1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "disk-io.h" 12 #include "ordered-data.h" 13 #include "transaction.h" 14 #include "backref.h" 15 #include "extent_io.h" 16 #include "dev-replace.h" 17 #include "check-integrity.h" 18 #include "rcu-string.h" 19 #include "raid56.h" 20 21 /* 22 * This is only the first step towards a full-features scrub. It reads all 23 * extent and super block and verifies the checksums. In case a bad checksum 24 * is found or the extent cannot be read, good data will be written back if 25 * any can be found. 26 * 27 * Future enhancements: 28 * - In case an unrepairable extent is encountered, track which files are 29 * affected and report them 30 * - track and record media errors, throw out bad devices 31 * - add a mode to also read unallocated space 32 */ 33 34 struct scrub_block; 35 struct scrub_ctx; 36 37 /* 38 * the following three values only influence the performance. 39 * The last one configures the number of parallel and outstanding I/O 40 * operations. The first two values configure an upper limit for the number 41 * of (dynamically allocated) pages that are added to a bio. 42 */ 43 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ 44 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ 45 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ 46 47 /* 48 * the following value times PAGE_SIZE needs to be large enough to match the 49 * largest node/leaf/sector size that shall be supported. 50 * Values larger than BTRFS_STRIPE_LEN are not supported. 51 */ 52 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ 53 54 struct scrub_recover { 55 refcount_t refs; 56 struct btrfs_bio *bbio; 57 u64 map_length; 58 }; 59 60 struct scrub_page { 61 struct scrub_block *sblock; 62 struct page *page; 63 struct btrfs_device *dev; 64 struct list_head list; 65 u64 flags; /* extent flags */ 66 u64 generation; 67 u64 logical; 68 u64 physical; 69 u64 physical_for_dev_replace; 70 atomic_t refs; 71 struct { 72 unsigned int mirror_num:8; 73 unsigned int have_csum:1; 74 unsigned int io_error:1; 75 }; 76 u8 csum[BTRFS_CSUM_SIZE]; 77 78 struct scrub_recover *recover; 79 }; 80 81 struct scrub_bio { 82 int index; 83 struct scrub_ctx *sctx; 84 struct btrfs_device *dev; 85 struct bio *bio; 86 blk_status_t status; 87 u64 logical; 88 u64 physical; 89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO 90 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; 91 #else 92 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; 93 #endif 94 int page_count; 95 int next_free; 96 struct btrfs_work work; 97 }; 98 99 struct scrub_block { 100 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; 101 int page_count; 102 atomic_t outstanding_pages; 103 refcount_t refs; /* free mem on transition to zero */ 104 struct scrub_ctx *sctx; 105 struct scrub_parity *sparity; 106 struct { 107 unsigned int header_error:1; 108 unsigned int checksum_error:1; 109 unsigned int no_io_error_seen:1; 110 unsigned int generation_error:1; /* also sets header_error */ 111 112 /* The following is for the data used to check parity */ 113 /* It is for the data with checksum */ 114 unsigned int data_corrected:1; 115 }; 116 struct btrfs_work work; 117 }; 118 119 /* Used for the chunks with parity stripe such RAID5/6 */ 120 struct scrub_parity { 121 struct scrub_ctx *sctx; 122 123 struct btrfs_device *scrub_dev; 124 125 u64 logic_start; 126 127 u64 logic_end; 128 129 int nsectors; 130 131 u64 stripe_len; 132 133 refcount_t refs; 134 135 struct list_head spages; 136 137 /* Work of parity check and repair */ 138 struct btrfs_work work; 139 140 /* Mark the parity blocks which have data */ 141 unsigned long *dbitmap; 142 143 /* 144 * Mark the parity blocks which have data, but errors happen when 145 * read data or check data 146 */ 147 unsigned long *ebitmap; 148 149 unsigned long bitmap[0]; 150 }; 151 152 struct scrub_ctx { 153 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 154 struct btrfs_fs_info *fs_info; 155 int first_free; 156 int curr; 157 atomic_t bios_in_flight; 158 atomic_t workers_pending; 159 spinlock_t list_lock; 160 wait_queue_head_t list_wait; 161 u16 csum_size; 162 struct list_head csum_list; 163 atomic_t cancel_req; 164 int readonly; 165 int pages_per_rd_bio; 166 167 int is_dev_replace; 168 169 struct scrub_bio *wr_curr_bio; 170 struct mutex wr_lock; 171 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ 172 struct btrfs_device *wr_tgtdev; 173 bool flush_all_writes; 174 175 /* 176 * statistics 177 */ 178 struct btrfs_scrub_progress stat; 179 spinlock_t stat_lock; 180 181 /* 182 * Use a ref counter to avoid use-after-free issues. Scrub workers 183 * decrement bios_in_flight and workers_pending and then do a wakeup 184 * on the list_wait wait queue. We must ensure the main scrub task 185 * doesn't free the scrub context before or while the workers are 186 * doing the wakeup() call. 187 */ 188 refcount_t refs; 189 }; 190 191 struct scrub_warning { 192 struct btrfs_path *path; 193 u64 extent_item_size; 194 const char *errstr; 195 u64 physical; 196 u64 logical; 197 struct btrfs_device *dev; 198 }; 199 200 struct full_stripe_lock { 201 struct rb_node node; 202 u64 logical; 203 u64 refs; 204 struct mutex mutex; 205 }; 206 207 static void scrub_pending_bio_inc(struct scrub_ctx *sctx); 208 static void scrub_pending_bio_dec(struct scrub_ctx *sctx); 209 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); 210 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 211 struct scrub_block *sblocks_for_recheck); 212 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 213 struct scrub_block *sblock, 214 int retry_failed_mirror); 215 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 216 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 217 struct scrub_block *sblock_good); 218 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 219 struct scrub_block *sblock_good, 220 int page_num, int force_write); 221 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 222 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 223 int page_num); 224 static int scrub_checksum_data(struct scrub_block *sblock); 225 static int scrub_checksum_tree_block(struct scrub_block *sblock); 226 static int scrub_checksum_super(struct scrub_block *sblock); 227 static void scrub_block_get(struct scrub_block *sblock); 228 static void scrub_block_put(struct scrub_block *sblock); 229 static void scrub_page_get(struct scrub_page *spage); 230 static void scrub_page_put(struct scrub_page *spage); 231 static void scrub_parity_get(struct scrub_parity *sparity); 232 static void scrub_parity_put(struct scrub_parity *sparity); 233 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 234 struct scrub_page *spage); 235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 236 u64 physical, struct btrfs_device *dev, u64 flags, 237 u64 gen, int mirror_num, u8 *csum, int force, 238 u64 physical_for_dev_replace); 239 static void scrub_bio_end_io(struct bio *bio); 240 static void scrub_bio_end_io_worker(struct btrfs_work *work); 241 static void scrub_block_complete(struct scrub_block *sblock); 242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 243 u64 extent_logical, u64 extent_len, 244 u64 *extent_physical, 245 struct btrfs_device **extent_dev, 246 int *extent_mirror_num); 247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 248 struct scrub_page *spage); 249 static void scrub_wr_submit(struct scrub_ctx *sctx); 250 static void scrub_wr_bio_end_io(struct bio *bio); 251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); 252 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 253 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); 254 static void scrub_put_ctx(struct scrub_ctx *sctx); 255 256 static inline int scrub_is_page_on_raid56(struct scrub_page *page) 257 { 258 return page->recover && 259 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 260 } 261 262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 263 { 264 refcount_inc(&sctx->refs); 265 atomic_inc(&sctx->bios_in_flight); 266 } 267 268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 269 { 270 atomic_dec(&sctx->bios_in_flight); 271 wake_up(&sctx->list_wait); 272 scrub_put_ctx(sctx); 273 } 274 275 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 276 { 277 while (atomic_read(&fs_info->scrub_pause_req)) { 278 mutex_unlock(&fs_info->scrub_lock); 279 wait_event(fs_info->scrub_pause_wait, 280 atomic_read(&fs_info->scrub_pause_req) == 0); 281 mutex_lock(&fs_info->scrub_lock); 282 } 283 } 284 285 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 286 { 287 atomic_inc(&fs_info->scrubs_paused); 288 wake_up(&fs_info->scrub_pause_wait); 289 } 290 291 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 292 { 293 mutex_lock(&fs_info->scrub_lock); 294 __scrub_blocked_if_needed(fs_info); 295 atomic_dec(&fs_info->scrubs_paused); 296 mutex_unlock(&fs_info->scrub_lock); 297 298 wake_up(&fs_info->scrub_pause_wait); 299 } 300 301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 302 { 303 scrub_pause_on(fs_info); 304 scrub_pause_off(fs_info); 305 } 306 307 /* 308 * Insert new full stripe lock into full stripe locks tree 309 * 310 * Return pointer to existing or newly inserted full_stripe_lock structure if 311 * everything works well. 312 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 313 * 314 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 315 * function 316 */ 317 static struct full_stripe_lock *insert_full_stripe_lock( 318 struct btrfs_full_stripe_locks_tree *locks_root, 319 u64 fstripe_logical) 320 { 321 struct rb_node **p; 322 struct rb_node *parent = NULL; 323 struct full_stripe_lock *entry; 324 struct full_stripe_lock *ret; 325 326 lockdep_assert_held(&locks_root->lock); 327 328 p = &locks_root->root.rb_node; 329 while (*p) { 330 parent = *p; 331 entry = rb_entry(parent, struct full_stripe_lock, node); 332 if (fstripe_logical < entry->logical) { 333 p = &(*p)->rb_left; 334 } else if (fstripe_logical > entry->logical) { 335 p = &(*p)->rb_right; 336 } else { 337 entry->refs++; 338 return entry; 339 } 340 } 341 342 /* Insert new lock */ 343 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 344 if (!ret) 345 return ERR_PTR(-ENOMEM); 346 ret->logical = fstripe_logical; 347 ret->refs = 1; 348 mutex_init(&ret->mutex); 349 350 rb_link_node(&ret->node, parent, p); 351 rb_insert_color(&ret->node, &locks_root->root); 352 return ret; 353 } 354 355 /* 356 * Search for a full stripe lock of a block group 357 * 358 * Return pointer to existing full stripe lock if found 359 * Return NULL if not found 360 */ 361 static struct full_stripe_lock *search_full_stripe_lock( 362 struct btrfs_full_stripe_locks_tree *locks_root, 363 u64 fstripe_logical) 364 { 365 struct rb_node *node; 366 struct full_stripe_lock *entry; 367 368 lockdep_assert_held(&locks_root->lock); 369 370 node = locks_root->root.rb_node; 371 while (node) { 372 entry = rb_entry(node, struct full_stripe_lock, node); 373 if (fstripe_logical < entry->logical) 374 node = node->rb_left; 375 else if (fstripe_logical > entry->logical) 376 node = node->rb_right; 377 else 378 return entry; 379 } 380 return NULL; 381 } 382 383 /* 384 * Helper to get full stripe logical from a normal bytenr. 385 * 386 * Caller must ensure @cache is a RAID56 block group. 387 */ 388 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache, 389 u64 bytenr) 390 { 391 u64 ret; 392 393 /* 394 * Due to chunk item size limit, full stripe length should not be 395 * larger than U32_MAX. Just a sanity check here. 396 */ 397 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 398 399 /* 400 * round_down() can only handle power of 2, while RAID56 full 401 * stripe length can be 64KiB * n, so we need to manually round down. 402 */ 403 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) * 404 cache->full_stripe_len + cache->key.objectid; 405 return ret; 406 } 407 408 /* 409 * Lock a full stripe to avoid concurrency of recovery and read 410 * 411 * It's only used for profiles with parities (RAID5/6), for other profiles it 412 * does nothing. 413 * 414 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 415 * So caller must call unlock_full_stripe() at the same context. 416 * 417 * Return <0 if encounters error. 418 */ 419 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 420 bool *locked_ret) 421 { 422 struct btrfs_block_group_cache *bg_cache; 423 struct btrfs_full_stripe_locks_tree *locks_root; 424 struct full_stripe_lock *existing; 425 u64 fstripe_start; 426 int ret = 0; 427 428 *locked_ret = false; 429 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 430 if (!bg_cache) { 431 ASSERT(0); 432 return -ENOENT; 433 } 434 435 /* Profiles not based on parity don't need full stripe lock */ 436 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 437 goto out; 438 locks_root = &bg_cache->full_stripe_locks_root; 439 440 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 441 442 /* Now insert the full stripe lock */ 443 mutex_lock(&locks_root->lock); 444 existing = insert_full_stripe_lock(locks_root, fstripe_start); 445 mutex_unlock(&locks_root->lock); 446 if (IS_ERR(existing)) { 447 ret = PTR_ERR(existing); 448 goto out; 449 } 450 mutex_lock(&existing->mutex); 451 *locked_ret = true; 452 out: 453 btrfs_put_block_group(bg_cache); 454 return ret; 455 } 456 457 /* 458 * Unlock a full stripe. 459 * 460 * NOTE: Caller must ensure it's the same context calling corresponding 461 * lock_full_stripe(). 462 * 463 * Return 0 if we unlock full stripe without problem. 