xref: /openbmc/linux/fs/btrfs/scrub.c (revision 91202ce7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "raid56.h"
21 #include "block-group.h"
22 #include "zoned.h"
23 #include "fs.h"
24 #include "accessors.h"
25 #include "file-item.h"
26 #include "scrub.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_ctx;
42 
43 /*
44  * The following value only influences the performance.
45  *
46  * This determines the batch size for stripe submitted in one go.
47  */
48 #define SCRUB_STRIPES_PER_SCTX	8	/* That would be 8 64K stripe per-device. */
49 
50 /*
51  * The following value times PAGE_SIZE needs to be large enough to match the
52  * largest node/leaf/sector size that shall be supported.
53  */
54 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
55 
56 /* Represent one sector and its needed info to verify the content. */
57 struct scrub_sector_verification {
58 	bool is_metadata;
59 
60 	union {
61 		/*
62 		 * Csum pointer for data csum verification.  Should point to a
63 		 * sector csum inside scrub_stripe::csums.
64 		 *
65 		 * NULL if this data sector has no csum.
66 		 */
67 		u8 *csum;
68 
69 		/*
70 		 * Extra info for metadata verification.  All sectors inside a
71 		 * tree block share the same generation.
72 		 */
73 		u64 generation;
74 	};
75 };
76 
77 enum scrub_stripe_flags {
78 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
79 	SCRUB_STRIPE_FLAG_INITIALIZED,
80 
81 	/* Set when the read-repair is finished. */
82 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
83 
84 	/*
85 	 * Set for data stripes if it's triggered from P/Q stripe.
86 	 * During such scrub, we should not report errors in data stripes, nor
87 	 * update the accounting.
88 	 */
89 	SCRUB_STRIPE_FLAG_NO_REPORT,
90 };
91 
92 #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
93 
94 /*
95  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
96  */
97 struct scrub_stripe {
98 	struct scrub_ctx *sctx;
99 	struct btrfs_block_group *bg;
100 
101 	struct page *pages[SCRUB_STRIPE_PAGES];
102 	struct scrub_sector_verification *sectors;
103 
104 	struct btrfs_device *dev;
105 	u64 logical;
106 	u64 physical;
107 
108 	u16 mirror_num;
109 
110 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
111 	u16 nr_sectors;
112 
113 	/*
114 	 * How many data/meta extents are in this stripe.  Only for scrub status
115 	 * reporting purposes.
116 	 */
117 	u16 nr_data_extents;
118 	u16 nr_meta_extents;
119 
120 	atomic_t pending_io;
121 	wait_queue_head_t io_wait;
122 	wait_queue_head_t repair_wait;
123 
124 	/*
125 	 * Indicate the states of the stripe.  Bits are defined in
126 	 * scrub_stripe_flags enum.
127 	 */
128 	unsigned long state;
129 
130 	/* Indicate which sectors are covered by extent items. */
131 	unsigned long extent_sector_bitmap;
132 
133 	/*
134 	 * The errors hit during the initial read of the stripe.
135 	 *
136 	 * Would be utilized for error reporting and repair.
137 	 *
138 	 * The remaining init_nr_* records the number of errors hit, only used
139 	 * by error reporting.
140 	 */
141 	unsigned long init_error_bitmap;
142 	unsigned int init_nr_io_errors;
143 	unsigned int init_nr_csum_errors;
144 	unsigned int init_nr_meta_errors;
145 
146 	/*
147 	 * The following error bitmaps are all for the current status.
148 	 * Every time we submit a new read, these bitmaps may be updated.
149 	 *
150 	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
151 	 *
152 	 * IO and csum errors can happen for both metadata and data.
153 	 */
154 	unsigned long error_bitmap;
155 	unsigned long io_error_bitmap;
156 	unsigned long csum_error_bitmap;
157 	unsigned long meta_error_bitmap;
158 
159 	/* For writeback (repair or replace) error reporting. */
160 	unsigned long write_error_bitmap;
161 
162 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
163 	spinlock_t write_error_lock;
164 
165 	/*
166 	 * Checksum for the whole stripe if this stripe is inside a data block
167 	 * group.
168 	 */
169 	u8 *csums;
170 
171 	struct work_struct work;
172 };
173 
174 struct scrub_ctx {
175 	struct scrub_stripe	stripes[SCRUB_STRIPES_PER_SCTX];
176 	struct scrub_stripe	*raid56_data_stripes;
177 	struct btrfs_fs_info	*fs_info;
178 	int			first_free;
179 	int			cur_stripe;
180 	atomic_t		cancel_req;
181 	int			readonly;
182 	int			sectors_per_bio;
183 
184 	/* State of IO submission throttling affecting the associated device */
185 	ktime_t			throttle_deadline;
186 	u64			throttle_sent;
187 
188 	int			is_dev_replace;
189 	u64			write_pointer;
190 
191 	struct mutex            wr_lock;
192 	struct btrfs_device     *wr_tgtdev;
193 
194 	/*
195 	 * statistics
196 	 */
197 	struct btrfs_scrub_progress stat;
198 	spinlock_t		stat_lock;
199 
200 	/*
201 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
202 	 * decrement bios_in_flight and workers_pending and then do a wakeup
203 	 * on the list_wait wait queue. We must ensure the main scrub task
204 	 * doesn't free the scrub context before or while the workers are
205 	 * doing the wakeup() call.
206 	 */
207 	refcount_t              refs;
208 };
209 
210 struct scrub_warning {
211 	struct btrfs_path	*path;
212 	u64			extent_item_size;
213 	const char		*errstr;
214 	u64			physical;
215 	u64			logical;
216 	struct btrfs_device	*dev;
217 };
218 
219 static void release_scrub_stripe(struct scrub_stripe *stripe)
220 {
221 	if (!stripe)
222 		return;
223 
224 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
225 		if (stripe->pages[i])
226 			__free_page(stripe->pages[i]);
227 		stripe->pages[i] = NULL;
228 	}
229 	kfree(stripe->sectors);
230 	kfree(stripe->csums);
231 	stripe->sectors = NULL;
232 	stripe->csums = NULL;
233 	stripe->sctx = NULL;
234 	stripe->state = 0;
235 }
236 
237 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
238 			     struct scrub_stripe *stripe)
239 {
240 	int ret;
241 
242 	memset(stripe, 0, sizeof(*stripe));
243 
244 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
245 	stripe->state = 0;
246 
247 	init_waitqueue_head(&stripe->io_wait);
248 	init_waitqueue_head(&stripe->repair_wait);
249 	atomic_set(&stripe->pending_io, 0);
250 	spin_lock_init(&stripe->write_error_lock);
251 
252 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
253 	if (ret < 0)
254 		goto error;
255 
256 	stripe->sectors = kcalloc(stripe->nr_sectors,
257 				  sizeof(struct scrub_sector_verification),
258 				  GFP_KERNEL);
259 	if (!stripe->sectors)
260 		goto error;
261 
262 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
263 				fs_info->csum_size, GFP_KERNEL);
264 	if (!stripe->csums)
265 		goto error;
266 	return 0;
267 error:
268 	release_scrub_stripe(stripe);
269 	return -ENOMEM;
270 }
271 
272 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
273 {
274 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
275 }
276 
277 static void scrub_put_ctx(struct scrub_ctx *sctx);
278 
279 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
280 {
281 	while (atomic_read(&fs_info->scrub_pause_req)) {
282 		mutex_unlock(&fs_info->scrub_lock);
283 		wait_event(fs_info->scrub_pause_wait,
284 		   atomic_read(&fs_info->scrub_pause_req) == 0);
285 		mutex_lock(&fs_info->scrub_lock);
286 	}
287 }
288 
289 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
290 {
291 	atomic_inc(&fs_info->scrubs_paused);
292 	wake_up(&fs_info->scrub_pause_wait);
293 }
294 
295 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
296 {
297 	mutex_lock(&fs_info->scrub_lock);
298 	__scrub_blocked_if_needed(fs_info);
299 	atomic_dec(&fs_info->scrubs_paused);
300 	mutex_unlock(&fs_info->scrub_lock);
301 
302 	wake_up(&fs_info->scrub_pause_wait);
303 }
304 
305 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
306 {
307 	scrub_pause_on(fs_info);
308 	scrub_pause_off(fs_info);
309 }
310 
311 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
312 {
313 	int i;
314 
315 	if (!sctx)
316 		return;
317 
318 	for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++)
319 		release_scrub_stripe(&sctx->stripes[i]);
320 
321 	kfree(sctx);
322 }
323 
324 static void scrub_put_ctx(struct scrub_ctx *sctx)
325 {
326 	if (refcount_dec_and_test(&sctx->refs))
327 		scrub_free_ctx(sctx);
328 }
329 
330 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
331 		struct btrfs_fs_info *fs_info, int is_dev_replace)
332 {
333 	struct scrub_ctx *sctx;
334 	int		i;
335 
336 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
337 	if (!sctx)
338 		goto nomem;
339 	refcount_set(&sctx->refs, 1);
340 	sctx->is_dev_replace = is_dev_replace;
341 	sctx->fs_info = fs_info;
342 	for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) {
343 		int ret;
344 
345 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
346 		if (ret < 0)
347 			goto nomem;
348 		sctx->stripes[i].sctx = sctx;
349 	}
350 	sctx->first_free = 0;
351 	atomic_set(&sctx->cancel_req, 0);
352 
353 	spin_lock_init(&sctx->stat_lock);
354 	sctx->throttle_deadline = 0;
355 
356 	mutex_init(&sctx->wr_lock);
357 	if (is_dev_replace) {
358 		WARN_ON(!fs_info->dev_replace.tgtdev);
359 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
360 	}
361 
362 	return sctx;
363 
364 nomem:
365 	scrub_free_ctx(sctx);
366 	return ERR_PTR(-ENOMEM);
367 }
368 
369 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
370 				     u64 root, void *warn_ctx)
371 {
372 	u32 nlink;
373 	int ret;
374 	int i;
375 	unsigned nofs_flag;
376 	struct extent_buffer *eb;
377 	struct btrfs_inode_item *inode_item;
378 	struct scrub_warning *swarn = warn_ctx;
379 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
380 	struct inode_fs_paths *ipath = NULL;
381 	struct btrfs_root *local_root;
382 	struct btrfs_key key;
383 
384 	local_root = btrfs_get_fs_root(fs_info, root, true);
385 	if (IS_ERR(local_root)) {
386 		ret = PTR_ERR(local_root);
387 		goto err;
388 	}
389 
390 	/*
391 	 * this makes the path point to (inum INODE_ITEM ioff)
392 	 */
393 	key.objectid = inum;
394 	key.type = BTRFS_INODE_ITEM_KEY;
395 	key.offset = 0;
396 
397 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
398 	if (ret) {
399 		btrfs_put_root(local_root);
400 		btrfs_release_path(swarn->path);
401 		goto err;
402 	}
403 
404 	eb = swarn->path->nodes[0];
405 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
406 					struct btrfs_inode_item);
407 	nlink = btrfs_inode_nlink(eb, inode_item);
408 	btrfs_release_path(swarn->path);
409 
410 	/*
411 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
412 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
413 	 * not seem to be strictly necessary.
