum, u64 generation, 202 u16 csum_size); 203 static void scrub_complete_bio_end_io(struct bio *bio, int err); 204 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 205 struct scrub_block *sblock_good, 206 int force_write); 207 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 208 struct scrub_block *sblock_good, 209 int page_num, int force_write); 210 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 211 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 212 int page_num); 213 static int scrub_checksum_data(struct scrub_block *sblock); 214 static int scrub_checksum_tree_block(struct scrub_block *sblock); 215 static int scrub_checksum_super(struct scrub_block *sblock); 216 static void scrub_block_get(struct scrub_block *sblock); 217 static void scrub_block_put(struct scrub_block *sblock); 218 static void scrub_page_get(struct scrub_page *spage); 219 static void scrub_page_put(struct scrub_page *spage); 220 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 221 struct scrub_page *spage); 222 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 223 u64 physical, struct btrfs_device *dev, u64 flags, 224 u64 gen, int mirror_num, u8 *csum, int force, 225 u64 physical_for_dev_replace); 226 static void scrub_bio_end_io(struct bio *bio, int err); 227 static void scrub_bio_end_io_worker(struct btrfs_work *work); 228 static void scrub_block_complete(struct scrub_block *sblock); 229 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 230 u64 extent_logical, u64 extent_len, 231 u64 *extent_physical, 232 struct btrfs_device **extent_dev, 233 int *extent_mirror_num); 234 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 235 struct scrub_wr_ctx *wr_ctx, 236 struct btrfs_fs_info *fs_info, 237 struct btrfs_device *dev, 238 int is_dev_replace); 239 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); 240 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 241 struct scrub_page *spage); 242 static void scrub_wr_submit(struct scrub_ctx *sctx); 243 static void scrub_wr_bio_end_io(struct bio *bio, int err); 244 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 245 static int write_page_nocow(struct scrub_ctx *sctx, 246 u64 physical_for_dev_replace, struct page *page); 247 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, 248 void *ctx); 249 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 250 int mirror_num, u64 physical_for_dev_replace); 251 static void copy_nocow_pages_worker(struct btrfs_work *work); 252 253 254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 255 { 256 atomic_inc(&sctx->bios_in_flight); 257 } 258 259 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 260 { 261 atomic_dec(&sctx->bios_in_flight); 262 wake_up(&sctx->list_wait); 263 } 264 265 /* 266 * used for workers that require transaction commits (i.e., for the 267 * NOCOW case) 268 */ 269 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) 270 { 271 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 272 273 /* 274 * increment scrubs_running to prevent cancel requests from 275 * completing as long as a worker is running. we must also 276 * increment scrubs_paused to prevent deadlocking on pause 277 * requests used for transactions commits (as the worker uses a 278 * transaction context). it is safe to regard the worker 279 * as paused for all matters practical. effectively, we only 280 * avoid cancellation requests from completing. 281 */ 282 mutex_lock(&fs_info->scrub_lock); 283 atomic_inc(&fs_info->scrubs_running); 284 atomic_inc(&fs_info->scrubs_paused); 285 mutex_unlock(&fs_info->scrub_lock); 286 atomic_inc(&sctx->workers_pending); 287 } 288 289 /* used for workers that require transaction commits */ 290 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) 291 { 292 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 293 294 /* 295 * see scrub_pending_trans_workers_inc() why we're pretending 296 * to be paused in the scrub counters 297 */ 298 mutex_lock(&fs_info->scrub_lock); 299 atomic_dec(&fs_info->scrubs_running); 300 atomic_dec(&fs_info->scrubs_paused); 301 mutex_unlock(&fs_info->scrub_lock); 302 atomic_dec(&sctx->workers_pending); 303 wake_up(&fs_info->scrub_pause_wait); 304 wake_up(&sctx->list_wait); 305 } 306 307 static void scrub_free_csums(struct scrub_ctx *sctx) 308 { 309 while (!list_empty(&sctx->csum_list)) { 310 struct btrfs_ordered_sum *sum; 311 sum = list_first_entry(&sctx->csum_list, 312 struct btrfs_ordered_sum, list); 313 list_del(&sum->list); 314 kfree(sum); 315 } 316 } 317 318 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 319 { 320 int i; 321 322 if (!sctx) 323 return; 324 325 scrub_free_wr_ctx(&sctx->wr_ctx); 326 327 /* this can happen when scrub is cancelled */ 328 if (sctx->curr != -1) { 329 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 330 331 for (i = 0; i < sbio->page_count; i++) { 332 WARN_ON(!sbio->pagev[i]->page); 333 scrub_block_put(sbio->pagev[i]->sblock); 334 } 335 bio_put(sbio->bio); 336 } 337 338 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 339 struct scrub_bio *sbio = sctx->bios[i]; 340 341 if (!sbio) 342 break; 343 kfree(sbio); 344 } 345 346 scrub_free_csums(sctx); 347 kfree(sctx); 348 } 349 350 static noinline_for_stack 351 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 352 { 353 struct scrub_ctx *sctx; 354 int i; 355 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; 356 int pages_per_rd_bio; 357 int ret; 358 359 /* 360 * the setting of pages_per_rd_bio is correct for scrub but might 361 * be wrong for the dev_replace code where we might read from 362 * different devices in the initial huge bios. However, that 363 * code is able to correctly handle the case when adding a page 364 * to a bio fails. 365 */ 366 if (dev->bdev) 367 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO, 368 bio_get_nr_vecs(dev->bdev)); 369 else 370 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 371 sctx = kzalloc(sizeof(*sctx), GFP_NOFS); 372 if (!sctx) 373 goto nomem; 374 sctx->is_dev_replace = is_dev_replace; 375 sctx->pages_per_rd_bio = pages_per_rd_bio; 376 sctx->curr = -1; 377 sctx->dev_root = dev->dev_root; 378 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 379 struct scrub_bio *sbio; 380 381 sbio = kzalloc(sizeof(*sbio), GFP_NOFS); 382 if (!sbio) 383 goto nomem; 384 sctx->bios[i] = sbio; 385 386 sbio->index = i; 387 sbio->sctx = sctx; 388 sbio->page_count = 0; 389 sbio->work.func = scrub_bio_end_io_worker; 390 391 if (i != SCRUB_BIOS_PER_SCTX - 1) 392 sctx->bios[i]->next_free = i + 1; 393 else 394 sctx->bios[i]->next_free = -1; 395 } 396 sctx->first_free = 0; 397 sctx->nodesize = dev->dev_root->nodesize; 398 sctx->leafsize = dev->dev_root->leafsize; 399 sctx->sectorsize = dev->dev_root->sectorsize; 400 atomic_set(&sctx->bios_in_flight, 0); 401 atomic_set(&sctx->workers_pending, 0); 402 atomic_set(&sctx->cancel_req, 0); 403 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 404 INIT_LIST_HEAD(&sctx->csum_list); 405 406 spin_lock_init(&sctx->list_lock); 407 spin_lock_init(&sctx->stat_lock); 408 init_waitqueue_head(&sctx->list_wait); 409 410 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info, 411 fs_info->dev_replace.tgtdev, is_dev_replace); 412 if (ret) { 413 scrub_free_ctx(sctx); 414 return ERR_PTR(ret); 415 } 416 return sctx; 417 418 nomem: 419 scrub_free_ctx(sctx); 420 return ERR_PTR(-ENOMEM); 421 } 422 423 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 424 void *warn_ctx) 425 { 426 u64 isize; 427 u32 nlink; 428 int ret; 429 int i; 430 struct extent_buffer *eb; 431 struct btrfs_inode_item *inode_item; 432 struct scrub_warning *swarn = warn_ctx; 433 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; 434 struct inode_fs_paths *ipath = NULL; 435 struct btrfs_root *local_root; 436 struct btrfs_key root_key; 437 438 root_key.objectid = root; 439 root_key.type = BTRFS_ROOT_ITEM_KEY; 440 root_key.offset = (u64)-1; 441 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 442 if (IS_ERR(local_root)) { 443 ret = PTR_ERR(local_root); 444 goto err; 445 } 446 447 ret = inode_item_info(inum, 0, local_root, swarn->path); 448 if (ret) { 449 btrfs_release_path(swarn->path); 450 goto err; 451 } 452 453 eb = swarn->path->nodes[0]; 454 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 455 struct btrfs_inode_item); 456 isize = btrfs_inode_size(eb, inode_item); 457 nlink = btrfs_inode_nlink(eb, inode_item); 458 btrfs_release_path(swarn->path); 459 460 ipath = init_ipath(4096, local_root, swarn->path); 461 if (IS_ERR(ipath)) { 462 ret = PTR_ERR(ipath); 463 ipath = NULL; 464 goto err; 465 } 466 ret = paths_from_inode(inum, ipath); 467 468 if (ret < 0) 469 goto err; 470 471 /* 472 * we deliberately ignore the bit ipath might have been too small to 473 * hold all of the paths here 474 */ 475 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 476 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " 477 "%s, sector %llu, root %llu, inode %llu, offset %llu, " 478 "length %llu, links %u (path: %s)\n", swarn->errstr, 479 swarn->logical, rcu_str_deref(swarn->dev->name), 480 (unsigned long long)swarn->sector, root, inum, offset, 481 min(isize - offset, (u64)PAGE_SIZE), nlink, 482 (char *)(unsigned long)ipath->fspath->val[i]); 483 484 free_ipath(ipath); 485 return 0; 486 487 err: 488 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " 489 "%s, sector %llu, root %llu, inode %llu, offset %llu: path " 490 "resolving failed with ret=%d\n", swarn->errstr, 491 swarn->logical, rcu_str_deref(swarn->dev->name), 492 (unsigned long long)swarn->sector, root, inum, offset, ret); 493 494 free_ipath(ipath); 495 return 0; 496 } 497 498 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 499 { 500 struct btrfs_device *dev; 501 struct btrfs_fs_info *fs_info; 502 struct btrfs_path *path; 503 struct btrfs_key found_key; 504 struct extent_buffer *eb; 505 struct btrfs_extent_item *ei; 506 struct scrub_warning swarn; 507 unsigned long ptr = 0; 508 u64 extent_item_pos; 509 u64 flags = 0; 510 u64 ref_root; 511 u32 item_size; 512 u8 ref_level; 513 const int bufsize = 4096; 514 int ret; 515 516 WARN_ON(sblock->page_count < 1); 517 dev = sblock->pagev[0]->dev; 518 fs_info = sblock->sctx->dev_root->fs_info; 519 520 path = btrfs_alloc_path(); 521 522 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS); 523 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS); 524 swarn.sector = (sblock->pagev[0]->physical) >> 9; 525 swarn.logical = sblock->pagev[0]->logical; 526 swarn.errstr = errstr; 527 swarn.dev = NULL; 528 swarn.msg_bufsize = bufsize; 529 swarn.scratch_bufsize = bufsize; 530 531 if (!path || !swarn.scratch_buf || !swarn.msg_buf) 532 goto out; 533 534 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 535 &flags); 536 if (ret < 0) 537 goto out; 538 539 extent_item_pos = swarn.logical - found_key.objectid; 540 swarn.extent_item_size = found_key.offset; 541 542 eb = path->nodes[0]; 543 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 544 item_size = btrfs_item_size_nr(eb, path->slots[0]); 545 btrfs_release_path(path); 546 547 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 548 do { 549 ret = tree_backref_for_extent(&ptr, eb, ei, item_size, 550 &ref_root, &ref_level); 551 printk_in_rcu(KERN_WARNING 552 "btrfs: %s at logical %llu on dev %s, " 553 "sector %llu: metadata %s (level %d) in tree " 554 "%llu\n", errstr, swarn.logical, 555 rcu_str_deref(dev->name), 556 (unsigned long long)swarn.sector, 557 ref_level ? "node" : "leaf", 558 ret < 0 ? -1 : ref_level, 559 ret < 0 ? -1 : ref_root); 560 } while (ret != 1); 561 } else { 562 swarn.path = path; 563 swarn.dev = dev; 564 iterate_extent_inodes(fs_info, found_key.objectid, 565 extent_item_pos, 1, 566 scrub_print_warning_inode, &swarn); 567 } 568 569 out: 570 btrfs_free_path(path); 571 kfree(swarn.scratch_buf); 572 kfree(swarn.msg_buf); 573 } 574 575 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) 576 { 577 struct page *page = NULL; 578 unsigned long index; 579 struct scrub_fixup_nodatasum *fixup = fixup_ctx; 580 int ret; 581 int corrected = 0; 582 struct btrfs_key key; 583 struct inode *inode = NULL; 584 struct btrfs_fs_info *fs_info; 585 u64 end = offset + PAGE_SIZE - 1; 586 struct btrfs_root *local_root; 587 int srcu_index; 588 589 key.objectid = root; 590 key.type = BTRFS_ROOT_ITEM_KEY; 591 key.offset = (u64)-1; 592 593 fs_info = fixup->root->fs_info; 594 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 595 596 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 597 if (IS_ERR(local_root)) { 598 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 599 return PTR_ERR(local_root); 600 } 601 602 key.type = BTRFS_INODE_ITEM_KEY; 603 key.objectid = inum; 604 key.offset = 0; 605 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 606 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 607 if (IS_ERR(inode)) 608 return PTR_ERR(inode); 609 610 index = offset >> PAGE_CACHE_SHIFT; 611 612 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 613 if (!page) { 614 ret = -ENOMEM; 615 goto out; 616 } 617 618 if (PageUptodate(page)) { 619 if (PageDirty(page)) { 620 /* 621 * we need to write the data to the defect sector. the 622 * data that was in that sector is not in memory, 623 * because the page was modified. we must not write the 624 * modified page to that sector. 