1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "raid56.h" 21 #include "block-group.h" 22 #include "zoned.h" 23 #include "fs.h" 24 #include "accessors.h" 25 #include "file-item.h" 26 #include "scrub.h" 27 28 /* 29 * This is only the first step towards a full-features scrub. It reads all 30 * extent and super block and verifies the checksums. In case a bad checksum 31 * is found or the extent cannot be read, good data will be written back if 32 * any can be found. 33 * 34 * Future enhancements: 35 * - In case an unrepairable extent is encountered, track which files are 36 * affected and report them 37 * - track and record media errors, throw out bad devices 38 * - add a mode to also read unallocated space 39 */ 40 41 struct scrub_ctx; 42 43 /* 44 * The following value only influences the performance. 45 * 46 * This determines the batch size for stripe submitted in one go. 47 */ 48 #define SCRUB_STRIPES_PER_SCTX 8 /* That would be 8 64K stripe per-device. */ 49 50 /* 51 * The following value times PAGE_SIZE needs to be large enough to match the 52 * largest node/leaf/sector size that shall be supported. 53 */ 54 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 55 56 /* Represent one sector and its needed info to verify the content. */ 57 struct scrub_sector_verification { 58 bool is_metadata; 59 60 union { 61 /* 62 * Csum pointer for data csum verification. Should point to a 63 * sector csum inside scrub_stripe::csums. 64 * 65 * NULL if this data sector has no csum. 66 */ 67 u8 *csum; 68 69 /* 70 * Extra info for metadata verification. All sectors inside a 71 * tree block share the same generation. 72 */ 73 u64 generation; 74 }; 75 }; 76 77 enum scrub_stripe_flags { 78 /* Set when @mirror_num, @dev, @physical and @logical are set. */ 79 SCRUB_STRIPE_FLAG_INITIALIZED, 80 81 /* Set when the read-repair is finished. */ 82 SCRUB_STRIPE_FLAG_REPAIR_DONE, 83 84 /* 85 * Set for data stripes if it's triggered from P/Q stripe. 86 * During such scrub, we should not report errors in data stripes, nor 87 * update the accounting. 88 */ 89 SCRUB_STRIPE_FLAG_NO_REPORT, 90 }; 91 92 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE) 93 94 /* 95 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. 96 */ 97 struct scrub_stripe { 98 struct scrub_ctx *sctx; 99 struct btrfs_block_group *bg; 100 101 struct page *pages[SCRUB_STRIPE_PAGES]; 102 struct scrub_sector_verification *sectors; 103 104 struct btrfs_device *dev; 105 u64 logical; 106 u64 physical; 107 108 u16 mirror_num; 109 110 /* Should be BTRFS_STRIPE_LEN / sectorsize. */ 111 u16 nr_sectors; 112 113 /* 114 * How many data/meta extents are in this stripe. Only for scrub status 115 * reporting purposes. 116 */ 117 u16 nr_data_extents; 118 u16 nr_meta_extents; 119 120 atomic_t pending_io; 121 wait_queue_head_t io_wait; 122 wait_queue_head_t repair_wait; 123 124 /* 125 * Indicate the states of the stripe. Bits are defined in 126 * scrub_stripe_flags enum. 127 */ 128 unsigned long state; 129 130 /* Indicate which sectors are covered by extent items. */ 131 unsigned long extent_sector_bitmap; 132 133 /* 134 * The errors hit during the initial read of the stripe. 135 * 136 * Would be utilized for error reporting and repair. 137 * 138 * The remaining init_nr_* records the number of errors hit, only used 139 * by error reporting. 140 */ 141 unsigned long init_error_bitmap; 142 unsigned int init_nr_io_errors; 143 unsigned int init_nr_csum_errors; 144 unsigned int init_nr_meta_errors; 145 146 /* 147 * The following error bitmaps are all for the current status. 148 * Every time we submit a new read, these bitmaps may be updated. 149 * 150 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap; 151 * 152 * IO and csum errors can happen for both metadata and data. 153 */ 154 unsigned long error_bitmap; 155 unsigned long io_error_bitmap; 156 unsigned long csum_error_bitmap; 157 unsigned long meta_error_bitmap; 158 159 /* For writeback (repair or replace) error reporting. */ 160 unsigned long write_error_bitmap; 161 162 /* Writeback can be concurrent, thus we need to protect the bitmap. */ 163 spinlock_t write_error_lock; 164 165 /* 166 * Checksum for the whole stripe if this stripe is inside a data block 167 * group. 168 */ 169 u8 *csums; 170 171 struct work_struct work; 172 }; 173 174 struct scrub_ctx { 175 struct scrub_stripe stripes[SCRUB_STRIPES_PER_SCTX]; 176 struct scrub_stripe *raid56_data_stripes; 177 struct btrfs_fs_info *fs_info; 178 int first_free; 179 int cur_stripe; 180 atomic_t cancel_req; 181 int readonly; 182 int sectors_per_bio; 183 184 /* State of IO submission throttling affecting the associated device */ 185 ktime_t throttle_deadline; 186 u64 throttle_sent; 187 188 int is_dev_replace; 189 u64 write_pointer; 190 191 struct mutex wr_lock; 192 struct btrfs_device *wr_tgtdev; 193 194 /* 195 * statistics 196 */ 197 struct btrfs_scrub_progress stat; 198 spinlock_t stat_lock; 199 200 /* 201 * Use a ref counter to avoid use-after-free issues. Scrub workers 202 * decrement bios_in_flight and workers_pending and then do a wakeup 203 * on the list_wait wait queue. We must ensure the main scrub task 204 * doesn't free the scrub context before or while the workers are 205 * doing the wakeup() call. 206 */ 207 refcount_t refs; 208 }; 209 210 struct scrub_warning { 211 struct btrfs_path *path; 212 u64 extent_item_size; 213 const char *errstr; 214 u64 physical; 215 u64 logical; 216 struct btrfs_device *dev; 217 }; 218 219 static void release_scrub_stripe(struct scrub_stripe *stripe) 220 { 221 if (!stripe) 222 return; 223 224 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) { 225 if (stripe->pages[i]) 226 __free_page(stripe->pages[i]); 227 stripe->pages[i] = NULL; 228 } 229 kfree(stripe->sectors); 230 kfree(stripe->csums); 231 stripe->sectors = NULL; 232 stripe->csums = NULL; 233 stripe->sctx = NULL; 234 stripe->state = 0; 235 } 236 237 static int init_scrub_stripe(struct btrfs_fs_info *fs_info, 238 struct scrub_stripe *stripe) 239 { 240 int ret; 241 242 memset(stripe, 0, sizeof(*stripe)); 243 244 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 245 stripe->state = 0; 246 247 init_waitqueue_head(&stripe->io_wait); 248 init_waitqueue_head(&stripe->repair_wait); 249 atomic_set(&stripe->pending_io, 0); 250 spin_lock_init(&stripe->write_error_lock); 251 252 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages); 253 if (ret < 0) 254 goto error; 255 256 stripe->sectors = kcalloc(stripe->nr_sectors, 257 sizeof(struct scrub_sector_verification), 258 GFP_KERNEL); 259 if (!stripe->sectors) 260 goto error; 261 262 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, 263 fs_info->csum_size, GFP_KERNEL); 264 if (!stripe->csums) 265 goto error; 266 return 0; 267 error: 268 release_scrub_stripe(stripe); 269 return -ENOMEM; 270 } 271 272 static void wait_scrub_stripe_io(struct scrub_stripe *stripe) 273 { 274 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); 275 } 276 277 static void scrub_put_ctx(struct scrub_ctx *sctx); 278 279 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 280 { 281 while (atomic_read(&fs_info->scrub_pause_req)) { 282 mutex_unlock(&fs_info->scrub_lock); 283 wait_event(fs_info->scrub_pause_wait, 284 atomic_read(&fs_info->scrub_pause_req) == 0); 285 mutex_lock(&fs_info->scrub_lock); 286 } 287 } 288 289 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 290 { 291 atomic_inc(&fs_info->scrubs_paused); 292 wake_up(&fs_info->scrub_pause_wait); 293 } 294 295 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 296 { 297 mutex_lock(&fs_info->scrub_lock); 298 __scrub_blocked_if_needed(fs_info); 299 atomic_dec(&fs_info->scrubs_paused); 300 mutex_unlock(&fs_info->scrub_lock); 301 302 wake_up(&fs_info->scrub_pause_wait); 303 } 304 305 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 306 { 307 scrub_pause_on(fs_info); 308 scrub_pause_off(fs_info); 309 } 310 311 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 312 { 313 int i; 314 315 if (!sctx) 316 return; 317 318 for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) 319 release_scrub_stripe(&sctx->stripes[i]); 320 321 kfree(sctx); 322 } 323 324 static void scrub_put_ctx(struct scrub_ctx *sctx) 325 { 326 if (refcount_dec_and_test(&sctx->refs)) 327 scrub_free_ctx(sctx); 328 } 329 330 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 331 struct btrfs_fs_info *fs_info, int is_dev_replace) 332 { 333 struct scrub_ctx *sctx; 334 int i; 335 336 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 337 if (!sctx) 338 goto nomem; 339 refcount_set(&sctx->refs, 1); 340 sctx->is_dev_replace = is_dev_replace; 341 sctx->fs_info = fs_info; 342 for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) { 343 int ret; 344 345 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); 346 if (ret < 0) 347 goto nomem; 348 sctx->stripes[i].sctx = sctx; 349 } 350 sctx->first_free = 0; 351 atomic_set(&sctx->cancel_req, 0); 352 353 spin_lock_init(&sctx->stat_lock); 354 sctx->throttle_deadline = 0; 355 356 mutex_init(&sctx->wr_lock); 357 if (is_dev_replace) { 358 WARN_ON(!fs_info->dev_replace.tgtdev); 359 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 360 } 361 362 return sctx; 363 364 nomem: 365 scrub_free_ctx(sctx); 366 return ERR_PTR(-ENOMEM); 367 } 368 369 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 370 u64 root, void *warn_ctx) 371 { 372 u32 nlink; 373 int ret; 374 int i; 375 unsigned nofs_flag; 376 struct extent_buffer *eb; 377 struct btrfs_inode_item *inode_item; 378 struct scrub_warning *swarn = warn_ctx; 379 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 380 struct inode_fs_paths *ipath = NULL; 381 struct btrfs_root *local_root; 382 struct btrfs_key key; 383 384 local_root = btrfs_get_fs_root(fs_info, root, true); 385 if (IS_ERR(local_root)) { 386 ret = PTR_ERR(local_root); 387 goto err; 388 } 389 390 /* 391 * this makes the path point to (inum INODE_ITEM ioff) 392 */ 393 key.objectid = inum; 394 key.type = BTRFS_INODE_ITEM_KEY; 395 key.offset = 0; 396 397 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 398 if (ret) { 399 btrfs_put_root(local_root); 400 btrfs_release_path(swarn->path); 401 goto err; 402 } 403 404 eb = swarn->path->nodes[0]; 405 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 406 struct btrfs_inode_item); 407 nlink = btrfs_inode_nlink(eb, inode_item); 408 btrfs_release_path(swarn->path); 409 410 /* 411 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 412 * uses GFP_NOFS in this context, so we keep it consistent but it does 413 * not seem to be strictly necessary. 