1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "rcu-string.h" 21 #include "raid56.h" 22 #include "block-group.h" 23 #include "zoned.h" 24 25 /* 26 * This is only the first step towards a full-features scrub. It reads all 27 * extent and super block and verifies the checksums. In case a bad checksum 28 * is found or the extent cannot be read, good data will be written back if 29 * any can be found. 30 * 31 * Future enhancements: 32 * - In case an unrepairable extent is encountered, track which files are 33 * affected and report them 34 * - track and record media errors, throw out bad devices 35 * - add a mode to also read unallocated space 36 */ 37 38 struct scrub_block; 39 struct scrub_ctx; 40 41 /* 42 * the following three values only influence the performance. 43 * The last one configures the number of parallel and outstanding I/O 44 * operations. The first two values configure an upper limit for the number 45 * of (dynamically allocated) pages that are added to a bio. 46 */ 47 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 48 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 49 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 50 51 /* 52 * the following value times PAGE_SIZE needs to be large enough to match the 53 * largest node/leaf/sector size that shall be supported. 54 * Values larger than BTRFS_STRIPE_LEN are not supported. 55 */ 56 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 57 58 struct scrub_recover { 59 refcount_t refs; 60 struct btrfs_io_context *bioc; 61 u64 map_length; 62 }; 63 64 struct scrub_page { 65 struct scrub_block *sblock; 66 struct page *page; 67 struct btrfs_device *dev; 68 struct list_head list; 69 u64 flags; /* extent flags */ 70 u64 generation; 71 u64 logical; 72 u64 physical; 73 u64 physical_for_dev_replace; 74 atomic_t refs; 75 u8 mirror_num; 76 int have_csum:1; 77 int io_error:1; 78 u8 csum[BTRFS_CSUM_SIZE]; 79 80 struct scrub_recover *recover; 81 }; 82 83 struct scrub_bio { 84 int index; 85 struct scrub_ctx *sctx; 86 struct btrfs_device *dev; 87 struct bio *bio; 88 blk_status_t status; 89 u64 logical; 90 u64 physical; 91 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 92 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 93 #else 94 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 95 #endif 96 int page_count; 97 int next_free; 98 struct btrfs_work work; 99 }; 100 101 struct scrub_block { 102 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 103 int page_count; 104 atomic_t outstanding_pages; 105 refcount_t refs; /* free mem on transition to zero */ 106 struct scrub_ctx *sctx; 107 struct scrub_parity *sparity; 108 struct { 109 unsigned int header_error:1; 110 unsigned int checksum_error:1; 111 unsigned int no_io_error_seen:1; 112 unsigned int generation_error:1; /* also sets header_error */ 113 114 /* The following is for the data used to check parity */ 115 /* It is for the data with checksum */ 116 unsigned int data_corrected:1; 117 }; 118 struct btrfs_work work; 119 }; 120 121 /* Used for the chunks with parity stripe such RAID5/6 */ 122 struct scrub_parity { 123 struct scrub_ctx *sctx; 124 125 struct btrfs_device *scrub_dev; 126 127 u64 logic_start; 128 129 u64 logic_end; 130 131 int nsectors; 132 133 u32 stripe_len; 134 135 refcount_t refs; 136 137 struct list_head spages; 138 139 /* Work of parity check and repair */ 140 struct btrfs_work work; 141 142 /* Mark the parity blocks which have data */ 143 unsigned long *dbitmap; 144 145 /* 146 * Mark the parity blocks which have data, but errors happen when 147 * read data or check data 148 */ 149 unsigned long *ebitmap; 150 151 unsigned long bitmap[]; 152 }; 153 154 struct scrub_ctx { 155 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 156 struct btrfs_fs_info *fs_info; 157 int first_free; 158 int curr; 159 atomic_t bios_in_flight; 160 atomic_t workers_pending; 161 spinlock_t list_lock; 162 wait_queue_head_t list_wait; 163 struct list_head csum_list; 164 atomic_t cancel_req; 165 int readonly; 166 int pages_per_rd_bio; 167 168 /* State of IO submission throttling affecting the associated device */ 169 ktime_t throttle_deadline; 170 u64 throttle_sent; 171 172 int is_dev_replace; 173 u64 write_pointer; 174 175 struct scrub_bio *wr_curr_bio; 176 struct mutex wr_lock; 177 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 178 struct btrfs_device *wr_tgtdev; 179 bool flush_all_writes; 180 181 /* 182 * statistics 183 */ 184 struct btrfs_scrub_progress stat; 185 spinlock_t stat_lock; 186 187 /* 188 * Use a ref counter to avoid use-after-free issues. Scrub workers 189 * decrement bios_in_flight and workers_pending and then do a wakeup 190 * on the list_wait wait queue. We must ensure the main scrub task 191 * doesn't free the scrub context before or while the workers are 192 * doing the wakeup() call. 193 */ 194 refcount_t refs; 195 }; 196 197 struct scrub_warning { 198 struct btrfs_path *path; 199 u64 extent_item_size; 200 const char *errstr; 201 u64 physical; 202 u64 logical; 203 struct btrfs_device *dev; 204 }; 205 206 struct full_stripe_lock { 207 struct rb_node node; 208 u64 logical; 209 u64 refs; 210 struct mutex mutex; 211 }; 212 213 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 214 struct scrub_block *sblocks_for_recheck); 215 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 216 struct scrub_block *sblock, 217 int retry_failed_mirror); 218 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 219 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 220 struct scrub_block *sblock_good); 221 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 222 struct scrub_block *sblock_good, 223 int page_num, int force_write); 224 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 225 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 226 int page_num); 227 static int scrub_checksum_data(struct scrub_block *sblock); 228 static int scrub_checksum_tree_block(struct scrub_block *sblock); 229 static int scrub_checksum_super(struct scrub_block *sblock); 230 static void scrub_block_put(struct scrub_block *sblock); 231 static void scrub_page_get(struct scrub_page *spage); 232 static void scrub_page_put(struct scrub_page *spage); 233 static void scrub_parity_get(struct scrub_parity *sparity); 234 static void scrub_parity_put(struct scrub_parity *sparity); 235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len, 236 u64 physical, struct btrfs_device *dev, u64 flags, 237 u64 gen, int mirror_num, u8 *csum, 238 u64 physical_for_dev_replace); 239 static void scrub_bio_end_io(struct bio *bio); 240 static void scrub_bio_end_io_worker(struct btrfs_work *work); 241 static void scrub_block_complete(struct scrub_block *sblock); 242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 243 u64 extent_logical, u32 extent_len, 244 u64 *extent_physical, 245 struct btrfs_device **extent_dev, 246 int *extent_mirror_num); 247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 248 struct scrub_page *spage); 249 static void scrub_wr_submit(struct scrub_ctx *sctx); 250 static void scrub_wr_bio_end_io(struct bio *bio); 251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 252 static void scrub_put_ctx(struct scrub_ctx *sctx); 253 254 static inline int scrub_is_page_on_raid56(struct scrub_page *spage) 255 { 256 return spage->recover && 257 (spage->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 258 } 259 260 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 261 { 262 refcount_inc(&sctx->refs); 263 atomic_inc(&sctx->bios_in_flight); 264 } 265 266 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 267 { 268 atomic_dec(&sctx->bios_in_flight); 269 wake_up(&sctx->list_wait); 270 scrub_put_ctx(sctx); 271 } 272 273 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 274 { 275 while (atomic_read(&fs_info->scrub_pause_req)) { 276 mutex_unlock(&fs_info->scrub_lock); 277 wait_event(fs_info->scrub_pause_wait, 278 atomic_read(&fs_info->scrub_pause_req) == 0); 279 mutex_lock(&fs_info->scrub_lock); 280 } 281 } 282 283 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 284 { 285 atomic_inc(&fs_info->scrubs_paused); 286 wake_up(&fs_info->scrub_pause_wait); 287 } 288 289 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 290 { 291 mutex_lock(&fs_info->scrub_lock); 292 __scrub_blocked_if_needed(fs_info); 293 atomic_dec(&fs_info->scrubs_paused); 294 mutex_unlock(&fs_info->scrub_lock); 295 296 wake_up(&fs_info->scrub_pause_wait); 297 } 298 299 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 300 { 301 scrub_pause_on(fs_info); 302 scrub_pause_off(fs_info); 303 } 304 305 /* 306 * Insert new full stripe lock into full stripe locks tree 307 * 308 * Return pointer to existing or newly inserted full_stripe_lock structure if 309 * everything works well. 310 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 311 * 312 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 313 * function 314 */ 315 static struct full_stripe_lock *insert_full_stripe_lock( 316 struct btrfs_full_stripe_locks_tree *locks_root, 317 u64 fstripe_logical) 318 { 319 struct rb_node **p; 320 struct rb_node *parent = NULL; 321 struct full_stripe_lock *entry; 322 struct full_stripe_lock *ret; 323 324 lockdep_assert_held(&locks_root->lock); 325 326 p = &locks_root->root.rb_node; 327 while (*p) { 328 parent = *p; 329 entry = rb_entry(parent, struct full_stripe_lock, node); 330 if (fstripe_logical < entry->logical) { 331 p = &(*p)->rb_left; 332 } else if (fstripe_logical > entry->logical) { 333 p = &(*p)->rb_right; 334 } else { 335 entry->refs++; 336 return entry; 337 } 338 } 339 340 /* 341 * Insert new lock. 342 */ 343 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 344 if (!ret) 345 return ERR_PTR(-ENOMEM); 346 ret->logical = fstripe_logical; 347 ret->refs = 1; 348 mutex_init(&ret->mutex); 349 350 rb_link_node(&ret->node, parent, p); 351 rb_insert_color(&ret->node, &locks_root->root); 352 return ret; 353 } 354 355 /* 356 * Search for a full stripe lock of a block group 357 * 358 * Return pointer to existing full stripe lock if found 359 * Return NULL if not found 360 */ 361 static struct full_stripe_lock *search_full_stripe_lock( 362 struct btrfs_full_stripe_locks_tree *locks_root, 363 u64 fstripe_logical) 364 { 365 struct rb_node *node; 366 struct full_stripe_lock *entry; 367 368 lockdep_assert_held(&locks_root->lock); 369 370 node = locks_root->root.rb_node; 371 while (node) { 372 entry = rb_entry(node, struct full_stripe_lock, node); 373 if (fstripe_logical < entry->logical) 374 node = node->rb_left; 375 else if (fstripe_logical > entry->logical) 376 node = node->rb_right; 377 else 378 return entry; 379 } 380 return NULL; 381 } 382 383 /* 384 * Helper to get full stripe logical from a normal bytenr. 385 * 386 * Caller must ensure @cache is a RAID56 block group. 387 */ 388 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) 389 { 390 u64 ret; 391 392 /* 393 * Due to chunk item size limit, full stripe length should not be 394 * larger than U32_MAX. Just a sanity check here. 395 */ 396 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 397 398 /* 399 * round_down() can only handle power of 2, while RAID56 full 400 * stripe length can be 64KiB * n, so we need to manually round down. 401 */ 402 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * 403 cache->full_stripe_len + cache->start; 404 return ret; 405 } 406 407 /* 408 * Lock a full stripe to avoid concurrency of recovery and read 409 * 410 * It's only used for profiles with parities (RAID5/6), for other profiles it 411 * does nothing. 412 * 413 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 414 * So caller must call unlock_full_stripe() at the same context. 415 * 416 * Return <0 if encounters error. 417 */ 418 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 419 bool *locked_ret) 420 { 421 struct btrfs_block_group *bg_cache; 422 struct btrfs_full_stripe_locks_tree *locks_root; 423 struct full_stripe_lock *existing; 424 u64 fstripe_start; 425 int ret = 0; 426 427 *locked_ret = false; 428 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 429 if (!bg_cache) { 430 ASSERT(0); 431 return -ENOENT; 432 } 433 434 /* Profiles not based on parity don't need full stripe lock */ 435 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 436 goto out; 437 locks_root = &bg_cache->full_stripe_locks_root; 438 439 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 440 441 /* Now insert the full stripe lock */ 442 mutex_lock(&locks_root->lock); 443 existing = insert_full_stripe_lock(locks_root, fstripe_start); 444 mutex_unlock(&locks_root->lock); 445 if (IS_ERR(existing)) { 446 ret = PTR_ERR(existing); 447 goto out; 448 } 449 mutex_lock(&existing->mutex); 450 *locked_ret = true; 451 out: 452 btrfs_put_block_group(bg_cache); 453 return ret; 454 } 455 456 /* 457 * Unlock a full stripe. 458 * 459 * NOTE: Caller must ensure it's the same context calling corresponding 460 * lock_full_stripe(). 461 * 462 * Return 0 if we unlock full stripe without problem. 463 * Return <0 for error 464 */ 465 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 466 bool locked) 467 { 468 struct btrfs_block_group *bg_cache; 469 struct btrfs_full_stripe_locks_tree *locks_root; 470 struct full_stripe_lock *fstripe_lock; 471 u64 fstripe_start; 472 bool freeit = false; 473 int ret = 0; 474 475 /* If we didn't acquire full stripe lock, no need to continue */ 476 if (!locked) 477 return 0; 478 479 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 480 if (!bg_cache) { 481 ASSERT(0); 482 return -ENOENT; 483 } 484 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 485 goto out; 486 487 locks_root = &bg_cache->full_stripe_locks_root; 488 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 489 490 mutex_lock(&locks_root->lock); 491 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 492 /* Unpaired unlock_full_stripe() detected */ 493 if (!fstripe_lock) { 494 WARN_ON(1); 495 ret = -ENOENT; 496 mutex_unlock(&locks_root->lock); 497 goto out; 498 } 499 500 if (fstripe_lock->refs == 0) { 501 WARN_ON(1); 502 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 503 fstripe_lock->logical); 504 } else { 505 fstripe_lock->refs--; 506 } 507 508 if (fstripe_lock->refs == 0) { 509 rb_erase(&fstripe_lock->node, &locks_root->root); 510 freeit = true; 511 } 512 mutex_unlock(&locks_root->lock); 513 514 mutex_unlock(&fstripe_lock->mutex); 515 if (freeit) 516 kfree(fstripe_lock); 517 out: 518 btrfs_put_block_group(bg_cache); 519 return ret; 520 } 521 522 static void scrub_free_csums(struct scrub_ctx *sctx) 523 { 524 while (!list_empty(&sctx->csum_list)) { 525 struct btrfs_ordered_sum *sum; 526 sum = list_first_entry(&sctx->csum_list, 527 struct btrfs_ordered_sum, list); 528 list_del(&sum->list); 529 kfree(sum); 530 } 531 } 532 533 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 534 { 535 int i; 536 537 if (!sctx) 538 return; 539 540 /* this can happen when scrub is cancelled */ 541 if (sctx->curr != -1) { 542 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 543 544 for (i = 0; i < sbio->page_count; i++) { 545 WARN_ON(!sbio->pagev[i]->page); 546 scrub_block_put(sbio->pagev[i]->sblock); 547 } 548 bio_put(sbio->bio); 549 } 550 551 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 552 struct scrub_bio *sbio = sctx->bios[i]; 553 554 if (!sbio) 555 break; 556 kfree(sbio); 557 } 558 559 kfree(sctx->wr_curr_bio); 560 scrub_free_csums(sctx); 561 kfree(sctx); 562 } 563 564 static void scrub_put_ctx(struct scrub_ctx *sctx) 565 { 566 if (refcount_dec_and_test(&sctx->refs)) 567 scrub_free_ctx(sctx); 568 } 569 570 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 571 struct btrfs_fs_info *fs_info, int is_dev_replace) 572 { 573 struct scrub_ctx *sctx; 574 int i; 575 576 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 577 if (!sctx) 578 