464 * Return <0 for error 465 */ 466 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 467 bool locked) 468 { 469 struct btrfs_block_group_cache *bg_cache; 470 struct btrfs_full_stripe_locks_tree *locks_root; 471 struct full_stripe_lock *fstripe_lock; 472 u64 fstripe_start; 473 bool freeit = false; 474 int ret = 0; 475 476 /* If we didn't acquire full stripe lock, no need to continue */ 477 if (!locked) 478 return 0; 479 480 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 481 if (!bg_cache) { 482 ASSERT(0); 483 return -ENOENT; 484 } 485 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 486 goto out; 487 488 locks_root = &bg_cache->full_stripe_locks_root; 489 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 490 491 mutex_lock(&locks_root->lock); 492 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 493 /* Unpaired unlock_full_stripe() detected */ 494 if (!fstripe_lock) { 495 WARN_ON(1); 496 ret = -ENOENT; 497 mutex_unlock(&locks_root->lock); 498 goto out; 499 } 500 501 if (fstripe_lock->refs == 0) { 502 WARN_ON(1); 503 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 504 fstripe_lock->logical); 505 } else { 506 fstripe_lock->refs--; 507 } 508 509 if (fstripe_lock->refs == 0) { 510 rb_erase(&fstripe_lock->node, &locks_root->root); 511 freeit = true; 512 } 513 mutex_unlock(&locks_root->lock); 514 515 mutex_unlock(&fstripe_lock->mutex); 516 if (freeit) 517 kfree(fstripe_lock); 518 out: 519 btrfs_put_block_group(bg_cache); 520 return ret; 521 } 522 523 static void scrub_free_csums(struct scrub_ctx *sctx) 524 { 525 while (!list_empty(&sctx->csum_list)) { 526 struct btrfs_ordered_sum *sum; 527 sum = list_first_entry(&sctx->csum_list, 528 struct btrfs_ordered_sum, list); 529 list_del(&sum->list); 530 kfree(sum); 531 } 532 } 533 534 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 535 { 536 int i; 537 538 if (!sctx) 539 return; 540 541 /* this can happen when scrub is cancelled */ 542 if (sctx->curr != -1) { 543 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 544 545 for (i = 0; i < sbio->page_count; i++) { 546 WARN_ON(!sbio->pagev[i]->page); 547 scrub_block_put(sbio->pagev[i]->sblock); 548 } 549 bio_put(sbio->bio); 550 } 551 552 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 553 struct scrub_bio *sbio = sctx->bios[i]; 554 555 if (!sbio) 556 break; 557 kfree(sbio); 558 } 559 560 kfree(sctx->wr_curr_bio); 561 scrub_free_csums(sctx); 562 kfree(sctx); 563 } 564 565 static void scrub_put_ctx(struct scrub_ctx *sctx) 566 { 567 if (refcount_dec_and_test(&sctx->refs)) 568 scrub_free_ctx(sctx); 569 } 570 571 static noinline_for_stack 572 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) 573 { 574 struct scrub_ctx *sctx; 575 int i; 576 struct btrfs_fs_info *fs_info = dev->fs_info; 577 578 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 579 if (!sctx) 580 goto nomem; 581 refcount_set(&sctx->refs, 1); 582 sctx->is_dev_replace = is_dev_replace; 583 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; 584 sctx->curr = -1; 585 sctx->fs_info = dev->fs_info; 586 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 587 struct scrub_bio *sbio; 588 589 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 590 if (!sbio) 591 goto nomem; 592 sctx->bios[i] = sbio; 593 594 sbio->index = i; 595 sbio->sctx = sctx; 596 sbio->page_count = 0; 597 btrfs_init_work(&sbio->work, btrfs_scrub_helper, 598 scrub_bio_end_io_worker, NULL, NULL); 599 600 if (i != SCRUB_BIOS_PER_SCTX - 1) 601 sctx->bios[i]->next_free = i + 1; 602 else 603 sctx->bios[i]->next_free = -1; 604 } 605 sctx->first_free = 0; 606 atomic_set(&sctx->bios_in_flight, 0); 607 atomic_set(&sctx->workers_pending, 0); 608 atomic_set(&sctx->cancel_req, 0); 609 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); 610 INIT_LIST_HEAD(&sctx->csum_list); 611 612 spin_lock_init(&sctx->list_lock); 613 spin_lock_init(&sctx->stat_lock); 614 init_waitqueue_head(&sctx->list_wait); 615 616 WARN_ON(sctx->wr_curr_bio != NULL); 617 mutex_init(&sctx->wr_lock); 618 sctx->wr_curr_bio = NULL; 619 if (is_dev_replace) { 620 WARN_ON(!fs_info->dev_replace.tgtdev); 621 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; 622 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 623 sctx->flush_all_writes = false; 624 } 625 626 return sctx; 627 628 nomem: 629 scrub_free_ctx(sctx); 630 return ERR_PTR(-ENOMEM); 631 } 632 633 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 634 void *warn_ctx) 635 { 636 u64 isize; 637 u32 nlink; 638 int ret; 639 int i; 640 unsigned nofs_flag; 641 struct extent_buffer *eb; 642 struct btrfs_inode_item *inode_item; 643 struct scrub_warning *swarn = warn_ctx; 644 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 645 struct inode_fs_paths *ipath = NULL; 646 struct btrfs_root *local_root; 647 struct btrfs_key root_key; 648 struct btrfs_key key; 649 650 root_key.objectid = root; 651 root_key.type = BTRFS_ROOT_ITEM_KEY; 652 root_key.offset = (u64)-1; 653 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); 654 if (IS_ERR(local_root)) { 655 ret = PTR_ERR(local_root); 656 goto err; 657 } 658 659 /* 660 * this makes the path point to (inum INODE_ITEM ioff) 661 */ 662 key.objectid = inum; 663 key.type = BTRFS_INODE_ITEM_KEY; 664 key.offset = 0; 665 666 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 667 if (ret) { 668 btrfs_release_path(swarn->path); 669 goto err; 670 } 671 672 eb = swarn->path->nodes[0]; 673 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 674 struct btrfs_inode_item); 675 isize = btrfs_inode_size(eb, inode_item); 676 nlink = btrfs_inode_nlink(eb, inode_item); 677 btrfs_release_path(swarn->path); 678 679 /* 680 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 681 * uses GFP_NOFS in this context, so we keep it consistent but it does 682 * not seem to be strictly necessary. 683 */ 684 nofs_flag = memalloc_nofs_save(); 685 ipath = init_ipath(4096, local_root, swarn->path); 686 memalloc_nofs_restore(nofs_flag); 687 if (IS_ERR(ipath)) { 688 ret = PTR_ERR(ipath); 689 ipath = NULL; 690 goto err; 691 } 692 ret = paths_from_inode(inum, ipath); 693 694 if (ret < 0) 695 goto err; 696 697 /* 698 * we deliberately ignore the bit ipath might have been too small to 699 * hold all of the paths here 700 */ 701 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 702 btrfs_warn_in_rcu(fs_info, 703 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", 704 swarn->errstr, swarn->logical, 705 rcu_str_deref(swarn->dev->name), 706 swarn->physical, 707 root, inum, offset, 708 min(isize - offset, (u64)PAGE_SIZE), nlink, 709 (char *)(unsigned long)ipath->fspath->val[i]); 710 711 free_ipath(ipath); 712 return 0; 713 714 err: 715 btrfs_warn_in_rcu(fs_info, 716 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 717 swarn->errstr, swarn->logical, 718 rcu_str_deref(swarn->dev->name), 719 swarn->physical, 720 root, inum, offset, ret); 721 722 free_ipath(ipath); 723 return 0; 724 } 725 726 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 727 { 728 struct btrfs_device *dev; 729 struct btrfs_fs_info *fs_info; 730 struct btrfs_path *path; 731 struct btrfs_key found_key; 732 struct extent_buffer *eb; 733 struct btrfs_extent_item *ei; 734 struct scrub_warning swarn; 735 unsigned long ptr = 0; 736 u64 extent_item_pos; 737 u64 flags = 0; 738 u64 ref_root; 739 u32 item_size; 740 u8 ref_level = 0; 741 int ret; 742 743 WARN_ON(sblock->page_count < 1); 744 dev = sblock->pagev[0]->dev; 745 fs_info = sblock->sctx->fs_info; 746 747 path = btrfs_alloc_path(); 748 if (!path) 749 return; 750 751 swarn.physical = sblock->pagev[0]->physical; 752 swarn.logical = sblock->pagev[0]->logical; 753 swarn.errstr = errstr; 754 swarn.dev = NULL; 755 756 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 757 &flags); 758 if (ret < 0) 759 goto out; 760 761 extent_item_pos = swarn.logical - found_key.objectid; 762 swarn.extent_item_size = found_key.offset; 763 764 eb = path->nodes[0]; 765 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 766 item_size = btrfs_item_size_nr(eb, path->slots[0]); 767 768 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 769 do { 770 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 771 item_size, &ref_root, 772 &ref_level); 773 btrfs_warn_in_rcu(fs_info, 774 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 775 errstr, swarn.logical, 776 rcu_str_deref(dev->name), 777 swarn.physical, 778 ref_level ? "node" : "leaf", 779 ret < 0 ? -1 : ref_level, 780 ret < 0 ? -1 : ref_root); 781 } while (ret != 1); 782 btrfs_release_path(path); 783 } else { 784 btrfs_release_path(path); 785 swarn.path = path; 786 swarn.dev = dev; 787 iterate_extent_inodes(fs_info, found_key.objectid, 788 extent_item_pos, 1, 789 scrub_print_warning_inode, &swarn, false); 790 } 791 792 out: 793 btrfs_free_path(path); 794 } 795 796 static inline void scrub_get_recover(struct scrub_recover *recover) 797 { 798 refcount_inc(&recover->refs); 799 } 800 801 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 802 struct scrub_recover *recover) 803 { 804 if (refcount_dec_and_test(&recover->refs)) { 805 btrfs_bio_counter_dec(fs_info); 806 btrfs_put_bbio(recover->bbio); 807 kfree(recover); 808 } 809 } 810 811 /* 812 * scrub_handle_errored_block gets called when either verification of the 813 * pages failed or the bio failed to read, e.g. with EIO. In the latter 814 * case, this function handles all pages in the bio, even though only one 815 * may be bad. 816 * The goal of this function is to repair the errored block by using the 817 * contents of one of the mirrors. 818 */ 819 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 820 { 821 struct scrub_ctx *sctx = sblock_to_check->sctx; 822 struct btrfs_device *dev; 823 struct btrfs_fs_info *fs_info; 824 u64 logical; 825 unsigned int failed_mirror_index; 826 unsigned int is_metadata; 827 unsigned int have_csum; 828 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ 829 struct scrub_block *sblock_bad; 830 int ret; 831 int mirror_index; 832 int page_num; 833 int success; 834 bool full_stripe_locked; 835 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 836 DEFAULT_RATELIMIT_BURST); 837 838 BUG_ON(sblock_to_check->page_count < 1); 839 fs_info = sctx->fs_info; 840 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 841 /* 842 * if we find an error in a super block, we just report it. 843 * They will get written with the next transaction commit 844 * anyway 845 */ 846 spin_lock(&sctx->stat_lock); 847 ++sctx->stat.super_errors; 848 spin_unlock(&sctx->stat_lock); 849 return 0; 850 } 851 logical = sblock_to_check->pagev[0]->logical; 852 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); 853 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; 854 is_metadata = !(sblock_to_check->pagev[0]->flags & 855 BTRFS_EXTENT_FLAG_DATA); 856 have_csum = sblock_to_check->pagev[0]->have_csum; 857 dev = sblock_to_check->pagev[0]->dev; 858 859 /* 860 * For RAID5/6, race can happen for a different device scrub thread. 861 * For data corruption, Parity and Data threads will both try 862 * to recovery the data. 863 * Race can lead to doubly added csum error, or even unrecoverable 864 * error. 865 */ 866 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 867 if (ret < 0) { 868 spin_lock(&sctx->stat_lock); 869 if (ret == -ENOMEM) 870 sctx->stat.malloc_errors++; 871 sctx->stat.read_errors++; 872 sctx->stat.uncorrectable_errors++; 873 spin_unlock(&sctx->stat_lock); 874 return ret; 875 } 876 877 /* 878 * read all mirrors one after the other. This includes to 879 * re-read the extent or metadata block that failed (that was 880 * the cause that this fixup code is called) another time, 881 * page by page this time in order to know which pages 882 * caused I/O errors and which ones are good (for all mirrors). 883 * It is the goal to handle the situation when more than one 884 * mirror contains I/O errors, but the errors do not 885 * overlap, i.e. the data can be repaired by selecting the 886 * pages from those mirrors without I/O error on the 887 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) 888 * would be that mirror #1 has an I/O error on the first page, 889 * the second page is good, and mirror #2 has an I/O error on 890 * the second page, but the first page is good. 891 * Then the first page of the first mirror can be repaired by 892 * taking the first page of the second mirror, and the 893 * second page of the second mirror can be repaired by 894 * copying the contents of the 2nd page of the 1st mirror. 895 * One more note: if the pages of one mirror contain I/O 896 * errors, the checksum cannot be verified. In order to get 897 * the best data for repairing, the first attempt is to find 898 * a mirror without I/O errors and with a validated checksum. 899 * Only if this is not possible, the pages are picked from 900 * mirrors with I/O errors without considering the checksum. 901 * If the latter is the case, at the end, the checksum of the 902 * repaired area is verified in order to correctly maintain 903 * the statistics. 904 */ 905 906 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, 907 sizeof(*sblocks_for_recheck), GFP_NOFS); 908 if (!sblocks_for_recheck) { 909 spin_lock(&sctx->stat_lock); 910 sctx->stat.malloc_errors++; 911 sctx->stat.read_errors++; 912 sctx->stat.uncorrectable_errors++; 913 spin_unlock(&sctx->stat_lock); 914 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 915 goto out; 916 } 917 918 /* setup the context, map the logical blocks and alloc the pages */ 919 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 920 if (ret) { 921 spin_lock(&sctx->stat_lock); 922 sctx->stat.read_errors++; 923 sctx->stat.uncorrectable_errors++; 924 spin_unlock(&sctx->stat_lock); 925 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 926 goto out; 927 } 928 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 929 sblock_bad = sblocks_for_recheck + failed_mirror_index; 930 931 /* build and submit the bios for the failed mirror, check checksums */ 932 scrub_recheck_block(fs_info, sblock_bad, 1); 933 934 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 935 sblock_bad->no_io_error_seen) { 936 /* 937 * the error disappeared after reading page by page, or 938 * the area was part of a huge bio and other parts of the 939 * bio caused I/O errors, or the block layer merged several 940 * read requests into one and the error is caused by a 941 * different bio (usually one of the two latter cases is 942 * the cause) 943 */ 944 spin_lock(&sctx->stat_lock); 945 sctx->stat.unverified_errors++; 946 sblock_to_check->data_corrected = 1; 947 spin_unlock(&sctx->stat_lock); 948 949 if (sctx->is_dev_replace) 950 scrub_write_block_to_dev_replace(sblock_bad); 951 goto out; 952 } 953 954 if (!sblock_bad->no_io_error_seen) { 955 spin_lock(&sctx->stat_lock); 956 sctx->stat.read_errors++; 957 spin_unlock(&sctx->stat_lock); 958 if (__ratelimit(&_rs)) 959 scrub_print_warning("i/o error", sblock_to_check); 960 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 961 } else if (sblock_bad->checksum_error) { 962 spin_lock(&sctx->stat_lock); 963 sctx->stat.csum_errors++; 964 spin_unlock(&sctx->stat_lock); 965 if (__ratelimit(&_rs)) 966 scrub_print_warning("checksum error", sblock_to_check); 967 btrfs_dev_stat_inc_and_print(dev, 968 BTRFS_DEV_STAT_CORRUPTION_ERRS); 969 } else if (sblock_bad->header_error) { 970 spin_lock(&sctx->stat_lock); 971 sctx->stat.verify_errors++; 972 spin_unlock(&sctx->stat_lock); 973 if (__ratelimit(&_rs)) 974 scrub_print_warning("checksum/header error", 975 sblock_to_check); 976 if (sblock_bad->generation_error) 977 btrfs_dev_stat_inc_and_print(dev, 978 BTRFS_DEV_STAT_GENERATION_ERRS); 979 else 980 btrfs_dev_stat_inc_and_print(dev, 981 BTRFS_DEV_STAT_CORRUPTION_ERRS); 982 } 983 984 if (sctx->readonly) { 985 ASSERT(!sctx->is_dev_replace); 986 goto out; 987 } 988 989 /* 990 * now build and submit the bios for the other mirrors, check 991 * checksums. 