1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "raid56.h" 21 #include "block-group.h" 22 #include "zoned.h" 23 #include "fs.h" 24 #include "accessors.h" 25 #include "file-item.h" 26 #include "scrub.h" 27 28 /* 29 * This is only the first step towards a full-features scrub. It reads all 30 * extent and super block and verifies the checksums. In case a bad checksum 31 * is found or the extent cannot be read, good data will be written back if 32 * any can be found. 33 * 34 * Future enhancements: 35 * - In case an unrepairable extent is encountered, track which files are 36 * affected and report them 37 * - track and record media errors, throw out bad devices 38 * - add a mode to also read unallocated space 39 */ 40 41 struct scrub_ctx; 42 43 /* 44 * The following value only influences the performance. 45 * 46 * This detemines how many stripes would be submitted in one go, 47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP). 48 */ 49 #define SCRUB_STRIPES_PER_GROUP 8 50 51 /* 52 * How many groups we have for each sctx. 53 * 54 * This would be 8M per device, the same value as the old scrub in-flight bios 55 * size limit. 56 */ 57 #define SCRUB_GROUPS_PER_SCTX 16 58 59 #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP) 60 61 /* 62 * The following value times PAGE_SIZE needs to be large enough to match the 63 * largest node/leaf/sector size that shall be supported. 64 */ 65 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 66 67 /* Represent one sector and its needed info to verify the content. */ 68 struct scrub_sector_verification { 69 bool is_metadata; 70 71 union { 72 /* 73 * Csum pointer for data csum verification. Should point to a 74 * sector csum inside scrub_stripe::csums. 75 * 76 * NULL if this data sector has no csum. 77 */ 78 u8 *csum; 79 80 /* 81 * Extra info for metadata verification. All sectors inside a 82 * tree block share the same generation. 83 */ 84 u64 generation; 85 }; 86 }; 87 88 enum scrub_stripe_flags { 89 /* Set when @mirror_num, @dev, @physical and @logical are set. */ 90 SCRUB_STRIPE_FLAG_INITIALIZED, 91 92 /* Set when the read-repair is finished. */ 93 SCRUB_STRIPE_FLAG_REPAIR_DONE, 94 95 /* 96 * Set for data stripes if it's triggered from P/Q stripe. 97 * During such scrub, we should not report errors in data stripes, nor 98 * update the accounting. 99 */ 100 SCRUB_STRIPE_FLAG_NO_REPORT, 101 }; 102 103 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE) 104 105 /* 106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN. 107 */ 108 struct scrub_stripe { 109 struct scrub_ctx *sctx; 110 struct btrfs_block_group *bg; 111 112 struct page *pages[SCRUB_STRIPE_PAGES]; 113 struct scrub_sector_verification *sectors; 114 115 struct btrfs_device *dev; 116 u64 logical; 117 u64 physical; 118 119 u16 mirror_num; 120 121 /* Should be BTRFS_STRIPE_LEN / sectorsize. */ 122 u16 nr_sectors; 123 124 /* 125 * How many data/meta extents are in this stripe. Only for scrub status 126 * reporting purposes. 127 */ 128 u16 nr_data_extents; 129 u16 nr_meta_extents; 130 131 atomic_t pending_io; 132 wait_queue_head_t io_wait; 133 wait_queue_head_t repair_wait; 134 135 /* 136 * Indicate the states of the stripe. Bits are defined in 137 * scrub_stripe_flags enum. 138 */ 139 unsigned long state; 140 141 /* Indicate which sectors are covered by extent items. */ 142 unsigned long extent_sector_bitmap; 143 144 /* 145 * The errors hit during the initial read of the stripe. 146 * 147 * Would be utilized for error reporting and repair. 148 * 149 * The remaining init_nr_* records the number of errors hit, only used 150 * by error reporting. 151 */ 152 unsigned long init_error_bitmap; 153 unsigned int init_nr_io_errors; 154 unsigned int init_nr_csum_errors; 155 unsigned int init_nr_meta_errors; 156 157 /* 158 * The following error bitmaps are all for the current status. 159 * Every time we submit a new read, these bitmaps may be updated. 160 * 161 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap; 162 * 163 * IO and csum errors can happen for both metadata and data. 164 */ 165 unsigned long error_bitmap; 166 unsigned long io_error_bitmap; 167 unsigned long csum_error_bitmap; 168 unsigned long meta_error_bitmap; 169 170 /* For writeback (repair or replace) error reporting. */ 171 unsigned long write_error_bitmap; 172 173 /* Writeback can be concurrent, thus we need to protect the bitmap. */ 174 spinlock_t write_error_lock; 175 176 /* 177 * Checksum for the whole stripe if this stripe is inside a data block 178 * group. 179 */ 180 u8 *csums; 181 182 struct work_struct work; 183 }; 184 185 struct scrub_ctx { 186 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES]; 187 struct scrub_stripe *raid56_data_stripes; 188 struct btrfs_fs_info *fs_info; 189 struct btrfs_path extent_path; 190 struct btrfs_path csum_path; 191 int first_free; 192 int cur_stripe; 193 atomic_t cancel_req; 194 int readonly; 195 int sectors_per_bio; 196 197 /* State of IO submission throttling affecting the associated device */ 198 ktime_t throttle_deadline; 199 u64 throttle_sent; 200 201 int is_dev_replace; 202 u64 write_pointer; 203 204 struct mutex wr_lock; 205 struct btrfs_device *wr_tgtdev; 206 207 /* 208 * statistics 209 */ 210 struct btrfs_scrub_progress stat; 211 spinlock_t stat_lock; 212 213 /* 214 * Use a ref counter to avoid use-after-free issues. Scrub workers 215 * decrement bios_in_flight and workers_pending and then do a wakeup 216 * on the list_wait wait queue. We must ensure the main scrub task 217 * doesn't free the scrub context before or while the workers are 218 * doing the wakeup() call. 219 */ 220 refcount_t refs; 221 }; 222 223 struct scrub_warning { 224 struct btrfs_path *path; 225 u64 extent_item_size; 226 const char *errstr; 227 u64 physical; 228 u64 logical; 229 struct btrfs_device *dev; 230 }; 231 232 static void release_scrub_stripe(struct scrub_stripe *stripe) 233 { 234 if (!stripe) 235 return; 236 237 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) { 238 if (stripe->pages[i]) 239 __free_page(stripe->pages[i]); 240 stripe->pages[i] = NULL; 241 } 242 kfree(stripe->sectors); 243 kfree(stripe->csums); 244 stripe->sectors = NULL; 245 stripe->csums = NULL; 246 stripe->sctx = NULL; 247 stripe->state = 0; 248 } 249 250 static int init_scrub_stripe(struct btrfs_fs_info *fs_info, 251 struct scrub_stripe *stripe) 252 { 253 int ret; 254 255 memset(stripe, 0, sizeof(*stripe)); 256 257 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; 258 stripe->state = 0; 259 260 init_waitqueue_head(&stripe->io_wait); 261 init_waitqueue_head(&stripe->repair_wait); 262 atomic_set(&stripe->pending_io, 0); 263 spin_lock_init(&stripe->write_error_lock); 264 265 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages); 266 if (ret < 0) 267 goto error; 268 269 stripe->sectors = kcalloc(stripe->nr_sectors, 270 sizeof(struct scrub_sector_verification), 271 GFP_KERNEL); 272 if (!stripe->sectors) 273 goto error; 274 275 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits, 276 fs_info->csum_size, GFP_KERNEL); 277 if (!stripe->csums) 278 goto error; 279 return 0; 280 error: 281 release_scrub_stripe(stripe); 282 return -ENOMEM; 283 } 284 285 static void wait_scrub_stripe_io(struct scrub_stripe *stripe) 286 { 287 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); 288 } 289 290 static void scrub_put_ctx(struct scrub_ctx *sctx); 291 292 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 293 { 294 while (atomic_read(&fs_info->scrub_pause_req)) { 295 mutex_unlock(&fs_info->scrub_lock); 296 wait_event(fs_info->scrub_pause_wait, 297 atomic_read(&fs_info->scrub_pause_req) == 0); 298 mutex_lock(&fs_info->scrub_lock); 299 } 300 } 301 302 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 303 { 304 atomic_inc(&fs_info->scrubs_paused); 305 wake_up(&fs_info->scrub_pause_wait); 306 } 307 308 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 309 { 310 mutex_lock(&fs_info->scrub_lock); 311 __scrub_blocked_if_needed(fs_info); 312 atomic_dec(&fs_info->scrubs_paused); 313 mutex_unlock(&fs_info->scrub_lock); 314 315 wake_up(&fs_info->scrub_pause_wait); 316 } 317 318 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 319 { 320 scrub_pause_on(fs_info); 321 scrub_pause_off(fs_info); 322 } 323 324 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 325 { 326 int i; 327 328 if (!sctx) 329 return; 330 331 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) 332 release_scrub_stripe(&sctx->stripes[i]); 333 334 kvfree(sctx); 335 } 336 337 static void scrub_put_ctx(struct scrub_ctx *sctx) 338 { 339 if (refcount_dec_and_test(&sctx->refs)) 340 scrub_free_ctx(sctx); 341 } 342 343 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 344 struct btrfs_fs_info *fs_info, int is_dev_replace) 345 { 346 struct scrub_ctx *sctx; 347 int i; 348 349 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use 350 * kvzalloc(). 351 */ 352 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL); 353 if (!sctx) 354 goto nomem; 355 refcount_set(&sctx->refs, 1); 356 sctx->is_dev_replace = is_dev_replace; 357 sctx->fs_info = fs_info; 358 sctx->extent_path.search_commit_root = 1; 359 sctx->extent_path.skip_locking = 1; 360 sctx->csum_path.search_commit_root = 1; 361 sctx->csum_path.skip_locking = 1; 362 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) { 363 int ret; 364 365 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]); 366 if (ret < 0) 367 goto nomem; 368 sctx->stripes[i].sctx = sctx; 369 } 370 sctx->first_free = 0; 371 atomic_set(&sctx->cancel_req, 0); 372 373 spin_lock_init(&sctx->stat_lock); 374 sctx->throttle_deadline = 0; 375 376 mutex_init(&sctx->wr_lock); 377 if (is_dev_replace) { 378 WARN_ON(!fs_info->dev_replace.tgtdev); 379 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 380 } 381 382 return sctx; 383 384 nomem: 385 scrub_free_ctx(sctx); 386 return ERR_PTR(-ENOMEM); 387 } 388 389 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 390 u64 root, void *warn_ctx) 391 { 392 u32 nlink; 393 int ret; 394 int i; 395 unsigned nofs_flag; 396 struct extent_buffer *eb; 397 struct btrfs_inode_item *inode_item; 398 struct scrub_warning *swarn = warn_ctx; 399 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 400 struct inode_fs_paths *ipath = NULL; 401 struct btrfs_root *local_root; 402 struct btrfs_key key; 403 404 local_root = btrfs_get_fs_root(fs_info, root, true); 405 if (IS_ERR(local_root)) { 406 ret = PTR_ERR(local_root); 407 goto err; 408 } 409 410 /* 411 * this makes the path point to (inum INODE_ITEM ioff) 412 */ 413 key.objectid = inum; 414 key.type = BTRFS_INODE_ITEM_KEY; 415 key.offset = 0; 416 417 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 418 if (ret) { 419 btrfs_put_root(local_root); 420 btrfs_release_path(swarn->path); 421 goto err; 422 } 423 424 eb = swarn->path->nodes[0]; 425 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 426 struct btrfs_inode_item); 427 nlink = btrfs_inode_nlink(eb, inode_item); 428 btrfs_release_path(swarn->path); 429 430 /* 431 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 432 * uses GFP_NOFS in this context, so we keep it consistent but it does 433 * not seem to be strictly necessary. 