xref: /openbmc/linux/fs/btrfs/scrub.c (revision 79f08d9e)
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32 
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45 
46 struct scrub_block;
47 struct scrub_ctx;
48 
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
65 
66 struct scrub_page {
67 	struct scrub_block	*sblock;
68 	struct page		*page;
69 	struct btrfs_device	*dev;
70 	u64			flags;  /* extent flags */
71 	u64			generation;
72 	u64			logical;
73 	u64			physical;
74 	u64			physical_for_dev_replace;
75 	atomic_t		ref_count;
76 	struct {
77 		unsigned int	mirror_num:8;
78 		unsigned int	have_csum:1;
79 		unsigned int	io_error:1;
80 	};
81 	u8			csum[BTRFS_CSUM_SIZE];
82 };
83 
84 struct scrub_bio {
85 	int			index;
86 	struct scrub_ctx	*sctx;
87 	struct btrfs_device	*dev;
88 	struct bio		*bio;
89 	int			err;
90 	u64			logical;
91 	u64			physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 	int			page_count;
98 	int			next_free;
99 	struct btrfs_work	work;
100 };
101 
102 struct scrub_block {
103 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 	int			page_count;
105 	atomic_t		outstanding_pages;
106 	atomic_t		ref_count; /* free mem on transition to zero */
107 	struct scrub_ctx	*sctx;
108 	struct {
109 		unsigned int	header_error:1;
110 		unsigned int	checksum_error:1;
111 		unsigned int	no_io_error_seen:1;
112 		unsigned int	generation_error:1; /* also sets header_error */
113 	};
114 };
115 
116 struct scrub_wr_ctx {
117 	struct scrub_bio *wr_curr_bio;
118 	struct btrfs_device *tgtdev;
119 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 	atomic_t flush_all_writes;
121 	struct mutex wr_lock;
122 };
123 
124 struct scrub_ctx {
125 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126 	struct btrfs_root	*dev_root;
127 	int			first_free;
128 	int			curr;
129 	atomic_t		bios_in_flight;
130 	atomic_t		workers_pending;
131 	spinlock_t		list_lock;
132 	wait_queue_head_t	list_wait;
133 	u16			csum_size;
134 	struct list_head	csum_list;
135 	atomic_t		cancel_req;
136 	int			readonly;
137 	int			pages_per_rd_bio;
138 	u32			sectorsize;
139 	u32			nodesize;
140 	u32			leafsize;
141 
142 	int			is_dev_replace;
143 	struct scrub_wr_ctx	wr_ctx;
144 
145 	/*
146 	 * statistics
147 	 */
148 	struct btrfs_scrub_progress stat;
149 	spinlock_t		stat_lock;
150 };
151 
152 struct scrub_fixup_nodatasum {
153 	struct scrub_ctx	*sctx;
154 	struct btrfs_device	*dev;
155 	u64			logical;
156 	struct btrfs_root	*root;
157 	struct btrfs_work	work;
158 	int			mirror_num;
159 };
160 
161 struct scrub_nocow_inode {
162 	u64			inum;
163 	u64			offset;
164 	u64			root;
165 	struct list_head	list;
166 };
167 
168 struct scrub_copy_nocow_ctx {
169 	struct scrub_ctx	*sctx;
170 	u64			logical;
171 	u64			len;
172 	int			mirror_num;
173 	u64			physical_for_dev_replace;
174 	struct list_head	inodes;
175 	struct btrfs_work	work;
176 };
177 
178 struct scrub_warning {
179 	struct btrfs_path	*path;
180 	u64			extent_item_size;
181 	char			*scratch_buf;
182 	char			*msg_buf;
183 	const char		*errstr;
184 	sector_t		sector;
185 	u64			logical;
186 	struct btrfs_device	*dev;
187 	int			msg_bufsize;
188 	int			scratch_bufsize;
189 };
190 
191 
192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198 				     struct btrfs_fs_info *fs_info,
199 				     struct scrub_block *original_sblock,
200 				     u64 length, u64 logical,
201 				     struct scrub_block *sblocks_for_recheck);
202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203 				struct scrub_block *sblock, int is_metadata,
204 				int have_csum, u8 *csum, u64 generation,
205 				u16 csum_size);
206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207 					 struct scrub_block *sblock,
208 					 int is_metadata, int have_csum,
209 					 const u8 *csum, u64 generation,
210 					 u16 csum_size);
211 static void scrub_complete_bio_end_io(struct bio *bio, int err);
212 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
213 					     struct scrub_block *sblock_good,
214 					     int force_write);
215 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
216 					    struct scrub_block *sblock_good,
217 					    int page_num, int force_write);
218 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
219 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
220 					   int page_num);
221 static int scrub_checksum_data(struct scrub_block *sblock);
222 static int scrub_checksum_tree_block(struct scrub_block *sblock);
223 static int scrub_checksum_super(struct scrub_block *sblock);
224 static void scrub_block_get(struct scrub_block *sblock);
225 static void scrub_block_put(struct scrub_block *sblock);
226 static void scrub_page_get(struct scrub_page *spage);
227 static void scrub_page_put(struct scrub_page *spage);
228 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
229 				    struct scrub_page *spage);
230 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
231 		       u64 physical, struct btrfs_device *dev, u64 flags,
232 		       u64 gen, int mirror_num, u8 *csum, int force,
233 		       u64 physical_for_dev_replace);
234 static void scrub_bio_end_io(struct bio *bio, int err);
235 static void scrub_bio_end_io_worker(struct btrfs_work *work);
236 static void scrub_block_complete(struct scrub_block *sblock);
237 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
238 			       u64 extent_logical, u64 extent_len,
239 			       u64 *extent_physical,
240 			       struct btrfs_device **extent_dev,
241 			       int *extent_mirror_num);
242 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
243 			      struct scrub_wr_ctx *wr_ctx,
244 			      struct btrfs_fs_info *fs_info,
245 			      struct btrfs_device *dev,
246 			      int is_dev_replace);
247 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
248 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
249 				    struct scrub_page *spage);
250 static void scrub_wr_submit(struct scrub_ctx *sctx);
251 static void scrub_wr_bio_end_io(struct bio *bio, int err);
252 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
253 static int write_page_nocow(struct scrub_ctx *sctx,
254 			    u64 physical_for_dev_replace, struct page *page);
255 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
256 				      struct scrub_copy_nocow_ctx *ctx);
257 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
258 			    int mirror_num, u64 physical_for_dev_replace);
259 static void copy_nocow_pages_worker(struct btrfs_work *work);
260 
261 
262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
263 {
264 	atomic_inc(&sctx->bios_in_flight);
265 }
266 
267 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
268 {
269 	atomic_dec(&sctx->bios_in_flight);
270 	wake_up(&sctx->list_wait);
271 }
272 
273 /*
274  * used for workers that require transaction commits (i.e., for the
275  * NOCOW case)
276  */
277 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
278 {
279 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
280 
281 	/*
282 	 * increment scrubs_running to prevent cancel requests from
283 	 * completing as long as a worker is running. we must also
284 	 * increment scrubs_paused to prevent deadlocking on pause
285 	 * requests used for transactions commits (as the worker uses a
286 	 * transaction context). it is safe to regard the worker
287 	 * as paused for all matters practical. effectively, we only
288 	 * avoid cancellation requests from completing.
289 	 */
290 	mutex_lock(&fs_info->scrub_lock);
291 	atomic_inc(&fs_info->scrubs_running);
292 	atomic_inc(&fs_info->scrubs_paused);
293 	mutex_unlock(&fs_info->scrub_lock);
294 	atomic_inc(&sctx->workers_pending);
295 }
296 
297 /* used for workers that require transaction commits */
298 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
299 {
300 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
301 
302 	/*
303 	 * see scrub_pending_trans_workers_inc() why we're pretending
304 	 * to be paused in the scrub counters
305 	 */
306 	mutex_lock(&fs_info->scrub_lock);
307 	atomic_dec(&fs_info->scrubs_running);
308 	atomic_dec(&fs_info->scrubs_paused);
309 	mutex_unlock(&fs_info->scrub_lock);
310 	atomic_dec(&sctx->workers_pending);
311 	wake_up(&fs_info->scrub_pause_wait);
312 	wake_up(&sctx->list_wait);
313 }
314 
315 static void scrub_free_csums(struct scrub_ctx *sctx)
316 {
317 	while (!list_empty(&sctx->csum_list)) {
318 		struct btrfs_ordered_sum *sum;
319 		sum = list_first_entry(&sctx->csum_list,
320 				       struct btrfs_ordered_sum, list);
321 		list_del(&sum->list);
322 		kfree(sum);
323 	}
324 }
325 
326 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
327 {
328 	int i;
329 
330 	if (!sctx)
331 		return;
332 
333 	scrub_free_wr_ctx(&sctx->wr_ctx);
334 
335 	/* this can happen when scrub is cancelled */
336 	if (sctx->curr != -1) {
337 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
338 
339 		for (i = 0; i < sbio->page_count; i++) {
340 			WARN_ON(!sbio->pagev[i]->page);
341 			scrub_block_put(sbio->pagev[i]->sblock);
342 		}
343 		bio_put(sbio->bio);
344 	}
345 
346 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
347 		struct scrub_bio *sbio = sctx->bios[i];
348 
349 		if (!sbio)
350 			break;
351 		kfree(sbio);
352 	}
353 
354 	scrub_free_csums(sctx);
355 	kfree(sctx);
356 }
357 
358 static noinline_for_stack
359 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
360 {
361 	struct scrub_ctx *sctx;
362 	int		i;
363 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
364 	int pages_per_rd_bio;
365 	int ret;
366 
367 	/*
368 	 * the setting of pages_per_rd_bio is correct for scrub but might
369 	 * be wrong for the dev_replace code where we might read from
370 	 * different devices in the initial huge bios. However, that
371 	 * code is able to correctly handle the case when adding a page
372 	 * to a bio fails.
