xref: /openbmc/linux/fs/btrfs/scrub.c (revision 97da55fc)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_page {
67 	struct scrub_block	*sblock;
68 	struct page		*page;
69 	struct btrfs_device	*dev;
70 	u64			flags;  /* extent flags */
71 	u64			generation;
72 	u64			logical;
73 	u64			physical;
74 	u64			physical_for_dev_replace;
75 	atomic_t		ref_count;
76 	struct {
77 		unsigned int	mirror_num:8;
78 		unsigned int	have_csum:1;
79 		unsigned int	io_error:1;
80 	};
81 	u8			csum[BTRFS_CSUM_SIZE];
82 };
83 
84 struct scrub_bio {
85 	int			index;
86 	struct scrub_ctx	*sctx;
87 	struct btrfs_device	*dev;
88 	struct bio		*bio;
89 	int			err;
90 	u64			logical;
91 	u64			physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 	int			page_count;
98 	int			next_free;
99 	struct btrfs_work	work;
100 };
101 
102 struct scrub_block {
103 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 	int			page_count;
105 	atomic_t		outstanding_pages;
106 	atomic_t		ref_count; /* free mem on transition to zero */
107 	struct scrub_ctx	*sctx;
108 	struct {
109 		unsigned int	header_error:1;
110 		unsigned int	checksum_error:1;
111 		unsigned int	no_io_error_seen:1;
112 		unsigned int	generation_error:1; /* also sets header_error */
113 	};
114 };
115 
116 struct scrub_wr_ctx {
117 	struct scrub_bio *wr_curr_bio;
118 	struct btrfs_device *tgtdev;
119 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 	atomic_t flush_all_writes;
121 	struct mutex wr_lock;
122 };
123 
124 struct scrub_ctx {
125 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126 	struct btrfs_root	*dev_root;
127 	int			first_free;
128 	int			curr;
129 	atomic_t		bios_in_flight;
130 	atomic_t		workers_pending;
131 	spinlock_t		list_lock;
132 	wait_queue_head_t	list_wait;
133 	u16			csum_size;
134 	struct list_head	csum_list;
135 	atomic_t		cancel_req;
136 	int			readonly;
137 	int			pages_per_rd_bio;
138 	u32			sectorsize;
139 	u32			nodesize;
140 	u32			leafsize;
141 
142 	int			is_dev_replace;
143 	struct scrub_wr_ctx	wr_ctx;
144 
145 	/*
146 	 * statistics
147 	 */
148 	struct btrfs_scrub_progress stat;
149 	spinlock_t		stat_lock;
150 };
151 
152 struct scrub_fixup_nodatasum {
153 	struct scrub_ctx	*sctx;
154 	struct btrfs_device	*dev;
155 	u64			logical;
156 	struct btrfs_root	*root;
157 	struct btrfs_work	work;
158 	int			mirror_num;
159 };
160 
161 struct scrub_copy_nocow_ctx {
162 	struct scrub_ctx	*sctx;
163 	u64			logical;
164 	u64			len;
165 	int			mirror_num;
166 	u64			physical_for_dev_replace;
167 	struct btrfs_work	work;
168 };
169 
170 struct scrub_warning {
171 	struct btrfs_path	*path;
172 	u64			extent_item_size;
173 	char			*scratch_buf;
174 	char			*msg_buf;
175 	const char		*errstr;
176 	sector_t		sector;
177 	u64			logical;
178 	struct btrfs_device	*dev;
179 	int			msg_bufsize;
180 	int			scratch_bufsize;
181 };
182 
183 
184 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
185 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
186 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
187 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
188 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
189 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
190 				     struct btrfs_fs_info *fs_info,
191 				     struct scrub_block *original_sblock,
192 				     u64 length, u64 logical,
193 				     struct scrub_block *sblocks_for_recheck);
194 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
195 				struct scrub_block *sblock, int is_metadata,
196 				int have_csum, u8 *csum, u64 generation,
197 				u16 csum_size);
198 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
199 					 struct scrub_block *sblock,
200 					 int is_metadata, int have_csum,
201 					 const u8 *csum, u64 generation,
202 					 u16 csum_size);
203 static void scrub_complete_bio_end_io(struct bio *bio, int err);
204 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
205 					     struct scrub_block *sblock_good,
206 					     int force_write);
207 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
208 					    struct scrub_block *sblock_good,
209 					    int page_num, int force_write);
210 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
211 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
212 					   int page_num);
213 static int scrub_checksum_data(struct scrub_block *sblock);
214 static int scrub_checksum_tree_block(struct scrub_block *sblock);
215 static int scrub_checksum_super(struct scrub_block *sblock);
216 static void scrub_block_get(struct scrub_block *sblock);
217 static void scrub_block_put(struct scrub_block *sblock);
218 static void scrub_page_get(struct scrub_page *spage);
219 static void scrub_page_put(struct scrub_page *spage);
220 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
221 				    struct scrub_page *spage);
222 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
223 		       u64 physical, struct btrfs_device *dev, u64 flags,
224 		       u64 gen, int mirror_num, u8 *csum, int force,
225 		       u64 physical_for_dev_replace);
226 static void scrub_bio_end_io(struct bio *bio, int err);
227 static void scrub_bio_end_io_worker(struct btrfs_work *work);
228 static void scrub_block_complete(struct scrub_block *sblock);
229 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
230 			       u64 extent_logical, u64 extent_len,
231 			       u64 *extent_physical,
232 			       struct btrfs_device **extent_dev,
233 			       int *extent_mirror_num);
234 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
235 			      struct scrub_wr_ctx *wr_ctx,
236 			      struct btrfs_fs_info *fs_info,
237 			      struct btrfs_device *dev,
238 			      int is_dev_replace);
239 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
240 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
241 				    struct scrub_page *spage);
242 static void scrub_wr_submit(struct scrub_ctx *sctx);
243 static void scrub_wr_bio_end_io(struct bio *bio, int err);
244 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
245 static int write_page_nocow(struct scrub_ctx *sctx,
246 			    u64 physical_for_dev_replace, struct page *page);
247 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
248 				      void *ctx);
249 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
250 			    int mirror_num, u64 physical_for_dev_replace);
251 static void copy_nocow_pages_worker(struct btrfs_work *work);
252 
253 
254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255 {
256 	atomic_inc(&sctx->bios_in_flight);
257 }
258 
259 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
260 {
261 	atomic_dec(&sctx->bios_in_flight);
262 	wake_up(&sctx->list_wait);
263 }
264 
265 /*
266  * used for workers that require transaction commits (i.e., for the
267  * NOCOW case)
268  */
269 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
270 {
271 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
272 
273 	/*
274 	 * increment scrubs_running to prevent cancel requests from
275 	 * completing as long as a worker is running. we must also
276 	 * increment scrubs_paused to prevent deadlocking on pause
277 	 * requests used for transactions commits (as the worker uses a
278 	 * transaction context). it is safe to regard the worker
279 	 * as paused for all matters practical. effectively, we only
280 	 * avoid cancellation requests from completing.
281 	 */
282 	mutex_lock(&fs_info->scrub_lock);
283 	atomic_inc(&fs_info->scrubs_running);
284 	atomic_inc(&fs_info->scrubs_paused);
285 	mutex_unlock(&fs_info->scrub_lock);
286 	atomic_inc(&sctx->workers_pending);
287 }
288 
289 /* used for workers that require transaction commits */
290 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
291 {
292 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
293 
294 	/*
295 	 * see scrub_pending_trans_workers_inc() why we're pretending
296 	 * to be paused in the scrub counters
297 	 */
298 	mutex_lock(&fs_info->scrub_lock);
299 	atomic_dec(&fs_info->scrubs_running);
300 	atomic_dec(&fs_info->scrubs_paused);
301 	mutex_unlock(&fs_info->scrub_lock);
302 	atomic_dec(&sctx->workers_pending);
303 	wake_up(&fs_info->scrub_pause_wait);
304 	wake_up(&sctx->list_wait);
305 }
306 
307 static void scrub_free_csums(struct scrub_ctx *sctx)
308 {
309 	while (!list_empty(&sctx->csum_list)) {
310 		struct btrfs_ordered_sum *sum;
311 		sum = list_first_entry(&sctx->csum_list,
312 				       struct btrfs_ordered_sum, list);
313 		list_del(&sum->list);
314 		kfree(sum);
315 	}
316 }
317 
318 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
319 {
320 	int i;
321 
322 	if (!sctx)
323 		return;
324 
325 	scrub_free_wr_ctx(&sctx->wr_ctx);
326 
327 	/* this can happen when scrub is cancelled */
328 	if (sctx->curr != -1) {
329 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
330 
331 		for (i = 0; i < sbio->page_count; i++) {
332 			WARN_ON(!sbio->pagev[i]->page);
333 			scrub_block_put(sbio->pagev[i]->sblock);
334 		}
335 		bio_put(sbio->bio);
336 	}
337 
338 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
339 		struct scrub_bio *sbio = sctx->bios[i];
340 
341 		if (!sbio)
342 			break;
343 		kfree(sbio);
344 	}
345 
346 	scrub_free_csums(sctx);
347 	kfree(sctx);
348 }
349 
350 static noinline_for_stack
351 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
352 {
353 	struct scrub_ctx *sctx;
354 	int		i;
355 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
356 	int pages_per_rd_bio;
357 	int ret;
358 
359 	/*
360 	 * the setting of pages_per_rd_bio is correct for scrub but might
361 	 * be wrong for the dev_replace code where we might read from
362 	 * different devices in the initial huge bios. However, that
363 	 * code is able to correctly handle the case when adding a page
364 	 * to a bio fails.
365 	 */
366 	if (dev->bdev)
367 		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
368 					 bio_get_nr_vecs(dev->bdev));
369 	else
370 		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
371 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
372 	if (!sctx)
373 		goto nomem;
374 	sctx->is_dev_replace = is_dev_replace;
375 	sctx->pages_per_rd_bio = pages_per_rd_bio;
376 	sctx->curr = -1;
377 	sctx->dev_root = dev->dev_root;
378 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
379 		struct scrub_bio *sbio;
380 
381 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
382 		if (!sbio)
383 			goto nomem;
384 		sctx->bios[i] = sbio;
385 
386 		sbio->index = i;
387 		sbio->sctx = sctx;
388 		sbio->page_count = 0;
389 		sbio->work.func = scrub_bio_end_io_worker;
390 
391 		if (i != SCRUB_BIOS_PER_SCTX - 1)
392 			sctx->bios[i]->next_free = i + 1;
393 		else
394 			sctx->bios[i]->next_free = -1;
395 	}
396 	sctx->first_free = 0;
397 	sctx->nodesize = dev->dev_root->nodesize;
398 	sctx->leafsize = dev->dev_root->leafsize;
399 	sctx->sectorsize = dev->dev_root->sectorsize;
400 	atomic_set(&sctx->bios_in_flight, 0);
401 	atomic_set(&sctx->workers_pending, 0);
402 	atomic_set(&sctx->cancel_req, 0);
403 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
404 	INIT_LIST_HEAD(&sctx->csum_list);
405 
406 	spin_lock_init(&sctx->list_lock);
407 	spin_lock_init(&sctx->stat_lock);
408 	init_waitqueue_head(&sctx->list_wait);
409 
410 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
411 				 fs_info->dev_replace.tgtdev, is_dev_replace);
412 	if (ret) {
413 		scrub_free_ctx(sctx);
414 		return ERR_PTR(ret);
415 	}
416 	return sctx;
417 
418 nomem:
419 	scrub_free_ctx(sctx);
420 	return ERR_PTR(-ENOMEM);
421 }
422 
423 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
424 				     void *warn_ctx)
425 {
426 	u64 isize;
427 	u32 nlink;
428 	int ret;
429 	int i;
430 	struct extent_buffer *eb;
431 	struct btrfs_inode_item *inode_item;
432 	struct scrub_warning *swarn = warn_ctx;
433 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
434 	struct inode_fs_paths *ipath = NULL;
435 	struct btrfs_root *local_root;
436 	struct btrfs_key root_key;
437 
438 	root_key.objectid = root;
439 	root_key.type = BTRFS_ROOT_ITEM_KEY;
440 	root_key.offset = (u64)-1;
441 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
442 	if (IS_ERR(local_root)) {
443 		ret = PTR_ERR(local_root);
444 		goto err;
445 	}
446 
447 	ret = inode_item_info(inum, 0, local_root, swarn->path);
448 	if (ret) {
449 		btrfs_release_path(swarn->path);
450 		goto err;
451 	}
452 
453 	eb = swarn->path->nodes[0];
454 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
455 					struct btrfs_inode_item);
456 	isize = btrfs_inode_size(eb, inode_item);
457 	nlink = btrfs_inode_nlink(eb, inode_item);
458 	btrfs_release_path(swarn->path);
459 
460 	ipath = init_ipath(4096, local_root, swarn->path);
461 	if (IS_ERR(ipath)) {
462 		ret = PTR_ERR(ipath);
463 		ipath = NULL;
464 		goto err;
465 	}