goto nomem; 579 refcount_set(&sctx->refs, 1); 580 sctx->is_dev_replace = is_dev_replace; 581 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 582 sctx->curr = -1; 583 sctx->fs_info = fs_info; 584 INIT_LIST_HEAD(&sctx->csum_list); 585 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 586 struct scrub_bio *sbio; 587 588 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 589 if (!sbio) 590 goto nomem; 591 sctx->bios[i] = sbio; 592 593 sbio->index = i; 594 sbio->sctx = sctx; 595 sbio->page_count = 0; 596 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL, 597 NULL); 598 599 if (i != SCRUB_BIOS_PER_SCTX - 1) 600 sctx->bios[i]->next_free = i + 1; 601 else 602 sctx->bios[i]->next_free = -1; 603 } 604 sctx->first_free = 0; 605 atomic_set(&sctx->bios_in_flight, 0); 606 atomic_set(&sctx->workers_pending, 0); 607 atomic_set(&sctx->cancel_req, 0); 608 609 spin_lock_init(&sctx->list_lock); 610 spin_lock_init(&sctx->stat_lock); 611 init_waitqueue_head(&sctx->list_wait); 612 sctx->throttle_deadline = 0; 613 614 WARN_ON(sctx->wr_curr_bio != NULL); 615 mutex_init(&sctx->wr_lock); 616 sctx->wr_curr_bio = NULL; 617 if (is_dev_replace) { 618 WARN_ON(!fs_info->dev_replace.tgtdev); 619 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 620 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 621 sctx->flush_all_writes = false; 622 } 623 624 return sctx; 625 626 nomem: 627 scrub_free_ctx(sctx); 628 return ERR_PTR(-ENOMEM); 629 } 630 631 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 632 void *warn_ctx) 633 { 634 u32 nlink; 635 int ret; 636 int i; 637 unsigned nofs_flag; 638 struct extent_buffer *eb; 639 struct btrfs_inode_item *inode_item; 640 struct scrub_warning *swarn = warn_ctx; 641 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 642 struct inode_fs_paths *ipath = NULL; 643 struct btrfs_root *local_root; 644 struct btrfs_key key; 645 646 local_root = btrfs_get_fs_root(fs_info, root, true); 647 if (IS_ERR(local_root)) { 648 ret = PTR_ERR(local_root); 649 goto err; 650 } 651 652 /* 653 * this makes the path point to (inum INODE_ITEM ioff) 654 */ 655 key.objectid = inum; 656 key.type = BTRFS_INODE_ITEM_KEY; 657 key.offset = 0; 658 659 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 660 if (ret) { 661 btrfs_put_root(local_root); 662 btrfs_release_path(swarn->path); 663 goto err; 664 } 665 666 eb = swarn->path->nodes[0]; 667 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 668 struct btrfs_inode_item); 669 nlink = btrfs_inode_nlink(eb, inode_item); 670 btrfs_release_path(swarn->path); 671 672 /* 673 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 674 * uses GFP_NOFS in this context, so we keep it consistent but it does 675 * not seem to be strictly necessary. 676 */ 677 nofs_flag = memalloc_nofs_save(); 678 ipath = init_ipath(4096, local_root, swarn->path); 679 memalloc_nofs_restore(nofs_flag); 680 if (IS_ERR(ipath)) { 681 btrfs_put_root(local_root); 682 ret = PTR_ERR(ipath); 683 ipath = NULL; 684 goto err; 685 } 686 ret = paths_from_inode(inum, ipath); 687 688 if (ret < 0) 689 goto err; 690 691 /* 692 * we deliberately ignore the bit ipath might have been too small to 693 * hold all of the paths here 694 */ 695 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 696 btrfs_warn_in_rcu(fs_info, 697 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 698 swarn->errstr, swarn->logical, 699 rcu_str_deref(swarn->dev->name), 700 swarn->physical, 701 root, inum, offset, 702 fs_info->sectorsize, nlink, 703 (char *)(unsigned long)ipath->fspath->val[i]); 704 705 btrfs_put_root(local_root); 706 free_ipath(ipath); 707 return 0; 708 709 err: 710 btrfs_warn_in_rcu(fs_info, 711 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 712 swarn->errstr, swarn->logical, 713 rcu_str_deref(swarn->dev->name), 714 swarn->physical, 715 root, inum, offset, ret); 716 717 free_ipath(ipath); 718 return 0; 719 } 720 721 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 722 { 723 struct btrfs_device *dev; 724 struct btrfs_fs_info *fs_info; 725 struct btrfs_path *path; 726 struct btrfs_key found_key; 727 struct extent_buffer *eb; 728 struct btrfs_extent_item *ei; 729 struct scrub_warning swarn; 730 unsigned long ptr = 0; 731 u64 extent_item_pos; 732 u64 flags = 0; 733 u64 ref_root; 734 u32 item_size; 735 u8 ref_level = 0; 736 int ret; 737 738 WARN_ON(sblock->page_count < 1); 739 dev = sblock->pagev[0]->dev; 740 fs_info = sblock->sctx->fs_info; 741 742 path = btrfs_alloc_path(); 743 if (!path) 744 return; 745 746 swarn.physical = sblock->pagev[0]->physical; 747 swarn.logical = sblock->pagev[0]->logical; 748 swarn.errstr = errstr; 749 swarn.dev = NULL; 750 751 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 752 &flags); 753 if (ret < 0) 754 goto out; 755 756 extent_item_pos = swarn.logical - found_key.objectid; 757 swarn.extent_item_size = found_key.offset; 758 759 eb = path->nodes[0]; 760 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 761 item_size = btrfs_item_size_nr(eb, path->slots[0]); 762 763 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 764 do { 765 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 766 item_size, &ref_root, 767 &ref_level); 768 btrfs_warn_in_rcu(fs_info, 769 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 770 errstr, swarn.logical, 771 rcu_str_deref(dev->name), 772 swarn.physical, 773 ref_level ? "node" : "leaf", 774 ret < 0 ? -1 : ref_level, 775 ret < 0 ? -1 : ref_root); 776 } while (ret != 1); 777 btrfs_release_path(path); 778 } else { 779 btrfs_release_path(path); 780 swarn.path = path; 781 swarn.dev = dev; 782 iterate_extent_inodes(fs_info, found_key.objectid, 783 extent_item_pos, 1, 784 scrub_print_warning_inode, &swarn, false); 785 } 786 787 out: 788 btrfs_free_path(path); 789 } 790 791 static inline void scrub_get_recover(struct scrub_recover *recover) 792 { 793 refcount_inc(&recover->refs); 794 } 795 796 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 797 struct scrub_recover *recover) 798 { 799 if (refcount_dec_and_test(&recover->refs)) { 800 btrfs_bio_counter_dec(fs_info); 801 btrfs_put_bioc(recover->bioc); 802 kfree(recover); 803 } 804 } 805 806 /* 807 * scrub_handle_errored_block gets called when either verification of the 808 * pages failed or the bio failed to read, e.g. with EIO. In the latter 809 * case, this function handles all pages in the bio, even though only one 810 * may be bad. 811 * The goal of this function is to repair the errored block by using the 812 * contents of one of the mirrors. 813 */ 814 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 815 { 816 struct scrub_ctx *sctx = sblock_to_check->sctx; 817 struct btrfs_device *dev; 818 struct btrfs_fs_info *fs_info; 819 u64 logical; 820 unsigned int failed_mirror_index; 821 unsigned int is_metadata; 822 unsigned int have_csum; 823 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 824 struct scrub_block *sblock_bad; 825 int ret; 826 int mirror_index; 827 int page_num; 828 int success; 829 bool full_stripe_locked; 830 unsigned int nofs_flag; 831 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 832 DEFAULT_RATELIMIT_BURST); 833 834 BUG_ON(sblock_to_check->page_count < 1); 835 fs_info = sctx->fs_info; 836 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 837 /* 838 * if we find an error in a super block, we just report it. 839 * They will get written with the next transaction commit 840 * anyway 841 */ 842 spin_lock(&sctx->stat_lock); 843 ++sctx->stat.super_errors; 844 spin_unlock(&sctx->stat_lock); 845 return 0; 846 } 847 logical = sblock_to_check->pagev[0]->logical; 848 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 849 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 850 is_metadata = !(sblock_to_check->pagev[0]->flags & 851 BTRFS_EXTENT_FLAG_DATA); 852 have_csum = sblock_to_check->pagev[0]->have_csum; 853 dev = sblock_to_check->pagev[0]->dev; 854 855 if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace) 856 return btrfs_repair_one_zone(fs_info, logical); 857 858 /* 859 * We must use GFP_NOFS because the scrub task might be waiting for a 860 * worker task executing this function and in turn a transaction commit 861 * might be waiting the scrub task to pause (which needs to wait for all 862 * the worker tasks to complete before pausing). 863 * We do allocations in the workers through insert_full_stripe_lock() 864 * and scrub_add_page_to_wr_bio(), which happens down the call chain of 865 * this function. 866 */ 867 nofs_flag = memalloc_nofs_save(); 868 /* 869 * For RAID5/6, race can happen for a different device scrub thread. 870 * For data corruption, Parity and Data threads will both try 871 * to recovery the data. 872 * Race can lead to doubly added csum error, or even unrecoverable 873 * error. 874 */ 875 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 876 if (ret < 0) { 877 memalloc_nofs_restore(nofs_flag); 878 spin_lock(&sctx->stat_lock); 879 if (ret == -ENOMEM) 880 sctx->stat.malloc_errors++; 881 sctx->stat.read_errors++; 882 sctx->stat.uncorrectable_errors++; 883 spin_unlock(&sctx->stat_lock); 884 return ret; 885 } 886 887 /* 888 * read all mirrors one after the other. This includes to 889 * re-read the extent or metadata block that failed (that was 890 * the cause that this fixup code is called) another time, 891 * sector by sector this time in order to know which sectors 892 * caused I/O errors and which ones are good (for all mirrors). 893 * It is the goal to handle the situation when more than one 894 * mirror contains I/O errors, but the errors do not 895 * overlap, i.e. the data can be repaired by selecting the 896 * sectors from those mirrors without I/O error on the 897 * particular sectors. One example (with blocks >= 2 * sectorsize) 898 * would be that mirror #1 has an I/O error on the first sector, 899 * the second sector is good, and mirror #2 has an I/O error on 900 * the second sector, but the first sector is good. 901 * Then the first sector of the first mirror can be repaired by 902 * taking the first sector of the second mirror, and the 903 * second sector of the second mirror can be repaired by 904 * copying the contents of the 2nd sector of the 1st mirror. 905 * One more note: if the sectors of one mirror contain I/O 906 * errors, the checksum cannot be verified. In order to get 907 * the best data for repairing, the first attempt is to find 908 * a mirror without I/O errors and with a validated checksum. 909 * Only if this is not possible, the sectors are picked from 910 * mirrors with I/O errors without considering the checksum. 911 * If the latter is the case, at the end, the checksum of the 912 * repaired area is verified in order to correctly maintain 913 * the statistics. 914 */ 915 916 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 917 sizeof(*sblocks_for_recheck), GFP_KERNEL); 918 if (!sblocks_for_recheck) { 919 spin_lock(&sctx->stat_lock); 920 sctx->stat.malloc_errors++; 921 sctx->stat.read_errors++; 922 sctx->stat.uncorrectable_errors++; 923 spin_unlock(&sctx->stat_lock); 924 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 925 goto out; 926 } 927 928 /* setup the context, map the logical blocks and alloc the pages */ 929 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 930 if (ret) { 931 spin_lock(&sctx->stat_lock); 932 sctx->stat.read_errors++; 933 sctx->stat.uncorrectable_errors++; 934 spin_unlock(&sctx->stat_lock); 935 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 936 goto out; 937 } 938 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 939 sblock_bad = sblocks_for_recheck + failed_mirror_index; 940 941 /* build and submit the bios for the failed mirror, check checksums */ 942 scrub_recheck_block(fs_info, sblock_bad, 1); 943 944 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 945 sblock_bad->no_io_error_seen) { 946 /* 947 * the error disappeared after reading page by page, or 948 * the area was part of a huge bio and other parts of the 949 * bio caused I/O errors, or the block layer merged several 950 * read requests into one and the error is caused by a 951 * different bio (usually one of the two latter cases is 952 * the cause) 953 */ 954 spin_lock(&sctx->stat_lock); 955 sctx->stat.unverified_errors++; 956 sblock_to_check->data_corrected = 1; 957 spin_unlock(&sctx->stat_lock); 958 959 if (sctx->is_dev_replace) 960 scrub_write_block_to_dev_replace(sblock_bad); 961 goto out; 962 } 963 964 if (!sblock_bad->no_io_error_seen) { 965 spin_lock(&sctx->stat_lock); 966 sctx->stat.read_errors++; 967 spin_unlock(&sctx->stat_lock); 968 if (__ratelimit(&rs)) 969 scrub_print_warning("i/o error", sblock_to_check); 970 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 971 } else if (sblock_bad->checksum_error) { 972 spin_lock(&sctx->stat_lock); 973 sctx->stat.csum_errors++; 974 spin_unlock(&sctx->stat_lock); 975 if (__ratelimit(&rs)) 976 scrub_print_warning("checksum error", sblock_to_check); 977 btrfs_dev_stat_inc_and_print(dev, 978 BTRFS_DEV_STAT_CORRUPTION_ERRS); 979 } else if (sblock_bad->header_error) { 980 spin_lock(&sctx->stat_lock); 981 sctx->stat.verify_errors++; 982 spin_unlock(&sctx->stat_lock); 983 if (__ratelimit(&rs)) 984 scrub_print_warning("checksum/header error", 985 sblock_to_check); 986 if (sblock_bad->generation_error) 987 btrfs_dev_stat_inc_and_print(dev, 988 BTRFS_DEV_STAT_GENERATION_ERRS); 989 else 990 btrfs_dev_stat_inc_and_print(dev, 991 BTRFS_DEV_STAT_CORRUPTION_ERRS); 992 } 993 994 if (sctx->readonly) { 995 ASSERT(!sctx->is_dev_replace); 996 goto out; 997 } 998 999 /* 1000 * now build and submit the bios for the other mirrors, check 1001 * checksums. 1002 * First try to pick the mirror which is completely without I/O 1003 * errors and also does not have a checksum error. 1004 * If one is found, and if a checksum is present, the full block 1005 * that is known to contain an error is rewritten. Afterwards 1006 * the block is known to be corrected. 1007 * If a mirror is found which is completely correct, and no 1008 * checksum is present, only those pages are rewritten that had 1009 * an I/O error in the block to be repaired, since it cannot be 1010 * determined, which copy of the other pages is better (and it 1011 * could happen otherwise that a correct page would be 1012 * overwritten by a bad one). 1013 */ 1014 for (mirror_index = 0; ;mirror_index++) { 1015 struct scrub_block *sblock_other; 1016 1017 if (mirror_index == failed_mirror_index) 1018 continue; 1019 1020 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1021 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1022 if (mirror_index >= BTRFS_MAX_MIRRORS) 1023 break; 1024 if (!sblocks_for_recheck[mirror_index].page_count) 1025 break; 1026 1027 sblock_other = sblocks_for_recheck + mirror_index; 1028 } else { 1029 struct scrub_recover *r = sblock_bad->pagev[0]->recover; 1030 int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs; 1031 1032 if (mirror_index >= max_allowed) 1033 break; 1034 if (!sblocks_for_recheck[1].page_count) 1035 break; 1036 1037 ASSERT(failed_mirror_index == 0); 1038 sblock_other = sblocks_for_recheck + 1; 1039 sblock_other->pagev[0]->mirror_num = 1 + mirror_index; 1040 } 1041 1042 /* build and submit the bios, check checksums */ 1043 scrub_recheck_block(fs_info, sblock_other, 0); 1044 1045 if (!sblock_other->header_error && 1046 !sblock_other->checksum_error && 1047 sblock_other->no_io_error_seen) { 1048 if (sctx->is_dev_replace) { 1049 scrub_write_block_to_dev_replace(sblock_other); 1050 goto corrected_error; 1051 } else { 1052 ret = scrub_repair_block_from_good_copy( 1053 sblock_bad, sblock_other); 1054 if (!ret) 1055 goto corrected_error; 1056 } 1057 } 1058 } 1059 1060 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1061 goto did_not_correct_error; 1062 1063 /* 1064 * In case of I/O errors in the area that is supposed to be 1065 * repaired, continue by picking good copies of those sectors. 