xref: /openbmc/linux/fs/btrfs/scrub.c (revision 74be2d3b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 
24 /*
25  * This is only the first step towards a full-features scrub. It reads all
26  * extent and super block and verifies the checksums. In case a bad checksum
27  * is found or the extent cannot be read, good data will be written back if
28  * any can be found.
29  *
30  * Future enhancements:
31  *  - In case an unrepairable extent is encountered, track which files are
32  *    affected and report them
33  *  - track and record media errors, throw out bad devices
34  *  - add a mode to also read unallocated space
35  */
36 
37 struct scrub_block;
38 struct scrub_ctx;
39 
40 /*
41  * the following three values only influence the performance.
42  * The last one configures the number of parallel and outstanding I/O
43  * operations. The first two values configure an upper limit for the number
44  * of (dynamically allocated) pages that are added to a bio.
45  */
46 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
47 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
48 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
49 
50 /*
51  * the following value times PAGE_SIZE needs to be large enough to match the
52  * largest node/leaf/sector size that shall be supported.
53  * Values larger than BTRFS_STRIPE_LEN are not supported.
54  */
55 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
56 
57 struct scrub_recover {
58 	refcount_t		refs;
59 	struct btrfs_bio	*bbio;
60 	u64			map_length;
61 };
62 
63 struct scrub_page {
64 	struct scrub_block	*sblock;
65 	struct page		*page;
66 	struct btrfs_device	*dev;
67 	struct list_head	list;
68 	u64			flags;  /* extent flags */
69 	u64			generation;
70 	u64			logical;
71 	u64			physical;
72 	u64			physical_for_dev_replace;
73 	atomic_t		refs;
74 	struct {
75 		unsigned int	mirror_num:8;
76 		unsigned int	have_csum:1;
77 		unsigned int	io_error:1;
78 	};
79 	u8			csum[BTRFS_CSUM_SIZE];
80 
81 	struct scrub_recover	*recover;
82 };
83 
84 struct scrub_bio {
85 	int			index;
86 	struct scrub_ctx	*sctx;
87 	struct btrfs_device	*dev;
88 	struct bio		*bio;
89 	blk_status_t		status;
90 	u64			logical;
91 	u64			physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 	int			page_count;
98 	int			next_free;
99 	struct btrfs_work	work;
100 };
101 
102 struct scrub_block {
103 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 	int			page_count;
105 	atomic_t		outstanding_pages;
106 	refcount_t		refs; /* free mem on transition to zero */
107 	struct scrub_ctx	*sctx;
108 	struct scrub_parity	*sparity;
109 	struct {
110 		unsigned int	header_error:1;
111 		unsigned int	checksum_error:1;
112 		unsigned int	no_io_error_seen:1;
113 		unsigned int	generation_error:1; /* also sets header_error */
114 
115 		/* The following is for the data used to check parity */
116 		/* It is for the data with checksum */
117 		unsigned int	data_corrected:1;
118 	};
119 	struct btrfs_work	work;
120 };
121 
122 /* Used for the chunks with parity stripe such RAID5/6 */
123 struct scrub_parity {
124 	struct scrub_ctx	*sctx;
125 
126 	struct btrfs_device	*scrub_dev;
127 
128 	u64			logic_start;
129 
130 	u64			logic_end;
131 
132 	int			nsectors;
133 
134 	u64			stripe_len;
135 
136 	refcount_t		refs;
137 
138 	struct list_head	spages;
139 
140 	/* Work of parity check and repair */
141 	struct btrfs_work	work;
142 
143 	/* Mark the parity blocks which have data */
144 	unsigned long		*dbitmap;
145 
146 	/*
147 	 * Mark the parity blocks which have data, but errors happen when
148 	 * read data or check data
149 	 */
150 	unsigned long		*ebitmap;
151 
152 	unsigned long		bitmap[];
153 };
154 
155 struct scrub_ctx {
156 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
157 	struct btrfs_fs_info	*fs_info;
158 	int			first_free;
159 	int			curr;
160 	atomic_t		bios_in_flight;
161 	atomic_t		workers_pending;
162 	spinlock_t		list_lock;
163 	wait_queue_head_t	list_wait;
164 	u16			csum_size;
165 	struct list_head	csum_list;
166 	atomic_t		cancel_req;
167 	int			readonly;
168 	int			pages_per_rd_bio;
169 
170 	int			is_dev_replace;
171 
172 	struct scrub_bio        *wr_curr_bio;
173 	struct mutex            wr_lock;
174 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
175 	struct btrfs_device     *wr_tgtdev;
176 	bool                    flush_all_writes;
177 
178 	/*
179 	 * statistics
180 	 */
181 	struct btrfs_scrub_progress stat;
182 	spinlock_t		stat_lock;
183 
184 	/*
185 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
186 	 * decrement bios_in_flight and workers_pending and then do a wakeup
187 	 * on the list_wait wait queue. We must ensure the main scrub task
188 	 * doesn't free the scrub context before or while the workers are
189 	 * doing the wakeup() call.
190 	 */
191 	refcount_t              refs;
192 };
193 
194 struct scrub_warning {
195 	struct btrfs_path	*path;
196 	u64			extent_item_size;
197 	const char		*errstr;
198 	u64			physical;
199 	u64			logical;
200 	struct btrfs_device	*dev;
201 };
202 
203 struct full_stripe_lock {
204 	struct rb_node node;
205 	u64 logical;
206 	u64 refs;
207 	struct mutex mutex;
208 };
209 
210 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
211 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
212 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
213 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
214 				     struct scrub_block *sblocks_for_recheck);
215 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
216 				struct scrub_block *sblock,
217 				int retry_failed_mirror);
218 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
219 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
220 					     struct scrub_block *sblock_good);
221 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
222 					    struct scrub_block *sblock_good,
223 					    int page_num, int force_write);
224 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
225 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
226 					   int page_num);
227 static int scrub_checksum_data(struct scrub_block *sblock);
228 static int scrub_checksum_tree_block(struct scrub_block *sblock);
229 static int scrub_checksum_super(struct scrub_block *sblock);
230 static void scrub_block_get(struct scrub_block *sblock);
231 static void scrub_block_put(struct scrub_block *sblock);
232 static void scrub_page_get(struct scrub_page *spage);
233 static void scrub_page_put(struct scrub_page *spage);
234 static void scrub_parity_get(struct scrub_parity *sparity);
235 static void scrub_parity_put(struct scrub_parity *sparity);
236 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
237 				    struct scrub_page *spage);
238 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
239 		       u64 physical, struct btrfs_device *dev, u64 flags,
240 		       u64 gen, int mirror_num, u8 *csum, int force,
241 		       u64 physical_for_dev_replace);
242 static void scrub_bio_end_io(struct bio *bio);
243 static void scrub_bio_end_io_worker(struct btrfs_work *work);
244 static void scrub_block_complete(struct scrub_block *sblock);
245 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
246 			       u64 extent_logical, u64 extent_len,
247 			       u64 *extent_physical,
248 			       struct btrfs_device **extent_dev,
249 			       int *extent_mirror_num);
250 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
251 				    struct scrub_page *spage);
252 static void scrub_wr_submit(struct scrub_ctx *sctx);
253 static void scrub_wr_bio_end_io(struct bio *bio);
254 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
255 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
257 static void scrub_put_ctx(struct scrub_ctx *sctx);
258 
259 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
260 {
261 	return page->recover &&
262 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
263 }
264 
265 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
266 {
267 	refcount_inc(&sctx->refs);
268 	atomic_inc(&sctx->bios_in_flight);
269 }
270 
271 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
272 {
273 	atomic_dec(&sctx->bios_in_flight);
274 	wake_up(&sctx->list_wait);
275 	scrub_put_ctx(sctx);
276 }
277 
278 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
279 {
280 	while (atomic_read(&fs_info->scrub_pause_req)) {
281 		mutex_unlock(&fs_info->scrub_lock);
282 		wait_event(fs_info->scrub_pause_wait,
283 		   atomic_read(&fs_info->scrub_pause_req) == 0);
284 		mutex_lock(&fs_info->scrub_lock);
285 	}
286 }
287 
288 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
289 {
290 	atomic_inc(&fs_info->scrubs_paused);
291 	wake_up(&fs_info->scrub_pause_wait);
292 }
293 
294 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
295 {
296 	mutex_lock(&fs_info->scrub_lock);
297 	__scrub_blocked_if_needed(fs_info);
298 	atomic_dec(&fs_info->scrubs_paused);
299 	mutex_unlock(&fs_info->scrub_lock);
300 
301 	wake_up(&fs_info->scrub_pause_wait);
302 }
303 
304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
305 {
306 	scrub_pause_on(fs_info);
307 	scrub_pause_off(fs_info);
308 }
309 
310 /*
311  * Insert new full stripe lock into full stripe locks tree
312  *
313  * Return pointer to existing or newly inserted full_stripe_lock structure if
314  * everything works well.
315  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
316  *
317  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
318  * function
319  */
320 static struct full_stripe_lock *insert_full_stripe_lock(
321 		struct btrfs_full_stripe_locks_tree *locks_root,
322 		u64 fstripe_logical)
323 {
324 	struct rb_node **p;
325 	struct rb_node *parent = NULL;
326 	struct full_stripe_lock *entry;
327 	struct full_stripe_lock *ret;
328 
329 	lockdep_assert_held(&locks_root->lock);
330 
331 	p = &locks_root->root.rb_node;
332 	while (*p) {
333 		parent = *p;
334 		entry = rb_entry(parent, struct full_stripe_lock, node);
335 		if (fstripe_logical < entry->logical) {
336 			p = &(*p)->rb_left;
337 		} else if (fstripe_logical > entry->logical) {
338 			p = &(*p)->rb_right;
339 		} else {
340 			entry->refs++;
341 			return entry;
342 		}
343 	}
344 
345 	/*
346 	 * Insert new lock.
347 	 */
348 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
349 	if (!ret)
350 		return ERR_PTR(-ENOMEM);
351 	ret->logical = fstripe_logical;
352 	ret->refs = 1;
353 	mutex_init(&ret->mutex);
354 
355 	rb_link_node(&ret->node, parent, p);
356 	rb_insert_color(&ret->node, &locks_root->root);
357 	return ret;
358 }
359 
360 /*
361  * Search for a full stripe lock of a block group
362  *
363  * Return pointer to existing full stripe lock if found
364  * Return NULL if not found
365  */
366 static struct full_stripe_lock *search_full_stripe_lock(
367 		struct btrfs_full_stripe_locks_tree *locks_root,
368 		u64 fstripe_logical)
369 {
370 	struct rb_node *node;
371 	struct full_stripe_lock *entry;
372 
373 	lockdep_assert_held(&locks_root->lock);
374 
375 	node = locks_root->root.rb_node;
376 	while (node) {
377 		entry = rb_entry(node, struct full_stripe_lock, node);
378 		if (fstripe_logical < entry->logical)
379 			node = node->rb_left;
380 		else if (fstripe_logical > entry->logical)
381 			node = node->rb_right;
382 		else
383 			return entry;
384 	}
385 	return NULL;
386 }
387 
388 /*
389  * Helper to get full stripe logical from a normal bytenr.
390  *
391  * Caller must ensure @cache is a RAID56 block group.
392  */
393 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
394 {
395 	u64 ret;
396 
397 	/*
398 	 * Due to chunk item size limit, full stripe length should not be
399 	 * larger than U32_MAX. Just a sanity check here.
400 	 */
401 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
402 
403 	/*
404 	 * round_down() can only handle power of 2, while RAID56 full
405 	 * stripe length can be 64KiB * n, so we need to manually round down.
406 	 */
407 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
408 			cache->full_stripe_len + cache->start;
409 	return ret;
410 }
411 
412 /*
413  * Lock a full stripe to avoid concurrency of recovery and read
414  *
415  * It's only used for profiles with parities (RAID5/6), for other profiles it
416  * does nothing.
417  *
418  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
419  * So caller must call unlock_full_stripe() at the same context.
420  *
421  * Return <0 if encounters error.
422  */
423 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
424 			    bool *locked_ret)
425 {
426 	struct btrfs_block_group *bg_cache;
427 	struct btrfs_full_stripe_locks_tree *locks_root;
428 	struct full_stripe_lock *existing;
429 	u64 fstripe_start;
430 	int ret = 0;
431 
432 	*locked_ret = false;
433 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
434 	if (!bg_cache) {
435 		ASSERT(0);
436 		return -ENOENT;
437 	}
438 
439 	/* Profiles not based on parity don't need full stripe lock */
440 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
441 		goto out;
442 	locks_root = &bg_cache->full_stripe_locks_root;
443 
444 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
445 
446 	/* Now insert the full stripe lock */
447 	mutex_lock(&locks_root->lock);
448 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
449 	mutex_unlock(&locks_root->lock);
450 	if (IS_ERR(existing)) {
451 		ret = PTR_ERR(existing);
452 		goto out;
453 	}
454 	mutex_lock(&existing->mutex);
455 	*locked_ret = true;
456 out:
457 	btrfs_put_block_group(bg_cache);
458 	return ret;
459 }
460 
461 /*
462  * Unlock a full stripe.
463  *
464  * NOTE: Caller must ensure it's the same context calling corresponding
465  * lock_full_stripe().
466  *
467  * Return 0 if we unlock full stripe without problem.
468  * Return <0 for error
469  */
470 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
471 			      bool locked)
472 {
473 	struct btrfs_block_group *bg_cache;
474 	struct btrfs_full_stripe_locks_tree *locks_root;
475 	struct full_stripe_lock *fstripe_lock;
476 	u64 fstripe_start;
477 	bool freeit = false;
478 	int ret = 0;
479 
480 	/* If we didn't acquire full stripe lock, no need to continue */
481 	if (!locked)
482 		return 0;
483 
484 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
485 	if (!bg_cache) {
486 		ASSERT(0);
487 		return -ENOENT;
488 	}
489 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
490 		goto out;
491 
492 	locks_root = &bg_cache->full_stripe_locks_root;
493 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
494 
495 	mutex_lock(&locks_root->lock);
496 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
497 	/* Unpaired unlock_full_stripe() detected */
498 	if (!fstripe_lock) {
499 		WARN_ON(1);
500 		ret = -ENOENT;
501 		mutex_unlock(&locks_root->lock);
502 		goto out;
503 	}
504 
505 	if (fstripe_lock->refs == 0) {
506 		WARN_ON(1);
507 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
508 			fstripe_lock->logical);
509 	} else {
510 		fstripe_lock->refs--;
511 	}
512 
513 	if (fstripe_lock->refs == 0) {
514 		rb_erase(&fstripe_lock->node, &locks_root->root);
515 		freeit = true;
516 	}
517 	mutex_unlock(&locks_root->lock);
518 
519 	mutex_unlock(&fstripe_lock->mutex);
520 	if (freeit)
521 		kfree(fstripe_lock);
522 out:
523 	btrfs_put_block_group(bg_cache);
524 	return ret;
525 }
526 
527 static void scrub_free_csums(struct scrub_ctx *sctx)
528 {
529 	while (!list_empty(&sctx->csum_list)) {
530 		struct btrfs_ordered_sum *sum;
531 		sum = list_first_entry(&sctx->csum_list,
532 				       struct btrfs_ordered_sum, list);
533 		list_del(&sum->list);
534 		kfree(sum);
535 	}
536 }
537 
538 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
539 {
540 	int i;
541 
542 	if (!sctx)
543 		return;
544 
545 	/* this can happen when scrub is cancelled */
546 	if (sctx->curr != -1) {
547 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
548 
549 		for (i = 0; i < sbio->page_count; i++) {
550 			WARN_ON(!sbio->pagev[i]->page);
551 			scrub_block_put(sbio->pagev[i]->sblock);
552 		}
553 		bio_put(sbio->bio);
554 	}
555 
556 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
557 		struct scrub_bio *sbio = sctx->bios[i];
558 
559 		if (!sbio)
560 			break;
561 		kfree(sbio);
562 	}
563 
564 	kfree(sctx->wr_curr_bio);
565 	scrub_free_csums(sctx);
566 	kfree(sctx);
567 }
568 
569 static void scrub_put_ctx(struct scrub_ctx *sctx)
570 {
571 	if (refcount_dec_and_test(&sctx->refs))
572 		scrub_free_ctx(sctx);
573 }
574 
575 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
576 		struct btrfs_fs_info *fs_info, int is_dev_replace)
577 {
578 	struct scrub_ctx *sctx;
579 	int		i;
580 
581 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
582 	if (!sctx)
583 		goto nomem;
584 	refcount_set(&sctx->refs, 1);
585 	sctx->is_dev_replace = is_dev_replace;
586 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
587 	sctx->curr = -1;
588 	sctx->fs_info = fs_info;
589 	INIT_LIST_HEAD(&sctx->csum_list);
590 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
591 		struct scrub_bio *sbio;
592 
593 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
594 		if (!sbio)
595 			goto nomem;
596 		sctx->bios[i] = sbio;
597 
598 		sbio->index = i;
599 		sbio->sctx = sctx;
600 		sbio->page_count = 0;
601 		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
602 				NULL);
603 
604 		if (i != SCRUB_BIOS_PER_SCTX - 1)
605 			sctx->bios[i]->next_free = i + 1;
606 		else
607 			sctx->bios[i]->next_free = -1;
608 	}
609 	sctx->first_free = 0;
610 	atomic_set(&sctx->bios_in_flight, 0);
611 	atomic_set(&sctx->workers_pending, 0);
612 	atomic_set(&sctx->cancel_req, 0);
613 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
614 
615 	spin_lock_init(&sctx->list_lock);
616 	spin_lock_init(&sctx->stat_lock);
617 	init_waitqueue_head(&sctx->list_wait);
618 
619 	WARN_ON(sctx->wr_curr_bio != NULL);
620 	mutex_init(&sctx->wr_lock);
621 	sctx->wr_curr_bio = NULL;
622 	if (is_dev_replace) {
623 		WARN_ON(!fs_info->dev_replace.tgtdev);
624 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
625 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
626 		sctx->flush_all_writes = false;
627 	}
628 
629 	return sctx;
630 
631 nomem:
632 	scrub_free_ctx(sctx);
633 	return ERR_PTR(-ENOMEM);
634 }
635 
636 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
637 				     void *warn_ctx)
638 {
639 	u64 isize;
640 	u32 nlink;
641 	int ret;
642 	int i;
643 	unsigned nofs_flag;
644 	struct extent_buffer *eb;
645 	struct btrfs_inode_item *inode_item;
646 	struct scrub_warning *swarn = warn_ctx;
647 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
648 	struct inode_fs_paths *ipath = NULL;
649 	struct btrfs_root *local_root;
650 	struct btrfs_key key;
651 
652 	local_root = btrfs_get_fs_root(fs_info, root, true);
653 	if (IS_ERR(local_root)) {
654 		ret = PTR_ERR(local_root);
655 		goto err;
656 	}
657 
658 	/*
659 	 * this makes the path point to (inum INODE_ITEM ioff)
660 	 */
661 	key.objectid = inum;
662 	key.type = BTRFS_INODE_ITEM_KEY;
663 	key.offset = 0;
664 
665 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
666 	if (ret) {
667 		btrfs_put_root(local_root);
668 		btrfs_release_path(swarn->path);
669 		goto err;
670 	}
671 
672 	eb = swarn->path->nodes[0];
673 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
674 					struct btrfs_inode_item);
675 	isize = btrfs_inode_size(eb, inode_item);
676 	nlink = btrfs_inode_nlink(eb, inode_item);
677 	btrfs_release_path(swarn->path);
678 
679 	/*
680 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
681 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
682 	 * not seem to be strictly necessary.