414 	 */
415 	nofs_flag = memalloc_nofs_save();
416 	ipath = init_ipath(4096, local_root, swarn->path);
417 	memalloc_nofs_restore(nofs_flag);
418 	if (IS_ERR(ipath)) {
419 		btrfs_put_root(local_root);
420 		ret = PTR_ERR(ipath);
421 		ipath = NULL;
422 		goto err;
423 	}
424 	ret = paths_from_inode(inum, ipath);
425 
426 	if (ret < 0)
427 		goto err;
428 
429 	/*
430 	 * we deliberately ignore the bit ipath might have been too small to
431 	 * hold all of the paths here
432 	 */
433 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
434 		btrfs_warn_in_rcu(fs_info,
435 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
436 				  swarn->errstr, swarn->logical,
437 				  btrfs_dev_name(swarn->dev),
438 				  swarn->physical,
439 				  root, inum, offset,
440 				  fs_info->sectorsize, nlink,
441 				  (char *)(unsigned long)ipath->fspath->val[i]);
442 
443 	btrfs_put_root(local_root);
444 	free_ipath(ipath);
445 	return 0;
446 
447 err:
448 	btrfs_warn_in_rcu(fs_info,
449 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
450 			  swarn->errstr, swarn->logical,
451 			  btrfs_dev_name(swarn->dev),
452 			  swarn->physical,
453 			  root, inum, offset, ret);
454 
455 	free_ipath(ipath);
456 	return 0;
457 }
458 
459 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
460 				       bool is_super, u64 logical, u64 physical)
461 {
462 	struct btrfs_fs_info *fs_info = dev->fs_info;
463 	struct btrfs_path *path;
464 	struct btrfs_key found_key;
465 	struct extent_buffer *eb;
466 	struct btrfs_extent_item *ei;
467 	struct scrub_warning swarn;
468 	u64 flags = 0;
469 	u32 item_size;
470 	int ret;
471 
472 	/* Super block error, no need to search extent tree. */
473 	if (is_super) {
474 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
475 				  errstr, btrfs_dev_name(dev), physical);
476 		return;
477 	}
478 	path = btrfs_alloc_path();
479 	if (!path)
480 		return;
481 
482 	swarn.physical = physical;
483 	swarn.logical = logical;
484 	swarn.errstr = errstr;
485 	swarn.dev = NULL;
486 
487 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
488 				  &flags);
489 	if (ret < 0)
490 		goto out;
491 
492 	swarn.extent_item_size = found_key.offset;
493 
494 	eb = path->nodes[0];
495 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
496 	item_size = btrfs_item_size(eb, path->slots[0]);
497 
498 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
499 		unsigned long ptr = 0;
500 		u8 ref_level;
501 		u64 ref_root;
502 
503 		while (true) {
504 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
505 						      item_size, &ref_root,
506 						      &ref_level);
507 			if (ret < 0) {
508 				btrfs_warn(fs_info,
509 				"failed to resolve tree backref for logical %llu: %d",
510 						  swarn.logical, ret);
511 				break;
512 			}
513 			if (ret > 0)
514 				break;
515 			btrfs_warn_in_rcu(fs_info,
516 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
517 				errstr, swarn.logical, btrfs_dev_name(dev),
518 				swarn.physical, (ref_level ? "node" : "leaf"),
519 				ref_level, ref_root);
520 		}
521 		btrfs_release_path(path);
522 	} else {
523 		struct btrfs_backref_walk_ctx ctx = { 0 };
524 
525 		btrfs_release_path(path);
526 
527 		ctx.bytenr = found_key.objectid;
528 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
529 		ctx.fs_info = fs_info;
530 
531 		swarn.path = path;
532 		swarn.dev = dev;
533 
534 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
535 	}
536 
537 out:
538 	btrfs_free_path(path);
539 }
540 
541 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
542 {
543 	int ret = 0;
544 	u64 length;
545 
546 	if (!btrfs_is_zoned(sctx->fs_info))
547 		return 0;
548 
549 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
550 		return 0;
551 
552 	if (sctx->write_pointer < physical) {
553 		length = physical - sctx->write_pointer;
554 
555 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
556 						sctx->write_pointer, length);
557 		if (!ret)
558 			sctx->write_pointer = physical;
559 	}
560 	return ret;
561 }
562 
563 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
564 {
565 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
566 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
567 
568 	return stripe->pages[page_index];
569 }
570 
571 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
572 						 int sector_nr)
573 {
574 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
575 
576 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
577 }
578 
579 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
580 {
581 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
582 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
583 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
584 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
585 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
586 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
587 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
588 	u8 calculated_csum[BTRFS_CSUM_SIZE];
589 	struct btrfs_header *header;
590 
591 	/*
592 	 * Here we don't have a good way to attach the pages (and subpages)
593 	 * to a dummy extent buffer, thus we have to directly grab the members
594 	 * from pages.
595 	 */
596 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
597 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
598 
599 	if (logical != btrfs_stack_header_bytenr(header)) {
600 		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
601 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
602 		btrfs_warn_rl(fs_info,
603 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
604 			      logical, stripe->mirror_num,
605 			      btrfs_stack_header_bytenr(header), logical);
606 		return;
607 	}
608 	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
609 		   BTRFS_FSID_SIZE) != 0) {
610 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
611 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
612 		btrfs_warn_rl(fs_info,
613 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
614 			      logical, stripe->mirror_num,
615 			      header->fsid, fs_info->fs_devices->fsid);
616 		return;
617 	}
618 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
619 		   BTRFS_UUID_SIZE) != 0) {
620 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
621 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
622 		btrfs_warn_rl(fs_info,
623 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
624 			      logical, stripe->mirror_num,
625 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
626 		return;
627 	}
628 
629 	/* Now check tree block csum. */
630 	shash->tfm = fs_info->csum_shash;
631 	crypto_shash_init(shash);
632 	crypto_shash_update(shash, page_address(first_page) + first_off +
633 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
634 
635 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
636 		struct page *page = scrub_stripe_get_page(stripe, i);
637 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
638 
639 		crypto_shash_update(shash, page_address(page) + page_off,
640 				    fs_info->sectorsize);
641 	}
642 
643 	crypto_shash_final(shash, calculated_csum);
644 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
645 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
646 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
647 		btrfs_warn_rl(fs_info,
648 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
649 			      logical, stripe->mirror_num,
650 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
651 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
652 		return;
653 	}
654 	if (stripe->sectors[sector_nr].generation !=
655 	    btrfs_stack_header_generation(header)) {
656 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
657 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
658 		btrfs_warn_rl(fs_info,
659 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
660 			      logical, stripe->mirror_num,
661 			      btrfs_stack_header_generation(header),
662 			      stripe->sectors[sector_nr].generation);
663 		return;
664 	}
665 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
667 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
668 }
669 
670 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
671 {
672 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
673 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
674 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
675 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
676 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
677 	u8 csum_buf[BTRFS_CSUM_SIZE];
678 	int ret;
679 
680 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
681 
682 	/* Sector not utilized, skip it. */
683 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
684 		return;
685 
686 	/* IO error, no need to check. */
687 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
688 		return;
689 
690 	/* Metadata, verify the full tree block. */
691 	if (sector->is_metadata) {
692 		/*
693 		 * Check if the tree block crosses the stripe boudary.  If
694 		 * crossed the boundary, we cannot verify it but only give a
695 		 * warning.
696 		 *
697 		 * This can only happen on a very old filesystem where chunks
698 		 * are not ensured to be stripe aligned.
699 		 */
700 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
701 			btrfs_warn_rl(fs_info,
702 			"tree block at %llu crosses stripe boundary %llu",
703 				      stripe->logical +
704 				      (sector_nr << fs_info->sectorsize_bits),
705 				      stripe->logical);
706 			return;
707 		}
708 		scrub_verify_one_metadata(stripe, sector_nr);
709 		return;
710 	}
711 
712 	/*
713 	 * Data is easier, we just verify the data csum (if we have it).  For
714 	 * cases without csum, we have no other choice but to trust it.
715 	 */
716 	if (!sector->csum) {
717 		clear_bit(sector_nr, &stripe->error_bitmap);
718 		return;
719 	}
720 
721 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
722 	if (ret < 0) {
723 		set_bit(sector_nr, &stripe->csum_error_bitmap);
724 		set_bit(sector_nr, &stripe->error_bitmap);
725 	} else {
726 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
727 		clear_bit(sector_nr, &stripe->error_bitmap);
728 	}
729 }
730 
731 /* Verify specified sectors of a stripe. */
732 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
733 {
734 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
735 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
736 	int sector_nr;
737 
738 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
739 		scrub_verify_one_sector(stripe, sector_nr);
740 		if (stripe->sectors[sector_nr].is_metadata)
741 			sector_nr += sectors_per_tree - 1;
742 	}
743 }
744 
745 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
746 {
747 	int i;
748 
749 	for (i = 0; i < stripe->nr_sectors; i++) {
750 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
751 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
752 			break;
753 	}
754 	ASSERT(i < stripe->nr_sectors);
755 	return i;
756 }
757 
758 /*
759  * Repair read is different to the regular read:
760  *
761  * - Only reads the failed sectors
762  * - May have extra blocksize limits
763  */
764 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
765 {
766 	struct scrub_stripe *stripe = bbio->private;
767 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
768 	struct bio_vec *bvec;
769 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
770 	u32 bio_size = 0;
771 	int i;
772 
773 	ASSERT(sector_nr < stripe->nr_sectors);
774 
775 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
776 		bio_size += bvec->bv_len;
777 
778 	if (bbio->bio.bi_status) {
779 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
780 			   bio_size >> fs_info->sectorsize_bits);
781 		bitmap_set(&stripe->error_bitmap, sector_nr,
782 			   bio_size >> fs_info->sectorsize_bits);
783 	} else {
784 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
785 			     bio_size >> fs_info->sectorsize_bits);
786 	}
787 	bio_put(&bbio->bio);
788 	if (atomic_dec_and_test(&stripe->pending_io))
789 		wake_up(&stripe->io_wait);
790 }
791 
792 static int calc_next_mirror(int mirror, int num_copies)
793 {
794 	ASSERT(mirror <= num_copies);
795 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
796 }
797 
798 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
799 					    int mirror, int blocksize, bool wait)
800 {
801 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
802 	struct btrfs_bio *bbio = NULL;
803 	const unsigned long old_error_bitmap = stripe->error_bitmap;
804 	int i;
805 
806 	ASSERT(stripe->mirror_num >= 1);
807 	ASSERT(atomic_read(&stripe->pending_io) == 0);
808 
809 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
810 		struct page *page;
811 		int pgoff;
812 		int ret;
813 
814 		page = scrub_stripe_get_page(stripe, i);
815 		pgoff = scrub_stripe_get_page_offset(stripe, i);
816 
817 		/* The current sector cannot be merged, submit the bio. */
818 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
819 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
820 			ASSERT(bbio->bio.bi_iter.bi_size);
821 			atomic_inc(&stripe->pending_io);
822 			btrfs_submit_bio(bbio, mirror);
823 			if (wait)
824 				wait_scrub_stripe_io(stripe);
825 			bbio = NULL;
826 		}
827 
828 		if (!bbio) {
829 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
830 				fs_info, scrub_repair_read_endio, stripe);
831 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
832 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
833 		}
834 
835 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
836 		ASSERT(ret == fs_info->sectorsize);
837 	}
838 	if (bbio) {
839 		ASSERT(bbio->bio.bi_iter.bi_size);
840 		atomic_inc(&stripe->pending_io);
841 		btrfs_submit_bio(bbio, mirror);
842 		if (wait)
843 			wait_scrub_stripe_io(stripe);
844 	}
845 }
846 
847 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
848 				       struct scrub_stripe *stripe)
849 {
850 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
851 				      DEFAULT_RATELIMIT_BURST);
852 	struct btrfs_fs_info *fs_info = sctx->fs_info;
853 	struct btrfs_device *dev = NULL;
854 	u64 physical = 0;
855 	int nr_data_sectors = 0;
856 	int nr_meta_sectors = 0;
857 	int nr_nodatacsum_sectors = 0;
858 	int nr_repaired_sectors = 0;
859 	int sector_nr;
860 
861 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
862 		return;
863 
864 	/*
865 	 * Init needed infos for error reporting.