414 */ 415 nofs_flag = memalloc_nofs_save(); 416 ipath = init_ipath(4096, local_root, swarn->path); 417 memalloc_nofs_restore(nofs_flag); 418 if (IS_ERR(ipath)) { 419 btrfs_put_root(local_root); 420 ret = PTR_ERR(ipath); 421 ipath = NULL; 422 goto err; 423 } 424 ret = paths_from_inode(inum, ipath); 425 426 if (ret < 0) 427 goto err; 428 429 /* 430 * we deliberately ignore the bit ipath might have been too small to 431 * hold all of the paths here 432 */ 433 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 434 btrfs_warn_in_rcu(fs_info, 435 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 436 swarn->errstr, swarn->logical, 437 btrfs_dev_name(swarn->dev), 438 swarn->physical, 439 root, inum, offset, 440 fs_info->sectorsize, nlink, 441 (char *)(unsigned long)ipath->fspath->val[i]); 442 443 btrfs_put_root(local_root); 444 free_ipath(ipath); 445 return 0; 446 447 err: 448 btrfs_warn_in_rcu(fs_info, 449 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 450 swarn->errstr, swarn->logical, 451 btrfs_dev_name(swarn->dev), 452 swarn->physical, 453 root, inum, offset, ret); 454 455 free_ipath(ipath); 456 return 0; 457 } 458 459 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, 460 bool is_super, u64 logical, u64 physical) 461 { 462 struct btrfs_fs_info *fs_info = dev->fs_info; 463 struct btrfs_path *path; 464 struct btrfs_key found_key; 465 struct extent_buffer *eb; 466 struct btrfs_extent_item *ei; 467 struct scrub_warning swarn; 468 u64 flags = 0; 469 u32 item_size; 470 int ret; 471 472 /* Super block error, no need to search extent tree. */ 473 if (is_super) { 474 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", 475 errstr, btrfs_dev_name(dev), physical); 476 return; 477 } 478 path = btrfs_alloc_path(); 479 if (!path) 480 return; 481 482 swarn.physical = physical; 483 swarn.logical = logical; 484 swarn.errstr = errstr; 485 swarn.dev = NULL; 486 487 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 488 &flags); 489 if (ret < 0) 490 goto out; 491 492 swarn.extent_item_size = found_key.offset; 493 494 eb = path->nodes[0]; 495 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 496 item_size = btrfs_item_size(eb, path->slots[0]); 497 498 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 499 unsigned long ptr = 0; 500 u8 ref_level; 501 u64 ref_root; 502 503 while (true) { 504 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 505 item_size, &ref_root, 506 &ref_level); 507 if (ret < 0) { 508 btrfs_warn(fs_info, 509 "failed to resolve tree backref for logical %llu: %d", 510 swarn.logical, ret); 511 break; 512 } 513 if (ret > 0) 514 break; 515 btrfs_warn_in_rcu(fs_info, 516 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 517 errstr, swarn.logical, btrfs_dev_name(dev), 518 swarn.physical, (ref_level ? "node" : "leaf"), 519 ref_level, ref_root); 520 } 521 btrfs_release_path(path); 522 } else { 523 struct btrfs_backref_walk_ctx ctx = { 0 }; 524 525 btrfs_release_path(path); 526 527 ctx.bytenr = found_key.objectid; 528 ctx.extent_item_pos = swarn.logical - found_key.objectid; 529 ctx.fs_info = fs_info; 530 531 swarn.path = path; 532 swarn.dev = dev; 533 534 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); 535 } 536 537 out: 538 btrfs_free_path(path); 539 } 540 541 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 542 { 543 int ret = 0; 544 u64 length; 545 546 if (!btrfs_is_zoned(sctx->fs_info)) 547 return 0; 548 549 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 550 return 0; 551 552 if (sctx->write_pointer < physical) { 553 length = physical - sctx->write_pointer; 554 555 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 556 sctx->write_pointer, length); 557 if (!ret) 558 sctx->write_pointer = physical; 559 } 560 return ret; 561 } 562 563 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr) 564 { 565 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 566 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT; 567 568 return stripe->pages[page_index]; 569 } 570 571 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe, 572 int sector_nr) 573 { 574 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 575 576 return offset_in_page(sector_nr << fs_info->sectorsize_bits); 577 } 578 579 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) 580 { 581 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 582 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 583 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); 584 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr); 585 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr); 586 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 587 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 588 u8 calculated_csum[BTRFS_CSUM_SIZE]; 589 struct btrfs_header *header; 590 591 /* 592 * Here we don't have a good way to attach the pages (and subpages) 593 * to a dummy extent buffer, thus we have to directly grab the members 594 * from pages. 595 */ 596 header = (struct btrfs_header *)(page_address(first_page) + first_off); 597 memcpy(on_disk_csum, header->csum, fs_info->csum_size); 598 599 if (logical != btrfs_stack_header_bytenr(header)) { 600 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 601 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 602 btrfs_warn_rl(fs_info, 603 "tree block %llu mirror %u has bad bytenr, has %llu want %llu", 604 logical, stripe->mirror_num, 605 btrfs_stack_header_bytenr(header), logical); 606 return; 607 } 608 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid, 609 BTRFS_FSID_SIZE) != 0) { 610 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 611 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 612 btrfs_warn_rl(fs_info, 613 "tree block %llu mirror %u has bad fsid, has %pU want %pU", 614 logical, stripe->mirror_num, 615 header->fsid, fs_info->fs_devices->fsid); 616 return; 617 } 618 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, 619 BTRFS_UUID_SIZE) != 0) { 620 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 621 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 622 btrfs_warn_rl(fs_info, 623 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", 624 logical, stripe->mirror_num, 625 header->chunk_tree_uuid, fs_info->chunk_tree_uuid); 626 return; 627 } 628 629 /* Now check tree block csum. */ 630 shash->tfm = fs_info->csum_shash; 631 crypto_shash_init(shash); 632 crypto_shash_update(shash, page_address(first_page) + first_off + 633 BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE); 634 635 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { 636 struct page *page = scrub_stripe_get_page(stripe, i); 637 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i); 638 639 crypto_shash_update(shash, page_address(page) + page_off, 640 fs_info->sectorsize); 641 } 642 643 crypto_shash_final(shash, calculated_csum); 644 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { 645 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 646 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 647 btrfs_warn_rl(fs_info, 648 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, 649 logical, stripe->mirror_num, 650 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), 651 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); 652 return; 653 } 654 if (stripe->sectors[sector_nr].generation != 655 btrfs_stack_header_generation(header)) { 656 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 657 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 658 btrfs_warn_rl(fs_info, 659 "tree block %llu mirror %u has bad generation, has %llu want %llu", 660 logical, stripe->mirror_num, 661 btrfs_stack_header_generation(header), 662 stripe->sectors[sector_nr].generation); 663 return; 664 } 665 bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree); 666 bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 667 bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 668 } 669 670 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) 671 { 672 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 673 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; 674 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 675 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 676 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 677 u8 csum_buf[BTRFS_CSUM_SIZE]; 678 int ret; 679 680 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); 681 682 /* Sector not utilized, skip it. */ 683 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap)) 684 return; 685 686 /* IO error, no need to check. */ 687 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 688 return; 689 690 /* Metadata, verify the full tree block. */ 691 if (sector->is_metadata) { 692 /* 693 * Check if the tree block crosses the stripe boudary. If 694 * crossed the boundary, we cannot verify it but only give a 695 * warning. 696 * 697 * This can only happen on a very old filesystem where chunks 698 * are not ensured to be stripe aligned. 699 */ 700 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { 701 btrfs_warn_rl(fs_info, 702 "tree block at %llu crosses stripe boundary %llu", 703 stripe->logical + 704 (sector_nr << fs_info->sectorsize_bits), 705 stripe->logical); 706 return; 707 } 708 scrub_verify_one_metadata(stripe, sector_nr); 709 return; 710 } 711 712 /* 713 * Data is easier, we just verify the data csum (if we have it). For 714 * cases without csum, we have no other choice but to trust it. 715 */ 716 if (!sector->csum) { 717 clear_bit(sector_nr, &stripe->error_bitmap); 718 return; 719 } 720 721 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum); 722 if (ret < 0) { 723 set_bit(sector_nr, &stripe->csum_error_bitmap); 724 set_bit(sector_nr, &stripe->error_bitmap); 725 } else { 726 clear_bit(sector_nr, &stripe->csum_error_bitmap); 727 clear_bit(sector_nr, &stripe->error_bitmap); 728 } 729 } 730 731 /* Verify specified sectors of a stripe. */ 732 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) 733 { 734 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 735 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 736 int sector_nr; 737 738 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { 739 scrub_verify_one_sector(stripe, sector_nr); 740 if (stripe->sectors[sector_nr].is_metadata) 741 sector_nr += sectors_per_tree - 1; 742 } 743 } 744 745 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) 746 { 747 int i; 748 749 for (i = 0; i < stripe->nr_sectors; i++) { 750 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page && 751 scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset) 752 break; 753 } 754 ASSERT(i < stripe->nr_sectors); 755 return i; 756 } 757 758 /* 759 * Repair read is different to the regular read: 760 * 761 * - Only reads the failed sectors 762 * - May have extra blocksize limits 763 */ 764 static void scrub_repair_read_endio(struct btrfs_bio *bbio) 765 { 766 struct scrub_stripe *stripe = bbio->private; 767 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 768 struct bio_vec *bvec; 769 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 770 u32 bio_size = 0; 771 int i; 772 773 ASSERT(sector_nr < stripe->nr_sectors); 774 775 bio_for_each_bvec_all(bvec, &bbio->bio, i) 776 bio_size += bvec->bv_len; 777 778 if (bbio->bio.bi_status) { 779 bitmap_set(&stripe->io_error_bitmap, sector_nr, 780 bio_size >> fs_info->sectorsize_bits); 781 bitmap_set(&stripe->error_bitmap, sector_nr, 782 bio_size >> fs_info->sectorsize_bits); 783 } else { 784 bitmap_clear(&stripe->io_error_bitmap, sector_nr, 785 bio_size >> fs_info->sectorsize_bits); 786 } 787 bio_put(&bbio->bio); 788 if (atomic_dec_and_test(&stripe->pending_io)) 789 wake_up(&stripe->io_wait); 790 } 791 792 static int calc_next_mirror(int mirror, int num_copies) 793 { 794 ASSERT(mirror <= num_copies); 795 return (mirror + 1 > num_copies) ? 