1066 * Select the good sectors from mirrors to rewrite bad sectors from 1067 * the area to fix. Afterwards verify the checksum of the block 1068 * that is supposed to be repaired. This verification step is 1069 * only done for the purpose of statistic counting and for the 1070 * final scrub report, whether errors remain. 1071 * A perfect algorithm could make use of the checksum and try 1072 * all possible combinations of sectors from the different mirrors 1073 * until the checksum verification succeeds. For example, when 1074 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector 1075 * of mirror #2 is readable but the final checksum test fails, 1076 * then the 2nd sector of mirror #3 could be tried, whether now 1077 * the final checksum succeeds. But this would be a rare 1078 * exception and is therefore not implemented. At least it is 1079 * avoided that the good copy is overwritten. 1080 * A more useful improvement would be to pick the sectors 1081 * without I/O error based on sector sizes (512 bytes on legacy 1082 * disks) instead of on sectorsize. Then maybe 512 byte of one 1083 * mirror could be repaired by taking 512 byte of a different 1084 * mirror, even if other 512 byte sectors in the same sectorsize 1085 * area are unreadable. 1086 */ 1087 success = 1; 1088 for (page_num = 0; page_num < sblock_bad->page_count; 1089 page_num++) { 1090 struct scrub_page *spage_bad = sblock_bad->pagev[page_num]; 1091 struct scrub_block *sblock_other = NULL; 1092 1093 /* skip no-io-error page in scrub */ 1094 if (!spage_bad->io_error && !sctx->is_dev_replace) 1095 continue; 1096 1097 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1098 /* 1099 * In case of dev replace, if raid56 rebuild process 1100 * didn't work out correct data, then copy the content 1101 * in sblock_bad to make sure target device is identical 1102 * to source device, instead of writing garbage data in 1103 * sblock_for_recheck array to target device. 1104 */ 1105 sblock_other = NULL; 1106 } else if (spage_bad->io_error) { 1107 /* try to find no-io-error page in mirrors */ 1108 for (mirror_index = 0; 1109 mirror_index < BTRFS_MAX_MIRRORS && 1110 sblocks_for_recheck[mirror_index].page_count > 0; 1111 mirror_index++) { 1112 if (!sblocks_for_recheck[mirror_index]. 1113 pagev[page_num]->io_error) { 1114 sblock_other = sblocks_for_recheck + 1115 mirror_index; 1116 break; 1117 } 1118 } 1119 if (!sblock_other) 1120 success = 0; 1121 } 1122 1123 if (sctx->is_dev_replace) { 1124 /* 1125 * did not find a mirror to fetch the page 1126 * from. scrub_write_page_to_dev_replace() 1127 * handles this case (page->io_error), by 1128 * filling the block with zeros before 1129 * submitting the write request 1130 */ 1131 if (!sblock_other) 1132 sblock_other = sblock_bad; 1133 1134 if (scrub_write_page_to_dev_replace(sblock_other, 1135 page_num) != 0) { 1136 atomic64_inc( 1137 &fs_info->dev_replace.num_write_errors); 1138 success = 0; 1139 } 1140 } else if (sblock_other) { 1141 ret = scrub_repair_page_from_good_copy(sblock_bad, 1142 sblock_other, 1143 page_num, 0); 1144 if (0 == ret) 1145 spage_bad->io_error = 0; 1146 else 1147 success = 0; 1148 } 1149 } 1150 1151 if (success && !sctx->is_dev_replace) { 1152 if (is_metadata || have_csum) { 1153 /* 1154 * need to verify the checksum now that all 1155 * sectors on disk are repaired (the write 1156 * request for data to be repaired is on its way). 1157 * Just be lazy and use scrub_recheck_block() 1158 * which re-reads the data before the checksum 1159 * is verified, but most likely the data comes out 1160 * of the page cache. 1161 */ 1162 scrub_recheck_block(fs_info, sblock_bad, 1); 1163 if (!sblock_bad->header_error && 1164 !sblock_bad->checksum_error && 1165 sblock_bad->no_io_error_seen) 1166 goto corrected_error; 1167 else 1168 goto did_not_correct_error; 1169 } else { 1170 corrected_error: 1171 spin_lock(&sctx->stat_lock); 1172 sctx->stat.corrected_errors++; 1173 sblock_to_check->data_corrected = 1; 1174 spin_unlock(&sctx->stat_lock); 1175 btrfs_err_rl_in_rcu(fs_info, 1176 "fixed up error at logical %llu on dev %s", 1177 logical, rcu_str_deref(dev->name)); 1178 } 1179 } else { 1180 did_not_correct_error: 1181 spin_lock(&sctx->stat_lock); 1182 sctx->stat.uncorrectable_errors++; 1183 spin_unlock(&sctx->stat_lock); 1184 btrfs_err_rl_in_rcu(fs_info, 1185 "unable to fixup (regular) error at logical %llu on dev %s", 1186 logical, rcu_str_deref(dev->name)); 1187 } 1188 1189 out: 1190 if (sblocks_for_recheck) { 1191 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1192 mirror_index++) { 1193 struct scrub_block *sblock = sblocks_for_recheck + 1194 mirror_index; 1195 struct scrub_recover *recover; 1196 int page_index; 1197 1198 for (page_index = 0; page_index < sblock->page_count; 1199 page_index++) { 1200 sblock->pagev[page_index]->sblock = NULL; 1201 recover = sblock->pagev[page_index]->recover; 1202 if (recover) { 1203 scrub_put_recover(fs_info, recover); 1204 sblock->pagev[page_index]->recover = 1205 NULL; 1206 } 1207 scrub_page_put(sblock->pagev[page_index]); 1208 } 1209 } 1210 kfree(sblocks_for_recheck); 1211 } 1212 1213 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1214 memalloc_nofs_restore(nofs_flag); 1215 if (ret < 0) 1216 return ret; 1217 return 0; 1218 } 1219 1220 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc) 1221 { 1222 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5) 1223 return 2; 1224 else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) 1225 return 3; 1226 else 1227 return (int)bioc->num_stripes; 1228 } 1229 1230 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1231 u64 *raid_map, 1232 u64 mapped_length, 1233 int nstripes, int mirror, 1234 int *stripe_index, 1235 u64 *stripe_offset) 1236 { 1237 int i; 1238 1239 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1240 /* RAID5/6 */ 1241 for (i = 0; i < nstripes; i++) { 1242 if (raid_map[i] == RAID6_Q_STRIPE || 1243 raid_map[i] == RAID5_P_STRIPE) 1244 continue; 1245 1246 if (logical >= raid_map[i] && 1247 logical < raid_map[i] + mapped_length) 1248 break; 1249 } 1250 1251 *stripe_index = i; 1252 *stripe_offset = logical - raid_map[i]; 1253 } else { 1254 /* The other RAID type */ 1255 *stripe_index = mirror; 1256 *stripe_offset = 0; 1257 } 1258 } 1259 1260 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1261 struct scrub_block *sblocks_for_recheck) 1262 { 1263 struct scrub_ctx *sctx = original_sblock->sctx; 1264 struct btrfs_fs_info *fs_info = sctx->fs_info; 1265 u64 length = original_sblock->page_count * fs_info->sectorsize; 1266 u64 logical = original_sblock->pagev[0]->logical; 1267 u64 generation = original_sblock->pagev[0]->generation; 1268 u64 flags = original_sblock->pagev[0]->flags; 1269 u64 have_csum = original_sblock->pagev[0]->have_csum; 1270 struct scrub_recover *recover; 1271 struct btrfs_io_context *bioc; 1272 u64 sublen; 1273 u64 mapped_length; 1274 u64 stripe_offset; 1275 int stripe_index; 1276 int page_index = 0; 1277 int mirror_index; 1278 int nmirrors; 1279 int ret; 1280 1281 /* 1282 * note: the two members refs and outstanding_pages 1283 * are not used (and not set) in the blocks that are used for 1284 * the recheck procedure 1285 */ 1286 1287 while (length > 0) { 1288 sublen = min_t(u64, length, fs_info->sectorsize); 1289 mapped_length = sublen; 1290 bioc = NULL; 1291 1292 /* 1293 * With a length of sectorsize, each returned stripe represents 1294 * one mirror 1295 */ 1296 btrfs_bio_counter_inc_blocked(fs_info); 1297 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1298 logical, &mapped_length, &bioc); 1299 if (ret || !bioc || mapped_length < sublen) { 1300 btrfs_put_bioc(bioc); 1301 btrfs_bio_counter_dec(fs_info); 1302 return -EIO; 1303 } 1304 1305 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1306 if (!recover) { 1307 btrfs_put_bioc(bioc); 1308 btrfs_bio_counter_dec(fs_info); 1309 return -ENOMEM; 1310 } 1311 1312 refcount_set(&recover->refs, 1); 1313 recover->bioc = bioc; 1314 recover->map_length = mapped_length; 1315 1316 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1317 1318 nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS); 1319 1320 for (mirror_index = 0; mirror_index < nmirrors; 1321 mirror_index++) { 1322 struct scrub_block *sblock; 1323 struct scrub_page *spage; 1324 1325 sblock = sblocks_for_recheck + mirror_index; 1326 sblock->sctx = sctx; 1327 1328 spage = kzalloc(sizeof(*spage), GFP_NOFS); 1329 if (!spage) { 1330 leave_nomem: 1331 spin_lock(&sctx->stat_lock); 1332 sctx->stat.malloc_errors++; 1333 spin_unlock(&sctx->stat_lock); 1334 scrub_put_recover(fs_info, recover); 1335 return -ENOMEM; 1336 } 1337 scrub_page_get(spage); 1338 sblock->pagev[page_index] = spage; 1339 spage->sblock = sblock; 1340 spage->flags = flags; 1341 spage->generation = generation; 1342 spage->logical = logical; 1343 spage->have_csum = have_csum; 1344 if (have_csum) 1345 memcpy(spage->csum, 1346 original_sblock->pagev[0]->csum, 1347 sctx->fs_info->csum_size); 1348 1349 scrub_stripe_index_and_offset(logical, 1350 bioc->map_type, 1351 bioc->raid_map, 1352 mapped_length, 1353 bioc->num_stripes - 1354 bioc->num_tgtdevs, 1355 mirror_index, 1356 &stripe_index, 1357 &stripe_offset); 1358 spage->physical = bioc->stripes[stripe_index].physical + 1359 stripe_offset; 1360 spage->dev = bioc->stripes[stripe_index].dev; 1361 1362 BUG_ON(page_index >= original_sblock->page_count); 1363 spage->physical_for_dev_replace = 1364 original_sblock->pagev[page_index]-> 1365 physical_for_dev_replace; 1366 /* for missing devices, dev->bdev is NULL */ 1367 spage->mirror_num = mirror_index + 1; 1368 sblock->page_count++; 1369 spage->page = alloc_page(GFP_NOFS); 1370 if (!spage->page) 1371 goto leave_nomem; 1372 1373 scrub_get_recover(recover); 1374 spage->recover = recover; 1375 } 1376 scrub_put_recover(fs_info, recover); 1377 length -= sublen; 1378 logical += sublen; 1379 page_index++; 1380 } 1381 1382 return 0; 1383 } 1384 1385 static void scrub_bio_wait_endio(struct bio *bio) 1386 { 1387 complete(bio->bi_private); 1388 } 1389 1390 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1391 struct bio *bio, 1392 struct scrub_page *spage) 1393 { 1394 DECLARE_COMPLETION_ONSTACK(done); 1395 int ret; 1396 int mirror_num; 1397 1398 bio->bi_iter.bi_sector = spage->logical >> 9; 1399 bio->bi_private = &done; 1400 bio->bi_end_io = scrub_bio_wait_endio; 1401 1402 mirror_num = spage->sblock->pagev[0]->mirror_num; 1403 ret = raid56_parity_recover(bio, spage->recover->bioc, 1404 spage->recover->map_length, 1405 mirror_num, 0); 1406 if (ret) 1407 return ret; 1408 1409 wait_for_completion_io(&done); 1410 return blk_status_to_errno(bio->bi_status); 1411 } 1412 1413 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1414 struct scrub_block *sblock) 1415 { 1416 struct scrub_page *first_page = sblock->pagev[0]; 1417 struct bio *bio; 1418 int page_num; 1419 1420 /* All pages in sblock belong to the same stripe on the same device. */ 1421 ASSERT(first_page->dev); 1422 if (!first_page->dev->bdev) 1423 goto out; 1424 1425 bio = btrfs_bio_alloc(BIO_MAX_VECS); 1426 bio_set_dev(bio, first_page->dev->bdev); 1427 1428 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1429 struct scrub_page *spage = sblock->pagev[page_num]; 1430 1431 WARN_ON(!spage->page); 1432 bio_add_page(bio, spage->page, PAGE_SIZE, 0); 1433 } 1434 1435 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { 1436 bio_put(bio); 1437 goto out; 1438 } 1439 1440 bio_put(bio); 1441 1442 scrub_recheck_block_checksum(sblock); 1443 1444 return; 1445 out: 1446 for (page_num = 0; page_num < sblock->page_count; page_num++) 1447 sblock->pagev[page_num]->io_error = 1; 1448 1449 sblock->no_io_error_seen = 0; 1450 } 1451 1452 /* 1453 * this function will check the on disk data for checksum errors, header 1454 * errors and read I/O errors. If any I/O errors happen, the exact pages 1455 * which are errored are marked as being bad. The goal is to enable scrub 1456 * to take those pages that are not errored from all the mirrors so that 1457 * the pages that are errored in the just handled mirror can be repaired. 1458 */ 1459 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1460 struct scrub_block *sblock, 1461 int retry_failed_mirror) 1462 { 1463 int page_num; 1464 1465 sblock->no_io_error_seen = 1; 1466 1467 /* short cut for raid56 */ 1468 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) 1469 return scrub_recheck_block_on_raid56(fs_info, sblock); 1470 1471 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1472 struct bio *bio; 1473 struct scrub_page *spage = sblock->pagev[page_num]; 1474 1475 if (spage->dev->bdev == NULL) { 1476 spage->io_error = 1; 1477 sblock->no_io_error_seen = 0; 1478 continue; 1479 } 1480 1481 WARN_ON(!spage->page); 1482 bio = btrfs_bio_alloc(1); 1483 bio_set_dev(bio, spage->dev->bdev); 1484 1485 bio_add_page(bio, spage->page, fs_info->sectorsize, 0); 1486 bio->bi_iter.bi_sector = spage->physical >> 9; 1487 bio->bi_opf = REQ_OP_READ; 1488 1489 if (btrfsic_submit_bio_wait(bio)) { 1490 spage->io_error = 1; 1491 sblock->no_io_error_seen = 0; 1492 } 1493 1494 bio_put(bio); 1495 } 1496 1497 if (sblock->no_io_error_seen) 1498 scrub_recheck_block_checksum(sblock); 1499 } 1500 1501 static inline int scrub_check_fsid(u8 fsid[], 1502 struct scrub_page *spage) 1503 { 1504 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1505 int ret; 1506 1507 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1508 return !ret; 1509 } 1510 1511 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1512 { 1513 sblock->header_error = 0; 1514 sblock->checksum_error = 0; 1515 sblock->generation_error = 0; 1516 1517 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1518 scrub_checksum_data(sblock); 1519 else 1520 scrub_checksum_tree_block(sblock); 1521 } 1522 1523 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1524 struct scrub_block *sblock_good) 1525 { 1526 int page_num; 1527 int ret = 0; 1528 1529 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1530 int ret_sub; 1531 1532 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1533 sblock_good, 1534 page_num, 1); 1535 if (ret_sub) 1536 ret = ret_sub; 1537 } 1538 1539 return ret; 1540 } 1541 1542 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1543 struct scrub_block *sblock_good, 1544 int page_num, int force_write) 1545 { 1546 struct scrub_page *spage_bad = sblock_bad->pagev[page_num]; 1547 struct scrub_page *spage_good = sblock_good->pagev[page_num]; 1548 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1549 const u32 sectorsize = fs_info->sectorsize; 1550 1551 BUG_ON(spage_bad->page == NULL); 1552 BUG_ON(spage_good->page == NULL); 1553 if (force_write || sblock_bad->header_error || 1554 sblock_bad->checksum_error || spage_bad->io_error) { 1555 struct bio *bio; 1556 int ret; 1557 1558 if (!spage_bad->dev->bdev) { 1559 btrfs_warn_rl(fs_info, 1560 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1561 return -EIO; 1562 } 1563 1564 bio = btrfs_bio_alloc(1); 1565 bio_set_dev(bio, spage_bad->dev->bdev); 1566 bio->bi_iter.bi_sector = spage_bad->physical >> 9; 1567 bio->bi_opf = REQ_OP_WRITE; 1568 1569 ret = bio_add_page(bio, spage_good->page, sectorsize, 0); 1570 if (ret != sectorsize) { 1571 bio_put(bio); 1572 return -EIO; 1573 } 1574 1575 if (btrfsic_submit_bio_wait(bio)) { 1576 btrfs_dev_stat_inc_and_print(spage_bad->dev, 1577 BTRFS_DEV_STAT_WRITE_ERRS); 1578 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1579 bio_put(bio); 1580 return -EIO; 1581 } 1582 bio_put(bio); 1583 } 1584 1585 return 0; 1586 } 1587 1588 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1589 { 1590 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1591 int page_num; 1592 1593 /* 1594 * This block is used for the check of the parity on the source device, 1595 * so the data needn't be written into the destination device. 