466 	ret = paths_from_inode(inum, ipath);
467 
468 	if (ret < 0)
469 		goto err;
470 
471 	/*
472 	 * we deliberately ignore the bit ipath might have been too small to
473 	 * hold all of the paths here
474 	 */
475 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
476 		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
477 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
478 			"length %llu, links %u (path: %s)\n", swarn->errstr,
479 			swarn->logical, rcu_str_deref(swarn->dev->name),
480 			(unsigned long long)swarn->sector, root, inum, offset,
481 			min(isize - offset, (u64)PAGE_SIZE), nlink,
482 			(char *)(unsigned long)ipath->fspath->val[i]);
483 
484 	free_ipath(ipath);
485 	return 0;
486 
487 err:
488 	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
489 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
490 		"resolving failed with ret=%d\n", swarn->errstr,
491 		swarn->logical, rcu_str_deref(swarn->dev->name),
492 		(unsigned long long)swarn->sector, root, inum, offset, ret);
493 
494 	free_ipath(ipath);
495 	return 0;
496 }
497 
498 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
499 {
500 	struct btrfs_device *dev;
501 	struct btrfs_fs_info *fs_info;
502 	struct btrfs_path *path;
503 	struct btrfs_key found_key;
504 	struct extent_buffer *eb;
505 	struct btrfs_extent_item *ei;
506 	struct scrub_warning swarn;
507 	unsigned long ptr = 0;
508 	u64 extent_item_pos;
509 	u64 flags = 0;
510 	u64 ref_root;
511 	u32 item_size;
512 	u8 ref_level;
513 	const int bufsize = 4096;
514 	int ret;
515 
516 	WARN_ON(sblock->page_count < 1);
517 	dev = sblock->pagev[0]->dev;
518 	fs_info = sblock->sctx->dev_root->fs_info;
519 
520 	path = btrfs_alloc_path();
521 
522 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
523 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
524 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
525 	swarn.logical = sblock->pagev[0]->logical;
526 	swarn.errstr = errstr;
527 	swarn.dev = NULL;
528 	swarn.msg_bufsize = bufsize;
529 	swarn.scratch_bufsize = bufsize;
530 
531 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
532 		goto out;
533 
534 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
535 				  &flags);
536 	if (ret < 0)
537 		goto out;
538 
539 	extent_item_pos = swarn.logical - found_key.objectid;
540 	swarn.extent_item_size = found_key.offset;
541 
542 	eb = path->nodes[0];
543 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
544 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
545 	btrfs_release_path(path);
546 
547 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
548 		do {
549 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
550 							&ref_root, &ref_level);
551 			printk_in_rcu(KERN_WARNING
552 				"btrfs: %s at logical %llu on dev %s, "
553 				"sector %llu: metadata %s (level %d) in tree "
554 				"%llu\n", errstr, swarn.logical,
555 				rcu_str_deref(dev->name),
556 				(unsigned long long)swarn.sector,
557 				ref_level ? "node" : "leaf",
558 				ret < 0 ? -1 : ref_level,
559 				ret < 0 ? -1 : ref_root);
560 		} while (ret != 1);
561 	} else {
562 		swarn.path = path;
563 		swarn.dev = dev;
564 		iterate_extent_inodes(fs_info, found_key.objectid,
565 					extent_item_pos, 1,
566 					scrub_print_warning_inode, &swarn);
567 	}
568 
569 out:
570 	btrfs_free_path(path);
571 	kfree(swarn.scratch_buf);
572 	kfree(swarn.msg_buf);
573 }
574 
575 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
576 {
577 	struct page *page = NULL;
578 	unsigned long index;
579 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
580 	int ret;
581 	int corrected = 0;
582 	struct btrfs_key key;
583 	struct inode *inode = NULL;
584 	struct btrfs_fs_info *fs_info;
585 	u64 end = offset + PAGE_SIZE - 1;
586 	struct btrfs_root *local_root;
587 	int srcu_index;
588 
589 	key.objectid = root;
590 	key.type = BTRFS_ROOT_ITEM_KEY;
591 	key.offset = (u64)-1;
592 
593 	fs_info = fixup->root->fs_info;
594 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
595 
596 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
597 	if (IS_ERR(local_root)) {
598 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
599 		return PTR_ERR(local_root);
600 	}
601 
602 	key.type = BTRFS_INODE_ITEM_KEY;
603 	key.objectid = inum;
604 	key.offset = 0;
605 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
606 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
607 	if (IS_ERR(inode))
608 		return PTR_ERR(inode);
609 
610 	index = offset >> PAGE_CACHE_SHIFT;
611 
612 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
613 	if (!page) {
614 		ret = -ENOMEM;
615 		goto out;
616 	}
617 
618 	if (PageUptodate(page)) {
619 		if (PageDirty(page)) {
620 			/*
621 			 * we need to write the data to the defect sector. the
622 			 * data that was in that sector is not in memory,
623 			 * because the page was modified. we must not write the
624 			 * modified page to that sector.
625 			 *
626 			 * TODO: what could be done here: wait for the delalloc
627 			 *       runner to write out that page (might involve
628 			 *       COW) and see whether the sector is still
629 			 *       referenced afterwards.
630 			 *
631 			 * For the meantime, we'll treat this error
632 			 * incorrectable, although there is a chance that a
633 			 * later scrub will find the bad sector again and that
634 			 * there's no dirty page in memory, then.
635 			 */
636 			ret = -EIO;
637 			goto out;
638 		}
639 		fs_info = BTRFS_I(inode)->root->fs_info;
640 		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
641 					fixup->logical, page,
642 					fixup->mirror_num);
643 		unlock_page(page);
644 		corrected = !ret;
645 	} else {
646 		/*
647 		 * we need to get good data first. the general readpage path
648 		 * will call repair_io_failure for us, we just have to make
649 		 * sure we read the bad mirror.
650 		 */
651 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
652 					EXTENT_DAMAGED, GFP_NOFS);
653 		if (ret) {
654 			/* set_extent_bits should give proper error */
655 			WARN_ON(ret > 0);
656 			if (ret > 0)
657 				ret = -EFAULT;
658 			goto out;
659 		}
660 
661 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
662 						btrfs_get_extent,
663 						fixup->mirror_num);
664 		wait_on_page_locked(page);
665 
666 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
667 						end, EXTENT_DAMAGED, 0, NULL);
668 		if (!corrected)
669 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
670 						EXTENT_DAMAGED, GFP_NOFS);
671 	}
672 
673 out:
674 	if (page)
675 		put_page(page);
676 	if (inode)
677 		iput(inode);
678 
679 	if (ret < 0)
680 		return ret;
681 
682 	if (ret == 0 && corrected) {
683 		/*
684 		 * we only need to call readpage for one of the inodes belonging
685 		 * to this extent. so make iterate_extent_inodes stop
686 		 */
687 		return 1;
688 	}
689 
690 	return -EIO;
691 }
692 
693 static void scrub_fixup_nodatasum(struct btrfs_work *work)
694 {
695 	int ret;
696 	struct scrub_fixup_nodatasum *fixup;
697 	struct scrub_ctx *sctx;
698 	struct btrfs_trans_handle *trans = NULL;
699 	struct btrfs_fs_info *fs_info;
700 	struct btrfs_path *path;
701 	int uncorrectable = 0;
702 
703 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
704 	sctx = fixup->sctx;
705 	fs_info = fixup->root->fs_info;
706 
707 	path = btrfs_alloc_path();
708 	if (!path) {
709 		spin_lock(&sctx->stat_lock);
710 		++sctx->stat.malloc_errors;
711 		spin_unlock(&sctx->stat_lock);
712 		uncorrectable = 1;
713 		goto out;
714 	}
715 
716 	trans = btrfs_join_transaction(fixup->root);
717 	if (IS_ERR(trans)) {
718 		uncorrectable = 1;
719 		goto out;
720 	}
721 
722 	/*
723 	 * the idea is to trigger a regular read through the standard path. we
724 	 * read a page from the (failed) logical address by specifying the
725 	 * corresponding copynum of the failed sector. thus, that readpage is
726 	 * expected to fail.
727 	 * that is the point where on-the-fly error correction will kick in
728 	 * (once it's finished) and rewrite the failed sector if a good copy
729 	 * can be found.
730 	 */
731 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
732 						path, scrub_fixup_readpage,
733 						fixup);
734 	if (ret < 0) {
735 		uncorrectable = 1;
736 		goto out;
737 	}
738 	WARN_ON(ret != 1);
739 
740 	spin_lock(&sctx->stat_lock);
741 	++sctx->stat.corrected_errors;
742 	spin_unlock(&sctx->stat_lock);
743 
744 out:
745 	if (trans && !IS_ERR(trans))
746 		btrfs_end_transaction(trans, fixup->root);
747 	if (uncorrectable) {
748 		spin_lock(&sctx->stat_lock);
749 		++sctx->stat.uncorrectable_errors;
750 		spin_unlock(&sctx->stat_lock);
751 		btrfs_dev_replace_stats_inc(
752 			&sctx->dev_root->fs_info->dev_replace.
753 			num_uncorrectable_read_errors);
754 		printk_ratelimited_in_rcu(KERN_ERR
755 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
756 			(unsigned long long)fixup->logical,
757 			rcu_str_deref(fixup->dev->name));
758 	}
759 
760 	btrfs_free_path(path);
761 	kfree(fixup);
762 
763 	scrub_pending_trans_workers_dec(sctx);
764 }
765 
766 /*
767  * scrub_handle_errored_block gets called when either verification of the
768  * pages failed or the bio failed to read, e.g. with EIO. In the latter
769  * case, this function handles all pages in the bio, even though only one
770  * may be bad.
771  * The goal of this function is to repair the errored block by using the
772  * contents of one of the mirrors.
773  */
774 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
775 {
776 	struct scrub_ctx *sctx = sblock_to_check->sctx;
777 	struct btrfs_device *dev;
778 	struct btrfs_fs_info *fs_info;
779 	u64 length;
780 	u64 logical;
781 	u64 generation;
782 	unsigned int failed_mirror_index;
783 	unsigned int is_metadata;
784 	unsigned int have_csum;
785 	u8 *csum;
786 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
787 	struct scrub_block *sblock_bad;
788 	int ret;
789 	int mirror_index;
790 	int page_num;
791 	int success;
792 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
793 				      DEFAULT_RATELIMIT_BURST);
794 
795 	BUG_ON(sblock_to_check->page_count < 1);
796 	fs_info = sctx->dev_root->fs_info;
797 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
798 		/*
799 		 * if we find an error in a super block, we just report it.
800 		 * They will get written with the next transaction commit
801 		 * anyway
802 		 */
803 		spin_lock(&sctx->stat_lock);
804 		++sctx->stat.super_errors;
805 		spin_unlock(&sctx->stat_lock);
806 		return 0;
807 	}
808 	length = sblock_to_check->page_count * PAGE_SIZE;
809 	logical = sblock_to_check->pagev[0]->logical;
810 	generation = sblock_to_check->pagev[0]->generation;
811 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
812 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
813 	is_metadata = !(sblock_to_check->pagev[0]->flags &
814 			BTRFS_EXTENT_FLAG_DATA);
815 	have_csum = sblock_to_check->pagev[0]->have_csum;
816 	csum = sblock_to_check->pagev[0]->csum;
817 	dev = sblock_to_check->pagev[0]->dev;
818 
819 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
820 		sblocks_for_recheck = NULL;
821 		goto nodatasum_case;
822 	}
823 
824 	/*
825 	 * read all mirrors one after the other. This includes to
826 	 * re-read the extent or metadata block that failed (that was
827 	 * the cause that this fixup code is called) another time,
828 	 * page by page this time in order to know which pages
829 	 * caused I/O errors and which ones are good (for all mirrors).
830 	 * It is the goal to handle the situation when more than one
831 	 * mirror contains I/O errors, but the errors do not
832 	 * overlap, i.e. the data can be repaired by selecting the
833 	 * pages from those mirrors without I/O error on the
834 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
835 	 * would be that mirror #1 has an I/O error on the first page,
836 	 * the second page is good, and mirror #2 has an I/O error on
837 	 * the second page, but the first page is good.
838 	 * Then the first page of the first mirror can be repaired by
839 	 * taking the first page of the second mirror, and the
840 	 * second page of the second mirror can be repaired by
841 	 * copying the contents of the 2nd page of the 1st mirror.
842 	 * One more note: if the pages of one mirror contain I/O
843 	 * errors, the checksum cannot be verified. In order to get
844 	 * the best data for repairing, the first attempt is to find
845 	 * a mirror without I/O errors and with a validated checksum.
846 	 * Only if this is not possible, the pages are picked from
847 	 * mirrors with I/O errors without considering the checksum.
848 	 * If the latter is the case, at the end, the checksum of the
849 	 * repaired area is verified in order to correctly maintain
850 	 * the statistics.