866 	 *
867 	 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
868 	 * thus no need for dev/physical, error reporting still needs dev and physical.
869 	 */
870 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
871 		u64 mapped_len = fs_info->sectorsize;
872 		struct btrfs_io_context *bioc = NULL;
873 		int stripe_index = stripe->mirror_num - 1;
874 		int ret;
875 
876 		/* For scrub, our mirror_num should always start at 1. */
877 		ASSERT(stripe->mirror_num >= 1);
878 		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
879 				      stripe->logical, &mapped_len, &bioc,
880 				      NULL, NULL, 1);
881 		/*
882 		 * If we failed, dev will be NULL, and later detailed reports
883 		 * will just be skipped.
884 		 */
885 		if (ret < 0)
886 			goto skip;
887 		physical = bioc->stripes[stripe_index].physical;
888 		dev = bioc->stripes[stripe_index].dev;
889 		btrfs_put_bioc(bioc);
890 	}
891 
892 skip:
893 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
894 		bool repaired = false;
895 
896 		if (stripe->sectors[sector_nr].is_metadata) {
897 			nr_meta_sectors++;
898 		} else {
899 			nr_data_sectors++;
900 			if (!stripe->sectors[sector_nr].csum)
901 				nr_nodatacsum_sectors++;
902 		}
903 
904 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
905 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
906 			nr_repaired_sectors++;
907 			repaired = true;
908 		}
909 
910 		/* Good sector from the beginning, nothing need to be done. */
911 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
912 			continue;
913 
914 		/*
915 		 * Report error for the corrupted sectors.  If repaired, just
916 		 * output the message of repaired message.
917 		 */
918 		if (repaired) {
919 			if (dev) {
920 				btrfs_err_rl_in_rcu(fs_info,
921 			"fixed up error at logical %llu on dev %s physical %llu",
922 					    stripe->logical, btrfs_dev_name(dev),
923 					    physical);
924 			} else {
925 				btrfs_err_rl_in_rcu(fs_info,
926 			"fixed up error at logical %llu on mirror %u",
927 					    stripe->logical, stripe->mirror_num);
928 			}
929 			continue;
930 		}
931 
932 		/* The remaining are all for unrepaired. */
933 		if (dev) {
934 			btrfs_err_rl_in_rcu(fs_info,
935 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
936 					    stripe->logical, btrfs_dev_name(dev),
937 					    physical);
938 		} else {
939 			btrfs_err_rl_in_rcu(fs_info,
940 	"unable to fixup (regular) error at logical %llu on mirror %u",
941 					    stripe->logical, stripe->mirror_num);
942 		}
943 
944 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
945 			if (__ratelimit(&rs) && dev)
946 				scrub_print_common_warning("i/o error", dev, false,
947 						     stripe->logical, physical);
948 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
949 			if (__ratelimit(&rs) && dev)
950 				scrub_print_common_warning("checksum error", dev, false,
951 						     stripe->logical, physical);
952 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
953 			if (__ratelimit(&rs) && dev)
954 				scrub_print_common_warning("header error", dev, false,
955 						     stripe->logical, physical);
956 	}
957 
958 	spin_lock(&sctx->stat_lock);
959 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
960 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
961 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
962 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
963 	sctx->stat.no_csum += nr_nodatacsum_sectors;
964 	sctx->stat.read_errors += stripe->init_nr_io_errors;
965 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
966 	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
967 	sctx->stat.uncorrectable_errors +=
968 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
969 	sctx->stat.corrected_errors += nr_repaired_sectors;
970 	spin_unlock(&sctx->stat_lock);
971 }
972 
973 /*
974  * The main entrance for all read related scrub work, including:
975  *
976  * - Wait for the initial read to finish
977  * - Verify and locate any bad sectors
978  * - Go through the remaining mirrors and try to read as large blocksize as
979  *   possible
980  * - Go through all mirrors (including the failed mirror) sector-by-sector
981  *
982  * Writeback does not happen here, it needs extra synchronization.
983  */
984 static void scrub_stripe_read_repair_worker(struct work_struct *work)
985 {
986 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
987 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
988 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
989 					  stripe->bg->length);
990 	int mirror;
991 	int i;
992 
993 	ASSERT(stripe->mirror_num > 0);
994 
995 	wait_scrub_stripe_io(stripe);
996 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
997 	/* Save the initial failed bitmap for later repair and report usage. */
998 	stripe->init_error_bitmap = stripe->error_bitmap;
999 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1000 						  stripe->nr_sectors);
1001 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1002 						    stripe->nr_sectors);
1003 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1004 						    stripe->nr_sectors);
1005 
1006 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1007 		goto out;
1008 
1009 	/*
1010 	 * Try all remaining mirrors.
1011 	 *
1012 	 * Here we still try to read as large block as possible, as this is
1013 	 * faster and we have extra safety nets to rely on.
1014 	 */
1015 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1016 	     mirror != stripe->mirror_num;
1017 	     mirror = calc_next_mirror(mirror, num_copies)) {
1018 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1019 
1020 		scrub_stripe_submit_repair_read(stripe, mirror,
1021 						BTRFS_STRIPE_LEN, false);
1022 		wait_scrub_stripe_io(stripe);
1023 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1024 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1025 			goto out;
1026 	}
1027 
1028 	/*
1029 	 * Last safety net, try re-checking all mirrors, including the failed
1030 	 * one, sector-by-sector.
1031 	 *
1032 	 * As if one sector failed the drive's internal csum, the whole read
1033 	 * containing the offending sector would be marked as error.
1034 	 * Thus here we do sector-by-sector read.
1035 	 *
1036 	 * This can be slow, thus we only try it as the last resort.
1037 	 */
1038 
1039 	for (i = 0, mirror = stripe->mirror_num;
1040 	     i < num_copies;
1041 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1042 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1043 
1044 		scrub_stripe_submit_repair_read(stripe, mirror,
1045 						fs_info->sectorsize, true);
1046 		wait_scrub_stripe_io(stripe);
1047 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1048 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1049 			goto out;
1050 	}
1051 out:
1052 	scrub_stripe_report_errors(stripe->sctx, stripe);
1053 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1054 	wake_up(&stripe->repair_wait);
1055 }
1056 
1057 static void scrub_read_endio(struct btrfs_bio *bbio)
1058 {
1059 	struct scrub_stripe *stripe = bbio->private;
1060 
1061 	if (bbio->bio.bi_status) {
1062 		bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1063 		bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
1064 	} else {
1065 		bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1066 	}
1067 	bio_put(&bbio->bio);
1068 	if (atomic_dec_and_test(&stripe->pending_io)) {
1069 		wake_up(&stripe->io_wait);
1070 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1071 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1072 	}
1073 }
1074 
1075 static void scrub_write_endio(struct btrfs_bio *bbio)
1076 {
1077 	struct scrub_stripe *stripe = bbio->private;
1078 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1079 	struct bio_vec *bvec;
1080 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1081 	u32 bio_size = 0;
1082 	int i;
1083 
1084 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1085 		bio_size += bvec->bv_len;
1086 
1087 	if (bbio->bio.bi_status) {
1088 		unsigned long flags;
1089 
1090 		spin_lock_irqsave(&stripe->write_error_lock, flags);
1091 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1092 			   bio_size >> fs_info->sectorsize_bits);
1093 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1094 	}
1095 	bio_put(&bbio->bio);
1096 
1097 	if (atomic_dec_and_test(&stripe->pending_io))
1098 		wake_up(&stripe->io_wait);
1099 }
1100 
1101 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1102 				   struct scrub_stripe *stripe,
1103 				   struct btrfs_bio *bbio, bool dev_replace)
1104 {
1105 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1106 	u32 bio_len = bbio->bio.bi_iter.bi_size;
1107 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1108 		      stripe->logical;
1109 
1110 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1111 	atomic_inc(&stripe->pending_io);
1112 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1113 	if (!btrfs_is_zoned(fs_info))
1114 		return;
1115 	/*
1116 	 * For zoned writeback, queue depth must be 1, thus we must wait for
1117 	 * the write to finish before the next write.
1118 	 */
1119 	wait_scrub_stripe_io(stripe);
1120 
1121 	/*
1122 	 * And also need to update the write pointer if write finished
1123 	 * successfully.
1124 	 */
1125 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1126 		      &stripe->write_error_bitmap))
1127 		sctx->write_pointer += bio_len;
1128 }
1129 
1130 /*
1131  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1132  *
1133  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1134  *
1135  * - Only needs logical bytenr and mirror_num
1136  *   Just like the scrub read path
1137  *
1138  * - Would only result in writes to the specified mirror
1139  *   Unlike the regular writeback path, which would write back to all stripes
1140  *
1141  * - Handle dev-replace and read-repair writeback differently
1142  */
1143 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1144 				unsigned long write_bitmap, bool dev_replace)
1145 {
1146 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1147 	struct btrfs_bio *bbio = NULL;
1148 	int sector_nr;
1149 
1150 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1151 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1152 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1153 		int ret;
1154 
1155 		/* We should only writeback sectors covered by an extent. */
1156 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1157 
1158 		/* Cannot merge with previous sector, submit the current one. */
1159 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1160 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1161 			bbio = NULL;
1162 		}
1163 		if (!bbio) {
1164 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1165 					       fs_info, scrub_write_endio, stripe);
1166 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1167 				(sector_nr << fs_info->sectorsize_bits)) >>
1168 				SECTOR_SHIFT;
1169 		}
1170 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1171 		ASSERT(ret == fs_info->sectorsize);
1172 	}
1173 	if (bbio)
1174 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1175 }
1176 
1177 /*
1178  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1179  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1180  */
1181 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1182 				  unsigned int bio_size)
1183 {
1184 	const int time_slice = 1000;
1185 	s64 delta;
1186 	ktime_t now;
1187 	u32 div;
1188 	u64 bwlimit;
1189 
1190 	bwlimit = READ_ONCE(device->scrub_speed_max);
1191 	if (bwlimit == 0)
1192 		return;
1193 
1194 	/*
1195 	 * Slice is divided into intervals when the IO is submitted, adjust by
1196 	 * bwlimit and maximum of 64 intervals.
1197 	 */
1198 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1199 	div = min_t(u32, 64, div);
1200 
1201 	/* Start new epoch, set deadline */
1202 	now = ktime_get();
1203 	if (sctx->throttle_deadline == 0) {
1204 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1205 		sctx->throttle_sent = 0;
1206 	}
1207 
1208 	/* Still in the time to send? */
1209 	if (ktime_before(now, sctx->throttle_deadline)) {
1210 		/* If current bio is within the limit, send it */
1211 		sctx->throttle_sent += bio_size;
1212 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1213 			return;
1214 
1215 		/* We're over the limit, sleep until the rest of the slice */
1216 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1217 	} else {
1218 		/* New request after deadline, start new epoch */
1219 		delta = 0;
1220 	}
1221 
1222 	if (delta) {
1223 		long timeout;
1224 
1225 		timeout = div_u64(delta * HZ, 1000);
1226 		schedule_timeout_interruptible(timeout);
1227 	}
1228 
1229 	/* Next call will start the deadline period */
1230 	sctx->throttle_deadline = 0;
1231 }
1232 
1233 /*
1234  * Given a physical address, this will calculate it's
1235  * logical offset. if this is a parity stripe, it will return
1236  * the most left data stripe's logical offset.
1237  *
1238  * return 0 if it is a data stripe, 1 means parity stripe.