683 	 */
684 	nofs_flag = memalloc_nofs_save();
685 	ipath = init_ipath(4096, local_root, swarn->path);
686 	memalloc_nofs_restore(nofs_flag);
687 	if (IS_ERR(ipath)) {
688 		btrfs_put_root(local_root);
689 		ret = PTR_ERR(ipath);
690 		ipath = NULL;
691 		goto err;
692 	}
693 	ret = paths_from_inode(inum, ipath);
694 
695 	if (ret < 0)
696 		goto err;
697 
698 	/*
699 	 * we deliberately ignore the bit ipath might have been too small to
700 	 * hold all of the paths here
701 	 */
702 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
703 		btrfs_warn_in_rcu(fs_info,
704 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
705 				  swarn->errstr, swarn->logical,
706 				  rcu_str_deref(swarn->dev->name),
707 				  swarn->physical,
708 				  root, inum, offset,
709 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
710 				  (char *)(unsigned long)ipath->fspath->val[i]);
711 
712 	btrfs_put_root(local_root);
713 	free_ipath(ipath);
714 	return 0;
715 
716 err:
717 	btrfs_warn_in_rcu(fs_info,
718 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
719 			  swarn->errstr, swarn->logical,
720 			  rcu_str_deref(swarn->dev->name),
721 			  swarn->physical,
722 			  root, inum, offset, ret);
723 
724 	free_ipath(ipath);
725 	return 0;
726 }
727 
728 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
729 {
730 	struct btrfs_device *dev;
731 	struct btrfs_fs_info *fs_info;
732 	struct btrfs_path *path;
733 	struct btrfs_key found_key;
734 	struct extent_buffer *eb;
735 	struct btrfs_extent_item *ei;
736 	struct scrub_warning swarn;
737 	unsigned long ptr = 0;
738 	u64 extent_item_pos;
739 	u64 flags = 0;
740 	u64 ref_root;
741 	u32 item_size;
742 	u8 ref_level = 0;
743 	int ret;
744 
745 	WARN_ON(sblock->page_count < 1);
746 	dev = sblock->pagev[0]->dev;
747 	fs_info = sblock->sctx->fs_info;
748 
749 	path = btrfs_alloc_path();
750 	if (!path)
751 		return;
752 
753 	swarn.physical = sblock->pagev[0]->physical;
754 	swarn.logical = sblock->pagev[0]->logical;
755 	swarn.errstr = errstr;
756 	swarn.dev = NULL;
757 
758 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
759 				  &flags);
760 	if (ret < 0)
761 		goto out;
762 
763 	extent_item_pos = swarn.logical - found_key.objectid;
764 	swarn.extent_item_size = found_key.offset;
765 
766 	eb = path->nodes[0];
767 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
768 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
769 
770 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
771 		do {
772 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
773 						      item_size, &ref_root,
774 						      &ref_level);
775 			btrfs_warn_in_rcu(fs_info,
776 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
777 				errstr, swarn.logical,
778 				rcu_str_deref(dev->name),
779 				swarn.physical,
780 				ref_level ? "node" : "leaf",
781 				ret < 0 ? -1 : ref_level,
782 				ret < 0 ? -1 : ref_root);
783 		} while (ret != 1);
784 		btrfs_release_path(path);
785 	} else {
786 		btrfs_release_path(path);
787 		swarn.path = path;
788 		swarn.dev = dev;
789 		iterate_extent_inodes(fs_info, found_key.objectid,
790 					extent_item_pos, 1,
791 					scrub_print_warning_inode, &swarn, false);
792 	}
793 
794 out:
795 	btrfs_free_path(path);
796 }
797 
798 static inline void scrub_get_recover(struct scrub_recover *recover)
799 {
800 	refcount_inc(&recover->refs);
801 }
802 
803 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
804 				     struct scrub_recover *recover)
805 {
806 	if (refcount_dec_and_test(&recover->refs)) {
807 		btrfs_bio_counter_dec(fs_info);
808 		btrfs_put_bbio(recover->bbio);
809 		kfree(recover);
810 	}
811 }
812 
813 /*
814  * scrub_handle_errored_block gets called when either verification of the
815  * pages failed or the bio failed to read, e.g. with EIO. In the latter
816  * case, this function handles all pages in the bio, even though only one
817  * may be bad.
818  * The goal of this function is to repair the errored block by using the
819  * contents of one of the mirrors.
820  */
821 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
822 {
823 	struct scrub_ctx *sctx = sblock_to_check->sctx;
824 	struct btrfs_device *dev;
825 	struct btrfs_fs_info *fs_info;
826 	u64 logical;
827 	unsigned int failed_mirror_index;
828 	unsigned int is_metadata;
829 	unsigned int have_csum;
830 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
831 	struct scrub_block *sblock_bad;
832 	int ret;
833 	int mirror_index;
834 	int page_num;
835 	int success;
836 	bool full_stripe_locked;
837 	unsigned int nofs_flag;
838 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
839 				      DEFAULT_RATELIMIT_BURST);
840 
841 	BUG_ON(sblock_to_check->page_count < 1);
842 	fs_info = sctx->fs_info;
843 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
844 		/*
845 		 * if we find an error in a super block, we just report it.
846 		 * They will get written with the next transaction commit
847 		 * anyway
848 		 */
849 		spin_lock(&sctx->stat_lock);
850 		++sctx->stat.super_errors;
851 		spin_unlock(&sctx->stat_lock);
852 		return 0;
853 	}
854 	logical = sblock_to_check->pagev[0]->logical;
855 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
856 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
857 	is_metadata = !(sblock_to_check->pagev[0]->flags &
858 			BTRFS_EXTENT_FLAG_DATA);
859 	have_csum = sblock_to_check->pagev[0]->have_csum;
860 	dev = sblock_to_check->pagev[0]->dev;
861 
862 	/*
863 	 * We must use GFP_NOFS because the scrub task might be waiting for a
864 	 * worker task executing this function and in turn a transaction commit
865 	 * might be waiting the scrub task to pause (which needs to wait for all
866 	 * the worker tasks to complete before pausing).
867 	 * We do allocations in the workers through insert_full_stripe_lock()
868 	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
869 	 * this function.
870 	 */
871 	nofs_flag = memalloc_nofs_save();
872 	/*
873 	 * For RAID5/6, race can happen for a different device scrub thread.
874 	 * For data corruption, Parity and Data threads will both try
875 	 * to recovery the data.
876 	 * Race can lead to doubly added csum error, or even unrecoverable
877 	 * error.
878 	 */
879 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
880 	if (ret < 0) {
881 		memalloc_nofs_restore(nofs_flag);
882 		spin_lock(&sctx->stat_lock);
883 		if (ret == -ENOMEM)
884 			sctx->stat.malloc_errors++;
885 		sctx->stat.read_errors++;
886 		sctx->stat.uncorrectable_errors++;
887 		spin_unlock(&sctx->stat_lock);
888 		return ret;
889 	}
890 
891 	/*
892 	 * read all mirrors one after the other. This includes to
893 	 * re-read the extent or metadata block that failed (that was
894 	 * the cause that this fixup code is called) another time,
895 	 * page by page this time in order to know which pages
896 	 * caused I/O errors and which ones are good (for all mirrors).
897 	 * It is the goal to handle the situation when more than one
898 	 * mirror contains I/O errors, but the errors do not
899 	 * overlap, i.e. the data can be repaired by selecting the
900 	 * pages from those mirrors without I/O error on the
901 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
902 	 * would be that mirror #1 has an I/O error on the first page,
903 	 * the second page is good, and mirror #2 has an I/O error on
904 	 * the second page, but the first page is good.
905 	 * Then the first page of the first mirror can be repaired by
906 	 * taking the first page of the second mirror, and the
907 	 * second page of the second mirror can be repaired by
908 	 * copying the contents of the 2nd page of the 1st mirror.
909 	 * One more note: if the pages of one mirror contain I/O
910 	 * errors, the checksum cannot be verified. In order to get
911 	 * the best data for repairing, the first attempt is to find
912 	 * a mirror without I/O errors and with a validated checksum.
913 	 * Only if this is not possible, the pages are picked from
914 	 * mirrors with I/O errors without considering the checksum.
915 	 * If the latter is the case, at the end, the checksum of the
916 	 * repaired area is verified in order to correctly maintain
917 	 * the statistics.
918 	 */
919 
920 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
921 				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
922 	if (!sblocks_for_recheck) {
923 		spin_lock(&sctx->stat_lock);
924 		sctx->stat.malloc_errors++;
925 		sctx->stat.read_errors++;
926 		sctx->stat.uncorrectable_errors++;
927 		spin_unlock(&sctx->stat_lock);
928 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
929 		goto out;
930 	}
931 
932 	/* setup the context, map the logical blocks and alloc the pages */
933 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
934 	if (ret) {
935 		spin_lock(&sctx->stat_lock);
936 		sctx->stat.read_errors++;
937 		sctx->stat.uncorrectable_errors++;
938 		spin_unlock(&sctx->stat_lock);
939 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
940 		goto out;
941 	}
942 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
943 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
944 
945 	/* build and submit the bios for the failed mirror, check checksums */
946 	scrub_recheck_block(fs_info, sblock_bad, 1);
947 
948 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
949 	    sblock_bad->no_io_error_seen) {
950 		/*
951 		 * the error disappeared after reading page by page, or
952 		 * the area was part of a huge bio and other parts of the
953 		 * bio caused I/O errors, or the block layer merged several
954 		 * read requests into one and the error is caused by a
955 		 * different bio (usually one of the two latter cases is
956 		 * the cause)
957 		 */
958 		spin_lock(&sctx->stat_lock);
959 		sctx->stat.unverified_errors++;
960 		sblock_to_check->data_corrected = 1;
961 		spin_unlock(&sctx->stat_lock);
962 
963 		if (sctx->is_dev_replace)
964 			scrub_write_block_to_dev_replace(sblock_bad);
965 		goto out;
966 	}
967 
968 	if (!sblock_bad->no_io_error_seen) {
969 		spin_lock(&sctx->stat_lock);
970 		sctx->stat.read_errors++;
971 		spin_unlock(&sctx->stat_lock);
972 		if (__ratelimit(&_rs))
973 			scrub_print_warning("i/o error", sblock_to_check);
974 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
975 	} else if (sblock_bad->checksum_error) {
976 		spin_lock(&sctx->stat_lock);
977 		sctx->stat.csum_errors++;
978 		spin_unlock(&sctx->stat_lock);
979 		if (__ratelimit(&_rs))
980 			scrub_print_warning("checksum error", sblock_to_check);
981 		btrfs_dev_stat_inc_and_print(dev,
982 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
983 	} else if (sblock_bad->header_error) {
984 		spin_lock(&sctx->stat_lock);
985 		sctx->stat.verify_errors++;
986 		spin_unlock(&sctx->stat_lock);
987 		if (__ratelimit(&_rs))
988 			scrub_print_warning("checksum/header error",
989 					    sblock_to_check);
990 		if (sblock_bad->generation_error)
991 			btrfs_dev_stat_inc_and_print(dev,
992 				BTRFS_DEV_STAT_GENERATION_ERRS);
993 		else
994 			btrfs_dev_stat_inc_and_print(dev,
995 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
996 	}
997 
998 	if (sctx->readonly) {
999 		ASSERT(!sctx->is_dev_replace);
1000 		goto out;
1001 	}
1002 
1003 	/*
1004 	 * now build and submit the bios for the other mirrors, check
1005 	 * checksums.
1006 	 * First try to pick the mirror which is completely without I/O
1007 	 * errors and also does not have a checksum error.
1008 	 * If one is found, and if a checksum is present, the full block
1009 	 * that is known to contain an error is rewritten. Afterwards
1010 	 * the block is known to be corrected.
1011 	 * If a mirror is found which is completely correct, and no
1012 	 * checksum is present, only those pages are rewritten that had
1013 	 * an I/O error in the block to be repaired, since it cannot be
1014 	 * determined, which copy of the other pages is better (and it
1015 	 * could happen otherwise that a correct page would be
1016 	 * overwritten by a bad one).
1017 	 */
1018 	for (mirror_index = 0; ;mirror_index++) {
1019 		struct scrub_block *sblock_other;
1020 
1021 		if (mirror_index == failed_mirror_index)
1022 			continue;
1023 
1024 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1025 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1026 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1027 				break;
1028 			if (!sblocks_for_recheck[mirror_index].page_count)
1029 				break;
1030 
1031 			sblock_other = sblocks_for_recheck + mirror_index;
1032 		} else {
1033 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1034 			int max_allowed = r->bbio->num_stripes -
1035 						r->bbio->num_tgtdevs;
1036 
1037 			if (mirror_index >= max_allowed)
1038 				break;
1039 			if (!sblocks_for_recheck[1].page_count)
1040 				break;
1041 
1042 			ASSERT(failed_mirror_index == 0);
1043 			sblock_other = sblocks_for_recheck + 1;
1044 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1045 		}
1046 
1047 		/* build and submit the bios, check checksums */
1048 		scrub_recheck_block(fs_info, sblock_other, 0);
1049 
1050 		if (!sblock_other->header_error &&
1051 		    !sblock_other->checksum_error &&
1052 		    sblock_other->no_io_error_seen) {
1053 			if (sctx->is_dev_replace) {
1054 				scrub_write_block_to_dev_replace(sblock_other);
1055 				goto corrected_error;
1056 			} else {
1057 				ret = scrub_repair_block_from_good_copy(
1058 						sblock_bad, sblock_other);
1059 				if (!ret)
1060 					goto corrected_error;
1061 			}
1062 		}
1063 	}
1064 
1065 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1066 		goto did_not_correct_error;
1067 
1068 	/*
1069 	 * In case of I/O errors in the area that is supposed to be
1070 	 * repaired, continue by picking good copies of those pages.
