xref: /openbmc/linux/fs/btrfs/scrub.c (revision 63dc02bd)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "check-integrity.h"
29 
30 /*
31  * This is only the first step towards a full-features scrub. It reads all
32  * extent and super block and verifies the checksums. In case a bad checksum
33  * is found or the extent cannot be read, good data will be written back if
34  * any can be found.
35  *
36  * Future enhancements:
37  *  - In case an unrepairable extent is encountered, track which files are
38  *    affected and report them
39  *  - track and record media errors, throw out bad devices
40  *  - add a mode to also read unallocated space
41  */
42 
43 struct scrub_block;
44 struct scrub_dev;
45 
46 #define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
47 #define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
48 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
49 
50 struct scrub_page {
51 	struct scrub_block	*sblock;
52 	struct page		*page;
53 	struct block_device	*bdev;
54 	u64			flags;  /* extent flags */
55 	u64			generation;
56 	u64			logical;
57 	u64			physical;
58 	struct {
59 		unsigned int	mirror_num:8;
60 		unsigned int	have_csum:1;
61 		unsigned int	io_error:1;
62 	};
63 	u8			csum[BTRFS_CSUM_SIZE];
64 };
65 
66 struct scrub_bio {
67 	int			index;
68 	struct scrub_dev	*sdev;
69 	struct bio		*bio;
70 	int			err;
71 	u64			logical;
72 	u64			physical;
73 	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
74 	int			page_count;
75 	int			next_free;
76 	struct btrfs_work	work;
77 };
78 
79 struct scrub_block {
80 	struct scrub_page	pagev[SCRUB_MAX_PAGES_PER_BLOCK];
81 	int			page_count;
82 	atomic_t		outstanding_pages;
83 	atomic_t		ref_count; /* free mem on transition to zero */
84 	struct scrub_dev	*sdev;
85 	struct {
86 		unsigned int	header_error:1;
87 		unsigned int	checksum_error:1;
88 		unsigned int	no_io_error_seen:1;
89 	};
90 };
91 
92 struct scrub_dev {
93 	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
94 	struct btrfs_device	*dev;
95 	int			first_free;
96 	int			curr;
97 	atomic_t		in_flight;
98 	atomic_t		fixup_cnt;
99 	spinlock_t		list_lock;
100 	wait_queue_head_t	list_wait;
101 	u16			csum_size;
102 	struct list_head	csum_list;
103 	atomic_t		cancel_req;
104 	int			readonly;
105 	int			pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
106 	u32			sectorsize;
107 	u32			nodesize;
108 	u32			leafsize;
109 	/*
110 	 * statistics
111 	 */
112 	struct btrfs_scrub_progress stat;
113 	spinlock_t		stat_lock;
114 };
115 
116 struct scrub_fixup_nodatasum {
117 	struct scrub_dev	*sdev;
118 	u64			logical;
119 	struct btrfs_root	*root;
120 	struct btrfs_work	work;
121 	int			mirror_num;
122 };
123 
124 struct scrub_warning {
125 	struct btrfs_path	*path;
126 	u64			extent_item_size;
127 	char			*scratch_buf;
128 	char			*msg_buf;
129 	const char		*errstr;
130 	sector_t		sector;
131 	u64			logical;
132 	struct btrfs_device	*dev;
133 	int			msg_bufsize;
134 	int			scratch_bufsize;
135 };
136 
137 
138 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
139 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
140 				     struct btrfs_mapping_tree *map_tree,
141 				     u64 length, u64 logical,
142 				     struct scrub_block *sblock);
143 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
144 			       struct scrub_block *sblock, int is_metadata,
145 			       int have_csum, u8 *csum, u64 generation,
146 			       u16 csum_size);
147 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
148 					 struct scrub_block *sblock,
149 					 int is_metadata, int have_csum,
150 					 const u8 *csum, u64 generation,
151 					 u16 csum_size);
152 static void scrub_complete_bio_end_io(struct bio *bio, int err);
153 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
154 					     struct scrub_block *sblock_good,
155 					     int force_write);
156 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
157 					    struct scrub_block *sblock_good,
158 					    int page_num, int force_write);
159 static int scrub_checksum_data(struct scrub_block *sblock);
160 static int scrub_checksum_tree_block(struct scrub_block *sblock);
161 static int scrub_checksum_super(struct scrub_block *sblock);
162 static void scrub_block_get(struct scrub_block *sblock);
163 static void scrub_block_put(struct scrub_block *sblock);
164 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
165 				 struct scrub_page *spage);
166 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
167 		       u64 physical, u64 flags, u64 gen, int mirror_num,
168 		       u8 *csum, int force);
169 static void scrub_bio_end_io(struct bio *bio, int err);
170 static void scrub_bio_end_io_worker(struct btrfs_work *work);
171 static void scrub_block_complete(struct scrub_block *sblock);
172 
173 
174 static void scrub_free_csums(struct scrub_dev *sdev)
175 {
176 	while (!list_empty(&sdev->csum_list)) {
177 		struct btrfs_ordered_sum *sum;
178 		sum = list_first_entry(&sdev->csum_list,
179 				       struct btrfs_ordered_sum, list);
180 		list_del(&sum->list);
181 		kfree(sum);
182 	}
183 }
184 
185 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
186 {
187 	int i;
188 
189 	if (!sdev)
190 		return;
191 
192 	/* this can happen when scrub is cancelled */
193 	if (sdev->curr != -1) {
194 		struct scrub_bio *sbio = sdev->bios[sdev->curr];
195 
196 		for (i = 0; i < sbio->page_count; i++) {
197 			BUG_ON(!sbio->pagev[i]);
198 			BUG_ON(!sbio->pagev[i]->page);
199 			scrub_block_put(sbio->pagev[i]->sblock);
200 		}
201 		bio_put(sbio->bio);
202 	}
203 
204 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
205 		struct scrub_bio *sbio = sdev->bios[i];
206 
207 		if (!sbio)
208 			break;
209 		kfree(sbio);
210 	}
211 
212 	scrub_free_csums(sdev);
213 	kfree(sdev);
214 }
215 
216 static noinline_for_stack
217 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
218 {
219 	struct scrub_dev *sdev;
220 	int		i;
221 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
222 	int pages_per_bio;
223 
224 	pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
225 			      bio_get_nr_vecs(dev->bdev));
226 	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
227 	if (!sdev)
228 		goto nomem;
229 	sdev->dev = dev;
230 	sdev->pages_per_bio = pages_per_bio;
231 	sdev->curr = -1;
232 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
233 		struct scrub_bio *sbio;
234 
235 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
236 		if (!sbio)
237 			goto nomem;
238 		sdev->bios[i] = sbio;
239 
240 		sbio->index = i;
241 		sbio->sdev = sdev;
242 		sbio->page_count = 0;
243 		sbio->work.func = scrub_bio_end_io_worker;
244 
245 		if (i != SCRUB_BIOS_PER_DEV-1)
246 			sdev->bios[i]->next_free = i + 1;
247 		else
248 			sdev->bios[i]->next_free = -1;
249 	}
250 	sdev->first_free = 0;
251 	sdev->nodesize = dev->dev_root->nodesize;
252 	sdev->leafsize = dev->dev_root->leafsize;
253 	sdev->sectorsize = dev->dev_root->sectorsize;
254 	atomic_set(&sdev->in_flight, 0);
255 	atomic_set(&sdev->fixup_cnt, 0);
256 	atomic_set(&sdev->cancel_req, 0);
257 	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
258 	INIT_LIST_HEAD(&sdev->csum_list);
259 
260 	spin_lock_init(&sdev->list_lock);
261 	spin_lock_init(&sdev->stat_lock);
262 	init_waitqueue_head(&sdev->list_wait);
263 	return sdev;
264 
265 nomem:
266 	scrub_free_dev(sdev);
267 	return ERR_PTR(-ENOMEM);
268 }
269 
270 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
271 {
272 	u64 isize;
273 	u32 nlink;
274 	int ret;
275 	int i;
276 	struct extent_buffer *eb;
277 	struct btrfs_inode_item *inode_item;
278 	struct scrub_warning *swarn = ctx;
279 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
280 	struct inode_fs_paths *ipath = NULL;
281 	struct btrfs_root *local_root;
282 	struct btrfs_key root_key;
283 
284 	root_key.objectid = root;
285 	root_key.type = BTRFS_ROOT_ITEM_KEY;
286 	root_key.offset = (u64)-1;
287 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
288 	if (IS_ERR(local_root)) {
289 		ret = PTR_ERR(local_root);
290 		goto err;
291 	}
292 
293 	ret = inode_item_info(inum, 0, local_root, swarn->path);
294 	if (ret) {
295 		btrfs_release_path(swarn->path);
296 		goto err;
297 	}
298 
299 	eb = swarn->path->nodes[0];
300 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
301 					struct btrfs_inode_item);
302 	isize = btrfs_inode_size(eb, inode_item);
303 	nlink = btrfs_inode_nlink(eb, inode_item);
304 	btrfs_release_path(swarn->path);
305 
306 	ipath = init_ipath(4096, local_root, swarn->path);
307 	if (IS_ERR(ipath)) {
308 		ret = PTR_ERR(ipath);
309 		ipath = NULL;
310 		goto err;
311 	}
312 	ret = paths_from_inode(inum, ipath);
313 
314 	if (ret < 0)
315 		goto err;
316 
317 	/*
318 	 * we deliberately ignore the bit ipath might have been too small to
319 	 * hold all of the paths here
320 	 */
321 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
322 		printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
323 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
324 			"length %llu, links %u (path: %s)\n", swarn->errstr,
325 			swarn->logical, swarn->dev->name,
326 			(unsigned long long)swarn->sector, root, inum, offset,
327 			min(isize - offset, (u64)PAGE_SIZE), nlink,
328 			(char *)(unsigned long)ipath->fspath->val[i]);
329 
330 	free_ipath(ipath);
331 	return 0;
332 
333 err:
334 	printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
335 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
336 		"resolving failed with ret=%d\n", swarn->errstr,
337 		swarn->logical, swarn->dev->name,
338 		(unsigned long long)swarn->sector, root, inum, offset, ret);
339 
340 	free_ipath(ipath);
341 	return 0;
342 }
343 
344 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
345 {
346 	struct btrfs_device *dev = sblock->sdev->dev;
347 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
348 	struct btrfs_path *path;
349 	struct btrfs_key found_key;