851 	 */
852 
853 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
854 				     sizeof(*sblocks_for_recheck),
855 				     GFP_NOFS);
856 	if (!sblocks_for_recheck) {
857 		spin_lock(&sctx->stat_lock);
858 		sctx->stat.malloc_errors++;
859 		sctx->stat.read_errors++;
860 		sctx->stat.uncorrectable_errors++;
861 		spin_unlock(&sctx->stat_lock);
862 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
863 		goto out;
864 	}
865 
866 	/* setup the context, map the logical blocks and alloc the pages */
867 	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
868 					logical, sblocks_for_recheck);
869 	if (ret) {
870 		spin_lock(&sctx->stat_lock);
871 		sctx->stat.read_errors++;
872 		sctx->stat.uncorrectable_errors++;
873 		spin_unlock(&sctx->stat_lock);
874 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
875 		goto out;
876 	}
877 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
878 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
879 
880 	/* build and submit the bios for the failed mirror, check checksums */
881 	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
882 			    csum, generation, sctx->csum_size);
883 
884 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
885 	    sblock_bad->no_io_error_seen) {
886 		/*
887 		 * the error disappeared after reading page by page, or
888 		 * the area was part of a huge bio and other parts of the
889 		 * bio caused I/O errors, or the block layer merged several
890 		 * read requests into one and the error is caused by a
891 		 * different bio (usually one of the two latter cases is
892 		 * the cause)
893 		 */
894 		spin_lock(&sctx->stat_lock);
895 		sctx->stat.unverified_errors++;
896 		spin_unlock(&sctx->stat_lock);
897 
898 		if (sctx->is_dev_replace)
899 			scrub_write_block_to_dev_replace(sblock_bad);
900 		goto out;
901 	}
902 
903 	if (!sblock_bad->no_io_error_seen) {
904 		spin_lock(&sctx->stat_lock);
905 		sctx->stat.read_errors++;
906 		spin_unlock(&sctx->stat_lock);
907 		if (__ratelimit(&_rs))
908 			scrub_print_warning("i/o error", sblock_to_check);
909 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
910 	} else if (sblock_bad->checksum_error) {
911 		spin_lock(&sctx->stat_lock);
912 		sctx->stat.csum_errors++;
913 		spin_unlock(&sctx->stat_lock);
914 		if (__ratelimit(&_rs))
915 			scrub_print_warning("checksum error", sblock_to_check);
916 		btrfs_dev_stat_inc_and_print(dev,
917 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
918 	} else if (sblock_bad->header_error) {
919 		spin_lock(&sctx->stat_lock);
920 		sctx->stat.verify_errors++;
921 		spin_unlock(&sctx->stat_lock);
922 		if (__ratelimit(&_rs))
923 			scrub_print_warning("checksum/header error",
924 					    sblock_to_check);
925 		if (sblock_bad->generation_error)
926 			btrfs_dev_stat_inc_and_print(dev,
927 				BTRFS_DEV_STAT_GENERATION_ERRS);
928 		else
929 			btrfs_dev_stat_inc_and_print(dev,
930 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
931 	}
932 
933 	if (sctx->readonly && !sctx->is_dev_replace)
934 		goto did_not_correct_error;
935 
936 	if (!is_metadata && !have_csum) {
937 		struct scrub_fixup_nodatasum *fixup_nodatasum;
938 
939 nodatasum_case:
940 		WARN_ON(sctx->is_dev_replace);
941 
942 		/*
943 		 * !is_metadata and !have_csum, this means that the data
944 		 * might not be COW'ed, that it might be modified
945 		 * concurrently. The general strategy to work on the
946 		 * commit root does not help in the case when COW is not
947 		 * used.
948 		 */
949 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
950 		if (!fixup_nodatasum)
951 			goto did_not_correct_error;
952 		fixup_nodatasum->sctx = sctx;
953 		fixup_nodatasum->dev = dev;
954 		fixup_nodatasum->logical = logical;
955 		fixup_nodatasum->root = fs_info->extent_root;
956 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
957 		scrub_pending_trans_workers_inc(sctx);
958 		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
959 		btrfs_queue_worker(&fs_info->scrub_workers,
960 				   &fixup_nodatasum->work);
961 		goto out;
962 	}
963 
964 	/*
965 	 * now build and submit the bios for the other mirrors, check
966 	 * checksums.
967 	 * First try to pick the mirror which is completely without I/O
968 	 * errors and also does not have a checksum error.
969 	 * If one is found, and if a checksum is present, the full block
970 	 * that is known to contain an error is rewritten. Afterwards
971 	 * the block is known to be corrected.
972 	 * If a mirror is found which is completely correct, and no
973 	 * checksum is present, only those pages are rewritten that had
974 	 * an I/O error in the block to be repaired, since it cannot be
975 	 * determined, which copy of the other pages is better (and it
976 	 * could happen otherwise that a correct page would be
977 	 * overwritten by a bad one).
978 	 */
979 	for (mirror_index = 0;
980 	     mirror_index < BTRFS_MAX_MIRRORS &&
981 	     sblocks_for_recheck[mirror_index].page_count > 0;
982 	     mirror_index++) {
983 		struct scrub_block *sblock_other;
984 
985 		if (mirror_index == failed_mirror_index)
986 			continue;
987 		sblock_other = sblocks_for_recheck + mirror_index;
988 
989 		/* build and submit the bios, check checksums */
990 		scrub_recheck_block(fs_info, sblock_other, is_metadata,
991 				    have_csum, csum, generation,
992 				    sctx->csum_size);
993 
994 		if (!sblock_other->header_error &&
995 		    !sblock_other->checksum_error &&
996 		    sblock_other->no_io_error_seen) {
997 			if (sctx->is_dev_replace) {
998 				scrub_write_block_to_dev_replace(sblock_other);
999 			} else {
1000 				int force_write = is_metadata || have_csum;
1001 
1002 				ret = scrub_repair_block_from_good_copy(
1003 						sblock_bad, sblock_other,
1004 						force_write);
1005 			}
1006 			if (0 == ret)
1007 				goto corrected_error;
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * for dev_replace, pick good pages and write to the target device.
1013 	 */
1014 	if (sctx->is_dev_replace) {
1015 		success = 1;
1016 		for (page_num = 0; page_num < sblock_bad->page_count;
1017 		     page_num++) {
1018 			int sub_success;
1019 
1020 			sub_success = 0;
1021 			for (mirror_index = 0;
1022 			     mirror_index < BTRFS_MAX_MIRRORS &&
1023 			     sblocks_for_recheck[mirror_index].page_count > 0;
1024 			     mirror_index++) {
1025 				struct scrub_block *sblock_other =
1026 					sblocks_for_recheck + mirror_index;
1027 				struct scrub_page *page_other =
1028 					sblock_other->pagev[page_num];
1029 
1030 				if (!page_other->io_error) {
1031 					ret = scrub_write_page_to_dev_replace(
1032 							sblock_other, page_num);
1033 					if (ret == 0) {
1034 						/* succeeded for this page */
1035 						sub_success = 1;
1036 						break;
1037 					} else {
1038 						btrfs_dev_replace_stats_inc(
1039 							&sctx->dev_root->
1040 							fs_info->dev_replace.
1041 							num_write_errors);
1042 					}
1043 				}
1044 			}
1045 
1046 			if (!sub_success) {
1047 				/*
1048 				 * did not find a mirror to fetch the page
1049 				 * from. scrub_write_page_to_dev_replace()
1050 				 * handles this case (page->io_error), by
1051 				 * filling the block with zeros before
1052 				 * submitting the write request
1053 				 */
1054 				success = 0;
1055 				ret = scrub_write_page_to_dev_replace(
1056 						sblock_bad, page_num);
1057 				if (ret)
1058 					btrfs_dev_replace_stats_inc(
1059 						&sctx->dev_root->fs_info->
1060 						dev_replace.num_write_errors);
1061 			}
1062 		}
1063 
1064 		goto out;
1065 	}
1066 
1067 	/*
1068 	 * for regular scrub, repair those pages that are errored.
1069 	 * In case of I/O errors in the area that is supposed to be
1070 	 * repaired, continue by picking good copies of those pages.
1071 	 * Select the good pages from mirrors to rewrite bad pages from
1072 	 * the area to fix. Afterwards verify the checksum of the block
1073 	 * that is supposed to be repaired. This verification step is
1074 	 * only done for the purpose of statistic counting and for the
1075 	 * final scrub report, whether errors remain.
1076 	 * A perfect algorithm could make use of the checksum and try
1077 	 * all possible combinations of pages from the different mirrors
1078 	 * until the checksum verification succeeds. For example, when
1079 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080 	 * of mirror #2 is readable but the final checksum test fails,
1081 	 * then the 2nd page of mirror #3 could be tried, whether now
1082 	 * the final checksum succeedes. But this would be a rare
1083 	 * exception and is therefore not implemented. At least it is
1084 	 * avoided that the good copy is overwritten.
1085 	 * A more useful improvement would be to pick the sectors
1086 	 * without I/O error based on sector sizes (512 bytes on legacy
1087 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088 	 * mirror could be repaired by taking 512 byte of a different
1089 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090 	 * area are unreadable.
1091 	 */
1092 
1093 	/* can only fix I/O errors from here on */
1094 	if (sblock_bad->no_io_error_seen)
1095 		goto did_not_correct_error;
1096 
1097 	success = 1;
1098 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1099 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1100 
1101 		if (!page_bad->io_error)
1102 			continue;
1103 
1104 		for (mirror_index = 0;
1105 		     mirror_index < BTRFS_MAX_MIRRORS &&
1106 		     sblocks_for_recheck[mirror_index].page_count > 0;
1107 		     mirror_index++) {
1108 			struct scrub_block *sblock_other = sblocks_for_recheck +
1109 							   mirror_index;
1110 			struct scrub_page *page_other = sblock_other->pagev[
1111 							page_num];
1112 
1113 			if (!page_other->io_error) {
1114 				ret = scrub_repair_page_from_good_copy(
1115 					sblock_bad, sblock_other, page_num, 0);
1116 				if (0 == ret) {
1117 					page_bad->io_error = 0;
1118 					break; /* succeeded for this page */
1119 				}
1120 			}
1121 		}
1122 
1123 		if (page_bad->io_error) {
1124 			/* did not find a mirror to copy the page from */
1125 			success = 0;
1126 		}
1127 	}
1128 
1129 	if (success) {
1130 		if (is_metadata || have_csum) {
1131 			/*
1132 			 * need to verify the checksum now that all
1133 			 * sectors on disk are repaired (the write
1134 			 * request for data to be repaired is on its way).
1135 			 * Just be lazy and use scrub_recheck_block()
1136 			 * which re-reads the data before the checksum
1137 			 * is verified, but most likely the data comes out
1138 			 * of the page cache.
1139 			 */
1140 			scrub_recheck_block(fs_info, sblock_bad,
1141 					    is_metadata, have_csum, csum,
1142 					    generation, sctx->csum_size);
1143 			if (!sblock_bad->header_error &&
1144 			    !sblock_bad->checksum_error &&
1145 			    sblock_bad->no_io_error_seen)
1146 				goto corrected_error;
1147 			else
1148 				goto did_not_correct_error;
1149 		} else {
1150 corrected_error:
1151 			spin_lock(&sctx->stat_lock);
1152 			sctx->stat.corrected_errors++;
1153 			spin_unlock(&sctx->stat_lock);
1154 			printk_ratelimited_in_rcu(KERN_ERR
1155 				"btrfs: fixed up error at logical %llu on dev %s\n",
1156 				(unsigned long long)logical,
1157 				rcu_str_deref(dev->name));
1158 		}
1159 	} else {
1160 did_not_correct_error:
1161 		spin_lock(&sctx->stat_lock);
1162 		sctx->stat.uncorrectable_errors++;
1163 		spin_unlock(&sctx->stat_lock);
1164 		printk_ratelimited_in_rcu(KERN_ERR
1165 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1166 			(unsigned long long)logical,
1167 			rcu_str_deref(dev->name));
1168 	}
1169 
1170 out:
1171 	if (sblocks_for_recheck) {
1172 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1173 		     mirror_index++) {
1174 			struct scrub_block *sblock = sblocks_for_recheck +
1175 						     mirror_index;
1176 			int page_index;
1177 
1178 			for (page_index = 0; page_index < sblock->page_count;
1179 			     page_index++) {
1180 				sblock->pagev[page_index]->sblock = NULL;
1181 				scrub_page_put(sblock->pagev[page_index]);
1182 			}
1183 		}
1184 		kfree(sblocks_for_recheck);
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1191 				     struct btrfs_fs_info *fs_info,
1192 				     struct scrub_block *original_sblock,
1193 				     u64 length, u64 logical,
1194 				     struct scrub_block *sblocks_for_recheck)
1195 {
1196 	int page_index;
1197 	int mirror_index;
1198 	int ret;
1199 
1200 	/*
1201 	 * note: the two members ref_count and outstanding_pages
1202 	 * are not used (and not set) in the blocks that are used for
1203 	 * the recheck procedure
1204 	 */
1205 
1206 	page_index = 0;
1207 	while (length > 0) {
1208 		u64 sublen = min_t(u64, length, PAGE_SIZE);
1209 		u64 mapped_length = sublen;
1210 		struct btrfs_bio *bbio = NULL;
1211 
1212 		/*
1213 		 * with a length of PAGE_SIZE, each returned stripe
1214 		 * represents one mirror
1215 		 */
1216 		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1217 				      &mapped_length, &bbio, 0);
1218 		if (ret || !bbio || mapped_length < sublen) {
1219 			kfree(bbio);
1220 			return -EIO;
1221 		}
1222 
1223 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1224 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1225 		     mirror_index++) {
1226 			struct scrub_block *sblock;
1227 			struct scrub_page *page;
1228 
1229 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1230 				continue;
1231 
1232 			sblock = sblocks_for_recheck + mirror_index;
1233 			sblock->sctx = sctx;
1234 			page = kzalloc(sizeof(*page), GFP_NOFS);
1235 			if (!page) {
1236 leave_nomem:
1237 				spin_lock(&sctx->stat_lock);
1238 				sctx->stat.malloc_errors++;
1239 				spin_unlock(&sctx->stat_lock);
1240 				kfree(bbio);
1241 				return -ENOMEM;
1242 			}
1243 			scrub_page_get(page);
1244 			sblock->pagev[page_index] = page;
1245 			page->logical = logical;
1246 			page->physical = bbio->stripes[mirror_index].physical;
1247 			BUG_ON(page_index >= original_sblock->page_count);
1248 			page->physical_for_dev_replace =
1249 				original_sblock->pagev[page_index]->
1250 				physical_for_dev_replace;
1251 			/* for missing devices, dev->bdev is NULL */
1252 			page->dev = bbio->stripes[mirror_index].dev;
1253 			page->mirror_num = mirror_index + 1;
1254 			sblock->page_count++;
1255 			page->page = alloc_page(GFP_NOFS);
1256 			if (!page->page)
1257 				goto leave_nomem;
1258 		}
1259 		kfree(bbio);
1260 		length -= sublen;
1261 		logical += sublen;
1262 		page_index++;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 /*
1269  * this function will check the on disk data for checksum errors, header
1270  * errors and read I/O errors. If any I/O errors happen, the exact pages
1271  * which are errored are marked as being bad. The goal is to enable scrub
1272  * to take those pages that are not errored from all the mirrors so that
1273  * the pages that are errored in the just handled mirror can be repaired.