625 * 626 * TODO: what could be done here: wait for the delalloc 627 * runner to write out that page (might involve 628 * COW) and see whether the sector is still 629 * referenced afterwards. 630 * 631 * For the meantime, we'll treat this error 632 * incorrectable, although there is a chance that a 633 * later scrub will find the bad sector again and that 634 * there's no dirty page in memory, then. 635 */ 636 ret = -EIO; 637 goto out; 638 } 639 fs_info = BTRFS_I(inode)->root->fs_info; 640 ret = repair_io_failure(fs_info, offset, PAGE_SIZE, 641 fixup->logical, page, 642 fixup->mirror_num); 643 unlock_page(page); 644 corrected = !ret; 645 } else { 646 /* 647 * we need to get good data first. the general readpage path 648 * will call repair_io_failure for us, we just have to make 649 * sure we read the bad mirror. 650 */ 651 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 652 EXTENT_DAMAGED, GFP_NOFS); 653 if (ret) { 654 /* set_extent_bits should give proper error */ 655 WARN_ON(ret > 0); 656 if (ret > 0) 657 ret = -EFAULT; 658 goto out; 659 } 660 661 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, 662 btrfs_get_extent, 663 fixup->mirror_num); 664 wait_on_page_locked(page); 665 666 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, 667 end, EXTENT_DAMAGED, 0, NULL); 668 if (!corrected) 669 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, 670 EXTENT_DAMAGED, GFP_NOFS); 671 } 672 673 out: 674 if (page) 675 put_page(page); 676 if (inode) 677 iput(inode); 678 679 if (ret < 0) 680 return ret; 681 682 if (ret == 0 && corrected) { 683 /* 684 * we only need to call readpage for one of the inodes belonging 685 * to this extent. so make iterate_extent_inodes stop 686 */ 687 return 1; 688 } 689 690 return -EIO; 691 } 692 693 static void scrub_fixup_nodatasum(struct btrfs_work *work) 694 { 695 int ret; 696 struct scrub_fixup_nodatasum *fixup; 697 struct scrub_ctx *sctx; 698 struct btrfs_trans_handle *trans = NULL; 699 struct btrfs_fs_info *fs_info; 700 struct btrfs_path *path; 701 int uncorrectable = 0; 702 703 fixup = container_of(work, struct scrub_fixup_nodatasum, work); 704 sctx = fixup->sctx; 705 fs_info = fixup->root->fs_info; 706 707 path = btrfs_alloc_path(); 708 if (!path) { 709 spin_lock(&sctx->stat_lock); 710 ++sctx->stat.malloc_errors; 711 spin_unlock(&sctx->stat_lock); 712 uncorrectable = 1; 713 goto out; 714 } 715 716 trans = btrfs_join_transaction(fixup->root); 717 if (IS_ERR(trans)) { 718 uncorrectable = 1; 719 goto out; 720 } 721 722 /* 723 * the idea is to trigger a regular read through the standard path. we 724 * read a page from the (failed) logical address by specifying the 725 * corresponding copynum of the failed sector. thus, that readpage is 726 * expected to fail. 727 * that is the point where on-the-fly error correction will kick in 728 * (once it's finished) and rewrite the failed sector if a good copy 729 * can be found. 730 */ 731 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, 732 path, scrub_fixup_readpage, 733 fixup); 734 if (ret < 0) { 735 uncorrectable = 1; 736 goto out; 737 } 738 WARN_ON(ret != 1); 739 740 spin_lock(&sctx->stat_lock); 741 ++sctx->stat.corrected_errors; 742 spin_unlock(&sctx->stat_lock); 743 744 out: 745 if (trans && !IS_ERR(trans)) 746 btrfs_end_transaction(trans, fixup->root); 747 if (uncorrectable) { 748 spin_lock(&sctx->stat_lock); 749 ++sctx->stat.uncorrectable_errors; 750 spin_unlock(&sctx->stat_lock); 751 btrfs_dev_replace_stats_inc( 752 &sctx->dev_root->fs_info->dev_replace. 753 num_uncorrectable_read_errors); 754 printk_ratelimited_in_rcu(KERN_ERR 755 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n", 756 (unsigned long long)fixup->logical, 757 rcu_str_deref(fixup->dev->name)); 758 } 759 760 btrfs_free_path(path); 761 kfree(fixup); 762 763 scrub_pending_trans_workers_dec(sctx); 764 } 765 766 /* 767 * scrub_handle_errored_block gets called when either verification of the 768 * pages failed or the bio failed to read, e.g. with EIO. In the latter 769 * case, this function handles all pages in the bio, even though only one 770 * may be bad. 771 * The goal of this function is to repair the errored block by using the 772 * contents of one of the mirrors. 773 */ 774 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 775 { 776 struct scrub_ctx *sctx = sblock_to_check->sctx; 777 struct btrfs_device *dev; 778 struct btrfs_fs_info *fs_info; 779 u64 length; 780 u64 logical; 781 u64 generation; 782 unsigned int failed_mirror_index; 783 unsigned int is_metadata; 784 unsigned int have_csum; 785 u8 *csum; 786 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 787 struct scrub_block *sblock_bad; 788 int ret; 789 int mirror_index; 790 int page_num; 791 int success; 792 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 793 DEFAULT_RATELIMIT_BURST); 794 795 BUG_ON(sblock_to_check->page_count < 1); 796 fs_info = sctx->dev_root->fs_info; 797 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 798 /* 799 * if we find an error in a super block, we just report it. 800 * They will get written with the next transaction commit 801 * anyway 802 */ 803 spin_lock(&sctx->stat_lock); 804 ++sctx->stat.super_errors; 805 spin_unlock(&sctx->stat_lock); 806 return 0; 807 } 808 length = sblock_to_check->page_count * PAGE_SIZE; 809 logical = sblock_to_check->pagev[0]->logical; 810 generation = sblock_to_check->pagev[0]->generation; 811 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 812 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 813 is_metadata = !(sblock_to_check->pagev[0]->flags & 814 BTRFS_EXTENT_FLAG_DATA); 815 have_csum = sblock_to_check->pagev[0]->have_csum; 816 csum = sblock_to_check->pagev[0]->csum; 817 dev = sblock_to_check->pagev[0]->dev; 818 819 if (sctx->is_dev_replace && !is_metadata && !have_csum) { 820 sblocks_for_recheck = NULL; 821 goto nodatasum_case; 822 } 823 824 /* 825 * read all mirrors one after the other. This includes to 826 * re-read the extent or metadata block that failed (that was 827 * the cause that this fixup code is called) another time, 828 * page by page this time in order to know which pages 829 * caused I/O errors and which ones are good (for all mirrors). 830 * It is the goal to handle the situation when more than one 831 * mirror contains I/O errors, but the errors do not 832 * overlap, i.e. the data can be repaired by selecting the 833 * pages from those mirrors without I/O error on the 834 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 835 * would be that mirror #1 has an I/O error on the first page, 836 * the second page is good, and mirror #2 has an I/O error on 837 * the second page, but the first page is good. 838 * Then the first page of the first mirror can be repaired by 839 * taking the first page of the second mirror, and the 840 * second page of the second mirror can be repaired by 841 * copying the contents of the 2nd page of the 1st mirror. 842 * One more note: if the pages of one mirror contain I/O 843 * errors, the checksum cannot be verified. In order to get 844 * the best data for repairing, the first attempt is to find 845 * a mirror without I/O errors and with a validated checksum. 846 * Only if this is not possible, the pages are picked from 847 * mirrors with I/O errors without considering the checksum. 848 * If the latter is the case, at the end, the checksum of the 849 * repaired area is verified in order to correctly maintain 850 * the statistics. 851 */ 852 853 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS * 854 sizeof(*sblocks_for_recheck), 855 GFP_NOFS); 856 if (!sblocks_for_recheck) { 857 spin_lock(&sctx->stat_lock); 858 sctx->stat.malloc_errors++; 859 sctx->stat.read_errors++; 860 sctx->stat.uncorrectable_errors++; 861 spin_unlock(&sctx->stat_lock); 862 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 863 goto out; 864 } 865 866 /* setup the context, map the logical blocks and alloc the pages */ 867 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length, 868 logical, sblocks_for_recheck); 869 if (ret) { 870 spin_lock(&sctx->stat_lock); 871 sctx->stat.read_errors++; 872 sctx->stat.uncorrectable_errors++; 873 spin_unlock(&sctx->stat_lock); 874 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 875 goto out; 876 } 877 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 878 sblock_bad = sblocks_for_recheck + failed_mirror_index; 879 880 /* build and submit the bios for the failed mirror, check checksums */ 881 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, 882 csum, generation, sctx->csum_size); 883 884 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 885 sblock_bad->no_io_error_seen) { 886 /* 887 * the error disappeared after reading page by page, or 888 * the area was part of a huge bio and other parts of the 889 * bio caused I/O errors, or the block layer merged several 890 * read requests into one and the error is caused by a 891 * different bio (usually one of the two latter cases is 892 * the cause) 893 */ 894 spin_lock(&sctx->stat_lock); 895 sctx->stat.unverified_errors++; 896 spin_unlock(&sctx->stat_lock); 897 898 if (sctx->is_dev_replace) 899 scrub_write_block_to_dev_replace(sblock_bad); 900 goto out; 901 } 902 903 if (!sblock_bad->no_io_error_seen) { 904 spin_lock(&sctx->stat_lock); 905 sctx->stat.read_errors++; 906 spin_unlock(&sctx->stat_lock); 907 if (__ratelimit(&_rs)) 908 scrub_print_warning("i/o error", sblock_to_check); 909 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 910 } else if (sblock_bad->checksum_error) { 911 spin_lock(&sctx->stat_lock); 912 sctx->stat.csum_errors++; 913 spin_unlock(&sctx->stat_lock); 914 if (__ratelimit(&_rs)) 915 scrub_print_warning("checksum error", sblock_to_check); 916 btrfs_dev_stat_inc_and_print(dev, 917 BTRFS_DEV_STAT_CORRUPTION_ERRS); 918 } else if (sblock_bad->header_error) { 919 spin_lock(&sctx->stat_lock); 920 sctx->stat.verify_errors++; 921 spin_unlock(&sctx->stat_lock); 922 if (__ratelimit(&_rs)) 923 scrub_print_warning("checksum/header error", 924 sblock_to_check); 925 if (sblock_bad->generation_error) 926 btrfs_dev_stat_inc_and_print(dev, 927 BTRFS_DEV_STAT_GENERATION_ERRS); 928 else 929 btrfs_dev_stat_inc_and_print(dev, 930 BTRFS_DEV_STAT_CORRUPTION_ERRS); 931 } 932 933 if (sctx->readonly && !sctx->is_dev_replace) 934 goto did_not_correct_error; 935 936 if (!is_metadata && !have_csum) { 937 struct scrub_fixup_nodatasum *fixup_nodatasum; 938 939 nodatasum_case: 940 WARN_ON(sctx->is_dev_replace); 941 942 /* 943 * !is_metadata and !have_csum, this means that the data 944 * might not be COW'ed, that it might be modified 945 * concurrently. The general strategy to work on the 946 * commit root does not help in the case when COW is not 947 * used. 948 */ 949 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); 950 if (!fixup_nodatasum) 951 goto did_not_correct_error; 952 fixup_nodatasum->sctx = sctx; 953 fixup_nodatasum->dev = dev; 954 fixup_nodatasum->logical = logical; 955 fixup_nodatasum->root = fs_info->extent_root; 956 fixup_nodatasum->mirror_num = failed_mirror_index + 1; 957 scrub_pending_trans_workers_inc(sctx); 958 fixup_nodatasum->work.func = scrub_fixup_nodatasum; 959 btrfs_queue_worker(&fs_info->scrub_workers, 960 &fixup_nodatasum->work); 961 goto out; 962 } 963 964 /* 965 * now build and submit the bios for the other mirrors, check 966 * checksums. 