1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "rcu-string.h" 21 #include "raid56.h" 22 #include "block-group.h" 23 24 /* 25 * This is only the first step towards a full-features scrub. It reads all 26 * extent and super block and verifies the checksums. In case a bad checksum 27 * is found or the extent cannot be read, good data will be written back if 28 * any can be found. 29 * 30 * Future enhancements: 31 * - In case an unrepairable extent is encountered, track which files are 32 * affected and report them 33 * - track and record media errors, throw out bad devices 34 * - add a mode to also read unallocated space 35 */ 36 37 struct scrub_block; 38 struct scrub_ctx; 39 40 /* 41 * the following three values only influence the performance. 42 * The last one configures the number of parallel and outstanding I/O 43 * operations. The first two values configure an upper limit for the number 44 * of (dynamically allocated) pages that are added to a bio. 45 */ 46 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 47 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 48 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 49 50 /* 51 * the following value times PAGE_SIZE needs to be large enough to match the 52 * largest node/leaf/sector size that shall be supported. 53 * Values larger than BTRFS_STRIPE_LEN are not supported. 54 */ 55 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 56 57 struct scrub_recover { 58 refcount_t refs; 59 struct btrfs_bio *bbio; 60 u64 map_length; 61 }; 62 63 struct scrub_page { 64 struct scrub_block *sblock; 65 struct page *page; 66 struct btrfs_device *dev; 67 struct list_head list; 68 u64 flags; /* extent flags */ 69 u64 generation; 70 u64 logical; 71 u64 physical; 72 u64 physical_for_dev_replace; 73 atomic_t refs; 74 struct { 75 unsigned int mirror_num:8; 76 unsigned int have_csum:1; 77 unsigned int io_error:1; 78 }; 79 u8 csum[BTRFS_CSUM_SIZE]; 80 81 struct scrub_recover *recover; 82 }; 83 84 struct scrub_bio { 85 int index; 86 struct scrub_ctx *sctx; 87 struct btrfs_device *dev; 88 struct bio *bio; 89 blk_status_t status; 90 u64 logical; 91 u64 physical; 92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 94 #else 95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 96 #endif 97 int page_count; 98 int next_free; 99 struct btrfs_work work; 100 }; 101 102 struct scrub_block { 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 104 int page_count; 105 atomic_t outstanding_pages; 106 refcount_t refs; /* free mem on transition to zero */ 107 struct scrub_ctx *sctx; 108 struct scrub_parity *sparity; 109 struct { 110 unsigned int header_error:1; 111 unsigned int checksum_error:1; 112 unsigned int no_io_error_seen:1; 113 unsigned int generation_error:1; /* also sets header_error */ 114 115 /* The following is for the data used to check parity */ 116 /* It is for the data with checksum */ 117 unsigned int data_corrected:1; 118 }; 119 struct btrfs_work work; 120 }; 121 122 /* Used for the chunks with parity stripe such RAID5/6 */ 123 struct scrub_parity { 124 struct scrub_ctx *sctx; 125 126 struct btrfs_device *scrub_dev; 127 128 u64 logic_start; 129 130 u64 logic_end; 131 132 int nsectors; 133 134 u64 stripe_len; 135 136 refcount_t refs; 137 138 struct list_head spages; 139 140 /* Work of parity check and repair */ 141 struct btrfs_work work; 142 143 /* Mark the parity blocks which have data */ 144 unsigned long *dbitmap; 145 146 /* 147 * Mark the parity blocks which have data, but errors happen when 148 * read data or check data 149 */ 150 unsigned long *ebitmap; 151 152 unsigned long bitmap[]; 153 }; 154 155 struct scrub_ctx { 156 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 157 struct btrfs_fs_info *fs_info; 158 int first_free; 159 int curr; 160 atomic_t bios_in_flight; 161 atomic_t workers_pending; 162 spinlock_t list_lock; 163 wait_queue_head_t list_wait; 164 u16 csum_size; 165 struct list_head csum_list; 166 atomic_t cancel_req; 167 int readonly; 168 int pages_per_rd_bio; 169 170 int is_dev_replace; 171 172 struct scrub_bio *wr_curr_bio; 173 struct mutex wr_lock; 174 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 175 struct btrfs_device *wr_tgtdev; 176 bool flush_all_writes; 177 178 /* 179 * statistics 180 */ 181 struct btrfs_scrub_progress stat; 182 spinlock_t stat_lock; 183 184 /* 185 * Use a ref counter to avoid use-after-free issues. Scrub workers 186 * decrement bios_in_flight and workers_pending and then do a wakeup 187 * on the list_wait wait queue. We must ensure the main scrub task 188 * doesn't free the scrub context before or while the workers are 189 * doing the wakeup() call. 190 */ 191 refcount_t refs; 192 }; 193 194 struct scrub_warning { 195 struct btrfs_path *path; 196 u64 extent_item_size; 197 const char *errstr; 198 u64 physical; 199 u64 logical; 200 struct btrfs_device *dev; 201 }; 202 203 struct full_stripe_lock { 204 struct rb_node node; 205 u64 logical; 206 u64 refs; 207 struct mutex mutex; 208 }; 209 210 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 211 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 212 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 213 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 214 struct scrub_block *sblocks_for_recheck); 215 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 216 struct scrub_block *sblock, 217 int retry_failed_mirror); 218 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 219 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 220 struct scrub_block *sblock_good); 221 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 222 struct scrub_block *sblock_good, 223 int page_num, int force_write); 224 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 225 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 226 int page_num); 227 static int scrub_checksum_data(struct scrub_block *sblock); 228 static int scrub_checksum_tree_block(struct scrub_block *sblock); 229 static int scrub_checksum_super(struct scrub_block *sblock); 230 static void scrub_block_get(struct scrub_block *sblock); 231 static void scrub_block_put(struct scrub_block *sblock); 232 static void scrub_page_get(struct scrub_page *spage); 233 static void scrub_page_put(struct scrub_page *spage); 234 static void scrub_parity_get(struct scrub_parity *sparity); 235 static void scrub_parity_put(struct scrub_parity *sparity); 236 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 237 struct scrub_page *spage); 238 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 239 u64 physical, struct btrfs_device *dev, u64 flags, 240 u64 gen, int mirror_num, u8 *csum, int force, 241 u64 physical_for_dev_replace); 242 static void scrub_bio_end_io(struct bio *bio); 243 static void scrub_bio_end_io_worker(struct btrfs_work *work); 244 static void scrub_block_complete(struct scrub_block *sblock); 245 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 246 u64 extent_logical, u64 extent_len, 247 u64 *extent_physical, 248 struct btrfs_device **extent_dev, 249 int *extent_mirror_num); 250 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 251 struct scrub_page *spage); 252 static void scrub_wr_submit(struct scrub_ctx *sctx); 253 static void scrub_wr_bio_end_io(struct bio *bio); 254 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 255 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 256 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 257 static void scrub_put_ctx(struct scrub_ctx *sctx); 258 259 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 260 { 261 return page->recover && 262 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 263 } 264 265 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 266 { 267 refcount_inc(&sctx->refs); 268 atomic_inc(&sctx->bios_in_flight); 269 } 270 271 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 272 { 273 atomic_dec(&sctx->bios_in_flight); 274 wake_up(&sctx->list_wait); 275 scrub_put_ctx(sctx); 276 } 277 278 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 279 { 280 while (atomic_read(&fs_info->scrub_pause_req)) { 281 mutex_unlock(&fs_info->scrub_lock); 282 wait_event(fs_info->scrub_pause_wait, 283 atomic_read(&fs_info->scrub_pause_req) == 0); 284 mutex_lock(&fs_info->scrub_lock); 285 } 286 } 287 288 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 289 { 290 atomic_inc(&fs_info->scrubs_paused); 291 wake_up(&fs_info->scrub_pause_wait); 292 } 293 294 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 295 { 296 mutex_lock(&fs_info->scrub_lock); 297 __scrub_blocked_if_needed(fs_info); 298 atomic_dec(&fs_info->scrubs_paused); 299 mutex_unlock(&fs_info->scrub_lock); 300 301 wake_up(&fs_info->scrub_pause_wait); 302 } 303 304 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 305 { 306 scrub_pause_on(fs_info); 307 scrub_pause_off(fs_info); 308 } 309 310 /* 311 * Insert new full stripe lock into full stripe locks tree 312 * 313 * Return pointer to existing or newly inserted full_stripe_lock structure if 314 * everything works well. 315 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 316 * 317 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 318 * function 319 */ 320 static struct full_stripe_lock *insert_full_stripe_lock( 321 struct btrfs_full_stripe_locks_tree *locks_root, 322 u64 fstripe_logical) 323 { 324 struct rb_node **p; 325 struct rb_node *parent = NULL; 326 struct full_stripe_lock *entry; 327 struct full_stripe_lock *ret; 328 329 lockdep_assert_held(&locks_root->lock); 330 331 p = &locks_root->root.rb_node; 332 while (*p) { 333 parent = *p; 334 entry = rb_entry(parent, struct full_stripe_lock, node); 335 if (fstripe_logical < entry->logical) { 336 p = &(*p)->rb_left; 337 } else if (fstripe_logical > entry->logical) { 338 p = &(*p)->rb_right; 339 } else { 340 entry->refs++; 341 return entry; 342 } 343 } 344 345 /* 346 * Insert new lock. 347 */ 348 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 349 if (!ret) 350 return ERR_PTR(-ENOMEM); 351 ret->logical = fstripe_logical; 352 ret->refs = 1; 353 mutex_init(&ret->mutex); 354 355 rb_link_node(&ret->node, parent, p); 356 rb_insert_color(&ret->node, &locks_root->root); 357 return ret; 358 } 359 360 /* 361 * Search for a full stripe lock of a block group 362 * 363 * Return pointer to existing full stripe lock if found 364 * Return NULL if not found 365 */ 366 static struct full_stripe_lock *search_full_stripe_lock( 367 struct btrfs_full_stripe_locks_tree *locks_root, 368 u64 fstripe_logical) 369 { 370 struct rb_node *node; 371 struct full_stripe_lock *entry; 372 373 lockdep_assert_held(&locks_root->lock); 374 375 node = locks_root->root.rb_node; 376 while (node) { 377 entry = rb_entry(node, struct full_stripe_lock, node); 378 if (fstripe_logical < entry->logical) 379 node = node->rb_left; 380 else if (fstripe_logical > entry->logical) 381 node = node->rb_right; 382 else 383 return entry; 384 } 385 return NULL; 386 } 387 388 /* 389 * Helper to get full stripe logical from a normal bytenr. 390 * 391 * Caller must ensure @cache is a RAID56 block group. 392 */ 393 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) 394 { 395 u64 ret; 396 397 /* 398 * Due to chunk item size limit, full stripe length should not be 399 * larger than U32_MAX. Just a sanity check here. 400 */ 401 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 402 403 /* 404 * round_down() can only handle power of 2, while RAID56 full 405 * stripe length can be 64KiB * n, so we need to manually round down. 406 */ 407 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * 408 cache->full_stripe_len + cache->start; 409 return ret; 410 } 411 412 /* 413 * Lock a full stripe to avoid concurrency of recovery and read 414 * 415 * It's only used for profiles with parities (RAID5/6), for other profiles it 416 * does nothing. 417 * 418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 419 * So caller must call unlock_full_stripe() at the same context. 420 * 421 * Return <0 if encounters error. 422 */ 423 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 424 bool *locked_ret) 425 { 426 struct btrfs_block_group *bg_cache; 427 struct btrfs_full_stripe_locks_tree *locks_root; 428 struct full_stripe_lock *existing; 429 u64 fstripe_start; 430 int ret = 0; 431 432 *locked_ret = false; 433 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 434 if (!bg_cache) { 435 ASSERT(0); 436 return -ENOENT; 437 } 438 439 /* Profiles not based on parity don't need full stripe lock */ 440 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 441 goto out; 442 locks_root = &bg_cache->full_stripe_locks_root; 443 444 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 445 446 /* Now insert the full stripe lock */ 447 mutex_lock(&locks_root->lock); 448 existing = insert_full_stripe_lock(locks_root, fstripe_start); 449 mutex_unlock(&locks_root->lock); 450 if (IS_ERR(existing)) { 451 ret = PTR_ERR(existing); 452 goto out; 453 } 454 mutex_lock(&existing->mutex); 455 *locked_ret = true; 456 out: 457 btrfs_put_block_group(bg_cache); 458 return ret; 459 } 460 461 /* 462 * Unlock a full stripe. 463 * 464 * NOTE: Caller must ensure it's the same context calling corresponding 465 * lock_full_stripe(). 466 * 467 * Return 0 if we unlock full stripe without problem. 