xref: /openbmc/linux/fs/btrfs/scrub.c (revision 80ecbd24)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_page {
67 	struct scrub_block	*sblock;
68 	struct page		*page;
69 	struct btrfs_device	*dev;
70 	u64			flags;  /* extent flags */
71 	u64			generation;
72 	u64			logical;
73 	u64			physical;
74 	u64			physical_for_dev_replace;
75 	atomic_t		ref_count;
76 	struct {
77 		unsigned int	mirror_num:8;
78 		unsigned int	have_csum:1;
79 		unsigned int	io_error:1;
80 	};
81 	u8			csum[BTRFS_CSUM_SIZE];
82 };
83 
84 struct scrub_bio {
85 	int			index;
86 	struct scrub_ctx	*sctx;
87 	struct btrfs_device	*dev;
88 	struct bio		*bio;
89 	int			err;
90 	u64			logical;
91 	u64			physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 	int			page_count;
98 	int			next_free;
99 	struct btrfs_work	work;
100 };
101 
102 struct scrub_block {
103 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 	int			page_count;
105 	atomic_t		outstanding_pages;
106 	atomic_t		ref_count; /* free mem on transition to zero */
107 	struct scrub_ctx	*sctx;
108 	struct {
109 		unsigned int	header_error:1;
110 		unsigned int	checksum_error:1;
111 		unsigned int	no_io_error_seen:1;
112 		unsigned int	generation_error:1; /* also sets header_error */
113 	};
114 };
115 
116 struct scrub_wr_ctx {
117 	struct scrub_bio *wr_curr_bio;
118 	struct btrfs_device *tgtdev;
119 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 	atomic_t flush_all_writes;
121 	struct mutex wr_lock;
122 };
123 
124 struct scrub_ctx {
125 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126 	struct btrfs_root	*dev_root;
127 	int			first_free;
128 	int			curr;
129 	atomic_t		bios_in_flight;
130 	atomic_t		workers_pending;
131 	spinlock_t		list_lock;
132 	wait_queue_head_t	list_wait;
133 	u16			csum_size;
134 	struct list_head	csum_list;
135 	atomic_t		cancel_req;
136 	int			readonly;
137 	int			pages_per_rd_bio;
138 	u32			sectorsize;
139 	u32			nodesize;
140 	u32			leafsize;
141 
142 	int			is_dev_replace;
143 	struct scrub_wr_ctx	wr_ctx;
144 
145 	/*
146 	 * statistics
147 	 */
148 	struct btrfs_scrub_progress stat;
149 	spinlock_t		stat_lock;
150 };
151 
152 struct scrub_fixup_nodatasum {
153 	struct scrub_ctx	*sctx;
154 	struct btrfs_device	*dev;
155 	u64			logical;
156 	struct btrfs_root	*root;
157 	struct btrfs_work	work;
158 	int			mirror_num;
159 };
160 
161 struct scrub_copy_nocow_ctx {
162 	struct scrub_ctx	*sctx;
163 	u64			logical;
164 	u64			len;
165 	int			mirror_num;
166 	u64			physical_for_dev_replace;
167 	struct btrfs_work	work;
168 };
169 
170 struct scrub_warning {
171 	struct btrfs_path	*path;
172 	u64			extent_item_size;
173 	char			*scratch_buf;
174 	char			*msg_buf;
175 	const char		*errstr;
176 	sector_t		sector;
177 	u64			logical;
178 	struct btrfs_device	*dev;
179 	int			msg_bufsize;
180 	int			scratch_bufsize;
181 };
182 
183 
184 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
185 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
186 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
187 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
188 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
189 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
190 				     struct btrfs_fs_info *fs_info,
191 				     struct scrub_block *original_sblock,
192 				     u64 length, u64 logical,
193 				     struct scrub_block *sblocks_for_recheck);
194 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
195 				struct scrub_block *sblock, int is_metadata,
196 				int have_csum, u8 *csum, u64 generation,
197 				u16 csum_size);
198 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
199 					 struct scrub_block *sblock,
200 					 int is_metadata, int have_csum,
201 					 const u8 *csum, u64 generation,
202 					 u16 csum_size);
203 static void scrub_complete_bio_end_io(struct bio *bio, int err);
204 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
205 					     struct scrub_block *sblock_good,
206 					     int force_write);
207 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
208 					    struct scrub_block *sblock_good,
209 					    int page_num, int force_write);
210 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
211 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
212 					   int page_num);
213 static int scrub_checksum_data(struct scrub_block *sblock);
214 static int scrub_checksum_tree_block(struct scrub_block *sblock);
215 static int scrub_checksum_super(struct scrub_block *sblock);
216 static void scrub_block_get(struct scrub_block *sblock);
217 static void scrub_block_put(struct scrub_block *sblock);
218 static void scrub_page_get(struct scrub_page *spage);
219 static void scrub_page_put(struct scrub_page *spage);
220 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
221 				    struct scrub_page *spage);
222 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
223 		       u64 physical, struct btrfs_device *dev, u64 flags,
224 		       u64 gen, int mirror_num, u8 *csum, int force,
225 		       u64 physical_for_dev_replace);
226 static void scrub_bio_end_io(struct bio *bio, int err);
227 static void scrub_bio_end_io_worker(struct btrfs_work *work);
228 static void scrub_block_complete(struct scrub_block *sblock);
229 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
230 			       u64 extent_logical, u64 extent_len,
231 			       u64 *extent_physical,
232 			       struct btrfs_device **extent_dev,
233 			       int *extent_mirror_num);
234 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
235 			      struct scrub_wr_ctx *wr_ctx,
236 			      struct btrfs_fs_info *fs_info,
237 			      struct btrfs_device *dev,
238 			      int is_dev_replace);
239 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
240 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
241 				    struct scrub_page *spage);
242 static void scrub_wr_submit(struct scrub_ctx *sctx);
243 static void scrub_wr_bio_end_io(struct bio *bio, int err);
244 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
245 static int write_page_nocow(struct scrub_ctx *sctx,
246 			    u64 physical_for_dev_replace, struct page *page);
247 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
248 				      void *ctx);
249 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
250 			    int mirror_num, u64 physical_for_dev_replace);
251 static void copy_nocow_pages_worker(struct btrfs_work *work);
252 
253 
254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255 {
256 	atomic_inc(&sctx->bios_in_flight);
257 }
258 
259 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
260 {
261 	atomic_dec(&sctx->bios_in_flight);
262 	wake_up(&sctx->list_wait);
263 }
264 
265 /*
266  * used for workers that require transaction commits (i.e., for the
267  * NOCOW case)
268  */
269 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
270 {
271 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
272 
273 	/*
274 	 * increment scrubs_running to prevent cancel requests from
275 	 * completing as long as a worker is running. we must also
276 	 * increment scrubs_paused to prevent deadlocking on pause
277 	 * requests used for transactions commits (as the worker uses a
278 	 * transaction context). it is safe to regard the worker
279 	 * as paused for all matters practical. effectively, we only
280 	 * avoid cancellation requests from completing.
281 	 */
282 	mutex_lock(&fs_info->scrub_lock);
283 	atomic_inc(&fs_info->scrubs_running);
284 	atomic_inc(&fs_info->scrubs_paused);
285 	mutex_unlock(&fs_info->scrub_lock);
286 	atomic_inc(&sctx->workers_pending);
287 }
288 
289 /* used for workers that require transaction commits */
290 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
291 {
292 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
293 
294 	/*
295 	 * see scrub_pending_trans_workers_inc() why we're pretending
296 	 * to be paused in the scrub counters
297 	 */
298 	mutex_lock(&fs_info->scrub_lock);
299 	atomic_dec(&fs_info->scrubs_running);
300 	atomic_dec(&fs_info->scrubs_paused);
301 	mutex_unlock(&fs_info->scrub_lock);
302 	atomic_dec(&sctx->workers_pending);
303 	wake_up(&fs_info->scrub_pause_wait);
304 	wake_up(&sctx->list_wait);
305 }
306 
307 static void scrub_free_csums(struct scrub_ctx *sctx)
308 {
309 	while (!list_empty(&sctx->csum_list)) {
310 		struct btrfs_ordered_sum *sum;
311 		sum = list_first_entry(&sctx->csum_list,
312 				       struct btrfs_ordered_sum, list);
313 		list_del(&sum->list);
314 		kfree(sum);
315 	}
316 }
317 
318 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
319 {
320 	int i;
321 
322 	if (!sctx)
323 		return;
324 
325 	scrub_free_wr_ctx(&sctx->wr_ctx);
326 
327 	/* this can happen when scrub is cancelled */
328 	if (sctx->curr != -1) {
329 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
330 
331 		for (i = 0; i < sbio->page_count; i++) {
332 			WARN_ON(!sbio->pagev[i]->page);
333 			scrub_block_put(sbio->pagev[i]->sblock);
334 		}
335 		bio_put(sbio->bio);
336 	}
337 
338 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
339 		struct scrub_bio *sbio = sctx->bios[i];
340 
341 		if (!sbio)
342 			break;
343 		kfree(sbio);
344 	}
345 
346 	scrub_free_csums(sctx);
347 	kfree(sctx);
348 }
349 
350 static noinline_for_stack
351 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
352 {
353 	struct scrub_ctx *sctx;
354 	int		i;
355 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
356 	int pages_per_rd_bio;
357 	int ret;
358 
359 	/*
360 	 * the setting of pages_per_rd_bio is correct for scrub but might
361 	 * be wrong for the dev_replace code where we might read from
362 	 * different devices in the initial huge bios. However, that
363 	 * code is able to correctly handle the case when adding a page
364 	 * to a bio fails.
365 	 */
366 	if (dev->bdev)
367 		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
368 					 bio_get_nr_vecs(dev->bdev));
369 	else
370 		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
371 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
372 	if (!sctx)
373 		goto nomem;
374 	sctx->is_dev_replace = is_dev_replace;
375 	sctx->pages_per_rd_bio = pages_per_rd_bio;
376 	sctx->curr = -1;
377 	sctx->dev_root = dev->dev_root;
378 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
379 		struct scrub_bio *sbio;
380 
381 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
382 		if (!sbio)
383 			goto nomem;
384 		sctx->bios[i] = sbio;
385 
386 		sbio->index = i;
387 		sbio->sctx = sctx;
388 		sbio->page_count = 0;
389 		sbio->work.func = scrub_bio_end_io_worker;
390 
391 		if (i != SCRUB_BIOS_PER_SCTX - 1)
392 			sctx->bios[i]->next_free = i + 1;
393 		else
394 			sctx->bios[i]->next_free = -1;
395 	}
396 	sctx->first_free = 0;
397 	sctx->nodesize = dev->dev_root->nodesize;
398 	sctx->leafsize = dev->dev_root->leafsize;
399 	sctx->sectorsize = dev->dev_root->sectorsize;
400 	atomic_set(&sctx->bios_in_flight, 0);
401 	atomic_set(&sctx->workers_pending, 0);
402 	atomic_set(&sctx->cancel_req, 0);
403 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
404 	INIT_LIST_HEAD(&sctx->csum_list);
405 
406 	spin_lock_init(&sctx->list_lock);
407 	spin_lock_init(&sctx->stat_lock);
408 	init_waitqueue_head(&sctx->list_wait);
409 
410 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
411 				 fs_info->dev_replace.tgtdev, is_dev_replace);
412 	if (ret) {
413 		scrub_free_ctx(sctx);
414 		return ERR_PTR(ret);
415 	}
416 	return sctx;
417 
418 nomem:
419 	scrub_free_ctx(sctx);
420 	return ERR_PTR(-ENOMEM);
421 }
422 
423 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
424 				     void *warn_ctx)
425 {
426 	u64 isize;
427 	u32 nlink;
428 	int ret;
429 	int i;
430 	struct extent_buffer *eb;
431 	struct btrfs_inode_item *inode_item;
432 	struct scrub_warning *swarn = warn_ctx;
433 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
434 	struct inode_fs_paths *ipath = NULL;
435 	struct btrfs_root *local_root;
436 	struct btrfs_key root_key;
437 
438 	root_key.objectid = root;
439 	root_key.type = BTRFS_ROOT_ITEM_KEY;
440 	root_key.offset = (u64)-1;
441 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
442 	if (IS_ERR(local_root)) {
443 		ret = PTR_ERR(local_root);
444 		goto err;
445 	}
446 
447 	ret = inode_item_info(inum, 0, local_root, swarn->path);
448 	if (ret) {
449 		btrfs_release_path(swarn->path);
450 		goto err;
451 	}
452 
453 	eb = swarn->path->nodes[0];
454 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
455 					struct btrfs_inode_item);
456 	isize = btrfs_inode_size(eb, inode_item);
457 	nlink = btrfs_inode_nlink(eb, inode_item);
458 	btrfs_release_path(swarn->path);
459 
460 	ipath = init_ipath(4096, local_root, swarn->path);
461 	if (IS_ERR(ipath)) {
462 		ret = PTR_ERR(ipath);
463 		ipath = NULL;
464 		goto err;
465 	}
466 	ret = paths_from_inode(inum, ipath);
467 
468 	if (ret < 0)
469 		goto err;
470 
471 	/*
472 	 * we deliberately ignore the bit ipath might have been too small to
473 	 * hold all of the paths here
474 	 */
475 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
476 		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
477 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
478 			"length %llu, links %u (path: %s)\n", swarn->errstr,
479 			swarn->logical, rcu_str_deref(swarn->dev->name),
480 			(unsigned long long)swarn->sector, root, inum, offset,
481 			min(isize - offset, (u64)PAGE_SIZE), nlink,
482 			(char *)(unsigned long)ipath->fspath->val[i]);
483 
484 	free_ipath(ipath);
485 	return 0;
486 
487 err:
488 	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
489 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
490 		"resolving failed with ret=%d\n", swarn->errstr,
491 		swarn->logical, rcu_str_deref(swarn->dev->name),
492 		(unsigned long long)swarn->sector, root, inum, offset, ret);
493 
494 	free_ipath(ipath);
495 	return 0;
496 }
497 
498 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
499 {
500 	struct btrfs_device *dev;
501 	struct btrfs_fs_info *fs_info;
502 	struct btrfs_path *path;
503 	struct btrfs_key found_key;
504 	struct extent_buffer *eb;
505 	struct btrfs_extent_item *ei;
506 	struct scrub_warning swarn;
507 	unsigned long ptr = 0;
508 	u64 extent_item_pos;
509 	u64 flags = 0;
510 	u64 ref_root;
511 	u32 item_size;
512 	u8 ref_level;
513 	const int bufsize = 4096;
514 	int ret;
515 
516 	WARN_ON(sblock->page_count < 1);
517 	dev = sblock->pagev[0]->dev;
518 	fs_info = sblock->sctx->dev_root->fs_info;
519 
520 	path = btrfs_alloc_path();
521 
522 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
523 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
524 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
525 	swarn.logical = sblock->pagev[0]->logical;
526 	swarn.errstr = errstr;
527 	swarn.dev = NULL;
528 	swarn.msg_bufsize = bufsize;
529 	swarn.scratch_bufsize = bufsize;
530 
531 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
532 		goto out;
533 
534 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
535 				  &flags);
536 	if (ret < 0)
537 		goto out;
538 
539 	extent_item_pos = swarn.logical - found_key.objectid;
540 	swarn.extent_item_size = found_key.offset;
541 
542 	eb = path->nodes[0];
543 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
544 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
545 
546 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
547 		do {
548 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
549 							&ref_root, &ref_level);
550 			printk_in_rcu(KERN_WARNING
551 				"btrfs: %s at logical %llu on dev %s, "
552 				"sector %llu: metadata %s (level %d) in tree "
553 				"%llu\n", errstr, swarn.logical,
554 				rcu_str_deref(dev->name),
555 				(unsigned long long)swarn.sector,
556 				ref_level ? "node" : "leaf",
557 				ret < 0 ? -1 : ref_level,
558 				ret < 0 ? -1 : ref_root);
559 		} while (ret != 1);
560 		btrfs_release_path(path);
561 	} else {
562 		btrfs_release_path(path);
563 		swarn.path = path;
564 		swarn.dev = dev;
565 		iterate_extent_inodes(fs_info, found_key.objectid,
566 					extent_item_pos, 1,
567 					scrub_print_warning_inode, &swarn);
568 	}
569 
570 out:
571 	btrfs_free_path(path);
572 	kfree(swarn.scratch_buf);
573 	kfree(swarn.msg_buf);
574 }
575 
576 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
577 {
578 	struct page *page = NULL;
579 	unsigned long index;
580 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
581 	int ret;
582 	int corrected = 0;
583 	struct btrfs_key key;
584 	struct inode *inode = NULL;
585 	struct btrfs_fs_info *fs_info;
586 	u64 end = offset + PAGE_SIZE - 1;
587 	struct btrfs_root *local_root;
588 	int srcu_index;
589 
590 	key.objectid = root;
591 	key.type = BTRFS_ROOT_ITEM_KEY;
592 	key.offset = (u64)-1;
593 
594 	fs_info = fixup->root->fs_info;
595 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
596 
597 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
598 	if (IS_ERR(local_root)) {
599 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
600 		return PTR_ERR(local_root);
601 	}
602 
603 	key.type = BTRFS_INODE_ITEM_KEY;
604 	key.objectid = inum;
605 	key.offset = 0;
606 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
607 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
608 	if (IS_ERR(inode))
609 		return PTR_ERR(inode);
610 
611 	index = offset >> PAGE_CACHE_SHIFT;
612 
613 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
614 	if (!page) {
615 		ret = -ENOMEM;
616 		goto out;
617 	}
618 
619 	if (PageUptodate(page)) {
620 		if (PageDirty(page)) {
621 			/*
622 			 * we need to write the data to the defect sector. the
623 			 * data that was in that sector is not in memory,
624 			 * because the page was modified. we must not write the
625 			 * modified page to that sector.