967 * First try to pick the mirror which is completely without I/O 968 * errors and also does not have a checksum error. 969 * If one is found, and if a checksum is present, the full block 970 * that is known to contain an error is rewritten. Afterwards 971 * the block is known to be corrected. 972 * If a mirror is found which is completely correct, and no 973 * checksum is present, only those pages are rewritten that had 974 * an I/O error in the block to be repaired, since it cannot be 975 * determined, which copy of the other pages is better (and it 976 * could happen otherwise that a correct page would be 977 * overwritten by a bad one). 978 */ 979 for (mirror_index = 0; 980 mirror_index < BTRFS_MAX_MIRRORS && 981 sblocks_for_recheck[mirror_index].page_count > 0; 982 mirror_index++) { 983 struct scrub_block *sblock_other; 984 985 if (mirror_index == failed_mirror_index) 986 continue; 987 sblock_other = sblocks_for_recheck + mirror_index; 988 989 /* build and submit the bios, check checksums */ 990 scrub_recheck_block(fs_info, sblock_other, is_metadata, 991 have_csum, csum, generation, 992 sctx->csum_size); 993 994 if (!sblock_other->header_error && 995 !sblock_other->checksum_error && 996 sblock_other->no_io_error_seen) { 997 if (sctx->is_dev_replace) { 998 scrub_write_block_to_dev_replace(sblock_other); 999 } else { 1000 int force_write = is_metadata || have_csum; 1001 1002 ret = scrub_repair_block_from_good_copy( 1003 sblock_bad, sblock_other, 1004 force_write); 1005 } 1006 if (0 == ret) 1007 goto corrected_error; 1008 } 1009 } 1010 1011 /* 1012 * for dev_replace, pick good pages and write to the target device. 1013 */ 1014 if (sctx->is_dev_replace) { 1015 success = 1; 1016 for (page_num = 0; page_num < sblock_bad->page_count; 1017 page_num++) { 1018 int sub_success; 1019 1020 sub_success = 0; 1021 for (mirror_index = 0; 1022 mirror_index < BTRFS_MAX_MIRRORS && 1023 sblocks_for_recheck[mirror_index].page_count > 0; 1024 mirror_index++) { 1025 struct scrub_block *sblock_other = 1026 sblocks_for_recheck + mirror_index; 1027 struct scrub_page *page_other = 1028 sblock_other->pagev[page_num]; 1029 1030 if (!page_other->io_error) { 1031 ret = scrub_write_page_to_dev_replace( 1032 sblock_other, page_num); 1033 if (ret == 0) { 1034 /* succeeded for this page */ 1035 sub_success = 1; 1036 break; 1037 } else { 1038 btrfs_dev_replace_stats_inc( 1039 &sctx->dev_root-> 1040 fs_info->dev_replace. 1041 num_write_errors); 1042 } 1043 } 1044 } 1045 1046 if (!sub_success) { 1047 /* 1048 * did not find a mirror to fetch the page 1049 * from. scrub_write_page_to_dev_replace() 1050 * handles this case (page->io_error), by 1051 * filling the block with zeros before 1052 * submitting the write request 1053 */ 1054 success = 0; 1055 ret = scrub_write_page_to_dev_replace( 1056 sblock_bad, page_num); 1057 if (ret) 1058 btrfs_dev_replace_stats_inc( 1059 &sctx->dev_root->fs_info-> 1060 dev_replace.num_write_errors); 1061 } 1062 } 1063 1064 goto out; 1065 } 1066 1067 /* 1068 * for regular scrub, repair those pages that are errored. 1069 * In case of I/O errors in the area that is supposed to be 1070 * repaired, continue by picking good copies of those pages. 1071 * Select the good pages from mirrors to rewrite bad pages from 1072 * the area to fix. Afterwards verify the checksum of the block 1073 * that is supposed to be repaired. This verification step is 1074 * only done for the purpose of statistic counting and for the 1075 * final scrub report, whether errors remain. 1076 * A perfect algorithm could make use of the checksum and try 1077 * all possible combinations of pages from the different mirrors 1078 * until the checksum verification succeeds. For example, when 1079 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1080 * of mirror #2 is readable but the final checksum test fails, 1081 * then the 2nd page of mirror #3 could be tried, whether now 1082 * the final checksum succeedes. But this would be a rare 1083 * exception and is therefore not implemented. At least it is 1084 * avoided that the good copy is overwritten. 1085 * A more useful improvement would be to pick the sectors 1086 * without I/O error based on sector sizes (512 bytes on legacy 1087 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1088 * mirror could be repaired by taking 512 byte of a different 1089 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1090 * area are unreadable. 1091 */ 1092 1093 /* can only fix I/O errors from here on */ 1094 if (sblock_bad->no_io_error_seen) 1095 goto did_not_correct_error; 1096 1097 success = 1; 1098 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1099 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1100 1101 if (!page_bad->io_error) 1102 continue; 1103 1104 for (mirror_index = 0; 1105 mirror_index < BTRFS_MAX_MIRRORS && 1106 sblocks_for_recheck[mirror_index].page_count > 0; 1107 mirror_index++) { 1108 struct scrub_block *sblock_other = sblocks_for_recheck + 1109 mirror_index; 1110 struct scrub_page *page_other = sblock_other->pagev[ 1111 page_num]; 1112 1113 if (!page_other->io_error) { 1114 ret = scrub_repair_page_from_good_copy( 1115 sblock_bad, sblock_other, page_num, 0); 1116 if (0 == ret) { 1117 page_bad->io_error = 0; 1118 break; /* succeeded for this page */ 1119 } 1120 } 1121 } 1122 1123 if (page_bad->io_error) { 1124 /* did not find a mirror to copy the page from */ 1125 success = 0; 1126 } 1127 } 1128 1129 if (success) { 1130 if (is_metadata || have_csum) { 1131 /* 1132 * need to verify the checksum now that all 1133 * sectors on disk are repaired (the write 1134 * request for data to be repaired is on its way). 1135 * Just be lazy and use scrub_recheck_block() 1136 * which re-reads the data before the checksum 1137 * is verified, but most likely the data comes out 1138 * of the page cache. 1139 */ 1140 scrub_recheck_block(fs_info, sblock_bad, 1141 is_metadata, have_csum, csum, 1142 generation, sctx->csum_size); 1143 if (!sblock_bad->header_error && 1144 !sblock_bad->checksum_error && 1145 sblock_bad->no_io_error_seen) 1146 goto corrected_error; 1147 else 1148 goto did_not_correct_error; 1149 } else { 1150 corrected_error: 1151 spin_lock(&sctx->stat_lock); 1152 sctx->stat.corrected_errors++; 1153 spin_unlock(&sctx->stat_lock); 1154 printk_ratelimited_in_rcu(KERN_ERR 1155 "btrfs: fixed up error at logical %llu on dev %s\n", 1156 (unsigned long long)logical, 1157 rcu_str_deref(dev->name)); 1158 } 1159 } else { 1160 did_not_correct_error: 1161 spin_lock(&sctx->stat_lock); 1162 sctx->stat.uncorrectable_errors++; 1163 spin_unlock(&sctx->stat_lock); 1164 printk_ratelimited_in_rcu(KERN_ERR 1165 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n", 1166 (unsigned long long)logical, 1167 rcu_str_deref(dev->name)); 1168 } 1169 1170 out: 1171 if (sblocks_for_recheck) { 1172 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1173 mirror_index++) { 1174 struct scrub_block *sblock = sblocks_for_recheck + 1175 mirror_index; 1176 int page_index; 1177 1178 for (page_index = 0; page_index < sblock->page_count; 1179 page_index++) { 1180 sblock->pagev[page_index]->sblock = NULL; 1181 scrub_page_put(sblock->pagev[page_index]); 1182 } 1183 } 1184 kfree(sblocks_for_recheck); 1185 } 1186 1187 return 0; 1188 } 1189 1190 static int scrub_setup_recheck_block(struct scrub_ctx *sctx, 1191 struct btrfs_fs_info *fs_info, 1192 struct scrub_block *original_sblock, 1193 u64 length, u64 logical, 1194 struct scrub_block *sblocks_for_recheck) 1195 { 1196 int page_index; 1197 int mirror_index; 1198 int ret; 1199 1200 /* 1201 * note: the two members ref_count and outstanding_pages 1202 * are not used (and not set) in the blocks that are used for 1203 * the recheck procedure 1204 */ 1205 1206 page_index = 0; 1207 while (length > 0) { 1208 u64 sublen = min_t(u64, length, PAGE_SIZE); 1209 u64 mapped_length = sublen; 1210 struct btrfs_bio *bbio = NULL; 1211 1212 /* 1213 * with a length of PAGE_SIZE, each returned stripe 1214 * represents one mirror 1215 */ 1216 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, 1217 &mapped_length, &bbio, 0); 1218 if (ret || !bbio || mapped_length < sublen) { 1219 kfree(bbio); 1220 return -EIO; 1221 } 1222 1223 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO); 1224 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes; 1225 mirror_index++) { 1226 struct scrub_block *sblock; 1227 struct scrub_page *page; 1228 1229 if (mirror_index >= BTRFS_MAX_MIRRORS) 1230 continue; 1231 1232 sblock = sblocks_for_recheck + mirror_index; 1233 sblock->sctx = sctx; 1234 page = kzalloc(sizeof(*page), GFP_NOFS); 1235 if (!page) { 1236 leave_nomem: 1237 spin_lock(&sctx->stat_lock); 1238 sctx->stat.malloc_errors++; 1239 spin_unlock(&sctx->stat_lock); 1240 kfree(bbio); 1241 return -ENOMEM; 1242 } 1243 scrub_page_get(page); 1244 sblock->pagev[page_index] = page; 1245 page->logical = logical; 1246 page->physical = bbio->stripes[mirror_index].physical; 1247 BUG_ON(page_index >= original_sblock->page_count); 1248 page->physical_for_dev_replace = 1249 original_sblock->pagev[page_index]-> 1250 physical_for_dev_replace; 1251 /* for missing devices, dev->bdev is NULL */ 1252 page->dev = bbio->stripes[mirror_index].dev; 1253 page->mirror_num = mirror_index + 1; 1254 sblock->page_count++; 1255 page->page = alloc_page(GFP_NOFS); 1256 if (!page->page) 1257 goto leave_nomem; 1258 } 1259 kfree(bbio); 1260 length -= sublen; 1261 logical += sublen; 1262 page_index++; 1263 } 1264 1265 return 0; 1266 } 1267 1268 /* 1269 * this function will check the on disk data for checksum errors, header 1270 * errors and read I/O errors. If any I/O errors happen, the exact pages 1271 * which are errored are marked as being bad. The goal is to enable scrub 1272 * to take those pages that are not errored from all the mirrors so that 1273 * the pages that are errored in the just handled mirror can be repaired. 