350 	struct extent_buffer *eb;
351 	struct btrfs_extent_item *ei;
352 	struct scrub_warning swarn;
353 	u32 item_size;
354 	int ret;
355 	u64 ref_root;
356 	u8 ref_level;
357 	unsigned long ptr = 0;
358 	const int bufsize = 4096;
359 	u64 extent_item_pos;
360 
361 	path = btrfs_alloc_path();
362 
363 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
364 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
365 	BUG_ON(sblock->page_count < 1);
366 	swarn.sector = (sblock->pagev[0].physical) >> 9;
367 	swarn.logical = sblock->pagev[0].logical;
368 	swarn.errstr = errstr;
369 	swarn.dev = dev;
370 	swarn.msg_bufsize = bufsize;
371 	swarn.scratch_bufsize = bufsize;
372 
373 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
374 		goto out;
375 
376 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
377 	if (ret < 0)
378 		goto out;
379 
380 	extent_item_pos = swarn.logical - found_key.objectid;
381 	swarn.extent_item_size = found_key.offset;
382 
383 	eb = path->nodes[0];
384 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
385 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
386 	btrfs_release_path(path);
387 
388 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
389 		do {
390 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
391 							&ref_root, &ref_level);
392 			printk(KERN_WARNING
393 				"btrfs: %s at logical %llu on dev %s, "
394 				"sector %llu: metadata %s (level %d) in tree "
395 				"%llu\n", errstr, swarn.logical, dev->name,
396 				(unsigned long long)swarn.sector,
397 				ref_level ? "node" : "leaf",
398 				ret < 0 ? -1 : ref_level,
399 				ret < 0 ? -1 : ref_root);
400 		} while (ret != 1);
401 	} else {
402 		swarn.path = path;
403 		iterate_extent_inodes(fs_info, found_key.objectid,
404 					extent_item_pos, 1,
405 					scrub_print_warning_inode, &swarn);
406 	}
407 
408 out:
409 	btrfs_free_path(path);
410 	kfree(swarn.scratch_buf);
411 	kfree(swarn.msg_buf);
412 }
413 
414 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
415 {
416 	struct page *page = NULL;
417 	unsigned long index;
418 	struct scrub_fixup_nodatasum *fixup = ctx;
419 	int ret;
420 	int corrected = 0;
421 	struct btrfs_key key;
422 	struct inode *inode = NULL;
423 	u64 end = offset + PAGE_SIZE - 1;
424 	struct btrfs_root *local_root;
425 
426 	key.objectid = root;
427 	key.type = BTRFS_ROOT_ITEM_KEY;
428 	key.offset = (u64)-1;
429 	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
430 	if (IS_ERR(local_root))
431 		return PTR_ERR(local_root);
432 
433 	key.type = BTRFS_INODE_ITEM_KEY;
434 	key.objectid = inum;
435 	key.offset = 0;
436 	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
437 	if (IS_ERR(inode))
438 		return PTR_ERR(inode);
439 
440 	index = offset >> PAGE_CACHE_SHIFT;
441 
442 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
443 	if (!page) {
444 		ret = -ENOMEM;
445 		goto out;
446 	}
447 
448 	if (PageUptodate(page)) {
449 		struct btrfs_mapping_tree *map_tree;
450 		if (PageDirty(page)) {
451 			/*
452 			 * we need to write the data to the defect sector. the
453 			 * data that was in that sector is not in memory,
454 			 * because the page was modified. we must not write the
455 			 * modified page to that sector.
456 			 *
457 			 * TODO: what could be done here: wait for the delalloc
458 			 *       runner to write out that page (might involve
459 			 *       COW) and see whether the sector is still
460 			 *       referenced afterwards.
461 			 *
462 			 * For the meantime, we'll treat this error
463 			 * incorrectable, although there is a chance that a
464 			 * later scrub will find the bad sector again and that
465 			 * there's no dirty page in memory, then.
466 			 */
467 			ret = -EIO;
468 			goto out;
469 		}
470 		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
471 		ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
472 					fixup->logical, page,
473 					fixup->mirror_num);
474 		unlock_page(page);
475 		corrected = !ret;
476 	} else {
477 		/*
478 		 * we need to get good data first. the general readpage path
479 		 * will call repair_io_failure for us, we just have to make
480 		 * sure we read the bad mirror.
481 		 */
482 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
483 					EXTENT_DAMAGED, GFP_NOFS);
484 		if (ret) {
485 			/* set_extent_bits should give proper error */
486 			WARN_ON(ret > 0);
487 			if (ret > 0)
488 				ret = -EFAULT;
489 			goto out;
490 		}
491 
492 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
493 						btrfs_get_extent,
494 						fixup->mirror_num);
495 		wait_on_page_locked(page);
496 
497 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
498 						end, EXTENT_DAMAGED, 0, NULL);
499 		if (!corrected)
500 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
501 						EXTENT_DAMAGED, GFP_NOFS);
502 	}
503 
504 out:
505 	if (page)
506 		put_page(page);
507 	if (inode)
508 		iput(inode);
509 
510 	if (ret < 0)
511 		return ret;
512 
513 	if (ret == 0 && corrected) {
514 		/*
515 		 * we only need to call readpage for one of the inodes belonging
516 		 * to this extent. so make iterate_extent_inodes stop
517 		 */
518 		return 1;
519 	}
520 
521 	return -EIO;
522 }
523 
524 static void scrub_fixup_nodatasum(struct btrfs_work *work)
525 {
526 	int ret;
527 	struct scrub_fixup_nodatasum *fixup;
528 	struct scrub_dev *sdev;
529 	struct btrfs_trans_handle *trans = NULL;
530 	struct btrfs_fs_info *fs_info;
531 	struct btrfs_path *path;
532 	int uncorrectable = 0;
533 
534 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
535 	sdev = fixup->sdev;
536 	fs_info = fixup->root->fs_info;
537 
538 	path = btrfs_alloc_path();
539 	if (!path) {
540 		spin_lock(&sdev->stat_lock);
541 		++sdev->stat.malloc_errors;
542 		spin_unlock(&sdev->stat_lock);
543 		uncorrectable = 1;
544 		goto out;
545 	}
546 
547 	trans = btrfs_join_transaction(fixup->root);
548 	if (IS_ERR(trans)) {
549 		uncorrectable = 1;
550 		goto out;
551 	}
552 
553 	/*
554 	 * the idea is to trigger a regular read through the standard path. we
555 	 * read a page from the (failed) logical address by specifying the
556 	 * corresponding copynum of the failed sector. thus, that readpage is
557 	 * expected to fail.
558 	 * that is the point where on-the-fly error correction will kick in
559 	 * (once it's finished) and rewrite the failed sector if a good copy
560 	 * can be found.
561 	 */
562 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
563 						path, scrub_fixup_readpage,
564 						fixup);
565 	if (ret < 0) {
566 		uncorrectable = 1;
567 		goto out;
568 	}
569 	WARN_ON(ret != 1);
570 
571 	spin_lock(&sdev->stat_lock);
572 	++sdev->stat.corrected_errors;
573 	spin_unlock(&sdev->stat_lock);
574 
575 out:
576 	if (trans && !IS_ERR(trans))
577 		btrfs_end_transaction(trans, fixup->root);
578 	if (uncorrectable) {
579 		spin_lock(&sdev->stat_lock);
580 		++sdev->stat.uncorrectable_errors;
581 		spin_unlock(&sdev->stat_lock);
582 		printk_ratelimited(KERN_ERR
583 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
584 			(unsigned long long)fixup->logical, sdev->dev->name);
585 	}
586 
587 	btrfs_free_path(path);
588 	kfree(fixup);
589 
590 	/* see caller why we're pretending to be paused in the scrub counters */
591 	mutex_lock(&fs_info->scrub_lock);
592 	atomic_dec(&fs_info->scrubs_running);
593 	atomic_dec(&fs_info->scrubs_paused);
594 	mutex_unlock(&fs_info->scrub_lock);
595 	atomic_dec(&sdev->fixup_cnt);
596 	wake_up(&fs_info->scrub_pause_wait);
597 	wake_up(&sdev->list_wait);
598 }
599 
600 /*
601  * scrub_handle_errored_block gets called when either verification of the
602  * pages failed or the bio failed to read, e.g. with EIO. In the latter
603  * case, this function handles all pages in the bio, even though only one
604  * may be bad.
605  * The goal of this function is to repair the errored block by using the
606  * contents of one of the mirrors.
607  */
608 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
609 {
610 	struct scrub_dev *sdev = sblock_to_check->sdev;
611 	struct btrfs_fs_info *fs_info;
612 	u64 length;
613 	u64 logical;
614 	u64 generation;
615 	unsigned int failed_mirror_index;
616 	unsigned int is_metadata;
617 	unsigned int have_csum;
618 	u8 *csum;
619 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
620 	struct scrub_block *sblock_bad;
621 	int ret;
622 	int mirror_index;
623 	int page_num;
624 	int success;
625 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
626 				      DEFAULT_RATELIMIT_BURST);
627 
628 	BUG_ON(sblock_to_check->page_count < 1);
629 	fs_info = sdev->dev->dev_root->fs_info;
630 	length = sblock_to_check->page_count * PAGE_SIZE;
631 	logical = sblock_to_check->pagev[0].logical;
632 	generation = sblock_to_check->pagev[0].generation;
633 	BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
634 	failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
635 	is_metadata = !(sblock_to_check->pagev[0].flags &
636 			BTRFS_EXTENT_FLAG_DATA);
637 	have_csum = sblock_to_check->pagev[0].have_csum;
638 	csum = sblock_to_check->pagev[0].csum;
639 
640 	/*
641 	 * read all mirrors one after the other. This includes to
642 	 * re-read the extent or metadata block that failed (that was
643 	 * the cause that this fixup code is called) another time,
644 	 * page by page this time in order to know which pages
645 	 * caused I/O errors and which ones are good (for all mirrors).
646 	 * It is the goal to handle the situation when more than one
647 	 * mirror contains I/O errors, but the errors do not
648 	 * overlap, i.e. the data can be repaired by selecting the
649 	 * pages from those mirrors without I/O error on the
650 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
651 	 * would be that mirror #1 has an I/O error on the first page,
652 	 * the second page is good, and mirror #2 has an I/O error on
653 	 * the second page, but the first page is good.