626 			 *
627 			 * TODO: what could be done here: wait for the delalloc
628 			 *       runner to write out that page (might involve
629 			 *       COW) and see whether the sector is still
630 			 *       referenced afterwards.
631 			 *
632 			 * For the meantime, we'll treat this error
633 			 * incorrectable, although there is a chance that a
634 			 * later scrub will find the bad sector again and that
635 			 * there's no dirty page in memory, then.
636 			 */
637 			ret = -EIO;
638 			goto out;
639 		}
640 		fs_info = BTRFS_I(inode)->root->fs_info;
641 		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
642 					fixup->logical, page,
643 					fixup->mirror_num);
644 		unlock_page(page);
645 		corrected = !ret;
646 	} else {
647 		/*
648 		 * we need to get good data first. the general readpage path
649 		 * will call repair_io_failure for us, we just have to make
650 		 * sure we read the bad mirror.
651 		 */
652 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
653 					EXTENT_DAMAGED, GFP_NOFS);
654 		if (ret) {
655 			/* set_extent_bits should give proper error */
656 			WARN_ON(ret > 0);
657 			if (ret > 0)
658 				ret = -EFAULT;
659 			goto out;
660 		}
661 
662 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
663 						btrfs_get_extent,
664 						fixup->mirror_num);
665 		wait_on_page_locked(page);
666 
667 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
668 						end, EXTENT_DAMAGED, 0, NULL);
669 		if (!corrected)
670 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
671 						EXTENT_DAMAGED, GFP_NOFS);
672 	}
673 
674 out:
675 	if (page)
676 		put_page(page);
677 	if (inode)
678 		iput(inode);
679 
680 	if (ret < 0)
681 		return ret;
682 
683 	if (ret == 0 && corrected) {
684 		/*
685 		 * we only need to call readpage for one of the inodes belonging
686 		 * to this extent. so make iterate_extent_inodes stop
687 		 */
688 		return 1;
689 	}
690 
691 	return -EIO;
692 }
693 
694 static void scrub_fixup_nodatasum(struct btrfs_work *work)
695 {
696 	int ret;
697 	struct scrub_fixup_nodatasum *fixup;
698 	struct scrub_ctx *sctx;
699 	struct btrfs_trans_handle *trans = NULL;
700 	struct btrfs_fs_info *fs_info;
701 	struct btrfs_path *path;
702 	int uncorrectable = 0;
703 
704 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
705 	sctx = fixup->sctx;
706 	fs_info = fixup->root->fs_info;
707 
708 	path = btrfs_alloc_path();
709 	if (!path) {
710 		spin_lock(&sctx->stat_lock);
711 		++sctx->stat.malloc_errors;
712 		spin_unlock(&sctx->stat_lock);
713 		uncorrectable = 1;
714 		goto out;
715 	}
716 
717 	trans = btrfs_join_transaction(fixup->root);
718 	if (IS_ERR(trans)) {
719 		uncorrectable = 1;
720 		goto out;
721 	}
722 
723 	/*
724 	 * the idea is to trigger a regular read through the standard path. we
725 	 * read a page from the (failed) logical address by specifying the
726 	 * corresponding copynum of the failed sector. thus, that readpage is
727 	 * expected to fail.
728 	 * that is the point where on-the-fly error correction will kick in
729 	 * (once it's finished) and rewrite the failed sector if a good copy
730 	 * can be found.
731 	 */
732 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
733 						path, scrub_fixup_readpage,
734 						fixup);
735 	if (ret < 0) {
736 		uncorrectable = 1;
737 		goto out;
738 	}
739 	WARN_ON(ret != 1);
740 
741 	spin_lock(&sctx->stat_lock);
742 	++sctx->stat.corrected_errors;
743 	spin_unlock(&sctx->stat_lock);
744 
745 out:
746 	if (trans && !IS_ERR(trans))
747 		btrfs_end_transaction(trans, fixup->root);
748 	if (uncorrectable) {
749 		spin_lock(&sctx->stat_lock);
750 		++sctx->stat.uncorrectable_errors;
751 		spin_unlock(&sctx->stat_lock);
752 		btrfs_dev_replace_stats_inc(
753 			&sctx->dev_root->fs_info->dev_replace.
754 			num_uncorrectable_read_errors);
755 		printk_ratelimited_in_rcu(KERN_ERR
756 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
757 			(unsigned long long)fixup->logical,
758 			rcu_str_deref(fixup->dev->name));
759 	}
760 
761 	btrfs_free_path(path);
762 	kfree(fixup);
763 
764 	scrub_pending_trans_workers_dec(sctx);
765 }
766 
767 /*
768  * scrub_handle_errored_block gets called when either verification of the
769  * pages failed or the bio failed to read, e.g. with EIO. In the latter
770  * case, this function handles all pages in the bio, even though only one
771  * may be bad.
772  * The goal of this function is to repair the errored block by using the
773  * contents of one of the mirrors.
774  */
775 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
776 {
777 	struct scrub_ctx *sctx = sblock_to_check->sctx;
778 	struct btrfs_device *dev;
779 	struct btrfs_fs_info *fs_info;
780 	u64 length;
781 	u64 logical;
782 	u64 generation;
783 	unsigned int failed_mirror_index;
784 	unsigned int is_metadata;
785 	unsigned int have_csum;
786 	u8 *csum;
787 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
788 	struct scrub_block *sblock_bad;
789 	int ret;
790 	int mirror_index;
791 	int page_num;
792 	int success;
793 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
794 				      DEFAULT_RATELIMIT_BURST);
795 
796 	BUG_ON(sblock_to_check->page_count < 1);
797 	fs_info = sctx->dev_root->fs_info;
798 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
799 		/*
800 		 * if we find an error in a super block, we just report it.
801 		 * They will get written with the next transaction commit
802 		 * anyway
803 		 */
804 		spin_lock(&sctx->stat_lock);
805 		++sctx->stat.super_errors;
806 		spin_unlock(&sctx->stat_lock);
807 		return 0;
808 	}
809 	length = sblock_to_check->page_count * PAGE_SIZE;
810 	logical = sblock_to_check->pagev[0]->logical;
811 	generation = sblock_to_check->pagev[0]->generation;
812 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
813 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
814 	is_metadata = !(sblock_to_check->pagev[0]->flags &
815 			BTRFS_EXTENT_FLAG_DATA);
816 	have_csum = sblock_to_check->pagev[0]->have_csum;
817 	csum = sblock_to_check->pagev[0]->csum;
818 	dev = sblock_to_check->pagev[0]->dev;
819 
820 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
821 		sblocks_for_recheck = NULL;
822 		goto nodatasum_case;
823 	}
824 
825 	/*
826 	 * read all mirrors one after the other. This includes to
827 	 * re-read the extent or metadata block that failed (that was
828 	 * the cause that this fixup code is called) another time,
829 	 * page by page this time in order to know which pages
830 	 * caused I/O errors and which ones are good (for all mirrors).
831 	 * It is the goal to handle the situation when more than one
832 	 * mirror contains I/O errors, but the errors do not
833 	 * overlap, i.e. the data can be repaired by selecting the
834 	 * pages from those mirrors without I/O error on the
835 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
836 	 * would be that mirror #1 has an I/O error on the first page,
837 	 * the second page is good, and mirror #2 has an I/O error on
838 	 * the second page, but the first page is good.
839 	 * Then the first page of the first mirror can be repaired by
840 	 * taking the first page of the second mirror, and the
841 	 * second page of the second mirror can be repaired by
842 	 * copying the contents of the 2nd page of the 1st mirror.
843 	 * One more note: if the pages of one mirror contain I/O
844 	 * errors, the checksum cannot be verified. In order to get
845 	 * the best data for repairing, the first attempt is to find
846 	 * a mirror without I/O errors and with a validated checksum.
847 	 * Only if this is not possible, the pages are picked from
848 	 * mirrors with I/O errors without considering the checksum.
849 	 * If the latter is the case, at the end, the checksum of the
850 	 * repaired area is verified in order to correctly maintain
851 	 * the statistics.