468 * Return <0 for error 469 */ 470 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 471 bool locked) 472 { 473 struct btrfs_block_group *bg_cache; 474 struct btrfs_full_stripe_locks_tree *locks_root; 475 struct full_stripe_lock *fstripe_lock; 476 u64 fstripe_start; 477 bool freeit = false; 478 int ret = 0; 479 480 /* If we didn't acquire full stripe lock, no need to continue */ 481 if (!locked) 482 return 0; 483 484 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 485 if (!bg_cache) { 486 ASSERT(0); 487 return -ENOENT; 488 } 489 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 490 goto out; 491 492 locks_root = &bg_cache->full_stripe_locks_root; 493 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 494 495 mutex_lock(&locks_root->lock); 496 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 497 /* Unpaired unlock_full_stripe() detected */ 498 if (!fstripe_lock) { 499 WARN_ON(1); 500 ret = -ENOENT; 501 mutex_unlock(&locks_root->lock); 502 goto out; 503 } 504 505 if (fstripe_lock->refs == 0) { 506 WARN_ON(1); 507 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 508 fstripe_lock->logical); 509 } else { 510 fstripe_lock->refs--; 511 } 512 513 if (fstripe_lock->refs == 0) { 514 rb_erase(&fstripe_lock->node, &locks_root->root); 515 freeit = true; 516 } 517 mutex_unlock(&locks_root->lock); 518 519 mutex_unlock(&fstripe_lock->mutex); 520 if (freeit) 521 kfree(fstripe_lock); 522 out: 523 btrfs_put_block_group(bg_cache); 524 return ret; 525 } 526 527 static void scrub_free_csums(struct scrub_ctx *sctx) 528 { 529 while (!list_empty(&sctx->csum_list)) { 530 struct btrfs_ordered_sum *sum; 531 sum = list_first_entry(&sctx->csum_list, 532 struct btrfs_ordered_sum, list); 533 list_del(&sum->list); 534 kfree(sum); 535 } 536 } 537 538 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 539 { 540 int i; 541 542 if (!sctx) 543 return; 544 545 /* this can happen when scrub is cancelled */ 546 if (sctx->curr != -1) { 547 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 548 549 for (i = 0; i < sbio->page_count; i++) { 550 WARN_ON(!sbio->pagev[i]->page); 551 scrub_block_put(sbio->pagev[i]->sblock); 552 } 553 bio_put(sbio->bio); 554 } 555 556 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 557 struct scrub_bio *sbio = sctx->bios[i]; 558 559 if (!sbio) 560 break; 561 kfree(sbio); 562 } 563 564 kfree(sctx->wr_curr_bio); 565 scrub_free_csums(sctx); 566 kfree(sctx); 567 } 568 569 static void scrub_put_ctx(struct scrub_ctx *sctx) 570 { 571 if (refcount_dec_and_test(&sctx->refs)) 572 scrub_free_ctx(sctx); 573 } 574 575 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 576 struct btrfs_fs_info *fs_info, int is_dev_replace) 577 { 578 struct scrub_ctx *sctx; 579 int i; 580 581 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 582 if (!sctx) 583 goto nomem; 584 refcount_set(&sctx->refs, 1); 585 sctx->is_dev_replace = is_dev_replace; 586 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 587 sctx->curr = -1; 588 sctx->fs_info = fs_info; 589 INIT_LIST_HEAD(&sctx->csum_list); 590 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 591 struct scrub_bio *sbio; 592 593 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 594 if (!sbio) 595 goto nomem; 596 sctx->bios[i] = sbio; 597 598 sbio->index = i; 599 sbio->sctx = sctx; 600 sbio->page_count = 0; 601 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL, 602 NULL); 603 604 if (i != SCRUB_BIOS_PER_SCTX - 1) 605 sctx->bios[i]->next_free = i + 1; 606 else 607 sctx->bios[i]->next_free = -1; 608 } 609 sctx->first_free = 0; 610 atomic_set(&sctx->bios_in_flight, 0); 611 atomic_set(&sctx->workers_pending, 0); 612 atomic_set(&sctx->cancel_req, 0); 613 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 614 615 spin_lock_init(&sctx->list_lock); 616 spin_lock_init(&sctx->stat_lock); 617 init_waitqueue_head(&sctx->list_wait); 618 619 WARN_ON(sctx->wr_curr_bio != NULL); 620 mutex_init(&sctx->wr_lock); 621 sctx->wr_curr_bio = NULL; 622 if (is_dev_replace) { 623 WARN_ON(!fs_info->dev_replace.tgtdev); 624 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 625 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 626 sctx->flush_all_writes = false; 627 } 628 629 return sctx; 630 631 nomem: 632 scrub_free_ctx(sctx); 633 return ERR_PTR(-ENOMEM); 634 } 635 636 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 637 void *warn_ctx) 638 { 639 u64 isize; 640 u32 nlink; 641 int ret; 642 int i; 643 unsigned nofs_flag; 644 struct extent_buffer *eb; 645 struct btrfs_inode_item *inode_item; 646 struct scrub_warning *swarn = warn_ctx; 647 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 648 struct inode_fs_paths *ipath = NULL; 649 struct btrfs_root *local_root; 650 struct btrfs_key key; 651 652 local_root = btrfs_get_fs_root(fs_info, root, true); 653 if (IS_ERR(local_root)) { 654 ret = PTR_ERR(local_root); 655 goto err; 656 } 657 658 /* 659 * this makes the path point to (inum INODE_ITEM ioff) 660 */ 661 key.objectid = inum; 662 key.type = BTRFS_INODE_ITEM_KEY; 663 key.offset = 0; 664 665 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 666 if (ret) { 667 btrfs_put_root(local_root); 668 btrfs_release_path(swarn->path); 669 goto err; 670 } 671 672 eb = swarn->path->nodes[0]; 673 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 674 struct btrfs_inode_item); 675 isize = btrfs_inode_size(eb, inode_item); 676 nlink = btrfs_inode_nlink(eb, inode_item); 677 btrfs_release_path(swarn->path); 678 679 /* 680 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 681 * uses GFP_NOFS in this context, so we keep it consistent but it does 682 * not seem to be strictly necessary. 683 */ 684 nofs_flag = memalloc_nofs_save(); 685 ipath = init_ipath(4096, local_root, swarn->path); 686 memalloc_nofs_restore(nofs_flag); 687 if (IS_ERR(ipath)) { 688 btrfs_put_root(local_root); 689 ret = PTR_ERR(ipath); 690 ipath = NULL; 691 goto err; 692 } 693 ret = paths_from_inode(inum, ipath); 694 695 if (ret < 0) 696 goto err; 697 698 /* 699 * we deliberately ignore the bit ipath might have been too small to 700 * hold all of the paths here 701 */ 702 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 703 btrfs_warn_in_rcu(fs_info, 704 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", 705 swarn->errstr, swarn->logical, 706 rcu_str_deref(swarn->dev->name), 707 swarn->physical, 708 root, inum, offset, 709 min(isize - offset, (u64)PAGE_SIZE), nlink, 710 (char *)(unsigned long)ipath->fspath->val[i]); 711 712 btrfs_put_root(local_root); 713 free_ipath(ipath); 714 return 0; 715 716 err: 717 btrfs_warn_in_rcu(fs_info, 718 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 719 swarn->errstr, swarn->logical, 720 rcu_str_deref(swarn->dev->name), 721 swarn->physical, 722 root, inum, offset, ret); 723 724 free_ipath(ipath); 725 return 0; 726 } 727 728 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 729 { 730 struct btrfs_device *dev; 731 struct btrfs_fs_info *fs_info; 732 struct btrfs_path *path; 733 struct btrfs_key found_key; 734 struct extent_buffer *eb; 735 struct btrfs_extent_item *ei; 736 struct scrub_warning swarn; 737 unsigned long ptr = 0; 738 u64 extent_item_pos; 739 u64 flags = 0; 740 u64 ref_root; 741 u32 item_size; 742 u8 ref_level = 0; 743 int ret; 744 745 WARN_ON(sblock->page_count < 1); 746 dev = sblock->pagev[0]->dev; 747 fs_info = sblock->sctx->fs_info; 748 749 path = btrfs_alloc_path(); 750 if (!path) 751 return; 752 753 swarn.physical = sblock->pagev[0]->physical; 754 swarn.logical = sblock->pagev[0]->logical; 755 swarn.errstr = errstr; 756 swarn.dev = NULL; 757 758 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 759 &flags); 760 if (ret < 0) 761 goto out; 762 763 extent_item_pos = swarn.logical - found_key.objectid; 764 swarn.extent_item_size = found_key.offset; 765 766 eb = path->nodes[0]; 767 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 768 item_size = btrfs_item_size_nr(eb, path->slots[0]); 769 770 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 771 do { 772 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 773 item_size, &ref_root, 774 &ref_level); 775 btrfs_warn_in_rcu(fs_info, 776 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 777 errstr, swarn.logical, 778 rcu_str_deref(dev->name), 779 swarn.physical, 780 ref_level ? "node" : "leaf", 781 ret < 0 ? -1 : ref_level, 782 ret < 0 ? -1 : ref_root); 783 } while (ret != 1); 784 btrfs_release_path(path); 785 } else { 786 btrfs_release_path(path); 787 swarn.path = path; 788 swarn.dev = dev; 789 iterate_extent_inodes(fs_info, found_key.objectid, 790 extent_item_pos, 1, 791 scrub_print_warning_inode, &swarn, false); 792 } 793 794 out: 795 btrfs_free_path(path); 796 } 797 798 static inline void scrub_get_recover(struct scrub_recover *recover) 799 { 800 refcount_inc(&recover->refs); 801 } 802 803 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 804 struct scrub_recover *recover) 805 { 806 if (refcount_dec_and_test(&recover->refs)) { 807 btrfs_bio_counter_dec(fs_info); 808 btrfs_put_bbio(recover->bbio); 809 kfree(recover); 810 } 811 } 812 813 /* 814 * scrub_handle_errored_block gets called when either verification of the 815 * pages failed or the bio failed to read, e.g. with EIO. In the latter 816 * case, this function handles all pages in the bio, even though only one 817 * may be bad. 818 * The goal of this function is to repair the errored block by using the 819 * contents of one of the mirrors. 820 */ 821 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 822 { 823 struct scrub_ctx *sctx = sblock_to_check->sctx; 824 struct btrfs_device *dev; 825 struct btrfs_fs_info *fs_info; 826 u64 logical; 827 unsigned int failed_mirror_index; 828 unsigned int is_metadata; 829 unsigned int have_csum; 830 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 831 struct scrub_block *sblock_bad; 832 int ret; 833 int mirror_index; 834 int page_num; 835 int success; 836 bool full_stripe_locked; 837 unsigned int nofs_flag; 838 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 839 DEFAULT_RATELIMIT_BURST); 840 841 BUG_ON(sblock_to_check->page_count < 1); 842 fs_info = sctx->fs_info; 843 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 844 /* 845 * if we find an error in a super block, we just report it. 846 * They will get written with the next transaction commit 847 * anyway 848 */ 849 spin_lock(&sctx->stat_lock); 850 ++sctx->stat.super_errors; 851 spin_unlock(&sctx->stat_lock); 852 return 0; 853 } 854 logical = sblock_to_check->pagev[0]->logical; 855 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 856 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 857 is_metadata = !(sblock_to_check->pagev[0]->flags & 858 BTRFS_EXTENT_FLAG_DATA); 859 have_csum = sblock_to_check->pagev[0]->have_csum; 860 dev = sblock_to_check->pagev[0]->dev; 861 862 /* 863 * We must use GFP_NOFS because the scrub task might be waiting for a 864 * worker task executing this function and in turn a transaction commit 865 * might be waiting the scrub task to pause (which needs to wait for all 866 * the worker tasks to complete before pausing). 867 * We do allocations in the workers through insert_full_stripe_lock() 868 * and scrub_add_page_to_wr_bio(), which happens down the call chain of 869 * this function. 870 */ 871 nofs_flag = memalloc_nofs_save(); 872 /* 873 * For RAID5/6, race can happen for a different device scrub thread. 874 * For data corruption, Parity and Data threads will both try 875 * to recovery the data. 876 * Race can lead to doubly added csum error, or even unrecoverable 877 * error. 878 */ 879 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 880 if (ret < 0) { 881 memalloc_nofs_restore(nofs_flag); 882 spin_lock(&sctx->stat_lock); 883 if (ret == -ENOMEM) 884 sctx->stat.malloc_errors++; 885 sctx->stat.read_errors++; 886 sctx->stat.uncorrectable_errors++; 887 spin_unlock(&sctx->stat_lock); 888 return ret; 889 } 890 891 /* 892 * read all mirrors one after the other. This includes to 893 * re-read the extent or metadata block that failed (that was 894 * the cause that this fixup code is called) another time, 895 * page by page this time in order to know which pages 896 * caused I/O errors and which ones are good (for all mirrors). 897 * It is the goal to handle the situation when more than one 898 * mirror contains I/O errors, but the errors do not 899 * overlap, i.e. the data can be repaired by selecting the 900 * pages from those mirrors without I/O error on the 901 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 902 * would be that mirror #1 has an I/O error on the first page, 903 * the second page is good, and mirror #2 has an I/O error on 904 * the second page, but the first page is good. 905 * Then the first page of the first mirror can be repaired by 906 * taking the first page of the second mirror, and the 907 * second page of the second mirror can be repaired by 908 * copying the contents of the 2nd page of the 1st mirror. 909 * One more note: if the pages of one mirror contain I/O 910 * errors, the checksum cannot be verified. In order to get 911 * the best data for repairing, the first attempt is to find 912 * a mirror without I/O errors and with a validated checksum. 913 * Only if this is not possible, the pages are picked from 914 * mirrors with I/O errors without considering the checksum. 915 * If the latter is the case, at the end, the checksum of the 916 * repaired area is verified in order to correctly maintain 917 * the statistics. 918 */ 919 920 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 921 sizeof(*sblocks_for_recheck), GFP_KERNEL); 922 if (!sblocks_for_recheck) { 923 spin_lock(&sctx->stat_lock); 924 sctx->stat.malloc_errors++; 925 sctx->stat.read_errors++; 926 sctx->stat.uncorrectable_errors++; 927 spin_unlock(&sctx->stat_lock); 928 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 929 goto out; 930 } 931 932 /* setup the context, map the logical blocks and alloc the pages */ 933 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 934 if (ret) { 935 spin_lock(&sctx->stat_lock); 936 sctx->stat.read_errors++; 937 sctx->stat.uncorrectable_errors++; 938 spin_unlock(&sctx->stat_lock); 939 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 940 goto out; 941 } 942 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 943 sblock_bad = sblocks_for_recheck + failed_mirror_index; 944 945 /* build and submit the bios for the failed mirror, check checksums */ 946 scrub_recheck_block(fs_info, sblock_bad, 1); 947 948 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 949 sblock_bad->no_io_error_seen) { 950 /* 951 * the error disappeared after reading page by page, or 952 * the area was part of a huge bio and other parts of the 953 * bio caused I/O errors, or the block layer merged several 954 * read requests into one and the error is caused by a 955 * different bio (usually one of the two latter cases is 956 * the cause) 957 */ 958 spin_lock(&sctx->stat_lock); 959 sctx->stat.unverified_errors++; 960 sblock_to_check->data_corrected = 1; 961 spin_unlock(&sctx->stat_lock); 962 963 if (sctx->is_dev_replace) 964 scrub_write_block_to_dev_replace(sblock_bad); 965 goto out; 966 } 967 968 if (!sblock_bad->no_io_error_seen) { 969 spin_lock(&sctx->stat_lock); 970 sctx->stat.read_errors++; 971 spin_unlock(&sctx->stat_lock); 972 if (__ratelimit(&rs)) 973 scrub_print_warning("i/o error", sblock_to_check); 974 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 975 } else if (sblock_bad->checksum_error) { 976 spin_lock(&sctx->stat_lock); 977 sctx->stat.csum_errors++; 978 spin_unlock(&sctx->stat_lock); 979 if (__ratelimit(&rs)) 980 scrub_print_warning("checksum error", sblock_to_check); 981 btrfs_dev_stat_inc_and_print(dev, 982 BTRFS_DEV_STAT_CORRUPTION_ERRS); 983 } else if (sblock_bad->header_error) { 984 spin_lock(&sctx->stat_lock); 985 sctx->stat.verify_errors++; 986 spin_unlock(&sctx->stat_lock); 987 if (__ratelimit(&rs)) 988 scrub_print_warning("checksum/header error", 989 sblock_to_check); 990 if (sblock_bad->generation_error) 991 btrfs_dev_stat_inc_and_print(dev, 992 BTRFS_DEV_STAT_GENERATION_ERRS); 993 else 994 btrfs_dev_stat_inc_and_print(dev, 995 BTRFS_DEV_STAT_CORRUPTION_ERRS); 996 } 997 998 if (sctx->readonly) { 999 ASSERT(!sctx->is_dev_replace); 1000 goto out; 1001 } 1002 1003 /* 1004 * now build and submit the bios for the other mirrors, check 1005 * checksums. 