1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "rcu-string.h" 21 #include "raid56.h" 22 #include "block-group.h" 23 24 /* 25 * This is only the first step towards a full-features scrub. It reads all 26 * extent and super block and verifies the checksums. In case a bad checksum 27 * is found or the extent cannot be read, good data will be written back if 28 * any can be found. 29 * 30 * Future enhancements: 31 * - In case an unrepairable extent is encountered, track which files are 32 * affected and report them 33 * - track and record media errors, throw out bad devices 34 * - add a mode to also read unallocated space 35 */ 36 37 struct scrub_block; 38 struct scrub_ctx; 39 40 /* 41 * the following three values only influence the performance. 42 * The last one configures the number of parallel and outstanding I/O 43 * operations. The first two values configure an upper limit for the number 44 * of (dynamically allocated) pages that are added to a bio. 45 */ 46 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 47 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 48 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 49 50 /* 51 * the following value times PAGE_SIZE needs to be large enough to match the 52 * largest node/leaf/sector size that shall be supported. 53 * Values larger than BTRFS_STRIPE_LEN are not supported. 54 */ 55 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 56 57 struct scrub_recover { 58 refcount_t refs; 59 struct btrfs_bio *bbio; 60 u64 map_length; 61 }; 62 63 struct scrub_page { 64 struct scrub_block *sblock; 65 struct page *page; 66 struct btrfs_device *dev; 67 struct list_head list; 68 u64 flags; /* extent flags */ 69 u64 generation; 70 u64 logical; 71 u64 physical; 72 u64 physical_for_dev_replace; 73 atomic_t refs; 74 struct { 75 unsigned int mirror_num:8; 76 unsigned int have_csum:1; 77 unsigned int io_error:1; 78 }; 79 u8 csum[BTRFS_CSUM_SIZE]; 80 81 struct scrub_recover *recover; 82 }; 83 84 struct scrub_bio { 85 int index; 86 struct scrub_ctx *sctx; 87 struct btrfs_device *dev; 88 struct bio *bio; 89 blk_status_t status; 90 u64 logical; 91 u64 physical; 92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 94 #else 95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 96 #endif 97 int page_count; 98 int next_free; 99 struct btrfs_work work; 100 }; 101 102 struct scrub_block { 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 104 int page_count; 105 atomic_t outstanding_pages; 106 refcount_t refs; /* free mem on transition to zero */ 107 struct scrub_ctx *sctx; 108 struct scrub_parity *sparity; 109 struct { 110 unsigned int header_error:1; 111 unsigned int checksum_error:1; 112 unsigned int no_io_error_seen:1; 113 unsigned int generation_error:1; /* also sets header_error */ 114 115 /* The following is for the data used to check parity */ 116 /* It is for the data with checksum */ 117 unsigned int data_corrected:1; 118 }; 119 struct btrfs_work work; 120 }; 121 122 /* Used for the chunks with parity stripe such RAID5/6 */ 123 struct scrub_parity { 124 struct scrub_ctx *sctx; 125 126 struct btrfs_device *scrub_dev; 127 128 u64 logic_start; 129 130 u64 logic_end; 131 132 int nsectors; 133 134 u64 stripe_len; 135 136 refcount_t refs; 137 138 struct list_head spages; 139 140 /* Work of parity check and repair */ 141 struct btrfs_work work; 142 143 /* Mark the parity blocks which have data */ 144 unsigned long *dbitmap; 145 146 /* 147 * Mark the parity blocks which have data, but errors happen when 148 * read data or check data 149 */ 150 unsigned long *ebitmap; 151 152 unsigned long bitmap[]; 153 }; 154 155 struct scrub_ctx { 156 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 157 struct btrfs_fs_info *fs_info; 158 int first_free; 159 int curr; 160 atomic_t bios_in_flight; 161 atomic_t workers_pending; 162 spinlock_t list_lock; 163 wait_queue_head_t list_wait; 164 u16 csum_size; 165 struct list_head csum_list; 166 atomic_t cancel_req; 167 int readonly; 168 int pages_per_rd_bio; 169 170 int is_dev_replace; 171 172 struct scrub_bio *wr_curr_bio; 173 struct mutex wr_lock; 174 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 175 struct btrfs_device *wr_tgtdev; 176 bool flush_all_writes; 177 178 /* 179 * statistics 180 */ 181 struct btrfs_scrub_progress stat; 182 spinlock_t stat_lock; 183 184 /* 185 * Use a ref counter to avoid use-after-free issues. Scrub workers 186 * decrement bios_in_flight and workers_pending and then do a wakeup 187 * on the list_wait wait queue. We must ensure the main scrub task 188 * doesn't free the scrub context before or while the workers are 189 * doing the wakeup() call. 190 */ 191 refcount_t refs; 192 }; 193 194 struct scrub_warning { 195 struct btrfs_path *path; 196 u64 extent_item_size; 197 const char *errstr; 198 u64 physical; 199 u64 logical; 200 struct btrfs_device *dev; 201 }; 202 203 struct full_stripe_lock { 204 struct rb_node node; 205 u64 logical; 206 u64 refs; 207 struct mutex mutex; 208 }; 209 210 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 211 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 212 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 213 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 214 struct scrub_block *sblocks_for_recheck); 215 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 216 struct scrub_block *sblock, 217 int retry_failed_mirror); 218 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 219 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 220 struct scrub_block *sblock_good); 221 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 222 struct scrub_block *sblock_good, 223 int page_num, int force_write); 224 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 225 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 226 int page_num); 227 static int scrub_checksum_data(struct scrub_block *sblock); 228 static int scrub_checksum_tree_block(struct scrub_block *sblock); 229 static int scrub_checksum_super(struct scrub_block *sblock); 230 static void scrub_block_get(struct scrub_block *sblock); 231 static void scrub_block_put(struct scrub_block *sblock); 232 static void scrub_page_get(struct scrub_page *spage); 233 static void scrub_page_put(struct scrub_page *spage); 234 static void scrub_parity_get(struct scrub_parity *sparity); 235 static void scrub_parity_put(struct scrub_parity *sparity); 236 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 237 struct scrub_page *spage); 238 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 239 u64 physical, struct btrfs_device *dev, u64 flags, 240 u64 gen, int mirror_num, u8 *csum, int force, 241 u64 physical_for_dev_replace); 242 static void scrub_bio_end_io(struct bio *bio); 243 static void scrub_bio_end_io_worker(struct btrfs_work *work); 244 static void scrub_block_complete(struct scrub_block *sblock); 245 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 246 u64 extent_logical, u64 extent_len, 247 u64 *extent_physical, 248 struct btrfs_device **extent_dev, 249 int *extent_mirror_num); 250 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 251 struct scrub_page *spage); 252 static void scrub_wr_submit(struct scrub_ctx *sctx); 253 static void scrub_wr_bio_end_io(struct bio *bio); 254 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 255 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 256 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 257 static void scrub_put_ctx(struct scrub_ctx *sctx); 258 259 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 260 { 261 return page->recover && 262 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 263 } 264 265 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 266 { 267 refcount_inc(&sctx->refs); 268 atomic_inc(&sctx->bios_in_flight); 269 } 270 271 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 272 { 273 atomic_dec(&sctx->bios_in_flight); 274 wake_up(&sctx->list_wait); 275 scrub_put_ctx(sctx); 276 } 277 278 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 279 { 280 while (atomic_read(&fs_info->scrub_pause_req)) { 281 mutex_unlock(&fs_info->scrub_lock); 282 wait_event(fs_info->scrub_pause_wait, 283 atomic_read(&fs_info->scrub_pause_req) == 0); 284 mutex_lock(&fs_info->scrub_lock); 285 } 286 } 287 288 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 289 { 290 atomic_inc(&fs_info->scrubs_paused); 291 wake_up(&fs_info->scrub_pause_wait); 292 } 293 294 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 295 { 296 mutex_lock(&fs_info->scrub_lock); 297 __scrub_blocked_if_needed(fs_info); 298 atomic_dec(&fs_info->scrubs_paused); 299 mutex_unlock(&fs_info->scrub_lock); 300 301 wake_up(&fs_info->scrub_pause_wait); 302 } 303 304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 305 { 306 scrub_pause_on(fs_info); 307 scrub_pause_off(fs_info); 308 } 309 310 /* 311 * Insert new full stripe lock into full stripe locks tree 312 * 313 * Return pointer to existing or newly inserted full_stripe_lock structure if 314 * everything works well. 315 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 316 * 317 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 318 * function 319 */ 320 static struct full_stripe_lock *insert_full_stripe_lock( 321 struct btrfs_full_stripe_locks_tree *locks_root, 322 u64 fstripe_logical) 323 { 324 struct rb_node **p; 325 struct rb_node *parent = NULL; 326 struct full_stripe_lock *entry; 327 struct full_stripe_lock *ret; 328 329 lockdep_assert_held(&locks_root->lock); 330 331 p = &locks_root->root.rb_node; 332 while (*p) { 333 parent = *p; 334 entry = rb_entry(parent, struct full_stripe_lock, node); 335 if (fstripe_logical < entry->logical) { 336 p = &(*p)->rb_left; 337 } else if (fstripe_logical > entry->logical) { 338 p = &(*p)->rb_right; 339 } else { 340 entry->refs++; 341 return entry; 342 } 343 } 344 345 /* 346 * Insert new lock. 347 */ 348 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 349 if (!ret) 350 return ERR_PTR(-ENOMEM); 351 ret->logical = fstripe_logical; 352 ret->refs = 1; 353 mutex_init(&ret->mutex); 354 355 rb_link_node(&ret->node, parent, p); 356 rb_insert_color(&ret->node, &locks_root->root); 357 return ret; 358 } 359 360 /* 361 * Search for a full stripe lock of a block group 362 * 363 * Return pointer to existing full stripe lock if found 364 * Return NULL if not found 365 */ 366 static struct full_stripe_lock *search_full_stripe_lock( 367 struct btrfs_full_stripe_locks_tree *locks_root, 368 u64 fstripe_logical) 369 { 370 struct rb_node *node; 371 struct full_stripe_lock *entry; 372 373 lockdep_assert_held(&locks_root->lock); 374 375 node = locks_root->root.rb_node; 376 while (node) { 377 entry = rb_entry(node, struct full_stripe_lock, node); 378 if (fstripe_logical < entry->logical) 379 node = node->rb_left; 380 else if (fstripe_logical > entry->logical) 381 node = node->rb_right; 382 else 383 return entry; 384 } 385 return NULL; 386 } 387 388 /* 389 * Helper to get full stripe logical from a normal bytenr. 390 * 391 * Caller must ensure @cache is a RAID56 block group. 392 */ 393 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) 394 { 395 u64 ret; 396 397 /* 398 * Due to chunk item size limit, full stripe length should not be 399 * larger than U32_MAX. Just a sanity check here. 400 */ 401 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 402 403 /* 404 * round_down() can only handle power of 2, while RAID56 full 405 * stripe length can be 64KiB * n, so we need to manually round down. 406 */ 407 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * 408 cache->full_stripe_len + cache->start; 409 return ret; 410 } 411 412 /* 413 * Lock a full stripe to avoid concurrency of recovery and read 414 * 415 * It's only used for profiles with parities (RAID5/6), for other profiles it 416 * does nothing. 417 * 418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 419 * So caller must call unlock_full_stripe() at the same context. 420 * 421 * Return <0 if encounters error. 422 */ 423 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 424 bool *locked_ret) 425 { 426 struct btrfs_block_group *bg_cache; 427 struct btrfs_full_stripe_locks_tree *locks_root; 428 struct full_stripe_lock *existing; 429 u64 fstripe_start; 430 int ret = 0; 431 432 *locked_ret = false; 433 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 434 if (!bg_cache) { 435 ASSERT(0); 436 return -ENOENT; 437 } 438 439 /* Profiles not based on parity don't need full stripe lock */ 440 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 441 goto out; 442 locks_root = &bg_cache->full_stripe_locks_root; 443 444 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 445 446 /* Now insert the full stripe lock */ 447 mutex_lock(&locks_root->lock); 448 existing = insert_full_stripe_lock(locks_root, fstripe_start); 449 mutex_unlock(&locks_root->lock); 450 if (IS_ERR(existing)) { 451 ret = PTR_ERR(existing); 452 goto out; 453 } 454 mutex_lock(&existing->mutex); 455 *locked_ret = true; 456 out: 457 btrfs_put_block_group(bg_cache); 458 return ret; 459 } 460 461 /* 462 * Unlock a full stripe. 463 * 464 * NOTE: Caller must ensure it's the same context calling corresponding 465 * lock_full_stripe(). 466 * 467 * Return 0 if we unlock full stripe without problem. 