852 	 */
853 
854 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
855 				     sizeof(*sblocks_for_recheck),
856 				     GFP_NOFS);
857 	if (!sblocks_for_recheck) {
858 		spin_lock(&sctx->stat_lock);
859 		sctx->stat.malloc_errors++;
860 		sctx->stat.read_errors++;
861 		sctx->stat.uncorrectable_errors++;
862 		spin_unlock(&sctx->stat_lock);
863 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
864 		goto out;
865 	}
866 
867 	/* setup the context, map the logical blocks and alloc the pages */
868 	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
869 					logical, sblocks_for_recheck);
870 	if (ret) {
871 		spin_lock(&sctx->stat_lock);
872 		sctx->stat.read_errors++;
873 		sctx->stat.uncorrectable_errors++;
874 		spin_unlock(&sctx->stat_lock);
875 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
876 		goto out;
877 	}
878 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
879 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
880 
881 	/* build and submit the bios for the failed mirror, check checksums */
882 	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
883 			    csum, generation, sctx->csum_size);
884 
885 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
886 	    sblock_bad->no_io_error_seen) {
887 		/*
888 		 * the error disappeared after reading page by page, or
889 		 * the area was part of a huge bio and other parts of the
890 		 * bio caused I/O errors, or the block layer merged several
891 		 * read requests into one and the error is caused by a
892 		 * different bio (usually one of the two latter cases is
893 		 * the cause)
894 		 */
895 		spin_lock(&sctx->stat_lock);
896 		sctx->stat.unverified_errors++;
897 		spin_unlock(&sctx->stat_lock);
898 
899 		if (sctx->is_dev_replace)
900 			scrub_write_block_to_dev_replace(sblock_bad);
901 		goto out;
902 	}
903 
904 	if (!sblock_bad->no_io_error_seen) {
905 		spin_lock(&sctx->stat_lock);
906 		sctx->stat.read_errors++;
907 		spin_unlock(&sctx->stat_lock);
908 		if (__ratelimit(&_rs))
909 			scrub_print_warning("i/o error", sblock_to_check);
910 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
911 	} else if (sblock_bad->checksum_error) {
912 		spin_lock(&sctx->stat_lock);
913 		sctx->stat.csum_errors++;
914 		spin_unlock(&sctx->stat_lock);
915 		if (__ratelimit(&_rs))
916 			scrub_print_warning("checksum error", sblock_to_check);
917 		btrfs_dev_stat_inc_and_print(dev,
918 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
919 	} else if (sblock_bad->header_error) {
920 		spin_lock(&sctx->stat_lock);
921 		sctx->stat.verify_errors++;
922 		spin_unlock(&sctx->stat_lock);
923 		if (__ratelimit(&_rs))
924 			scrub_print_warning("checksum/header error",
925 					    sblock_to_check);
926 		if (sblock_bad->generation_error)
927 			btrfs_dev_stat_inc_and_print(dev,
928 				BTRFS_DEV_STAT_GENERATION_ERRS);
929 		else
930 			btrfs_dev_stat_inc_and_print(dev,
931 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
932 	}
933 
934 	if (sctx->readonly && !sctx->is_dev_replace)
935 		goto did_not_correct_error;
936 
937 	if (!is_metadata && !have_csum) {
938 		struct scrub_fixup_nodatasum *fixup_nodatasum;
939 
940 nodatasum_case:
941 		WARN_ON(sctx->is_dev_replace);
942 
943 		/*
944 		 * !is_metadata and !have_csum, this means that the data
945 		 * might not be COW'ed, that it might be modified
946 		 * concurrently. The general strategy to work on the
947 		 * commit root does not help in the case when COW is not
948 		 * used.
949 		 */
950 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
951 		if (!fixup_nodatasum)
952 			goto did_not_correct_error;
953 		fixup_nodatasum->sctx = sctx;
954 		fixup_nodatasum->dev = dev;
955 		fixup_nodatasum->logical = logical;
956 		fixup_nodatasum->root = fs_info->extent_root;
957 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
958 		scrub_pending_trans_workers_inc(sctx);
959 		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
960 		btrfs_queue_worker(&fs_info->scrub_workers,
961 				   &fixup_nodatasum->work);
962 		goto out;
963 	}
964 
965 	/*
966 	 * now build and submit the bios for the other mirrors, check
967 	 * checksums.
968 	 * First try to pick the mirror which is completely without I/O
969 	 * errors and also does not have a checksum error.
970 	 * If one is found, and if a checksum is present, the full block
971 	 * that is known to contain an error is rewritten. Afterwards
972 	 * the block is known to be corrected.
973 	 * If a mirror is found which is completely correct, and no
974 	 * checksum is present, only those pages are rewritten that had
975 	 * an I/O error in the block to be repaired, since it cannot be
976 	 * determined, which copy of the other pages is better (and it
977 	 * could happen otherwise that a correct page would be
978 	 * overwritten by a bad one).
979 	 */
980 	for (mirror_index = 0;
981 	     mirror_index < BTRFS_MAX_MIRRORS &&
982 	     sblocks_for_recheck[mirror_index].page_count > 0;
983 	     mirror_index++) {
984 		struct scrub_block *sblock_other;
985 
986 		if (mirror_index == failed_mirror_index)
987 			continue;
988 		sblock_other = sblocks_for_recheck + mirror_index;
989 
990 		/* build and submit the bios, check checksums */
991 		scrub_recheck_block(fs_info, sblock_other, is_metadata,
992 				    have_csum, csum, generation,
993 				    sctx->csum_size);
994 
995 		if (!sblock_other->header_error &&
996 		    !sblock_other->checksum_error &&
997 		    sblock_other->no_io_error_seen) {
998 			if (sctx->is_dev_replace) {
999 				scrub_write_block_to_dev_replace(sblock_other);
1000 			} else {
1001 				int force_write = is_metadata || have_csum;
1002 
1003 				ret = scrub_repair_block_from_good_copy(
1004 						sblock_bad, sblock_other,
1005 						force_write);
1006 			}
1007 			if (0 == ret)
1008 				goto corrected_error;
1009 		}
1010 	}
1011 
1012 	/*
1013 	 * for dev_replace, pick good pages and write to the target device.
1014 	 */
1015 	if (sctx->is_dev_replace) {
1016 		success = 1;
1017 		for (page_num = 0; page_num < sblock_bad->page_count;
1018 		     page_num++) {
1019 			int sub_success;
1020 
1021 			sub_success = 0;
1022 			for (mirror_index = 0;
1023 			     mirror_index < BTRFS_MAX_MIRRORS &&
1024 			     sblocks_for_recheck[mirror_index].page_count > 0;
1025 			     mirror_index++) {
1026 				struct scrub_block *sblock_other =
1027 					sblocks_for_recheck + mirror_index;
1028 				struct scrub_page *page_other =
1029 					sblock_other->pagev[page_num];
1030 
1031 				if (!page_other->io_error) {
1032 					ret = scrub_write_page_to_dev_replace(
1033 							sblock_other, page_num);
1034 					if (ret == 0) {
1035 						/* succeeded for this page */
1036 						sub_success = 1;
1037 						break;
1038 					} else {
1039 						btrfs_dev_replace_stats_inc(
1040 							&sctx->dev_root->
1041 							fs_info->dev_replace.
1042 							num_write_errors);
1043 					}
1044 				}
1045 			}
1046 
1047 			if (!sub_success) {
1048 				/*
1049 				 * did not find a mirror to fetch the page
1050 				 * from. scrub_write_page_to_dev_replace()
1051 				 * handles this case (page->io_error), by
1052 				 * filling the block with zeros before
1053 				 * submitting the write request
1054 				 */
1055 				success = 0;
1056 				ret = scrub_write_page_to_dev_replace(
1057 						sblock_bad, page_num);
1058 				if (ret)
1059 					btrfs_dev_replace_stats_inc(
1060 						&sctx->dev_root->fs_info->
1061 						dev_replace.num_write_errors);
1062 			}
1063 		}
1064 
1065 		goto out;
1066 	}
1067 
1068 	/*
1069 	 * for regular scrub, repair those pages that are errored.
1070 	 * In case of I/O errors in the area that is supposed to be
1071 	 * repaired, continue by picking good copies of those pages.
1072 	 * Select the good pages from mirrors to rewrite bad pages from
1073 	 * the area to fix. Afterwards verify the checksum of the block
1074 	 * that is supposed to be repaired. This verification step is
1075 	 * only done for the purpose of statistic counting and for the
1076 	 * final scrub report, whether errors remain.
1077 	 * A perfect algorithm could make use of the checksum and try
1078 	 * all possible combinations of pages from the different mirrors
1079 	 * until the checksum verification succeeds. For example, when
1080 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081 	 * of mirror #2 is readable but the final checksum test fails,
1082 	 * then the 2nd page of mirror #3 could be tried, whether now
1083 	 * the final checksum succeedes. But this would be a rare
1084 	 * exception and is therefore not implemented. At least it is
1085 	 * avoided that the good copy is overwritten.
1086 	 * A more useful improvement would be to pick the sectors
1087 	 * without I/O error based on sector sizes (512 bytes on legacy
1088 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089 	 * mirror could be repaired by taking 512 byte of a different
1090 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091 	 * area are unreadable.
1092 	 */
1093 
1094 	/* can only fix I/O errors from here on */
1095 	if (sblock_bad->no_io_error_seen)
1096 		goto did_not_correct_error;
1097 
1098 	success = 1;
1099 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1100 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1101 
1102 		if (!page_bad->io_error)
1103 			continue;
1104 
1105 		for (mirror_index = 0;
1106 		     mirror_index < BTRFS_MAX_MIRRORS &&
1107 		     sblocks_for_recheck[mirror_index].page_count > 0;
1108 		     mirror_index++) {
1109 			struct scrub_block *sblock_other = sblocks_for_recheck +
1110 							   mirror_index;
1111 			struct scrub_page *page_other = sblock_other->pagev[
1112 							page_num];
1113 
1114 			if (!page_other->io_error) {
1115 				ret = scrub_repair_page_from_good_copy(
1116 					sblock_bad, sblock_other, page_num, 0);
1117 				if (0 == ret) {
1118 					page_bad->io_error = 0;
1119 					break; /* succeeded for this page */
1120 				}
1121 			}
1122 		}
1123 
1124 		if (page_bad->io_error) {
1125 			/* did not find a mirror to copy the page from */
1126 			success = 0;
1127 		}
1128 	}
1129 
1130 	if (success) {
1131 		if (is_metadata || have_csum) {
1132 			/*
1133 			 * need to verify the checksum now that all
1134 			 * sectors on disk are repaired (the write
1135 			 * request for data to be repaired is on its way).
1136 			 * Just be lazy and use scrub_recheck_block()
1137 			 * which re-reads the data before the checksum
1138 			 * is verified, but most likely the data comes out
1139 			 * of the page cache.
1140 			 */
1141 			scrub_recheck_block(fs_info, sblock_bad,
1142 					    is_metadata, have_csum, csum,
1143 					    generation, sctx->csum_size);
1144 			if (!sblock_bad->header_error &&
1145 			    !sblock_bad->checksum_error &&
1146 			    sblock_bad->no_io_error_seen)
1147 				goto corrected_error;
1148 			else
1149 				goto did_not_correct_error;
1150 		} else {
1151 corrected_error:
1152 			spin_lock(&sctx->stat_lock);
1153 			sctx->stat.corrected_errors++;
1154 			spin_unlock(&sctx->stat_lock);
1155 			printk_ratelimited_in_rcu(KERN_ERR
1156 				"btrfs: fixed up error at logical %llu on dev %s\n",
1157 				(unsigned long long)logical,
1158 				rcu_str_deref(dev->name));
1159 		}
1160 	} else {
1161 did_not_correct_error:
1162 		spin_lock(&sctx->stat_lock);
1163 		sctx->stat.uncorrectable_errors++;
1164 		spin_unlock(&sctx->stat_lock);
1165 		printk_ratelimited_in_rcu(KERN_ERR
1166 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1167 			(unsigned long long)logical,
1168 			rcu_str_deref(dev->name));
1169 	}
1170 
1171 out:
1172 	if (sblocks_for_recheck) {
1173 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1174 		     mirror_index++) {
1175 			struct scrub_block *sblock = sblocks_for_recheck +
1176 						     mirror_index;
1177 			int page_index;
1178 
1179 			for (page_index = 0; page_index < sblock->page_count;
1180 			     page_index++) {
1181 				sblock->pagev[page_index]->sblock = NULL;
1182 				scrub_page_put(sblock->pagev[page_index]);
1183 			}
1184 		}
1185 		kfree(sblocks_for_recheck);
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1192 				     struct btrfs_fs_info *fs_info,
1193 				     struct scrub_block *original_sblock,
1194 				     u64 length, u64 logical,
1195 				     struct scrub_block *sblocks_for_recheck)
1196 {
1197 	int page_index;
1198 	int mirror_index;
1199 	int ret;
1200 
1201 	/*
1202 	 * note: the two members ref_count and outstanding_pages
1203 	 * are not used (and not set) in the blocks that are used for
1204 	 * the recheck procedure
1205 	 */
1206 
1207 	page_index = 0;
1208 	while (length > 0) {
1209 		u64 sublen = min_t(u64, length, PAGE_SIZE);
1210 		u64 mapped_length = sublen;
1211 		struct btrfs_bio *bbio = NULL;
1212 
1213 		/*
1214 		 * with a length of PAGE_SIZE, each returned stripe
1215 		 * represents one mirror
1216 		 */
1217 		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1218 				      &mapped_length, &bbio, 0);
1219 		if (ret || !bbio || mapped_length < sublen) {
1220 			kfree(bbio);
1221 			return -EIO;
1222 		}
1223 
1224 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1225 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1226 		     mirror_index++) {
1227 			struct scrub_block *sblock;
1228 			struct scrub_page *page;
1229 
1230 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1231 				continue;
1232 
1233 			sblock = sblocks_for_recheck + mirror_index;
1234 			sblock->sctx = sctx;
1235 			page = kzalloc(sizeof(*page), GFP_NOFS);
1236 			if (!page) {
1237 leave_nomem:
1238 				spin_lock(&sctx->stat_lock);
1239 				sctx->stat.malloc_errors++;
1240 				spin_unlock(&sctx->stat_lock);
1241 				kfree(bbio);
1242 				return -ENOMEM;
1243 			}
1244 			scrub_page_get(page);
1245 			sblock->pagev[page_index] = page;
1246 			page->logical = logical;
1247 			page->physical = bbio->stripes[mirror_index].physical;
1248 			BUG_ON(page_index >= original_sblock->page_count);
1249 			page->physical_for_dev_replace =
1250 				original_sblock->pagev[page_index]->
1251 				physical_for_dev_replace;
1252 			/* for missing devices, dev->bdev is NULL */
1253 			page->dev = bbio->stripes[mirror_index].dev;
1254 			page->mirror_num = mirror_index + 1;
1255 			sblock->page_count++;
1256 			page->page = alloc_page(GFP_NOFS);
1257 			if (!page->page)
1258 				goto leave_nomem;
1259 		}
1260 		kfree(bbio);
1261 		length -= sublen;
1262 		logical += sublen;
1263 		page_index++;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 /*
1270  * this function will check the on disk data for checksum errors, header
1271  * errors and read I/O errors. If any I/O errors happen, the exact pages
1272  * which are errored are marked as being bad. The goal is to enable scrub
1273  * to take those pages that are not errored from all the mirrors so that
1274  * the pages that are errored in the just handled mirror can be repaired.