1 : mirror + 1; 796 } 797 798 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, 799 int mirror, int blocksize, bool wait) 800 { 801 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 802 struct btrfs_bio *bbio = NULL; 803 const unsigned long old_error_bitmap = stripe->error_bitmap; 804 int i; 805 806 ASSERT(stripe->mirror_num >= 1); 807 ASSERT(atomic_read(&stripe->pending_io) == 0); 808 809 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { 810 struct page *page; 811 int pgoff; 812 int ret; 813 814 page = scrub_stripe_get_page(stripe, i); 815 pgoff = scrub_stripe_get_page_offset(stripe, i); 816 817 /* The current sector cannot be merged, submit the bio. */ 818 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) || 819 bbio->bio.bi_iter.bi_size >= blocksize)) { 820 ASSERT(bbio->bio.bi_iter.bi_size); 821 atomic_inc(&stripe->pending_io); 822 btrfs_submit_bio(bbio, mirror); 823 if (wait) 824 wait_scrub_stripe_io(stripe); 825 bbio = NULL; 826 } 827 828 if (!bbio) { 829 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 830 fs_info, scrub_repair_read_endio, stripe); 831 bbio->bio.bi_iter.bi_sector = (stripe->logical + 832 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; 833 } 834 835 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 836 ASSERT(ret == fs_info->sectorsize); 837 } 838 if (bbio) { 839 ASSERT(bbio->bio.bi_iter.bi_size); 840 atomic_inc(&stripe->pending_io); 841 btrfs_submit_bio(bbio, mirror); 842 if (wait) 843 wait_scrub_stripe_io(stripe); 844 } 845 } 846 847 static void scrub_stripe_report_errors(struct scrub_ctx *sctx, 848 struct scrub_stripe *stripe) 849 { 850 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 851 DEFAULT_RATELIMIT_BURST); 852 struct btrfs_fs_info *fs_info = sctx->fs_info; 853 struct btrfs_device *dev = NULL; 854 u64 physical = 0; 855 int nr_data_sectors = 0; 856 int nr_meta_sectors = 0; 857 int nr_nodatacsum_sectors = 0; 858 int nr_repaired_sectors = 0; 859 int sector_nr; 860 861 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) 862 return; 863 864 /* 865 * Init needed infos for error reporting. 866 * 867 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio() 868 * thus no need for dev/physical, error reporting still needs dev and physical. 869 */ 870 if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) { 871 u64 mapped_len = fs_info->sectorsize; 872 struct btrfs_io_context *bioc = NULL; 873 int stripe_index = stripe->mirror_num - 1; 874 int ret; 875 876 /* For scrub, our mirror_num should always start at 1. */ 877 ASSERT(stripe->mirror_num >= 1); 878 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 879 stripe->logical, &mapped_len, &bioc, 880 NULL, NULL, 1); 881 /* 882 * If we failed, dev will be NULL, and later detailed reports 883 * will just be skipped. 884 */ 885 if (ret < 0) 886 goto skip; 887 physical = bioc->stripes[stripe_index].physical; 888 dev = bioc->stripes[stripe_index].dev; 889 btrfs_put_bioc(bioc); 890 } 891 892 skip: 893 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) { 894 bool repaired = false; 895 896 if (stripe->sectors[sector_nr].is_metadata) { 897 nr_meta_sectors++; 898 } else { 899 nr_data_sectors++; 900 if (!stripe->sectors[sector_nr].csum) 901 nr_nodatacsum_sectors++; 902 } 903 904 if (test_bit(sector_nr, &stripe->init_error_bitmap) && 905 !test_bit(sector_nr, &stripe->error_bitmap)) { 906 nr_repaired_sectors++; 907 repaired = true; 908 } 909 910 /* Good sector from the beginning, nothing need to be done. */ 911 if (!test_bit(sector_nr, &stripe->init_error_bitmap)) 912 continue; 913 914 /* 915 * Report error for the corrupted sectors. If repaired, just 916 * output the message of repaired message. 917 */ 918 if (repaired) { 919 if (dev) { 920 btrfs_err_rl_in_rcu(fs_info, 921 "fixed up error at logical %llu on dev %s physical %llu", 922 stripe->logical, btrfs_dev_name(dev), 923 physical); 924 } else { 925 btrfs_err_rl_in_rcu(fs_info, 926 "fixed up error at logical %llu on mirror %u", 927 stripe->logical, stripe->mirror_num); 928 } 929 continue; 930 } 931 932 /* The remaining are all for unrepaired. */ 933 if (dev) { 934 btrfs_err_rl_in_rcu(fs_info, 935 "unable to fixup (regular) error at logical %llu on dev %s physical %llu", 936 stripe->logical, btrfs_dev_name(dev), 937 physical); 938 } else { 939 btrfs_err_rl_in_rcu(fs_info, 940 "unable to fixup (regular) error at logical %llu on mirror %u", 941 stripe->logical, stripe->mirror_num); 942 } 943 944 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 945 if (__ratelimit(&rs) && dev) 946 scrub_print_common_warning("i/o error", dev, false, 947 stripe->logical, physical); 948 if (test_bit(sector_nr, &stripe->csum_error_bitmap)) 949 if (__ratelimit(&rs) && dev) 950 scrub_print_common_warning("checksum error", dev, false, 951 stripe->logical, physical); 952 if (test_bit(sector_nr, &stripe->meta_error_bitmap)) 953 if (__ratelimit(&rs) && dev) 954 scrub_print_common_warning("header error", dev, false, 955 stripe->logical, physical); 956 } 957 958 spin_lock(&sctx->stat_lock); 959 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; 960 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; 961 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; 962 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; 963 sctx->stat.no_csum += nr_nodatacsum_sectors; 964 sctx->stat.read_errors += stripe->init_nr_io_errors; 965 sctx->stat.csum_errors += stripe->init_nr_csum_errors; 966 sctx->stat.verify_errors += stripe->init_nr_meta_errors; 967 sctx->stat.uncorrectable_errors += 968 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors); 969 sctx->stat.corrected_errors += nr_repaired_sectors; 970 spin_unlock(&sctx->stat_lock); 971 } 972 973 /* 974 * The main entrance for all read related scrub work, including: 975 * 976 * - Wait for the initial read to finish 977 * - Verify and locate any bad sectors 978 * - Go through the remaining mirrors and try to read as large blocksize as 979 * possible 980 * - Go through all mirrors (including the failed mirror) sector-by-sector 981 * 982 * Writeback does not happen here, it needs extra synchronization. 983 */ 984 static void scrub_stripe_read_repair_worker(struct work_struct *work) 985 { 986 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); 987 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 988 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 989 stripe->bg->length); 990 int mirror; 991 int i; 992 993 ASSERT(stripe->mirror_num > 0); 994 995 wait_scrub_stripe_io(stripe); 996 scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap); 997 /* Save the initial failed bitmap for later repair and report usage. */ 998 stripe->init_error_bitmap = stripe->error_bitmap; 999 stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap, 1000 stripe->nr_sectors); 1001 stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap, 1002 stripe->nr_sectors); 1003 stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap, 1004 stripe->nr_sectors); 1005 1006 if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) 1007 goto out; 1008 1009 /* 1010 * Try all remaining mirrors. 1011 * 1012 * Here we still try to read as large block as possible, as this is 1013 * faster and we have extra safety nets to rely on. 1014 */ 1015 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); 1016 mirror != stripe->mirror_num; 1017 mirror = calc_next_mirror(mirror, num_copies)) { 1018 const unsigned long old_error_bitmap = stripe->error_bitmap; 1019 1020 scrub_stripe_submit_repair_read(stripe, mirror, 1021 BTRFS_STRIPE_LEN, false); 1022 wait_scrub_stripe_io(stripe); 1023 scrub_verify_one_stripe(stripe, old_error_bitmap); 1024 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1025 goto out; 1026 } 1027 1028 /* 1029 * Last safety net, try re-checking all mirrors, including the failed 1030 * one, sector-by-sector. 1031 * 1032 * As if one sector failed the drive's internal csum, the whole read 1033 * containing the offending sector would be marked as error. 1034 * Thus here we do sector-by-sector read. 1035 * 1036 * This can be slow, thus we only try it as the last resort. 1037 */ 1038 1039 for (i = 0, mirror = stripe->mirror_num; 1040 i < num_copies; 1041 i++, mirror = calc_next_mirror(mirror, num_copies)) { 1042 const unsigned long old_error_bitmap = stripe->error_bitmap; 1043 1044 scrub_stripe_submit_repair_read(stripe, mirror, 1045 fs_info->sectorsize, true); 1046 wait_scrub_stripe_io(stripe); 1047 scrub_verify_one_stripe(stripe, old_error_bitmap); 1048 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1049 goto out; 1050 } 1051 out: 1052 scrub_stripe_report_errors(stripe->sctx, stripe); 1053 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); 1054 wake_up(&stripe->repair_wait); 1055 } 1056 1057 static void scrub_read_endio(struct btrfs_bio *bbio) 1058 { 1059 struct scrub_stripe *stripe = bbio->private; 1060 1061 if (bbio->bio.bi_status) { 1062 bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors); 1063 bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors); 1064 } else { 1065 bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors); 1066 } 1067 bio_put(&bbio->bio); 1068 if (atomic_dec_and_test(&stripe->pending_io)) { 1069 wake_up(&stripe->io_wait); 1070 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1071 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1072 } 1073 } 1074 1075 static void scrub_write_endio(struct btrfs_bio *bbio) 1076 { 1077 struct scrub_stripe *stripe = bbio->private; 1078 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1079 struct bio_vec *bvec; 1080 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1081 u32 bio_size = 0; 1082 int i; 1083 1084 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1085 bio_size += bvec->bv_len; 1086 1087 if (bbio->bio.bi_status) { 1088 unsigned long flags; 1089 1090 spin_lock_irqsave(&stripe->write_error_lock, flags); 1091 bitmap_set(&stripe->write_error_bitmap, sector_nr, 1092 bio_size >> fs_info->sectorsize_bits); 1093 spin_unlock_irqrestore(&stripe->write_error_lock, flags); 1094 } 1095 bio_put(&bbio->bio); 1096 1097 if (atomic_dec_and_test(&stripe->pending_io)) 1098 wake_up(&stripe->io_wait); 1099 } 1100 1101 static void scrub_submit_write_bio(struct scrub_ctx *sctx, 1102 struct scrub_stripe *stripe, 1103 struct btrfs_bio *bbio, bool dev_replace) 1104 { 1105 struct btrfs_fs_info *fs_info = sctx->fs_info; 1106 u32 bio_len = bbio->bio.bi_iter.bi_size; 1107 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) - 1108 stripe->logical; 1109 1110 fill_writer_pointer_gap(sctx, stripe->physical + bio_off); 1111 atomic_inc(&stripe->pending_io); 1112 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); 1113 if (!btrfs_is_zoned(fs_info)) 1114 return; 1115 /* 1116 * For zoned writeback, queue depth must be 1, thus we must wait for 1117 * the write to finish before the next write. 1118 */ 1119 wait_scrub_stripe_io(stripe); 1120 1121 /* 1122 * And also need to update the write pointer if write finished 1123 * successfully. 1124 */ 1125 if (!test_bit(bio_off >> fs_info->sectorsize_bits, 1126 &stripe->write_error_bitmap)) 1127 sctx->write_pointer += bio_len; 1128 } 1129 1130 /* 1131 * Submit the write bio(s) for the sectors specified by @write_bitmap. 