468 * Return <0 for error 469 */ 470 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 471 bool locked) 472 { 473 struct btrfs_block_group *bg_cache; 474 struct btrfs_full_stripe_locks_tree *locks_root; 475 struct full_stripe_lock *fstripe_lock; 476 u64 fstripe_start; 477 bool freeit = false; 478 int ret = 0; 479 480 /* If we didn't acquire full stripe lock, no need to continue */ 481 if (!locked) 482 return 0; 483 484 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 485 if (!bg_cache) { 486 ASSERT(0); 487 return -ENOENT; 488 } 489 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 490 goto out; 491 492 locks_root = &bg_cache->full_stripe_locks_root; 493 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 494 495 mutex_lock(&locks_root->lock); 496 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 497 /* Unpaired unlock_full_stripe() detected */ 498 if (!fstripe_lock) { 499 WARN_ON(1); 500 ret = -ENOENT; 501 mutex_unlock(&locks_root->lock); 502 goto out; 503 } 504 505 if (fstripe_lock->refs == 0) { 506 WARN_ON(1); 507 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 508 fstripe_lock->logical); 509 } else { 510 fstripe_lock->refs--; 511 } 512 513 if (fstripe_lock->refs == 0) { 514 rb_erase(&fstripe_lock->node, &locks_root->root); 515 freeit = true; 516 } 517 mutex_unlock(&locks_root->lock); 518 519 mutex_unlock(&fstripe_lock->mutex); 520 if (freeit) 521 kfree(fstripe_lock); 522 out: 523 btrfs_put_block_group(bg_cache); 524 return ret; 525 } 526 527 static void scrub_free_csums(struct scrub_ctx *sctx) 528 { 529 while (!list_empty(&sctx->csum_list)) { 530 struct btrfs_ordered_sum *sum; 531 sum = list_first_entry(&sctx->csum_list, 532 struct btrfs_ordered_sum, list); 533 list_del(&sum->list); 534 kfree(sum); 535 } 536 } 537 538 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 539 { 540 int i; 541 542 if (!sctx) 543 return; 544 545 /* this can happen when scrub is cancelled */ 546 if (sctx->curr != -1) { 547 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 548 549 for (i = 0; i < sbio->page_count; i++) { 550 WARN_ON(!sbio->pagev[i]->page); 551 scrub_block_put(sbio->pagev[i]->sblock); 552 } 553 bio_put(sbio->bio); 554 } 555 556 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 557 struct scrub_bio *sbio = sctx->bios[i]; 558 559 if (!sbio) 560 break; 561 kfree(sbio); 562 } 563 564 kfree(sctx->wr_curr_bio); 565 scrub_free_csums(sctx); 566 kfree(sctx); 567 } 568 569 static void scrub_put_ctx(struct scrub_ctx *sctx) 570 { 571 if (refcount_dec_and_test(&sctx->refs)) 572 scrub_free_ctx(sctx); 573 } 574 575 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 576 struct btrfs_fs_info *fs_info, int is_dev_replace) 577 { 578 struct scrub_ctx *sctx; 579 int i; 580 581 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 582 if (!sctx) 583 goto nomem; 584 refcount_set(&sctx->refs, 1); 585 sctx->is_dev_replace = is_dev_replace; 586 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 587 sctx->curr = -1; 588 sctx->fs_info = fs_info; 589 INIT_LIST_HEAD(&sctx->csum_list); 590 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 591 struct scrub_bio *sbio; 592 593 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 594 if (!sbio) 595 goto nomem; 596 sctx->bios[i] = sbio; 597 598 sbio->index = i; 599 sbio->sctx = sctx; 600 sbio->page_count = 0; 601 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL, 602 NULL); 603 604 if (i != SCRUB_BIOS_PER_SCTX - 1) 605 sctx->bios[i]->next_free = i + 1; 606 else 607 sctx->bios[i]->next_free = -1; 608 } 609 sctx->first_free = 0; 610 atomic_set(&sctx->bios_in_flight, 0); 611 atomic_set(&sctx->workers_pending, 0); 612 atomic_set(&sctx->cancel_req, 0); 613 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 614 615 spin_lock_init(&sctx->list_lock); 616 spin_lock_init(&sctx->stat_lock); 617 init_waitqueue_head(&sctx->list_wait); 618 619 WARN_ON(sctx->wr_curr_bio != NULL); 620 mutex_init(&sctx->wr_lock); 621 sctx->wr_curr_bio = NULL; 622 if (is_dev_replace) { 623 WARN_ON(!fs_info->dev_replace.tgtdev); 624 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 625 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 626 sctx->flush_all_writes = false; 627 } 628 629 return sctx; 630 631 nomem: 632 scrub_free_ctx(sctx); 633 return ERR_PTR(-ENOMEM); 634 } 635 636 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 637 void *warn_ctx) 638 { 639 u64 isize; 640 u32 nlink; 641 int ret; 642 int i; 643 unsigned nofs_flag; 644 struct extent_buffer *eb; 645 struct btrfs_inode_item *inode_item; 646 struct scrub_warning *swarn = warn_ctx; 647 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 648 struct inode_fs_paths *ipath = NULL; 649 struct btrfs_root *local_root; 650 struct btrfs_key root_key; 651 struct btrfs_key key; 652 653 root_key.objectid = root; 654 root_key.type = BTRFS_ROOT_ITEM_KEY; 655 root_key.offset = (u64)-1; 656 local_root = btrfs_get_fs_root(fs_info, &root_key, true); 657 if (IS_ERR(local_root)) { 658 ret = PTR_ERR(local_root); 659 goto err; 660 } 661 662 /* 663 * this makes the path point to (inum INODE_ITEM ioff) 664 */ 665 key.objectid = inum; 666 key.type = BTRFS_INODE_ITEM_KEY; 667 key.offset = 0; 668 669 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 670 if (ret) { 671 btrfs_put_root(local_root); 672 btrfs_release_path(swarn->path); 673 goto err; 674 } 675 676 eb = swarn->path->nodes[0]; 677 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 678 struct btrfs_inode_item); 679 isize = btrfs_inode_size(eb, inode_item); 680 nlink = btrfs_inode_nlink(eb, inode_item); 681 btrfs_release_path(swarn->path); 682 683 /* 684 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 685 * uses GFP_NOFS in this context, so we keep it consistent but it does 686 * not seem to be strictly necessary. 687 */ 688 nofs_flag = memalloc_nofs_save(); 689 ipath = init_ipath(4096, local_root, swarn->path); 690 memalloc_nofs_restore(nofs_flag); 691 if (IS_ERR(ipath)) { 692 btrfs_put_root(local_root); 693 ret = PTR_ERR(ipath); 694 ipath = NULL; 695 goto err; 696 } 697 ret = paths_from_inode(inum, ipath); 698 699 if (ret < 0) 700 goto err; 701 702 /* 703 * we deliberately ignore the bit ipath might have been too small to 704 * hold all of the paths here 705 */ 706 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 707 btrfs_warn_in_rcu(fs_info, 708 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", 709 swarn->errstr, swarn->logical, 710 rcu_str_deref(swarn->dev->name), 711 swarn->physical, 712 root, inum, offset, 713 min(isize - offset, (u64)PAGE_SIZE), nlink, 714 (char *)(unsigned long)ipath->fspath->val[i]); 715 716 btrfs_put_root(local_root); 717 free_ipath(ipath); 718 return 0; 719 720 err: 721 btrfs_warn_in_rcu(fs_info, 722 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 723 swarn->errstr, swarn->logical, 724 rcu_str_deref(swarn->dev->name), 725 swarn->physical, 726 root, inum, offset, ret); 727 728 free_ipath(ipath); 729 return 0; 730 } 731 732 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 733 { 734 struct btrfs_device *dev; 735 struct btrfs_fs_info *fs_info; 736 struct btrfs_path *path; 737 struct btrfs_key found_key; 738 struct extent_buffer *eb; 739 struct btrfs_extent_item *ei; 740 struct scrub_warning swarn; 741 unsigned long ptr = 0; 742 u64 extent_item_pos; 743 u64 flags = 0; 744 u64 ref_root; 745 u32 item_size; 746 u8 ref_level = 0; 747 int ret; 748 749 WARN_ON(sblock->page_count < 1); 750 dev = sblock->pagev[0]->dev; 751 fs_info = sblock->sctx->fs_info; 752 753 path = btrfs_alloc_path(); 754 if (!path) 755 return; 756 757 swarn.physical = sblock->pagev[0]->physical; 758 swarn.logical = sblock->pagev[0]->logical; 759 swarn.errstr = errstr; 760 swarn.dev = NULL; 761 762 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 763 &flags); 764 if (ret < 0) 765 goto out; 766 767 extent_item_pos = swarn.logical - found_key.objectid; 768 swarn.extent_item_size = found_key.offset; 769 770 eb = path->nodes[0]; 771 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 772 item_size = btrfs_item_size_nr(eb, path->slots[0]); 773 774 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 775 do { 776 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 777 item_size, &ref_root, 778 &ref_level); 779 btrfs_warn_in_rcu(fs_info, 780 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 781 errstr, swarn.logical, 782 rcu_str_deref(dev->name), 783 swarn.physical, 784 ref_level ? "node" : "leaf", 785 ret < 0 ? -1 : ref_level, 786 ret < 0 ? -1 : ref_root); 787 } while (ret != 1); 788 btrfs_release_path(path); 789 } else { 790 btrfs_release_path(path); 791 swarn.path = path; 792 swarn.dev = dev; 793 iterate_extent_inodes(fs_info, found_key.objectid, 794 extent_item_pos, 1, 795 scrub_print_warning_inode, &swarn, false); 796 } 797 798 out: 799 btrfs_free_path(path); 800 } 801 802 static inline void scrub_get_recover(struct scrub_recover *recover) 803 { 804 refcount_inc(&recover->refs); 805 } 806 807 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 808 struct scrub_recover *recover) 809 { 810 if (refcount_dec_and_test(&recover->refs)) { 811 btrfs_bio_counter_dec(fs_info); 812 btrfs_put_bbio(recover->bbio); 813 kfree(recover); 814 } 815 } 816 817 /* 818 * scrub_handle_errored_block gets called when either verification of the 819 * pages failed or the bio failed to read, e.g. with EIO. In the latter 820 * case, this function handles all pages in the bio, even though only one 821 * may be bad. 822 * The goal of this function is to repair the errored block by using the 823 * contents of one of the mirrors. 824 */ 825 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 826 { 827 struct scrub_ctx *sctx = sblock_to_check->sctx; 828 struct btrfs_device *dev; 829 struct btrfs_fs_info *fs_info; 830 u64 logical; 831 unsigned int failed_mirror_index; 832 unsigned int is_metadata; 833 unsigned int have_csum; 834 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 835 struct scrub_block *sblock_bad; 836 int ret; 837 int mirror_index; 838 int page_num; 839 int success; 840 bool full_stripe_locked; 841 unsigned int nofs_flag; 842 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 843 DEFAULT_RATELIMIT_BURST); 844 845 BUG_ON(sblock_to_check->page_count < 1); 846 fs_info = sctx->fs_info; 847 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 848 /* 849 * if we find an error in a super block, we just report it. 850 * They will get written with the next transaction commit 851 * anyway 852 */ 853 spin_lock(&sctx->stat_lock); 854 ++sctx->stat.super_errors; 855 spin_unlock(&sctx->stat_lock); 856 return 0; 857 } 858 logical = sblock_to_check->pagev[0]->logical; 859 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 860 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 861 is_metadata = !(sblock_to_check->pagev[0]->flags & 862 BTRFS_EXTENT_FLAG_DATA); 863 have_csum = sblock_to_check->pagev[0]->have_csum; 864 dev = sblock_to_check->pagev[0]->dev; 865 866 /* 867 * We must use GFP_NOFS because the scrub task might be waiting for a 868 * worker task executing this function and in turn a transaction commit 869 * might be waiting the scrub task to pause (which needs to wait for all 870 * the worker tasks to complete before pausing). 871 * We do allocations in the workers through insert_full_stripe_lock() 872 * and scrub_add_page_to_wr_bio(), which happens down the call chain of 873 * this function. 874 */ 875 nofs_flag = memalloc_nofs_save(); 876 /* 877 * For RAID5/6, race can happen for a different device scrub thread. 878 * For data corruption, Parity and Data threads will both try 879 * to recovery the data. 880 * Race can lead to doubly added csum error, or even unrecoverable 881 * error. 882 */ 883 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 884 if (ret < 0) { 885 memalloc_nofs_restore(nofs_flag); 886 spin_lock(&sctx->stat_lock); 887 if (ret == -ENOMEM) 888 sctx->stat.malloc_errors++; 889 sctx->stat.read_errors++; 890 sctx->stat.uncorrectable_errors++; 891 spin_unlock(&sctx->stat_lock); 892 return ret; 893 } 894 895 /* 896 * read all mirrors one after the other. This includes to 897 * re-read the extent or metadata block that failed (that was 898 * the cause that this fixup code is called) another time, 899 * page by page this time in order to know which pages 900 * caused I/O errors and which ones are good (for all mirrors). 901 * It is the goal to handle the situation when more than one 902 * mirror contains I/O errors, but the errors do not 903 * overlap, i.e. the data can be repaired by selecting the 904 * pages from those mirrors without I/O error on the 905 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 906 * would be that mirror #1 has an I/O error on the first page, 907 * the second page is good, and mirror #2 has an I/O error on 908 * the second page, but the first page is good. 909 * Then the first page of the first mirror can be repaired by 910 * taking the first page of the second mirror, and the 911 * second page of the second mirror can be repaired by 912 * copying the contents of the 2nd page of the 1st mirror. 913 * One more note: if the pages of one mirror contain I/O 914 * errors, the checksum cannot be verified. In order to get 915 * the best data for repairing, the first attempt is to find 916 * a mirror without I/O errors and with a validated checksum. 917 * Only if this is not possible, the pages are picked from 918 * mirrors with I/O errors without considering the checksum. 919 * If the latter is the case, at the end, the checksum of the 920 * repaired area is verified in order to correctly maintain 921 * the statistics. 922 */ 923 924 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 925 sizeof(*sblocks_for_recheck), GFP_KERNEL); 926 if (!sblocks_for_recheck) { 927 spin_lock(&sctx->stat_lock); 928 sctx->stat.malloc_errors++; 929 sctx->stat.read_errors++; 930 sctx->stat.uncorrectable_errors++; 931 spin_unlock(&sctx->stat_lock); 932 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 933 goto out; 934 } 935 936 /* setup the context, map the logical blocks and alloc the pages */ 937 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 938 if (ret) { 939 spin_lock(&sctx->stat_lock); 940 sctx->stat.read_errors++; 941 sctx->stat.uncorrectable_errors++; 942 spin_unlock(&sctx->stat_lock); 943 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 944 goto out; 945 } 946 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 947 sblock_bad = sblocks_for_recheck + failed_mirror_index; 948 949 /* build and submit the bios for the failed mirror, check checksums */ 950 scrub_recheck_block(fs_info, sblock_bad, 1); 951 952 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 953 sblock_bad->no_io_error_seen) { 954 /* 955 * the error disappeared after reading page by page, or 956 * the area was part of a huge bio and other parts of the 957 * bio caused I/O errors, or the block layer merged several 958 * read requests into one and the error is caused by a 959 * different bio (usually one of the two latter cases is 960 * the cause) 961 */ 962 spin_lock(&sctx->stat_lock); 963 sctx->stat.unverified_errors++; 964 sblock_to_check->data_corrected = 1; 965 spin_unlock(&sctx->stat_lock); 966 967 if (sctx->is_dev_replace) 968 scrub_write_block_to_dev_replace(sblock_bad); 969 goto out; 970 } 971 972 if (!sblock_bad->no_io_error_seen) { 973 spin_lock(&sctx->stat_lock); 974 sctx->stat.read_errors++; 975 spin_unlock(&sctx->stat_lock); 976 if (__ratelimit(&_rs)) 977 scrub_print_warning("i/o error", sblock_to_check); 978 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 979 } else if (sblock_bad->checksum_error) { 980 spin_lock(&sctx->stat_lock); 981 sctx->stat.csum_errors++; 982 spin_unlock(&sctx->stat_lock); 983 if (__ratelimit(&_rs)) 984 scrub_print_warning("checksum error", sblock_to_check); 985 btrfs_dev_stat_inc_and_print(dev, 986 BTRFS_DEV_STAT_CORRUPTION_ERRS); 987 } else if (sblock_bad->header_error) { 988 spin_lock(&sctx->stat_lock); 989 sctx->stat.verify_errors++; 990 spin_unlock(&sctx->stat_lock); 991 if (__ratelimit(&_rs)) 992 scrub_print_warning("checksum/header error", 993 sblock_to_check); 994 if (sblock_bad->generation_error) 995 btrfs_dev_stat_inc_and_print(dev, 996 BTRFS_DEV_STAT_GENERATION_ERRS); 997 else 998 btrfs_dev_stat_inc_and_print(dev, 999 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1000 } 1001 1002 if (sctx->readonly) { 1003 ASSERT(!sctx->is_dev_replace); 1004 goto out; 1005 } 1006 1007 /* 1008 * now build and submit the bios for the other mirrors, check 1009 * checksums. 