1274  */
1275 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1276 				struct scrub_block *sblock, int is_metadata,
1277 				int have_csum, u8 *csum, u64 generation,
1278 				u16 csum_size)
1279 {
1280 	int page_num;
1281 
1282 	sblock->no_io_error_seen = 1;
1283 	sblock->header_error = 0;
1284 	sblock->checksum_error = 0;
1285 
1286 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1287 		struct bio *bio;
1288 		struct scrub_page *page = sblock->pagev[page_num];
1289 		DECLARE_COMPLETION_ONSTACK(complete);
1290 
1291 		if (page->dev->bdev == NULL) {
1292 			page->io_error = 1;
1293 			sblock->no_io_error_seen = 0;
1294 			continue;
1295 		}
1296 
1297 		WARN_ON(!page->page);
1298 		bio = bio_alloc(GFP_NOFS, 1);
1299 		if (!bio) {
1300 			page->io_error = 1;
1301 			sblock->no_io_error_seen = 0;
1302 			continue;
1303 		}
1304 		bio->bi_bdev = page->dev->bdev;
1305 		bio->bi_sector = page->physical >> 9;
1306 		bio->bi_end_io = scrub_complete_bio_end_io;
1307 		bio->bi_private = &complete;
1308 
1309 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1310 		btrfsic_submit_bio(READ, bio);
1311 
1312 		/* this will also unplug the queue */
1313 		wait_for_completion(&complete);
1314 
1315 		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1316 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1317 			sblock->no_io_error_seen = 0;
1318 		bio_put(bio);
1319 	}
1320 
1321 	if (sblock->no_io_error_seen)
1322 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1323 					     have_csum, csum, generation,
1324 					     csum_size);
1325 
1326 	return;
1327 }
1328 
1329 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1330 					 struct scrub_block *sblock,
1331 					 int is_metadata, int have_csum,
1332 					 const u8 *csum, u64 generation,
1333 					 u16 csum_size)
1334 {
1335 	int page_num;
1336 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1337 	u32 crc = ~(u32)0;
1338 	struct btrfs_root *root = fs_info->extent_root;
1339 	void *mapped_buffer;
1340 
1341 	WARN_ON(!sblock->pagev[0]->page);
1342 	if (is_metadata) {
1343 		struct btrfs_header *h;
1344 
1345 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1346 		h = (struct btrfs_header *)mapped_buffer;
1347 
1348 		if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr) ||
1349 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1350 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1351 			   BTRFS_UUID_SIZE)) {
1352 			sblock->header_error = 1;
1353 		} else if (generation != le64_to_cpu(h->generation)) {
1354 			sblock->header_error = 1;
1355 			sblock->generation_error = 1;
1356 		}
1357 		csum = h->csum;
1358 	} else {
1359 		if (!have_csum)
1360 			return;
1361 
1362 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1363 	}
1364 
1365 	for (page_num = 0;;) {
1366 		if (page_num == 0 && is_metadata)
1367 			crc = btrfs_csum_data(root,
1368 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1369 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1370 		else
1371 			crc = btrfs_csum_data(root, mapped_buffer, crc,
1372 					      PAGE_SIZE);
1373 
1374 		kunmap_atomic(mapped_buffer);
1375 		page_num++;
1376 		if (page_num >= sblock->page_count)
1377 			break;
1378 		WARN_ON(!sblock->pagev[page_num]->page);
1379 
1380 		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1381 	}
1382 
1383 	btrfs_csum_final(crc, calculated_csum);
1384 	if (memcmp(calculated_csum, csum, csum_size))
1385 		sblock->checksum_error = 1;
1386 }
1387 
1388 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1389 {
1390 	complete((struct completion *)bio->bi_private);
1391 }
1392 
1393 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1394 					     struct scrub_block *sblock_good,
1395 					     int force_write)
1396 {
1397 	int page_num;
1398 	int ret = 0;
1399 
1400 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1401 		int ret_sub;
1402 
1403 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1404 							   sblock_good,
1405 							   page_num,
1406 							   force_write);
1407 		if (ret_sub)
1408 			ret = ret_sub;
1409 	}
1410 
1411 	return ret;
1412 }
1413 
1414 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1415 					    struct scrub_block *sblock_good,
1416 					    int page_num, int force_write)
1417 {
1418 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1419 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1420 
1421 	BUG_ON(page_bad->page == NULL);
1422 	BUG_ON(page_good->page == NULL);
1423 	if (force_write || sblock_bad->header_error ||
1424 	    sblock_bad->checksum_error || page_bad->io_error) {
1425 		struct bio *bio;
1426 		int ret;
1427 		DECLARE_COMPLETION_ONSTACK(complete);
1428 
1429 		if (!page_bad->dev->bdev) {
1430 			printk_ratelimited(KERN_WARNING
1431 				"btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1432 			return -EIO;
1433 		}
1434 
1435 		bio = bio_alloc(GFP_NOFS, 1);
1436 		if (!bio)
1437 			return -EIO;
1438 		bio->bi_bdev = page_bad->dev->bdev;
1439 		bio->bi_sector = page_bad->physical >> 9;
1440 		bio->bi_end_io = scrub_complete_bio_end_io;
1441 		bio->bi_private = &complete;
1442 
1443 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1444 		if (PAGE_SIZE != ret) {
1445 			bio_put(bio);
1446 			return -EIO;
1447 		}
1448 		btrfsic_submit_bio(WRITE, bio);
1449 
1450 		/* this will also unplug the queue */
1451 		wait_for_completion(&complete);
1452 		if (!bio_flagged(bio, BIO_UPTODATE)) {
1453 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1454 				BTRFS_DEV_STAT_WRITE_ERRS);
1455 			btrfs_dev_replace_stats_inc(
1456 				&sblock_bad->sctx->dev_root->fs_info->
1457 				dev_replace.num_write_errors);
1458 			bio_put(bio);
1459 			return -EIO;
1460 		}
1461 		bio_put(bio);
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1468 {
1469 	int page_num;
1470 
1471 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1472 		int ret;
1473 
1474 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1475 		if (ret)
1476 			btrfs_dev_replace_stats_inc(
1477 				&sblock->sctx->dev_root->fs_info->dev_replace.
1478 				num_write_errors);
1479 	}
1480 }
1481 
1482 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1483 					   int page_num)
1484 {
1485 	struct scrub_page *spage = sblock->pagev[page_num];
1486 
1487 	BUG_ON(spage->page == NULL);
1488 	if (spage->io_error) {
1489 		void *mapped_buffer = kmap_atomic(spage->page);
1490 
1491 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1492 		flush_dcache_page(spage->page);
1493 		kunmap_atomic(mapped_buffer);
1494 	}
1495 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1496 }
1497 
1498 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1499 				    struct scrub_page *spage)
1500 {
1501 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1502 	struct scrub_bio *sbio;
1503 	int ret;
1504 
1505 	mutex_lock(&wr_ctx->wr_lock);
1506 again:
1507 	if (!wr_ctx->wr_curr_bio) {
1508 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1509 					      GFP_NOFS);
1510 		if (!wr_ctx->wr_curr_bio) {
1511 			mutex_unlock(&wr_ctx->wr_lock);
1512 			return -ENOMEM;
1513 		}
1514 		wr_ctx->wr_curr_bio->sctx = sctx;
1515 		wr_ctx->wr_curr_bio->page_count = 0;
1516 	}
1517 	sbio = wr_ctx->wr_curr_bio;
1518 	if (sbio->page_count == 0) {
1519 		struct bio *bio;
1520 
1521 		sbio->physical = spage->physical_for_dev_replace;
1522 		sbio->logical = spage->logical;
1523 		sbio->dev = wr_ctx->tgtdev;
1524 		bio = sbio->bio;
1525 		if (!bio) {
1526 			bio = bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1527 			if (!bio) {
1528 				mutex_unlock(&wr_ctx->wr_lock);
1529 				return -ENOMEM;
1530 			}
1531 			sbio->bio = bio;
1532 		}
1533 
1534 		bio->bi_private = sbio;
1535 		bio->bi_end_io = scrub_wr_bio_end_io;
1536 		bio->bi_bdev = sbio->dev->bdev;
1537 		bio->bi_sector = sbio->physical >> 9;
1538 		sbio->err = 0;
1539 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1540 		   spage->physical_for_dev_replace ||
1541 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1542 		   spage->logical) {
1543 		scrub_wr_submit(sctx);
1544 		goto again;
1545 	}
1546 
1547 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1548 	if (ret != PAGE_SIZE) {
1549 		if (sbio->page_count < 1) {
1550 			bio_put(sbio->bio);
1551 			sbio->bio = NULL;
1552 			mutex_unlock(&wr_ctx->wr_lock);
1553 			return -EIO;
1554 		}
1555 		scrub_wr_submit(sctx);
1556 		goto again;
1557 	}
1558 
1559 	sbio->pagev[sbio->page_count] = spage;
1560 	scrub_page_get(spage);
1561 	sbio->page_count++;
1562 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1563 		scrub_wr_submit(sctx);
1564 	mutex_unlock(&wr_ctx->wr_lock);
1565 
1566 	return 0;
1567 }
1568 
1569 static void scrub_wr_submit(struct scrub_ctx *sctx)
1570 {
1571 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1572 	struct scrub_bio *sbio;
1573 
1574 	if (!wr_ctx->wr_curr_bio)
1575 		return;
1576 
1577 	sbio = wr_ctx->wr_curr_bio;
1578 	wr_ctx->wr_curr_bio = NULL;
1579 	WARN_ON(!sbio->bio->bi_bdev);
1580 	scrub_pending_bio_inc(sctx);
1581 	/* process all writes in a single worker thread. Then the block layer
1582 	 * orders the requests before sending them to the driver which
1583 	 * doubled the write performance on spinning disks when measured
1584 	 * with Linux 3.5 */
1585 	btrfsic_submit_bio(WRITE, sbio->bio);
1586 }
1587 
1588 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1589 {
1590 	struct scrub_bio *sbio = bio->bi_private;
1591 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1592 
1593 	sbio->err = err;
1594 	sbio->bio = bio;
1595 
1596 	sbio->work.func = scrub_wr_bio_end_io_worker;
1597 	btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1598 }
1599 
1600 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1601 {
1602 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1603 	struct scrub_ctx *sctx = sbio->sctx;
1604 	int i;
1605 
1606 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1607 	if (sbio->err) {
1608 		struct btrfs_dev_replace *dev_replace =
1609 			&sbio->sctx->dev_root->fs_info->dev_replace;
1610 
1611 		for (i = 0; i < sbio->page_count; i++) {
1612 			struct scrub_page *spage = sbio->pagev[i];
1613 
1614 			spage->io_error = 1;
1615 			btrfs_dev_replace_stats_inc(&dev_replace->
1616 						    num_write_errors);
1617 		}
1618 	}
1619 
1620 	for (i = 0; i < sbio->page_count; i++)
1621 		scrub_page_put(sbio->pagev[i]);
1622 
1623 	bio_put(sbio->bio);
1624 	kfree(sbio);
1625 	scrub_pending_bio_dec(sctx);
1626 }
1627 
1628 static int scrub_checksum(struct scrub_block *sblock)
1629 {
1630 	u64 flags;
1631 	int ret;
1632 
1633 	WARN_ON(sblock->page_count < 1);
1634 	flags = sblock->pagev[0]->flags;
1635 	ret = 0;
1636 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1637 		ret = scrub_checksum_data(sblock);
1638 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1639 		ret = scrub_checksum_tree_block(sblock);
1640 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1641 		(void)scrub_checksum_super(sblock);
1642 	else
1643 		WARN_ON(1);
1644 	if (ret)
1645 		scrub_handle_errored_block(sblock);
1646 
1647 	return ret;
1648 }
1649 
1650 static int scrub_checksum_data(struct scrub_block *sblock)
1651 {
1652 	struct scrub_ctx *sctx = sblock->sctx;
1653 	u8 csum[BTRFS_CSUM_SIZE];
1654 	u8 *on_disk_csum;
1655 	struct page *page;
1656 	void *buffer;
1657 	u32 crc = ~(u32)0;
1658 	int fail = 0;
1659 	struct btrfs_root *root = sctx->dev_root;
1660 	u64 len;
1661 	int index;
1662 
1663 	BUG_ON(sblock->page_count < 1);
1664 	if (!sblock->pagev[0]->have_csum)
1665 		return 0;
1666 
1667 	on_disk_csum = sblock->pagev[0]->csum;
1668 	page = sblock->pagev[0]->page;
1669 	buffer = kmap_atomic(page);
1670 
1671 	len = sctx->sectorsize;
1672 	index = 0;
1673 	for (;;) {
1674 		u64 l = min_t(u64, len, PAGE_SIZE);
1675 
1676 		crc = btrfs_csum_data(root, buffer, crc, l);
1677 		kunmap_atomic(buffer);
1678 		len -= l;
1679 		if (len == 0)
1680 			break;
1681 		index++;
1682 		BUG_ON(index >= sblock->page_count);
1683 		BUG_ON(!sblock->pagev[index]->page);
1684 		page = sblock->pagev[index]->page;
1685 		buffer = kmap_atomic(page);
1686 	}
1687 
1688 	btrfs_csum_final(crc, csum);
1689 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1690 		fail = 1;
1691 
1692 	return fail;
1693 }
1694 
1695 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1696 {
1697 	struct scrub_ctx *sctx = sblock->sctx;
1698 	struct btrfs_header *h;
1699 	struct btrfs_root *root = sctx->dev_root;
1700 	struct btrfs_fs_info *fs_info = root->fs_info;