1239  */
1240 static int get_raid56_logic_offset(u64 physical, int num,
1241 				   struct map_lookup *map, u64 *offset,
1242 				   u64 *stripe_start)
1243 {
1244 	int i;
1245 	int j = 0;
1246 	u64 last_offset;
1247 	const int data_stripes = nr_data_stripes(map);
1248 
1249 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1250 	if (stripe_start)
1251 		*stripe_start = last_offset;
1252 
1253 	*offset = last_offset;
1254 	for (i = 0; i < data_stripes; i++) {
1255 		u32 stripe_nr;
1256 		u32 stripe_index;
1257 		u32 rot;
1258 
1259 		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1260 
1261 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1262 
1263 		/* Work out the disk rotation on this stripe-set */
1264 		rot = stripe_nr % map->num_stripes;
1265 		stripe_nr /= map->num_stripes;
1266 		/* calculate which stripe this data locates */
1267 		rot += i;
1268 		stripe_index = rot % map->num_stripes;
1269 		if (stripe_index == num)
1270 			return 0;
1271 		if (stripe_index < num)
1272 			j++;
1273 	}
1274 	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1275 	return 1;
1276 }
1277 
1278 /*
1279  * Return 0 if the extent item range covers any byte of the range.
1280  * Return <0 if the extent item is before @search_start.
1281  * Return >0 if the extent item is after @start_start + @search_len.
1282  */
1283 static int compare_extent_item_range(struct btrfs_path *path,
1284 				     u64 search_start, u64 search_len)
1285 {
1286 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1287 	u64 len;
1288 	struct btrfs_key key;
1289 
1290 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1291 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1292 	       key.type == BTRFS_METADATA_ITEM_KEY);
1293 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1294 		len = fs_info->nodesize;
1295 	else
1296 		len = key.offset;
1297 
1298 	if (key.objectid + len <= search_start)
1299 		return -1;
1300 	if (key.objectid >= search_start + search_len)
1301 		return 1;
1302 	return 0;
1303 }
1304 
1305 /*
1306  * Locate one extent item which covers any byte in range
1307  * [@search_start, @search_start + @search_length)
1308  *
1309  * If the path is not initialized, we will initialize the search by doing
1310  * a btrfs_search_slot().
1311  * If the path is already initialized, we will use the path as the initial
1312  * slot, to avoid duplicated btrfs_search_slot() calls.
1313  *
1314  * NOTE: If an extent item starts before @search_start, we will still
1315  * return the extent item. This is for data extent crossing stripe boundary.
1316  *
1317  * Return 0 if we found such extent item, and @path will point to the extent item.
1318  * Return >0 if no such extent item can be found, and @path will be released.
1319  * Return <0 if hit fatal error, and @path will be released.
1320  */
1321 static int find_first_extent_item(struct btrfs_root *extent_root,
1322 				  struct btrfs_path *path,
1323 				  u64 search_start, u64 search_len)
1324 {
1325 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1326 	struct btrfs_key key;
1327 	int ret;
1328 
1329 	/* Continue using the existing path */
1330 	if (path->nodes[0])
1331 		goto search_forward;
1332 
1333 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1334 		key.type = BTRFS_METADATA_ITEM_KEY;
1335 	else
1336 		key.type = BTRFS_EXTENT_ITEM_KEY;
1337 	key.objectid = search_start;
1338 	key.offset = (u64)-1;
1339 
1340 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1341 	if (ret < 0)
1342 		return ret;
1343 
1344 	ASSERT(ret > 0);
1345 	/*
1346 	 * Here we intentionally pass 0 as @min_objectid, as there could be
1347 	 * an extent item starting before @search_start.
1348 	 */
1349 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1350 	if (ret < 0)
1351 		return ret;
1352 	/*
1353 	 * No matter whether we have found an extent item, the next loop will
1354 	 * properly do every check on the key.
1355 	 */
1356 search_forward:
1357 	while (true) {
1358 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1359 		if (key.objectid >= search_start + search_len)
1360 			break;
1361 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1362 		    key.type != BTRFS_EXTENT_ITEM_KEY)
1363 			goto next;
1364 
1365 		ret = compare_extent_item_range(path, search_start, search_len);
1366 		if (ret == 0)
1367 			return ret;
1368 		if (ret > 0)
1369 			break;
1370 next:
1371 		path->slots[0]++;
1372 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
1373 			ret = btrfs_next_leaf(extent_root, path);
1374 			if (ret) {
1375 				/* Either no more item or fatal error */
1376 				btrfs_release_path(path);
1377 				return ret;
1378 			}
1379 		}
1380 	}
1381 	btrfs_release_path(path);
1382 	return 1;
1383 }
1384 
1385 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1386 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1387 {
1388 	struct btrfs_key key;
1389 	struct btrfs_extent_item *ei;
1390 
1391 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1392 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1393 	       key.type == BTRFS_EXTENT_ITEM_KEY);
1394 	*extent_start_ret = key.objectid;
1395 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1396 		*size_ret = path->nodes[0]->fs_info->nodesize;
1397 	else
1398 		*size_ret = key.offset;
1399 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1400 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1401 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1402 }
1403 
1404 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1405 					u64 physical, u64 physical_end)
1406 {
1407 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1408 	int ret = 0;
1409 
1410 	if (!btrfs_is_zoned(fs_info))
1411 		return 0;
1412 
1413 	mutex_lock(&sctx->wr_lock);
1414 	if (sctx->write_pointer < physical_end) {
1415 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1416 						    physical,
1417 						    sctx->write_pointer);
1418 		if (ret)
1419 			btrfs_err(fs_info,
1420 				  "zoned: failed to recover write pointer");
1421 	}
1422 	mutex_unlock(&sctx->wr_lock);
1423 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1424 
1425 	return ret;
1426 }
1427 
1428 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1429 				 struct scrub_stripe *stripe,
1430 				 u64 extent_start, u64 extent_len,
1431 				 u64 extent_flags, u64 extent_gen)
1432 {
1433 	for (u64 cur_logical = max(stripe->logical, extent_start);
1434 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1435 			       extent_start + extent_len);
1436 	     cur_logical += fs_info->sectorsize) {
1437 		const int nr_sector = (cur_logical - stripe->logical) >>
1438 				      fs_info->sectorsize_bits;
1439 		struct scrub_sector_verification *sector =
1440 						&stripe->sectors[nr_sector];
1441 
1442 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1443 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1444 			sector->is_metadata = true;
1445 			sector->generation = extent_gen;
1446 		}
1447 	}
1448 }
1449 
1450 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1451 {
1452 	stripe->extent_sector_bitmap = 0;
1453 	stripe->init_error_bitmap = 0;
1454 	stripe->init_nr_io_errors = 0;
1455 	stripe->init_nr_csum_errors = 0;
1456 	stripe->init_nr_meta_errors = 0;
1457 	stripe->error_bitmap = 0;
1458 	stripe->io_error_bitmap = 0;
1459 	stripe->csum_error_bitmap = 0;
1460 	stripe->meta_error_bitmap = 0;
1461 }
1462 
1463 /*
1464  * Locate one stripe which has at least one extent in its range.
1465  *
1466  * Return 0 if found such stripe, and store its info into @stripe.
1467  * Return >0 if there is no such stripe in the specified range.
1468  * Return <0 for error.
1469  */
1470 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1471 					struct btrfs_device *dev, u64 physical,
1472 					int mirror_num, u64 logical_start,
1473 					u32 logical_len,
1474 					struct scrub_stripe *stripe)
1475 {
1476 	struct btrfs_fs_info *fs_info = bg->fs_info;
1477 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1478 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1479 	const u64 logical_end = logical_start + logical_len;
1480 	struct btrfs_path path = { 0 };
1481 	u64 cur_logical = logical_start;
1482 	u64 stripe_end;
1483 	u64 extent_start;
1484 	u64 extent_len;
1485 	u64 extent_flags;
1486 	u64 extent_gen;
1487 	int ret;
1488 
1489 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1490 				   stripe->nr_sectors);
1491 	scrub_stripe_reset_bitmaps(stripe);
1492 
1493 	/* The range must be inside the bg. */
1494 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1495 
1496 	path.search_commit_root = 1;
1497 	path.skip_locking = 1;
1498 
1499 	ret = find_first_extent_item(extent_root, &path, logical_start, logical_len);
1500 	/* Either error or not found. */
1501 	if (ret)
1502 		goto out;
1503 	get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen);
1504 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1505 		stripe->nr_meta_extents++;
1506 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1507 		stripe->nr_data_extents++;
1508 	cur_logical = max(extent_start, cur_logical);
1509 
1510 	/*
1511 	 * Round down to stripe boundary.
1512 	 *
1513 	 * The extra calculation against bg->start is to handle block groups
1514 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1515 	 */
1516 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1517 			  bg->start;
1518 	stripe->physical = physical + stripe->logical - logical_start;
1519 	stripe->dev = dev;
1520 	stripe->bg = bg;
1521 	stripe->mirror_num = mirror_num;
1522 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1523 
1524 	/* Fill the first extent info into stripe->sectors[] array. */
1525 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1526 			     extent_flags, extent_gen);
1527 	cur_logical = extent_start + extent_len;
1528 
1529 	/* Fill the extent info for the remaining sectors. */
1530 	while (cur_logical <= stripe_end) {
1531 		ret = find_first_extent_item(extent_root, &path, cur_logical,
1532 					     stripe_end - cur_logical + 1);
1533 		if (ret < 0)
1534 			goto out;
1535 		if (ret > 0) {
1536 			ret = 0;
1537 			break;
1538 		}
1539 		get_extent_info(&path, &extent_start, &extent_len,
1540 				&extent_flags, &extent_gen);
1541 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1542 			stripe->nr_meta_extents++;
1543 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1544 			stripe->nr_data_extents++;
1545 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1546 				     extent_flags, extent_gen);
1547 		cur_logical = extent_start + extent_len;
1548 	}
1549 
1550 	/* Now fill the data csum. */
1551 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1552 		int sector_nr;
1553 		unsigned long csum_bitmap = 0;
1554 
1555 		/* Csum space should have already been allocated. */
1556 		ASSERT(stripe->csums);
1557 
1558 		/*
1559 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1560 		 * should contain at most 16 sectors.
1561 		 */
1562 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1563 
1564 		ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical,
1565 						stripe_end, stripe->csums,
1566 						&csum_bitmap, true);
1567 		if (ret < 0)
1568 			goto out;
1569 		if (ret > 0)
1570 			ret = 0;
1571 
1572 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1573 			stripe->sectors[sector_nr].csum = stripe->csums +
1574 				sector_nr * fs_info->csum_size;
1575 		}
1576 	}
1577 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1578 out:
1579 	btrfs_release_path(&path);
1580 	return ret;
1581 }
1582 
1583 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1584 {
1585 	scrub_stripe_reset_bitmaps(stripe);
1586 
1587 	stripe->nr_meta_extents = 0;
1588 	stripe->nr_data_extents = 0;
1589 	stripe->state = 0;
1590 
1591 	for (int i = 0; i < stripe->nr_sectors; i++) {
1592 		stripe->sectors[i].is_metadata = false;
1593 		stripe->sectors[i].csum = NULL;
1594 		stripe->sectors[i].generation = 0;
1595 	}
1596 }
1597 
1598 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1599 				      struct scrub_stripe *stripe)
1600 {
1601 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1602 	struct btrfs_bio *bbio;
1603 	int mirror = stripe->mirror_num;
1604 
1605 	ASSERT(stripe->bg);
1606 	ASSERT(stripe->mirror_num > 0);
1607 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1608 
1609 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1610 			       scrub_read_endio, stripe);
1611 
1612 	/* Read the whole stripe. */
1613 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1614 	for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
1615 		int ret;
1616 
1617 		ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
1618 		/* We should have allocated enough bio vectors. */
1619 		ASSERT(ret == PAGE_SIZE);
1620 	}
1621 	atomic_inc(&stripe->pending_io);
1622 
1623 	/*
1624 	 * For dev-replace, either user asks to avoid the source dev, or
1625 	 * the device is missing, we try the next mirror instead.