1010 * First try to pick the mirror which is completely without I/O 1011 * errors and also does not have a checksum error. 1012 * If one is found, and if a checksum is present, the full block 1013 * that is known to contain an error is rewritten. Afterwards 1014 * the block is known to be corrected. 1015 * If a mirror is found which is completely correct, and no 1016 * checksum is present, only those pages are rewritten that had 1017 * an I/O error in the block to be repaired, since it cannot be 1018 * determined, which copy of the other pages is better (and it 1019 * could happen otherwise that a correct page would be 1020 * overwritten by a bad one). 1021 */ 1022 for (mirror_index = 0; ;mirror_index++) { 1023 struct scrub_block *sblock_other; 1024 1025 if (mirror_index == failed_mirror_index) 1026 continue; 1027 1028 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1029 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1030 if (mirror_index >= BTRFS_MAX_MIRRORS) 1031 break; 1032 if (!sblocks_for_recheck[mirror_index].page_count) 1033 break; 1034 1035 sblock_other = sblocks_for_recheck + mirror_index; 1036 } else { 1037 struct scrub_recover *r = sblock_bad->pagev[0]->recover; 1038 int max_allowed = r->bbio->num_stripes - 1039 r->bbio->num_tgtdevs; 1040 1041 if (mirror_index >= max_allowed) 1042 break; 1043 if (!sblocks_for_recheck[1].page_count) 1044 break; 1045 1046 ASSERT(failed_mirror_index == 0); 1047 sblock_other = sblocks_for_recheck + 1; 1048 sblock_other->pagev[0]->mirror_num = 1 + mirror_index; 1049 } 1050 1051 /* build and submit the bios, check checksums */ 1052 scrub_recheck_block(fs_info, sblock_other, 0); 1053 1054 if (!sblock_other->header_error && 1055 !sblock_other->checksum_error && 1056 sblock_other->no_io_error_seen) { 1057 if (sctx->is_dev_replace) { 1058 scrub_write_block_to_dev_replace(sblock_other); 1059 goto corrected_error; 1060 } else { 1061 ret = scrub_repair_block_from_good_copy( 1062 sblock_bad, sblock_other); 1063 if (!ret) 1064 goto corrected_error; 1065 } 1066 } 1067 } 1068 1069 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1070 goto did_not_correct_error; 1071 1072 /* 1073 * In case of I/O errors in the area that is supposed to be 1074 * repaired, continue by picking good copies of those pages. 1075 * Select the good pages from mirrors to rewrite bad pages from 1076 * the area to fix. Afterwards verify the checksum of the block 1077 * that is supposed to be repaired. This verification step is 1078 * only done for the purpose of statistic counting and for the 1079 * final scrub report, whether errors remain. 1080 * A perfect algorithm could make use of the checksum and try 1081 * all possible combinations of pages from the different mirrors 1082 * until the checksum verification succeeds. For example, when 1083 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1084 * of mirror #2 is readable but the final checksum test fails, 1085 * then the 2nd page of mirror #3 could be tried, whether now 1086 * the final checksum succeeds. But this would be a rare 1087 * exception and is therefore not implemented. At least it is 1088 * avoided that the good copy is overwritten. 1089 * A more useful improvement would be to pick the sectors 1090 * without I/O error based on sector sizes (512 bytes on legacy 1091 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1092 * mirror could be repaired by taking 512 byte of a different 1093 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1094 * area are unreadable. 1095 */ 1096 success = 1; 1097 for (page_num = 0; page_num < sblock_bad->page_count; 1098 page_num++) { 1099 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1100 struct scrub_block *sblock_other = NULL; 1101 1102 /* skip no-io-error page in scrub */ 1103 if (!page_bad->io_error && !sctx->is_dev_replace) 1104 continue; 1105 1106 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1107 /* 1108 * In case of dev replace, if raid56 rebuild process 1109 * didn't work out correct data, then copy the content 1110 * in sblock_bad to make sure target device is identical 1111 * to source device, instead of writing garbage data in 1112 * sblock_for_recheck array to target device. 1113 */ 1114 sblock_other = NULL; 1115 } else if (page_bad->io_error) { 1116 /* try to find no-io-error page in mirrors */ 1117 for (mirror_index = 0; 1118 mirror_index < BTRFS_MAX_MIRRORS && 1119 sblocks_for_recheck[mirror_index].page_count > 0; 1120 mirror_index++) { 1121 if (!sblocks_for_recheck[mirror_index]. 1122 pagev[page_num]->io_error) { 1123 sblock_other = sblocks_for_recheck + 1124 mirror_index; 1125 break; 1126 } 1127 } 1128 if (!sblock_other) 1129 success = 0; 1130 } 1131 1132 if (sctx->is_dev_replace) { 1133 /* 1134 * did not find a mirror to fetch the page 1135 * from. scrub_write_page_to_dev_replace() 1136 * handles this case (page->io_error), by 1137 * filling the block with zeros before 1138 * submitting the write request 1139 */ 1140 if (!sblock_other) 1141 sblock_other = sblock_bad; 1142 1143 if (scrub_write_page_to_dev_replace(sblock_other, 1144 page_num) != 0) { 1145 atomic64_inc( 1146 &fs_info->dev_replace.num_write_errors); 1147 success = 0; 1148 } 1149 } else if (sblock_other) { 1150 ret = scrub_repair_page_from_good_copy(sblock_bad, 1151 sblock_other, 1152 page_num, 0); 1153 if (0 == ret) 1154 page_bad->io_error = 0; 1155 else 1156 success = 0; 1157 } 1158 } 1159 1160 if (success && !sctx->is_dev_replace) { 1161 if (is_metadata || have_csum) { 1162 /* 1163 * need to verify the checksum now that all 1164 * sectors on disk are repaired (the write 1165 * request for data to be repaired is on its way). 1166 * Just be lazy and use scrub_recheck_block() 1167 * which re-reads the data before the checksum 1168 * is verified, but most likely the data comes out 1169 * of the page cache. 1170 */ 1171 scrub_recheck_block(fs_info, sblock_bad, 1); 1172 if (!sblock_bad->header_error && 1173 !sblock_bad->checksum_error && 1174 sblock_bad->no_io_error_seen) 1175 goto corrected_error; 1176 else 1177 goto did_not_correct_error; 1178 } else { 1179 corrected_error: 1180 spin_lock(&sctx->stat_lock); 1181 sctx->stat.corrected_errors++; 1182 sblock_to_check->data_corrected = 1; 1183 spin_unlock(&sctx->stat_lock); 1184 btrfs_err_rl_in_rcu(fs_info, 1185 "fixed up error at logical %llu on dev %s", 1186 logical, rcu_str_deref(dev->name)); 1187 } 1188 } else { 1189 did_not_correct_error: 1190 spin_lock(&sctx->stat_lock); 1191 sctx->stat.uncorrectable_errors++; 1192 spin_unlock(&sctx->stat_lock); 1193 btrfs_err_rl_in_rcu(fs_info, 1194 "unable to fixup (regular) error at logical %llu on dev %s", 1195 logical, rcu_str_deref(dev->name)); 1196 } 1197 1198 out: 1199 if (sblocks_for_recheck) { 1200 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1201 mirror_index++) { 1202 struct scrub_block *sblock = sblocks_for_recheck + 1203 mirror_index; 1204 struct scrub_recover *recover; 1205 int page_index; 1206 1207 for (page_index = 0; page_index < sblock->page_count; 1208 page_index++) { 1209 sblock->pagev[page_index]->sblock = NULL; 1210 recover = sblock->pagev[page_index]->recover; 1211 if (recover) { 1212 scrub_put_recover(fs_info, recover); 1213 sblock->pagev[page_index]->recover = 1214 NULL; 1215 } 1216 scrub_page_put(sblock->pagev[page_index]); 1217 } 1218 } 1219 kfree(sblocks_for_recheck); 1220 } 1221 1222 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1223 memalloc_nofs_restore(nofs_flag); 1224 if (ret < 0) 1225 return ret; 1226 return 0; 1227 } 1228 1229 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1230 { 1231 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1232 return 2; 1233 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1234 return 3; 1235 else 1236 return (int)bbio->num_stripes; 1237 } 1238 1239 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1240 u64 *raid_map, 1241 u64 mapped_length, 1242 int nstripes, int mirror, 1243 int *stripe_index, 1244 u64 *stripe_offset) 1245 { 1246 int i; 1247 1248 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1249 /* RAID5/6 */ 1250 for (i = 0; i < nstripes; i++) { 1251 if (raid_map[i] == RAID6_Q_STRIPE || 1252 raid_map[i] == RAID5_P_STRIPE) 1253 continue; 1254 1255 if (logical >= raid_map[i] && 1256 logical < raid_map[i] + mapped_length) 1257 break; 1258 } 1259 1260 *stripe_index = i; 1261 *stripe_offset = logical - raid_map[i]; 1262 } else { 1263 /* The other RAID type */ 1264 *stripe_index = mirror; 1265 *stripe_offset = 0; 1266 } 1267 } 1268 1269 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1270 struct scrub_block *sblocks_for_recheck) 1271 { 1272 struct scrub_ctx *sctx = original_sblock->sctx; 1273 struct btrfs_fs_info *fs_info = sctx->fs_info; 1274 u64 length = original_sblock->page_count * PAGE_SIZE; 1275 u64 logical = original_sblock->pagev[0]->logical; 1276 u64 generation = original_sblock->pagev[0]->generation; 1277 u64 flags = original_sblock->pagev[0]->flags; 1278 u64 have_csum = original_sblock->pagev[0]->have_csum; 1279 struct scrub_recover *recover; 1280 struct btrfs_bio *bbio; 1281 u64 sublen; 1282 u64 mapped_length; 1283 u64 stripe_offset; 1284 int stripe_index; 1285 int page_index = 0; 1286 int mirror_index; 1287 int nmirrors; 1288 int ret; 1289 1290 /* 1291 * note: the two members refs and outstanding_pages 1292 * are not used (and not set) in the blocks that are used for 1293 * the recheck procedure 1294 */ 1295 1296 while (length > 0) { 1297 sublen = min_t(u64, length, PAGE_SIZE); 1298 mapped_length = sublen; 1299 bbio = NULL; 1300 1301 /* 1302 * with a length of PAGE_SIZE, each returned stripe 1303 * represents one mirror 1304 */ 1305 btrfs_bio_counter_inc_blocked(fs_info); 1306 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1307 logical, &mapped_length, &bbio); 1308 if (ret || !bbio || mapped_length < sublen) { 1309 btrfs_put_bbio(bbio); 1310 btrfs_bio_counter_dec(fs_info); 1311 return -EIO; 1312 } 1313 1314 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1315 if (!recover) { 1316 btrfs_put_bbio(bbio); 1317 btrfs_bio_counter_dec(fs_info); 1318 return -ENOMEM; 1319 } 1320 1321 refcount_set(&recover->refs, 1); 1322 recover->bbio = bbio; 1323 recover->map_length = mapped_length; 1324 1325 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1326 1327 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1328 1329 for (mirror_index = 0; mirror_index < nmirrors; 1330 mirror_index++) { 1331 struct scrub_block *sblock; 1332 struct scrub_page *page; 1333 1334 sblock = sblocks_for_recheck + mirror_index; 1335 sblock->sctx = sctx; 1336 1337 page = kzalloc(sizeof(*page), GFP_NOFS); 1338 if (!page) { 1339 leave_nomem: 1340 spin_lock(&sctx->stat_lock); 1341 sctx->stat.malloc_errors++; 1342 spin_unlock(&sctx->stat_lock); 1343 scrub_put_recover(fs_info, recover); 1344 return -ENOMEM; 1345 } 1346 scrub_page_get(page); 1347 sblock->pagev[page_index] = page; 1348 page->sblock = sblock; 1349 page->flags = flags; 1350 page->generation = generation; 1351 page->logical = logical; 1352 page->have_csum = have_csum; 1353 if (have_csum) 1354 memcpy(page->csum, 1355 original_sblock->pagev[0]->csum, 1356 sctx->csum_size); 1357 1358 scrub_stripe_index_and_offset(logical, 1359 bbio->map_type, 1360 bbio->raid_map, 1361 mapped_length, 1362 bbio->num_stripes - 1363 bbio->num_tgtdevs, 1364 mirror_index, 1365 &stripe_index, 1366 &stripe_offset); 1367 page->physical = bbio->stripes[stripe_index].physical + 1368 stripe_offset; 1369 page->dev = bbio->stripes[stripe_index].dev; 1370 1371 BUG_ON(page_index >= original_sblock->page_count); 1372 page->physical_for_dev_replace = 1373 original_sblock->pagev[page_index]-> 1374 physical_for_dev_replace; 1375 /* for missing devices, dev->bdev is NULL */ 1376 page->mirror_num = mirror_index + 1; 1377 sblock->page_count++; 1378 page->page = alloc_page(GFP_NOFS); 1379 if (!page->page) 1380 goto leave_nomem; 1381 1382 scrub_get_recover(recover); 1383 page->recover = recover; 1384 } 1385 scrub_put_recover(fs_info, recover); 1386 length -= sublen; 1387 logical += sublen; 1388 page_index++; 1389 } 1390 1391 return 0; 1392 } 1393 1394 static void scrub_bio_wait_endio(struct bio *bio) 1395 { 1396 complete(bio->bi_private); 1397 } 1398 1399 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1400 struct bio *bio, 1401 struct scrub_page *page) 1402 { 1403 DECLARE_COMPLETION_ONSTACK(done); 1404 int ret; 1405 int mirror_num; 1406 1407 bio->bi_iter.bi_sector = page->logical >> 9; 1408 bio->bi_private = &done; 1409 bio->bi_end_io = scrub_bio_wait_endio; 1410 1411 mirror_num = page->sblock->pagev[0]->mirror_num; 1412 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, 1413 page->recover->map_length, 1414 mirror_num, 0); 1415 if (ret) 1416 return ret; 1417 1418 wait_for_completion_io(&done); 1419 return blk_status_to_errno(bio->bi_status); 1420 } 1421 1422 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1423 struct scrub_block *sblock) 1424 { 1425 struct scrub_page *first_page = sblock->pagev[0]; 1426 struct bio *bio; 1427 int page_num; 1428 1429 /* All pages in sblock belong to the same stripe on the same device. */ 1430 ASSERT(first_page->dev); 1431 if (!first_page->dev->bdev) 1432 goto out; 1433 1434 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES); 1435 bio_set_dev(bio, first_page->dev->bdev); 1436 1437 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1438 struct scrub_page *page = sblock->pagev[page_num]; 1439 1440 WARN_ON(!page->page); 1441 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1442 } 1443 1444 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { 1445 bio_put(bio); 1446 goto out; 1447 } 1448 1449 bio_put(bio); 1450 1451 scrub_recheck_block_checksum(sblock); 1452 1453 return; 1454 out: 1455 for (page_num = 0; page_num < sblock->page_count; page_num++) 1456 sblock->pagev[page_num]->io_error = 1; 1457 1458 sblock->no_io_error_seen = 0; 1459 } 1460 1461 /* 1462 * this function will check the on disk data for checksum errors, header 1463 * errors and read I/O errors. If any I/O errors happen, the exact pages 1464 * which are errored are marked as being bad. The goal is to enable scrub 1465 * to take those pages that are not errored from all the mirrors so that 1466 * the pages that are errored in the just handled mirror can be repaired. 