1006 * First try to pick the mirror which is completely without I/O 1007 * errors and also does not have a checksum error. 1008 * If one is found, and if a checksum is present, the full block 1009 * that is known to contain an error is rewritten. Afterwards 1010 * the block is known to be corrected. 1011 * If a mirror is found which is completely correct, and no 1012 * checksum is present, only those pages are rewritten that had 1013 * an I/O error in the block to be repaired, since it cannot be 1014 * determined, which copy of the other pages is better (and it 1015 * could happen otherwise that a correct page would be 1016 * overwritten by a bad one). 1017 */ 1018 for (mirror_index = 0; ;mirror_index++) { 1019 struct scrub_block *sblock_other; 1020 1021 if (mirror_index == failed_mirror_index) 1022 continue; 1023 1024 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1025 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1026 if (mirror_index >= BTRFS_MAX_MIRRORS) 1027 break; 1028 if (!sblocks_for_recheck[mirror_index].page_count) 1029 break; 1030 1031 sblock_other = sblocks_for_recheck + mirror_index; 1032 } else { 1033 struct scrub_recover *r = sblock_bad->pagev[0]->recover; 1034 int max_allowed = r->bbio->num_stripes - 1035 r->bbio->num_tgtdevs; 1036 1037 if (mirror_index >= max_allowed) 1038 break; 1039 if (!sblocks_for_recheck[1].page_count) 1040 break; 1041 1042 ASSERT(failed_mirror_index == 0); 1043 sblock_other = sblocks_for_recheck + 1; 1044 sblock_other->pagev[0]->mirror_num = 1 + mirror_index; 1045 } 1046 1047 /* build and submit the bios, check checksums */ 1048 scrub_recheck_block(fs_info, sblock_other, 0); 1049 1050 if (!sblock_other->header_error && 1051 !sblock_other->checksum_error && 1052 sblock_other->no_io_error_seen) { 1053 if (sctx->is_dev_replace) { 1054 scrub_write_block_to_dev_replace(sblock_other); 1055 goto corrected_error; 1056 } else { 1057 ret = scrub_repair_block_from_good_copy( 1058 sblock_bad, sblock_other); 1059 if (!ret) 1060 goto corrected_error; 1061 } 1062 } 1063 } 1064 1065 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1066 goto did_not_correct_error; 1067 1068 /* 1069 * In case of I/O errors in the area that is supposed to be 1070 * repaired, continue by picking good copies of those pages. 1071 * Select the good pages from mirrors to rewrite bad pages from 1072 * the area to fix. Afterwards verify the checksum of the block 1073 * that is supposed to be repaired. This verification step is 1074 * only done for the purpose of statistic counting and for the 1075 * final scrub report, whether errors remain. 1076 * A perfect algorithm could make use of the checksum and try 1077 * all possible combinations of pages from the different mirrors 1078 * until the checksum verification succeeds. For example, when 1079 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1080 * of mirror #2 is readable but the final checksum test fails, 1081 * then the 2nd page of mirror #3 could be tried, whether now 1082 * the final checksum succeeds. But this would be a rare 1083 * exception and is therefore not implemented. At least it is 1084 * avoided that the good copy is overwritten. 1085 * A more useful improvement would be to pick the sectors 1086 * without I/O error based on sector sizes (512 bytes on legacy 1087 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1088 * mirror could be repaired by taking 512 byte of a different 1089 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1090 * area are unreadable. 1091 */ 1092 success = 1; 1093 for (page_num = 0; page_num < sblock_bad->page_count; 1094 page_num++) { 1095 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1096 struct scrub_block *sblock_other = NULL; 1097 1098 /* skip no-io-error page in scrub */ 1099 if (!page_bad->io_error && !sctx->is_dev_replace) 1100 continue; 1101 1102 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1103 /* 1104 * In case of dev replace, if raid56 rebuild process 1105 * didn't work out correct data, then copy the content 1106 * in sblock_bad to make sure target device is identical 1107 * to source device, instead of writing garbage data in 1108 * sblock_for_recheck array to target device. 1109 */ 1110 sblock_other = NULL; 1111 } else if (page_bad->io_error) { 1112 /* try to find no-io-error page in mirrors */ 1113 for (mirror_index = 0; 1114 mirror_index < BTRFS_MAX_MIRRORS && 1115 sblocks_for_recheck[mirror_index].page_count > 0; 1116 mirror_index++) { 1117 if (!sblocks_for_recheck[mirror_index]. 1118 pagev[page_num]->io_error) { 1119 sblock_other = sblocks_for_recheck + 1120 mirror_index; 1121 break; 1122 } 1123 } 1124 if (!sblock_other) 1125 success = 0; 1126 } 1127 1128 if (sctx->is_dev_replace) { 1129 /* 1130 * did not find a mirror to fetch the page 1131 * from. scrub_write_page_to_dev_replace() 1132 * handles this case (page->io_error), by 1133 * filling the block with zeros before 1134 * submitting the write request 1135 */ 1136 if (!sblock_other) 1137 sblock_other = sblock_bad; 1138 1139 if (scrub_write_page_to_dev_replace(sblock_other, 1140 page_num) != 0) { 1141 atomic64_inc( 1142 &fs_info->dev_replace.num_write_errors); 1143 success = 0; 1144 } 1145 } else if (sblock_other) { 1146 ret = scrub_repair_page_from_good_copy(sblock_bad, 1147 sblock_other, 1148 page_num, 0); 1149 if (0 == ret) 1150 page_bad->io_error = 0; 1151 else 1152 success = 0; 1153 } 1154 } 1155 1156 if (success && !sctx->is_dev_replace) { 1157 if (is_metadata || have_csum) { 1158 /* 1159 * need to verify the checksum now that all 1160 * sectors on disk are repaired (the write 1161 * request for data to be repaired is on its way). 1162 * Just be lazy and use scrub_recheck_block() 1163 * which re-reads the data before the checksum 1164 * is verified, but most likely the data comes out 1165 * of the page cache. 1166 */ 1167 scrub_recheck_block(fs_info, sblock_bad, 1); 1168 if (!sblock_bad->header_error && 1169 !sblock_bad->checksum_error && 1170 sblock_bad->no_io_error_seen) 1171 goto corrected_error; 1172 else 1173 goto did_not_correct_error; 1174 } else { 1175 corrected_error: 1176 spin_lock(&sctx->stat_lock); 1177 sctx->stat.corrected_errors++; 1178 sblock_to_check->data_corrected = 1; 1179 spin_unlock(&sctx->stat_lock); 1180 btrfs_err_rl_in_rcu(fs_info, 1181 "fixed up error at logical %llu on dev %s", 1182 logical, rcu_str_deref(dev->name)); 1183 } 1184 } else { 1185 did_not_correct_error: 1186 spin_lock(&sctx->stat_lock); 1187 sctx->stat.uncorrectable_errors++; 1188 spin_unlock(&sctx->stat_lock); 1189 btrfs_err_rl_in_rcu(fs_info, 1190 "unable to fixup (regular) error at logical %llu on dev %s", 1191 logical, rcu_str_deref(dev->name)); 1192 } 1193 1194 out: 1195 if (sblocks_for_recheck) { 1196 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1197 mirror_index++) { 1198 struct scrub_block *sblock = sblocks_for_recheck + 1199 mirror_index; 1200 struct scrub_recover *recover; 1201 int page_index; 1202 1203 for (page_index = 0; page_index < sblock->page_count; 1204 page_index++) { 1205 sblock->pagev[page_index]->sblock = NULL; 1206 recover = sblock->pagev[page_index]->recover; 1207 if (recover) { 1208 scrub_put_recover(fs_info, recover); 1209 sblock->pagev[page_index]->recover = 1210 NULL; 1211 } 1212 scrub_page_put(sblock->pagev[page_index]); 1213 } 1214 } 1215 kfree(sblocks_for_recheck); 1216 } 1217 1218 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1219 memalloc_nofs_restore(nofs_flag); 1220 if (ret < 0) 1221 return ret; 1222 return 0; 1223 } 1224 1225 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1226 { 1227 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1228 return 2; 1229 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1230 return 3; 1231 else 1232 return (int)bbio->num_stripes; 1233 } 1234 1235 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1236 u64 *raid_map, 1237 u64 mapped_length, 1238 int nstripes, int mirror, 1239 int *stripe_index, 1240 u64 *stripe_offset) 1241 { 1242 int i; 1243 1244 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1245 /* RAID5/6 */ 1246 for (i = 0; i < nstripes; i++) { 1247 if (raid_map[i] == RAID6_Q_STRIPE || 1248 raid_map[i] == RAID5_P_STRIPE) 1249 continue; 1250 1251 if (logical >= raid_map[i] && 1252 logical < raid_map[i] + mapped_length) 1253 break; 1254 } 1255 1256 *stripe_index = i; 1257 *stripe_offset = logical - raid_map[i]; 1258 } else { 1259 /* The other RAID type */ 1260 *stripe_index = mirror; 1261 *stripe_offset = 0; 1262 } 1263 } 1264 1265 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1266 struct scrub_block *sblocks_for_recheck) 1267 { 1268 struct scrub_ctx *sctx = original_sblock->sctx; 1269 struct btrfs_fs_info *fs_info = sctx->fs_info; 1270 u64 length = original_sblock->page_count * PAGE_SIZE; 1271 u64 logical = original_sblock->pagev[0]->logical; 1272 u64 generation = original_sblock->pagev[0]->generation; 1273 u64 flags = original_sblock->pagev[0]->flags; 1274 u64 have_csum = original_sblock->pagev[0]->have_csum; 1275 struct scrub_recover *recover; 1276 struct btrfs_bio *bbio; 1277 u64 sublen; 1278 u64 mapped_length; 1279 u64 stripe_offset; 1280 int stripe_index; 1281 int page_index = 0; 1282 int mirror_index; 1283 int nmirrors; 1284 int ret; 1285 1286 /* 1287 * note: the two members refs and outstanding_pages 1288 * are not used (and not set) in the blocks that are used for 1289 * the recheck procedure 1290 */ 1291 1292 while (length > 0) { 1293 sublen = min_t(u64, length, PAGE_SIZE); 1294 mapped_length = sublen; 1295 bbio = NULL; 1296 1297 /* 1298 * with a length of PAGE_SIZE, each returned stripe 1299 * represents one mirror 1300 */ 1301 btrfs_bio_counter_inc_blocked(fs_info); 1302 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1303 logical, &mapped_length, &bbio); 1304 if (ret || !bbio || mapped_length < sublen) { 1305 btrfs_put_bbio(bbio); 1306 btrfs_bio_counter_dec(fs_info); 1307 return -EIO; 1308 } 1309 1310 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1311 if (!recover) { 1312 btrfs_put_bbio(bbio); 1313 btrfs_bio_counter_dec(fs_info); 1314 return -ENOMEM; 1315 } 1316 1317 refcount_set(&recover->refs, 1); 1318 recover->bbio = bbio; 1319 recover->map_length = mapped_length; 1320 1321 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1322 1323 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1324 1325 for (mirror_index = 0; mirror_index < nmirrors; 1326 mirror_index++) { 1327 struct scrub_block *sblock; 1328 struct scrub_page *page; 1329 1330 sblock = sblocks_for_recheck + mirror_index; 1331 sblock->sctx = sctx; 1332 1333 page = kzalloc(sizeof(*page), GFP_NOFS); 1334 if (!page) { 1335 leave_nomem: 1336 spin_lock(&sctx->stat_lock); 1337 sctx->stat.malloc_errors++; 1338 spin_unlock(&sctx->stat_lock); 1339 scrub_put_recover(fs_info, recover); 1340 return -ENOMEM; 1341 } 1342 scrub_page_get(page); 1343 sblock->pagev[page_index] = page; 1344 page->sblock = sblock; 1345 page->flags = flags; 1346 page->generation = generation; 1347 page->logical = logical; 1348 page->have_csum = have_csum; 1349 if (have_csum) 1350 memcpy(page->csum, 1351 original_sblock->pagev[0]->csum, 1352 sctx->csum_size); 1353 1354 scrub_stripe_index_and_offset(logical, 1355 bbio->map_type, 1356 bbio->raid_map, 1357 mapped_length, 1358 bbio->num_stripes - 1359 bbio->num_tgtdevs, 1360 mirror_index, 1361 &stripe_index, 1362 &stripe_offset); 1363 page->physical = bbio->stripes[stripe_index].physical + 1364 stripe_offset; 1365 page->dev = bbio->stripes[stripe_index].dev; 1366 1367 BUG_ON(page_index >= original_sblock->page_count); 1368 page->physical_for_dev_replace = 1369 original_sblock->pagev[page_index]-> 1370 physical_for_dev_replace; 1371 /* for missing devices, dev->bdev is NULL */ 1372 page->mirror_num = mirror_index + 1; 1373 sblock->page_count++; 1374 page->page = alloc_page(GFP_NOFS); 1375 if (!page->page) 1376 goto leave_nomem; 1377 1378 scrub_get_recover(recover); 1379 page->recover = recover; 1380 } 1381 scrub_put_recover(fs_info, recover); 1382 length -= sublen; 1383 logical += sublen; 1384 page_index++; 1385 } 1386 1387 return 0; 1388 } 1389 1390 static void scrub_bio_wait_endio(struct bio *bio) 1391 { 1392 complete(bio->bi_private); 1393 } 1394 1395 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1396 struct bio *bio, 1397 struct scrub_page *page) 1398 { 1399 DECLARE_COMPLETION_ONSTACK(done); 1400 int ret; 1401 int mirror_num; 1402 1403 bio->bi_iter.bi_sector = page->logical >> 9; 1404 bio->bi_private = &done; 1405 bio->bi_end_io = scrub_bio_wait_endio; 1406 1407 mirror_num = page->sblock->pagev[0]->mirror_num; 1408 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, 1409 page->recover->map_length, 1410 mirror_num, 0); 1411 if (ret) 1412 return ret; 1413 1414 wait_for_completion_io(&done); 1415 return blk_status_to_errno(bio->bi_status); 1416 } 1417 1418 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1419 struct scrub_block *sblock) 1420 { 1421 struct scrub_page *first_page = sblock->pagev[0]; 1422 struct bio *bio; 1423 int page_num; 1424 1425 /* All pages in sblock belong to the same stripe on the same device. */ 1426 ASSERT(first_page->dev); 1427 if (!first_page->dev->bdev) 1428 goto out; 1429 1430 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES); 1431 bio_set_dev(bio, first_page->dev->bdev); 1432 1433 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1434 struct scrub_page *page = sblock->pagev[page_num]; 1435 1436 WARN_ON(!page->page); 1437 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1438 } 1439 1440 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { 1441 bio_put(bio); 1442 goto out; 1443 } 1444 1445 bio_put(bio); 1446 1447 scrub_recheck_block_checksum(sblock); 1448 1449 return; 1450 out: 1451 for (page_num = 0; page_num < sblock->page_count; page_num++) 1452 sblock->pagev[page_num]->io_error = 1; 1453 1454 sblock->no_io_error_seen = 0; 1455 } 1456 1457 /* 1458 * this function will check the on disk data for checksum errors, header 1459 * errors and read I/O errors. If any I/O errors happen, the exact pages 1460 * which are errored are marked as being bad. The goal is to enable scrub 1461 * to take those pages that are not errored from all the mirrors so that 1462 * the pages that are errored in the just handled mirror can be repaired. 