992 * First try to pick the mirror which is completely without I/O 993 * errors and also does not have a checksum error. 994 * If one is found, and if a checksum is present, the full block 995 * that is known to contain an error is rewritten. Afterwards 996 * the block is known to be corrected. 997 * If a mirror is found which is completely correct, and no 998 * checksum is present, only those pages are rewritten that had 999 * an I/O error in the block to be repaired, since it cannot be 1000 * determined, which copy of the other pages is better (and it 1001 * could happen otherwise that a correct page would be 1002 * overwritten by a bad one). 1003 */ 1004 for (mirror_index = 0; ;mirror_index++) { 1005 struct scrub_block *sblock_other; 1006 1007 if (mirror_index == failed_mirror_index) 1008 continue; 1009 1010 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1011 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1012 if (mirror_index >= BTRFS_MAX_MIRRORS) 1013 break; 1014 if (!sblocks_for_recheck[mirror_index].page_count) 1015 break; 1016 1017 sblock_other = sblocks_for_recheck + mirror_index; 1018 } else { 1019 struct scrub_recover *r = sblock_bad->pagev[0]->recover; 1020 int max_allowed = r->bbio->num_stripes - 1021 r->bbio->num_tgtdevs; 1022 1023 if (mirror_index >= max_allowed) 1024 break; 1025 if (!sblocks_for_recheck[1].page_count) 1026 break; 1027 1028 ASSERT(failed_mirror_index == 0); 1029 sblock_other = sblocks_for_recheck + 1; 1030 sblock_other->pagev[0]->mirror_num = 1 + mirror_index; 1031 } 1032 1033 /* build and submit the bios, check checksums */ 1034 scrub_recheck_block(fs_info, sblock_other, 0); 1035 1036 if (!sblock_other->header_error && 1037 !sblock_other->checksum_error && 1038 sblock_other->no_io_error_seen) { 1039 if (sctx->is_dev_replace) { 1040 scrub_write_block_to_dev_replace(sblock_other); 1041 goto corrected_error; 1042 } else { 1043 ret = scrub_repair_block_from_good_copy( 1044 sblock_bad, sblock_other); 1045 if (!ret) 1046 goto corrected_error; 1047 } 1048 } 1049 } 1050 1051 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1052 goto did_not_correct_error; 1053 1054 /* 1055 * In case of I/O errors in the area that is supposed to be 1056 * repaired, continue by picking good copies of those pages. 1057 * Select the good pages from mirrors to rewrite bad pages from 1058 * the area to fix. Afterwards verify the checksum of the block 1059 * that is supposed to be repaired. This verification step is 1060 * only done for the purpose of statistic counting and for the 1061 * final scrub report, whether errors remain. 1062 * A perfect algorithm could make use of the checksum and try 1063 * all possible combinations of pages from the different mirrors 1064 * until the checksum verification succeeds. For example, when 1065 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page 1066 * of mirror #2 is readable but the final checksum test fails, 1067 * then the 2nd page of mirror #3 could be tried, whether now 1068 * the final checksum succeeds. But this would be a rare 1069 * exception and is therefore not implemented. At least it is 1070 * avoided that the good copy is overwritten. 1071 * A more useful improvement would be to pick the sectors 1072 * without I/O error based on sector sizes (512 bytes on legacy 1073 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one 1074 * mirror could be repaired by taking 512 byte of a different 1075 * mirror, even if other 512 byte sectors in the same PAGE_SIZE 1076 * area are unreadable. 1077 */ 1078 success = 1; 1079 for (page_num = 0; page_num < sblock_bad->page_count; 1080 page_num++) { 1081 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1082 struct scrub_block *sblock_other = NULL; 1083 1084 /* skip no-io-error page in scrub */ 1085 if (!page_bad->io_error && !sctx->is_dev_replace) 1086 continue; 1087 1088 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { 1089 /* 1090 * In case of dev replace, if raid56 rebuild process 1091 * didn't work out correct data, then copy the content 1092 * in sblock_bad to make sure target device is identical 1093 * to source device, instead of writing garbage data in 1094 * sblock_for_recheck array to target device. 1095 */ 1096 sblock_other = NULL; 1097 } else if (page_bad->io_error) { 1098 /* try to find no-io-error page in mirrors */ 1099 for (mirror_index = 0; 1100 mirror_index < BTRFS_MAX_MIRRORS && 1101 sblocks_for_recheck[mirror_index].page_count > 0; 1102 mirror_index++) { 1103 if (!sblocks_for_recheck[mirror_index]. 1104 pagev[page_num]->io_error) { 1105 sblock_other = sblocks_for_recheck + 1106 mirror_index; 1107 break; 1108 } 1109 } 1110 if (!sblock_other) 1111 success = 0; 1112 } 1113 1114 if (sctx->is_dev_replace) { 1115 /* 1116 * did not find a mirror to fetch the page 1117 * from. scrub_write_page_to_dev_replace() 1118 * handles this case (page->io_error), by 1119 * filling the block with zeros before 1120 * submitting the write request 1121 */ 1122 if (!sblock_other) 1123 sblock_other = sblock_bad; 1124 1125 if (scrub_write_page_to_dev_replace(sblock_other, 1126 page_num) != 0) { 1127 atomic64_inc( 1128 &fs_info->dev_replace.num_write_errors); 1129 success = 0; 1130 } 1131 } else if (sblock_other) { 1132 ret = scrub_repair_page_from_good_copy(sblock_bad, 1133 sblock_other, 1134 page_num, 0); 1135 if (0 == ret) 1136 page_bad->io_error = 0; 1137 else 1138 success = 0; 1139 } 1140 } 1141 1142 if (success && !sctx->is_dev_replace) { 1143 if (is_metadata || have_csum) { 1144 /* 1145 * need to verify the checksum now that all 1146 * sectors on disk are repaired (the write 1147 * request for data to be repaired is on its way). 1148 * Just be lazy and use scrub_recheck_block() 1149 * which re-reads the data before the checksum 1150 * is verified, but most likely the data comes out 1151 * of the page cache. 1152 */ 1153 scrub_recheck_block(fs_info, sblock_bad, 1); 1154 if (!sblock_bad->header_error && 1155 !sblock_bad->checksum_error && 1156 sblock_bad->no_io_error_seen) 1157 goto corrected_error; 1158 else 1159 goto did_not_correct_error; 1160 } else { 1161 corrected_error: 1162 spin_lock(&sctx->stat_lock); 1163 sctx->stat.corrected_errors++; 1164 sblock_to_check->data_corrected = 1; 1165 spin_unlock(&sctx->stat_lock); 1166 btrfs_err_rl_in_rcu(fs_info, 1167 "fixed up error at logical %llu on dev %s", 1168 logical, rcu_str_deref(dev->name)); 1169 } 1170 } else { 1171 did_not_correct_error: 1172 spin_lock(&sctx->stat_lock); 1173 sctx->stat.uncorrectable_errors++; 1174 spin_unlock(&sctx->stat_lock); 1175 btrfs_err_rl_in_rcu(fs_info, 1176 "unable to fixup (regular) error at logical %llu on dev %s", 1177 logical, rcu_str_deref(dev->name)); 1178 } 1179 1180 out: 1181 if (sblocks_for_recheck) { 1182 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; 1183 mirror_index++) { 1184 struct scrub_block *sblock = sblocks_for_recheck + 1185 mirror_index; 1186 struct scrub_recover *recover; 1187 int page_index; 1188 1189 for (page_index = 0; page_index < sblock->page_count; 1190 page_index++) { 1191 sblock->pagev[page_index]->sblock = NULL; 1192 recover = sblock->pagev[page_index]->recover; 1193 if (recover) { 1194 scrub_put_recover(fs_info, recover); 1195 sblock->pagev[page_index]->recover = 1196 NULL; 1197 } 1198 scrub_page_put(sblock->pagev[page_index]); 1199 } 1200 } 1201 kfree(sblocks_for_recheck); 1202 } 1203 1204 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1205 if (ret < 0) 1206 return ret; 1207 return 0; 1208 } 1209 1210 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) 1211 { 1212 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) 1213 return 2; 1214 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) 1215 return 3; 1216 else 1217 return (int)bbio->num_stripes; 1218 } 1219 1220 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1221 u64 *raid_map, 1222 u64 mapped_length, 1223 int nstripes, int mirror, 1224 int *stripe_index, 1225 u64 *stripe_offset) 1226 { 1227 int i; 1228 1229 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1230 /* RAID5/6 */ 1231 for (i = 0; i < nstripes; i++) { 1232 if (raid_map[i] == RAID6_Q_STRIPE || 1233 raid_map[i] == RAID5_P_STRIPE) 1234 continue; 1235 1236 if (logical >= raid_map[i] && 1237 logical < raid_map[i] + mapped_length) 1238 break; 1239 } 1240 1241 *stripe_index = i; 1242 *stripe_offset = logical - raid_map[i]; 1243 } else { 1244 /* The other RAID type */ 1245 *stripe_index = mirror; 1246 *stripe_offset = 0; 1247 } 1248 } 1249 1250 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1251 struct scrub_block *sblocks_for_recheck) 1252 { 1253 struct scrub_ctx *sctx = original_sblock->sctx; 1254 struct btrfs_fs_info *fs_info = sctx->fs_info; 1255 u64 length = original_sblock->page_count * PAGE_SIZE; 1256 u64 logical = original_sblock->pagev[0]->logical; 1257 u64 generation = original_sblock->pagev[0]->generation; 1258 u64 flags = original_sblock->pagev[0]->flags; 1259 u64 have_csum = original_sblock->pagev[0]->have_csum; 1260 struct scrub_recover *recover; 1261 struct btrfs_bio *bbio; 1262 u64 sublen; 1263 u64 mapped_length; 1264 u64 stripe_offset; 1265 int stripe_index; 1266 int page_index = 0; 1267 int mirror_index; 1268 int nmirrors; 1269 int ret; 1270 1271 /* 1272 * note: the two members refs and outstanding_pages 1273 * are not used (and not set) in the blocks that are used for 1274 * the recheck procedure 1275 */ 1276 1277 while (length > 0) { 1278 sublen = min_t(u64, length, PAGE_SIZE); 1279 mapped_length = sublen; 1280 bbio = NULL; 1281 1282 /* 1283 * with a length of PAGE_SIZE, each returned stripe 1284 * represents one mirror 1285 */ 1286 btrfs_bio_counter_inc_blocked(fs_info); 1287 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1288 logical, &mapped_length, &bbio); 1289 if (ret || !bbio || mapped_length < sublen) { 1290 btrfs_put_bbio(bbio); 1291 btrfs_bio_counter_dec(fs_info); 1292 return -EIO; 1293 } 1294 1295 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); 1296 if (!recover) { 1297 btrfs_put_bbio(bbio); 1298 btrfs_bio_counter_dec(fs_info); 1299 return -ENOMEM; 1300 } 1301 1302 refcount_set(&recover->refs, 1); 1303 recover->bbio = bbio; 1304 recover->map_length = mapped_length; 1305 1306 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); 1307 1308 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); 1309 1310 for (mirror_index = 0; mirror_index < nmirrors; 1311 mirror_index++) { 1312 struct scrub_block *sblock; 1313 struct scrub_page *page; 1314 1315 sblock = sblocks_for_recheck + mirror_index; 1316 sblock->sctx = sctx; 1317 1318 page = kzalloc(sizeof(*page), GFP_NOFS); 1319 if (!page) { 1320 leave_nomem: 1321 spin_lock(&sctx->stat_lock); 1322 sctx->stat.malloc_errors++; 1323 spin_unlock(&sctx->stat_lock); 1324 scrub_put_recover(fs_info, recover); 1325 return -ENOMEM; 1326 } 1327 scrub_page_get(page); 1328 sblock->pagev[page_index] = page; 1329 page->sblock = sblock; 1330 page->flags = flags; 1331 page->generation = generation; 1332 page->logical = logical; 1333 page->have_csum = have_csum; 1334 if (have_csum) 1335 memcpy(page->csum, 1336 original_sblock->pagev[0]->csum, 1337 sctx->csum_size); 1338 1339 scrub_stripe_index_and_offset(logical, 1340 bbio->map_type, 1341 bbio->raid_map, 1342 mapped_length, 1343 bbio->num_stripes - 1344 bbio->num_tgtdevs, 1345 mirror_index, 1346 &stripe_index, 1347 &stripe_offset); 1348 page->physical = bbio->stripes[stripe_index].physical + 1349 stripe_offset; 1350 page->dev = bbio->stripes[stripe_index].dev; 1351 1352 BUG_ON(page_index >= original_sblock->page_count); 1353 page->physical_for_dev_replace = 1354 original_sblock->pagev[page_index]-> 1355 physical_for_dev_replace; 1356 /* for missing devices, dev->bdev is NULL */ 1357 page->mirror_num = mirror_index + 1; 1358 sblock->page_count++; 1359 page->page = alloc_page(GFP_NOFS); 1360 if (!page->page) 1361 goto leave_nomem; 1362 1363 scrub_get_recover(recover); 1364 page->recover = recover; 1365 } 1366 scrub_put_recover(fs_info, recover); 1367 length -= sublen; 1368 logical += sublen; 1369 page_index++; 1370 } 1371 1372 return 0; 1373 } 1374 1375 static void scrub_bio_wait_endio(struct bio *bio) 1376 { 1377 complete(bio->bi_private); 1378 } 1379 1380 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1381 struct bio *bio, 1382 struct scrub_page *page) 1383 { 1384 DECLARE_COMPLETION_ONSTACK(done); 1385 int ret; 1386 int mirror_num; 1387 1388 bio->bi_iter.bi_sector = page->logical >> 9; 1389 bio->bi_private = &done; 1390 bio->bi_end_io = scrub_bio_wait_endio; 1391 1392 mirror_num = page->sblock->pagev[0]->mirror_num; 1393 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, 1394 page->recover->map_length, 1395 mirror_num, 0); 1396 if (ret) 1397 return ret; 1398 1399 wait_for_completion_io(&done); 1400 return blk_status_to_errno(bio->bi_status); 1401 } 1402 1403 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1404 struct scrub_block *sblock) 1405 { 1406 struct scrub_page *first_page = sblock->pagev[0]; 1407 struct bio *bio; 1408 int page_num; 1409 1410 /* All pages in sblock belong to the same stripe on the same device. */ 1411 ASSERT(first_page->dev); 1412 if (!first_page->dev->bdev) 1413 goto out; 1414 1415 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES); 1416 bio_set_dev(bio, first_page->dev->bdev); 1417 1418 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1419 struct scrub_page *page = sblock->pagev[page_num]; 1420 1421 WARN_ON(!page->page); 1422 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1423 } 1424 1425 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { 1426 bio_put(bio); 1427 goto out; 1428 } 1429 1430 bio_put(bio); 1431 1432 scrub_recheck_block_checksum(sblock); 1433 1434 return; 1435 out: 1436 for (page_num = 0; page_num < sblock->page_count; page_num++) 1437 sblock->pagev[page_num]->io_error = 1; 1438 1439 sblock->no_io_error_seen = 0; 1440 } 1441 1442 /* 1443 * this function will check the on disk data for checksum errors, header 1444 * errors and read I/O errors. If any I/O errors happen, the exact pages 1445 * which are errored are marked as being bad. The goal is to enable scrub 1446 * to take those pages that are not errored from all the mirrors so that 1447 * the pages that are errored in the just handled mirror can be repaired. 