1626 	 */
1627 	if (sctx->is_dev_replace &&
1628 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1629 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1630 	     !stripe->dev->bdev)) {
1631 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1632 						  stripe->bg->length);
1633 
1634 		mirror = calc_next_mirror(mirror, num_copies);
1635 	}
1636 	btrfs_submit_bio(bbio, mirror);
1637 }
1638 
1639 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1640 {
1641 	int i;
1642 
1643 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1644 		if (stripe->sectors[i].is_metadata) {
1645 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1646 
1647 			btrfs_err(fs_info,
1648 			"stripe %llu has unrepaired metadata sector at %llu",
1649 				  stripe->logical,
1650 				  stripe->logical + (i << fs_info->sectorsize_bits));
1651 			return true;
1652 		}
1653 	}
1654 	return false;
1655 }
1656 
1657 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1658 {
1659 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1660 	struct scrub_stripe *stripe;
1661 	const int nr_stripes = sctx->cur_stripe;
1662 	int ret = 0;
1663 
1664 	if (!nr_stripes)
1665 		return 0;
1666 
1667 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1668 
1669 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1670 			      btrfs_stripe_nr_to_offset(nr_stripes));
1671 	for (int i = 0; i < nr_stripes; i++) {
1672 		stripe = &sctx->stripes[i];
1673 		scrub_submit_initial_read(sctx, stripe);
1674 	}
1675 
1676 	for (int i = 0; i < nr_stripes; i++) {
1677 		stripe = &sctx->stripes[i];
1678 
1679 		wait_event(stripe->repair_wait,
1680 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1681 	}
1682 
1683 	/*
1684 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1685 	 * in-place, but queue the bg to be relocated.
1686 	 */
1687 	if (btrfs_is_zoned(fs_info)) {
1688 		for (int i = 0; i < nr_stripes; i++) {
1689 			stripe = &sctx->stripes[i];
1690 
1691 			if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) {
1692 				btrfs_repair_one_zone(fs_info,
1693 						      sctx->stripes[0].bg->start);
1694 				break;
1695 			}
1696 		}
1697 	} else if (!sctx->readonly) {
1698 		for (int i = 0; i < nr_stripes; i++) {
1699 			unsigned long repaired;
1700 
1701 			stripe = &sctx->stripes[i];
1702 
1703 			bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1704 				      &stripe->error_bitmap, stripe->nr_sectors);
1705 			scrub_write_sectors(sctx, stripe, repaired, false);
1706 		}
1707 	}
1708 
1709 	/* Submit for dev-replace. */
1710 	if (sctx->is_dev_replace) {
1711 		/*
1712 		 * For dev-replace, if we know there is something wrong with
1713 		 * metadata, we should immedately abort.
1714 		 */
1715 		for (int i = 0; i < nr_stripes; i++) {
1716 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1717 				ret = -EIO;
1718 				goto out;
1719 			}
1720 		}
1721 		for (int i = 0; i < nr_stripes; i++) {
1722 			unsigned long good;
1723 
1724 			stripe = &sctx->stripes[i];
1725 
1726 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1727 
1728 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1729 				      &stripe->error_bitmap, stripe->nr_sectors);
1730 			scrub_write_sectors(sctx, stripe, good, true);
1731 		}
1732 	}
1733 
1734 	/* Wait for the above writebacks to finish. */
1735 	for (int i = 0; i < nr_stripes; i++) {
1736 		stripe = &sctx->stripes[i];
1737 
1738 		wait_scrub_stripe_io(stripe);
1739 		scrub_reset_stripe(stripe);
1740 	}
1741 out:
1742 	sctx->cur_stripe = 0;
1743 	return ret;
1744 }
1745 
1746 static void raid56_scrub_wait_endio(struct bio *bio)
1747 {
1748 	complete(bio->bi_private);
1749 }
1750 
1751 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1752 			      struct btrfs_device *dev, int mirror_num,
1753 			      u64 logical, u32 length, u64 physical)
1754 {
1755 	struct scrub_stripe *stripe;
1756 	int ret;
1757 
1758 	/* No available slot, submit all stripes and wait for them. */
1759 	if (sctx->cur_stripe >= SCRUB_STRIPES_PER_SCTX) {
1760 		ret = flush_scrub_stripes(sctx);
1761 		if (ret < 0)
1762 			return ret;
1763 	}
1764 
1765 	stripe = &sctx->stripes[sctx->cur_stripe];
1766 
1767 	/* We can queue one stripe using the remaining slot. */
1768 	scrub_reset_stripe(stripe);
1769 	ret = scrub_find_fill_first_stripe(bg, dev, physical, mirror_num,
1770 					   logical, length, stripe);
1771 	/* Either >0 as no more extents or <0 for error. */
1772 	if (ret)
1773 		return ret;
1774 	sctx->cur_stripe++;
1775 	return 0;
1776 }
1777 
1778 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1779 				      struct btrfs_device *scrub_dev,
1780 				      struct btrfs_block_group *bg,
1781 				      struct map_lookup *map,
1782 				      u64 full_stripe_start)
1783 {
1784 	DECLARE_COMPLETION_ONSTACK(io_done);
1785 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1786 	struct btrfs_raid_bio *rbio;
1787 	struct btrfs_io_context *bioc = NULL;
1788 	struct bio *bio;
1789 	struct scrub_stripe *stripe;
1790 	bool all_empty = true;
1791 	const int data_stripes = nr_data_stripes(map);
1792 	unsigned long extent_bitmap = 0;
1793 	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1794 	int ret;
1795 
1796 	ASSERT(sctx->raid56_data_stripes);
1797 
1798 	for (int i = 0; i < data_stripes; i++) {
1799 		int stripe_index;
1800 		int rot;
1801 		u64 physical;
1802 
1803 		stripe = &sctx->raid56_data_stripes[i];
1804 		rot = div_u64(full_stripe_start - bg->start,
1805 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1806 		stripe_index = (i + rot) % map->num_stripes;
1807 		physical = map->stripes[stripe_index].physical +
1808 			   btrfs_stripe_nr_to_offset(rot);
1809 
1810 		scrub_reset_stripe(stripe);
1811 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1812 		ret = scrub_find_fill_first_stripe(bg,
1813 				map->stripes[stripe_index].dev, physical, 1,
1814 				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1815 				BTRFS_STRIPE_LEN, stripe);
1816 		if (ret < 0)
1817 			goto out;
1818 		/*
1819 		 * No extent in this data stripe, need to manually mark them
1820 		 * initialized to make later read submission happy.
1821 		 */
1822 		if (ret > 0) {
1823 			stripe->logical = full_stripe_start +
1824 					  btrfs_stripe_nr_to_offset(i);
1825 			stripe->dev = map->stripes[stripe_index].dev;
1826 			stripe->mirror_num = 1;
1827 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1828 		}
1829 	}
1830 
1831 	/* Check if all data stripes are empty. */
1832 	for (int i = 0; i < data_stripes; i++) {
1833 		stripe = &sctx->raid56_data_stripes[i];
1834 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1835 			all_empty = false;
1836 			break;
1837 		}
1838 	}
1839 	if (all_empty) {
1840 		ret = 0;
1841 		goto out;
1842 	}
1843 
1844 	for (int i = 0; i < data_stripes; i++) {
1845 		stripe = &sctx->raid56_data_stripes[i];
1846 		scrub_submit_initial_read(sctx, stripe);
1847 	}
1848 	for (int i = 0; i < data_stripes; i++) {
1849 		stripe = &sctx->raid56_data_stripes[i];
1850 
1851 		wait_event(stripe->repair_wait,
1852 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1853 	}
1854 	/* For now, no zoned support for RAID56. */
1855 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
1856 
1857 	/* Writeback for the repaired sectors. */
1858 	for (int i = 0; i < data_stripes; i++) {
1859 		unsigned long repaired;
1860 
1861 		stripe = &sctx->raid56_data_stripes[i];
1862 
1863 		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1864 			      &stripe->error_bitmap, stripe->nr_sectors);
1865 		scrub_write_sectors(sctx, stripe, repaired, false);
1866 	}
1867 
1868 	/* Wait for the above writebacks to finish. */
1869 	for (int i = 0; i < data_stripes; i++) {
1870 		stripe = &sctx->raid56_data_stripes[i];
1871 
1872 		wait_scrub_stripe_io(stripe);
1873 	}
1874 
1875 	/*
1876 	 * Now all data stripes are properly verified. Check if we have any
1877 	 * unrepaired, if so abort immediately or we could further corrupt the
1878 	 * P/Q stripes.
1879 	 *
1880 	 * During the loop, also populate extent_bitmap.
1881 	 */
1882 	for (int i = 0; i < data_stripes; i++) {
1883 		unsigned long error;
1884 
1885 		stripe = &sctx->raid56_data_stripes[i];
1886 
1887 		/*
1888 		 * We should only check the errors where there is an extent.
1889 		 * As we may hit an empty data stripe while it's missing.
1890 		 */
1891 		bitmap_and(&error, &stripe->error_bitmap,
1892 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
1893 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
1894 			btrfs_err(fs_info,
1895 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
1896 				  full_stripe_start, i, stripe->nr_sectors,
1897 				  &error);
1898 			ret = -EIO;
1899 			goto out;
1900 		}
1901 		bitmap_or(&extent_bitmap, &extent_bitmap,
1902 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
1903 	}
1904 
1905 	/* Now we can check and regenerate the P/Q stripe. */
1906 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
1907 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
1908 	bio->bi_private = &io_done;
1909 	bio->bi_end_io = raid56_scrub_wait_endio;
1910 
1911 	btrfs_bio_counter_inc_blocked(fs_info);
1912 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
1913 			      &length, &bioc, NULL, NULL, 1);
1914 	if (ret < 0) {
1915 		btrfs_put_bioc(bioc);
1916 		btrfs_bio_counter_dec(fs_info);
1917 		goto out;
1918 	}
1919 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
1920 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1921 	btrfs_put_bioc(bioc);
1922 	if (!rbio) {
1923 		ret = -ENOMEM;
1924 		btrfs_bio_counter_dec(fs_info);
1925 		goto out;
1926 	}
1927 	/* Use the recovered stripes as cache to avoid read them from disk again. */
1928 	for (int i = 0; i < data_stripes; i++) {
1929 		stripe = &sctx->raid56_data_stripes[i];
1930 
1931 		raid56_parity_cache_data_pages(rbio, stripe->pages,
1932 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
1933 	}
1934 	raid56_parity_submit_scrub_rbio(rbio);
1935 	wait_for_completion_io(&io_done);
1936 	ret = blk_status_to_errno(bio->bi_status);
1937 	bio_put(bio);
1938 	btrfs_bio_counter_dec(fs_info);
1939 
1940 out:
1941 	return ret;
1942 }
1943 
1944 /*
1945  * Scrub one range which can only has simple mirror based profile.
1946  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
1947  *  RAID0/RAID10).
1948  *
1949  * Since we may need to handle a subset of block group, we need @logical_start
1950  * and @logical_length parameter.