1071 	 * Select the good pages from mirrors to rewrite bad pages from
1072 	 * the area to fix. Afterwards verify the checksum of the block
1073 	 * that is supposed to be repaired. This verification step is
1074 	 * only done for the purpose of statistic counting and for the
1075 	 * final scrub report, whether errors remain.
1076 	 * A perfect algorithm could make use of the checksum and try
1077 	 * all possible combinations of pages from the different mirrors
1078 	 * until the checksum verification succeeds. For example, when
1079 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080 	 * of mirror #2 is readable but the final checksum test fails,
1081 	 * then the 2nd page of mirror #3 could be tried, whether now
1082 	 * the final checksum succeeds. But this would be a rare
1083 	 * exception and is therefore not implemented. At least it is
1084 	 * avoided that the good copy is overwritten.
1085 	 * A more useful improvement would be to pick the sectors
1086 	 * without I/O error based on sector sizes (512 bytes on legacy
1087 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088 	 * mirror could be repaired by taking 512 byte of a different
1089 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090 	 * area are unreadable.
1091 	 */
1092 	success = 1;
1093 	for (page_num = 0; page_num < sblock_bad->page_count;
1094 	     page_num++) {
1095 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1096 		struct scrub_block *sblock_other = NULL;
1097 
1098 		/* skip no-io-error page in scrub */
1099 		if (!page_bad->io_error && !sctx->is_dev_replace)
1100 			continue;
1101 
1102 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1103 			/*
1104 			 * In case of dev replace, if raid56 rebuild process
1105 			 * didn't work out correct data, then copy the content
1106 			 * in sblock_bad to make sure target device is identical
1107 			 * to source device, instead of writing garbage data in
1108 			 * sblock_for_recheck array to target device.
1109 			 */
1110 			sblock_other = NULL;
1111 		} else if (page_bad->io_error) {
1112 			/* try to find no-io-error page in mirrors */
1113 			for (mirror_index = 0;
1114 			     mirror_index < BTRFS_MAX_MIRRORS &&
1115 			     sblocks_for_recheck[mirror_index].page_count > 0;
1116 			     mirror_index++) {
1117 				if (!sblocks_for_recheck[mirror_index].
1118 				    pagev[page_num]->io_error) {
1119 					sblock_other = sblocks_for_recheck +
1120 						       mirror_index;
1121 					break;
1122 				}
1123 			}
1124 			if (!sblock_other)
1125 				success = 0;
1126 		}
1127 
1128 		if (sctx->is_dev_replace) {
1129 			/*
1130 			 * did not find a mirror to fetch the page
1131 			 * from. scrub_write_page_to_dev_replace()
1132 			 * handles this case (page->io_error), by
1133 			 * filling the block with zeros before
1134 			 * submitting the write request
1135 			 */
1136 			if (!sblock_other)
1137 				sblock_other = sblock_bad;
1138 
1139 			if (scrub_write_page_to_dev_replace(sblock_other,
1140 							    page_num) != 0) {
1141 				atomic64_inc(
1142 					&fs_info->dev_replace.num_write_errors);
1143 				success = 0;
1144 			}
1145 		} else if (sblock_other) {
1146 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1147 							       sblock_other,
1148 							       page_num, 0);
1149 			if (0 == ret)
1150 				page_bad->io_error = 0;
1151 			else
1152 				success = 0;
1153 		}
1154 	}
1155 
1156 	if (success && !sctx->is_dev_replace) {
1157 		if (is_metadata || have_csum) {
1158 			/*
1159 			 * need to verify the checksum now that all
1160 			 * sectors on disk are repaired (the write
1161 			 * request for data to be repaired is on its way).
1162 			 * Just be lazy and use scrub_recheck_block()
1163 			 * which re-reads the data before the checksum
1164 			 * is verified, but most likely the data comes out
1165 			 * of the page cache.
1166 			 */
1167 			scrub_recheck_block(fs_info, sblock_bad, 1);
1168 			if (!sblock_bad->header_error &&
1169 			    !sblock_bad->checksum_error &&
1170 			    sblock_bad->no_io_error_seen)
1171 				goto corrected_error;
1172 			else
1173 				goto did_not_correct_error;
1174 		} else {
1175 corrected_error:
1176 			spin_lock(&sctx->stat_lock);
1177 			sctx->stat.corrected_errors++;
1178 			sblock_to_check->data_corrected = 1;
1179 			spin_unlock(&sctx->stat_lock);
1180 			btrfs_err_rl_in_rcu(fs_info,
1181 				"fixed up error at logical %llu on dev %s",
1182 				logical, rcu_str_deref(dev->name));
1183 		}
1184 	} else {
1185 did_not_correct_error:
1186 		spin_lock(&sctx->stat_lock);
1187 		sctx->stat.uncorrectable_errors++;
1188 		spin_unlock(&sctx->stat_lock);
1189 		btrfs_err_rl_in_rcu(fs_info,
1190 			"unable to fixup (regular) error at logical %llu on dev %s",
1191 			logical, rcu_str_deref(dev->name));
1192 	}
1193 
1194 out:
1195 	if (sblocks_for_recheck) {
1196 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1197 		     mirror_index++) {
1198 			struct scrub_block *sblock = sblocks_for_recheck +
1199 						     mirror_index;
1200 			struct scrub_recover *recover;
1201 			int page_index;
1202 
1203 			for (page_index = 0; page_index < sblock->page_count;
1204 			     page_index++) {
1205 				sblock->pagev[page_index]->sblock = NULL;
1206 				recover = sblock->pagev[page_index]->recover;
1207 				if (recover) {
1208 					scrub_put_recover(fs_info, recover);
1209 					sblock->pagev[page_index]->recover =
1210 									NULL;
1211 				}
1212 				scrub_page_put(sblock->pagev[page_index]);
1213 			}
1214 		}
1215 		kfree(sblocks_for_recheck);
1216 	}
1217 
1218 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1219 	memalloc_nofs_restore(nofs_flag);
1220 	if (ret < 0)
1221 		return ret;
1222 	return 0;
1223 }
1224 
1225 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1226 {
1227 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1228 		return 2;
1229 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1230 		return 3;
1231 	else
1232 		return (int)bbio->num_stripes;
1233 }
1234 
1235 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1236 						 u64 *raid_map,
1237 						 u64 mapped_length,
1238 						 int nstripes, int mirror,
1239 						 int *stripe_index,
1240 						 u64 *stripe_offset)
1241 {
1242 	int i;
1243 
1244 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1245 		/* RAID5/6 */
1246 		for (i = 0; i < nstripes; i++) {
1247 			if (raid_map[i] == RAID6_Q_STRIPE ||
1248 			    raid_map[i] == RAID5_P_STRIPE)
1249 				continue;
1250 
1251 			if (logical >= raid_map[i] &&
1252 			    logical < raid_map[i] + mapped_length)
1253 				break;
1254 		}
1255 
1256 		*stripe_index = i;
1257 		*stripe_offset = logical - raid_map[i];
1258 	} else {
1259 		/* The other RAID type */
1260 		*stripe_index = mirror;
1261 		*stripe_offset = 0;
1262 	}
1263 }
1264 
1265 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1266 				     struct scrub_block *sblocks_for_recheck)
1267 {
1268 	struct scrub_ctx *sctx = original_sblock->sctx;
1269 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1270 	u64 length = original_sblock->page_count * PAGE_SIZE;
1271 	u64 logical = original_sblock->pagev[0]->logical;
1272 	u64 generation = original_sblock->pagev[0]->generation;
1273 	u64 flags = original_sblock->pagev[0]->flags;
1274 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1275 	struct scrub_recover *recover;
1276 	struct btrfs_bio *bbio;
1277 	u64 sublen;
1278 	u64 mapped_length;
1279 	u64 stripe_offset;
1280 	int stripe_index;
1281 	int page_index = 0;
1282 	int mirror_index;
1283 	int nmirrors;
1284 	int ret;
1285 
1286 	/*
1287 	 * note: the two members refs and outstanding_pages
1288 	 * are not used (and not set) in the blocks that are used for
1289 	 * the recheck procedure
1290 	 */
1291 
1292 	while (length > 0) {
1293 		sublen = min_t(u64, length, PAGE_SIZE);
1294 		mapped_length = sublen;
1295 		bbio = NULL;
1296 
1297 		/*
1298 		 * with a length of PAGE_SIZE, each returned stripe
1299 		 * represents one mirror
1300 		 */
1301 		btrfs_bio_counter_inc_blocked(fs_info);
1302 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1303 				logical, &mapped_length, &bbio);
1304 		if (ret || !bbio || mapped_length < sublen) {
1305 			btrfs_put_bbio(bbio);
1306 			btrfs_bio_counter_dec(fs_info);
1307 			return -EIO;
1308 		}
1309 
1310 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1311 		if (!recover) {
1312 			btrfs_put_bbio(bbio);
1313 			btrfs_bio_counter_dec(fs_info);
1314 			return -ENOMEM;
1315 		}
1316 
1317 		refcount_set(&recover->refs, 1);
1318 		recover->bbio = bbio;
1319 		recover->map_length = mapped_length;
1320 
1321 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1322 
1323 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1324 
1325 		for (mirror_index = 0; mirror_index < nmirrors;
1326 		     mirror_index++) {
1327 			struct scrub_block *sblock;
1328 			struct scrub_page *page;
1329 
1330 			sblock = sblocks_for_recheck + mirror_index;
1331 			sblock->sctx = sctx;
1332 
1333 			page = kzalloc(sizeof(*page), GFP_NOFS);
1334 			if (!page) {
1335 leave_nomem:
1336 				spin_lock(&sctx->stat_lock);
1337 				sctx->stat.malloc_errors++;
1338 				spin_unlock(&sctx->stat_lock);
1339 				scrub_put_recover(fs_info, recover);
1340 				return -ENOMEM;
1341 			}
1342 			scrub_page_get(page);
1343 			sblock->pagev[page_index] = page;
1344 			page->sblock = sblock;
1345 			page->flags = flags;
1346 			page->generation = generation;
1347 			page->logical = logical;
1348 			page->have_csum = have_csum;
1349 			if (have_csum)
1350 				memcpy(page->csum,
1351 				       original_sblock->pagev[0]->csum,
1352 				       sctx->csum_size);
1353 
1354 			scrub_stripe_index_and_offset(logical,
1355 						      bbio->map_type,
1356 						      bbio->raid_map,
1357 						      mapped_length,
1358 						      bbio->num_stripes -
1359 						      bbio->num_tgtdevs,
1360 						      mirror_index,
1361 						      &stripe_index,
1362 						      &stripe_offset);
1363 			page->physical = bbio->stripes[stripe_index].physical +
1364 					 stripe_offset;
1365 			page->dev = bbio->stripes[stripe_index].dev;
1366 
1367 			BUG_ON(page_index >= original_sblock->page_count);
1368 			page->physical_for_dev_replace =
1369 				original_sblock->pagev[page_index]->
1370 				physical_for_dev_replace;
1371 			/* for missing devices, dev->bdev is NULL */
1372 			page->mirror_num = mirror_index + 1;
1373 			sblock->page_count++;
1374 			page->page = alloc_page(GFP_NOFS);
1375 			if (!page->page)
1376 				goto leave_nomem;
1377 
1378 			scrub_get_recover(recover);
1379 			page->recover = recover;
1380 		}
1381 		scrub_put_recover(fs_info, recover);
1382 		length -= sublen;
1383 		logical += sublen;
1384 		page_index++;
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static void scrub_bio_wait_endio(struct bio *bio)
1391 {
1392 	complete(bio->bi_private);
1393 }
1394 
1395 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1396 					struct bio *bio,
1397 					struct scrub_page *page)
1398 {
1399 	DECLARE_COMPLETION_ONSTACK(done);
1400 	int ret;
1401 	int mirror_num;
1402 
1403 	bio->bi_iter.bi_sector = page->logical >> 9;
1404 	bio->bi_private = &done;
1405 	bio->bi_end_io = scrub_bio_wait_endio;
1406 
1407 	mirror_num = page->sblock->pagev[0]->mirror_num;
1408 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1409 				    page->recover->map_length,
1410 				    mirror_num, 0);
1411 	if (ret)
1412 		return ret;
1413 
1414 	wait_for_completion_io(&done);
1415 	return blk_status_to_errno(bio->bi_status);
1416 }
1417 
1418 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1419 					  struct scrub_block *sblock)
1420 {
1421 	struct scrub_page *first_page = sblock->pagev[0];
1422 	struct bio *bio;
1423 	int page_num;
1424 
1425 	/* All pages in sblock belong to the same stripe on the same device. */
1426 	ASSERT(first_page->dev);
1427 	if (!first_page->dev->bdev)
1428 		goto out;
1429 
1430 	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1431 	bio_set_dev(bio, first_page->dev->bdev);
1432 
1433 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1434 		struct scrub_page *page = sblock->pagev[page_num];
1435 
1436 		WARN_ON(!page->page);
1437 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1438 	}
1439 
1440 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1441 		bio_put(bio);
1442 		goto out;
1443 	}
1444 
1445 	bio_put(bio);
1446 
1447 	scrub_recheck_block_checksum(sblock);
1448 
1449 	return;
1450 out:
1451 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1452 		sblock->pagev[page_num]->io_error = 1;
1453 
1454 	sblock->no_io_error_seen = 0;
1455 }
1456 
1457 /*
1458  * this function will check the on disk data for checksum errors, header
1459  * errors and read I/O errors. If any I/O errors happen, the exact pages
1460  * which are errored are marked as being bad. The goal is to enable scrub
1461  * to take those pages that are not errored from all the mirrors so that
1462  * the pages that are errored in the just handled mirror can be repaired.
1463  */
1464 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1465 				struct scrub_block *sblock,
1466 				int retry_failed_mirror)
1467 {
1468 	int page_num;
1469 
1470 	sblock->no_io_error_seen = 1;
1471 
1472 	/* short cut for raid56 */
1473 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1474 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1475 
1476 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1477 		struct bio *bio;
1478 		struct scrub_page *page = sblock->pagev[page_num];
1479 
1480 		if (page->dev->bdev == NULL) {
1481 			page->io_error = 1;
1482 			sblock->no_io_error_seen = 0;
1483 			continue;
1484 		}
1485 
1486 		WARN_ON(!page->page);
1487 		bio = btrfs_io_bio_alloc(1);
1488 		bio_set_dev(bio, page->dev->bdev);
1489 
1490 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1491 		bio->bi_iter.bi_sector = page->physical >> 9;
1492 		bio->bi_opf = REQ_OP_READ;
1493 
1494 		if (btrfsic_submit_bio_wait(bio)) {
1495 			page->io_error = 1;
1496 			sblock->no_io_error_seen = 0;
1497 		}
1498 
1499 		bio_put(bio);
1500 	}
1501 
1502 	if (sblock->no_io_error_seen)
1503 		scrub_recheck_block_checksum(sblock);
1504 }
1505 
1506 static inline int scrub_check_fsid(u8 fsid[],
1507 				   struct scrub_page *spage)
1508 {
1509 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1510 	int ret;
1511 
1512 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1513 	return !ret;
1514 }
1515 
1516 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1517 {
1518 	sblock->header_error = 0;
1519 	sblock->checksum_error = 0;
1520 	sblock->generation_error = 0;
1521 
1522 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1523 		scrub_checksum_data(sblock);
1524 	else
1525 		scrub_checksum_tree_block(sblock);
1526 }
1527 
1528 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1529 					     struct scrub_block *sblock_good)
1530 {
1531 	int page_num;
1532 	int ret = 0;
1533 
1534 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1535 		int ret_sub;
1536 
1537 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1538 							   sblock_good,
1539 							   page_num, 1);
1540 		if (ret_sub)
1541 			ret = ret_sub;
1542 	}
1543 
1544 	return ret;
1545 }
1546 
1547 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1548 					    struct scrub_block *sblock_good,
1549 					    int page_num, int force_write)
1550 {
1551 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1552 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1553 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1554 
1555 	BUG_ON(page_bad->page == NULL);
1556 	BUG_ON(page_good->page == NULL);
1557 	if (force_write || sblock_bad->header_error ||
1558 	    sblock_bad->checksum_error || page_bad->io_error) {
1559 		struct bio *bio;
1560 		int ret;
1561 
1562 		if (!page_bad->dev->bdev) {
1563 			btrfs_warn_rl(fs_info,
1564 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1565 			return -EIO;
1566 		}
1567 
1568 		bio = btrfs_io_bio_alloc(1);
1569 		bio_set_dev(bio, page_bad->dev->bdev);
1570 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1571 		bio->bi_opf = REQ_OP_WRITE;
1572 
1573 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1574 		if (PAGE_SIZE != ret) {
1575 			bio_put(bio);
1576 			return -EIO;
1577 		}
1578 
1579 		if (btrfsic_submit_bio_wait(bio)) {
1580 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1581 				BTRFS_DEV_STAT_WRITE_ERRS);
1582 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1583 			bio_put(bio);
1584 			return -EIO;
1585 		}
1586 		bio_put(bio);
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1593 {
1594 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1595 	int page_num;
1596 
1597 	/*
1598 	 * This block is used for the check of the parity on the source device,
1599 	 * so the data needn't be written into the destination device.