1467 */ 1468 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1469 struct scrub_block *sblock, 1470 int retry_failed_mirror) 1471 { 1472 int page_num; 1473 1474 sblock->no_io_error_seen = 1; 1475 1476 /* short cut for raid56 */ 1477 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) 1478 return scrub_recheck_block_on_raid56(fs_info, sblock); 1479 1480 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1481 struct bio *bio; 1482 struct scrub_page *page = sblock->pagev[page_num]; 1483 1484 if (page->dev->bdev == NULL) { 1485 page->io_error = 1; 1486 sblock->no_io_error_seen = 0; 1487 continue; 1488 } 1489 1490 WARN_ON(!page->page); 1491 bio = btrfs_io_bio_alloc(1); 1492 bio_set_dev(bio, page->dev->bdev); 1493 1494 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1495 bio->bi_iter.bi_sector = page->physical >> 9; 1496 bio->bi_opf = REQ_OP_READ; 1497 1498 if (btrfsic_submit_bio_wait(bio)) { 1499 page->io_error = 1; 1500 sblock->no_io_error_seen = 0; 1501 } 1502 1503 bio_put(bio); 1504 } 1505 1506 if (sblock->no_io_error_seen) 1507 scrub_recheck_block_checksum(sblock); 1508 } 1509 1510 static inline int scrub_check_fsid(u8 fsid[], 1511 struct scrub_page *spage) 1512 { 1513 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1514 int ret; 1515 1516 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1517 return !ret; 1518 } 1519 1520 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1521 { 1522 sblock->header_error = 0; 1523 sblock->checksum_error = 0; 1524 sblock->generation_error = 0; 1525 1526 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1527 scrub_checksum_data(sblock); 1528 else 1529 scrub_checksum_tree_block(sblock); 1530 } 1531 1532 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1533 struct scrub_block *sblock_good) 1534 { 1535 int page_num; 1536 int ret = 0; 1537 1538 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1539 int ret_sub; 1540 1541 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1542 sblock_good, 1543 page_num, 1); 1544 if (ret_sub) 1545 ret = ret_sub; 1546 } 1547 1548 return ret; 1549 } 1550 1551 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1552 struct scrub_block *sblock_good, 1553 int page_num, int force_write) 1554 { 1555 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1556 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1557 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1558 1559 BUG_ON(page_bad->page == NULL); 1560 BUG_ON(page_good->page == NULL); 1561 if (force_write || sblock_bad->header_error || 1562 sblock_bad->checksum_error || page_bad->io_error) { 1563 struct bio *bio; 1564 int ret; 1565 1566 if (!page_bad->dev->bdev) { 1567 btrfs_warn_rl(fs_info, 1568 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1569 return -EIO; 1570 } 1571 1572 bio = btrfs_io_bio_alloc(1); 1573 bio_set_dev(bio, page_bad->dev->bdev); 1574 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1575 bio->bi_opf = REQ_OP_WRITE; 1576 1577 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1578 if (PAGE_SIZE != ret) { 1579 bio_put(bio); 1580 return -EIO; 1581 } 1582 1583 if (btrfsic_submit_bio_wait(bio)) { 1584 btrfs_dev_stat_inc_and_print(page_bad->dev, 1585 BTRFS_DEV_STAT_WRITE_ERRS); 1586 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1587 bio_put(bio); 1588 return -EIO; 1589 } 1590 bio_put(bio); 1591 } 1592 1593 return 0; 1594 } 1595 1596 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1597 { 1598 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1599 int page_num; 1600 1601 /* 1602 * This block is used for the check of the parity on the source device, 1603 * so the data needn't be written into the destination device. 1604 */ 1605 if (sblock->sparity) 1606 return; 1607 1608 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1609 int ret; 1610 1611 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1612 if (ret) 1613 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1614 } 1615 } 1616 1617 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1618 int page_num) 1619 { 1620 struct scrub_page *spage = sblock->pagev[page_num]; 1621 1622 BUG_ON(spage->page == NULL); 1623 if (spage->io_error) { 1624 void *mapped_buffer = kmap_atomic(spage->page); 1625 1626 clear_page(mapped_buffer); 1627 flush_dcache_page(spage->page); 1628 kunmap_atomic(mapped_buffer); 1629 } 1630 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1631 } 1632 1633 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1634 struct scrub_page *spage) 1635 { 1636 struct scrub_bio *sbio; 1637 int ret; 1638 1639 mutex_lock(&sctx->wr_lock); 1640 again: 1641 if (!sctx->wr_curr_bio) { 1642 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1643 GFP_KERNEL); 1644 if (!sctx->wr_curr_bio) { 1645 mutex_unlock(&sctx->wr_lock); 1646 return -ENOMEM; 1647 } 1648 sctx->wr_curr_bio->sctx = sctx; 1649 sctx->wr_curr_bio->page_count = 0; 1650 } 1651 sbio = sctx->wr_curr_bio; 1652 if (sbio->page_count == 0) { 1653 struct bio *bio; 1654 1655 sbio->physical = spage->physical_for_dev_replace; 1656 sbio->logical = spage->logical; 1657 sbio->dev = sctx->wr_tgtdev; 1658 bio = sbio->bio; 1659 if (!bio) { 1660 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); 1661 sbio->bio = bio; 1662 } 1663 1664 bio->bi_private = sbio; 1665 bio->bi_end_io = scrub_wr_bio_end_io; 1666 bio_set_dev(bio, sbio->dev->bdev); 1667 bio->bi_iter.bi_sector = sbio->physical >> 9; 1668 bio->bi_opf = REQ_OP_WRITE; 1669 sbio->status = 0; 1670 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1671 spage->physical_for_dev_replace || 1672 sbio->logical + sbio->page_count * PAGE_SIZE != 1673 spage->logical) { 1674 scrub_wr_submit(sctx); 1675 goto again; 1676 } 1677 1678 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1679 if (ret != PAGE_SIZE) { 1680 if (sbio->page_count < 1) { 1681 bio_put(sbio->bio); 1682 sbio->bio = NULL; 1683 mutex_unlock(&sctx->wr_lock); 1684 return -EIO; 1685 } 1686 scrub_wr_submit(sctx); 1687 goto again; 1688 } 1689 1690 sbio->pagev[sbio->page_count] = spage; 1691 scrub_page_get(spage); 1692 sbio->page_count++; 1693 if (sbio->page_count == sctx->pages_per_wr_bio) 1694 scrub_wr_submit(sctx); 1695 mutex_unlock(&sctx->wr_lock); 1696 1697 return 0; 1698 } 1699 1700 static void scrub_wr_submit(struct scrub_ctx *sctx) 1701 { 1702 struct scrub_bio *sbio; 1703 1704 if (!sctx->wr_curr_bio) 1705 return; 1706 1707 sbio = sctx->wr_curr_bio; 1708 sctx->wr_curr_bio = NULL; 1709 WARN_ON(!sbio->bio->bi_disk); 1710 scrub_pending_bio_inc(sctx); 1711 /* process all writes in a single worker thread. Then the block layer 1712 * orders the requests before sending them to the driver which 1713 * doubled the write performance on spinning disks when measured 1714 * with Linux 3.5 */ 1715 btrfsic_submit_bio(sbio->bio); 1716 } 1717 1718 static void scrub_wr_bio_end_io(struct bio *bio) 1719 { 1720 struct scrub_bio *sbio = bio->bi_private; 1721 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1722 1723 sbio->status = bio->bi_status; 1724 sbio->bio = bio; 1725 1726 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL); 1727 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1728 } 1729 1730 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1731 { 1732 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1733 struct scrub_ctx *sctx = sbio->sctx; 1734 int i; 1735 1736 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1737 if (sbio->status) { 1738 struct btrfs_dev_replace *dev_replace = 1739 &sbio->sctx->fs_info->dev_replace; 1740 1741 for (i = 0; i < sbio->page_count; i++) { 1742 struct scrub_page *spage = sbio->pagev[i]; 1743 1744 spage->io_error = 1; 1745 atomic64_inc(&dev_replace->num_write_errors); 1746 } 1747 } 1748 1749 for (i = 0; i < sbio->page_count; i++) 1750 scrub_page_put(sbio->pagev[i]); 1751 1752 bio_put(sbio->bio); 1753 kfree(sbio); 1754 scrub_pending_bio_dec(sctx); 1755 } 1756 1757 static int scrub_checksum(struct scrub_block *sblock) 1758 { 1759 u64 flags; 1760 int ret; 1761 1762 /* 1763 * No need to initialize these stats currently, 1764 * because this function only use return value 1765 * instead of these stats value. 1766 * 1767 * Todo: 1768 * always use stats 1769 */ 1770 sblock->header_error = 0; 1771 sblock->generation_error = 0; 1772 sblock->checksum_error = 0; 1773 1774 WARN_ON(sblock->page_count < 1); 1775 flags = sblock->pagev[0]->flags; 1776 ret = 0; 1777 if (flags & BTRFS_EXTENT_FLAG_DATA) 1778 ret = scrub_checksum_data(sblock); 1779 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1780 ret = scrub_checksum_tree_block(sblock); 1781 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1782 (void)scrub_checksum_super(sblock); 1783 else 1784 WARN_ON(1); 1785 if (ret) 1786 scrub_handle_errored_block(sblock); 1787 1788 return ret; 1789 } 1790 1791 static int scrub_checksum_data(struct scrub_block *sblock) 1792 { 1793 struct scrub_ctx *sctx = sblock->sctx; 1794 struct btrfs_fs_info *fs_info = sctx->fs_info; 1795 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1796 u8 csum[BTRFS_CSUM_SIZE]; 1797 u8 *on_disk_csum; 1798 struct page *page; 1799 void *buffer; 1800 u64 len; 1801 int index; 1802 1803 BUG_ON(sblock->page_count < 1); 1804 if (!sblock->pagev[0]->have_csum) 1805 return 0; 1806 1807 shash->tfm = fs_info->csum_shash; 1808 crypto_shash_init(shash); 1809 1810 on_disk_csum = sblock->pagev[0]->csum; 1811 page = sblock->pagev[0]->page; 1812 buffer = kmap_atomic(page); 1813 1814 len = sctx->fs_info->sectorsize; 1815 index = 0; 1816 for (;;) { 1817 u64 l = min_t(u64, len, PAGE_SIZE); 1818 1819 crypto_shash_update(shash, buffer, l); 1820 kunmap_atomic(buffer); 1821 len -= l; 1822 if (len == 0) 1823 break; 1824 index++; 1825 BUG_ON(index >= sblock->page_count); 1826 BUG_ON(!sblock->pagev[index]->page); 1827 page = sblock->pagev[index]->page; 1828 buffer = kmap_atomic(page); 1829 } 1830 1831 crypto_shash_final(shash, csum); 1832 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1833 sblock->checksum_error = 1; 1834 1835 return sblock->checksum_error; 1836 } 1837 1838 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1839 { 1840 struct scrub_ctx *sctx = sblock->sctx; 1841 struct btrfs_header *h; 1842 struct btrfs_fs_info *fs_info = sctx->fs_info; 1843 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1844 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1845 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1846 struct page *page; 1847 void *mapped_buffer; 1848 u64 mapped_size; 1849 void *p; 1850 u64 len; 1851 int index; 1852 1853 shash->tfm = fs_info->csum_shash; 1854 crypto_shash_init(shash); 1855 1856 BUG_ON(sblock->page_count < 1); 1857 page = sblock->pagev[0]->page; 1858 mapped_buffer = kmap_atomic(page); 1859 h = (struct btrfs_header *)mapped_buffer; 1860 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1861 1862 /* 1863 * we don't use the getter functions here, as we 1864 * a) don't have an extent buffer and 1865 * b) the page is already kmapped 1866 */ 1867 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1868 sblock->header_error = 1; 1869 1870 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { 1871 sblock->header_error = 1; 1872 sblock->generation_error = 1; 1873 } 1874 1875 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 1876 sblock->header_error = 1; 1877 1878 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1879 BTRFS_UUID_SIZE)) 1880 sblock->header_error = 1; 1881 1882 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE; 1883 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1884 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1885 index = 0; 1886 for (;;) { 1887 u64 l = min_t(u64, len, mapped_size); 1888 1889 crypto_shash_update(shash, p, l); 1890 kunmap_atomic(mapped_buffer); 1891 len -= l; 1892 if (len == 0) 1893 break; 1894 index++; 1895 BUG_ON(index >= sblock->page_count); 1896 BUG_ON(!sblock->pagev[index]->page); 1897 page = sblock->pagev[index]->page; 1898 mapped_buffer = kmap_atomic(page); 1899 mapped_size = PAGE_SIZE; 1900 p = mapped_buffer; 1901 } 1902 1903 crypto_shash_final(shash, calculated_csum); 1904 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1905 sblock->checksum_error = 1; 1906 1907 return sblock->header_error || sblock->checksum_error; 1908 } 1909 1910 static int scrub_checksum_super(struct scrub_block *sblock) 1911 { 1912 struct btrfs_super_block *s; 1913 struct scrub_ctx *sctx = sblock->sctx; 1914 struct btrfs_fs_info *fs_info = sctx->fs_info; 1915 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1916 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1917 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1918 struct page *page; 1919 void *mapped_buffer; 1920 u64 mapped_size; 1921 void *p; 1922 int fail_gen = 0; 1923 int fail_cor = 0; 1924 u64 len; 1925 int index; 1926 1927 shash->tfm = fs_info->csum_shash; 1928 crypto_shash_init(shash); 1929 1930 BUG_ON(sblock->page_count < 1); 1931 page = sblock->pagev[0]->page; 1932 mapped_buffer = kmap_atomic(page); 1933 s = (struct btrfs_super_block *)mapped_buffer; 1934 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1935 1936 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1937 ++fail_cor; 1938 1939 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1940 ++fail_gen; 1941 1942 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 1943 ++fail_cor; 1944 1945 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1946 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1947 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1948 index = 0; 1949 for (;;) { 1950 u64 l = min_t(u64, len, mapped_size); 1951 1952 crypto_shash_update(shash, p, l); 1953 kunmap_atomic(mapped_buffer); 1954 len -= l; 1955 if (len == 0) 1956 break; 1957 index++; 1958 BUG_ON(index >= sblock->page_count); 1959 BUG_ON(!sblock->pagev[index]->page); 1960 page = sblock->pagev[index]->page; 1961 mapped_buffer = kmap_atomic(page); 1962 mapped_size = PAGE_SIZE; 1963 p = mapped_buffer; 1964 } 1965 1966 crypto_shash_final(shash, calculated_csum); 1967 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1968 ++fail_cor; 1969 1970 if (fail_cor + fail_gen) { 1971 /* 1972 * if we find an error in a super block, we just report it. 1973 * They will get written with the next transaction commit 1974 * anyway 1975 */ 1976 spin_lock(&sctx->stat_lock); 1977 ++sctx->stat.super_errors; 1978 spin_unlock(&sctx->stat_lock); 1979 if (fail_cor) 1980 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1981 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1982 else 1983 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1984 BTRFS_DEV_STAT_GENERATION_ERRS); 1985 } 1986 1987 return fail_cor + fail_gen; 1988 } 1989 1990 static void scrub_block_get(struct scrub_block *sblock) 1991 { 1992 refcount_inc(&sblock->refs); 1993 } 1994 1995 static void scrub_block_put(struct scrub_block *sblock) 1996 { 1997 if (refcount_dec_and_test(&sblock->refs)) { 1998 int i; 1999 2000 if (sblock->sparity) 2001 scrub_parity_put(sblock->sparity); 2002 2003 for (i = 0; i < sblock->page_count; i++) 2004 scrub_page_put(sblock->pagev[i]); 2005 kfree(sblock); 2006 } 2007 } 2008 2009 static void scrub_page_get(struct scrub_page *spage) 2010 { 2011 atomic_inc(&spage->refs); 2012 } 2013 2014 static void scrub_page_put(struct