1951  */
1952 static int scrub_simple_mirror(struct scrub_ctx *sctx,
1953 			       struct btrfs_block_group *bg,
1954 			       struct map_lookup *map,
1955 			       u64 logical_start, u64 logical_length,
1956 			       struct btrfs_device *device,
1957 			       u64 physical, int mirror_num)
1958 {
1959 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1960 	const u64 logical_end = logical_start + logical_length;
1961 	/* An artificial limit, inherit from old scrub behavior */
1962 	struct btrfs_path path = { 0 };
1963 	u64 cur_logical = logical_start;
1964 	int ret;
1965 
1966 	/* The range must be inside the bg */
1967 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1968 
1969 	path.search_commit_root = 1;
1970 	path.skip_locking = 1;
1971 	/* Go through each extent items inside the logical range */
1972 	while (cur_logical < logical_end) {
1973 		u64 cur_physical = physical + cur_logical - logical_start;
1974 
1975 		/* Canceled? */
1976 		if (atomic_read(&fs_info->scrub_cancel_req) ||
1977 		    atomic_read(&sctx->cancel_req)) {
1978 			ret = -ECANCELED;
1979 			break;
1980 		}
1981 		/* Paused? */
1982 		if (atomic_read(&fs_info->scrub_pause_req)) {
1983 			/* Push queued extents */
1984 			scrub_blocked_if_needed(fs_info);
1985 		}
1986 		/* Block group removed? */
1987 		spin_lock(&bg->lock);
1988 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
1989 			spin_unlock(&bg->lock);
1990 			ret = 0;
1991 			break;
1992 		}
1993 		spin_unlock(&bg->lock);
1994 
1995 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
1996 					 cur_logical, logical_end - cur_logical,
1997 					 cur_physical);
1998 		if (ret > 0) {
1999 			/* No more extent, just update the accounting */
2000 			sctx->stat.last_physical = physical + logical_length;
2001 			ret = 0;
2002 			break;
2003 		}
2004 		if (ret < 0)
2005 			break;
2006 
2007 		ASSERT(sctx->cur_stripe > 0);
2008 		cur_logical = sctx->stripes[sctx->cur_stripe - 1].logical
2009 			      + BTRFS_STRIPE_LEN;
2010 
2011 		/* Don't hold CPU for too long time */
2012 		cond_resched();
2013 	}
2014 	btrfs_release_path(&path);
2015 	return ret;
2016 }
2017 
2018 /* Calculate the full stripe length for simple stripe based profiles */
2019 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2020 {
2021 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2022 			    BTRFS_BLOCK_GROUP_RAID10));
2023 
2024 	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2025 }
2026 
2027 /* Get the logical bytenr for the stripe */
2028 static u64 simple_stripe_get_logical(struct map_lookup *map,
2029 				     struct btrfs_block_group *bg,
2030 				     int stripe_index)
2031 {
2032 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2033 			    BTRFS_BLOCK_GROUP_RAID10));
2034 	ASSERT(stripe_index < map->num_stripes);
2035 
2036 	/*
2037 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2038 	 * skip.
2039 	 */
2040 	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2041 	       bg->start;
2042 }
2043 
2044 /* Get the mirror number for the stripe */
2045 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2046 {
2047 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2048 			    BTRFS_BLOCK_GROUP_RAID10));
2049 	ASSERT(stripe_index < map->num_stripes);
2050 
2051 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2052 	return stripe_index % map->sub_stripes + 1;
2053 }
2054 
2055 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2056 			       struct btrfs_block_group *bg,
2057 			       struct map_lookup *map,
2058 			       struct btrfs_device *device,
2059 			       int stripe_index)
2060 {
2061 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2062 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2063 	const u64 orig_physical = map->stripes[stripe_index].physical;
2064 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2065 	u64 cur_logical = orig_logical;
2066 	u64 cur_physical = orig_physical;
2067 	int ret = 0;
2068 
2069 	while (cur_logical < bg->start + bg->length) {
2070 		/*
2071 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2072 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2073 		 * this stripe.
2074 		 */
2075 		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2076 					  BTRFS_STRIPE_LEN, device, cur_physical,
2077 					  mirror_num);
2078 		if (ret)
2079 			return ret;
2080 		/* Skip to next stripe which belongs to the target device */
2081 		cur_logical += logical_increment;
2082 		/* For physical offset, we just go to next stripe */
2083 		cur_physical += BTRFS_STRIPE_LEN;
2084 	}
2085 	return ret;
2086 }
2087 
2088 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2089 					   struct btrfs_block_group *bg,
2090 					   struct extent_map *em,
2091 					   struct btrfs_device *scrub_dev,
2092 					   int stripe_index)
2093 {
2094 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2095 	struct map_lookup *map = em->map_lookup;
2096 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2097 	const u64 chunk_logical = bg->start;
2098 	int ret;
2099 	int ret2;
2100 	u64 physical = map->stripes[stripe_index].physical;
2101 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2102 	const u64 physical_end = physical + dev_stripe_len;
2103 	u64 logical;
2104 	u64 logic_end;
2105 	/* The logical increment after finishing one stripe */
2106 	u64 increment;
2107 	/* Offset inside the chunk */
2108 	u64 offset;
2109 	u64 stripe_logical;
2110 	int stop_loop = 0;
2111 
2112 	scrub_blocked_if_needed(fs_info);
2113 
2114 	if (sctx->is_dev_replace &&
2115 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2116 		mutex_lock(&sctx->wr_lock);
2117 		sctx->write_pointer = physical;
2118 		mutex_unlock(&sctx->wr_lock);
2119 	}
2120 
2121 	/* Prepare the extra data stripes used by RAID56. */
2122 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2123 		ASSERT(sctx->raid56_data_stripes == NULL);
2124 
2125 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2126 						    sizeof(struct scrub_stripe),
2127 						    GFP_KERNEL);
2128 		if (!sctx->raid56_data_stripes) {
2129 			ret = -ENOMEM;
2130 			goto out;
2131 		}
2132 		for (int i = 0; i < nr_data_stripes(map); i++) {
2133 			ret = init_scrub_stripe(fs_info,
2134 						&sctx->raid56_data_stripes[i]);
2135 			if (ret < 0)
2136 				goto out;
2137 			sctx->raid56_data_stripes[i].bg = bg;
2138 			sctx->raid56_data_stripes[i].sctx = sctx;
2139 		}
2140 	}
2141 	/*
2142 	 * There used to be a big double loop to handle all profiles using the
2143 	 * same routine, which grows larger and more gross over time.
2144 	 *
2145 	 * So here we handle each profile differently, so simpler profiles
2146 	 * have simpler scrubbing function.
2147 	 */
2148 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2149 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2150 		/*
2151 		 * Above check rules out all complex profile, the remaining
2152 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2153 		 * mirrored duplication without stripe.
2154 		 *
2155 		 * Only @physical and @mirror_num needs to calculated using
2156 		 * @stripe_index.
2157 		 */
2158 		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2159 				scrub_dev, map->stripes[stripe_index].physical,
2160 				stripe_index + 1);
2161 		offset = 0;
2162 		goto out;
2163 	}
2164 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2165 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2166 		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2167 		goto out;
2168 	}
2169 
2170 	/* Only RAID56 goes through the old code */
2171 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2172 	ret = 0;
2173 
2174 	/* Calculate the logical end of the stripe */
2175 	get_raid56_logic_offset(physical_end, stripe_index,
2176 				map, &logic_end, NULL);
2177 	logic_end += chunk_logical;
2178 
2179 	/* Initialize @offset in case we need to go to out: label */
2180 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2181 	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2182 
2183 	/*
2184 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2185 	 * using their physical offset.
2186 	 */
2187 	while (physical < physical_end) {
2188 		ret = get_raid56_logic_offset(physical, stripe_index, map,
2189 					      &logical, &stripe_logical);
2190 		logical += chunk_logical;
2191 		if (ret) {
2192 			/* it is parity strip */
2193 			stripe_logical += chunk_logical;
2194 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2195 							 map, stripe_logical);
2196 			if (ret)
2197 				goto out;
2198 			goto next;
2199 		}
2200 
2201 		/*
2202 		 * Now we're at a data stripe, scrub each extents in the range.
2203 		 *
2204 		 * At this stage, if we ignore the repair part, inside each data
2205 		 * stripe it is no different than SINGLE profile.
2206 		 * We can reuse scrub_simple_mirror() here, as the repair part
2207 		 * is still based on @mirror_num.
2208 		 */
2209 		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2210 					  scrub_dev, physical, 1);
2211 		if (ret < 0)
2212 			goto out;
2213 next:
2214 		logical += increment;
2215 		physical += BTRFS_STRIPE_LEN;
2216 		spin_lock(&sctx->stat_lock);
2217 		if (stop_loop)
2218 			sctx->stat.last_physical =
2219 				map->stripes[stripe_index].physical + dev_stripe_len;
2220 		else
2221 			sctx->stat.last_physical = physical;
2222 		spin_unlock(&sctx->stat_lock);
2223 		if (stop_loop)
2224 			break;
2225 	}
2226 out:
2227 	ret2 = flush_scrub_stripes(sctx);
2228 	if (!ret)
2229 		ret = ret2;
2230 	if (sctx->raid56_data_stripes) {
2231 		for (int i = 0; i < nr_data_stripes(map); i++)
2232 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2233 		kfree(sctx->raid56_data_stripes);
2234 		sctx->raid56_data_stripes = NULL;
2235 	}
2236 
2237 	if (sctx->is_dev_replace && ret >= 0) {
2238 		int ret2;
2239 
2240 		ret2 = sync_write_pointer_for_zoned(sctx,
2241 				chunk_logical + offset,
2242 				map->stripes[stripe_index].physical,
2243 				physical_end);
2244 		if (ret2)
2245 			ret = ret2;
2246 	}
2247 
2248 	return ret < 0 ? ret : 0;
2249 }
2250 
2251 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2252 					  struct btrfs_block_group *bg,
2253 					  struct btrfs_device *scrub_dev,
2254 					  u64 dev_offset,
2255 					  u64 dev_extent_len)
2256 {
2257 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2258 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2259 	struct map_lookup *map;
2260 	struct extent_map *em;
2261 	int i;
2262 	int ret = 0;
2263 
2264 	read_lock(&map_tree->lock);
2265 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2266 	read_unlock(&map_tree->lock);
2267 
2268 	if (!em) {
2269 		/*
2270 		 * Might have been an unused block group deleted by the cleaner
2271 		 * kthread or relocation.