434 */ 435 nofs_flag = memalloc_nofs_save(); 436 ipath = init_ipath(4096, local_root, swarn->path); 437 memalloc_nofs_restore(nofs_flag); 438 if (IS_ERR(ipath)) { 439 btrfs_put_root(local_root); 440 ret = PTR_ERR(ipath); 441 ipath = NULL; 442 goto err; 443 } 444 ret = paths_from_inode(inum, ipath); 445 446 if (ret < 0) 447 goto err; 448 449 /* 450 * we deliberately ignore the bit ipath might have been too small to 451 * hold all of the paths here 452 */ 453 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 454 btrfs_warn_in_rcu(fs_info, 455 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 456 swarn->errstr, swarn->logical, 457 btrfs_dev_name(swarn->dev), 458 swarn->physical, 459 root, inum, offset, 460 fs_info->sectorsize, nlink, 461 (char *)(unsigned long)ipath->fspath->val[i]); 462 463 btrfs_put_root(local_root); 464 free_ipath(ipath); 465 return 0; 466 467 err: 468 btrfs_warn_in_rcu(fs_info, 469 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 470 swarn->errstr, swarn->logical, 471 btrfs_dev_name(swarn->dev), 472 swarn->physical, 473 root, inum, offset, ret); 474 475 free_ipath(ipath); 476 return 0; 477 } 478 479 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev, 480 bool is_super, u64 logical, u64 physical) 481 { 482 struct btrfs_fs_info *fs_info = dev->fs_info; 483 struct btrfs_path *path; 484 struct btrfs_key found_key; 485 struct extent_buffer *eb; 486 struct btrfs_extent_item *ei; 487 struct scrub_warning swarn; 488 u64 flags = 0; 489 u32 item_size; 490 int ret; 491 492 /* Super block error, no need to search extent tree. */ 493 if (is_super) { 494 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", 495 errstr, btrfs_dev_name(dev), physical); 496 return; 497 } 498 path = btrfs_alloc_path(); 499 if (!path) 500 return; 501 502 swarn.physical = physical; 503 swarn.logical = logical; 504 swarn.errstr = errstr; 505 swarn.dev = NULL; 506 507 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 508 &flags); 509 if (ret < 0) 510 goto out; 511 512 swarn.extent_item_size = found_key.offset; 513 514 eb = path->nodes[0]; 515 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 516 item_size = btrfs_item_size(eb, path->slots[0]); 517 518 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 519 unsigned long ptr = 0; 520 u8 ref_level; 521 u64 ref_root; 522 523 while (true) { 524 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 525 item_size, &ref_root, 526 &ref_level); 527 if (ret < 0) { 528 btrfs_warn(fs_info, 529 "failed to resolve tree backref for logical %llu: %d", 530 swarn.logical, ret); 531 break; 532 } 533 if (ret > 0) 534 break; 535 btrfs_warn_in_rcu(fs_info, 536 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 537 errstr, swarn.logical, btrfs_dev_name(dev), 538 swarn.physical, (ref_level ? "node" : "leaf"), 539 ref_level, ref_root); 540 } 541 btrfs_release_path(path); 542 } else { 543 struct btrfs_backref_walk_ctx ctx = { 0 }; 544 545 btrfs_release_path(path); 546 547 ctx.bytenr = found_key.objectid; 548 ctx.extent_item_pos = swarn.logical - found_key.objectid; 549 ctx.fs_info = fs_info; 550 551 swarn.path = path; 552 swarn.dev = dev; 553 554 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); 555 } 556 557 out: 558 btrfs_free_path(path); 559 } 560 561 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 562 { 563 int ret = 0; 564 u64 length; 565 566 if (!btrfs_is_zoned(sctx->fs_info)) 567 return 0; 568 569 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 570 return 0; 571 572 if (sctx->write_pointer < physical) { 573 length = physical - sctx->write_pointer; 574 575 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 576 sctx->write_pointer, length); 577 if (!ret) 578 sctx->write_pointer = physical; 579 } 580 return ret; 581 } 582 583 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr) 584 { 585 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 586 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT; 587 588 return stripe->pages[page_index]; 589 } 590 591 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe, 592 int sector_nr) 593 { 594 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 595 596 return offset_in_page(sector_nr << fs_info->sectorsize_bits); 597 } 598 599 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr) 600 { 601 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 602 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 603 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits); 604 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr); 605 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr); 606 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 607 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 608 u8 calculated_csum[BTRFS_CSUM_SIZE]; 609 struct btrfs_header *header; 610 611 /* 612 * Here we don't have a good way to attach the pages (and subpages) 613 * to a dummy extent buffer, thus we have to directly grab the members 614 * from pages. 615 */ 616 header = (struct btrfs_header *)(page_address(first_page) + first_off); 617 memcpy(on_disk_csum, header->csum, fs_info->csum_size); 618 619 if (logical != btrfs_stack_header_bytenr(header)) { 620 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 621 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 622 btrfs_warn_rl(fs_info, 623 "tree block %llu mirror %u has bad bytenr, has %llu want %llu", 624 logical, stripe->mirror_num, 625 btrfs_stack_header_bytenr(header), logical); 626 return; 627 } 628 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid, 629 BTRFS_FSID_SIZE) != 0) { 630 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 631 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 632 btrfs_warn_rl(fs_info, 633 "tree block %llu mirror %u has bad fsid, has %pU want %pU", 634 logical, stripe->mirror_num, 635 header->fsid, fs_info->fs_devices->fsid); 636 return; 637 } 638 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid, 639 BTRFS_UUID_SIZE) != 0) { 640 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 641 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 642 btrfs_warn_rl(fs_info, 643 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", 644 logical, stripe->mirror_num, 645 header->chunk_tree_uuid, fs_info->chunk_tree_uuid); 646 return; 647 } 648 649 /* Now check tree block csum. */ 650 shash->tfm = fs_info->csum_shash; 651 crypto_shash_init(shash); 652 crypto_shash_update(shash, page_address(first_page) + first_off + 653 BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE); 654 655 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) { 656 struct page *page = scrub_stripe_get_page(stripe, i); 657 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i); 658 659 crypto_shash_update(shash, page_address(page) + page_off, 660 fs_info->sectorsize); 661 } 662 663 crypto_shash_final(shash, calculated_csum); 664 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) { 665 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 666 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 667 btrfs_warn_rl(fs_info, 668 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, 669 logical, stripe->mirror_num, 670 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), 671 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); 672 return; 673 } 674 if (stripe->sectors[sector_nr].generation != 675 btrfs_stack_header_generation(header)) { 676 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 677 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree); 678 btrfs_warn_rl(fs_info, 679 "tree block %llu mirror %u has bad generation, has %llu want %llu", 680 logical, stripe->mirror_num, 681 btrfs_stack_header_generation(header), 682 stripe->sectors[sector_nr].generation); 683 return; 684 } 685 bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree); 686 bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree); 687 bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree); 688 } 689 690 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr) 691 { 692 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 693 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr]; 694 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 695 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 696 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 697 u8 csum_buf[BTRFS_CSUM_SIZE]; 698 int ret; 699 700 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors); 701 702 /* Sector not utilized, skip it. */ 703 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap)) 704 return; 705 706 /* IO error, no need to check. */ 707 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 708 return; 709 710 /* Metadata, verify the full tree block. */ 711 if (sector->is_metadata) { 712 /* 713 * Check if the tree block crosses the stripe boudary. If 714 * crossed the boundary, we cannot verify it but only give a 715 * warning. 716 * 717 * This can only happen on a very old filesystem where chunks 718 * are not ensured to be stripe aligned. 719 */ 720 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) { 721 btrfs_warn_rl(fs_info, 722 "tree block at %llu crosses stripe boundary %llu", 723 stripe->logical + 724 (sector_nr << fs_info->sectorsize_bits), 725 stripe->logical); 726 return; 727 } 728 scrub_verify_one_metadata(stripe, sector_nr); 729 return; 730 } 731 732 /* 733 * Data is easier, we just verify the data csum (if we have it). For 734 * cases without csum, we have no other choice but to trust it. 735 */ 736 if (!sector->csum) { 737 clear_bit(sector_nr, &stripe->error_bitmap); 738 return; 739 } 740 741 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum); 742 if (ret < 0) { 743 set_bit(sector_nr, &stripe->csum_error_bitmap); 744 set_bit(sector_nr, &stripe->error_bitmap); 745 } else { 746 clear_bit(sector_nr, &stripe->csum_error_bitmap); 747 clear_bit(sector_nr, &stripe->error_bitmap); 748 } 749 } 750 751 /* Verify specified sectors of a stripe. */ 752 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap) 753 { 754 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 755 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits; 756 int sector_nr; 757 758 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) { 759 scrub_verify_one_sector(stripe, sector_nr); 760 if (stripe->sectors[sector_nr].is_metadata) 761 sector_nr += sectors_per_tree - 1; 762 } 763 } 764 765 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec) 766 { 767 int i; 768 769 for (i = 0; i < stripe->nr_sectors; i++) { 770 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page && 771 scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset) 772 break; 773 } 774 ASSERT(i < stripe->nr_sectors); 775 return i; 776 } 777 778 /* 779 * Repair read is different to the regular read: 780 * 781 * - Only reads the failed sectors 782 * - May have extra blocksize limits 783 */ 784 static void scrub_repair_read_endio(struct btrfs_bio *bbio) 785 { 786 struct scrub_stripe *stripe = bbio->private; 787 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 788 struct bio_vec *bvec; 789 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 790 u32 bio_size = 0; 791 int i; 792 793 ASSERT(sector_nr < stripe->nr_sectors); 794 795 bio_for_each_bvec_all(bvec, &bbio->bio, i) 796 bio_size += bvec->bv_len; 797 798 if (bbio->bio.bi_status) { 799 bitmap_set(&stripe->io_error_bitmap, sector_nr, 800 bio_size >> fs_info->sectorsize_bits); 801 bitmap_set(&stripe->error_bitmap, sector_nr, 802 bio_size >> fs_info->sectorsize_bits); 803 } else { 804 bitmap_clear(&stripe->io_error_bitmap, sector_nr, 805 bio_size >> fs_info->sectorsize_bits); 806 } 807 bio_put(&bbio->bio); 808 if (atomic_dec_and_test(&stripe->pending_io)) 809 wake_up(&stripe->io_wait); 810 } 811 812 static int calc_next_mirror(int mirror, int num_copies) 813 { 814 ASSERT(mirror <= num_copies); 815 return (mirror + 1 > num_copies) ? 