1463 */ 1464 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1465 struct scrub_block *sblock, 1466 int retry_failed_mirror) 1467 { 1468 int page_num; 1469 1470 sblock->no_io_error_seen = 1; 1471 1472 /* short cut for raid56 */ 1473 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) 1474 return scrub_recheck_block_on_raid56(fs_info, sblock); 1475 1476 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1477 struct bio *bio; 1478 struct scrub_page *page = sblock->pagev[page_num]; 1479 1480 if (page->dev->bdev == NULL) { 1481 page->io_error = 1; 1482 sblock->no_io_error_seen = 0; 1483 continue; 1484 } 1485 1486 WARN_ON(!page->page); 1487 bio = btrfs_io_bio_alloc(1); 1488 bio_set_dev(bio, page->dev->bdev); 1489 1490 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1491 bio->bi_iter.bi_sector = page->physical >> 9; 1492 bio->bi_opf = REQ_OP_READ; 1493 1494 if (btrfsic_submit_bio_wait(bio)) { 1495 page->io_error = 1; 1496 sblock->no_io_error_seen = 0; 1497 } 1498 1499 bio_put(bio); 1500 } 1501 1502 if (sblock->no_io_error_seen) 1503 scrub_recheck_block_checksum(sblock); 1504 } 1505 1506 static inline int scrub_check_fsid(u8 fsid[], 1507 struct scrub_page *spage) 1508 { 1509 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1510 int ret; 1511 1512 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1513 return !ret; 1514 } 1515 1516 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1517 { 1518 sblock->header_error = 0; 1519 sblock->checksum_error = 0; 1520 sblock->generation_error = 0; 1521 1522 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1523 scrub_checksum_data(sblock); 1524 else 1525 scrub_checksum_tree_block(sblock); 1526 } 1527 1528 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1529 struct scrub_block *sblock_good) 1530 { 1531 int page_num; 1532 int ret = 0; 1533 1534 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1535 int ret_sub; 1536 1537 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1538 sblock_good, 1539 page_num, 1); 1540 if (ret_sub) 1541 ret = ret_sub; 1542 } 1543 1544 return ret; 1545 } 1546 1547 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1548 struct scrub_block *sblock_good, 1549 int page_num, int force_write) 1550 { 1551 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1552 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1553 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1554 1555 BUG_ON(page_bad->page == NULL); 1556 BUG_ON(page_good->page == NULL); 1557 if (force_write || sblock_bad->header_error || 1558 sblock_bad->checksum_error || page_bad->io_error) { 1559 struct bio *bio; 1560 int ret; 1561 1562 if (!page_bad->dev->bdev) { 1563 btrfs_warn_rl(fs_info, 1564 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1565 return -EIO; 1566 } 1567 1568 bio = btrfs_io_bio_alloc(1); 1569 bio_set_dev(bio, page_bad->dev->bdev); 1570 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1571 bio->bi_opf = REQ_OP_WRITE; 1572 1573 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1574 if (PAGE_SIZE != ret) { 1575 bio_put(bio); 1576 return -EIO; 1577 } 1578 1579 if (btrfsic_submit_bio_wait(bio)) { 1580 btrfs_dev_stat_inc_and_print(page_bad->dev, 1581 BTRFS_DEV_STAT_WRITE_ERRS); 1582 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1583 bio_put(bio); 1584 return -EIO; 1585 } 1586 bio_put(bio); 1587 } 1588 1589 return 0; 1590 } 1591 1592 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1593 { 1594 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1595 int page_num; 1596 1597 /* 1598 * This block is used for the check of the parity on the source device, 1599 * so the data needn't be written into the destination device. 1600 */ 1601 if (sblock->sparity) 1602 return; 1603 1604 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1605 int ret; 1606 1607 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1608 if (ret) 1609 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1610 } 1611 } 1612 1613 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1614 int page_num) 1615 { 1616 struct scrub_page *spage = sblock->pagev[page_num]; 1617 1618 BUG_ON(spage->page == NULL); 1619 if (spage->io_error) 1620 clear_page(page_address(spage->page)); 1621 1622 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1623 } 1624 1625 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1626 struct scrub_page *spage) 1627 { 1628 struct scrub_bio *sbio; 1629 int ret; 1630 1631 mutex_lock(&sctx->wr_lock); 1632 again: 1633 if (!sctx->wr_curr_bio) { 1634 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1635 GFP_KERNEL); 1636 if (!sctx->wr_curr_bio) { 1637 mutex_unlock(&sctx->wr_lock); 1638 return -ENOMEM; 1639 } 1640 sctx->wr_curr_bio->sctx = sctx; 1641 sctx->wr_curr_bio->page_count = 0; 1642 } 1643 sbio = sctx->wr_curr_bio; 1644 if (sbio->page_count == 0) { 1645 struct bio *bio; 1646 1647 sbio->physical = spage->physical_for_dev_replace; 1648 sbio->logical = spage->logical; 1649 sbio->dev = sctx->wr_tgtdev; 1650 bio = sbio->bio; 1651 if (!bio) { 1652 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); 1653 sbio->bio = bio; 1654 } 1655 1656 bio->bi_private = sbio; 1657 bio->bi_end_io = scrub_wr_bio_end_io; 1658 bio_set_dev(bio, sbio->dev->bdev); 1659 bio->bi_iter.bi_sector = sbio->physical >> 9; 1660 bio->bi_opf = REQ_OP_WRITE; 1661 sbio->status = 0; 1662 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1663 spage->physical_for_dev_replace || 1664 sbio->logical + sbio->page_count * PAGE_SIZE != 1665 spage->logical) { 1666 scrub_wr_submit(sctx); 1667 goto again; 1668 } 1669 1670 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1671 if (ret != PAGE_SIZE) { 1672 if (sbio->page_count < 1) { 1673 bio_put(sbio->bio); 1674 sbio->bio = NULL; 1675 mutex_unlock(&sctx->wr_lock); 1676 return -EIO; 1677 } 1678 scrub_wr_submit(sctx); 1679 goto again; 1680 } 1681 1682 sbio->pagev[sbio->page_count] = spage; 1683 scrub_page_get(spage); 1684 sbio->page_count++; 1685 if (sbio->page_count == sctx->pages_per_wr_bio) 1686 scrub_wr_submit(sctx); 1687 mutex_unlock(&sctx->wr_lock); 1688 1689 return 0; 1690 } 1691 1692 static void scrub_wr_submit(struct scrub_ctx *sctx) 1693 { 1694 struct scrub_bio *sbio; 1695 1696 if (!sctx->wr_curr_bio) 1697 return; 1698 1699 sbio = sctx->wr_curr_bio; 1700 sctx->wr_curr_bio = NULL; 1701 WARN_ON(!sbio->bio->bi_disk); 1702 scrub_pending_bio_inc(sctx); 1703 /* process all writes in a single worker thread. Then the block layer 1704 * orders the requests before sending them to the driver which 1705 * doubled the write performance on spinning disks when measured 1706 * with Linux 3.5 */ 1707 btrfsic_submit_bio(sbio->bio); 1708 } 1709 1710 static void scrub_wr_bio_end_io(struct bio *bio) 1711 { 1712 struct scrub_bio *sbio = bio->bi_private; 1713 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1714 1715 sbio->status = bio->bi_status; 1716 sbio->bio = bio; 1717 1718 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL); 1719 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1720 } 1721 1722 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1723 { 1724 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1725 struct scrub_ctx *sctx = sbio->sctx; 1726 int i; 1727 1728 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1729 if (sbio->status) { 1730 struct btrfs_dev_replace *dev_replace = 1731 &sbio->sctx->fs_info->dev_replace; 1732 1733 for (i = 0; i < sbio->page_count; i++) { 1734 struct scrub_page *spage = sbio->pagev[i]; 1735 1736 spage->io_error = 1; 1737 atomic64_inc(&dev_replace->num_write_errors); 1738 } 1739 } 1740 1741 for (i = 0; i < sbio->page_count; i++) 1742 scrub_page_put(sbio->pagev[i]); 1743 1744 bio_put(sbio->bio); 1745 kfree(sbio); 1746 scrub_pending_bio_dec(sctx); 1747 } 1748 1749 static int scrub_checksum(struct scrub_block *sblock) 1750 { 1751 u64 flags; 1752 int ret; 1753 1754 /* 1755 * No need to initialize these stats currently, 1756 * because this function only use return value 1757 * instead of these stats value. 1758 * 1759 * Todo: 1760 * always use stats 1761 */ 1762 sblock->header_error = 0; 1763 sblock->generation_error = 0; 1764 sblock->checksum_error = 0; 1765 1766 WARN_ON(sblock->page_count < 1); 1767 flags = sblock->pagev[0]->flags; 1768 ret = 0; 1769 if (flags & BTRFS_EXTENT_FLAG_DATA) 1770 ret = scrub_checksum_data(sblock); 1771 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1772 ret = scrub_checksum_tree_block(sblock); 1773 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1774 (void)scrub_checksum_super(sblock); 1775 else 1776 WARN_ON(1); 1777 if (ret) 1778 scrub_handle_errored_block(sblock); 1779 1780 return ret; 1781 } 1782 1783 static int scrub_checksum_data(struct scrub_block *sblock) 1784 { 1785 struct scrub_ctx *sctx = sblock->sctx; 1786 struct btrfs_fs_info *fs_info = sctx->fs_info; 1787 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1788 u8 csum[BTRFS_CSUM_SIZE]; 1789 struct scrub_page *spage; 1790 char *kaddr; 1791 1792 BUG_ON(sblock->page_count < 1); 1793 spage = sblock->pagev[0]; 1794 if (!spage->have_csum) 1795 return 0; 1796 1797 kaddr = page_address(spage->page); 1798 1799 shash->tfm = fs_info->csum_shash; 1800 crypto_shash_init(shash); 1801 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum); 1802 1803 if (memcmp(csum, spage->csum, sctx->csum_size)) 1804 sblock->checksum_error = 1; 1805 1806 return sblock->checksum_error; 1807 } 1808 1809 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1810 { 1811 struct scrub_ctx *sctx = sblock->sctx; 1812 struct btrfs_header *h; 1813 struct btrfs_fs_info *fs_info = sctx->fs_info; 1814 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1815 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1816 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1817 const int num_pages = sctx->fs_info->nodesize >> PAGE_SHIFT; 1818 int i; 1819 struct scrub_page *spage; 1820 char *kaddr; 1821 1822 BUG_ON(sblock->page_count < 1); 1823 spage = sblock->pagev[0]; 1824 kaddr = page_address(spage->page); 1825 h = (struct btrfs_header *)kaddr; 1826 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1827 1828 /* 1829 * we don't use the getter functions here, as we 1830 * a) don't have an extent buffer and 1831 * b) the page is already kmapped 1832 */ 1833 if (spage->logical != btrfs_stack_header_bytenr(h)) 1834 sblock->header_error = 1; 1835 1836 if (spage->generation != btrfs_stack_header_generation(h)) { 1837 sblock->header_error = 1; 1838 sblock->generation_error = 1; 1839 } 1840 1841 if (!scrub_check_fsid(h->fsid, spage)) 1842 sblock->header_error = 1; 1843 1844 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1845 BTRFS_UUID_SIZE)) 1846 sblock->header_error = 1; 1847 1848 shash->tfm = fs_info->csum_shash; 1849 crypto_shash_init(shash); 1850 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 1851 PAGE_SIZE - BTRFS_CSUM_SIZE); 1852 1853 for (i = 1; i < num_pages; i++) { 1854 kaddr = page_address(sblock->pagev[i]->page); 1855 crypto_shash_update(shash, kaddr, PAGE_SIZE); 1856 } 1857 1858 crypto_shash_final(shash, calculated_csum); 1859 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1860 sblock->checksum_error = 1; 1861 1862 return sblock->header_error || sblock->checksum_error; 1863 } 1864 1865 static int scrub_checksum_super(struct scrub_block *sblock) 1866 { 1867 struct btrfs_super_block *s; 1868 struct scrub_ctx *sctx = sblock->sctx; 1869 struct btrfs_fs_info *fs_info = sctx->fs_info; 1870 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1871 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1872 struct scrub_page *spage; 1873 char *kaddr; 1874 int fail_gen = 0; 1875 int fail_cor = 0; 1876 1877 BUG_ON(sblock->page_count < 1); 1878 spage = sblock->pagev[0]; 1879 kaddr = page_address(spage->page); 1880 s = (struct btrfs_super_block *)kaddr; 1881 1882 if (spage->logical != btrfs_super_bytenr(s)) 1883 ++fail_cor; 1884 1885 if (spage->generation != btrfs_super_generation(s)) 1886 ++fail_gen; 1887 1888 if (!scrub_check_fsid(s->fsid, spage)) 1889 ++fail_cor; 1890 1891 shash->tfm = fs_info->csum_shash; 1892 crypto_shash_init(shash); 1893 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, 1894 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); 1895 1896 if (memcmp(calculated_csum, s->csum, sctx->csum_size)) 1897 ++fail_cor; 1898 1899 if (fail_cor + fail_gen) { 1900 /* 1901 * if we find an error in a super block, we just report it. 1902 * They will get written with the next transaction commit 1903 * anyway 1904 */ 1905 spin_lock(&sctx->stat_lock); 1906 ++sctx->stat.super_errors; 1907 spin_unlock(&sctx->stat_lock); 1908 if (fail_cor) 1909 btrfs_dev_stat_inc_and_print(spage->dev, 1910 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1911 else 1912 btrfs_dev_stat_inc_and_print(spage->dev, 1913 BTRFS_DEV_STAT_GENERATION_ERRS); 1914 } 1915 1916 return fail_cor + fail_gen; 1917 } 1918 1919 static void scrub_block_get(struct scrub_block *sblock) 1920 { 1921 refcount_inc(&sblock->refs); 1922 } 1923 1924 static void scrub_block_put(struct scrub_block *sblock) 1925 { 1926 if (refcount_dec_and_test(&sblock->refs)) { 1927 int i; 1928 1929 if (sblock->sparity) 1930 scrub_parity_put(sblock->sparity); 1931 1932 for (i = 0; i < sblock->page_count; i++) 1933 scrub_page_put(sblock->pagev[i]); 1934 kfree(sblock); 1935 } 1936 } 1937 1938 static void scrub_page_get(struct scrub_page *spage) 1939 { 1940 atomic_inc(&spage->refs); 1941 } 1942 1943 static void scrub_page_put(struct scrub_page *spage) 1944 { 1945 if (atomic_dec_and_test(&spage->refs)) { 1946 if (spage->page) 1947 __free_page(spage->page); 1948 kfree(spage); 1949 } 1950 } 1951 1952 static void scrub_submit(struct scrub_ctx *sctx) 1953 { 1954 struct scrub_bio *sbio; 1955 1956 if (sctx->curr == -1) 1957 return; 1958 1959 sbio = sctx->bios[sctx->curr]; 1960 sctx->curr = -1; 1961 scrub_pending_bio_inc(sctx); 1962 btrfsic_submit_bio(sbio->bio); 1963 } 1964 1965 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 1966 struct scrub_page *spage) 1967 { 1968 struct scrub_block *sblock = spage->sblock; 1969 struct scrub_bio *sbio; 1970 int ret; 1971 1972 again: 1973 /* 1974 * grab a fresh bio or wait for one to become available 1975 */ 1976 while (sctx->curr == -1) { 1977 spin_lock(&sctx->list_lock); 1978 sctx->curr = sctx->first_free; 1979 if (sctx->curr != -1) { 1980 sctx->first_free = sctx->bios[sctx->curr]->next_free; 1981 sctx->bios[sctx->curr]->next_free = -1; 1982 sctx->bios[sctx->curr]->page_count = 0; 1983 spin_unlock(&sctx->list_lock); 1984 } else { 1985 spin_unlock(&sctx->list_lock); 1986 wait_event(sctx->list_wait, sctx->first_free != -1); 1987 } 1988 } 1989 sbio = sctx->bios[sctx->curr]; 1990 if (sbio->page_count == 0) { 1991 struct bio *bio; 1992 1993 sbio->physical = spage->physical; 1994 sbio->logical = spage->logical; 1995 sbio->dev = spage->dev; 1996 bio = sbio->bio; 1997 if (!bio) { 1998 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); 1999 sbio->bio = bio; 2000 } 2001 2002 bio->bi_private = sbio; 2003 bio->bi_end_io = scrub_bio_end_io; 2004 bio_set_dev(bio, sbio->dev->bdev); 2005 bio->bi_iter.bi_sector = sbio->physical >> 9; 2006 bio->bi_opf = REQ_OP_READ; 2007 sbio->status = 0; 2008 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2009 spage->physical || 2010 sbio->logical + sbio->page_count * PAGE_SIZE != 2011 spage->logical || 2012 sbio->dev != spage->dev) { 2013 scrub_submit(sctx); 2014 goto again; 2015 } 2016 2017 sbio->pagev[sbio->page_count] = spage; 2018 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2019 if (ret != PAGE_SIZE) { 2020 if (sbio->page_count < 1) { 2021 bio_put(sbio->bio); 2022 sbio->bio = NULL; 2023 return -EIO; 2024 } 2025 scrub_submit(sctx); 2026 goto again; 2027 } 2028 2029 scrub_block_get(sblock); /* one for the page added to the bio */ 2030 atomic_inc(&sblock->outstanding_pages); 2031 sbio->page_count++; 2032 if (sbio->page_count == sctx->pages_per_rd_bio) 2033 scrub_submit(sctx); 2034 2035 return 0; 2036 } 2037 2038 static void scrub_missing_raid56_end_io(struct bio *bio) 2039 { 2040 struct scrub_block *sblock = bio->bi_private; 2041 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2042 2043 if (bio->bi_status) 2044 sblock->no_io_error_seen = 0; 2045 2046 bio_put(bio); 2047 2048 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2049 } 2050 2051 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2052 { 2053 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2054 struct scrub_ctx *sctx = sblock->sctx; 2055 struct btrfs_fs_info *fs_info = sctx->fs_info; 2056 u64 logical; 2057 struct btrfs_device *dev; 2058 2059 logical = sblock->pagev[0]->logical; 2060 dev = sblock->pagev[0]->dev; 2061 2062 if (sblock->no_io_error_seen) 2063 scrub_recheck_block_checksum(sblock); 2064 2065 if (!sblock->no_io_error_seen) { 2066 spin_lock(&sctx->stat_lock); 2067 sctx->stat.read_errors++; 2068 spin_unlock(&sctx->stat_lock); 2069 btrfs_err_rl_in_rcu(fs_info, 2070 "IO error rebuilding logical %llu for dev %s", 2071 logical, rcu_str_deref(dev->name)); 2072 } else if (sblock->header_error || sblock->checksum_error) { 2073 spin_lock(&sctx->stat_lock); 2074 sctx->stat.uncorrectable_errors++; 2075 spin_unlock(&sctx->stat_lock); 2076 btrfs_err_rl_in_rcu(fs_info, 2077 "failed to rebuild valid logical %llu for dev %s", 2078 logical, rcu_str_deref(dev->name)); 2079 } else { 2080 scrub_write_block_to_dev_replace(sblock); 2081 } 2082 2083 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2084 mutex_lock(&sctx->wr_lock); 2085 scrub_wr_submit(sctx); 2086 mutex_unlock(&sctx->wr_lock); 2087 } 2088 2089 scrub_block_put(sblock); 2090 scrub_pending_bio_dec(sctx); 2091 } 2092 2093 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2094 { 2095 struct scrub_ctx *sctx = sblock->sctx; 2096 struct btrfs_fs_info *fs_info = sctx->fs_info; 2097 u64 length = sblock->page_count * PAGE_SIZE; 2098 u64 logical = sblock->pagev[0]->logical; 2099 struct btrfs_bio *bbio = NULL; 2100 struct bio *bio; 2101 struct btrfs_raid_bio *rbio; 2102 int ret; 2103 int i; 2104 2105 btrfs_bio_counter_inc_blocked(fs_info); 2106 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2107 &length, &bbio); 2108 if (ret || !bbio || !bbio->raid_map) 2109 goto bbio_out; 2110 2111 if (WARN_ON(!sctx->is_dev_replace || 2112 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2113 /* 2114 * We shouldn't be scrubbing a missing device. Even for dev 2115 * replace, we should only get here for RAID 5/6. We either 2116 * managed to mount something with no mirrors remaining or 2117 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2118 */ 2119 goto bbio_out; 2120 } 2121 2122 bio = btrfs_io_bio_alloc(0); 2123 bio->bi_iter.bi_sector = logical >> 9; 2124 bio->bi_private = sblock; 2125 bio->bi_end_io = scrub_missing_raid56_end_io; 2126 2127 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2128 if (!rbio) 2129 goto rbio_out; 2130 2131 for (i = 0; i < sblock->page_count; i++) { 2132 struct scrub_page *spage = sblock->pagev[i]; 2133 2134 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2135 } 2136 2137 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL); 2138 scrub_block_get(sblock); 2139 scrub_pending_bio_inc(sctx); 2140 raid56_submit_missing_rbio(rbio); 2141 return; 2142 2143 rbio_out: 2144 bio_put(bio); 2145 bbio_out: 2146 btrfs_bio_counter_dec(fs_info); 2147 btrfs_put_bbio(bbio); 2148 spin_lock(&sctx->stat_lock); 2149 sctx->stat.malloc_errors++; 2150 spin_unlock(&sctx->stat_lock); 2151 } 2152 2153 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2154 u64 physical, struct btrfs_device *dev, u64 flags, 2155 u64 gen, int mirror_num, u8 *csum, int force, 2156 u64 physical_for_dev_replace) 2157 { 2158 struct scrub_block *sblock; 2159 int index; 2160 2161 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2162 if (!sblock) { 2163 spin_lock(&sctx->stat_lock); 2164 sctx->stat.malloc_errors++; 2165 spin_unlock(&sctx->stat_lock); 2166 return -ENOMEM; 2167 } 2168 2169 /* one ref inside this function, plus one for each page added to 2170 * a bio later on */ 2171 refcount_set(&sblock->refs, 1); 2172 sblock->sctx = sctx; 2173 sblock->no_io_error_seen = 1; 2174 2175 for (index = 0; len > 0; index++) { 2176 struct scrub_page *spage; 2177 u64 l = min_t(u64, len, PAGE_SIZE); 2178 2179 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2180 if (!spage) { 2181 leave_nomem: 2182 spin_lock(&sctx->stat_lock); 2183 sctx->stat.malloc_errors++; 2184 spin_unlock(&sctx->stat_lock); 2185 scrub_block_put(sblock); 2186 return -ENOMEM; 2187 } 2188 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2189 scrub_page_get(spage); 2190 sblock->pagev[index] = spage; 2191 spage->sblock = sblock; 2192 spage->dev = dev; 2193 spage->flags = flags; 2194 spage->generation = gen; 2195 spage->logical = logical; 2196 spage->physical = physical; 2197 spage->physical_for_dev_replace = physical_for_dev_replace; 2198 spage->mirror_num = mirror_num; 2199 if (csum) { 2200 spage->have_csum = 1; 2201 memcpy(spage->csum, csum, sctx->csum_size); 2202 } else { 2203 spage->have_csum = 0; 2204 } 2205 sblock->page_count++; 2206 spage->page = alloc_page(GFP_KERNEL); 2207 if (!spage->page) 2208 goto leave_nomem; 2209 len -= l; 2210 logical += l; 2211 physical += l; 2212 physical_for_dev_replace += l; 2213 } 2214 2215 WARN_ON(sblock->page_count == 0); 2216 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2217 /* 2218 * This case should only be hit for RAID 5/6 device replace. See 2219 * the comment in scrub_missing_raid56_pages() for details. 2220 */ 2221 scrub_missing_raid56_pages(sblock); 2222 } else { 2223 for (index = 0; index < sblock->page_count; index++) { 2224 struct scrub_page *spage = sblock->pagev[index]; 2225 int ret; 2226 2227 ret = scrub_add_page_to_rd_bio(sctx, spage); 2228 if (ret) { 2229 scrub_block_put(sblock); 2230 return ret; 2231 } 2232 } 2233 2234 if (force) 2235 scrub_submit(sctx); 2236 } 2237 2238 /* last one frees, either here or in bio completion for last page */ 2239 scrub_block_put(sblock); 2240 return 0; 2241 } 2242 2243 static void scrub_bio_end_io(struct bio *bio) 2244 { 2245 struct scrub_bio *sbio = bio->bi_private; 2246 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2247 2248 sbio->status = bio->bi_status; 2249 sbio->bio = bio; 2250 2251 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2252 } 2253 2254 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2255 { 2256 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2257 struct scrub_ctx *sctx = sbio->sctx; 2258 int i; 2259 2260 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2261 if (sbio->status) { 2262 for (i = 0; i < sbio->page_count; i++) { 2263 struct scrub_page *spage = sbio->pagev[i]; 2264 2265 spage->io_error = 1; 2266 spage->sblock->no_io_error_seen = 0; 2267 } 2268 } 2269 2270 /* now complete the scrub_block items that have all pages completed */ 2271 for (i = 0; i < sbio->page_count; i++) { 2272 struct scrub_page *spage = sbio->pagev[i]; 2273 struct scrub_block *sblock = spage->sblock; 2274 2275 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2276 scrub_block_complete(sblock); 2277 scrub_block_put(sblock); 2278 } 2279 2280 bio_put(sbio->bio); 2281 sbio->bio = NULL; 2282 spin_lock(&sctx->list_lock); 2283 sbio->next_free = sctx->first_free; 2284 sctx->first_free = sbio->index; 2285 spin_unlock(&sctx->list_lock); 2286 2287 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2288 mutex_lock(&sctx->wr_lock); 2289 scrub_wr_submit(sctx); 2290 mutex_unlock(&sctx->wr_lock); 2291 } 2292 2293 scrub_pending_bio_dec(sctx); 2294 } 2295 2296 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2297 unsigned long *bitmap, 2298 u64 start, u64 len) 2299 { 2300 u64 offset; 2301 u64 nsectors64; 2302 u32 nsectors; 2303 int sectorsize = sparity->sctx->fs_info->sectorsize; 2304 2305 if (len >= sparity->stripe_len) { 2306 bitmap_set(bitmap, 0, sparity->nsectors); 2307 return; 2308 } 2309 2310 start -= sparity->logic_start; 2311 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2312 offset = div_u64(offset, sectorsize); 2313 nsectors64 = div_u64(len, sectorsize); 2314 2315 ASSERT(nsectors64 < UINT_MAX); 2316 nsectors = (u32)nsectors64; 2317 2318 if (offset + nsectors <= sparity->nsectors) { 2319 bitmap_set(bitmap, offset, nsectors); 2320 return; 2321 } 2322 2323 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2324 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2325 } 2326 2327 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2328 u64 start, u64 len) 2329 { 2330 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2331 } 2332 2333 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2334 u64 start, u64 len) 2335 { 2336 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2337 } 2338 2339 static void scrub_block_complete(struct scrub_block *sblock) 2340 { 2341 int corrupted = 0; 2342 2343 if (!sblock->no_io_error_seen) { 2344 corrupted = 1; 2345 scrub_handle_errored_block(sblock); 2346 } else { 2347 /* 2348 * if has checksum error, write via repair mechanism in 2349 * dev replace case, otherwise write here in dev replace 2350 * case. 2351 */ 2352 corrupted = scrub_checksum(sblock); 2353 if (!corrupted && sblock->sctx->is_dev_replace) 2354 scrub_write_block_to_dev_replace(sblock); 2355 } 2356 2357 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2358 u64 start = sblock->pagev[0]->logical; 2359 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2360 PAGE_SIZE; 2361 2362 scrub_parity_mark_sectors_error(sblock->sparity, 2363 start, end - start); 2364 } 2365 } 2366 2367 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2368 { 2369 struct btrfs_ordered_sum *sum = NULL; 2370 unsigned long index; 2371 unsigned long num_sectors; 2372 2373 while (!list_empty(&sctx->csum_list)) { 2374 sum = list_first_entry(&sctx->csum_list, 2375 struct btrfs_ordered_sum, list); 2376 if (sum->bytenr > logical) 2377 return 0; 2378 if (sum->bytenr + sum->len > logical) 2379 break; 2380 2381 ++sctx->stat.csum_discards; 2382 list_del(&sum->list); 2383 kfree(sum); 2384 sum = NULL; 2385 } 2386 if (!sum) 2387 return 0; 2388 2389 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); 2390 ASSERT(index < UINT_MAX); 2391 2392 num_sectors = sum->len / sctx->fs_info->sectorsize; 2393 memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size); 2394 if (index == num_sectors - 1) { 2395 list_del(&sum->list); 2396 kfree(sum); 2397 } 2398 return 1; 2399 } 2400 2401 /* scrub extent tries to collect up to 64 kB for each bio */ 2402 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2403 u64 logical, u64 len, 2404 u64 physical, struct btrfs_device *dev, u64 flags, 2405 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2406 { 2407 int ret; 2408 u8 csum[BTRFS_CSUM_SIZE]; 2409 u32 blocksize; 2410 2411 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2412 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2413 blocksize = map->stripe_len; 2414 else 2415 blocksize = sctx->fs_info->sectorsize; 2416 spin_lock(&sctx->stat_lock); 2417 sctx->stat.data_extents_scrubbed++; 2418 sctx->stat.data_bytes_scrubbed += len; 2419 spin_unlock(&sctx->stat_lock); 2420 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2421 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2422 blocksize = map->stripe_len; 2423 else 2424 blocksize = sctx->fs_info->nodesize; 2425 spin_lock(&sctx->stat_lock); 2426 sctx->stat.tree_extents_scrubbed++; 2427 sctx->stat.tree_bytes_scrubbed += len; 2428 spin_unlock(&sctx->stat_lock); 2429 } else { 2430 blocksize = sctx->fs_info->sectorsize; 2431 WARN_ON(1); 2432 } 2433 2434 while (len) { 2435 u64 l = min_t(u64, len, blocksize); 2436 int have_csum = 0; 2437 2438 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2439 /* push csums to sbio */ 2440 have_csum = scrub_find_csum(sctx, logical, csum); 2441 if (have_csum == 0) 2442 ++sctx->stat.no_csum; 2443 } 2444 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2445 mirror_num, have_csum ? csum : NULL, 0, 2446 physical_for_dev_replace); 2447 if (ret) 2448 return ret; 2449 len -= l; 2450 logical += l; 2451 physical += l; 2452 physical_for_dev_replace += l; 2453 } 2454 return 0; 2455 } 2456 2457 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2458 u64 logical, u64 len, 2459 u64 physical, struct btrfs_device *dev, 2460 u64 flags, u64 gen, int mirror_num, u8 *csum) 2461 { 2462 struct scrub_ctx *sctx = sparity->sctx; 2463 struct scrub_block *sblock; 2464 int index; 2465 2466 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2467 if (!sblock) { 2468 spin_lock(&sctx->stat_lock); 2469 sctx->stat.malloc_errors++; 2470 spin_unlock(&sctx->stat_lock); 2471 return -ENOMEM; 2472 } 2473 2474 /* one ref inside this function, plus one for each page added to 2475 * a bio later on */ 2476 refcount_set(&sblock->refs, 1); 2477 sblock->sctx = sctx; 2478 sblock->no_io_error_seen = 1; 2479 sblock->sparity = sparity; 2480 scrub_parity_get(sparity); 2481 2482 for (index = 0; len > 0; index++) { 2483 struct scrub_page *spage; 2484 u64 l = min_t(u64, len, PAGE_SIZE); 2485 2486 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2487 if (!spage) { 2488 leave_nomem: 2489 spin_lock(&sctx->stat_lock); 2490 sctx->stat.malloc_errors++; 2491 spin_unlock(&sctx->stat_lock); 2492 scrub_block_put(sblock); 2493 return -ENOMEM; 2494 } 2495 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2496 /* For scrub block */ 2497 scrub_page_get(spage); 2498 sblock->pagev[index] = spage; 2499 /* For scrub parity */ 2500 scrub_page_get(spage); 2501 list_add_tail(&spage->list, &sparity->spages); 2502 spage->sblock = sblock; 2503 spage->dev = dev; 2504 spage->flags = flags; 2505 spage->generation = gen; 2506 spage->logical = logical; 2507 spage->physical = physical; 2508 spage->mirror_num = mirror_num; 2509 if (csum) { 2510 spage->have_csum = 1; 2511 memcpy(spage->csum, csum, sctx->csum_size); 2512 } else { 2513 spage->have_csum = 0; 2514 } 2515 sblock->page_count++; 2516 spage->page = alloc_page(GFP_KERNEL); 2517 if (!spage->page) 2518 goto leave_nomem; 2519 len -= l; 2520 logical += l; 2521 physical += l; 2522 } 2523 2524 WARN_ON(sblock->page_count == 0); 2525 for (index = 0; index < sblock->page_count; index++) { 2526 struct scrub_page *spage = sblock->pagev[index]; 2527 int ret; 2528 2529 ret = scrub_add_page_to_rd_bio(sctx, spage); 2530 if (ret) { 2531 scrub_block_put(sblock); 2532 return ret; 2533 } 2534 } 2535 2536 /* last one frees, either here or in bio completion for last page */ 2537 scrub_block_put(sblock); 2538 return 0; 2539 } 2540 2541 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2542 u64 logical, u64 len, 2543 u64 physical, struct btrfs_device *dev, 2544 u64 flags, u64 gen, int mirror_num) 2545 { 2546 struct scrub_ctx *sctx = sparity->sctx; 2547 int ret; 2548 u8 csum[BTRFS_CSUM_SIZE]; 2549 u32 blocksize; 2550 2551 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2552 scrub_parity_mark_sectors_error(sparity, logical, len); 2553 return 0; 2554 } 2555 2556 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2557 blocksize = sparity->stripe_len; 2558 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2559 blocksize = sparity->stripe_len; 2560 } else { 2561 blocksize = sctx->fs_info->sectorsize; 2562 WARN_ON(1); 2563 } 2564 2565 while (len) { 2566 u64 l = min_t(u64, len, blocksize); 2567 int have_csum = 0; 2568 2569 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2570 /* push csums to sbio */ 2571 have_csum = scrub_find_csum(sctx, logical, csum); 2572 if (have_csum == 0) 2573 goto skip; 2574 } 2575 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2576 flags, gen, mirror_num, 2577 have_csum ? csum : NULL); 2578 if (ret) 2579 return ret; 2580 skip: 2581 len -= l; 2582 logical += l; 2583 physical += l; 2584 } 2585 return 0; 2586 } 2587 2588 /* 2589 * Given a physical address, this will calculate it's 2590 * logical offset. if this is a parity stripe, it will return 2591 * the most left data stripe's logical offset. 