1600 	 */
1601 	if (sblock->sparity)
1602 		return;
1603 
1604 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1605 		int ret;
1606 
1607 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1608 		if (ret)
1609 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1610 	}
1611 }
1612 
1613 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1614 					   int page_num)
1615 {
1616 	struct scrub_page *spage = sblock->pagev[page_num];
1617 
1618 	BUG_ON(spage->page == NULL);
1619 	if (spage->io_error) {
1620 		void *mapped_buffer = kmap_atomic(spage->page);
1621 
1622 		clear_page(mapped_buffer);
1623 		flush_dcache_page(spage->page);
1624 		kunmap_atomic(mapped_buffer);
1625 	}
1626 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1627 }
1628 
1629 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1630 				    struct scrub_page *spage)
1631 {
1632 	struct scrub_bio *sbio;
1633 	int ret;
1634 
1635 	mutex_lock(&sctx->wr_lock);
1636 again:
1637 	if (!sctx->wr_curr_bio) {
1638 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1639 					      GFP_KERNEL);
1640 		if (!sctx->wr_curr_bio) {
1641 			mutex_unlock(&sctx->wr_lock);
1642 			return -ENOMEM;
1643 		}
1644 		sctx->wr_curr_bio->sctx = sctx;
1645 		sctx->wr_curr_bio->page_count = 0;
1646 	}
1647 	sbio = sctx->wr_curr_bio;
1648 	if (sbio->page_count == 0) {
1649 		struct bio *bio;
1650 
1651 		sbio->physical = spage->physical_for_dev_replace;
1652 		sbio->logical = spage->logical;
1653 		sbio->dev = sctx->wr_tgtdev;
1654 		bio = sbio->bio;
1655 		if (!bio) {
1656 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1657 			sbio->bio = bio;
1658 		}
1659 
1660 		bio->bi_private = sbio;
1661 		bio->bi_end_io = scrub_wr_bio_end_io;
1662 		bio_set_dev(bio, sbio->dev->bdev);
1663 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1664 		bio->bi_opf = REQ_OP_WRITE;
1665 		sbio->status = 0;
1666 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1667 		   spage->physical_for_dev_replace ||
1668 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1669 		   spage->logical) {
1670 		scrub_wr_submit(sctx);
1671 		goto again;
1672 	}
1673 
1674 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1675 	if (ret != PAGE_SIZE) {
1676 		if (sbio->page_count < 1) {
1677 			bio_put(sbio->bio);
1678 			sbio->bio = NULL;
1679 			mutex_unlock(&sctx->wr_lock);
1680 			return -EIO;
1681 		}
1682 		scrub_wr_submit(sctx);
1683 		goto again;
1684 	}
1685 
1686 	sbio->pagev[sbio->page_count] = spage;
1687 	scrub_page_get(spage);
1688 	sbio->page_count++;
1689 	if (sbio->page_count == sctx->pages_per_wr_bio)
1690 		scrub_wr_submit(sctx);
1691 	mutex_unlock(&sctx->wr_lock);
1692 
1693 	return 0;
1694 }
1695 
1696 static void scrub_wr_submit(struct scrub_ctx *sctx)
1697 {
1698 	struct scrub_bio *sbio;
1699 
1700 	if (!sctx->wr_curr_bio)
1701 		return;
1702 
1703 	sbio = sctx->wr_curr_bio;
1704 	sctx->wr_curr_bio = NULL;
1705 	WARN_ON(!sbio->bio->bi_disk);
1706 	scrub_pending_bio_inc(sctx);
1707 	/* process all writes in a single worker thread. Then the block layer
1708 	 * orders the requests before sending them to the driver which
1709 	 * doubled the write performance on spinning disks when measured
1710 	 * with Linux 3.5 */
1711 	btrfsic_submit_bio(sbio->bio);
1712 }
1713 
1714 static void scrub_wr_bio_end_io(struct bio *bio)
1715 {
1716 	struct scrub_bio *sbio = bio->bi_private;
1717 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1718 
1719 	sbio->status = bio->bi_status;
1720 	sbio->bio = bio;
1721 
1722 	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1723 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1724 }
1725 
1726 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1727 {
1728 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1729 	struct scrub_ctx *sctx = sbio->sctx;
1730 	int i;
1731 
1732 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1733 	if (sbio->status) {
1734 		struct btrfs_dev_replace *dev_replace =
1735 			&sbio->sctx->fs_info->dev_replace;
1736 
1737 		for (i = 0; i < sbio->page_count; i++) {
1738 			struct scrub_page *spage = sbio->pagev[i];
1739 
1740 			spage->io_error = 1;
1741 			atomic64_inc(&dev_replace->num_write_errors);
1742 		}
1743 	}
1744 
1745 	for (i = 0; i < sbio->page_count; i++)
1746 		scrub_page_put(sbio->pagev[i]);
1747 
1748 	bio_put(sbio->bio);
1749 	kfree(sbio);
1750 	scrub_pending_bio_dec(sctx);
1751 }
1752 
1753 static int scrub_checksum(struct scrub_block *sblock)
1754 {
1755 	u64 flags;
1756 	int ret;
1757 
1758 	/*
1759 	 * No need to initialize these stats currently,
1760 	 * because this function only use return value
1761 	 * instead of these stats value.
1762 	 *
1763 	 * Todo:
1764 	 * always use stats
1765 	 */
1766 	sblock->header_error = 0;
1767 	sblock->generation_error = 0;
1768 	sblock->checksum_error = 0;
1769 
1770 	WARN_ON(sblock->page_count < 1);
1771 	flags = sblock->pagev[0]->flags;
1772 	ret = 0;
1773 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1774 		ret = scrub_checksum_data(sblock);
1775 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1776 		ret = scrub_checksum_tree_block(sblock);
1777 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1778 		(void)scrub_checksum_super(sblock);
1779 	else
1780 		WARN_ON(1);
1781 	if (ret)
1782 		scrub_handle_errored_block(sblock);
1783 
1784 	return ret;
1785 }
1786 
1787 static int scrub_checksum_data(struct scrub_block *sblock)
1788 {
1789 	struct scrub_ctx *sctx = sblock->sctx;
1790 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1791 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1792 	u8 csum[BTRFS_CSUM_SIZE];
1793 	u8 *on_disk_csum;
1794 	struct page *page;
1795 	void *buffer;
1796 	u64 len;
1797 	int index;
1798 
1799 	BUG_ON(sblock->page_count < 1);
1800 	if (!sblock->pagev[0]->have_csum)
1801 		return 0;
1802 
1803 	shash->tfm = fs_info->csum_shash;
1804 	crypto_shash_init(shash);
1805 
1806 	on_disk_csum = sblock->pagev[0]->csum;
1807 	page = sblock->pagev[0]->page;
1808 	buffer = kmap_atomic(page);
1809 
1810 	len = sctx->fs_info->sectorsize;
1811 	index = 0;
1812 	for (;;) {
1813 		u64 l = min_t(u64, len, PAGE_SIZE);
1814 
1815 		crypto_shash_update(shash, buffer, l);
1816 		kunmap_atomic(buffer);
1817 		len -= l;
1818 		if (len == 0)
1819 			break;
1820 		index++;
1821 		BUG_ON(index >= sblock->page_count);
1822 		BUG_ON(!sblock->pagev[index]->page);
1823 		page = sblock->pagev[index]->page;
1824 		buffer = kmap_atomic(page);
1825 	}
1826 
1827 	crypto_shash_final(shash, csum);
1828 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1829 		sblock->checksum_error = 1;
1830 
1831 	return sblock->checksum_error;
1832 }
1833 
1834 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1835 {
1836 	struct scrub_ctx *sctx = sblock->sctx;
1837 	struct btrfs_header *h;
1838 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1839 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1840 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1841 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1842 	struct page *page;
1843 	void *mapped_buffer;
1844 	u64 mapped_size;
1845 	void *p;
1846 	u64 len;
1847 	int index;
1848 
1849 	shash->tfm = fs_info->csum_shash;
1850 	crypto_shash_init(shash);
1851 
1852 	BUG_ON(sblock->page_count < 1);
1853 	page = sblock->pagev[0]->page;
1854 	mapped_buffer = kmap_atomic(page);
1855 	h = (struct btrfs_header *)mapped_buffer;
1856 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1857 
1858 	/*
1859 	 * we don't use the getter functions here, as we
1860 	 * a) don't have an extent buffer and
1861 	 * b) the page is already kmapped
1862 	 */
1863 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1864 		sblock->header_error = 1;
1865 
1866 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1867 		sblock->header_error = 1;
1868 		sblock->generation_error = 1;
1869 	}
1870 
1871 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1872 		sblock->header_error = 1;
1873 
1874 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1875 		   BTRFS_UUID_SIZE))
1876 		sblock->header_error = 1;
1877 
1878 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1879 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1880 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1881 	index = 0;
1882 	for (;;) {
1883 		u64 l = min_t(u64, len, mapped_size);
1884 
1885 		crypto_shash_update(shash, p, l);
1886 		kunmap_atomic(mapped_buffer);
1887 		len -= l;
1888 		if (len == 0)
1889 			break;
1890 		index++;
1891 		BUG_ON(index >= sblock->page_count);
1892 		BUG_ON(!sblock->pagev[index]->page);
1893 		page = sblock->pagev[index]->page;
1894 		mapped_buffer = kmap_atomic(page);
1895 		mapped_size = PAGE_SIZE;
1896 		p = mapped_buffer;
1897 	}
1898 
1899 	crypto_shash_final(shash, calculated_csum);
1900 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1901 		sblock->checksum_error = 1;
1902 
1903 	return sblock->header_error || sblock->checksum_error;
1904 }
1905 
1906 static int scrub_checksum_super(struct scrub_block *sblock)
1907 {
1908 	struct btrfs_super_block *s;
1909 	struct scrub_ctx *sctx = sblock->sctx;
1910 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1911 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1912 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1913 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1914 	struct page *page;
1915 	void *mapped_buffer;
1916 	u64 mapped_size;
1917 	void *p;
1918 	int fail_gen = 0;
1919 	int fail_cor = 0;
1920 	u64 len;
1921 	int index;
1922 
1923 	shash->tfm = fs_info->csum_shash;
1924 	crypto_shash_init(shash);
1925 
1926 	BUG_ON(sblock->page_count < 1);
1927 	page = sblock->pagev[0]->page;
1928 	mapped_buffer = kmap_atomic(page);
1929 	s = (struct btrfs_super_block *)mapped_buffer;
1930 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1931 
1932 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1933 		++fail_cor;
1934 
1935 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1936 		++fail_gen;
1937 
1938 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1939 		++fail_cor;
1940 
1941 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1942 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1943 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1944 	index = 0;
1945 	for (;;) {
1946 		u64 l = min_t(u64, len, mapped_size);
1947 
1948 		crypto_shash_update(shash, p, l);
1949 		kunmap_atomic(mapped_buffer);
1950 		len -= l;
1951 		if (len == 0)
1952 			break;
1953 		index++;
1954 		BUG_ON(index >= sblock->page_count);
1955 		BUG_ON(!sblock->pagev[index]->page);
1956 		page = sblock->pagev[index]->page;
1957 		mapped_buffer = kmap_atomic(page);
1958 		mapped_size = PAGE_SIZE;
1959 		p = mapped_buffer;
1960 	}
1961 
1962 	crypto_shash_final(shash, calculated_csum);
1963 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1964 		++fail_cor;
1965 
1966 	if (fail_cor + fail_gen) {
1967 		/*
1968 		 * if we find an error in a super block, we just report it.
