xref: /openbmc/linux/fs/btrfs/scrub.c (revision 600a711c)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
30 
31 /*
32  * This is only the first step towards a full-features scrub. It reads all
33  * extent and super block and verifies the checksums. In case a bad checksum
34  * is found or the extent cannot be read, good data will be written back if
35  * any can be found.
36  *
37  * Future enhancements:
38  *  - In case an unrepairable extent is encountered, track which files are
39  *    affected and report them
40  *  - track and record media errors, throw out bad devices
41  *  - add a mode to also read unallocated space
42  */
43 
44 struct scrub_block;
45 struct scrub_dev;
46 
47 #define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
48 #define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
49 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
50 
51 struct scrub_page {
52 	struct scrub_block	*sblock;
53 	struct page		*page;
54 	struct btrfs_device	*dev;
55 	u64			flags;  /* extent flags */
56 	u64			generation;
57 	u64			logical;
58 	u64			physical;
59 	struct {
60 		unsigned int	mirror_num:8;
61 		unsigned int	have_csum:1;
62 		unsigned int	io_error:1;
63 	};
64 	u8			csum[BTRFS_CSUM_SIZE];
65 };
66 
67 struct scrub_bio {
68 	int			index;
69 	struct scrub_dev	*sdev;
70 	struct bio		*bio;
71 	int			err;
72 	u64			logical;
73 	u64			physical;
74 	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
75 	int			page_count;
76 	int			next_free;
77 	struct btrfs_work	work;
78 };
79 
80 struct scrub_block {
81 	struct scrub_page	pagev[SCRUB_MAX_PAGES_PER_BLOCK];
82 	int			page_count;
83 	atomic_t		outstanding_pages;
84 	atomic_t		ref_count; /* free mem on transition to zero */
85 	struct scrub_dev	*sdev;
86 	struct {
87 		unsigned int	header_error:1;
88 		unsigned int	checksum_error:1;
89 		unsigned int	no_io_error_seen:1;
90 		unsigned int	generation_error:1; /* also sets header_error */
91 	};
92 };
93 
94 struct scrub_dev {
95 	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
96 	struct btrfs_device	*dev;
97 	int			first_free;
98 	int			curr;
99 	atomic_t		in_flight;
100 	atomic_t		fixup_cnt;
101 	spinlock_t		list_lock;
102 	wait_queue_head_t	list_wait;
103 	u16			csum_size;
104 	struct list_head	csum_list;
105 	atomic_t		cancel_req;
106 	int			readonly;
107 	int			pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
108 	u32			sectorsize;
109 	u32			nodesize;
110 	u32			leafsize;
111 	/*
112 	 * statistics
113 	 */
114 	struct btrfs_scrub_progress stat;
115 	spinlock_t		stat_lock;
116 };
117 
118 struct scrub_fixup_nodatasum {
119 	struct scrub_dev	*sdev;
120 	u64			logical;
121 	struct btrfs_root	*root;
122 	struct btrfs_work	work;
123 	int			mirror_num;
124 };
125 
126 struct scrub_warning {
127 	struct btrfs_path	*path;
128 	u64			extent_item_size;
129 	char			*scratch_buf;
130 	char			*msg_buf;
131 	const char		*errstr;
132 	sector_t		sector;
133 	u64			logical;
134 	struct btrfs_device	*dev;
135 	int			msg_bufsize;
136 	int			scratch_bufsize;
137 };
138 
139 
140 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
141 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
142 				     struct btrfs_mapping_tree *map_tree,
143 				     u64 length, u64 logical,
144 				     struct scrub_block *sblock);
145 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
146 			       struct scrub_block *sblock, int is_metadata,
147 			       int have_csum, u8 *csum, u64 generation,
148 			       u16 csum_size);
149 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
150 					 struct scrub_block *sblock,
151 					 int is_metadata, int have_csum,
152 					 const u8 *csum, u64 generation,
153 					 u16 csum_size);
154 static void scrub_complete_bio_end_io(struct bio *bio, int err);
155 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
156 					     struct scrub_block *sblock_good,
157 					     int force_write);
158 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
159 					    struct scrub_block *sblock_good,
160 					    int page_num, int force_write);
161 static int scrub_checksum_data(struct scrub_block *sblock);
162 static int scrub_checksum_tree_block(struct scrub_block *sblock);
163 static int scrub_checksum_super(struct scrub_block *sblock);
164 static void scrub_block_get(struct scrub_block *sblock);
165 static void scrub_block_put(struct scrub_block *sblock);
166 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