1275  */
1276 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1277 				struct scrub_block *sblock, int is_metadata,
1278 				int have_csum, u8 *csum, u64 generation,
1279 				u16 csum_size)
1280 {
1281 	int page_num;
1282 
1283 	sblock->no_io_error_seen = 1;
1284 	sblock->header_error = 0;
1285 	sblock->checksum_error = 0;
1286 
1287 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1288 		struct bio *bio;
1289 		struct scrub_page *page = sblock->pagev[page_num];
1290 		DECLARE_COMPLETION_ONSTACK(complete);
1291 
1292 		if (page->dev->bdev == NULL) {
1293 			page->io_error = 1;
1294 			sblock->no_io_error_seen = 0;
1295 			continue;
1296 		}
1297 
1298 		WARN_ON(!page->page);
1299 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1300 		if (!bio) {
1301 			page->io_error = 1;
1302 			sblock->no_io_error_seen = 0;
1303 			continue;
1304 		}
1305 		bio->bi_bdev = page->dev->bdev;
1306 		bio->bi_sector = page->physical >> 9;
1307 		bio->bi_end_io = scrub_complete_bio_end_io;
1308 		bio->bi_private = &complete;
1309 
1310 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1311 		btrfsic_submit_bio(READ, bio);
1312 
1313 		/* this will also unplug the queue */
1314 		wait_for_completion(&complete);
1315 
1316 		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1317 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1318 			sblock->no_io_error_seen = 0;
1319 		bio_put(bio);
1320 	}
1321 
1322 	if (sblock->no_io_error_seen)
1323 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1324 					     have_csum, csum, generation,
1325 					     csum_size);
1326 
1327 	return;
1328 }
1329 
1330 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1331 					 struct scrub_block *sblock,
1332 					 int is_metadata, int have_csum,
1333 					 const u8 *csum, u64 generation,
1334 					 u16 csum_size)
1335 {
1336 	int page_num;
1337 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1338 	u32 crc = ~(u32)0;
1339 	void *mapped_buffer;
1340 
1341 	WARN_ON(!sblock->pagev[0]->page);
1342 	if (is_metadata) {
1343 		struct btrfs_header *h;
1344 
1345 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1346 		h = (struct btrfs_header *)mapped_buffer;
1347 
1348 		if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr) ||
1349 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1350 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1351 			   BTRFS_UUID_SIZE)) {
1352 			sblock->header_error = 1;
1353 		} else if (generation != le64_to_cpu(h->generation)) {
1354 			sblock->header_error = 1;
1355 			sblock->generation_error = 1;
1356 		}
1357 		csum = h->csum;
1358 	} else {
1359 		if (!have_csum)
1360 			return;
1361 
1362 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1363 	}
1364 
1365 	for (page_num = 0;;) {
1366 		if (page_num == 0 && is_metadata)
1367 			crc = btrfs_csum_data(
1368 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1369 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1370 		else
1371 			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1372 
1373 		kunmap_atomic(mapped_buffer);
1374 		page_num++;
1375 		if (page_num >= sblock->page_count)
1376 			break;
1377 		WARN_ON(!sblock->pagev[page_num]->page);
1378 
1379 		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1380 	}
1381 
1382 	btrfs_csum_final(crc, calculated_csum);
1383 	if (memcmp(calculated_csum, csum, csum_size))
1384 		sblock->checksum_error = 1;
1385 }
1386 
1387 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1388 {
1389 	complete((struct completion *)bio->bi_private);
1390 }
1391 
1392 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1393 					     struct scrub_block *sblock_good,
1394 					     int force_write)
1395 {
1396 	int page_num;
1397 	int ret = 0;
1398 
1399 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1400 		int ret_sub;
1401 
1402 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1403 							   sblock_good,
1404 							   page_num,
1405 							   force_write);
1406 		if (ret_sub)
1407 			ret = ret_sub;
1408 	}
1409 
1410 	return ret;
1411 }
1412 
1413 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1414 					    struct scrub_block *sblock_good,
1415 					    int page_num, int force_write)
1416 {
1417 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1418 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1419 
1420 	BUG_ON(page_bad->page == NULL);
1421 	BUG_ON(page_good->page == NULL);
1422 	if (force_write || sblock_bad->header_error ||
1423 	    sblock_bad->checksum_error || page_bad->io_error) {
1424 		struct bio *bio;
1425 		int ret;
1426 		DECLARE_COMPLETION_ONSTACK(complete);
1427 
1428 		if (!page_bad->dev->bdev) {
1429 			printk_ratelimited(KERN_WARNING
1430 				"btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1431 			return -EIO;
1432 		}
1433 
1434 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1435 		if (!bio)
1436 			return -EIO;
1437 		bio->bi_bdev = page_bad->dev->bdev;
1438 		bio->bi_sector = page_bad->physical >> 9;
1439 		bio->bi_end_io = scrub_complete_bio_end_io;
1440 		bio->bi_private = &complete;
1441 
1442 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1443 		if (PAGE_SIZE != ret) {
1444 			bio_put(bio);
1445 			return -EIO;
1446 		}
1447 		btrfsic_submit_bio(WRITE, bio);
1448 
1449 		/* this will also unplug the queue */
1450 		wait_for_completion(&complete);
1451 		if (!bio_flagged(bio, BIO_UPTODATE)) {
1452 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1453 				BTRFS_DEV_STAT_WRITE_ERRS);
1454 			btrfs_dev_replace_stats_inc(
1455 				&sblock_bad->sctx->dev_root->fs_info->
1456 				dev_replace.num_write_errors);
1457 			bio_put(bio);
1458 			return -EIO;
1459 		}
1460 		bio_put(bio);
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1467 {
1468 	int page_num;
1469 
1470 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1471 		int ret;
1472 
1473 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1474 		if (ret)
1475 			btrfs_dev_replace_stats_inc(
1476 				&sblock->sctx->dev_root->fs_info->dev_replace.
1477 				num_write_errors);
1478 	}
1479 }
1480 
1481 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1482 					   int page_num)
1483 {
1484 	struct scrub_page *spage = sblock->pagev[page_num];
1485 
1486 	BUG_ON(spage->page == NULL);
1487 	if (spage->io_error) {
1488 		void *mapped_buffer = kmap_atomic(spage->page);
1489 
1490 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1491 		flush_dcache_page(spage->page);
1492 		kunmap_atomic(mapped_buffer);
1493 	}
1494 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1495 }
1496 
1497 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1498 				    struct scrub_page *spage)
1499 {
1500 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1501 	struct scrub_bio *sbio;
1502 	int ret;
1503 
1504 	mutex_lock(&wr_ctx->wr_lock);
1505 again:
1506 	if (!wr_ctx->wr_curr_bio) {
1507 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1508 					      GFP_NOFS);
1509 		if (!wr_ctx->wr_curr_bio) {
1510 			mutex_unlock(&wr_ctx->wr_lock);
1511 			return -ENOMEM;
1512 		}
1513 		wr_ctx->wr_curr_bio->sctx = sctx;
1514 		wr_ctx->wr_curr_bio->page_count = 0;
1515 	}
1516 	sbio = wr_ctx->wr_curr_bio;
1517 	if (sbio->page_count == 0) {
1518 		struct bio *bio;
1519 
1520 		sbio->physical = spage->physical_for_dev_replace;
1521 		sbio->logical = spage->logical;
1522 		sbio->dev = wr_ctx->tgtdev;
1523 		bio = sbio->bio;
1524 		if (!bio) {
1525 			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1526 			if (!bio) {
1527 				mutex_unlock(&wr_ctx->wr_lock);
1528 				return -ENOMEM;
1529 			}
1530 			sbio->bio = bio;
1531 		}
1532 
1533 		bio->bi_private = sbio;
1534 		bio->bi_end_io = scrub_wr_bio_end_io;
1535 		bio->bi_bdev = sbio->dev->bdev;
1536 		bio->bi_sector = sbio->physical >> 9;
1537 		sbio->err = 0;
1538 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1539 		   spage->physical_for_dev_replace ||
1540 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1541 		   spage->logical) {
1542 		scrub_wr_submit(sctx);
1543 		goto again;
1544 	}
1545 
1546 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1547 	if (ret != PAGE_SIZE) {
1548 		if (sbio->page_count < 1) {
1549 			bio_put(sbio->bio);
1550 			sbio->bio = NULL;
1551 			mutex_unlock(&wr_ctx->wr_lock);
1552 			return -EIO;
1553 		}
1554 		scrub_wr_submit(sctx);
1555 		goto again;
1556 	}
1557 
1558 	sbio->pagev[sbio->page_count] = spage;
1559 	scrub_page_get(spage);
1560 	sbio->page_count++;
1561 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1562 		scrub_wr_submit(sctx);
1563 	mutex_unlock(&wr_ctx->wr_lock);
1564 
1565 	return 0;
1566 }
1567 
1568 static void scrub_wr_submit(struct scrub_ctx *sctx)
1569 {
1570 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1571 	struct scrub_bio *sbio;
1572 
1573 	if (!wr_ctx->wr_curr_bio)
1574 		return;
1575 
1576 	sbio = wr_ctx->wr_curr_bio;
1577 	wr_ctx->wr_curr_bio = NULL;
1578 	WARN_ON(!sbio->bio->bi_bdev);
1579 	scrub_pending_bio_inc(sctx);
1580 	/* process all writes in a single worker thread. Then the block layer
1581 	 * orders the requests before sending them to the driver which
1582 	 * doubled the write performance on spinning disks when measured
1583 	 * with Linux 3.5 */
1584 	btrfsic_submit_bio(WRITE, sbio->bio);
1585 }
1586 
1587 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1588 {
1589 	struct scrub_bio *sbio = bio->bi_private;
1590 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1591 
1592 	sbio->err = err;
1593 	sbio->bio = bio;
1594 
1595 	sbio->work.func = scrub_wr_bio_end_io_worker;
1596 	btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1597 }
1598 
1599 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1600 {
1601 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1602 	struct scrub_ctx *sctx = sbio->sctx;
1603 	int i;
1604 
1605 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1606 	if (sbio->err) {
1607 		struct btrfs_dev_replace *dev_replace =
1608 			&sbio->sctx->dev_root->fs_info->dev_replace;
1609 
1610 		for (i = 0; i < sbio->page_count; i++) {
1611 			struct scrub_page *spage = sbio->pagev[i];
1612 
1613 			spage->io_error = 1;
1614 			btrfs_dev_replace_stats_inc(&dev_replace->
1615 						    num_write_errors);
1616 		}
1617 	}
1618 
1619 	for (i = 0; i < sbio->page_count; i++)
1620 		scrub_page_put(sbio->pagev[i]);
1621 
1622 	bio_put(sbio->bio);
1623 	kfree(sbio);
1624 	scrub_pending_bio_dec(sctx);
1625 }
1626 
1627 static int scrub_checksum(struct scrub_block *sblock)
1628 {
1629 	u64 flags;
1630 	int ret;
1631 
1632 	WARN_ON(sblock->page_count < 1);
1633 	flags = sblock->pagev[0]->flags;
1634 	ret = 0;
1635 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1636 		ret = scrub_checksum_data(sblock);
1637 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1638 		ret = scrub_checksum_tree_block(sblock);
1639 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1640 		(void)scrub_checksum_super(sblock);
1641 	else
1642 		WARN_ON(1);
1643 	if (ret)
1644 		scrub_handle_errored_block(sblock);
1645 
1646 	return ret;
1647 }
1648 
1649 static int scrub_checksum_data(struct scrub_block *sblock)
1650 {
1651 	struct scrub_ctx *sctx = sblock->sctx;
1652 	u8 csum[BTRFS_CSUM_SIZE];
1653 	u8 *on_disk_csum;
1654 	struct page *page;
1655 	void *buffer;
1656 	u32 crc = ~(u32)0;
1657 	int fail = 0;
1658 	u64 len;
1659 	int index;
1660 
1661 	BUG_ON(sblock->page_count < 1);
1662 	if (!sblock->pagev[0]->have_csum)
1663 		return 0;
1664 
1665 	on_disk_csum = sblock->pagev[0]->csum;
1666 	page = sblock->pagev[0]->page;
1667 	buffer = kmap_atomic(page);
1668 
1669 	len = sctx->sectorsize;
1670 	index = 0;
1671 	for (;;) {
1672 		u64 l = min_t(u64, len, PAGE_SIZE);
1673 
1674 		crc = btrfs_csum_data(buffer, crc, l);
1675 		kunmap_atomic(buffer);
1676 		len -= l;
1677 		if (len == 0)
1678 			break;
1679 		index++;
1680 		BUG_ON(index >= sblock->page_count);
1681 		BUG_ON(!sblock->pagev[index]->page);
1682 		page = sblock->pagev[index]->page;
1683 		buffer = kmap_atomic(page);
1684 	}
1685 
1686 	btrfs_csum_final(crc, csum);
1687 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1688 		fail = 1;
1689 
1690 	return fail;
1691 }
1692 
1693 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1694 {
1695 	struct scrub_ctx *sctx = sblock->sctx;
1696 	struct btrfs_header *h;
1697 	struct btrfs_root *root = sctx->dev_root;
1698 	struct btrfs_fs_info *fs_info = root->fs_info;
1699 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1700 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1701 	struct page *page;
1702 	void *mapped_buffer;
1703 	u64 mapped_size;
1704 	void *p;
1705 	u32 crc = ~(u32)0;
1706 	int fail = 0;
1707 	int crc_fail = 0;
1708 	u64 len;
1709 	int index;
1710 
1711 	BUG_ON(sblock->page_count < 1);
1712 	page = sblock->pagev[0]->page;
1713 	mapped_buffer = kmap_atomic(page);
1714 	h = (struct btrfs_header *)mapped_buffer;
1715 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1716 
1717 	/*
1718 	 * we don't use the getter functions here, as we
1719 	 * a) don't have an extent buffer and
1720 	 * b) the page is already kmapped
1721 	 */
1722 
1723 	if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr))
1724 		++fail;
1725 
1726 	if (sblock->pagev[0]->generation != le64_to_cpu(h->generation))
1727 		++fail;
1728 
1729 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1730 		++fail;
1731 
1732 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1733 		   BTRFS_UUID_SIZE))
1734 		++fail;
1735 
1736 	WARN_ON(sctx->nodesize != sctx->leafsize);
1737 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1738 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1739 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1740 	index = 0;
1741 	for (;;) {
1742 		u64 l = min_t(u64, len, mapped_size);
1743 
1744 		crc = btrfs_csum_data(p, crc, l);
1745 		kunmap_atomic(mapped_buffer);
1746 		len -= l;
1747 		if (len == 0)
1748 			break;
1749 		index++;
1750 		BUG_ON(index >= sblock->page_count);
1751 		BUG_ON(!sblock->pagev[index]->page);
1752 		page = sblock->pagev[index]->page;
1753 		mapped_buffer = kmap_atomic(page);
1754 		mapped_size = PAGE_SIZE;
1755 		p = mapped_buffer;
1756 	}
1757 
1758 	btrfs_csum_final(crc, calculated_csum);
1759 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1760 		++crc_fail;
1761 
1762 	return fail || crc_fail;
1763 }
1764 
1765 static int scrub_checksum_super(struct scrub_block *sblock)
1766 {
1767 	struct btrfs_super_block *s;
1768 	struct scrub_ctx *sctx = sblock->sctx;
1769 	struct btrfs_root *root = sctx->dev_root;
1770 	struct btrfs_fs_info *fs_info = root->fs_info;
1771 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1772 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1773 	struct page *page;
1774 	void *mapped_buffer;
1775 	u64 mapped_size;
1776 	void *p;
1777 	u32 crc = ~(u32)0;
1778 	int fail_gen = 0;
1779 	int fail_cor = 0;
1780 	u64 len;
1781 	int index;
1782 
1783 	BUG_ON(sblock->page_count < 1);
1784 	page = sblock->pagev[0]->page;
1785 	mapped_buffer = kmap_atomic(page);
1786 	s = (struct btrfs_super_block *)mapped_buffer;
1787 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1788 
1789 	if (sblock->pagev[0]->logical != le64_to_cpu(s->bytenr))
1790 		++fail_cor;
1791 
1792 	if (sblock->pagev[0]->generation != le64_to_cpu(s->generation))
1793 		++fail_gen;
1794 
1795 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1796 		++fail_cor;
1797 
1798 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1799 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1800 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1801 	index = 0;
1802 	for (;;) {
1803 		u64 l = min_t(u64, len, mapped_size);
1804 
1805 		crc = btrfs_csum_data(p, crc, l);
1806 		kunmap_atomic(mapped_buffer);
1807 		len -= l;
1808 		if (len == 0)
1809 			break;
1810 		index++;
1811 		BUG_ON(index >= sblock->page_count);
1812 		BUG_ON(!sblock->pagev[index]->page);
1813 		page = sblock->pagev[index]->page;
1814 		mapped_buffer = kmap_atomic(page);
1815 		mapped_size = PAGE_SIZE;
1816 		p = mapped_buffer;
1817 	}
1818 
1819 	btrfs_csum_final(crc, calculated_csum);
1820 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1821 		++fail_cor;
1822 
1823 	if (fail_cor + fail_gen) {
1824 		/*
1825 		 * if we find an error in a super block, we just report it.