1448 */ 1449 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1450 struct scrub_block *sblock, 1451 int retry_failed_mirror) 1452 { 1453 int page_num; 1454 1455 sblock->no_io_error_seen = 1; 1456 1457 /* short cut for raid56 */ 1458 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) 1459 return scrub_recheck_block_on_raid56(fs_info, sblock); 1460 1461 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1462 struct bio *bio; 1463 struct scrub_page *page = sblock->pagev[page_num]; 1464 1465 if (page->dev->bdev == NULL) { 1466 page->io_error = 1; 1467 sblock->no_io_error_seen = 0; 1468 continue; 1469 } 1470 1471 WARN_ON(!page->page); 1472 bio = btrfs_io_bio_alloc(1); 1473 bio_set_dev(bio, page->dev->bdev); 1474 1475 bio_add_page(bio, page->page, PAGE_SIZE, 0); 1476 bio->bi_iter.bi_sector = page->physical >> 9; 1477 bio->bi_opf = REQ_OP_READ; 1478 1479 if (btrfsic_submit_bio_wait(bio)) { 1480 page->io_error = 1; 1481 sblock->no_io_error_seen = 0; 1482 } 1483 1484 bio_put(bio); 1485 } 1486 1487 if (sblock->no_io_error_seen) 1488 scrub_recheck_block_checksum(sblock); 1489 } 1490 1491 static inline int scrub_check_fsid(u8 fsid[], 1492 struct scrub_page *spage) 1493 { 1494 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; 1495 int ret; 1496 1497 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1498 return !ret; 1499 } 1500 1501 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1502 { 1503 sblock->header_error = 0; 1504 sblock->checksum_error = 0; 1505 sblock->generation_error = 0; 1506 1507 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1508 scrub_checksum_data(sblock); 1509 else 1510 scrub_checksum_tree_block(sblock); 1511 } 1512 1513 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1514 struct scrub_block *sblock_good) 1515 { 1516 int page_num; 1517 int ret = 0; 1518 1519 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { 1520 int ret_sub; 1521 1522 ret_sub = scrub_repair_page_from_good_copy(sblock_bad, 1523 sblock_good, 1524 page_num, 1); 1525 if (ret_sub) 1526 ret = ret_sub; 1527 } 1528 1529 return ret; 1530 } 1531 1532 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, 1533 struct scrub_block *sblock_good, 1534 int page_num, int force_write) 1535 { 1536 struct scrub_page *page_bad = sblock_bad->pagev[page_num]; 1537 struct scrub_page *page_good = sblock_good->pagev[page_num]; 1538 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1539 1540 BUG_ON(page_bad->page == NULL); 1541 BUG_ON(page_good->page == NULL); 1542 if (force_write || sblock_bad->header_error || 1543 sblock_bad->checksum_error || page_bad->io_error) { 1544 struct bio *bio; 1545 int ret; 1546 1547 if (!page_bad->dev->bdev) { 1548 btrfs_warn_rl(fs_info, 1549 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1550 return -EIO; 1551 } 1552 1553 bio = btrfs_io_bio_alloc(1); 1554 bio_set_dev(bio, page_bad->dev->bdev); 1555 bio->bi_iter.bi_sector = page_bad->physical >> 9; 1556 bio->bi_opf = REQ_OP_WRITE; 1557 1558 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); 1559 if (PAGE_SIZE != ret) { 1560 bio_put(bio); 1561 return -EIO; 1562 } 1563 1564 if (btrfsic_submit_bio_wait(bio)) { 1565 btrfs_dev_stat_inc_and_print(page_bad->dev, 1566 BTRFS_DEV_STAT_WRITE_ERRS); 1567 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1568 bio_put(bio); 1569 return -EIO; 1570 } 1571 bio_put(bio); 1572 } 1573 1574 return 0; 1575 } 1576 1577 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1578 { 1579 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1580 int page_num; 1581 1582 /* 1583 * This block is used for the check of the parity on the source device, 1584 * so the data needn't be written into the destination device. 1585 */ 1586 if (sblock->sparity) 1587 return; 1588 1589 for (page_num = 0; page_num < sblock->page_count; page_num++) { 1590 int ret; 1591 1592 ret = scrub_write_page_to_dev_replace(sblock, page_num); 1593 if (ret) 1594 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1595 } 1596 } 1597 1598 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, 1599 int page_num) 1600 { 1601 struct scrub_page *spage = sblock->pagev[page_num]; 1602 1603 BUG_ON(spage->page == NULL); 1604 if (spage->io_error) { 1605 void *mapped_buffer = kmap_atomic(spage->page); 1606 1607 clear_page(mapped_buffer); 1608 flush_dcache_page(spage->page); 1609 kunmap_atomic(mapped_buffer); 1610 } 1611 return scrub_add_page_to_wr_bio(sblock->sctx, spage); 1612 } 1613 1614 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, 1615 struct scrub_page *spage) 1616 { 1617 struct scrub_bio *sbio; 1618 int ret; 1619 1620 mutex_lock(&sctx->wr_lock); 1621 again: 1622 if (!sctx->wr_curr_bio) { 1623 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1624 GFP_KERNEL); 1625 if (!sctx->wr_curr_bio) { 1626 mutex_unlock(&sctx->wr_lock); 1627 return -ENOMEM; 1628 } 1629 sctx->wr_curr_bio->sctx = sctx; 1630 sctx->wr_curr_bio->page_count = 0; 1631 } 1632 sbio = sctx->wr_curr_bio; 1633 if (sbio->page_count == 0) { 1634 struct bio *bio; 1635 1636 sbio->physical = spage->physical_for_dev_replace; 1637 sbio->logical = spage->logical; 1638 sbio->dev = sctx->wr_tgtdev; 1639 bio = sbio->bio; 1640 if (!bio) { 1641 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); 1642 sbio->bio = bio; 1643 } 1644 1645 bio->bi_private = sbio; 1646 bio->bi_end_io = scrub_wr_bio_end_io; 1647 bio_set_dev(bio, sbio->dev->bdev); 1648 bio->bi_iter.bi_sector = sbio->physical >> 9; 1649 bio->bi_opf = REQ_OP_WRITE; 1650 sbio->status = 0; 1651 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 1652 spage->physical_for_dev_replace || 1653 sbio->logical + sbio->page_count * PAGE_SIZE != 1654 spage->logical) { 1655 scrub_wr_submit(sctx); 1656 goto again; 1657 } 1658 1659 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 1660 if (ret != PAGE_SIZE) { 1661 if (sbio->page_count < 1) { 1662 bio_put(sbio->bio); 1663 sbio->bio = NULL; 1664 mutex_unlock(&sctx->wr_lock); 1665 return -EIO; 1666 } 1667 scrub_wr_submit(sctx); 1668 goto again; 1669 } 1670 1671 sbio->pagev[sbio->page_count] = spage; 1672 scrub_page_get(spage); 1673 sbio->page_count++; 1674 if (sbio->page_count == sctx->pages_per_wr_bio) 1675 scrub_wr_submit(sctx); 1676 mutex_unlock(&sctx->wr_lock); 1677 1678 return 0; 1679 } 1680 1681 static void scrub_wr_submit(struct scrub_ctx *sctx) 1682 { 1683 struct scrub_bio *sbio; 1684 1685 if (!sctx->wr_curr_bio) 1686 return; 1687 1688 sbio = sctx->wr_curr_bio; 1689 sctx->wr_curr_bio = NULL; 1690 WARN_ON(!sbio->bio->bi_disk); 1691 scrub_pending_bio_inc(sctx); 1692 /* process all writes in a single worker thread. Then the block layer 1693 * orders the requests before sending them to the driver which 1694 * doubled the write performance on spinning disks when measured 1695 * with Linux 3.5 */ 1696 btrfsic_submit_bio(sbio->bio); 1697 } 1698 1699 static void scrub_wr_bio_end_io(struct bio *bio) 1700 { 1701 struct scrub_bio *sbio = bio->bi_private; 1702 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1703 1704 sbio->status = bio->bi_status; 1705 sbio->bio = bio; 1706 1707 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, 1708 scrub_wr_bio_end_io_worker, NULL, NULL); 1709 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1710 } 1711 1712 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) 1713 { 1714 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1715 struct scrub_ctx *sctx = sbio->sctx; 1716 int i; 1717 1718 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); 1719 if (sbio->status) { 1720 struct btrfs_dev_replace *dev_replace = 1721 &sbio->sctx->fs_info->dev_replace; 1722 1723 for (i = 0; i < sbio->page_count; i++) { 1724 struct scrub_page *spage = sbio->pagev[i]; 1725 1726 spage->io_error = 1; 1727 atomic64_inc(&dev_replace->num_write_errors); 1728 } 1729 } 1730 1731 for (i = 0; i < sbio->page_count; i++) 1732 scrub_page_put(sbio->pagev[i]); 1733 1734 bio_put(sbio->bio); 1735 kfree(sbio); 1736 scrub_pending_bio_dec(sctx); 1737 } 1738 1739 static int scrub_checksum(struct scrub_block *sblock) 1740 { 1741 u64 flags; 1742 int ret; 1743 1744 /* 1745 * No need to initialize these stats currently, 1746 * because this function only use return value 1747 * instead of these stats value. 1748 * 1749 * Todo: 1750 * always use stats 1751 */ 1752 sblock->header_error = 0; 1753 sblock->generation_error = 0; 1754 sblock->checksum_error = 0; 1755 1756 WARN_ON(sblock->page_count < 1); 1757 flags = sblock->pagev[0]->flags; 1758 ret = 0; 1759 if (flags & BTRFS_EXTENT_FLAG_DATA) 1760 ret = scrub_checksum_data(sblock); 1761 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1762 ret = scrub_checksum_tree_block(sblock); 1763 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1764 (void)scrub_checksum_super(sblock); 1765 else 1766 WARN_ON(1); 1767 if (ret) 1768 scrub_handle_errored_block(sblock); 1769 1770 return ret; 1771 } 1772 1773 static int scrub_checksum_data(struct scrub_block *sblock) 1774 { 1775 struct scrub_ctx *sctx = sblock->sctx; 1776 u8 csum[BTRFS_CSUM_SIZE]; 1777 u8 *on_disk_csum; 1778 struct page *page; 1779 void *buffer; 1780 u32 crc = ~(u32)0; 1781 u64 len; 1782 int index; 1783 1784 BUG_ON(sblock->page_count < 1); 1785 if (!sblock->pagev[0]->have_csum) 1786 return 0; 1787 1788 on_disk_csum = sblock->pagev[0]->csum; 1789 page = sblock->pagev[0]->page; 1790 buffer = kmap_atomic(page); 1791 1792 len = sctx->fs_info->sectorsize; 1793 index = 0; 1794 for (;;) { 1795 u64 l = min_t(u64, len, PAGE_SIZE); 1796 1797 crc = btrfs_csum_data(buffer, crc, l); 1798 kunmap_atomic(buffer); 1799 len -= l; 1800 if (len == 0) 1801 break; 1802 index++; 1803 BUG_ON(index >= sblock->page_count); 1804 BUG_ON(!sblock->pagev[index]->page); 1805 page = sblock->pagev[index]->page; 1806 buffer = kmap_atomic(page); 1807 } 1808 1809 btrfs_csum_final(crc, csum); 1810 if (memcmp(csum, on_disk_csum, sctx->csum_size)) 1811 sblock->checksum_error = 1; 1812 1813 return sblock->checksum_error; 1814 } 1815 1816 static int scrub_checksum_tree_block(struct scrub_block *sblock) 1817 { 1818 struct scrub_ctx *sctx = sblock->sctx; 1819 struct btrfs_header *h; 1820 struct btrfs_fs_info *fs_info = sctx->fs_info; 1821 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1822 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1823 struct page *page; 1824 void *mapped_buffer; 1825 u64 mapped_size; 1826 void *p; 1827 u32 crc = ~(u32)0; 1828 u64 len; 1829 int index; 1830 1831 BUG_ON(sblock->page_count < 1); 1832 page = sblock->pagev[0]->page; 1833 mapped_buffer = kmap_atomic(page); 1834 h = (struct btrfs_header *)mapped_buffer; 1835 memcpy(on_disk_csum, h->csum, sctx->csum_size); 1836 1837 /* 1838 * we don't use the getter functions here, as we 1839 * a) don't have an extent buffer and 1840 * b) the page is already kmapped 1841 */ 1842 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) 1843 sblock->header_error = 1; 1844 1845 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { 1846 sblock->header_error = 1; 1847 sblock->generation_error = 1; 1848 } 1849 1850 if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) 1851 sblock->header_error = 1; 1852 1853 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 1854 BTRFS_UUID_SIZE)) 1855 sblock->header_error = 1; 1856 1857 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE; 1858 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1859 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1860 index = 0; 1861 for (;;) { 1862 u64 l = min_t(u64, len, mapped_size); 1863 1864 crc = btrfs_csum_data(p, crc, l); 1865 kunmap_atomic(mapped_buffer); 1866 len -= l; 1867 if (len == 0) 1868 break; 1869 index++; 1870 BUG_ON(index >= sblock->page_count); 1871 BUG_ON(!sblock->pagev[index]->page); 1872 page = sblock->pagev[index]->page; 1873 mapped_buffer = kmap_atomic(page); 1874 mapped_size = PAGE_SIZE; 1875 p = mapped_buffer; 1876 } 1877 1878 btrfs_csum_final(crc, calculated_csum); 1879 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1880 sblock->checksum_error = 1; 1881 1882 return sblock->header_error || sblock->checksum_error; 1883 } 1884 1885 static int scrub_checksum_super(struct scrub_block *sblock) 1886 { 1887 struct btrfs_super_block *s; 1888 struct scrub_ctx *sctx = sblock->sctx; 1889 u8 calculated_csum[BTRFS_CSUM_SIZE]; 1890 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 1891 struct page *page; 1892 void *mapped_buffer; 1893 u64 mapped_size; 1894 void *p; 1895 u32 crc = ~(u32)0; 1896 int fail_gen = 0; 1897 int fail_cor = 0; 1898 u64 len; 1899 int index; 1900 1901 BUG_ON(sblock->page_count < 1); 1902 page = sblock->pagev[0]->page; 1903 mapped_buffer = kmap_atomic(page); 1904 s = (struct btrfs_super_block *)mapped_buffer; 1905 memcpy(on_disk_csum, s->csum, sctx->csum_size); 1906 1907 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) 1908 ++fail_cor; 1909 1910 if (sblock->pagev[0]->generation != btrfs_super_generation(s)) 1911 ++fail_gen; 1912 1913 if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) 1914 ++fail_cor; 1915 1916 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; 1917 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; 1918 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; 1919 index = 0; 1920 for (;;) { 1921 u64 l = min_t(u64, len, mapped_size); 1922 1923 crc = btrfs_csum_data(p, crc, l); 1924 kunmap_atomic(mapped_buffer); 1925 len -= l; 1926 if (len == 0) 1927 break; 1928 index++; 1929 BUG_ON(index >= sblock->page_count); 1930 BUG_ON(!sblock->pagev[index]->page); 1931 page = sblock->pagev[index]->page; 1932 mapped_buffer = kmap_atomic(page); 1933 mapped_size = PAGE_SIZE; 1934 p = mapped_buffer; 1935 } 1936 1937 btrfs_csum_final(crc, calculated_csum); 1938 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) 1939 ++fail_cor; 1940 1941 if (fail_cor + fail_gen) { 1942 /* 1943 * if we find an error in a super block, we just report it. 1944 * They will get written with the next transaction commit 1945 * anyway 1946 */ 1947 spin_lock(&sctx->stat_lock); 1948 ++sctx->stat.super_errors; 1949 spin_unlock(&sctx->stat_lock); 1950 if (fail_cor) 1951 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1952 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1953 else 1954 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, 1955 BTRFS_DEV_STAT_GENERATION_ERRS); 1956 } 1957 1958 return fail_cor + fail_gen; 1959 } 1960 1961 static void scrub_block_get(struct scrub_block *sblock) 1962 { 1963 refcount_inc(&sblock->refs); 1964 } 1965 1966 static void scrub_block_put(struct scrub_block *sblock) 1967 { 1968 if (refcount_dec_and_test(&sblock->refs)) { 1969 int i; 1970 1971 if (sblock->sparity) 1972 scrub_parity_put(sblock->sparity); 1973 1974 for (i = 0; i < sblock->page_count; i++) 1975 scrub_page_put(sblock->pagev[i]); 1976 kfree(sblock); 1977 } 1978 } 1979 1980 static void scrub_page_get(struct scrub_page *spage) 1981 { 1982 atomic_inc(&spage->refs); 1983 } 1984 1985 static void scrub_page_put(struct scrub_page *spage) 1986 { 1987 if (atomic_dec_and_test(&spage->refs)) { 1988 if (spage->page) 1989 __free_page(spage->page); 1990 kfree(spage); 1991 } 1992 } 1993 1994 static void scrub_submit(struct scrub_ctx *sctx) 1995 { 1996 struct scrub_bio *sbio; 1997 1998 if (sctx->curr == -1) 1999 return; 2000 2001 sbio = sctx->bios[sctx->curr]; 2002 sctx->curr = -1; 2003 scrub_pending_bio_inc(sctx); 2004 btrfsic_submit_bio(sbio->bio); 2005 } 2006 2007 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, 2008 struct scrub_page *spage) 2009 { 2010 struct scrub_block *sblock = spage->sblock; 2011 struct scrub_bio *sbio; 2012 int ret; 2013 2014 again: 2015 /* 2016 * grab a fresh bio or wait for one to become available 2017 */ 2018 while (sctx->curr == -1) { 2019 spin_lock(&sctx->list_lock); 2020 sctx->curr = sctx->first_free; 2021 if (sctx->curr != -1) { 2022 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2023 sctx->bios[sctx->curr]->next_free = -1; 2024 sctx->bios[sctx->curr]->page_count = 0; 2025 spin_unlock(&sctx->list_lock); 2026 } else { 2027 spin_unlock(&sctx->list_lock); 2028 wait_event(sctx->list_wait, sctx->first_free != -1); 2029 } 2030 } 2031 sbio = sctx->bios[sctx->curr]; 2032 if (sbio->page_count == 0) { 2033 struct bio *bio; 2034 2035 sbio->physical = spage->physical; 2036 sbio->logical = spage->logical; 2037 sbio->dev = spage->dev; 2038 bio = sbio->bio; 2039 if (!bio) { 2040 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); 2041 sbio->bio = bio; 2042 } 2043 2044 bio->bi_private = sbio; 2045 bio->bi_end_io = scrub_bio_end_io; 2046 bio_set_dev(bio, sbio->dev->bdev); 2047 bio->bi_iter.bi_sector = sbio->physical >> 9; 2048 bio->bi_opf = REQ_OP_READ; 2049 sbio->status = 0; 2050 } else if (sbio->physical + sbio->page_count * PAGE_SIZE != 2051 spage->physical || 2052 sbio->logical + sbio->page_count * PAGE_SIZE != 2053 spage->logical || 2054 sbio->dev != spage->dev) { 2055 scrub_submit(sctx); 2056 goto again; 2057 } 2058 2059 sbio->pagev[sbio->page_count] = spage; 2060 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); 2061 if (ret != PAGE_SIZE) { 2062 if (sbio->page_count < 1) { 2063 bio_put(sbio->bio); 2064 sbio->bio = NULL; 2065 return -EIO; 2066 } 2067 scrub_submit(sctx); 2068 goto again; 2069 } 2070 2071 scrub_block_get(sblock); /* one for the page added to the bio */ 2072 atomic_inc(&sblock->outstanding_pages); 2073 sbio->page_count++; 2074 if (sbio->page_count == sctx->pages_per_rd_bio) 2075 scrub_submit(sctx); 2076 2077 return 0; 2078 } 2079 2080 static void scrub_missing_raid56_end_io(struct bio *bio) 2081 { 2082 struct scrub_block *sblock = bio->bi_private; 2083 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2084 2085 if (bio->bi_status) 2086 sblock->no_io_error_seen = 0; 2087 2088 bio_put(bio); 2089 2090 btrfs_queue_work(fs_info->scrub_workers, &sblock->work); 2091 } 2092 2093 static void scrub_missing_raid56_worker(struct btrfs_work *work) 2094 { 2095 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2096 struct scrub_ctx *sctx = sblock->sctx; 2097 struct btrfs_fs_info *fs_info = sctx->fs_info; 2098 u64 logical; 2099 struct btrfs_device *dev; 2100 2101 logical = sblock->pagev[0]->logical; 2102 dev = sblock->pagev[0]->dev; 2103 2104 if (sblock->no_io_error_seen) 2105 scrub_recheck_block_checksum(sblock); 2106 2107 if (!sblock->no_io_error_seen) { 2108 spin_lock(&sctx->stat_lock); 2109 sctx->stat.read_errors++; 2110 spin_unlock(&sctx->stat_lock); 2111 btrfs_err_rl_in_rcu(fs_info, 2112 "IO error rebuilding logical %llu for dev %s", 2113 logical, rcu_str_deref(dev->name)); 2114 } else if (sblock->header_error || sblock->checksum_error) { 2115 spin_lock(&sctx->stat_lock); 2116 sctx->stat.uncorrectable_errors++; 2117 spin_unlock(&sctx->stat_lock); 2118 btrfs_err_rl_in_rcu(fs_info, 2119 "failed to rebuild valid logical %llu for dev %s", 2120 logical, rcu_str_deref(dev->name)); 2121 } else { 2122 scrub_write_block_to_dev_replace(sblock); 2123 } 2124 2125 scrub_block_put(sblock); 2126 2127 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2128 mutex_lock(&sctx->wr_lock); 2129 scrub_wr_submit(sctx); 2130 mutex_unlock(&sctx->wr_lock); 2131 } 2132 2133 scrub_pending_bio_dec(sctx); 2134 } 2135 2136 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2137 { 2138 struct scrub_ctx *sctx = sblock->sctx; 2139 struct btrfs_fs_info *fs_info = sctx->fs_info; 2140 u64 length = sblock->page_count * PAGE_SIZE; 2141 u64 logical = sblock->pagev[0]->logical; 2142 struct btrfs_bio *bbio = NULL; 2143 struct bio *bio; 2144 struct btrfs_raid_bio *rbio; 2145 int ret; 2146 int i; 2147 2148 btrfs_bio_counter_inc_blocked(fs_info); 2149 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2150 &length, &bbio); 2151 if (ret || !bbio || !bbio->raid_map) 2152 goto bbio_out; 2153 2154 if (WARN_ON(!sctx->is_dev_replace || 2155 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2156 /* 2157 * We shouldn't be scrubbing a missing device. Even for dev 2158 * replace, we should only get here for RAID 5/6. We either 2159 * managed to mount something with no mirrors remaining or 2160 * there's a bug in scrub_remap_extent()/btrfs_map_block(). 2161 */ 2162 goto bbio_out; 2163 } 2164 2165 bio = btrfs_io_bio_alloc(0); 2166 bio->bi_iter.bi_sector = logical >> 9; 2167 bio->bi_private = sblock; 2168 bio->bi_end_io = scrub_missing_raid56_end_io; 2169 2170 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); 2171 if (!rbio) 2172 goto rbio_out; 2173 2174 for (i = 0; i < sblock->page_count; i++) { 2175 struct scrub_page *spage = sblock->pagev[i]; 2176 2177 raid56_add_scrub_pages(rbio, spage->page, spage->logical); 2178 } 2179 2180 btrfs_init_work(&sblock->work, btrfs_scrub_helper, 2181 scrub_missing_raid56_worker, NULL, NULL); 2182 scrub_block_get(sblock); 2183 scrub_pending_bio_inc(sctx); 2184 raid56_submit_missing_rbio(rbio); 2185 return; 2186 2187 rbio_out: 2188 bio_put(bio); 2189 bbio_out: 2190 btrfs_bio_counter_dec(fs_info); 2191 btrfs_put_bbio(bbio); 2192 spin_lock(&sctx->stat_lock); 2193 sctx->stat.malloc_errors++; 2194 spin_unlock(&sctx->stat_lock); 2195 } 2196 2197 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, 2198 u64 physical, struct btrfs_device *dev, u64 flags, 2199 u64 gen, int mirror_num, u8 *csum, int force, 2200 u64 physical_for_dev_replace) 2201 { 2202 struct scrub_block *sblock; 2203 int index; 2204 2205 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2206 if (!sblock) { 2207 spin_lock(&sctx->stat_lock); 2208 sctx->stat.malloc_errors++; 2209 spin_unlock(&sctx->stat_lock); 2210 return -ENOMEM; 2211 } 2212 2213 /* one ref inside this function, plus one for each page added to 2214 * a bio later on */ 2215 refcount_set(&sblock->refs, 1); 2216 sblock->sctx = sctx; 2217 sblock->no_io_error_seen = 1; 2218 2219 for (index = 0; len > 0; index++) { 2220 struct scrub_page *spage; 2221 u64 l = min_t(u64, len, PAGE_SIZE); 2222 2223 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2224 if (!spage) { 2225 leave_nomem: 2226 spin_lock(&sctx->stat_lock); 2227 sctx->stat.malloc_errors++; 2228 spin_unlock(&sctx->stat_lock); 2229 scrub_block_put(sblock); 2230 return -ENOMEM; 2231 } 2232 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2233 scrub_page_get(spage); 2234 sblock->pagev[index] = spage; 2235 spage->sblock = sblock; 2236 spage->dev = dev; 2237 spage->flags = flags; 2238 spage->generation = gen; 2239 spage->logical = logical; 2240 spage->physical = physical; 2241 spage->physical_for_dev_replace = physical_for_dev_replace; 2242 spage->mirror_num = mirror_num; 2243 if (csum) { 2244 spage->have_csum = 1; 2245 memcpy(spage->csum, csum, sctx->csum_size); 2246 } else { 2247 spage->have_csum = 0; 2248 } 2249 sblock->page_count++; 2250 spage->page = alloc_page(GFP_KERNEL); 2251 if (!spage->page) 2252 goto leave_nomem; 2253 len -= l; 2254 logical += l; 2255 physical += l; 2256 physical_for_dev_replace += l; 2257 } 2258 2259 WARN_ON(sblock->page_count == 0); 2260 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2261 /* 2262 * This case should only be hit for RAID 5/6 device replace. See 2263 * the comment in scrub_missing_raid56_pages() for details. 2264 */ 2265 scrub_missing_raid56_pages(sblock); 2266 } else { 2267 for (index = 0; index < sblock->page_count; index++) { 2268 struct scrub_page *spage = sblock->pagev[index]; 2269 int ret; 2270 2271 ret = scrub_add_page_to_rd_bio(sctx, spage); 2272 if (ret) { 2273 scrub_block_put(sblock); 2274 return ret; 2275 } 2276 } 2277 2278 if (force) 2279 scrub_submit(sctx); 2280 } 2281 2282 /* last one frees, either here or in bio completion for last page */ 2283 scrub_block_put(sblock); 2284 return 0; 2285 } 2286 2287 static void scrub_bio_end_io(struct bio *bio) 2288 { 2289 struct scrub_bio *sbio = bio->bi_private; 2290 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2291 2292 sbio->status = bio->bi_status; 2293 sbio->bio = bio; 2294 2295 btrfs_queue_work(fs_info->scrub_workers, &sbio->work); 2296 } 2297 2298 static void scrub_bio_end_io_worker(struct btrfs_work *work) 2299 { 2300 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2301 struct scrub_ctx *sctx = sbio->sctx; 2302 int i; 2303 2304 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); 2305 if (sbio->status) { 2306 for (i = 0; i < sbio->page_count; i++) { 2307 struct scrub_page *spage = sbio->pagev[i]; 2308 2309 spage->io_error = 1; 2310 spage->sblock->no_io_error_seen = 0; 2311 } 2312 } 2313 2314 /* now complete the scrub_block items that have all pages completed */ 2315 for (i = 0; i < sbio->page_count; i++) { 2316 struct scrub_page *spage = sbio->pagev[i]; 2317 struct scrub_block *sblock = spage->sblock; 2318 2319 if (atomic_dec_and_test(&sblock->outstanding_pages)) 2320 scrub_block_complete(sblock); 2321 scrub_block_put(sblock); 2322 } 2323 2324 bio_put(sbio->bio); 2325 sbio->bio = NULL; 2326 spin_lock(&sctx->list_lock); 2327 sbio->next_free = sctx->first_free; 2328 sctx->first_free = sbio->index; 2329 spin_unlock(&sctx->list_lock); 2330 2331 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2332 mutex_lock(&sctx->wr_lock); 2333 scrub_wr_submit(sctx); 2334 mutex_unlock(&sctx->wr_lock); 2335 } 2336 2337 scrub_pending_bio_dec(sctx); 2338 } 2339 2340 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2341 unsigned long *bitmap, 2342 u64 start, u64 len) 2343 { 2344 u64 offset; 2345 u64 nsectors64; 2346 u32 nsectors; 2347 int sectorsize = sparity->sctx->fs_info->sectorsize; 2348 2349 if (len >= sparity->stripe_len) { 2350 bitmap_set(bitmap, 0, sparity->nsectors); 2351 return; 2352 } 2353 2354 start -= sparity->logic_start; 2355 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2356 offset = div_u64(offset, sectorsize); 2357 nsectors64 = div_u64(len, sectorsize); 2358 2359 ASSERT(nsectors64 < UINT_MAX); 2360 nsectors = (u32)nsectors64; 2361 2362 if (offset + nsectors <= sparity->nsectors) { 2363 bitmap_set(bitmap, offset, nsectors); 2364 return; 2365 } 2366 2367 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2368 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2369 } 2370 2371 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2372 u64 start, u64 len) 2373 { 2374 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); 2375 } 2376 2377 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2378 u64 start, u64 len) 2379 { 2380 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); 2381 } 2382 2383 static void scrub_block_complete(struct scrub_block *sblock) 2384 { 2385 int corrupted = 0; 2386 2387 if (!sblock->no_io_error_seen) { 2388 corrupted = 1; 2389 scrub_handle_errored_block(sblock); 2390 } else { 2391 /* 2392 * if has checksum error, write via repair mechanism in 2393 * dev replace case, otherwise write here in dev replace 2394 * case. 2395 */ 2396 corrupted = scrub_checksum(sblock); 2397 if (!corrupted && sblock->sctx->is_dev_replace) 2398 scrub_write_block_to_dev_replace(sblock); 2399 } 2400 2401 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2402 u64 start = sblock->pagev[0]->logical; 2403 u64 end = sblock->pagev[sblock->page_count - 1]->logical + 2404 PAGE_SIZE; 2405 2406 scrub_parity_mark_sectors_error(sblock->sparity, 2407 start, end - start); 2408 } 2409 } 2410 2411 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2412 { 2413 struct btrfs_ordered_sum *sum = NULL; 2414 unsigned long index; 2415 unsigned long num_sectors; 2416 2417 while (!list_empty(&sctx->csum_list)) { 2418 sum = list_first_entry(&sctx->csum_list, 2419 struct btrfs_ordered_sum, list); 2420 if (sum->bytenr > logical) 2421 return 0; 2422 if (sum->bytenr + sum->len > logical) 2423 break; 2424 2425 ++sctx->stat.csum_discards; 2426 list_del(&sum->list); 2427 kfree(sum); 2428 sum = NULL; 2429 } 2430 if (!sum) 2431 return 0; 2432 2433 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); 2434 ASSERT(index < UINT_MAX); 2435 2436 num_sectors = sum->len / sctx->fs_info->sectorsize; 2437 memcpy(csum, sum->sums + index, sctx->csum_size); 2438 if (index == num_sectors - 1) { 2439 list_del(&sum->list); 2440 kfree(sum); 2441 } 2442 return 1; 2443 } 2444 2445 /* scrub extent tries to collect up to 64 kB for each bio */ 2446 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2447 u64 logical, u64 len, 2448 u64 physical, struct btrfs_device *dev, u64 flags, 2449 u64 gen, int mirror_num, u64 physical_for_dev_replace) 2450 { 2451 int ret; 2452 u8 csum[BTRFS_CSUM_SIZE]; 2453 u32 blocksize; 2454 2455 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2456 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2457 blocksize = map->stripe_len; 2458 else 2459 blocksize = sctx->fs_info->sectorsize; 2460 spin_lock(&sctx->stat_lock); 2461 sctx->stat.data_extents_scrubbed++; 2462 sctx->stat.data_bytes_scrubbed += len; 2463 spin_unlock(&sctx->stat_lock); 2464 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2465 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2466 blocksize = map->stripe_len; 2467 else 2468 blocksize = sctx->fs_info->nodesize; 2469 spin_lock(&sctx->stat_lock); 2470 sctx->stat.tree_extents_scrubbed++; 2471 sctx->stat.tree_bytes_scrubbed += len; 2472 spin_unlock(&sctx->stat_lock); 2473 } else { 2474 blocksize = sctx->fs_info->sectorsize; 2475 WARN_ON(1); 2476 } 2477 2478 while (len) { 2479 u64 l = min_t(u64, len, blocksize); 2480 int have_csum = 0; 2481 2482 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2483 /* push csums to sbio */ 2484 have_csum = scrub_find_csum(sctx, logical, csum); 2485 if (have_csum == 0) 2486 ++sctx->stat.no_csum; 2487 } 2488 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, 2489 mirror_num, have_csum ? csum : NULL, 0, 2490 physical_for_dev_replace); 2491 if (ret) 2492 return ret; 2493 len -= l; 2494 logical += l; 2495 physical += l; 2496 physical_for_dev_replace += l; 2497 } 2498 return 0; 2499 } 2500 2501 static int scrub_pages_for_parity(struct scrub_parity *sparity, 2502 u64 logical, u64 len, 2503 u64 physical, struct btrfs_device *dev, 2504 u64 flags, u64 gen, int mirror_num, u8 *csum) 2505 { 2506 struct scrub_ctx *sctx = sparity->sctx; 2507 struct scrub_block *sblock; 2508 int index; 2509 2510 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 2511 if (!sblock) { 2512 spin_lock(&sctx->stat_lock); 2513 sctx->stat.malloc_errors++; 2514 spin_unlock(&sctx->stat_lock); 2515 return -ENOMEM; 2516 } 2517 2518 /* one ref inside this function, plus one for each page added to 2519 * a bio later on */ 2520 refcount_set(&sblock->refs, 1); 2521 sblock->sctx = sctx; 2522 sblock->no_io_error_seen = 1; 2523 sblock->sparity = sparity; 2524 scrub_parity_get(sparity); 2525 2526 for (index = 0; len > 0; index++) { 2527 struct scrub_page *spage; 2528 u64 l = min_t(u64, len, PAGE_SIZE); 2529 2530 spage = kzalloc(sizeof(*spage), GFP_KERNEL); 2531 if (!spage) { 2532 leave_nomem: 2533 spin_lock(&sctx->stat_lock); 2534 sctx->stat.malloc_errors++; 2535 spin_unlock(&sctx->stat_lock); 2536 scrub_block_put(sblock); 2537 return -ENOMEM; 2538 } 2539 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); 2540 /* For scrub block */ 2541 scrub_page_get(spage); 2542 sblock->pagev[index] = spage; 2543 /* For scrub parity */ 2544 scrub_page_get(spage); 2545 list_add_tail(&spage->list, &sparity->spages); 2546 spage->sblock = sblock; 2547 spage->dev = dev; 2548 spage->flags = flags; 2549 spage->generation = gen; 2550 spage->logical = logical; 2551 spage->physical = physical; 2552 spage->mirror_num = mirror_num; 2553 if (csum) { 2554 spage->have_csum = 1; 2555 memcpy(spage->csum, csum, sctx->csum_size); 2556 } else { 2557 spage->have_csum = 0; 2558 } 2559 sblock->page_count++; 2560 spage->page = alloc_page(GFP_KERNEL); 2561 if (!spage->page) 2562 goto leave_nomem; 2563 len -= l; 2564 logical += l; 2565 physical += l; 2566 } 2567 2568 WARN_ON(sblock->page_count == 0); 2569 for (index = 0; index < sblock->page_count; index++) { 2570 struct scrub_page *spage = sblock->pagev[index]; 2571 int ret; 2572 2573 ret = scrub_add_page_to_rd_bio(sctx, spage); 2574 if (ret) { 2575 scrub_block_put(sblock); 2576 return ret; 2577 } 2578 } 2579 2580 /* last one frees, either here or in bio completion for last page */ 2581 scrub_block_put(sblock); 2582 return 0; 2583 } 2584 2585 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2586 u64 logical, u64 len, 2587 u64 physical, struct btrfs_device *dev, 2588 u64 flags, u64 gen, int mirror_num) 2589 { 2590 struct scrub_ctx *sctx = sparity->sctx; 2591 int ret; 2592 u8 csum[BTRFS_CSUM_SIZE]; 2593 u32 blocksize; 2594 2595 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2596 scrub_parity_mark_sectors_error(sparity, logical, len); 2597 return 0; 2598 } 2599 2600 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2601 blocksize = sparity->stripe_len; 2602 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2603 blocksize = sparity->stripe_len; 2604 } else { 2605 blocksize = sctx->fs_info->sectorsize; 2606 WARN_ON(1); 2607 } 2608 2609 while (len) { 2610 u64 l = min_t(u64, len, blocksize); 2611 int have_csum = 0; 2612 2613 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2614 /* push csums to sbio */ 2615 have_csum = scrub_find_csum(sctx, logical, csum); 2616 if (have_csum == 0) 2617 goto skip; 2618 } 2619 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, 2620 flags, gen, mirror_num, 2621 have_csum ? csum : NULL); 2622 if (ret) 2623 return ret; 2624 skip: 2625 len -= l; 2626 logical += l; 2627 physical += l; 2628 } 2629 return 0; 2630 } 2631 2632 /* 2633 * Given a physical address, this will calculate it's 2634 * logical offset. if this is a parity stripe, it will return 2635 * the most left data stripe's logical offset. 2636 * 2637 * return 0 if it is a data stripe, 1 means parity stripe. 2638 */ 2639 static int get_raid56_logic_offset(u64 physical, int num, 2640 struct map_lookup *map, u64 *offset, 2641 u64 *stripe_start) 2642 { 2643 int i; 2644 int j = 0; 2645 u64 stripe_nr; 2646 u64 last_offset; 2647 u32 stripe_index; 2648 u32 rot; 2649 2650 last_offset = (physical - map->stripes[num].physical) * 2651 nr_data_stripes(map); 2652 if (stripe_start) 2653 *stripe_start = last_offset; 2654 2655 *offset = last_offset; 2656 for (i = 0; i < nr_data_stripes(map); i++) { 2657 *offset = last_offset + i * map->stripe_len; 2658 2659 stripe_nr = div64_u64(*offset, map->stripe_len); 2660 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); 2661 2662 /* Work out the disk rotation on this stripe-set */ 2663 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2664 /* calculate which stripe this data locates */ 2665 rot += i; 2666 stripe_index = rot % map->num_stripes; 2667 if (stripe_index == num) 2668 return 0; 2669 if (stripe_index < num) 2670 j++; 2671 } 2672 *offset = last_offset + j * map->stripe_len; 2673 return 1; 2674 } 2675 2676 static void scrub_free_parity(struct scrub_parity *sparity) 2677 { 2678 struct scrub_ctx *sctx = sparity->sctx; 2679 struct scrub_page *curr, *next; 2680 int nbits; 2681 2682 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); 2683 if (nbits) { 2684 spin_lock(&sctx->stat_lock); 2685 sctx->stat.read_errors += nbits; 2686 sctx->stat.uncorrectable_errors += nbits; 2687 spin_unlock(&sctx->stat_lock); 2688 } 2689 2690 list_for_each_entry_safe(curr, next, &sparity->spages, list) { 2691 list_del_init(&curr->list); 2692 scrub_page_put(curr); 2693 } 2694 2695 kfree(sparity); 2696 } 2697 2698 static void scrub_parity_bio_endio_worker(struct btrfs_work *work) 2699 { 2700 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2701 work); 2702 struct scrub_ctx *sctx = sparity->sctx; 2703 2704 scrub_free_parity(sparity); 2705 scrub_pending_bio_dec(sctx); 2706 } 2707 2708 static void scrub_parity_bio_endio(struct bio *bio) 2709 { 2710 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; 2711 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2712 2713 if (bio->bi_status) 2714 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2715 sparity->nsectors); 2716 2717 bio_put(bio); 2718 2719 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, 2720 scrub_parity_bio_endio_worker, NULL, NULL); 2721 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); 2722 } 2723 2724 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2725 { 2726 struct scrub_ctx *sctx = sparity->sctx; 2727 struct btrfs_fs_info *fs_info = sctx->fs_info; 2728 struct bio *bio; 2729 struct btrfs_raid_bio *rbio; 2730 struct btrfs_bio *bbio = NULL; 2731 u64 length; 2732 int ret; 2733 2734 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, 2735 sparity->nsectors)) 2736 goto out; 2737 2738 length = sparity->logic_end - sparity->logic_start; 2739 2740 btrfs_bio_counter_inc_blocked(fs_info); 2741 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2742 &length, &bbio); 2743 if (ret || !bbio || !bbio->raid_map) 2744 goto bbio_out; 2745 2746 bio = btrfs_io_bio_alloc(0); 2747 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2748 bio->bi_private = sparity; 2749 bio->bi_end_io = scrub_parity_bio_endio; 2750 2751 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, 2752 length, sparity->scrub_dev, 2753 sparity->dbitmap, 2754 sparity->nsectors); 2755 if (!rbio) 2756 goto rbio_out; 2757 2758 scrub_pending_bio_inc(sctx); 2759 raid56_parity_submit_scrub_rbio(rbio); 2760 return; 2761 2762 rbio_out: 2763 bio_put(bio); 2764 bbio_out: 2765 btrfs_bio_counter_dec(fs_info); 2766 btrfs_put_bbio(bbio); 2767 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, 2768 sparity->nsectors); 2769 spin_lock(&sctx->stat_lock); 2770 sctx->stat.malloc_errors++; 2771 spin_unlock(&sctx->stat_lock); 2772 out: 2773 scrub_free_parity(sparity); 2774 } 2775 2776 static inline int scrub_calc_parity_bitmap_len(int nsectors) 2777 { 2778 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); 2779 } 2780 2781 static void scrub_parity_get(struct scrub_parity *sparity) 2782 { 2783 refcount_inc(&sparity->refs); 2784 } 2785 2786 static void scrub_parity_put(struct scrub_parity *sparity) 2787 { 2788 if (!refcount_dec_and_test(&sparity->refs)) 2789 return; 2790 2791 scrub_parity_check_and_repair(sparity); 2792 } 2793 2794 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 2795 struct map_lookup *map, 2796 struct btrfs_device *sdev, 2797 struct btrfs_path *path, 2798 u64 logic_start, 2799 u64 logic_end) 2800 { 2801 struct btrfs_fs_info *fs_info = sctx->fs_info; 2802 struct btrfs_root *root = fs_info->extent_root; 2803 struct btrfs_root *csum_root = fs_info->csum_root; 2804 struct btrfs_extent_item *extent; 2805 struct btrfs_bio *bbio = NULL; 2806 u64 flags; 2807 int ret; 2808 int slot; 2809 struct extent_buffer *l; 2810 struct btrfs_key key; 2811 u64 generation; 2812 u64 extent_logical; 2813 u64 extent_physical; 2814 u64 extent_len; 2815 u64 mapped_length; 2816 struct btrfs_device *extent_dev; 2817 struct scrub_parity *sparity; 2818 int nsectors; 2819 int bitmap_len; 2820 int extent_mirror_num; 2821 int stop_loop = 0; 2822 2823 nsectors = div_u64(map->stripe_len, fs_info->sectorsize); 2824 bitmap_len = scrub_calc_parity_bitmap_len(nsectors); 2825 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, 2826 GFP_NOFS); 2827 if (!sparity) { 2828 spin_lock(&sctx->stat_lock); 2829 sctx->stat.malloc_errors++; 2830 spin_unlock(&sctx->stat_lock); 2831 return -ENOMEM; 2832 } 2833 2834 sparity->stripe_len = map->stripe_len; 2835 sparity->nsectors = nsectors; 2836 sparity->sctx = sctx; 2837 sparity->scrub_dev = sdev; 2838 sparity->logic_start = logic_start; 2839 sparity->logic_end = logic_end; 2840 refcount_set(&sparity->refs, 1); 2841 INIT_LIST_HEAD(&sparity->spages); 2842 sparity->dbitmap = sparity->bitmap; 2843 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; 2844 2845 ret = 0; 2846 while (logic_start < logic_end) { 2847 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2848 key.type = BTRFS_METADATA_ITEM_KEY; 2849 else 2850 key.type = BTRFS_EXTENT_ITEM_KEY; 2851 key.objectid = logic_start; 2852 key.offset = (u64)-1; 2853 2854 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2855 if (ret < 0) 2856 goto out; 2857 2858 if (ret > 0) { 2859 ret = btrfs_previous_extent_item(root, path, 0); 2860 if (ret < 0) 2861 goto out; 2862 if (ret > 0) { 2863 btrfs_release_path(path); 2864 ret = btrfs_search_slot(NULL, root, &key, 2865 path, 0, 0); 2866 if (ret < 0) 2867 goto out; 2868 } 2869 } 2870 2871 stop_loop = 0; 2872 while (1) { 2873 u64 bytes; 2874 2875 l = path->nodes[0]; 2876 slot = path->slots[0]; 2877 if (slot >= btrfs_header_nritems(l)) { 2878 ret = btrfs_next_leaf(root, path); 2879 if (ret == 0) 2880 continue; 2881 if (ret < 0) 2882 goto out; 2883 2884 stop_loop = 1; 2885 break; 2886 } 2887 btrfs_item_key_to_cpu(l, &key, slot); 2888 2889 if (key.type != BTRFS_EXTENT_ITEM_KEY && 2890 key.type != BTRFS_METADATA_ITEM_KEY) 2891 goto next; 2892 2893 if (key.type == BTRFS_METADATA_ITEM_KEY) 2894 bytes = fs_info->nodesize; 2895 else 2896 bytes = key.offset; 2897 2898 if (key.objectid + bytes <= logic_start) 2899 goto next; 2900 2901 if (key.objectid >= logic_end) { 2902 stop_loop = 1; 2903 break; 2904 } 2905 2906 while (key.objectid >= logic_start + map->stripe_len) 2907 logic_start += map->stripe_len; 2908 2909 extent = btrfs_item_ptr(l, slot, 2910 struct btrfs_extent_item); 2911 flags = btrfs_extent_flags(l, extent); 2912 generation = btrfs_extent_generation(l, extent); 2913 2914 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 2915 (key.objectid < logic_start || 2916 key.objectid + bytes > 2917 logic_start + map->stripe_len)) { 2918 btrfs_err(fs_info, 2919 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 2920 key.objectid, logic_start); 2921 spin_lock(&sctx->stat_lock); 2922 sctx->stat.uncorrectable_errors++; 2923 spin_unlock(&sctx->stat_lock); 2924 goto next; 2925 } 2926 again: 2927 extent_logical = key.objectid; 2928 extent_len = bytes; 2929 2930 if (extent_logical < logic_start) { 2931 extent_len -= logic_start - extent_logical; 2932 extent_logical = logic_start; 2933 } 2934 2935 if (extent_logical + extent_len > 2936 logic_start + map->stripe_len) 2937 extent_len = logic_start + map->stripe_len - 2938 extent_logical; 2939 2940 scrub_parity_mark_sectors_data(sparity, extent_logical, 2941 extent_len); 2942 2943 mapped_length = extent_len; 2944 bbio = NULL; 2945 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, 2946 extent_logical, &mapped_length, &bbio, 2947 0); 2948 if (!ret) { 2949 if (!bbio || mapped_length < extent_len) 2950 ret = -EIO; 2951 } 2952 if (ret) { 2953 btrfs_put_bbio(bbio); 2954 goto out; 2955 } 2956 extent_physical = bbio->stripes[0].physical; 2957 extent_mirror_num = bbio->mirror_num; 2958 extent_dev = bbio->stripes[0].dev; 2959 btrfs_put_bbio(bbio); 2960 2961 ret = btrfs_lookup_csums_range(csum_root, 2962 extent_logical, 2963 extent_logical + extent_len - 1, 2964 &sctx->csum_list, 1); 2965 if (ret) 2966 goto out; 2967 2968 ret = scrub_extent_for_parity(sparity, extent_logical, 2969 extent_len, 2970 extent_physical, 2971 extent_dev, flags, 2972 generation, 2973 extent_mirror_num); 2974 2975 scrub_free_csums(sctx); 2976 2977 if (ret) 2978 goto out; 2979 2980 if (extent_logical + extent_len < 2981 key.objectid + bytes) { 2982 logic_start += map->stripe_len; 2983 2984 if (logic_start >= logic_end) { 2985 stop_loop = 1; 2986 break; 2987 } 2988 2989 if (logic_start < key.objectid + bytes) { 2990 cond_resched(); 2991 goto again; 2992 } 2993 } 2994 next: 2995 path->slots[0]++; 2996 } 2997 2998 btrfs_release_path(path); 2999 3000 if (stop_loop) 3001 break; 3002 3003 logic_start += map->stripe_len; 3004 } 3005 out: 3006 if (ret < 0) 3007 scrub_parity_mark_sectors_error(sparity, logic_start, 3008 logic_end - logic_start); 3009 scrub_parity_put(sparity); 3010 scrub_submit(sctx); 3011 mutex_lock(&sctx->wr_lock); 3012 scrub_wr_submit(sctx); 3013 mutex_unlock(&sctx->wr_lock); 3014 3015 btrfs_release_path(path); 3016 return ret < 0 ? ret : 0; 3017 } 3018 3019 