1132 * 1133 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: 1134 * 1135 * - Only needs logical bytenr and mirror_num 1136 * Just like the scrub read path 1137 * 1138 * - Would only result in writes to the specified mirror 1139 * Unlike the regular writeback path, which would write back to all stripes 1140 * 1141 * - Handle dev-replace and read-repair writeback differently 1142 */ 1143 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 1144 unsigned long write_bitmap, bool dev_replace) 1145 { 1146 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1147 struct btrfs_bio *bbio = NULL; 1148 int sector_nr; 1149 1150 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { 1151 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 1152 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 1153 int ret; 1154 1155 /* We should only writeback sectors covered by an extent. */ 1156 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap)); 1157 1158 /* Cannot merge with previous sector, submit the current one. */ 1159 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { 1160 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1161 bbio = NULL; 1162 } 1163 if (!bbio) { 1164 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, 1165 fs_info, scrub_write_endio, stripe); 1166 bbio->bio.bi_iter.bi_sector = (stripe->logical + 1167 (sector_nr << fs_info->sectorsize_bits)) >> 1168 SECTOR_SHIFT; 1169 } 1170 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 1171 ASSERT(ret == fs_info->sectorsize); 1172 } 1173 if (bbio) 1174 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1175 } 1176 1177 /* 1178 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1179 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1180 */ 1181 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, 1182 unsigned int bio_size) 1183 { 1184 const int time_slice = 1000; 1185 s64 delta; 1186 ktime_t now; 1187 u32 div; 1188 u64 bwlimit; 1189 1190 bwlimit = READ_ONCE(device->scrub_speed_max); 1191 if (bwlimit == 0) 1192 return; 1193 1194 /* 1195 * Slice is divided into intervals when the IO is submitted, adjust by 1196 * bwlimit and maximum of 64 intervals. 1197 */ 1198 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 1199 div = min_t(u32, 64, div); 1200 1201 /* Start new epoch, set deadline */ 1202 now = ktime_get(); 1203 if (sctx->throttle_deadline == 0) { 1204 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 1205 sctx->throttle_sent = 0; 1206 } 1207 1208 /* Still in the time to send? */ 1209 if (ktime_before(now, sctx->throttle_deadline)) { 1210 /* If current bio is within the limit, send it */ 1211 sctx->throttle_sent += bio_size; 1212 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 1213 return; 1214 1215 /* We're over the limit, sleep until the rest of the slice */ 1216 delta = ktime_ms_delta(sctx->throttle_deadline, now); 1217 } else { 1218 /* New request after deadline, start new epoch */ 1219 delta = 0; 1220 } 1221 1222 if (delta) { 1223 long timeout; 1224 1225 timeout = div_u64(delta * HZ, 1000); 1226 schedule_timeout_interruptible(timeout); 1227 } 1228 1229 /* Next call will start the deadline period */ 1230 sctx->throttle_deadline = 0; 1231 } 1232 1233 /* 1234 * Given a physical address, this will calculate it's 1235 * logical offset. if this is a parity stripe, it will return 1236 * the most left data stripe's logical offset. 1237 * 1238 * return 0 if it is a data stripe, 1 means parity stripe. 1239 */ 1240 static int get_raid56_logic_offset(u64 physical, int num, 1241 struct map_lookup *map, u64 *offset, 1242 u64 *stripe_start) 1243 { 1244 int i; 1245 int j = 0; 1246 u64 last_offset; 1247 const int data_stripes = nr_data_stripes(map); 1248 1249 last_offset = (physical - map->stripes[num].physical) * data_stripes; 1250 if (stripe_start) 1251 *stripe_start = last_offset; 1252 1253 *offset = last_offset; 1254 for (i = 0; i < data_stripes; i++) { 1255 u32 stripe_nr; 1256 u32 stripe_index; 1257 u32 rot; 1258 1259 *offset = last_offset + btrfs_stripe_nr_to_offset(i); 1260 1261 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; 1262 1263 /* Work out the disk rotation on this stripe-set */ 1264 rot = stripe_nr % map->num_stripes; 1265 stripe_nr /= map->num_stripes; 1266 /* calculate which stripe this data locates */ 1267 rot += i; 1268 stripe_index = rot % map->num_stripes; 1269 if (stripe_index == num) 1270 return 0; 1271 if (stripe_index < num) 1272 j++; 1273 } 1274 *offset = last_offset + btrfs_stripe_nr_to_offset(j); 1275 return 1; 1276 } 1277 1278 /* 1279 * Return 0 if the extent item range covers any byte of the range. 1280 * Return <0 if the extent item is before @search_start. 1281 * Return >0 if the extent item is after @start_start + @search_len. 1282 */ 1283 static int compare_extent_item_range(struct btrfs_path *path, 1284 u64 search_start, u64 search_len) 1285 { 1286 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 1287 u64 len; 1288 struct btrfs_key key; 1289 1290 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1291 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 1292 key.type == BTRFS_METADATA_ITEM_KEY); 1293 if (key.type == BTRFS_METADATA_ITEM_KEY) 1294 len = fs_info->nodesize; 1295 else 1296 len = key.offset; 1297 1298 if (key.objectid + len <= search_start) 1299 return -1; 1300 if (key.objectid >= search_start + search_len) 1301 return 1; 1302 return 0; 1303 } 1304 1305 /* 1306 * Locate one extent item which covers any byte in range 1307 * [@search_start, @search_start + @search_length) 1308 * 1309 * If the path is not initialized, we will initialize the search by doing 1310 * a btrfs_search_slot(). 1311 * If the path is already initialized, we will use the path as the initial 1312 * slot, to avoid duplicated btrfs_search_slot() calls. 1313 * 1314 * NOTE: If an extent item starts before @search_start, we will still 1315 * return the extent item. This is for data extent crossing stripe boundary. 1316 * 1317 * Return 0 if we found such extent item, and @path will point to the extent item. 1318 * Return >0 if no such extent item can be found, and @path will be released. 1319 * Return <0 if hit fatal error, and @path will be released. 1320 */ 1321 static int find_first_extent_item(struct btrfs_root *extent_root, 1322 struct btrfs_path *path, 1323 u64 search_start, u64 search_len) 1324 { 1325 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1326 struct btrfs_key key; 1327 int ret; 1328 1329 /* Continue using the existing path */ 1330 if (path->nodes[0]) 1331 goto search_forward; 1332 1333 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1334 key.type = BTRFS_METADATA_ITEM_KEY; 1335 else 1336 key.type = BTRFS_EXTENT_ITEM_KEY; 1337 key.objectid = search_start; 1338 key.offset = (u64)-1; 1339 1340 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1341 if (ret < 0) 1342 return ret; 1343 1344 ASSERT(ret > 0); 1345 /* 1346 * Here we intentionally pass 0 as @min_objectid, as there could be 1347 * an extent item starting before @search_start. 1348 */ 1349 ret = btrfs_previous_extent_item(extent_root, path, 0); 1350 if (ret < 0) 1351 return ret; 1352 /* 1353 * No matter whether we have found an extent item, the next loop will 1354 * properly do every check on the key. 1355 */ 1356 search_forward: 1357 while (true) { 1358 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1359 if (key.objectid >= search_start + search_len) 1360 break; 1361 if (key.type != BTRFS_METADATA_ITEM_KEY && 1362 key.type != BTRFS_EXTENT_ITEM_KEY) 1363 goto next; 1364 1365 ret = compare_extent_item_range(path, search_start, search_len); 1366 if (ret == 0) 1367 return ret; 1368 if (ret > 0) 1369 break; 1370 next: 1371 path->slots[0]++; 1372 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 1373 ret = btrfs_next_leaf(extent_root, path); 1374 if (ret) { 1375 /* Either no more item or fatal error */ 1376 btrfs_release_path(path); 1377 return ret; 1378 } 1379 } 1380 } 1381 btrfs_release_path(path); 1382 return 1; 1383 } 1384 1385 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 1386 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 1387 { 1388 struct btrfs_key key; 1389 struct btrfs_extent_item *ei; 1390 1391 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1392 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 1393 key.type == BTRFS_EXTENT_ITEM_KEY); 1394 *extent_start_ret = key.objectid; 1395 if (key.type == BTRFS_METADATA_ITEM_KEY) 1396 *size_ret = path->nodes[0]->fs_info->nodesize; 1397 else 1398 *size_ret = key.offset; 1399 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 1400 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 1401 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 1402 } 1403 1404 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 1405 u64 physical, u64 physical_end) 1406 { 1407 struct btrfs_fs_info *fs_info = sctx->fs_info; 1408 int ret = 0; 1409 1410 if (!btrfs_is_zoned(fs_info)) 1411 return 0; 1412 1413 mutex_lock(&sctx->wr_lock); 1414 if (sctx->write_pointer < physical_end) { 1415 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 1416 physical, 1417 sctx->write_pointer); 1418 if (ret) 1419 btrfs_err(fs_info, 1420 "zoned: failed to recover write pointer"); 1421 } 1422 mutex_unlock(&sctx->wr_lock); 1423 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 1424 1425 return ret; 1426 } 1427 1428 static void fill_one_extent_info(struct btrfs_fs_info *fs_info, 1429 struct scrub_stripe *stripe, 1430 u64 extent_start, u64 extent_len, 1431 u64 extent_flags, u64 extent_gen) 1432 { 1433 for (u64 cur_logical = max(stripe->logical, extent_start); 1434 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, 1435 extent_start + extent_len); 1436 cur_logical += fs_info->sectorsize) { 1437 const int nr_sector = (cur_logical - stripe->logical) >> 1438 fs_info->sectorsize_bits; 1439 struct scrub_sector_verification *sector = 1440 &stripe->sectors[nr_sector]; 1441 1442 set_bit(nr_sector, &stripe->extent_sector_bitmap); 1443 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1444 sector->is_metadata = true; 1445 sector->generation = extent_gen; 1446 } 1447 } 1448 } 1449 1450 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) 1451 { 1452 stripe->extent_sector_bitmap = 0; 1453 stripe->init_error_bitmap = 0; 1454 stripe->init_nr_io_errors = 0; 1455 stripe->init_nr_csum_errors = 0; 1456 stripe->init_nr_meta_errors = 0; 1457 stripe->error_bitmap = 0; 1458 stripe->io_error_bitmap = 0; 1459 stripe->csum_error_bitmap = 0; 1460 stripe->meta_error_bitmap = 0; 1461 } 1462 1463 /* 1464 * Locate one stripe which has at least one extent in its range. 1465 * 1466 * Return 0 if found such stripe, and store its info into @stripe. 1467 * Return >0 if there is no such stripe in the specified range. 1468 * Return <0 for error. 1469 */ 1470 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, 1471 struct btrfs_device *dev, u64 physical, 1472 int mirror_num, u64 logical_start, 1473 u32 logical_len, 1474 struct scrub_stripe *stripe) 1475 { 1476 struct btrfs_fs_info *fs_info = bg->fs_info; 1477 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); 1478 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); 1479 const u64 logical_end = logical_start + logical_len; 1480 struct btrfs_path path = { 0 }; 1481 u64 cur_logical = logical_start; 1482 u64 stripe_end; 1483 u64 extent_start; 1484 u64 extent_len; 1485 u64 extent_flags; 1486 u64 extent_gen; 1487 int ret; 1488 1489 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * 1490 stripe->nr_sectors); 1491 scrub_stripe_reset_bitmaps(stripe); 1492 1493 /* The range must be inside the bg. */ 1494 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1495 1496 path.search_commit_root = 1; 1497 path.skip_locking = 1; 1498 1499 ret = find_first_extent_item(extent_root, &path, logical_start, logical_len); 1500 /* Either error or not found. */ 1501 if (ret) 1502 goto out; 1503 get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen); 1504 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1505 stripe->nr_meta_extents++; 1506 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1507 stripe->nr_data_extents++; 1508 cur_logical = max(extent_start, cur_logical); 1509 1510 /* 1511 * Round down to stripe boundary. 1512 * 1513 * The extra calculation against bg->start is to handle block groups 1514 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. 