373 	 */
374 	if (dev->bdev)
375 		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
376 					 bio_get_nr_vecs(dev->bdev));
377 	else
378 		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
379 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
380 	if (!sctx)
381 		goto nomem;
382 	sctx->is_dev_replace = is_dev_replace;
383 	sctx->pages_per_rd_bio = pages_per_rd_bio;
384 	sctx->curr = -1;
385 	sctx->dev_root = dev->dev_root;
386 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
387 		struct scrub_bio *sbio;
388 
389 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
390 		if (!sbio)
391 			goto nomem;
392 		sctx->bios[i] = sbio;
393 
394 		sbio->index = i;
395 		sbio->sctx = sctx;
396 		sbio->page_count = 0;
397 		sbio->work.func = scrub_bio_end_io_worker;
398 
399 		if (i != SCRUB_BIOS_PER_SCTX - 1)
400 			sctx->bios[i]->next_free = i + 1;
401 		else
402 			sctx->bios[i]->next_free = -1;
403 	}
404 	sctx->first_free = 0;
405 	sctx->nodesize = dev->dev_root->nodesize;
406 	sctx->leafsize = dev->dev_root->leafsize;
407 	sctx->sectorsize = dev->dev_root->sectorsize;
408 	atomic_set(&sctx->bios_in_flight, 0);
409 	atomic_set(&sctx->workers_pending, 0);
410 	atomic_set(&sctx->cancel_req, 0);
411 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
412 	INIT_LIST_HEAD(&sctx->csum_list);
413 
414 	spin_lock_init(&sctx->list_lock);
415 	spin_lock_init(&sctx->stat_lock);
416 	init_waitqueue_head(&sctx->list_wait);
417 
418 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
419 				 fs_info->dev_replace.tgtdev, is_dev_replace);
420 	if (ret) {
421 		scrub_free_ctx(sctx);
422 		return ERR_PTR(ret);
423 	}
424 	return sctx;
425 
426 nomem:
427 	scrub_free_ctx(sctx);
428 	return ERR_PTR(-ENOMEM);
429 }
430 
431 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
432 				     void *warn_ctx)
433 {
434 	u64 isize;
435 	u32 nlink;
436 	int ret;
437 	int i;
438 	struct extent_buffer *eb;
439 	struct btrfs_inode_item *inode_item;
440 	struct scrub_warning *swarn = warn_ctx;
441 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
442 	struct inode_fs_paths *ipath = NULL;
443 	struct btrfs_root *local_root;
444 	struct btrfs_key root_key;
445 
446 	root_key.objectid = root;
447 	root_key.type = BTRFS_ROOT_ITEM_KEY;
448 	root_key.offset = (u64)-1;
449 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
450 	if (IS_ERR(local_root)) {
451 		ret = PTR_ERR(local_root);
452 		goto err;
453 	}
454 
455 	ret = inode_item_info(inum, 0, local_root, swarn->path);
456 	if (ret) {
457 		btrfs_release_path(swarn->path);
458 		goto err;
459 	}
460 
461 	eb = swarn->path->nodes[0];
462 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
463 					struct btrfs_inode_item);
464 	isize = btrfs_inode_size(eb, inode_item);
465 	nlink = btrfs_inode_nlink(eb, inode_item);
466 	btrfs_release_path(swarn->path);
467 
468 	ipath = init_ipath(4096, local_root, swarn->path);
469 	if (IS_ERR(ipath)) {
470 		ret = PTR_ERR(ipath);
471 		ipath = NULL;
472 		goto err;
473 	}
474 	ret = paths_from_inode(inum, ipath);
475 
476 	if (ret < 0)
477 		goto err;
478 
479 	/*
480 	 * we deliberately ignore the bit ipath might have been too small to
481 	 * hold all of the paths here
482 	 */
483 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
484 		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
485 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
486 			"length %llu, links %u (path: %s)\n", swarn->errstr,
487 			swarn->logical, rcu_str_deref(swarn->dev->name),
488 			(unsigned long long)swarn->sector, root, inum, offset,
489 			min(isize - offset, (u64)PAGE_SIZE), nlink,
490 			(char *)(unsigned long)ipath->fspath->val[i]);
491 
492 	free_ipath(ipath);
493 	return 0;
494 
495 err:
496 	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
497 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
498 		"resolving failed with ret=%d\n", swarn->errstr,
499 		swarn->logical, rcu_str_deref(swarn->dev->name),
500 		(unsigned long long)swarn->sector, root, inum, offset, ret);
501 
502 	free_ipath(ipath);
503 	return 0;
504 }
505 
506 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
507 {
508 	struct btrfs_device *dev;
509 	struct btrfs_fs_info *fs_info;
510 	struct btrfs_path *path;
511 	struct btrfs_key found_key;
512 	struct extent_buffer *eb;
513 	struct btrfs_extent_item *ei;
514 	struct scrub_warning swarn;
515 	unsigned long ptr = 0;
516 	u64 extent_item_pos;
517 	u64 flags = 0;
518 	u64 ref_root;
519 	u32 item_size;
520 	u8 ref_level;
521 	const int bufsize = 4096;
522 	int ret;
523 
524 	WARN_ON(sblock->page_count < 1);
525 	dev = sblock->pagev[0]->dev;
526 	fs_info = sblock->sctx->dev_root->fs_info;
527 
528 	path = btrfs_alloc_path();
529 
530 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
531 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
532 	swarn.sector = (sblock->pagev[0]->physical) >> 9;
533 	swarn.logical = sblock->pagev[0]->logical;
534 	swarn.errstr = errstr;
535 	swarn.dev = NULL;
536 	swarn.msg_bufsize = bufsize;
537 	swarn.scratch_bufsize = bufsize;
538 
539 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
540 		goto out;
541 
542 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
543 				  &flags);
544 	if (ret < 0)
545 		goto out;
546 
547 	extent_item_pos = swarn.logical - found_key.objectid;
548 	swarn.extent_item_size = found_key.offset;
549 
550 	eb = path->nodes[0];
551 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
552 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
553 
554 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
555 		do {
556 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
557 							&ref_root, &ref_level);
558 			printk_in_rcu(KERN_WARNING
559 				"btrfs: %s at logical %llu on dev %s, "
560 				"sector %llu: metadata %s (level %d) in tree "
561 				"%llu\n", errstr, swarn.logical,
562 				rcu_str_deref(dev->name),
563 				(unsigned long long)swarn.sector,
564 				ref_level ? "node" : "leaf",
565 				ret < 0 ? -1 : ref_level,
566 				ret < 0 ? -1 : ref_root);
567 		} while (ret != 1);
568 		btrfs_release_path(path);
569 	} else {
570 		btrfs_release_path(path);
571 		swarn.path = path;
572 		swarn.dev = dev;
573 		iterate_extent_inodes(fs_info, found_key.objectid,
574 					extent_item_pos, 1,
575 					scrub_print_warning_inode, &swarn);
576 	}
577 
578 out:
579 	btrfs_free_path(path);
580 	kfree(swarn.scratch_buf);
581 	kfree(swarn.msg_buf);
582 }
583 
584 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
585 {
586 	struct page *page = NULL;
587 	unsigned long index;
588 	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
589 	int ret;
590 	int corrected = 0;
591 	struct btrfs_key key;
592 	struct inode *inode = NULL;
593 	struct btrfs_fs_info *fs_info;
594 	u64 end = offset + PAGE_SIZE - 1;
595 	struct btrfs_root *local_root;
596 	int srcu_index;
597 
598 	key.objectid = root;
599 	key.type = BTRFS_ROOT_ITEM_KEY;
600 	key.offset = (u64)-1;
601 
602 	fs_info = fixup->root->fs_info;
603 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
604 
605 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
606 	if (IS_ERR(local_root)) {
607 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
608 		return PTR_ERR(local_root);
609 	}
610 
611 	key.type = BTRFS_INODE_ITEM_KEY;
612 	key.objectid = inum;
613 	key.offset = 0;
614 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
615 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
616 	if (IS_ERR(inode))
617 		return PTR_ERR(inode);
618 
619 	index = offset >> PAGE_CACHE_SHIFT;
620 
621 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
622 	if (!page) {
623 		ret = -ENOMEM;
624 		goto out;
625 	}
626 
627 	if (PageUptodate(page)) {
628 		if (PageDirty(page)) {
629 			/*
630 			 * we need to write the data to the defect sector. the
631 			 * data that was in that sector is not in memory,
632 			 * because the page was modified. we must not write the
633 			 * modified page to that sector.
634 			 *
635 			 * TODO: what could be done here: wait for the delalloc
636 			 *       runner to write out that page (might involve
637 			 *       COW) and see whether the sector is still
638 			 *       referenced afterwards.
639 			 *
640 			 * For the meantime, we'll treat this error
641 			 * incorrectable, although there is a chance that a
642 			 * later scrub will find the bad sector again and that
643 			 * there's no dirty page in memory, then.
644 			 */
645 			ret = -EIO;
646 			goto out;
647 		}
648 		fs_info = BTRFS_I(inode)->root->fs_info;
649 		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
650 					fixup->logical, page,
651 					fixup->mirror_num);
652 		unlock_page(page);
653 		corrected = !ret;
654 	} else {
655 		/*
656 		 * we need to get good data first. the general readpage path
657 		 * will call repair_io_failure for us, we just have to make
658 		 * sure we read the bad mirror.
659 		 */
660 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
661 					EXTENT_DAMAGED, GFP_NOFS);
662 		if (ret) {
663 			/* set_extent_bits should give proper error */
664 			WARN_ON(ret > 0);
665 			if (ret > 0)
666 				ret = -EFAULT;
667 			goto out;
668 		}
669 
670 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
671 						btrfs_get_extent,
672 						fixup->mirror_num);
673 		wait_on_page_locked(page);
674 
675 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
676 						end, EXTENT_DAMAGED, 0, NULL);
677 		if (!corrected)
678 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
679 						EXTENT_DAMAGED, GFP_NOFS);
680 	}
681 
682 out:
683 	if (page)
684 		put_page(page);
685 	if (inode)
686 		iput(inode);
687 
688 	if (ret < 0)
689 		return ret;
690 
691 	if (ret == 0 && corrected) {
692 		/*
693 		 * we only need to call readpage for one of the inodes belonging
694 		 * to this extent. so make iterate_extent_inodes stop
695 		 */
696 		return 1;
697 	}
698 
699 	return -EIO;
700 }
701 
702 static void scrub_fixup_nodatasum(struct btrfs_work *work)
703 {
704 	int ret;
705 	struct scrub_fixup_nodatasum *fixup;
706 	struct scrub_ctx *sctx;
707 	struct btrfs_trans_handle *trans = NULL;
708 	struct btrfs_fs_info *fs_info;
709 	struct btrfs_path *path;
710 	int uncorrectable = 0;
711 
712 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
713 	sctx = fixup->sctx;
714 	fs_info = fixup->root->fs_info;
715 
716 	path = btrfs_alloc_path();
717 	if (!path) {
718 		spin_lock(&sctx->stat_lock);
719 		++sctx->stat.malloc_errors;
720 		spin_unlock(&sctx->stat_lock);
721 		uncorrectable = 1;
722 		goto out;
723 	}
724 
725 	trans = btrfs_join_transaction(fixup->root);
726 	if (IS_ERR(trans)) {
727 		uncorrectable = 1;
728 		goto out;
729 	}
730 
731 	/*
732 	 * the idea is to trigger a regular read through the standard path. we
733 	 * read a page from the (failed) logical address by specifying the
734 	 * corresponding copynum of the failed sector. thus, that readpage is
735 	 * expected to fail.
736 	 * that is the point where on-the-fly error correction will kick in
737 	 * (once it's finished) and rewrite the failed sector if a good copy
738 	 * can be found.
739 	 */
740 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
741 						path, scrub_fixup_readpage,
742 						fixup);
743 	if (ret < 0) {
744 		uncorrectable = 1;
745 		goto out;
746 	}
747 	WARN_ON(ret != 1);
748 
749 	spin_lock(&sctx->stat_lock);
750 	++sctx->stat.corrected_errors;
751 	spin_unlock(&sctx->stat_lock);
752 
753 out:
754 	if (trans && !IS_ERR(trans))
755 		btrfs_end_transaction(trans, fixup->root);
756 	if (uncorrectable) {
757 		spin_lock(&sctx->stat_lock);
758 		++sctx->stat.uncorrectable_errors;
759 		spin_unlock(&sctx->stat_lock);
760 		btrfs_dev_replace_stats_inc(
761 			&sctx->dev_root->fs_info->dev_replace.
762 			num_uncorrectable_read_errors);
763 		printk_ratelimited_in_rcu(KERN_ERR
764 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
765 			fixup->logical, rcu_str_deref(fixup->dev->name));
766 	}
767 
768 	btrfs_free_path(path);
769 	kfree(fixup);
770 
771 	scrub_pending_trans_workers_dec(sctx);
772 }
773 
774 /*
775  * scrub_handle_errored_block gets called when either verification of the
776  * pages failed or the bio failed to read, e.g. with EIO. In the latter
777  * case, this function handles all pages in the bio, even though only one
778  * may be bad.
779  * The goal of this function is to repair the errored block by using the
780  * contents of one of the mirrors.
781  */
782 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
783 {
784 	struct scrub_ctx *sctx = sblock_to_check->sctx;
785 	struct btrfs_device *dev;
786 	struct btrfs_fs_info *fs_info;
787 	u64 length;
788 	u64 logical;
789 	u64 generation;
790 	unsigned int failed_mirror_index;
791 	unsigned int is_metadata;
792 	unsigned int have_csum;
793 	u8 *csum;
794 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
795 	struct scrub_block *sblock_bad;
796 	int ret;
797 	int mirror_index;
798 	int page_num;
799 	int success;
800 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
801 				      DEFAULT_RATELIMIT_BURST);
802 
803 	BUG_ON(sblock_to_check->page_count < 1);
804 	fs_info = sctx->dev_root->fs_info;
805 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
806 		/*
807 		 * if we find an error in a super block, we just report it.
808 		 * They will get written with the next transaction commit
809 		 * anyway
810 		 */
811 		spin_lock(&sctx->stat_lock);
812 		++sctx->stat.super_errors;
813 		spin_unlock(&sctx->stat_lock);
814 		return 0;
815 	}
816 	length = sblock_to_check->page_count * PAGE_SIZE;
817 	logical = sblock_to_check->pagev[0]->logical;
818 	generation = sblock_to_check->pagev[0]->generation;
819 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
820 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
821 	is_metadata = !(sblock_to_check->pagev[0]->flags &
822 			BTRFS_EXTENT_FLAG_DATA);
823 	have_csum = sblock_to_check->pagev[0]->have_csum;
824 	csum = sblock_to_check->pagev[0]->csum;
825 	dev = sblock_to_check->pagev[0]->dev;
826 
827 	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
828 		sblocks_for_recheck = NULL;
829 		goto nodatasum_case;
830 	}
831 
832 	/*
833 	 * read all mirrors one after the other. This includes to
834 	 * re-read the extent or metadata block that failed (that was
835 	 * the cause that this fixup code is called) another time,
836 	 * page by page this time in order to know which pages
837 	 * caused I/O errors and which ones are good (for all mirrors).
838 	 * It is the goal to handle the situation when more than one
839 	 * mirror contains I/O errors, but the errors do not
840 	 * overlap, i.e. the data can be repaired by selecting the
841 	 * pages from those mirrors without I/O error on the
842 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
843 	 * would be that mirror #1 has an I/O error on the first page,
844 	 * the second page is good, and mirror #2 has an I/O error on
845 	 * the second page, but the first page is good.
846 	 * Then the first page of the first mirror can be repaired by
847 	 * taking the first page of the second mirror, and the
848 	 * second page of the second mirror can be repaired by
849 	 * copying the contents of the 2nd page of the 1st mirror.
850 	 * One more note: if the pages of one mirror contain I/O
851 	 * errors, the checksum cannot be verified. In order to get
852 	 * the best data for repairing, the first attempt is to find
853 	 * a mirror without I/O errors and with a validated checksum.
854 	 * Only if this is not possible, the pages are picked from
855 	 * mirrors with I/O errors without considering the checksum.
856 	 * If the latter is the case, at the end, the checksum of the
857 	 * repaired area is verified in order to correctly maintain
858 	 * the statistics.
859 	 */
860 
861 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
862 				     sizeof(*sblocks_for_recheck),
863 				     GFP_NOFS);
864 	if (!sblocks_for_recheck) {
865 		spin_lock(&sctx->stat_lock);
866 		sctx->stat.malloc_errors++;
867 		sctx->stat.read_errors++;
868 		sctx->stat.uncorrectable_errors++;
869 		spin_unlock(&sctx->stat_lock);
870 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
871 		goto out;
872 	}
873 
874 	/* setup the context, map the logical blocks and alloc the pages */
875 	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
876 					logical, sblocks_for_recheck);
877 	if (ret) {
878 		spin_lock(&sctx->stat_lock);
879 		sctx->stat.read_errors++;
880 		sctx->stat.uncorrectable_errors++;
881 		spin_unlock(&sctx->stat_lock);
882 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
883 		goto out;
884 	}
885 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
886 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
887 
888 	/* build and submit the bios for the failed mirror, check checksums */
889 	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
890 			    csum, generation, sctx->csum_size);
891 
892 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
893 	    sblock_bad->no_io_error_seen) {
894 		/*
895 		 * the error disappeared after reading page by page, or
896 		 * the area was part of a huge bio and other parts of the
897 		 * bio caused I/O errors, or the block layer merged several
898 		 * read requests into one and the error is caused by a
899 		 * different bio (usually one of the two latter cases is
900 		 * the cause)
901 		 */
902 		spin_lock(&sctx->stat_lock);
903 		sctx->stat.unverified_errors++;
904 		spin_unlock(&sctx->stat_lock);
905 
906 		if (sctx->is_dev_replace)
907 			scrub_write_block_to_dev_replace(sblock_bad);
908 		goto out;
909 	}
910 
911 	if (!sblock_bad->no_io_error_seen) {
912 		spin_lock(&sctx->stat_lock);
913 		sctx->stat.read_errors++;
914 		spin_unlock(&sctx->stat_lock);
915 		if (__ratelimit(&_rs))
916 			scrub_print_warning("i/o error", sblock_to_check);
917 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
918 	} else if (sblock_bad->checksum_error) {
919 		spin_lock(&sctx->stat_lock);
920 		sctx->stat.csum_errors++;
921 		spin_unlock(&sctx->stat_lock);
922 		if (__ratelimit(&_rs))
923 			scrub_print_warning("checksum error", sblock_to_check);
924 		btrfs_dev_stat_inc_and_print(dev,
925 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
926 	} else if (sblock_bad->header_error) {
927 		spin_lock(&sctx->stat_lock);
928 		sctx->stat.verify_errors++;
929 		spin_unlock(&sctx->stat_lock);
930 		if (__ratelimit(&_rs))
931 			scrub_print_warning("checksum/header error",
932 					    sblock_to_check);
933 		if (sblock_bad->generation_error)
934 			btrfs_dev_stat_inc_and_print(dev,
935 				BTRFS_DEV_STAT_GENERATION_ERRS);
936 		else
937 			btrfs_dev_stat_inc_and_print(dev,
938 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
939 	}
940 
941 	if (sctx->readonly) {
942 		ASSERT(!sctx->is_dev_replace);
943 		goto out;
944 	}
945 
946 	if (!is_metadata && !have_csum) {
947 		struct scrub_fixup_nodatasum *fixup_nodatasum;
948 
949 nodatasum_case:
950 		WARN_ON(sctx->is_dev_replace);
951 
952 		/*
953 		 * !is_metadata and !have_csum, this means that the data
954 		 * might not be COW'ed, that it might be modified
955 		 * concurrently. The general strategy to work on the
956 		 * commit root does not help in the case when COW is not
957 		 * used.