scrub_page *spage) 2015 { 2016 if (atomic_dec_and_test(&spage->refs)) { 2017 if (spage->page) 2018 __free_page(spage->page); 2019 kfree(spage); 2020 } 2021 } 2022 2023 static void scrub_submit(struct scrub_ctx *sctx) 2024 { 2025 struct scrub_bio *sbio; 2026 2027 if (sctx->curr == -1) 2028 return; 2029 2030 sbio = sctx->bios[sctx->curr]; 2031 sctx->curr = -1; 2032 scrub_pending_bio_inc(sctx); 2033 btrfsic_submit_bio(sbio->bio); 2034 } 2035 2036 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2037 struct scrub_page *spage) 2038 { 2039 struct scrub_block *sblock = spage->sblock; 2040 struct scrub_bio *sbio; 2041 int ret; 2042 2043 again: 2044 /* 2045 * grab a fresh bio or wait for one to become available 2046 */ 2047 while (sctx->curr == -1) { 2048 spin_lock(&sctx->list_lock); 2049 sctx->curr = sctx->first_free; 2050 if (sctx->curr != -1) { 2051 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2052 sctx->bios[sctx->curr]->next_free = -1; 2053 sctx->bios[sctx->curr]->page_count = 0; 2054 spin_unlock(&sctx->list_lock); 2055 } else { 2056 spin_unlock(&sctx->list_lock); 2057 wait_event(sctx->list_wait, sctx->first_free != -1); 2058 } 2059 } 2060 sbio = sctx->bios[sctx->curr]; 2061 if (sbio->page_count == 0) { 2062 struct bio *bio; 2063 2064 sbio->physical = spage->physical; 2065 sbio->logical = spage->logical; 2066 sbio->dev = spage->dev; 2067 bio = sbio->bio; 2068 if (!bio) { 2069 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); 2070 sbio->bio = bio; 2071 } 2072 2073 bio->bi_private = sbio; 2074 bio->bi_end_io = scrub_bio_end_io; 2075 bio_set_dev(bio, sbio->dev->bdev); 2076 bio->bi_iter.bi_sector = sbio->physical >> 9; 2077 bio->bi_opf = REQ_OP_READ; 2078 sbio->status = 0; 2079 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2080 spage->physical || 2081 sbio->logical + sbio->page_count * PAGE_SIZE != 2082 spage->logical || 2083 sbio->dev != spage->dev) { 2084 scrub_submit(sctx); 2085 goto again; 2086 } 2087 2088 sbio->pagev[sbio->page_count] = spage; 2089 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2090 if (ret != PAGE_SIZE) { 2091 if (sbio->page_count < 1) { 2092 bio_put(sbio->bio); 2093 sbio->bio = NULL; 2094 return -EIO; 2095 } 2096 scrub_submit(sctx); 2097 goto again; 2098 } 2099 2100 scrub_block_get(sblock); /* one for the page added to the bio */ 2101 atomic_inc(&sblock->outstanding_pages); 2102 sbio->page_count++; 2103 if (sbio->page_count == sctx->pages_per_rd_bio) 2104 scrub_submit(sctx); 2105 2106 return 0; 2107 } 2108 2109 static void scrub_missing_raid56_end_io(struct bio *bio) 2110 { 2111 struct scrub_block *sblock = bio->bi_private; 2112 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2113 2114 if (bio->bi_status) 2115 sblock->no_io_error_seen = 0; 2116 2117 bio_put(bio); 2118 2119 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2120 } 2121 2122 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2123 { 2124 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2125 struct scrub_ctx *sctx = sblock->sctx; 2126 struct btrfs_fs_info *fs_info = sctx->fs_info; 2127 u64 logical; 2128 struct btrfs_device *dev; 2129 2130 logical = sblock->pagev[0]->logical; 2131 dev = sblock->pagev[0]->dev; 2132 2133 if (sblock->no_io_error_seen) 2134 scrub_recheck_block_checksum(sblock); 2135 2136 if (!sblock->no_io_error_seen) { 2137 spin_lock(&sctx->stat_lock); 2138 sctx->stat.read_errors++; 2139 spin_unlock(&sctx->stat_lock); 2140 btrfs_err_rl_in_rcu(fs_info, 2141 "IO error rebuilding logical %llu for dev %s", 2142 logical, rcu_str_deref(dev->name)); 2143 } else if (sblock->header_error || sblock->checksum_error) { 2144 spin_lock(&sctx->stat_lock); 2145 sctx->stat.uncorrectable_errors++; 2146 spin_unlock(&sctx->stat_lock); 2147 btrfs_err_rl_in_rcu(fs_info, 2148 "failed to rebuild valid logical %llu for dev %s", 2149 logical, rcu_str_deref(dev->name)); 2150 } else { 2151 scrub_write_block_to_dev_replace(sblock); 2152 } 2153 2154 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2155 mutex_lock(&sctx->wr_lock); 2156 scrub_wr_submit(sctx); 2157 mutex_unlock(&sctx->wr_lock); 2158 } 2159 2160 scrub_block_put(sblock); 2161 scrub_pending_bio_dec(sctx); 2162 } 2163 2164 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2165 { 2166 struct scrub_ctx *sctx = sblock->sctx; 2167 struct btrfs_fs_info *fs_info = sctx->fs_info; 2168 u64 length = sblock->page_count * PAGE_SIZE; 2169 u64 logical = sblock->pagev[0]->logical; 2170 struct btrfs_bio *bbio = NULL; 2171 struct bio *bio; 2172 struct btrfs_raid_bio *rbio; 2173 int ret; 2174 int i; 2175 2176 btrfs_bio_counter_inc_blocked(fs_info); 2177 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2178 &length, &bbio); 2179 if (ret || !bbio || !bbio->raid_map) 2180 goto bbio_out; 2181 2182 if (WARN_ON(!sctx->is_dev_replace || 2183 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2184 /* 2185 * We shouldn't be scrubbing a missing device. Even for dev 2186 * replace, we should only get here for RAID 5/6. We either 2187 * managed to mount something with no mirrors remaining or 2188 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2189 */ 2190 goto bbio_out; 2191 } 2192 2193 bio = btrfs_io_bio_alloc(0); 2194 bio->bi_iter.bi_sector = logical >> 9; 2195 bio->bi_private = sblock; 2196 bio->bi_end_io = scrub_missing_raid56_end_io; 2197 2198 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2199 if (!rbio) 2200 goto rbio_out; 2201 2202 for (i = 0; i < sblock->page_count; i++) { 2203 struct scrub_page *spage = sblock->pagev[i]; 2204 2205 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2206 } 2207 2208 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL); 2209 scrub_block_get(sblock); 2210 scrub_pending_bio_inc(sctx); 2211 raid56_submit_missing_rbio(rbio); 2212 return; 2213 2214 rbio_out: 2215 bio_put(bio); 2216 bbio_out: 2217 btrfs_bio_counter_dec(fs_info); 2218 btrfs_put_bbio(bbio); 2219 spin_lock(&sctx->stat_lock); 2220 sctx->stat.malloc_errors++; 2221 spin_unlock(&sctx->stat_lock); 2222 } 2223 2224 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2225 u64 physical, struct btrfs_device *dev, u64 flags, 2226 u64 gen, int mirror_num, u8 *csum, int force, 2227 u64 physical_for_dev_replace) 2228 { 2229 struct scrub_block *sblock; 2230 int index; 2231 2232 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2233 if (!sblock) { 2234 spin_lock(&sctx->stat_lock); 2235 sctx->stat.malloc_errors++; 2236 spin_unlock(&sctx->stat_lock); 2237 return -ENOMEM; 2238 } 2239 2240 /* one ref inside this function, plus one for each page added to 2241 * a bio later on */ 2242 refcount_set(&sblock->refs, 1); 2243 sblock->sctx = sctx; 2244 sblock->no_io_error_seen = 1; 2245 2246 for (index = 0; len > 0; index++) { 2247 struct scrub_page *spage; 2248 u64 l = min_t(u64, len, PAGE_SIZE); 2249 2250 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2251 if (!spage) { 2252 leave_nomem: 2253 spin_lock(&sctx->stat_lock); 2254 sctx->stat.malloc_errors++; 2255 spin_unlock(&sctx->stat_lock); 2256 scrub_block_put(sblock); 2257 return -ENOMEM; 2258 } 2259 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2260 scrub_page_get(spage); 2261 sblock->pagev[index] = spage; 2262 spage->sblock = sblock; 2263 spage->dev = dev; 2264 spage->flags = flags; 2265 spage->generation = gen; 2266 spage->logical = logical; 2267 spage->physical = physical; 2268 spage->physical_for_dev_replace = physical_for_dev_replace; 2269 spage->mirror_num = mirror_num; 2270 if (csum) { 2271 spage->have_csum = 1; 2272 memcpy(spage->csum, csum, sctx->csum_size); 2273 } else { 2274 spage->have_csum = 0; 2275 } 2276 sblock->page_count++; 2277 spage->page = alloc_page(GFP_KERNEL); 2278 if (!spage->page) 2279 goto leave_nomem; 2280 len -= l; 2281 logical += l; 2282 physical += l; 2283 physical_for_dev_replace += l; 2284 } 2285 2286 WARN_ON(sblock->page_count == 0); 2287 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2288 /* 2289 * This case should only be hit for RAID 5/6 device replace. See 2290 * the comment in scrub_missing_raid56_pages() for details. 2291 */ 2292 scrub_missing_raid56_pages(sblock); 2293 } else { 2294 for (index = 0; index < sblock->page_count; index++) { 2295 struct scrub_page *spage = sblock->pagev[index]; 2296 int ret; 2297 2298 ret = scrub_add_page_to_rd_bio(sctx, spage); 2299 if (ret) { 2300 scrub_block_put(sblock); 2301 return ret; 2302 } 2303 } 2304 2305 if (force) 2306 scrub_submit(sctx); 2307 } 2308 2309 /* last one frees, either here or in bio completion for last page */ 2310 scrub_block_put(sblock); 2311 return 0; 2312 } 2313 2314 static void scrub_bio_end_io(struct bio *bio) 2315 { 2316 struct scrub_bio *sbio = bio->bi_private; 2317 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2318 2319 sbio->status = bio->bi_status; 2320 sbio->bio = bio; 2321 2322 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2323 } 2324 2325 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2326 { 2327 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2328 struct scrub_ctx *sctx = sbio->sctx; 2329 int i; 2330 2331 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2332 if (sbio->status) { 2333 for (i = 0; i < sbio->page_count; i++) { 2334 struct scrub_page *spage = sbio->pagev[i]; 2335 2336 spage->io_error = 1; 2337 spage->sblock->no_io_error_seen = 0; 2338 } 2339 } 2340 2341 /* now complete the scrub_block items that have all pages completed */ 2342 for (i = 0; i < sbio->page_count; i++) { 2343 struct scrub_page *spage = sbio->pagev[i]; 2344 struct scrub_block *sblock = spage->sblock; 2345 2346 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2347 scrub_block_complete(sblock); 2348 scrub_block_put(sblock); 2349 } 2350 2351 bio_put(sbio->bio); 2352 sbio->bio = NULL; 2353 spin_lock(&sctx->list_lock); 2354 sbio->next_free = sctx->first_free; 2355 sctx->first_free = sbio->index; 2356 spin_unlock(&sctx->list_lock); 2357 2358 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2359 mutex_lock(&sctx->wr_lock); 2360 scrub_wr_submit(sctx); 2361 mutex_unlock(&sctx->wr_lock); 2362 } 2363 2364 scrub_pending_bio_dec(sctx); 2365 } 2366 2367 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2368 unsigned long *bitmap, 2369 u64 start, u64 len) 2370 { 2371 u64 offset; 2372 u64 nsectors64; 2373 u32 nsectors; 2374 int sectorsize = sparity->sctx->fs_info->sectorsize; 2375 2376 if (len >= sparity->stripe_len) { 2377 bitmap_set(bitmap, 0, sparity->nsectors); 2378 return; 2379 } 2380 2381 start -= sparity->logic_start; 2382 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2383 offset = div_u64(offset, sectorsize); 2384 nsectors64 = div_u64(len, sectorsize); 2385 2386 ASSERT(nsectors64 < UINT_MAX); 2387 nsectors = (u32)nsectors64; 2388 2389 if (offset + nsectors <= sparity->nsectors) { 2390 bitmap_set(bitmap, offset, nsectors); 2391 return; 2392 } 2393 2394 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2395 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2396 } 2397 2398 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2399 u64 start, u64 len) 2400 { 2401 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2402 } 2403 2404 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2405 u64 start, u64 len) 2406 { 2407 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2408 } 2409 2410 static void scrub_block_complete(struct scrub_block *sblock) 2411 { 2412 int corrupted = 0; 2413 2414 if (!sblock->no_io_error_seen) { 2415 corrupted = 1; 2416 scrub_handle_errored_block(sblock); 2417 } else { 2418 /* 2419 * if has checksum error, write via repair mechanism in 2420 * dev replace case, otherwise write here in dev replace 2421 * case. 2422 */ 2423 corrupted = scrub_checksum(sblock); 2424 if (!corrupted && sblock->sctx->is_dev_replace) 2425 scrub_write_block_to_dev_replace(sblock); 2426 } 2427 2428 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2429 u64 start = sblock->pagev[0]->logical; 2430 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2431 PAGE_SIZE; 2432 2433 scrub_parity_mark_sectors_error(sblock->sparity, 2434 start, end - start); 2435 } 2436 } 2437 2438 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2439 { 2440 struct btrfs_ordered_sum *sum = NULL; 2441 unsigned long index; 2442 unsigned long num_sectors; 2443 2444 while (!list_empty(&sctx->csum_list)) { 2445 sum = list_first_entry(&sctx->csum_list, 2446 struct btrfs_ordered_sum, list); 2447 if (sum->bytenr > logical) 2448 return 0; 2449 if (sum->bytenr + sum->len > logical) 2450 break; 2451 2452 ++sctx->stat.csum_discards; 2453 list_del(&sum->list); 2454 kfree(sum); 2455 sum = NULL; 2456 } 2457 if (!sum) 2458 return 0; 2459 2460 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); 2461 ASSERT(index < UINT_MAX); 2462 2463 num_sectors = sum->len / sctx->fs_info->sectorsize; 2464 memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size); 2465 if (index == num_sectors - 1) { 2466 list_del(&sum->list); 2467 kfree(sum); 2468 } 2469 return 1; 2470 } 2471 2472 /* scrub extent tries to collect up to 64 kB for each bio */ 2473 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2474 u64 logical, u64 len, 2475 u64 physical, struct btrfs_device *dev, u64 flags, 2476 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2477 { 2478 int ret; 2479 u8 csum[BTRFS_CSUM_SIZE]; 2480 u32 blocksize; 2481 2482 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2483 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2484 blocksize = map->stripe_len; 2485 else 2486 blocksize = sctx->fs_info->sectorsize; 2487 spin_lock(&sctx->stat_lock); 2488 sctx->stat.data_extents_scrubbed++; 2489 sctx->stat.data_bytes_scrubbed += len; 2490 spin_unlock(&sctx->stat_lock); 2491 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2492 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2493 blocksize = map->stripe_len; 2494 else 2495 blocksize = sctx->fs_info->nodesize; 2496 spin_lock(&sctx->stat_lock); 2497 sctx->stat.tree_extents_scrubbed++; 2498 sctx->stat.tree_bytes_scrubbed += len; 2499 spin_unlock(&sctx->stat_lock); 2500 } else { 2501 blocksize = sctx->fs_info->sectorsize; 2502 WARN_ON(1); 2503 } 2504 2505 while (len) { 2506 u64 l = min_t(u64, len, blocksize); 2507 int have_csum = 0; 2508 2509 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2510 /* push csums to sbio */ 2511 have_csum = scrub_find_csum(sctx, logical, csum); 2512 if (have_csum == 0) 2513 ++sctx->stat.no_csum; 2514 } 2515 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2516 mirror_num, have_csum ? csum : NULL, 0, 2517 physical_for_dev_replace); 2518 if (ret) 2519 return ret; 2520 len -= l; 2521 logical += l; 2522 physical += l; 2523 physical_for_dev_replace += l; 2524 } 2525 return 0; 2526 } 2527 2528 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2529 u64 logical, u64 len, 2530 u64 physical, struct btrfs_device *dev, 2531 u64 flags, u64 gen, int