654 	 * Then the first page of the first mirror can be repaired by
655 	 * taking the first page of the second mirror, and the
656 	 * second page of the second mirror can be repaired by
657 	 * copying the contents of the 2nd page of the 1st mirror.
658 	 * One more note: if the pages of one mirror contain I/O
659 	 * errors, the checksum cannot be verified. In order to get
660 	 * the best data for repairing, the first attempt is to find
661 	 * a mirror without I/O errors and with a validated checksum.
662 	 * Only if this is not possible, the pages are picked from
663 	 * mirrors with I/O errors without considering the checksum.
664 	 * If the latter is the case, at the end, the checksum of the
665 	 * repaired area is verified in order to correctly maintain
666 	 * the statistics.
667 	 */
668 
669 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
670 				     sizeof(*sblocks_for_recheck),
671 				     GFP_NOFS);
672 	if (!sblocks_for_recheck) {
673 		spin_lock(&sdev->stat_lock);
674 		sdev->stat.malloc_errors++;
675 		sdev->stat.read_errors++;
676 		sdev->stat.uncorrectable_errors++;
677 		spin_unlock(&sdev->stat_lock);
678 		goto out;
679 	}
680 
681 	/* setup the context, map the logical blocks and alloc the pages */
682 	ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
683 					logical, sblocks_for_recheck);
684 	if (ret) {
685 		spin_lock(&sdev->stat_lock);
686 		sdev->stat.read_errors++;
687 		sdev->stat.uncorrectable_errors++;
688 		spin_unlock(&sdev->stat_lock);
689 		goto out;
690 	}
691 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
692 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
693 
694 	/* build and submit the bios for the failed mirror, check checksums */
695 	ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
696 				  csum, generation, sdev->csum_size);
697 	if (ret) {
698 		spin_lock(&sdev->stat_lock);
699 		sdev->stat.read_errors++;
700 		sdev->stat.uncorrectable_errors++;
701 		spin_unlock(&sdev->stat_lock);
702 		goto out;
703 	}
704 
705 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
706 	    sblock_bad->no_io_error_seen) {
707 		/*
708 		 * the error disappeared after reading page by page, or
709 		 * the area was part of a huge bio and other parts of the
710 		 * bio caused I/O errors, or the block layer merged several
711 		 * read requests into one and the error is caused by a
712 		 * different bio (usually one of the two latter cases is
713 		 * the cause)
714 		 */
715 		spin_lock(&sdev->stat_lock);
716 		sdev->stat.unverified_errors++;
717 		spin_unlock(&sdev->stat_lock);
718 
719 		goto out;
720 	}
721 
722 	if (!sblock_bad->no_io_error_seen) {
723 		spin_lock(&sdev->stat_lock);
724 		sdev->stat.read_errors++;
725 		spin_unlock(&sdev->stat_lock);
726 		if (__ratelimit(&_rs))
727 			scrub_print_warning("i/o error", sblock_to_check);
728 	} else if (sblock_bad->checksum_error) {
729 		spin_lock(&sdev->stat_lock);
730 		sdev->stat.csum_errors++;
731 		spin_unlock(&sdev->stat_lock);
732 		if (__ratelimit(&_rs))
733 			scrub_print_warning("checksum error", sblock_to_check);
734 	} else if (sblock_bad->header_error) {
735 		spin_lock(&sdev->stat_lock);
736 		sdev->stat.verify_errors++;
737 		spin_unlock(&sdev->stat_lock);
738 		if (__ratelimit(&_rs))
739 			scrub_print_warning("checksum/header error",
740 					    sblock_to_check);
741 	}
742 
743 	if (sdev->readonly)
744 		goto did_not_correct_error;
745 
746 	if (!is_metadata && !have_csum) {
747 		struct scrub_fixup_nodatasum *fixup_nodatasum;
748 
749 		/*
750 		 * !is_metadata and !have_csum, this means that the data
751 		 * might not be COW'ed, that it might be modified
752 		 * concurrently. The general strategy to work on the
753 		 * commit root does not help in the case when COW is not
754 		 * used.
755 		 */
756 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
757 		if (!fixup_nodatasum)
758 			goto did_not_correct_error;
759 		fixup_nodatasum->sdev = sdev;
760 		fixup_nodatasum->logical = logical;
761 		fixup_nodatasum->root = fs_info->extent_root;
762 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
763 		/*
764 		 * increment scrubs_running to prevent cancel requests from
765 		 * completing as long as a fixup worker is running. we must also
766 		 * increment scrubs_paused to prevent deadlocking on pause
767 		 * requests used for transactions commits (as the worker uses a
768 		 * transaction context). it is safe to regard the fixup worker
769 		 * as paused for all matters practical. effectively, we only
770 		 * avoid cancellation requests from completing.
771 		 */
772 		mutex_lock(&fs_info->scrub_lock);
773 		atomic_inc(&fs_info->scrubs_running);
774 		atomic_inc(&fs_info->scrubs_paused);
775 		mutex_unlock(&fs_info->scrub_lock);
776 		atomic_inc(&sdev->fixup_cnt);
777 		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
778 		btrfs_queue_worker(&fs_info->scrub_workers,
779 				   &fixup_nodatasum->work);
780 		goto out;
781 	}
782 
783 	/*
784 	 * now build and submit the bios for the other mirrors, check
785 	 * checksums
786 	 */
787 	for (mirror_index = 0;
788 	     mirror_index < BTRFS_MAX_MIRRORS &&
789 	     sblocks_for_recheck[mirror_index].page_count > 0;
790 	     mirror_index++) {
791 		if (mirror_index == failed_mirror_index)
792 			continue;
793 
794 		/* build and submit the bios, check checksums */
795 		ret = scrub_recheck_block(fs_info,
796 					  sblocks_for_recheck + mirror_index,
797 					  is_metadata, have_csum, csum,
798 					  generation, sdev->csum_size);
799 		if (ret)
800 			goto did_not_correct_error;
801 	}
802 
803 	/*
804 	 * first try to pick the mirror which is completely without I/O
805 	 * errors and also does not have a checksum error.
806 	 * If one is found, and if a checksum is present, the full block
807 	 * that is known to contain an error is rewritten. Afterwards
808 	 * the block is known to be corrected.
809 	 * If a mirror is found which is completely correct, and no
810 	 * checksum is present, only those pages are rewritten that had
811 	 * an I/O error in the block to be repaired, since it cannot be
812 	 * determined, which copy of the other pages is better (and it
813 	 * could happen otherwise that a correct page would be
814 	 * overwritten by a bad one).
815 	 */
816 	for (mirror_index = 0;
817 	     mirror_index < BTRFS_MAX_MIRRORS &&
818 	     sblocks_for_recheck[mirror_index].page_count > 0;
819 	     mirror_index++) {
820 		struct scrub_block *sblock_other = sblocks_for_recheck +
821 						   mirror_index;
822 
823 		if (!sblock_other->header_error &&
824 		    !sblock_other->checksum_error &&
825 		    sblock_other->no_io_error_seen) {
826 			int force_write = is_metadata || have_csum;
827 
828 			ret = scrub_repair_block_from_good_copy(sblock_bad,
829 								sblock_other,
830 								force_write);
831 			if (0 == ret)
832 				goto corrected_error;
833 		}
834 	}
835 
836 	/*
837 	 * in case of I/O errors in the area that is supposed to be
838 	 * repaired, continue by picking good copies of those pages.
839 	 * Select the good pages from mirrors to rewrite bad pages from
840 	 * the area to fix. Afterwards verify the checksum of the block
841 	 * that is supposed to be repaired. This verification step is
842 	 * only done for the purpose of statistic counting and for the
843 	 * final scrub report, whether errors remain.
844 	 * A perfect algorithm could make use of the checksum and try
845 	 * all possible combinations of pages from the different mirrors
846 	 * until the checksum verification succeeds. For example, when
847 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
848 	 * of mirror #2 is readable but the final checksum test fails,
849 	 * then the 2nd page of mirror #3 could be tried, whether now
850 	 * the final checksum succeedes. But this would be a rare
851 	 * exception and is therefore not implemented. At least it is
852 	 * avoided that the good copy is overwritten.
853 	 * A more useful improvement would be to pick the sectors
854 	 * without I/O error based on sector sizes (512 bytes on legacy
855 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
856 	 * mirror could be repaired by taking 512 byte of a different
857 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
858 	 * area are unreadable.
859 	 */
860 
861 	/* can only fix I/O errors from here on */
862 	if (sblock_bad->no_io_error_seen)
863 		goto did_not_correct_error;
864 
865 	success = 1;
866 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
867 		struct scrub_page *page_bad = sblock_bad->pagev + page_num;
868 
869 		if (!page_bad->io_error)
870 			continue;
871 
872 		for (mirror_index = 0;
873 		     mirror_index < BTRFS_MAX_MIRRORS &&
874 		     sblocks_for_recheck[mirror_index].page_count > 0;
875 		     mirror_index++) {
876 			struct scrub_block *sblock_other = sblocks_for_recheck +
877 							   mirror_index;
878 			struct scrub_page *page_other = sblock_other->pagev +
879 							page_num;
880 
881 			if (!page_other->io_error) {
882 				ret = scrub_repair_page_from_good_copy(
883 					sblock_bad, sblock_other, page_num, 0);
884 				if (0 == ret) {
885 					page_bad->io_error = 0;
886 					break; /* succeeded for this page */
887 				}
888 			}
889 		}
890 
891 		if (page_bad->io_error) {
892 			/* did not find a mirror to copy the page from */
893 			success = 0;
894 		}
895 	}
896 
897 	if (success) {
898 		if (is_metadata || have_csum) {
899 			/*
900 			 * need to verify the checksum now that all
901 			 * sectors on disk are repaired (the write
902 			 * request for data to be repaired is on its way).
903 			 * Just be lazy and use scrub_recheck_block()
904 			 * which re-reads the data before the checksum
905 			 * is verified, but most likely the data comes out
906 			 * of the page cache.