1969 		 * They will get written with the next transaction commit
1970 		 * anyway
1971 		 */
1972 		spin_lock(&sctx->stat_lock);
1973 		++sctx->stat.super_errors;
1974 		spin_unlock(&sctx->stat_lock);
1975 		if (fail_cor)
1976 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1977 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1978 		else
1979 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1980 				BTRFS_DEV_STAT_GENERATION_ERRS);
1981 	}
1982 
1983 	return fail_cor + fail_gen;
1984 }
1985 
1986 static void scrub_block_get(struct scrub_block *sblock)
1987 {
1988 	refcount_inc(&sblock->refs);
1989 }
1990 
1991 static void scrub_block_put(struct scrub_block *sblock)
1992 {
1993 	if (refcount_dec_and_test(&sblock->refs)) {
1994 		int i;
1995 
1996 		if (sblock->sparity)
1997 			scrub_parity_put(sblock->sparity);
1998 
1999 		for (i = 0; i < sblock->page_count; i++)
2000 			scrub_page_put(sblock->pagev[i]);
2001 		kfree(sblock);
2002 	}
2003 }
2004 
2005 static void scrub_page_get(struct scrub_page *spage)
2006 {
2007 	atomic_inc(&spage->refs);
2008 }
2009 
2010 static void scrub_page_put(struct scrub_page *spage)
2011 {
2012 	if (atomic_dec_and_test(&spage->refs)) {
2013 		if (spage->page)
2014 			__free_page(spage->page);
2015 		kfree(spage);
2016 	}
2017 }
2018 
2019 static void scrub_submit(struct scrub_ctx *sctx)
2020 {
2021 	struct scrub_bio *sbio;
2022 
2023 	if (sctx->curr == -1)
2024 		return;
2025 
2026 	sbio = sctx->bios[sctx->curr];
2027 	sctx->curr = -1;
2028 	scrub_pending_bio_inc(sctx);
2029 	btrfsic_submit_bio(sbio->bio);
2030 }
2031 
2032 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2033 				    struct scrub_page *spage)
2034 {
2035 	struct scrub_block *sblock = spage->sblock;
2036 	struct scrub_bio *sbio;
2037 	int ret;
2038 
2039 again:
2040 	/*
2041 	 * grab a fresh bio or wait for one to become available
2042 	 */
2043 	while (sctx->curr == -1) {
2044 		spin_lock(&sctx->list_lock);
2045 		sctx->curr = sctx->first_free;
2046 		if (sctx->curr != -1) {
2047 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2048 			sctx->bios[sctx->curr]->next_free = -1;
2049 			sctx->bios[sctx->curr]->page_count = 0;
2050 			spin_unlock(&sctx->list_lock);
2051 		} else {
2052 			spin_unlock(&sctx->list_lock);
2053 			wait_event(sctx->list_wait, sctx->first_free != -1);
2054 		}
2055 	}
2056 	sbio = sctx->bios[sctx->curr];
2057 	if (sbio->page_count == 0) {
2058 		struct bio *bio;
2059 
2060 		sbio->physical = spage->physical;
2061 		sbio->logical = spage->logical;
2062 		sbio->dev = spage->dev;
2063 		bio = sbio->bio;
2064 		if (!bio) {
2065 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2066 			sbio->bio = bio;
2067 		}
2068 
2069 		bio->bi_private = sbio;
2070 		bio->bi_end_io = scrub_bio_end_io;
2071 		bio_set_dev(bio, sbio->dev->bdev);
2072 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2073 		bio->bi_opf = REQ_OP_READ;
2074 		sbio->status = 0;
2075 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2076 		   spage->physical ||
2077 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2078 		   spage->logical ||
2079 		   sbio->dev != spage->dev) {
2080 		scrub_submit(sctx);
2081 		goto again;
2082 	}
2083 
2084 	sbio->pagev[sbio->page_count] = spage;
2085 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2086 	if (ret != PAGE_SIZE) {
2087 		if (sbio->page_count < 1) {
2088 			bio_put(sbio->bio);
2089 			sbio->bio = NULL;
2090 			return -EIO;
2091 		}
2092 		scrub_submit(sctx);
2093 		goto again;
2094 	}
2095 
2096 	scrub_block_get(sblock); /* one for the page added to the bio */
2097 	atomic_inc(&sblock->outstanding_pages);
2098 	sbio->page_count++;
2099 	if (sbio->page_count == sctx->pages_per_rd_bio)
2100 		scrub_submit(sctx);
2101 
2102 	return 0;
2103 }
2104 
2105 static void scrub_missing_raid56_end_io(struct bio *bio)
2106 {
2107 	struct scrub_block *sblock = bio->bi_private;
2108 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2109 
2110 	if (bio->bi_status)
2111 		sblock->no_io_error_seen = 0;
2112 
2113 	bio_put(bio);
2114 
2115 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2116 }
2117 
2118 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2119 {
2120 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2121 	struct scrub_ctx *sctx = sblock->sctx;
2122 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2123 	u64 logical;
2124 	struct btrfs_device *dev;
2125 
2126 	logical = sblock->pagev[0]->logical;
2127 	dev = sblock->pagev[0]->dev;
2128 
2129 	if (sblock->no_io_error_seen)
2130 		scrub_recheck_block_checksum(sblock);
2131 
2132 	if (!sblock->no_io_error_seen) {
2133 		spin_lock(&sctx->stat_lock);
2134 		sctx->stat.read_errors++;
2135 		spin_unlock(&sctx->stat_lock);
2136 		btrfs_err_rl_in_rcu(fs_info,
2137 			"IO error rebuilding logical %llu for dev %s",
2138 			logical, rcu_str_deref(dev->name));
2139 	} else if (sblock->header_error || sblock->checksum_error) {
2140 		spin_lock(&sctx->stat_lock);
2141 		sctx->stat.uncorrectable_errors++;
2142 		spin_unlock(&sctx->stat_lock);
2143 		btrfs_err_rl_in_rcu(fs_info,
2144 			"failed to rebuild valid logical %llu for dev %s",
2145 			logical, rcu_str_deref(dev->name));
2146 	} else {
2147 		scrub_write_block_to_dev_replace(sblock);
2148 	}
2149 
2150 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2151 		mutex_lock(&sctx->wr_lock);
2152 		scrub_wr_submit(sctx);
2153 		mutex_unlock(&sctx->wr_lock);
2154 	}
2155 
2156 	scrub_block_put(sblock);
2157 	scrub_pending_bio_dec(sctx);
2158 }
2159 
2160 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2161 {
2162 	struct scrub_ctx *sctx = sblock->sctx;
2163 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2164 	u64 length = sblock->page_count * PAGE_SIZE;
2165 	u64 logical = sblock->pagev[0]->logical;
2166 	struct btrfs_bio *bbio = NULL;
2167 	struct bio *bio;
2168 	struct btrfs_raid_bio *rbio;
2169 	int ret;
2170 	int i;
2171 
2172 	btrfs_bio_counter_inc_blocked(fs_info);
2173 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2174 			&length, &bbio);
2175 	if (ret || !bbio || !bbio->raid_map)
2176 		goto bbio_out;
2177 
2178 	if (WARN_ON(!sctx->is_dev_replace ||
2179 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2180 		/*
2181 		 * We shouldn't be scrubbing a missing device. Even for dev
2182 		 * replace, we should only get here for RAID 5/6. We either
2183 		 * managed to mount something with no mirrors remaining or
2184 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2185 		 */
2186 		goto bbio_out;
2187 	}
2188 
2189 	bio = btrfs_io_bio_alloc(0);
2190 	bio->bi_iter.bi_sector = logical >> 9;
2191 	bio->bi_private = sblock;
2192 	bio->bi_end_io = scrub_missing_raid56_end_io;
2193 
2194 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2195 	if (!rbio)
2196 		goto rbio_out;
2197 
2198 	for (i = 0; i < sblock->page_count; i++) {
2199 		struct scrub_page *spage = sblock->pagev[i];
2200 
2201 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2202 	}
2203 
2204 	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2205 	scrub_block_get(sblock);
2206 	scrub_pending_bio_inc(sctx);
2207 	raid56_submit_missing_rbio(rbio);
2208 	return;
2209 
2210 rbio_out:
2211 	bio_put(bio);
2212 bbio_out:
2213 	btrfs_bio_counter_dec(fs_info);
2214 	btrfs_put_bbio(bbio);
2215 	spin_lock(&sctx->stat_lock);
2216 	sctx->stat.malloc_errors++;
2217 	spin_unlock(&sctx->stat_lock);
2218 }
2219 
2220 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2221 		       u64 physical, struct btrfs_device *dev, u64 flags,
2222 		       u64 gen, int mirror_num, u8 *csum, int force,
2223 		       u64 physical_for_dev_replace)
2224 {
2225 	struct scrub_block *sblock;
2226 	int index;
2227 
2228 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2229 	if (!sblock) {
2230 		spin_lock(&sctx->stat_lock);
2231 		sctx->stat.malloc_errors++;
2232 		spin_unlock(&sctx->stat_lock);
2233 		return -ENOMEM;
2234 	}
2235 
2236 	/* one ref inside this function, plus one for each page added to
2237 	 * a bio later on */
2238 	refcount_set(&sblock->refs, 1);
2239 	sblock->sctx = sctx;
2240 	sblock->no_io_error_seen = 1;
2241 
2242 	for (index = 0; len > 0; index++) {
2243 		struct scrub_page *spage;
2244 		u64 l = min_t(u64, len, PAGE_SIZE);
2245 
2246 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2247 		if (!spage) {
2248 leave_nomem:
2249 			spin_lock(&sctx->stat_lock);
2250 			sctx->stat.malloc_errors++;
2251 			spin_unlock(&sctx->stat_lock);
2252 			scrub_block_put(sblock);
2253 			return -ENOMEM;
2254 		}
2255 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2256 		scrub_page_get(spage);
2257 		sblock->pagev[index] = spage;
2258 		spage->sblock = sblock;
2259 		spage->dev = dev;
2260 		spage->flags = flags;
2261 		spage->generation = gen;
2262 		spage->logical = logical;
2263 		spage->physical = physical;
2264 		spage->physical_for_dev_replace = physical_for_dev_replace;
2265 		spage->mirror_num = mirror_num;
2266 		if (csum) {
2267 			spage->have_csum = 1;
2268 			memcpy(spage->csum, csum, sctx->csum_size);
2269 		} else {
2270 			spage->have_csum = 0;
2271 		}
2272 		sblock->page_count++;
2273 		spage->page = alloc_page(GFP_KERNEL);
2274 		if (!spage->page)
2275 			goto leave_nomem;
2276 		len -= l;
2277 		logical += l;
2278 		physical += l;
2279 		physical_for_dev_replace += l;
2280 	}
2281 
2282 	WARN_ON(sblock->page_count == 0);
2283 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2284 		/*
2285 		 * This case should only be hit for RAID 5/6 device replace. See
2286 		 * the comment in scrub_missing_raid56_pages() for details.
2287 		 */
2288 		scrub_missing_raid56_pages(sblock);
2289 	} else {
2290 		for (index = 0; index < sblock->page_count; index++) {
2291 			struct scrub_page *spage = sblock->pagev[index];
2292 			int ret;
2293 
2294 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2295 			if (ret) {
2296 				scrub_block_put(sblock);
2297 				return ret;
2298 			}
2299 		}
2300 
2301 		if (force)
2302 			scrub_submit(sctx);
2303 	}
2304 
2305 	/* last one frees, either here or in bio completion for last page */
2306 	scrub_block_put(sblock);
2307 	return 0;
2308 }
2309 
2310 static void scrub_bio_end_io(struct bio *bio)
2311 {
2312 	struct scrub_bio *sbio = bio->bi_private;
2313 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2314 
2315 	sbio->status = bio->bi_status;
2316 	sbio->bio = bio;
2317 
2318 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2319 }
2320 
2321 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2322 {
2323 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2324 	struct scrub_ctx *sctx = sbio->sctx;
2325 	int i;
2326 
2327 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2328 	if (sbio->status) {
2329 		for (i = 0; i < sbio->page_count; i++) {
2330 			struct scrub_page *spage = sbio->pagev[i];
2331 
2332 			spage->io_error = 1;
2333 			spage->sblock->no_io_error_seen = 0;
2334 		}
2335 	}
2336 
2337 	/* now complete the scrub_block items that have all pages completed */
2338 	for (i = 0; i < sbio->page_count; i++) {
2339 		struct scrub_page *spage = sbio->pagev[i];
2340 		struct scrub_block *sblock = spage->sblock;
2341 
2342 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2343 			scrub_block_complete(sblock);
2344 		scrub_block_put(sblock);
2345 	}
2346 
2347 	bio_put(sbio->bio);
2348 	sbio->bio = NULL;
2349 	spin_lock(&sctx->list_lock);
2350 	sbio->next_free = sctx->first_free;
2351 	sctx->first_free = sbio->index;
2352 	spin_unlock(&sctx->list_lock);
2353 
2354 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2355 		mutex_lock(&sctx->wr_lock);
2356 		scrub_wr_submit(sctx);
2357 		mutex_unlock(&sctx->wr_lock);
2358 	}
2359 
2360 	scrub_pending_bio_dec(sctx);
2361 }
2362 
2363 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2364 				       unsigned long *bitmap,
2365 				       u64 start, u64 len)
2366 {
2367 	u64 offset;
2368 	u64 nsectors64;
2369 	u32 nsectors;
2370 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2371 
2372 	if (len >= sparity->stripe_len) {
2373 		bitmap_set(bitmap, 0, sparity->nsectors);
2374 		return;
2375 	}
2376 
2377 	start -= sparity->logic_start;
2378 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2379 	offset = div_u64(offset, sectorsize);
2380 	nsectors64 = div_u64(len, sectorsize);
2381 
2382 	ASSERT(nsectors64 < UINT_MAX);
2383 	nsectors = (u32)nsectors64;
2384 
2385 	if (offset + nsectors <= sparity->nsectors) {
2386 		bitmap_set(bitmap, offset, nsectors);
2387 		return;
2388 	}
2389 
2390 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2391 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2392 }
2393 
2394 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2395 						   u64 start, u64 len)
2396 {
2397 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2398 }
2399 
2400 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2401 						  u64 start, u64 len)
2402 {
2403 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2404 }
2405 
2406 static void scrub_block_complete(struct scrub_block *sblock)
2407 {
2408 	int corrupted = 0;
2409 
2410 	if (!sblock->no_io_error_seen) {
2411 		corrupted = 1;
2412 		scrub_handle_errored_block(sblock);
2413 	} else {
2414 		/*
2415 		 * if has checksum error, write via repair mechanism in
2416 		 * dev replace case, otherwise write here in dev replace
2417 		 * case.
2418 		 */
2419 		corrupted = scrub_checksum(sblock);
2420 		if (!corrupted && sblock->sctx->is_dev_replace)
2421 			scrub_write_block_to_dev_replace(sblock);
2422 	}
2423 
2424 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2425 		u64 start = sblock->pagev[0]->logical;
2426 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2427 			  PAGE_SIZE;
2428 
2429 		scrub_parity_mark_sectors_error(sblock->sparity,
2430 						start, end - start);
2431 	}
2432 }
2433 
2434 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2435 {
2436 	struct btrfs_ordered_sum *sum = NULL;
2437 	unsigned long index;
2438 	unsigned long num_sectors;
2439 
2440 	while (!list_empty(&sctx->csum_list)) {
2441 		sum = list_first_entry(&sctx->csum_list,
2442 				       struct btrfs_ordered_sum, list);
2443 		if (sum->bytenr > logical)
2444 			return 0;
2445 		if (sum->bytenr + sum->len > logical)
2446 			break;
2447 
2448 		++sctx->stat.csum_discards;
2449 		list_del(&sum->list);
2450 		kfree(sum);
2451 		sum = NULL;
2452 	}
2453 	if (!sum)
2454 		return 0;
2455 
2456 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2457 	ASSERT(index < UINT_MAX);
2458 
2459 	num_sectors = sum->len / sctx->fs_info->sectorsize;
2460 	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2461 	if (index == num_sectors - 1) {
2462 		list_del(&sum->list);
2463 		kfree(sum);
2464 	}
2465 	return 1;
2466 }
2467 
2468 /* scrub extent tries to collect up to 64 kB for each bio */
2469 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2470 			u64 logical, u64 len,
2471 			u64 physical, struct btrfs_device *dev, u64 flags,
2472 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2473 {
2474 	int ret;
2475 	u8 csum[BTRFS_CSUM_SIZE];
2476 	u32 blocksize;
2477 
2478 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2479 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2480 			blocksize = map->stripe_len;
2481 		else
2482 			blocksize = sctx->fs_info->sectorsize;
2483 		spin_lock(&sctx->stat_lock);
2484 		sctx->stat.data_extents_scrubbed++;
2485 		sctx->stat.data_bytes_scrubbed += len;
2486 		spin_unlock(&sctx->stat_lock);
2487 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2488 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2489 			blocksize = map->stripe_len;
2490 		else
2491 			blocksize = sctx->fs_info->nodesize;
2492 		spin_lock(&sctx->stat_lock);
2493 		sctx->stat.tree_extents_scrubbed++;
2494 		sctx->stat.tree_bytes_scrubbed += len;
2495 		spin_unlock(&sctx->stat_lock);
2496 	} else {
2497 		blocksize = sctx->fs_info->sectorsize;
2498 		WARN_ON(1);
2499 	}
2500 
2501 	while (len) {
2502 		u64 l = min_t(u64, len, blocksize);
2503 		int have_csum = 0;
2504 
2505 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2506 			/* push csums to sbio */
2507 			have_csum = scrub_find_csum(sctx, logical, csum);
2508 			if (have_csum == 0)
2509 				++sctx->stat.no_csum;
2510 		}
2511 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2512 				  mirror_num, have_csum ? csum : NULL, 0,
2513 				  physical_for_dev_replace);
2514 		if (ret)
2515 			return ret;
2516 		len -= l;
2517 		logical += l;
2518 		physical += l;
2519 		physical_for_dev_replace += l;
2520 	}
2521 	return 0;
2522 }
2523 
2524 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2525 				  u64 logical, u64 len,
2526 				  u64 physical, struct btrfs_device *dev,
2527 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2528 {
2529 	struct scrub_ctx *sctx = sparity->sctx;
2530 	struct scrub_block *sblock;
2531 	int index;
2532 
2533 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2534 	if (!sblock) {
2535 		spin_lock(&sctx->stat_lock);
2536 		sctx->stat.malloc_errors++;
2537 		spin_unlock(&sctx->stat_lock);
2538 		return -ENOMEM;
2539 	}
2540 
2541 	/* one ref inside this function, plus one for each page added to
2542 	 * a bio later on */
2543 	refcount_set(&sblock->refs, 1);
2544 	sblock->sctx = sctx;
2545 	sblock->no_io_error_seen = 1;
2546 	sblock->sparity = sparity;
2547 	scrub_parity_get(sparity);
2548 
2549 	for (index = 0; len > 0; index++) {
2550 		struct scrub_page *spage;
2551 		u64 l = min_t(u64, len, PAGE_SIZE);
2552 
2553 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2554 		if (!spage) {
2555 leave_nomem:
2556 			spin_lock(&sctx->stat_lock);
2557 			sctx->stat.malloc_errors++;
2558 			spin_unlock(&sctx->stat_lock);
2559 			scrub_block_put(sblock);
2560 			return -ENOMEM;
2561 		}
2562 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2563 		/* For scrub block */
2564 		scrub_page_get(spage);
2565 		sblock->pagev[index] = spage;
2566 		/* For scrub parity */
2567 		scrub_page_get(spage);
2568 		list_add_tail(&spage->list, &sparity->spages);
2569 		spage->sblock = sblock;
2570 		spage->dev = dev;
2571 		spage->flags = flags;
2572 		spage->generation = gen;
2573 		spage->logical = logical;
2574 		spage->physical = physical;
2575 		spage->mirror_num = mirror_num;
2576 		if (csum) {
2577 			spage->have_csum = 1;
2578 			memcpy(spage->csum, csum, sctx->csum_size);
2579 		} else {
2580 			spage->have_csum = 0;
2581 		}
2582 		sblock->page_count++;
2583 		spage->page = alloc_page(GFP_KERNEL);
2584 		if (!spage->page)
2585 			goto leave_nomem;
2586 		len -= l;
2587 		logical += l;
2588 		physical += l;
2589 	}
2590 
2591 	WARN_ON(sblock->page_count == 0);
2592 	for (index = 0; index < sblock->page_count; index++) {
2593 		struct scrub_page *spage = sblock->pagev[index];
2594 		int ret;
2595 
2596 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2597 		if (ret) {
2598 			scrub_block_put(sblock);
2599 			return ret;
2600 		}
2601 	}
2602 
2603 	/* last one frees, either here or in bio completion for last page */
2604 	scrub_block_put(sblock);
2605 	return 0;
2606 }
2607 
2608 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2609 				   u64 logical, u64 len,
2610 				   u64 physical, struct btrfs_device *dev,
2611 				   u64 flags, u64 gen, int mirror_num)
2612 {
2613 	struct scrub_ctx *sctx = sparity->sctx;
2614 	int ret;
2615 	u8 csum[BTRFS_CSUM_SIZE];
2616 	u32 blocksize;
2617 
2618 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2619 		scrub_parity_mark_sectors_error(sparity, logical, len);
2620 		return 0;
2621 	}
2622 
2623 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2624 		blocksize = sparity->stripe_len;
2625 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2626 		blocksize = sparity->stripe_len;
2627 	} else {
2628 		blocksize = sctx->fs_info->sectorsize;
2629 		WARN_ON(1);
2630 	}
2631 
2632 	while (len) {
2633 		u64 l = min_t(u64, len, blocksize);
2634 		int have_csum = 0;
2635 
2636 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2637 			/* push csums to sbio */
2638 			have_csum = scrub_find_csum(sctx, logical, csum);
2639 			if (have_csum == 0)
2640 				goto skip;
2641 		}
2642 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2643 					     flags, gen, mirror_num,
2644 					     have_csum ? csum : NULL);
2645 		if (ret)
2646 			return ret;
2647 skip:
2648 		len -= l;
2649 		logical += l;
2650 		physical += l;
2651 	}
2652 	return 0;
2653 }
2654 
2655 /*
2656  * Given a physical address, this will calculate it's
2657  * logical offset. if this is a parity stripe, it will return
2658  * the most left data stripe's logical offset.