mirror_num, u8 *csum) 2532 { 2533 struct scrub_ctx *sctx = sparity->sctx; 2534 struct scrub_block *sblock; 2535 int index; 2536 2537 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2538 if (!sblock) { 2539 spin_lock(&sctx->stat_lock); 2540 sctx->stat.malloc_errors++; 2541 spin_unlock(&sctx->stat_lock); 2542 return -ENOMEM; 2543 } 2544 2545 /* one ref inside this function, plus one for each page added to 2546 * a bio later on */ 2547 refcount_set(&sblock->refs, 1); 2548 sblock->sctx = sctx; 2549 sblock->no_io_error_seen = 1; 2550 sblock->sparity = sparity; 2551 scrub_parity_get(sparity); 2552 2553 for (index = 0; len > 0; index++) { 2554 struct scrub_page *spage; 2555 u64 l = min_t(u64, len, PAGE_SIZE); 2556 2557 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2558 if (!spage) { 2559 leave_nomem: 2560 spin_lock(&sctx->stat_lock); 2561 sctx->stat.malloc_errors++; 2562 spin_unlock(&sctx->stat_lock); 2563 scrub_block_put(sblock); 2564 return -ENOMEM; 2565 } 2566 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2567 /* For scrub block */ 2568 scrub_page_get(spage); 2569 sblock->pagev[index] = spage; 2570 /* For scrub parity */ 2571 scrub_page_get(spage); 2572 list_add_tail(&spage->list, &sparity->spages); 2573 spage->sblock = sblock; 2574 spage->dev = dev; 2575 spage->flags = flags; 2576 spage->generation = gen; 2577 spage->logical = logical; 2578 spage->physical = physical; 2579 spage->mirror_num = mirror_num; 2580 if (csum) { 2581 spage->have_csum = 1; 2582 memcpy(spage->csum, csum, sctx->csum_size); 2583 } else { 2584 spage->have_csum = 0; 2585 } 2586 sblock->page_count++; 2587 spage->page = alloc_page(GFP_KERNEL); 2588 if (!spage->page) 2589 goto leave_nomem; 2590 len -= l; 2591 logical += l; 2592 physical += l; 2593 } 2594 2595 WARN_ON(sblock->page_count == 0); 2596 for (index = 0; index < sblock->page_count; index++) { 2597 struct scrub_page *spage = sblock->pagev[index]; 2598 int ret; 2599 2600 ret = scrub_add_page_to_rd_bio(sctx, spage); 2601 if (ret) { 2602 scrub_block_put(sblock); 2603 return ret; 2604 } 2605 } 2606 2607 /* last one frees, either here or in bio completion for last page */ 2608 scrub_block_put(sblock); 2609 return 0; 2610 } 2611 2612 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2613 u64 logical, u64 len, 2614 u64 physical, struct btrfs_device *dev, 2615 u64 flags, u64 gen, int mirror_num) 2616 { 2617 struct scrub_ctx *sctx = sparity->sctx; 2618 int ret; 2619 u8 csum[BTRFS_CSUM_SIZE]; 2620 u32 blocksize; 2621 2622 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2623 scrub_parity_mark_sectors_error(sparity, logical, len); 2624 return 0; 2625 } 2626 2627 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2628 blocksize = sparity->stripe_len; 2629 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2630 blocksize = sparity->stripe_len; 2631 } else { 2632 blocksize = sctx->fs_info->sectorsize; 2633 WARN_ON(1); 2634 } 2635 2636 while (len) { 2637 u64 l = min_t(u64, len, blocksize); 2638 int have_csum = 0; 2639 2640 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2641 /* push csums to sbio */ 2642 have_csum = scrub_find_csum(sctx, logical, csum); 2643 if (have_csum == 0) 2644 goto skip; 2645 } 2646 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2647 flags, gen, mirror_num, 2648 have_csum ? csum : NULL); 2649 if (ret) 2650 return ret; 2651 skip: 2652 len -= l; 2653 logical += l; 2654 physical += l; 2655 } 2656 return 0; 2657 } 2658 2659 /* 2660 * Given a physical address, this will calculate it's 2661 * logical offset. if this is a parity stripe, it will return 2662 * the most left data stripe's logical offset. 2663 * 2664 * return 0 if it is a data stripe, 1 means parity stripe. 2665 */ 2666 static int get_raid56_logic_offset(u64 physical, int num, 2667 struct map_lookup *map, u64 *offset, 2668 u64 *stripe_start) 2669 { 2670 int i; 2671 int j = 0; 2672 u64 stripe_nr; 2673 u64 last_offset; 2674 u32 stripe_index; 2675 u32 rot; 2676 const int data_stripes = nr_data_stripes(map); 2677 2678 last_offset = (physical - map->stripes[num].physical) * data_stripes; 2679 if (stripe_start) 2680 *stripe_start = last_offset; 2681 2682 *offset = last_offset; 2683 for (i = 0; i < data_stripes; i++) { 2684 *offset = last_offset + i * map->stripe_len; 2685 2686 stripe_nr = div64_u64(*offset, map->stripe_len); 2687 stripe_nr = div_u64(stripe_nr, data_stripes); 2688 2689 /* Work out the disk rotation on this stripe-set */ 2690 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2691 /* calculate which stripe this data locates */ 2692 rot += i; 2693 stripe_index = rot % map->num_stripes; 2694 if (stripe_index == num) 2695 return 0; 2696 if (stripe_index < num) 2697 j++; 2698 } 2699 *offset = last_offset + j * map->stripe_len; 2700 return 1; 2701 } 2702 2703 static void scrub_free_parity(struct scrub_parity *sparity) 2704 { 2705 struct scrub_ctx *sctx = sparity->sctx; 2706 struct scrub_page *curr, *next; 2707 int nbits; 2708 2709 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2710 if (nbits) { 2711 spin_lock(&sctx->stat_lock); 2712 sctx->stat.read_errors += nbits; 2713 sctx->stat.uncorrectable_errors += nbits; 2714 spin_unlock(&sctx->stat_lock); 2715 } 2716 2717 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2718 list_del_init(&curr->list); 2719 scrub_page_put(curr); 2720 } 2721 2722 kfree(sparity); 2723 } 2724 2725 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2726 { 2727 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2728 work); 2729 struct scrub_ctx *sctx = sparity->sctx; 2730 2731 scrub_free_parity(sparity); 2732 scrub_pending_bio_dec(sctx); 2733 } 2734 2735 static void scrub_parity_bio_endio(struct bio *bio) 2736 { 2737 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2738 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2739 2740 if (bio->bi_status) 2741 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2742 sparity->nsectors); 2743 2744 bio_put(bio); 2745 2746 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL, 2747 NULL); 2748 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 2749 } 2750 2751 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2752 { 2753 struct scrub_ctx *sctx = sparity->sctx; 2754 struct btrfs_fs_info *fs_info = sctx->fs_info; 2755 struct bio *bio; 2756 struct btrfs_raid_bio *rbio; 2757 struct btrfs_bio *bbio = NULL; 2758 u64 length; 2759 int ret; 2760 2761 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2762 sparity->nsectors)) 2763 goto out; 2764 2765 length = sparity->logic_end - sparity->logic_start; 2766 2767 btrfs_bio_counter_inc_blocked(fs_info); 2768 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2769 &length, &bbio); 2770 if (ret || !bbio || !bbio->raid_map) 2771 goto bbio_out; 2772 2773 bio = btrfs_io_bio_alloc(0); 2774 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2775 bio->bi_private = sparity; 2776 bio->bi_end_io = scrub_parity_bio_endio; 2777 2778 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 2779 length, sparity->scrub_dev, 2780 sparity->dbitmap, 2781 sparity->nsectors); 2782 if (!rbio) 2783 goto rbio_out; 2784 2785 scrub_pending_bio_inc(sctx); 2786 raid56_parity_submit_scrub_rbio(rbio); 2787 return; 2788 2789 rbio_out: 2790 bio_put(bio); 2791 bbio_out: 2792 btrfs_bio_counter_dec(fs_info); 2793 btrfs_put_bbio(bbio); 2794 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2795 sparity->nsectors); 2796 spin_lock(&sctx->stat_lock); 2797 sctx->stat.malloc_errors++; 2798 spin_unlock(&sctx->stat_lock); 2799 out: 2800 scrub_free_parity(sparity); 2801 } 2802 2803 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2804 { 2805 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2806 } 2807 2808 static void scrub_parity_get(struct scrub_parity *sparity) 2809 { 2810 refcount_inc(&sparity->refs); 2811 } 2812 2813 static void scrub_parity_put(struct scrub_parity *sparity) 2814 { 2815 if (!refcount_dec_and_test(&sparity->refs)) 2816 return; 2817 2818 scrub_parity_check_and_repair(sparity); 2819 } 2820 2821 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2822 struct map_lookup *map, 2823 struct btrfs_device *sdev, 2824 struct btrfs_path *path, 2825 u64 logic_start, 2826 u64 logic_end) 2827 { 2828 struct btrfs_fs_info *fs_info = sctx->fs_info; 2829 struct btrfs_root *root = fs_info->extent_root; 2830 struct btrfs_root *csum_root = fs_info->csum_root; 2831 struct btrfs_extent_item *extent; 2832 struct btrfs_bio *bbio = NULL; 2833 u64 flags; 2834 int ret; 2835 int slot; 2836 struct extent_buffer *l; 2837 struct btrfs_key key; 2838 u64 generation; 2839 u64 extent_logical; 2840 u64 extent_physical; 2841 u64 extent_len; 2842 u64 mapped_length; 2843 struct btrfs_device *extent_dev; 2844 struct scrub_parity *sparity; 2845 int nsectors; 2846 int bitmap_len; 2847 int extent_mirror_num; 2848 int stop_loop = 0; 2849 2850 nsectors = div_u64(map->stripe_len, fs_info->sectorsize); 2851 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2852 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2853 GFP_NOFS); 2854 if (!sparity) { 2855 spin_lock(&sctx->stat_lock); 2856 sctx->stat.malloc_errors++; 2857 spin_unlock(&sctx->stat_lock); 2858 return -ENOMEM; 2859 } 2860 2861 sparity->stripe_len = map->stripe_len; 2862 sparity->nsectors = nsectors; 2863 sparity->sctx = sctx; 2864 sparity->scrub_dev = sdev; 2865 sparity->logic_start = logic_start; 2866 sparity->logic_end = logic_end; 2867 refcount_set(&sparity->refs, 1); 2868 INIT_LIST_HEAD(&sparity->spages); 2869 sparity->dbitmap = sparity->bitmap; 2870 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2871 2872 ret = 0; 2873 while (logic_start < logic_end) { 2874 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2875 key.type = BTRFS_METADATA_ITEM_KEY; 2876 else 2877 key.type = BTRFS_EXTENT_ITEM_KEY; 2878 key.objectid = logic_start; 2879 key.offset = (u64)-1; 2880 2881 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2882 if (ret < 0) 2883 goto out; 2884 2885 if (ret > 0) { 2886 ret = btrfs_previous_extent_item(root, path, 0); 2887 if (ret < 0) 2888 goto out; 2889 if (ret > 0) { 2890 btrfs_release_path(path); 2891 ret = btrfs_search_slot(NULL, root, &key, 2892 path, 0, 0); 2893 if (ret < 0) 2894 goto out; 2895 } 2896 } 2897 2898 stop_loop = 0; 2899 while (1) { 2900 u64 bytes; 2901 2902 l = path->nodes[0]; 2903 slot = path->slots[0]; 2904 if (slot >= btrfs_header_nritems(l)) { 2905 ret = btrfs_next_leaf(root, path); 2906 if (ret == 0) 2907 continue; 2908 if (ret < 0) 2909 goto out; 2910 2911 stop_loop = 1; 2912 break; 2913 } 2914 btrfs_item_key_to_cpu(l, &key, slot); 2915 2916 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2917 key.type != BTRFS_METADATA_ITEM_KEY) 2918 goto next; 2919 2920 if (key.type == BTRFS_METADATA_ITEM_KEY) 2921 bytes = fs_info->nodesize; 2922 else 2923 bytes = key.offset; 2924 2925 if (key.objectid + bytes <= logic_start) 2926 goto next; 2927 2928 if (key.objectid >= logic_end) { 2929 stop_loop = 1; 2930 break; 2931 } 2932 2933 while (key.objectid >= logic_start + map->stripe_len) 2934 logic_start += map->stripe_len; 2935 2936 extent = btrfs_item_ptr(l, slot, 2937 struct btrfs_extent_item); 2938 flags = btrfs_extent_flags(l, extent); 2939 generation = btrfs_extent_generation(l, extent); 2940 2941 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 2942 (key.objectid < logic_start || 2943 key.objectid + bytes > 2944 logic_start + map->stripe_len)) { 2945 btrfs_err(fs_info, 2946 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 2947 key.objectid, logic_start); 2948 spin_lock(&sctx->stat_lock); 2949 sctx->stat.uncorrectable_errors++; 2950 spin_unlock(&sctx->stat_lock); 2951 goto next; 2952 } 2953 again: 2954 extent_logical = key.objectid; 2955 extent_len = bytes; 2956 2957 if (extent_logical < logic_start) { 2958 extent_len -= logic_start - extent_logical; 2959 extent_logical = logic_start; 2960 } 2961 2962 if (extent_logical + extent_len > 2963 logic_start + map->stripe_len) 2964 extent_len = logic_start + map->stripe_len - 2965 extent_logical; 2966 2967 scrub_parity_mark_sectors_data(sparity, extent_logical, 2968 extent_len); 2969 2970 mapped_length = extent_len; 2971 bbio = NULL; 2972 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 2973 extent_logical, &mapped_length, &bbio, 2974 0); 2975 if (!ret) { 2976 if (!bbio || mapped_length < extent_len) 2977 ret = -EIO; 2978 } 2979 if (ret) { 2980 btrfs_put_bbio(bbio); 2981 goto out; 2982 } 2983 extent_physical = bbio->stripes[0].physical; 2984 extent_mirror_num = bbio->mirror_num; 2985 extent_dev = bbio->stripes[0].dev; 2986 btrfs_put_bbio(bbio); 2987 2988 ret = btrfs_lookup_csums_range(csum_root, 2989 extent_logical, 2990 extent_logical + extent_len - 1, 2991 &sctx->csum_list, 1); 2992 if (ret) 2993 goto out; 2994 2995 ret = scrub_extent_for_parity(sparity, extent_logical, 2996 extent_len, 2997 extent_physical, 2998 extent_dev, flags, 2999 generation, 3000 extent_mirror_num); 3001 3002 scrub_free_csums(sctx); 3003 3004 if (ret) 3005 goto out; 3006 3007 if (extent_logical + extent_len < 3008 key.objectid + bytes) { 3009 logic_start += map->stripe_len; 3010 3011 if (logic_start >= logic_end) { 3012 stop_loop = 1; 3013 break; 3014 } 3015 3016 if (logic_start < key.objectid + bytes) { 3017 cond_resched(); 3018 goto again; 3019 } 3020 } 3021 next: 3022 path->slots[0]++; 3023 } 3024 3025 btrfs_release_path(path); 3026 3027 if (stop_loop) 3028 break; 3029 3030 logic_start += map->stripe_len; 3031 } 3032 out: 3033 if (ret < 0) 3034 scrub_parity_mark_sectors_error(sparity, logic_start, 3035 logic_end - logic_start); 3036 scrub_parity_put(sparity); 3037 scrub_submit(sctx); 3038 mutex_lock(&sctx->wr_lock); 3039 scrub_wr_submit(sctx); 3040 mutex_unlock(&sctx->wr_lock); 3041 3042 btrfs_release_path(path); 3043 return ret < 0 ? ret : 0; 3044 } 3045 3046 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3047 struct map_lookup *map, 3048 struct btrfs_device *scrub_dev, 3049 int num, u64 base, u64 length) 3050 { 3051 struct btrfs_path *path, *ppath; 3052 struct btrfs_fs_info *fs_info = sctx->fs_info; 3053 struct btrfs_root *root = fs_info->extent_root; 3054 struct btrfs_root *csum_root = fs_info->csum_root; 3055 struct btrfs_extent_item *extent; 3056 struct blk_plug plug; 3057 u64 flags; 3058 int ret; 3059 int slot; 3060 u64 nstripes; 3061 struct extent_buffer *l; 3062 u64 physical; 3063 u64 logical; 3064 u64 logic_end; 3065 u64 physical_end; 3066 u64 generation; 3067 int mirror_num; 3068 struct reada_control *reada1; 3069 struct reada_control *reada2; 3070 struct btrfs_key key; 3071 struct btrfs_key key_end; 3072 u64 increment = map->stripe_len; 3073 u64 offset; 3074 u64 extent_logical; 3075 u64 extent_physical; 3076 u64 extent_len; 3077 u64 stripe_logical; 3078 u64 stripe_end; 3079 struct btrfs_device *extent_dev; 3080 int extent_mirror_num; 3081 int stop_loop = 0; 3082 3083 physical = map->stripes[num].physical; 3084 offset = 0; 3085 nstripes = div64_u64(length, map->stripe_len); 3086 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3087 offset = map->stripe_len * num; 3088 increment = map->stripe_len * map->num_stripes; 3089 mirror_num = 1; 3090 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3091 int factor = map->num_stripes / map->sub_stripes; 3092 offset = map->stripe_len * (num / map->sub_stripes); 3093 increment = map->stripe_len * factor; 3094 mirror_num = num % map->sub_stripes + 1; 3095 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 3096 increment = map->stripe_len; 3097 mirror_num = num % map->num_stripes + 1; 3098 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3099 increment = map->stripe_len; 3100 mirror_num = num % map->num_stripes + 1; 3101 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3102 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3103 increment = map->stripe_len * nr_data_stripes(map); 3104 mirror_num = 1; 3105 } else { 3106 increment = map->stripe_len; 3107 mirror_num = 1; 3108 } 3109 3110 path = btrfs_alloc_path(); 3111 if (!path) 3112 return -ENOMEM; 3113 3114 ppath = btrfs_alloc_path(); 3115 if (!ppath) { 3116 btrfs_free_path(path); 3117 return -ENOMEM; 3118 } 3119 3120 /* 3121 * work on commit root. The related disk blocks are static as 3122 * long as COW is applied. This means, it is save to rewrite 3123 * them to repair disk errors without any race conditions 3124 */ 3125 path->search_commit_root = 1; 3126 path->skip_locking = 1; 3127 3128 ppath->search_commit_root = 1; 3129 ppath->skip_locking = 1; 3130 /* 3131 * trigger the readahead for extent tree csum tree and wait for 3132 * completion. During readahead, the scrub is officially paused 3133 * to not hold off transaction commits 3134 */ 3135 logical = base + offset; 3136 physical_end = physical + nstripes * map->stripe_len; 3137 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3138 get_raid56_logic_offset(physical_end, num, 3139 map, &logic_end, NULL); 3140 logic_end += base; 3141 } else { 3142 logic_end = logical + increment * nstripes; 3143 } 3144 wait_event(sctx->list_wait, 3145 atomic_read(&sctx->bios_in_flight) == 0); 3146 scrub_blocked_if_needed(fs_info); 3147 3148 /* FIXME it might be better to start readahead at commit root */ 3149 key.objectid = logical; 3150 key.type = BTRFS_EXTENT_ITEM_KEY; 3151 key.offset = (u64)0; 3152 key_end.objectid = logic_end; 3153 key_end.type = BTRFS_METADATA_ITEM_KEY; 3154 key_end.offset = (u64)-1; 3155 reada1 = btrfs_reada_add(root, &key, &key_end); 3156 3157 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3158 key.type = BTRFS_EXTENT_CSUM_KEY; 3159 key.offset = logical; 3160 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3161 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3162 key_end.offset = logic_end; 3163 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3164 3165 if (!IS_ERR(reada1)) 3166 btrfs_reada_wait(reada1); 3167 if (!IS_ERR(reada2)) 3168 btrfs_reada_wait(reada2); 3169 3170 3171 /* 3172 * collect all data csums for the stripe to avoid seeking during 3173 * the scrub. This might currently (crc32) end up to be about 1MB 3174 */ 3175 blk_start_plug(&plug); 3176 3177 /* 3178 * now find all extents for each stripe and scrub them 3179 */ 3180 ret = 0; 3181 while (physical < physical_end) { 3182 /* 3183 * canceled? 3184 */ 3185 if (atomic_read(&fs_info->scrub_cancel_req) || 3186 atomic_read(&sctx->cancel_req)) { 3187 ret = -ECANCELED; 3188 goto out; 3189 } 3190 /* 3191 * check to see if we have to pause 3192 */ 3193 if (atomic_read(&fs_info->scrub_pause_req)) { 3194 /* push queued extents */ 3195 sctx->flush_all_writes = true; 3196 scrub_submit(sctx); 3197 mutex_lock(&sctx->wr_lock); 3198 scrub_wr_submit(sctx); 3199 mutex_unlock(&sctx->wr_lock); 3200 wait_event(sctx->list_wait, 3201 atomic_read(&sctx->bios_in_flight) == 0); 3202 sctx->flush_all_writes = false; 3203 scrub_blocked_if_needed(fs_info); 3204 } 3205 3206 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3207 ret = get_raid56_logic_offset(physical, num, map, 3208 &logical, 3209 &stripe_logical); 3210 logical += base; 3211 if (ret) { 3212 /* it is parity strip */ 3213 stripe_logical += base; 3214 stripe_end = stripe_logical + increment; 3215 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3216 ppath, stripe_logical, 3217 stripe_end); 3218 if (ret) 3219 goto out; 3220 goto skip; 3221 } 3222 } 3223 3224 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3225 key.type = BTRFS_METADATA_ITEM_KEY; 3226 else 3227 key.type = BTRFS_EXTENT_ITEM_KEY; 3228 key.objectid = logical; 3229 key.offset = (u64)-1; 3230 3231 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3232 if (ret < 0) 3233 goto out; 3234 3235 if (ret > 0) { 3236 ret = btrfs_previous_extent_item(root, path, 0); 3237 if (ret < 0) 3238 goto out; 3239 if (ret > 0) { 3240 /* there's no smaller item, so stick with the 3241 * larger one */ 3242 btrfs_release_path(path); 3243 ret = btrfs_search_slot(NULL, root, &key, 3244 path, 0, 0); 3245 if (ret < 0) 3246 goto out; 3247 } 3248 } 3249 3250 stop_loop = 0; 3251 while (1) { 3252 u64 bytes; 3253 3254 l = path->nodes[0]; 3255 slot = path->slots[0]; 3256 if (slot >= btrfs_header_nritems(l)) { 3257 ret = btrfs_next_leaf(root, path); 3258 if (ret == 0) 3259 continue; 3260 if (ret < 0) 3261 goto out; 3262 3263 stop_loop = 1; 3264 break; 3265 } 3266 btrfs_item_key_to_cpu(l, &key, slot); 3267 3268 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3269 key.type != BTRFS_METADATA_ITEM_KEY) 3270 goto next; 3271 3272 if (key.type == BTRFS_METADATA_ITEM_KEY) 3273 bytes = fs_info->nodesize; 3274 else 3275 bytes = key.offset; 3276 3277 if (key.objectid + bytes <= logical) 3278 goto next; 3279 3280 if (key.objectid >= logical + map->stripe_len) { 3281 /* out of this device extent */ 3282 if (key.objectid >= logic_end) 3283 stop_loop = 1; 3284 break; 3285 } 3286 3287 extent = btrfs_item_ptr(l, slot, 3288 struct btrfs_extent_item); 3289 flags = btrfs_extent_flags(l, extent); 3290 generation = btrfs_extent_generation(l, extent); 3291 3292 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3293 (key.objectid < logical || 3294 key.objectid + bytes > 3295 logical + map->stripe_len)) { 3296 btrfs_err(fs_info, 3297 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3298 key.objectid, logical); 3299 spin_lock(&sctx->stat_lock); 3300 sctx->stat.uncorrectable_errors++; 3301 spin_unlock(&sctx->stat_lock); 3302 goto next; 3303 } 3304 3305 again: 3306 extent_logical = key.objectid; 3307 extent_len = bytes; 3308 3309 /* 3310 * trim extent to this stripe 3311 */ 3312 if (extent_logical < logical) { 3313 extent_len -= logical - extent_logical; 3314 extent_logical = logical; 3315 } 3316 if (extent_logical + extent_len > 3317 logical + map->stripe_len) { 3318 extent_len = logical + map->stripe_len - 3319 extent_logical; 3320 } 3321 3322 extent_physical = extent_logical - logical + physical; 3323 extent_dev = scrub_dev; 3324 extent_mirror_num = mirror_num; 3325 if (sctx->is_dev_replace) 3326 scrub_remap_extent(fs_info, extent_logical, 3327 extent_len, &extent_physical, 3328 &extent_dev, 3329 &extent_mirror_num); 3330 3331 ret = btrfs_lookup_csums_range(csum_root, 3332 extent_logical, 3333 extent_logical + 3334 extent_len - 1, 3335 &sctx->csum_list, 1); 3336 if (ret) 3337 goto out; 3338 3339 ret = scrub_extent(sctx, map, extent_logical, extent_len, 3340 extent_physical, extent_dev, flags, 3341 generation, extent_mirror_num, 3342 extent_logical - logical + physical); 3343 3344 scrub_free_csums(sctx); 3345 3346 if (ret) 3347 goto out; 3348 3349 if (extent_logical + extent_len < 3350 key.objectid + bytes) { 3351 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3352 /* 3353 * loop until we find next data stripe 3354 * or we have finished all stripes. 3355 */ 3356 loop: 3357 physical += map->stripe_len; 3358 ret = get_raid56_logic_offset(physical, 3359 num, map, &logical, 3360 &stripe_logical); 3361 logical += base; 3362 3363 if (ret && physical < physical_end) { 3364 stripe_logical += base; 3365 stripe_end = stripe_logical + 3366 increment; 3367 ret = scrub_raid56_parity(sctx, 3368 map, scrub_dev, ppath, 3369 stripe_logical, 3370 stripe_end); 3371 if (ret) 3372 goto out; 3373 goto loop; 3374 } 3375 } else { 3376 physical += map->stripe_len; 3377 logical += increment; 3378 } 3379 if (logical < key.objectid + bytes) { 3380 cond_resched(); 3381 goto again; 3382 } 3383 3384 if (physical >= physical_end) { 3385 stop_loop = 1; 3386 break; 3387 } 3388 } 3389 next: 3390 path->slots[0]++; 3391 } 3392 btrfs_release_path(path); 3393 skip: 3394 logical += increment; 3395 physical += map->stripe_len; 3396 spin_lock(&sctx->stat_lock); 3397 if (stop_loop) 3398 sctx->stat.last_physical = map->stripes[num].physical + 3399 length; 3400 else 3401 sctx->stat.last_physical = physical; 3402 spin_unlock(&sctx->stat_lock); 3403 if (stop_loop) 3404 break; 3405 } 3406 out: 3407 /* push queued extents */ 3408 scrub_submit(sctx); 3409 mutex_lock(&sctx->wr_lock); 3410 scrub_wr_submit(sctx); 3411 mutex_unlock(&sctx->wr_lock); 3412 3413 blk_finish_plug(&plug); 3414 btrfs_free_path(path); 3415 btrfs_free_path(ppath); 3416 return ret < 0 ? ret : 0; 3417 } 3418 3419 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3420 struct btrfs_device *scrub_dev, 3421 u64 chunk_offset, u64 length, 3422 u64 dev_offset, 3423 struct btrfs_block_group *cache) 3424 { 3425 struct btrfs_fs_info *fs_info = sctx->fs_info; 3426 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 3427 struct map_lookup *map; 3428 struct extent_map *em; 3429 int i; 3430 int ret = 0; 3431 3432 read_lock(&map_tree->lock); 3433 em = lookup_extent_mapping(map_tree, chunk_offset, 1); 3434 read_unlock(&map_tree->lock); 3435 3436 if (!em) { 3437 /* 3438 * Might have been an unused block group deleted by the cleaner 3439 * kthread or relocation. 3440 */ 3441 spin_lock(&cache->lock); 3442 if (!cache->removed) 3443 ret = -EINVAL; 3444 spin_unlock(&cache->lock); 3445 3446 return ret; 3447 } 3448 3449 map = em->map_lookup; 3450 if (em->start != chunk_offset) 3451 goto out; 3452 3453 if (em->len < length) 3454 goto out; 3455 3456 for (i = 0; i < map->num_stripes; ++i) { 3457 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3458 map->stripes[i].physical == dev_offset) { 3459 ret = scrub_stripe(sctx, map, scrub_dev, i, 3460 chunk_offset, length); 3461 if (ret) 3462 goto out; 3463 } 3464 } 3465 out: 3466 free_extent_map(em); 3467 3468 return ret; 3469 } 3470 3471 static noinline_for_stack 3472 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3473 struct btrfs_device *scrub_dev, u64 start, u64 end) 3474 { 3475 struct btrfs_dev_extent *dev_extent = NULL; 3476 struct btrfs_path *path; 3477 struct btrfs_fs_info *fs_info = sctx->fs_info; 3478 struct btrfs_root *root = fs_info->dev_root; 3479 u64 length; 3480 u64 chunk_offset; 3481 int ret = 0; 3482 int ro_set; 3483 int slot; 3484 struct extent_buffer *l; 3485 struct btrfs_key key; 3486 struct btrfs_key found_key; 3487 struct btrfs_block_group *cache; 3488 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3489 3490 path = btrfs_alloc_path(); 3491 if (!path) 3492 return -ENOMEM; 3493 3494 path->reada = READA_FORWARD; 3495 path->search_commit_root = 1; 3496 path->skip_locking = 1; 3497 3498 key.objectid = scrub_dev->devid; 3499 key.offset = 0ull; 3500 key.type = BTRFS_DEV_EXTENT_KEY; 3501 3502 while (1) { 3503 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3504 if (ret < 0) 3505 break; 3506 if (ret > 0) { 3507 if (path->slots[0] >= 3508 btrfs_header_nritems(path->nodes[0])) { 3509 ret = btrfs_next_leaf(root, path); 3510 if (ret < 0) 3511 break; 3512 if (ret > 0) { 3513 ret = 0; 3514 break; 3515 } 3516 } else { 3517 ret = 0; 3518 } 3519 } 3520 3521 l = path->nodes[0]; 3522 slot = path->slots[0]; 3523 3524 btrfs_item_key_to_cpu(l, &found_key, slot); 3525 3526 if (found_key.objectid != scrub_dev->devid) 3527 break; 3528 3529 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3530 break; 3531 3532 if (found_key.offset >= end) 3533 break; 3534 3535 if (found_key.offset < key.offset) 3536 break; 3537 3538 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3539 length = btrfs_dev_extent_length(l, dev_extent); 3540 3541 if (found_key.offset + length <= start) 3542 goto skip; 3543 3544 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3545 3546 /* 3547 * get a reference on the corresponding block group to prevent 3548 * the chunk from going away while we scrub it 3549 */ 3550 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3551 3552 /* some chunks are removed but not committed to disk yet, 3553 * continue scrubbing */ 3554 if (!cache) 3555 goto skip; 3556 3557 /* 3558 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3559 * to avoid deadlock caused by: 3560 * btrfs_inc_block_group_ro() 3561 * -> btrfs_wait_for_commit() 3562 * -> btrfs_commit_transaction() 3563 * -> btrfs_scrub_pause() 3564 */ 3565 scrub_pause_on(fs_info); 3566 3567 /* 3568 * Don't do chunk preallocation for scrub. 3569 * 3570 * This is especially important for SYSTEM bgs, or we can hit 3571 * -EFBIG from btrfs_finish_chunk_alloc() like: 3572 * 1. The only SYSTEM bg is marked RO. 3573 * Since SYSTEM bg is small, that's pretty common. 3574 * 2. New SYSTEM bg will be allocated 3575 * Due to regular version will allocate new chunk. 3576 * 3. New SYSTEM bg is empty and will get cleaned up 3577 * Before cleanup really happens, it's marked RO again. 3578 * 4. Empty SYSTEM bg get scrubbed 3579 * We go back to 2. 3580 * 3581 * This can easily boost the amount of SYSTEM chunks if cleaner 3582 * thread can't be triggered fast enough, and use up all space 3583 * of btrfs_super_block::sys_chunk_array 3584 * 3585 * While for dev replace, we need to try our best to mark block 3586 * group RO, to prevent race between: 3587 * - Write duplication 3588 * Contains latest data 3589 * - Scrub copy 3590 * Contains data from commit tree 3591 * 3592 * If target block group is not marked RO, nocow writes can 3593 * be overwritten by scrub copy, causing data corruption. 3594 * So for dev-replace, it's not allowed to continue if a block 3595 * group is not RO. 3596 */ 3597 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 3598 if (ret == 0) { 3599 ro_set = 1; 3600 } else if (ret == -ENOSPC && !sctx->is_dev_replace) { 3601 /* 3602 * btrfs_inc_block_group_ro return -ENOSPC when it 3603 * failed in creating new chunk for metadata. 3604 * It is not a problem for scrub, because 3605 * metadata are always cowed, and our scrub paused 3606 * commit_transactions. 3607 */ 3608 ro_set = 0; 3609 } else { 3610 btrfs_warn(fs_info, 3611 "failed setting block group ro: %d", ret); 3612 btrfs_put_block_group(cache); 3613 scrub_pause_off(fs_info); 3614 break; 3615 } 3616 3617 /* 3618 * Now the target block is marked RO, wait for nocow writes to 3619 * finish before dev-replace. 