958 		 */
959 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
960 		if (!fixup_nodatasum)
961 			goto did_not_correct_error;
962 		fixup_nodatasum->sctx = sctx;
963 		fixup_nodatasum->dev = dev;
964 		fixup_nodatasum->logical = logical;
965 		fixup_nodatasum->root = fs_info->extent_root;
966 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
967 		scrub_pending_trans_workers_inc(sctx);
968 		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
969 		btrfs_queue_worker(&fs_info->scrub_workers,
970 				   &fixup_nodatasum->work);
971 		goto out;
972 	}
973 
974 	/*
975 	 * now build and submit the bios for the other mirrors, check
976 	 * checksums.
977 	 * First try to pick the mirror which is completely without I/O
978 	 * errors and also does not have a checksum error.
979 	 * If one is found, and if a checksum is present, the full block
980 	 * that is known to contain an error is rewritten. Afterwards
981 	 * the block is known to be corrected.
982 	 * If a mirror is found which is completely correct, and no
983 	 * checksum is present, only those pages are rewritten that had
984 	 * an I/O error in the block to be repaired, since it cannot be
985 	 * determined, which copy of the other pages is better (and it
986 	 * could happen otherwise that a correct page would be
987 	 * overwritten by a bad one).
988 	 */
989 	for (mirror_index = 0;
990 	     mirror_index < BTRFS_MAX_MIRRORS &&
991 	     sblocks_for_recheck[mirror_index].page_count > 0;
992 	     mirror_index++) {
993 		struct scrub_block *sblock_other;
994 
995 		if (mirror_index == failed_mirror_index)
996 			continue;
997 		sblock_other = sblocks_for_recheck + mirror_index;
998 
999 		/* build and submit the bios, check checksums */
1000 		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1001 				    have_csum, csum, generation,
1002 				    sctx->csum_size);
1003 
1004 		if (!sblock_other->header_error &&
1005 		    !sblock_other->checksum_error &&
1006 		    sblock_other->no_io_error_seen) {
1007 			if (sctx->is_dev_replace) {
1008 				scrub_write_block_to_dev_replace(sblock_other);
1009 			} else {
1010 				int force_write = is_metadata || have_csum;
1011 
1012 				ret = scrub_repair_block_from_good_copy(
1013 						sblock_bad, sblock_other,
1014 						force_write);
1015 			}
1016 			if (0 == ret)
1017 				goto corrected_error;
1018 		}
1019 	}
1020 
1021 	/*
1022 	 * for dev_replace, pick good pages and write to the target device.
1023 	 */
1024 	if (sctx->is_dev_replace) {
1025 		success = 1;
1026 		for (page_num = 0; page_num < sblock_bad->page_count;
1027 		     page_num++) {
1028 			int sub_success;
1029 
1030 			sub_success = 0;
1031 			for (mirror_index = 0;
1032 			     mirror_index < BTRFS_MAX_MIRRORS &&
1033 			     sblocks_for_recheck[mirror_index].page_count > 0;
1034 			     mirror_index++) {
1035 				struct scrub_block *sblock_other =
1036 					sblocks_for_recheck + mirror_index;
1037 				struct scrub_page *page_other =
1038 					sblock_other->pagev[page_num];
1039 
1040 				if (!page_other->io_error) {
1041 					ret = scrub_write_page_to_dev_replace(
1042 							sblock_other, page_num);
1043 					if (ret == 0) {
1044 						/* succeeded for this page */
1045 						sub_success = 1;
1046 						break;
1047 					} else {
1048 						btrfs_dev_replace_stats_inc(
1049 							&sctx->dev_root->
1050 							fs_info->dev_replace.
1051 							num_write_errors);
1052 					}
1053 				}
1054 			}
1055 
1056 			if (!sub_success) {
1057 				/*
1058 				 * did not find a mirror to fetch the page
1059 				 * from. scrub_write_page_to_dev_replace()
1060 				 * handles this case (page->io_error), by
1061 				 * filling the block with zeros before
1062 				 * submitting the write request
1063 				 */
1064 				success = 0;
1065 				ret = scrub_write_page_to_dev_replace(
1066 						sblock_bad, page_num);
1067 				if (ret)
1068 					btrfs_dev_replace_stats_inc(
1069 						&sctx->dev_root->fs_info->
1070 						dev_replace.num_write_errors);
1071 			}
1072 		}
1073 
1074 		goto out;
1075 	}
1076 
1077 	/*
1078 	 * for regular scrub, repair those pages that are errored.
1079 	 * In case of I/O errors in the area that is supposed to be
1080 	 * repaired, continue by picking good copies of those pages.
1081 	 * Select the good pages from mirrors to rewrite bad pages from
1082 	 * the area to fix. Afterwards verify the checksum of the block
1083 	 * that is supposed to be repaired. This verification step is
1084 	 * only done for the purpose of statistic counting and for the
1085 	 * final scrub report, whether errors remain.
1086 	 * A perfect algorithm could make use of the checksum and try
1087 	 * all possible combinations of pages from the different mirrors
1088 	 * until the checksum verification succeeds. For example, when
1089 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1090 	 * of mirror #2 is readable but the final checksum test fails,
1091 	 * then the 2nd page of mirror #3 could be tried, whether now
1092 	 * the final checksum succeedes. But this would be a rare
1093 	 * exception and is therefore not implemented. At least it is
1094 	 * avoided that the good copy is overwritten.
1095 	 * A more useful improvement would be to pick the sectors
1096 	 * without I/O error based on sector sizes (512 bytes on legacy
1097 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1098 	 * mirror could be repaired by taking 512 byte of a different
1099 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1100 	 * area are unreadable.
1101 	 */
1102 
1103 	/* can only fix I/O errors from here on */
1104 	if (sblock_bad->no_io_error_seen)
1105 		goto did_not_correct_error;
1106 
1107 	success = 1;
1108 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1109 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1110 
1111 		if (!page_bad->io_error)
1112 			continue;
1113 
1114 		for (mirror_index = 0;
1115 		     mirror_index < BTRFS_MAX_MIRRORS &&
1116 		     sblocks_for_recheck[mirror_index].page_count > 0;
1117 		     mirror_index++) {
1118 			struct scrub_block *sblock_other = sblocks_for_recheck +
1119 							   mirror_index;
1120 			struct scrub_page *page_other = sblock_other->pagev[
1121 							page_num];
1122 
1123 			if (!page_other->io_error) {
1124 				ret = scrub_repair_page_from_good_copy(
1125 					sblock_bad, sblock_other, page_num, 0);
1126 				if (0 == ret) {
1127 					page_bad->io_error = 0;
1128 					break; /* succeeded for this page */
1129 				}
1130 			}
1131 		}
1132 
1133 		if (page_bad->io_error) {
1134 			/* did not find a mirror to copy the page from */
1135 			success = 0;
1136 		}
1137 	}
1138 
1139 	if (success) {
1140 		if (is_metadata || have_csum) {
1141 			/*
1142 			 * need to verify the checksum now that all
1143 			 * sectors on disk are repaired (the write
1144 			 * request for data to be repaired is on its way).
1145 			 * Just be lazy and use scrub_recheck_block()
1146 			 * which re-reads the data before the checksum
1147 			 * is verified, but most likely the data comes out
1148 			 * of the page cache.
1149 			 */
1150 			scrub_recheck_block(fs_info, sblock_bad,
1151 					    is_metadata, have_csum, csum,
1152 					    generation, sctx->csum_size);
1153 			if (!sblock_bad->header_error &&
1154 			    !sblock_bad->checksum_error &&
1155 			    sblock_bad->no_io_error_seen)
1156 				goto corrected_error;
1157 			else
1158 				goto did_not_correct_error;
1159 		} else {
1160 corrected_error:
1161 			spin_lock(&sctx->stat_lock);
1162 			sctx->stat.corrected_errors++;
1163 			spin_unlock(&sctx->stat_lock);
1164 			printk_ratelimited_in_rcu(KERN_ERR
1165 				"btrfs: fixed up error at logical %llu on dev %s\n",
1166 				logical, rcu_str_deref(dev->name));
1167 		}
1168 	} else {
1169 did_not_correct_error:
1170 		spin_lock(&sctx->stat_lock);
1171 		sctx->stat.uncorrectable_errors++;
1172 		spin_unlock(&sctx->stat_lock);
1173 		printk_ratelimited_in_rcu(KERN_ERR
1174 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1175 			logical, rcu_str_deref(dev->name));
1176 	}
1177 
1178 out:
1179 	if (sblocks_for_recheck) {
1180 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1181 		     mirror_index++) {
1182 			struct scrub_block *sblock = sblocks_for_recheck +
1183 						     mirror_index;
1184 			int page_index;
1185 
1186 			for (page_index = 0; page_index < sblock->page_count;
1187 			     page_index++) {
1188 				sblock->pagev[page_index]->sblock = NULL;
1189 				scrub_page_put(sblock->pagev[page_index]);
1190 			}
1191 		}
1192 		kfree(sblocks_for_recheck);
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1199 				     struct btrfs_fs_info *fs_info,
1200 				     struct scrub_block *original_sblock,
1201 				     u64 length, u64 logical,
1202 				     struct scrub_block *sblocks_for_recheck)
1203 {
1204 	int page_index;
1205 	int mirror_index;
1206 	int ret;
1207 
1208 	/*
1209 	 * note: the two members ref_count and outstanding_pages
1210 	 * are not used (and not set) in the blocks that are used for
1211 	 * the recheck procedure
1212 	 */
1213 
1214 	page_index = 0;
1215 	while (length > 0) {
1216 		u64 sublen = min_t(u64, length, PAGE_SIZE);
1217 		u64 mapped_length = sublen;
1218 		struct btrfs_bio *bbio = NULL;
1219 
1220 		/*
1221 		 * with a length of PAGE_SIZE, each returned stripe
1222 		 * represents one mirror
1223 		 */
1224 		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1225 				      &mapped_length, &bbio, 0);
1226 		if (ret || !bbio || mapped_length < sublen) {
1227 			kfree(bbio);
1228 			return -EIO;
1229 		}
1230 
1231 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1232 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1233 		     mirror_index++) {
1234 			struct scrub_block *sblock;
1235 			struct scrub_page *page;
1236 
1237 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1238 				continue;
1239 
1240 			sblock = sblocks_for_recheck + mirror_index;
1241 			sblock->sctx = sctx;
1242 			page = kzalloc(sizeof(*page), GFP_NOFS);
1243 			if (!page) {
1244 leave_nomem:
1245 				spin_lock(&sctx->stat_lock);
1246 				sctx->stat.malloc_errors++;
1247 				spin_unlock(&sctx->stat_lock);
1248 				kfree(bbio);
1249 				return -ENOMEM;
1250 			}
1251 			scrub_page_get(page);
1252 			sblock->pagev[page_index] = page;
1253 			page->logical = logical;
1254 			page->physical = bbio->stripes[mirror_index].physical;
1255 			BUG_ON(page_index >= original_sblock->page_count);
1256 			page->physical_for_dev_replace =
1257 				original_sblock->pagev[page_index]->
1258 				physical_for_dev_replace;
1259 			/* for missing devices, dev->bdev is NULL */
1260 			page->dev = bbio->stripes[mirror_index].dev;
1261 			page->mirror_num = mirror_index + 1;
1262 			sblock->page_count++;
1263 			page->page = alloc_page(GFP_NOFS);
1264 			if (!page->page)
1265 				goto leave_nomem;
1266 		}
1267 		kfree(bbio);
1268 		length -= sublen;
1269 		logical += sublen;
1270 		page_index++;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 /*
1277  * this function will check the on disk data for checksum errors, header
1278  * errors and read I/O errors. If any I/O errors happen, the exact pages
1279  * which are errored are marked as being bad. The goal is to enable scrub
1280  * to take those pages that are not errored from all the mirrors so that
1281  * the pages that are errored in the just handled mirror can be repaired.