1274 */ 1275 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1276 struct scrub_block *sblock, int is_metadata, 1277 int have_csum, u8 *csum, u64 generation, 1278 u16 csum_size) 1279 { 1280 int page_num; 1281 1282 sblock->no_io_error_seen = 1; 1283 sblock->header_error = 0; 1284 sblock->checksum_error = 0; 1285 1286 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1287 struct bio *bio; 1288 struct scrub_page *page = sblock->pagev[page_num]; 1289 DECLARE_COMPLETION_ONSTACK(complete); 1290 1291 if (page->dev->bdev == NULL) { 1292 page->io_error = 1; 1293 sblock->no_io_error_seen = 0; 1294 continue; 1295 } 1296 1297 WARN_ON(!page->page); 1298 bio = bio_alloc(GFP_NOFS, 1); 1299 if (!bio) { 1300 page->io_error = 1; 1301 sblock->no_io_error_seen = 0; 1302 continue; 1303 } 1304 bio->bi_bdev = page->dev->bdev; 1305 bio->bi_sector = page->physical >> 9; 1306 bio->bi_end_io = scrub_complete_bio_end_io; 1307 bio->bi_private = &complete; 1308 1309 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1310 btrfsic_submit_bio(READ, bio); 1311 1312 /* this will also unplug the queue */ 1313 wait_for_completion(&complete); 1314 1315 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags); 1316 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 1317 sblock->no_io_error_seen = 0; 1318 bio_put(bio); 1319 } 1320 1321 if (sblock->no_io_error_seen) 1322 scrub_recheck_block_checksum(fs_info, sblock, is_metadata, 1323 have_csum, csum, generation, 1324 csum_size); 1325 1326 return; 1327 } 1328 1329 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, 1330 struct scrub_block *sblock, 1331 int is_metadata, int have_csum, 1332 const u8 *csum, u64 generation, 1333 u16 csum_size) 1334 { 1335 int page_num; 1336 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1337 u32 crc = ~(u32)0; 1338 struct btrfs_root *root = fs_info->extent_root; 1339 void *mapped_buffer; 1340 1341 WARN_ON(!sblock->pagev[0]->page); 1342 if (is_metadata) { 1343 struct btrfs_header *h; 1344 1345 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1346 h = (struct btrfs_header *)mapped_buffer; 1347 1348 if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr) || 1349 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) || 1350 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1351 BTRFS_UUID_SIZE)) { 1352 sblock->header_error = 1; 1353 } else if (generation != le64_to_cpu(h->generation)) { 1354 sblock->header_error = 1; 1355 sblock->generation_error = 1; 1356 } 1357 csum = h->csum; 1358 } else { 1359 if (!have_csum) 1360 return; 1361 1362 mapped_buffer = kmap_atomic(sblock->pagev[0]->page); 1363 } 1364 1365 for (page_num = 0;;) { 1366 if (page_num == 0 && is_metadata) 1367 crc = btrfs_csum_data(root, 1368 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, 1369 crc, PAGE_SIZE - BTRFS_CSUM_SIZE); 1370 else 1371 crc = btrfs_csum_data(root, mapped_buffer, crc, 1372 PAGE_SIZE); 1373 1374 kunmap_atomic(mapped_buffer); 1375 page_num++; 1376 if (page_num >= sblock->page_count) 1377 break; 1378 WARN_ON(!sblock->pagev[page_num]->page); 1379 1380 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page); 1381 } 1382 1383 btrfs_csum_final(crc, calculated_csum); 1384 if (memcmp(calculated_csum, csum, csum_size)) 1385 sblock->checksum_error = 1; 1386 } 1387 1388 static void scrub_complete_bio_end_io(struct bio *bio, int err) 1389 { 1390 complete((struct completion *)bio->bi_private); 1391 } 1392 1393 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1394 struct scrub_block *sblock_good, 1395 int force_write) 1396 { 1397 int page_num; 1398 int ret = 0; 1399 1400 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1401 int ret_sub; 1402 1403 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1404 sblock_good, 1405 page_num, 1406 force_write); 1407 if (ret_sub) 1408 ret = ret_sub; 1409 } 1410 1411 return ret; 1412 } 1413 1414 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1415 struct scrub_block *sblock_good, 1416 int page_num, int force_write) 1417 { 1418 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1419 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1420 1421 BUG_ON(page_bad->page == NULL); 1422 BUG_ON(page_good->page == NULL); 1423 if (force_write || sblock_bad->header_error || 1424 sblock_bad->checksum_error || page_bad->io_error) { 1425 struct bio *bio; 1426 int ret; 1427 DECLARE_COMPLETION_ONSTACK(complete); 1428 1429 if (!page_bad->dev->bdev) { 1430 printk_ratelimited(KERN_WARNING 1431 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n"); 1432 return -EIO; 1433 } 1434 1435 bio = bio_alloc(GFP_NOFS, 1); 1436 if (!bio) 1437 return -EIO; 1438 bio->bi_bdev = page_bad->dev->bdev; 1439 bio->bi_sector = page_bad->physical >> 9; 1440 bio->bi_end_io = scrub_complete_bio_end_io; 1441 bio->bi_private = &complete; 1442 1443 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1444 if (PAGE_SIZE != ret) { 1445 bio_put(bio); 1446 return -EIO; 1447 } 1448 btrfsic_submit_bio(WRITE, bio); 1449 1450 /* this will also unplug the queue */ 1451 wait_for_completion(&complete); 1452 if (!bio_flagged(bio, BIO_UPTODATE)) { 1453 btrfs_dev_stat_inc_and_print(page_bad->dev, 1454 BTRFS_DEV_STAT_WRITE_ERRS); 1455 btrfs_dev_replace_stats_inc( 1456 &sblock_bad->sctx->dev_root->fs_info-> 1457 dev_replace.num_write_errors); 1458 bio_put(bio); 1459 return -EIO; 1460 } 1461 bio_put(bio); 1462 } 1463 1464 return 0; 1465 } 1466 1467 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1468 { 1469 int page_num; 1470 1471 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1472 int ret; 1473 1474 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1475 if (ret) 1476 btrfs_dev_replace_stats_inc( 1477 &sblock->sctx->dev_root->fs_info->dev_replace. 1478 num_write_errors); 1479 } 1480 } 1481 1482 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1483 int page_num) 1484 { 1485 struct scrub_page *spage = sblock->pagev[page_num]; 1486 1487 BUG_ON(spage->page == NULL); 1488 if (spage->io_error) { 1489 void *mapped_buffer = kmap_atomic(spage->page); 1490 1491 memset(mapped_buffer, 0, PAGE_CACHE_SIZE); 1492 flush_dcache_page(spage->page); 1493 kunmap_atomic(mapped_buffer); 1494 } 1495 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1496 } 1497 1498 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1499 struct scrub_page *spage) 1500 { 1501 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1502 struct scrub_bio *sbio; 1503 int ret; 1504 1505 mutex_lock(&wr_ctx->wr_lock); 1506 again: 1507 if (!wr_ctx->wr_curr_bio) { 1508 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), 1509 GFP_NOFS); 1510 if (!wr_ctx->wr_curr_bio) { 1511 mutex_unlock(&wr_ctx->wr_lock); 1512 return -ENOMEM; 1513 } 1514 wr_ctx->wr_curr_bio->sctx = sctx; 1515 wr_ctx->wr_curr_bio->page_count = 0; 1516 } 1517 sbio = wr_ctx->wr_curr_bio; 1518 if (sbio->page_count == 0) { 1519 struct bio *bio; 1520 1521 sbio->physical = spage->physical_for_dev_replace; 1522 sbio->logical = spage->logical; 1523 sbio->dev = wr_ctx->tgtdev; 1524 bio = sbio->bio; 1525 if (!bio) { 1526 bio = bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio); 1527 if (!bio) { 1528 mutex_unlock(&wr_ctx->wr_lock); 1529 return -ENOMEM; 1530 } 1531 sbio->bio = bio; 1532 } 1533 1534 bio->bi_private = sbio; 1535 bio->bi_end_io = scrub_wr_bio_end_io; 1536 bio->bi_bdev = sbio->dev->bdev; 1537 bio->bi_sector = sbio->physical >> 9; 1538 sbio->err = 0; 1539 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1540 spage->physical_for_dev_replace || 1541 sbio->logical + sbio->page_count * PAGE_SIZE != 1542 spage->logical) { 1543 scrub_wr_submit(sctx); 1544 goto again; 1545 } 1546 1547 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1548 if (ret != PAGE_SIZE) { 1549 if (sbio->page_count < 1) { 1550 bio_put(sbio->bio); 1551 sbio->bio = NULL; 1552 mutex_unlock(&wr_ctx->wr_lock); 1553 return -EIO; 1554 } 1555 scrub_wr_submit(sctx); 1556 goto again; 1557 } 1558 1559 sbio->pagev[sbio->page_count] = spage; 1560 scrub_page_get(spage); 1561 sbio->page_count++; 1562 if (sbio->page_count == wr_ctx->pages_per_wr_bio) 1563 scrub_wr_submit(sctx); 1564 mutex_unlock(&wr_ctx->wr_lock); 1565 1566 return 0; 1567 } 1568 1569 static void scrub_wr_submit(struct scrub_ctx *sctx) 1570 { 1571 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; 1572 struct scrub_bio *sbio; 1573 1574 if (!wr_ctx->wr_curr_bio) 1575 return; 1576 1577 sbio = wr_ctx->wr_curr_bio; 1578 wr_ctx->wr_curr_bio = NULL; 1579 WARN_ON(!sbio->bio->bi_bdev); 1580 scrub_pending_bio_inc(sctx); 1581 /* process all writes in a single worker thread. Then the block layer 1582 * orders the requests before sending them to the driver which 1583 * doubled the write performance on spinning disks when measured 1584 * with Linux 3.5 */ 1585 btrfsic_submit_bio(WRITE, sbio->bio); 1586 } 1587 1588 static void scrub_wr_bio_end_io(struct bio *bio, int err) 1589 { 1590 struct scrub_bio *sbio = bio->bi_private; 1591 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 1592 1593 sbio->err = err; 1594 sbio->bio = bio; 1595 1596 sbio->work.func = scrub_wr_bio_end_io_worker; 1597 btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work); 1598 } 1599 1600 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1601 { 1602 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1603 struct scrub_ctx *sctx = sbio->sctx; 1604 int i; 1605 1606 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1607 if (sbio->err) { 1608 struct btrfs_dev_replace *dev_replace = 1609 &sbio->sctx->dev_root->fs_info->dev_replace; 1610 1611 for (i = 0; i < sbio->page_count; i++) { 1612 struct scrub_page *spage = sbio->pagev[i]; 1613 1614 spage->io_error = 1; 1615 btrfs_dev_replace_stats_inc(&dev_replace-> 1616 num_write_errors); 1617 } 1618 } 1619 1620 for (i = 0; i < sbio->page_count; i++) 1621 scrub_page_put(sbio->pagev[i]); 1622 1623 bio_put(sbio->bio); 1624 kfree(sbio); 1625 scrub_pending_bio_dec(sctx); 1626 } 1627 1628 static int scrub_checksum(struct scrub_block *sblock) 1629 { 1630 u64 flags; 1631 int ret; 1632 1633 WARN_ON(sblock->page_count < 1); 1634 flags = sblock->pagev[0]->flags; 1635 ret = 0; 1636 if (flags & BTRFS_EXTENT_FLAG_DATA) 1637 ret = scrub_checksum_data(sblock); 1638 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1639 ret = scrub_checksum_tree_block(sblock); 1640 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1641 (void)scrub_checksum_super(sblock); 1642 else 1643 WARN_ON(1); 1644 if (ret) 1645 scrub_handle_errored_block(sblock); 1646 1647 return ret; 1648 } 1649 1650 static int scrub_checksum_data(struct scrub_block *sblock) 1651 { 1652 struct scrub_ctx *sctx = sblock->sctx; 1653 u8 csum[BTRFS_CSUM_SIZE]; 1654 u8 *on_disk_csum; 1655 struct page *page; 1656 void *buffer; 1657 u32 crc = ~(u32)0; 1658 int fail = 0; 1659 struct btrfs_root *root = sctx->dev_root; 1660 u64 len; 1661 int index; 1662 1663 BUG_ON(sblock->page_count < 1); 1664 if (!sblock->pagev[0]->have_csum) 1665 return 0; 1666 1667 on_disk_csum = sblock->pagev[0]->csum; 1668 page = sblock->pagev[0]->page; 1669 buffer = kmap_atomic(page); 1670 1671 len = sctx->sectorsize; 1672 index = 0; 1673 for (;;) { 1674 u64 l = min_t(u64, len, PAGE_SIZE); 1675 1676 crc = btrfs_csum_data(root, buffer, crc, l); 1677 kunmap_atomic(buffer); 1678 len -= l; 1679 if (len == 0) 1680 break; 1681 index++; 1682 BUG_ON(index >= sblock->page_count); 1683 BUG_ON(!sblock->pagev[index]->page); 1684 page = sblock->pagev[index]->page; 1685 buffer = kmap_atomic(page); 1686 } 1687 1688 btrfs_csum_final(crc, csum); 1689 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1690 fail = 1; 1691 1692 return fail; 1693 } 1694 1695 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1696 { 1697 struct scrub_ctx *sctx = sblock->sctx; 1698 struct btrfs_header *h; 1699 struct btrfs_root *root = sctx->dev_root; 1700 struct btrfs_fs_info *fs_info = root->fs_info; 1701 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1702 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1703 struct page *page; 1704 void *mapped_buffer; 1705 u64 mapped_size; 1706 void *p; 1707 u32 crc = ~(u32)0; 1708 int fail = 0; 1709 int crc_fail = 0; 