1515 */ 1516 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + 1517 bg->start; 1518 stripe->physical = physical + stripe->logical - logical_start; 1519 stripe->dev = dev; 1520 stripe->bg = bg; 1521 stripe->mirror_num = mirror_num; 1522 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; 1523 1524 /* Fill the first extent info into stripe->sectors[] array. */ 1525 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1526 extent_flags, extent_gen); 1527 cur_logical = extent_start + extent_len; 1528 1529 /* Fill the extent info for the remaining sectors. */ 1530 while (cur_logical <= stripe_end) { 1531 ret = find_first_extent_item(extent_root, &path, cur_logical, 1532 stripe_end - cur_logical + 1); 1533 if (ret < 0) 1534 goto out; 1535 if (ret > 0) { 1536 ret = 0; 1537 break; 1538 } 1539 get_extent_info(&path, &extent_start, &extent_len, 1540 &extent_flags, &extent_gen); 1541 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1542 stripe->nr_meta_extents++; 1543 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1544 stripe->nr_data_extents++; 1545 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1546 extent_flags, extent_gen); 1547 cur_logical = extent_start + extent_len; 1548 } 1549 1550 /* Now fill the data csum. */ 1551 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { 1552 int sector_nr; 1553 unsigned long csum_bitmap = 0; 1554 1555 /* Csum space should have already been allocated. */ 1556 ASSERT(stripe->csums); 1557 1558 /* 1559 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN 1560 * should contain at most 16 sectors. 1561 */ 1562 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1563 1564 ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical, 1565 stripe_end, stripe->csums, 1566 &csum_bitmap, true); 1567 if (ret < 0) 1568 goto out; 1569 if (ret > 0) 1570 ret = 0; 1571 1572 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { 1573 stripe->sectors[sector_nr].csum = stripe->csums + 1574 sector_nr * fs_info->csum_size; 1575 } 1576 } 1577 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1578 out: 1579 btrfs_release_path(&path); 1580 return ret; 1581 } 1582 1583 static void scrub_reset_stripe(struct scrub_stripe *stripe) 1584 { 1585 scrub_stripe_reset_bitmaps(stripe); 1586 1587 stripe->nr_meta_extents = 0; 1588 stripe->nr_data_extents = 0; 1589 stripe->state = 0; 1590 1591 for (int i = 0; i < stripe->nr_sectors; i++) { 1592 stripe->sectors[i].is_metadata = false; 1593 stripe->sectors[i].csum = NULL; 1594 stripe->sectors[i].generation = 0; 1595 } 1596 } 1597 1598 static void scrub_submit_initial_read(struct scrub_ctx *sctx, 1599 struct scrub_stripe *stripe) 1600 { 1601 struct btrfs_fs_info *fs_info = sctx->fs_info; 1602 struct btrfs_bio *bbio; 1603 int mirror = stripe->mirror_num; 1604 1605 ASSERT(stripe->bg); 1606 ASSERT(stripe->mirror_num > 0); 1607 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1608 1609 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info, 1610 scrub_read_endio, stripe); 1611 1612 /* Read the whole stripe. */ 1613 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; 1614 for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) { 1615 int ret; 1616 1617 ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0); 1618 /* We should have allocated enough bio vectors. */ 1619 ASSERT(ret == PAGE_SIZE); 1620 } 1621 atomic_inc(&stripe->pending_io); 1622 1623 /* 1624 * For dev-replace, either user asks to avoid the source dev, or 1625 * the device is missing, we try the next mirror instead. 1626 */ 1627 if (sctx->is_dev_replace && 1628 (fs_info->dev_replace.cont_reading_from_srcdev_mode == 1629 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || 1630 !stripe->dev->bdev)) { 1631 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1632 stripe->bg->length); 1633 1634 mirror = calc_next_mirror(mirror, num_copies); 1635 } 1636 btrfs_submit_bio(bbio, mirror); 1637 } 1638 1639 static bool stripe_has_metadata_error(struct scrub_stripe *stripe) 1640 { 1641 int i; 1642 1643 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) { 1644 if (stripe->sectors[i].is_metadata) { 1645 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1646 1647 btrfs_err(fs_info, 1648 "stripe %llu has unrepaired metadata sector at %llu", 1649 stripe->logical, 1650 stripe->logical + (i << fs_info->sectorsize_bits)); 1651 return true; 1652 } 1653 } 1654 return false; 1655 } 1656 1657 static int flush_scrub_stripes(struct scrub_ctx *sctx) 1658 { 1659 struct btrfs_fs_info *fs_info = sctx->fs_info; 1660 struct scrub_stripe *stripe; 1661 const int nr_stripes = sctx->cur_stripe; 1662 int ret = 0; 1663 1664 if (!nr_stripes) 1665 return 0; 1666 1667 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); 1668 1669 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, 1670 btrfs_stripe_nr_to_offset(nr_stripes)); 1671 for (int i = 0; i < nr_stripes; i++) { 1672 stripe = &sctx->stripes[i]; 1673 scrub_submit_initial_read(sctx, stripe); 1674 } 1675 1676 for (int i = 0; i < nr_stripes; i++) { 1677 stripe = &sctx->stripes[i]; 1678 1679 wait_event(stripe->repair_wait, 1680 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1681 } 1682 1683 /* 1684 * Submit the repaired sectors. For zoned case, we cannot do repair 1685 * in-place, but queue the bg to be relocated. 1686 */ 1687 if (btrfs_is_zoned(fs_info)) { 1688 for (int i = 0; i < nr_stripes; i++) { 1689 stripe = &sctx->stripes[i]; 1690 1691 if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) { 1692 btrfs_repair_one_zone(fs_info, 1693 sctx->stripes[0].bg->start); 1694 break; 1695 } 1696 } 1697 } else if (!sctx->readonly) { 1698 for (int i = 0; i < nr_stripes; i++) { 1699 unsigned long repaired; 1700 1701 stripe = &sctx->stripes[i]; 1702 1703 bitmap_andnot(&repaired, &stripe->init_error_bitmap, 1704 &stripe->error_bitmap, stripe->nr_sectors); 1705 scrub_write_sectors(sctx, stripe, repaired, false); 1706 } 1707 } 1708 1709 /* Submit for dev-replace. */ 1710 if (sctx->is_dev_replace) { 1711 /* 1712 * For dev-replace, if we know there is something wrong with 1713 * metadata, we should immedately abort. 1714 */ 1715 for (int i = 0; i < nr_stripes; i++) { 1716 if (stripe_has_metadata_error(&sctx->stripes[i])) { 1717 ret = -EIO; 1718 goto out; 1719 } 1720 } 1721 for (int i = 0; i < nr_stripes; i++) { 1722 unsigned long good; 1723 1724 stripe = &sctx->stripes[i]; 1725 1726 ASSERT(stripe->dev == fs_info->dev_replace.srcdev); 1727 1728 bitmap_andnot(&good, &stripe->extent_sector_bitmap, 1729 &stripe->error_bitmap, stripe->nr_sectors); 1730 scrub_write_sectors(sctx, stripe, good, true); 1731 } 1732 } 1733 1734 /* Wait for the above writebacks to finish. */ 1735 for (int i = 0; i < nr_stripes; i++) { 1736 stripe = &sctx->stripes[i]; 1737 1738 wait_scrub_stripe_io(stripe); 1739 scrub_reset_stripe(stripe); 1740 } 1741 out: 1742 sctx->cur_stripe = 0; 1743 return ret; 1744 } 1745 1746 static void raid56_scrub_wait_endio(struct bio *bio) 1747 { 1748 complete(bio->bi_private); 1749 } 1750 1751 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, 1752 struct btrfs_device *dev, int mirror_num, 1753 u64 logical, u32 length, u64 physical) 1754 { 1755 struct scrub_stripe *stripe; 1756 int ret; 1757 1758 /* No available slot, submit all stripes and wait for them. */ 1759 if (sctx->cur_stripe >= SCRUB_STRIPES_PER_SCTX) { 1760 ret = flush_scrub_stripes(sctx); 1761 if (ret < 0) 1762 return ret; 1763 } 1764 1765 stripe = &sctx->stripes[sctx->cur_stripe]; 1766 1767 /* We can queue one stripe using the remaining slot. */ 1768 scrub_reset_stripe(stripe); 1769 ret = scrub_find_fill_first_stripe(bg, dev, physical, mirror_num, 1770 logical, length, stripe); 1771 /* Either >0 as no more extents or <0 for error. */ 1772 if (ret) 1773 return ret; 1774 sctx->cur_stripe++; 1775 return 0; 1776 } 1777 1778 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, 1779 struct btrfs_device *scrub_dev, 1780 struct btrfs_block_group *bg, 1781 struct map_lookup *map, 1782 u64 full_stripe_start) 1783 { 1784 DECLARE_COMPLETION_ONSTACK(io_done); 1785 struct btrfs_fs_info *fs_info = sctx->fs_info; 1786 struct btrfs_raid_bio *rbio; 1787 struct btrfs_io_context *bioc = NULL; 1788 struct bio *bio; 1789 struct scrub_stripe *stripe; 1790 bool all_empty = true; 1791 const int data_stripes = nr_data_stripes(map); 1792 unsigned long extent_bitmap = 0; 1793 u64 length = btrfs_stripe_nr_to_offset(data_stripes); 1794 int ret; 1795 1796 ASSERT(sctx->raid56_data_stripes); 1797 1798 for (int i = 0; i < data_stripes; i++) { 1799 int stripe_index; 1800 int rot; 1801 u64 physical; 1802 1803 stripe = &sctx->raid56_data_stripes[i]; 1804 rot = div_u64(full_stripe_start - bg->start, 1805 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; 1806 stripe_index = (i + rot) % map->num_stripes; 1807 physical = map->stripes[stripe_index].physical + 1808 btrfs_stripe_nr_to_offset(rot); 1809 1810 scrub_reset_stripe(stripe); 1811 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); 1812 ret = scrub_find_fill_first_stripe(bg, 1813 map->stripes[stripe_index].dev, physical, 1, 1814 full_stripe_start + btrfs_stripe_nr_to_offset(i), 1815 BTRFS_STRIPE_LEN, stripe); 1816 if (ret < 0) 1817 goto out; 1818 /* 1819 * No extent in this data stripe, need to manually mark them 1820 * initialized to make later read submission happy. 1821 */ 1822 if (ret > 0) { 1823 stripe->logical = full_stripe_start + 1824 btrfs_stripe_nr_to_offset(i); 1825 stripe->dev = map->stripes[stripe_index].dev; 1826 stripe->mirror_num = 1; 1827 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1828 } 1829 } 1830 1831 /* Check if all data stripes are empty. */ 1832 for (int i = 0; i < data_stripes; i++) { 1833 stripe = &sctx->raid56_data_stripes[i]; 1834 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) { 1835 all_empty = false; 1836 break; 1837 } 1838 } 1839 if (all_empty) { 1840 ret = 0; 1841 goto out; 1842 } 1843 1844 for (int i = 0; i < data_stripes; i++) { 1845 stripe = &sctx->raid56_data_stripes[i]; 1846 scrub_submit_initial_read(sctx, stripe); 1847 } 1848 for (int i = 0; i < data_stripes; i++) { 1849 stripe = &sctx->raid56_data_stripes[i]; 1850 1851 wait_event(stripe->repair_wait, 1852 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1853 } 1854 /* For now, no zoned support for RAID56. */ 1855 ASSERT(!btrfs_is_zoned(sctx->fs_info)); 1856 1857 /* Writeback for the repaired sectors. */ 1858 for (int i = 0; i < data_stripes; i++) { 1859 unsigned long repaired; 1860 1861 stripe = &sctx->raid56_data_stripes[i]; 1862 1863 bitmap_andnot(&repaired, &stripe->init_error_bitmap, 1864 &stripe->error_bitmap, stripe->nr_sectors); 1865 scrub_write_sectors(sctx, stripe, repaired, false); 1866 } 1867 1868 /* Wait for the above writebacks to finish. */ 1869 for (int i = 0; i < data_stripes; i++) { 1870 stripe = &sctx->raid56_data_stripes[i]; 1871 1872 wait_scrub_stripe_io(stripe); 1873 } 1874 1875 /* 1876 * Now all data stripes are properly verified. Check if we have any 1877 * unrepaired, if so abort immediately or we could further corrupt the 1878 * P/Q stripes. 1879 * 1880 * During the loop, also populate extent_bitmap. 1881 */ 1882 for (int i = 0; i < data_stripes; i++) { 1883 unsigned long error; 1884 1885 stripe = &sctx->raid56_data_stripes[i]; 1886 1887 /* 1888 * We should only check the errors where there is an extent. 1889 * As we may hit an empty data stripe while it's missing. 