3620 * COW is fine, as COW never overwrites extents in commit tree. 3621 */ 3622 if (sctx->is_dev_replace) { 3623 btrfs_wait_nocow_writers(cache); 3624 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 3625 cache->length); 3626 } 3627 3628 scrub_pause_off(fs_info); 3629 down_write(&dev_replace->rwsem); 3630 dev_replace->cursor_right = found_key.offset + length; 3631 dev_replace->cursor_left = found_key.offset; 3632 dev_replace->item_needs_writeback = 1; 3633 up_write(&dev_replace->rwsem); 3634 3635 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3636 found_key.offset, cache); 3637 3638 /* 3639 * flush, submit all pending read and write bios, afterwards 3640 * wait for them. 3641 * Note that in the dev replace case, a read request causes 3642 * write requests that are submitted in the read completion 3643 * worker. Therefore in the current situation, it is required 3644 * that all write requests are flushed, so that all read and 3645 * write requests are really completed when bios_in_flight 3646 * changes to 0. 3647 */ 3648 sctx->flush_all_writes = true; 3649 scrub_submit(sctx); 3650 mutex_lock(&sctx->wr_lock); 3651 scrub_wr_submit(sctx); 3652 mutex_unlock(&sctx->wr_lock); 3653 3654 wait_event(sctx->list_wait, 3655 atomic_read(&sctx->bios_in_flight) == 0); 3656 3657 scrub_pause_on(fs_info); 3658 3659 /* 3660 * must be called before we decrease @scrub_paused. 3661 * make sure we don't block transaction commit while 3662 * we are waiting pending workers finished. 3663 */ 3664 wait_event(sctx->list_wait, 3665 atomic_read(&sctx->workers_pending) == 0); 3666 sctx->flush_all_writes = false; 3667 3668 scrub_pause_off(fs_info); 3669 3670 down_write(&dev_replace->rwsem); 3671 dev_replace->cursor_left = dev_replace->cursor_right; 3672 dev_replace->item_needs_writeback = 1; 3673 up_write(&dev_replace->rwsem); 3674 3675 if (ro_set) 3676 btrfs_dec_block_group_ro(cache); 3677 3678 /* 3679 * We might have prevented the cleaner kthread from deleting 3680 * this block group if it was already unused because we raced 3681 * and set it to RO mode first. So add it back to the unused 3682 * list, otherwise it might not ever be deleted unless a manual 3683 * balance is triggered or it becomes used and unused again. 3684 */ 3685 spin_lock(&cache->lock); 3686 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3687 cache->used == 0) { 3688 spin_unlock(&cache->lock); 3689 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 3690 btrfs_discard_queue_work(&fs_info->discard_ctl, 3691 cache); 3692 else 3693 btrfs_mark_bg_unused(cache); 3694 } else { 3695 spin_unlock(&cache->lock); 3696 } 3697 3698 btrfs_put_block_group(cache); 3699 if (ret) 3700 break; 3701 if (sctx->is_dev_replace && 3702 atomic64_read(&dev_replace->num_write_errors) > 0) { 3703 ret = -EIO; 3704 break; 3705 } 3706 if (sctx->stat.malloc_errors > 0) { 3707 ret = -ENOMEM; 3708 break; 3709 } 3710 skip: 3711 key.offset = found_key.offset + length; 3712 btrfs_release_path(path); 3713 } 3714 3715 btrfs_free_path(path); 3716 3717 return ret; 3718 } 3719 3720 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3721 struct btrfs_device *scrub_dev) 3722 { 3723 int i; 3724 u64 bytenr; 3725 u64 gen; 3726 int ret; 3727 struct btrfs_fs_info *fs_info = sctx->fs_info; 3728 3729 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3730 return -EIO; 3731 3732 /* Seed devices of a new filesystem has their own generation. */ 3733 if (scrub_dev->fs_devices != fs_info->fs_devices) 3734 gen = scrub_dev->generation; 3735 else 3736 gen = fs_info->last_trans_committed; 3737 3738 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3739 bytenr = btrfs_sb_offset(i); 3740 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3741 scrub_dev->commit_total_bytes) 3742 break; 3743 3744 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3745 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3746 NULL, 1, bytenr); 3747 if (ret) 3748 return ret; 3749 } 3750 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3751 3752 return 0; 3753 } 3754 3755 /* 3756 * get a reference count on fs_info->scrub_workers. start worker if necessary 3757 */ 3758 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 3759 int is_dev_replace) 3760 { 3761 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3762 int max_active = fs_info->thread_pool_size; 3763 3764 lockdep_assert_held(&fs_info->scrub_lock); 3765 3766 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 3767 ASSERT(fs_info->scrub_workers == NULL); 3768 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", 3769 flags, is_dev_replace ? 1 : max_active, 4); 3770 if (!fs_info->scrub_workers) 3771 goto fail_scrub_workers; 3772 3773 ASSERT(fs_info->scrub_wr_completion_workers == NULL); 3774 fs_info->scrub_wr_completion_workers = 3775 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 3776 max_active, 2); 3777 if (!fs_info->scrub_wr_completion_workers) 3778 goto fail_scrub_wr_completion_workers; 3779 3780 ASSERT(fs_info->scrub_parity_workers == NULL); 3781 fs_info->scrub_parity_workers = 3782 btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 3783 max_active, 2); 3784 if (!fs_info->scrub_parity_workers) 3785 goto fail_scrub_parity_workers; 3786 3787 refcount_set(&fs_info->scrub_workers_refcnt, 1); 3788 } else { 3789 refcount_inc(&fs_info->scrub_workers_refcnt); 3790 } 3791 return 0; 3792 3793 fail_scrub_parity_workers: 3794 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3795 fail_scrub_wr_completion_workers: 3796 btrfs_destroy_workqueue(fs_info->scrub_workers); 3797 fail_scrub_workers: 3798 return -ENOMEM; 3799 } 3800 3801 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3802 u64 end, struct btrfs_scrub_progress *progress, 3803 int readonly, int is_dev_replace) 3804 { 3805 struct scrub_ctx *sctx; 3806 int ret; 3807 struct btrfs_device *dev; 3808 unsigned int nofs_flag; 3809 struct btrfs_workqueue *scrub_workers = NULL; 3810 struct btrfs_workqueue *scrub_wr_comp = NULL; 3811 struct btrfs_workqueue *scrub_parity = NULL; 3812 3813 if (btrfs_fs_closing(fs_info)) 3814 return -EAGAIN; 3815 3816 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 3817 /* 3818 * in this case scrub is unable to calculate the checksum 3819 * the way scrub is implemented. Do not handle this 3820 * situation at all because it won't ever happen. 3821 */ 3822 btrfs_err(fs_info, 3823 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 3824 fs_info->nodesize, 3825 BTRFS_STRIPE_LEN); 3826 return -EINVAL; 3827 } 3828 3829 if (fs_info->sectorsize != PAGE_SIZE) { 3830 /* not supported for data w/o checksums */ 3831 btrfs_err_rl(fs_info, 3832 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", 3833 fs_info->sectorsize, PAGE_SIZE); 3834 return -EINVAL; 3835 } 3836 3837 if (fs_info->nodesize > 3838 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 3839 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 3840 /* 3841 * would exhaust the array bounds of pagev member in 3842 * struct scrub_block 3843 */ 3844 btrfs_err(fs_info, 3845 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 3846 fs_info->nodesize, 3847 SCRUB_MAX_PAGES_PER_BLOCK, 3848 fs_info->sectorsize, 3849 SCRUB_MAX_PAGES_PER_BLOCK); 3850 return -EINVAL; 3851 } 3852 3853 /* Allocate outside of device_list_mutex */ 3854 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 3855 if (IS_ERR(sctx)) 3856 return PTR_ERR(sctx); 3857 3858 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3859 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 3860 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 3861 !is_dev_replace)) { 3862 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3863 ret = -ENODEV; 3864 goto out_free_ctx; 3865 } 3866 3867 if (!is_dev_replace && !readonly && 3868 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 3869 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3870 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable", 3871 rcu_str_deref(dev->name)); 3872 ret = -EROFS; 3873 goto out_free_ctx; 3874 } 3875 3876 mutex_lock(&fs_info->scrub_lock); 3877 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3878 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 3879 mutex_unlock(&fs_info->scrub_lock); 3880 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3881 ret = -EIO; 3882 goto out_free_ctx; 3883 } 3884 3885 down_read(&fs_info->dev_replace.rwsem); 3886 if (dev->scrub_ctx || 3887 (!is_dev_replace && 3888 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3889 up_read(&fs_info->dev_replace.rwsem); 3890 mutex_unlock(&fs_info->scrub_lock); 3891 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3892 ret = -EINPROGRESS; 3893 goto out_free_ctx; 3894 } 3895 up_read(&fs_info->dev_replace.rwsem); 3896 3897 ret = scrub_workers_get(fs_info, is_dev_replace); 3898 if (ret) { 3899 mutex_unlock(&fs_info->scrub_lock); 3900 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3901 goto out_free_ctx; 3902 } 3903 3904 sctx->readonly = readonly; 3905 dev->scrub_ctx = sctx; 3906 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3907 3908 /* 3909 * checking @scrub_pause_req here, we can avoid 3910 * race between committing transaction and scrubbing. 3911 */ 3912 __scrub_blocked_if_needed(fs_info); 3913 atomic_inc(&fs_info->scrubs_running); 3914 mutex_unlock(&fs_info->scrub_lock); 3915 3916 /* 3917 * In order to avoid deadlock with reclaim when there is a transaction 3918 * trying to pause scrub, make sure we use GFP_NOFS for all the 3919 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity() 3920 * invoked by our callees. The pausing request is done when the 3921 * transaction commit starts, and it blocks the transaction until scrub 3922 * is paused (done at specific points at scrub_stripe() or right above 3923 * before incrementing fs_info->scrubs_running). 3924 */ 3925 nofs_flag = memalloc_nofs_save(); 3926 if (!is_dev_replace) { 3927 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 3928 /* 3929 * by holding device list mutex, we can 3930 * kick off writing super in log tree sync. 3931 */ 3932 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3933 ret = scrub_supers(sctx, dev); 3934 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3935 } 3936 3937 if (!ret) 3938 ret = scrub_enumerate_chunks(sctx, dev, start, end); 3939 memalloc_nofs_restore(nofs_flag); 3940 3941 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3942 atomic_dec(&fs_info->scrubs_running); 3943 wake_up(&fs_info->scrub_pause_wait); 3944 3945 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3946 3947 if (progress) 3948 memcpy(progress, &sctx->stat, sizeof(*progress)); 3949 3950 if (!is_dev_replace) 3951 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 3952 ret ? "not finished" : "finished", devid, ret); 3953 3954 mutex_lock(&fs_info->scrub_lock); 3955 dev->scrub_ctx = NULL; 3956 if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) { 3957 scrub_workers = fs_info->scrub_workers; 3958 scrub_wr_comp = fs_info->scrub_wr_completion_workers; 3959 scrub_parity = fs_info->scrub_parity_workers; 3960 3961 fs_info->scrub_workers = NULL; 3962 fs_info->scrub_wr_completion_workers = NULL; 3963 fs_info->scrub_parity_workers = NULL; 3964 } 3965 mutex_unlock(&fs_info->scrub_lock); 3966 3967 btrfs_destroy_workqueue(scrub_workers); 3968 btrfs_destroy_workqueue(scrub_wr_comp); 3969 btrfs_destroy_workqueue(scrub_parity); 3970 scrub_put_ctx(sctx); 3971 3972 return ret; 3973 3974 out_free_ctx: 3975 scrub_free_ctx(sctx); 3976 3977 return ret; 3978 } 3979 3980 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 3981 { 3982 mutex_lock(&fs_info->scrub_lock); 3983 atomic_inc(&fs_info->scrub_pause_req); 3984 while (atomic_read(&fs_info->scrubs_paused) != 3985 atomic_read(&fs_info->scrubs_running)) { 3986 mutex_unlock(&fs_info->scrub_lock); 3987 wait_event(fs_info->scrub_pause_wait, 3988 atomic_read(&fs_info->scrubs_paused) == 3989 atomic_read(&fs_info->scrubs_running)); 3990 mutex_lock(&fs_info->scrub_lock); 3991 } 3992 mutex_unlock(&fs_info->scrub_lock); 3993 } 3994 3995 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 3996 { 3997 atomic_dec(&fs_info->scrub_pause_req); 3998 wake_up(&fs_info->scrub_pause_wait); 3999 } 4000 4001 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4002 { 4003 mutex_lock(&fs_info->scrub_lock); 4004 if (!atomic_read(&fs_info->scrubs_running)) { 4005 mutex_unlock(&fs_info->scrub_lock); 4006 return -ENOTCONN; 4007 } 4008 4009 atomic_inc(&fs_info->scrub_cancel_req); 4010 while (atomic_read(&fs_info->scrubs_running)) { 4011 mutex_unlock(&fs_info->scrub_lock); 4012 wait_event(fs_info->scrub_pause_wait, 4013 atomic_read(&fs_info->scrubs_running) == 0); 4014 mutex_lock(&fs_info->scrub_lock); 4015 } 4016 atomic_dec(&fs_info->scrub_cancel_req); 4017 mutex_unlock(&fs_info->scrub_lock); 4018 4019 return 0; 4020 } 4021 4022 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 4023 { 4024 struct btrfs_fs_info *fs_info = dev->fs_info; 4025 struct scrub_ctx *sctx; 4026 4027 mutex_lock(&fs_info->scrub_lock); 4028 sctx = dev->scrub_ctx; 4029 if (!sctx) { 4030 mutex_unlock(&fs_info->scrub_lock); 4031 return -ENOTCONN; 4032 } 4033 atomic_inc(&sctx->cancel_req); 4034 while (dev->scrub_ctx) { 4035 mutex_unlock(&fs_info->scrub_lock); 4036 wait_event(fs_info->scrub_pause_wait, 4037 dev->scrub_ctx == NULL); 4038 mutex_lock(&fs_info->scrub_lock); 4039 } 4040 mutex_unlock(&fs_info->scrub_lock); 4041 4042 return 0; 4043 } 4044 4045 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4046 struct btrfs_scrub_progress *progress) 4047 { 4048 struct btrfs_device *dev; 4049 struct scrub_ctx *sctx = NULL; 4050 4051 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4052 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 4053 if (dev) 4054 sctx = dev->scrub_ctx; 4055 if (sctx) 4056 memcpy(progress, &sctx->stat, sizeof(*progress)); 4057 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4058 4059 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4060 } 4061 4062 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4063 u64 extent_logical, u64 extent_len, 4064 u64 *extent_physical, 4065 struct btrfs_device **extent_dev, 4066 int *extent_mirror_num) 4067 { 4068 u64 mapped_length; 4069 struct btrfs_bio *bbio = NULL; 4070 int ret; 4071 4072 mapped_length = extent_len; 4073 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4074 &mapped_length, &bbio, 0); 4075 if (ret || !bbio || mapped_length < extent_len || 4076 !bbio->stripes[0].dev->bdev) { 4077 btrfs_put_bbio(bbio); 4078 return; 4079 } 4080 4081 *extent_physical = bbio->stripes[0].physical; 4082 *extent_mirror_num = bbio->mirror_num; 4083 *extent_dev = bbio->stripes[0].dev; 4084 btrfs_put_bbio(bbio); 4085 } 4086