1710 u64 len; 1711 int index; 1712 1713 BUG_ON(sblock->page_count < 1); 1714 page = sblock->pagev[0]->page; 1715 mapped_buffer = kmap_atomic(page); 1716 h = (struct btrfs_header *)mapped_buffer; 1717 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1718 1719 /* 1720 * we don't use the getter functions here, as we 1721 * a) don't have an extent buffer and 1722 * b) the page is already kmapped 1723 */ 1724 1725 if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr)) 1726 ++fail; 1727 1728 if (sblock->pagev[0]->generation != le64_to_cpu(h->generation)) 1729 ++fail; 1730 1731 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) 1732 ++fail; 1733 1734 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1735 BTRFS_UUID_SIZE)) 1736 ++fail; 1737 1738 WARN_ON(sctx->nodesize != sctx->leafsize); 1739 len = sctx->nodesize - BTRFS_CSUM_SIZE; 1740 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1741 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1742 index = 0; 1743 for (;;) { 1744 u64 l = min_t(u64, len, mapped_size); 1745 1746 crc = btrfs_csum_data(root, p, crc, l); 1747 kunmap_atomic(mapped_buffer); 1748 len -= l; 1749 if (len == 0) 1750 break; 1751 index++; 1752 BUG_ON(index >= sblock->page_count); 1753 BUG_ON(!sblock->pagev[index]->page); 1754 page = sblock->pagev[index]->page; 1755 mapped_buffer = kmap_atomic(page); 1756 mapped_size = PAGE_SIZE; 1757 p = mapped_buffer; 1758 } 1759 1760 btrfs_csum_final(crc, calculated_csum); 1761 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1762 ++crc_fail; 1763 1764 return fail || crc_fail; 1765 } 1766 1767 static int scrub_checksum_super(struct scrub_block *sblock) 1768 { 1769 struct btrfs_super_block *s; 1770 struct scrub_ctx *sctx = sblock->sctx; 1771 struct btrfs_root *root = sctx->dev_root; 1772 struct btrfs_fs_info *fs_info = root->fs_info; 1773 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1774 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1775 struct page *page; 1776 void *mapped_buffer; 1777 u64 mapped_size; 1778 void *p; 1779 u32 crc = ~(u32)0; 1780 int fail_gen = 0; 1781 int fail_cor = 0; 1782 u64 len; 1783 int index; 1784 1785 BUG_ON(sblock->page_count < 1); 1786 page = sblock->pagev[0]->page; 1787 mapped_buffer = kmap_atomic(page); 1788 s = (struct btrfs_super_block *)mapped_buffer; 1789 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1790 1791 if (sblock->pagev[0]->logical != le64_to_cpu(s->bytenr)) 1792 ++fail_cor; 1793 1794 if (sblock->pagev[0]->generation != le64_to_cpu(s->generation)) 1795 ++fail_gen; 1796 1797 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) 1798 ++fail_cor; 1799 1800 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1801 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1802 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1803 index = 0; 1804 for (;;) { 1805 u64 l = min_t(u64, len, mapped_size); 1806 1807 crc = btrfs_csum_data(root, p, crc, l); 1808 kunmap_atomic(mapped_buffer); 1809 len -= l; 1810 if (len == 0) 1811 break; 1812 index++; 1813 BUG_ON(index >= sblock->page_count); 1814 BUG_ON(!sblock->pagev[index]->page); 1815 page = sblock->pagev[index]->page; 1816 mapped_buffer = kmap_atomic(page); 1817 mapped_size = PAGE_SIZE; 1818 p = mapped_buffer; 1819 } 1820 1821 btrfs_csum_final(crc, calculated_csum); 1822 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1823 ++fail_cor; 1824 1825 if (fail_cor + fail_gen) { 1826 /* 1827 * if we find an error in a super block, we just report it. 1828 * They will get written with the next transaction commit 1829 * anyway 1830 */ 1831 spin_lock(&sctx->stat_lock); 1832 ++sctx->stat.super_errors; 1833 spin_unlock(&sctx->stat_lock); 1834 if (fail_cor) 1835 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1836 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1837 else 1838 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1839 BTRFS_DEV_STAT_GENERATION_ERRS); 1840 } 1841 1842 return fail_cor + fail_gen; 1843 } 1844 1845 static void scrub_block_get(struct scrub_block *sblock) 1846 { 1847 atomic_inc(&sblock->ref_count); 1848 } 1849 1850 static void scrub_block_put(struct scrub_block *sblock) 1851 { 1852 if (atomic_dec_and_test(&sblock->ref_count)) { 1853 int i; 1854 1855 for (i = 0; i < sblock->page_count; i++) 1856 scrub_page_put(sblock->pagev[i]); 1857 kfree(sblock); 1858 } 1859 } 1860 1861 static void scrub_page_get(struct scrub_page *spage) 1862 { 1863 atomic_inc(&spage->ref_count); 1864 } 1865 1866 static void scrub_page_put(struct scrub_page *spage) 1867 { 1868 if (atomic_dec_and_test(&spage->ref_count)) { 1869 if (spage->page) 1870 __free_page(spage->page); 1871 kfree(spage); 1872 } 1873 } 1874 1875 static void scrub_submit(struct scrub_ctx *sctx) 1876 { 1877 struct scrub_bio *sbio; 1878 1879 if (sctx->curr == -1) 1880 return; 1881 1882 sbio = sctx->bios[sctx->curr]; 1883 sctx->curr = -1; 1884 scrub_pending_bio_inc(sctx); 1885 1886 if (!sbio->bio->bi_bdev) { 1887 /* 1888 * this case should not happen. If btrfs_map_block() is 1889 * wrong, it could happen for dev-replace operations on 1890 * missing devices when no mirrors are available, but in 1891 * this case it should already fail the mount. 1892 * This case is handled correctly (but _very_ slowly). 1893 */ 1894 printk_ratelimited(KERN_WARNING 1895 "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n"); 1896 bio_endio(sbio->bio, -EIO); 1897 } else { 1898 btrfsic_submit_bio(READ, sbio->bio); 1899 } 1900 } 1901 1902 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 1903 struct scrub_page *spage) 1904 { 1905 struct scrub_block *sblock = spage->sblock; 1906 struct scrub_bio *sbio; 1907 int ret; 1908 1909 again: 1910 /* 1911 * grab a fresh bio or wait for one to become available 1912 */ 1913 while (sctx->curr == -1) { 1914 spin_lock(&sctx->list_lock); 1915 sctx->curr = sctx->first_free; 1916 if (sctx->curr != -1) { 1917 sctx->first_free = sctx->bios[sctx->curr]->next_free; 1918 sctx->bios[sctx->curr]->next_free = -1; 1919 sctx->bios[sctx->curr]->page_count = 0; 1920 spin_unlock(&sctx->list_lock); 1921 } else { 1922 spin_unlock(&sctx->list_lock); 1923 wait_event(sctx->list_wait, sctx->first_free != -1); 1924 } 1925 } 1926 sbio = sctx->bios[sctx->curr]; 1927 if (sbio->page_count == 0) { 1928 struct bio *bio; 1929 1930 sbio->physical = spage->physical; 1931 sbio->logical = spage->logical; 1932 sbio->dev = spage->dev; 1933 bio = sbio->bio; 1934 if (!bio) { 1935 bio = bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio); 1936 if (!bio) 1937 return -ENOMEM; 1938 sbio->bio = bio; 1939 } 1940 1941 bio->bi_private = sbio; 1942 bio->bi_end_io = scrub_bio_end_io; 1943 bio->bi_bdev = sbio->dev->bdev; 1944 bio->bi_sector = sbio->physical >> 9; 1945 sbio->err = 0; 1946 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1947 spage->physical || 1948 sbio->logical + sbio->page_count * PAGE_SIZE != 1949 spage->logical || 1950 sbio->dev != spage->dev) { 1951 scrub_submit(sctx); 1952 goto again; 1953 } 1954 1955 sbio->pagev[sbio->page_count] = spage; 1956 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1957 if (ret != PAGE_SIZE) { 1958 if (sbio->page_count < 1) { 1959 bio_put(sbio->bio); 1960 sbio->bio = NULL; 1961 return -EIO; 1962 } 1963 scrub_submit(sctx); 1964 goto again; 1965 } 1966 1967 scrub_block_get(sblock); /* one for the page added to the bio */ 1968 atomic_inc(&sblock->outstanding_pages); 1969 sbio->page_count++; 1970 if (sbio->page_count == sctx->pages_per_rd_bio) 1971 scrub_submit(sctx); 1972 1973 return 0; 1974 } 1975 1976 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 1977 u64 physical, struct btrfs_device *dev, u64 flags, 1978 u64 gen, int mirror_num, u8 *csum, int force, 1979 u64 physical_for_dev_replace) 1980 { 1981 struct scrub_block *sblock; 1982 int index; 1983 1984 sblock = kzalloc(sizeof(*sblock), GFP_NOFS); 1985 if (!sblock) { 1986 spin_lock(&sctx->stat_lock); 1987 sctx->stat.malloc_errors++; 1988 spin_unlock(&sctx->stat_lock); 1989 return -ENOMEM; 1990 } 1991 1992 /* one ref inside this function, plus one for each page added to 1993 * a bio later on */ 1994 atomic_set(&sblock->ref_count, 1); 1995 sblock->sctx = sctx; 1996 sblock->no_io_error_seen = 1; 1997 1998 for (index = 0; len > 0; index++) { 1999 struct scrub_page *spage; 2000 u64 l = min_t(u64, len, PAGE_SIZE); 2001 2002 spage = kzalloc(sizeof(*spage), GFP_NOFS); 2003 if (!spage) { 2004 leave_nomem: 2005 spin_lock(&sctx->stat_lock); 2006 sctx->stat.malloc_errors++; 2007 spin_unlock(&sctx->stat_lock); 2008 scrub_block_put(sblock); 2009 return -ENOMEM; 2010 } 2011 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2012 scrub_page_get(spage); 2013 sblock->pagev[index] = spage; 2014 spage->sblock = sblock; 2015 spage->dev = dev; 2016 spage->flags = flags; 2017 spage->generation = gen; 2018 spage->logical = logical; 2019 spage->physical = physical; 2020 spage->physical_for_dev_replace = physical_for_dev_replace; 2021 spage->mirror_num = mirror_num; 2022 if (csum) { 2023 spage->have_csum = 1; 2024 memcpy(spage->csum, csum, sctx->csum_size); 2025 } else { 2026 spage->have_csum = 0; 2027 } 2028 sblock->page_count++; 2029 spage->page = alloc_page(GFP_NOFS); 2030 if (!spage->page) 2031 goto leave_nomem; 2032 len -= l; 2033 logical += l; 2034 physical += l; 2035 physical_for_dev_replace += l; 2036 } 2037 2038 WARN_ON(sblock->page_count == 0); 2039 for (index = 0; index < sblock->page_count; index++) { 2040 struct scrub_page *spage = sblock->pagev[index]; 2041 int ret; 2042 2043 ret = scrub_add_page_to_rd_bio(sctx, spage); 2044 if (ret) { 2045 scrub_block_put(sblock); 2046 return ret; 2047 } 2048 } 2049 2050 if (force) 2051 scrub_submit(sctx); 2052 2053 /* last one frees, either here or in bio completion for last page */ 2054 scrub_block_put(sblock); 2055 return 0; 2056 } 2057 2058 static void scrub_bio_end_io(struct bio *bio, int err) 2059 { 2060 struct scrub_bio *sbio = bio->bi_private; 2061 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; 2062 2063 sbio->err = err; 2064 sbio->bio = bio; 2065 2066 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work); 2067 } 2068 2069 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2070 { 2071 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2072 struct scrub_ctx *sctx = sbio->sctx; 2073 int i; 2074 2075 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2076 if (sbio->err) { 2077 for (i = 0; i < sbio->page_count; i++) { 2078 struct scrub_page *spage = sbio->pagev[i]; 2079 2080 spage->io_error = 1; 2081 spage->sblock->no_io_error_seen = 0; 2082 } 2083 } 2084 2085 /* now complete the scrub_block items that have all pages completed */ 2086 for (i = 0; i < sbio->page_count; i++) { 2087 struct scrub_page *spage = sbio->pagev[i]; 2088 struct scrub_block *sblock = spage->sblock; 2089 2090 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2091 scrub_block_complete(sblock); 2092 scrub_block_put(sblock); 2093 } 2094 2095 bio_put(sbio->bio); 2096 sbio->bio = NULL; 2097 spin_lock(&sctx->list_lock); 2098 sbio->next_free = sctx->first_free; 2099 sctx->first_free = sbio->index; 2100 spin_unlock(&sctx->list_lock); 2101 2102 if (sctx->is_dev_replace && 2103 atomic_read(&sctx->wr_ctx.flush_all_writes)) { 2104 mutex_lock(&sctx->wr_ctx.wr_lock); 2105 scrub_wr_submit(sctx); 2106 mutex_unlock(&sctx->wr_ctx.wr_lock); 2107 } 2108 2109 scrub_pending_bio_dec(sctx); 2110 } 2111 2112 static void scrub_block_complete(struct scrub_block *sblock) 2113 { 2114 if (!sblock->no_io_error_seen) { 2115 scrub_handle_errored_block(sblock); 2116 } else { 2117 /* 2118 * if has checksum error, write via repair mechanism in 2119 * dev replace case, otherwise write here in dev replace 2120 * case. 2121 */ 2122 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace) 2123 scrub_write_block_to_dev_replace(sblock); 2124 } 2125 } 2126 2127 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len, 2128 u8 *csum) 2129 { 2130 struct btrfs_ordered_sum *sum = NULL; 2131 int ret = 0; 2132 unsigned long i; 2133 unsigned long num_sectors; 2134 2135 while (!list_empty(&sctx->csum_list)) { 2136 sum = list_first_entry(&sctx->csum_list, 2137 struct btrfs_ordered_sum, list); 2138 if (sum->bytenr > logical) 2139 return 0; 2140 if (sum->bytenr + sum->len > logical) 2141 break; 2142 2143 ++sctx->stat.csum_discards; 2144 list_del(&sum->list); 2145 kfree(sum); 2146 sum = NULL; 2147 } 2148 if (!sum) 2149 return 0; 2150 2151 num_sectors = sum->len / sctx->sectorsize; 2152 for (i = 0; i < num_sectors; ++i) { 2153 if (sum->sums[i].bytenr == logical) { 2154 memcpy(csum, &sum->sums[i].sum, sctx->csum_size); 2155 ret = 1; 2156 break; 2157 } 2158 } 2159 if (ret && i == num_sectors - 1) { 2160 list_del(&sum->list); 2161 kfree(sum); 2162 } 2163 return ret; 2164 } 2165 2166 /* scrub extent tries to collect up to 64 kB for each bio */ 2167 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, 2168 u64 physical, struct btrfs_device *dev, u64 flags, 2169 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2170 { 2171 int ret; 2172 u8 csum[BTRFS_CSUM_SIZE]; 2173 u32 blocksize; 2174 2175 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2176 blocksize = sctx->sectorsize; 2177 spin_lock(&sctx->stat_lock); 2178 sctx->stat.data_extents_scrubbed++; 2179 sctx->stat.data_bytes_scrubbed += len; 2180 spin_unlock(&sctx->stat_lock); 2181 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2182 WARN_ON(sctx->nodesize != sctx->leafsize); 2183 blocksize = sctx->nodesize; 2184 spin_lock(&sctx->stat_lock); 2185 sctx->stat.tree_extents_scrubbed++; 2186 sctx->stat.tree_bytes_scrubbed += len; 2187 spin_unlock(&sctx->stat_lock); 2188 } else { 2189 blocksize = sctx->sectorsize; 2190 WARN_ON(1); 2191 } 2192 2193 while (len) { 2194 u64 l = min_t(u64, len, blocksize); 2195 int have_csum = 0; 2196 2197 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2198 /* push csums to sbio */ 2199 have_csum = scrub_find_csum(sctx, logical, l, csum); 2200 if (have_csum == 0) 2201 ++sctx->stat.no_csum; 2202 if (sctx->is_dev_replace && !have_csum) { 2203 ret = copy_nocow_pages(sctx, logical, l, 2204 mirror_num, 2205 physical_for_dev_replace); 2206 goto behind_scrub_pages; 2207 } 2208 } 2209 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2210 mirror_num, have_csum ? csum : NULL, 0, 2211 physical_for_dev_replace); 2212 behind_scrub_pages: 2213 if (ret) 2214 return ret; 2215 len -= l; 2216 logical += l; 2217 physical += l; 2218 physical_for_dev_replace += l; 2219 } 2220 return 0; 2221 } 2222 2223 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2224 struct map_lookup *map, 2225 struct btrfs_device *scrub_dev, 2226 int num, u64 base, u64 length, 2227 int is_dev_replace) 2228 { 2229 struct btrfs_path *path; 2230 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 2231 struct btrfs_root *root = fs_info->extent_root; 2232 struct btrfs_root *csum_root = fs_info->csum_root; 2233 struct btrfs_extent_item *extent; 2234 struct blk_plug plug; 2235 u64 flags; 2236 int ret; 2237 int slot; 2238 int i; 2239 u64 nstripes; 2240 struct extent_buffer *l; 2241 struct btrfs_key key; 2242 u64 physical; 2243 u64 logical; 2244 u64 generation; 2245 int mirror_num; 2246 struct reada_control *reada1; 2247 struct reada_control *reada2; 2248 struct btrfs_key key_start; 2249 struct btrfs_key key_end; 2250 u64 increment = map->stripe_len; 2251 u64 offset; 2252 u64 extent_logical; 2253 u64 extent_physical; 2254 u64 extent_len; 2255 struct btrfs_device *extent_dev; 2256 int extent_mirror_num; 2257 2258 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 2259 BTRFS_BLOCK_GROUP_RAID6)) { 2260 if (num >= nr_data_stripes(map)) { 2261 return 0; 2262 } 2263 } 2264 2265 nstripes = length; 2266 offset = 0; 2267 do_div(nstripes, map->stripe_len); 2268 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 2269 offset = map->stripe_len * num; 2270 increment = map->stripe_len * map->num_stripes; 2271 mirror_num = 1; 2272 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 2273 int factor = map->num_stripes / map->sub_stripes; 2274 offset = map->stripe_len * (num / map->sub_stripes); 2275 increment = map->stripe_len * factor; 2276 mirror_num = num % map->sub_stripes + 1; 2277 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 2278 increment = map->stripe_len; 2279 mirror_num = num % map->num_stripes + 1; 2280 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 2281 increment = map->stripe_len; 2282 mirror_num = num % map->num_stripes + 1; 2283 } else { 2284 increment = map->stripe_len; 2285 mirror_num = 1; 2286 } 2287 2288 path = btrfs_alloc_path(); 2289 if (!path) 2290 return -ENOMEM; 2291 2292 /* 2293 * work on commit root. The related disk blocks are static as 2294 * long as COW is applied. This means, it is save to rewrite 2295 * them to repair disk errors without any race conditions 2296 */ 2297 path->search_commit_root = 1; 2298 path->skip_locking = 1; 2299 2300 /* 2301 * trigger the readahead for extent tree csum tree and wait for 2302 * completion. During readahead, the scrub is officially paused 2303 * to not hold off transaction commits 2304 */ 2305 logical = base + offset; 2306 2307 wait_event(sctx->list_wait, 2308 atomic_read(&sctx->bios_in_flight) == 0); 2309 atomic_inc(&fs_info->scrubs_paused); 2310 wake_up(&fs_info->scrub_pause_wait); 2311 2312 /* FIXME it might be better to start readahead at commit root */ 2313 key_start.objectid = logical; 2314 key_start.type = BTRFS_EXTENT_ITEM_KEY; 2315 key_start.offset = (u64)0; 2316 key_end.objectid = base + offset + nstripes * increment; 2317 key_end.type = BTRFS_EXTENT_ITEM_KEY; 2318 key_end.offset = (u64)0; 2319 reada1 = btrfs_reada_add(root, &key_start, &key_end); 2320 2321 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 2322 key_start.type = BTRFS_EXTENT_CSUM_KEY; 2323 key_start.offset = logical; 2324 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 2325 key_end.type = BTRFS_EXTENT_CSUM_KEY; 2326 key_end.offset = base + offset + nstripes * increment; 2327 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); 2328 2329 if (!IS_ERR(reada1)) 2330 btrfs_reada_wait(reada1); 2331 if (!IS_ERR(reada2)) 2332 btrfs_reada_wait(reada2); 2333 2334 mutex_lock(&fs_info->scrub_lock); 2335 while (atomic_read(&fs_info->scrub_pause_req)) { 2336 mutex_unlock(&fs_info->scrub_lock); 2337 wait_event(fs_info->scrub_pause_wait, 2338 atomic_read(&fs_info->scrub_pause_req) == 0); 2339 mutex_lock(&fs_info->scrub_lock); 2340 } 2341 atomic_dec(&fs_info->scrubs_paused); 2342 mutex_unlock(&fs_info->scrub_lock); 2343 wake_up(&fs_info->scrub_pause_wait); 2344 2345 /* 2346 * collect all data csums for the stripe to avoid seeking during 2347 * the scrub. This might currently (crc32) end up to be about 1MB 2348 */ 2349 blk_start_plug(&plug); 2350 2351 /* 2352 * now find all extents for each stripe and scrub them 2353 */ 2354 logical = base + offset; 2355 physical = map->stripes[num].physical; 2356 ret = 0; 2357 for (i = 0; i < nstripes; ++i) { 2358 /* 2359 * canceled? 2360 */ 2361 if (atomic_read(&fs_info->scrub_cancel_req) || 2362 atomic_read(&sctx->cancel_req)) { 2363 ret = -ECANCELED; 2364 goto out; 2365 } 2366 /* 2367 * check to see if we have to pause 2368 */ 2369 if (atomic_read(&fs_info->scrub_pause_req)) { 2370 /* push queued extents */ 2371 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 2372 scrub_submit(sctx); 2373 mutex_lock(&sctx->wr_ctx.wr_lock); 2374 scrub_wr_submit(sctx); 2375 mutex_unlock(&sctx->wr_ctx.wr_lock); 2376 wait_event(sctx->list_wait, 2377 atomic_read(&sctx->bios_in_flight) == 0); 2378 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 2379 atomic_inc(&fs_info->scrubs_paused); 2380 wake_up(&fs_info->scrub_pause_wait); 2381 mutex_lock(&fs_info->scrub_lock); 2382 while (atomic_read(&fs_info->scrub_pause_req)) { 2383 mutex_unlock(&fs_info->scrub_lock); 2384 wait_event(fs_info->scrub_pause_wait, 2385 atomic_read(&fs_info->scrub_pause_req) == 0); 2386 mutex_lock(&fs_info->scrub_lock); 2387 } 2388 atomic_dec(&fs_info->scrubs_paused); 2389 mutex_unlock(&fs_info->scrub_lock); 2390 wake_up(&fs_info->scrub_pause_wait); 2391 } 2392 2393 ret = btrfs_lookup_csums_range(csum_root, logical, 2394 logical + map->stripe_len - 1, 2395 &sctx->csum_list, 1); 2396 if (ret) 2397 goto out; 2398 2399 key.objectid = logical; 2400 key.type = BTRFS_EXTENT_ITEM_KEY; 2401 key.offset = (u64)0; 2402 2403 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2404 if (ret < 0) 2405 goto out; 2406 if (ret > 0) { 2407 ret = btrfs_previous_item(root, path, 0, 2408 BTRFS_EXTENT_ITEM_KEY); 2409 if (ret < 0) 2410 goto out; 2411 if (ret > 0) { 2412 /* there's no smaller item, so stick with the 2413 * larger one */ 2414 btrfs_release_path(path); 2415 ret = btrfs_search_slot(NULL, root, &key, 2416 path, 0, 0); 2417 if (ret < 0) 2418 goto out; 2419 } 2420 } 2421 2422 while (1) { 2423 l = path->nodes[0]; 2424 slot = path->slots[0]; 2425 if (slot >= btrfs_header_nritems(l)) { 2426 ret = btrfs_next_leaf(root, path); 2427 if (ret == 0) 2428 continue; 2429 if (ret < 0) 2430 goto out; 2431 2432 break; 2433 } 2434 btrfs_item_key_to_cpu(l, &key, slot); 2435 2436 if (key.objectid + key.offset <= logical) 2437 goto next; 2438 2439 if (key.objectid >= logical + map->stripe_len) 2440 break; 2441 2442 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY) 2443 goto next; 2444 2445 extent = btrfs_item_ptr(l, slot, 2446 struct btrfs_extent_item); 2447 flags = btrfs_extent_flags(l, extent); 2448 generation = btrfs_extent_generation(l, extent); 2449 2450 if (key.objectid < logical && 2451 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { 2452 printk(KERN_ERR 2453 "btrfs scrub: tree block %llu spanning " 2454 "stripes, ignored. logical=%llu\n", 2455 (unsigned long long)key.objectid, 2456 (unsigned long long)logical); 2457 goto next; 2458 } 2459 2460 /* 2461 * trim extent to this stripe 2462 */ 2463 if (key.objectid < logical) { 2464 key.offset -= logical - key.objectid; 2465 key.objectid = logical; 2466 } 2467 if (key.objectid + key.offset > 2468 logical + map->stripe_len) { 2469 key.offset = logical + map->stripe_len - 2470 key.objectid; 2471 } 2472 2473 extent_logical = key.objectid; 2474 extent_physical = key.objectid - logical + physical; 2475 extent_len = key.offset; 2476 extent_dev = scrub_dev; 2477 extent_mirror_num = mirror_num; 2478 if (is_dev_replace) 2479 scrub_remap_extent(fs_info, extent_logical, 2480 extent_len, &extent_physical, 2481 &extent_dev, 2482 &extent_mirror_num); 2483 ret = scrub_extent(sctx, extent_logical, extent_len, 2484 extent_physical, extent_dev, flags, 2485 generation, extent_mirror_num, 2486 key.objectid - logical + physical); 2487 if (ret) 2488 goto out; 2489 2490 next: 2491 path->slots[0]++; 2492 } 2493 btrfs_release_path(path); 2494 logical += increment; 2495 physical += map->stripe_len; 2496 spin_lock(&sctx->stat_lock); 2497 sctx->stat.last_physical = physical; 2498 spin_unlock(&sctx->stat_lock); 2499 } 2500 out: 2501 /* push queued extents */ 2502 scrub_submit(sctx); 2503 mutex_lock(&sctx->wr_ctx.wr_lock); 2504 scrub_wr_submit(sctx); 2505 mutex_unlock(&sctx->wr_ctx.wr_lock); 2506 2507 blk_finish_plug(&plug); 2508 btrfs_free_path(path); 2509 return ret < 0 ? ret : 0; 2510 } 2511 2512 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2513 struct btrfs_device *scrub_dev, 2514 u64 chunk_tree, u64 chunk_objectid, 2515 u64 chunk_offset, u64 