1596 */ 1597 if (sblock->sparity) 1598 return; 1599 1600 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1601 int ret; 1602 1603 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1604 if (ret) 1605 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1606 } 1607 } 1608 1609 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1610 int page_num) 1611 { 1612 struct scrub_page *spage = sblock->pagev[page_num]; 1613 1614 BUG_ON(spage->page == NULL); 1615 if (spage->io_error) 1616 clear_page(page_address(spage->page)); 1617 1618 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1619 } 1620 1621 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 1622 { 1623 int ret = 0; 1624 u64 length; 1625 1626 if (!btrfs_is_zoned(sctx->fs_info)) 1627 return 0; 1628 1629 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 1630 return 0; 1631 1632 if (sctx->write_pointer < physical) { 1633 length = physical - sctx->write_pointer; 1634 1635 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 1636 sctx->write_pointer, length); 1637 if (!ret) 1638 sctx->write_pointer = physical; 1639 } 1640 return ret; 1641 } 1642 1643 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1644 struct scrub_page *spage) 1645 { 1646 struct scrub_bio *sbio; 1647 int ret; 1648 const u32 sectorsize = sctx->fs_info->sectorsize; 1649 1650 mutex_lock(&sctx->wr_lock); 1651 again: 1652 if (!sctx->wr_curr_bio) { 1653 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1654 GFP_KERNEL); 1655 if (!sctx->wr_curr_bio) { 1656 mutex_unlock(&sctx->wr_lock); 1657 return -ENOMEM; 1658 } 1659 sctx->wr_curr_bio->sctx = sctx; 1660 sctx->wr_curr_bio->page_count = 0; 1661 } 1662 sbio = sctx->wr_curr_bio; 1663 if (sbio->page_count == 0) { 1664 struct bio *bio; 1665 1666 ret = fill_writer_pointer_gap(sctx, 1667 spage->physical_for_dev_replace); 1668 if (ret) { 1669 mutex_unlock(&sctx->wr_lock); 1670 return ret; 1671 } 1672 1673 sbio->physical = spage->physical_for_dev_replace; 1674 sbio->logical = spage->logical; 1675 sbio->dev = sctx->wr_tgtdev; 1676 bio = sbio->bio; 1677 if (!bio) { 1678 bio = btrfs_bio_alloc(sctx->pages_per_wr_bio); 1679 sbio->bio = bio; 1680 } 1681 1682 bio->bi_private = sbio; 1683 bio->bi_end_io = scrub_wr_bio_end_io; 1684 bio_set_dev(bio, sbio->dev->bdev); 1685 bio->bi_iter.bi_sector = sbio->physical >> 9; 1686 bio->bi_opf = REQ_OP_WRITE; 1687 sbio->status = 0; 1688 } else if (sbio->physical + sbio->page_count * sectorsize != 1689 spage->physical_for_dev_replace || 1690 sbio->logical + sbio->page_count * sectorsize != 1691 spage->logical) { 1692 scrub_wr_submit(sctx); 1693 goto again; 1694 } 1695 1696 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0); 1697 if (ret != sectorsize) { 1698 if (sbio->page_count < 1) { 1699 bio_put(sbio->bio); 1700 sbio->bio = NULL; 1701 mutex_unlock(&sctx->wr_lock); 1702 return -EIO; 1703 } 1704 scrub_wr_submit(sctx); 1705 goto again; 1706 } 1707 1708 sbio->pagev[sbio->page_count] = spage; 1709 scrub_page_get(spage); 1710 sbio->page_count++; 1711 if (sbio->page_count == sctx->pages_per_wr_bio) 1712 scrub_wr_submit(sctx); 1713 mutex_unlock(&sctx->wr_lock); 1714 1715 return 0; 1716 } 1717 1718 static void scrub_wr_submit(struct scrub_ctx *sctx) 1719 { 1720 struct scrub_bio *sbio; 1721 1722 if (!sctx->wr_curr_bio) 1723 return; 1724 1725 sbio = sctx->wr_curr_bio; 1726 sctx->wr_curr_bio = NULL; 1727 WARN_ON(!sbio->bio->bi_bdev); 1728 scrub_pending_bio_inc(sctx); 1729 /* process all writes in a single worker thread. Then the block layer 1730 * orders the requests before sending them to the driver which 1731 * doubled the write performance on spinning disks when measured 1732 * with Linux 3.5 */ 1733 btrfsic_submit_bio(sbio->bio); 1734 1735 if (btrfs_is_zoned(sctx->fs_info)) 1736 sctx->write_pointer = sbio->physical + sbio->page_count * 1737 sctx->fs_info->sectorsize; 1738 } 1739 1740 static void scrub_wr_bio_end_io(struct bio *bio) 1741 { 1742 struct scrub_bio *sbio = bio->bi_private; 1743 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1744 1745 sbio->status = bio->bi_status; 1746 sbio->bio = bio; 1747 1748 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL); 1749 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1750 } 1751 1752 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1753 { 1754 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1755 struct scrub_ctx *sctx = sbio->sctx; 1756 int i; 1757 1758 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1759 if (sbio->status) { 1760 struct btrfs_dev_replace *dev_replace = 1761 &sbio->sctx->fs_info->dev_replace; 1762 1763 for (i = 0; i < sbio->page_count; i++) { 1764 struct scrub_page *spage = sbio->pagev[i]; 1765 1766 spage->io_error = 1; 1767 atomic64_inc(&dev_replace->num_write_errors); 1768 } 1769 } 1770 1771 for (i = 0; i < sbio->page_count; i++) 1772 scrub_page_put(sbio->pagev[i]); 1773 1774 bio_put(sbio->bio); 1775 kfree(sbio); 1776 scrub_pending_bio_dec(sctx); 1777 } 1778 1779 static int scrub_checksum(struct scrub_block *sblock) 1780 { 1781 u64 flags; 1782 int ret; 1783 1784 /* 1785 * No need to initialize these stats currently, 1786 * because this function only use return value 1787 * instead of these stats value. 1788 * 1789 * Todo: 1790 * always use stats 1791 */ 1792 sblock->header_error = 0; 1793 sblock->generation_error = 0; 1794 sblock->checksum_error = 0; 1795 1796 WARN_ON(sblock->page_count < 1); 1797 flags = sblock->pagev[0]->flags; 1798 ret = 0; 1799 if (flags & BTRFS_EXTENT_FLAG_DATA) 1800 ret = scrub_checksum_data(sblock); 1801 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1802 ret = scrub_checksum_tree_block(sblock); 1803 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1804 (void)scrub_checksum_super(sblock); 1805 else 1806 WARN_ON(1); 1807 if (ret) 1808 scrub_handle_errored_block(sblock); 1809 1810 return ret; 1811 } 1812 1813 static int scrub_checksum_data(struct scrub_block *sblock) 1814 { 1815 struct scrub_ctx *sctx = sblock->sctx; 1816 struct btrfs_fs_info *fs_info = sctx->fs_info; 1817 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1818 u8 csum[BTRFS_CSUM_SIZE]; 1819 struct scrub_page *spage; 1820 char *kaddr; 1821 1822 BUG_ON(sblock->page_count < 1); 1823 spage = sblock->pagev[0]; 1824 if (!spage->have_csum) 1825 return 0; 1826 1827 kaddr = page_address(spage->page); 1828 1829 shash->tfm = fs_info->csum_shash; 1830 crypto_shash_init(shash); 1831 1832 /* 1833 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage 1834 * only contains one sector of data. 1835 */ 1836 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 1837 1838 if (memcmp(csum, spage->csum, fs_info->csum_size)) 1839 sblock->checksum_error = 1; 1840 return sblock->checksum_error; 1841 } 1842 1843 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1844 { 1845 struct scrub_ctx *sctx = sblock->sctx; 1846 struct btrfs_header *h; 1847 struct btrfs_fs_info *fs_info = sctx->fs_info; 1848 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1849 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1850 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1851 /* 1852 * This is done in sectorsize steps even for metadata as there's a 1853 * constraint for nodesize to be aligned to sectorsize. This will need 1854 * to change so we don't misuse data and metadata units like that. 1855 */ 1856 const u32 sectorsize = sctx->fs_info->sectorsize; 1857 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits; 1858 int i; 1859 struct scrub_page *spage; 1860 char *kaddr; 1861 1862 BUG_ON(sblock->page_count < 1); 1863 1864 /* Each member in pagev is just one block, not a full page */ 1865 ASSERT(sblock->page_count == num_sectors); 1866 1867 spage = sblock->pagev[0]; 1868 kaddr = page_address(spage->page); 1869 h = (struct btrfs_header *)kaddr; 1870 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size); 1871 1872 /* 1873 * we don't use the getter functions here, as we 1874 * a) don't have an extent buffer and 1875 * b) the page is already kmapped 1876 */ 1877 if (spage->logical != btrfs_stack_header_bytenr(h)) 1878 sblock->header_error = 1; 1879 1880 if (spage->generation != btrfs_stack_header_generation(h)) { 1881 sblock->header_error = 1; 1882 sblock->generation_error = 1; 1883 } 1884 1885 if (!scrub_check_fsid(h->fsid, spage)) 1886 sblock->header_error = 1; 1887 1888 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1889 BTRFS_UUID_SIZE)) 1890 sblock->header_error = 1; 1891 1892 shash->tfm = fs_info->csum_shash; 1893 crypto_shash_init(shash); 1894 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 1895 sectorsize - BTRFS_CSUM_SIZE); 1896 1897 for (i = 1; i < num_sectors; i++) { 1898 kaddr = page_address(sblock->pagev[i]->page); 1899 crypto_shash_update(shash, kaddr, sectorsize); 1900 } 1901 1902 crypto_shash_final(shash, calculated_csum); 1903 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) 1904 sblock->checksum_error = 1; 1905 1906 return sblock->header_error || sblock->checksum_error; 1907 } 1908 1909 static int scrub_checksum_super(struct scrub_block *sblock) 1910 { 1911 struct btrfs_super_block *s; 1912 struct scrub_ctx *sctx = sblock->sctx; 1913 struct btrfs_fs_info *fs_info = sctx->fs_info; 1914 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1915 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1916 struct scrub_page *spage; 1917 char *kaddr; 1918 int fail_gen = 0; 1919 int fail_cor = 0; 1920 1921 BUG_ON(sblock->page_count < 1); 1922 spage = sblock->pagev[0]; 1923 kaddr = page_address(spage->page); 1924 s = (struct btrfs_super_block *)kaddr; 1925 1926 if (spage->logical != btrfs_super_bytenr(s)) 1927 ++fail_cor; 1928 1929 if (spage->generation != btrfs_super_generation(s)) 1930 ++fail_gen; 1931 1932 if (!scrub_check_fsid(s->fsid, spage)) 1933 ++fail_cor; 1934 1935 shash->tfm = fs_info->csum_shash; 1936 crypto_shash_init(shash); 1937 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, 1938 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); 1939 1940 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size)) 1941 ++fail_cor; 1942 1943 if (fail_cor + fail_gen) { 1944 /* 1945 * if we find an error in a super block, we just report it. 1946 * They will get written with the next transaction commit 1947 * anyway 1948 */ 1949 spin_lock(&sctx->stat_lock); 1950 ++sctx->stat.super_errors; 1951 spin_unlock(&sctx->stat_lock); 1952 if (fail_cor) 1953 btrfs_dev_stat_inc_and_print(spage->dev, 1954 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1955 else 1956 btrfs_dev_stat_inc_and_print(spage->dev, 1957 BTRFS_DEV_STAT_GENERATION_ERRS); 1958 } 1959 1960 return fail_cor + fail_gen; 1961 } 1962 1963 static void scrub_block_get(struct scrub_block *sblock) 1964 { 1965 refcount_inc(&sblock->refs); 1966 } 1967 1968 static void scrub_block_put(struct scrub_block *sblock) 1969 { 1970 if (refcount_dec_and_test(&sblock->refs)) { 1971 int i; 1972 1973 if (sblock->sparity) 1974 scrub_parity_put(sblock->sparity); 1975 1976 for (i = 0; i < sblock->page_count; i++) 1977 scrub_page_put(sblock->pagev[i]); 1978 kfree(sblock); 1979 } 1980 } 1981 1982 static void scrub_page_get(struct scrub_page *spage) 1983 { 1984 atomic_inc(&spage->refs); 1985 } 1986 1987 static void scrub_page_put(struct scrub_page *spage) 1988 { 1989 if (atomic_dec_and_test(&spage->refs)) { 1990 if (spage->page) 1991 __free_page(spage->page); 1992 kfree(spage); 1993 } 1994 } 1995 1996 /* 1997 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1998 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1999 */ 2000 static void scrub_throttle(struct scrub_ctx *sctx) 2001 { 2002 const int time_slice = 1000; 2003 struct scrub_bio *sbio; 2004 struct btrfs_device *device; 2005 s64 delta; 2006 ktime_t now; 2007 u32 div; 2008 u64 bwlimit; 2009 2010 sbio = sctx->bios[sctx->curr]; 2011 device = sbio->dev; 2012 bwlimit = READ_ONCE(device->scrub_speed_max); 2013 if (bwlimit == 0) 2014 return; 2015 2016 /* 2017 * Slice is divided into intervals when the IO is submitted, adjust by 2018 * bwlimit and maximum of 64 intervals. 2019 */ 2020 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 2021 div = min_t(u32, 64, div); 2022 2023 /* Start new epoch, set deadline */ 2024 now = ktime_get(); 2025 if (sctx->throttle_deadline == 0) { 2026 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 2027 sctx->throttle_sent = 0; 2028 } 2029 2030 /* Still in the time to send? */ 2031 if (ktime_before(now, sctx->throttle_deadline)) { 2032 /* If current bio is within the limit, send it */ 2033 sctx->throttle_sent += sbio->bio->bi_iter.bi_size; 2034 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 2035 return; 2036 2037 /* We're over the limit, sleep until the rest of the slice */ 2038 delta = ktime_ms_delta(sctx->throttle_deadline, now); 2039 } else { 2040 /* New request after deadline, start new epoch */ 2041 delta = 0; 2042 } 2043 2044 if (delta) { 2045 long timeout; 2046 2047 timeout = div_u64(delta * HZ, 1000); 2048 schedule_timeout_interruptible(timeout); 2049 } 2050 2051 /* Next call will start the deadline period */ 2052 sctx->throttle_deadline = 0; 2053 } 2054 2055 static void scrub_submit(struct scrub_ctx *sctx) 2056 { 2057 struct scrub_bio *sbio; 2058 2059 if (sctx->curr == -1) 2060 return; 2061 2062 scrub_throttle(sctx); 2063 2064 sbio = sctx->bios[sctx->curr]; 2065 sctx->curr = -1; 2066 scrub_pending_bio_inc(sctx); 2067 btrfsic_submit_bio(sbio->bio); 2068 } 2069 2070 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2071 struct scrub_page *spage) 2072 { 2073 struct scrub_block *sblock = spage->sblock; 2074 struct scrub_bio *sbio; 2075 const u32 sectorsize = sctx->fs_info->sectorsize; 2076 int ret; 2077 2078 again: 2079 /* 2080 * grab a fresh bio or wait for one to become available 2081 */ 2082 while (sctx->curr == -1) { 2083 spin_lock(&sctx->list_lock); 2084 sctx->curr = sctx->first_free; 2085 if (sctx->curr != -1) { 2086 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2087 sctx->bios[sctx->curr]->next_free = -1; 2088 sctx->bios[sctx->curr]->page_count = 0; 2089 spin_unlock(&sctx->list_lock); 2090 } else { 2091 spin_unlock(&sctx->list_lock); 2092 wait_event(sctx->list_wait, sctx->first_free != -1); 2093 } 2094 } 2095 sbio = sctx->bios[sctx->curr]; 2096 if (sbio->page_count == 0) { 2097 struct bio *bio; 2098 2099 sbio->physical = spage->physical; 2100 sbio->logical = spage->logical; 2101 sbio->dev = spage->dev; 2102 bio = sbio->bio; 2103 if (!bio) { 2104 bio = btrfs_bio_alloc(sctx->pages_per_rd_bio); 2105 sbio->bio = bio; 2106 } 2107 2108 bio->bi_private = sbio; 2109 bio->bi_end_io = scrub_bio_end_io; 2110 bio_set_dev(bio, sbio->dev->bdev); 2111 bio->bi_iter.bi_sector = sbio->physical >> 9; 2112 bio->bi_opf = REQ_OP_READ; 2113 sbio->status = 0; 2114 } else if (sbio->physical + sbio->page_count * sectorsize != 2115 spage->physical || 2116 sbio->logical + sbio->page_count * sectorsize != 2117 spage->logical || 2118 sbio->dev != spage->dev) { 2119 scrub_submit(sctx); 2120 goto again; 2121 } 2122 2123 sbio->pagev[sbio->page_count] = spage; 2124 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0); 2125 if (ret != sectorsize) { 2126 if (sbio->page_count < 1) { 2127 bio_put(sbio->bio); 2128 sbio->bio = NULL; 2129 return -EIO; 2130 } 2131 scrub_submit(sctx); 2132 goto again; 2133 } 2134 2135 scrub_block_get(sblock); /* one for the page added to the bio */ 2136 atomic_inc(&sblock->outstanding_pages); 2137 sbio->page_count++; 2138 if (sbio->page_count == sctx->pages_per_rd_bio) 2139 scrub_submit(sctx); 2140 2141 return 0; 2142 } 2143 2144 static void scrub_missing_raid56_end_io(struct bio *bio) 2145 { 2146 struct scrub_block *sblock = bio->bi_private; 2147 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2148 2149 if (bio->bi_status) 2150 sblock->no_io_error_seen = 0; 2151 2152 bio_put(bio); 2153 2154 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2155 } 2156 2157 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2158 { 2159 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2160 struct scrub_ctx *sctx = sblock->sctx; 2161 struct btrfs_fs_info *fs_info = sctx->fs_info; 2162 u64 logical; 2163 struct btrfs_device *dev; 2164 2165 logical = sblock->pagev[0]->logical; 2166 dev = sblock->pagev[0]->dev; 2167 2168 if (sblock->no_io_error_seen) 2169 scrub_recheck_block_checksum(sblock); 2170 2171 if (!sblock->no_io_error_seen) { 2172 spin_lock(&sctx->stat_lock); 2173 sctx->stat.read_errors++; 2174 spin_unlock(&sctx->stat_lock); 2175 btrfs_err_rl_in_rcu(fs_info, 2176 "IO error rebuilding logical %llu for dev %s", 2177 logical, rcu_str_deref(dev->name)); 2178 } else if (sblock->header_error || sblock->checksum_error) { 2179 spin_lock(&sctx->stat_lock); 2180 sctx->stat.uncorrectable_errors++; 2181 spin_unlock(&sctx->stat_lock); 2182 btrfs_err_rl_in_rcu(fs_info, 2183 "failed to rebuild valid logical %llu for dev %s", 2184 logical, rcu_str_deref(dev->name)); 2185 } else { 2186 scrub_write_block_to_dev_replace(sblock); 2187 } 2188 2189 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2190 mutex_lock(&sctx->wr_lock); 2191 scrub_wr_submit(sctx); 2192 mutex_unlock(&sctx->wr_lock); 2193 } 2194 2195 scrub_block_put(sblock); 2196 scrub_pending_bio_dec(sctx); 2197 } 2198 2199 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2200 { 2201 struct scrub_ctx *sctx = sblock->sctx; 2202 struct btrfs_fs_info *fs_info = sctx->fs_info; 2203 u64 length = sblock->page_count * PAGE_SIZE; 2204 u64 logical = sblock->pagev[0]->logical; 2205 struct btrfs_io_context *bioc = NULL; 2206 struct bio *bio; 2207 struct btrfs_raid_bio *rbio; 2208 int ret; 2209 int i; 2210 2211 btrfs_bio_counter_inc_blocked(fs_info); 2212 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2213 &length, &bioc); 2214 if (ret || !bioc || !bioc->raid_map) 2215 goto bioc_out; 2216 2217 if (WARN_ON(!sctx->is_dev_replace || 2218 !