2659  *
2660  * return 0 if it is a data stripe, 1 means parity stripe.
2661  */
2662 static int get_raid56_logic_offset(u64 physical, int num,
2663 				   struct map_lookup *map, u64 *offset,
2664 				   u64 *stripe_start)
2665 {
2666 	int i;
2667 	int j = 0;
2668 	u64 stripe_nr;
2669 	u64 last_offset;
2670 	u32 stripe_index;
2671 	u32 rot;
2672 	const int data_stripes = nr_data_stripes(map);
2673 
2674 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2675 	if (stripe_start)
2676 		*stripe_start = last_offset;
2677 
2678 	*offset = last_offset;
2679 	for (i = 0; i < data_stripes; i++) {
2680 		*offset = last_offset + i * map->stripe_len;
2681 
2682 		stripe_nr = div64_u64(*offset, map->stripe_len);
2683 		stripe_nr = div_u64(stripe_nr, data_stripes);
2684 
2685 		/* Work out the disk rotation on this stripe-set */
2686 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2687 		/* calculate which stripe this data locates */
2688 		rot += i;
2689 		stripe_index = rot % map->num_stripes;
2690 		if (stripe_index == num)
2691 			return 0;
2692 		if (stripe_index < num)
2693 			j++;
2694 	}
2695 	*offset = last_offset + j * map->stripe_len;
2696 	return 1;
2697 }
2698 
2699 static void scrub_free_parity(struct scrub_parity *sparity)
2700 {
2701 	struct scrub_ctx *sctx = sparity->sctx;
2702 	struct scrub_page *curr, *next;
2703 	int nbits;
2704 
2705 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2706 	if (nbits) {
2707 		spin_lock(&sctx->stat_lock);
2708 		sctx->stat.read_errors += nbits;
2709 		sctx->stat.uncorrectable_errors += nbits;
2710 		spin_unlock(&sctx->stat_lock);
2711 	}
2712 
2713 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2714 		list_del_init(&curr->list);
2715 		scrub_page_put(curr);
2716 	}
2717 
2718 	kfree(sparity);
2719 }
2720 
2721 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2722 {
2723 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2724 						    work);
2725 	struct scrub_ctx *sctx = sparity->sctx;
2726 
2727 	scrub_free_parity(sparity);
2728 	scrub_pending_bio_dec(sctx);
2729 }
2730 
2731 static void scrub_parity_bio_endio(struct bio *bio)
2732 {
2733 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2734 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2735 
2736 	if (bio->bi_status)
2737 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2738 			  sparity->nsectors);
2739 
2740 	bio_put(bio);
2741 
2742 	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2743 			NULL);
2744 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2745 }
2746 
2747 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2748 {
2749 	struct scrub_ctx *sctx = sparity->sctx;
2750 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2751 	struct bio *bio;
2752 	struct btrfs_raid_bio *rbio;
2753 	struct btrfs_bio *bbio = NULL;
2754 	u64 length;
2755 	int ret;
2756 
2757 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2758 			   sparity->nsectors))
2759 		goto out;
2760 
2761 	length = sparity->logic_end - sparity->logic_start;
2762 
2763 	btrfs_bio_counter_inc_blocked(fs_info);
2764 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2765 			       &length, &bbio);
2766 	if (ret || !bbio || !bbio->raid_map)
2767 		goto bbio_out;
2768 
2769 	bio = btrfs_io_bio_alloc(0);
2770 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2771 	bio->bi_private = sparity;
2772 	bio->bi_end_io = scrub_parity_bio_endio;
2773 
2774 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2775 					      length, sparity->scrub_dev,
2776 					      sparity->dbitmap,
2777 					      sparity->nsectors);
2778 	if (!rbio)
2779 		goto rbio_out;
2780 
2781 	scrub_pending_bio_inc(sctx);
2782 	raid56_parity_submit_scrub_rbio(rbio);
2783 	return;
2784 
2785 rbio_out:
2786 	bio_put(bio);
2787 bbio_out:
2788 	btrfs_bio_counter_dec(fs_info);
2789 	btrfs_put_bbio(bbio);
2790 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2791 		  sparity->nsectors);
2792 	spin_lock(&sctx->stat_lock);
2793 	sctx->stat.malloc_errors++;
2794 	spin_unlock(&sctx->stat_lock);
2795 out:
2796 	scrub_free_parity(sparity);
2797 }
2798 
2799 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2800 {
2801 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2802 }
2803 
2804 static void scrub_parity_get(struct scrub_parity *sparity)
2805 {
2806 	refcount_inc(&sparity->refs);
2807 }
2808 
2809 static void scrub_parity_put(struct scrub_parity *sparity)
2810 {
2811 	if (!refcount_dec_and_test(&sparity->refs))
2812 		return;
2813 
2814 	scrub_parity_check_and_repair(sparity);
2815 }
2816 
2817 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2818 						  struct map_lookup *map,
2819 						  struct btrfs_device *sdev,
2820 						  struct btrfs_path *path,
2821 						  u64 logic_start,
2822 						  u64 logic_end)
2823 {
2824 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2825 	struct btrfs_root *root = fs_info->extent_root;
2826 	struct btrfs_root *csum_root = fs_info->csum_root;
2827 	struct btrfs_extent_item *extent;
2828 	struct btrfs_bio *bbio = NULL;
2829 	u64 flags;
2830 	int ret;
2831 	int slot;
2832 	struct extent_buffer *l;
2833 	struct btrfs_key key;
2834 	u64 generation;
2835 	u64 extent_logical;
2836 	u64 extent_physical;
2837 	u64 extent_len;
2838 	u64 mapped_length;
2839 	struct btrfs_device *extent_dev;
2840 	struct scrub_parity *sparity;
2841 	int nsectors;
2842 	int bitmap_len;
2843 	int extent_mirror_num;
2844 	int stop_loop = 0;
2845 
2846 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2847 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2848 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2849 			  GFP_NOFS);
2850 	if (!sparity) {
2851 		spin_lock(&sctx->stat_lock);
2852 		sctx->stat.malloc_errors++;
2853 		spin_unlock(&sctx->stat_lock);
2854 		return -ENOMEM;
2855 	}
2856 
2857 	sparity->stripe_len = map->stripe_len;
2858 	sparity->nsectors = nsectors;
2859 	sparity->sctx = sctx;
2860 	sparity->scrub_dev = sdev;
2861 	sparity->logic_start = logic_start;
2862 	sparity->logic_end = logic_end;
2863 	refcount_set(&sparity->refs, 1);
2864 	INIT_LIST_HEAD(&sparity->spages);
2865 	sparity->dbitmap = sparity->bitmap;
2866 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2867 
2868 	ret = 0;
2869 	while (logic_start < logic_end) {
2870 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2871 			key.type = BTRFS_METADATA_ITEM_KEY;
2872 		else
2873 			key.type = BTRFS_EXTENT_ITEM_KEY;
2874 		key.objectid = logic_start;
2875 		key.offset = (u64)-1;
2876 
2877 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2878 		if (ret < 0)
2879 			goto out;
2880 
2881 		if (ret > 0) {
2882 			ret = btrfs_previous_extent_item(root, path, 0);
2883 			if (ret < 0)
2884 				goto out;
2885 			if (ret > 0) {
2886 				btrfs_release_path(path);
2887 				ret = btrfs_search_slot(NULL, root, &key,
2888 							path, 0, 0);
2889 				if (ret < 0)
2890 					goto out;
2891 			}
2892 		}
2893 
2894 		stop_loop = 0;
2895 		while (1) {
2896 			u64 bytes;
2897 
2898 			l = path->nodes[0];
2899 			slot = path->slots[0];
2900 			if (slot >= btrfs_header_nritems(l)) {
2901 				ret = btrfs_next_leaf(root, path);
2902 				if (ret == 0)
2903 					continue;
2904 				if (ret < 0)
2905 					goto out;
2906 
2907 				stop_loop = 1;
2908 				break;
2909 			}
2910 			btrfs_item_key_to_cpu(l, &key, slot);
2911 
2912 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2913 			    key.type != BTRFS_METADATA_ITEM_KEY)
2914 				goto next;
2915 
2916 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2917 				bytes = fs_info->nodesize;
2918 			else
2919 				bytes = key.offset;
2920 
2921 			if (key.objectid + bytes <= logic_start)
2922 				goto next;
2923 
2924 			if (key.objectid >= logic_end) {
2925 				stop_loop = 1;
2926 				break;
2927 			}
2928 
2929 			while (key.objectid >= logic_start + map->stripe_len)
2930 				logic_start += map->stripe_len;
2931 
2932 			extent = btrfs_item_ptr(l, slot,
2933 						struct btrfs_extent_item);
2934 			flags = btrfs_extent_flags(l, extent);
2935 			generation = btrfs_extent_generation(l, extent);
2936 
2937 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2938 			    (key.objectid < logic_start ||
2939 			     key.objectid + bytes >
2940 			     logic_start + map->stripe_len)) {
2941 				btrfs_err(fs_info,
2942 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2943 					  key.objectid, logic_start);
2944 				spin_lock(&sctx->stat_lock);
2945 				sctx->stat.uncorrectable_errors++;
2946 				spin_unlock(&sctx->stat_lock);
2947 				goto next;
2948 			}
2949 again:
2950 			extent_logical = key.objectid;
2951 			extent_len = bytes;
2952 
2953 			if (extent_logical < logic_start) {
2954 				extent_len -= logic_start - extent_logical;
2955 				extent_logical = logic_start;
2956 			}
2957 
2958 			if (extent_logical + extent_len >
2959 			    logic_start + map->stripe_len)
2960 				extent_len = logic_start + map->stripe_len -
2961 					     extent_logical;
2962 
2963 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2964 						       extent_len);
2965 
2966 			mapped_length = extent_len;
2967 			bbio = NULL;
2968 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2969 					extent_logical, &mapped_length, &bbio,
2970 					0);
2971 			if (!ret) {
2972 				if (!bbio || mapped_length < extent_len)
2973 					ret = -EIO;
2974 			}
2975 			if (ret) {
2976 				btrfs_put_bbio(bbio);
2977 				goto out;
2978 			}
2979 			extent_physical = bbio->stripes[0].physical;
2980 			extent_mirror_num = bbio->mirror_num;
2981 			extent_dev = bbio->stripes[0].dev;
2982 			btrfs_put_bbio(bbio);
2983 
2984 			ret = btrfs_lookup_csums_range(csum_root,
2985 						extent_logical,
2986 						extent_logical + extent_len - 1,
2987 						&sctx->csum_list, 1);
2988 			if (ret)
2989 				goto out;
2990 
2991 			ret = scrub_extent_for_parity(sparity, extent_logical,
2992 						      extent_len,
2993 						      extent_physical,
2994 						      extent_dev, flags,
2995 						      generation,
2996 						      extent_mirror_num);
2997 
2998 			scrub_free_csums(sctx);
2999 
3000 			if (ret)
3001 				goto out;
3002 
3003 			if (extent_logical + extent_len <
3004 			    key.objectid + bytes) {
3005 				logic_start += map->stripe_len;
3006 
3007 				if (logic_start >= logic_end) {
3008 					stop_loop = 1;
3009 					break;
3010 				}
3011 
3012 				if (logic_start < key.objectid + bytes) {
3013 					cond_resched();
3014 					goto again;
3015 				}
3016 			}
3017 next:
3018 			path->slots[0]++;
3019 		}
3020 
3021 		btrfs_release_path(path);
3022 
3023 		if (stop_loop)
3024 			break;
3025 
3026 		logic_start += map->stripe_len;
3027 	}
3028 out:
3029 	if (ret < 0)
3030 		scrub_parity_mark_sectors_error(sparity, logic_start,
3031 						logic_end - logic_start);
3032 	scrub_parity_put(sparity);
3033 	scrub_submit(sctx);
3034 	mutex_lock(&sctx->wr_lock);
3035 	scrub_wr_submit(sctx);
3036 	mutex_unlock(&sctx->wr_lock);
3037 
3038 	btrfs_release_path(path);
3039 	return ret < 0 ? ret : 0;
3040 }
3041 
3042 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3043 					   struct map_lookup *map,
3044 					   struct btrfs_device *scrub_dev,
3045 					   int num, u64 base, u64 length,
3046 					   struct btrfs_block_group *cache)
3047 {
3048 	struct btrfs_path *path, *ppath;
3049 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3050 	struct btrfs_root *root = fs_info->extent_root;
3051 	struct btrfs_root *csum_root = fs_info->csum_root;
3052 	struct btrfs_extent_item *extent;
3053 	struct blk_plug plug;
3054 	u64 flags;
3055 	int ret;
3056 	int slot;
3057 	u64 nstripes;
3058 	struct extent_buffer *l;
3059 	u64 physical;
3060 	u64 logical;
3061 	u64 logic_end;
3062 	u64 physical_end;
3063 	u64 generation;
3064 	int mirror_num;
3065 	struct reada_control *reada1;
3066 	struct reada_control *reada2;
3067 	struct btrfs_key key;
3068 	struct btrfs_key key_end;
3069 	u64 increment = map->stripe_len;
3070 	u64 offset;
3071 	u64 extent_logical;
3072 	u64 extent_physical;
3073 	u64 extent_len;
3074 	u64 stripe_logical;
3075 	u64 stripe_end;
3076 	struct btrfs_device *extent_dev;
3077 	int extent_mirror_num;
3078 	int stop_loop = 0;
3079 
3080 	physical = map->stripes[num].physical;
3081 	offset = 0;
3082 	nstripes = div64_u64(length, map->stripe_len);
3083 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3084 		offset = map->stripe_len * num;
3085 		increment = map->stripe_len * map->num_stripes;
3086 		mirror_num = 1;
3087 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3088 		int factor = map->num_stripes / map->sub_stripes;
3089 		offset = map->stripe_len * (num / map->sub_stripes);
3090 		increment = map->stripe_len * factor;
3091 		mirror_num = num % map->sub_stripes + 1;
3092 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3093 		increment = map->stripe_len;
3094 		mirror_num = num % map->num_stripes + 1;
3095 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3096 		increment = map->stripe_len;
3097 		mirror_num = num % map->num_stripes + 1;
3098 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3099 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3100 		increment = map->stripe_len * nr_data_stripes(map);
3101 		mirror_num = 1;
3102 	} else {
3103 		increment = map->stripe_len;
3104 		mirror_num = 1;
3105 	}
3106 
3107 	path = btrfs_alloc_path();
3108 	if (!path)
3109 		return -ENOMEM;
3110 
3111 	ppath = btrfs_alloc_path();
3112 	if (!ppath) {
3113 		btrfs_free_path(path);
3114 		return -ENOMEM;
3115 	}
3116 
3117 	/*
3118 	 * work on commit root. The related disk blocks are static as
3119 	 * long as COW is applied. This means, it is save to rewrite
3120 	 * them to repair disk errors without any race conditions
3121 	 */
3122 	path->search_commit_root = 1;
3123 	path->skip_locking = 1;
3124 
3125 	ppath->search_commit_root = 1;
3126 	ppath->skip_locking = 1;
3127 	/*
3128 	 * trigger the readahead for extent tree csum tree and wait for
3129 	 * completion. During readahead, the scrub is officially paused
3130 	 * to not hold off transaction commits
3131 	 */
3132 	logical = base + offset;
3133 	physical_end = physical + nstripes * map->stripe_len;
3134 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3135 		get_raid56_logic_offset(physical_end, num,
3136 					map, &logic_end, NULL);
3137 		logic_end += base;
3138 	} else {
3139 		logic_end = logical + increment * nstripes;
3140 	}
3141 	wait_event(sctx->list_wait,
3142 		   atomic_read(&sctx->bios_in_flight) == 0);
3143 	scrub_blocked_if_needed(fs_info);
3144 
3145 	/* FIXME it might be better to start readahead at commit root */
3146 	key.objectid = logical;
3147 	key.type = BTRFS_EXTENT_ITEM_KEY;
3148 	key.offset = (u64)0;
3149 	key_end.objectid = logic_end;
3150 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3151 	key_end.offset = (u64)-1;
3152 	reada1 = btrfs_reada_add(root, &key, &key_end);
3153 
3154 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3155 	key.type = BTRFS_EXTENT_CSUM_KEY;
3156 	key.offset = logical;
3157 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3158 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3159 	key_end.offset = logic_end;
3160 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3161 
3162 	if (!IS_ERR(reada1))
3163 		btrfs_reada_wait(reada1);
3164 	if (!IS_ERR(reada2))
3165 		btrfs_reada_wait(reada2);
3166 
3167 
3168 	/*
3169 	 * collect all data csums for the stripe to avoid seeking during
3170 	 * the scrub. This might currently (crc32) end up to be about 1MB
3171 	 */
3172 	blk_start_plug(&plug);
3173 
3174 	/*
3175 	 * now find all extents for each stripe and scrub them
3176 	 */
3177 	ret = 0;
3178 	while (physical < physical_end) {
3179 		/*
3180 		 * canceled?