1701 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1702 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1703 	struct page *page;
1704 	void *mapped_buffer;
1705 	u64 mapped_size;
1706 	void *p;
1707 	u32 crc = ~(u32)0;
1708 	int fail = 0;
1709 	int crc_fail = 0;
1710 	u64 len;
1711 	int index;
1712 
1713 	BUG_ON(sblock->page_count < 1);
1714 	page = sblock->pagev[0]->page;
1715 	mapped_buffer = kmap_atomic(page);
1716 	h = (struct btrfs_header *)mapped_buffer;
1717 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1718 
1719 	/*
1720 	 * we don't use the getter functions here, as we
1721 	 * a) don't have an extent buffer and
1722 	 * b) the page is already kmapped
1723 	 */
1724 
1725 	if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr))
1726 		++fail;
1727 
1728 	if (sblock->pagev[0]->generation != le64_to_cpu(h->generation))
1729 		++fail;
1730 
1731 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1732 		++fail;
1733 
1734 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1735 		   BTRFS_UUID_SIZE))
1736 		++fail;
1737 
1738 	WARN_ON(sctx->nodesize != sctx->leafsize);
1739 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1740 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1741 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1742 	index = 0;
1743 	for (;;) {
1744 		u64 l = min_t(u64, len, mapped_size);
1745 
1746 		crc = btrfs_csum_data(root, p, crc, l);
1747 		kunmap_atomic(mapped_buffer);
1748 		len -= l;
1749 		if (len == 0)
1750 			break;
1751 		index++;
1752 		BUG_ON(index >= sblock->page_count);
1753 		BUG_ON(!sblock->pagev[index]->page);
1754 		page = sblock->pagev[index]->page;
1755 		mapped_buffer = kmap_atomic(page);
1756 		mapped_size = PAGE_SIZE;
1757 		p = mapped_buffer;
1758 	}
1759 
1760 	btrfs_csum_final(crc, calculated_csum);
1761 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1762 		++crc_fail;
1763 
1764 	return fail || crc_fail;
1765 }
1766 
1767 static int scrub_checksum_super(struct scrub_block *sblock)
1768 {
1769 	struct btrfs_super_block *s;
1770 	struct scrub_ctx *sctx = sblock->sctx;
1771 	struct btrfs_root *root = sctx->dev_root;
1772 	struct btrfs_fs_info *fs_info = root->fs_info;
1773 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1774 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1775 	struct page *page;
1776 	void *mapped_buffer;
1777 	u64 mapped_size;
1778 	void *p;
1779 	u32 crc = ~(u32)0;
1780 	int fail_gen = 0;
1781 	int fail_cor = 0;
1782 	u64 len;
1783 	int index;
1784 
1785 	BUG_ON(sblock->page_count < 1);
1786 	page = sblock->pagev[0]->page;
1787 	mapped_buffer = kmap_atomic(page);
1788 	s = (struct btrfs_super_block *)mapped_buffer;
1789 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1790 
1791 	if (sblock->pagev[0]->logical != le64_to_cpu(s->bytenr))
1792 		++fail_cor;
1793 
1794 	if (sblock->pagev[0]->generation != le64_to_cpu(s->generation))
1795 		++fail_gen;
1796 
1797 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1798 		++fail_cor;
1799 
1800 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1801 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1802 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1803 	index = 0;
1804 	for (;;) {
1805 		u64 l = min_t(u64, len, mapped_size);
1806 
1807 		crc = btrfs_csum_data(root, p, crc, l);
1808 		kunmap_atomic(mapped_buffer);
1809 		len -= l;
1810 		if (len == 0)
1811 			break;
1812 		index++;
1813 		BUG_ON(index >= sblock->page_count);
1814 		BUG_ON(!sblock->pagev[index]->page);
1815 		page = sblock->pagev[index]->page;
1816 		mapped_buffer = kmap_atomic(page);
1817 		mapped_size = PAGE_SIZE;
1818 		p = mapped_buffer;
1819 	}
1820 
1821 	btrfs_csum_final(crc, calculated_csum);
1822 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1823 		++fail_cor;
1824 
1825 	if (fail_cor + fail_gen) {
1826 		/*
1827 		 * if we find an error in a super block, we just report it.
1828 		 * They will get written with the next transaction commit
1829 		 * anyway
1830 		 */
1831 		spin_lock(&sctx->stat_lock);
1832 		++sctx->stat.super_errors;
1833 		spin_unlock(&sctx->stat_lock);
1834 		if (fail_cor)
1835 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1836 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1837 		else
1838 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1839 				BTRFS_DEV_STAT_GENERATION_ERRS);
1840 	}
1841 
1842 	return fail_cor + fail_gen;
1843 }
1844 
1845 static void scrub_block_get(struct scrub_block *sblock)
1846 {
1847 	atomic_inc(&sblock->ref_count);
1848 }
1849 
1850 static void scrub_block_put(struct scrub_block *sblock)
1851 {
1852 	if (atomic_dec_and_test(&sblock->ref_count)) {
1853 		int i;
1854 
1855 		for (i = 0; i < sblock->page_count; i++)
1856 			scrub_page_put(sblock->pagev[i]);
1857 		kfree(sblock);
1858 	}
1859 }
1860 
1861 static void scrub_page_get(struct scrub_page *spage)
1862 {
1863 	atomic_inc(&spage->ref_count);
1864 }
1865 
1866 static void scrub_page_put(struct scrub_page *spage)
1867 {
1868 	if (atomic_dec_and_test(&spage->ref_count)) {
1869 		if (spage->page)
1870 			__free_page(spage->page);
1871 		kfree(spage);
1872 	}
1873 }
1874 
1875 static void scrub_submit(struct scrub_ctx *sctx)
1876 {
1877 	struct scrub_bio *sbio;
1878 
1879 	if (sctx->curr == -1)
1880 		return;
1881 
1882 	sbio = sctx->bios[sctx->curr];
1883 	sctx->curr = -1;
1884 	scrub_pending_bio_inc(sctx);
1885 
1886 	if (!sbio->bio->bi_bdev) {
1887 		/*
1888 		 * this case should not happen. If btrfs_map_block() is
1889 		 * wrong, it could happen for dev-replace operations on
1890 		 * missing devices when no mirrors are available, but in
1891 		 * this case it should already fail the mount.
1892 		 * This case is handled correctly (but _very_ slowly).
1893 		 */
1894 		printk_ratelimited(KERN_WARNING
1895 			"btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1896 		bio_endio(sbio->bio, -EIO);
1897 	} else {
1898 		btrfsic_submit_bio(READ, sbio->bio);
1899 	}
1900 }
1901 
1902 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1903 				    struct scrub_page *spage)
1904 {
1905 	struct scrub_block *sblock = spage->sblock;
1906 	struct scrub_bio *sbio;
1907 	int ret;
1908 
1909 again:
1910 	/*
1911 	 * grab a fresh bio or wait for one to become available
1912 	 */
1913 	while (sctx->curr == -1) {
1914 		spin_lock(&sctx->list_lock);
1915 		sctx->curr = sctx->first_free;
1916 		if (sctx->curr != -1) {
1917 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1918 			sctx->bios[sctx->curr]->next_free = -1;
1919 			sctx->bios[sctx->curr]->page_count = 0;
1920 			spin_unlock(&sctx->list_lock);
1921 		} else {
1922 			spin_unlock(&sctx->list_lock);
1923 			wait_event(sctx->list_wait, sctx->first_free != -1);
1924 		}
1925 	}
1926 	sbio = sctx->bios[sctx->curr];
1927 	if (sbio->page_count == 0) {
1928 		struct bio *bio;
1929 
1930 		sbio->physical = spage->physical;
1931 		sbio->logical = spage->logical;
1932 		sbio->dev = spage->dev;
1933 		bio = sbio->bio;
1934 		if (!bio) {
1935 			bio = bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1936 			if (!bio)
1937 				return -ENOMEM;
1938 			sbio->bio = bio;
1939 		}
1940 
1941 		bio->bi_private = sbio;
1942 		bio->bi_end_io = scrub_bio_end_io;
1943 		bio->bi_bdev = sbio->dev->bdev;
1944 		bio->bi_sector = sbio->physical >> 9;
1945 		sbio->err = 0;
1946 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1947 		   spage->physical ||
1948 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1949 		   spage->logical ||
1950 		   sbio->dev != spage->dev) {
1951 		scrub_submit(sctx);
1952 		goto again;
1953 	}
1954 
1955 	sbio->pagev[sbio->page_count] = spage;
1956 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1957 	if (ret != PAGE_SIZE) {
1958 		if (sbio->page_count < 1) {
1959 			bio_put(sbio->bio);
1960 			sbio->bio = NULL;
1961 			return -EIO;
1962 		}
1963 		scrub_submit(sctx);
1964 		goto again;
1965 	}
1966 
1967 	scrub_block_get(sblock); /* one for the page added to the bio */
1968 	atomic_inc(&sblock->outstanding_pages);
1969 	sbio->page_count++;
1970 	if (sbio->page_count == sctx->pages_per_rd_bio)
1971 		scrub_submit(sctx);
1972 
1973 	return 0;
1974 }
1975 
1976 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1977 		       u64 physical, struct btrfs_device *dev, u64 flags,
1978 		       u64 gen, int mirror_num, u8 *csum, int force,
1979 		       u64 physical_for_dev_replace)
1980 {
1981 	struct scrub_block *sblock;
1982 	int index;
1983 
1984 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1985 	if (!sblock) {
1986 		spin_lock(&sctx->stat_lock);
1987 		sctx->stat.malloc_errors++;
1988 		spin_unlock(&sctx->stat_lock);
1989 		return -ENOMEM;
1990 	}
1991 
1992 	/* one ref inside this function, plus one for each page added to
1993 	 * a bio later on */
1994 	atomic_set(&sblock->ref_count, 1);
1995 	sblock->sctx = sctx;
1996 	sblock->no_io_error_seen = 1;
1997 
1998 	for (index = 0; len > 0; index++) {
1999 		struct scrub_page *spage;
2000 		u64 l = min_t(u64, len, PAGE_SIZE);
2001 
2002 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2003 		if (!spage) {
2004 leave_nomem:
2005 			spin_lock(&sctx->stat_lock);
2006 			sctx->stat.malloc_errors++;
2007 			spin_unlock(&sctx->stat_lock);
2008 			scrub_block_put(sblock);
2009 			return -ENOMEM;
2010 		}
2011 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2012 		scrub_page_get(spage);
2013 		sblock->pagev[index] = spage;
2014 		spage->sblock = sblock;
2015 		spage->dev = dev;
2016 		spage->flags = flags;
2017 		spage->generation = gen;
2018 		spage->logical = logical;
2019 		spage->physical = physical;
2020 		spage->physical_for_dev_replace = physical_for_dev_replace;
2021 		spage->mirror_num = mirror_num;
2022 		if (csum) {
2023 			spage->have_csum = 1;
2024 			memcpy(spage->csum, csum, sctx->csum_size);
2025 		} else {
2026 			spage->have_csum = 0;
2027 		}
2028 		sblock->page_count++;
2029 		spage->page = alloc_page(GFP_NOFS);
2030 		if (!spage->page)
2031 			goto leave_nomem;
2032 		len -= l;
2033 		logical += l;
2034 		physical += l;
2035 		physical_for_dev_replace += l;
2036 	}
2037 
2038 	WARN_ON(sblock->page_count == 0);
2039 	for (index = 0; index < sblock->page_count; index++) {
2040 		struct scrub_page *spage = sblock->pagev[index];
2041 		int ret;
2042 
2043 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2044 		if (ret) {
2045 			scrub_block_put(sblock);
2046 			return ret;
2047 		}
2048 	}
2049 
2050 	if (force)
2051 		scrub_submit(sctx);
2052 
2053 	/* last one frees, either here or in bio completion for last page */
2054 	scrub_block_put(sblock);
2055 	return 0;
2056 }
2057 
2058 static void scrub_bio_end_io(struct bio *bio, int err)
2059 {
2060 	struct scrub_bio *sbio = bio->bi_private;
2061 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2062 
2063 	sbio->err = err;
2064 	sbio->bio = bio;
2065 
2066 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2067 }
2068 
2069 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2070 {
2071 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2072 	struct scrub_ctx *sctx = sbio->sctx;
2073 	int i;
2074 
2075 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2076 	if (sbio->err) {
2077 		for (i = 0; i < sbio->page_count; i++) {
2078 			struct scrub_page *spage = sbio->pagev[i];
2079 
2080 			spage->io_error = 1;
2081 			spage->sblock->no_io_error_seen = 0;
2082 		}
2083 	}
2084 
2085 	/* now complete the scrub_block items that have all pages completed */
2086 	for (i = 0; i < sbio->page_count; i++) {
2087 		struct scrub_page *spage = sbio->pagev[i];
2088 		struct scrub_block *sblock = spage->sblock;
2089 
2090 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2091 			scrub_block_complete(sblock);
2092 		scrub_block_put(sblock);
2093 	}
2094 
2095 	bio_put(sbio->bio);
2096 	sbio->bio = NULL;
2097 	spin_lock(&sctx->list_lock);
2098 	sbio->next_free = sctx->first_free;
2099 	sctx->first_free = sbio->index;
2100 	spin_unlock(&sctx->list_lock);
2101 
2102 	if (sctx->is_dev_replace &&
2103 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2104 		mutex_lock(&sctx->wr_ctx.wr_lock);
2105 		scrub_wr_submit(sctx);
2106 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2107 	}
2108 
2109 	scrub_pending_bio_dec(sctx);
2110 }
2111 
2112 static void scrub_block_complete(struct scrub_block *sblock)
2113 {
2114 	if (!sblock->no_io_error_seen) {
2115 		scrub_handle_errored_block(sblock);
2116 	} else {
2117 		/*
2118 		 * if has checksum error, write via repair mechanism in
2119 		 * dev replace case, otherwise write here in dev replace
2120 		 * case.