1 : mirror + 1; 816 } 817 818 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe, 819 int mirror, int blocksize, bool wait) 820 { 821 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 822 struct btrfs_bio *bbio = NULL; 823 const unsigned long old_error_bitmap = stripe->error_bitmap; 824 int i; 825 826 ASSERT(stripe->mirror_num >= 1); 827 ASSERT(atomic_read(&stripe->pending_io) == 0); 828 829 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) { 830 struct page *page; 831 int pgoff; 832 int ret; 833 834 page = scrub_stripe_get_page(stripe, i); 835 pgoff = scrub_stripe_get_page_offset(stripe, i); 836 837 /* The current sector cannot be merged, submit the bio. */ 838 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) || 839 bbio->bio.bi_iter.bi_size >= blocksize)) { 840 ASSERT(bbio->bio.bi_iter.bi_size); 841 atomic_inc(&stripe->pending_io); 842 btrfs_submit_bio(bbio, mirror); 843 if (wait) 844 wait_scrub_stripe_io(stripe); 845 bbio = NULL; 846 } 847 848 if (!bbio) { 849 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ, 850 fs_info, scrub_repair_read_endio, stripe); 851 bbio->bio.bi_iter.bi_sector = (stripe->logical + 852 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT; 853 } 854 855 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 856 ASSERT(ret == fs_info->sectorsize); 857 } 858 if (bbio) { 859 ASSERT(bbio->bio.bi_iter.bi_size); 860 atomic_inc(&stripe->pending_io); 861 btrfs_submit_bio(bbio, mirror); 862 if (wait) 863 wait_scrub_stripe_io(stripe); 864 } 865 } 866 867 static void scrub_stripe_report_errors(struct scrub_ctx *sctx, 868 struct scrub_stripe *stripe) 869 { 870 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 871 DEFAULT_RATELIMIT_BURST); 872 struct btrfs_fs_info *fs_info = sctx->fs_info; 873 struct btrfs_device *dev = NULL; 874 u64 physical = 0; 875 int nr_data_sectors = 0; 876 int nr_meta_sectors = 0; 877 int nr_nodatacsum_sectors = 0; 878 int nr_repaired_sectors = 0; 879 int sector_nr; 880 881 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state)) 882 return; 883 884 /* 885 * Init needed infos for error reporting. 886 * 887 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio() 888 * thus no need for dev/physical, error reporting still needs dev and physical. 889 */ 890 if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) { 891 u64 mapped_len = fs_info->sectorsize; 892 struct btrfs_io_context *bioc = NULL; 893 int stripe_index = stripe->mirror_num - 1; 894 int ret; 895 896 /* For scrub, our mirror_num should always start at 1. */ 897 ASSERT(stripe->mirror_num >= 1); 898 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 899 stripe->logical, &mapped_len, &bioc, 900 NULL, NULL, 1); 901 /* 902 * If we failed, dev will be NULL, and later detailed reports 903 * will just be skipped. 904 */ 905 if (ret < 0) 906 goto skip; 907 physical = bioc->stripes[stripe_index].physical; 908 dev = bioc->stripes[stripe_index].dev; 909 btrfs_put_bioc(bioc); 910 } 911 912 skip: 913 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) { 914 bool repaired = false; 915 916 if (stripe->sectors[sector_nr].is_metadata) { 917 nr_meta_sectors++; 918 } else { 919 nr_data_sectors++; 920 if (!stripe->sectors[sector_nr].csum) 921 nr_nodatacsum_sectors++; 922 } 923 924 if (test_bit(sector_nr, &stripe->init_error_bitmap) && 925 !test_bit(sector_nr, &stripe->error_bitmap)) { 926 nr_repaired_sectors++; 927 repaired = true; 928 } 929 930 /* Good sector from the beginning, nothing need to be done. */ 931 if (!test_bit(sector_nr, &stripe->init_error_bitmap)) 932 continue; 933 934 /* 935 * Report error for the corrupted sectors. If repaired, just 936 * output the message of repaired message. 937 */ 938 if (repaired) { 939 if (dev) { 940 btrfs_err_rl_in_rcu(fs_info, 941 "fixed up error at logical %llu on dev %s physical %llu", 942 stripe->logical, btrfs_dev_name(dev), 943 physical); 944 } else { 945 btrfs_err_rl_in_rcu(fs_info, 946 "fixed up error at logical %llu on mirror %u", 947 stripe->logical, stripe->mirror_num); 948 } 949 continue; 950 } 951 952 /* The remaining are all for unrepaired. */ 953 if (dev) { 954 btrfs_err_rl_in_rcu(fs_info, 955 "unable to fixup (regular) error at logical %llu on dev %s physical %llu", 956 stripe->logical, btrfs_dev_name(dev), 957 physical); 958 } else { 959 btrfs_err_rl_in_rcu(fs_info, 960 "unable to fixup (regular) error at logical %llu on mirror %u", 961 stripe->logical, stripe->mirror_num); 962 } 963 964 if (test_bit(sector_nr, &stripe->io_error_bitmap)) 965 if (__ratelimit(&rs) && dev) 966 scrub_print_common_warning("i/o error", dev, false, 967 stripe->logical, physical); 968 if (test_bit(sector_nr, &stripe->csum_error_bitmap)) 969 if (__ratelimit(&rs) && dev) 970 scrub_print_common_warning("checksum error", dev, false, 971 stripe->logical, physical); 972 if (test_bit(sector_nr, &stripe->meta_error_bitmap)) 973 if (__ratelimit(&rs) && dev) 974 scrub_print_common_warning("header error", dev, false, 975 stripe->logical, physical); 976 } 977 978 spin_lock(&sctx->stat_lock); 979 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents; 980 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents; 981 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits; 982 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits; 983 sctx->stat.no_csum += nr_nodatacsum_sectors; 984 sctx->stat.read_errors += stripe->init_nr_io_errors; 985 sctx->stat.csum_errors += stripe->init_nr_csum_errors; 986 sctx->stat.verify_errors += stripe->init_nr_meta_errors; 987 sctx->stat.uncorrectable_errors += 988 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors); 989 sctx->stat.corrected_errors += nr_repaired_sectors; 990 spin_unlock(&sctx->stat_lock); 991 } 992 993 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 994 unsigned long write_bitmap, bool dev_replace); 995 996 /* 997 * The main entrance for all read related scrub work, including: 998 * 999 * - Wait for the initial read to finish 1000 * - Verify and locate any bad sectors 1001 * - Go through the remaining mirrors and try to read as large blocksize as 1002 * possible 1003 * - Go through all mirrors (including the failed mirror) sector-by-sector 1004 * - Submit writeback for repaired sectors 1005 * 1006 * Writeback for dev-replace does not happen here, it needs extra 1007 * synchronization for zoned devices. 1008 */ 1009 static void scrub_stripe_read_repair_worker(struct work_struct *work) 1010 { 1011 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work); 1012 struct scrub_ctx *sctx = stripe->sctx; 1013 struct btrfs_fs_info *fs_info = sctx->fs_info; 1014 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1015 stripe->bg->length); 1016 unsigned long repaired; 1017 int mirror; 1018 int i; 1019 1020 ASSERT(stripe->mirror_num > 0); 1021 1022 wait_scrub_stripe_io(stripe); 1023 scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap); 1024 /* Save the initial failed bitmap for later repair and report usage. */ 1025 stripe->init_error_bitmap = stripe->error_bitmap; 1026 stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap, 1027 stripe->nr_sectors); 1028 stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap, 1029 stripe->nr_sectors); 1030 stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap, 1031 stripe->nr_sectors); 1032 1033 if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) 1034 goto out; 1035 1036 /* 1037 * Try all remaining mirrors. 1038 * 1039 * Here we still try to read as large block as possible, as this is 1040 * faster and we have extra safety nets to rely on. 1041 */ 1042 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies); 1043 mirror != stripe->mirror_num; 1044 mirror = calc_next_mirror(mirror, num_copies)) { 1045 const unsigned long old_error_bitmap = stripe->error_bitmap; 1046 1047 scrub_stripe_submit_repair_read(stripe, mirror, 1048 BTRFS_STRIPE_LEN, false); 1049 wait_scrub_stripe_io(stripe); 1050 scrub_verify_one_stripe(stripe, old_error_bitmap); 1051 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1052 goto out; 1053 } 1054 1055 /* 1056 * Last safety net, try re-checking all mirrors, including the failed 1057 * one, sector-by-sector. 1058 * 1059 * As if one sector failed the drive's internal csum, the whole read 1060 * containing the offending sector would be marked as error. 1061 * Thus here we do sector-by-sector read. 1062 * 1063 * This can be slow, thus we only try it as the last resort. 1064 */ 1065 1066 for (i = 0, mirror = stripe->mirror_num; 1067 i < num_copies; 1068 i++, mirror = calc_next_mirror(mirror, num_copies)) { 1069 const unsigned long old_error_bitmap = stripe->error_bitmap; 1070 1071 scrub_stripe_submit_repair_read(stripe, mirror, 1072 fs_info->sectorsize, true); 1073 wait_scrub_stripe_io(stripe); 1074 scrub_verify_one_stripe(stripe, old_error_bitmap); 1075 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) 1076 goto out; 1077 } 1078 out: 1079 /* 1080 * Submit the repaired sectors. For zoned case, we cannot do repair 1081 * in-place, but queue the bg to be relocated. 1082 */ 1083 bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap, 1084 stripe->nr_sectors); 1085 if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) { 1086 if (btrfs_is_zoned(fs_info)) { 1087 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start); 1088 } else { 1089 scrub_write_sectors(sctx, stripe, repaired, false); 1090 wait_scrub_stripe_io(stripe); 1091 } 1092 } 1093 1094 scrub_stripe_report_errors(sctx, stripe); 1095 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state); 1096 wake_up(&stripe->repair_wait); 1097 } 1098 1099 static void scrub_read_endio(struct btrfs_bio *bbio) 1100 { 1101 struct scrub_stripe *stripe = bbio->private; 1102 struct bio_vec *bvec; 1103 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1104 int num_sectors; 1105 u32 bio_size = 0; 1106 int i; 1107 1108 ASSERT(sector_nr < stripe->nr_sectors); 1109 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1110 bio_size += bvec->bv_len; 1111 num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits; 1112 1113 if (bbio->bio.bi_status) { 1114 bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors); 1115 bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors); 1116 } else { 1117 bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors); 1118 } 1119 bio_put(&bbio->bio); 1120 if (atomic_dec_and_test(&stripe->pending_io)) { 1121 wake_up(&stripe->io_wait); 1122 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker); 1123 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work); 1124 } 1125 } 1126 1127 static void scrub_write_endio(struct btrfs_bio *bbio) 1128 { 1129 struct scrub_stripe *stripe = bbio->private; 1130 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1131 struct bio_vec *bvec; 1132 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio)); 1133 u32 bio_size = 0; 1134 int i; 1135 1136 bio_for_each_bvec_all(bvec, &bbio->bio, i) 1137 bio_size += bvec->bv_len; 1138 1139 if (bbio->bio.bi_status) { 1140 unsigned long flags; 1141 1142 spin_lock_irqsave(&stripe->write_error_lock, flags); 1143 bitmap_set(&stripe->write_error_bitmap, sector_nr, 1144 bio_size >> fs_info->sectorsize_bits); 1145 spin_unlock_irqrestore(&stripe->write_error_lock, flags); 1146 } 1147 bio_put(&bbio->bio); 1148 1149 if (atomic_dec_and_test(&stripe->pending_io)) 1150 wake_up(&stripe->io_wait); 1151 } 1152 1153 static void scrub_submit_write_bio(struct scrub_ctx *sctx, 1154 struct scrub_stripe *stripe, 1155 struct btrfs_bio *bbio, bool dev_replace) 1156 { 1157 struct btrfs_fs_info *fs_info = sctx->fs_info; 1158 u32 bio_len = bbio->bio.bi_iter.bi_size; 1159 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) - 1160 stripe->logical; 1161 1162 fill_writer_pointer_gap(sctx, stripe->physical + bio_off); 1163 atomic_inc(&stripe->pending_io); 1164 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace); 1165 if (!btrfs_is_zoned(fs_info)) 1166 return; 1167 /* 1168 * For zoned writeback, queue depth must be 1, thus we must wait for 1169 * the write to finish before the next write. 1170 */ 1171 wait_scrub_stripe_io(stripe); 1172 1173 /* 1174 * And also need to update the write pointer if write finished 1175 * successfully. 1176 */ 1177 if (!test_bit(bio_off >> fs_info->sectorsize_bits, 1178 &stripe->write_error_bitmap)) 1179 sctx->write_pointer += bio_len; 1180 } 1181 1182 /* 1183 * Submit the write bio(s) for the sectors specified by @write_bitmap. 