1826 		 * They will get written with the next transaction commit
1827 		 * anyway
1828 		 */
1829 		spin_lock(&sctx->stat_lock);
1830 		++sctx->stat.super_errors;
1831 		spin_unlock(&sctx->stat_lock);
1832 		if (fail_cor)
1833 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1834 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1835 		else
1836 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1837 				BTRFS_DEV_STAT_GENERATION_ERRS);
1838 	}
1839 
1840 	return fail_cor + fail_gen;
1841 }
1842 
1843 static void scrub_block_get(struct scrub_block *sblock)
1844 {
1845 	atomic_inc(&sblock->ref_count);
1846 }
1847 
1848 static void scrub_block_put(struct scrub_block *sblock)
1849 {
1850 	if (atomic_dec_and_test(&sblock->ref_count)) {
1851 		int i;
1852 
1853 		for (i = 0; i < sblock->page_count; i++)
1854 			scrub_page_put(sblock->pagev[i]);
1855 		kfree(sblock);
1856 	}
1857 }
1858 
1859 static void scrub_page_get(struct scrub_page *spage)
1860 {
1861 	atomic_inc(&spage->ref_count);
1862 }
1863 
1864 static void scrub_page_put(struct scrub_page *spage)
1865 {
1866 	if (atomic_dec_and_test(&spage->ref_count)) {
1867 		if (spage->page)
1868 			__free_page(spage->page);
1869 		kfree(spage);
1870 	}
1871 }
1872 
1873 static void scrub_submit(struct scrub_ctx *sctx)
1874 {
1875 	struct scrub_bio *sbio;
1876 
1877 	if (sctx->curr == -1)
1878 		return;
1879 
1880 	sbio = sctx->bios[sctx->curr];
1881 	sctx->curr = -1;
1882 	scrub_pending_bio_inc(sctx);
1883 
1884 	if (!sbio->bio->bi_bdev) {
1885 		/*
1886 		 * this case should not happen. If btrfs_map_block() is
1887 		 * wrong, it could happen for dev-replace operations on
1888 		 * missing devices when no mirrors are available, but in
1889 		 * this case it should already fail the mount.
1890 		 * This case is handled correctly (but _very_ slowly).
1891 		 */
1892 		printk_ratelimited(KERN_WARNING
1893 			"btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1894 		bio_endio(sbio->bio, -EIO);
1895 	} else {
1896 		btrfsic_submit_bio(READ, sbio->bio);
1897 	}
1898 }
1899 
1900 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1901 				    struct scrub_page *spage)
1902 {
1903 	struct scrub_block *sblock = spage->sblock;
1904 	struct scrub_bio *sbio;
1905 	int ret;
1906 
1907 again:
1908 	/*
1909 	 * grab a fresh bio or wait for one to become available
1910 	 */
1911 	while (sctx->curr == -1) {
1912 		spin_lock(&sctx->list_lock);
1913 		sctx->curr = sctx->first_free;
1914 		if (sctx->curr != -1) {
1915 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1916 			sctx->bios[sctx->curr]->next_free = -1;
1917 			sctx->bios[sctx->curr]->page_count = 0;
1918 			spin_unlock(&sctx->list_lock);
1919 		} else {
1920 			spin_unlock(&sctx->list_lock);
1921 			wait_event(sctx->list_wait, sctx->first_free != -1);
1922 		}
1923 	}
1924 	sbio = sctx->bios[sctx->curr];
1925 	if (sbio->page_count == 0) {
1926 		struct bio *bio;
1927 
1928 		sbio->physical = spage->physical;
1929 		sbio->logical = spage->logical;
1930 		sbio->dev = spage->dev;
1931 		bio = sbio->bio;
1932 		if (!bio) {
1933 			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1934 			if (!bio)
1935 				return -ENOMEM;
1936 			sbio->bio = bio;
1937 		}
1938 
1939 		bio->bi_private = sbio;
1940 		bio->bi_end_io = scrub_bio_end_io;
1941 		bio->bi_bdev = sbio->dev->bdev;
1942 		bio->bi_sector = sbio->physical >> 9;
1943 		sbio->err = 0;
1944 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1945 		   spage->physical ||
1946 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1947 		   spage->logical ||
1948 		   sbio->dev != spage->dev) {
1949 		scrub_submit(sctx);
1950 		goto again;
1951 	}
1952 
1953 	sbio->pagev[sbio->page_count] = spage;
1954 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1955 	if (ret != PAGE_SIZE) {
1956 		if (sbio->page_count < 1) {
1957 			bio_put(sbio->bio);
1958 			sbio->bio = NULL;
1959 			return -EIO;
1960 		}
1961 		scrub_submit(sctx);
1962 		goto again;
1963 	}
1964 
1965 	scrub_block_get(sblock); /* one for the page added to the bio */
1966 	atomic_inc(&sblock->outstanding_pages);
1967 	sbio->page_count++;
1968 	if (sbio->page_count == sctx->pages_per_rd_bio)
1969 		scrub_submit(sctx);
1970 
1971 	return 0;
1972 }
1973 
1974 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1975 		       u64 physical, struct btrfs_device *dev, u64 flags,
1976 		       u64 gen, int mirror_num, u8 *csum, int force,
1977 		       u64 physical_for_dev_replace)
1978 {
1979 	struct scrub_block *sblock;
1980 	int index;
1981 
1982 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1983 	if (!sblock) {
1984 		spin_lock(&sctx->stat_lock);
1985 		sctx->stat.malloc_errors++;
1986 		spin_unlock(&sctx->stat_lock);
1987 		return -ENOMEM;
1988 	}
1989 
1990 	/* one ref inside this function, plus one for each page added to
1991 	 * a bio later on */
1992 	atomic_set(&sblock->ref_count, 1);
1993 	sblock->sctx = sctx;
1994 	sblock->no_io_error_seen = 1;
1995 
1996 	for (index = 0; len > 0; index++) {
1997 		struct scrub_page *spage;
1998 		u64 l = min_t(u64, len, PAGE_SIZE);
1999 
2000 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2001 		if (!spage) {
2002 leave_nomem:
2003 			spin_lock(&sctx->stat_lock);
2004 			sctx->stat.malloc_errors++;
2005 			spin_unlock(&sctx->stat_lock);
2006 			scrub_block_put(sblock);
2007 			return -ENOMEM;
2008 		}
2009 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2010 		scrub_page_get(spage);
2011 		sblock->pagev[index] = spage;
2012 		spage->sblock = sblock;
2013 		spage->dev = dev;
2014 		spage->flags = flags;
2015 		spage->generation = gen;
2016 		spage->logical = logical;
2017 		spage->physical = physical;
2018 		spage->physical_for_dev_replace = physical_for_dev_replace;
2019 		spage->mirror_num = mirror_num;
2020 		if (csum) {
2021 			spage->have_csum = 1;
2022 			memcpy(spage->csum, csum, sctx->csum_size);
2023 		} else {
2024 			spage->have_csum = 0;
2025 		}
2026 		sblock->page_count++;
2027 		spage->page = alloc_page(GFP_NOFS);
2028 		if (!spage->page)
2029 			goto leave_nomem;
2030 		len -= l;
2031 		logical += l;
2032 		physical += l;
2033 		physical_for_dev_replace += l;
2034 	}
2035 
2036 	WARN_ON(sblock->page_count == 0);
2037 	for (index = 0; index < sblock->page_count; index++) {
2038 		struct scrub_page *spage = sblock->pagev[index];
2039 		int ret;
2040 
2041 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2042 		if (ret) {
2043 			scrub_block_put(sblock);
2044 			return ret;
2045 		}
2046 	}
2047 
2048 	if (force)
2049 		scrub_submit(sctx);
2050 
2051 	/* last one frees, either here or in bio completion for last page */
2052 	scrub_block_put(sblock);
2053 	return 0;
2054 }
2055 
2056 static void scrub_bio_end_io(struct bio *bio, int err)
2057 {
2058 	struct scrub_bio *sbio = bio->bi_private;
2059 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2060 
2061 	sbio->err = err;
2062 	sbio->bio = bio;
2063 
2064 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2065 }
2066 
2067 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2068 {
2069 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2070 	struct scrub_ctx *sctx = sbio->sctx;
2071 	int i;
2072 
2073 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2074 	if (sbio->err) {
2075 		for (i = 0; i < sbio->page_count; i++) {
2076 			struct scrub_page *spage = sbio->pagev[i];
2077 
2078 			spage->io_error = 1;
2079 			spage->sblock->no_io_error_seen = 0;
2080 		}
2081 	}
2082 
2083 	/* now complete the scrub_block items that have all pages completed */
2084 	for (i = 0; i < sbio->page_count; i++) {
2085 		struct scrub_page *spage = sbio->pagev[i];
2086 		struct scrub_block *sblock = spage->sblock;
2087 
2088 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2089 			scrub_block_complete(sblock);
2090 		scrub_block_put(sblock);
2091 	}
2092 
2093 	bio_put(sbio->bio);
2094 	sbio->bio = NULL;
2095 	spin_lock(&sctx->list_lock);
2096 	sbio->next_free = sctx->first_free;
2097 	sctx->first_free = sbio->index;
2098 	spin_unlock(&sctx->list_lock);
2099 
2100 	if (sctx->is_dev_replace &&
2101 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2102 		mutex_lock(&sctx->wr_ctx.wr_lock);
2103 		scrub_wr_submit(sctx);
2104 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2105 	}
2106 
2107 	scrub_pending_bio_dec(sctx);
2108 }
2109 
2110 static void scrub_block_complete(struct scrub_block *sblock)
2111 {
2112 	if (!sblock->no_io_error_seen) {
2113 		scrub_handle_errored_block(sblock);
2114 	} else {
2115 		/*
2116 		 * if has checksum error, write via repair mechanism in
2117 		 * dev replace case, otherwise write here in dev replace
2118 		 * case.