2592 * 2593 * return 0 if it is a data stripe, 1 means parity stripe. 2594 */ 2595 static int get_raid56_logic_offset(u64 physical, int num, 2596 struct map_lookup *map, u64 *offset, 2597 u64 *stripe_start) 2598 { 2599 int i; 2600 int j = 0; 2601 u64 stripe_nr; 2602 u64 last_offset; 2603 u32 stripe_index; 2604 u32 rot; 2605 const int data_stripes = nr_data_stripes(map); 2606 2607 last_offset = (physical - map->stripes[num].physical) * data_stripes; 2608 if (stripe_start) 2609 *stripe_start = last_offset; 2610 2611 *offset = last_offset; 2612 for (i = 0; i < data_stripes; i++) { 2613 *offset = last_offset + i * map->stripe_len; 2614 2615 stripe_nr = div64_u64(*offset, map->stripe_len); 2616 stripe_nr = div_u64(stripe_nr, data_stripes); 2617 2618 /* Work out the disk rotation on this stripe-set */ 2619 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2620 /* calculate which stripe this data locates */ 2621 rot += i; 2622 stripe_index = rot % map->num_stripes; 2623 if (stripe_index == num) 2624 return 0; 2625 if (stripe_index < num) 2626 j++; 2627 } 2628 *offset = last_offset + j * map->stripe_len; 2629 return 1; 2630 } 2631 2632 static void scrub_free_parity(struct scrub_parity *sparity) 2633 { 2634 struct scrub_ctx *sctx = sparity->sctx; 2635 struct scrub_page *curr, *next; 2636 int nbits; 2637 2638 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2639 if (nbits) { 2640 spin_lock(&sctx->stat_lock); 2641 sctx->stat.read_errors += nbits; 2642 sctx->stat.uncorrectable_errors += nbits; 2643 spin_unlock(&sctx->stat_lock); 2644 } 2645 2646 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2647 list_del_init(&curr->list); 2648 scrub_page_put(curr); 2649 } 2650 2651 kfree(sparity); 2652 } 2653 2654 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2655 { 2656 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2657 work); 2658 struct scrub_ctx *sctx = sparity->sctx; 2659 2660 scrub_free_parity(sparity); 2661 scrub_pending_bio_dec(sctx); 2662 } 2663 2664 static void scrub_parity_bio_endio(struct bio *bio) 2665 { 2666 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2667 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2668 2669 if (bio->bi_status) 2670 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2671 sparity->nsectors); 2672 2673 bio_put(bio); 2674 2675 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL, 2676 NULL); 2677 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 2678 } 2679 2680 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2681 { 2682 struct scrub_ctx *sctx = sparity->sctx; 2683 struct btrfs_fs_info *fs_info = sctx->fs_info; 2684 struct bio *bio; 2685 struct btrfs_raid_bio *rbio; 2686 struct btrfs_bio *bbio = NULL; 2687 u64 length; 2688 int ret; 2689 2690 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2691 sparity->nsectors)) 2692 goto out; 2693 2694 length = sparity->logic_end - sparity->logic_start; 2695 2696 btrfs_bio_counter_inc_blocked(fs_info); 2697 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2698 &length, &bbio); 2699 if (ret || !bbio || !bbio->raid_map) 2700 goto bbio_out; 2701 2702 bio = btrfs_io_bio_alloc(0); 2703 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2704 bio->bi_private = sparity; 2705 bio->bi_end_io = scrub_parity_bio_endio; 2706 2707 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 2708 length, sparity->scrub_dev, 2709 sparity->dbitmap, 2710 sparity->nsectors); 2711 if (!rbio) 2712 goto rbio_out; 2713 2714 scrub_pending_bio_inc(sctx); 2715 raid56_parity_submit_scrub_rbio(rbio); 2716 return; 2717 2718 rbio_out: 2719 bio_put(bio); 2720 bbio_out: 2721 btrfs_bio_counter_dec(fs_info); 2722 btrfs_put_bbio(bbio); 2723 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2724 sparity->nsectors); 2725 spin_lock(&sctx->stat_lock); 2726 sctx->stat.malloc_errors++; 2727 spin_unlock(&sctx->stat_lock); 2728 out: 2729 scrub_free_parity(sparity); 2730 } 2731 2732 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2733 { 2734 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2735 } 2736 2737 static void scrub_parity_get(struct scrub_parity *sparity) 2738 { 2739 refcount_inc(&sparity->refs); 2740 } 2741 2742 static void scrub_parity_put(struct scrub_parity *sparity) 2743 { 2744 if (!refcount_dec_and_test(&sparity->refs)) 2745 return; 2746 2747 scrub_parity_check_and_repair(sparity); 2748 } 2749 2750 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2751 struct map_lookup *map, 2752 struct btrfs_device *sdev, 2753 struct btrfs_path *path, 2754 u64 logic_start, 2755 u64 logic_end) 2756 { 2757 struct btrfs_fs_info *fs_info = sctx->fs_info; 2758 struct btrfs_root *root = fs_info->extent_root; 2759 struct btrfs_root *csum_root = fs_info->csum_root; 2760 struct btrfs_extent_item *extent; 2761 struct btrfs_bio *bbio = NULL; 2762 u64 flags; 2763 int ret; 2764 int slot; 2765 struct extent_buffer *l; 2766 struct btrfs_key key; 2767 u64 generation; 2768 u64 extent_logical; 2769 u64 extent_physical; 2770 u64 extent_len; 2771 u64 mapped_length; 2772 struct btrfs_device *extent_dev; 2773 struct scrub_parity *sparity; 2774 int nsectors; 2775 int bitmap_len; 2776 int extent_mirror_num; 2777 int stop_loop = 0; 2778 2779 nsectors = div_u64(map->stripe_len, fs_info->sectorsize); 2780 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2781 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2782 GFP_NOFS); 2783 if (!sparity) { 2784 spin_lock(&sctx->stat_lock); 2785 sctx->stat.malloc_errors++; 2786 spin_unlock(&sctx->stat_lock); 2787 return -ENOMEM; 2788 } 2789 2790 sparity->stripe_len = map->stripe_len; 2791 sparity->nsectors = nsectors; 2792 sparity->sctx = sctx; 2793 sparity->scrub_dev = sdev; 2794 sparity->logic_start = logic_start; 2795 sparity->logic_end = logic_end; 2796 refcount_set(&sparity->refs, 1); 2797 INIT_LIST_HEAD(&sparity->spages); 2798 sparity->dbitmap = sparity->bitmap; 2799 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2800 2801 ret = 0; 2802 while (logic_start < logic_end) { 2803 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2804 key.type = BTRFS_METADATA_ITEM_KEY; 2805 else 2806 key.type = BTRFS_EXTENT_ITEM_KEY; 2807 key.objectid = logic_start; 2808 key.offset = (u64)-1; 2809 2810 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2811 if (ret < 0) 2812 goto out; 2813 2814 if (ret > 0) { 2815 ret = btrfs_previous_extent_item(root, path, 0); 2816 if (ret < 0) 2817 goto out; 2818 if (ret > 0) { 2819 btrfs_release_path(path); 2820 ret = btrfs_search_slot(NULL, root, &key, 2821 path, 0, 0); 2822 if (ret < 0) 2823 goto out; 2824 } 2825 } 2826 2827 stop_loop = 0; 2828 while (1) { 2829 u64 bytes; 2830 2831 l = path->nodes[0]; 2832 slot = path->slots[0]; 2833 if (slot >= btrfs_header_nritems(l)) { 2834 ret = btrfs_next_leaf(root, path); 2835 if (ret == 0) 2836 continue; 2837 if (ret < 0) 2838 goto out; 2839 2840 stop_loop = 1; 2841 break; 2842 } 2843 btrfs_item_key_to_cpu(l, &key, slot); 2844 2845 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2846 key.type != BTRFS_METADATA_ITEM_KEY) 2847 goto next; 2848 2849 if (key.type == BTRFS_METADATA_ITEM_KEY) 2850 bytes = fs_info->nodesize; 2851 else 2852 bytes = key.offset; 2853 2854 if (key.objectid + bytes <= logic_start) 2855 goto next; 2856 2857 if (key.objectid >= logic_end) { 2858 stop_loop = 1; 2859 break; 2860 } 2861 2862 while (key.objectid >= logic_start + map->stripe_len) 2863 logic_start += map->stripe_len; 2864 2865 extent = btrfs_item_ptr(l, slot, 2866 struct btrfs_extent_item); 2867 flags = btrfs_extent_flags(l, extent); 2868 generation = btrfs_extent_generation(l, extent); 2869 2870 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 2871 (key.objectid < logic_start || 2872 key.objectid + bytes > 2873 logic_start + map->stripe_len)) { 2874 btrfs_err(fs_info, 2875 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 2876 key.objectid, logic_start); 2877 spin_lock(&sctx->stat_lock); 2878 sctx->stat.uncorrectable_errors++; 2879 spin_unlock(&sctx->stat_lock); 2880 goto next; 2881 } 2882 again: 2883 extent_logical = key.objectid; 2884 extent_len = bytes; 2885 2886 if (extent_logical < logic_start) { 2887 extent_len -= logic_start - extent_logical; 2888 extent_logical = logic_start; 2889 } 2890 2891 if (extent_logical + extent_len > 2892 logic_start + map->stripe_len) 2893 extent_len = logic_start + map->stripe_len - 2894 extent_logical; 2895 2896 scrub_parity_mark_sectors_data(sparity, extent_logical, 2897 extent_len); 2898 2899 mapped_length = extent_len; 2900 bbio = NULL; 2901 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 2902 extent_logical, &mapped_length, &bbio, 2903 0); 2904 if (!ret) { 2905 if (!bbio || mapped_length < extent_len) 2906 ret = -EIO; 2907 } 2908 if (ret) { 2909 btrfs_put_bbio(bbio); 2910 goto out; 2911 } 2912 extent_physical = bbio->stripes[0].physical; 2913 extent_mirror_num = bbio->mirror_num; 2914 extent_dev = bbio->stripes[0].dev; 2915 btrfs_put_bbio(bbio); 2916 2917 ret = btrfs_lookup_csums_range(csum_root, 2918 extent_logical, 2919 extent_logical + extent_len - 1, 2920 &sctx->csum_list, 1); 2921 if (ret) 2922 goto out; 2923 2924 ret = scrub_extent_for_parity(sparity, extent_logical, 2925 extent_len, 2926 extent_physical, 2927 extent_dev, flags, 2928 generation, 2929 extent_mirror_num); 2930 2931 scrub_free_csums(sctx); 2932 2933 if (ret) 2934 goto out; 2935 2936 if (extent_logical + extent_len < 2937 key.objectid + bytes) { 2938 logic_start += map->stripe_len; 2939 2940 if (logic_start >= logic_end) { 2941 stop_loop = 1; 2942 break; 2943 } 2944 2945 if (logic_start < key.objectid + bytes) { 2946 cond_resched(); 2947 goto again; 2948 } 2949 } 2950 next: 2951 path->slots[0]++; 2952 } 2953 2954 btrfs_release_path(path); 2955 2956 if (stop_loop) 2957 break; 2958 2959 logic_start += map->stripe_len; 2960 } 2961 out: 2962 if (ret < 0) 2963 scrub_parity_mark_sectors_error(sparity, logic_start, 2964 logic_end - logic_start); 2965 scrub_parity_put(sparity); 2966 scrub_submit(sctx); 2967 mutex_lock(&sctx->wr_lock); 2968 scrub_wr_submit(sctx); 2969 mutex_unlock(&sctx->wr_lock); 2970 2971 btrfs_release_path(path); 2972 return ret < 0 ? ret : 0; 2973 } 2974 2975 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 2976 struct map_lookup *map, 2977 struct btrfs_device *scrub_dev, 2978 int num, u64 base, u64 length, 2979 struct btrfs_block_group *cache) 2980 { 2981 struct btrfs_path *path, *ppath; 2982 struct btrfs_fs_info *fs_info = sctx->fs_info; 2983 struct btrfs_root *root = fs_info->extent_root; 2984 struct btrfs_root *csum_root = fs_info->csum_root; 2985 struct btrfs_extent_item *extent; 2986 struct blk_plug plug; 2987 u64 flags; 2988 int ret; 2989 int slot; 2990 u64 nstripes; 2991 struct extent_buffer *l; 2992 u64 physical; 2993 u64 logical; 2994 u64 logic_end; 2995 u64 physical_end; 2996 u64 generation; 2997 int mirror_num; 2998 struct reada_control *reada1; 2999 struct reada_control *reada2; 3000 struct btrfs_key key; 3001 struct btrfs_key key_end; 3002 u64 increment = map->stripe_len; 3003 u64 offset; 3004 u64 extent_logical; 3005 u64 extent_physical; 3006 u64 extent_len; 3007 u64 stripe_logical; 3008 u64 stripe_end; 3009 struct btrfs_device *extent_dev; 3010 int extent_mirror_num; 3011 int stop_loop = 0; 3012 3013 physical = map->stripes[num].physical; 3014 offset = 0; 3015 nstripes = div64_u64(length, map->stripe_len); 3016 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3017 offset = map->stripe_len * num; 3018 increment = map->stripe_len * map->num_stripes; 3019 mirror_num = 1; 3020 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3021 int factor = map->num_stripes / map->sub_stripes; 3022 offset = map->stripe_len * (num / map->sub_stripes); 3023 increment = map->stripe_len * factor; 3024 mirror_num = num % map->sub_stripes + 1; 3025 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 3026 increment = map->stripe_len; 3027 mirror_num = num % map->num_stripes + 1; 3028 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3029 increment = map->stripe_len; 3030 mirror_num = num % map->num_stripes + 1; 3031 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3032 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3033 increment = map->stripe_len * nr_data_stripes(map); 3034 mirror_num = 1; 3035 } else { 3036 increment = map->stripe_len; 3037 mirror_num = 1; 3038 } 3039 3040 path = btrfs_alloc_path(); 3041 if (!path) 3042 return -ENOMEM; 3043 3044 ppath = btrfs_alloc_path(); 3045 if (!ppath) { 3046 btrfs_free_path(path); 3047 return -ENOMEM; 3048 } 3049 3050 /* 3051 * work on commit root. The related disk blocks are static as 3052 * long as COW is applied. This means, it is save to rewrite 3053 * them to repair disk errors without any race conditions 3054 */ 3055 path->search_commit_root = 1; 3056 path->skip_locking = 1; 3057 3058 ppath->search_commit_root = 1; 3059 ppath->skip_locking = 1; 3060 /* 3061 * trigger the readahead for extent tree csum tree and wait for 3062 * completion. During readahead, the scrub is officially paused 3063 * to not hold off transaction commits 3064 */ 3065 logical = base + offset; 3066 physical_end = physical + nstripes * map->stripe_len; 3067 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3068 get_raid56_logic_offset(physical_end, num, 3069 map, &logic_end, NULL); 3070 logic_end += base; 3071 } else { 3072 logic_end = logical + increment * nstripes; 3073 } 3074 wait_event(sctx->list_wait, 3075 atomic_read(&sctx->bios_in_flight) == 0); 3076 scrub_blocked_if_needed(fs_info); 3077 3078 /* FIXME it might be better to start readahead at commit root */ 3079 key.objectid = logical; 3080 key.type = BTRFS_EXTENT_ITEM_KEY; 3081 key.offset = (u64)0; 3082 key_end.objectid = logic_end; 3083 key_end.type = BTRFS_METADATA_ITEM_KEY; 3084 key_end.offset = (u64)-1; 3085 reada1 = btrfs_reada_add(root, &key, &key_end); 3086 3087 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3088 key.type = BTRFS_EXTENT_CSUM_KEY; 3089 key.offset = logical; 3090 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3091 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3092 key_end.offset = logic_end; 3093 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3094 3095 if (!IS_ERR(reada1)) 3096 btrfs_reada_wait(reada1); 3097 if (!IS_ERR(reada2)) 3098 btrfs_reada_wait(reada2); 3099 3100 3101 /* 3102 * collect all data csums for the stripe to avoid seeking during 3103 * the scrub. This might currently (crc32) end up to be about 1MB 3104 */ 3105 blk_start_plug(&plug); 3106 3107 /* 3108 * now find all extents for each stripe and scrub them 3109 */ 3110 ret = 0; 3111 while (physical < physical_end) { 3112 /* 3113 * canceled? 