2121 		 */
2122 		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2123 			scrub_write_block_to_dev_replace(sblock);
2124 	}
2125 }
2126 
2127 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2128 			   u8 *csum)
2129 {
2130 	struct btrfs_ordered_sum *sum = NULL;
2131 	int ret = 0;
2132 	unsigned long i;
2133 	unsigned long num_sectors;
2134 
2135 	while (!list_empty(&sctx->csum_list)) {
2136 		sum = list_first_entry(&sctx->csum_list,
2137 				       struct btrfs_ordered_sum, list);
2138 		if (sum->bytenr > logical)
2139 			return 0;
2140 		if (sum->bytenr + sum->len > logical)
2141 			break;
2142 
2143 		++sctx->stat.csum_discards;
2144 		list_del(&sum->list);
2145 		kfree(sum);
2146 		sum = NULL;
2147 	}
2148 	if (!sum)
2149 		return 0;
2150 
2151 	num_sectors = sum->len / sctx->sectorsize;
2152 	for (i = 0; i < num_sectors; ++i) {
2153 		if (sum->sums[i].bytenr == logical) {
2154 			memcpy(csum, &sum->sums[i].sum, sctx->csum_size);
2155 			ret = 1;
2156 			break;
2157 		}
2158 	}
2159 	if (ret && i == num_sectors - 1) {
2160 		list_del(&sum->list);
2161 		kfree(sum);
2162 	}
2163 	return ret;
2164 }
2165 
2166 /* scrub extent tries to collect up to 64 kB for each bio */
2167 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2168 			u64 physical, struct btrfs_device *dev, u64 flags,
2169 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2170 {
2171 	int ret;
2172 	u8 csum[BTRFS_CSUM_SIZE];
2173 	u32 blocksize;
2174 
2175 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2176 		blocksize = sctx->sectorsize;
2177 		spin_lock(&sctx->stat_lock);
2178 		sctx->stat.data_extents_scrubbed++;
2179 		sctx->stat.data_bytes_scrubbed += len;
2180 		spin_unlock(&sctx->stat_lock);
2181 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2182 		WARN_ON(sctx->nodesize != sctx->leafsize);
2183 		blocksize = sctx->nodesize;
2184 		spin_lock(&sctx->stat_lock);
2185 		sctx->stat.tree_extents_scrubbed++;
2186 		sctx->stat.tree_bytes_scrubbed += len;
2187 		spin_unlock(&sctx->stat_lock);
2188 	} else {
2189 		blocksize = sctx->sectorsize;
2190 		WARN_ON(1);
2191 	}
2192 
2193 	while (len) {
2194 		u64 l = min_t(u64, len, blocksize);
2195 		int have_csum = 0;
2196 
2197 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2198 			/* push csums to sbio */
2199 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2200 			if (have_csum == 0)
2201 				++sctx->stat.no_csum;
2202 			if (sctx->is_dev_replace && !have_csum) {
2203 				ret = copy_nocow_pages(sctx, logical, l,
2204 						       mirror_num,
2205 						      physical_for_dev_replace);
2206 				goto behind_scrub_pages;
2207 			}
2208 		}
2209 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2210 				  mirror_num, have_csum ? csum : NULL, 0,
2211 				  physical_for_dev_replace);
2212 behind_scrub_pages:
2213 		if (ret)
2214 			return ret;
2215 		len -= l;
2216 		logical += l;
2217 		physical += l;
2218 		physical_for_dev_replace += l;
2219 	}
2220 	return 0;
2221 }
2222 
2223 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2224 					   struct map_lookup *map,
2225 					   struct btrfs_device *scrub_dev,
2226 					   int num, u64 base, u64 length,
2227 					   int is_dev_replace)
2228 {
2229 	struct btrfs_path *path;
2230 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2231 	struct btrfs_root *root = fs_info->extent_root;
2232 	struct btrfs_root *csum_root = fs_info->csum_root;
2233 	struct btrfs_extent_item *extent;
2234 	struct blk_plug plug;
2235 	u64 flags;
2236 	int ret;
2237 	int slot;
2238 	int i;
2239 	u64 nstripes;
2240 	struct extent_buffer *l;
2241 	struct btrfs_key key;
2242 	u64 physical;
2243 	u64 logical;
2244 	u64 generation;
2245 	int mirror_num;
2246 	struct reada_control *reada1;
2247 	struct reada_control *reada2;
2248 	struct btrfs_key key_start;
2249 	struct btrfs_key key_end;
2250 	u64 increment = map->stripe_len;
2251 	u64 offset;
2252 	u64 extent_logical;
2253 	u64 extent_physical;
2254 	u64 extent_len;
2255 	struct btrfs_device *extent_dev;
2256 	int extent_mirror_num;
2257 
2258 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2259 			 BTRFS_BLOCK_GROUP_RAID6)) {
2260 		if (num >= nr_data_stripes(map)) {
2261 			return 0;
2262 		}
2263 	}
2264 
2265 	nstripes = length;
2266 	offset = 0;
2267 	do_div(nstripes, map->stripe_len);
2268 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2269 		offset = map->stripe_len * num;
2270 		increment = map->stripe_len * map->num_stripes;
2271 		mirror_num = 1;
2272 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2273 		int factor = map->num_stripes / map->sub_stripes;
2274 		offset = map->stripe_len * (num / map->sub_stripes);
2275 		increment = map->stripe_len * factor;
2276 		mirror_num = num % map->sub_stripes + 1;
2277 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2278 		increment = map->stripe_len;
2279 		mirror_num = num % map->num_stripes + 1;
2280 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2281 		increment = map->stripe_len;
2282 		mirror_num = num % map->num_stripes + 1;
2283 	} else {
2284 		increment = map->stripe_len;
2285 		mirror_num = 1;
2286 	}
2287 
2288 	path = btrfs_alloc_path();
2289 	if (!path)
2290 		return -ENOMEM;
2291 
2292 	/*
2293 	 * work on commit root. The related disk blocks are static as
2294 	 * long as COW is applied. This means, it is save to rewrite
2295 	 * them to repair disk errors without any race conditions
2296 	 */
2297 	path->search_commit_root = 1;
2298 	path->skip_locking = 1;
2299 
2300 	/*
2301 	 * trigger the readahead for extent tree csum tree and wait for
2302 	 * completion. During readahead, the scrub is officially paused
2303 	 * to not hold off transaction commits
2304 	 */
2305 	logical = base + offset;
2306 
2307 	wait_event(sctx->list_wait,
2308 		   atomic_read(&sctx->bios_in_flight) == 0);
2309 	atomic_inc(&fs_info->scrubs_paused);
2310 	wake_up(&fs_info->scrub_pause_wait);
2311 
2312 	/* FIXME it might be better to start readahead at commit root */
2313 	key_start.objectid = logical;
2314 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2315 	key_start.offset = (u64)0;
2316 	key_end.objectid = base + offset + nstripes * increment;
2317 	key_end.type = BTRFS_EXTENT_ITEM_KEY;
2318 	key_end.offset = (u64)0;
2319 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2320 
2321 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2322 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2323 	key_start.offset = logical;
2324 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2325 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2326 	key_end.offset = base + offset + nstripes * increment;
2327 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2328 
2329 	if (!IS_ERR(reada1))
2330 		btrfs_reada_wait(reada1);
2331 	if (!IS_ERR(reada2))
2332 		btrfs_reada_wait(reada2);
2333 
2334 	mutex_lock(&fs_info->scrub_lock);
2335 	while (atomic_read(&fs_info->scrub_pause_req)) {
2336 		mutex_unlock(&fs_info->scrub_lock);
2337 		wait_event(fs_info->scrub_pause_wait,
2338 		   atomic_read(&fs_info->scrub_pause_req) == 0);
2339 		mutex_lock(&fs_info->scrub_lock);
2340 	}
2341 	atomic_dec(&fs_info->scrubs_paused);
2342 	mutex_unlock(&fs_info->scrub_lock);
2343 	wake_up(&fs_info->scrub_pause_wait);
2344 
2345 	/*
2346 	 * collect all data csums for the stripe to avoid seeking during
2347 	 * the scrub. This might currently (crc32) end up to be about 1MB
2348 	 */
2349 	blk_start_plug(&plug);
2350 
2351 	/*
2352 	 * now find all extents for each stripe and scrub them
2353 	 */
2354 	logical = base + offset;
2355 	physical = map->stripes[num].physical;
2356 	ret = 0;
2357 	for (i = 0; i < nstripes; ++i) {
2358 		/*
2359 		 * canceled?
2360 		 */
2361 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2362 		    atomic_read(&sctx->cancel_req)) {
2363 			ret = -ECANCELED;
2364 			goto out;
2365 		}
2366 		/*
2367 		 * check to see if we have to pause
2368 		 */
2369 		if (atomic_read(&fs_info->scrub_pause_req)) {
2370 			/* push queued extents */
2371 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2372 			scrub_submit(sctx);
2373 			mutex_lock(&sctx->wr_ctx.wr_lock);
2374 			scrub_wr_submit(sctx);
2375 			mutex_unlock(&sctx->wr_ctx.wr_lock);
2376 			wait_event(sctx->list_wait,
2377 				   atomic_read(&sctx->bios_in_flight) == 0);
2378 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2379 			atomic_inc(&fs_info->scrubs_paused);
2380 			wake_up(&fs_info->scrub_pause_wait);
2381 			mutex_lock(&fs_info->scrub_lock);
2382 			while (atomic_read(&fs_info->scrub_pause_req)) {
2383 				mutex_unlock(&fs_info->scrub_lock);
2384 				wait_event(fs_info->scrub_pause_wait,
2385 				   atomic_read(&fs_info->scrub_pause_req) == 0);
2386 				mutex_lock(&fs_info->scrub_lock);
2387 			}
2388 			atomic_dec(&fs_info->scrubs_paused);
2389 			mutex_unlock(&fs_info->scrub_lock);
2390 			wake_up(&fs_info->scrub_pause_wait);
2391 		}
2392 
2393 		ret = btrfs_lookup_csums_range(csum_root, logical,
2394 					       logical + map->stripe_len - 1,
2395 					       &sctx->csum_list, 1);
2396 		if (ret)
2397 			goto out;
2398 
2399 		key.objectid = logical;
2400 		key.type = BTRFS_EXTENT_ITEM_KEY;
2401 		key.offset = (u64)0;
2402 
2403 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2404 		if (ret < 0)
2405 			goto out;
2406 		if (ret > 0) {
2407 			ret = btrfs_previous_item(root, path, 0,
2408 						  BTRFS_EXTENT_ITEM_KEY);
2409 			if (ret < 0)
2410 				goto out;
2411 			if (ret > 0) {
2412 				/* there's no smaller item, so stick with the
2413 				 * larger one */
2414 				btrfs_release_path(path);
2415 				ret = btrfs_search_slot(NULL, root, &key,
2416 							path, 0, 0);
2417 				if (ret < 0)
2418 					goto out;
2419 			}
2420 		}
2421 
2422 		while (1) {
2423 			l = path->nodes[0];
2424 			slot = path->slots[0];
2425 			if (slot >= btrfs_header_nritems(l)) {
2426 				ret = btrfs_next_leaf(root, path);
2427 				if (ret == 0)
2428 					continue;
2429 				if (ret < 0)
2430 					goto out;
2431 
2432 				break;
2433 			}
2434 			btrfs_item_key_to_cpu(l, &key, slot);
2435 
2436 			if (key.objectid + key.offset <= logical)
2437 				goto next;
2438 
2439 			if (key.objectid >= logical + map->stripe_len)
2440 				break;
2441 
2442 			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
2443 				goto next;
2444 
2445 			extent = btrfs_item_ptr(l, slot,
2446 						struct btrfs_extent_item);
2447 			flags = btrfs_extent_flags(l, extent);
2448 			generation = btrfs_extent_generation(l, extent);
2449 
2450 			if (key.objectid < logical &&
2451 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2452 				printk(KERN_ERR
2453 				       "btrfs scrub: tree block %llu spanning "
2454 				       "stripes, ignored. logical=%llu\n",
2455 				       (unsigned long long)key.objectid,
2456 				       (unsigned long long)logical);
2457 				goto next;
2458 			}
2459 
2460 			/*
2461 			 * trim extent to this stripe
2462 			 */
2463 			if (key.objectid < logical) {
2464 				key.offset -= logical - key.objectid;
2465 				key.objectid = logical;