167 				 struct scrub_page *spage);
168 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
169 		       u64 physical, u64 flags, u64 gen, int mirror_num,
170 		       u8 *csum, int force);
171 static void scrub_bio_end_io(struct bio *bio, int err);
172 static void scrub_bio_end_io_worker(struct btrfs_work *work);
173 static void scrub_block_complete(struct scrub_block *sblock);
174 
175 
176 static void scrub_free_csums(struct scrub_dev *sdev)
177 {
178 	while (!list_empty(&sdev->csum_list)) {
179 		struct btrfs_ordered_sum *sum;
180 		sum = list_first_entry(&sdev->csum_list,
181 				       struct btrfs_ordered_sum, list);
182 		list_del(&sum->list);
183 		kfree(sum);
184 	}
185 }
186 
187 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
188 {
189 	int i;
190 
191 	if (!sdev)
192 		return;
193 
194 	/* this can happen when scrub is cancelled */
195 	if (sdev->curr != -1) {
196 		struct scrub_bio *sbio = sdev->bios[sdev->curr];
197 
198 		for (i = 0; i < sbio->page_count; i++) {
199 			BUG_ON(!sbio->pagev[i]);
200 			BUG_ON(!sbio->pagev[i]->page);
201 			scrub_block_put(sbio->pagev[i]->sblock);
202 		}
203 		bio_put(sbio->bio);
204 	}
205 
206 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
207 		struct scrub_bio *sbio = sdev->bios[i];
208 
209 		if (!sbio)
210 			break;
211 		kfree(sbio);
212 	}
213 
214 	scrub_free_csums(sdev);
215 	kfree(sdev);
216 }
217 
218 static noinline_for_stack
219 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
220 {
221 	struct scrub_dev *sdev;
222 	int		i;
223 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
224 	int pages_per_bio;
225 
226 	pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
227 			      bio_get_nr_vecs(dev->bdev));
228 	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
229 	if (!sdev)
230 		goto nomem;
231 	sdev->dev = dev;
232 	sdev->pages_per_bio = pages_per_bio;
233 	sdev->curr = -1;
234 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
235 		struct scrub_bio *sbio;
236 
237 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
238 		if (!sbio)
239 			goto nomem;
240 		sdev->bios[i] = sbio;
241 
242 		sbio->index = i;
243 		sbio->sdev = sdev;
244 		sbio->page_count = 0;
245 		sbio->work.func = scrub_bio_end_io_worker;
246 
247 		if (i != SCRUB_BIOS_PER_DEV-1)
248 			sdev->bios[i]->next_free = i + 1;
249 		else
250 			sdev->bios[i]->next_free = -1;
251 	}
252 	sdev->first_free = 0;
253 	sdev->nodesize = dev->dev_root->nodesize;
254 	sdev->leafsize = dev->dev_root->leafsize;
255 	sdev->sectorsize = dev->dev_root->sectorsize;
256 	atomic_set(&sdev->in_flight, 0);
257 	atomic_set(&sdev->fixup_cnt, 0);
258 	atomic_set(&sdev->cancel_req, 0);
259 	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
260 	INIT_LIST_HEAD(&sdev->csum_list);
261 
262 	spin_lock_init(&sdev->list_lock);
263 	spin_lock_init(&sdev->stat_lock);
264 	init_waitqueue_head(&sdev->list_wait);
265 	return sdev;
266 
267 nomem:
268 	scrub_free_dev(sdev);
269 	return ERR_PTR(-ENOMEM);
270 }
271 
272 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
273 {
274 	u64 isize;
275 	u32 nlink;
276 	int ret;
277 	int i;
278 	struct extent_buffer *eb;
279 	struct btrfs_inode_item *inode_item;
280 	struct scrub_warning *swarn = ctx;
281 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
282 	struct inode_fs_paths *ipath = NULL;
283 	struct btrfs_root *local_root;
284 	struct btrfs_key root_key;
285 
286 	root_key.objectid = root;
287 	root_key.type = BTRFS_ROOT_ITEM_KEY;
288 	root_key.offset = (u64)-1;
289 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
290 	if (IS_ERR(local_root)) {
291 		ret = PTR_ERR(local_root);
292 		goto err;
293 	}
294 
295 	ret = inode_item_info(inum, 0, local_root, swarn->path);
296 	if (ret) {
297 		btrfs_release_path(swarn->path);
298 		goto err;
299 	}
300 
301 	eb = swarn->path->nodes[0];
302 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
303 					struct btrfs_inode_item);
304 	isize = btrfs_inode_size(eb, inode_item);
305 	nlink = btrfs_inode_nlink(eb, inode_item);
306 	btrfs_release_path(swarn->path);
307 
308 	ipath = init_ipath(4096, local_root, swarn->path);
309 	if (IS_ERR(ipath)) {
310 		ret = PTR_ERR(ipath);
311 		ipath = NULL;
312 		goto err;
313 	}
314 	ret = paths_from_inode(inum, ipath);
315 
316 	if (ret < 0)
317 		goto err;
318 
319 	/*
320 	 * we deliberately ignore the bit ipath might have been too small to
321 	 * hold all of the paths here
322 	 */