3114 */ 3115 if (atomic_read(&fs_info->scrub_cancel_req) || 3116 atomic_read(&sctx->cancel_req)) { 3117 ret = -ECANCELED; 3118 goto out; 3119 } 3120 /* 3121 * check to see if we have to pause 3122 */ 3123 if (atomic_read(&fs_info->scrub_pause_req)) { 3124 /* push queued extents */ 3125 sctx->flush_all_writes = true; 3126 scrub_submit(sctx); 3127 mutex_lock(&sctx->wr_lock); 3128 scrub_wr_submit(sctx); 3129 mutex_unlock(&sctx->wr_lock); 3130 wait_event(sctx->list_wait, 3131 atomic_read(&sctx->bios_in_flight) == 0); 3132 sctx->flush_all_writes = false; 3133 scrub_blocked_if_needed(fs_info); 3134 } 3135 3136 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3137 ret = get_raid56_logic_offset(physical, num, map, 3138 &logical, 3139 &stripe_logical); 3140 logical += base; 3141 if (ret) { 3142 /* it is parity strip */ 3143 stripe_logical += base; 3144 stripe_end = stripe_logical + increment; 3145 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3146 ppath, stripe_logical, 3147 stripe_end); 3148 if (ret) 3149 goto out; 3150 goto skip; 3151 } 3152 } 3153 3154 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3155 key.type = BTRFS_METADATA_ITEM_KEY; 3156 else 3157 key.type = BTRFS_EXTENT_ITEM_KEY; 3158 key.objectid = logical; 3159 key.offset = (u64)-1; 3160 3161 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3162 if (ret < 0) 3163 goto out; 3164 3165 if (ret > 0) { 3166 ret = btrfs_previous_extent_item(root, path, 0); 3167 if (ret < 0) 3168 goto out; 3169 if (ret > 0) { 3170 /* there's no smaller item, so stick with the 3171 * larger one */ 3172 btrfs_release_path(path); 3173 ret = btrfs_search_slot(NULL, root, &key, 3174 path, 0, 0); 3175 if (ret < 0) 3176 goto out; 3177 } 3178 } 3179 3180 stop_loop = 0; 3181 while (1) { 3182 u64 bytes; 3183 3184 l = path->nodes[0]; 3185 slot = path->slots[0]; 3186 if (slot >= btrfs_header_nritems(l)) { 3187 ret = btrfs_next_leaf(root, path); 3188 if (ret == 0) 3189 continue; 3190 if (ret < 0) 3191 goto out; 3192 3193 stop_loop = 1; 3194 break; 3195 } 3196 btrfs_item_key_to_cpu(l, &key, slot); 3197 3198 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3199 key.type != BTRFS_METADATA_ITEM_KEY) 3200 goto next; 3201 3202 if (key.type == BTRFS_METADATA_ITEM_KEY) 3203 bytes = fs_info->nodesize; 3204 else 3205 bytes = key.offset; 3206 3207 if (key.objectid + bytes <= logical) 3208 goto next; 3209 3210 if (key.objectid >= logical + map->stripe_len) { 3211 /* out of this device extent */ 3212 if (key.objectid >= logic_end) 3213 stop_loop = 1; 3214 break; 3215 } 3216 3217 /* 3218 * If our block group was removed in the meanwhile, just 3219 * stop scrubbing since there is no point in continuing. 3220 * Continuing would prevent reusing its device extents 3221 * for new block groups for a long time. 3222 */ 3223 spin_lock(&cache->lock); 3224 if (cache->removed) { 3225 spin_unlock(&cache->lock); 3226 ret = 0; 3227 goto out; 3228 } 3229 spin_unlock(&cache->lock); 3230 3231 extent = btrfs_item_ptr(l, slot, 3232 struct btrfs_extent_item); 3233 flags = btrfs_extent_flags(l, extent); 3234 generation = btrfs_extent_generation(l, extent); 3235 3236 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3237 (key.objectid < logical || 3238 key.objectid + bytes > 3239 logical + map->stripe_len)) { 3240 btrfs_err(fs_info, 3241 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3242 key.objectid, logical); 3243 spin_lock(&sctx->stat_lock); 3244 sctx->stat.uncorrectable_errors++; 3245 spin_unlock(&sctx->stat_lock); 3246 goto next; 3247 } 3248 3249 again: 3250 extent_logical = key.objectid; 3251 extent_len = bytes; 3252 3253 /* 3254 * trim extent to this stripe 3255 */ 3256 if (extent_logical < logical) { 3257 extent_len -= logical - extent_logical; 3258 extent_logical = logical; 3259 } 3260 if (extent_logical + extent_len > 3261 logical + map->stripe_len) { 3262 extent_len = logical + map->stripe_len - 3263 extent_logical; 3264 } 3265 3266 extent_physical = extent_logical - logical + physical; 3267 extent_dev = scrub_dev; 3268 extent_mirror_num = mirror_num; 3269 if (sctx->is_dev_replace) 3270 scrub_remap_extent(fs_info, extent_logical, 3271 extent_len, &extent_physical, 3272 &extent_dev, 3273 &extent_mirror_num); 3274 3275 if (flags & BTRFS_EXTENT_FLAG_DATA) { 3276 ret = btrfs_lookup_csums_range(csum_root, 3277 extent_logical, 3278 extent_logical + extent_len - 1, 3279 &sctx->csum_list, 1); 3280 if (ret) 3281 goto out; 3282 } 3283 3284 ret = scrub_extent(sctx, map, extent_logical, extent_len, 3285 extent_physical, extent_dev, flags, 3286 generation, extent_mirror_num, 3287 extent_logical - logical + physical); 3288 3289 scrub_free_csums(sctx); 3290 3291 if (ret) 3292 goto out; 3293 3294 if (extent_logical + extent_len < 3295 key.objectid + bytes) { 3296 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3297 /* 3298 * loop until we find next data stripe 3299 * or we have finished all stripes. 3300 */ 3301 loop: 3302 physical += map->stripe_len; 3303 ret = get_raid56_logic_offset(physical, 3304 num, map, &logical, 3305 &stripe_logical); 3306 logical += base; 3307 3308 if (ret && physical < physical_end) { 3309 stripe_logical += base; 3310 stripe_end = stripe_logical + 3311 increment; 3312 ret = scrub_raid56_parity(sctx, 3313 map, scrub_dev, ppath, 3314 stripe_logical, 3315 stripe_end); 3316 if (ret) 3317 goto out; 3318 goto loop; 3319 } 3320 } else { 3321 physical += map->stripe_len; 3322 logical += increment; 3323 } 3324 if (logical < key.objectid + bytes) { 3325 cond_resched(); 3326 goto again; 3327 } 3328 3329 if (physical >= physical_end) { 3330 stop_loop = 1; 3331 break; 3332 } 3333 } 3334 next: 3335 path->slots[0]++; 3336 } 3337 btrfs_release_path(path); 3338 skip: 3339 logical += increment; 3340 physical += map->stripe_len; 3341 spin_lock(&sctx->stat_lock); 3342 if (stop_loop) 3343 sctx->stat.last_physical = map->stripes[num].physical + 3344 length; 3345 else 3346 sctx->stat.last_physical = physical; 3347 spin_unlock(&sctx->stat_lock); 3348 if (stop_loop) 3349 break; 3350 } 3351 out: 3352 /* push queued extents */ 3353 scrub_submit(sctx); 3354 mutex_lock(&sctx->wr_lock); 3355 scrub_wr_submit(sctx); 3356 mutex_unlock(&sctx->wr_lock); 3357 3358 blk_finish_plug(&plug); 3359 btrfs_free_path(path); 3360 btrfs_free_path(ppath); 3361 return ret < 0 ? ret : 0; 3362 } 3363 3364 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3365 struct btrfs_device *scrub_dev, 3366 u64 chunk_offset, u64 length, 3367 u64 dev_offset, 3368 struct btrfs_block_group *cache) 3369 { 3370 struct btrfs_fs_info *fs_info = sctx->fs_info; 3371 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 3372 struct map_lookup *map; 3373 struct extent_map *em; 3374 int i; 3375 int ret = 0; 3376 3377 read_lock(&map_tree->lock); 3378 em = lookup_extent_mapping(map_tree, chunk_offset, 1); 3379 read_unlock(&map_tree->lock); 3380 3381 if (!em) { 3382 /* 3383 * Might have been an unused block group deleted by the cleaner 3384 * kthread or relocation. 3385 */ 3386 spin_lock(&cache->lock); 3387 if (!cache->removed) 3388 ret = -EINVAL; 3389 spin_unlock(&cache->lock); 3390 3391 return ret; 3392 } 3393 3394 map = em->map_lookup; 3395 if (em->start != chunk_offset) 3396 goto out; 3397 3398 if (em->len < length) 3399 goto out; 3400 3401 for (i = 0; i < map->num_stripes; ++i) { 3402 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3403 map->stripes[i].physical == dev_offset) { 3404 ret = scrub_stripe(sctx, map, scrub_dev, i, 3405 chunk_offset, length, cache); 3406 if (ret) 3407 goto out; 3408 } 3409 } 3410 out: 3411 free_extent_map(em); 3412 3413 return ret; 3414 } 3415 3416 static noinline_for_stack 3417 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3418 struct btrfs_device *scrub_dev, u64 start, u64 end) 3419 { 3420 struct btrfs_dev_extent *dev_extent = NULL; 3421 struct btrfs_path *path; 3422 struct btrfs_fs_info *fs_info = sctx->fs_info; 3423 struct btrfs_root *root = fs_info->dev_root; 3424 u64 length; 3425 u64 chunk_offset; 3426 int ret = 0; 3427 int ro_set; 3428 int slot; 3429 struct extent_buffer *l; 3430 struct btrfs_key key; 3431 struct btrfs_key found_key; 3432 struct btrfs_block_group *cache; 3433 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3434 3435 path = btrfs_alloc_path(); 3436 if (!path) 3437 return -ENOMEM; 3438 3439 path->reada = READA_FORWARD; 3440 path->search_commit_root = 1; 3441 path->skip_locking = 1; 3442 3443 key.objectid = scrub_dev->devid; 3444 key.offset = 0ull; 3445 key.type = BTRFS_DEV_EXTENT_KEY; 3446 3447 while (1) { 3448 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3449 if (ret < 0) 3450 break; 3451 if (ret > 0) { 3452 if (path->slots[0] >= 3453 btrfs_header_nritems(path->nodes[0])) { 3454 ret = btrfs_next_leaf(root, path); 3455 if (ret < 0) 3456 break; 3457 if (ret > 0) { 3458 ret = 0; 3459 break; 3460 } 3461 } else { 3462 ret = 0; 3463 } 3464 } 3465 3466 l = path->nodes[0]; 3467 slot = path->slots[0]; 3468 3469 btrfs_item_key_to_cpu(l, &found_key, slot); 3470 3471 if (found_key.objectid != scrub_dev->devid) 3472 break; 3473 3474 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3475 break; 3476 3477 if (found_key.offset >= end) 3478 break; 3479 3480 if (found_key.offset < key.offset) 3481 break; 3482 3483 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3484 length = btrfs_dev_extent_length(l, dev_extent); 3485 3486 if (found_key.offset + length <= start) 3487 goto skip; 3488 3489 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3490 3491 /* 3492 * get a reference on the corresponding block group to prevent 3493 * the chunk from going away while we scrub it 3494 */ 3495 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3496 3497 /* some chunks are removed but not committed to disk yet, 3498 * continue scrubbing */ 3499 if (!cache) 3500 goto skip; 3501 3502 /* 3503 * Make sure that while we are scrubbing the corresponding block 3504 * group doesn't get its logical address and its device extents 3505 * reused for another block group, which can possibly be of a 3506 * different type and different profile. We do this to prevent 3507 * false error detections and crashes due to bogus attempts to 3508 * repair extents. 3509 */ 3510 spin_lock(&cache->lock); 3511 if (cache->removed) { 3512 spin_unlock(&cache->lock); 3513 btrfs_put_block_group(cache); 3514 goto skip; 3515 } 3516 btrfs_freeze_block_group(cache); 3517 spin_unlock(&cache->lock); 3518 3519 /* 3520 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3521 * to avoid deadlock caused by: 3522 * btrfs_inc_block_group_ro() 3523 * -> btrfs_wait_for_commit() 3524 * -> btrfs_commit_transaction() 3525 * -> btrfs_scrub_pause() 3526 */ 3527 scrub_pause_on(fs_info); 3528 3529 /* 3530 * Don't do chunk preallocation for scrub. 3531 * 3532 * This is especially important for SYSTEM bgs, or we can hit 3533 * -EFBIG from btrfs_finish_chunk_alloc() like: 3534 * 1. The only SYSTEM bg is marked RO. 3535 * Since SYSTEM bg is small, that's pretty common. 3536 * 2. New SYSTEM bg will be allocated 3537 * Due to regular version will allocate new chunk. 3538 * 3. New SYSTEM bg is empty and will get cleaned up 3539 * Before cleanup really happens, it's marked RO again. 3540 * 4. Empty SYSTEM bg get scrubbed 3541 * We go back to 2. 3542 * 3543 * This can easily boost the amount of SYSTEM chunks if cleaner 3544 * thread can't be triggered fast enough, and use up all space 3545 * of btrfs_super_block::sys_chunk_array 3546 * 3547 * While for dev replace, we need to try our best to mark block 3548 * group RO, to prevent race between: 3549 * - Write duplication 3550 * Contains latest data 3551 * - Scrub copy 3552 * Contains data from commit tree 3553 * 3554 * If target block group is not marked RO, nocow writes can 3555 * be overwritten by scrub copy, causing data corruption. 3556 * So for dev-replace, it's not allowed to continue if a block 3557 * group is not RO. 3558 */ 3559 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 3560 if (ret == 0) { 3561 ro_set = 1; 3562 } else if (ret == -ENOSPC && !sctx->is_dev_replace) { 3563 /* 3564 * btrfs_inc_block_group_ro return -ENOSPC when it 3565 * failed in creating new chunk for metadata. 3566 * It is not a problem for scrub, because 3567 * metadata are always cowed, and our scrub paused 3568 * commit_transactions. 3569 */ 3570 ro_set = 0; 3571 } else { 3572 btrfs_warn(fs_info, 3573 "failed setting block group ro: %d", ret); 3574 btrfs_unfreeze_block_group(cache); 3575 btrfs_put_block_group(cache); 3576 scrub_pause_off(fs_info); 3577 break; 3578 } 3579 3580 /* 3581 * Now the target block is marked RO, wait for nocow writes to 3582 * finish before dev-replace. 