2466 			}
2467 			if (key.objectid + key.offset >
2468 			    logical + map->stripe_len) {
2469 				key.offset = logical + map->stripe_len -
2470 					     key.objectid;
2471 			}
2472 
2473 			extent_logical = key.objectid;
2474 			extent_physical = key.objectid - logical + physical;
2475 			extent_len = key.offset;
2476 			extent_dev = scrub_dev;
2477 			extent_mirror_num = mirror_num;
2478 			if (is_dev_replace)
2479 				scrub_remap_extent(fs_info, extent_logical,
2480 						   extent_len, &extent_physical,
2481 						   &extent_dev,
2482 						   &extent_mirror_num);
2483 			ret = scrub_extent(sctx, extent_logical, extent_len,
2484 					   extent_physical, extent_dev, flags,
2485 					   generation, extent_mirror_num,
2486 					   key.objectid - logical + physical);
2487 			if (ret)
2488 				goto out;
2489 
2490 next:
2491 			path->slots[0]++;
2492 		}
2493 		btrfs_release_path(path);
2494 		logical += increment;
2495 		physical += map->stripe_len;
2496 		spin_lock(&sctx->stat_lock);
2497 		sctx->stat.last_physical = physical;
2498 		spin_unlock(&sctx->stat_lock);
2499 	}
2500 out:
2501 	/* push queued extents */
2502 	scrub_submit(sctx);
2503 	mutex_lock(&sctx->wr_ctx.wr_lock);
2504 	scrub_wr_submit(sctx);
2505 	mutex_unlock(&sctx->wr_ctx.wr_lock);
2506 
2507 	blk_finish_plug(&plug);
2508 	btrfs_free_path(path);
2509 	return ret < 0 ? ret : 0;
2510 }
2511 
2512 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2513 					  struct btrfs_device *scrub_dev,
2514 					  u64 chunk_tree, u64 chunk_objectid,
2515 					  u64 chunk_offset, u64 length,
2516 					  u64 dev_offset, int is_dev_replace)
2517 {
2518 	struct btrfs_mapping_tree *map_tree =
2519 		&sctx->dev_root->fs_info->mapping_tree;
2520 	struct map_lookup *map;
2521 	struct extent_map *em;
2522 	int i;
2523 	int ret = 0;
2524 
2525 	read_lock(&map_tree->map_tree.lock);
2526 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2527 	read_unlock(&map_tree->map_tree.lock);
2528 
2529 	if (!em)
2530 		return -EINVAL;
2531 
2532 	map = (struct map_lookup *)em->bdev;
2533 	if (em->start != chunk_offset)
2534 		goto out;
2535 
2536 	if (em->len < length)
2537 		goto out;
2538 
2539 	for (i = 0; i < map->num_stripes; ++i) {
2540 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2541 		    map->stripes[i].physical == dev_offset) {
2542 			ret = scrub_stripe(sctx, map, scrub_dev, i,
2543 					   chunk_offset, length,
2544 					   is_dev_replace);
2545 			if (ret)
2546 				goto out;
2547 		}
2548 	}
2549 out:
2550 	free_extent_map(em);
2551 
2552 	return ret;
2553 }
2554 
2555 static noinline_for_stack
2556 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2557 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2558 			   int is_dev_replace)
2559 {
2560 	struct btrfs_dev_extent *dev_extent = NULL;
2561 	struct btrfs_path *path;
2562 	struct btrfs_root *root = sctx->dev_root;
2563 	struct btrfs_fs_info *fs_info = root->fs_info;
2564 	u64 length;
2565 	u64 chunk_tree;
2566 	u64 chunk_objectid;
2567 	u64 chunk_offset;
2568 	int ret;
2569 	int slot;
2570 	struct extent_buffer *l;
2571 	struct btrfs_key key;
2572 	struct btrfs_key found_key;
2573 	struct btrfs_block_group_cache *cache;
2574 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2575 
2576 	path = btrfs_alloc_path();
2577 	if (!path)
2578 		return -ENOMEM;
2579 
2580 	path->reada = 2;
2581 	path->search_commit_root = 1;
2582 	path->skip_locking = 1;
2583 
2584 	key.objectid = scrub_dev->devid;
2585 	key.offset = 0ull;
2586 	key.type = BTRFS_DEV_EXTENT_KEY;
2587 
2588 	while (1) {
2589 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2590 		if (ret < 0)
2591 			break;
2592 		if (ret > 0) {
2593 			if (path->slots[0] >=
2594 			    btrfs_header_nritems(path->nodes[0])) {
2595 				ret = btrfs_next_leaf(root, path);
2596 				if (ret)
2597 					break;
2598 			}
2599 		}
2600 
2601 		l = path->nodes[0];
2602 		slot = path->slots[0];
2603 
2604 		btrfs_item_key_to_cpu(l, &found_key, slot);
2605 
2606 		if (found_key.objectid != scrub_dev->devid)
2607 			break;
2608 
2609 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2610 			break;
2611 
2612 		if (found_key.offset >= end)
2613 			break;
2614 
2615 		if (found_key.offset < key.offset)
2616 			break;
2617 
2618 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2619 		length = btrfs_dev_extent_length(l, dev_extent);
2620 
2621 		if (found_key.offset + length <= start) {
2622 			key.offset = found_key.offset + length;
2623 			btrfs_release_path(path);
2624 			continue;
2625 		}
2626 
2627 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2628 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2629 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2630 
2631 		/*
2632 		 * get a reference on the corresponding block group to prevent
2633 		 * the chunk from going away while we scrub it
2634 		 */
2635 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2636 		if (!cache) {
2637 			ret = -ENOENT;
2638 			break;
2639 		}
2640 		dev_replace->cursor_right = found_key.offset + length;
2641 		dev_replace->cursor_left = found_key.offset;
2642 		dev_replace->item_needs_writeback = 1;
2643 		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2644 				  chunk_offset, length, found_key.offset,
2645 				  is_dev_replace);
2646 
2647 		/*
2648 		 * flush, submit all pending read and write bios, afterwards
2649 		 * wait for them.
2650 		 * Note that in the dev replace case, a read request causes
2651 		 * write requests that are submitted in the read completion
2652 		 * worker. Therefore in the current situation, it is required
2653 		 * that all write requests are flushed, so that all read and
2654 		 * write requests are really completed when bios_in_flight
2655 		 * changes to 0.
2656 		 */
2657 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2658 		scrub_submit(sctx);
2659 		mutex_lock(&sctx->wr_ctx.wr_lock);
2660 		scrub_wr_submit(sctx);
2661 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2662 
2663 		wait_event(sctx->list_wait,
2664 			   atomic_read(&sctx->bios_in_flight) == 0);
2665 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2666 		atomic_inc(&fs_info->scrubs_paused);
2667 		wake_up(&fs_info->scrub_pause_wait);
2668 		wait_event(sctx->list_wait,
2669 			   atomic_read(&sctx->workers_pending) == 0);
2670 
2671 		mutex_lock(&fs_info->scrub_lock);
2672 		while (atomic_read(&fs_info->scrub_pause_req)) {
2673 			mutex_unlock(&fs_info->scrub_lock);
2674 			wait_event(fs_info->scrub_pause_wait,
2675 			   atomic_read(&fs_info->scrub_pause_req) == 0);
2676 			mutex_lock(&fs_info->scrub_lock);
2677 		}
2678 		atomic_dec(&fs_info->scrubs_paused);
2679 		mutex_unlock(&fs_info->scrub_lock);
2680 		wake_up(&fs_info->scrub_pause_wait);
2681 
2682 		dev_replace->cursor_left = dev_replace->cursor_right;
2683 		dev_replace->item_needs_writeback = 1;
2684 		btrfs_put_block_group(cache);
2685 		if (ret)
2686 			break;
2687 		if (is_dev_replace &&
2688 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2689 			ret = -EIO;
2690 			break;
2691 		}
2692 		if (sctx->stat.malloc_errors > 0) {
2693 			ret = -ENOMEM;
2694 			break;
2695 		}
2696 
2697 		key.offset = found_key.offset + length;
2698 		btrfs_release_path(path);
2699 	}
2700 
2701 	btrfs_free_path(path);
2702 
2703 	/*
2704 	 * ret can still be 1 from search_slot or next_leaf,
2705 	 * that's not an error
2706 	 */
2707 	return ret < 0 ? ret : 0;
2708 }
2709 
2710 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2711 					   struct btrfs_device *scrub_dev)
2712 {
2713 	int	i;
2714 	u64	bytenr;
2715 	u64	gen;
2716 	int	ret;
2717 	struct btrfs_root *root = sctx->dev_root;
2718 
2719 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2720 		return -EIO;
2721 
2722 	gen = root->fs_info->last_trans_committed;
2723 
2724 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2725 		bytenr = btrfs_sb_offset(i);
2726 		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2727 			break;
2728 
2729 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2730 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2731 				  NULL, 1, bytenr);
2732 		if (ret)
2733 			return ret;
2734 	}
2735 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2736 
2737 	return 0;
2738 }
2739 
2740 /*
2741  * get a reference count on fs_info->scrub_workers. start worker if necessary
2742  */
2743 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2744 						int is_dev_replace)
2745 {
2746 	int ret = 0;
2747 
2748 	mutex_lock(&fs_info->scrub_lock);
2749 	if (fs_info->scrub_workers_refcnt == 0) {
2750 		if (is_dev_replace)
2751 			btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2752 					&fs_info->generic_worker);
2753 		else
2754 			btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2755 					fs_info->thread_pool_size,
2756 					&fs_info->generic_worker);
2757 		fs_info->scrub_workers.idle_thresh = 4;
2758 		ret = btrfs_start_workers(&fs_info->scrub_workers);
2759 		if (ret)
2760 			goto out;
2761 		btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2762 				   "scrubwrc",
2763 				   fs_info->thread_pool_size,
2764 				   &fs_info->generic_worker);
2765 		fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2766 		ret = btrfs_start_workers(
2767 				&fs_info->scrub_wr_completion_workers);
2768 		if (ret)
2769 			goto out;
2770 		btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2771 				   &fs_info->generic_worker);
2772 		ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2773 		if (ret)
2774 			goto out;
2775 	}
2776 	++fs_info->scrub_workers_refcnt;
2777 out:
2778 	mutex_unlock(&fs_info->scrub_lock);
2779 
2780 	return ret;
2781 }
2782 
2783 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2784 {
2785 	mutex_lock(&fs_info->scrub_lock);
2786 	if (--fs_info->scrub_workers_refcnt == 0) {
2787 		btrfs_stop_workers(&fs_info->scrub_workers);
2788 		btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2789 		btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2790 	}
2791 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2792 	mutex_unlock(&fs_info->scrub_lock);
2793 }
2794 
2795 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2796 		    u64 end, struct btrfs_scrub_progress *progress,
2797 		    int readonly, int is_dev_replace)
2798 {
2799 	struct scrub_ctx *sctx;
2800 	int ret;
2801 	struct btrfs_device *dev;
2802 
2803 	if (btrfs_fs_closing(fs_info))
2804 		return -EINVAL;
2805 
2806 	/*
2807 	 * check some assumptions
2808 	 */
2809 	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2810 		printk(KERN_ERR
2811 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2812 		       fs_info->chunk_root->nodesize,
2813 		       fs_info->chunk_root->leafsize);
2814 		return -EINVAL;
2815 	}
2816 
2817 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2818 		/*
2819 		 * in this case scrub is unable to calculate the checksum
2820 		 * the way scrub is implemented. Do not handle this
2821 		 * situation at all because it won't ever happen.