1282  */
1283 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1284 				struct scrub_block *sblock, int is_metadata,
1285 				int have_csum, u8 *csum, u64 generation,
1286 				u16 csum_size)
1287 {
1288 	int page_num;
1289 
1290 	sblock->no_io_error_seen = 1;
1291 	sblock->header_error = 0;
1292 	sblock->checksum_error = 0;
1293 
1294 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1295 		struct bio *bio;
1296 		struct scrub_page *page = sblock->pagev[page_num];
1297 		DECLARE_COMPLETION_ONSTACK(complete);
1298 
1299 		if (page->dev->bdev == NULL) {
1300 			page->io_error = 1;
1301 			sblock->no_io_error_seen = 0;
1302 			continue;
1303 		}
1304 
1305 		WARN_ON(!page->page);
1306 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1307 		if (!bio) {
1308 			page->io_error = 1;
1309 			sblock->no_io_error_seen = 0;
1310 			continue;
1311 		}
1312 		bio->bi_bdev = page->dev->bdev;
1313 		bio->bi_sector = page->physical >> 9;
1314 		bio->bi_end_io = scrub_complete_bio_end_io;
1315 		bio->bi_private = &complete;
1316 
1317 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1318 		btrfsic_submit_bio(READ, bio);
1319 
1320 		/* this will also unplug the queue */
1321 		wait_for_completion(&complete);
1322 
1323 		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1324 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1325 			sblock->no_io_error_seen = 0;
1326 		bio_put(bio);
1327 	}
1328 
1329 	if (sblock->no_io_error_seen)
1330 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1331 					     have_csum, csum, generation,
1332 					     csum_size);
1333 
1334 	return;
1335 }
1336 
1337 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1338 					 struct scrub_block *sblock,
1339 					 int is_metadata, int have_csum,
1340 					 const u8 *csum, u64 generation,
1341 					 u16 csum_size)
1342 {
1343 	int page_num;
1344 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1345 	u32 crc = ~(u32)0;
1346 	void *mapped_buffer;
1347 
1348 	WARN_ON(!sblock->pagev[0]->page);
1349 	if (is_metadata) {
1350 		struct btrfs_header *h;
1351 
1352 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1353 		h = (struct btrfs_header *)mapped_buffer;
1354 
1355 		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1356 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1357 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1358 			   BTRFS_UUID_SIZE)) {
1359 			sblock->header_error = 1;
1360 		} else if (generation != btrfs_stack_header_generation(h)) {
1361 			sblock->header_error = 1;
1362 			sblock->generation_error = 1;
1363 		}
1364 		csum = h->csum;
1365 	} else {
1366 		if (!have_csum)
1367 			return;
1368 
1369 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1370 	}
1371 
1372 	for (page_num = 0;;) {
1373 		if (page_num == 0 && is_metadata)
1374 			crc = btrfs_csum_data(
1375 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1376 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1377 		else
1378 			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1379 
1380 		kunmap_atomic(mapped_buffer);
1381 		page_num++;
1382 		if (page_num >= sblock->page_count)
1383 			break;
1384 		WARN_ON(!sblock->pagev[page_num]->page);
1385 
1386 		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1387 	}
1388 
1389 	btrfs_csum_final(crc, calculated_csum);
1390 	if (memcmp(calculated_csum, csum, csum_size))
1391 		sblock->checksum_error = 1;
1392 }
1393 
1394 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1395 {
1396 	complete((struct completion *)bio->bi_private);
1397 }
1398 
1399 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1400 					     struct scrub_block *sblock_good,
1401 					     int force_write)
1402 {
1403 	int page_num;
1404 	int ret = 0;
1405 
1406 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1407 		int ret_sub;
1408 
1409 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1410 							   sblock_good,
1411 							   page_num,
1412 							   force_write);
1413 		if (ret_sub)
1414 			ret = ret_sub;
1415 	}
1416 
1417 	return ret;
1418 }
1419 
1420 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1421 					    struct scrub_block *sblock_good,
1422 					    int page_num, int force_write)
1423 {
1424 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1425 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1426 
1427 	BUG_ON(page_bad->page == NULL);
1428 	BUG_ON(page_good->page == NULL);
1429 	if (force_write || sblock_bad->header_error ||
1430 	    sblock_bad->checksum_error || page_bad->io_error) {
1431 		struct bio *bio;
1432 		int ret;
1433 		DECLARE_COMPLETION_ONSTACK(complete);
1434 
1435 		if (!page_bad->dev->bdev) {
1436 			printk_ratelimited(KERN_WARNING
1437 				"btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1438 			return -EIO;
1439 		}
1440 
1441 		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1442 		if (!bio)
1443 			return -EIO;
1444 		bio->bi_bdev = page_bad->dev->bdev;
1445 		bio->bi_sector = page_bad->physical >> 9;
1446 		bio->bi_end_io = scrub_complete_bio_end_io;
1447 		bio->bi_private = &complete;
1448 
1449 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1450 		if (PAGE_SIZE != ret) {
1451 			bio_put(bio);
1452 			return -EIO;
1453 		}
1454 		btrfsic_submit_bio(WRITE, bio);
1455 
1456 		/* this will also unplug the queue */
1457 		wait_for_completion(&complete);
1458 		if (!bio_flagged(bio, BIO_UPTODATE)) {
1459 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1460 				BTRFS_DEV_STAT_WRITE_ERRS);
1461 			btrfs_dev_replace_stats_inc(
1462 				&sblock_bad->sctx->dev_root->fs_info->
1463 				dev_replace.num_write_errors);
1464 			bio_put(bio);
1465 			return -EIO;
1466 		}
1467 		bio_put(bio);
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1474 {
1475 	int page_num;
1476 
1477 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1478 		int ret;
1479 
1480 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1481 		if (ret)
1482 			btrfs_dev_replace_stats_inc(
1483 				&sblock->sctx->dev_root->fs_info->dev_replace.
1484 				num_write_errors);
1485 	}
1486 }
1487 
1488 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1489 					   int page_num)
1490 {
1491 	struct scrub_page *spage = sblock->pagev[page_num];
1492 
1493 	BUG_ON(spage->page == NULL);
1494 	if (spage->io_error) {
1495 		void *mapped_buffer = kmap_atomic(spage->page);
1496 
1497 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1498 		flush_dcache_page(spage->page);
1499 		kunmap_atomic(mapped_buffer);
1500 	}
1501 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1502 }
1503 
1504 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1505 				    struct scrub_page *spage)
1506 {
1507 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1508 	struct scrub_bio *sbio;
1509 	int ret;
1510 
1511 	mutex_lock(&wr_ctx->wr_lock);
1512 again:
1513 	if (!wr_ctx->wr_curr_bio) {
1514 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1515 					      GFP_NOFS);
1516 		if (!wr_ctx->wr_curr_bio) {
1517 			mutex_unlock(&wr_ctx->wr_lock);
1518 			return -ENOMEM;
1519 		}
1520 		wr_ctx->wr_curr_bio->sctx = sctx;
1521 		wr_ctx->wr_curr_bio->page_count = 0;
1522 	}
1523 	sbio = wr_ctx->wr_curr_bio;
1524 	if (sbio->page_count == 0) {
1525 		struct bio *bio;
1526 
1527 		sbio->physical = spage->physical_for_dev_replace;
1528 		sbio->logical = spage->logical;
1529 		sbio->dev = wr_ctx->tgtdev;
1530 		bio = sbio->bio;
1531 		if (!bio) {
1532 			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1533 			if (!bio) {
1534 				mutex_unlock(&wr_ctx->wr_lock);
1535 				return -ENOMEM;
1536 			}
1537 			sbio->bio = bio;
1538 		}
1539 
1540 		bio->bi_private = sbio;
1541 		bio->bi_end_io = scrub_wr_bio_end_io;
1542 		bio->bi_bdev = sbio->dev->bdev;
1543 		bio->bi_sector = sbio->physical >> 9;
1544 		sbio->err = 0;
1545 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1546 		   spage->physical_for_dev_replace ||
1547 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1548 		   spage->logical) {
1549 		scrub_wr_submit(sctx);
1550 		goto again;
1551 	}
1552 
1553 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1554 	if (ret != PAGE_SIZE) {
1555 		if (sbio->page_count < 1) {
1556 			bio_put(sbio->bio);
1557 			sbio->bio = NULL;
1558 			mutex_unlock(&wr_ctx->wr_lock);
1559 			return -EIO;
1560 		}
1561 		scrub_wr_submit(sctx);
1562 		goto again;
1563 	}
1564 
1565 	sbio->pagev[sbio->page_count] = spage;
1566 	scrub_page_get(spage);
1567 	sbio->page_count++;
1568 	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1569 		scrub_wr_submit(sctx);
1570 	mutex_unlock(&wr_ctx->wr_lock);
1571 
1572 	return 0;
1573 }
1574 
1575 static void scrub_wr_submit(struct scrub_ctx *sctx)
1576 {
1577 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1578 	struct scrub_bio *sbio;
1579 
1580 	if (!wr_ctx->wr_curr_bio)
1581 		return;
1582 
1583 	sbio = wr_ctx->wr_curr_bio;
1584 	wr_ctx->wr_curr_bio = NULL;
1585 	WARN_ON(!sbio->bio->bi_bdev);
1586 	scrub_pending_bio_inc(sctx);
1587 	/* process all writes in a single worker thread. Then the block layer
1588 	 * orders the requests before sending them to the driver which
1589 	 * doubled the write performance on spinning disks when measured
1590 	 * with Linux 3.5 */
1591 	btrfsic_submit_bio(WRITE, sbio->bio);
1592 }
1593 
1594 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1595 {
1596 	struct scrub_bio *sbio = bio->bi_private;
1597 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1598 
1599 	sbio->err = err;
1600 	sbio->bio = bio;
1601 
1602 	sbio->work.func = scrub_wr_bio_end_io_worker;
1603 	btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1604 }
1605 
1606 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1607 {
1608 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1609 	struct scrub_ctx *sctx = sbio->sctx;
1610 	int i;
1611 
1612 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1613 	if (sbio->err) {
1614 		struct btrfs_dev_replace *dev_replace =
1615 			&sbio->sctx->dev_root->fs_info->dev_replace;
1616 
1617 		for (i = 0; i < sbio->page_count; i++) {
1618 			struct scrub_page *spage = sbio->pagev[i];
1619 
1620 			spage->io_error = 1;
1621 			btrfs_dev_replace_stats_inc(&dev_replace->
1622 						    num_write_errors);
1623 		}
1624 	}
1625 
1626 	for (i = 0; i < sbio->page_count; i++)
1627 		scrub_page_put(sbio->pagev[i]);
1628 
1629 	bio_put(sbio->bio);
1630 	kfree(sbio);
1631 	scrub_pending_bio_dec(sctx);
1632 }
1633 
1634 static int scrub_checksum(struct scrub_block *sblock)
1635 {
1636 	u64 flags;
1637 	int ret;
1638 
1639 	WARN_ON(sblock->page_count < 1);
1640 	flags = sblock->pagev[0]->flags;
1641 	ret = 0;
1642 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1643 		ret = scrub_checksum_data(sblock);
1644 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1645 		ret = scrub_checksum_tree_block(sblock);
1646 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1647 		(void)scrub_checksum_super(sblock);
1648 	else
1649 		WARN_ON(1);
1650 	if (ret)
1651 		scrub_handle_errored_block(sblock);
1652 
1653 	return ret;
1654 }
1655 
1656 static int scrub_checksum_data(struct scrub_block *sblock)
1657 {
1658 	struct scrub_ctx *sctx = sblock->sctx;
1659 	u8 csum[BTRFS_CSUM_SIZE];
1660 	u8 *on_disk_csum;
1661 	struct page *page;
1662 	void *buffer;
1663 	u32 crc = ~(u32)0;
1664 	int fail = 0;
1665 	u64 len;
1666 	int index;
1667 
1668 	BUG_ON(sblock->page_count < 1);
1669 	if (!sblock->pagev[0]->have_csum)
1670 		return 0;
1671 
1672 	on_disk_csum = sblock->pagev[0]->csum;
1673 	page = sblock->pagev[0]->page;
1674 	buffer = kmap_atomic(page);
1675 
1676 	len = sctx->sectorsize;
1677 	index = 0;
1678 	for (;;) {
1679 		u64 l = min_t(u64, len, PAGE_SIZE);
1680 
1681 		crc = btrfs_csum_data(buffer, crc, l);
1682 		kunmap_atomic(buffer);
1683 		len -= l;
1684 		if (len == 0)
1685 			break;
1686 		index++;
1687 		BUG_ON(index >= sblock->page_count);
1688 		BUG_ON(!sblock->pagev[index]->page);
1689 		page = sblock->pagev[index]->page;
1690 		buffer = kmap_atomic(page);
1691 	}
1692 
1693 	btrfs_csum_final(crc, csum);
1694 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1695 		fail = 1;
1696 
1697 	return fail;
1698 }
1699 
1700 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1701 {
1702 	struct scrub_ctx *sctx = sblock->sctx;
1703 	struct btrfs_header *h;
1704 	struct btrfs_root *root = sctx->dev_root;
1705 	struct btrfs_fs_info *fs_info = root->fs_info;
1706 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1707 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1708 	struct page *page;
1709 	void *mapped_buffer;
1710 	u64 mapped_size;
1711 	void *p;
1712 	u32 crc = ~(u32)0;
1713 	int fail = 0;
1714 	int crc_fail = 0;
1715 	u64 len;
1716 	int index;
1717 
1718 	BUG_ON(sblock->page_count < 1);
1719 	page = sblock->pagev[0]->page;
1720 	mapped_buffer = kmap_atomic(page);
1721 	h = (struct btrfs_header *)mapped_buffer;
1722 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1723 
1724 	/*
1725 	 * we don't use the getter functions here, as we
1726 	 * a) don't have an extent buffer and
1727 	 * b) the page is already kmapped
1728 	 */
1729 
1730 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1731 		++fail;
1732 
1733 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1734 		++fail;
1735 
1736 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1737 		++fail;
1738 
1739 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1740 		   BTRFS_UUID_SIZE))
1741 		++fail;
1742 
1743 	WARN_ON(sctx->nodesize != sctx->leafsize);
1744 	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1745 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1746 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1747 	index = 0;
1748 	for (;;) {
1749 		u64 l = min_t(u64, len, mapped_size);
1750 
1751 		crc = btrfs_csum_data(p, crc, l);
1752 		kunmap_atomic(mapped_buffer);
1753 		len -= l;
1754 		if (len == 0)
1755 			break;
1756 		index++;
1757 		BUG_ON(index >= sblock->page_count);
1758 		BUG_ON(!sblock->pagev[index]->page);
1759 		page = sblock->pagev[index]->page;
1760 		mapped_buffer = kmap_atomic(page);
1761 		mapped_size = PAGE_SIZE;
1762 		p = mapped_buffer;
1763 	}
1764 
1765 	btrfs_csum_final(crc, calculated_csum);
1766 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1767 		++crc_fail;
1768 
1769 	return fail || crc_fail;
1770 }
1771 
1772 static int scrub_checksum_super(struct scrub_block *sblock)
1773 {
1774 	struct btrfs_super_block *s;
1775 	struct scrub_ctx *sctx = sblock->sctx;
1776 	struct btrfs_root *root = sctx->dev_root;
1777 	struct btrfs_fs_info *fs_info = root->fs_info;
1778 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1779 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1780 	struct page *page;
1781 	void *mapped_buffer;
1782 	u64 mapped_size;
1783 	void *p;
1784 	u32 crc = ~(u32)0;
1785 	int fail_gen = 0;
1786 	int fail_cor = 0;
1787 	u64 len;
1788 	int index;
1789 
1790 	BUG_ON(sblock->page_count < 1);
1791 	page = sblock->pagev[0]->page;
1792 	mapped_buffer = kmap_atomic(page);
1793 	s = (struct btrfs_super_block *)mapped_buffer;
1794 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1795 
1796 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1797 		++fail_cor;
1798 
1799 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1800 		++fail_gen;
1801 
1802 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1803 		++fail_cor;
1804 
1805 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1806 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1807 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1808 	index = 0;
1809 	for (;;) {
1810 		u64 l = min_t(u64, len, mapped_size);
1811 
1812 		crc = btrfs_csum_data(p, crc, l);
1813 		kunmap_atomic(mapped_buffer);
1814 		len -= l;
1815 		if (len == 0)
1816 			break;
1817 		index++;
1818 		BUG_ON(index >= sblock->page_count);
1819 		BUG_ON(!sblock->pagev[index]->page);
1820 		page = sblock->pagev[index]->page;
1821 		mapped_buffer = kmap_atomic(page);
1822 		mapped_size = PAGE_SIZE;
1823 		p = mapped_buffer;
1824 	}
1825 
1826 	btrfs_csum_final(crc, calculated_csum);
1827 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1828 		++fail_cor;
1829 
1830 	if (fail_cor + fail_gen) {
1831 		/*
1832 		 * if we find an error in a super block, we just report it.