2272 		 */
2273 		spin_lock(&bg->lock);
2274 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2275 			ret = -EINVAL;
2276 		spin_unlock(&bg->lock);
2277 
2278 		return ret;
2279 	}
2280 	if (em->start != bg->start)
2281 		goto out;
2282 	if (em->len < dev_extent_len)
2283 		goto out;
2284 
2285 	map = em->map_lookup;
2286 	for (i = 0; i < map->num_stripes; ++i) {
2287 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2288 		    map->stripes[i].physical == dev_offset) {
2289 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
2290 			if (ret)
2291 				goto out;
2292 		}
2293 	}
2294 out:
2295 	free_extent_map(em);
2296 
2297 	return ret;
2298 }
2299 
2300 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2301 					  struct btrfs_block_group *cache)
2302 {
2303 	struct btrfs_fs_info *fs_info = cache->fs_info;
2304 	struct btrfs_trans_handle *trans;
2305 
2306 	if (!btrfs_is_zoned(fs_info))
2307 		return 0;
2308 
2309 	btrfs_wait_block_group_reservations(cache);
2310 	btrfs_wait_nocow_writers(cache);
2311 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2312 
2313 	trans = btrfs_join_transaction(root);
2314 	if (IS_ERR(trans))
2315 		return PTR_ERR(trans);
2316 	return btrfs_commit_transaction(trans);
2317 }
2318 
2319 static noinline_for_stack
2320 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2321 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2322 {
2323 	struct btrfs_dev_extent *dev_extent = NULL;
2324 	struct btrfs_path *path;
2325 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2326 	struct btrfs_root *root = fs_info->dev_root;
2327 	u64 chunk_offset;
2328 	int ret = 0;
2329 	int ro_set;
2330 	int slot;
2331 	struct extent_buffer *l;
2332 	struct btrfs_key key;
2333 	struct btrfs_key found_key;
2334 	struct btrfs_block_group *cache;
2335 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2336 
2337 	path = btrfs_alloc_path();
2338 	if (!path)
2339 		return -ENOMEM;
2340 
2341 	path->reada = READA_FORWARD;
2342 	path->search_commit_root = 1;
2343 	path->skip_locking = 1;
2344 
2345 	key.objectid = scrub_dev->devid;
2346 	key.offset = 0ull;
2347 	key.type = BTRFS_DEV_EXTENT_KEY;
2348 
2349 	while (1) {
2350 		u64 dev_extent_len;
2351 
2352 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2353 		if (ret < 0)
2354 			break;
2355 		if (ret > 0) {
2356 			if (path->slots[0] >=
2357 			    btrfs_header_nritems(path->nodes[0])) {
2358 				ret = btrfs_next_leaf(root, path);
2359 				if (ret < 0)
2360 					break;
2361 				if (ret > 0) {
2362 					ret = 0;
2363 					break;
2364 				}
2365 			} else {
2366 				ret = 0;
2367 			}
2368 		}
2369 
2370 		l = path->nodes[0];
2371 		slot = path->slots[0];
2372 
2373 		btrfs_item_key_to_cpu(l, &found_key, slot);
2374 
2375 		if (found_key.objectid != scrub_dev->devid)
2376 			break;
2377 
2378 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2379 			break;
2380 
2381 		if (found_key.offset >= end)
2382 			break;
2383 
2384 		if (found_key.offset < key.offset)
2385 			break;
2386 
2387 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2388 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2389 
2390 		if (found_key.offset + dev_extent_len <= start)
2391 			goto skip;
2392 
2393 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2394 
2395 		/*
2396 		 * get a reference on the corresponding block group to prevent
2397 		 * the chunk from going away while we scrub it
2398 		 */
2399 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2400 
2401 		/* some chunks are removed but not committed to disk yet,
2402 		 * continue scrubbing */
2403 		if (!cache)
2404 			goto skip;
2405 
2406 		ASSERT(cache->start <= chunk_offset);
2407 		/*
2408 		 * We are using the commit root to search for device extents, so
2409 		 * that means we could have found a device extent item from a
2410 		 * block group that was deleted in the current transaction. The
2411 		 * logical start offset of the deleted block group, stored at
2412 		 * @chunk_offset, might be part of the logical address range of
2413 		 * a new block group (which uses different physical extents).
2414 		 * In this case btrfs_lookup_block_group() has returned the new
2415 		 * block group, and its start address is less than @chunk_offset.
2416 		 *
2417 		 * We skip such new block groups, because it's pointless to
2418 		 * process them, as we won't find their extents because we search
2419 		 * for them using the commit root of the extent tree. For a device
2420 		 * replace it's also fine to skip it, we won't miss copying them
2421 		 * to the target device because we have the write duplication
2422 		 * setup through the regular write path (by btrfs_map_block()),
2423 		 * and we have committed a transaction when we started the device
2424 		 * replace, right after setting up the device replace state.
2425 		 */
2426 		if (cache->start < chunk_offset) {
2427 			btrfs_put_block_group(cache);
2428 			goto skip;
2429 		}
2430 
2431 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2432 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2433 				btrfs_put_block_group(cache);
2434 				goto skip;
2435 			}
2436 		}
2437 
2438 		/*
2439 		 * Make sure that while we are scrubbing the corresponding block
2440 		 * group doesn't get its logical address and its device extents
2441 		 * reused for another block group, which can possibly be of a
2442 		 * different type and different profile. We do this to prevent
2443 		 * false error detections and crashes due to bogus attempts to
2444 		 * repair extents.
2445 		 */
2446 		spin_lock(&cache->lock);
2447 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2448 			spin_unlock(&cache->lock);
2449 			btrfs_put_block_group(cache);
2450 			goto skip;
2451 		}
2452 		btrfs_freeze_block_group(cache);
2453 		spin_unlock(&cache->lock);
2454 
2455 		/*
2456 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2457 		 * to avoid deadlock caused by:
2458 		 * btrfs_inc_block_group_ro()
2459 		 * -> btrfs_wait_for_commit()
2460 		 * -> btrfs_commit_transaction()
2461 		 * -> btrfs_scrub_pause()
2462 		 */
2463 		scrub_pause_on(fs_info);
2464 
2465 		/*
2466 		 * Don't do chunk preallocation for scrub.
2467 		 *
2468 		 * This is especially important for SYSTEM bgs, or we can hit
2469 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2470 		 * 1. The only SYSTEM bg is marked RO.
2471 		 *    Since SYSTEM bg is small, that's pretty common.
2472 		 * 2. New SYSTEM bg will be allocated
2473 		 *    Due to regular version will allocate new chunk.
2474 		 * 3. New SYSTEM bg is empty and will get cleaned up
2475 		 *    Before cleanup really happens, it's marked RO again.
2476 		 * 4. Empty SYSTEM bg get scrubbed
2477 		 *    We go back to 2.
2478 		 *
2479 		 * This can easily boost the amount of SYSTEM chunks if cleaner
2480 		 * thread can't be triggered fast enough, and use up all space
2481 		 * of btrfs_super_block::sys_chunk_array
2482 		 *
2483 		 * While for dev replace, we need to try our best to mark block
2484 		 * group RO, to prevent race between:
2485 		 * - Write duplication
2486 		 *   Contains latest data
2487 		 * - Scrub copy
2488 		 *   Contains data from commit tree
2489 		 *
2490 		 * If target block group is not marked RO, nocow writes can
2491 		 * be overwritten by scrub copy, causing data corruption.
2492 		 * So for dev-replace, it's not allowed to continue if a block
2493 		 * group is not RO.
2494 		 */
2495 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2496 		if (!ret && sctx->is_dev_replace) {
2497 			ret = finish_extent_writes_for_zoned(root, cache);
2498 			if (ret) {
2499 				btrfs_dec_block_group_ro(cache);
2500 				scrub_pause_off(fs_info);
2501 				btrfs_put_block_group(cache);
2502 				break;
2503 			}
2504 		}
2505 
2506 		if (ret == 0) {
2507 			ro_set = 1;
2508 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2509 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2510 			/*
2511 			 * btrfs_inc_block_group_ro return -ENOSPC when it
2512 			 * failed in creating new chunk for metadata.
2513 			 * It is not a problem for scrub, because
2514 			 * metadata are always cowed, and our scrub paused
2515 			 * commit_transactions.
2516 			 *
2517 			 * For RAID56 chunks, we have to mark them read-only
2518 			 * for scrub, as later we would use our own cache
2519 			 * out of RAID56 realm.
2520 			 * Thus we want the RAID56 bg to be marked RO to
2521 			 * prevent RMW from screwing up out cache.
2522 			 */
2523 			ro_set = 0;
2524 		} else if (ret == -ETXTBSY) {
2525 			btrfs_warn(fs_info,
2526 		   "skipping scrub of block group %llu due to active swapfile",
2527 				   cache->start);
2528 			scrub_pause_off(fs_info);
2529 			ret = 0;
2530 			goto skip_unfreeze;
2531 		} else {
2532 			btrfs_warn(fs_info,
2533 				   "failed setting block group ro: %d", ret);
2534 			btrfs_unfreeze_block_group(cache);
2535 			btrfs_put_block_group(cache);
2536 			scrub_pause_off(fs_info);
2537 			break;
2538 		}
2539 
2540 		/*
2541 		 * Now the target block is marked RO, wait for nocow writes to
2542 		 * finish before dev-replace.
2543 		 * COW is fine, as COW never overwrites extents in commit tree.
2544 		 */
2545 		if (sctx->is_dev_replace) {
2546 			btrfs_wait_nocow_writers(cache);
2547 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2548 					cache->length);
2549 		}
2550 
2551 		scrub_pause_off(fs_info);
2552 		down_write(&dev_replace->rwsem);
2553 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2554 		dev_replace->cursor_left = found_key.offset;
2555 		dev_replace->item_needs_writeback = 1;
2556 		up_write(&dev_replace->rwsem);
2557 
2558 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2559 				  dev_extent_len);
2560 		if (sctx->is_dev_replace &&
2561 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2562 						      cache, found_key.offset))
2563 			ro_set = 0;
2564 
2565 		down_write(&dev_replace->rwsem);
2566 		dev_replace->cursor_left = dev_replace->cursor_right;
2567 		dev_replace->item_needs_writeback = 1;
2568 		up_write(&dev_replace->rwsem);
2569 
2570 		if (ro_set)
2571 			btrfs_dec_block_group_ro(cache);
2572 
2573 		/*
2574 		 * We might have prevented the cleaner kthread from deleting
2575 		 * this block group if it was already unused because we raced
2576 		 * and set it to RO mode first. So add it back to the unused
2577 		 * list, otherwise it might not ever be deleted unless a manual
2578 		 * balance is triggered or it becomes used and unused again.