3583 * COW is fine, as COW never overwrites extents in commit tree. 3584 */ 3585 if (sctx->is_dev_replace) { 3586 btrfs_wait_nocow_writers(cache); 3587 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 3588 cache->length); 3589 } 3590 3591 scrub_pause_off(fs_info); 3592 down_write(&dev_replace->rwsem); 3593 dev_replace->cursor_right = found_key.offset + length; 3594 dev_replace->cursor_left = found_key.offset; 3595 dev_replace->item_needs_writeback = 1; 3596 up_write(&dev_replace->rwsem); 3597 3598 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3599 found_key.offset, cache); 3600 3601 /* 3602 * flush, submit all pending read and write bios, afterwards 3603 * wait for them. 3604 * Note that in the dev replace case, a read request causes 3605 * write requests that are submitted in the read completion 3606 * worker. Therefore in the current situation, it is required 3607 * that all write requests are flushed, so that all read and 3608 * write requests are really completed when bios_in_flight 3609 * changes to 0. 3610 */ 3611 sctx->flush_all_writes = true; 3612 scrub_submit(sctx); 3613 mutex_lock(&sctx->wr_lock); 3614 scrub_wr_submit(sctx); 3615 mutex_unlock(&sctx->wr_lock); 3616 3617 wait_event(sctx->list_wait, 3618 atomic_read(&sctx->bios_in_flight) == 0); 3619 3620 scrub_pause_on(fs_info); 3621 3622 /* 3623 * must be called before we decrease @scrub_paused. 3624 * make sure we don't block transaction commit while 3625 * we are waiting pending workers finished. 3626 */ 3627 wait_event(sctx->list_wait, 3628 atomic_read(&sctx->workers_pending) == 0); 3629 sctx->flush_all_writes = false; 3630 3631 scrub_pause_off(fs_info); 3632 3633 down_write(&dev_replace->rwsem); 3634 dev_replace->cursor_left = dev_replace->cursor_right; 3635 dev_replace->item_needs_writeback = 1; 3636 up_write(&dev_replace->rwsem); 3637 3638 if (ro_set) 3639 btrfs_dec_block_group_ro(cache); 3640 3641 /* 3642 * We might have prevented the cleaner kthread from deleting 3643 * this block group if it was already unused because we raced 3644 * and set it to RO mode first. So add it back to the unused 3645 * list, otherwise it might not ever be deleted unless a manual 3646 * balance is triggered or it becomes used and unused again. 3647 */ 3648 spin_lock(&cache->lock); 3649 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3650 cache->used == 0) { 3651 spin_unlock(&cache->lock); 3652 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 3653 btrfs_discard_queue_work(&fs_info->discard_ctl, 3654 cache); 3655 else 3656 btrfs_mark_bg_unused(cache); 3657 } else { 3658 spin_unlock(&cache->lock); 3659 } 3660 3661 btrfs_unfreeze_block_group(cache); 3662 btrfs_put_block_group(cache); 3663 if (ret) 3664 break; 3665 if (sctx->is_dev_replace && 3666 atomic64_read(&dev_replace->num_write_errors) > 0) { 3667 ret = -EIO; 3668 break; 3669 } 3670 if (sctx->stat.malloc_errors > 0) { 3671 ret = -ENOMEM; 3672 break; 3673 } 3674 skip: 3675 key.offset = found_key.offset + length; 3676 btrfs_release_path(path); 3677 } 3678 3679 btrfs_free_path(path); 3680 3681 return ret; 3682 } 3683 3684 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3685 struct btrfs_device *scrub_dev) 3686 { 3687 int i; 3688 u64 bytenr; 3689 u64 gen; 3690 int ret; 3691 struct btrfs_fs_info *fs_info = sctx->fs_info; 3692 3693 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3694 return -EROFS; 3695 3696 /* Seed devices of a new filesystem has their own generation. */ 3697 if (scrub_dev->fs_devices != fs_info->fs_devices) 3698 gen = scrub_dev->generation; 3699 else 3700 gen = fs_info->last_trans_committed; 3701 3702 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3703 bytenr = btrfs_sb_offset(i); 3704 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3705 scrub_dev->commit_total_bytes) 3706 break; 3707 3708 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3709 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3710 NULL, 1, bytenr); 3711 if (ret) 3712 return ret; 3713 } 3714 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3715 3716 return 0; 3717 } 3718 3719 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 3720 { 3721 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 3722 &fs_info->scrub_lock)) { 3723 struct btrfs_workqueue *scrub_workers = NULL; 3724 struct btrfs_workqueue *scrub_wr_comp = NULL; 3725 struct btrfs_workqueue *scrub_parity = NULL; 3726 3727 scrub_workers = fs_info->scrub_workers; 3728 scrub_wr_comp = fs_info->scrub_wr_completion_workers; 3729 scrub_parity = fs_info->scrub_parity_workers; 3730 3731 fs_info->scrub_workers = NULL; 3732 fs_info->scrub_wr_completion_workers = NULL; 3733 fs_info->scrub_parity_workers = NULL; 3734 mutex_unlock(&fs_info->scrub_lock); 3735 3736 btrfs_destroy_workqueue(scrub_workers); 3737 btrfs_destroy_workqueue(scrub_wr_comp); 3738 btrfs_destroy_workqueue(scrub_parity); 3739 } 3740 } 3741 3742 /* 3743 * get a reference count on fs_info->scrub_workers. start worker if necessary 3744 */ 3745 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 3746 int is_dev_replace) 3747 { 3748 struct btrfs_workqueue *scrub_workers = NULL; 3749 struct btrfs_workqueue *scrub_wr_comp = NULL; 3750 struct btrfs_workqueue *scrub_parity = NULL; 3751 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3752 int max_active = fs_info->thread_pool_size; 3753 int ret = -ENOMEM; 3754 3755 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 3756 return 0; 3757 3758 scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags, 3759 is_dev_replace ? 1 : max_active, 4); 3760 if (!scrub_workers) 3761 goto fail_scrub_workers; 3762 3763 scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 3764 max_active, 2); 3765 if (!scrub_wr_comp) 3766 goto fail_scrub_wr_completion_workers; 3767 3768 scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 3769 max_active, 2); 3770 if (!scrub_parity) 3771 goto fail_scrub_parity_workers; 3772 3773 mutex_lock(&fs_info->scrub_lock); 3774 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 3775 ASSERT(fs_info->scrub_workers == NULL && 3776 fs_info->scrub_wr_completion_workers == NULL && 3777 fs_info->scrub_parity_workers == NULL); 3778 fs_info->scrub_workers = scrub_workers; 3779 fs_info->scrub_wr_completion_workers = scrub_wr_comp; 3780 fs_info->scrub_parity_workers = scrub_parity; 3781 refcount_set(&fs_info->scrub_workers_refcnt, 1); 3782 mutex_unlock(&fs_info->scrub_lock); 3783 return 0; 3784 } 3785 /* Other thread raced in and created the workers for us */ 3786 refcount_inc(&fs_info->scrub_workers_refcnt); 3787 mutex_unlock(&fs_info->scrub_lock); 3788 3789 ret = 0; 3790 btrfs_destroy_workqueue(scrub_parity); 3791 fail_scrub_parity_workers: 3792 btrfs_destroy_workqueue(scrub_wr_comp); 3793 fail_scrub_wr_completion_workers: 3794 btrfs_destroy_workqueue(scrub_workers); 3795 fail_scrub_workers: 3796 return ret; 3797 } 3798 3799 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3800 u64 end, struct btrfs_scrub_progress *progress, 3801 int readonly, int is_dev_replace) 3802 { 3803 struct scrub_ctx *sctx; 3804 int ret; 3805 struct btrfs_device *dev; 3806 unsigned int nofs_flag; 3807 3808 if (btrfs_fs_closing(fs_info)) 3809 return -EAGAIN; 3810 3811 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 3812 /* 3813 * in this case scrub is unable to calculate the checksum 3814 * the way scrub is implemented. Do not handle this 3815 * situation at all because it won't ever happen. 3816 */ 3817 btrfs_err(fs_info, 3818 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 3819 fs_info->nodesize, 3820 BTRFS_STRIPE_LEN); 3821 return -EINVAL; 3822 } 3823 3824 if (fs_info->sectorsize != PAGE_SIZE) { 3825 /* not supported for data w/o checksums */ 3826 btrfs_err_rl(fs_info, 3827 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", 3828 fs_info->sectorsize, PAGE_SIZE); 3829 return -EINVAL; 3830 } 3831 3832 if (fs_info->nodesize > 3833 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 3834 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 3835 /* 3836 * would exhaust the array bounds of pagev member in 3837 * struct scrub_block 3838 */ 3839 btrfs_err(fs_info, 3840 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 3841 fs_info->nodesize, 3842 SCRUB_MAX_PAGES_PER_BLOCK, 3843 fs_info->sectorsize, 3844 SCRUB_MAX_PAGES_PER_BLOCK); 3845 return -EINVAL; 3846 } 3847 3848 /* Allocate outside of device_list_mutex */ 3849 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 3850 if (IS_ERR(sctx)) 3851 return PTR_ERR(sctx); 3852 3853 ret = scrub_workers_get(fs_info, is_dev_replace); 3854 if (ret) 3855 goto out_free_ctx; 3856 3857 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3858 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 3859 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 3860 !is_dev_replace)) { 3861 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3862 ret = -ENODEV; 3863 goto out; 3864 } 3865 3866 if (!is_dev_replace && !readonly && 3867 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 3868 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3869 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable", 3870 rcu_str_deref(dev->name)); 3871 ret = -EROFS; 3872 goto out; 3873 } 3874 3875 mutex_lock(&fs_info->scrub_lock); 3876 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3877 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 3878 mutex_unlock(&fs_info->scrub_lock); 3879 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3880 ret = -EIO; 3881 goto out; 3882 } 3883 3884 down_read(&fs_info->dev_replace.rwsem); 3885 if (dev->scrub_ctx || 3886 (!is_dev_replace && 3887 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3888 up_read(&fs_info->dev_replace.rwsem); 3889 mutex_unlock(&fs_info->scrub_lock); 3890 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3891 ret = -EINPROGRESS; 3892 goto out; 3893 } 3894 up_read(&fs_info->dev_replace.rwsem); 3895 3896 sctx->readonly = readonly; 3897 dev->scrub_ctx = sctx; 3898 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3899 3900 /* 3901 * checking @scrub_pause_req here, we can avoid 3902 * race between committing transaction and scrubbing. 3903 */ 3904 __scrub_blocked_if_needed(fs_info); 3905 atomic_inc(&fs_info->scrubs_running); 3906 mutex_unlock(&fs_info->scrub_lock); 3907 3908 /* 3909 * In order to avoid deadlock with reclaim when there is a transaction 3910 * trying to pause scrub, make sure we use GFP_NOFS for all the 3911 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity() 3912 * invoked by our callees. The pausing request is done when the 3913 * transaction commit starts, and it blocks the transaction until scrub 3914 * is paused (done at specific points at scrub_stripe() or right above 3915 * before incrementing fs_info->scrubs_running). 3916 */ 3917 nofs_flag = memalloc_nofs_save(); 3918 if (!is_dev_replace) { 3919 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 3920 /* 3921 * by holding device list mutex, we can 3922 * kick off writing super in log tree sync. 3923 */ 3924 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3925 ret = scrub_supers(sctx, dev); 3926 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3927 } 3928 3929 if (!ret) 3930 ret = scrub_enumerate_chunks(sctx, dev, start, end); 3931 memalloc_nofs_restore(nofs_flag); 3932 3933 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3934 atomic_dec(&fs_info->scrubs_running); 3935 wake_up(&fs_info->scrub_pause_wait); 3936 3937 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3938 3939 if (progress) 3940 memcpy(progress, &sctx->stat, sizeof(*progress)); 3941 3942 if (!is_dev_replace) 3943 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 3944 ret ? "not finished" : "finished", devid, ret); 3945 3946 mutex_lock(&fs_info->scrub_lock); 3947 dev->scrub_ctx = NULL; 3948 mutex_unlock(&fs_info->scrub_lock); 3949 3950 scrub_workers_put(fs_info); 3951 scrub_put_ctx(sctx); 3952 3953 return ret; 3954 out: 3955 scrub_workers_put(fs_info); 3956 out_free_ctx: 3957 scrub_free_ctx(sctx); 3958 3959 return ret; 3960 } 3961 3962 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 3963 { 3964 mutex_lock(&fs_info->scrub_lock); 3965 atomic_inc(&fs_info->scrub_pause_req); 3966 while (atomic_read(&fs_info->scrubs_paused) != 3967 atomic_read(&fs_info->scrubs_running)) { 3968 mutex_unlock(&fs_info->scrub_lock); 3969 wait_event(fs_info->scrub_pause_wait, 3970 atomic_read(&fs_info->scrubs_paused) == 3971 atomic_read(&fs_info->scrubs_running)); 3972 mutex_lock(&fs_info->scrub_lock); 3973 } 3974 mutex_unlock(&fs_info->scrub_lock); 3975 } 3976 3977 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 3978 { 3979 atomic_dec(&fs_info->scrub_pause_req); 3980 wake_up(&fs_info->scrub_pause_wait); 3981 } 3982 3983 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3984 { 3985 mutex_lock(&fs_info->scrub_lock); 3986 if (!atomic_read(&fs_info->scrubs_running)) { 3987 mutex_unlock(&fs_info->scrub_lock); 3988 return -ENOTCONN; 3989 } 3990 3991 atomic_inc(&fs_info->scrub_cancel_req); 3992 while (atomic_read(&fs_info->scrubs_running)) { 3993 mutex_unlock(&fs_info->scrub_lock); 3994 wait_event(fs_info->scrub_pause_wait, 3995 atomic_read(&fs_info->scrubs_running) == 0); 3996 mutex_lock(&fs_info->scrub_lock); 3997 } 3998 atomic_dec(&fs_info->scrub_cancel_req); 3999 mutex_unlock(&fs_info->scrub_lock); 4000 4001 return 0; 4002 } 4003 4004 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 4005 { 4006 struct btrfs_fs_info *fs_info = dev->fs_info; 4007 struct scrub_ctx *sctx; 4008 4009 mutex_lock(&fs_info->scrub_lock); 4010 sctx = dev->scrub_ctx; 4011 if (!sctx) { 4012 mutex_unlock(&fs_info->scrub_lock); 4013 return -ENOTCONN; 4014 } 4015 atomic_inc(&sctx->cancel_req); 4016 while (dev->scrub_ctx) { 4017 mutex_unlock(&fs_info->scrub_lock); 4018 wait_event(fs_info->scrub_pause_wait, 4019 dev->scrub_ctx == NULL); 4020 mutex_lock(&fs_info->scrub_lock); 4021 } 4022 mutex_unlock(&fs_info->scrub_lock); 4023 4024 return 0; 4025 } 4026 4027 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4028 struct btrfs_scrub_progress *progress) 4029 { 4030 struct btrfs_device *dev; 4031 struct scrub_ctx *sctx = NULL; 4032 4033 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4034 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 4035 if (dev) 4036 sctx = dev->scrub_ctx; 4037 if (sctx) 4038 memcpy(progress, &sctx->stat, sizeof(*progress)); 4039 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4040 4041 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4042 } 4043 4044 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 4045 u64 extent_logical, u64 extent_len, 4046 u64 *extent_physical, 4047 struct btrfs_device **extent_dev, 4048 int *extent_mirror_num) 4049 { 4050 u64 mapped_length; 4051 struct btrfs_bio *bbio = NULL; 4052 int ret; 4053 4054 mapped_length = extent_len; 4055 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4056 &mapped_length, &bbio, 0); 4057 if (ret || !bbio || mapped_length < extent_len || 4058 !bbio->stripes[0].dev->bdev) { 4059 btrfs_put_bbio(bbio); 4060 return; 4061 } 4062 4063 *extent_physical = bbio->stripes[0].physical; 4064 *extent_mirror_num = bbio->mirror_num; 4065 *extent_dev = bbio->stripes[0].dev; 4066 btrfs_put_bbio(bbio); 4067 } 4068