3181 		 */
3182 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3183 		    atomic_read(&sctx->cancel_req)) {
3184 			ret = -ECANCELED;
3185 			goto out;
3186 		}
3187 		/*
3188 		 * check to see if we have to pause
3189 		 */
3190 		if (atomic_read(&fs_info->scrub_pause_req)) {
3191 			/* push queued extents */
3192 			sctx->flush_all_writes = true;
3193 			scrub_submit(sctx);
3194 			mutex_lock(&sctx->wr_lock);
3195 			scrub_wr_submit(sctx);
3196 			mutex_unlock(&sctx->wr_lock);
3197 			wait_event(sctx->list_wait,
3198 				   atomic_read(&sctx->bios_in_flight) == 0);
3199 			sctx->flush_all_writes = false;
3200 			scrub_blocked_if_needed(fs_info);
3201 		}
3202 
3203 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3204 			ret = get_raid56_logic_offset(physical, num, map,
3205 						      &logical,
3206 						      &stripe_logical);
3207 			logical += base;
3208 			if (ret) {
3209 				/* it is parity strip */
3210 				stripe_logical += base;
3211 				stripe_end = stripe_logical + increment;
3212 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3213 							  ppath, stripe_logical,
3214 							  stripe_end);
3215 				if (ret)
3216 					goto out;
3217 				goto skip;
3218 			}
3219 		}
3220 
3221 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3222 			key.type = BTRFS_METADATA_ITEM_KEY;
3223 		else
3224 			key.type = BTRFS_EXTENT_ITEM_KEY;
3225 		key.objectid = logical;
3226 		key.offset = (u64)-1;
3227 
3228 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3229 		if (ret < 0)
3230 			goto out;
3231 
3232 		if (ret > 0) {
3233 			ret = btrfs_previous_extent_item(root, path, 0);
3234 			if (ret < 0)
3235 				goto out;
3236 			if (ret > 0) {
3237 				/* there's no smaller item, so stick with the
3238 				 * larger one */
3239 				btrfs_release_path(path);
3240 				ret = btrfs_search_slot(NULL, root, &key,
3241 							path, 0, 0);
3242 				if (ret < 0)
3243 					goto out;
3244 			}
3245 		}
3246 
3247 		stop_loop = 0;
3248 		while (1) {
3249 			u64 bytes;
3250 
3251 			l = path->nodes[0];
3252 			slot = path->slots[0];
3253 			if (slot >= btrfs_header_nritems(l)) {
3254 				ret = btrfs_next_leaf(root, path);
3255 				if (ret == 0)
3256 					continue;
3257 				if (ret < 0)
3258 					goto out;
3259 
3260 				stop_loop = 1;
3261 				break;
3262 			}
3263 			btrfs_item_key_to_cpu(l, &key, slot);
3264 
3265 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3266 			    key.type != BTRFS_METADATA_ITEM_KEY)
3267 				goto next;
3268 
3269 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3270 				bytes = fs_info->nodesize;
3271 			else
3272 				bytes = key.offset;
3273 
3274 			if (key.objectid + bytes <= logical)
3275 				goto next;
3276 
3277 			if (key.objectid >= logical + map->stripe_len) {
3278 				/* out of this device extent */
3279 				if (key.objectid >= logic_end)
3280 					stop_loop = 1;
3281 				break;
3282 			}
3283 
3284 			/*
3285 			 * If our block group was removed in the meanwhile, just
3286 			 * stop scrubbing since there is no point in continuing.
3287 			 * Continuing would prevent reusing its device extents
3288 			 * for new block groups for a long time.
3289 			 */
3290 			spin_lock(&cache->lock);
3291 			if (cache->removed) {
3292 				spin_unlock(&cache->lock);
3293 				ret = 0;
3294 				goto out;
3295 			}
3296 			spin_unlock(&cache->lock);
3297 
3298 			extent = btrfs_item_ptr(l, slot,
3299 						struct btrfs_extent_item);
3300 			flags = btrfs_extent_flags(l, extent);
3301 			generation = btrfs_extent_generation(l, extent);
3302 
3303 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3304 			    (key.objectid < logical ||
3305 			     key.objectid + bytes >
3306 			     logical + map->stripe_len)) {
3307 				btrfs_err(fs_info,
3308 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3309 				       key.objectid, logical);
3310 				spin_lock(&sctx->stat_lock);
3311 				sctx->stat.uncorrectable_errors++;
3312 				spin_unlock(&sctx->stat_lock);
3313 				goto next;
3314 			}
3315 
3316 again:
3317 			extent_logical = key.objectid;
3318 			extent_len = bytes;
3319 
3320 			/*
3321 			 * trim extent to this stripe
3322 			 */
3323 			if (extent_logical < logical) {
3324 				extent_len -= logical - extent_logical;
3325 				extent_logical = logical;
3326 			}
3327 			if (extent_logical + extent_len >
3328 			    logical + map->stripe_len) {
3329 				extent_len = logical + map->stripe_len -
3330 					     extent_logical;
3331 			}
3332 
3333 			extent_physical = extent_logical - logical + physical;
3334 			extent_dev = scrub_dev;
3335 			extent_mirror_num = mirror_num;
3336 			if (sctx->is_dev_replace)
3337 				scrub_remap_extent(fs_info, extent_logical,
3338 						   extent_len, &extent_physical,
3339 						   &extent_dev,
3340 						   &extent_mirror_num);
3341 
3342 			if (flags & BTRFS_EXTENT_FLAG_DATA) {
3343 				ret = btrfs_lookup_csums_range(csum_root,
3344 						extent_logical,
3345 						extent_logical + extent_len - 1,
3346 						&sctx->csum_list, 1);
3347 				if (ret)
3348 					goto out;
3349 			}
3350 
3351 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3352 					   extent_physical, extent_dev, flags,
3353 					   generation, extent_mirror_num,
3354 					   extent_logical - logical + physical);
3355 
3356 			scrub_free_csums(sctx);
3357 
3358 			if (ret)
3359 				goto out;
3360 
3361 			if (extent_logical + extent_len <
3362 			    key.objectid + bytes) {
3363 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3364 					/*
3365 					 * loop until we find next data stripe
3366 					 * or we have finished all stripes.
3367 					 */
3368 loop:
3369 					physical += map->stripe_len;
3370 					ret = get_raid56_logic_offset(physical,
3371 							num, map, &logical,
3372 							&stripe_logical);
3373 					logical += base;
3374 
3375 					if (ret && physical < physical_end) {
3376 						stripe_logical += base;
3377 						stripe_end = stripe_logical +
3378 								increment;
3379 						ret = scrub_raid56_parity(sctx,
3380 							map, scrub_dev, ppath,
3381 							stripe_logical,
3382 							stripe_end);
3383 						if (ret)
3384 							goto out;
3385 						goto loop;
3386 					}
3387 				} else {
3388 					physical += map->stripe_len;
3389 					logical += increment;
3390 				}
3391 				if (logical < key.objectid + bytes) {
3392 					cond_resched();
3393 					goto again;
3394 				}
3395 
3396 				if (physical >= physical_end) {
3397 					stop_loop = 1;
3398 					break;
3399 				}
3400 			}
3401 next:
3402 			path->slots[0]++;
3403 		}
3404 		btrfs_release_path(path);
3405 skip:
3406 		logical += increment;
3407 		physical += map->stripe_len;
3408 		spin_lock(&sctx->stat_lock);
3409 		if (stop_loop)
3410 			sctx->stat.last_physical = map->stripes[num].physical +
3411 						   length;
3412 		else
3413 			sctx->stat.last_physical = physical;
3414 		spin_unlock(&sctx->stat_lock);
3415 		if (stop_loop)
3416 			break;
3417 	}
3418 out:
3419 	/* push queued extents */
3420 	scrub_submit(sctx);
3421 	mutex_lock(&sctx->wr_lock);
3422 	scrub_wr_submit(sctx);
3423 	mutex_unlock(&sctx->wr_lock);
3424 
3425 	blk_finish_plug(&plug);
3426 	btrfs_free_path(path);
3427 	btrfs_free_path(ppath);
3428 	return ret < 0 ? ret : 0;
3429 }
3430 
3431 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3432 					  struct btrfs_device *scrub_dev,
3433 					  u64 chunk_offset, u64 length,
3434 					  u64 dev_offset,
3435 					  struct btrfs_block_group *cache)
3436 {
3437 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3438 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3439 	struct map_lookup *map;
3440 	struct extent_map *em;
3441 	int i;
3442 	int ret = 0;
3443 
3444 	read_lock(&map_tree->lock);
3445 	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3446 	read_unlock(&map_tree->lock);
3447 
3448 	if (!em) {
3449 		/*
3450 		 * Might have been an unused block group deleted by the cleaner
3451 		 * kthread or relocation.
3452 		 */
3453 		spin_lock(&cache->lock);
3454 		if (!cache->removed)
3455 			ret = -EINVAL;
3456 		spin_unlock(&cache->lock);
3457 
3458 		return ret;
3459 	}
3460 
3461 	map = em->map_lookup;
3462 	if (em->start != chunk_offset)
3463 		goto out;
3464 
3465 	if (em->len < length)
3466 		goto out;
3467 
3468 	for (i = 0; i < map->num_stripes; ++i) {
3469 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3470 		    map->stripes[i].physical == dev_offset) {
3471 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3472 					   chunk_offset, length, cache);
3473 			if (ret)
3474 				goto out;
3475 		}
3476 	}
3477 out:
3478 	free_extent_map(em);
3479 
3480 	return ret;
3481 }
3482 
3483 static noinline_for_stack
3484 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3485 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3486 {
3487 	struct btrfs_dev_extent *dev_extent = NULL;
3488 	struct btrfs_path *path;
3489 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3490 	struct btrfs_root *root = fs_info->dev_root;
3491 	u64 length;
3492 	u64 chunk_offset;
3493 	int ret = 0;
3494 	int ro_set;
3495 	int slot;
3496 	struct extent_buffer *l;
3497 	struct btrfs_key key;
3498 	struct btrfs_key found_key;
3499 	struct btrfs_block_group *cache;
3500 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3501 
3502 	path = btrfs_alloc_path();
3503 	if (!path)
3504 		return -ENOMEM;
3505 
3506 	path->reada = READA_FORWARD;
3507 	path->search_commit_root = 1;
3508 	path->skip_locking = 1;
3509 
3510 	key.objectid = scrub_dev->devid;
3511 	key.offset = 0ull;
3512 	key.type = BTRFS_DEV_EXTENT_KEY;
3513 
3514 	while (1) {
3515 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3516 		if (ret < 0)
3517 			break;
3518 		if (ret > 0) {
3519 			if (path->slots[0] >=
3520 			    btrfs_header_nritems(path->nodes[0])) {
3521 				ret = btrfs_next_leaf(root, path);
3522 				if (ret < 0)
3523 					break;
3524 				if (ret > 0) {
3525 					ret = 0;
3526 					break;
3527 				}
3528 			} else {
3529 				ret = 0;
3530 			}
3531 		}
3532 
3533 		l = path->nodes[0];
3534 		slot = path->slots[0];
3535 
3536 		btrfs_item_key_to_cpu(l, &found_key, slot);
3537 
3538 		if (found_key.objectid != scrub_dev->devid)
3539 			break;
3540 
3541 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3542 			break;
3543 
3544 		if (found_key.offset >= end)
3545 			break;
3546 
3547 		if (found_key.offset < key.offset)
3548 			break;
3549 
3550 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3551 		length = btrfs_dev_extent_length(l, dev_extent);
3552 
3553 		if (found_key.offset + length <= start)
3554 			goto skip;
3555 
3556 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3557 
3558 		/*
3559 		 * get a reference on the corresponding block group to prevent
3560 		 * the chunk from going away while we scrub it
3561 		 */
3562 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3563 
3564 		/* some chunks are removed but not committed to disk yet,
3565 		 * continue scrubbing */
3566 		if (!cache)
3567 			goto skip;
3568 
3569 		/*
3570 		 * Make sure that while we are scrubbing the corresponding block
3571 		 * group doesn't get its logical address and its device extents
3572 		 * reused for another block group, which can possibly be of a
3573 		 * different type and different profile. We do this to prevent
3574 		 * false error detections and crashes due to bogus attempts to
3575 		 * repair extents.
3576 		 */
3577 		spin_lock(&cache->lock);
3578 		if (cache->removed) {
3579 			spin_unlock(&cache->lock);
3580 			btrfs_put_block_group(cache);
3581 			goto skip;
3582 		}
3583 		btrfs_freeze_block_group(cache);
3584 		spin_unlock(&cache->lock);
3585 
3586 		/*
3587 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3588 		 * to avoid deadlock caused by:
3589 		 * btrfs_inc_block_group_ro()
3590 		 * -> btrfs_wait_for_commit()
3591 		 * -> btrfs_commit_transaction()
3592 		 * -> btrfs_scrub_pause()
3593 		 */
3594 		scrub_pause_on(fs_info);
3595 
3596 		/*
3597 		 * Don't do chunk preallocation for scrub.
3598 		 *
3599 		 * This is especially important for SYSTEM bgs, or we can hit
3600 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3601 		 * 1. The only SYSTEM bg is marked RO.
3602 		 *    Since SYSTEM bg is small, that's pretty common.
3603 		 * 2. New SYSTEM bg will be allocated
3604 		 *    Due to regular version will allocate new chunk.
3605 		 * 3. New SYSTEM bg is empty and will get cleaned up
3606 		 *    Before cleanup really happens, it's marked RO again.
3607 		 * 4. Empty SYSTEM bg get scrubbed
3608 		 *    We go back to 2.
3609 		 *
3610 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3611 		 * thread can't be triggered fast enough, and use up all space
3612 		 * of btrfs_super_block::sys_chunk_array
3613 		 *
3614 		 * While for dev replace, we need to try our best to mark block
3615 		 * group RO, to prevent race between:
3616 		 * - Write duplication
3617 		 *   Contains latest data
3618 		 * - Scrub copy
3619 		 *   Contains data from commit tree
3620 		 *
3621 		 * If target block group is not marked RO, nocow writes can
3622 		 * be overwritten by scrub copy, causing data corruption.
3623 		 * So for dev-replace, it's not allowed to continue if a block
3624 		 * group is not RO.