2119 		 */
2120 		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2121 			scrub_write_block_to_dev_replace(sblock);
2122 	}
2123 }
2124 
2125 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2126 			   u8 *csum)
2127 {
2128 	struct btrfs_ordered_sum *sum = NULL;
2129 	unsigned long index;
2130 	unsigned long num_sectors;
2131 
2132 	while (!list_empty(&sctx->csum_list)) {
2133 		sum = list_first_entry(&sctx->csum_list,
2134 				       struct btrfs_ordered_sum, list);
2135 		if (sum->bytenr > logical)
2136 			return 0;
2137 		if (sum->bytenr + sum->len > logical)
2138 			break;
2139 
2140 		++sctx->stat.csum_discards;
2141 		list_del(&sum->list);
2142 		kfree(sum);
2143 		sum = NULL;
2144 	}
2145 	if (!sum)
2146 		return 0;
2147 
2148 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2149 	num_sectors = sum->len / sctx->sectorsize;
2150 	memcpy(csum, sum->sums + index, sctx->csum_size);
2151 	if (index == num_sectors - 1) {
2152 		list_del(&sum->list);
2153 		kfree(sum);
2154 	}
2155 	return 1;
2156 }
2157 
2158 /* scrub extent tries to collect up to 64 kB for each bio */
2159 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2160 			u64 physical, struct btrfs_device *dev, u64 flags,
2161 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2162 {
2163 	int ret;
2164 	u8 csum[BTRFS_CSUM_SIZE];
2165 	u32 blocksize;
2166 
2167 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2168 		blocksize = sctx->sectorsize;
2169 		spin_lock(&sctx->stat_lock);
2170 		sctx->stat.data_extents_scrubbed++;
2171 		sctx->stat.data_bytes_scrubbed += len;
2172 		spin_unlock(&sctx->stat_lock);
2173 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2174 		WARN_ON(sctx->nodesize != sctx->leafsize);
2175 		blocksize = sctx->nodesize;
2176 		spin_lock(&sctx->stat_lock);
2177 		sctx->stat.tree_extents_scrubbed++;
2178 		sctx->stat.tree_bytes_scrubbed += len;
2179 		spin_unlock(&sctx->stat_lock);
2180 	} else {
2181 		blocksize = sctx->sectorsize;
2182 		WARN_ON(1);
2183 	}
2184 
2185 	while (len) {
2186 		u64 l = min_t(u64, len, blocksize);
2187 		int have_csum = 0;
2188 
2189 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2190 			/* push csums to sbio */
2191 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2192 			if (have_csum == 0)
2193 				++sctx->stat.no_csum;
2194 			if (sctx->is_dev_replace && !have_csum) {
2195 				ret = copy_nocow_pages(sctx, logical, l,
2196 						       mirror_num,
2197 						      physical_for_dev_replace);
2198 				goto behind_scrub_pages;
2199 			}
2200 		}
2201 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2202 				  mirror_num, have_csum ? csum : NULL, 0,
2203 				  physical_for_dev_replace);
2204 behind_scrub_pages:
2205 		if (ret)
2206 			return ret;
2207 		len -= l;
2208 		logical += l;
2209 		physical += l;
2210 		physical_for_dev_replace += l;
2211 	}
2212 	return 0;
2213 }
2214 
2215 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2216 					   struct map_lookup *map,
2217 					   struct btrfs_device *scrub_dev,
2218 					   int num, u64 base, u64 length,
2219 					   int is_dev_replace)
2220 {
2221 	struct btrfs_path *path;
2222 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2223 	struct btrfs_root *root = fs_info->extent_root;
2224 	struct btrfs_root *csum_root = fs_info->csum_root;
2225 	struct btrfs_extent_item *extent;
2226 	struct blk_plug plug;
2227 	u64 flags;
2228 	int ret;
2229 	int slot;
2230 	u64 nstripes;
2231 	struct extent_buffer *l;
2232 	struct btrfs_key key;
2233 	u64 physical;
2234 	u64 logical;
2235 	u64 logic_end;
2236 	u64 generation;
2237 	int mirror_num;
2238 	struct reada_control *reada1;
2239 	struct reada_control *reada2;
2240 	struct btrfs_key key_start;
2241 	struct btrfs_key key_end;
2242 	u64 increment = map->stripe_len;
2243 	u64 offset;
2244 	u64 extent_logical;
2245 	u64 extent_physical;
2246 	u64 extent_len;
2247 	struct btrfs_device *extent_dev;
2248 	int extent_mirror_num;
2249 	int stop_loop;
2250 
2251 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2252 			 BTRFS_BLOCK_GROUP_RAID6)) {
2253 		if (num >= nr_data_stripes(map)) {
2254 			return 0;
2255 		}
2256 	}
2257 
2258 	nstripes = length;
2259 	offset = 0;
2260 	do_div(nstripes, map->stripe_len);
2261 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2262 		offset = map->stripe_len * num;
2263 		increment = map->stripe_len * map->num_stripes;
2264 		mirror_num = 1;
2265 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2266 		int factor = map->num_stripes / map->sub_stripes;
2267 		offset = map->stripe_len * (num / map->sub_stripes);
2268 		increment = map->stripe_len * factor;
2269 		mirror_num = num % map->sub_stripes + 1;
2270 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2271 		increment = map->stripe_len;
2272 		mirror_num = num % map->num_stripes + 1;
2273 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2274 		increment = map->stripe_len;
2275 		mirror_num = num % map->num_stripes + 1;
2276 	} else {
2277 		increment = map->stripe_len;
2278 		mirror_num = 1;
2279 	}
2280 
2281 	path = btrfs_alloc_path();
2282 	if (!path)
2283 		return -ENOMEM;
2284 
2285 	/*
2286 	 * work on commit root. The related disk blocks are static as
2287 	 * long as COW is applied. This means, it is save to rewrite
2288 	 * them to repair disk errors without any race conditions
2289 	 */
2290 	path->search_commit_root = 1;
2291 	path->skip_locking = 1;
2292 
2293 	/*
2294 	 * trigger the readahead for extent tree csum tree and wait for
2295 	 * completion. During readahead, the scrub is officially paused
2296 	 * to not hold off transaction commits
2297 	 */
2298 	logical = base + offset;
2299 
2300 	wait_event(sctx->list_wait,
2301 		   atomic_read(&sctx->bios_in_flight) == 0);
2302 	atomic_inc(&fs_info->scrubs_paused);
2303 	wake_up(&fs_info->scrub_pause_wait);
2304 
2305 	/* FIXME it might be better to start readahead at commit root */
2306 	key_start.objectid = logical;
2307 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2308 	key_start.offset = (u64)0;
2309 	key_end.objectid = base + offset + nstripes * increment;
2310 	key_end.type = BTRFS_METADATA_ITEM_KEY;
2311 	key_end.offset = (u64)-1;
2312 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2313 
2314 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2315 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2316 	key_start.offset = logical;
2317 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2318 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2319 	key_end.offset = base + offset + nstripes * increment;
2320 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2321 
2322 	if (!IS_ERR(reada1))
2323 		btrfs_reada_wait(reada1);
2324 	if (!IS_ERR(reada2))
2325 		btrfs_reada_wait(reada2);
2326 
2327 	mutex_lock(&fs_info->scrub_lock);
2328 	while (atomic_read(&fs_info->scrub_pause_req)) {
2329 		mutex_unlock(&fs_info->scrub_lock);
2330 		wait_event(fs_info->scrub_pause_wait,
2331 		   atomic_read(&fs_info->scrub_pause_req) == 0);
2332 		mutex_lock(&fs_info->scrub_lock);
2333 	}
2334 	atomic_dec(&fs_info->scrubs_paused);
2335 	mutex_unlock(&fs_info->scrub_lock);
2336 	wake_up(&fs_info->scrub_pause_wait);
2337 
2338 	/*
2339 	 * collect all data csums for the stripe to avoid seeking during
2340 	 * the scrub. This might currently (crc32) end up to be about 1MB
2341 	 */
2342 	blk_start_plug(&plug);
2343 
2344 	/*
2345 	 * now find all extents for each stripe and scrub them
2346 	 */
2347 	logical = base + offset;
2348 	physical = map->stripes[num].physical;
2349 	logic_end = logical + increment * nstripes;
2350 	ret = 0;
2351 	while (logical < logic_end) {
2352 		/*
2353 		 * canceled?
2354 		 */
2355 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2356 		    atomic_read(&sctx->cancel_req)) {
2357 			ret = -ECANCELED;
2358 			goto out;
2359 		}
2360 		/*
2361 		 * check to see if we have to pause
2362 		 */
2363 		if (atomic_read(&fs_info->scrub_pause_req)) {
2364 			/* push queued extents */
2365 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2366 			scrub_submit(sctx);
2367 			mutex_lock(&sctx->wr_ctx.wr_lock);
2368 			scrub_wr_submit(sctx);
2369 			mutex_unlock(&sctx->wr_ctx.wr_lock);
2370 			wait_event(sctx->list_wait,
2371 				   atomic_read(&sctx->bios_in_flight) == 0);
2372 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2373 			atomic_inc(&fs_info->scrubs_paused);
2374 			wake_up(&fs_info->scrub_pause_wait);
2375 			mutex_lock(&fs_info->scrub_lock);
2376 			while (atomic_read(&fs_info->scrub_pause_req)) {
2377 				mutex_unlock(&fs_info->scrub_lock);
2378 				wait_event(fs_info->scrub_pause_wait,
2379 				   atomic_read(&fs_info->scrub_pause_req) == 0);
2380 				mutex_lock(&fs_info->scrub_lock);
2381 			}
2382 			atomic_dec(&fs_info->scrubs_paused);
2383 			mutex_unlock(&fs_info->scrub_lock);
2384 			wake_up(&fs_info->scrub_pause_wait);
2385 		}
2386 
2387 		key.objectid = logical;
2388 		key.type = BTRFS_EXTENT_ITEM_KEY;
2389 		key.offset = (u64)-1;
2390 
2391 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2392 		if (ret < 0)
2393 			goto out;
2394 
2395 		if (ret > 0) {
2396 			ret = btrfs_previous_item(root, path, 0,
2397 						  BTRFS_EXTENT_ITEM_KEY);
2398 			if (ret < 0)
2399 				goto out;
2400 			if (ret > 0) {
2401 				/* there's no smaller item, so stick with the
2402 				 * larger one */
2403 				btrfs_release_path(path);
2404 				ret = btrfs_search_slot(NULL, root, &key,
2405 							path, 0, 0);
2406 				if (ret < 0)
2407 					goto out;
2408 			}
2409 		}
2410 
2411 		stop_loop = 0;
2412 		while (1) {
2413 			u64 bytes;
2414 
2415 			l = path->nodes[0];
2416 			slot = path->slots[0];
2417 			if (slot >= btrfs_header_nritems(l)) {
2418 				ret = btrfs_next_leaf(root, path);
2419 				if (ret == 0)
2420 					continue;
2421 				if (ret < 0)
2422 					goto out;
2423 
2424 				stop_loop = 1;
2425 				break;
2426 			}
2427 			btrfs_item_key_to_cpu(l, &key, slot);
2428 
2429 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2430 				bytes = root->leafsize;
2431 			else
2432 				bytes = key.offset;
2433 
2434 			if (key.objectid + bytes <= logical)
2435 				goto next;
2436 
2437 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2438 			    key.type != BTRFS_METADATA_ITEM_KEY)
2439 				goto next;
2440 
2441 			if (key.objectid >= logical + map->stripe_len) {
2442 				/* out of this device extent */
2443 				if (key.objectid >= logic_end)
2444 					stop_loop = 1;
2445 				break;
2446 			}
2447 
2448 			extent = btrfs_item_ptr(l, slot,
2449 						struct btrfs_extent_item);
2450 			flags = btrfs_extent_flags(l, extent);
2451 			generation = btrfs_extent_generation(l, extent);
2452 
2453 			if (key.objectid < logical &&
2454 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2455 				printk(KERN_ERR
2456 				       "btrfs scrub: tree block %llu spanning "
2457 				       "stripes, ignored. logical=%llu\n",
2458 				       (unsigned long long)key.objectid,
2459 				       (unsigned long long)logical);
2460 				goto next;
2461 			}
2462 
2463 again:
2464 			extent_logical = key.objectid;
2465 			extent_len = bytes;
2466 
2467 			/*
2468 			 * trim extent to this stripe
2469 			 */
2470 			if (extent_logical < logical) {
2471 				extent_len -= logical - extent_logical;
2472 				extent_logical = logical;
2473 			}
2474 			if (extent_logical + extent_len >
2475 			    logical + map->stripe_len) {
2476 				extent_len = logical + map->stripe_len -
2477 					     extent_logical;
2478 			}
2479 