907 			 */
908 			ret = scrub_recheck_block(fs_info, sblock_bad,
909 						  is_metadata, have_csum, csum,
910 						  generation, sdev->csum_size);
911 			if (!ret && !sblock_bad->header_error &&
912 			    !sblock_bad->checksum_error &&
913 			    sblock_bad->no_io_error_seen)
914 				goto corrected_error;
915 			else
916 				goto did_not_correct_error;
917 		} else {
918 corrected_error:
919 			spin_lock(&sdev->stat_lock);
920 			sdev->stat.corrected_errors++;
921 			spin_unlock(&sdev->stat_lock);
922 			printk_ratelimited(KERN_ERR
923 				"btrfs: fixed up error at logical %llu on dev %s\n",
924 				(unsigned long long)logical, sdev->dev->name);
925 		}
926 	} else {
927 did_not_correct_error:
928 		spin_lock(&sdev->stat_lock);
929 		sdev->stat.uncorrectable_errors++;
930 		spin_unlock(&sdev->stat_lock);
931 		printk_ratelimited(KERN_ERR
932 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
933 			(unsigned long long)logical, sdev->dev->name);
934 	}
935 
936 out:
937 	if (sblocks_for_recheck) {
938 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
939 		     mirror_index++) {
940 			struct scrub_block *sblock = sblocks_for_recheck +
941 						     mirror_index;
942 			int page_index;
943 
944 			for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
945 			     page_index++)
946 				if (sblock->pagev[page_index].page)
947 					__free_page(
948 						sblock->pagev[page_index].page);
949 		}
950 		kfree(sblocks_for_recheck);
951 	}
952 
953 	return 0;
954 }
955 
956 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
957 				     struct btrfs_mapping_tree *map_tree,
958 				     u64 length, u64 logical,
959 				     struct scrub_block *sblocks_for_recheck)
960 {
961 	int page_index;
962 	int mirror_index;
963 	int ret;
964 
965 	/*
966 	 * note: the three members sdev, ref_count and outstanding_pages
967 	 * are not used (and not set) in the blocks that are used for
968 	 * the recheck procedure
969 	 */
970 
971 	page_index = 0;
972 	while (length > 0) {
973 		u64 sublen = min_t(u64, length, PAGE_SIZE);
974 		u64 mapped_length = sublen;
975 		struct btrfs_bio *bbio = NULL;
976 
977 		/*
978 		 * with a length of PAGE_SIZE, each returned stripe
979 		 * represents one mirror
980 		 */
981 		ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
982 				      &bbio, 0);
983 		if (ret || !bbio || mapped_length < sublen) {
984 			kfree(bbio);
985 			return -EIO;
986 		}
987 
988 		BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
989 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
990 		     mirror_index++) {
991 			struct scrub_block *sblock;
992 			struct scrub_page *page;
993 
994 			if (mirror_index >= BTRFS_MAX_MIRRORS)
995 				continue;
996 
997 			sblock = sblocks_for_recheck + mirror_index;
998 			page = sblock->pagev + page_index;
999 			page->logical = logical;
1000 			page->physical = bbio->stripes[mirror_index].physical;
1001 			/* for missing devices, bdev is NULL */
1002 			page->bdev = bbio->stripes[mirror_index].dev->bdev;
1003 			page->mirror_num = mirror_index + 1;
1004 			page->page = alloc_page(GFP_NOFS);
1005 			if (!page->page) {
1006 				spin_lock(&sdev->stat_lock);
1007 				sdev->stat.malloc_errors++;
1008 				spin_unlock(&sdev->stat_lock);
1009 				return -ENOMEM;
1010 			}
1011 			sblock->page_count++;
1012 		}
1013 		kfree(bbio);
1014 		length -= sublen;
1015 		logical += sublen;
1016 		page_index++;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 /*
1023  * this function will check the on disk data for checksum errors, header
1024  * errors and read I/O errors. If any I/O errors happen, the exact pages
1025  * which are errored are marked as being bad. The goal is to enable scrub
1026  * to take those pages that are not errored from all the mirrors so that
1027  * the pages that are errored in the just handled mirror can be repaired.
1028  */
1029 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1030 			       struct scrub_block *sblock, int is_metadata,
1031 			       int have_csum, u8 *csum, u64 generation,
1032 			       u16 csum_size)
1033 {
1034 	int page_num;
1035 
1036 	sblock->no_io_error_seen = 1;
1037 	sblock->header_error = 0;
1038 	sblock->checksum_error = 0;
1039 
1040 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1041 		struct bio *bio;
1042 		int ret;
1043 		struct scrub_page *page = sblock->pagev + page_num;
1044 		DECLARE_COMPLETION_ONSTACK(complete);
1045 
1046 		if (page->bdev == NULL) {
1047 			page->io_error = 1;
1048 			sblock->no_io_error_seen = 0;
1049 			continue;
1050 		}
1051 
1052 		BUG_ON(!page->page);
1053 		bio = bio_alloc(GFP_NOFS, 1);
1054 		if (!bio)
1055 			return -EIO;
1056 		bio->bi_bdev = page->bdev;
1057 		bio->bi_sector = page->physical >> 9;
1058 		bio->bi_end_io = scrub_complete_bio_end_io;
1059 		bio->bi_private = &complete;
1060 
1061 		ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1062 		if (PAGE_SIZE != ret) {
1063 			bio_put(bio);
1064 			return -EIO;
1065 		}
1066 		btrfsic_submit_bio(READ, bio);
1067 
1068 		/* this will also unplug the queue */
1069 		wait_for_completion(&complete);
1070 
1071 		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1072 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1073 			sblock->no_io_error_seen = 0;
1074 		bio_put(bio);
1075 	}
1076 
1077 	if (sblock->no_io_error_seen)
1078 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1079 					     have_csum, csum, generation,
1080 					     csum_size);
1081 
1082 	return 0;
1083 }
1084 
1085 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1086 					 struct scrub_block *sblock,
1087 					 int is_metadata, int have_csum,
1088 					 const u8 *csum, u64 generation,
1089 					 u16 csum_size)
1090 {
1091 	int page_num;
1092 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1093 	u32 crc = ~(u32)0;
1094 	struct btrfs_root *root = fs_info->extent_root;
1095 	void *mapped_buffer;
1096 
1097 	BUG_ON(!sblock->pagev[0].page);
1098 	if (is_metadata) {
1099 		struct btrfs_header *h;
1100 
1101 		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1102 		h = (struct btrfs_header *)mapped_buffer;
1103 
1104 		if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1105 		    generation != le64_to_cpu(h->generation) ||
1106 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1107 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1108 			   BTRFS_UUID_SIZE))
1109 			sblock->header_error = 1;
1110 		csum = h->csum;
1111 	} else {
1112 		if (!have_csum)
1113 			return;
1114 
1115 		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1116 	}
1117 
1118 	for (page_num = 0;;) {
1119 		if (page_num == 0 && is_metadata)
1120 			crc = btrfs_csum_data(root,
1121 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1122 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1123 		else
1124 			crc = btrfs_csum_data(root, mapped_buffer, crc,
1125 					      PAGE_SIZE);
1126 
1127 		kunmap_atomic(mapped_buffer);
1128 		page_num++;
1129 		if (page_num >= sblock->page_count)
1130 			break;
1131 		BUG_ON(!sblock->pagev[page_num].page);
1132 
1133 		mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1134 	}
1135 
1136 	btrfs_csum_final(crc, calculated_csum);
1137 	if (memcmp(calculated_csum, csum, csum_size))
1138 		sblock->checksum_error = 1;
1139 }
1140 
1141 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1142 {
1143 	complete((struct completion *)bio->bi_private);
1144 }
1145 
1146 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1147 					     struct scrub_block *sblock_good,
1148 					     int force_write)
1149 {
1150 	int page_num;
1151 	int ret = 0;
1152 
1153 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1154 		int ret_sub;
1155 
1156 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1157 							   sblock_good,
1158 							   page_num,
1159 							   force_write);
1160 		if (ret_sub)
1161 			ret = ret_sub;
1162 	}
1163 
1164 	return ret;
1165 }
1166 
1167 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1168 					    struct scrub_block *sblock_good,
1169 					    int page_num, int force_write)
1170 {
1171 	struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1172 	struct scrub_page *page_good = sblock_good->pagev + page_num;
1173 
1174 	BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1175 	BUG_ON(sblock_good->pagev[page_num].page == NULL);
1176 	if (force_write || sblock_bad->header_error ||
1177 	    sblock_bad->checksum_error || page_bad->io_error) {
1178 		struct bio *bio;
1179 		int ret;
1180 		DECLARE_COMPLETION_ONSTACK(complete);
1181 
1182 		bio = bio_alloc(GFP_NOFS, 1);
1183 		if (!bio)
1184 			return -EIO;
1185 		bio->bi_bdev = page_bad->bdev;
1186 		bio->bi_sector = page_bad->physical >> 9;
1187 		bio->bi_end_io = scrub_complete_bio_end_io;
1188 		bio->bi_private = &complete;
1189 
1190 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1191 		if (PAGE_SIZE != ret) {
1192 			bio_put(bio);
1193 			return -EIO;
1194 		}
1195 		btrfsic_submit_bio(WRITE, bio);
1196 
1197 		/* this will also unplug the queue */
1198 		wait_for_completion(&complete);
1199 		bio_put(bio);
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static void scrub_checksum(struct scrub_block *sblock)
1206 {
1207 	u64 flags;
1208 	int ret;
1209 
1210 	BUG_ON(sblock->page_count < 1);
1211 	flags = sblock->pagev[0].flags;
1212 	ret = 0;
1213 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1214 		ret = scrub_checksum_data(sblock);
1215 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1216 		ret = scrub_checksum_tree_block(sblock);
1217 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1218 		(void)scrub_checksum_super(sblock);
1219 	else
1220 		WARN_ON(1);
1221 	if (ret)
1222 		scrub_handle_errored_block(sblock);