3625 		 */
3626 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3627 		if (ret == 0) {
3628 			ro_set = 1;
3629 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3630 			/*
3631 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3632 			 * failed in creating new chunk for metadata.
3633 			 * It is not a problem for scrub, because
3634 			 * metadata are always cowed, and our scrub paused
3635 			 * commit_transactions.
3636 			 */
3637 			ro_set = 0;
3638 		} else {
3639 			btrfs_warn(fs_info,
3640 				   "failed setting block group ro: %d", ret);
3641 			btrfs_unfreeze_block_group(cache);
3642 			btrfs_put_block_group(cache);
3643 			scrub_pause_off(fs_info);
3644 			break;
3645 		}
3646 
3647 		/*
3648 		 * Now the target block is marked RO, wait for nocow writes to
3649 		 * finish before dev-replace.
3650 		 * COW is fine, as COW never overwrites extents in commit tree.
3651 		 */
3652 		if (sctx->is_dev_replace) {
3653 			btrfs_wait_nocow_writers(cache);
3654 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3655 					cache->length);
3656 		}
3657 
3658 		scrub_pause_off(fs_info);
3659 		down_write(&dev_replace->rwsem);
3660 		dev_replace->cursor_right = found_key.offset + length;
3661 		dev_replace->cursor_left = found_key.offset;
3662 		dev_replace->item_needs_writeback = 1;
3663 		up_write(&dev_replace->rwsem);
3664 
3665 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3666 				  found_key.offset, cache);
3667 
3668 		/*
3669 		 * flush, submit all pending read and write bios, afterwards
3670 		 * wait for them.
3671 		 * Note that in the dev replace case, a read request causes
3672 		 * write requests that are submitted in the read completion
3673 		 * worker. Therefore in the current situation, it is required
3674 		 * that all write requests are flushed, so that all read and
3675 		 * write requests are really completed when bios_in_flight
3676 		 * changes to 0.
3677 		 */
3678 		sctx->flush_all_writes = true;
3679 		scrub_submit(sctx);
3680 		mutex_lock(&sctx->wr_lock);
3681 		scrub_wr_submit(sctx);
3682 		mutex_unlock(&sctx->wr_lock);
3683 
3684 		wait_event(sctx->list_wait,
3685 			   atomic_read(&sctx->bios_in_flight) == 0);
3686 
3687 		scrub_pause_on(fs_info);
3688 
3689 		/*
3690 		 * must be called before we decrease @scrub_paused.
3691 		 * make sure we don't block transaction commit while
3692 		 * we are waiting pending workers finished.
3693 		 */
3694 		wait_event(sctx->list_wait,
3695 			   atomic_read(&sctx->workers_pending) == 0);
3696 		sctx->flush_all_writes = false;
3697 
3698 		scrub_pause_off(fs_info);
3699 
3700 		down_write(&dev_replace->rwsem);
3701 		dev_replace->cursor_left = dev_replace->cursor_right;
3702 		dev_replace->item_needs_writeback = 1;
3703 		up_write(&dev_replace->rwsem);
3704 
3705 		if (ro_set)
3706 			btrfs_dec_block_group_ro(cache);
3707 
3708 		/*
3709 		 * We might have prevented the cleaner kthread from deleting
3710 		 * this block group if it was already unused because we raced
3711 		 * and set it to RO mode first. So add it back to the unused
3712 		 * list, otherwise it might not ever be deleted unless a manual
3713 		 * balance is triggered or it becomes used and unused again.
3714 		 */
3715 		spin_lock(&cache->lock);
3716 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3717 		    cache->used == 0) {
3718 			spin_unlock(&cache->lock);
3719 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3720 				btrfs_discard_queue_work(&fs_info->discard_ctl,
3721 							 cache);
3722 			else
3723 				btrfs_mark_bg_unused(cache);
3724 		} else {
3725 			spin_unlock(&cache->lock);
3726 		}
3727 
3728 		btrfs_unfreeze_block_group(cache);
3729 		btrfs_put_block_group(cache);
3730 		if (ret)
3731 			break;
3732 		if (sctx->is_dev_replace &&
3733 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3734 			ret = -EIO;
3735 			break;
3736 		}
3737 		if (sctx->stat.malloc_errors > 0) {
3738 			ret = -ENOMEM;
3739 			break;
3740 		}
3741 skip:
3742 		key.offset = found_key.offset + length;
3743 		btrfs_release_path(path);
3744 	}
3745 
3746 	btrfs_free_path(path);
3747 
3748 	return ret;
3749 }
3750 
3751 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3752 					   struct btrfs_device *scrub_dev)
3753 {
3754 	int	i;
3755 	u64	bytenr;
3756 	u64	gen;
3757 	int	ret;
3758 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3759 
3760 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3761 		return -EIO;
3762 
3763 	/* Seed devices of a new filesystem has their own generation. */
3764 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3765 		gen = scrub_dev->generation;
3766 	else
3767 		gen = fs_info->last_trans_committed;
3768 
3769 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3770 		bytenr = btrfs_sb_offset(i);
3771 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3772 		    scrub_dev->commit_total_bytes)
3773 			break;
3774 
3775 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3776 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3777 				  NULL, 1, bytenr);
3778 		if (ret)
3779 			return ret;
3780 	}
3781 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3782 
3783 	return 0;
3784 }
3785 
3786 /*
3787  * get a reference count on fs_info->scrub_workers. start worker if necessary
3788  */
3789 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3790 						int is_dev_replace)
3791 {
3792 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3793 	int max_active = fs_info->thread_pool_size;
3794 
3795 	lockdep_assert_held(&fs_info->scrub_lock);
3796 
3797 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3798 		ASSERT(fs_info->scrub_workers == NULL);
3799 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3800 				flags, is_dev_replace ? 1 : max_active, 4);
3801 		if (!fs_info->scrub_workers)
3802 			goto fail_scrub_workers;
3803 
3804 		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3805 		fs_info->scrub_wr_completion_workers =
3806 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3807 					      max_active, 2);
3808 		if (!fs_info->scrub_wr_completion_workers)
3809 			goto fail_scrub_wr_completion_workers;
3810 
3811 		ASSERT(fs_info->scrub_parity_workers == NULL);
3812 		fs_info->scrub_parity_workers =
3813 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3814 					      max_active, 2);
3815 		if (!fs_info->scrub_parity_workers)
3816 			goto fail_scrub_parity_workers;
3817 
3818 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3819 	} else {
3820 		refcount_inc(&fs_info->scrub_workers_refcnt);
3821 	}
3822 	return 0;
3823 
3824 fail_scrub_parity_workers:
3825 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3826 fail_scrub_wr_completion_workers:
3827 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3828 fail_scrub_workers:
3829 	return -ENOMEM;
3830 }
3831 
3832 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3833 		    u64 end, struct btrfs_scrub_progress *progress,
3834 		    int readonly, int is_dev_replace)
3835 {
3836 	struct scrub_ctx *sctx;
3837 	int ret;
3838 	struct btrfs_device *dev;
3839 	unsigned int nofs_flag;
3840 	struct btrfs_workqueue *scrub_workers = NULL;
3841 	struct btrfs_workqueue *scrub_wr_comp = NULL;
3842 	struct btrfs_workqueue *scrub_parity = NULL;
3843 
3844 	if (btrfs_fs_closing(fs_info))
3845 		return -EAGAIN;
3846 
3847 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3848 		/*
3849 		 * in this case scrub is unable to calculate the checksum
3850 		 * the way scrub is implemented. Do not handle this
3851 		 * situation at all because it won't ever happen.
3852 		 */
3853 		btrfs_err(fs_info,
3854 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3855 		       fs_info->nodesize,
3856 		       BTRFS_STRIPE_LEN);
3857 		return -EINVAL;
3858 	}
3859 
3860 	if (fs_info->sectorsize != PAGE_SIZE) {
3861 		/* not supported for data w/o checksums */
3862 		btrfs_err_rl(fs_info,
3863 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3864 		       fs_info->sectorsize, PAGE_SIZE);
3865 		return -EINVAL;
3866 	}
3867 
3868 	if (fs_info->nodesize >
3869 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3870 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3871 		/*
3872 		 * would exhaust the array bounds of pagev member in
3873 		 * struct scrub_block
3874 		 */
3875 		btrfs_err(fs_info,
3876 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3877 		       fs_info->nodesize,
3878 		       SCRUB_MAX_PAGES_PER_BLOCK,
3879 		       fs_info->sectorsize,
3880 		       SCRUB_MAX_PAGES_PER_BLOCK);
3881 		return -EINVAL;
3882 	}
3883 
3884 	/* Allocate outside of device_list_mutex */
3885 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3886 	if (IS_ERR(sctx))
3887 		return PTR_ERR(sctx);
3888 
3889 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3890 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3891 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3892 		     !is_dev_replace)) {
3893 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3894 		ret = -ENODEV;
3895 		goto out_free_ctx;
3896 	}
3897 
3898 	if (!is_dev_replace && !readonly &&
3899 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3900 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3901 		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3902 				rcu_str_deref(dev->name));
3903 		ret = -EROFS;
3904 		goto out_free_ctx;
3905 	}
3906 
3907 	mutex_lock(&fs_info->scrub_lock);
3908 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3909 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3910 		mutex_unlock(&fs_info->scrub_lock);
3911 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3912 		ret = -EIO;
3913 		goto out_free_ctx;
3914 	}
3915 
3916 	down_read(&fs_info->dev_replace.rwsem);
3917 	if (dev->scrub_ctx ||
3918 	    (!is_dev_replace &&
3919 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3920 		up_read(&fs_info->dev_replace.rwsem);
3921 		mutex_unlock(&fs_info->scrub_lock);
3922 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3923 		ret = -EINPROGRESS;
3924 		goto out_free_ctx;
3925 	}
3926 	up_read(&fs_info->dev_replace.rwsem);
3927 
3928 	ret = scrub_workers_get(fs_info, is_dev_replace);
3929 	if (ret) {
3930 		mutex_unlock(&fs_info->scrub_lock);
3931 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3932 		goto out_free_ctx;
3933 	}
3934 
3935 	sctx->readonly = readonly;
3936 	dev->scrub_ctx = sctx;
3937 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3938 
3939 	/*
3940 	 * checking @scrub_pause_req here, we can avoid
3941 	 * race between committing transaction and scrubbing.
3942 	 */
3943 	__scrub_blocked_if_needed(fs_info);
3944 	atomic_inc(&fs_info->scrubs_running);
3945 	mutex_unlock(&fs_info->scrub_lock);
3946 
3947 	/*
3948 	 * In order to avoid deadlock with reclaim when there is a transaction
3949 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
3950 	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3951 	 * invoked by our callees. The pausing request is done when the
3952 	 * transaction commit starts, and it blocks the transaction until scrub
3953 	 * is paused (done at specific points at scrub_stripe() or right above
3954 	 * before incrementing fs_info->scrubs_running).
3955 	 */
3956 	nofs_flag = memalloc_nofs_save();
3957 	if (!is_dev_replace) {
3958 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3959 		/*
3960 		 * by holding device list mutex, we can
3961 		 * kick off writing super in log tree sync.
3962 		 */
3963 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3964 		ret = scrub_supers(sctx, dev);
3965 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3966 	}
3967 
3968 	if (!ret)
3969 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3970 	memalloc_nofs_restore(nofs_flag);
3971 
3972 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3973 	atomic_dec(&fs_info->scrubs_running);
3974 	wake_up(&fs_info->scrub_pause_wait);
3975 
3976 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3977 
3978 	if (progress)
3979 		memcpy(progress, &sctx->stat, sizeof(*progress));
3980 
3981 	if (!is_dev_replace)
3982 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3983 			ret ? "not finished" : "finished", devid, ret);
3984 
3985 	mutex_lock(&fs_info->scrub_lock);
3986 	dev->scrub_ctx = NULL;
3987 	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3988 		scrub_workers = fs_info->scrub_workers;
3989 		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3990 		scrub_parity = fs_info->scrub_parity_workers;
3991 
3992 		fs_info->scrub_workers = NULL;
3993 		fs_info->scrub_wr_completion_workers = NULL;
3994 		fs_info->scrub_parity_workers = NULL;
3995 	}
3996 	mutex_unlock(&fs_info->scrub_lock);
3997 
3998 	btrfs_destroy_workqueue(scrub_workers);
3999 	btrfs_destroy_workqueue(scrub_wr_comp);
4000 	btrfs_destroy_workqueue(scrub_parity);
4001 	scrub_put_ctx(sctx);
4002 
4003 	return ret;
4004 
4005 out_free_ctx:
4006 	scrub_free_ctx(sctx);
4007 
4008 	return ret;
4009 }
4010 
4011 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4012 {
4013 	mutex_lock(&fs_info->scrub_lock);
4014 	atomic_inc(&fs_info->scrub_pause_req);
4015 	while (atomic_read(&fs_info->scrubs_paused) !=
4016 	       atomic_read(&fs_info->scrubs_running)) {
4017 		mutex_unlock(&fs_info->scrub_lock);
4018 		wait_event(fs_info->scrub_pause_wait,
4019 			   atomic_read(&fs_info->scrubs_paused) ==
4020 			   atomic_read(&fs_info->scrubs_running));
4021 		mutex_lock(&fs_info->scrub_lock);
4022 	}
4023 	mutex_unlock(&fs_info->scrub_lock);
4024 }
4025 
4026 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4027 {
4028 	atomic_dec(&fs_info->scrub_pause_req);
4029 	wake_up(&fs_info->scrub_pause_wait);
4030 }
4031 
4032 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4033 {
4034 	mutex_lock(&fs_info->scrub_lock);
4035 	if (!atomic_read(&fs_info->scrubs_running)) {
4036 		mutex_unlock(&fs_info->scrub_lock);
4037 		return -ENOTCONN;
4038 	}
4039 
4040 	atomic_inc(&fs_info->scrub_cancel_req);
4041 	while (atomic_read(&fs_info->scrubs_running)) {
4042 		mutex_unlock(&fs_info->scrub_lock);
4043 		wait_event(fs_info->scrub_pause_wait,
4044 			   atomic_read(&fs_info->scrubs_running) == 0);
4045 		mutex_lock(&fs_info->scrub_lock);
4046 	}
4047 	atomic_dec(&fs_info->scrub_cancel_req);
4048 	mutex_unlock(&fs_info->scrub_lock);
4049 
4050 	return 0;
4051 }
4052 
4053 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4054 {
4055 	struct btrfs_fs_info *fs_info = dev->fs_info;
4056 	struct scrub_ctx *sctx;
4057 
4058 	mutex_lock(&fs_info->scrub_lock);
4059 	sctx = dev->scrub_ctx;
4060 	if (!sctx) {
4061 		mutex_unlock(&fs_info->scrub_lock);
4062 		return -ENOTCONN;
4063 	}
4064 	atomic_inc(&sctx->cancel_req);
4065 	while (dev->scrub_ctx) {
4066 		mutex_unlock(&fs_info->scrub_lock);
4067 		wait_event(fs_info->scrub_pause_wait,
4068 			   dev->scrub_ctx == NULL);
4069 		mutex_lock(&fs_info->scrub_lock);
4070 	}
4071 	mutex_unlock(&fs_info->scrub_lock);
4072 
4073 	return 0;
4074 }
4075 
4076 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4077 			 struct btrfs_scrub_progress *progress)
4078 {
4079 	struct btrfs_device *dev;
4080 	struct scrub_ctx *sctx = NULL;
4081 
4082 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4083 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4084 	if (dev)
4085 		sctx = dev->scrub_ctx;
4086 	if (sctx)
4087 		memcpy(progress, &sctx->stat, sizeof(*progress));
4088 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4089 
4090 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4091 }
4092 
4093 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4094 			       u64 extent_logical, u64 extent_len,
4095 			       u64 *extent_physical,
4096 			       struct btrfs_device **extent_dev,
4097 			       int *extent_mirror_num)
4098 {
4099 	u64 mapped_length;
4100 	struct btrfs_bio *bbio = NULL;
4101 	int ret;
4102 
4103 	mapped_length = extent_len;
4104 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4105 			      &mapped_length, &bbio, 0);
4106 	if (ret || !bbio || mapped_length < extent_len ||
4107 	    !bbio->stripes[0].dev->bdev) {
4108 		btrfs_put_bbio(bbio);
4109 		return;
4110 	}
4111 
4112 	*extent_physical = bbio->stripes[0].physical;
4113 	*extent_mirror_num = bbio->mirror_num;
4114 	*extent_dev = bbio->stripes[0].dev;
4115 	btrfs_put_bbio(bbio);
4116 }
4117