1184 * 1185 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits: 1186 * 1187 * - Only needs logical bytenr and mirror_num 1188 * Just like the scrub read path 1189 * 1190 * - Would only result in writes to the specified mirror 1191 * Unlike the regular writeback path, which would write back to all stripes 1192 * 1193 * - Handle dev-replace and read-repair writeback differently 1194 */ 1195 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe, 1196 unsigned long write_bitmap, bool dev_replace) 1197 { 1198 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1199 struct btrfs_bio *bbio = NULL; 1200 int sector_nr; 1201 1202 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) { 1203 struct page *page = scrub_stripe_get_page(stripe, sector_nr); 1204 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr); 1205 int ret; 1206 1207 /* We should only writeback sectors covered by an extent. */ 1208 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap)); 1209 1210 /* Cannot merge with previous sector, submit the current one. */ 1211 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) { 1212 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1213 bbio = NULL; 1214 } 1215 if (!bbio) { 1216 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE, 1217 fs_info, scrub_write_endio, stripe); 1218 bbio->bio.bi_iter.bi_sector = (stripe->logical + 1219 (sector_nr << fs_info->sectorsize_bits)) >> 1220 SECTOR_SHIFT; 1221 } 1222 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 1223 ASSERT(ret == fs_info->sectorsize); 1224 } 1225 if (bbio) 1226 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace); 1227 } 1228 1229 /* 1230 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 1231 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 1232 */ 1233 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device, 1234 unsigned int bio_size) 1235 { 1236 const int time_slice = 1000; 1237 s64 delta; 1238 ktime_t now; 1239 u32 div; 1240 u64 bwlimit; 1241 1242 bwlimit = READ_ONCE(device->scrub_speed_max); 1243 if (bwlimit == 0) 1244 return; 1245 1246 /* 1247 * Slice is divided into intervals when the IO is submitted, adjust by 1248 * bwlimit and maximum of 64 intervals. 1249 */ 1250 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 1251 div = min_t(u32, 64, div); 1252 1253 /* Start new epoch, set deadline */ 1254 now = ktime_get(); 1255 if (sctx->throttle_deadline == 0) { 1256 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 1257 sctx->throttle_sent = 0; 1258 } 1259 1260 /* Still in the time to send? */ 1261 if (ktime_before(now, sctx->throttle_deadline)) { 1262 /* If current bio is within the limit, send it */ 1263 sctx->throttle_sent += bio_size; 1264 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 1265 return; 1266 1267 /* We're over the limit, sleep until the rest of the slice */ 1268 delta = ktime_ms_delta(sctx->throttle_deadline, now); 1269 } else { 1270 /* New request after deadline, start new epoch */ 1271 delta = 0; 1272 } 1273 1274 if (delta) { 1275 long timeout; 1276 1277 timeout = div_u64(delta * HZ, 1000); 1278 schedule_timeout_interruptible(timeout); 1279 } 1280 1281 /* Next call will start the deadline period */ 1282 sctx->throttle_deadline = 0; 1283 } 1284 1285 /* 1286 * Given a physical address, this will calculate it's 1287 * logical offset. if this is a parity stripe, it will return 1288 * the most left data stripe's logical offset. 1289 * 1290 * return 0 if it is a data stripe, 1 means parity stripe. 1291 */ 1292 static int get_raid56_logic_offset(u64 physical, int num, 1293 struct map_lookup *map, u64 *offset, 1294 u64 *stripe_start) 1295 { 1296 int i; 1297 int j = 0; 1298 u64 last_offset; 1299 const int data_stripes = nr_data_stripes(map); 1300 1301 last_offset = (physical - map->stripes[num].physical) * data_stripes; 1302 if (stripe_start) 1303 *stripe_start = last_offset; 1304 1305 *offset = last_offset; 1306 for (i = 0; i < data_stripes; i++) { 1307 u32 stripe_nr; 1308 u32 stripe_index; 1309 u32 rot; 1310 1311 *offset = last_offset + btrfs_stripe_nr_to_offset(i); 1312 1313 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes; 1314 1315 /* Work out the disk rotation on this stripe-set */ 1316 rot = stripe_nr % map->num_stripes; 1317 /* calculate which stripe this data locates */ 1318 rot += i; 1319 stripe_index = rot % map->num_stripes; 1320 if (stripe_index == num) 1321 return 0; 1322 if (stripe_index < num) 1323 j++; 1324 } 1325 *offset = last_offset + btrfs_stripe_nr_to_offset(j); 1326 return 1; 1327 } 1328 1329 /* 1330 * Return 0 if the extent item range covers any byte of the range. 1331 * Return <0 if the extent item is before @search_start. 1332 * Return >0 if the extent item is after @start_start + @search_len. 1333 */ 1334 static int compare_extent_item_range(struct btrfs_path *path, 1335 u64 search_start, u64 search_len) 1336 { 1337 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 1338 u64 len; 1339 struct btrfs_key key; 1340 1341 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1342 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 1343 key.type == BTRFS_METADATA_ITEM_KEY); 1344 if (key.type == BTRFS_METADATA_ITEM_KEY) 1345 len = fs_info->nodesize; 1346 else 1347 len = key.offset; 1348 1349 if (key.objectid + len <= search_start) 1350 return -1; 1351 if (key.objectid >= search_start + search_len) 1352 return 1; 1353 return 0; 1354 } 1355 1356 /* 1357 * Locate one extent item which covers any byte in range 1358 * [@search_start, @search_start + @search_length) 1359 * 1360 * If the path is not initialized, we will initialize the search by doing 1361 * a btrfs_search_slot(). 1362 * If the path is already initialized, we will use the path as the initial 1363 * slot, to avoid duplicated btrfs_search_slot() calls. 1364 * 1365 * NOTE: If an extent item starts before @search_start, we will still 1366 * return the extent item. This is for data extent crossing stripe boundary. 1367 * 1368 * Return 0 if we found such extent item, and @path will point to the extent item. 1369 * Return >0 if no such extent item can be found, and @path will be released. 1370 * Return <0 if hit fatal error, and @path will be released. 1371 */ 1372 static int find_first_extent_item(struct btrfs_root *extent_root, 1373 struct btrfs_path *path, 1374 u64 search_start, u64 search_len) 1375 { 1376 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1377 struct btrfs_key key; 1378 int ret; 1379 1380 /* Continue using the existing path */ 1381 if (path->nodes[0]) 1382 goto search_forward; 1383 1384 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1385 key.type = BTRFS_METADATA_ITEM_KEY; 1386 else 1387 key.type = BTRFS_EXTENT_ITEM_KEY; 1388 key.objectid = search_start; 1389 key.offset = (u64)-1; 1390 1391 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 1392 if (ret < 0) 1393 return ret; 1394 1395 ASSERT(ret > 0); 1396 /* 1397 * Here we intentionally pass 0 as @min_objectid, as there could be 1398 * an extent item starting before @search_start. 1399 */ 1400 ret = btrfs_previous_extent_item(extent_root, path, 0); 1401 if (ret < 0) 1402 return ret; 1403 /* 1404 * No matter whether we have found an extent item, the next loop will 1405 * properly do every check on the key. 1406 */ 1407 search_forward: 1408 while (true) { 1409 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1410 if (key.objectid >= search_start + search_len) 1411 break; 1412 if (key.type != BTRFS_METADATA_ITEM_KEY && 1413 key.type != BTRFS_EXTENT_ITEM_KEY) 1414 goto next; 1415 1416 ret = compare_extent_item_range(path, search_start, search_len); 1417 if (ret == 0) 1418 return ret; 1419 if (ret > 0) 1420 break; 1421 next: 1422 path->slots[0]++; 1423 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 1424 ret = btrfs_next_leaf(extent_root, path); 1425 if (ret) { 1426 /* Either no more item or fatal error */ 1427 btrfs_release_path(path); 1428 return ret; 1429 } 1430 } 1431 } 1432 btrfs_release_path(path); 1433 return 1; 1434 } 1435 1436 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 1437 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 1438 { 1439 struct btrfs_key key; 1440 struct btrfs_extent_item *ei; 1441 1442 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1443 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 1444 key.type == BTRFS_EXTENT_ITEM_KEY); 1445 *extent_start_ret = key.objectid; 1446 if (key.type == BTRFS_METADATA_ITEM_KEY) 1447 *size_ret = path->nodes[0]->fs_info->nodesize; 1448 else 1449 *size_ret = key.offset; 1450 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 1451 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 1452 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 1453 } 1454 1455 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 1456 u64 physical, u64 physical_end) 1457 { 1458 struct btrfs_fs_info *fs_info = sctx->fs_info; 1459 int ret = 0; 1460 1461 if (!btrfs_is_zoned(fs_info)) 1462 return 0; 1463 1464 mutex_lock(&sctx->wr_lock); 1465 if (sctx->write_pointer < physical_end) { 1466 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 1467 physical, 1468 sctx->write_pointer); 1469 if (ret) 1470 btrfs_err(fs_info, 1471 "zoned: failed to recover write pointer"); 1472 } 1473 mutex_unlock(&sctx->wr_lock); 1474 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 1475 1476 return ret; 1477 } 1478 1479 static void fill_one_extent_info(struct btrfs_fs_info *fs_info, 1480 struct scrub_stripe *stripe, 1481 u64 extent_start, u64 extent_len, 1482 u64 extent_flags, u64 extent_gen) 1483 { 1484 for (u64 cur_logical = max(stripe->logical, extent_start); 1485 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN, 1486 extent_start + extent_len); 1487 cur_logical += fs_info->sectorsize) { 1488 const int nr_sector = (cur_logical - stripe->logical) >> 1489 fs_info->sectorsize_bits; 1490 struct scrub_sector_verification *sector = 1491 &stripe->sectors[nr_sector]; 1492 1493 set_bit(nr_sector, &stripe->extent_sector_bitmap); 1494 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1495 sector->is_metadata = true; 1496 sector->generation = extent_gen; 1497 } 1498 } 1499 } 1500 1501 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe) 1502 { 1503 stripe->extent_sector_bitmap = 0; 1504 stripe->init_error_bitmap = 0; 1505 stripe->init_nr_io_errors = 0; 1506 stripe->init_nr_csum_errors = 0; 1507 stripe->init_nr_meta_errors = 0; 1508 stripe->error_bitmap = 0; 1509 stripe->io_error_bitmap = 0; 1510 stripe->csum_error_bitmap = 0; 1511 stripe->meta_error_bitmap = 0; 1512 } 1513 1514 /* 1515 * Locate one stripe which has at least one extent in its range. 1516 * 1517 * Return 0 if found such stripe, and store its info into @stripe. 1518 * Return >0 if there is no such stripe in the specified range. 1519 * Return <0 for error. 1520 */ 1521 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg, 1522 struct btrfs_path *extent_path, 1523 struct btrfs_path *csum_path, 1524 struct btrfs_device *dev, u64 physical, 1525 int mirror_num, u64 logical_start, 1526 u32 logical_len, 1527 struct scrub_stripe *stripe) 1528 { 1529 struct btrfs_fs_info *fs_info = bg->fs_info; 1530 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start); 1531 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start); 1532 const u64 logical_end = logical_start + logical_len; 1533 u64 cur_logical = logical_start; 1534 u64 stripe_end; 1535 u64 extent_start; 1536 u64 extent_len; 1537 u64 extent_flags; 1538 u64 extent_gen; 1539 int ret; 1540 1541 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) * 1542 stripe->nr_sectors); 1543 scrub_stripe_reset_bitmaps(stripe); 1544 1545 /* The range must be inside the bg. */ 1546 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 1547 1548 ret = find_first_extent_item(extent_root, extent_path, logical_start, 1549 logical_len); 1550 /* Either error or not found. */ 1551 if (ret) 1552 goto out; 1553 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags, 1554 &extent_gen); 1555 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1556 stripe->nr_meta_extents++; 1557 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1558 stripe->nr_data_extents++; 1559 cur_logical = max(extent_start, cur_logical); 1560 1561 /* 1562 * Round down to stripe boundary. 