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2219 /* 2220 * We shouldn't be scrubbing a missing device. Even for dev 2221 * replace, we should only get here for RAID 5/6. We either 2222 * managed to mount something with no mirrors remaining or 2223 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2224 */ 2225 goto bioc_out; 2226 } 2227 2228 bio = btrfs_bio_alloc(BIO_MAX_VECS); 2229 bio->bi_iter.bi_sector = logical >> 9; 2230 bio->bi_private = sblock; 2231 bio->bi_end_io = scrub_missing_raid56_end_io; 2232 2233 rbio = raid56_alloc_missing_rbio(bio, bioc, length); 2234 if (!rbio) 2235 goto rbio_out; 2236 2237 for (i = 0; i < sblock->page_count; i++) { 2238 struct scrub_page *spage = sblock->pagev[i]; 2239 2240 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2241 } 2242 2243 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL); 2244 scrub_block_get(sblock); 2245 scrub_pending_bio_inc(sctx); 2246 raid56_submit_missing_rbio(rbio); 2247 return; 2248 2249 rbio_out: 2250 bio_put(bio); 2251 bioc_out: 2252 btrfs_bio_counter_dec(fs_info); 2253 btrfs_put_bioc(bioc); 2254 spin_lock(&sctx->stat_lock); 2255 sctx->stat.malloc_errors++; 2256 spin_unlock(&sctx->stat_lock); 2257 } 2258 2259 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len, 2260 u64 physical, struct btrfs_device *dev, u64 flags, 2261 u64 gen, int mirror_num, u8 *csum, 2262 u64 physical_for_dev_replace) 2263 { 2264 struct scrub_block *sblock; 2265 const u32 sectorsize = sctx->fs_info->sectorsize; 2266 int index; 2267 2268 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2269 if (!sblock) { 2270 spin_lock(&sctx->stat_lock); 2271 sctx->stat.malloc_errors++; 2272 spin_unlock(&sctx->stat_lock); 2273 return -ENOMEM; 2274 } 2275 2276 /* one ref inside this function, plus one for each page added to 2277 * a bio later on */ 2278 refcount_set(&sblock->refs, 1); 2279 sblock->sctx = sctx; 2280 sblock->no_io_error_seen = 1; 2281 2282 for (index = 0; len > 0; index++) { 2283 struct scrub_page *spage; 2284 /* 2285 * Here we will allocate one page for one sector to scrub. 2286 * This is fine if PAGE_SIZE == sectorsize, but will cost 2287 * more memory for PAGE_SIZE > sectorsize case. 2288 */ 2289 u32 l = min(sectorsize, len); 2290 2291 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2292 if (!spage) { 2293 leave_nomem: 2294 spin_lock(&sctx->stat_lock); 2295 sctx->stat.malloc_errors++; 2296 spin_unlock(&sctx->stat_lock); 2297 scrub_block_put(sblock); 2298 return -ENOMEM; 2299 } 2300 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2301 scrub_page_get(spage); 2302 sblock->pagev[index] = spage; 2303 spage->sblock = sblock; 2304 spage->dev = dev; 2305 spage->flags = flags; 2306 spage->generation = gen; 2307 spage->logical = logical; 2308 spage->physical = physical; 2309 spage->physical_for_dev_replace = physical_for_dev_replace; 2310 spage->mirror_num = mirror_num; 2311 if (csum) { 2312 spage->have_csum = 1; 2313 memcpy(spage->csum, csum, sctx->fs_info->csum_size); 2314 } else { 2315 spage->have_csum = 0; 2316 } 2317 sblock->page_count++; 2318 spage->page = alloc_page(GFP_KERNEL); 2319 if (!spage->page) 2320 goto leave_nomem; 2321 len -= l; 2322 logical += l; 2323 physical += l; 2324 physical_for_dev_replace += l; 2325 } 2326 2327 WARN_ON(sblock->page_count == 0); 2328 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2329 /* 2330 * This case should only be hit for RAID 5/6 device replace. See 2331 * the comment in scrub_missing_raid56_pages() for details. 2332 */ 2333 scrub_missing_raid56_pages(sblock); 2334 } else { 2335 for (index = 0; index < sblock->page_count; index++) { 2336 struct scrub_page *spage = sblock->pagev[index]; 2337 int ret; 2338 2339 ret = scrub_add_page_to_rd_bio(sctx, spage); 2340 if (ret) { 2341 scrub_block_put(sblock); 2342 return ret; 2343 } 2344 } 2345 2346 if (flags & BTRFS_EXTENT_FLAG_SUPER) 2347 scrub_submit(sctx); 2348 } 2349 2350 /* last one frees, either here or in bio completion for last page */ 2351 scrub_block_put(sblock); 2352 return 0; 2353 } 2354 2355 static void scrub_bio_end_io(struct bio *bio) 2356 { 2357 struct scrub_bio *sbio = bio->bi_private; 2358 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2359 2360 sbio->status = bio->bi_status; 2361 sbio->bio = bio; 2362 2363 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2364 } 2365 2366 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2367 { 2368 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2369 struct scrub_ctx *sctx = sbio->sctx; 2370 int i; 2371 2372 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2373 if (sbio->status) { 2374 for (i = 0; i < sbio->page_count; i++) { 2375 struct scrub_page *spage = sbio->pagev[i]; 2376 2377 spage->io_error = 1; 2378 spage->sblock->no_io_error_seen = 0; 2379 } 2380 } 2381 2382 /* now complete the scrub_block items that have all pages completed */ 2383 for (i = 0; i < sbio->page_count; i++) { 2384 struct scrub_page *spage = sbio->pagev[i]; 2385 struct scrub_block *sblock = spage->sblock; 2386 2387 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2388 scrub_block_complete(sblock); 2389 scrub_block_put(sblock); 2390 } 2391 2392 bio_put(sbio->bio); 2393 sbio->bio = NULL; 2394 spin_lock(&sctx->list_lock); 2395 sbio->next_free = sctx->first_free; 2396 sctx->first_free = sbio->index; 2397 spin_unlock(&sctx->list_lock); 2398 2399 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2400 mutex_lock(&sctx->wr_lock); 2401 scrub_wr_submit(sctx); 2402 mutex_unlock(&sctx->wr_lock); 2403 } 2404 2405 scrub_pending_bio_dec(sctx); 2406 } 2407 2408 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2409 unsigned long *bitmap, 2410 u64 start, u32 len) 2411 { 2412 u64 offset; 2413 u32 nsectors; 2414 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits; 2415 2416 if (len >= sparity->stripe_len) { 2417 bitmap_set(bitmap, 0, sparity->nsectors); 2418 return; 2419 } 2420 2421 start -= sparity->logic_start; 2422 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2423 offset = offset >> sectorsize_bits; 2424 nsectors = len >> sectorsize_bits; 2425 2426 if (offset + nsectors <= sparity->nsectors) { 2427 bitmap_set(bitmap, offset, nsectors); 2428 return; 2429 } 2430 2431 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2432 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2433 } 2434 2435 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2436 u64 start, u32 len) 2437 { 2438 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2439 } 2440 2441 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2442 u64 start, u32 len) 2443 { 2444 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2445 } 2446 2447 static void scrub_block_complete(struct scrub_block *sblock) 2448 { 2449 int corrupted = 0; 2450 2451 if (!sblock->no_io_error_seen) { 2452 corrupted = 1; 2453 scrub_handle_errored_block(sblock); 2454 } else { 2455 /* 2456 * if has checksum error, write via repair mechanism in 2457 * dev replace case, otherwise write here in dev replace 2458 * case. 2459 */ 2460 corrupted = scrub_checksum(sblock); 2461 if (!corrupted && sblock->sctx->is_dev_replace) 2462 scrub_write_block_to_dev_replace(sblock); 2463 } 2464 2465 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2466 u64 start = sblock->pagev[0]->logical; 2467 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2468 sblock->sctx->fs_info->sectorsize; 2469 2470 ASSERT(end - start <= U32_MAX); 2471 scrub_parity_mark_sectors_error(sblock->sparity, 2472 start, end - start); 2473 } 2474 } 2475 2476 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum) 2477 { 2478 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits; 2479 list_del(&sum->list); 2480 kfree(sum); 2481 } 2482 2483 /* 2484 * Find the desired csum for range [logical, logical + sectorsize), and store 2485 * the csum into @csum. 2486 * 2487 * The search source is sctx->csum_list, which is a pre-populated list 2488 * storing bytenr ordered csum ranges. We're responsible to cleanup any range 2489 * that is before @logical. 2490 * 2491 * Return 0 if there is no csum for the range. 2492 * Return 1 if there is csum for the range and copied to @csum. 2493 */ 2494 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2495 { 2496 bool found = false; 2497 2498 while (!list_empty(&sctx->csum_list)) { 2499 struct btrfs_ordered_sum *sum = NULL; 2500 unsigned long index; 2501 unsigned long num_sectors; 2502 2503 sum = list_first_entry(&sctx->csum_list, 2504 struct btrfs_ordered_sum, list); 2505 /* The current csum range is beyond our range, no csum found */ 2506 if (sum->bytenr > logical) 2507 break; 2508 2509 /* 2510 * The current sum is before our bytenr, since scrub is always 2511 * done in bytenr order, the csum will never be used anymore, 2512 * clean it up so that later calls won't bother with the range, 2513 * and continue search the next range. 2514 */ 2515 if (sum->bytenr + sum->len <= logical) { 2516 drop_csum_range(sctx, sum); 2517 continue; 2518 } 2519 2520 /* Now the csum range covers our bytenr, copy the csum */ 2521 found = true; 2522 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits; 2523 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits; 2524 2525 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size, 2526 sctx->fs_info->csum_size); 2527 2528 /* Cleanup the range if we're at the end of the csum range */ 2529 if (index == num_sectors - 1) 2530 drop_csum_range(sctx, sum); 2531 break; 2532 } 2533 if (!found) 2534 return 0; 2535 return 1; 2536 } 2537 2538 /* scrub extent tries to collect up to 64 kB for each bio */ 2539 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2540 u64 logical, u32 len, 2541 u64 physical, struct btrfs_device *dev, u64 flags, 2542 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2543 { 2544 int ret; 2545 u8 csum[BTRFS_CSUM_SIZE]; 2546 u32 blocksize; 2547 2548 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2549 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2550 blocksize = map->stripe_len; 2551 else 2552 blocksize = sctx->fs_info->sectorsize; 2553 spin_lock(&sctx->stat_lock); 2554 sctx->stat.data_extents_scrubbed++; 2555 sctx->stat.data_bytes_scrubbed += len; 2556 spin_unlock(&sctx->stat_lock); 2557 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2558 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2559 blocksize = map->stripe_len; 2560 else 2561 blocksize = sctx->fs_info->nodesize; 2562 spin_lock(&sctx->stat_lock); 2563 sctx->stat.tree_extents_scrubbed++; 2564 sctx->stat.tree_bytes_scrubbed += len; 2565 spin_unlock(&sctx->stat_lock); 2566 } else { 2567 blocksize = sctx->fs_info->sectorsize; 2568 WARN_ON(1); 2569 } 2570 2571 while (len) { 2572 u32 l = min(len, blocksize); 2573 int have_csum = 0; 2574 2575 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2576 /* push csums to sbio */ 2577 have_csum = scrub_find_csum(sctx, logical, csum); 2578 if (have_csum == 0) 2579 ++sctx->stat.no_csum; 2580 } 2581 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2582 mirror_num, have_csum ? csum : NULL, 2583 physical_for_dev_replace); 2584 if (ret) 2585 return ret; 2586 len -= l; 2587 logical += l; 2588 physical += l; 2589 physical_for_dev_replace += l; 2590 } 2591 return 0; 2592 } 2593 2594 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2595 u64 logical, u32 len, 2596 u64 physical, struct btrfs_device *dev, 2597 u64 flags, u64 gen, int mirror_num, u8 *csum) 2598 { 2599 struct scrub_ctx *sctx = sparity->sctx; 2600 struct scrub_block *sblock; 2601 const u32 sectorsize = sctx->fs_info->sectorsize; 2602 int index; 2603 2604 ASSERT(IS_ALIGNED(len, sectorsize)); 2605 2606 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2607 if (!sblock) { 2608 spin_lock(&sctx->stat_lock); 2609 sctx->stat.malloc_errors++; 2610 spin_unlock(&sctx->stat_lock); 2611 return -ENOMEM; 2612 } 2613 2614 /* one ref inside this function, plus one for each page added to 2615 * a bio later on */ 2616 refcount_set(&sblock->refs, 1); 2617 sblock->sctx = sctx; 2618 sblock->no_io_error_seen = 1; 2619 sblock->sparity = sparity; 2620 scrub_parity_get(sparity); 2621 2622 for (index = 0; len > 0; index++) { 2623 struct scrub_page *spage; 2624 2625 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2626 if (!spage) { 2627 leave_nomem: 2628 spin_lock(&sctx->stat_lock); 2629 sctx->stat.malloc_errors++; 2630 spin_unlock(&sctx->stat_lock); 2631 scrub_block_put(sblock); 2632 return -ENOMEM; 2633 } 2634 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2635 /* For scrub block */ 2636 scrub_page_get(spage); 2637 sblock->pagev[index] = spage; 2638 /* For scrub parity */ 2639 scrub_page_get(spage); 2640 list_add_tail(&spage->list, &sparity->spages); 2641 spage->sblock = sblock; 2642 spage->dev = dev; 2643 spage->flags = flags; 2644 spage->generation = gen; 2645 spage->logical = logical; 2646 spage->physical = physical; 2647 spage->mirror_num = mirror_num; 2648 if (csum) { 2649 spage->have_csum = 1; 2650 memcpy(spage->csum, csum, sctx->fs_info->csum_size); 2651 } else { 2652 spage->have_csum = 0; 2653 } 2654 sblock->page_count++; 2655 spage->page = alloc_page(GFP_KERNEL); 2656 if (!spage->page) 2657 goto leave_nomem; 2658 2659 2660 /* Iterate over the stripe range in sectorsize steps */ 2661 len -= sectorsize; 2662 logical += sectorsize; 2663 physical += sectorsize; 2664 } 2665 2666 WARN_ON(sblock->page_count == 0); 2667 for (index = 0; index < sblock->page_count; index++) { 2668 struct scrub_page *spage = sblock->pagev[index]; 2669 int ret; 2670 2671 ret = scrub_add_page_to_rd_bio(sctx, spage); 2672 if (ret) { 2673 scrub_block_put(sblock); 2674 return ret; 2675 } 2676 } 2677 2678 /* last one frees, either here or in bio completion for last page */ 2679 scrub_block_put(sblock); 2680 return 0; 2681 } 2682 2683 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2684 u64 logical, u32 len, 2685 u64 physical, struct btrfs_device *dev, 2686 u64 flags, u64 gen, int mirror_num) 2687 { 2688 struct scrub_ctx *sctx = sparity->sctx; 2689 int ret; 2690 u8 csum[BTRFS_CSUM_SIZE]; 2691 u32 blocksize; 2692 2693 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2694 scrub_parity_mark_sectors_error(sparity, logical, len); 2695 return 0; 2696 } 2697 2698 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2699 blocksize = sparity->stripe_len; 2700 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2701 blocksize = sparity->stripe_len; 2702 } else { 2703 blocksize = sctx->fs_info->sectorsize; 2704 WARN_ON(1); 2705 } 2706 2707 while (len) { 2708 u32 l = min(len, blocksize); 2709 int have_csum = 0; 2710 2711 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2712 /* push csums to sbio */ 2713 have_csum = scrub_find_csum(sctx, logical, csum); 2714 if (have_csum == 0) 2715 goto skip; 2716 } 2717 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2718 flags, gen, mirror_num, 2719 have_csum ? csum : NULL); 2720 if (ret) 2721 return ret; 2722 skip: 2723 len -= l; 2724 logical += l; 2725 physical += l; 2726 } 2727 return 0; 2728 } 2729 2730 /* 2731 * Given a physical address, this will calculate it's 2732 * logical offset. if this is a parity stripe, it will return 2733 * the most left data stripe's logical offset. 