1833 		 * They will get written with the next transaction commit
1834 		 * anyway
1835 		 */
1836 		spin_lock(&sctx->stat_lock);
1837 		++sctx->stat.super_errors;
1838 		spin_unlock(&sctx->stat_lock);
1839 		if (fail_cor)
1840 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1841 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1842 		else
1843 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1844 				BTRFS_DEV_STAT_GENERATION_ERRS);
1845 	}
1846 
1847 	return fail_cor + fail_gen;
1848 }
1849 
1850 static void scrub_block_get(struct scrub_block *sblock)
1851 {
1852 	atomic_inc(&sblock->ref_count);
1853 }
1854 
1855 static void scrub_block_put(struct scrub_block *sblock)
1856 {
1857 	if (atomic_dec_and_test(&sblock->ref_count)) {
1858 		int i;
1859 
1860 		for (i = 0; i < sblock->page_count; i++)
1861 			scrub_page_put(sblock->pagev[i]);
1862 		kfree(sblock);
1863 	}
1864 }
1865 
1866 static void scrub_page_get(struct scrub_page *spage)
1867 {
1868 	atomic_inc(&spage->ref_count);
1869 }
1870 
1871 static void scrub_page_put(struct scrub_page *spage)
1872 {
1873 	if (atomic_dec_and_test(&spage->ref_count)) {
1874 		if (spage->page)
1875 			__free_page(spage->page);
1876 		kfree(spage);
1877 	}
1878 }
1879 
1880 static void scrub_submit(struct scrub_ctx *sctx)
1881 {
1882 	struct scrub_bio *sbio;
1883 
1884 	if (sctx->curr == -1)
1885 		return;
1886 
1887 	sbio = sctx->bios[sctx->curr];
1888 	sctx->curr = -1;
1889 	scrub_pending_bio_inc(sctx);
1890 
1891 	if (!sbio->bio->bi_bdev) {
1892 		/*
1893 		 * this case should not happen. If btrfs_map_block() is
1894 		 * wrong, it could happen for dev-replace operations on
1895 		 * missing devices when no mirrors are available, but in
1896 		 * this case it should already fail the mount.
1897 		 * This case is handled correctly (but _very_ slowly).
1898 		 */
1899 		printk_ratelimited(KERN_WARNING
1900 			"btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1901 		bio_endio(sbio->bio, -EIO);
1902 	} else {
1903 		btrfsic_submit_bio(READ, sbio->bio);
1904 	}
1905 }
1906 
1907 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1908 				    struct scrub_page *spage)
1909 {
1910 	struct scrub_block *sblock = spage->sblock;
1911 	struct scrub_bio *sbio;
1912 	int ret;
1913 
1914 again:
1915 	/*
1916 	 * grab a fresh bio or wait for one to become available
1917 	 */
1918 	while (sctx->curr == -1) {
1919 		spin_lock(&sctx->list_lock);
1920 		sctx->curr = sctx->first_free;
1921 		if (sctx->curr != -1) {
1922 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1923 			sctx->bios[sctx->curr]->next_free = -1;
1924 			sctx->bios[sctx->curr]->page_count = 0;
1925 			spin_unlock(&sctx->list_lock);
1926 		} else {
1927 			spin_unlock(&sctx->list_lock);
1928 			wait_event(sctx->list_wait, sctx->first_free != -1);
1929 		}
1930 	}
1931 	sbio = sctx->bios[sctx->curr];
1932 	if (sbio->page_count == 0) {
1933 		struct bio *bio;
1934 
1935 		sbio->physical = spage->physical;
1936 		sbio->logical = spage->logical;
1937 		sbio->dev = spage->dev;
1938 		bio = sbio->bio;
1939 		if (!bio) {
1940 			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1941 			if (!bio)
1942 				return -ENOMEM;
1943 			sbio->bio = bio;
1944 		}
1945 
1946 		bio->bi_private = sbio;
1947 		bio->bi_end_io = scrub_bio_end_io;
1948 		bio->bi_bdev = sbio->dev->bdev;
1949 		bio->bi_sector = sbio->physical >> 9;
1950 		sbio->err = 0;
1951 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1952 		   spage->physical ||
1953 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1954 		   spage->logical ||
1955 		   sbio->dev != spage->dev) {
1956 		scrub_submit(sctx);
1957 		goto again;
1958 	}
1959 
1960 	sbio->pagev[sbio->page_count] = spage;
1961 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1962 	if (ret != PAGE_SIZE) {
1963 		if (sbio->page_count < 1) {
1964 			bio_put(sbio->bio);
1965 			sbio->bio = NULL;
1966 			return -EIO;
1967 		}
1968 		scrub_submit(sctx);
1969 		goto again;
1970 	}
1971 
1972 	scrub_block_get(sblock); /* one for the page added to the bio */
1973 	atomic_inc(&sblock->outstanding_pages);
1974 	sbio->page_count++;
1975 	if (sbio->page_count == sctx->pages_per_rd_bio)
1976 		scrub_submit(sctx);
1977 
1978 	return 0;
1979 }
1980 
1981 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1982 		       u64 physical, struct btrfs_device *dev, u64 flags,
1983 		       u64 gen, int mirror_num, u8 *csum, int force,
1984 		       u64 physical_for_dev_replace)
1985 {
1986 	struct scrub_block *sblock;
1987 	int index;
1988 
1989 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1990 	if (!sblock) {
1991 		spin_lock(&sctx->stat_lock);
1992 		sctx->stat.malloc_errors++;
1993 		spin_unlock(&sctx->stat_lock);
1994 		return -ENOMEM;
1995 	}
1996 
1997 	/* one ref inside this function, plus one for each page added to
1998 	 * a bio later on */
1999 	atomic_set(&sblock->ref_count, 1);
2000 	sblock->sctx = sctx;
2001 	sblock->no_io_error_seen = 1;
2002 
2003 	for (index = 0; len > 0; index++) {
2004 		struct scrub_page *spage;
2005 		u64 l = min_t(u64, len, PAGE_SIZE);
2006 
2007 		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2008 		if (!spage) {
2009 leave_nomem:
2010 			spin_lock(&sctx->stat_lock);
2011 			sctx->stat.malloc_errors++;
2012 			spin_unlock(&sctx->stat_lock);
2013 			scrub_block_put(sblock);
2014 			return -ENOMEM;
2015 		}
2016 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2017 		scrub_page_get(spage);
2018 		sblock->pagev[index] = spage;
2019 		spage->sblock = sblock;
2020 		spage->dev = dev;
2021 		spage->flags = flags;
2022 		spage->generation = gen;
2023 		spage->logical = logical;
2024 		spage->physical = physical;
2025 		spage->physical_for_dev_replace = physical_for_dev_replace;
2026 		spage->mirror_num = mirror_num;
2027 		if (csum) {
2028 			spage->have_csum = 1;
2029 			memcpy(spage->csum, csum, sctx->csum_size);
2030 		} else {
2031 			spage->have_csum = 0;
2032 		}
2033 		sblock->page_count++;
2034 		spage->page = alloc_page(GFP_NOFS);
2035 		if (!spage->page)
2036 			goto leave_nomem;
2037 		len -= l;
2038 		logical += l;
2039 		physical += l;
2040 		physical_for_dev_replace += l;
2041 	}
2042 
2043 	WARN_ON(sblock->page_count == 0);
2044 	for (index = 0; index < sblock->page_count; index++) {
2045 		struct scrub_page *spage = sblock->pagev[index];
2046 		int ret;
2047 
2048 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2049 		if (ret) {
2050 			scrub_block_put(sblock);
2051 			return ret;
2052 		}
2053 	}
2054 
2055 	if (force)
2056 		scrub_submit(sctx);
2057 
2058 	/* last one frees, either here or in bio completion for last page */
2059 	scrub_block_put(sblock);
2060 	return 0;
2061 }
2062 
2063 static void scrub_bio_end_io(struct bio *bio, int err)
2064 {
2065 	struct scrub_bio *sbio = bio->bi_private;
2066 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2067 
2068 	sbio->err = err;
2069 	sbio->bio = bio;
2070 
2071 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2072 }
2073 
2074 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2075 {
2076 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2077 	struct scrub_ctx *sctx = sbio->sctx;
2078 	int i;
2079 
2080 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2081 	if (sbio->err) {
2082 		for (i = 0; i < sbio->page_count; i++) {
2083 			struct scrub_page *spage = sbio->pagev[i];
2084 
2085 			spage->io_error = 1;
2086 			spage->sblock->no_io_error_seen = 0;
2087 		}
2088 	}
2089 
2090 	/* now complete the scrub_block items that have all pages completed */
2091 	for (i = 0; i < sbio->page_count; i++) {
2092 		struct scrub_page *spage = sbio->pagev[i];
2093 		struct scrub_block *sblock = spage->sblock;
2094 
2095 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2096 			scrub_block_complete(sblock);
2097 		scrub_block_put(sblock);
2098 	}
2099 
2100 	bio_put(sbio->bio);
2101 	sbio->bio = NULL;
2102 	spin_lock(&sctx->list_lock);
2103 	sbio->next_free = sctx->first_free;
2104 	sctx->first_free = sbio->index;
2105 	spin_unlock(&sctx->list_lock);
2106 
2107 	if (sctx->is_dev_replace &&
2108 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2109 		mutex_lock(&sctx->wr_ctx.wr_lock);
2110 		scrub_wr_submit(sctx);
2111 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2112 	}
2113 
2114 	scrub_pending_bio_dec(sctx);
2115 }
2116 
2117 static void scrub_block_complete(struct scrub_block *sblock)
2118 {
2119 	if (!sblock->no_io_error_seen) {
2120 		scrub_handle_errored_block(sblock);
2121 	} else {
2122 		/*
2123 		 * if has checksum error, write via repair mechanism in
2124 		 * dev replace case, otherwise write here in dev replace
2125 		 * case.