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3020 struct map_lookup *map, 3021 struct btrfs_device *scrub_dev, 3022 int num, u64 base, u64 length) 3023 { 3024 struct btrfs_path *path, *ppath; 3025 struct btrfs_fs_info *fs_info = sctx->fs_info; 3026 struct btrfs_root *root = fs_info->extent_root; 3027 struct btrfs_root *csum_root = fs_info->csum_root; 3028 struct btrfs_extent_item *extent; 3029 struct blk_plug plug; 3030 u64 flags; 3031 int ret; 3032 int slot; 3033 u64 nstripes; 3034 struct extent_buffer *l; 3035 u64 physical; 3036 u64 logical; 3037 u64 logic_end; 3038 u64 physical_end; 3039 u64 generation; 3040 int mirror_num; 3041 struct reada_control *reada1; 3042 struct reada_control *reada2; 3043 struct btrfs_key key; 3044 struct btrfs_key key_end; 3045 u64 increment = map->stripe_len; 3046 u64 offset; 3047 u64 extent_logical; 3048 u64 extent_physical; 3049 u64 extent_len; 3050 u64 stripe_logical; 3051 u64 stripe_end; 3052 struct btrfs_device *extent_dev; 3053 int extent_mirror_num; 3054 int stop_loop = 0; 3055 3056 physical = map->stripes[num].physical; 3057 offset = 0; 3058 nstripes = div64_u64(length, map->stripe_len); 3059 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 3060 offset = map->stripe_len * num; 3061 increment = map->stripe_len * map->num_stripes; 3062 mirror_num = 1; 3063 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 3064 int factor = map->num_stripes / map->sub_stripes; 3065 offset = map->stripe_len * (num / map->sub_stripes); 3066 increment = map->stripe_len * factor; 3067 mirror_num = num % map->sub_stripes + 1; 3068 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 3069 increment = map->stripe_len; 3070 mirror_num = num % map->num_stripes + 1; 3071 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 3072 increment = map->stripe_len; 3073 mirror_num = num % map->num_stripes + 1; 3074 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3075 get_raid56_logic_offset(physical, num, map, &offset, NULL); 3076 increment = map->stripe_len * nr_data_stripes(map); 3077 mirror_num = 1; 3078 } else { 3079 increment = map->stripe_len; 3080 mirror_num = 1; 3081 } 3082 3083 path = btrfs_alloc_path(); 3084 if (!path) 3085 return -ENOMEM; 3086 3087 ppath = btrfs_alloc_path(); 3088 if (!ppath) { 3089 btrfs_free_path(path); 3090 return -ENOMEM; 3091 } 3092 3093 /* 3094 * work on commit root. The related disk blocks are static as 3095 * long as COW is applied. This means, it is save to rewrite 3096 * them to repair disk errors without any race conditions 3097 */ 3098 path->search_commit_root = 1; 3099 path->skip_locking = 1; 3100 3101 ppath->search_commit_root = 1; 3102 ppath->skip_locking = 1; 3103 /* 3104 * trigger the readahead for extent tree csum tree and wait for 3105 * completion. During readahead, the scrub is officially paused 3106 * to not hold off transaction commits 3107 */ 3108 logical = base + offset; 3109 physical_end = physical + nstripes * map->stripe_len; 3110 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3111 get_raid56_logic_offset(physical_end, num, 3112 map, &logic_end, NULL); 3113 logic_end += base; 3114 } else { 3115 logic_end = logical + increment * nstripes; 3116 } 3117 wait_event(sctx->list_wait, 3118 atomic_read(&sctx->bios_in_flight) == 0); 3119 scrub_blocked_if_needed(fs_info); 3120 3121 /* FIXME it might be better to start readahead at commit root */ 3122 key.objectid = logical; 3123 key.type = BTRFS_EXTENT_ITEM_KEY; 3124 key.offset = (u64)0; 3125 key_end.objectid = logic_end; 3126 key_end.type = BTRFS_METADATA_ITEM_KEY; 3127 key_end.offset = (u64)-1; 3128 reada1 = btrfs_reada_add(root, &key, &key_end); 3129 3130 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3131 key.type = BTRFS_EXTENT_CSUM_KEY; 3132 key.offset = logical; 3133 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; 3134 key_end.type = BTRFS_EXTENT_CSUM_KEY; 3135 key_end.offset = logic_end; 3136 reada2 = btrfs_reada_add(csum_root, &key, &key_end); 3137 3138 if (!IS_ERR(reada1)) 3139 btrfs_reada_wait(reada1); 3140 if (!IS_ERR(reada2)) 3141 btrfs_reada_wait(reada2); 3142 3143 3144 /* 3145 * collect all data csums for the stripe to avoid seeking during 3146 * the scrub. This might currently (crc32) end up to be about 1MB 3147 */ 3148 blk_start_plug(&plug); 3149 3150 /* 3151 * now find all extents for each stripe and scrub them 3152 */ 3153 ret = 0; 3154 while (physical < physical_end) { 3155 /* 3156 * canceled? 3157 */ 3158 if (atomic_read(&fs_info->scrub_cancel_req) || 3159 atomic_read(&sctx->cancel_req)) { 3160 ret = -ECANCELED; 3161 goto out; 3162 } 3163 /* 3164 * check to see if we have to pause 3165 */ 3166 if (atomic_read(&fs_info->scrub_pause_req)) { 3167 /* push queued extents */ 3168 sctx->flush_all_writes = true; 3169 scrub_submit(sctx); 3170 mutex_lock(&sctx->wr_lock); 3171 scrub_wr_submit(sctx); 3172 mutex_unlock(&sctx->wr_lock); 3173 wait_event(sctx->list_wait, 3174 atomic_read(&sctx->bios_in_flight) == 0); 3175 sctx->flush_all_writes = false; 3176 scrub_blocked_if_needed(fs_info); 3177 } 3178 3179 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3180 ret = get_raid56_logic_offset(physical, num, map, 3181 &logical, 3182 &stripe_logical); 3183 logical += base; 3184 if (ret) { 3185 /* it is parity strip */ 3186 stripe_logical += base; 3187 stripe_end = stripe_logical + increment; 3188 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3189 ppath, stripe_logical, 3190 stripe_end); 3191 if (ret) 3192 goto out; 3193 goto skip; 3194 } 3195 } 3196 3197 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3198 key.type = BTRFS_METADATA_ITEM_KEY; 3199 else 3200 key.type = BTRFS_EXTENT_ITEM_KEY; 3201 key.objectid = logical; 3202 key.offset = (u64)-1; 3203 3204 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3205 if (ret < 0) 3206 goto out; 3207 3208 if (ret > 0) { 3209 ret = btrfs_previous_extent_item(root, path, 0); 3210 if (ret < 0) 3211 goto out; 3212 if (ret > 0) { 3213 /* there's no smaller item, so stick with the 3214 * larger one */ 3215 btrfs_release_path(path); 3216 ret = btrfs_search_slot(NULL, root, &key, 3217 path, 0, 0); 3218 if (ret < 0) 3219 goto out; 3220 } 3221 } 3222 3223 stop_loop = 0; 3224 while (1) { 3225 u64 bytes; 3226 3227 l = path->nodes[0]; 3228 slot = path->slots[0]; 3229 if (slot >= btrfs_header_nritems(l)) { 3230 ret = btrfs_next_leaf(root, path); 3231 if (ret == 0) 3232 continue; 3233 if (ret < 0) 3234 goto out; 3235 3236 stop_loop = 1; 3237 break; 3238 } 3239 btrfs_item_key_to_cpu(l, &key, slot); 3240 3241 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3242 key.type != BTRFS_METADATA_ITEM_KEY) 3243 goto next; 3244 3245 if (key.type == BTRFS_METADATA_ITEM_KEY) 3246 bytes = fs_info->nodesize; 3247 else 3248 bytes = key.offset; 3249 3250 if (key.objectid + bytes <= logical) 3251 goto next; 3252 3253 if (key.objectid >= logical + map->stripe_len) { 3254 /* out of this device extent */ 3255 if (key.objectid >= logic_end) 3256 stop_loop = 1; 3257 break; 3258 } 3259 3260 extent = btrfs_item_ptr(l, slot, 3261 struct btrfs_extent_item); 3262 flags = btrfs_extent_flags(l, extent); 3263 generation = btrfs_extent_generation(l, extent); 3264 3265 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3266 (key.objectid < logical || 3267 key.objectid + bytes > 3268 logical + map->stripe_len)) { 3269 btrfs_err(fs_info, 3270 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3271 key.objectid, logical); 3272 spin_lock(&sctx->stat_lock); 3273 sctx->stat.uncorrectable_errors++; 3274 spin_unlock(&sctx->stat_lock); 3275 goto next; 3276 } 3277 3278 again: 3279 extent_logical = key.objectid; 3280 extent_len = bytes; 3281 3282 /* 3283 * trim extent to this stripe 3284 */ 3285 if (extent_logical < logical) { 3286 extent_len -= logical - extent_logical; 3287 extent_logical = logical; 3288 } 3289 if (extent_logical + extent_len > 3290 logical + map->stripe_len) { 3291 extent_len = logical + map->stripe_len - 3292 extent_logical; 3293 } 3294 3295 extent_physical = extent_logical - logical + physical; 3296 extent_dev = scrub_dev; 3297 extent_mirror_num = mirror_num; 3298 if (sctx->is_dev_replace) 3299 scrub_remap_extent(fs_info, extent_logical, 3300 extent_len, &extent_physical, 3301 &extent_dev, 3302 &extent_mirror_num); 3303 3304 ret = btrfs_lookup_csums_range(csum_root, 3305 extent_logical, 3306 extent_logical + 3307 extent_len - 1, 3308 &sctx->csum_list, 1); 3309 if (ret) 3310 goto out; 3311 3312 ret = scrub_extent(sctx, map, extent_logical, extent_len, 3313 extent_physical, extent_dev, flags, 3314 generation, extent_mirror_num, 3315 extent_logical - logical + physical); 3316 3317 scrub_free_csums(sctx); 3318 3319 if (ret) 3320 goto out; 3321 3322 if (extent_logical + extent_len < 3323 key.objectid + bytes) { 3324 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 3325 /* 3326 * loop until we find next data stripe 3327 * or we have finished all stripes. 3328 */ 3329 loop: 3330 physical += map->stripe_len; 3331 ret = get_raid56_logic_offset(physical, 3332 num, map, &logical, 3333 &stripe_logical); 3334 logical += base; 3335 3336 if (ret && physical < physical_end) { 3337 stripe_logical += base; 3338 stripe_end = stripe_logical + 3339 increment; 3340 ret = scrub_raid56_parity(sctx, 3341 map, scrub_dev, ppath, 3342 stripe_logical, 3343 stripe_end); 3344 if (ret) 3345 goto out; 3346 goto loop; 3347 } 3348 } else { 3349 physical += map->stripe_len; 3350 logical += increment; 3351 } 3352 if (logical < key.objectid + bytes) { 3353 cond_resched(); 3354 goto again; 3355 } 3356 3357 if (physical >= physical_end) { 3358 stop_loop = 1; 3359 break; 3360 } 3361 } 3362 next: 3363 path->slots[0]++; 3364 } 3365 btrfs_release_path(path); 3366 skip: 3367 logical += increment; 3368 physical += map->stripe_len; 3369 spin_lock(&sctx->stat_lock); 3370 if (stop_loop) 3371 sctx->stat.last_physical = map->stripes[num].physical + 3372 length; 3373 else 3374 sctx->stat.last_physical = physical; 3375 spin_unlock(&sctx->stat_lock); 3376 if (stop_loop) 3377 break; 3378 } 3379 out: 3380 /* push queued extents */ 3381 scrub_submit(sctx); 3382 mutex_lock(&sctx->wr_lock); 3383 scrub_wr_submit(sctx); 3384 mutex_unlock(&sctx->wr_lock); 3385 3386 blk_finish_plug(&plug); 3387 btrfs_free_path(path); 3388 btrfs_free_path(ppath); 3389 return ret < 0 ? ret : 0; 3390 } 3391 3392 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3393 struct btrfs_device *scrub_dev, 3394 u64 chunk_offset, u64 length, 3395 u64 dev_offset, 3396 struct btrfs_block_group_cache *cache) 3397 { 3398 struct btrfs_fs_info *fs_info = sctx->fs_info; 3399 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 3400 struct map_lookup *map; 3401 struct extent_map *em; 3402 int i; 3403 int ret = 0; 3404 3405 read_lock(&map_tree->map_tree.lock); 3406 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 3407 read_unlock(&map_tree->map_tree.lock); 3408 3409 if (!em) { 3410 /* 3411 * Might have been an unused block group deleted by the cleaner 3412 * kthread or relocation. 3413 */ 3414 spin_lock(&cache->lock); 3415 if (!cache->removed) 3416 ret = -EINVAL; 3417 spin_unlock(&cache->lock); 3418 3419 return ret; 3420 } 3421 3422 map = em->map_lookup; 3423 if (em->start != chunk_offset) 3424 goto out; 3425 3426 if (em->len < length) 3427 goto out; 3428 3429 for (i = 0; i < map->num_stripes; ++i) { 3430 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3431 map->stripes[i].physical == dev_offset) { 3432 ret = scrub_stripe(sctx, map, scrub_dev, i, 3433 chunk_offset, length); 3434 if (ret) 3435 goto out; 3436 } 3437 } 3438 out: 3439 free_extent_map(em); 3440 3441 return ret; 3442 } 3443 3444 static noinline_for_stack 3445 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3446 struct btrfs_device *scrub_dev, u64 start, u64 end) 3447 { 3448 struct btrfs_dev_extent *dev_extent = NULL; 3449 struct btrfs_path *path; 3450 struct btrfs_fs_info *fs_info = sctx->fs_info; 3451 struct btrfs_root *root = fs_info->dev_root; 3452 u64 length; 3453 u64 chunk_offset; 3454 int ret = 0; 3455 int ro_set; 3456 int slot; 3457 struct extent_buffer *l; 3458 struct btrfs_key key; 3459 struct btrfs_key found_key; 3460 struct btrfs_block_group_cache *cache; 3461 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3462 3463 path = btrfs_alloc_path(); 3464 if (!path) 3465 return -ENOMEM; 3466 3467 path->reada = READA_FORWARD; 3468 path->search_commit_root = 1; 3469 path->skip_locking = 1; 3470 3471 key.objectid = scrub_dev->devid; 3472 key.offset = 0ull; 3473 key.type = BTRFS_DEV_EXTENT_KEY; 3474 3475 while (1) { 3476 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3477 if (ret < 0) 3478 break; 3479 if (ret > 0) { 3480 if (path->slots[0] >= 3481 btrfs_header_nritems(path->nodes[0])) { 3482 ret = btrfs_next_leaf(root, path); 3483 if (ret < 0) 3484 break; 3485 if (ret > 0) { 3486 ret = 0; 3487 break; 3488 } 3489 } else { 3490 ret = 0; 3491 } 3492 } 3493 3494 l = path->nodes[0]; 3495 slot = path->slots[0]; 3496 3497 btrfs_item_key_to_cpu(l, &found_key, slot); 3498 3499 if (found_key.objectid != scrub_dev->devid) 3500 break; 3501 3502 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3503 break; 3504 3505 if (found_key.offset >= end) 3506 break; 3507 3508 if (found_key.offset < key.offset) 3509 break; 3510 3511 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3512 length = btrfs_dev_extent_length(l, dev_extent); 3513 3514 if (found_key.offset + length <= start) 3515 goto skip; 3516 3517 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3518 3519 /* 3520 * get a reference on the corresponding block group to prevent 3521 * the chunk from going away while we scrub it 3522 */ 3523 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3524 3525 /* some chunks are removed but not committed to disk yet, 3526 * continue scrubbing */ 3527 if (!cache) 3528 goto skip; 3529 3530 /* 3531 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3532 * to avoid deadlock caused by: 3533 * btrfs_inc_block_group_ro() 3534 * -> btrfs_wait_for_commit() 3535 * -> btrfs_commit_transaction() 3536 * -> btrfs_scrub_pause() 3537 */ 3538 scrub_pause_on(fs_info); 3539 ret = btrfs_inc_block_group_ro(cache); 3540 if (!ret && sctx->is_dev_replace) { 3541 /* 3542 * If we are doing a device replace wait for any tasks 3543 * that started dellaloc right before we set the block 3544 * group to RO mode, as they might have just allocated 3545 * an extent from it or decided they could do a nocow 3546 * write. And if any such tasks did that, wait for their 3547 * ordered extents to complete and then commit the 3548 * current transaction, so that we can later see the new 3549 * extent items in the extent tree - the ordered extents 3550 * create delayed data references (for cow writes) when 3551 * they complete, which will be run and insert the 3552 * corresponding extent items into the extent tree when 3553 * we commit the transaction they used when running 3554 * inode.c:btrfs_finish_ordered_io(). We later use 3555 * the commit root of the extent tree to find extents 3556 * to copy from the srcdev into the tgtdev, and we don't 3557 * want to miss any new extents. 