1890 */ 1891 bitmap_and(&error, &stripe->error_bitmap, 1892 &stripe->extent_sector_bitmap, stripe->nr_sectors); 1893 if (!bitmap_empty(&error, stripe->nr_sectors)) { 1894 btrfs_err(fs_info, 1895 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", 1896 full_stripe_start, i, stripe->nr_sectors, 1897 &error); 1898 ret = -EIO; 1899 goto out; 1900 } 1901 bitmap_or(&extent_bitmap, &extent_bitmap, 1902 &stripe->extent_sector_bitmap, stripe->nr_sectors); 1903 } 1904 1905 /* Now we can check and regenerate the P/Q stripe. */ 1906 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); 1907 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; 1908 bio->bi_private = &io_done; 1909 bio->bi_end_io = raid56_scrub_wait_endio; 1910 1911 btrfs_bio_counter_inc_blocked(fs_info); 1912 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start, 1913 &length, &bioc, NULL, NULL, 1); 1914 if (ret < 0) { 1915 btrfs_put_bioc(bioc); 1916 btrfs_bio_counter_dec(fs_info); 1917 goto out; 1918 } 1919 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, 1920 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1921 btrfs_put_bioc(bioc); 1922 if (!rbio) { 1923 ret = -ENOMEM; 1924 btrfs_bio_counter_dec(fs_info); 1925 goto out; 1926 } 1927 /* Use the recovered stripes as cache to avoid read them from disk again. */ 1928 for (int i = 0; i < data_stripes; i++) { 1929 stripe = &sctx->raid56_data_stripes[i]; 1930 1931 raid56_parity_cache_data_pages(rbio, stripe->pages, 1932 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT)); 1933 } 1934 raid56_parity_submit_scrub_rbio(rbio); 1935 wait_for_completion_io(&io_done); 1936 ret = blk_status_to_errno(bio->bi_status); 1937 bio_put(bio); 1938 btrfs_bio_counter_dec(fs_info); 1939 1940 out: 1941 return ret; 1942 } 1943 1944 /* 1945 * Scrub one range which can only has simple mirror based profile. 1946 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 1947 * RAID0/RAID10). 1948 * 1949 * Since we may need to handle a subset of block group, we need @logical_start 1950 * and @logical_length parameter. 1951 */ 1952 static int scrub_simple_mirror(struct scrub_ctx *sctx, 1953 struct btrfs_block_group *bg, 1954 struct map_lookup *map, 1955 u64 logical_start, u64 logical_length, 1956 struct btrfs_device *device, 1957 u64 physical, int mirror_num) 1958 { 1959 struct btrfs_fs_info *fs_info = sctx->fs_info; 1960 const u64 logical_end = logical_start + logical_length; 1961 /* An artificial limit, inherit from old scrub behavior */ 1962 struct btrfs_path path = { 0 }; 1963 u64 cur_logical = logical_start; 1964 int ret; 1965 1966 /* The range must be inside the bg */ 1967 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1968 1969 path.search_commit_root = 1; 1970 path.skip_locking = 1; 1971 /* Go through each extent items inside the logical range */ 1972 while (cur_logical < logical_end) { 1973 u64 cur_physical = physical + cur_logical - logical_start; 1974 1975 /* Canceled? */ 1976 if (atomic_read(&fs_info->scrub_cancel_req) || 1977 atomic_read(&sctx->cancel_req)) { 1978 ret = -ECANCELED; 1979 break; 1980 } 1981 /* Paused? */ 1982 if (atomic_read(&fs_info->scrub_pause_req)) { 1983 /* Push queued extents */ 1984 scrub_blocked_if_needed(fs_info); 1985 } 1986 /* Block group removed? */ 1987 spin_lock(&bg->lock); 1988 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { 1989 spin_unlock(&bg->lock); 1990 ret = 0; 1991 break; 1992 } 1993 spin_unlock(&bg->lock); 1994 1995 ret = queue_scrub_stripe(sctx, bg, device, mirror_num, 1996 cur_logical, logical_end - cur_logical, 1997 cur_physical); 1998 if (ret > 0) { 1999 /* No more extent, just update the accounting */ 2000 sctx->stat.last_physical = physical + logical_length; 2001 ret = 0; 2002 break; 2003 } 2004 if (ret < 0) 2005 break; 2006 2007 ASSERT(sctx->cur_stripe > 0); 2008 cur_logical = sctx->stripes[sctx->cur_stripe - 1].logical 2009 + BTRFS_STRIPE_LEN; 2010 2011 /* Don't hold CPU for too long time */ 2012 cond_resched(); 2013 } 2014 btrfs_release_path(&path); 2015 return ret; 2016 } 2017 2018 /* Calculate the full stripe length for simple stripe based profiles */ 2019 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map) 2020 { 2021 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2022 BTRFS_BLOCK_GROUP_RAID10)); 2023 2024 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes); 2025 } 2026 2027 /* Get the logical bytenr for the stripe */ 2028 static u64 simple_stripe_get_logical(struct map_lookup *map, 2029 struct btrfs_block_group *bg, 2030 int stripe_index) 2031 { 2032 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2033 BTRFS_BLOCK_GROUP_RAID10)); 2034 ASSERT(stripe_index < map->num_stripes); 2035 2036 /* 2037 * (stripe_index / sub_stripes) gives how many data stripes we need to 2038 * skip. 2039 */ 2040 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) + 2041 bg->start; 2042 } 2043 2044 /* Get the mirror number for the stripe */ 2045 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index) 2046 { 2047 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2048 BTRFS_BLOCK_GROUP_RAID10)); 2049 ASSERT(stripe_index < map->num_stripes); 2050 2051 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 2052 return stripe_index % map->sub_stripes + 1; 2053 } 2054 2055 static int scrub_simple_stripe(struct scrub_ctx *sctx, 2056 struct btrfs_block_group *bg, 2057 struct map_lookup *map, 2058 struct btrfs_device *device, 2059 int stripe_index) 2060 { 2061 const u64 logical_increment = simple_stripe_full_stripe_len(map); 2062 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 2063 const u64 orig_physical = map->stripes[stripe_index].physical; 2064 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 2065 u64 cur_logical = orig_logical; 2066 u64 cur_physical = orig_physical; 2067 int ret = 0; 2068 2069 while (cur_logical < bg->start + bg->length) { 2070 /* 2071 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 2072 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 2073 * this stripe. 2074 */ 2075 ret = scrub_simple_mirror(sctx, bg, map, cur_logical, 2076 BTRFS_STRIPE_LEN, device, cur_physical, 2077 mirror_num); 2078 if (ret) 2079 return ret; 2080 /* Skip to next stripe which belongs to the target device */ 2081 cur_logical += logical_increment; 2082 /* For physical offset, we just go to next stripe */ 2083 cur_physical += BTRFS_STRIPE_LEN; 2084 } 2085 return ret; 2086 } 2087 2088 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2089 struct btrfs_block_group *bg, 2090 struct extent_map *em, 2091 struct btrfs_device *scrub_dev, 2092 int stripe_index) 2093 { 2094 struct btrfs_fs_info *fs_info = sctx->fs_info; 2095 struct map_lookup *map = em->map_lookup; 2096 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 2097 const u64 chunk_logical = bg->start; 2098 int ret; 2099 int ret2; 2100 u64 physical = map->stripes[stripe_index].physical; 2101 const u64 dev_stripe_len = btrfs_calc_stripe_length(em); 2102 const u64 physical_end = physical + dev_stripe_len; 2103 u64 logical; 2104 u64 logic_end; 2105 /* The logical increment after finishing one stripe */ 2106 u64 increment; 2107 /* Offset inside the chunk */ 2108 u64 offset; 2109 u64 stripe_logical; 2110 int stop_loop = 0; 2111 2112 scrub_blocked_if_needed(fs_info); 2113 2114 if (sctx->is_dev_replace && 2115 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 2116 mutex_lock(&sctx->wr_lock); 2117 sctx->write_pointer = physical; 2118 mutex_unlock(&sctx->wr_lock); 2119 } 2120 2121 /* Prepare the extra data stripes used by RAID56. */ 2122 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2123 ASSERT(sctx->raid56_data_stripes == NULL); 2124 2125 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), 2126 sizeof(struct scrub_stripe), 2127 GFP_KERNEL); 2128 if (!sctx->raid56_data_stripes) { 2129 ret = -ENOMEM; 2130 goto out; 2131 } 2132 for (int i = 0; i < nr_data_stripes(map); i++) { 2133 ret = init_scrub_stripe(fs_info, 2134 &sctx->raid56_data_stripes[i]); 2135 if (ret < 0) 2136 goto out; 2137 sctx->raid56_data_stripes[i].bg = bg; 2138 sctx->raid56_data_stripes[i].sctx = sctx; 2139 } 2140 } 2141 /* 2142 * There used to be a big double loop to handle all profiles using the 2143 * same routine, which grows larger and more gross over time. 2144 * 2145 * So here we handle each profile differently, so simpler profiles 2146 * have simpler scrubbing function. 2147 */ 2148 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 2149 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2150 /* 2151 * Above check rules out all complex profile, the remaining 2152 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 2153 * mirrored duplication without stripe. 2154 * 2155 * Only @physical and @mirror_num needs to calculated using 2156 * @stripe_index. 2157 */ 2158 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length, 2159 scrub_dev, map->stripes[stripe_index].physical, 2160 stripe_index + 1); 2161 offset = 0; 2162 goto out; 2163 } 2164 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 2165 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); 2166 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes); 2167 goto out; 2168 } 2169 2170 /* Only RAID56 goes through the old code */ 2171 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 2172 ret = 0; 2173 2174 /* Calculate the logical end of the stripe */ 2175 get_raid56_logic_offset(physical_end, stripe_index, 2176 map, &logic_end, NULL); 2177 logic_end += chunk_logical; 2178 2179 /* Initialize @offset in case we need to go to out: label */ 2180 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 2181 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2182 2183 /* 2184 * Due to the rotation, for RAID56 it's better to iterate each stripe 2185 * using their physical offset. 2186 */ 2187 while (physical < physical_end) { 2188 ret = get_raid56_logic_offset(physical, stripe_index, map, 2189 &logical, &stripe_logical); 2190 logical += chunk_logical; 2191 if (ret) { 2192 /* it is parity strip */ 2193 stripe_logical += chunk_logical; 2194 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, 2195 map, stripe_logical); 2196 if (ret) 2197 goto out; 2198 goto next; 2199 } 2200 2201 /* 2202 * Now we're at a data stripe, scrub each extents in the range. 2203 * 2204 * At this stage, if we ignore the repair part, inside each data 2205 * stripe it is no different than SINGLE profile. 2206 * We can reuse scrub_simple_mirror() here, as the repair part 2207 * is still based on @mirror_num. 2208 */ 2209 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN, 2210 scrub_dev, physical, 1); 2211 if (ret < 0) 2212 goto out; 2213 next: 2214 logical += increment; 2215 physical += BTRFS_STRIPE_LEN; 2216 spin_lock(&sctx->stat_lock); 2217 if (stop_loop) 2218 sctx->stat.last_physical = 2219 map->stripes[stripe_index].physical + dev_stripe_len; 2220 else 2221 sctx->stat.last_physical = physical; 2222 spin_unlock(&sctx->stat_lock); 2223 if (stop_loop) 2224 break; 2225 } 2226 out: 2227 ret2 = flush_scrub_stripes(sctx); 2228 if (!ret) 2229 ret = ret2; 2230 if (sctx->raid56_data_stripes) { 2231 for (int i = 0; i < nr_data_stripes(map); i++) 2232 release_scrub_stripe(&sctx->raid56_data_stripes[i]); 2233 kfree(sctx->raid56_data_stripes); 2234 sctx->raid56_data_stripes = NULL; 2235 } 2236 2237 if (sctx->is_dev_replace && ret >= 0) { 2238 int ret2; 2239 2240 ret2 = sync_write_pointer_for_zoned(sctx, 2241 chunk_logical + offset, 2242 map->stripes[stripe_index].physical, 2243 physical_end); 2244 if (ret2) 2245 ret = ret2; 2246 } 2247 2248 return ret < 0 ? ret : 0; 2249 } 2250 2251 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2252 struct btrfs_block_group *bg, 2253 struct btrfs_device *scrub_dev, 2254 u64 dev_offset, 2255 u64 dev_extent_len) 2256 { 2257 struct btrfs_fs_info *fs_info = sctx->fs_info; 2258 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2259 struct map_lookup *map; 2260 struct extent_map *em; 2261 int i; 2262 int ret = 0; 2263 2264 read_lock(&map_tree->lock); 2265 em = lookup_extent_mapping(map_tree, bg->start, bg->length); 2266 read_unlock(&map_tree->lock); 2267 2268 if (!em) { 2269 /* 2270 * Might have been an unused block group deleted by the cleaner 2271 * kthread or relocation. 