2579 		 */
2580 		spin_lock(&cache->lock);
2581 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2582 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2583 			spin_unlock(&cache->lock);
2584 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2585 				btrfs_discard_queue_work(&fs_info->discard_ctl,
2586 							 cache);
2587 			else
2588 				btrfs_mark_bg_unused(cache);
2589 		} else {
2590 			spin_unlock(&cache->lock);
2591 		}
2592 skip_unfreeze:
2593 		btrfs_unfreeze_block_group(cache);
2594 		btrfs_put_block_group(cache);
2595 		if (ret)
2596 			break;
2597 		if (sctx->is_dev_replace &&
2598 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2599 			ret = -EIO;
2600 			break;
2601 		}
2602 		if (sctx->stat.malloc_errors > 0) {
2603 			ret = -ENOMEM;
2604 			break;
2605 		}
2606 skip:
2607 		key.offset = found_key.offset + dev_extent_len;
2608 		btrfs_release_path(path);
2609 	}
2610 
2611 	btrfs_free_path(path);
2612 
2613 	return ret;
2614 }
2615 
2616 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2617 			   struct page *page, u64 physical, u64 generation)
2618 {
2619 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2620 	struct bio_vec bvec;
2621 	struct bio bio;
2622 	struct btrfs_super_block *sb = page_address(page);
2623 	int ret;
2624 
2625 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2626 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2627 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2628 	ret = submit_bio_wait(&bio);
2629 	bio_uninit(&bio);
2630 
2631 	if (ret < 0)
2632 		return ret;
2633 	ret = btrfs_check_super_csum(fs_info, sb);
2634 	if (ret != 0) {
2635 		btrfs_err_rl(fs_info,
2636 			"super block at physical %llu devid %llu has bad csum",
2637 			physical, dev->devid);
2638 		return -EIO;
2639 	}
2640 	if (btrfs_super_generation(sb) != generation) {
2641 		btrfs_err_rl(fs_info,
2642 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2643 			     physical, dev->devid,
2644 			     btrfs_super_generation(sb), generation);
2645 		return -EUCLEAN;
2646 	}
2647 
2648 	return btrfs_validate_super(fs_info, sb, -1);
2649 }
2650 
2651 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2652 					   struct btrfs_device *scrub_dev)
2653 {
2654 	int	i;
2655 	u64	bytenr;
2656 	u64	gen;
2657 	int ret = 0;
2658 	struct page *page;
2659 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2660 
2661 	if (BTRFS_FS_ERROR(fs_info))
2662 		return -EROFS;
2663 
2664 	page = alloc_page(GFP_KERNEL);
2665 	if (!page) {
2666 		spin_lock(&sctx->stat_lock);
2667 		sctx->stat.malloc_errors++;
2668 		spin_unlock(&sctx->stat_lock);
2669 		return -ENOMEM;
2670 	}
2671 
2672 	/* Seed devices of a new filesystem has their own generation. */
2673 	if (scrub_dev->fs_devices != fs_info->fs_devices)
2674 		gen = scrub_dev->generation;
2675 	else
2676 		gen = fs_info->last_trans_committed;
2677 
2678 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2679 		bytenr = btrfs_sb_offset(i);
2680 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2681 		    scrub_dev->commit_total_bytes)
2682 			break;
2683 		if (!btrfs_check_super_location(scrub_dev, bytenr))
2684 			continue;
2685 
2686 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2687 		if (ret) {
2688 			spin_lock(&sctx->stat_lock);
2689 			sctx->stat.super_errors++;
2690 			spin_unlock(&sctx->stat_lock);
2691 		}
2692 	}
2693 	__free_page(page);
2694 	return 0;
2695 }
2696 
2697 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2698 {
2699 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2700 					&fs_info->scrub_lock)) {
2701 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2702 
2703 		fs_info->scrub_workers = NULL;
2704 		mutex_unlock(&fs_info->scrub_lock);
2705 
2706 		if (scrub_workers)
2707 			destroy_workqueue(scrub_workers);
2708 	}
2709 }
2710 
2711 /*
2712  * get a reference count on fs_info->scrub_workers. start worker if necessary
2713  */
2714 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2715 						int is_dev_replace)
2716 {
2717 	struct workqueue_struct *scrub_workers = NULL;
2718 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2719 	int max_active = fs_info->thread_pool_size;
2720 	int ret = -ENOMEM;
2721 
2722 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2723 		return 0;
2724 
2725 	if (is_dev_replace)
2726 		scrub_workers = alloc_ordered_workqueue("btrfs-scrub", flags);
2727 	else
2728 		scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2729 	if (!scrub_workers)
2730 		return -ENOMEM;
2731 
2732 	mutex_lock(&fs_info->scrub_lock);
2733 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2734 		ASSERT(fs_info->scrub_workers == NULL);
2735 		fs_info->scrub_workers = scrub_workers;
2736 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2737 		mutex_unlock(&fs_info->scrub_lock);
2738 		return 0;
2739 	}
2740 	/* Other thread raced in and created the workers for us */
2741 	refcount_inc(&fs_info->scrub_workers_refcnt);
2742 	mutex_unlock(&fs_info->scrub_lock);
2743 
2744 	ret = 0;
2745 
2746 	destroy_workqueue(scrub_workers);
2747 	return ret;
2748 }
2749 
2750 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2751 		    u64 end, struct btrfs_scrub_progress *progress,
2752 		    int readonly, int is_dev_replace)
2753 {
2754 	struct btrfs_dev_lookup_args args = { .devid = devid };
2755 	struct scrub_ctx *sctx;
2756 	int ret;
2757 	struct btrfs_device *dev;
2758 	unsigned int nofs_flag;
2759 	bool need_commit = false;
2760 
2761 	if (btrfs_fs_closing(fs_info))
2762 		return -EAGAIN;
2763 
2764 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2765 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2766 
2767 	/*
2768 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2769 	 * value (max nodesize / min sectorsize), thus nodesize should always
2770 	 * be fine.
2771 	 */
2772 	ASSERT(fs_info->nodesize <=
2773 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2774 
2775 	/* Allocate outside of device_list_mutex */
2776 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2777 	if (IS_ERR(sctx))
2778 		return PTR_ERR(sctx);
2779 
2780 	ret = scrub_workers_get(fs_info, is_dev_replace);
2781 	if (ret)
2782 		goto out_free_ctx;
2783 
2784 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2785 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2786 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2787 		     !is_dev_replace)) {
2788 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2789 		ret = -ENODEV;
2790 		goto out;
2791 	}
2792 
2793 	if (!is_dev_replace && !readonly &&
2794 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2795 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2796 		btrfs_err_in_rcu(fs_info,
2797 			"scrub on devid %llu: filesystem on %s is not writable",
2798 				 devid, btrfs_dev_name(dev));
2799 		ret = -EROFS;
2800 		goto out;
2801 	}
2802 
2803 	mutex_lock(&fs_info->scrub_lock);
2804 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2805 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2806 		mutex_unlock(&fs_info->scrub_lock);
2807 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2808 		ret = -EIO;
2809 		goto out;
2810 	}
2811 
2812 	down_read(&fs_info->dev_replace.rwsem);
2813 	if (dev->scrub_ctx ||
2814 	    (!is_dev_replace &&
2815 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2816 		up_read(&fs_info->dev_replace.rwsem);
2817 		mutex_unlock(&fs_info->scrub_lock);
2818 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2819 		ret = -EINPROGRESS;
2820 		goto out;
2821 	}
2822 	up_read(&fs_info->dev_replace.rwsem);
2823 
2824 	sctx->readonly = readonly;
2825 	dev->scrub_ctx = sctx;
2826 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2827 
2828 	/*
2829 	 * checking @scrub_pause_req here, we can avoid
2830 	 * race between committing transaction and scrubbing.
2831 	 */
2832 	__scrub_blocked_if_needed(fs_info);
2833 	atomic_inc(&fs_info->scrubs_running);
2834 	mutex_unlock(&fs_info->scrub_lock);
2835 
2836 	/*
2837 	 * In order to avoid deadlock with reclaim when there is a transaction
2838 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2839 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2840 	 * invoked by our callees. The pausing request is done when the
2841 	 * transaction commit starts, and it blocks the transaction until scrub
2842 	 * is paused (done at specific points at scrub_stripe() or right above
2843 	 * before incrementing fs_info->scrubs_running).
2844 	 */
2845 	nofs_flag = memalloc_nofs_save();
2846 	if (!is_dev_replace) {
2847 		u64 old_super_errors;
2848 
2849 		spin_lock(&sctx->stat_lock);
2850 		old_super_errors = sctx->stat.super_errors;
2851 		spin_unlock(&sctx->stat_lock);
2852 
2853 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2854 		/*
2855 		 * by holding device list mutex, we can
2856 		 * kick off writing super in log tree sync.
2857 		 */
2858 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2859 		ret = scrub_supers(sctx, dev);
2860 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2861 
2862 		spin_lock(&sctx->stat_lock);
2863 		/*
2864 		 * Super block errors found, but we can not commit transaction
2865 		 * at current context, since btrfs_commit_transaction() needs
2866 		 * to pause the current running scrub (hold by ourselves).
2867 		 */
2868 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2869 			need_commit = true;
2870 		spin_unlock(&sctx->stat_lock);
2871 	}
2872 
2873 	if (!ret)
2874 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
2875 	memalloc_nofs_restore(nofs_flag);
2876 
2877 	atomic_dec(&fs_info->scrubs_running);
2878 	wake_up(&fs_info->scrub_pause_wait);
2879 
2880 	if (progress)
2881 		memcpy(progress, &sctx->stat, sizeof(*progress));
2882 
2883 	if (!is_dev_replace)
2884 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2885 			ret ? "not finished" : "finished", devid, ret);
2886 
2887 	mutex_lock(&fs_info->scrub_lock);
2888 	dev->scrub_ctx = NULL;
2889 	mutex_unlock(&fs_info->scrub_lock);
2890 
2891 	scrub_workers_put(fs_info);
2892 	scrub_put_ctx(sctx);
2893 
2894 	/*
2895 	 * We found some super block errors before, now try to force a
2896 	 * transaction commit, as scrub has finished.
2897 	 */
2898 	if (need_commit) {
2899 		struct btrfs_trans_handle *trans;
2900 
2901 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
2902 		if (IS_ERR(trans)) {
2903 			ret = PTR_ERR(trans);
2904 			btrfs_err(fs_info,
2905 	"scrub: failed to start transaction to fix super block errors: %d", ret);
2906 			return ret;
2907 		}
2908 		ret = btrfs_commit_transaction(trans);
2909 		if (ret < 0)
2910 			btrfs_err(fs_info,
2911 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
2912 	}
2913 	return ret;
2914 out:
2915 	scrub_workers_put(fs_info);
2916 out_free_ctx:
2917 	scrub_free_ctx(sctx);
2918 
2919 	return ret;
2920 }
2921 
2922 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
2923 {
2924 	mutex_lock(&fs_info->scrub_lock);
2925 	atomic_inc(&fs_info->scrub_pause_req);
2926 	while (atomic_read(&fs_info->scrubs_paused) !=
2927 	       atomic_read(&fs_info->scrubs_running)) {
2928 		mutex_unlock(&fs_info->scrub_lock);
2929 		wait_event(fs_info->scrub_pause_wait,
2930 			   atomic_read(&fs_info->scrubs_paused) ==
2931 			   atomic_read(&fs_info->scrubs_running));
2932 		mutex_lock(&fs_info->scrub_lock);
2933 	}
2934 	mutex_unlock(&fs_info->scrub_lock);
2935 }
2936 
2937 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
2938 {
2939 	atomic_dec(&fs_info->scrub_pause_req);
2940 	wake_up(&fs_info->scrub_pause_wait);
2941 }
2942 
2943 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2944 {
2945 	mutex_lock(&fs_info->scrub_lock);
2946 	if (!atomic_read(&fs_info->scrubs_running)) {
2947 		mutex_unlock(&fs_info->scrub_lock);
2948 		return -ENOTCONN;
2949 	}
2950 
2951 	atomic_inc(&fs_info->scrub_cancel_req);
2952 	while (atomic_read(&fs_info->scrubs_running)) {
2953 		mutex_unlock(&fs_info->scrub_lock);
2954 		wait_event(fs_info->scrub_pause_wait,
2955 			   atomic_read(&fs_info->scrubs_running) == 0);
2956 		mutex_lock(&fs_info->scrub_lock);
2957 	}
2958 	atomic_dec(&fs_info->scrub_cancel_req);
2959 	mutex_unlock(&fs_info->scrub_lock);
2960 
2961 	return 0;
2962 }
2963 
2964 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
2965 {
2966 	struct btrfs_fs_info *fs_info = dev->fs_info;
2967 	struct scrub_ctx *sctx;
2968 
2969 	mutex_lock(&fs_info->scrub_lock);
2970 	sctx = dev->scrub_ctx;
2971 	if (!sctx) {
2972 		mutex_unlock(&fs_info->scrub_lock);
2973 		return -ENOTCONN;
2974 	}
2975 	atomic_inc(&sctx->cancel_req);
2976 	while (dev->scrub_ctx) {
2977 		mutex_unlock(&fs_info->scrub_lock);
2978 		wait_event(fs_info->scrub_pause_wait,
2979 			   dev->scrub_ctx == NULL);
2980 		mutex_lock(&fs_info->scrub_lock);
2981 	}
2982 	mutex_unlock(&fs_info->scrub_lock);
2983 
2984 	return 0;
2985 }
2986 
2987 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
2988 			 struct btrfs_scrub_progress *progress)
2989 {
2990 	struct btrfs_dev_lookup_args args = { .devid = devid };
2991 	struct btrfs_device *dev;
2992 	struct scrub_ctx *sctx = NULL;
2993 
2994 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2995 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2996 	if (dev)
2997 		sctx = dev->scrub_ctx;
2998 	if (sctx)
2999 		memcpy(progress, &sctx->stat, sizeof(*progress));
3000 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3001 
3002 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3003 }
3004