1563 * 1564 * The extra calculation against bg->start is to handle block groups 1565 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned. 1566 */ 1567 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) + 1568 bg->start; 1569 stripe->physical = physical + stripe->logical - logical_start; 1570 stripe->dev = dev; 1571 stripe->bg = bg; 1572 stripe->mirror_num = mirror_num; 1573 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1; 1574 1575 /* Fill the first extent info into stripe->sectors[] array. */ 1576 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1577 extent_flags, extent_gen); 1578 cur_logical = extent_start + extent_len; 1579 1580 /* Fill the extent info for the remaining sectors. */ 1581 while (cur_logical <= stripe_end) { 1582 ret = find_first_extent_item(extent_root, extent_path, cur_logical, 1583 stripe_end - cur_logical + 1); 1584 if (ret < 0) 1585 goto out; 1586 if (ret > 0) { 1587 ret = 0; 1588 break; 1589 } 1590 get_extent_info(extent_path, &extent_start, &extent_len, 1591 &extent_flags, &extent_gen); 1592 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1593 stripe->nr_meta_extents++; 1594 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) 1595 stripe->nr_data_extents++; 1596 fill_one_extent_info(fs_info, stripe, extent_start, extent_len, 1597 extent_flags, extent_gen); 1598 cur_logical = extent_start + extent_len; 1599 } 1600 1601 /* Now fill the data csum. */ 1602 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) { 1603 int sector_nr; 1604 unsigned long csum_bitmap = 0; 1605 1606 /* Csum space should have already been allocated. */ 1607 ASSERT(stripe->csums); 1608 1609 /* 1610 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN 1611 * should contain at most 16 sectors. 1612 */ 1613 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1614 1615 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path, 1616 stripe->logical, stripe_end, 1617 stripe->csums, &csum_bitmap); 1618 if (ret < 0) 1619 goto out; 1620 if (ret > 0) 1621 ret = 0; 1622 1623 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) { 1624 stripe->sectors[sector_nr].csum = stripe->csums + 1625 sector_nr * fs_info->csum_size; 1626 } 1627 } 1628 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1629 out: 1630 return ret; 1631 } 1632 1633 static void scrub_reset_stripe(struct scrub_stripe *stripe) 1634 { 1635 scrub_stripe_reset_bitmaps(stripe); 1636 1637 stripe->nr_meta_extents = 0; 1638 stripe->nr_data_extents = 0; 1639 stripe->state = 0; 1640 1641 for (int i = 0; i < stripe->nr_sectors; i++) { 1642 stripe->sectors[i].is_metadata = false; 1643 stripe->sectors[i].csum = NULL; 1644 stripe->sectors[i].generation = 0; 1645 } 1646 } 1647 1648 static void scrub_submit_initial_read(struct scrub_ctx *sctx, 1649 struct scrub_stripe *stripe) 1650 { 1651 struct btrfs_fs_info *fs_info = sctx->fs_info; 1652 struct btrfs_bio *bbio; 1653 unsigned int nr_sectors = min_t(u64, BTRFS_STRIPE_LEN, stripe->bg->start + 1654 stripe->bg->length - stripe->logical) >> 1655 fs_info->sectorsize_bits; 1656 int mirror = stripe->mirror_num; 1657 1658 ASSERT(stripe->bg); 1659 ASSERT(stripe->mirror_num > 0); 1660 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1661 1662 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info, 1663 scrub_read_endio, stripe); 1664 1665 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT; 1666 /* Read the whole range inside the chunk boundary. */ 1667 for (unsigned int cur = 0; cur < nr_sectors; cur++) { 1668 struct page *page = scrub_stripe_get_page(stripe, cur); 1669 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur); 1670 int ret; 1671 1672 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff); 1673 /* We should have allocated enough bio vectors. */ 1674 ASSERT(ret == fs_info->sectorsize); 1675 } 1676 atomic_inc(&stripe->pending_io); 1677 1678 /* 1679 * For dev-replace, either user asks to avoid the source dev, or 1680 * the device is missing, we try the next mirror instead. 1681 */ 1682 if (sctx->is_dev_replace && 1683 (fs_info->dev_replace.cont_reading_from_srcdev_mode == 1684 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID || 1685 !stripe->dev->bdev)) { 1686 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start, 1687 stripe->bg->length); 1688 1689 mirror = calc_next_mirror(mirror, num_copies); 1690 } 1691 btrfs_submit_bio(bbio, mirror); 1692 } 1693 1694 static bool stripe_has_metadata_error(struct scrub_stripe *stripe) 1695 { 1696 int i; 1697 1698 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) { 1699 if (stripe->sectors[i].is_metadata) { 1700 struct btrfs_fs_info *fs_info = stripe->bg->fs_info; 1701 1702 btrfs_err(fs_info, 1703 "stripe %llu has unrepaired metadata sector at %llu", 1704 stripe->logical, 1705 stripe->logical + (i << fs_info->sectorsize_bits)); 1706 return true; 1707 } 1708 } 1709 return false; 1710 } 1711 1712 static void submit_initial_group_read(struct scrub_ctx *sctx, 1713 unsigned int first_slot, 1714 unsigned int nr_stripes) 1715 { 1716 struct blk_plug plug; 1717 1718 ASSERT(first_slot < SCRUB_TOTAL_STRIPES); 1719 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES); 1720 1721 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev, 1722 btrfs_stripe_nr_to_offset(nr_stripes)); 1723 blk_start_plug(&plug); 1724 for (int i = 0; i < nr_stripes; i++) { 1725 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i]; 1726 1727 /* Those stripes should be initialized. */ 1728 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state)); 1729 scrub_submit_initial_read(sctx, stripe); 1730 } 1731 blk_finish_plug(&plug); 1732 } 1733 1734 static int flush_scrub_stripes(struct scrub_ctx *sctx) 1735 { 1736 struct btrfs_fs_info *fs_info = sctx->fs_info; 1737 struct scrub_stripe *stripe; 1738 const int nr_stripes = sctx->cur_stripe; 1739 int ret = 0; 1740 1741 if (!nr_stripes) 1742 return 0; 1743 1744 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state)); 1745 1746 /* Submit the stripes which are populated but not submitted. */ 1747 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) { 1748 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP); 1749 1750 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot); 1751 } 1752 1753 for (int i = 0; i < nr_stripes; i++) { 1754 stripe = &sctx->stripes[i]; 1755 1756 wait_event(stripe->repair_wait, 1757 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1758 } 1759 1760 /* Submit for dev-replace. */ 1761 if (sctx->is_dev_replace) { 1762 /* 1763 * For dev-replace, if we know there is something wrong with 1764 * metadata, we should immedately abort. 1765 */ 1766 for (int i = 0; i < nr_stripes; i++) { 1767 if (stripe_has_metadata_error(&sctx->stripes[i])) { 1768 ret = -EIO; 1769 goto out; 1770 } 1771 } 1772 for (int i = 0; i < nr_stripes; i++) { 1773 unsigned long good; 1774 1775 stripe = &sctx->stripes[i]; 1776 1777 ASSERT(stripe->dev == fs_info->dev_replace.srcdev); 1778 1779 bitmap_andnot(&good, &stripe->extent_sector_bitmap, 1780 &stripe->error_bitmap, stripe->nr_sectors); 1781 scrub_write_sectors(sctx, stripe, good, true); 1782 } 1783 } 1784 1785 /* Wait for the above writebacks to finish. */ 1786 for (int i = 0; i < nr_stripes; i++) { 1787 stripe = &sctx->stripes[i]; 1788 1789 wait_scrub_stripe_io(stripe); 1790 scrub_reset_stripe(stripe); 1791 } 1792 out: 1793 sctx->cur_stripe = 0; 1794 return ret; 1795 } 1796 1797 static void raid56_scrub_wait_endio(struct bio *bio) 1798 { 1799 complete(bio->bi_private); 1800 } 1801 1802 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg, 1803 struct btrfs_device *dev, int mirror_num, 1804 u64 logical, u32 length, u64 physical, 1805 u64 *found_logical_ret) 1806 { 1807 struct scrub_stripe *stripe; 1808 int ret; 1809 1810 /* 1811 * There should always be one slot left, as caller filling the last 1812 * slot should flush them all. 1813 */ 1814 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES); 1815 1816 /* @found_logical_ret must be specified. */ 1817 ASSERT(found_logical_ret); 1818 1819 stripe = &sctx->stripes[sctx->cur_stripe]; 1820 scrub_reset_stripe(stripe); 1821 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path, 1822 &sctx->csum_path, dev, physical, 1823 mirror_num, logical, length, stripe); 1824 /* Either >0 as no more extents or <0 for error. */ 1825 if (ret) 1826 return ret; 1827 *found_logical_ret = stripe->logical; 1828 sctx->cur_stripe++; 1829 1830 /* We filled one group, submit it. */ 1831 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) { 1832 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP; 1833 1834 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP); 1835 } 1836 1837 /* Last slot used, flush them all. */ 1838 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES) 1839 return flush_scrub_stripes(sctx); 1840 return 0; 1841 } 1842 1843 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx, 1844 struct btrfs_device *scrub_dev, 1845 struct btrfs_block_group *bg, 1846 struct map_lookup *map, 1847 u64 full_stripe_start) 1848 { 1849 DECLARE_COMPLETION_ONSTACK(io_done); 1850 struct btrfs_fs_info *fs_info = sctx->fs_info; 1851 struct btrfs_raid_bio *rbio; 1852 struct btrfs_io_context *bioc = NULL; 1853 struct btrfs_path extent_path = { 0 }; 1854 struct btrfs_path csum_path = { 0 }; 1855 struct bio *bio; 1856 struct scrub_stripe *stripe; 1857 bool all_empty = true; 1858 const int data_stripes = nr_data_stripes(map); 1859 unsigned long extent_bitmap = 0; 1860 u64 length = btrfs_stripe_nr_to_offset(data_stripes); 1861 int ret; 1862 1863 ASSERT(sctx->raid56_data_stripes); 1864 1865 /* 1866 * For data stripe search, we cannot re-use the same extent/csum paths, 1867 * as the data stripe bytenr may be smaller than previous extent. Thus 1868 * we have to use our own extent/csum paths. 1869 */ 1870 extent_path.search_commit_root = 1; 1871 extent_path.skip_locking = 1; 1872 csum_path.search_commit_root = 1; 1873 csum_path.skip_locking = 1; 1874 1875 for (int i = 0; i < data_stripes; i++) { 1876 int stripe_index; 1877 int rot; 1878 u64 physical; 1879 1880 stripe = &sctx->raid56_data_stripes[i]; 1881 rot = div_u64(full_stripe_start - bg->start, 1882 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT; 1883 stripe_index = (i + rot) % map->num_stripes; 1884 physical = map->stripes[stripe_index].physical + 1885 btrfs_stripe_nr_to_offset(rot); 1886 1887 scrub_reset_stripe(stripe); 1888 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state); 1889 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path, 1890 map->stripes[stripe_index].dev, physical, 1, 1891 full_stripe_start + btrfs_stripe_nr_to_offset(i), 1892 BTRFS_STRIPE_LEN, stripe); 1893 if (ret < 0) 1894 goto out; 1895 /* 1896 * No extent in this data stripe, need to manually mark them 1897 * initialized to make later read submission happy. 1898 */ 1899 if (ret > 0) { 1900 stripe->logical = full_stripe_start + 1901 btrfs_stripe_nr_to_offset(i); 1902 stripe->dev = map->stripes[stripe_index].dev; 1903 stripe->mirror_num = 1; 1904 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state); 1905 } 1906 } 1907 1908 /* Check if all data stripes are empty. */ 1909 for (int i = 0; i < data_stripes; i++) { 1910 stripe = &sctx->raid56_data_stripes[i]; 1911 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) { 1912 all_empty = false; 1913 break; 1914 } 1915 } 1916 if (all_empty) { 1917 ret = 0; 1918 goto out; 1919 } 1920 1921 for (int i = 0; i < data_stripes; i++) { 1922 stripe = &sctx->raid56_data_stripes[i]; 1923 scrub_submit_initial_read(sctx, stripe); 1924 } 1925 for (int i = 0; i < data_stripes; i++) { 1926 stripe = &sctx->raid56_data_stripes[i]; 1927 1928 wait_event(stripe->repair_wait, 1929 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state)); 1930 } 1931 /* For now, no zoned support for RAID56. */ 1932 ASSERT(!btrfs_is_zoned(sctx->fs_info)); 1933 1934 /* 1935 * Now all data stripes are properly verified. Check if we have any 1936 * unrepaired, if so abort immediately or we could further corrupt the 1937 * P/Q stripes. 