2480 			extent_physical = extent_logical - logical + physical;
2481 			extent_dev = scrub_dev;
2482 			extent_mirror_num = mirror_num;
2483 			if (is_dev_replace)
2484 				scrub_remap_extent(fs_info, extent_logical,
2485 						   extent_len, &extent_physical,
2486 						   &extent_dev,
2487 						   &extent_mirror_num);
2488 
2489 			ret = btrfs_lookup_csums_range(csum_root, logical,
2490 						logical + map->stripe_len - 1,
2491 						&sctx->csum_list, 1);
2492 			if (ret)
2493 				goto out;
2494 
2495 			ret = scrub_extent(sctx, extent_logical, extent_len,
2496 					   extent_physical, extent_dev, flags,
2497 					   generation, extent_mirror_num,
2498 					   extent_logical - logical + physical);
2499 			if (ret)
2500 				goto out;
2501 
2502 			scrub_free_csums(sctx);
2503 			if (extent_logical + extent_len <
2504 			    key.objectid + bytes) {
2505 				logical += increment;
2506 				physical += map->stripe_len;
2507 
2508 				if (logical < key.objectid + bytes) {
2509 					cond_resched();
2510 					goto again;
2511 				}
2512 
2513 				if (logical >= logic_end) {
2514 					stop_loop = 1;
2515 					break;
2516 				}
2517 			}
2518 next:
2519 			path->slots[0]++;
2520 		}
2521 		btrfs_release_path(path);
2522 		logical += increment;
2523 		physical += map->stripe_len;
2524 		spin_lock(&sctx->stat_lock);
2525 		if (stop_loop)
2526 			sctx->stat.last_physical = map->stripes[num].physical +
2527 						   length;
2528 		else
2529 			sctx->stat.last_physical = physical;
2530 		spin_unlock(&sctx->stat_lock);
2531 		if (stop_loop)
2532 			break;
2533 	}
2534 out:
2535 	/* push queued extents */
2536 	scrub_submit(sctx);
2537 	mutex_lock(&sctx->wr_ctx.wr_lock);
2538 	scrub_wr_submit(sctx);
2539 	mutex_unlock(&sctx->wr_ctx.wr_lock);
2540 
2541 	blk_finish_plug(&plug);
2542 	btrfs_free_path(path);
2543 	return ret < 0 ? ret : 0;
2544 }
2545 
2546 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2547 					  struct btrfs_device *scrub_dev,
2548 					  u64 chunk_tree, u64 chunk_objectid,
2549 					  u64 chunk_offset, u64 length,
2550 					  u64 dev_offset, int is_dev_replace)
2551 {
2552 	struct btrfs_mapping_tree *map_tree =
2553 		&sctx->dev_root->fs_info->mapping_tree;
2554 	struct map_lookup *map;
2555 	struct extent_map *em;
2556 	int i;
2557 	int ret = 0;
2558 
2559 	read_lock(&map_tree->map_tree.lock);
2560 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2561 	read_unlock(&map_tree->map_tree.lock);
2562 
2563 	if (!em)
2564 		return -EINVAL;
2565 
2566 	map = (struct map_lookup *)em->bdev;
2567 	if (em->start != chunk_offset)
2568 		goto out;
2569 
2570 	if (em->len < length)
2571 		goto out;
2572 
2573 	for (i = 0; i < map->num_stripes; ++i) {
2574 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2575 		    map->stripes[i].physical == dev_offset) {
2576 			ret = scrub_stripe(sctx, map, scrub_dev, i,
2577 					   chunk_offset, length,
2578 					   is_dev_replace);
2579 			if (ret)
2580 				goto out;
2581 		}
2582 	}
2583 out:
2584 	free_extent_map(em);
2585 
2586 	return ret;
2587 }
2588 
2589 static noinline_for_stack
2590 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2591 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2592 			   int is_dev_replace)
2593 {
2594 	struct btrfs_dev_extent *dev_extent = NULL;
2595 	struct btrfs_path *path;
2596 	struct btrfs_root *root = sctx->dev_root;
2597 	struct btrfs_fs_info *fs_info = root->fs_info;
2598 	u64 length;
2599 	u64 chunk_tree;
2600 	u64 chunk_objectid;
2601 	u64 chunk_offset;
2602 	int ret;
2603 	int slot;
2604 	struct extent_buffer *l;
2605 	struct btrfs_key key;
2606 	struct btrfs_key found_key;
2607 	struct btrfs_block_group_cache *cache;
2608 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2609 
2610 	path = btrfs_alloc_path();
2611 	if (!path)
2612 		return -ENOMEM;
2613 
2614 	path->reada = 2;
2615 	path->search_commit_root = 1;
2616 	path->skip_locking = 1;
2617 
2618 	key.objectid = scrub_dev->devid;
2619 	key.offset = 0ull;
2620 	key.type = BTRFS_DEV_EXTENT_KEY;
2621 
2622 	while (1) {
2623 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2624 		if (ret < 0)
2625 			break;
2626 		if (ret > 0) {
2627 			if (path->slots[0] >=
2628 			    btrfs_header_nritems(path->nodes[0])) {
2629 				ret = btrfs_next_leaf(root, path);
2630 				if (ret)
2631 					break;
2632 			}
2633 		}
2634 
2635 		l = path->nodes[0];
2636 		slot = path->slots[0];
2637 
2638 		btrfs_item_key_to_cpu(l, &found_key, slot);
2639 
2640 		if (found_key.objectid != scrub_dev->devid)
2641 			break;
2642 
2643 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2644 			break;
2645 
2646 		if (found_key.offset >= end)
2647 			break;
2648 
2649 		if (found_key.offset < key.offset)
2650 			break;
2651 
2652 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2653 		length = btrfs_dev_extent_length(l, dev_extent);
2654 
2655 		if (found_key.offset + length <= start) {
2656 			key.offset = found_key.offset + length;
2657 			btrfs_release_path(path);
2658 			continue;
2659 		}
2660 
2661 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2662 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2663 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2664 
2665 		/*
2666 		 * get a reference on the corresponding block group to prevent
2667 		 * the chunk from going away while we scrub it
2668 		 */
2669 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2670 		if (!cache) {
2671 			ret = -ENOENT;
2672 			break;
2673 		}
2674 		dev_replace->cursor_right = found_key.offset + length;
2675 		dev_replace->cursor_left = found_key.offset;
2676 		dev_replace->item_needs_writeback = 1;
2677 		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2678 				  chunk_offset, length, found_key.offset,
2679 				  is_dev_replace);
2680 
2681 		/*
2682 		 * flush, submit all pending read and write bios, afterwards
2683 		 * wait for them.
2684 		 * Note that in the dev replace case, a read request causes
2685 		 * write requests that are submitted in the read completion
2686 		 * worker. Therefore in the current situation, it is required
2687 		 * that all write requests are flushed, so that all read and
2688 		 * write requests are really completed when bios_in_flight
2689 		 * changes to 0.
2690 		 */
2691 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2692 		scrub_submit(sctx);
2693 		mutex_lock(&sctx->wr_ctx.wr_lock);
2694 		scrub_wr_submit(sctx);
2695 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2696 
2697 		wait_event(sctx->list_wait,
2698 			   atomic_read(&sctx->bios_in_flight) == 0);
2699 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2700 		atomic_inc(&fs_info->scrubs_paused);
2701 		wake_up(&fs_info->scrub_pause_wait);
2702 		wait_event(sctx->list_wait,
2703 			   atomic_read(&sctx->workers_pending) == 0);
2704 
2705 		mutex_lock(&fs_info->scrub_lock);
2706 		while (atomic_read(&fs_info->scrub_pause_req)) {
2707 			mutex_unlock(&fs_info->scrub_lock);
2708 			wait_event(fs_info->scrub_pause_wait,
2709 			   atomic_read(&fs_info->scrub_pause_req) == 0);
2710 			mutex_lock(&fs_info->scrub_lock);
2711 		}
2712 		atomic_dec(&fs_info->scrubs_paused);
2713 		mutex_unlock(&fs_info->scrub_lock);
2714 		wake_up(&fs_info->scrub_pause_wait);
2715 
2716 		dev_replace->cursor_left = dev_replace->cursor_right;
2717 		dev_replace->item_needs_writeback = 1;
2718 		btrfs_put_block_group(cache);
2719 		if (ret)
2720 			break;
2721 		if (is_dev_replace &&
2722 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2723 			ret = -EIO;
2724 			break;
2725 		}
2726 		if (sctx->stat.malloc_errors > 0) {
2727 			ret = -ENOMEM;
2728 			break;
2729 		}
2730 
2731 		key.offset = found_key.offset + length;
2732 		btrfs_release_path(path);
2733 	}
2734 
2735 	btrfs_free_path(path);
2736 
2737 	/*
2738 	 * ret can still be 1 from search_slot or next_leaf,
2739 	 * that's not an error
2740 	 */
2741 	return ret < 0 ? ret : 0;
2742 }
2743 
2744 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2745 					   struct btrfs_device *scrub_dev)
2746 {
2747 	int	i;
2748 	u64	bytenr;
2749 	u64	gen;
2750 	int	ret;
2751 	struct btrfs_root *root = sctx->dev_root;
2752 
2753 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2754 		return -EIO;
2755 
2756 	gen = root->fs_info->last_trans_committed;
2757 
2758 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2759 		bytenr = btrfs_sb_offset(i);
2760 		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2761 			break;
2762 
2763 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2764 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2765 				  NULL, 1, bytenr);
2766 		if (ret)
2767 			return ret;
2768 	}
2769 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2770 
2771 	return 0;
2772 }
2773 
2774 /*
2775  * get a reference count on fs_info->scrub_workers. start worker if necessary
2776  */
2777 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2778 						int is_dev_replace)
2779 {
2780 	int ret = 0;
2781 
2782 	mutex_lock(&fs_info->scrub_lock);
2783 	if (fs_info->scrub_workers_refcnt == 0) {
2784 		if (is_dev_replace)
2785 			btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2786 					&fs_info->generic_worker);
2787 		else
2788 			btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2789 					fs_info->thread_pool_size,
2790 					&fs_info->generic_worker);
2791 		fs_info->scrub_workers.idle_thresh = 4;
2792 		ret = btrfs_start_workers(&fs_info->scrub_workers);
2793 		if (ret)
2794 			goto out;
2795 		btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2796 				   "scrubwrc",
2797 				   fs_info->thread_pool_size,
2798 				   &fs_info->generic_worker);
2799 		fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2800 		ret = btrfs_start_workers(
2801 				&fs_info->scrub_wr_completion_workers);
2802 		if (ret)
2803 			goto out;
2804 		btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2805 				   &fs_info->generic_worker);
2806 		ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2807 		if (ret)
2808 			goto out;
2809 	}
2810 	++fs_info->scrub_workers_refcnt;
2811 out:
2812 	mutex_unlock(&fs_info->scrub_lock);
2813 
2814 	return ret;
2815 }
2816 
2817 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2818 {
2819 	mutex_lock(&fs_info->scrub_lock);
2820 	if (--fs_info->scrub_workers_refcnt == 0) {
2821 		btrfs_stop_workers(&fs_info->scrub_workers);
2822 		btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2823 		btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2824 	}
2825 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2826 	mutex_unlock(&fs_info->scrub_lock);
2827 }
2828 
2829 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2830 		    u64 end, struct btrfs_scrub_progress *progress,
2831 		    int readonly, int is_dev_replace)
2832 {
2833 	struct scrub_ctx *sctx;
2834 	int ret;
2835 	struct btrfs_device *dev;
2836 
2837 	if (btrfs_fs_closing(fs_info))
2838 		return -EINVAL;
2839 
2840 	/*
2841 	 * check some assumptions
2842 	 */
2843 	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2844 		printk(KERN_ERR
2845 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2846 		       fs_info->chunk_root->nodesize,
2847 		       fs_info->chunk_root->leafsize);
2848 		return -EINVAL;
2849 	}
2850 
2851 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2852 		/*
2853 		 * in this case scrub is unable to calculate the checksum
2854 		 * the way scrub is implemented. Do not handle this
2855 		 * situation at all because it won't ever happen.