2272 */ 2273 spin_lock(&bg->lock); 2274 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) 2275 ret = -EINVAL; 2276 spin_unlock(&bg->lock); 2277 2278 return ret; 2279 } 2280 if (em->start != bg->start) 2281 goto out; 2282 if (em->len < dev_extent_len) 2283 goto out; 2284 2285 map = em->map_lookup; 2286 for (i = 0; i < map->num_stripes; ++i) { 2287 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2288 map->stripes[i].physical == dev_offset) { 2289 ret = scrub_stripe(sctx, bg, em, scrub_dev, i); 2290 if (ret) 2291 goto out; 2292 } 2293 } 2294 out: 2295 free_extent_map(em); 2296 2297 return ret; 2298 } 2299 2300 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 2301 struct btrfs_block_group *cache) 2302 { 2303 struct btrfs_fs_info *fs_info = cache->fs_info; 2304 struct btrfs_trans_handle *trans; 2305 2306 if (!btrfs_is_zoned(fs_info)) 2307 return 0; 2308 2309 btrfs_wait_block_group_reservations(cache); 2310 btrfs_wait_nocow_writers(cache); 2311 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 2312 2313 trans = btrfs_join_transaction(root); 2314 if (IS_ERR(trans)) 2315 return PTR_ERR(trans); 2316 return btrfs_commit_transaction(trans); 2317 } 2318 2319 static noinline_for_stack 2320 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2321 struct btrfs_device *scrub_dev, u64 start, u64 end) 2322 { 2323 struct btrfs_dev_extent *dev_extent = NULL; 2324 struct btrfs_path *path; 2325 struct btrfs_fs_info *fs_info = sctx->fs_info; 2326 struct btrfs_root *root = fs_info->dev_root; 2327 u64 chunk_offset; 2328 int ret = 0; 2329 int ro_set; 2330 int slot; 2331 struct extent_buffer *l; 2332 struct btrfs_key key; 2333 struct btrfs_key found_key; 2334 struct btrfs_block_group *cache; 2335 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2336 2337 path = btrfs_alloc_path(); 2338 if (!path) 2339 return -ENOMEM; 2340 2341 path->reada = READA_FORWARD; 2342 path->search_commit_root = 1; 2343 path->skip_locking = 1; 2344 2345 key.objectid = scrub_dev->devid; 2346 key.offset = 0ull; 2347 key.type = BTRFS_DEV_EXTENT_KEY; 2348 2349 while (1) { 2350 u64 dev_extent_len; 2351 2352 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2353 if (ret < 0) 2354 break; 2355 if (ret > 0) { 2356 if (path->slots[0] >= 2357 btrfs_header_nritems(path->nodes[0])) { 2358 ret = btrfs_next_leaf(root, path); 2359 if (ret < 0) 2360 break; 2361 if (ret > 0) { 2362 ret = 0; 2363 break; 2364 } 2365 } else { 2366 ret = 0; 2367 } 2368 } 2369 2370 l = path->nodes[0]; 2371 slot = path->slots[0]; 2372 2373 btrfs_item_key_to_cpu(l, &found_key, slot); 2374 2375 if (found_key.objectid != scrub_dev->devid) 2376 break; 2377 2378 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 2379 break; 2380 2381 if (found_key.offset >= end) 2382 break; 2383 2384 if (found_key.offset < key.offset) 2385 break; 2386 2387 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2388 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 2389 2390 if (found_key.offset + dev_extent_len <= start) 2391 goto skip; 2392 2393 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2394 2395 /* 2396 * get a reference on the corresponding block group to prevent 2397 * the chunk from going away while we scrub it 2398 */ 2399 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2400 2401 /* some chunks are removed but not committed to disk yet, 2402 * continue scrubbing */ 2403 if (!cache) 2404 goto skip; 2405 2406 ASSERT(cache->start <= chunk_offset); 2407 /* 2408 * We are using the commit root to search for device extents, so 2409 * that means we could have found a device extent item from a 2410 * block group that was deleted in the current transaction. The 2411 * logical start offset of the deleted block group, stored at 2412 * @chunk_offset, might be part of the logical address range of 2413 * a new block group (which uses different physical extents). 2414 * In this case btrfs_lookup_block_group() has returned the new 2415 * block group, and its start address is less than @chunk_offset. 2416 * 2417 * We skip such new block groups, because it's pointless to 2418 * process them, as we won't find their extents because we search 2419 * for them using the commit root of the extent tree. For a device 2420 * replace it's also fine to skip it, we won't miss copying them 2421 * to the target device because we have the write duplication 2422 * setup through the regular write path (by btrfs_map_block()), 2423 * and we have committed a transaction when we started the device 2424 * replace, right after setting up the device replace state. 2425 */ 2426 if (cache->start < chunk_offset) { 2427 btrfs_put_block_group(cache); 2428 goto skip; 2429 } 2430 2431 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 2432 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { 2433 btrfs_put_block_group(cache); 2434 goto skip; 2435 } 2436 } 2437 2438 /* 2439 * Make sure that while we are scrubbing the corresponding block 2440 * group doesn't get its logical address and its device extents 2441 * reused for another block group, which can possibly be of a 2442 * different type and different profile. We do this to prevent 2443 * false error detections and crashes due to bogus attempts to 2444 * repair extents. 2445 */ 2446 spin_lock(&cache->lock); 2447 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { 2448 spin_unlock(&cache->lock); 2449 btrfs_put_block_group(cache); 2450 goto skip; 2451 } 2452 btrfs_freeze_block_group(cache); 2453 spin_unlock(&cache->lock); 2454 2455 /* 2456 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 2457 * to avoid deadlock caused by: 2458 * btrfs_inc_block_group_ro() 2459 * -> btrfs_wait_for_commit() 2460 * -> btrfs_commit_transaction() 2461 * -> btrfs_scrub_pause() 2462 */ 2463 scrub_pause_on(fs_info); 2464 2465 /* 2466 * Don't do chunk preallocation for scrub. 2467 * 2468 * This is especially important for SYSTEM bgs, or we can hit 2469 * -EFBIG from btrfs_finish_chunk_alloc() like: 2470 * 1. The only SYSTEM bg is marked RO. 2471 * Since SYSTEM bg is small, that's pretty common. 2472 * 2. New SYSTEM bg will be allocated 2473 * Due to regular version will allocate new chunk. 2474 * 3. New SYSTEM bg is empty and will get cleaned up 2475 * Before cleanup really happens, it's marked RO again. 2476 * 4. Empty SYSTEM bg get scrubbed 2477 * We go back to 2. 2478 * 2479 * This can easily boost the amount of SYSTEM chunks if cleaner 2480 * thread can't be triggered fast enough, and use up all space 2481 * of btrfs_super_block::sys_chunk_array 2482 * 2483 * While for dev replace, we need to try our best to mark block 2484 * group RO, to prevent race between: 2485 * - Write duplication 2486 * Contains latest data 2487 * - Scrub copy 2488 * Contains data from commit tree 2489 * 2490 * If target block group is not marked RO, nocow writes can 2491 * be overwritten by scrub copy, causing data corruption. 2492 * So for dev-replace, it's not allowed to continue if a block 2493 * group is not RO. 2494 */ 2495 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 2496 if (!ret && sctx->is_dev_replace) { 2497 ret = finish_extent_writes_for_zoned(root, cache); 2498 if (ret) { 2499 btrfs_dec_block_group_ro(cache); 2500 scrub_pause_off(fs_info); 2501 btrfs_put_block_group(cache); 2502 break; 2503 } 2504 } 2505 2506 if (ret == 0) { 2507 ro_set = 1; 2508 } else if (ret == -ENOSPC && !sctx->is_dev_replace && 2509 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { 2510 /* 2511 * btrfs_inc_block_group_ro return -ENOSPC when it 2512 * failed in creating new chunk for metadata. 2513 * It is not a problem for scrub, because 2514 * metadata are always cowed, and our scrub paused 2515 * commit_transactions. 2516 * 2517 * For RAID56 chunks, we have to mark them read-only 2518 * for scrub, as later we would use our own cache 2519 * out of RAID56 realm. 2520 * Thus we want the RAID56 bg to be marked RO to 2521 * prevent RMW from screwing up out cache. 2522 */ 2523 ro_set = 0; 2524 } else if (ret == -ETXTBSY) { 2525 btrfs_warn(fs_info, 2526 "skipping scrub of block group %llu due to active swapfile", 2527 cache->start); 2528 scrub_pause_off(fs_info); 2529 ret = 0; 2530 goto skip_unfreeze; 2531 } else { 2532 btrfs_warn(fs_info, 2533 "failed setting block group ro: %d", ret); 2534 btrfs_unfreeze_block_group(cache); 2535 btrfs_put_block_group(cache); 2536 scrub_pause_off(fs_info); 2537 break; 2538 } 2539 2540 /* 2541 * Now the target block is marked RO, wait for nocow writes to 2542 * finish before dev-replace. 2543 * COW is fine, as COW never overwrites extents in commit tree. 2544 */ 2545 if (sctx->is_dev_replace) { 2546 btrfs_wait_nocow_writers(cache); 2547 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 2548 cache->length); 2549 } 2550 2551 scrub_pause_off(fs_info); 2552 down_write(&dev_replace->rwsem); 2553 dev_replace->cursor_right = found_key.offset + dev_extent_len; 2554 dev_replace->cursor_left = found_key.offset; 2555 dev_replace->item_needs_writeback = 1; 2556 up_write(&dev_replace->rwsem); 2557 2558 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 2559 dev_extent_len); 2560 if (sctx->is_dev_replace && 2561 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 2562 cache, found_key.offset)) 2563 ro_set = 0; 2564 2565 down_write(&dev_replace->rwsem); 2566 dev_replace->cursor_left = dev_replace->cursor_right; 2567 dev_replace->item_needs_writeback = 1; 2568 up_write(&dev_replace->rwsem); 2569 2570 if (ro_set) 2571 btrfs_dec_block_group_ro(cache); 2572 2573 /* 2574 * We might have prevented the cleaner kthread from deleting 2575 * this block group if it was already unused because we raced 2576 * and set it to RO mode first. So add it back to the unused 2577 * list, otherwise it might not ever be deleted unless a manual 2578 * balance is triggered or it becomes used and unused again. 