2126 		 */
2127 		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2128 			scrub_write_block_to_dev_replace(sblock);
2129 	}
2130 }
2131 
2132 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2133 			   u8 *csum)
2134 {
2135 	struct btrfs_ordered_sum *sum = NULL;
2136 	unsigned long index;
2137 	unsigned long num_sectors;
2138 
2139 	while (!list_empty(&sctx->csum_list)) {
2140 		sum = list_first_entry(&sctx->csum_list,
2141 				       struct btrfs_ordered_sum, list);
2142 		if (sum->bytenr > logical)
2143 			return 0;
2144 		if (sum->bytenr + sum->len > logical)
2145 			break;
2146 
2147 		++sctx->stat.csum_discards;
2148 		list_del(&sum->list);
2149 		kfree(sum);
2150 		sum = NULL;
2151 	}
2152 	if (!sum)
2153 		return 0;
2154 
2155 	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2156 	num_sectors = sum->len / sctx->sectorsize;
2157 	memcpy(csum, sum->sums + index, sctx->csum_size);
2158 	if (index == num_sectors - 1) {
2159 		list_del(&sum->list);
2160 		kfree(sum);
2161 	}
2162 	return 1;
2163 }
2164 
2165 /* scrub extent tries to collect up to 64 kB for each bio */
2166 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2167 			u64 physical, struct btrfs_device *dev, u64 flags,
2168 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2169 {
2170 	int ret;
2171 	u8 csum[BTRFS_CSUM_SIZE];
2172 	u32 blocksize;
2173 
2174 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2175 		blocksize = sctx->sectorsize;
2176 		spin_lock(&sctx->stat_lock);
2177 		sctx->stat.data_extents_scrubbed++;
2178 		sctx->stat.data_bytes_scrubbed += len;
2179 		spin_unlock(&sctx->stat_lock);
2180 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2181 		WARN_ON(sctx->nodesize != sctx->leafsize);
2182 		blocksize = sctx->nodesize;
2183 		spin_lock(&sctx->stat_lock);
2184 		sctx->stat.tree_extents_scrubbed++;
2185 		sctx->stat.tree_bytes_scrubbed += len;
2186 		spin_unlock(&sctx->stat_lock);
2187 	} else {
2188 		blocksize = sctx->sectorsize;
2189 		WARN_ON(1);
2190 	}
2191 
2192 	while (len) {
2193 		u64 l = min_t(u64, len, blocksize);
2194 		int have_csum = 0;
2195 
2196 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2197 			/* push csums to sbio */
2198 			have_csum = scrub_find_csum(sctx, logical, l, csum);
2199 			if (have_csum == 0)
2200 				++sctx->stat.no_csum;
2201 			if (sctx->is_dev_replace && !have_csum) {
2202 				ret = copy_nocow_pages(sctx, logical, l,
2203 						       mirror_num,
2204 						      physical_for_dev_replace);
2205 				goto behind_scrub_pages;
2206 			}
2207 		}
2208 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2209 				  mirror_num, have_csum ? csum : NULL, 0,
2210 				  physical_for_dev_replace);
2211 behind_scrub_pages:
2212 		if (ret)
2213 			return ret;
2214 		len -= l;
2215 		logical += l;
2216 		physical += l;
2217 		physical_for_dev_replace += l;
2218 	}
2219 	return 0;
2220 }
2221 
2222 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2223 					   struct map_lookup *map,
2224 					   struct btrfs_device *scrub_dev,
2225 					   int num, u64 base, u64 length,
2226 					   int is_dev_replace)
2227 {
2228 	struct btrfs_path *path;
2229 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2230 	struct btrfs_root *root = fs_info->extent_root;
2231 	struct btrfs_root *csum_root = fs_info->csum_root;
2232 	struct btrfs_extent_item *extent;
2233 	struct blk_plug plug;
2234 	u64 flags;
2235 	int ret;
2236 	int slot;
2237 	u64 nstripes;
2238 	struct extent_buffer *l;
2239 	struct btrfs_key key;
2240 	u64 physical;
2241 	u64 logical;
2242 	u64 logic_end;
2243 	u64 generation;
2244 	int mirror_num;
2245 	struct reada_control *reada1;
2246 	struct reada_control *reada2;
2247 	struct btrfs_key key_start;
2248 	struct btrfs_key key_end;
2249 	u64 increment = map->stripe_len;
2250 	u64 offset;
2251 	u64 extent_logical;
2252 	u64 extent_physical;
2253 	u64 extent_len;
2254 	struct btrfs_device *extent_dev;
2255 	int extent_mirror_num;
2256 	int stop_loop;
2257 
2258 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2259 			 BTRFS_BLOCK_GROUP_RAID6)) {
2260 		if (num >= nr_data_stripes(map)) {
2261 			return 0;
2262 		}
2263 	}
2264 
2265 	nstripes = length;
2266 	offset = 0;
2267 	do_div(nstripes, map->stripe_len);
2268 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2269 		offset = map->stripe_len * num;
2270 		increment = map->stripe_len * map->num_stripes;
2271 		mirror_num = 1;
2272 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2273 		int factor = map->num_stripes / map->sub_stripes;
2274 		offset = map->stripe_len * (num / map->sub_stripes);
2275 		increment = map->stripe_len * factor;
2276 		mirror_num = num % map->sub_stripes + 1;
2277 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2278 		increment = map->stripe_len;
2279 		mirror_num = num % map->num_stripes + 1;
2280 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2281 		increment = map->stripe_len;
2282 		mirror_num = num % map->num_stripes + 1;
2283 	} else {
2284 		increment = map->stripe_len;
2285 		mirror_num = 1;
2286 	}
2287 
2288 	path = btrfs_alloc_path();
2289 	if (!path)
2290 		return -ENOMEM;
2291 
2292 	/*
2293 	 * work on commit root. The related disk blocks are static as
2294 	 * long as COW is applied. This means, it is save to rewrite
2295 	 * them to repair disk errors without any race conditions
2296 	 */
2297 	path->search_commit_root = 1;
2298 	path->skip_locking = 1;
2299 
2300 	/*
2301 	 * trigger the readahead for extent tree csum tree and wait for
2302 	 * completion. During readahead, the scrub is officially paused
2303 	 * to not hold off transaction commits
2304 	 */
2305 	logical = base + offset;
2306 
2307 	wait_event(sctx->list_wait,
2308 		   atomic_read(&sctx->bios_in_flight) == 0);
2309 	atomic_inc(&fs_info->scrubs_paused);
2310 	wake_up(&fs_info->scrub_pause_wait);
2311 
2312 	/* FIXME it might be better to start readahead at commit root */
2313 	key_start.objectid = logical;
2314 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2315 	key_start.offset = (u64)0;
2316 	key_end.objectid = base + offset + nstripes * increment;
2317 	key_end.type = BTRFS_METADATA_ITEM_KEY;
2318 	key_end.offset = (u64)-1;
2319 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2320 
2321 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2322 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2323 	key_start.offset = logical;
2324 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2325 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2326 	key_end.offset = base + offset + nstripes * increment;
2327 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2328 
2329 	if (!IS_ERR(reada1))
2330 		btrfs_reada_wait(reada1);
2331 	if (!IS_ERR(reada2))
2332 		btrfs_reada_wait(reada2);
2333 
2334 	mutex_lock(&fs_info->scrub_lock);
2335 	while (atomic_read(&fs_info->scrub_pause_req)) {
2336 		mutex_unlock(&fs_info->scrub_lock);
2337 		wait_event(fs_info->scrub_pause_wait,
2338 		   atomic_read(&fs_info->scrub_pause_req) == 0);
2339 		mutex_lock(&fs_info->scrub_lock);
2340 	}
2341 	atomic_dec(&fs_info->scrubs_paused);
2342 	mutex_unlock(&fs_info->scrub_lock);
2343 	wake_up(&fs_info->scrub_pause_wait);
2344 
2345 	/*
2346 	 * collect all data csums for the stripe to avoid seeking during
2347 	 * the scrub. This might currently (crc32) end up to be about 1MB
2348 	 */
2349 	blk_start_plug(&plug);
2350 
2351 	/*
2352 	 * now find all extents for each stripe and scrub them
2353 	 */
2354 	logical = base + offset;
2355 	physical = map->stripes[num].physical;
2356 	logic_end = logical + increment * nstripes;
2357 	ret = 0;
2358 	while (logical < logic_end) {
2359 		/*
2360 		 * canceled?
2361 		 */
2362 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2363 		    atomic_read(&sctx->cancel_req)) {
2364 			ret = -ECANCELED;
2365 			goto out;
2366 		}
2367 		/*
2368 		 * check to see if we have to pause
2369 		 */
2370 		if (atomic_read(&fs_info->scrub_pause_req)) {
2371 			/* push queued extents */
2372 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2373 			scrub_submit(sctx);
2374 			mutex_lock(&sctx->wr_ctx.wr_lock);
2375 			scrub_wr_submit(sctx);
2376 			mutex_unlock(&sctx->wr_ctx.wr_lock);
2377 			wait_event(sctx->list_wait,
2378 				   atomic_read(&sctx->bios_in_flight) == 0);
2379 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2380 			atomic_inc(&fs_info->scrubs_paused);
2381 			wake_up(&fs_info->scrub_pause_wait);
2382 			mutex_lock(&fs_info->scrub_lock);
2383 			while (atomic_read(&fs_info->scrub_pause_req)) {
2384 				mutex_unlock(&fs_info->scrub_lock);
2385 				wait_event(fs_info->scrub_pause_wait,
2386 				   atomic_read(&fs_info->scrub_pause_req) == 0);
2387 				mutex_lock(&fs_info->scrub_lock);
2388 			}
2389 			atomic_dec(&fs_info->scrubs_paused);
2390 			mutex_unlock(&fs_info->scrub_lock);
2391 			wake_up(&fs_info->scrub_pause_wait);
2392 		}
2393 
2394 		key.objectid = logical;
2395 		key.type = BTRFS_EXTENT_ITEM_KEY;
2396 		key.offset = (u64)-1;
2397 
2398 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2399 		if (ret < 0)
2400 			goto out;
2401 
2402 		if (ret > 0) {
2403 			ret = btrfs_previous_item(root, path, 0,
2404 						  BTRFS_EXTENT_ITEM_KEY);
2405 			if (ret < 0)
2406 				goto out;
2407 			if (ret > 0) {
2408 				/* there's no smaller item, so stick with the
2409 				 * larger one */
2410 				btrfs_release_path(path);
2411 				ret = btrfs_search_slot(NULL, root, &key,
2412 							path, 0, 0);
2413 				if (ret < 0)
2414 					goto out;
2415 			}
2416 		}
2417 
2418 		stop_loop = 0;
2419 		while (1) {
2420 			u64 bytes;
2421 
2422 			l = path->nodes[0];
2423 			slot = path->slots[0];
2424 			if (slot >= btrfs_header_nritems(l)) {
2425 				ret = btrfs_next_leaf(root, path);
2426 				if (ret == 0)
2427 					continue;
2428 				if (ret < 0)
2429 					goto out;
2430 
2431 				stop_loop = 1;
2432 				break;
2433 			}
2434 			btrfs_item_key_to_cpu(l, &key, slot);
2435 
2436 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2437 				bytes = root->leafsize;
2438 			else
2439 				bytes = key.offset;
2440 
2441 			if (key.objectid + bytes <= logical)
2442 				goto next;
2443 
2444 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2445 			    key.type != BTRFS_METADATA_ITEM_KEY)
2446 				goto next;
2447 
2448 			if (key.objectid >= logical + map->stripe_len) {
2449 				/* out of this device extent */
2450 				if (key.objectid >= logic_end)
2451 					stop_loop = 1;
2452 				break;
2453 			}
2454 
2455 			extent = btrfs_item_ptr(l, slot,
2456 						struct btrfs_extent_item);
2457 			flags = btrfs_extent_flags(l, extent);
2458 			generation = btrfs_extent_generation(l, extent);
2459 
2460 			if (key.objectid < logical &&
2461 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2462 				printk(KERN_ERR
2463 				       "btrfs scrub: tree block %llu spanning "
2464 				       "stripes, ignored. logical=%llu\n",
2465 				       key.objectid, logical);
2466 				goto next;
2467 			}
2468 
2469 again:
2470 			extent_logical = key.objectid;
2471 			extent_len = bytes;
2472 
2473 			/*
2474 			 * trim extent to this stripe
2475 			 */
2476 			if (extent_logical < logical) {
2477 				extent_len -= logical - extent_logical;
2478 				extent_logical = logical;
2479 			}
2480 			if (extent_logical + extent_len >
2481 			    logical + map->stripe_len) {
2482 				extent_len = logical + map->stripe_len -
2483 					     extent_logical;
2484 			}
2485 
2486 			extent_physical = extent_logical - logical + physical;
2487 			extent_dev = scrub_dev;
2488 			extent_mirror_num = mirror_num;
2489 			if (is_dev_replace)
2490 				scrub_remap_extent(fs_info, extent_logical,
2491 						   extent_len, &extent_physical,
2492 						   &extent_dev,
2493 						   &extent_mirror_num);
2494 
2495 			ret = btrfs_lookup_csums_range(csum_root, logical,
2496 						logical + map->stripe_len - 1,
2497 						&sctx->csum_list, 1);
2498 			if (ret)
2499 				goto out;
2500 
2501 			ret = scrub_extent(sctx, extent_logical, extent_len,
2502 					   extent_physical, extent_dev, flags,
2503 					   generation, extent_mirror_num,
2504 					   extent_logical - logical + physical);
2505 			if (ret)
2506 				goto out;
2507 
2508 			scrub_free_csums(sctx);
2509 			if (extent_logical + extent_len <
2510 			    key.objectid + bytes) {
2511 				logical += increment;
2512 				physical += map->stripe_len;
2513 
2514 				if (logical < key.objectid + bytes) {
2515 					cond_resched();
2516 					goto again;
2517 				}
2518 
2519 				if (logical >= logic_end) {
2520 					stop_loop = 1;
2521 					break;
2522 				}
2523 			}
2524 next:
2525 			path->slots[0]++;
2526 		}
2527 		btrfs_release_path(path);
2528 		logical += increment;
2529 		physical += map->stripe_len;
2530 		spin_lock(&sctx->stat_lock);
2531 		if (stop_loop)
2532 			sctx->stat.last_physical = map->stripes[num].physical +
2533 						   length;
2534 		else
2535 			sctx->stat.last_physical = physical;
2536 		spin_unlock(&sctx->stat_lock);
2537 		if (stop_loop)
2538 			break;
2539 	}
2540 out:
2541 	/* push queued extents */
2542 	scrub_submit(sctx);
2543 	mutex_lock(&sctx->wr_ctx.wr_lock);
2544 	scrub_wr_submit(sctx);
2545 	mutex_unlock(&sctx->wr_ctx.wr_lock);
2546 
2547 	blk_finish_plug(&plug);
2548 	btrfs_free_path(path);
2549 	return ret < 0 ? ret : 0;
2550 }
2551 
2552 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2553 					  struct btrfs_device *scrub_dev,
2554 					  u64 chunk_tree, u64 chunk_objectid,
2555 					  u64 chunk_offset, u64 length,
2556 					  u64 dev_offset, int is_dev_replace)
2557 {
2558 	struct btrfs_mapping_tree *map_tree =
2559 		&sctx->dev_root->fs_info->mapping_tree;
2560 	struct map_lookup *map;
2561 	struct extent_map *em;
2562 	int i;
2563 	int ret = 0;
2564 
2565 	read_lock(&map_tree->map_tree.lock);
2566 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2567 	read_unlock(&map_tree->map_tree.lock);
2568 
2569 	if (!em)
2570 		return -EINVAL;
2571 
2572 	map = (struct map_lookup *)em->bdev;
2573 	if (em->start != chunk_offset)
2574 		goto out;
2575 
2576 	if (em->len < length)
2577 		goto out;
2578 
2579 	for (i = 0; i < map->num_stripes; ++i) {
2580 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2581 		    map->stripes[i].physical == dev_offset) {
2582 			ret = scrub_stripe(sctx, map, scrub_dev, i,
2583 					   chunk_offset, length,
2584 					   is_dev_replace);
2585 			if (ret)
2586 				goto out;
2587 		}
2588 	}
2589 out:
2590 	free_extent_map(em);
2591 
2592 	return ret;
2593 }
2594 
2595 static noinline_for_stack
2596 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2597 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2598 			   int is_dev_replace)
2599 {
2600 	struct btrfs_dev_extent *dev_extent = NULL;
2601 	struct btrfs_path *path;
2602 	struct btrfs_root *root = sctx->dev_root;
2603 	struct btrfs_fs_info *fs_info = root->fs_info;
2604 	u64 length;
2605 	u64 chunk_tree;
2606 	u64 chunk_objectid;
2607 	u64 chunk_offset;
2608 	int ret;
2609 	int slot;
2610 	struct extent_buffer *l;
2611 	struct btrfs_key key;
2612 	struct btrfs_key found_key;
2613 	struct btrfs_block_group_cache *cache;
2614 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2615 
2616 	path = btrfs_alloc_path();
2617 	if (!path)
2618 		return -ENOMEM;
2619 
2620 	path->reada = 2;
2621 	path->search_commit_root = 1;
2622 	path->skip_locking = 1;
2623 
2624 	key.objectid = scrub_dev->devid;
2625 	key.offset = 0ull;
2626 	key.type = BTRFS_DEV_EXTENT_KEY;
2627 
2628 	while (1) {
2629 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2630 		if (ret < 0)
2631 			break;
2632 		if (ret > 0) {
2633 			if (path->slots[0] >=
2634 			    btrfs_header_nritems(path->nodes[0])) {
2635 				ret = btrfs_next_leaf(root, path);
2636 				if (ret)
2637 					break;
2638 			}
2639 		}
2640 
2641 		l = path->nodes[0];
2642 		slot = path->slots[0];
2643 
2644 		btrfs_item_key_to_cpu(l, &found_key, slot);
2645 
2646 		if (found_key.objectid != scrub_dev->devid)
2647 			break;
2648 
2649 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2650 			break;
2651 
2652 		if (found_key.offset >= end)
2653 			break;
2654 
2655 		if (found_key.offset < key.offset)
2656 			break;
2657 
2658 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2659 		length = btrfs_dev_extent_length(l, dev_extent);
2660 
2661 		if (found_key.offset + length <= start) {
2662 			key.offset = found_key.offset + length;
2663 			btrfs_release_path(path);
2664 			continue;
2665 		}
2666 
2667 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2668 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2669 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2670 
2671 		/*
2672 		 * get a reference on the corresponding block group to prevent
2673 		 * the chunk from going away while we scrub it
2674 		 */
2675 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2676 		if (!cache) {
2677 			ret = -ENOENT;
2678 			break;
2679 		}
2680 		dev_replace->cursor_right = found_key.offset + length;
2681 		dev_replace->cursor_left = found_key.offset;
2682 		dev_replace->item_needs_writeback = 1;
2683 		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2684 				  chunk_offset, length, found_key.offset,
2685 				  is_dev_replace);
2686 
2687 		/*
2688 		 * flush, submit all pending read and write bios, afterwards
2689 		 * wait for them.