2734 * 2735 * return 0 if it is a data stripe, 1 means parity stripe. 2736 */ 2737 static int get_raid56_logic_offset(u64 physical, int num, 2738 struct map_lookup *map, u64 *offset, 2739 u64 *stripe_start) 2740 { 2741 int i; 2742 int j = 0; 2743 u64 stripe_nr; 2744 u64 last_offset; 2745 u32 stripe_index; 2746 u32 rot; 2747 const int data_stripes = nr_data_stripes(map); 2748 2749 last_offset = (physical - map->stripes[num].physical) * data_stripes; 2750 if (stripe_start) 2751 *stripe_start = last_offset; 2752 2753 *offset = last_offset; 2754 for (i = 0; i < data_stripes; i++) { 2755 *offset = last_offset + i * map->stripe_len; 2756 2757 stripe_nr = div64_u64(*offset, map->stripe_len); 2758 stripe_nr = div_u64(stripe_nr, data_stripes); 2759 2760 /* Work out the disk rotation on this stripe-set */ 2761 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2762 /* calculate which stripe this data locates */ 2763 rot += i; 2764 stripe_index = rot % map->num_stripes; 2765 if (stripe_index == num) 2766 return 0; 2767 if (stripe_index < num) 2768 j++; 2769 } 2770 *offset = last_offset + j * map->stripe_len; 2771 return 1; 2772 } 2773 2774 static void scrub_free_parity(struct scrub_parity *sparity) 2775 { 2776 struct scrub_ctx *sctx = sparity->sctx; 2777 struct scrub_page *curr, *next; 2778 int nbits; 2779 2780 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2781 if (nbits) { 2782 spin_lock(&sctx->stat_lock); 2783 sctx->stat.read_errors += nbits; 2784 sctx->stat.uncorrectable_errors += nbits; 2785 spin_unlock(&sctx->stat_lock); 2786 } 2787 2788 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2789 list_del_init(&curr->list); 2790 scrub_page_put(curr); 2791 } 2792 2793 kfree(sparity); 2794 } 2795 2796 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2797 { 2798 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2799 work); 2800 struct scrub_ctx *sctx = sparity->sctx; 2801 2802 scrub_free_parity(sparity); 2803 scrub_pending_bio_dec(sctx); 2804 } 2805 2806 static void scrub_parity_bio_endio(struct bio *bio) 2807 { 2808 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2809 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2810 2811 if (bio->bi_status) 2812 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2813 sparity->nsectors); 2814 2815 bio_put(bio); 2816 2817 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL, 2818 NULL); 2819 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 2820 } 2821 2822 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2823 { 2824 struct scrub_ctx *sctx = sparity->sctx; 2825 struct btrfs_fs_info *fs_info = sctx->fs_info; 2826 struct bio *bio; 2827 struct btrfs_raid_bio *rbio; 2828 struct btrfs_io_context *bioc = NULL; 2829 u64 length; 2830 int ret; 2831 2832 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2833 sparity->nsectors)) 2834 goto out; 2835 2836 length = sparity->logic_end - sparity->logic_start; 2837 2838 btrfs_bio_counter_inc_blocked(fs_info); 2839 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2840 &length, &bioc); 2841 if (ret || !bioc || !bioc->raid_map) 2842 goto bioc_out; 2843 2844 bio = btrfs_bio_alloc(BIO_MAX_VECS); 2845 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2846 bio->bi_private = sparity; 2847 bio->bi_end_io = scrub_parity_bio_endio; 2848 2849 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length, 2850 sparity->scrub_dev, 2851 sparity->dbitmap, 2852 sparity->nsectors); 2853 if (!rbio) 2854 goto rbio_out; 2855 2856 scrub_pending_bio_inc(sctx); 2857 raid56_parity_submit_scrub_rbio(rbio); 2858 return; 2859 2860 rbio_out: 2861 bio_put(bio); 2862 bioc_out: 2863 btrfs_bio_counter_dec(fs_info); 2864 btrfs_put_bioc(bioc); 2865 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2866 sparity->nsectors); 2867 spin_lock(&sctx->stat_lock); 2868 sctx->stat.malloc_errors++; 2869 spin_unlock(&sctx->stat_lock); 2870 out: 2871 scrub_free_parity(sparity); 2872 } 2873 2874 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2875 { 2876 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2877 } 2878 2879 static void scrub_parity_get(struct scrub_parity *sparity) 2880 { 2881 refcount_inc(&sparity->refs); 2882 } 2883 2884 static void scrub_parity_put(struct scrub_parity *sparity) 2885 { 2886 if (!refcount_dec_and_test(&sparity->refs)) 2887 return; 2888 2889 scrub_parity_check_and_repair(sparity); 2890 } 2891 2892 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2893 struct map_lookup *map, 2894 struct btrfs_device *sdev, 2895 struct btrfs_path *path, 2896 u64 logic_start, 2897 u64 logic_end) 2898 { 2899 struct btrfs_fs_info *fs_info = sctx->fs_info; 2900 struct btrfs_root *root = fs_info->extent_root; 2901 struct btrfs_root *csum_root = fs_info->csum_root; 2902 struct btrfs_extent_item *extent; 2903 struct btrfs_io_context *bioc = NULL; 2904 u64 flags; 2905 int ret; 2906 int slot; 2907 struct extent_buffer *l; 2908 struct btrfs_key key; 2909 u64 generation; 2910 u64 extent_logical; 2911 u64 extent_physical; 2912 /* Check the comment in scrub_stripe() for why u32 is enough here */ 2913 u32 extent_len; 2914 u64 mapped_length; 2915 struct btrfs_device *extent_dev; 2916 struct scrub_parity *sparity; 2917 int nsectors; 2918 int bitmap_len; 2919 int extent_mirror_num; 2920 int stop_loop = 0; 2921 2922 ASSERT(map->stripe_len <= U32_MAX); 2923 nsectors = map->stripe_len >> fs_info->sectorsize_bits; 2924 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2925 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2926 GFP_NOFS); 2927 if (!sparity) { 2928 spin_lock(&sctx->stat_lock); 2929 sctx->stat.malloc_errors++; 2930 spin_unlock(&sctx->stat_lock); 2931 return -ENOMEM; 2932 } 2933 2934 ASSERT(map->stripe_len <= U32_MAX); 2935 sparity->stripe_len = map->stripe_len; 2936 sparity->nsectors = nsectors; 2937 sparity->sctx = sctx; 2938 sparity->scrub_dev = sdev; 2939 sparity->logic_start = logic_start; 2940 sparity->logic_end = logic_end; 2941 refcount_set(&sparity->refs, 1); 2942 INIT_LIST_HEAD(&sparity->spages); 2943 sparity->dbitmap = sparity->bitmap; 2944 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2945 2946 ret = 0; 2947 while (logic_start < logic_end) { 2948 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2949 key.type = BTRFS_METADATA_ITEM_KEY; 2950 else 2951 key.type = BTRFS_EXTENT_ITEM_KEY; 2952 key.objectid = logic_start; 2953 key.offset = (u64)-1; 2954 2955 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2956 if (ret < 0) 2957 goto out; 2958 2959 if (ret > 0) { 2960 ret = btrfs_previous_extent_item(root, path, 0); 2961 if (ret < 0) 2962 goto out; 2963 if (ret > 0) { 2964 btrfs_release_path(path); 2965 ret = btrfs_search_slot(NULL, root, &key, 2966 path, 0, 0); 2967 if (ret < 0) 2968 goto out; 2969 } 2970 } 2971 2972 stop_loop = 0; 2973 while (1) { 2974 u64 bytes; 2975 2976 l = path->nodes[0]; 2977 slot = path->slots[0]; 2978 if (slot >= btrfs_header_nritems(l)) { 2979 ret = btrfs_next_leaf(root, path); 2980 if (ret == 0) 2981 continue; 2982 if (ret < 0) 2983 goto out; 2984 2985 stop_loop = 1; 2986 break; 2987 } 2988 btrfs_item_key_to_cpu(l, &key, slot); 2989 2990 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2991 key.type != BTRFS_METADATA_ITEM_KEY) 2992 goto next; 2993 2994 if (key.type == BTRFS_METADATA_ITEM_KEY) 2995 bytes = fs_info->nodesize; 2996 else 2997 bytes = key.offset; 2998 2999 if (key.objectid + bytes <= logic_start) 3000 goto next; 3001 3002 if (key.objectid >= logic_end) { 3003 stop_loop = 1; 3004 break; 3005 } 3006 3007 while (key.objectid >= logic_start + map->stripe_len) 3008 logic_start += map->stripe_len; 3009 3010 extent = btrfs_item_ptr(l, slot, 3011 struct btrfs_extent_item); 3012 flags = btrfs_extent_flags(l, extent); 3013 generation = btrfs_extent_generation(l, extent); 3014 3015 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3016 (key.objectid < logic_start || 3017 key.objectid + bytes > 3018 logic_start + map->stripe_len)) { 3019 btrfs_err(fs_info, 3020 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3021 key.objectid, logic_start); 3022 spin_lock(&sctx->stat_lock); 3023 sctx->stat.uncorrectable_errors++; 3024 spin_unlock(&sctx->stat_lock); 3025 goto next; 3026 } 3027 again: 3028 extent_logical = key.objectid; 3029 ASSERT(bytes <= U32_MAX); 3030 extent_len = bytes; 3031 3032 if (extent_logical < logic_start) { 3033 extent_len -= logic_start - extent_logical; 3034 extent_logical = logic_start; 3035 } 3036 3037 if (extent_logical + extent_len > 3038 logic_start + map->stripe_len) 3039 extent_len = logic_start + map->stripe_len - 3040 extent_logical; 3041 3042 scrub_parity_mark_sectors_data(sparity, extent_logical, 3043 extent_len); 3044 3045 mapped_length = extent_len; 3046 bioc = NULL; 3047 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 3048 extent_logical, &mapped_length, &bioc, 3049 0); 3050 if (!ret) { 3051 if (!bioc || mapped_length < extent_len) 3052 ret = -EIO; 3053 } 3054 if (ret) { 3055 btrfs_put_bioc(bioc); 3056 goto out; 3057 } 3058 extent_physical = bioc->stripes[0].physical; 3059 extent_mirror_num = bioc->mirror_num; 3060 extent_dev = bioc->stripes[0].dev; 3061 btrfs_put_bioc(bioc); 3062 3063 ret = btrfs_lookup_csums_range(csum_root, 3064 extent_logical, 3065 extent_logical + extent_len - 1, 3066 &sctx->csum_list, 1); 3067 if (ret) 3068 goto out; 3069 3070 ret = scrub_extent_for_parity(sparity, extent_logical, 3071 extent_len, 3072 extent_physical, 3073 extent_dev, flags, 3074 generation, 3075 extent_mirror_num); 3076 3077 scrub_free_csums(sctx); 3078 3079 if (ret) 3080 goto out; 3081 3082 if (extent_logical + extent_len < 3083 key.objectid + bytes) { 3084 logic_start += map->stripe_len; 3085 3086 if (logic_start >= logic_end) { 3087 stop_loop = 1; 3088 break; 3089 } 3090 3091 if (logic_start < key.objectid + bytes) { 3092 cond_resched(); 3093 goto again; 3094 } 3095 } 3096 next: 3097 path->slots[0]++; 3098 } 3099 3100 btrfs_release_path(path); 3101 3102 if (stop_loop) 3103 break; 3104 3105 logic_start += map->stripe_len; 3106 } 3107 out: 3108 if (ret < 0) { 3109 ASSERT(logic_end - logic_start <= U32_MAX); 3110 scrub_parity_mark_sectors_error(sparity, logic_start, 3111 logic_end - logic_start); 3112 } 3113 scrub_parity_put(sparity); 3114 scrub_submit(sctx); 3115 mutex_lock(&sctx->wr_lock); 3116 scrub_wr_submit(sctx); 3117 mutex_unlock(&sctx->wr_lock); 3118 3119 btrfs_release_path(path); 3120 return ret < 0 ? ret : 0; 3121 } 3122 3123 static void sync_replace_for_zoned(struct scrub_ctx *sctx) 3124 { 3125 if (!btrfs_is_zoned(sctx->fs_info)) 3126 return; 3127 3128 sctx->flush_all_writes = true; 3129 scrub_submit(sctx); 3130 mutex_lock(&sctx->wr_lock); 3131 scrub_wr_submit(sctx); 3132 mutex_unlock(&sctx->wr_lock); 3133 3134 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3135 } 3136 3137 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 3138 u64 physical, u64 physical_end) 3139 { 3140 struct btrfs_fs_info *fs_info = sctx->fs_info; 3141 int ret = 0; 3142 3143 if (!btrfs_is_zoned(fs_info)) 3144 return 0; 3145 3146 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3147 3148 mutex_lock(&sctx->wr_lock); 3149 if (sctx->write_pointer < physical_end) { 3150 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 3151 physical, 3152 sctx->write_pointer); 3153 if (ret) 3154 btrfs_err(fs_info, 3155 "zoned: failed to recover write pointer"); 3156 } 3157 mutex_unlock(&sctx->wr_lock); 3158 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 3159 3160 return ret; 3161 } 3162 3163 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3164 struct map_lookup *map, 3165 struct btrfs_device *scrub_dev, 3166 int num, u64 base, u64 length, 3167 struct btrfs_block_group *cache) 3168 { 3169 struct btrfs_path *path, *ppath; 3170 struct btrfs_fs_info *fs_info = sctx->fs_info; 3171 struct btrfs_root *root = fs_info->extent_root; 3172 struct btrfs_root *csum_root = fs_info->csum_root; 3173 struct btrfs_extent_item *extent; 3174 struct blk_plug plug; 3175 u64 flags; 3176 int ret; 3177 int slot; 3178 u64 nstripes; 3179 struct extent_buffer *l; 3180 u64 physical; 3181 u64 logical; 3182 u64 logic_end; 3183 u64 physical_end; 3184 u64 generation; 3185 int mirror_num; 3186 struct reada_control *reada1; 3187 struct reada_control *reada2; 3188 struct btrfs_key key; 3189 struct btrfs_key key_end; 3190 u64 increment = map->stripe_len; 3191 u64 offset; 3192 u64 extent_logical; 3193 u64 extent_physical; 3194 /* 3195 * Unlike chunk length, extent length should never go beyond 3196 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here. 3197 */ 3198 u32 extent_len; 3199 u64 stripe_logical; 3200 u64 stripe_end; 3201 struct btrfs_device *extent_dev; 3202 int extent_mirror_num; 3203 int stop_loop = 0; 3204 3205 physical = map->stripes[num].physical; 3206 offset = 0; 3207 nstripes = div64_u64(length, map->stripe_len); 3208 mirror_num = 1; 3209 increment = map->stripe_len; 3210 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3211 offset = map->stripe_len * num; 3212 increment = map->stripe_len * map->num_stripes; 3213 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3214 int factor = map->num_stripes / map->sub_stripes; 3215 offset = map->stripe_len * (num / map->sub_stripes); 3216 increment = map->stripe_len * factor; 3217 mirror_num = num % map->sub_stripes + 1; 3218 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 3219 mirror_num = num % map->num_stripes + 1; 3220 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3221 mirror_num = num % map->num_stripes + 1; 3222 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3223 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3224 increment = map->stripe_len * nr_data_stripes(map); 3225 } 3226 3227 path = btrfs_alloc_path(); 3228 if (!path) 3229 return -ENOMEM; 3230 3231 ppath = btrfs_alloc_path(); 3232 if (!ppath) { 3233 btrfs_free_path(path); 3234 return -ENOMEM; 3235 } 3236 3237 /* 3238 * work on commit root. The related disk blocks are static as 3239 * long as COW is applied. This means, it is save to rewrite 3240 * them to repair disk errors without any race conditions 3241 */ 3242 path->search_commit_root = 1; 3243 path->skip_locking = 1; 3244 3245 ppath->search_commit_root = 1; 3246 ppath->skip_locking = 1; 3247 /* 3248 * trigger the readahead for extent tree csum tree and wait for 3249 * completion. During readahead, the scrub is officially paused 3250 * to not hold off transaction commits 3251 */ 3252 logical = base + offset; 3253 physical_end = physical + nstripes * map->stripe_len; 3254 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3255 get_raid56_logic_offset(physical_end, num, 3256 map, &logic_end, NULL); 3257 logic_end += base; 3258 } else { 3259 logic_end = logical + increment * nstripes; 3260 } 3261 wait_event(sctx->list_wait, 3262 atomic_read(&sctx->bios_in_flight) == 0); 3263 scrub_blocked_if_needed(fs_info); 3264 3265 /* FIXME it might be better to start readahead at commit root */ 3266 key.objectid = logical; 3267 key.type = BTRFS_EXTENT_ITEM_KEY; 3268 key.offset = (u64)0; 3269 key_end.objectid = logic_end; 3270 key_end.type = BTRFS_METADATA_ITEM_KEY; 3271 key_end.offset = (u64)-1; 3272 reada1 = btrfs_reada_add(root, &key, &key_end); 3273 3274 if (cache->flags & BTRFS_BLOCK_GROUP_DATA) { 3275 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3276 key.type = BTRFS_EXTENT_CSUM_KEY; 3277 key.offset = logical; 3278 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3279 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3280 key_end.offset = logic_end; 3281 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3282 } else { 3283 reada2 = NULL; 3284 } 3285 3286 if (!IS_ERR(reada1)) 3287 btrfs_reada_wait(reada1); 3288 if (!IS_ERR_OR_NULL(reada2)) 3289 btrfs_reada_wait(reada2); 3290 3291 3292 /* 3293 * collect all data csums for the stripe to avoid seeking during 3294 * the scrub. This might currently (crc32) end up to be about 1MB 3295 */ 3296 blk_start_plug(&plug); 3297 3298 if (sctx->is_dev_replace && 3299 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 3300 mutex_lock(&sctx->wr_lock); 3301 sctx->write_pointer = physical; 3302 mutex_unlock(&sctx->wr_lock); 3303 sctx->flush_all_writes = true; 3304 } 3305 3306 /* 3307 * now find all extents for each stripe and scrub them 3308 */ 3309 ret = 0; 3310 while (physical < physical_end) { 3311 /* 3312 * canceled? 