2856 		 */
2857 		printk(KERN_ERR
2858 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2859 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2860 		return -EINVAL;
2861 	}
2862 
2863 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2864 		/* not supported for data w/o checksums */
2865 		printk(KERN_ERR
2866 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2867 		       fs_info->chunk_root->sectorsize,
2868 		       (unsigned long long)PAGE_SIZE);
2869 		return -EINVAL;
2870 	}
2871 
2872 	if (fs_info->chunk_root->nodesize >
2873 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2874 	    fs_info->chunk_root->sectorsize >
2875 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2876 		/*
2877 		 * would exhaust the array bounds of pagev member in
2878 		 * struct scrub_block
2879 		 */
2880 		pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2881 		       fs_info->chunk_root->nodesize,
2882 		       SCRUB_MAX_PAGES_PER_BLOCK,
2883 		       fs_info->chunk_root->sectorsize,
2884 		       SCRUB_MAX_PAGES_PER_BLOCK);
2885 		return -EINVAL;
2886 	}
2887 
2888 	ret = scrub_workers_get(fs_info, is_dev_replace);
2889 	if (ret)
2890 		return ret;
2891 
2892 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2893 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2894 	if (!dev || (dev->missing && !is_dev_replace)) {
2895 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2896 		scrub_workers_put(fs_info);
2897 		return -ENODEV;
2898 	}
2899 	mutex_lock(&fs_info->scrub_lock);
2900 
2901 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2902 		mutex_unlock(&fs_info->scrub_lock);
2903 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2904 		scrub_workers_put(fs_info);
2905 		return -EIO;
2906 	}
2907 
2908 	btrfs_dev_replace_lock(&fs_info->dev_replace);
2909 	if (dev->scrub_device ||
2910 	    (!is_dev_replace &&
2911 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2912 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2913 		mutex_unlock(&fs_info->scrub_lock);
2914 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2915 		scrub_workers_put(fs_info);
2916 		return -EINPROGRESS;
2917 	}
2918 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2919 	sctx = scrub_setup_ctx(dev, is_dev_replace);
2920 	if (IS_ERR(sctx)) {
2921 		mutex_unlock(&fs_info->scrub_lock);
2922 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2923 		scrub_workers_put(fs_info);
2924 		return PTR_ERR(sctx);
2925 	}
2926 	sctx->readonly = readonly;
2927 	dev->scrub_device = sctx;
2928 
2929 	atomic_inc(&fs_info->scrubs_running);
2930 	mutex_unlock(&fs_info->scrub_lock);
2931 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2932 
2933 	if (!is_dev_replace) {
2934 		down_read(&fs_info->scrub_super_lock);
2935 		ret = scrub_supers(sctx, dev);
2936 		up_read(&fs_info->scrub_super_lock);
2937 	}
2938 
2939 	if (!ret)
2940 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
2941 					     is_dev_replace);
2942 
2943 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2944 	atomic_dec(&fs_info->scrubs_running);
2945 	wake_up(&fs_info->scrub_pause_wait);
2946 
2947 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2948 
2949 	if (progress)
2950 		memcpy(progress, &sctx->stat, sizeof(*progress));
2951 
2952 	mutex_lock(&fs_info->scrub_lock);
2953 	dev->scrub_device = NULL;
2954 	mutex_unlock(&fs_info->scrub_lock);
2955 
2956 	scrub_free_ctx(sctx);
2957 	scrub_workers_put(fs_info);
2958 
2959 	return ret;
2960 }
2961 
2962 void btrfs_scrub_pause(struct btrfs_root *root)
2963 {
2964 	struct btrfs_fs_info *fs_info = root->fs_info;
2965 
2966 	mutex_lock(&fs_info->scrub_lock);
2967 	atomic_inc(&fs_info->scrub_pause_req);
2968 	while (atomic_read(&fs_info->scrubs_paused) !=
2969 	       atomic_read(&fs_info->scrubs_running)) {
2970 		mutex_unlock(&fs_info->scrub_lock);
2971 		wait_event(fs_info->scrub_pause_wait,
2972 			   atomic_read(&fs_info->scrubs_paused) ==
2973 			   atomic_read(&fs_info->scrubs_running));
2974 		mutex_lock(&fs_info->scrub_lock);
2975 	}
2976 	mutex_unlock(&fs_info->scrub_lock);
2977 }
2978 
2979 void btrfs_scrub_continue(struct btrfs_root *root)
2980 {
2981 	struct btrfs_fs_info *fs_info = root->fs_info;
2982 
2983 	atomic_dec(&fs_info->scrub_pause_req);
2984 	wake_up(&fs_info->scrub_pause_wait);
2985 }
2986 
2987 void btrfs_scrub_pause_super(struct btrfs_root *root)
2988 {
2989 	down_write(&root->fs_info->scrub_super_lock);
2990 }
2991 
2992 void btrfs_scrub_continue_super(struct btrfs_root *root)
2993 {
2994 	up_write(&root->fs_info->scrub_super_lock);
2995 }
2996 
2997 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2998 {
2999 	mutex_lock(&fs_info->scrub_lock);
3000 	if (!atomic_read(&fs_info->scrubs_running)) {
3001 		mutex_unlock(&fs_info->scrub_lock);
3002 		return -ENOTCONN;
3003 	}
3004 
3005 	atomic_inc(&fs_info->scrub_cancel_req);
3006 	while (atomic_read(&fs_info->scrubs_running)) {
3007 		mutex_unlock(&fs_info->scrub_lock);
3008 		wait_event(fs_info->scrub_pause_wait,
3009 			   atomic_read(&fs_info->scrubs_running) == 0);
3010 		mutex_lock(&fs_info->scrub_lock);
3011 	}
3012 	atomic_dec(&fs_info->scrub_cancel_req);
3013 	mutex_unlock(&fs_info->scrub_lock);
3014 
3015 	return 0;
3016 }
3017 
3018 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3019 			   struct btrfs_device *dev)
3020 {
3021 	struct scrub_ctx *sctx;
3022 
3023 	mutex_lock(&fs_info->scrub_lock);
3024 	sctx = dev->scrub_device;
3025 	if (!sctx) {
3026 		mutex_unlock(&fs_info->scrub_lock);
3027 		return -ENOTCONN;
3028 	}
3029 	atomic_inc(&sctx->cancel_req);
3030 	while (dev->scrub_device) {
3031 		mutex_unlock(&fs_info->scrub_lock);
3032 		wait_event(fs_info->scrub_pause_wait,
3033 			   dev->scrub_device == NULL);
3034 		mutex_lock(&fs_info->scrub_lock);
3035 	}
3036 	mutex_unlock(&fs_info->scrub_lock);
3037 
3038 	return 0;
3039 }
3040 
3041 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3042 			 struct btrfs_scrub_progress *progress)
3043 {
3044 	struct btrfs_device *dev;
3045 	struct scrub_ctx *sctx = NULL;
3046 
3047 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3048 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3049 	if (dev)
3050 		sctx = dev->scrub_device;
3051 	if (sctx)
3052 		memcpy(progress, &sctx->stat, sizeof(*progress));
3053 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3054 
3055 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3056 }
3057 
3058 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3059 			       u64 extent_logical, u64 extent_len,
3060 			       u64 *extent_physical,
3061 			       struct btrfs_device **extent_dev,
3062 			       int *extent_mirror_num)
3063 {
3064 	u64 mapped_length;
3065 	struct btrfs_bio *bbio = NULL;
3066 	int ret;
3067 
3068 	mapped_length = extent_len;
3069 	ret = btrfs_map_block(fs_info, READ, extent_logical,
3070 			      &mapped_length, &bbio, 0);
3071 	if (ret || !bbio || mapped_length < extent_len ||
3072 	    !bbio->stripes[0].dev->bdev) {
3073 		kfree(bbio);
3074 		return;
3075 	}
3076 
3077 	*extent_physical = bbio->stripes[0].physical;
3078 	*extent_mirror_num = bbio->mirror_num;
3079 	*extent_dev = bbio->stripes[0].dev;
3080 	kfree(bbio);
3081 }
3082 
3083 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3084 			      struct scrub_wr_ctx *wr_ctx,
3085 			      struct btrfs_fs_info *fs_info,
3086 			      struct btrfs_device *dev,
3087 			      int is_dev_replace)
3088 {
3089 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3090 
3091 	mutex_init(&wr_ctx->wr_lock);
3092 	wr_ctx->wr_curr_bio = NULL;
3093 	if (!is_dev_replace)
3094 		return 0;
3095 
3096 	WARN_ON(!dev->bdev);
3097 	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3098 					 bio_get_nr_vecs(dev->bdev));
3099 	wr_ctx->tgtdev = dev;
3100 	atomic_set(&wr_ctx->flush_all_writes, 0);
3101 	return 0;
3102 }
3103 
3104 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3105 {
3106 	mutex_lock(&wr_ctx->wr_lock);
3107 	kfree(wr_ctx->wr_curr_bio);
3108 	wr_ctx->wr_curr_bio = NULL;
3109 	mutex_unlock(&wr_ctx->wr_lock);
3110 }
3111 
3112 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3113 			    int mirror_num, u64 physical_for_dev_replace)
3114 {
3115 	struct scrub_copy_nocow_ctx *nocow_ctx;
3116 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3117 
3118 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3119 	if (!nocow_ctx) {
3120 		spin_lock(&sctx->stat_lock);
3121 		sctx->stat.malloc_errors++;
3122 		spin_unlock(&sctx->stat_lock);
3123 		return -ENOMEM;
3124 	}
3125 
3126 	scrub_pending_trans_workers_inc(sctx);
3127 
3128 	nocow_ctx->sctx = sctx;
3129 	nocow_ctx->logical = logical;
3130 	nocow_ctx->len = len;
3131 	nocow_ctx->mirror_num = mirror_num;
3132 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3133 	nocow_ctx->work.func = copy_nocow_pages_worker;
3134 	btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3135 			   &nocow_ctx->work);
3136 
3137 	return 0;
3138 }
3139 
3140 static void copy_nocow_pages_worker(struct btrfs_work *work)
3141 {
3142 	struct scrub_copy_nocow_ctx *nocow_ctx =
3143 		container_of(work, struct scrub_copy_nocow_ctx, work);
3144 	struct scrub_ctx *sctx = nocow_ctx->sctx;
3145 	u64 logical = nocow_ctx->logical;
3146 	u64 len = nocow_ctx->len;
3147 	int mirror_num = nocow_ctx->mirror_num;
3148 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3149 	int ret;
3150 	struct btrfs_trans_handle *trans = NULL;
3151 	struct btrfs_fs_info *fs_info;
3152 	struct btrfs_path *path;
3153 	struct btrfs_root *root;
3154 	int not_written = 0;
3155 
3156 	fs_info = sctx->dev_root->fs_info;
3157 	root = fs_info->extent_root;
3158 
3159 	path = btrfs_alloc_path();
3160 	if (!path) {
3161 		spin_lock(&sctx->stat_lock);
3162 		sctx->stat.malloc_errors++;
3163 		spin_unlock(&sctx->stat_lock);
3164 		not_written = 1;
3165 		goto out;
3166 	}
3167 
3168 	trans = btrfs_join_transaction(root);
3169 	if (IS_ERR(trans)) {
3170 		not_written = 1;
3171 		goto out;
3172 	}
3173 
3174 	ret = iterate_inodes_from_logical(logical, fs_info, path,
3175 					  copy_nocow_pages_for_inode,
3176 					  nocow_ctx);
3177 	if (ret != 0 && ret != -ENOENT) {
3178 		pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n",
3179 			(unsigned long long)logical,
3180 			(unsigned long long)physical_for_dev_replace,
3181 			(unsigned long long)len,
3182 			(unsigned long long)mirror_num, ret);
3183 		not_written = 1;
3184 		goto out;
3185 	}
3186 
3187 out:
3188 	if (trans && !IS_ERR(trans))
3189 		btrfs_end_transaction(trans, root);
3190 	if (not_written)
3191 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3192 					    num_uncorrectable_read_errors);
3193 
3194 	btrfs_free_path(path);
3195 	kfree(nocow_ctx);
3196 
3197 	scrub_pending_trans_workers_dec(sctx);
3198 }
3199 
3200 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
3201 {
3202 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3203 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3204 	struct btrfs_key key;
3205 	struct inode *inode;
3206 	struct page *page;
3207 	struct btrfs_root *local_root;
3208 	u64 physical_for_dev_replace;
3209 	u64 len;
3210 	unsigned long index;
3211 	int srcu_index;
3212 	int ret;
3213 	int err;
3214 
3215 	key.objectid = root;
3216 	key.type = BTRFS_ROOT_ITEM_KEY;
3217 	key.offset = (u64)-1;
3218 
3219 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3220 
3221 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3222 	if (IS_ERR(local_root)) {
3223 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3224 		return PTR_ERR(local_root);
3225 	}
3226 
3227 	if (btrfs_root_refs(&local_root->root_item) == 0) {
3228 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3229 		return -ENOENT;
3230 	}
3231 
3232 	key.type = BTRFS_INODE_ITEM_KEY;
3233 	key.objectid = inum;
3234 	key.offset = 0;
3235 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3236 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3237 	if (IS_ERR(inode))
3238 		return PTR_ERR(inode);
3239 
3240 	/* Avoid truncate/dio/punch hole.. */
3241 	mutex_lock(&inode->i_mutex);
3242 	inode_dio_wait(inode);
3243 
3244 	ret = 0;
3245 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3246 	len = nocow_ctx->len;
3247 	while (len >= PAGE_CACHE_SIZE) {
3248 		index = offset >> PAGE_CACHE_SHIFT;
3249 again:
3250 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3251 		if (!page) {
3252 			pr_err("find_or_create_page() failed\n");
3253 			ret = -ENOMEM;
3254 			goto out;
3255 		}
3256 
3257 		if (PageUptodate(page)) {
3258 			if (PageDirty(page))
3259 				goto next_page;
3260 		} else {
3261 			ClearPageError(page);
3262 			err = extent_read_full_page(&BTRFS_I(inode)->
3263 							 io_tree,
3264 							page, btrfs_get_extent,
3265 							nocow_ctx->mirror_num);
3266 			if (err) {
3267 				ret = err;
3268 				goto next_page;
3269 			}
3270 
3271 			lock_page(page);
3272 			/*
3273 			 * If the page has been remove from the page cache,
3274 			 * the data on it is meaningless, because it may be
3275 			 * old one, the new data may be written into the new
3276 			 * page in the page cache.
3277 			 */
3278 			if (page->mapping != inode->i_mapping) {
3279 				page_cache_release(page);
3280 				goto again;
3281 			}
3282 			if (!PageUptodate(page)) {
3283 				ret = -EIO;
3284 				goto next_page;
3285 			}
3286 		}
3287 		err = write_page_nocow(nocow_ctx->sctx,
3288 				       physical_for_dev_replace, page);
3289 		if (err)
3290 			ret = err;
3291 next_page:
3292 		unlock_page(page);
3293 		page_cache_release(page);
3294 
3295 		if (ret)
3296 			break;
3297 
3298 		offset += PAGE_CACHE_SIZE;
3299 		physical_for_dev_replace += PAGE_CACHE_SIZE;
3300 		len -= PAGE_CACHE_SIZE;
3301 	}
3302 out:
3303 	mutex_unlock(&inode->i_mutex);
3304 	iput(inode);
3305 	return ret;
3306 }
3307 
3308 static int write_page_nocow(struct scrub_ctx *sctx,
3309 			    u64 physical_for_dev_replace, struct page *page)
3310 {
3311 	struct bio *bio;
3312 	struct btrfs_device *dev;
3313 	int ret;
3314 	DECLARE_COMPLETION_ONSTACK(compl);
3315 
3316 	dev = sctx->wr_ctx.tgtdev;
3317 	if (!dev)
3318 		return -EIO;
3319 	if (!dev->bdev) {
3320 		printk_ratelimited(KERN_WARNING
3321 			"btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3322 		return -EIO;
3323 	}
3324 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3325 	if (!bio) {
3326 		spin_lock(&sctx->stat_lock);
3327 		sctx->stat.malloc_errors++;
3328 		spin_unlock(&sctx->stat_lock);
3329 		return -ENOMEM;
3330 	}
3331 	bio->bi_private = &compl;
3332 	bio->bi_end_io = scrub_complete_bio_end_io;
3333 	bio->bi_size = 0;
3334 	bio->bi_sector = physical_for_dev_replace >> 9;
3335 	bio->bi_bdev = dev->bdev;
3336 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3337 	if (ret != PAGE_CACHE_SIZE) {
3338 leave_with_eio:
3339 		bio_put(bio);
3340 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3341 		return -EIO;
3342 	}
3343 	btrfsic_submit_bio(WRITE_SYNC, bio);
3344 	wait_for_completion(&compl);
3345 
3346 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3347 		goto leave_with_eio;
3348 
3349 	bio_put(bio);
3350 	return 0;
3351 }
3352