2822 		 */
2823 		printk(KERN_ERR
2824 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2825 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2826 		return -EINVAL;
2827 	}
2828 
2829 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2830 		/* not supported for data w/o checksums */
2831 		printk(KERN_ERR
2832 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2833 		       fs_info->chunk_root->sectorsize,
2834 		       (unsigned long long)PAGE_SIZE);
2835 		return -EINVAL;
2836 	}
2837 
2838 	if (fs_info->chunk_root->nodesize >
2839 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2840 	    fs_info->chunk_root->sectorsize >
2841 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2842 		/*
2843 		 * would exhaust the array bounds of pagev member in
2844 		 * struct scrub_block
2845 		 */
2846 		pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2847 		       fs_info->chunk_root->nodesize,
2848 		       SCRUB_MAX_PAGES_PER_BLOCK,
2849 		       fs_info->chunk_root->sectorsize,
2850 		       SCRUB_MAX_PAGES_PER_BLOCK);
2851 		return -EINVAL;
2852 	}
2853 
2854 	ret = scrub_workers_get(fs_info, is_dev_replace);
2855 	if (ret)
2856 		return ret;
2857 
2858 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2859 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2860 	if (!dev || (dev->missing && !is_dev_replace)) {
2861 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2862 		scrub_workers_put(fs_info);
2863 		return -ENODEV;
2864 	}
2865 	mutex_lock(&fs_info->scrub_lock);
2866 
2867 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2868 		mutex_unlock(&fs_info->scrub_lock);
2869 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2870 		scrub_workers_put(fs_info);
2871 		return -EIO;
2872 	}
2873 
2874 	btrfs_dev_replace_lock(&fs_info->dev_replace);
2875 	if (dev->scrub_device ||
2876 	    (!is_dev_replace &&
2877 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2878 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2879 		mutex_unlock(&fs_info->scrub_lock);
2880 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2881 		scrub_workers_put(fs_info);
2882 		return -EINPROGRESS;
2883 	}
2884 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2885 	sctx = scrub_setup_ctx(dev, is_dev_replace);
2886 	if (IS_ERR(sctx)) {
2887 		mutex_unlock(&fs_info->scrub_lock);
2888 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2889 		scrub_workers_put(fs_info);
2890 		return PTR_ERR(sctx);
2891 	}
2892 	sctx->readonly = readonly;
2893 	dev->scrub_device = sctx;
2894 
2895 	atomic_inc(&fs_info->scrubs_running);
2896 	mutex_unlock(&fs_info->scrub_lock);
2897 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2898 
2899 	if (!is_dev_replace) {
2900 		down_read(&fs_info->scrub_super_lock);
2901 		ret = scrub_supers(sctx, dev);
2902 		up_read(&fs_info->scrub_super_lock);
2903 	}
2904 
2905 	if (!ret)
2906 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
2907 					     is_dev_replace);
2908 
2909 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2910 	atomic_dec(&fs_info->scrubs_running);
2911 	wake_up(&fs_info->scrub_pause_wait);
2912 
2913 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2914 
2915 	if (progress)
2916 		memcpy(progress, &sctx->stat, sizeof(*progress));
2917 
2918 	mutex_lock(&fs_info->scrub_lock);
2919 	dev->scrub_device = NULL;
2920 	mutex_unlock(&fs_info->scrub_lock);
2921 
2922 	scrub_free_ctx(sctx);
2923 	scrub_workers_put(fs_info);
2924 
2925 	return ret;
2926 }
2927 
2928 void btrfs_scrub_pause(struct btrfs_root *root)
2929 {
2930 	struct btrfs_fs_info *fs_info = root->fs_info;
2931 
2932 	mutex_lock(&fs_info->scrub_lock);
2933 	atomic_inc(&fs_info->scrub_pause_req);
2934 	while (atomic_read(&fs_info->scrubs_paused) !=
2935 	       atomic_read(&fs_info->scrubs_running)) {
2936 		mutex_unlock(&fs_info->scrub_lock);
2937 		wait_event(fs_info->scrub_pause_wait,
2938 			   atomic_read(&fs_info->scrubs_paused) ==
2939 			   atomic_read(&fs_info->scrubs_running));
2940 		mutex_lock(&fs_info->scrub_lock);
2941 	}
2942 	mutex_unlock(&fs_info->scrub_lock);
2943 }
2944 
2945 void btrfs_scrub_continue(struct btrfs_root *root)
2946 {
2947 	struct btrfs_fs_info *fs_info = root->fs_info;
2948 
2949 	atomic_dec(&fs_info->scrub_pause_req);
2950 	wake_up(&fs_info->scrub_pause_wait);
2951 }
2952 
2953 void btrfs_scrub_pause_super(struct btrfs_root *root)
2954 {
2955 	down_write(&root->fs_info->scrub_super_lock);
2956 }
2957 
2958 void btrfs_scrub_continue_super(struct btrfs_root *root)
2959 {
2960 	up_write(&root->fs_info->scrub_super_lock);
2961 }
2962 
2963 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2964 {
2965 	mutex_lock(&fs_info->scrub_lock);
2966 	if (!atomic_read(&fs_info->scrubs_running)) {
2967 		mutex_unlock(&fs_info->scrub_lock);
2968 		return -ENOTCONN;
2969 	}
2970 
2971 	atomic_inc(&fs_info->scrub_cancel_req);
2972 	while (atomic_read(&fs_info->scrubs_running)) {
2973 		mutex_unlock(&fs_info->scrub_lock);
2974 		wait_event(fs_info->scrub_pause_wait,
2975 			   atomic_read(&fs_info->scrubs_running) == 0);
2976 		mutex_lock(&fs_info->scrub_lock);
2977 	}
2978 	atomic_dec(&fs_info->scrub_cancel_req);
2979 	mutex_unlock(&fs_info->scrub_lock);
2980 
2981 	return 0;
2982 }
2983 
2984 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
2985 			   struct btrfs_device *dev)
2986 {
2987 	struct scrub_ctx *sctx;
2988 
2989 	mutex_lock(&fs_info->scrub_lock);
2990 	sctx = dev->scrub_device;
2991 	if (!sctx) {
2992 		mutex_unlock(&fs_info->scrub_lock);
2993 		return -ENOTCONN;
2994 	}
2995 	atomic_inc(&sctx->cancel_req);
2996 	while (dev->scrub_device) {
2997 		mutex_unlock(&fs_info->scrub_lock);
2998 		wait_event(fs_info->scrub_pause_wait,
2999 			   dev->scrub_device == NULL);
3000 		mutex_lock(&fs_info->scrub_lock);
3001 	}
3002 	mutex_unlock(&fs_info->scrub_lock);
3003 
3004 	return 0;
3005 }
3006 
3007 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
3008 {
3009 	struct btrfs_fs_info *fs_info = root->fs_info;
3010 	struct btrfs_device *dev;
3011 	int ret;
3012 
3013 	/*
3014 	 * we have to hold the device_list_mutex here so the device
3015 	 * does not go away in cancel_dev. FIXME: find a better solution
3016 	 */
3017 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3019 	if (!dev) {
3020 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3021 		return -ENODEV;
3022 	}
3023 	ret = btrfs_scrub_cancel_dev(fs_info, dev);
3024 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3025 
3026 	return ret;
3027 }
3028 
3029 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3030 			 struct btrfs_scrub_progress *progress)
3031 {
3032 	struct btrfs_device *dev;
3033 	struct scrub_ctx *sctx = NULL;
3034 
3035 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3036 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3037 	if (dev)
3038 		sctx = dev->scrub_device;
3039 	if (sctx)
3040 		memcpy(progress, &sctx->stat, sizeof(*progress));
3041 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3042 
3043 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3044 }
3045 
3046 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3047 			       u64 extent_logical, u64 extent_len,
3048 			       u64 *extent_physical,
3049 			       struct btrfs_device **extent_dev,
3050 			       int *extent_mirror_num)
3051 {
3052 	u64 mapped_length;
3053 	struct btrfs_bio *bbio = NULL;
3054 	int ret;
3055 
3056 	mapped_length = extent_len;
3057 	ret = btrfs_map_block(fs_info, READ, extent_logical,
3058 			      &mapped_length, &bbio, 0);
3059 	if (ret || !bbio || mapped_length < extent_len ||
3060 	    !bbio->stripes[0].dev->bdev) {
3061 		kfree(bbio);
3062 		return;
3063 	}
3064 
3065 	*extent_physical = bbio->stripes[0].physical;
3066 	*extent_mirror_num = bbio->mirror_num;
3067 	*extent_dev = bbio->stripes[0].dev;
3068 	kfree(bbio);
3069 }
3070 
3071 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3072 			      struct scrub_wr_ctx *wr_ctx,
3073 			      struct btrfs_fs_info *fs_info,
3074 			      struct btrfs_device *dev,
3075 			      int is_dev_replace)
3076 {
3077 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3078 
3079 	mutex_init(&wr_ctx->wr_lock);
3080 	wr_ctx->wr_curr_bio = NULL;
3081 	if (!is_dev_replace)
3082 		return 0;
3083 
3084 	WARN_ON(!dev->bdev);
3085 	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3086 					 bio_get_nr_vecs(dev->bdev));
3087 	wr_ctx->tgtdev = dev;
3088 	atomic_set(&wr_ctx->flush_all_writes, 0);
3089 	return 0;
3090 }
3091 
3092 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3093 {
3094 	mutex_lock(&wr_ctx->wr_lock);
3095 	kfree(wr_ctx->wr_curr_bio);
3096 	wr_ctx->wr_curr_bio = NULL;
3097 	mutex_unlock(&wr_ctx->wr_lock);
3098 }
3099 
3100 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3101 			    int mirror_num, u64 physical_for_dev_replace)
3102 {
3103 	struct scrub_copy_nocow_ctx *nocow_ctx;
3104 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3105 
3106 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3107 	if (!nocow_ctx) {
3108 		spin_lock(&sctx->stat_lock);
3109 		sctx->stat.malloc_errors++;
3110 		spin_unlock(&sctx->stat_lock);
3111 		return -ENOMEM;
3112 	}
3113 
3114 	scrub_pending_trans_workers_inc(sctx);
3115 
3116 	nocow_ctx->sctx = sctx;
3117 	nocow_ctx->logical = logical;
3118 	nocow_ctx->len = len;
3119 	nocow_ctx->mirror_num = mirror_num;
3120 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3121 	nocow_ctx->work.func = copy_nocow_pages_worker;
3122 	btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3123 			   &nocow_ctx->work);
3124 
3125 	return 0;
3126 }
3127 
3128 static void copy_nocow_pages_worker(struct btrfs_work *work)
3129 {
3130 	struct scrub_copy_nocow_ctx *nocow_ctx =
3131 		container_of(work, struct scrub_copy_nocow_ctx, work);
3132 	struct scrub_ctx *sctx = nocow_ctx->sctx;
3133 	u64 logical = nocow_ctx->logical;
3134 	u64 len = nocow_ctx->len;
3135 	int mirror_num = nocow_ctx->mirror_num;
3136 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3137 	int ret;
3138 	struct btrfs_trans_handle *trans = NULL;
3139 	struct btrfs_fs_info *fs_info;
3140 	struct btrfs_path *path;
3141 	struct btrfs_root *root;
3142 	int not_written = 0;
3143 
3144 	fs_info = sctx->dev_root->fs_info;
3145 	root = fs_info->extent_root;
3146 
3147 	path = btrfs_alloc_path();
3148 	if (!path) {
3149 		spin_lock(&sctx->stat_lock);
3150 		sctx->stat.malloc_errors++;
3151 		spin_unlock(&sctx->stat_lock);
3152 		not_written = 1;
3153 		goto out;
3154 	}
3155 
3156 	trans = btrfs_join_transaction(root);
3157 	if (IS_ERR(trans)) {
3158 		not_written = 1;
3159 		goto out;
3160 	}
3161 
3162 	ret = iterate_inodes_from_logical(logical, fs_info, path,
3163 					  copy_nocow_pages_for_inode,
3164 					  nocow_ctx);
3165 	if (ret != 0 && ret != -ENOENT) {
3166 		pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n",
3167 			(unsigned long long)logical,
3168 			(unsigned long long)physical_for_dev_replace,
3169 			(unsigned long long)len,
3170 			(unsigned long long)mirror_num, ret);
3171 		not_written = 1;
3172 		goto out;
3173 	}
3174 
3175 out:
3176 	if (trans && !IS_ERR(trans))
3177 		btrfs_end_transaction(trans, root);
3178 	if (not_written)
3179 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3180 					    num_uncorrectable_read_errors);
3181 
3182 	btrfs_free_path(path);
3183 	kfree(nocow_ctx);
3184 
3185 	scrub_pending_trans_workers_dec(sctx);
3186 }
3187 
3188 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
3189 {
3190 	unsigned long index;
3191 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3192 	int ret = 0;
3193 	struct btrfs_key key;
3194 	struct inode *inode = NULL;
3195 	struct btrfs_root *local_root;
3196 	u64 physical_for_dev_replace;
3197 	u64 len;
3198 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3199 	int srcu_index;
3200 
3201 	key.objectid = root;
3202 	key.type = BTRFS_ROOT_ITEM_KEY;
3203 	key.offset = (u64)-1;
3204 
3205 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3206 
3207 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3208 	if (IS_ERR(local_root)) {
3209 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3210 		return PTR_ERR(local_root);
3211 	}
3212 
3213 	key.type = BTRFS_INODE_ITEM_KEY;
3214 	key.objectid = inum;
3215 	key.offset = 0;
3216 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3217 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3218 	if (IS_ERR(inode))
3219 		return PTR_ERR(inode);
3220 
3221 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3222 	len = nocow_ctx->len;
3223 	while (len >= PAGE_CACHE_SIZE) {
3224 		struct page *page = NULL;
3225 		int ret_sub;
3226 
3227 		index = offset >> PAGE_CACHE_SHIFT;
3228 
3229 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3230 		if (!page) {
3231 			pr_err("find_or_create_page() failed\n");
3232 			ret = -ENOMEM;
3233 			goto next_page;
3234 		}
3235 
3236 		if (PageUptodate(page)) {
3237 			if (PageDirty(page))
3238 				goto next_page;
3239 		} else {
3240 			ClearPageError(page);
3241 			ret_sub = extent_read_full_page(&BTRFS_I(inode)->
3242 							 io_tree,
3243 							page, btrfs_get_extent,
3244 							nocow_ctx->mirror_num);
3245 			if (ret_sub) {
3246 				ret = ret_sub;
3247 				goto next_page;
3248 			}
3249 			wait_on_page_locked(page);
3250 			if (!PageUptodate(page)) {
3251 				ret = -EIO;
3252 				goto next_page;
3253 			}
3254 		}
3255 		ret_sub = write_page_nocow(nocow_ctx->sctx,
3256 					   physical_for_dev_replace, page);
3257 		if (ret_sub) {
3258 			ret = ret_sub;
3259 			goto next_page;
3260 		}
3261 
3262 next_page:
3263 		if (page) {
3264 			unlock_page(page);
3265 			put_page(page);
3266 		}
3267 		offset += PAGE_CACHE_SIZE;
3268 		physical_for_dev_replace += PAGE_CACHE_SIZE;
3269 		len -= PAGE_CACHE_SIZE;
3270 	}
3271 
3272 	if (inode)
3273 		iput(inode);
3274 	return ret;
3275 }
3276 
3277 static int write_page_nocow(struct scrub_ctx *sctx,
3278 			    u64 physical_for_dev_replace, struct page *page)
3279 {
3280 	struct bio *bio;
3281 	struct btrfs_device *dev;
3282 	int ret;
3283 	DECLARE_COMPLETION_ONSTACK(compl);
3284 
3285 	dev = sctx->wr_ctx.tgtdev;
3286 	if (!dev)
3287 		return -EIO;
3288 	if (!dev->bdev) {
3289 		printk_ratelimited(KERN_WARNING
3290 			"btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3291 		return -EIO;
3292 	}
3293 	bio = bio_alloc(GFP_NOFS, 1);
3294 	if (!bio) {
3295 		spin_lock(&sctx->stat_lock);
3296 		sctx->stat.malloc_errors++;
3297 		spin_unlock(&sctx->stat_lock);
3298 		return -ENOMEM;
3299 	}
3300 	bio->bi_private = &compl;
3301 	bio->bi_end_io = scrub_complete_bio_end_io;
3302 	bio->bi_size = 0;
3303 	bio->bi_sector = physical_for_dev_replace >> 9;
3304 	bio->bi_bdev = dev->bdev;
3305 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3306 	if (ret != PAGE_CACHE_SIZE) {
3307 leave_with_eio:
3308 		bio_put(bio);
3309 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3310 		return -EIO;
3311 	}
3312 	btrfsic_submit_bio(WRITE_SYNC, bio);
3313 	wait_for_completion(&compl);
3314 
3315 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3316 		goto leave_with_eio;
3317 
3318 	bio_put(bio);
3319 	return 0;
3320 }
3321