1938 * 1939 * During the loop, also populate extent_bitmap. 1940 */ 1941 for (int i = 0; i < data_stripes; i++) { 1942 unsigned long error; 1943 1944 stripe = &sctx->raid56_data_stripes[i]; 1945 1946 /* 1947 * We should only check the errors where there is an extent. 1948 * As we may hit an empty data stripe while it's missing. 1949 */ 1950 bitmap_and(&error, &stripe->error_bitmap, 1951 &stripe->extent_sector_bitmap, stripe->nr_sectors); 1952 if (!bitmap_empty(&error, stripe->nr_sectors)) { 1953 btrfs_err(fs_info, 1954 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl", 1955 full_stripe_start, i, stripe->nr_sectors, 1956 &error); 1957 ret = -EIO; 1958 goto out; 1959 } 1960 bitmap_or(&extent_bitmap, &extent_bitmap, 1961 &stripe->extent_sector_bitmap, stripe->nr_sectors); 1962 } 1963 1964 /* Now we can check and regenerate the P/Q stripe. */ 1965 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS); 1966 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT; 1967 bio->bi_private = &io_done; 1968 bio->bi_end_io = raid56_scrub_wait_endio; 1969 1970 btrfs_bio_counter_inc_blocked(fs_info); 1971 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start, 1972 &length, &bioc, NULL, NULL, 1); 1973 if (ret < 0) { 1974 btrfs_put_bioc(bioc); 1975 btrfs_bio_counter_dec(fs_info); 1976 goto out; 1977 } 1978 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap, 1979 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits); 1980 btrfs_put_bioc(bioc); 1981 if (!rbio) { 1982 ret = -ENOMEM; 1983 btrfs_bio_counter_dec(fs_info); 1984 goto out; 1985 } 1986 /* Use the recovered stripes as cache to avoid read them from disk again. */ 1987 for (int i = 0; i < data_stripes; i++) { 1988 stripe = &sctx->raid56_data_stripes[i]; 1989 1990 raid56_parity_cache_data_pages(rbio, stripe->pages, 1991 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT)); 1992 } 1993 raid56_parity_submit_scrub_rbio(rbio); 1994 wait_for_completion_io(&io_done); 1995 ret = blk_status_to_errno(bio->bi_status); 1996 bio_put(bio); 1997 btrfs_bio_counter_dec(fs_info); 1998 1999 btrfs_release_path(&extent_path); 2000 btrfs_release_path(&csum_path); 2001 out: 2002 return ret; 2003 } 2004 2005 /* 2006 * Scrub one range which can only has simple mirror based profile. 2007 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 2008 * RAID0/RAID10). 2009 * 2010 * Since we may need to handle a subset of block group, we need @logical_start 2011 * and @logical_length parameter. 2012 */ 2013 static int scrub_simple_mirror(struct scrub_ctx *sctx, 2014 struct btrfs_block_group *bg, 2015 struct map_lookup *map, 2016 u64 logical_start, u64 logical_length, 2017 struct btrfs_device *device, 2018 u64 physical, int mirror_num) 2019 { 2020 struct btrfs_fs_info *fs_info = sctx->fs_info; 2021 const u64 logical_end = logical_start + logical_length; 2022 u64 cur_logical = logical_start; 2023 int ret = 0; 2024 2025 /* The range must be inside the bg */ 2026 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 2027 2028 /* Go through each extent items inside the logical range */ 2029 while (cur_logical < logical_end) { 2030 u64 found_logical = U64_MAX; 2031 u64 cur_physical = physical + cur_logical - logical_start; 2032 2033 /* Canceled? */ 2034 if (atomic_read(&fs_info->scrub_cancel_req) || 2035 atomic_read(&sctx->cancel_req)) { 2036 ret = -ECANCELED; 2037 break; 2038 } 2039 /* Paused? */ 2040 if (atomic_read(&fs_info->scrub_pause_req)) { 2041 /* Push queued extents */ 2042 scrub_blocked_if_needed(fs_info); 2043 } 2044 /* Block group removed? */ 2045 spin_lock(&bg->lock); 2046 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { 2047 spin_unlock(&bg->lock); 2048 ret = 0; 2049 break; 2050 } 2051 spin_unlock(&bg->lock); 2052 2053 ret = queue_scrub_stripe(sctx, bg, device, mirror_num, 2054 cur_logical, logical_end - cur_logical, 2055 cur_physical, &found_logical); 2056 if (ret > 0) { 2057 /* No more extent, just update the accounting */ 2058 sctx->stat.last_physical = physical + logical_length; 2059 ret = 0; 2060 break; 2061 } 2062 if (ret < 0) 2063 break; 2064 2065 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */ 2066 ASSERT(found_logical != U64_MAX); 2067 cur_logical = found_logical + BTRFS_STRIPE_LEN; 2068 2069 /* Don't hold CPU for too long time */ 2070 cond_resched(); 2071 } 2072 return ret; 2073 } 2074 2075 /* Calculate the full stripe length for simple stripe based profiles */ 2076 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map) 2077 { 2078 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2079 BTRFS_BLOCK_GROUP_RAID10)); 2080 2081 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes); 2082 } 2083 2084 /* Get the logical bytenr for the stripe */ 2085 static u64 simple_stripe_get_logical(struct map_lookup *map, 2086 struct btrfs_block_group *bg, 2087 int stripe_index) 2088 { 2089 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2090 BTRFS_BLOCK_GROUP_RAID10)); 2091 ASSERT(stripe_index < map->num_stripes); 2092 2093 /* 2094 * (stripe_index / sub_stripes) gives how many data stripes we need to 2095 * skip. 2096 */ 2097 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) + 2098 bg->start; 2099 } 2100 2101 /* Get the mirror number for the stripe */ 2102 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index) 2103 { 2104 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 2105 BTRFS_BLOCK_GROUP_RAID10)); 2106 ASSERT(stripe_index < map->num_stripes); 2107 2108 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 2109 return stripe_index % map->sub_stripes + 1; 2110 } 2111 2112 static int scrub_simple_stripe(struct scrub_ctx *sctx, 2113 struct btrfs_block_group *bg, 2114 struct map_lookup *map, 2115 struct btrfs_device *device, 2116 int stripe_index) 2117 { 2118 const u64 logical_increment = simple_stripe_full_stripe_len(map); 2119 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 2120 const u64 orig_physical = map->stripes[stripe_index].physical; 2121 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 2122 u64 cur_logical = orig_logical; 2123 u64 cur_physical = orig_physical; 2124 int ret = 0; 2125 2126 while (cur_logical < bg->start + bg->length) { 2127 /* 2128 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 2129 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 2130 * this stripe. 2131 */ 2132 ret = scrub_simple_mirror(sctx, bg, map, cur_logical, 2133 BTRFS_STRIPE_LEN, device, cur_physical, 2134 mirror_num); 2135 if (ret) 2136 return ret; 2137 /* Skip to next stripe which belongs to the target device */ 2138 cur_logical += logical_increment; 2139 /* For physical offset, we just go to next stripe */ 2140 cur_physical += BTRFS_STRIPE_LEN; 2141 } 2142 return ret; 2143 } 2144 2145 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2146 struct btrfs_block_group *bg, 2147 struct extent_map *em, 2148 struct btrfs_device *scrub_dev, 2149 int stripe_index) 2150 { 2151 struct btrfs_fs_info *fs_info = sctx->fs_info; 2152 struct map_lookup *map = em->map_lookup; 2153 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 2154 const u64 chunk_logical = bg->start; 2155 int ret; 2156 int ret2; 2157 u64 physical = map->stripes[stripe_index].physical; 2158 const u64 dev_stripe_len = btrfs_calc_stripe_length(em); 2159 const u64 physical_end = physical + dev_stripe_len; 2160 u64 logical; 2161 u64 logic_end; 2162 /* The logical increment after finishing one stripe */ 2163 u64 increment; 2164 /* Offset inside the chunk */ 2165 u64 offset; 2166 u64 stripe_logical; 2167 int stop_loop = 0; 2168 2169 /* Extent_path should be released by now. */ 2170 ASSERT(sctx->extent_path.nodes[0] == NULL); 2171 2172 scrub_blocked_if_needed(fs_info); 2173 2174 if (sctx->is_dev_replace && 2175 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 2176 mutex_lock(&sctx->wr_lock); 2177 sctx->write_pointer = physical; 2178 mutex_unlock(&sctx->wr_lock); 2179 } 2180 2181 /* Prepare the extra data stripes used by RAID56. */ 2182 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2183 ASSERT(sctx->raid56_data_stripes == NULL); 2184 2185 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map), 2186 sizeof(struct scrub_stripe), 2187 GFP_KERNEL); 2188 if (!sctx->raid56_data_stripes) { 2189 ret = -ENOMEM; 2190 goto out; 2191 } 2192 for (int i = 0; i < nr_data_stripes(map); i++) { 2193 ret = init_scrub_stripe(fs_info, 2194 &sctx->raid56_data_stripes[i]); 2195 if (ret < 0) 2196 goto out; 2197 sctx->raid56_data_stripes[i].bg = bg; 2198 sctx->raid56_data_stripes[i].sctx = sctx; 2199 } 2200 } 2201 /* 2202 * There used to be a big double loop to handle all profiles using the 2203 * same routine, which grows larger and more gross over time. 2204 * 2205 * So here we handle each profile differently, so simpler profiles 2206 * have simpler scrubbing function. 2207 */ 2208 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 2209 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2210 /* 2211 * Above check rules out all complex profile, the remaining 2212 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 2213 * mirrored duplication without stripe. 2214 * 2215 * Only @physical and @mirror_num needs to calculated using 2216 * @stripe_index. 2217 */ 2218 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length, 2219 scrub_dev, map->stripes[stripe_index].physical, 2220 stripe_index + 1); 2221 offset = 0; 2222 goto out; 2223 } 2224 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 2225 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index); 2226 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes); 2227 goto out; 2228 } 2229 2230 /* Only RAID56 goes through the old code */ 2231 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 2232 ret = 0; 2233 2234 /* Calculate the logical end of the stripe */ 2235 get_raid56_logic_offset(physical_end, stripe_index, 2236 map, &logic_end, NULL); 2237 logic_end += chunk_logical; 2238 2239 /* Initialize @offset in case we need to go to out: label */ 2240 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 2241 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 2242 2243 /* 2244 * Due to the rotation, for RAID56 it's better to iterate each stripe 2245 * using their physical offset. 2246 */ 2247 while (physical < physical_end) { 2248 ret = get_raid56_logic_offset(physical, stripe_index, map, 2249 &logical, &stripe_logical); 2250 logical += chunk_logical; 2251 if (ret) { 2252 /* it is parity strip */ 2253 stripe_logical += chunk_logical; 2254 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg, 2255 map, stripe_logical); 2256 if (ret) 2257 goto out; 2258 goto next; 2259 } 2260 2261 /* 2262 * Now we're at a data stripe, scrub each extents in the range. 2263 * 2264 * At this stage, if we ignore the repair part, inside each data 2265 * stripe it is no different than SINGLE profile. 2266 * We can reuse scrub_simple_mirror() here, as the repair part 2267 * is still based on @mirror_num. 2268 */ 2269 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN, 2270 scrub_dev, physical, 1); 2271 if (ret < 0) 2272 goto out; 2273 next: 2274 logical += increment; 2275 physical += BTRFS_STRIPE_LEN; 2276 spin_lock(&sctx->stat_lock); 2277 if (stop_loop) 2278 sctx->stat.last_physical = 2279 map->stripes[stripe_index].physical + dev_stripe_len; 2280 else 2281 sctx->stat.last_physical = physical; 2282 spin_unlock(&sctx->stat_lock); 2283 if (stop_loop) 2284 break; 2285 } 2286 out: 2287 ret2 = flush_scrub_stripes(sctx); 2288 if (!ret) 2289 ret = ret2; 2290 btrfs_release_path(&sctx->extent_path); 2291 btrfs_release_path(&sctx->csum_path); 2292 2293 if (sctx->raid56_data_stripes) { 2294 for (int i = 0; i < nr_data_stripes(map); i++) 2295 release_scrub_stripe(&sctx->raid56_data_stripes[i]); 2296 kfree(sctx->raid56_data_stripes); 2297 sctx->raid56_data_stripes = NULL; 2298 } 2299 2300 if (sctx->is_dev_replace && ret >= 0) { 2301 int ret2; 2302 2303 ret2 = sync_write_pointer_for_zoned(sctx, 2304 chunk_logical + offset, 2305 map->stripes[stripe_index].physical, 2306 physical_end); 2307 if (ret2) 2308 ret = ret2; 2309 } 2310 2311 return ret < 0 ? ret : 0; 2312 } 2313 2314 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 2315 struct btrfs_block_group *bg, 2316 struct btrfs_device *scrub_dev, 2317 u64 dev_offset, 2318 u64 dev_extent_len) 2319 { 2320 struct btrfs_fs_info *fs_info = sctx->fs_info; 2321 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 2322 struct map_lookup *map; 2323 struct extent_map *em; 2324 int i; 2325 int ret = 0; 2326 2327 read_lock(&map_tree->lock); 2328 em = lookup_extent_mapping(map_tree, bg->start, bg->length); 2329 read_unlock(&map_tree->lock); 2330 2331 if (!em) { 2332 /* 2333 * Might have been an unused block group deleted by the cleaner 2334 * kthread or relocation. 