1223 }
1224 
1225 static int scrub_checksum_data(struct scrub_block *sblock)
1226 {
1227 	struct scrub_dev *sdev = sblock->sdev;
1228 	u8 csum[BTRFS_CSUM_SIZE];
1229 	u8 *on_disk_csum;
1230 	struct page *page;
1231 	void *buffer;
1232 	u32 crc = ~(u32)0;
1233 	int fail = 0;
1234 	struct btrfs_root *root = sdev->dev->dev_root;
1235 	u64 len;
1236 	int index;
1237 
1238 	BUG_ON(sblock->page_count < 1);
1239 	if (!sblock->pagev[0].have_csum)
1240 		return 0;
1241 
1242 	on_disk_csum = sblock->pagev[0].csum;
1243 	page = sblock->pagev[0].page;
1244 	buffer = kmap_atomic(page);
1245 
1246 	len = sdev->sectorsize;
1247 	index = 0;
1248 	for (;;) {
1249 		u64 l = min_t(u64, len, PAGE_SIZE);
1250 
1251 		crc = btrfs_csum_data(root, buffer, crc, l);
1252 		kunmap_atomic(buffer);
1253 		len -= l;
1254 		if (len == 0)
1255 			break;
1256 		index++;
1257 		BUG_ON(index >= sblock->page_count);
1258 		BUG_ON(!sblock->pagev[index].page);
1259 		page = sblock->pagev[index].page;
1260 		buffer = kmap_atomic(page);
1261 	}
1262 
1263 	btrfs_csum_final(crc, csum);
1264 	if (memcmp(csum, on_disk_csum, sdev->csum_size))
1265 		fail = 1;
1266 
1267 	return fail;
1268 }
1269 
1270 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1271 {
1272 	struct scrub_dev *sdev = sblock->sdev;
1273 	struct btrfs_header *h;
1274 	struct btrfs_root *root = sdev->dev->dev_root;
1275 	struct btrfs_fs_info *fs_info = root->fs_info;
1276 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1277 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1278 	struct page *page;
1279 	void *mapped_buffer;
1280 	u64 mapped_size;
1281 	void *p;
1282 	u32 crc = ~(u32)0;
1283 	int fail = 0;
1284 	int crc_fail = 0;
1285 	u64 len;
1286 	int index;
1287 
1288 	BUG_ON(sblock->page_count < 1);
1289 	page = sblock->pagev[0].page;
1290 	mapped_buffer = kmap_atomic(page);
1291 	h = (struct btrfs_header *)mapped_buffer;
1292 	memcpy(on_disk_csum, h->csum, sdev->csum_size);
1293 
1294 	/*
1295 	 * we don't use the getter functions here, as we
1296 	 * a) don't have an extent buffer and
1297 	 * b) the page is already kmapped
1298 	 */
1299 
1300 	if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1301 		++fail;
1302 
1303 	if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1304 		++fail;
1305 
1306 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1307 		++fail;
1308 
1309 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1310 		   BTRFS_UUID_SIZE))
1311 		++fail;
1312 
1313 	BUG_ON(sdev->nodesize != sdev->leafsize);
1314 	len = sdev->nodesize - BTRFS_CSUM_SIZE;
1315 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1316 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1317 	index = 0;
1318 	for (;;) {
1319 		u64 l = min_t(u64, len, mapped_size);
1320 
1321 		crc = btrfs_csum_data(root, p, crc, l);
1322 		kunmap_atomic(mapped_buffer);
1323 		len -= l;
1324 		if (len == 0)
1325 			break;
1326 		index++;
1327 		BUG_ON(index >= sblock->page_count);
1328 		BUG_ON(!sblock->pagev[index].page);
1329 		page = sblock->pagev[index].page;
1330 		mapped_buffer = kmap_atomic(page);
1331 		mapped_size = PAGE_SIZE;
1332 		p = mapped_buffer;
1333 	}
1334 
1335 	btrfs_csum_final(crc, calculated_csum);
1336 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1337 		++crc_fail;
1338 
1339 	return fail || crc_fail;
1340 }
1341 
1342 static int scrub_checksum_super(struct scrub_block *sblock)
1343 {
1344 	struct btrfs_super_block *s;
1345 	struct scrub_dev *sdev = sblock->sdev;
1346 	struct btrfs_root *root = sdev->dev->dev_root;
1347 	struct btrfs_fs_info *fs_info = root->fs_info;
1348 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1349 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1350 	struct page *page;
1351 	void *mapped_buffer;
1352 	u64 mapped_size;
1353 	void *p;
1354 	u32 crc = ~(u32)0;
1355 	int fail = 0;
1356 	u64 len;
1357 	int index;
1358 
1359 	BUG_ON(sblock->page_count < 1);
1360 	page = sblock->pagev[0].page;
1361 	mapped_buffer = kmap_atomic(page);
1362 	s = (struct btrfs_super_block *)mapped_buffer;
1363 	memcpy(on_disk_csum, s->csum, sdev->csum_size);
1364 
1365 	if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1366 		++fail;
1367 
1368 	if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1369 		++fail;
1370 
1371 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1372 		++fail;
1373 
1374 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1375 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1376 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1377 	index = 0;
1378 	for (;;) {
1379 		u64 l = min_t(u64, len, mapped_size);
1380 
1381 		crc = btrfs_csum_data(root, p, crc, l);
1382 		kunmap_atomic(mapped_buffer);
1383 		len -= l;
1384 		if (len == 0)
1385 			break;
1386 		index++;
1387 		BUG_ON(index >= sblock->page_count);
1388 		BUG_ON(!sblock->pagev[index].page);
1389 		page = sblock->pagev[index].page;
1390 		mapped_buffer = kmap_atomic(page);
1391 		mapped_size = PAGE_SIZE;
1392 		p = mapped_buffer;
1393 	}
1394 
1395 	btrfs_csum_final(crc, calculated_csum);
1396 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1397 		++fail;
1398 
1399 	if (fail) {
1400 		/*
1401 		 * if we find an error in a super block, we just report it.
1402 		 * They will get written with the next transaction commit
1403 		 * anyway
1404 		 */
1405 		spin_lock(&sdev->stat_lock);
1406 		++sdev->stat.super_errors;
1407 		spin_unlock(&sdev->stat_lock);
1408 	}
1409 
1410 	return fail;
1411 }
1412 
1413 static void scrub_block_get(struct scrub_block *sblock)
1414 {
1415 	atomic_inc(&sblock->ref_count);
1416 }
1417 
1418 static void scrub_block_put(struct scrub_block *sblock)
1419 {
1420 	if (atomic_dec_and_test(&sblock->ref_count)) {
1421 		int i;
1422 
1423 		for (i = 0; i < sblock->page_count; i++)
1424 			if (sblock->pagev[i].page)
1425 				__free_page(sblock->pagev[i].page);
1426 		kfree(sblock);
1427 	}
1428 }
1429 
1430 static void scrub_submit(struct scrub_dev *sdev)
1431 {
1432 	struct scrub_bio *sbio;
1433 
1434 	if (sdev->curr == -1)
1435 		return;
1436 
1437 	sbio = sdev->bios[sdev->curr];
1438 	sdev->curr = -1;
1439 	atomic_inc(&sdev->in_flight);
1440 
1441 	btrfsic_submit_bio(READ, sbio->bio);
1442 }
1443 
1444 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1445 				 struct scrub_page *spage)
1446 {
1447 	struct scrub_block *sblock = spage->sblock;
1448 	struct scrub_bio *sbio;
1449 	int ret;
1450 
1451 again:
1452 	/*
1453 	 * grab a fresh bio or wait for one to become available
1454 	 */
1455 	while (sdev->curr == -1) {
1456 		spin_lock(&sdev->list_lock);
1457 		sdev->curr = sdev->first_free;
1458 		if (sdev->curr != -1) {
1459 			sdev->first_free = sdev->bios[sdev->curr]->next_free;
1460 			sdev->bios[sdev->curr]->next_free = -1;
1461 			sdev->bios[sdev->curr]->page_count = 0;
1462 			spin_unlock(&sdev->list_lock);
1463 		} else {
1464 			spin_unlock(&sdev->list_lock);
1465 			wait_event(sdev->list_wait, sdev->first_free != -1);
1466 		}
1467 	}
1468 	sbio = sdev->bios[sdev->curr];
1469 	if (sbio->page_count == 0) {
1470 		struct bio *bio;
1471 
1472 		sbio->physical = spage->physical;
1473 		sbio->logical = spage->logical;
1474 		bio = sbio->bio;
1475 		if (!bio) {
1476 			bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1477 			if (!bio)
1478 				return -ENOMEM;
1479 			sbio->bio = bio;
1480 		}
1481 
1482 		bio->bi_private = sbio;
1483 		bio->bi_end_io = scrub_bio_end_io;
1484 		bio->bi_bdev = sdev->dev->bdev;
1485 		bio->bi_sector = spage->physical >> 9;
1486 		sbio->err = 0;
1487 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1488 		   spage->physical ||
1489 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1490 		   spage->logical) {
1491 		scrub_submit(sdev);
1492 		goto again;
1493 	}
1494 
1495 	sbio->pagev[sbio->page_count] = spage;
1496 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1497 	if (ret != PAGE_SIZE) {
1498 		if (sbio->page_count < 1) {
1499 			bio_put(sbio->bio);
1500 			sbio->bio = NULL;
1501 			return -EIO;
1502 		}
1503 		scrub_submit(sdev);
1504 		goto again;
1505 	}
1506 
1507 	scrub_block_get(sblock); /* one for the added page */
1508 	atomic_inc(&sblock->outstanding_pages);
1509 	sbio->page_count++;
1510 	if (sbio->page_count == sdev->pages_per_bio)
1511 		scrub_submit(sdev);
1512 
1513 	return 0;
1514 }
1515 
1516 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1517 		       u64 physical, u64 flags, u64 gen, int mirror_num,
1518 		       u8 *csum, int force)
1519 {
1520 	struct scrub_block *sblock;
1521 	int index;
1522 
1523 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1524 	if (!sblock) {
1525 		spin_lock(&sdev->stat_lock);
1526 		sdev->stat.malloc_errors++;
1527 		spin_unlock(&sdev->stat_lock);
1528 		return -ENOMEM;
1529 	}
1530 
1531 	/* one ref inside this function, plus one for each page later on */
1532 	atomic_set(&sblock->ref_count, 1);
1533 	sblock->sdev = sdev;
1534 	sblock->no_io_error_seen = 1;
1535 
1536 	for (index = 0; len > 0; index++) {
1537 		struct scrub_page *spage = sblock->pagev + index;
1538 		u64 l = min_t(u64, len, PAGE_SIZE);
1539 
1540 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1541 		spage->page = alloc_page(GFP_NOFS);
1542 		if (!spage->page) {
1543 			spin_lock(&sdev->stat_lock);
1544 			sdev->stat.malloc_errors++;
1545 			spin_unlock(&sdev->stat_lock);
1546 			while (index > 0) {
1547 				index--;
1548 				__free_page(sblock->pagev[index].page);
1549 			}
1550 			kfree(sblock);
1551 			return -ENOMEM;
1552 		}
1553 		spage->sblock = sblock;
1554 		spage->bdev = sdev->dev->bdev;
1555 		spage->flags = flags;
1556 		spage->generation = gen;
1557 		spage->logical = logical;
1558 		spage->physical = physical;