2579 */ 2580 spin_lock(&cache->lock); 2581 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && 2582 !cache->ro && cache->reserved == 0 && cache->used == 0) { 2583 spin_unlock(&cache->lock); 2584 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 2585 btrfs_discard_queue_work(&fs_info->discard_ctl, 2586 cache); 2587 else 2588 btrfs_mark_bg_unused(cache); 2589 } else { 2590 spin_unlock(&cache->lock); 2591 } 2592 skip_unfreeze: 2593 btrfs_unfreeze_block_group(cache); 2594 btrfs_put_block_group(cache); 2595 if (ret) 2596 break; 2597 if (sctx->is_dev_replace && 2598 atomic64_read(&dev_replace->num_write_errors) > 0) { 2599 ret = -EIO; 2600 break; 2601 } 2602 if (sctx->stat.malloc_errors > 0) { 2603 ret = -ENOMEM; 2604 break; 2605 } 2606 skip: 2607 key.offset = found_key.offset + dev_extent_len; 2608 btrfs_release_path(path); 2609 } 2610 2611 btrfs_free_path(path); 2612 2613 return ret; 2614 } 2615 2616 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, 2617 struct page *page, u64 physical, u64 generation) 2618 { 2619 struct btrfs_fs_info *fs_info = sctx->fs_info; 2620 struct bio_vec bvec; 2621 struct bio bio; 2622 struct btrfs_super_block *sb = page_address(page); 2623 int ret; 2624 2625 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ); 2626 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT; 2627 __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0); 2628 ret = submit_bio_wait(&bio); 2629 bio_uninit(&bio); 2630 2631 if (ret < 0) 2632 return ret; 2633 ret = btrfs_check_super_csum(fs_info, sb); 2634 if (ret != 0) { 2635 btrfs_err_rl(fs_info, 2636 "super block at physical %llu devid %llu has bad csum", 2637 physical, dev->devid); 2638 return -EIO; 2639 } 2640 if (btrfs_super_generation(sb) != generation) { 2641 btrfs_err_rl(fs_info, 2642 "super block at physical %llu devid %llu has bad generation %llu expect %llu", 2643 physical, dev->devid, 2644 btrfs_super_generation(sb), generation); 2645 return -EUCLEAN; 2646 } 2647 2648 return btrfs_validate_super(fs_info, sb, -1); 2649 } 2650 2651 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2652 struct btrfs_device *scrub_dev) 2653 { 2654 int i; 2655 u64 bytenr; 2656 u64 gen; 2657 int ret = 0; 2658 struct page *page; 2659 struct btrfs_fs_info *fs_info = sctx->fs_info; 2660 2661 if (BTRFS_FS_ERROR(fs_info)) 2662 return -EROFS; 2663 2664 page = alloc_page(GFP_KERNEL); 2665 if (!page) { 2666 spin_lock(&sctx->stat_lock); 2667 sctx->stat.malloc_errors++; 2668 spin_unlock(&sctx->stat_lock); 2669 return -ENOMEM; 2670 } 2671 2672 /* Seed devices of a new filesystem has their own generation. */ 2673 if (scrub_dev->fs_devices != fs_info->fs_devices) 2674 gen = scrub_dev->generation; 2675 else 2676 gen = fs_info->last_trans_committed; 2677 2678 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2679 bytenr = btrfs_sb_offset(i); 2680 if (bytenr + BTRFS_SUPER_INFO_SIZE > 2681 scrub_dev->commit_total_bytes) 2682 break; 2683 if (!btrfs_check_super_location(scrub_dev, bytenr)) 2684 continue; 2685 2686 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); 2687 if (ret) { 2688 spin_lock(&sctx->stat_lock); 2689 sctx->stat.super_errors++; 2690 spin_unlock(&sctx->stat_lock); 2691 } 2692 } 2693 __free_page(page); 2694 return 0; 2695 } 2696 2697 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 2698 { 2699 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 2700 &fs_info->scrub_lock)) { 2701 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 2702 2703 fs_info->scrub_workers = NULL; 2704 mutex_unlock(&fs_info->scrub_lock); 2705 2706 if (scrub_workers) 2707 destroy_workqueue(scrub_workers); 2708 } 2709 } 2710 2711 /* 2712 * get a reference count on fs_info->scrub_workers. start worker if necessary 2713 */ 2714 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 2715 int is_dev_replace) 2716 { 2717 struct workqueue_struct *scrub_workers = NULL; 2718 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 2719 int max_active = fs_info->thread_pool_size; 2720 int ret = -ENOMEM; 2721 2722 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 2723 return 0; 2724 2725 if (is_dev_replace) 2726 scrub_workers = alloc_ordered_workqueue("btrfs-scrub", flags); 2727 else 2728 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active); 2729 if (!scrub_workers) 2730 return -ENOMEM; 2731 2732 mutex_lock(&fs_info->scrub_lock); 2733 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 2734 ASSERT(fs_info->scrub_workers == NULL); 2735 fs_info->scrub_workers = scrub_workers; 2736 refcount_set(&fs_info->scrub_workers_refcnt, 1); 2737 mutex_unlock(&fs_info->scrub_lock); 2738 return 0; 2739 } 2740 /* Other thread raced in and created the workers for us */ 2741 refcount_inc(&fs_info->scrub_workers_refcnt); 2742 mutex_unlock(&fs_info->scrub_lock); 2743 2744 ret = 0; 2745 2746 destroy_workqueue(scrub_workers); 2747 return ret; 2748 } 2749 2750 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2751 u64 end, struct btrfs_scrub_progress *progress, 2752 int readonly, int is_dev_replace) 2753 { 2754 struct btrfs_dev_lookup_args args = { .devid = devid }; 2755 struct scrub_ctx *sctx; 2756 int ret; 2757 struct btrfs_device *dev; 2758 unsigned int nofs_flag; 2759 bool need_commit = false; 2760 2761 if (btrfs_fs_closing(fs_info)) 2762 return -EAGAIN; 2763 2764 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ 2765 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); 2766 2767 /* 2768 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible 2769 * value (max nodesize / min sectorsize), thus nodesize should always 2770 * be fine. 2771 */ 2772 ASSERT(fs_info->nodesize <= 2773 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); 2774 2775 /* Allocate outside of device_list_mutex */ 2776 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 2777 if (IS_ERR(sctx)) 2778 return PTR_ERR(sctx); 2779 2780 ret = scrub_workers_get(fs_info, is_dev_replace); 2781 if (ret) 2782 goto out_free_ctx; 2783 2784 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2785 dev = btrfs_find_device(fs_info->fs_devices, &args); 2786 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 2787 !is_dev_replace)) { 2788 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2789 ret = -ENODEV; 2790 goto out; 2791 } 2792 2793 if (!is_dev_replace && !readonly && 2794 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2795 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2796 btrfs_err_in_rcu(fs_info, 2797 "scrub on devid %llu: filesystem on %s is not writable", 2798 devid, btrfs_dev_name(dev)); 2799 ret = -EROFS; 2800 goto out; 2801 } 2802 2803 mutex_lock(&fs_info->scrub_lock); 2804 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 2805 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 2806 mutex_unlock(&fs_info->scrub_lock); 2807 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2808 ret = -EIO; 2809 goto out; 2810 } 2811 2812 down_read(&fs_info->dev_replace.rwsem); 2813 if (dev->scrub_ctx || 2814 (!is_dev_replace && 2815 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2816 up_read(&fs_info->dev_replace.rwsem); 2817 mutex_unlock(&fs_info->scrub_lock); 2818 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2819 ret = -EINPROGRESS; 2820 goto out; 2821 } 2822 up_read(&fs_info->dev_replace.rwsem); 2823 2824 sctx->readonly = readonly; 2825 dev->scrub_ctx = sctx; 2826 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2827 2828 /* 2829 * checking @scrub_pause_req here, we can avoid 2830 * race between committing transaction and scrubbing. 2831 */ 2832 __scrub_blocked_if_needed(fs_info); 2833 atomic_inc(&fs_info->scrubs_running); 2834 mutex_unlock(&fs_info->scrub_lock); 2835 2836 /* 2837 * In order to avoid deadlock with reclaim when there is a transaction 2838 * trying to pause scrub, make sure we use GFP_NOFS for all the 2839 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 2840 * invoked by our callees. The pausing request is done when the 2841 * transaction commit starts, and it blocks the transaction until scrub 2842 * is paused (done at specific points at scrub_stripe() or right above 2843 * before incrementing fs_info->scrubs_running). 2844 */ 2845 nofs_flag = memalloc_nofs_save(); 2846 if (!is_dev_replace) { 2847 u64 old_super_errors; 2848 2849 spin_lock(&sctx->stat_lock); 2850 old_super_errors = sctx->stat.super_errors; 2851 spin_unlock(&sctx->stat_lock); 2852 2853 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 2854 /* 2855 * by holding device list mutex, we can 2856 * kick off writing super in log tree sync. 2857 */ 2858 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2859 ret = scrub_supers(sctx, dev); 2860 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2861 2862 spin_lock(&sctx->stat_lock); 2863 /* 2864 * Super block errors found, but we can not commit transaction 2865 * at current context, since btrfs_commit_transaction() needs 2866 * to pause the current running scrub (hold by ourselves). 2867 */ 2868 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) 2869 need_commit = true; 2870 spin_unlock(&sctx->stat_lock); 2871 } 2872 2873 if (!ret) 2874 ret = scrub_enumerate_chunks(sctx, dev, start, end); 2875 memalloc_nofs_restore(nofs_flag); 2876 2877 atomic_dec(&fs_info->scrubs_running); 2878 wake_up(&fs_info->scrub_pause_wait); 2879 2880 if (progress) 2881 memcpy(progress, &sctx->stat, sizeof(*progress)); 2882 2883 if (!is_dev_replace) 2884 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 2885 ret ? "not finished" : "finished", devid, ret); 2886 2887 mutex_lock(&fs_info->scrub_lock); 2888 dev->scrub_ctx = NULL; 2889 mutex_unlock(&fs_info->scrub_lock); 2890 2891 scrub_workers_put(fs_info); 2892 scrub_put_ctx(sctx); 2893 2894 /* 2895 * We found some super block errors before, now try to force a 2896 * transaction commit, as scrub has finished. 2897 */ 2898 if (need_commit) { 2899 struct btrfs_trans_handle *trans; 2900 2901 trans = btrfs_start_transaction(fs_info->tree_root, 0); 2902 if (IS_ERR(trans)) { 2903 ret = PTR_ERR(trans); 2904 btrfs_err(fs_info, 2905 "scrub: failed to start transaction to fix super block errors: %d", ret); 2906 return ret; 2907 } 2908 ret = btrfs_commit_transaction(trans); 2909 if (ret < 0) 2910 btrfs_err(fs_info, 2911 "scrub: failed to commit transaction to fix super block errors: %d", ret); 2912 } 2913 return ret; 2914 out: 2915 scrub_workers_put(fs_info); 2916 out_free_ctx: 2917 scrub_free_ctx(sctx); 2918 2919 return ret; 2920 } 2921 2922 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 2923 { 2924 mutex_lock(&fs_info->scrub_lock); 2925 atomic_inc(&fs_info->scrub_pause_req); 2926 while (atomic_read(&fs_info->scrubs_paused) != 2927 atomic_read(&fs_info->scrubs_running)) { 2928 mutex_unlock(&fs_info->scrub_lock); 2929 wait_event(fs_info->scrub_pause_wait, 2930 atomic_read(&fs_info->scrubs_paused) == 2931 atomic_read(&fs_info->scrubs_running)); 2932 mutex_lock(&fs_info->scrub_lock); 2933 } 2934 mutex_unlock(&fs_info->scrub_lock); 2935 } 2936 2937 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 2938 { 2939 atomic_dec(&fs_info->scrub_pause_req); 2940 wake_up(&fs_info->scrub_pause_wait); 2941 } 2942 2943 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 2944 { 2945 mutex_lock(&fs_info->scrub_lock); 2946 if (!atomic_read(&fs_info->scrubs_running)) { 2947 mutex_unlock(&fs_info->scrub_lock); 2948 return -ENOTCONN; 2949 } 2950 2951 atomic_inc(&fs_info->scrub_cancel_req); 2952 while (atomic_read(&fs_info->scrubs_running)) { 2953 mutex_unlock(&fs_info->scrub_lock); 2954 wait_event(fs_info->scrub_pause_wait, 2955 atomic_read(&fs_info->scrubs_running) == 0); 2956 mutex_lock(&fs_info->scrub_lock); 2957 } 2958 atomic_dec(&fs_info->scrub_cancel_req); 2959 mutex_unlock(&fs_info->scrub_lock); 2960 2961 return 0; 2962 } 2963 2964 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 2965 { 2966 struct btrfs_fs_info *fs_info = dev->fs_info; 2967 struct scrub_ctx *sctx; 2968 2969 mutex_lock(&fs_info->scrub_lock); 2970 sctx = dev->scrub_ctx; 2971 if (!sctx) { 2972 mutex_unlock(&fs_info->scrub_lock); 2973 return -ENOTCONN; 2974 } 2975 atomic_inc(&sctx->cancel_req); 2976 while (dev->scrub_ctx) { 2977 mutex_unlock(&fs_info->scrub_lock); 2978 wait_event(fs_info->scrub_pause_wait, 2979 dev->scrub_ctx == NULL); 2980 mutex_lock(&fs_info->scrub_lock); 2981 } 2982 mutex_unlock(&fs_info->scrub_lock); 2983 2984 return 0; 2985 } 2986 2987 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 2988 struct btrfs_scrub_progress *progress) 2989 { 2990 struct btrfs_dev_lookup_args args = { .devid = devid }; 2991 struct btrfs_device *dev; 2992 struct scrub_ctx *sctx = NULL; 2993 2994 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2995 dev = btrfs_find_device(fs_info->fs_devices, &args); 2996 if (dev) 2997 sctx = dev->scrub_ctx; 2998 if (sctx) 2999 memcpy(progress, &sctx->stat, sizeof(*progress)); 3000 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3001 3002 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3003 } 3004