2690 		 * Note that in the dev replace case, a read request causes
2691 		 * write requests that are submitted in the read completion
2692 		 * worker. Therefore in the current situation, it is required
2693 		 * that all write requests are flushed, so that all read and
2694 		 * write requests are really completed when bios_in_flight
2695 		 * changes to 0.
2696 		 */
2697 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2698 		scrub_submit(sctx);
2699 		mutex_lock(&sctx->wr_ctx.wr_lock);
2700 		scrub_wr_submit(sctx);
2701 		mutex_unlock(&sctx->wr_ctx.wr_lock);
2702 
2703 		wait_event(sctx->list_wait,
2704 			   atomic_read(&sctx->bios_in_flight) == 0);
2705 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2706 		atomic_inc(&fs_info->scrubs_paused);
2707 		wake_up(&fs_info->scrub_pause_wait);
2708 		wait_event(sctx->list_wait,
2709 			   atomic_read(&sctx->workers_pending) == 0);
2710 
2711 		mutex_lock(&fs_info->scrub_lock);
2712 		while (atomic_read(&fs_info->scrub_pause_req)) {
2713 			mutex_unlock(&fs_info->scrub_lock);
2714 			wait_event(fs_info->scrub_pause_wait,
2715 			   atomic_read(&fs_info->scrub_pause_req) == 0);
2716 			mutex_lock(&fs_info->scrub_lock);
2717 		}
2718 		atomic_dec(&fs_info->scrubs_paused);
2719 		mutex_unlock(&fs_info->scrub_lock);
2720 		wake_up(&fs_info->scrub_pause_wait);
2721 
2722 		btrfs_put_block_group(cache);
2723 		if (ret)
2724 			break;
2725 		if (is_dev_replace &&
2726 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2727 			ret = -EIO;
2728 			break;
2729 		}
2730 		if (sctx->stat.malloc_errors > 0) {
2731 			ret = -ENOMEM;
2732 			break;
2733 		}
2734 
2735 		dev_replace->cursor_left = dev_replace->cursor_right;
2736 		dev_replace->item_needs_writeback = 1;
2737 
2738 		key.offset = found_key.offset + length;
2739 		btrfs_release_path(path);
2740 	}
2741 
2742 	btrfs_free_path(path);
2743 
2744 	/*
2745 	 * ret can still be 1 from search_slot or next_leaf,
2746 	 * that's not an error
2747 	 */
2748 	return ret < 0 ? ret : 0;
2749 }
2750 
2751 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2752 					   struct btrfs_device *scrub_dev)
2753 {
2754 	int	i;
2755 	u64	bytenr;
2756 	u64	gen;
2757 	int	ret;
2758 	struct btrfs_root *root = sctx->dev_root;
2759 
2760 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2761 		return -EIO;
2762 
2763 	gen = root->fs_info->last_trans_committed;
2764 
2765 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2766 		bytenr = btrfs_sb_offset(i);
2767 		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2768 			break;
2769 
2770 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2771 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2772 				  NULL, 1, bytenr);
2773 		if (ret)
2774 			return ret;
2775 	}
2776 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2777 
2778 	return 0;
2779 }
2780 
2781 /*
2782  * get a reference count on fs_info->scrub_workers. start worker if necessary
2783  */
2784 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2785 						int is_dev_replace)
2786 {
2787 	int ret = 0;
2788 
2789 	if (fs_info->scrub_workers_refcnt == 0) {
2790 		if (is_dev_replace)
2791 			btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2792 					&fs_info->generic_worker);
2793 		else
2794 			btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2795 					fs_info->thread_pool_size,
2796 					&fs_info->generic_worker);
2797 		fs_info->scrub_workers.idle_thresh = 4;
2798 		ret = btrfs_start_workers(&fs_info->scrub_workers);
2799 		if (ret)
2800 			goto out;
2801 		btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2802 				   "scrubwrc",
2803 				   fs_info->thread_pool_size,
2804 				   &fs_info->generic_worker);
2805 		fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2806 		ret = btrfs_start_workers(
2807 				&fs_info->scrub_wr_completion_workers);
2808 		if (ret)
2809 			goto out;
2810 		btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2811 				   &fs_info->generic_worker);
2812 		ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2813 		if (ret)
2814 			goto out;
2815 	}
2816 	++fs_info->scrub_workers_refcnt;
2817 out:
2818 	return ret;
2819 }
2820 
2821 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2822 {
2823 	if (--fs_info->scrub_workers_refcnt == 0) {
2824 		btrfs_stop_workers(&fs_info->scrub_workers);
2825 		btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2826 		btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2827 	}
2828 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2829 }
2830 
2831 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2832 		    u64 end, struct btrfs_scrub_progress *progress,
2833 		    int readonly, int is_dev_replace)
2834 {
2835 	struct scrub_ctx *sctx;
2836 	int ret;
2837 	struct btrfs_device *dev;
2838 
2839 	if (btrfs_fs_closing(fs_info))
2840 		return -EINVAL;
2841 
2842 	/*
2843 	 * check some assumptions
2844 	 */
2845 	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2846 		printk(KERN_ERR
2847 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2848 		       fs_info->chunk_root->nodesize,
2849 		       fs_info->chunk_root->leafsize);
2850 		return -EINVAL;
2851 	}
2852 
2853 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2854 		/*
2855 		 * in this case scrub is unable to calculate the checksum
2856 		 * the way scrub is implemented. Do not handle this
2857 		 * situation at all because it won't ever happen.
2858 		 */
2859 		printk(KERN_ERR
2860 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2861 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2862 		return -EINVAL;
2863 	}
2864 
2865 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2866 		/* not supported for data w/o checksums */
2867 		printk(KERN_ERR
2868 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n",
2869 		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2870 		return -EINVAL;
2871 	}
2872 
2873 	if (fs_info->chunk_root->nodesize >
2874 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2875 	    fs_info->chunk_root->sectorsize >
2876 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2877 		/*
2878 		 * would exhaust the array bounds of pagev member in
2879 		 * struct scrub_block
2880 		 */
2881 		pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2882 		       fs_info->chunk_root->nodesize,
2883 		       SCRUB_MAX_PAGES_PER_BLOCK,
2884 		       fs_info->chunk_root->sectorsize,
2885 		       SCRUB_MAX_PAGES_PER_BLOCK);
2886 		return -EINVAL;
2887 	}
2888 
2889 
2890 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2891 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2892 	if (!dev || (dev->missing && !is_dev_replace)) {
2893 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2894 		return -ENODEV;
2895 	}
2896 
2897 	mutex_lock(&fs_info->scrub_lock);
2898 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2899 		mutex_unlock(&fs_info->scrub_lock);
2900 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2901 		return -EIO;
2902 	}
2903 
2904 	btrfs_dev_replace_lock(&fs_info->dev_replace);
2905 	if (dev->scrub_device ||
2906 	    (!is_dev_replace &&
2907 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2908 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2909 		mutex_unlock(&fs_info->scrub_lock);
2910 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2911 		return -EINPROGRESS;
2912 	}
2913 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2914 
2915 	ret = scrub_workers_get(fs_info, is_dev_replace);
2916 	if (ret) {
2917 		mutex_unlock(&fs_info->scrub_lock);
2918 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2919 		return ret;
2920 	}
2921 
2922 	sctx = scrub_setup_ctx(dev, is_dev_replace);
2923 	if (IS_ERR(sctx)) {
2924 		mutex_unlock(&fs_info->scrub_lock);
2925 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2926 		scrub_workers_put(fs_info);
2927 		return PTR_ERR(sctx);
2928 	}
2929 	sctx->readonly = readonly;
2930 	dev->scrub_device = sctx;
2931 
2932 	atomic_inc(&fs_info->scrubs_running);
2933 	mutex_unlock(&fs_info->scrub_lock);
2934 
2935 	if (!is_dev_replace) {
2936 		/*
2937 		 * by holding device list mutex, we can
2938 		 * kick off writing super in log tree sync.