3313 */ 3314 if (atomic_read(&fs_info->scrub_cancel_req) || 3315 atomic_read(&sctx->cancel_req)) { 3316 ret = -ECANCELED; 3317 goto out; 3318 } 3319 /* 3320 * check to see if we have to pause 3321 */ 3322 if (atomic_read(&fs_info->scrub_pause_req)) { 3323 /* push queued extents */ 3324 sctx->flush_all_writes = true; 3325 scrub_submit(sctx); 3326 mutex_lock(&sctx->wr_lock); 3327 scrub_wr_submit(sctx); 3328 mutex_unlock(&sctx->wr_lock); 3329 wait_event(sctx->list_wait, 3330 atomic_read(&sctx->bios_in_flight) == 0); 3331 sctx->flush_all_writes = false; 3332 scrub_blocked_if_needed(fs_info); 3333 } 3334 3335 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3336 ret = get_raid56_logic_offset(physical, num, map, 3337 &logical, 3338 &stripe_logical); 3339 logical += base; 3340 if (ret) { 3341 /* it is parity strip */ 3342 stripe_logical += base; 3343 stripe_end = stripe_logical + increment; 3344 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3345 ppath, stripe_logical, 3346 stripe_end); 3347 if (ret) 3348 goto out; 3349 goto skip; 3350 } 3351 } 3352 3353 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3354 key.type = BTRFS_METADATA_ITEM_KEY; 3355 else 3356 key.type = BTRFS_EXTENT_ITEM_KEY; 3357 key.objectid = logical; 3358 key.offset = (u64)-1; 3359 3360 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3361 if (ret < 0) 3362 goto out; 3363 3364 if (ret > 0) { 3365 ret = btrfs_previous_extent_item(root, path, 0); 3366 if (ret < 0) 3367 goto out; 3368 if (ret > 0) { 3369 /* there's no smaller item, so stick with the 3370 * larger one */ 3371 btrfs_release_path(path); 3372 ret = btrfs_search_slot(NULL, root, &key, 3373 path, 0, 0); 3374 if (ret < 0) 3375 goto out; 3376 } 3377 } 3378 3379 stop_loop = 0; 3380 while (1) { 3381 u64 bytes; 3382 3383 l = path->nodes[0]; 3384 slot = path->slots[0]; 3385 if (slot >= btrfs_header_nritems(l)) { 3386 ret = btrfs_next_leaf(root, path); 3387 if (ret == 0) 3388 continue; 3389 if (ret < 0) 3390 goto out; 3391 3392 stop_loop = 1; 3393 break; 3394 } 3395 btrfs_item_key_to_cpu(l, &key, slot); 3396 3397 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3398 key.type != BTRFS_METADATA_ITEM_KEY) 3399 goto next; 3400 3401 if (key.type == BTRFS_METADATA_ITEM_KEY) 3402 bytes = fs_info->nodesize; 3403 else 3404 bytes = key.offset; 3405 3406 if (key.objectid + bytes <= logical) 3407 goto next; 3408 3409 if (key.objectid >= logical + map->stripe_len) { 3410 /* out of this device extent */ 3411 if (key.objectid >= logic_end) 3412 stop_loop = 1; 3413 break; 3414 } 3415 3416 /* 3417 * If our block group was removed in the meanwhile, just 3418 * stop scrubbing since there is no point in continuing. 3419 * Continuing would prevent reusing its device extents 3420 * for new block groups for a long time. 3421 */ 3422 spin_lock(&cache->lock); 3423 if (cache->removed) { 3424 spin_unlock(&cache->lock); 3425 ret = 0; 3426 goto out; 3427 } 3428 spin_unlock(&cache->lock); 3429 3430 extent = btrfs_item_ptr(l, slot, 3431 struct btrfs_extent_item); 3432 flags = btrfs_extent_flags(l, extent); 3433 generation = btrfs_extent_generation(l, extent); 3434 3435 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3436 (key.objectid < logical || 3437 key.objectid + bytes > 3438 logical + map->stripe_len)) { 3439 btrfs_err(fs_info, 3440 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3441 key.objectid, logical); 3442 spin_lock(&sctx->stat_lock); 3443 sctx->stat.uncorrectable_errors++; 3444 spin_unlock(&sctx->stat_lock); 3445 goto next; 3446 } 3447 3448 again: 3449 extent_logical = key.objectid; 3450 ASSERT(bytes <= U32_MAX); 3451 extent_len = bytes; 3452 3453 /* 3454 * trim extent to this stripe 3455 */ 3456 if (extent_logical < logical) { 3457 extent_len -= logical - extent_logical; 3458 extent_logical = logical; 3459 } 3460 if (extent_logical + extent_len > 3461 logical + map->stripe_len) { 3462 extent_len = logical + map->stripe_len - 3463 extent_logical; 3464 } 3465 3466 extent_physical = extent_logical - logical + physical; 3467 extent_dev = scrub_dev; 3468 extent_mirror_num = mirror_num; 3469 if (sctx->is_dev_replace) 3470 scrub_remap_extent(fs_info, extent_logical, 3471 extent_len, &extent_physical, 3472 &extent_dev, 3473 &extent_mirror_num); 3474 3475 if (flags & BTRFS_EXTENT_FLAG_DATA) { 3476 ret = btrfs_lookup_csums_range(csum_root, 3477 extent_logical, 3478 extent_logical + extent_len - 1, 3479 &sctx->csum_list, 1); 3480 if (ret) 3481 goto out; 3482 } 3483 3484 ret = scrub_extent(sctx, map, extent_logical, extent_len, 3485 extent_physical, extent_dev, flags, 3486 generation, extent_mirror_num, 3487 extent_logical - logical + physical); 3488 3489 scrub_free_csums(sctx); 3490 3491 if (ret) 3492 goto out; 3493 3494 if (sctx->is_dev_replace) 3495 sync_replace_for_zoned(sctx); 3496 3497 if (extent_logical + extent_len < 3498 key.objectid + bytes) { 3499 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3500 /* 3501 * loop until we find next data stripe 3502 * or we have finished all stripes. 3503 */ 3504 loop: 3505 physical += map->stripe_len; 3506 ret = get_raid56_logic_offset(physical, 3507 num, map, &logical, 3508 &stripe_logical); 3509 logical += base; 3510 3511 if (ret && physical < physical_end) { 3512 stripe_logical += base; 3513 stripe_end = stripe_logical + 3514 increment; 3515 ret = scrub_raid56_parity(sctx, 3516 map, scrub_dev, ppath, 3517 stripe_logical, 3518 stripe_end); 3519 if (ret) 3520 goto out; 3521 goto loop; 3522 } 3523 } else { 3524 physical += map->stripe_len; 3525 logical += increment; 3526 } 3527 if (logical < key.objectid + bytes) { 3528 cond_resched(); 3529 goto again; 3530 } 3531 3532 if (physical >= physical_end) { 3533 stop_loop = 1; 3534 break; 3535 } 3536 } 3537 next: 3538 path->slots[0]++; 3539 } 3540 btrfs_release_path(path); 3541 skip: 3542 logical += increment; 3543 physical += map->stripe_len; 3544 spin_lock(&sctx->stat_lock); 3545 if (stop_loop) 3546 sctx->stat.last_physical = map->stripes[num].physical + 3547 length; 3548 else 3549 sctx->stat.last_physical = physical; 3550 spin_unlock(&sctx->stat_lock); 3551 if (stop_loop) 3552 break; 3553 } 3554 out: 3555 /* push queued extents */ 3556 scrub_submit(sctx); 3557 mutex_lock(&sctx->wr_lock); 3558 scrub_wr_submit(sctx); 3559 mutex_unlock(&sctx->wr_lock); 3560 3561 blk_finish_plug(&plug); 3562 btrfs_free_path(path); 3563 btrfs_free_path(ppath); 3564 3565 if (sctx->is_dev_replace && ret >= 0) { 3566 int ret2; 3567 3568 ret2 = sync_write_pointer_for_zoned(sctx, base + offset, 3569 map->stripes[num].physical, 3570 physical_end); 3571 if (ret2) 3572 ret = ret2; 3573 } 3574 3575 return ret < 0 ? ret : 0; 3576 } 3577 3578 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3579 struct btrfs_device *scrub_dev, 3580 u64 chunk_offset, u64 length, 3581 u64 dev_offset, 3582 struct btrfs_block_group *cache) 3583 { 3584 struct btrfs_fs_info *fs_info = sctx->fs_info; 3585 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 3586 struct map_lookup *map; 3587 struct extent_map *em; 3588 int i; 3589 int ret = 0; 3590 3591 read_lock(&map_tree->lock); 3592 em = lookup_extent_mapping(map_tree, chunk_offset, 1); 3593 read_unlock(&map_tree->lock); 3594 3595 if (!em) { 3596 /* 3597 * Might have been an unused block group deleted by the cleaner 3598 * kthread or relocation. 3599 */ 3600 spin_lock(&cache->lock); 3601 if (!cache->removed) 3602 ret = -EINVAL; 3603 spin_unlock(&cache->lock); 3604 3605 return ret; 3606 } 3607 3608 map = em->map_lookup; 3609 if (em->start != chunk_offset) 3610 goto out; 3611 3612 if (em->len < length) 3613 goto out; 3614 3615 for (i = 0; i < map->num_stripes; ++i) { 3616 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3617 map->stripes[i].physical == dev_offset) { 3618 ret = scrub_stripe(sctx, map, scrub_dev, i, 3619 chunk_offset, length, cache); 3620 if (ret) 3621 goto out; 3622 } 3623 } 3624 out: 3625 free_extent_map(em); 3626 3627 return ret; 3628 } 3629 3630 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 3631 struct btrfs_block_group *cache) 3632 { 3633 struct btrfs_fs_info *fs_info = cache->fs_info; 3634 struct btrfs_trans_handle *trans; 3635 3636 if (!btrfs_is_zoned(fs_info)) 3637 return 0; 3638 3639 btrfs_wait_block_group_reservations(cache); 3640 btrfs_wait_nocow_writers(cache); 3641 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 3642 3643 trans = btrfs_join_transaction(root); 3644 if (IS_ERR(trans)) 3645 return PTR_ERR(trans); 3646 return btrfs_commit_transaction(trans); 3647 } 3648 3649 static noinline_for_stack 3650 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3651 struct btrfs_device *scrub_dev, u64 start, u64 end) 3652 { 3653 struct btrfs_dev_extent *dev_extent = NULL; 3654 struct btrfs_path *path; 3655 struct btrfs_fs_info *fs_info = sctx->fs_info; 3656 struct btrfs_root *root = fs_info->dev_root; 3657 u64 length; 3658 u64 chunk_offset; 3659 int ret = 0; 3660 int ro_set; 3661 int slot; 3662 struct extent_buffer *l; 3663 struct btrfs_key key; 3664 struct btrfs_key found_key; 3665 struct btrfs_block_group *cache; 3666 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3667 3668 path = btrfs_alloc_path(); 3669 if (!path) 3670 return -ENOMEM; 3671 3672 path->reada = READA_FORWARD; 3673 path->search_commit_root = 1; 3674 path->skip_locking = 1; 3675 3676 key.objectid = scrub_dev->devid; 3677 key.offset = 0ull; 3678 key.type = BTRFS_DEV_EXTENT_KEY; 3679 3680 while (1) { 3681 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3682 if (ret < 0) 3683 break; 3684 if (ret > 0) { 3685 if (path->slots[0] >= 3686 btrfs_header_nritems(path->nodes[0])) { 3687 ret = btrfs_next_leaf(root, path); 3688 if (ret < 0) 3689 break; 3690 if (ret > 0) { 3691 ret = 0; 3692 break; 3693 } 3694 } else { 3695 ret = 0; 3696 } 3697 } 3698 3699 l = path->nodes[0]; 3700 slot = path->slots[0]; 3701 3702 btrfs_item_key_to_cpu(l, &found_key, slot); 3703 3704 if (found_key.objectid != scrub_dev->devid) 3705 break; 3706 3707 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3708 break; 3709 3710 if (found_key.offset >= end) 3711 break; 3712 3713 if (found_key.offset < key.offset) 3714 break; 3715 3716 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3717 length = btrfs_dev_extent_length(l, dev_extent); 3718 3719 if (found_key.offset + length <= start) 3720 goto skip; 3721 3722 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3723 3724 /* 3725 * get a reference on the corresponding block group to prevent 3726 * the chunk from going away while we scrub it 3727 */ 3728 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3729 3730 /* some chunks are removed but not committed to disk yet, 3731 * continue scrubbing */ 3732 if (!cache) 3733 goto skip; 3734 3735 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 3736 spin_lock(&cache->lock); 3737 if (!cache->to_copy) { 3738 spin_unlock(&cache->lock); 3739 btrfs_put_block_group(cache); 3740 goto skip; 3741 } 3742 spin_unlock(&cache->lock); 3743 } 3744 3745 /* 3746 * Make sure that while we are scrubbing the corresponding block 3747 * group doesn't get its logical address and its device extents 3748 * reused for another block group, which can possibly be of a 3749 * different type and different profile. We do this to prevent 3750 * false error detections and crashes due to bogus attempts to 3751 * repair extents. 3752 */ 3753 spin_lock(&cache->lock); 3754 if (cache->removed) { 3755 spin_unlock(&cache->lock); 3756 btrfs_put_block_group(cache); 3757 goto skip; 3758 } 3759 btrfs_freeze_block_group(cache); 3760 spin_unlock(&cache->lock); 3761 3762 /* 3763 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3764 * to avoid deadlock caused by: 3765 * btrfs_inc_block_group_ro() 3766 * -> btrfs_wait_for_commit() 3767 * -> btrfs_commit_transaction() 3768 * -> btrfs_scrub_pause() 3769 */ 3770 scrub_pause_on(fs_info); 3771 3772 /* 3773 * Don't do chunk preallocation for scrub. 3774 * 3775 * This is especially important for SYSTEM bgs, or we can hit 3776 * -EFBIG from btrfs_finish_chunk_alloc() like: 3777 * 1. The only SYSTEM bg is marked RO. 3778 * Since SYSTEM bg is small, that's pretty common. 3779 * 2. New SYSTEM bg will be allocated 3780 * Due to regular version will allocate new chunk. 3781 * 3. New SYSTEM bg is empty and will get cleaned up 3782 * Before cleanup really happens, it's marked RO again. 3783 * 4. Empty SYSTEM bg get scrubbed 3784 * We go back to 2. 3785 * 3786 * This can easily boost the amount of SYSTEM chunks if cleaner 3787 * thread can't be triggered fast enough, and use up all space 3788 * of btrfs_super_block::sys_chunk_array 3789 * 3790 * While for dev replace, we need to try our best to mark block 3791 * group RO, to prevent race between: 3792 * - Write duplication 3793 * Contains latest data 3794 * - Scrub copy 3795 * Contains data from commit tree 3796 * 3797 * If target block group is not marked RO, nocow writes can 3798 * be overwritten by scrub copy, causing data corruption. 3799 * So for dev-replace, it's not allowed to continue if a block 3800 * group is not RO. 3801 */ 3802 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 3803 if (!ret && sctx->is_dev_replace) { 3804 ret = finish_extent_writes_for_zoned(root, cache); 3805 if (ret) { 3806 btrfs_dec_block_group_ro(cache); 3807 scrub_pause_off(fs_info); 3808 btrfs_put_block_group(cache); 3809 break; 3810 } 3811 } 3812 3813 if (ret == 0) { 3814 ro_set = 1; 3815 } else if (ret == -ENOSPC && !sctx->is_dev_replace) { 3816 /* 3817 * btrfs_inc_block_group_ro return -ENOSPC when it 3818 * failed in creating new chunk for metadata. 3819 * It is not a problem for scrub, because 3820 * metadata are always cowed, and our scrub paused 3821 * commit_transactions. 