length, 2516 u64 dev_offset, int is_dev_replace) 2517 { 2518 struct btrfs_mapping_tree *map_tree = 2519 &sctx->dev_root->fs_info->mapping_tree; 2520 struct map_lookup *map; 2521 struct extent_map *em; 2522 int i; 2523 int ret = 0; 2524 2525 read_lock(&map_tree->map_tree.lock); 2526 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 2527 read_unlock(&map_tree->map_tree.lock); 2528 2529 if (!em) 2530 return -EINVAL; 2531 2532 map = (struct map_lookup *)em->bdev; 2533 if (em->start != chunk_offset) 2534 goto out; 2535 2536 if (em->len < length) 2537 goto out; 2538 2539 for (i = 0; i < map->num_stripes; ++i) { 2540 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2541 map->stripes[i].physical == dev_offset) { 2542 ret = scrub_stripe(sctx, map, scrub_dev, i, 2543 chunk_offset, length, 2544 is_dev_replace); 2545 if (ret) 2546 goto out; 2547 } 2548 } 2549 out: 2550 free_extent_map(em); 2551 2552 return ret; 2553 } 2554 2555 static noinline_for_stack 2556 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2557 struct btrfs_device *scrub_dev, u64 start, u64 end, 2558 int is_dev_replace) 2559 { 2560 struct btrfs_dev_extent *dev_extent = NULL; 2561 struct btrfs_path *path; 2562 struct btrfs_root *root = sctx->dev_root; 2563 struct btrfs_fs_info *fs_info = root->fs_info; 2564 u64 length; 2565 u64 chunk_tree; 2566 u64 chunk_objectid; 2567 u64 chunk_offset; 2568 int ret; 2569 int slot; 2570 struct extent_buffer *l; 2571 struct btrfs_key key; 2572 struct btrfs_key found_key; 2573 struct btrfs_block_group_cache *cache; 2574 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2575 2576 path = btrfs_alloc_path(); 2577 if (!path) 2578 return -ENOMEM; 2579 2580 path->reada = 2; 2581 path->search_commit_root = 1; 2582 path->skip_locking = 1; 2583 2584 key.objectid = scrub_dev->devid; 2585 key.offset = 0ull; 2586 key.type = BTRFS_DEV_EXTENT_KEY; 2587 2588 while (1) { 2589 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2590 if (ret < 0) 2591 break; 2592 if (ret > 0) { 2593 if (path->slots[0] >= 2594 btrfs_header_nritems(path->nodes[0])) { 2595 ret = btrfs_next_leaf(root, path); 2596 if (ret) 2597 break; 2598 } 2599 } 2600 2601 l = path->nodes[0]; 2602 slot = path->slots[0]; 2603 2604 btrfs_item_key_to_cpu(l, &found_key, slot); 2605 2606 if (found_key.objectid != scrub_dev->devid) 2607 break; 2608 2609 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY) 2610 break; 2611 2612 if (found_key.offset >= end) 2613 break; 2614 2615 if (found_key.offset < key.offset) 2616 break; 2617 2618 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2619 length = btrfs_dev_extent_length(l, dev_extent); 2620 2621 if (found_key.offset + length <= start) { 2622 key.offset = found_key.offset + length; 2623 btrfs_release_path(path); 2624 continue; 2625 } 2626 2627 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 2628 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 2629 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2630 2631 /* 2632 * get a reference on the corresponding block group to prevent 2633 * the chunk from going away while we scrub it 2634 */ 2635 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2636 if (!cache) { 2637 ret = -ENOENT; 2638 break; 2639 } 2640 dev_replace->cursor_right = found_key.offset + length; 2641 dev_replace->cursor_left = found_key.offset; 2642 dev_replace->item_needs_writeback = 1; 2643 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid, 2644 chunk_offset, length, found_key.offset, 2645 is_dev_replace); 2646 2647 /* 2648 * flush, submit all pending read and write bios, afterwards 2649 * wait for them. 2650 * Note that in the dev replace case, a read request causes 2651 * write requests that are submitted in the read completion 2652 * worker. Therefore in the current situation, it is required 2653 * that all write requests are flushed, so that all read and 2654 * write requests are really completed when bios_in_flight 2655 * changes to 0. 2656 */ 2657 atomic_set(&sctx->wr_ctx.flush_all_writes, 1); 2658 scrub_submit(sctx); 2659 mutex_lock(&sctx->wr_ctx.wr_lock); 2660 scrub_wr_submit(sctx); 2661 mutex_unlock(&sctx->wr_ctx.wr_lock); 2662 2663 wait_event(sctx->list_wait, 2664 atomic_read(&sctx->bios_in_flight) == 0); 2665 atomic_set(&sctx->wr_ctx.flush_all_writes, 0); 2666 atomic_inc(&fs_info->scrubs_paused); 2667 wake_up(&fs_info->scrub_pause_wait); 2668 wait_event(sctx->list_wait, 2669 atomic_read(&sctx->workers_pending) == 0); 2670 2671 mutex_lock(&fs_info->scrub_lock); 2672 while (atomic_read(&fs_info->scrub_pause_req)) { 2673 mutex_unlock(&fs_info->scrub_lock); 2674 wait_event(fs_info->scrub_pause_wait, 2675 atomic_read(&fs_info->scrub_pause_req) == 0); 2676 mutex_lock(&fs_info->scrub_lock); 2677 } 2678 atomic_dec(&fs_info->scrubs_paused); 2679 mutex_unlock(&fs_info->scrub_lock); 2680 wake_up(&fs_info->scrub_pause_wait); 2681 2682 dev_replace->cursor_left = dev_replace->cursor_right; 2683 dev_replace->item_needs_writeback = 1; 2684 btrfs_put_block_group(cache); 2685 if (ret) 2686 break; 2687 if (is_dev_replace && 2688 atomic64_read(&dev_replace->num_write_errors) > 0) { 2689 ret = -EIO; 2690 break; 2691 } 2692 if (sctx->stat.malloc_errors > 0) { 2693 ret = -ENOMEM; 2694 break; 2695 } 2696 2697 key.offset = found_key.offset + length; 2698 btrfs_release_path(path); 2699 } 2700 2701 btrfs_free_path(path); 2702 2703 /* 2704 * ret can still be 1 from search_slot or next_leaf, 2705 * that's not an error 2706 */ 2707 return ret < 0 ? ret : 0; 2708 } 2709 2710 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2711 struct btrfs_device *scrub_dev) 2712 { 2713 int i; 2714 u64 bytenr; 2715 u64 gen; 2716 int ret; 2717 struct btrfs_root *root = sctx->dev_root; 2718 2719 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 2720 return -EIO; 2721 2722 gen = root->fs_info->last_trans_committed; 2723 2724 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2725 bytenr = btrfs_sb_offset(i); 2726 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes) 2727 break; 2728 2729 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 2730 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 2731 NULL, 1, bytenr); 2732 if (ret) 2733 return ret; 2734 } 2735 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 2736 2737 return 0; 2738 } 2739 2740 /* 2741 * get a reference count on fs_info->scrub_workers. start worker if necessary 2742 */ 2743 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 2744 int is_dev_replace) 2745 { 2746 int ret = 0; 2747 2748 mutex_lock(&fs_info->scrub_lock); 2749 if (fs_info->scrub_workers_refcnt == 0) { 2750 if (is_dev_replace) 2751 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1, 2752 &fs_info->generic_worker); 2753 else 2754 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 2755 fs_info->thread_pool_size, 2756 &fs_info->generic_worker); 2757 fs_info->scrub_workers.idle_thresh = 4; 2758 ret = btrfs_start_workers(&fs_info->scrub_workers); 2759 if (ret) 2760 goto out; 2761 btrfs_init_workers(&fs_info->scrub_wr_completion_workers, 2762 "scrubwrc", 2763 fs_info->thread_pool_size, 2764 &fs_info->generic_worker); 2765 fs_info->scrub_wr_completion_workers.idle_thresh = 2; 2766 ret = btrfs_start_workers( 2767 &fs_info->scrub_wr_completion_workers); 2768 if (ret) 2769 goto out; 2770 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1, 2771 &fs_info->generic_worker); 2772 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers); 2773 if (ret) 2774 goto out; 2775 } 2776 ++fs_info->scrub_workers_refcnt; 2777 out: 2778 mutex_unlock(&fs_info->scrub_lock); 2779 2780 return ret; 2781 } 2782 2783 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 2784 { 2785 mutex_lock(&fs_info->scrub_lock); 2786 if (--fs_info->scrub_workers_refcnt == 0) { 2787 btrfs_stop_workers(&fs_info->scrub_workers); 2788 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers); 2789 btrfs_stop_workers(&fs_info->scrub_nocow_workers); 2790 } 2791 WARN_ON(fs_info->scrub_workers_refcnt < 0); 2792 mutex_unlock(&fs_info->scrub_lock); 2793 } 2794 2795 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2796 u64 end, struct btrfs_scrub_progress *progress, 2797 int readonly, int is_dev_replace) 2798 { 2799 struct scrub_ctx *sctx; 2800 int ret; 2801 struct btrfs_device *dev; 2802 2803 if (btrfs_fs_closing(fs_info)) 2804 return -EINVAL; 2805 2806 /* 2807 * check some assumptions 2808 */ 2809 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) { 2810 printk(KERN_ERR 2811 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n", 2812 fs_info->chunk_root->nodesize, 2813 fs_info->chunk_root->leafsize); 2814 return -EINVAL; 2815 } 2816 2817 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) { 2818 /* 2819 * in this case scrub is unable to calculate the checksum 2820 * the way scrub is implemented. Do not handle this 2821 * situation at all because it won't ever happen. 2822 */ 2823 printk(KERN_ERR 2824 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n", 2825 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN); 2826 return -EINVAL; 2827 } 2828 2829 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) { 2830 /* not supported for data w/o checksums */ 2831 printk(KERN_ERR 2832 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n", 2833 fs_info->chunk_root->sectorsize, 2834 (unsigned long long)PAGE_SIZE); 2835 return -EINVAL; 2836 } 2837 2838 if (fs_info->chunk_root->nodesize > 2839 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 2840 fs_info->chunk_root->sectorsize > 2841 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 2842 /* 2843 * would exhaust the array bounds of pagev member in 2844 * struct scrub_block 2845 */ 2846 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n", 2847 fs_info->chunk_root->nodesize, 2848 SCRUB_MAX_PAGES_PER_BLOCK, 2849 fs_info->chunk_root->sectorsize, 2850 SCRUB_MAX_PAGES_PER_BLOCK); 2851 return -EINVAL; 2852 } 2853 2854 ret = scrub_workers_get(fs_info, is_dev_replace); 2855 if (ret) 2856 return ret; 2857 2858 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2859 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 2860 if (!dev || (dev->missing && !is_dev_replace)) { 2861 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2862 scrub_workers_put(fs_info); 2863 return -ENODEV; 2864 } 2865 mutex_lock(&fs_info->scrub_lock); 2866 2867 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { 2868 mutex_unlock(&fs_info->scrub_lock); 2869 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2870 scrub_workers_put(fs_info); 2871 return -EIO; 2872 } 2873 2874 btrfs_dev_replace_lock(&fs_info->dev_replace); 2875 if (dev->scrub_device || 2876 (!is_dev_replace && 2877 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2878 btrfs_dev_replace_unlock(&fs_info->dev_replace); 2879 mutex_unlock(&fs_info->scrub_lock); 2880 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2881 scrub_workers_put(fs_info); 2882 return -EINPROGRESS; 2883 } 2884 btrfs_dev_replace_unlock(&fs_info->dev_replace); 2885 sctx = scrub_setup_ctx(dev, is_dev_replace); 2886 if (IS_ERR(sctx)) { 2887 mutex_unlock(&fs_info->scrub_lock); 2888 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2889 scrub_workers_put(fs_info); 2890 return PTR_ERR(sctx); 2891 } 2892 sctx->readonly = readonly; 2893 dev->scrub_device = sctx; 2894 2895 atomic_inc(&fs_info->scrubs_running); 2896 mutex_unlock(&fs_info->scrub_lock); 2897 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2898 2899 if (!is_dev_replace) { 2900 down_read(&fs_info->scrub_super_lock); 2901 ret = scrub_supers(sctx, dev); 2902 up_read(&fs_info->scrub_super_lock); 2903 } 2904 2905 if (!ret) 2906 ret = scrub_enumerate_chunks(sctx, dev, start, end, 