2939 		 */
2940 		ret = scrub_supers(sctx, dev);
2941 	}
2942 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2943 
2944 	if (!ret)
2945 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
2946 					     is_dev_replace);
2947 
2948 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2949 	atomic_dec(&fs_info->scrubs_running);
2950 	wake_up(&fs_info->scrub_pause_wait);
2951 
2952 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2953 
2954 	if (progress)
2955 		memcpy(progress, &sctx->stat, sizeof(*progress));
2956 
2957 	mutex_lock(&fs_info->scrub_lock);
2958 	dev->scrub_device = NULL;
2959 	scrub_workers_put(fs_info);
2960 	mutex_unlock(&fs_info->scrub_lock);
2961 
2962 	scrub_free_ctx(sctx);
2963 
2964 	return ret;
2965 }
2966 
2967 void btrfs_scrub_pause(struct btrfs_root *root)
2968 {
2969 	struct btrfs_fs_info *fs_info = root->fs_info;
2970 
2971 	mutex_lock(&fs_info->scrub_lock);
2972 	atomic_inc(&fs_info->scrub_pause_req);
2973 	while (atomic_read(&fs_info->scrubs_paused) !=
2974 	       atomic_read(&fs_info->scrubs_running)) {
2975 		mutex_unlock(&fs_info->scrub_lock);
2976 		wait_event(fs_info->scrub_pause_wait,
2977 			   atomic_read(&fs_info->scrubs_paused) ==
2978 			   atomic_read(&fs_info->scrubs_running));
2979 		mutex_lock(&fs_info->scrub_lock);
2980 	}
2981 	mutex_unlock(&fs_info->scrub_lock);
2982 }
2983 
2984 void btrfs_scrub_continue(struct btrfs_root *root)
2985 {
2986 	struct btrfs_fs_info *fs_info = root->fs_info;
2987 
2988 	atomic_dec(&fs_info->scrub_pause_req);
2989 	wake_up(&fs_info->scrub_pause_wait);
2990 }
2991 
2992 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2993 {
2994 	mutex_lock(&fs_info->scrub_lock);
2995 	if (!atomic_read(&fs_info->scrubs_running)) {
2996 		mutex_unlock(&fs_info->scrub_lock);
2997 		return -ENOTCONN;
2998 	}
2999 
3000 	atomic_inc(&fs_info->scrub_cancel_req);
3001 	while (atomic_read(&fs_info->scrubs_running)) {
3002 		mutex_unlock(&fs_info->scrub_lock);
3003 		wait_event(fs_info->scrub_pause_wait,
3004 			   atomic_read(&fs_info->scrubs_running) == 0);
3005 		mutex_lock(&fs_info->scrub_lock);
3006 	}
3007 	atomic_dec(&fs_info->scrub_cancel_req);
3008 	mutex_unlock(&fs_info->scrub_lock);
3009 
3010 	return 0;
3011 }
3012 
3013 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3014 			   struct btrfs_device *dev)
3015 {
3016 	struct scrub_ctx *sctx;
3017 
3018 	mutex_lock(&fs_info->scrub_lock);
3019 	sctx = dev->scrub_device;
3020 	if (!sctx) {
3021 		mutex_unlock(&fs_info->scrub_lock);
3022 		return -ENOTCONN;
3023 	}
3024 	atomic_inc(&sctx->cancel_req);
3025 	while (dev->scrub_device) {
3026 		mutex_unlock(&fs_info->scrub_lock);
3027 		wait_event(fs_info->scrub_pause_wait,
3028 			   dev->scrub_device == NULL);
3029 		mutex_lock(&fs_info->scrub_lock);
3030 	}
3031 	mutex_unlock(&fs_info->scrub_lock);
3032 
3033 	return 0;
3034 }
3035 
3036 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3037 			 struct btrfs_scrub_progress *progress)
3038 {
3039 	struct btrfs_device *dev;
3040 	struct scrub_ctx *sctx = NULL;
3041 
3042 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3043 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3044 	if (dev)
3045 		sctx = dev->scrub_device;
3046 	if (sctx)
3047 		memcpy(progress, &sctx->stat, sizeof(*progress));
3048 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3049 
3050 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3051 }
3052 
3053 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3054 			       u64 extent_logical, u64 extent_len,
3055 			       u64 *extent_physical,
3056 			       struct btrfs_device **extent_dev,
3057 			       int *extent_mirror_num)
3058 {
3059 	u64 mapped_length;
3060 	struct btrfs_bio *bbio = NULL;
3061 	int ret;
3062 
3063 	mapped_length = extent_len;
3064 	ret = btrfs_map_block(fs_info, READ, extent_logical,
3065 			      &mapped_length, &bbio, 0);
3066 	if (ret || !bbio || mapped_length < extent_len ||
3067 	    !bbio->stripes[0].dev->bdev) {
3068 		kfree(bbio);
3069 		return;
3070 	}
3071 
3072 	*extent_physical = bbio->stripes[0].physical;
3073 	*extent_mirror_num = bbio->mirror_num;
3074 	*extent_dev = bbio->stripes[0].dev;
3075 	kfree(bbio);
3076 }
3077 
3078 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3079 			      struct scrub_wr_ctx *wr_ctx,
3080 			      struct btrfs_fs_info *fs_info,
3081 			      struct btrfs_device *dev,
3082 			      int is_dev_replace)
3083 {
3084 	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3085 
3086 	mutex_init(&wr_ctx->wr_lock);
3087 	wr_ctx->wr_curr_bio = NULL;
3088 	if (!is_dev_replace)
3089 		return 0;
3090 
3091 	WARN_ON(!dev->bdev);
3092 	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3093 					 bio_get_nr_vecs(dev->bdev));
3094 	wr_ctx->tgtdev = dev;
3095 	atomic_set(&wr_ctx->flush_all_writes, 0);
3096 	return 0;
3097 }
3098 
3099 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3100 {
3101 	mutex_lock(&wr_ctx->wr_lock);
3102 	kfree(wr_ctx->wr_curr_bio);
3103 	wr_ctx->wr_curr_bio = NULL;
3104 	mutex_unlock(&wr_ctx->wr_lock);
3105 }
3106 
3107 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3108 			    int mirror_num, u64 physical_for_dev_replace)
3109 {
3110 	struct scrub_copy_nocow_ctx *nocow_ctx;
3111 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3112 
3113 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3114 	if (!nocow_ctx) {
3115 		spin_lock(&sctx->stat_lock);
3116 		sctx->stat.malloc_errors++;
3117 		spin_unlock(&sctx->stat_lock);
3118 		return -ENOMEM;
3119 	}
3120 
3121 	scrub_pending_trans_workers_inc(sctx);
3122 
3123 	nocow_ctx->sctx = sctx;
3124 	nocow_ctx->logical = logical;
3125 	nocow_ctx->len = len;
3126 	nocow_ctx->mirror_num = mirror_num;
3127 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3128 	nocow_ctx->work.func = copy_nocow_pages_worker;
3129 	INIT_LIST_HEAD(&nocow_ctx->inodes);
3130 	btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3131 			   &nocow_ctx->work);
3132 
3133 	return 0;
3134 }
3135 
3136 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3137 {
3138 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3139 	struct scrub_nocow_inode *nocow_inode;
3140 
3141 	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3142 	if (!nocow_inode)
3143 		return -ENOMEM;
3144 	nocow_inode->inum = inum;
3145 	nocow_inode->offset = offset;
3146 	nocow_inode->root = root;
3147 	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3148 	return 0;
3149 }
3150 
3151 #define COPY_COMPLETE 1
3152 
3153 static void copy_nocow_pages_worker(struct btrfs_work *work)
3154 {
3155 	struct scrub_copy_nocow_ctx *nocow_ctx =
3156 		container_of(work, struct scrub_copy_nocow_ctx, work);
3157 	struct scrub_ctx *sctx = nocow_ctx->sctx;
3158 	u64 logical = nocow_ctx->logical;
3159 	u64 len = nocow_ctx->len;
3160 	int mirror_num = nocow_ctx->mirror_num;
3161 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3162 	int ret;
3163 	struct btrfs_trans_handle *trans = NULL;
3164 	struct btrfs_fs_info *fs_info;
3165 	struct btrfs_path *path;
3166 	struct btrfs_root *root;
3167 	int not_written = 0;
3168 
3169 	fs_info = sctx->dev_root->fs_info;
3170 	root = fs_info->extent_root;
3171 
3172 	path = btrfs_alloc_path();
3173 	if (!path) {
3174 		spin_lock(&sctx->stat_lock);
3175 		sctx->stat.malloc_errors++;
3176 		spin_unlock(&sctx->stat_lock);
3177 		not_written = 1;
3178 		goto out;
3179 	}
3180 
3181 	trans = btrfs_join_transaction(root);
3182 	if (IS_ERR(trans)) {
3183 		not_written = 1;
3184 		goto out;
3185 	}
3186 
3187 	ret = iterate_inodes_from_logical(logical, fs_info, path,
3188 					  record_inode_for_nocow, nocow_ctx);
3189 	if (ret != 0 && ret != -ENOENT) {
3190 		pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d\n",
3191 			logical, physical_for_dev_replace, len, mirror_num,
3192 			ret);
3193 		not_written = 1;
3194 		goto out;
3195 	}
3196 
3197 	btrfs_end_transaction(trans, root);
3198 	trans = NULL;
3199 	while (!list_empty(&nocow_ctx->inodes)) {
3200 		struct scrub_nocow_inode *entry;
3201 		entry = list_first_entry(&nocow_ctx->inodes,
3202 					 struct scrub_nocow_inode,
3203 					 list);
3204 		list_del_init(&entry->list);
3205 		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3206 						 entry->root, nocow_ctx);
3207 		kfree(entry);
3208 		if (ret == COPY_COMPLETE) {
3209 			ret = 0;
3210 			break;
3211 		} else if (ret) {
3212 			break;
3213 		}
3214 	}
3215 out:
3216 	while (!list_empty(&nocow_ctx->inodes)) {
3217 		struct scrub_nocow_inode *entry;
3218 		entry = list_first_entry(&nocow_ctx->inodes,
3219 					 struct scrub_nocow_inode,
3220 					 list);
3221 		list_del_init(&entry->list);
3222 		kfree(entry);
3223 	}
3224 	if (trans && !IS_ERR(trans))
3225 		btrfs_end_transaction(trans, root);
3226 	if (not_written)
3227 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3228 					    num_uncorrectable_read_errors);
3229 
3230 	btrfs_free_path(path);
3231 	kfree(nocow_ctx);
3232 
3233 	scrub_pending_trans_workers_dec(sctx);
3234 }
3235 
3236 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3237 				      struct scrub_copy_nocow_ctx *nocow_ctx)
3238 {
3239 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3240 	struct btrfs_key key;
3241 	struct inode *inode;
3242 	struct page *page;
3243 	struct btrfs_root *local_root;
3244 	struct btrfs_ordered_extent *ordered;
3245 	struct extent_map *em;
3246 	struct extent_state *cached_state = NULL;
3247 	struct extent_io_tree *io_tree;
3248 	u64 physical_for_dev_replace;
3249 	u64 len = nocow_ctx->len;
3250 	u64 lockstart = offset, lockend = offset + len - 1;
3251 	unsigned long index;
3252 	int srcu_index;
3253 	int ret = 0;
3254 	int err = 0;
3255 
3256 	key.objectid = root;
3257 	key.type = BTRFS_ROOT_ITEM_KEY;
3258 	key.offset = (u64)-1;
3259 
3260 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3261 
3262 	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3263 	if (IS_ERR(local_root)) {
3264 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3265 		return PTR_ERR(local_root);
3266 	}
3267 
3268 	key.type = BTRFS_INODE_ITEM_KEY;
3269 	key.objectid = inum;
3270 	key.offset = 0;
3271 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3272 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3273 	if (IS_ERR(inode))
3274 		return PTR_ERR(inode);
3275 
3276 	/* Avoid truncate/dio/punch hole.. */
3277 	mutex_lock(&inode->i_mutex);
3278 	inode_dio_wait(inode);
3279 
3280 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3281 	io_tree = &BTRFS_I(inode)->io_tree;
3282 
3283 	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3284 	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3285 	if (ordered) {
3286 		btrfs_put_ordered_extent(ordered);
3287 		goto out_unlock;
3288 	}
3289 
3290 	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3291 	if (IS_ERR(em)) {
3292 		ret = PTR_ERR(em);
3293 		goto out_unlock;
3294 	}
3295 
3296 	/*
3297 	 * This extent does not actually cover the logical extent anymore,
3298 	 * move on to the next inode.
3299 	 */
3300 	if (em->block_start > nocow_ctx->logical ||
3301 	    em->block_start + em->block_len < nocow_ctx->logical + len) {
3302 		free_extent_map(em);
3303 		goto out_unlock;
3304 	}
3305 	free_extent_map(em);
3306 
3307 	while (len >= PAGE_CACHE_SIZE) {
3308 		index = offset >> PAGE_CACHE_SHIFT;
3309 again:
3310 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3311 		if (!page) {
3312 			pr_err("find_or_create_page() failed\n");
3313 			ret = -ENOMEM;
3314 			goto out;
3315 		}
3316 
3317 		if (PageUptodate(page)) {
3318 			if (PageDirty(page))
3319 				goto next_page;
3320 		} else {
3321 			ClearPageError(page);
3322 			err = extent_read_full_page_nolock(io_tree, page,
3323 							   btrfs_get_extent,
3324 							   nocow_ctx->mirror_num);
3325 			if (err) {
3326 				ret = err;
3327 				goto next_page;
3328 			}
3329 
3330 			lock_page(page);
3331 			/*
3332 			 * If the page has been remove from the page cache,
3333 			 * the data on it is meaningless, because it may be
3334 			 * old one, the new data may be written into the new
3335 			 * page in the page cache.
3336 			 */
3337 			if (page->mapping != inode->i_mapping) {
3338 				unlock_page(page);
3339 				page_cache_release(page);
3340 				goto again;
3341 			}
3342 			if (!PageUptodate(page)) {
3343 				ret = -EIO;
3344 				goto next_page;
3345 			}
3346 		}
3347 		err = write_page_nocow(nocow_ctx->sctx,
3348 				       physical_for_dev_replace, page);
3349 		if (err)
3350 			ret = err;
3351 next_page:
3352 		unlock_page(page);
3353 		page_cache_release(page);
3354 
3355 		if (ret)
3356 			break;
3357 
3358 		offset += PAGE_CACHE_SIZE;
3359 		physical_for_dev_replace += PAGE_CACHE_SIZE;
3360 		len -= PAGE_CACHE_SIZE;
3361 	}
3362 	ret = COPY_COMPLETE;
3363 out_unlock:
3364 	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3365 			     GFP_NOFS);
3366 out:
3367 	mutex_unlock(&inode->i_mutex);
3368 	iput(inode);
3369 	return ret;
3370 }
3371 
3372 static int write_page_nocow(struct scrub_ctx *sctx,
3373 			    u64 physical_for_dev_replace, struct page *page)
3374 {
3375 	struct bio *bio;
3376 	struct btrfs_device *dev;
3377 	int ret;
3378 	DECLARE_COMPLETION_ONSTACK(compl);
3379 
3380 	dev = sctx->wr_ctx.tgtdev;
3381 	if (!dev)
3382 		return -EIO;
3383 	if (!dev->bdev) {
3384 		printk_ratelimited(KERN_WARNING
3385 			"btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3386 		return -EIO;
3387 	}
3388 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3389 	if (!bio) {
3390 		spin_lock(&sctx->stat_lock);
3391 		sctx->stat.malloc_errors++;
3392 		spin_unlock(&sctx->stat_lock);
3393 		return -ENOMEM;
3394 	}
3395 	bio->bi_private = &compl;
3396 	bio->bi_end_io = scrub_complete_bio_end_io;
3397 	bio->bi_size = 0;
3398 	bio->bi_sector = physical_for_dev_replace >> 9;
3399 	bio->bi_bdev = dev->bdev;
3400 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3401 	if (ret != PAGE_CACHE_SIZE) {
3402 leave_with_eio:
3403 		bio_put(bio);
3404 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3405 		return -EIO;
3406 	}
3407 	btrfsic_submit_bio(WRITE_SYNC, bio);
3408 	wait_for_completion(&compl);
3409 
3410 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3411 		goto leave_with_eio;
3412 
3413 	bio_put(bio);
3414 	return 0;
3415 }
3416