1559 		spage->mirror_num = mirror_num;
1560 		if (csum) {
1561 			spage->have_csum = 1;
1562 			memcpy(spage->csum, csum, sdev->csum_size);
1563 		} else {
1564 			spage->have_csum = 0;
1565 		}
1566 		sblock->page_count++;
1567 		len -= l;
1568 		logical += l;
1569 		physical += l;
1570 	}
1571 
1572 	BUG_ON(sblock->page_count == 0);
1573 	for (index = 0; index < sblock->page_count; index++) {
1574 		struct scrub_page *spage = sblock->pagev + index;
1575 		int ret;
1576 
1577 		ret = scrub_add_page_to_bio(sdev, spage);
1578 		if (ret) {
1579 			scrub_block_put(sblock);
1580 			return ret;
1581 		}
1582 	}
1583 
1584 	if (force)
1585 		scrub_submit(sdev);
1586 
1587 	/* last one frees, either here or in bio completion for last page */
1588 	scrub_block_put(sblock);
1589 	return 0;
1590 }
1591 
1592 static void scrub_bio_end_io(struct bio *bio, int err)
1593 {
1594 	struct scrub_bio *sbio = bio->bi_private;
1595 	struct scrub_dev *sdev = sbio->sdev;
1596 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1597 
1598 	sbio->err = err;
1599 	sbio->bio = bio;
1600 
1601 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1602 }
1603 
1604 static void scrub_bio_end_io_worker(struct btrfs_work *work)
1605 {
1606 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1607 	struct scrub_dev *sdev = sbio->sdev;
1608 	int i;
1609 
1610 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1611 	if (sbio->err) {
1612 		for (i = 0; i < sbio->page_count; i++) {
1613 			struct scrub_page *spage = sbio->pagev[i];
1614 
1615 			spage->io_error = 1;
1616 			spage->sblock->no_io_error_seen = 0;
1617 		}
1618 	}
1619 
1620 	/* now complete the scrub_block items that have all pages completed */
1621 	for (i = 0; i < sbio->page_count; i++) {
1622 		struct scrub_page *spage = sbio->pagev[i];
1623 		struct scrub_block *sblock = spage->sblock;
1624 
1625 		if (atomic_dec_and_test(&sblock->outstanding_pages))
1626 			scrub_block_complete(sblock);
1627 		scrub_block_put(sblock);
1628 	}
1629 
1630 	if (sbio->err) {
1631 		/* what is this good for??? */
1632 		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1633 		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1634 		sbio->bio->bi_phys_segments = 0;
1635 		sbio->bio->bi_idx = 0;
1636 
1637 		for (i = 0; i < sbio->page_count; i++) {
1638 			struct bio_vec *bi;
1639 			bi = &sbio->bio->bi_io_vec[i];
1640 			bi->bv_offset = 0;
1641 			bi->bv_len = PAGE_SIZE;
1642 		}
1643 	}
1644 
1645 	bio_put(sbio->bio);
1646 	sbio->bio = NULL;
1647 	spin_lock(&sdev->list_lock);
1648 	sbio->next_free = sdev->first_free;
1649 	sdev->first_free = sbio->index;
1650 	spin_unlock(&sdev->list_lock);
1651 	atomic_dec(&sdev->in_flight);
1652 	wake_up(&sdev->list_wait);
1653 }
1654 
1655 static void scrub_block_complete(struct scrub_block *sblock)
1656 {
1657 	if (!sblock->no_io_error_seen)
1658 		scrub_handle_errored_block(sblock);
1659 	else
1660 		scrub_checksum(sblock);
1661 }
1662 
1663 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1664 			   u8 *csum)
1665 {
1666 	struct btrfs_ordered_sum *sum = NULL;
1667 	int ret = 0;
1668 	unsigned long i;
1669 	unsigned long num_sectors;
1670 
1671 	while (!list_empty(&sdev->csum_list)) {
1672 		sum = list_first_entry(&sdev->csum_list,
1673 				       struct btrfs_ordered_sum, list);
1674 		if (sum->bytenr > logical)
1675 			return 0;
1676 		if (sum->bytenr + sum->len > logical)
1677 			break;
1678 
1679 		++sdev->stat.csum_discards;
1680 		list_del(&sum->list);
1681 		kfree(sum);
1682 		sum = NULL;
1683 	}
1684 	if (!sum)
1685 		return 0;
1686 
1687 	num_sectors = sum->len / sdev->sectorsize;
1688 	for (i = 0; i < num_sectors; ++i) {
1689 		if (sum->sums[i].bytenr == logical) {
1690 			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1691 			ret = 1;
1692 			break;
1693 		}
1694 	}
1695 	if (ret && i == num_sectors - 1) {
1696 		list_del(&sum->list);
1697 		kfree(sum);
1698 	}
1699 	return ret;
1700 }
1701 
1702 /* scrub extent tries to collect up to 64 kB for each bio */
1703 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1704 			u64 physical, u64 flags, u64 gen, int mirror_num)
1705 {
1706 	int ret;
1707 	u8 csum[BTRFS_CSUM_SIZE];
1708 	u32 blocksize;
1709 
1710 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
1711 		blocksize = sdev->sectorsize;
1712 		spin_lock(&sdev->stat_lock);
1713 		sdev->stat.data_extents_scrubbed++;
1714 		sdev->stat.data_bytes_scrubbed += len;
1715 		spin_unlock(&sdev->stat_lock);
1716 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1717 		BUG_ON(sdev->nodesize != sdev->leafsize);
1718 		blocksize = sdev->nodesize;
1719 		spin_lock(&sdev->stat_lock);
1720 		sdev->stat.tree_extents_scrubbed++;
1721 		sdev->stat.tree_bytes_scrubbed += len;
1722 		spin_unlock(&sdev->stat_lock);
1723 	} else {
1724 		blocksize = sdev->sectorsize;
1725 		BUG_ON(1);
1726 	}
1727 
1728 	while (len) {
1729 		u64 l = min_t(u64, len, blocksize);
1730 		int have_csum = 0;
1731 
1732 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
1733 			/* push csums to sbio */
1734 			have_csum = scrub_find_csum(sdev, logical, l, csum);
1735 			if (have_csum == 0)
1736 				++sdev->stat.no_csum;
1737 		}
1738 		ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1739 				  mirror_num, have_csum ? csum : NULL, 0);
1740 		if (ret)
1741 			return ret;
1742 		len -= l;
1743 		logical += l;
1744 		physical += l;
1745 	}
1746 	return 0;
1747 }
1748 
1749 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1750 	struct map_lookup *map, int num, u64 base, u64 length)
1751 {
1752 	struct btrfs_path *path;
1753 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1754 	struct btrfs_root *root = fs_info->extent_root;
1755 	struct btrfs_root *csum_root = fs_info->csum_root;
1756 	struct btrfs_extent_item *extent;
1757 	struct blk_plug plug;
1758 	u64 flags;
1759 	int ret;
1760 	int slot;
1761 	int i;
1762 	u64 nstripes;
1763 	struct extent_buffer *l;
1764 	struct btrfs_key key;
1765 	u64 physical;
1766 	u64 logical;
1767 	u64 generation;
1768 	int mirror_num;
1769 	struct reada_control *reada1;
1770 	struct reada_control *reada2;
1771 	struct btrfs_key key_start;
1772 	struct btrfs_key key_end;
1773 
1774 	u64 increment = map->stripe_len;
1775 	u64 offset;
1776 
1777 	nstripes = length;
1778 	offset = 0;
1779 	do_div(nstripes, map->stripe_len);
1780 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1781 		offset = map->stripe_len * num;
1782 		increment = map->stripe_len * map->num_stripes;
1783 		mirror_num = 1;
1784 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1785 		int factor = map->num_stripes / map->sub_stripes;
1786 		offset = map->stripe_len * (num / map->sub_stripes);
1787 		increment = map->stripe_len * factor;
1788 		mirror_num = num % map->sub_stripes + 1;
1789 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1790 		increment = map->stripe_len;
1791 		mirror_num = num % map->num_stripes + 1;
1792 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1793 		increment = map->stripe_len;
1794 		mirror_num = num % map->num_stripes + 1;
1795 	} else {
1796 		increment = map->stripe_len;
1797 		mirror_num = 1;
1798 	}
1799 
1800 	path = btrfs_alloc_path();
1801 	if (!path)
1802 		return -ENOMEM;
1803 
1804 	/*
1805 	 * work on commit root. The related disk blocks are static as
1806 	 * long as COW is applied. This means, it is save to rewrite
1807 	 * them to repair disk errors without any race conditions
1808 	 */
1809 	path->search_commit_root = 1;
1810 	path->skip_locking = 1;
1811 
1812 	/*
1813 	 * trigger the readahead for extent tree csum tree and wait for
1814 	 * completion. During readahead, the scrub is officially paused
1815 	 * to not hold off transaction commits
1816 	 */
1817 	logical = base + offset;
1818 
1819 	wait_event(sdev->list_wait,
1820 		   atomic_read(&sdev->in_flight) == 0);
1821 	atomic_inc(&fs_info->scrubs_paused);
1822 	wake_up(&fs_info->scrub_pause_wait);
1823 
1824 	/* FIXME it might be better to start readahead at commit root */
1825 	key_start.objectid = logical;
1826 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
1827 	key_start.offset = (u64)0;
1828 	key_end.objectid = base + offset + nstripes * increment;
1829 	key_end.type = BTRFS_EXTENT_ITEM_KEY;
1830 	key_end.offset = (u64)0;
1831 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
1832 
1833 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1834 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
1835 	key_start.offset = logical;
1836 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1837 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
1838 	key_end.offset = base + offset + nstripes * increment;
1839 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1840 
1841 	if (!IS_ERR(reada1))
1842 		btrfs_reada_wait(reada1);
1843 	if (!IS_ERR(reada2))
1844 		btrfs_reada_wait(reada2);
1845 
1846 	mutex_lock(&fs_info->scrub_lock);
1847 	while (atomic_read(&fs_info->scrub_pause_req)) {
1848 		mutex_unlock(&fs_info->scrub_lock);
1849 		wait_event(fs_info->scrub_pause_wait,
1850 		   atomic_read(&fs_info->scrub_pause_req) == 0);
1851 		mutex_lock(&fs_info->scrub_lock);
1852 	}
1853 	atomic_dec(&fs_info->scrubs_paused);
1854 	mutex_unlock(&fs_info->scrub_lock);
1855 	wake_up(&fs_info->scrub_pause_wait);
1856 
1857 	/*
1858 	 * collect all data csums for the stripe to avoid seeking during
1859 	 * the scrub. This might currently (crc32) end up to be about 1MB
1860 	 */
1861 	blk_start_plug(&plug);
1862 
1863 	/*
1864 	 * now find all extents for each stripe and scrub them
1865 	 */
1866 	logical = base + offset;
1867 	physical = map->stripes[num].physical;
1868 	ret = 0;
1869 	for (i = 0; i < nstripes; ++i) {
1870 		/*
1871 		 * canceled?