2907 is_dev_replace); 2908 2909 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 2910 atomic_dec(&fs_info->scrubs_running); 2911 wake_up(&fs_info->scrub_pause_wait); 2912 2913 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 2914 2915 if (progress) 2916 memcpy(progress, &sctx->stat, sizeof(*progress)); 2917 2918 mutex_lock(&fs_info->scrub_lock); 2919 dev->scrub_device = NULL; 2920 mutex_unlock(&fs_info->scrub_lock); 2921 2922 scrub_free_ctx(sctx); 2923 scrub_workers_put(fs_info); 2924 2925 return ret; 2926 } 2927 2928 void btrfs_scrub_pause(struct btrfs_root *root) 2929 { 2930 struct btrfs_fs_info *fs_info = root->fs_info; 2931 2932 mutex_lock(&fs_info->scrub_lock); 2933 atomic_inc(&fs_info->scrub_pause_req); 2934 while (atomic_read(&fs_info->scrubs_paused) != 2935 atomic_read(&fs_info->scrubs_running)) { 2936 mutex_unlock(&fs_info->scrub_lock); 2937 wait_event(fs_info->scrub_pause_wait, 2938 atomic_read(&fs_info->scrubs_paused) == 2939 atomic_read(&fs_info->scrubs_running)); 2940 mutex_lock(&fs_info->scrub_lock); 2941 } 2942 mutex_unlock(&fs_info->scrub_lock); 2943 } 2944 2945 void btrfs_scrub_continue(struct btrfs_root *root) 2946 { 2947 struct btrfs_fs_info *fs_info = root->fs_info; 2948 2949 atomic_dec(&fs_info->scrub_pause_req); 2950 wake_up(&fs_info->scrub_pause_wait); 2951 } 2952 2953 void btrfs_scrub_pause_super(struct btrfs_root *root) 2954 { 2955 down_write(&root->fs_info->scrub_super_lock); 2956 } 2957 2958 void btrfs_scrub_continue_super(struct btrfs_root *root) 2959 { 2960 up_write(&root->fs_info->scrub_super_lock); 2961 } 2962 2963 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 2964 { 2965 mutex_lock(&fs_info->scrub_lock); 2966 if (!atomic_read(&fs_info->scrubs_running)) { 2967 mutex_unlock(&fs_info->scrub_lock); 2968 return -ENOTCONN; 2969 } 2970 2971 atomic_inc(&fs_info->scrub_cancel_req); 2972 while (atomic_read(&fs_info->scrubs_running)) { 2973 mutex_unlock(&fs_info->scrub_lock); 2974 wait_event(fs_info->scrub_pause_wait, 2975 atomic_read(&fs_info->scrubs_running) == 0); 2976 mutex_lock(&fs_info->scrub_lock); 2977 } 2978 atomic_dec(&fs_info->scrub_cancel_req); 2979 mutex_unlock(&fs_info->scrub_lock); 2980 2981 return 0; 2982 } 2983 2984 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 2985 struct btrfs_device *dev) 2986 { 2987 struct scrub_ctx *sctx; 2988 2989 mutex_lock(&fs_info->scrub_lock); 2990 sctx = dev->scrub_device; 2991 if (!sctx) { 2992 mutex_unlock(&fs_info->scrub_lock); 2993 return -ENOTCONN; 2994 } 2995 atomic_inc(&sctx->cancel_req); 2996 while (dev->scrub_device) { 2997 mutex_unlock(&fs_info->scrub_lock); 2998 wait_event(fs_info->scrub_pause_wait, 2999 dev->scrub_device == NULL); 3000 mutex_lock(&fs_info->scrub_lock); 3001 } 3002 mutex_unlock(&fs_info->scrub_lock); 3003 3004 return 0; 3005 } 3006 3007 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid) 3008 { 3009 struct btrfs_fs_info *fs_info = root->fs_info; 3010 struct btrfs_device *dev; 3011 int ret; 3012 3013 /* 3014 * we have to hold the device_list_mutex here so the device 3015 * does not go away in cancel_dev. FIXME: find a better solution 3016 */ 3017 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3018 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 3019 if (!dev) { 3020 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3021 return -ENODEV; 3022 } 3023 ret = btrfs_scrub_cancel_dev(fs_info, dev); 3024 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3025 3026 return ret; 3027 } 3028 3029 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 3030 struct btrfs_scrub_progress *progress) 3031 { 3032 struct btrfs_device *dev; 3033 struct scrub_ctx *sctx = NULL; 3034 3035 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3036 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL); 3037 if (dev) 3038 sctx = dev->scrub_device; 3039 if (sctx) 3040 memcpy(progress, &sctx->stat, sizeof(*progress)); 3041 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3042 3043 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3044 } 3045 3046 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 3047 u64 extent_logical, u64 extent_len, 3048 u64 *extent_physical, 3049 struct btrfs_device **extent_dev, 3050 int *extent_mirror_num) 3051 { 3052 u64 mapped_length; 3053 struct btrfs_bio *bbio = NULL; 3054 int ret; 3055 3056 mapped_length = extent_len; 3057 ret = btrfs_map_block(fs_info, READ, extent_logical, 3058 &mapped_length, &bbio, 0); 3059 if (ret || !bbio || mapped_length < extent_len || 3060 !bbio->stripes[0].dev->bdev) { 3061 kfree(bbio); 3062 return; 3063 } 3064 3065 *extent_physical = bbio->stripes[0].physical; 3066 *extent_mirror_num = bbio->mirror_num; 3067 *extent_dev = bbio->stripes[0].dev; 3068 kfree(bbio); 3069 } 3070 3071 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, 3072 struct scrub_wr_ctx *wr_ctx, 3073 struct btrfs_fs_info *fs_info, 3074 struct btrfs_device *dev, 3075 int is_dev_replace) 3076 { 3077 WARN_ON(wr_ctx->wr_curr_bio != NULL); 3078 3079 mutex_init(&wr_ctx->wr_lock); 3080 wr_ctx->wr_curr_bio = NULL; 3081 if (!is_dev_replace) 3082 return 0; 3083 3084 WARN_ON(!dev->bdev); 3085 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO, 3086 bio_get_nr_vecs(dev->bdev)); 3087 wr_ctx->tgtdev = dev; 3088 atomic_set(&wr_ctx->flush_all_writes, 0); 3089 return 0; 3090 } 3091 3092 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) 3093 { 3094 mutex_lock(&wr_ctx->wr_lock); 3095 kfree(wr_ctx->wr_curr_bio); 3096 wr_ctx->wr_curr_bio = NULL; 3097 mutex_unlock(&wr_ctx->wr_lock); 3098 } 3099 3100 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 3101 int mirror_num, u64 physical_for_dev_replace) 3102 { 3103 struct scrub_copy_nocow_ctx *nocow_ctx; 3104 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; 3105 3106 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); 3107 if (!nocow_ctx) { 3108 spin_lock(&sctx->stat_lock); 3109 sctx->stat.malloc_errors++; 3110 spin_unlock(&sctx->stat_lock); 3111 return -ENOMEM; 3112 } 3113 3114 scrub_pending_trans_workers_inc(sctx); 3115 3116 nocow_ctx->sctx = sctx; 3117 nocow_ctx->logical = logical; 3118 nocow_ctx->len = len; 3119 nocow_ctx->mirror_num = mirror_num; 3120 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; 3121 nocow_ctx->work.func = copy_nocow_pages_worker; 3122 btrfs_queue_worker(&fs_info->scrub_nocow_workers, 3123 &nocow_ctx->work); 3124 3125 return 0; 3126 } 3127 3128 static void copy_nocow_pages_worker(struct btrfs_work *work) 3129 { 3130 struct scrub_copy_nocow_ctx *nocow_ctx = 3131 container_of(work, struct scrub_copy_nocow_ctx, work); 3132 struct scrub_ctx *sctx = nocow_ctx->sctx; 3133 u64 logical = nocow_ctx->logical; 3134 u64 len = nocow_ctx->len; 3135 int mirror_num = nocow_ctx->mirror_num; 3136 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3137 int ret; 3138 struct btrfs_trans_handle *trans = NULL; 3139 struct btrfs_fs_info *fs_info; 3140 struct btrfs_path *path; 3141 struct btrfs_root *root; 3142 int not_written = 0; 3143 3144 fs_info = sctx->dev_root->fs_info; 3145 root = fs_info->extent_root; 3146 3147 path = btrfs_alloc_path(); 3148 if (!path) { 3149 spin_lock(&sctx->stat_lock); 3150 sctx->stat.malloc_errors++; 3151 spin_unlock(&sctx->stat_lock); 3152 not_written = 1; 3153 goto out; 3154 } 3155 3156 trans = btrfs_join_transaction(root); 3157 if (IS_ERR(trans)) { 3158 not_written = 1; 3159 goto out; 3160 } 3161 3162 ret = iterate_inodes_from_logical(logical, fs_info, path, 3163 copy_nocow_pages_for_inode, 3164 nocow_ctx); 3165 if (ret != 0 && ret != -ENOENT) { 3166 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n", 3167 (unsigned long long)logical, 3168 (unsigned long long)physical_for_dev_replace, 3169 (unsigned long long)len, 3170 (unsigned long long)mirror_num, ret); 3171 not_written = 1; 3172 goto out; 3173 } 3174 3175 out: 3176 if (trans && !IS_ERR(trans)) 3177 btrfs_end_transaction(trans, root); 3178 if (not_written) 3179 btrfs_dev_replace_stats_inc(&fs_info->dev_replace. 3180 num_uncorrectable_read_errors); 3181 3182 btrfs_free_path(path); 3183 kfree(nocow_ctx); 3184 3185 scrub_pending_trans_workers_dec(sctx); 3186 } 3187 3188 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx) 3189 { 3190 unsigned long index; 3191 struct scrub_copy_nocow_ctx *nocow_ctx = ctx; 3192 int ret = 0; 3193 struct btrfs_key key; 3194 struct inode *inode = NULL; 3195 struct btrfs_root *local_root; 3196 u64 physical_for_dev_replace; 3197 u64 len; 3198 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info; 3199 int srcu_index; 3200 3201 key.objectid = root; 3202 key.type = BTRFS_ROOT_ITEM_KEY; 3203 key.offset = (u64)-1; 3204 3205 srcu_index = srcu_read_lock(&fs_info->subvol_srcu); 3206 3207 local_root = btrfs_read_fs_root_no_name(fs_info, &key); 3208 if (IS_ERR(local_root)) { 3209 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 3210 return PTR_ERR(local_root); 3211 } 3212 3213 key.type = BTRFS_INODE_ITEM_KEY; 3214 key.objectid = inum; 3215 key.offset = 0; 3216 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); 3217 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); 3218 if (IS_ERR(inode)) 3219 return PTR_ERR(inode); 3220 3221 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; 3222 len = nocow_ctx->len; 3223 while (len >= PAGE_CACHE_SIZE) { 3224 struct page *page = NULL; 3225 int ret_sub; 3226 3227 index = offset >> PAGE_CACHE_SHIFT; 3228 3229 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 3230 if (!page) { 3231 pr_err("find_or_create_page() failed\n"); 3232 ret = -ENOMEM; 3233 goto next_page; 3234 } 3235 3236 if (PageUptodate(page)) { 3237 if (PageDirty(page)) 3238 goto next_page; 3239 } else { 3240 ClearPageError(page); 3241 ret_sub = extent_read_full_page(&BTRFS_I(inode)-> 3242 io_tree, 3243 page, btrfs_get_extent, 3244 nocow_ctx->mirror_num); 3245 if (ret_sub) { 3246 ret = ret_sub; 3247 goto next_page; 3248 } 3249 wait_on_page_locked(page); 3250 if (!PageUptodate(page)) { 3251 ret = -EIO; 3252 goto next_page; 3253 } 3254 } 3255 ret_sub = write_page_nocow(nocow_ctx->sctx, 3256 physical_for_dev_replace, page); 3257 if (ret_sub) { 3258 ret = ret_sub; 3259 goto next_page; 3260 } 3261 3262 next_page: 3263 if (page) { 3264 unlock_page(page); 3265 put_page(page); 3266 } 3267 offset += PAGE_CACHE_SIZE; 3268 physical_for_dev_replace += PAGE_CACHE_SIZE; 3269 len -= PAGE_CACHE_SIZE; 3270 } 3271 3272 if (inode) 3273 iput(inode); 3274 return ret; 3275 } 3276 3277 static int write_page_nocow(struct scrub_ctx *sctx, 3278 u64 physical_for_dev_replace, struct page *page) 3279 { 3280 struct bio *bio; 3281 struct btrfs_device *dev; 3282 int ret; 3283 DECLARE_COMPLETION_ONSTACK(compl); 3284 3285 dev = sctx->wr_ctx.tgtdev; 3286 if (!dev) 3287 return -EIO; 3288 if (!dev->bdev) { 3289 printk_ratelimited(KERN_WARNING 3290 "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n"); 3291 return -EIO; 3292 } 3293 bio = bio_alloc(GFP_NOFS, 1); 3294 if (!bio) { 3295 spin_lock(&sctx->stat_lock); 3296 sctx->stat.malloc_errors++; 3297 spin_unlock(&sctx->stat_lock); 3298 return -ENOMEM; 3299 } 3300 bio->bi_private = &compl; 3301 bio->bi_end_io = scrub_complete_bio_end_io; 3302 bio->bi_size = 0; 3303 bio->bi_sector = physical_for_dev_replace >> 9; 3304 bio->bi_bdev = dev->bdev; 3305 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 3306 if (ret != PAGE_CACHE_SIZE) { 3307 leave_with_eio: 3308 bio_put(bio); 3309 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 3310 return -EIO; 3311 } 3312 btrfsic_submit_bio(WRITE_SYNC, bio); 3313 wait_for_completion(&compl); 3314 3315 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 3316 goto leave_with_eio; 3317 3318 bio_put(bio); 3319 return 0; 3320 } 3321