3822 */ 3823 ro_set = 0; 3824 } else if (ret == -ETXTBSY) { 3825 btrfs_warn(fs_info, 3826 "skipping scrub of block group %llu due to active swapfile", 3827 cache->start); 3828 scrub_pause_off(fs_info); 3829 ret = 0; 3830 goto skip_unfreeze; 3831 } else { 3832 btrfs_warn(fs_info, 3833 "failed setting block group ro: %d", ret); 3834 btrfs_unfreeze_block_group(cache); 3835 btrfs_put_block_group(cache); 3836 scrub_pause_off(fs_info); 3837 break; 3838 } 3839 3840 /* 3841 * Now the target block is marked RO, wait for nocow writes to 3842 * finish before dev-replace. 3843 * COW is fine, as COW never overwrites extents in commit tree. 3844 */ 3845 if (sctx->is_dev_replace) { 3846 btrfs_wait_nocow_writers(cache); 3847 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 3848 cache->length); 3849 } 3850 3851 scrub_pause_off(fs_info); 3852 down_write(&dev_replace->rwsem); 3853 dev_replace->cursor_right = found_key.offset + length; 3854 dev_replace->cursor_left = found_key.offset; 3855 dev_replace->item_needs_writeback = 1; 3856 up_write(&dev_replace->rwsem); 3857 3858 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3859 found_key.offset, cache); 3860 3861 /* 3862 * flush, submit all pending read and write bios, afterwards 3863 * wait for them. 3864 * Note that in the dev replace case, a read request causes 3865 * write requests that are submitted in the read completion 3866 * worker. Therefore in the current situation, it is required 3867 * that all write requests are flushed, so that all read and 3868 * write requests are really completed when bios_in_flight 3869 * changes to 0. 3870 */ 3871 sctx->flush_all_writes = true; 3872 scrub_submit(sctx); 3873 mutex_lock(&sctx->wr_lock); 3874 scrub_wr_submit(sctx); 3875 mutex_unlock(&sctx->wr_lock); 3876 3877 wait_event(sctx->list_wait, 3878 atomic_read(&sctx->bios_in_flight) == 0); 3879 3880 scrub_pause_on(fs_info); 3881 3882 /* 3883 * must be called before we decrease @scrub_paused. 3884 * make sure we don't block transaction commit while 3885 * we are waiting pending workers finished. 3886 */ 3887 wait_event(sctx->list_wait, 3888 atomic_read(&sctx->workers_pending) == 0); 3889 sctx->flush_all_writes = false; 3890 3891 scrub_pause_off(fs_info); 3892 3893 if (sctx->is_dev_replace && 3894 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 3895 cache, found_key.offset)) 3896 ro_set = 0; 3897 3898 down_write(&dev_replace->rwsem); 3899 dev_replace->cursor_left = dev_replace->cursor_right; 3900 dev_replace->item_needs_writeback = 1; 3901 up_write(&dev_replace->rwsem); 3902 3903 if (ro_set) 3904 btrfs_dec_block_group_ro(cache); 3905 3906 /* 3907 * We might have prevented the cleaner kthread from deleting 3908 * this block group if it was already unused because we raced 3909 * and set it to RO mode first. So add it back to the unused 3910 * list, otherwise it might not ever be deleted unless a manual 3911 * balance is triggered or it becomes used and unused again. 3912 */ 3913 spin_lock(&cache->lock); 3914 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3915 cache->used == 0) { 3916 spin_unlock(&cache->lock); 3917 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 3918 btrfs_discard_queue_work(&fs_info->discard_ctl, 3919 cache); 3920 else 3921 btrfs_mark_bg_unused(cache); 3922 } else { 3923 spin_unlock(&cache->lock); 3924 } 3925 skip_unfreeze: 3926 btrfs_unfreeze_block_group(cache); 3927 btrfs_put_block_group(cache); 3928 if (ret) 3929 break; 3930 if (sctx->is_dev_replace && 3931 atomic64_read(&dev_replace->num_write_errors) > 0) { 3932 ret = -EIO; 3933 break; 3934 } 3935 if (sctx->stat.malloc_errors > 0) { 3936 ret = -ENOMEM; 3937 break; 3938 } 3939 skip: 3940 key.offset = found_key.offset + length; 3941 btrfs_release_path(path); 3942 } 3943 3944 btrfs_free_path(path); 3945 3946 return ret; 3947 } 3948 3949 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3950 struct btrfs_device *scrub_dev) 3951 { 3952 int i; 3953 u64 bytenr; 3954 u64 gen; 3955 int ret; 3956 struct btrfs_fs_info *fs_info = sctx->fs_info; 3957 3958 if (BTRFS_FS_ERROR(fs_info)) 3959 return -EROFS; 3960 3961 /* Seed devices of a new filesystem has their own generation. */ 3962 if (scrub_dev->fs_devices != fs_info->fs_devices) 3963 gen = scrub_dev->generation; 3964 else 3965 gen = fs_info->last_trans_committed; 3966 3967 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3968 bytenr = btrfs_sb_offset(i); 3969 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3970 scrub_dev->commit_total_bytes) 3971 break; 3972 if (!btrfs_check_super_location(scrub_dev, bytenr)) 3973 continue; 3974 3975 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3976 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3977 NULL, bytenr); 3978 if (ret) 3979 return ret; 3980 } 3981 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3982 3983 return 0; 3984 } 3985 3986 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 3987 { 3988 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 3989 &fs_info->scrub_lock)) { 3990 struct btrfs_workqueue *scrub_workers = NULL; 3991 struct btrfs_workqueue *scrub_wr_comp = NULL; 3992 struct btrfs_workqueue *scrub_parity = NULL; 3993 3994 scrub_workers = fs_info->scrub_workers; 3995 scrub_wr_comp = fs_info->scrub_wr_completion_workers; 3996 scrub_parity = fs_info->scrub_parity_workers; 3997 3998 fs_info->scrub_workers = NULL; 3999 fs_info->scrub_wr_completion_workers = NULL; 4000 fs_info->scrub_parity_workers = NULL; 4001 mutex_unlock(&fs_info->scrub_lock); 4002 4003 btrfs_destroy_workqueue(scrub_workers); 4004 btrfs_destroy_workqueue(scrub_wr_comp); 4005 btrfs_destroy_workqueue(scrub_parity); 4006 } 4007 } 4008 4009 /* 4010 * get a reference count on fs_info->scrub_workers. start worker if necessary 4011 */ 4012 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 4013 int is_dev_replace) 4014 { 4015 struct btrfs_workqueue *scrub_workers = NULL; 4016 struct btrfs_workqueue *scrub_wr_comp = NULL; 4017 struct btrfs_workqueue *scrub_parity = NULL; 4018 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 4019 int max_active = fs_info->thread_pool_size; 4020 int ret = -ENOMEM; 4021 4022 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 4023 return 0; 4024 4025 scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags, 4026 is_dev_replace ? 1 : max_active, 4); 4027 if (!scrub_workers) 4028 goto fail_scrub_workers; 4029 4030 scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 4031 max_active, 2); 4032 if (!scrub_wr_comp) 4033 goto fail_scrub_wr_completion_workers; 4034 4035 scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 4036 max_active, 2); 4037 if (!scrub_parity) 4038 goto fail_scrub_parity_workers; 4039 4040 mutex_lock(&fs_info->scrub_lock); 4041 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 4042 ASSERT(fs_info->scrub_workers == NULL && 4043 fs_info->scrub_wr_completion_workers == NULL && 4044 fs_info->scrub_parity_workers == NULL); 4045 fs_info->scrub_workers = scrub_workers; 4046 fs_info->scrub_wr_completion_workers = scrub_wr_comp; 4047 fs_info->scrub_parity_workers = scrub_parity; 4048 refcount_set(&fs_info->scrub_workers_refcnt, 1); 4049 mutex_unlock(&fs_info->scrub_lock); 4050 return 0; 4051 } 4052 /* Other thread raced in and created the workers for us */ 4053 refcount_inc(&fs_info->scrub_workers_refcnt); 4054 mutex_unlock(&fs_info->scrub_lock); 4055 4056 ret = 0; 4057 btrfs_destroy_workqueue(scrub_parity); 4058 fail_scrub_parity_workers: 4059 btrfs_destroy_workqueue(scrub_wr_comp); 4060 fail_scrub_wr_completion_workers: 4061 btrfs_destroy_workqueue(scrub_workers); 4062 fail_scrub_workers: 4063 return ret; 4064 } 4065 4066 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4067 u64 end, struct btrfs_scrub_progress *progress, 4068 int readonly, int is_dev_replace) 4069 { 4070 struct btrfs_dev_lookup_args args = { .devid = devid }; 4071 struct scrub_ctx *sctx; 4072 int ret; 4073 struct btrfs_device *dev; 4074 unsigned int nofs_flag; 4075 4076 if (btrfs_fs_closing(fs_info)) 4077 return -EAGAIN; 4078 4079 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 4080 /* 4081 * in this case scrub is unable to calculate the checksum 4082 * the way scrub is implemented. Do not handle this 4083 * situation at all because it won't ever happen. 4084 */ 4085 btrfs_err(fs_info, 4086 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 4087 fs_info->nodesize, 4088 BTRFS_STRIPE_LEN); 4089 return -EINVAL; 4090 } 4091 4092 if (fs_info->nodesize > 4093 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 4094 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 4095 /* 4096 * would exhaust the array bounds of pagev member in 4097 * struct scrub_block 4098 */ 4099 btrfs_err(fs_info, 4100 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 4101 fs_info->nodesize, 4102 SCRUB_MAX_PAGES_PER_BLOCK, 4103 fs_info->sectorsize, 4104 SCRUB_MAX_PAGES_PER_BLOCK); 4105 return -EINVAL; 4106 } 4107 4108 /* Allocate outside of device_list_mutex */ 4109 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 4110 if (IS_ERR(sctx)) 4111 return PTR_ERR(sctx); 4112 4113 ret = scrub_workers_get(fs_info, is_dev_replace); 4114 if (ret) 4115 goto out_free_ctx; 4116 4117 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4118 dev = btrfs_find_device(fs_info->fs_devices, &args); 4119 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 4120 !is_dev_replace)) { 4121 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4122 ret = -ENODEV; 4123 goto out; 4124 } 4125 4126 if (!is_dev_replace && !readonly && 4127 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 4128 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4129 btrfs_err_in_rcu(fs_info, 4130 "scrub on devid %llu: filesystem on %s is not writable", 4131 devid, rcu_str_deref(dev->name)); 4132 ret = -EROFS; 4133 goto out; 4134 } 4135 4136 mutex_lock(&fs_info->scrub_lock); 4137 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4138 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 4139 mutex_unlock(&fs_info->scrub_lock); 4140 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4141 ret = -EIO; 4142 goto out; 4143 } 4144 4145 down_read(&fs_info->dev_replace.rwsem); 4146 if (dev->scrub_ctx || 4147 (!is_dev_replace && 4148 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4149 up_read(&fs_info->dev_replace.rwsem); 4150 mutex_unlock(&fs_info->scrub_lock); 4151 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4152 ret = -EINPROGRESS; 4153 goto out; 4154 } 4155 up_read(&fs_info->dev_replace.rwsem); 4156 4157 sctx->readonly = readonly; 4158 dev->scrub_ctx = sctx; 4159 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4160 4161 /* 4162 * checking @scrub_pause_req here, we can avoid 4163 * race between committing transaction and scrubbing. 4164 */ 4165 __scrub_blocked_if_needed(fs_info); 4166 atomic_inc(&fs_info->scrubs_running); 4167 mutex_unlock(&fs_info->scrub_lock); 4168 4169 /* 4170 * In order to avoid deadlock with reclaim when there is a transaction 4171 * trying to pause scrub, make sure we use GFP_NOFS for all the 4172 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity() 4173 * invoked by our callees. The pausing request is done when the 4174 * transaction commit starts, and it blocks the transaction until scrub 4175 * is paused (done at specific points at scrub_stripe() or right above 4176 * before incrementing fs_info->scrubs_running). 4177 */ 4178 nofs_flag = memalloc_nofs_save(); 4179 if (!is_dev_replace) { 4180 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 4181 /* 4182 * by holding device list mutex, we can 4183 * kick off writing super in log tree sync. 4184 */ 4185 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4186 ret = scrub_supers(sctx, dev); 4187 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4188 } 4189 4190 if (!ret) 4191 ret = scrub_enumerate_chunks(sctx, dev, start, end); 4192 memalloc_nofs_restore(nofs_flag); 4193 4194 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4195 atomic_dec(&fs_info->scrubs_running); 4196 wake_up(&fs_info->scrub_pause_wait); 4197 4198 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4199 4200 if (progress) 4201 memcpy(progress, &sctx->stat, sizeof(*progress)); 4202 4203 if (!is_dev_replace) 4204 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 4205 ret ? "not finished" : "finished", devid, ret); 4206 4207 mutex_lock(&fs_info->scrub_lock); 4208 dev->scrub_ctx = NULL; 4209 mutex_unlock(&fs_info->scrub_lock); 4210 4211 scrub_workers_put(fs_info); 4212 scrub_put_ctx(sctx); 4213 4214 return ret; 4215 out: 4216 scrub_workers_put(fs_info); 4217 out_free_ctx: 4218 scrub_free_ctx(sctx); 4219 4220 return ret; 4221 } 4222 4223 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4224 { 4225 mutex_lock(&fs_info->scrub_lock); 4226 atomic_inc(&fs_info->scrub_pause_req); 4227 while (atomic_read(&fs_info->scrubs_paused) != 4228 atomic_read(&fs_info->scrubs_running)) { 4229 mutex_unlock(&fs_info->scrub_lock); 4230 wait_event(fs_info->scrub_pause_wait, 4231 atomic_read(&fs_info->scrubs_paused) == 4232 atomic_read(&fs_info->scrubs_running)); 4233 mutex_lock(&fs_info->scrub_lock); 4234 } 4235 mutex_unlock(&fs_info->scrub_lock); 4236 } 4237 4238 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4239 { 4240 atomic_dec(&fs_info->scrub_pause_req); 4241 wake_up(&fs_info->scrub_pause_wait); 4242 } 4243 4244 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4245 { 4246 mutex_lock(&fs_info->scrub_lock); 4247 if (!atomic_read(&fs_info->scrubs_running)) { 4248 mutex_unlock(&fs_info->scrub_lock); 4249 return -ENOTCONN; 4250 } 4251 4252 atomic_inc(&fs_info->scrub_cancel_req); 4253 while (atomic_read(&fs_info->scrubs_running)) { 4254 mutex_unlock(&fs_info->scrub_lock); 4255 wait_event(fs_info->scrub_pause_wait, 4256 atomic_read(&fs_info->scrubs_running) == 0); 4257 mutex_lock(&fs_info->scrub_lock); 4258 } 4259 atomic_dec(&fs_info->scrub_cancel_req); 4260 mutex_unlock(&fs_info->scrub_lock); 4261 4262 return 0; 4263 } 4264 4265 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 4266 { 4267 struct btrfs_fs_info *fs_info = dev->fs_info; 4268 struct scrub_ctx *sctx; 4269 4270 mutex_lock(&fs_info->scrub_lock); 4271 sctx = dev->scrub_ctx; 4272 if (!sctx) { 4273 mutex_unlock(&fs_info->scrub_lock); 4274 return -ENOTCONN; 4275 } 4276 atomic_inc(&sctx->cancel_req); 4277 while (dev->scrub_ctx) { 4278 mutex_unlock(&fs_info->scrub_lock); 4279 wait_event(fs_info->scrub_pause_wait, 4280 dev->scrub_ctx == NULL); 4281 mutex_lock(&fs_info->scrub_lock); 4282 } 4283 mutex_unlock(&fs_info->scrub_lock); 4284 4285 return 0; 4286 } 4287 4288 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4289 struct btrfs_scrub_progress *progress) 4290 { 4291 struct btrfs_dev_lookup_args args = { .devid = devid }; 4292 struct btrfs_device *dev; 4293 struct scrub_ctx *sctx = NULL; 4294 4295 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4296 dev = btrfs_find_device(fs_info->fs_devices, &args); 4297 if (dev) 4298 sctx = dev->scrub_ctx; 4299 if (sctx) 4300 memcpy(progress, &sctx->stat, sizeof(*progress)); 4301 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4302 4303 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4304 } 4305 4306 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4307 u64 extent_logical, u32 extent_len, 4308 u64 *extent_physical, 4309 struct btrfs_device **extent_dev, 4310 int *extent_mirror_num) 4311 { 4312 u64 mapped_length; 4313 struct btrfs_io_context *bioc = NULL; 4314 int ret; 4315 4316 mapped_length = extent_len; 4317 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4318 &mapped_length, &bioc, 0); 4319 if (ret || !bioc || mapped_length < extent_len || 4320 !bioc->stripes[0].dev->bdev) { 4321 btrfs_put_bioc(bioc); 4322 return; 4323 } 4324 4325 *extent_physical = bioc->stripes[0].physical; 4326 *extent_mirror_num = bioc->mirror_num; 4327 *extent_dev = bioc->stripes[0].dev; 4328 btrfs_put_bioc(bioc); 4329 } 4330