1872 		 */
1873 		if (atomic_read(&fs_info->scrub_cancel_req) ||
1874 		    atomic_read(&sdev->cancel_req)) {
1875 			ret = -ECANCELED;
1876 			goto out;
1877 		}
1878 		/*
1879 		 * check to see if we have to pause
1880 		 */
1881 		if (atomic_read(&fs_info->scrub_pause_req)) {
1882 			/* push queued extents */
1883 			scrub_submit(sdev);
1884 			wait_event(sdev->list_wait,
1885 				   atomic_read(&sdev->in_flight) == 0);
1886 			atomic_inc(&fs_info->scrubs_paused);
1887 			wake_up(&fs_info->scrub_pause_wait);
1888 			mutex_lock(&fs_info->scrub_lock);
1889 			while (atomic_read(&fs_info->scrub_pause_req)) {
1890 				mutex_unlock(&fs_info->scrub_lock);
1891 				wait_event(fs_info->scrub_pause_wait,
1892 				   atomic_read(&fs_info->scrub_pause_req) == 0);
1893 				mutex_lock(&fs_info->scrub_lock);
1894 			}
1895 			atomic_dec(&fs_info->scrubs_paused);
1896 			mutex_unlock(&fs_info->scrub_lock);
1897 			wake_up(&fs_info->scrub_pause_wait);
1898 		}
1899 
1900 		ret = btrfs_lookup_csums_range(csum_root, logical,
1901 					       logical + map->stripe_len - 1,
1902 					       &sdev->csum_list, 1);
1903 		if (ret)
1904 			goto out;
1905 
1906 		key.objectid = logical;
1907 		key.type = BTRFS_EXTENT_ITEM_KEY;
1908 		key.offset = (u64)0;
1909 
1910 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1911 		if (ret < 0)
1912 			goto out;
1913 		if (ret > 0) {
1914 			ret = btrfs_previous_item(root, path, 0,
1915 						  BTRFS_EXTENT_ITEM_KEY);
1916 			if (ret < 0)
1917 				goto out;
1918 			if (ret > 0) {
1919 				/* there's no smaller item, so stick with the
1920 				 * larger one */
1921 				btrfs_release_path(path);
1922 				ret = btrfs_search_slot(NULL, root, &key,
1923 							path, 0, 0);
1924 				if (ret < 0)
1925 					goto out;
1926 			}
1927 		}
1928 
1929 		while (1) {
1930 			l = path->nodes[0];
1931 			slot = path->slots[0];
1932 			if (slot >= btrfs_header_nritems(l)) {
1933 				ret = btrfs_next_leaf(root, path);
1934 				if (ret == 0)
1935 					continue;
1936 				if (ret < 0)
1937 					goto out;
1938 
1939 				break;
1940 			}
1941 			btrfs_item_key_to_cpu(l, &key, slot);
1942 
1943 			if (key.objectid + key.offset <= logical)
1944 				goto next;
1945 
1946 			if (key.objectid >= logical + map->stripe_len)
1947 				break;
1948 
1949 			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1950 				goto next;
1951 
1952 			extent = btrfs_item_ptr(l, slot,
1953 						struct btrfs_extent_item);
1954 			flags = btrfs_extent_flags(l, extent);
1955 			generation = btrfs_extent_generation(l, extent);
1956 
1957 			if (key.objectid < logical &&
1958 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1959 				printk(KERN_ERR
1960 				       "btrfs scrub: tree block %llu spanning "
1961 				       "stripes, ignored. logical=%llu\n",
1962 				       (unsigned long long)key.objectid,
1963 				       (unsigned long long)logical);
1964 				goto next;
1965 			}
1966 
1967 			/*
1968 			 * trim extent to this stripe
1969 			 */
1970 			if (key.objectid < logical) {
1971 				key.offset -= logical - key.objectid;
1972 				key.objectid = logical;
1973 			}
1974 			if (key.objectid + key.offset >
1975 			    logical + map->stripe_len) {
1976 				key.offset = logical + map->stripe_len -
1977 					     key.objectid;
1978 			}
1979 
1980 			ret = scrub_extent(sdev, key.objectid, key.offset,
1981 					   key.objectid - logical + physical,
1982 					   flags, generation, mirror_num);
1983 			if (ret)
1984 				goto out;
1985 
1986 next:
1987 			path->slots[0]++;
1988 		}
1989 		btrfs_release_path(path);
1990 		logical += increment;
1991 		physical += map->stripe_len;
1992 		spin_lock(&sdev->stat_lock);
1993 		sdev->stat.last_physical = physical;
1994 		spin_unlock(&sdev->stat_lock);
1995 	}
1996 	/* push queued extents */
1997 	scrub_submit(sdev);
1998 
1999 out:
2000 	blk_finish_plug(&plug);
2001 	btrfs_free_path(path);
2002 	return ret < 0 ? ret : 0;
2003 }
2004 
2005 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2006 	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2007 	u64 dev_offset)
2008 {
2009 	struct btrfs_mapping_tree *map_tree =
2010 		&sdev->dev->dev_root->fs_info->mapping_tree;
2011 	struct map_lookup *map;
2012 	struct extent_map *em;
2013 	int i;
2014 	int ret = -EINVAL;
2015 
2016 	read_lock(&map_tree->map_tree.lock);
2017 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2018 	read_unlock(&map_tree->map_tree.lock);
2019 
2020 	if (!em)
2021 		return -EINVAL;
2022 
2023 	map = (struct map_lookup *)em->bdev;
2024 	if (em->start != chunk_offset)
2025 		goto out;
2026 
2027 	if (em->len < length)
2028 		goto out;
2029 
2030 	for (i = 0; i < map->num_stripes; ++i) {
2031 		if (map->stripes[i].dev == sdev->dev &&
2032 		    map->stripes[i].physical == dev_offset) {
2033 			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2034 			if (ret)
2035 				goto out;
2036 		}
2037 	}
2038 out:
2039 	free_extent_map(em);
2040 
2041 	return ret;
2042 }
2043 
2044 static noinline_for_stack
2045 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2046 {
2047 	struct btrfs_dev_extent *dev_extent = NULL;
2048 	struct btrfs_path *path;
2049 	struct btrfs_root *root = sdev->dev->dev_root;
2050 	struct btrfs_fs_info *fs_info = root->fs_info;
2051 	u64 length;
2052 	u64 chunk_tree;
2053 	u64 chunk_objectid;
2054 	u64 chunk_offset;
2055 	int ret;
2056 	int slot;
2057 	struct extent_buffer *l;
2058 	struct btrfs_key key;
2059 	struct btrfs_key found_key;
2060 	struct btrfs_block_group_cache *cache;
2061 
2062 	path = btrfs_alloc_path();
2063 	if (!path)
2064 		return -ENOMEM;
2065 
2066 	path->reada = 2;
2067 	path->search_commit_root = 1;
2068 	path->skip_locking = 1;
2069 
2070 	key.objectid = sdev->dev->devid;
2071 	key.offset = 0ull;
2072 	key.type = BTRFS_DEV_EXTENT_KEY;
2073 
2074 
2075 	while (1) {
2076 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2077 		if (ret < 0)
2078 			break;
2079 		if (ret > 0) {
2080 			if (path->slots[0] >=
2081 			    btrfs_header_nritems(path->nodes[0])) {
2082 				ret = btrfs_next_leaf(root, path);
2083 				if (ret)
2084 					break;
2085 			}
2086 		}
2087 
2088 		l = path->nodes[0];
2089 		slot = path->slots[0];
2090 
2091 		btrfs_item_key_to_cpu(l, &found_key, slot);
2092 
2093 		if (found_key.objectid != sdev->dev->devid)
2094 			break;
2095 
2096 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2097 			break;
2098 
2099 		if (found_key.offset >= end)
2100 			break;
2101 
2102 		if (found_key.offset < key.offset)
2103 			break;
2104 
2105 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2106 		length = btrfs_dev_extent_length(l, dev_extent);
2107 
2108 		if (found_key.offset + length <= start) {
2109 			key.offset = found_key.offset + length;
2110 			btrfs_release_path(path);
2111 			continue;
2112 		}
2113 
2114 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2115 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2116 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2117 
2118 		/*
2119 		 * get a reference on the corresponding block group to prevent
2120 		 * the chunk from going away while we scrub it
2121 		 */
2122 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2123 		if (!cache) {
2124 			ret = -ENOENT;
2125 			break;
2126 		}
2127 		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2128 				  chunk_offset, length, found_key.offset);
2129 		btrfs_put_block_group(cache);
2130 		if (ret)
2131 			break;
2132 
2133 		key.offset = found_key.offset + length;
2134 		btrfs_release_path(path);
2135 	}
2136 
2137 	btrfs_free_path(path);
2138 
2139 	/*
2140 	 * ret can still be 1 from search_slot or next_leaf,
2141 	 * that's not an error
2142 	 */
2143 	return ret < 0 ? ret : 0;
2144 }
2145 
2146 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2147 {
2148 	int	i;
2149 	u64	bytenr;
2150 	u64	gen;
2151 	int	ret;
2152 	struct btrfs_device *device = sdev->dev;
2153 	struct btrfs_root *root = device->dev_root;
2154 
2155 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2156 		return -EIO;
2157 
2158 	gen = root->fs_info->last_trans_committed;
2159 
2160 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2161 		bytenr = btrfs_sb_offset(i);
2162 		if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2163 			break;
2164 
2165 		ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2166 				     BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2167 		if (ret)
2168 			return ret;
2169 	}
2170 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2171 
2172 	return 0;
2173 }
2174 
2175 /*
2176  * get a reference count on fs_info->scrub_workers. start worker if necessary
2177  */
2178 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2179 {
2180 	struct btrfs_fs_info *fs_info = root->fs_info;
2181 	int ret = 0;
2182 
2183 	mutex_lock(&fs_info->scrub_lock);
2184 	if (fs_info->scrub_workers_refcnt == 0) {
2185 		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2186 			   fs_info->thread_pool_size, &fs_info->generic_worker);
2187 		fs_info->scrub_workers.idle_thresh = 4;
2188 		ret = btrfs_start_workers(&fs_info->scrub_workers);
2189 		if (ret)
2190 			goto out;
2191 	}
2192 	++fs_info->scrub_workers_refcnt;
2193 out:
2194 	mutex_unlock(&fs_info->scrub_lock);
2195 
2196 	return ret;
2197 }
2198 
2199 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2200 {
2201 	struct btrfs_fs_info *fs_info = root->fs_info;
2202 
2203 	mutex_lock(&fs_info->scrub_lock);
2204 	if (--fs_info->scrub_workers_refcnt == 0)
2205 		btrfs_stop_workers(&fs_info->scrub_workers);
2206 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2207 	mutex_unlock(&fs_info->scrub_lock);
2208 }
2209 
2210 
2211 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2212 		    struct btrfs_scrub_progress *progress, int readonly)
2213 {
2214 	struct scrub_dev *sdev;
2215 	struct btrfs_fs_info *fs_info = root->fs_info;
2216 	int ret;
2217 	struct btrfs_device *dev;
2218 
2219 	if (btrfs_fs_closing(root->fs_info))
2220 		return -EINVAL;
2221 
2222 	/*
2223 	 * check some assumptions
2224 	 */
2225 	if (root->nodesize != root->leafsize) {
2226 		printk(KERN_ERR
2227 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2228 		       root->nodesize, root->leafsize);
2229 		return -EINVAL;
2230 	}
2231 
2232 	if (root->nodesize > BTRFS_STRIPE_LEN) {
2233 		/*
2234 		 * in this case scrub is unable to calculate the checksum
2235 		 * the way scrub is implemented. Do not handle this
2236 		 * situation at all because it won't ever happen.