3558 */ 3559 btrfs_wait_block_group_reservations(cache); 3560 btrfs_wait_nocow_writers(cache); 3561 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX, 3562 cache->key.objectid, 3563 cache->key.offset); 3564 if (ret > 0) { 3565 struct btrfs_trans_handle *trans; 3566 3567 trans = btrfs_join_transaction(root); 3568 if (IS_ERR(trans)) 3569 ret = PTR_ERR(trans); 3570 else 3571 ret = btrfs_commit_transaction(trans); 3572 if (ret) { 3573 scrub_pause_off(fs_info); 3574 btrfs_put_block_group(cache); 3575 break; 3576 } 3577 } 3578 } 3579 scrub_pause_off(fs_info); 3580 3581 if (ret == 0) { 3582 ro_set = 1; 3583 } else if (ret == -ENOSPC) { 3584 /* 3585 * btrfs_inc_block_group_ro return -ENOSPC when it 3586 * failed in creating new chunk for metadata. 3587 * It is not a problem for scrub/replace, because 3588 * metadata are always cowed, and our scrub paused 3589 * commit_transactions. 3590 */ 3591 ro_set = 0; 3592 } else { 3593 btrfs_warn(fs_info, 3594 "failed setting block group ro: %d", ret); 3595 btrfs_put_block_group(cache); 3596 break; 3597 } 3598 3599 btrfs_dev_replace_write_lock(&fs_info->dev_replace); 3600 dev_replace->cursor_right = found_key.offset + length; 3601 dev_replace->cursor_left = found_key.offset; 3602 dev_replace->item_needs_writeback = 1; 3603 btrfs_dev_replace_write_unlock(&fs_info->dev_replace); 3604 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, 3605 found_key.offset, cache); 3606 3607 /* 3608 * flush, submit all pending read and write bios, afterwards 3609 * wait for them. 3610 * Note that in the dev replace case, a read request causes 3611 * write requests that are submitted in the read completion 3612 * worker. Therefore in the current situation, it is required 3613 * that all write requests are flushed, so that all read and 3614 * write requests are really completed when bios_in_flight 3615 * changes to 0. 3616 */ 3617 sctx->flush_all_writes = true; 3618 scrub_submit(sctx); 3619 mutex_lock(&sctx->wr_lock); 3620 scrub_wr_submit(sctx); 3621 mutex_unlock(&sctx->wr_lock); 3622 3623 wait_event(sctx->list_wait, 3624 atomic_read(&sctx->bios_in_flight) == 0); 3625 3626 scrub_pause_on(fs_info); 3627 3628 /* 3629 * must be called before we decrease @scrub_paused. 3630 * make sure we don't block transaction commit while 3631 * we are waiting pending workers finished. 3632 */ 3633 wait_event(sctx->list_wait, 3634 atomic_read(&sctx->workers_pending) == 0); 3635 sctx->flush_all_writes = false; 3636 3637 scrub_pause_off(fs_info); 3638 3639 btrfs_dev_replace_write_lock(&fs_info->dev_replace); 3640 dev_replace->cursor_left = dev_replace->cursor_right; 3641 dev_replace->item_needs_writeback = 1; 3642 btrfs_dev_replace_write_unlock(&fs_info->dev_replace); 3643 3644 if (ro_set) 3645 btrfs_dec_block_group_ro(cache); 3646 3647 /* 3648 * We might have prevented the cleaner kthread from deleting 3649 * this block group if it was already unused because we raced 3650 * and set it to RO mode first. So add it back to the unused 3651 * list, otherwise it might not ever be deleted unless a manual 3652 * balance is triggered or it becomes used and unused again. 3653 */ 3654 spin_lock(&cache->lock); 3655 if (!cache->removed && !cache->ro && cache->reserved == 0 && 3656 btrfs_block_group_used(&cache->item) == 0) { 3657 spin_unlock(&cache->lock); 3658 btrfs_mark_bg_unused(cache); 3659 } else { 3660 spin_unlock(&cache->lock); 3661 } 3662 3663 btrfs_put_block_group(cache); 3664 if (ret) 3665 break; 3666 if (sctx->is_dev_replace && 3667 atomic64_read(&dev_replace->num_write_errors) > 0) { 3668 ret = -EIO; 3669 break; 3670 } 3671 if (sctx->stat.malloc_errors > 0) { 3672 ret = -ENOMEM; 3673 break; 3674 } 3675 skip: 3676 key.offset = found_key.offset + length; 3677 btrfs_release_path(path); 3678 } 3679 3680 btrfs_free_path(path); 3681 3682 return ret; 3683 } 3684 3685 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 3686 struct btrfs_device *scrub_dev) 3687 { 3688 int i; 3689 u64 bytenr; 3690 u64 gen; 3691 int ret; 3692 struct btrfs_fs_info *fs_info = sctx->fs_info; 3693 3694 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3695 return -EIO; 3696 3697 /* Seed devices of a new filesystem has their own generation. */ 3698 if (scrub_dev->fs_devices != fs_info->fs_devices) 3699 gen = scrub_dev->generation; 3700 else 3701 gen = fs_info->last_trans_committed; 3702 3703 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 3704 bytenr = btrfs_sb_offset(i); 3705 if (bytenr + BTRFS_SUPER_INFO_SIZE > 3706 scrub_dev->commit_total_bytes) 3707 break; 3708 3709 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 3710 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 3711 NULL, 1, bytenr); 3712 if (ret) 3713 return ret; 3714 } 3715 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3716 3717 return 0; 3718 } 3719 3720 /* 3721 * get a reference count on fs_info->scrub_workers. start worker if necessary 3722 */ 3723 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 3724 int is_dev_replace) 3725 { 3726 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 3727 int max_active = fs_info->thread_pool_size; 3728 3729 if (fs_info->scrub_workers_refcnt == 0) { 3730 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", 3731 flags, is_dev_replace ? 1 : max_active, 4); 3732 if (!fs_info->scrub_workers) 3733 goto fail_scrub_workers; 3734 3735 fs_info->scrub_wr_completion_workers = 3736 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, 3737 max_active, 2); 3738 if (!fs_info->scrub_wr_completion_workers) 3739 goto fail_scrub_wr_completion_workers; 3740 3741 fs_info->scrub_parity_workers = 3742 btrfs_alloc_workqueue(fs_info, "scrubparity", flags, 3743 max_active, 2); 3744 if (!fs_info->scrub_parity_workers) 3745 goto fail_scrub_parity_workers; 3746 } 3747 ++fs_info->scrub_workers_refcnt; 3748 return 0; 3749 3750 fail_scrub_parity_workers: 3751 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3752 fail_scrub_wr_completion_workers: 3753 btrfs_destroy_workqueue(fs_info->scrub_workers); 3754 fail_scrub_workers: 3755 return -ENOMEM; 3756 } 3757 3758 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) 3759 { 3760 if (--fs_info->scrub_workers_refcnt == 0) { 3761 btrfs_destroy_workqueue(fs_info->scrub_workers); 3762 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); 3763 btrfs_destroy_workqueue(fs_info->scrub_parity_workers); 3764 } 3765 WARN_ON(fs_info->scrub_workers_refcnt < 0); 3766 } 3767 3768 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3769 u64 end, struct btrfs_scrub_progress *progress, 3770 int readonly, int is_dev_replace) 3771 { 3772 struct scrub_ctx *sctx; 3773 int ret; 3774 struct btrfs_device *dev; 3775 3776 if (btrfs_fs_closing(fs_info)) 3777 return -EINVAL; 3778 3779 if (fs_info->nodesize > BTRFS_STRIPE_LEN) { 3780 /* 3781 * in this case scrub is unable to calculate the checksum 3782 * the way scrub is implemented. Do not handle this 3783 * situation at all because it won't ever happen. 3784 */ 3785 btrfs_err(fs_info, 3786 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", 3787 fs_info->nodesize, 3788 BTRFS_STRIPE_LEN); 3789 return -EINVAL; 3790 } 3791 3792 if (fs_info->sectorsize != PAGE_SIZE) { 3793 /* not supported for data w/o checksums */ 3794 btrfs_err_rl(fs_info, 3795 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", 3796 fs_info->sectorsize, PAGE_SIZE); 3797 return -EINVAL; 3798 } 3799 3800 if (fs_info->nodesize > 3801 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || 3802 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { 3803 /* 3804 * would exhaust the array bounds of pagev member in 3805 * struct scrub_block 3806 */ 3807 btrfs_err(fs_info, 3808 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", 3809 fs_info->nodesize, 3810 SCRUB_MAX_PAGES_PER_BLOCK, 3811 fs_info->sectorsize, 3812 SCRUB_MAX_PAGES_PER_BLOCK); 3813 return -EINVAL; 3814 } 3815 3816 3817 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3818 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 3819 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 3820 !is_dev_replace)) { 3821 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3822 return -ENODEV; 3823 } 3824 3825 if (!is_dev_replace && !readonly && 3826 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 3827 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3828 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable", 3829 rcu_str_deref(dev->name)); 3830 return -EROFS; 3831 } 3832 3833 mutex_lock(&fs_info->scrub_lock); 3834 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3835 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 3836 mutex_unlock(&fs_info->scrub_lock); 3837 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3838 return -EIO; 3839 } 3840 3841 btrfs_dev_replace_read_lock(&fs_info->dev_replace); 3842 if (dev->scrub_ctx || 3843 (!is_dev_replace && 3844 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 3845 btrfs_dev_replace_read_unlock(&fs_info->dev_replace); 3846 mutex_unlock(&fs_info->scrub_lock); 3847 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3848 return -EINPROGRESS; 3849 } 3850 btrfs_dev_replace_read_unlock(&fs_info->dev_replace); 3851 3852 ret = scrub_workers_get(fs_info, is_dev_replace); 3853 if (ret) { 3854 mutex_unlock(&fs_info->scrub_lock); 3855 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3856 return ret; 3857 } 3858 3859 sctx = scrub_setup_ctx(dev, is_dev_replace); 3860 if (IS_ERR(sctx)) { 3861 mutex_unlock(&fs_info->scrub_lock); 3862 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3863 scrub_workers_put(fs_info); 3864 return PTR_ERR(sctx); 3865 } 3866 sctx->readonly = readonly; 3867 dev->scrub_ctx = sctx; 3868 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3869 3870 /* 3871 * checking @scrub_pause_req here, we can avoid 3872 * race between committing transaction and scrubbing. 3873 */ 3874 __scrub_blocked_if_needed(fs_info); 3875 atomic_inc(&fs_info->scrubs_running); 3876 mutex_unlock(&fs_info->scrub_lock); 3877 3878 if (!is_dev_replace) { 3879 /* 3880 * by holding device list mutex, we can 3881 * kick off writing super in log tree sync. 3882 */ 3883 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3884 ret = scrub_supers(sctx, dev); 3885 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3886 } 3887 3888 if (!ret) 3889 ret = scrub_enumerate_chunks(sctx, dev, start, end); 3890 3891 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3892 atomic_dec(&fs_info->scrubs_running); 3893 wake_up(&fs_info->scrub_pause_wait); 3894 3895 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 3896 3897 if (progress) 3898 memcpy(progress, &sctx->stat, sizeof(*progress)); 3899 3900 mutex_lock(&fs_info->scrub_lock); 3901 dev->scrub_ctx = NULL; 3902 scrub_workers_put(fs_info); 3903 mutex_unlock(&fs_info->scrub_lock); 3904 3905 scrub_put_ctx(sctx); 3906 3907 return ret; 3908 } 3909 3910 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 3911 { 3912 mutex_lock(&fs_info->scrub_lock); 3913 atomic_inc(&fs_info->scrub_pause_req); 3914 while (atomic_read(&fs_info->scrubs_paused) != 3915 atomic_read(&fs_info->scrubs_running)) { 3916 mutex_unlock(&fs_info->scrub_lock); 3917 wait_event(fs_info->scrub_pause_wait, 3918 atomic_read(&fs_info->scrubs_paused) == 3919 atomic_read(&fs_info->scrubs_running)); 3920 mutex_lock(&fs_info->scrub_lock); 3921 } 3922 mutex_unlock(&fs_info->scrub_lock); 3923 } 3924 3925 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 3926 { 3927 atomic_dec(&fs_info->scrub_pause_req); 3928 wake_up(&fs_info->scrub_pause_wait); 3929 } 3930 3931 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 3932 { 3933 mutex_lock(&fs_info->scrub_lock); 3934 if (!atomic_read(&fs_info->scrubs_running)) { 3935 mutex_unlock(&fs_info->scrub_lock); 3936 return -ENOTCONN; 3937 } 3938 3939 atomic_inc(&fs_info->scrub_cancel_req); 3940 while (atomic_read(&fs_info->scrubs_running)) { 3941 mutex_unlock(&fs_info->scrub_lock); 3942 wait_event(fs_info->scrub_pause_wait, 3943 atomic_read(&fs_info->scrubs_running) == 0); 3944 mutex_lock(&fs_info->scrub_lock); 3945 } 3946 atomic_dec(&fs_info->scrub_cancel_req); 3947 mutex_unlock(&fs_info->scrub_lock); 3948 3949 return 0; 3950 } 3951 3952 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, 3953 struct btrfs_device *dev) 3954 { 3955 struct scrub_ctx *sctx; 3956 3957 mutex_lock(&fs_info->scrub_lock); 3958 sctx = dev->scrub_ctx; 3959 if (!sctx) { 3960 mutex_unlock(&fs_info->scrub_lock); 3961 return -ENOTCONN; 3962 } 3963 atomic_inc(&sctx->cancel_req); 3964 while (dev->scrub_ctx) { 3965 mutex_unlock(&fs_info->scrub_lock); 3966 wait_event(fs_info->scrub_pause_wait, 3967 dev->scrub_ctx == NULL); 3968 mutex_lock(&fs_info->scrub_lock); 3969 } 3970 mutex_unlock(&fs_info->scrub_lock); 3971 3972 return 0; 3973 } 3974 3975 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3976 struct btrfs_scrub_progress *progress) 3977 { 3978 struct btrfs_device *dev; 3979 struct scrub_ctx *sctx = NULL; 3980 3981 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3982 dev = btrfs_find_device(fs_info, devid, NULL, NULL); 3983 if (dev) 3984 sctx = dev->scrub_ctx; 3985 if (sctx) 3986 memcpy(progress, &sctx->stat, sizeof(*progress)); 3987 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3988 3989 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 3990 } 3991 3992 static void scrub_remap_extent(struct btrfs_fs_info *fs_info, 3993 u64 extent_logical, u64 extent_len, 3994 u64 *extent_physical, 3995 struct btrfs_device **extent_dev, 3996 int *extent_mirror_num) 3997 { 3998 u64 mapped_length; 3999 struct btrfs_bio *bbio = NULL; 4000 int ret; 4001 4002 mapped_length = extent_len; 4003 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4004 &mapped_length, &bbio, 0); 4005 if (ret || !bbio || mapped_length < extent_len || 4006 !bbio->stripes[0].dev->bdev) { 4007 btrfs_put_bbio(bbio); 4008 return; 4009 } 4010 4011 *extent_physical = bbio->stripes[0].physical; 4012 *extent_mirror_num = bbio->mirror_num; 4013 *extent_dev = bbio->stripes[0].dev; 4014 btrfs_put_bbio(bbio); 4015 } 4016