2335 */ 2336 spin_lock(&bg->lock); 2337 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) 2338 ret = -EINVAL; 2339 spin_unlock(&bg->lock); 2340 2341 return ret; 2342 } 2343 if (em->start != bg->start) 2344 goto out; 2345 if (em->len < dev_extent_len) 2346 goto out; 2347 2348 map = em->map_lookup; 2349 for (i = 0; i < map->num_stripes; ++i) { 2350 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 2351 map->stripes[i].physical == dev_offset) { 2352 ret = scrub_stripe(sctx, bg, em, scrub_dev, i); 2353 if (ret) 2354 goto out; 2355 } 2356 } 2357 out: 2358 free_extent_map(em); 2359 2360 return ret; 2361 } 2362 2363 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 2364 struct btrfs_block_group *cache) 2365 { 2366 struct btrfs_fs_info *fs_info = cache->fs_info; 2367 struct btrfs_trans_handle *trans; 2368 2369 if (!btrfs_is_zoned(fs_info)) 2370 return 0; 2371 2372 btrfs_wait_block_group_reservations(cache); 2373 btrfs_wait_nocow_writers(cache); 2374 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 2375 2376 trans = btrfs_join_transaction(root); 2377 if (IS_ERR(trans)) 2378 return PTR_ERR(trans); 2379 return btrfs_commit_transaction(trans); 2380 } 2381 2382 static noinline_for_stack 2383 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 2384 struct btrfs_device *scrub_dev, u64 start, u64 end) 2385 { 2386 struct btrfs_dev_extent *dev_extent = NULL; 2387 struct btrfs_path *path; 2388 struct btrfs_fs_info *fs_info = sctx->fs_info; 2389 struct btrfs_root *root = fs_info->dev_root; 2390 u64 chunk_offset; 2391 int ret = 0; 2392 int ro_set; 2393 int slot; 2394 struct extent_buffer *l; 2395 struct btrfs_key key; 2396 struct btrfs_key found_key; 2397 struct btrfs_block_group *cache; 2398 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2399 2400 path = btrfs_alloc_path(); 2401 if (!path) 2402 return -ENOMEM; 2403 2404 path->reada = READA_FORWARD; 2405 path->search_commit_root = 1; 2406 path->skip_locking = 1; 2407 2408 key.objectid = scrub_dev->devid; 2409 key.offset = 0ull; 2410 key.type = BTRFS_DEV_EXTENT_KEY; 2411 2412 while (1) { 2413 u64 dev_extent_len; 2414 2415 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2416 if (ret < 0) 2417 break; 2418 if (ret > 0) { 2419 if (path->slots[0] >= 2420 btrfs_header_nritems(path->nodes[0])) { 2421 ret = btrfs_next_leaf(root, path); 2422 if (ret < 0) 2423 break; 2424 if (ret > 0) { 2425 ret = 0; 2426 break; 2427 } 2428 } else { 2429 ret = 0; 2430 } 2431 } 2432 2433 l = path->nodes[0]; 2434 slot = path->slots[0]; 2435 2436 btrfs_item_key_to_cpu(l, &found_key, slot); 2437 2438 if (found_key.objectid != scrub_dev->devid) 2439 break; 2440 2441 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 2442 break; 2443 2444 if (found_key.offset >= end) 2445 break; 2446 2447 if (found_key.offset < key.offset) 2448 break; 2449 2450 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 2451 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 2452 2453 if (found_key.offset + dev_extent_len <= start) 2454 goto skip; 2455 2456 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 2457 2458 /* 2459 * get a reference on the corresponding block group to prevent 2460 * the chunk from going away while we scrub it 2461 */ 2462 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2463 2464 /* some chunks are removed but not committed to disk yet, 2465 * continue scrubbing */ 2466 if (!cache) 2467 goto skip; 2468 2469 ASSERT(cache->start <= chunk_offset); 2470 /* 2471 * We are using the commit root to search for device extents, so 2472 * that means we could have found a device extent item from a 2473 * block group that was deleted in the current transaction. The 2474 * logical start offset of the deleted block group, stored at 2475 * @chunk_offset, might be part of the logical address range of 2476 * a new block group (which uses different physical extents). 2477 * In this case btrfs_lookup_block_group() has returned the new 2478 * block group, and its start address is less than @chunk_offset. 2479 * 2480 * We skip such new block groups, because it's pointless to 2481 * process them, as we won't find their extents because we search 2482 * for them using the commit root of the extent tree. For a device 2483 * replace it's also fine to skip it, we won't miss copying them 2484 * to the target device because we have the write duplication 2485 * setup through the regular write path (by btrfs_map_block()), 2486 * and we have committed a transaction when we started the device 2487 * replace, right after setting up the device replace state. 2488 */ 2489 if (cache->start < chunk_offset) { 2490 btrfs_put_block_group(cache); 2491 goto skip; 2492 } 2493 2494 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 2495 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { 2496 btrfs_put_block_group(cache); 2497 goto skip; 2498 } 2499 } 2500 2501 /* 2502 * Make sure that while we are scrubbing the corresponding block 2503 * group doesn't get its logical address and its device extents 2504 * reused for another block group, which can possibly be of a 2505 * different type and different profile. We do this to prevent 2506 * false error detections and crashes due to bogus attempts to 2507 * repair extents. 2508 */ 2509 spin_lock(&cache->lock); 2510 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { 2511 spin_unlock(&cache->lock); 2512 btrfs_put_block_group(cache); 2513 goto skip; 2514 } 2515 btrfs_freeze_block_group(cache); 2516 spin_unlock(&cache->lock); 2517 2518 /* 2519 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 2520 * to avoid deadlock caused by: 2521 * btrfs_inc_block_group_ro() 2522 * -> btrfs_wait_for_commit() 2523 * -> btrfs_commit_transaction() 2524 * -> btrfs_scrub_pause() 2525 */ 2526 scrub_pause_on(fs_info); 2527 2528 /* 2529 * Don't do chunk preallocation for scrub. 2530 * 2531 * This is especially important for SYSTEM bgs, or we can hit 2532 * -EFBIG from btrfs_finish_chunk_alloc() like: 2533 * 1. The only SYSTEM bg is marked RO. 2534 * Since SYSTEM bg is small, that's pretty common. 2535 * 2. New SYSTEM bg will be allocated 2536 * Due to regular version will allocate new chunk. 2537 * 3. New SYSTEM bg is empty and will get cleaned up 2538 * Before cleanup really happens, it's marked RO again. 2539 * 4. Empty SYSTEM bg get scrubbed 2540 * We go back to 2. 2541 * 2542 * This can easily boost the amount of SYSTEM chunks if cleaner 2543 * thread can't be triggered fast enough, and use up all space 2544 * of btrfs_super_block::sys_chunk_array 2545 * 2546 * While for dev replace, we need to try our best to mark block 2547 * group RO, to prevent race between: 2548 * - Write duplication 2549 * Contains latest data 2550 * - Scrub copy 2551 * Contains data from commit tree 2552 * 2553 * If target block group is not marked RO, nocow writes can 2554 * be overwritten by scrub copy, causing data corruption. 2555 * So for dev-replace, it's not allowed to continue if a block 2556 * group is not RO. 2557 */ 2558 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 2559 if (!ret && sctx->is_dev_replace) { 2560 ret = finish_extent_writes_for_zoned(root, cache); 2561 if (ret) { 2562 btrfs_dec_block_group_ro(cache); 2563 scrub_pause_off(fs_info); 2564 btrfs_put_block_group(cache); 2565 break; 2566 } 2567 } 2568 2569 if (ret == 0) { 2570 ro_set = 1; 2571 } else if (ret == -ENOSPC && !sctx->is_dev_replace && 2572 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { 2573 /* 2574 * btrfs_inc_block_group_ro return -ENOSPC when it 2575 * failed in creating new chunk for metadata. 2576 * It is not a problem for scrub, because 2577 * metadata are always cowed, and our scrub paused 2578 * commit_transactions. 2579 * 2580 * For RAID56 chunks, we have to mark them read-only 2581 * for scrub, as later we would use our own cache 2582 * out of RAID56 realm. 2583 * Thus we want the RAID56 bg to be marked RO to 2584 * prevent RMW from screwing up out cache. 2585 */ 2586 ro_set = 0; 2587 } else if (ret == -ETXTBSY) { 2588 btrfs_warn(fs_info, 2589 "skipping scrub of block group %llu due to active swapfile", 2590 cache->start); 2591 scrub_pause_off(fs_info); 2592 ret = 0; 2593 goto skip_unfreeze; 2594 } else { 2595 btrfs_warn(fs_info, 2596 "failed setting block group ro: %d", ret); 2597 btrfs_unfreeze_block_group(cache); 2598 btrfs_put_block_group(cache); 2599 scrub_pause_off(fs_info); 2600 break; 2601 } 2602 2603 /* 2604 * Now the target block is marked RO, wait for nocow writes to 2605 * finish before dev-replace. 2606 * COW is fine, as COW never overwrites extents in commit tree. 2607 */ 2608 if (sctx->is_dev_replace) { 2609 btrfs_wait_nocow_writers(cache); 2610 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 2611 cache->length); 2612 } 2613 2614 scrub_pause_off(fs_info); 2615 down_write(&dev_replace->rwsem); 2616 dev_replace->cursor_right = found_key.offset + dev_extent_len; 2617 dev_replace->cursor_left = found_key.offset; 2618 dev_replace->item_needs_writeback = 1; 2619 up_write(&dev_replace->rwsem); 2620 2621 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 2622 dev_extent_len); 2623 if (sctx->is_dev_replace && 2624 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 2625 cache, found_key.offset)) 2626 ro_set = 0; 2627 2628 down_write(&dev_replace->rwsem); 2629 dev_replace->cursor_left = dev_replace->cursor_right; 2630 dev_replace->item_needs_writeback = 1; 2631 up_write(&dev_replace->rwsem); 2632 2633 if (ro_set) 2634 btrfs_dec_block_group_ro(cache); 2635 2636 /* 2637 * We might have prevented the cleaner kthread from deleting 2638 * this block group if it was already unused because we raced 2639 * and set it to RO mode first. So add it back to the unused 2640 * list, otherwise it might not ever be deleted unless a manual 2641 * balance is triggered or it becomes used and unused again. 