2237 		 */
2238 		printk(KERN_ERR
2239 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2240 		       root->nodesize, BTRFS_STRIPE_LEN);
2241 		return -EINVAL;
2242 	}
2243 
2244 	if (root->sectorsize != PAGE_SIZE) {
2245 		/* not supported for data w/o checksums */
2246 		printk(KERN_ERR
2247 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2248 		       root->sectorsize, (unsigned long long)PAGE_SIZE);
2249 		return -EINVAL;
2250 	}
2251 
2252 	ret = scrub_workers_get(root);
2253 	if (ret)
2254 		return ret;
2255 
2256 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2257 	dev = btrfs_find_device(root, devid, NULL, NULL);
2258 	if (!dev || dev->missing) {
2259 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2260 		scrub_workers_put(root);
2261 		return -ENODEV;
2262 	}
2263 	mutex_lock(&fs_info->scrub_lock);
2264 
2265 	if (!dev->in_fs_metadata) {
2266 		mutex_unlock(&fs_info->scrub_lock);
2267 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2268 		scrub_workers_put(root);
2269 		return -ENODEV;
2270 	}
2271 
2272 	if (dev->scrub_device) {
2273 		mutex_unlock(&fs_info->scrub_lock);
2274 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2275 		scrub_workers_put(root);
2276 		return -EINPROGRESS;
2277 	}
2278 	sdev = scrub_setup_dev(dev);
2279 	if (IS_ERR(sdev)) {
2280 		mutex_unlock(&fs_info->scrub_lock);
2281 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2282 		scrub_workers_put(root);
2283 		return PTR_ERR(sdev);
2284 	}
2285 	sdev->readonly = readonly;
2286 	dev->scrub_device = sdev;
2287 
2288 	atomic_inc(&fs_info->scrubs_running);
2289 	mutex_unlock(&fs_info->scrub_lock);
2290 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2291 
2292 	down_read(&fs_info->scrub_super_lock);
2293 	ret = scrub_supers(sdev);
2294 	up_read(&fs_info->scrub_super_lock);
2295 
2296 	if (!ret)
2297 		ret = scrub_enumerate_chunks(sdev, start, end);
2298 
2299 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2300 	atomic_dec(&fs_info->scrubs_running);
2301 	wake_up(&fs_info->scrub_pause_wait);
2302 
2303 	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2304 
2305 	if (progress)
2306 		memcpy(progress, &sdev->stat, sizeof(*progress));
2307 
2308 	mutex_lock(&fs_info->scrub_lock);
2309 	dev->scrub_device = NULL;
2310 	mutex_unlock(&fs_info->scrub_lock);
2311 
2312 	scrub_free_dev(sdev);
2313 	scrub_workers_put(root);
2314 
2315 	return ret;
2316 }
2317 
2318 void btrfs_scrub_pause(struct btrfs_root *root)
2319 {
2320 	struct btrfs_fs_info *fs_info = root->fs_info;
2321 
2322 	mutex_lock(&fs_info->scrub_lock);
2323 	atomic_inc(&fs_info->scrub_pause_req);
2324 	while (atomic_read(&fs_info->scrubs_paused) !=
2325 	       atomic_read(&fs_info->scrubs_running)) {
2326 		mutex_unlock(&fs_info->scrub_lock);
2327 		wait_event(fs_info->scrub_pause_wait,
2328 			   atomic_read(&fs_info->scrubs_paused) ==
2329 			   atomic_read(&fs_info->scrubs_running));
2330 		mutex_lock(&fs_info->scrub_lock);
2331 	}
2332 	mutex_unlock(&fs_info->scrub_lock);
2333 }
2334 
2335 void btrfs_scrub_continue(struct btrfs_root *root)
2336 {
2337 	struct btrfs_fs_info *fs_info = root->fs_info;
2338 
2339 	atomic_dec(&fs_info->scrub_pause_req);
2340 	wake_up(&fs_info->scrub_pause_wait);
2341 }
2342 
2343 void btrfs_scrub_pause_super(struct btrfs_root *root)
2344 {
2345 	down_write(&root->fs_info->scrub_super_lock);
2346 }
2347 
2348 void btrfs_scrub_continue_super(struct btrfs_root *root)
2349 {
2350 	up_write(&root->fs_info->scrub_super_lock);
2351 }
2352 
2353 int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2354 {
2355 
2356 	mutex_lock(&fs_info->scrub_lock);
2357 	if (!atomic_read(&fs_info->scrubs_running)) {
2358 		mutex_unlock(&fs_info->scrub_lock);
2359 		return -ENOTCONN;
2360 	}
2361 
2362 	atomic_inc(&fs_info->scrub_cancel_req);
2363 	while (atomic_read(&fs_info->scrubs_running)) {
2364 		mutex_unlock(&fs_info->scrub_lock);
2365 		wait_event(fs_info->scrub_pause_wait,
2366 			   atomic_read(&fs_info->scrubs_running) == 0);
2367 		mutex_lock(&fs_info->scrub_lock);
2368 	}
2369 	atomic_dec(&fs_info->scrub_cancel_req);
2370 	mutex_unlock(&fs_info->scrub_lock);
2371 
2372 	return 0;
2373 }
2374 
2375 int btrfs_scrub_cancel(struct btrfs_root *root)
2376 {
2377 	return __btrfs_scrub_cancel(root->fs_info);
2378 }
2379 
2380 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2381 {
2382 	struct btrfs_fs_info *fs_info = root->fs_info;
2383 	struct scrub_dev *sdev;
2384 
2385 	mutex_lock(&fs_info->scrub_lock);
2386 	sdev = dev->scrub_device;
2387 	if (!sdev) {
2388 		mutex_unlock(&fs_info->scrub_lock);
2389 		return -ENOTCONN;
2390 	}
2391 	atomic_inc(&sdev->cancel_req);
2392 	while (dev->scrub_device) {
2393 		mutex_unlock(&fs_info->scrub_lock);
2394 		wait_event(fs_info->scrub_pause_wait,
2395 			   dev->scrub_device == NULL);
2396 		mutex_lock(&fs_info->scrub_lock);
2397 	}
2398 	mutex_unlock(&fs_info->scrub_lock);
2399 
2400 	return 0;
2401 }
2402 
2403 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2404 {
2405 	struct btrfs_fs_info *fs_info = root->fs_info;
2406 	struct btrfs_device *dev;
2407 	int ret;
2408 
2409 	/*
2410 	 * we have to hold the device_list_mutex here so the device
2411 	 * does not go away in cancel_dev. FIXME: find a better solution
2412 	 */
2413 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2414 	dev = btrfs_find_device(root, devid, NULL, NULL);
2415 	if (!dev) {
2416 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2417 		return -ENODEV;
2418 	}
2419 	ret = btrfs_scrub_cancel_dev(root, dev);
2420 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2421 
2422 	return ret;
2423 }
2424 
2425 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2426 			 struct btrfs_scrub_progress *progress)
2427 {
2428 	struct btrfs_device *dev;
2429 	struct scrub_dev *sdev = NULL;
2430 
2431 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2432 	dev = btrfs_find_device(root, devid, NULL, NULL);
2433 	if (dev)
2434 		sdev = dev->scrub_device;
2435 	if (sdev)
2436 		memcpy(progress, &sdev->stat, sizeof(*progress));
2437 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2438 
2439 	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2440 }
2441