2642 */ 2643 spin_lock(&cache->lock); 2644 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && 2645 !cache->ro && cache->reserved == 0 && cache->used == 0) { 2646 spin_unlock(&cache->lock); 2647 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 2648 btrfs_discard_queue_work(&fs_info->discard_ctl, 2649 cache); 2650 else 2651 btrfs_mark_bg_unused(cache); 2652 } else { 2653 spin_unlock(&cache->lock); 2654 } 2655 skip_unfreeze: 2656 btrfs_unfreeze_block_group(cache); 2657 btrfs_put_block_group(cache); 2658 if (ret) 2659 break; 2660 if (sctx->is_dev_replace && 2661 atomic64_read(&dev_replace->num_write_errors) > 0) { 2662 ret = -EIO; 2663 break; 2664 } 2665 if (sctx->stat.malloc_errors > 0) { 2666 ret = -ENOMEM; 2667 break; 2668 } 2669 skip: 2670 key.offset = found_key.offset + dev_extent_len; 2671 btrfs_release_path(path); 2672 } 2673 2674 btrfs_free_path(path); 2675 2676 return ret; 2677 } 2678 2679 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev, 2680 struct page *page, u64 physical, u64 generation) 2681 { 2682 struct btrfs_fs_info *fs_info = sctx->fs_info; 2683 struct bio_vec bvec; 2684 struct bio bio; 2685 struct btrfs_super_block *sb = page_address(page); 2686 int ret; 2687 2688 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ); 2689 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT; 2690 __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0); 2691 ret = submit_bio_wait(&bio); 2692 bio_uninit(&bio); 2693 2694 if (ret < 0) 2695 return ret; 2696 ret = btrfs_check_super_csum(fs_info, sb); 2697 if (ret != 0) { 2698 btrfs_err_rl(fs_info, 2699 "super block at physical %llu devid %llu has bad csum", 2700 physical, dev->devid); 2701 return -EIO; 2702 } 2703 if (btrfs_super_generation(sb) != generation) { 2704 btrfs_err_rl(fs_info, 2705 "super block at physical %llu devid %llu has bad generation %llu expect %llu", 2706 physical, dev->devid, 2707 btrfs_super_generation(sb), generation); 2708 return -EUCLEAN; 2709 } 2710 2711 return btrfs_validate_super(fs_info, sb, -1); 2712 } 2713 2714 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 2715 struct btrfs_device *scrub_dev) 2716 { 2717 int i; 2718 u64 bytenr; 2719 u64 gen; 2720 int ret = 0; 2721 struct page *page; 2722 struct btrfs_fs_info *fs_info = sctx->fs_info; 2723 2724 if (BTRFS_FS_ERROR(fs_info)) 2725 return -EROFS; 2726 2727 page = alloc_page(GFP_KERNEL); 2728 if (!page) { 2729 spin_lock(&sctx->stat_lock); 2730 sctx->stat.malloc_errors++; 2731 spin_unlock(&sctx->stat_lock); 2732 return -ENOMEM; 2733 } 2734 2735 /* Seed devices of a new filesystem has their own generation. */ 2736 if (scrub_dev->fs_devices != fs_info->fs_devices) 2737 gen = scrub_dev->generation; 2738 else 2739 gen = fs_info->last_trans_committed; 2740 2741 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 2742 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr); 2743 if (ret == -ENOENT) 2744 break; 2745 2746 if (ret) { 2747 spin_lock(&sctx->stat_lock); 2748 sctx->stat.super_errors++; 2749 spin_unlock(&sctx->stat_lock); 2750 continue; 2751 } 2752 2753 if (bytenr + BTRFS_SUPER_INFO_SIZE > 2754 scrub_dev->commit_total_bytes) 2755 break; 2756 if (!btrfs_check_super_location(scrub_dev, bytenr)) 2757 continue; 2758 2759 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen); 2760 if (ret) { 2761 spin_lock(&sctx->stat_lock); 2762 sctx->stat.super_errors++; 2763 spin_unlock(&sctx->stat_lock); 2764 } 2765 } 2766 __free_page(page); 2767 return 0; 2768 } 2769 2770 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 2771 { 2772 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 2773 &fs_info->scrub_lock)) { 2774 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 2775 2776 fs_info->scrub_workers = NULL; 2777 mutex_unlock(&fs_info->scrub_lock); 2778 2779 if (scrub_workers) 2780 destroy_workqueue(scrub_workers); 2781 } 2782 } 2783 2784 /* 2785 * get a reference count on fs_info->scrub_workers. start worker if necessary 2786 */ 2787 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info) 2788 { 2789 struct workqueue_struct *scrub_workers = NULL; 2790 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 2791 int max_active = fs_info->thread_pool_size; 2792 int ret = -ENOMEM; 2793 2794 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 2795 return 0; 2796 2797 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active); 2798 if (!scrub_workers) 2799 return -ENOMEM; 2800 2801 mutex_lock(&fs_info->scrub_lock); 2802 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 2803 ASSERT(fs_info->scrub_workers == NULL); 2804 fs_info->scrub_workers = scrub_workers; 2805 refcount_set(&fs_info->scrub_workers_refcnt, 1); 2806 mutex_unlock(&fs_info->scrub_lock); 2807 return 0; 2808 } 2809 /* Other thread raced in and created the workers for us */ 2810 refcount_inc(&fs_info->scrub_workers_refcnt); 2811 mutex_unlock(&fs_info->scrub_lock); 2812 2813 ret = 0; 2814 2815 destroy_workqueue(scrub_workers); 2816 return ret; 2817 } 2818 2819 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 2820 u64 end, struct btrfs_scrub_progress *progress, 2821 int readonly, int is_dev_replace) 2822 { 2823 struct btrfs_dev_lookup_args args = { .devid = devid }; 2824 struct scrub_ctx *sctx; 2825 int ret; 2826 struct btrfs_device *dev; 2827 unsigned int nofs_flag; 2828 bool need_commit = false; 2829 2830 if (btrfs_fs_closing(fs_info)) 2831 return -EAGAIN; 2832 2833 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ 2834 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); 2835 2836 /* 2837 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible 2838 * value (max nodesize / min sectorsize), thus nodesize should always 2839 * be fine. 2840 */ 2841 ASSERT(fs_info->nodesize <= 2842 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); 2843 2844 /* Allocate outside of device_list_mutex */ 2845 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 2846 if (IS_ERR(sctx)) 2847 return PTR_ERR(sctx); 2848 2849 ret = scrub_workers_get(fs_info); 2850 if (ret) 2851 goto out_free_ctx; 2852 2853 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2854 dev = btrfs_find_device(fs_info->fs_devices, &args); 2855 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 2856 !is_dev_replace)) { 2857 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2858 ret = -ENODEV; 2859 goto out; 2860 } 2861 2862 if (!is_dev_replace && !readonly && 2863 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2864 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2865 btrfs_err_in_rcu(fs_info, 2866 "scrub on devid %llu: filesystem on %s is not writable", 2867 devid, btrfs_dev_name(dev)); 2868 ret = -EROFS; 2869 goto out; 2870 } 2871 2872 mutex_lock(&fs_info->scrub_lock); 2873 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 2874 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 2875 mutex_unlock(&fs_info->scrub_lock); 2876 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2877 ret = -EIO; 2878 goto out; 2879 } 2880 2881 down_read(&fs_info->dev_replace.rwsem); 2882 if (dev->scrub_ctx || 2883 (!is_dev_replace && 2884 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 2885 up_read(&fs_info->dev_replace.rwsem); 2886 mutex_unlock(&fs_info->scrub_lock); 2887 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2888 ret = -EINPROGRESS; 2889 goto out; 2890 } 2891 up_read(&fs_info->dev_replace.rwsem); 2892 2893 sctx->readonly = readonly; 2894 dev->scrub_ctx = sctx; 2895 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2896 2897 /* 2898 * checking @scrub_pause_req here, we can avoid 2899 * race between committing transaction and scrubbing. 2900 */ 2901 __scrub_blocked_if_needed(fs_info); 2902 atomic_inc(&fs_info->scrubs_running); 2903 mutex_unlock(&fs_info->scrub_lock); 2904 2905 /* 2906 * In order to avoid deadlock with reclaim when there is a transaction 2907 * trying to pause scrub, make sure we use GFP_NOFS for all the 2908 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 2909 * invoked by our callees. The pausing request is done when the 2910 * transaction commit starts, and it blocks the transaction until scrub 2911 * is paused (done at specific points at scrub_stripe() or right above 2912 * before incrementing fs_info->scrubs_running). 2913 */ 2914 nofs_flag = memalloc_nofs_save(); 2915 if (!is_dev_replace) { 2916 u64 old_super_errors; 2917 2918 spin_lock(&sctx->stat_lock); 2919 old_super_errors = sctx->stat.super_errors; 2920 spin_unlock(&sctx->stat_lock); 2921 2922 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 2923 /* 2924 * by holding device list mutex, we can 2925 * kick off writing super in log tree sync. 2926 */ 2927 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2928 ret = scrub_supers(sctx, dev); 2929 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2930 2931 spin_lock(&sctx->stat_lock); 2932 /* 2933 * Super block errors found, but we can not commit transaction 2934 * at current context, since btrfs_commit_transaction() needs 2935 * to pause the current running scrub (hold by ourselves). 2936 */ 2937 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) 2938 need_commit = true; 2939 spin_unlock(&sctx->stat_lock); 2940 } 2941 2942 if (!ret) 2943 ret = scrub_enumerate_chunks(sctx, dev, start, end); 2944 memalloc_nofs_restore(nofs_flag); 2945 2946 atomic_dec(&fs_info->scrubs_running); 2947 wake_up(&fs_info->scrub_pause_wait); 2948 2949 if (progress) 2950 memcpy(progress, &sctx->stat, sizeof(*progress)); 2951 2952 if (!is_dev_replace) 2953 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 2954 ret ? "not finished" : "finished", devid, ret); 2955 2956 mutex_lock(&fs_info->scrub_lock); 2957 dev->scrub_ctx = NULL; 2958 mutex_unlock(&fs_info->scrub_lock); 2959 2960 scrub_workers_put(fs_info); 2961 scrub_put_ctx(sctx); 2962 2963 /* 2964 * We found some super block errors before, now try to force a 2965 * transaction commit, as scrub has finished. 2966 */ 2967 if (need_commit) { 2968 struct btrfs_trans_handle *trans; 2969 2970 trans = btrfs_start_transaction(fs_info->tree_root, 0); 2971 if (IS_ERR(trans)) { 2972 ret = PTR_ERR(trans); 2973 btrfs_err(fs_info, 2974 "scrub: failed to start transaction to fix super block errors: %d", ret); 2975 return ret; 2976 } 2977 ret = btrfs_commit_transaction(trans); 2978 if (ret < 0) 2979 btrfs_err(fs_info, 2980 "scrub: failed to commit transaction to fix super block errors: %d", ret); 2981 } 2982 return ret; 2983 out: 2984 scrub_workers_put(fs_info); 2985 out_free_ctx: 2986 scrub_free_ctx(sctx); 2987 2988 return ret; 2989 } 2990 2991 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 2992 { 2993 mutex_lock(&fs_info->scrub_lock); 2994 atomic_inc(&fs_info->scrub_pause_req); 2995 while (atomic_read(&fs_info->scrubs_paused) != 2996 atomic_read(&fs_info->scrubs_running)) { 2997 mutex_unlock(&fs_info->scrub_lock); 2998 wait_event(fs_info->scrub_pause_wait, 2999 atomic_read(&fs_info->scrubs_paused) == 3000 atomic_read(&fs_info->scrubs_running)); 3001 mutex_lock(&fs_info->scrub_lock); 3002 } 3003 mutex_unlock(&fs_info->scrub_lock); 3004 } 3005 3006 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 3007 { 3008 atomic_dec(&fs_info->scrub_pause_req); 3009 wake_up(&fs_info->scrub_pause_wait); 3010 } 3011 3012 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3013 { 3014 mutex_lock(&fs_info->scrub_lock); 3015 if (!atomic_read(&fs_info->scrubs_running)) { 3016 mutex_unlock(&fs_info->scrub_lock); 3017 return -ENOTCONN; 3018 } 3019 3020 atomic_inc(&fs_info->scrub_cancel_req); 3021 while (atomic_read(&fs_info->scrubs_running)) { 3022 mutex_unlock(&fs_info->scrub_lock); 3023 wait_event(fs_info->scrub_pause_wait, 3024 atomic_read(&fs_info->scrubs_running) == 0); 3025 mutex_lock(&fs_info->scrub_lock); 3026 } 3027 atomic_dec(&fs_info->scrub_cancel_req); 3028 mutex_unlock(&fs_info->scrub_lock); 3029 3030 return 0; 3031 } 3032 3033 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 3034 { 3035 struct btrfs_fs_info *fs_info = dev->fs_info; 3036 struct scrub_ctx *sctx; 3037 3038 mutex_lock(&fs_info->scrub_lock); 3039 sctx = dev->scrub_ctx; 3040 if (!sctx) { 3041 mutex_unlock(&fs_info->scrub_lock); 3042 return -ENOTCONN; 3043 } 3044 atomic_inc(&sctx->cancel_req); 3045 while (dev->scrub_ctx) { 3046 mutex_unlock(&fs_info->scrub_lock); 3047 wait_event(fs_info->scrub_pause_wait, 3048 dev->scrub_ctx == NULL); 3049 mutex_lock(&fs_info->scrub_lock); 3050 } 3051 mutex_unlock(&fs_info->scrub_lock); 3052 3053 return 0; 3054 } 3055 3056 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3057 struct btrfs_scrub_progress *progress) 3058 { 3059 struct btrfs_dev_lookup_args args = { .devid = devid }; 3060 struct btrfs_device *dev; 3061 struct scrub_ctx *sctx = NULL; 3062 3063 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3064 dev = btrfs_find_device(fs_info->fs_devices, &args); 3065 if (dev) 3066 sctx = dev->scrub_ctx; 3067 if (sctx) 3068 memcpy(progress, &sctx->stat, sizeof(*progress)); 3069 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3070 3071 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3072 } 3073