323 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
324 		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
325 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
326 			"length %llu, links %u (path: %s)\n", swarn->errstr,
327 			swarn->logical, rcu_str_deref(swarn->dev->name),
328 			(unsigned long long)swarn->sector, root, inum, offset,
329 			min(isize - offset, (u64)PAGE_SIZE), nlink,
330 			(char *)(unsigned long)ipath->fspath->val[i]);
331 
332 	free_ipath(ipath);
333 	return 0;
334 
335 err:
336 	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
337 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
338 		"resolving failed with ret=%d\n", swarn->errstr,
339 		swarn->logical, rcu_str_deref(swarn->dev->name),
340 		(unsigned long long)swarn->sector, root, inum, offset, ret);
341 
342 	free_ipath(ipath);
343 	return 0;
344 }
345 
346 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
347 {
348 	struct btrfs_device *dev = sblock->sdev->dev;
349 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
350 	struct btrfs_path *path;
351 	struct btrfs_key found_key;
352 	struct extent_buffer *eb;
353 	struct btrfs_extent_item *ei;
354 	struct scrub_warning swarn;
355 	u32 item_size;
356 	int ret;
357 	u64 ref_root;
358 	u8 ref_level;
359 	unsigned long ptr = 0;
360 	const int bufsize = 4096;
361 	u64 extent_item_pos;
362 
363 	path = btrfs_alloc_path();
364 
365 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
366 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
367 	BUG_ON(sblock->page_count < 1);
368 	swarn.sector = (sblock->pagev[0].physical) >> 9;
369 	swarn.logical = sblock->pagev[0].logical;
370 	swarn.errstr = errstr;
371 	swarn.dev = dev;
372 	swarn.msg_bufsize = bufsize;
373 	swarn.scratch_bufsize = bufsize;
374 
375 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
376 		goto out;
377 
378 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
379 	if (ret < 0)
380 		goto out;
381 
382 	extent_item_pos = swarn.logical - found_key.objectid;
383 	swarn.extent_item_size = found_key.offset;
384 
385 	eb = path->nodes[0];
386 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
387 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
388 	btrfs_release_path(path);
389 
390 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
391 		do {
392 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
393 							&ref_root, &ref_level);
394 			printk_in_rcu(KERN_WARNING
395 				"btrfs: %s at logical %llu on dev %s, "
396 				"sector %llu: metadata %s (level %d) in tree "
397 				"%llu\n", errstr, swarn.logical,
398 				rcu_str_deref(dev->name),
399 				(unsigned long long)swarn.sector,
400 				ref_level ? "node" : "leaf",
401 				ret < 0 ? -1 : ref_level,
402 				ret < 0 ? -1 : ref_root);
403 		} while (ret != 1);
404 	} else {
405 		swarn.path = path;
406 		iterate_extent_inodes(fs_info, found_key.objectid,
407 					extent_item_pos, 1,
408 					scrub_print_warning_inode, &swarn);
409 	}
410 
411 out:
412 	btrfs_free_path(path);
413 	kfree(swarn.scratch_buf);
414 	kfree(swarn.msg_buf);
415 }
416 
417 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
418 {
419 	struct page *page = NULL;
420 	unsigned long index;
421 	struct scrub_fixup_nodatasum *fixup = ctx;
422 	int ret;
423 	int corrected = 0;
424 	struct btrfs_key key;
425 	struct inode *inode = NULL;
426 	u64 end = offset + PAGE_SIZE - 1;
427 	struct btrfs_root *local_root;
428 
429 	key.objectid = root;
430 	key.type = BTRFS_ROOT_ITEM_KEY;
431 	key.offset = (u64)-1;
432 	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
433 	if (IS_ERR(local_root))
434 		return PTR_ERR(local_root);
435 
436 	key.type = BTRFS_INODE_ITEM_KEY;
437 	key.objectid = inum;
438 	key.offset = 0;
439 	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
440 	if (IS_ERR(inode))
441 		return PTR_ERR(inode);
442 
443 	index = offset >> PAGE_CACHE_SHIFT;
444 
445 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
446 	if (!page) {
447 		ret = -ENOMEM;
448 		goto out;
449 	}
450 
451 	if (PageUptodate(page)) {
452 		struct btrfs_mapping_tree *map_tree;
453 		if (PageDirty(page)) {
454 			/*
455 			 * we need to write the data to the defect sector. the
456 			 * data that was in that sector is not in memory,
457 			 * because the page was modified. we must not write the
458 			 * modified page to that sector.
459 			 *
460 			 * TODO: what could be done here: wait for the delalloc
461 			 *       runner to write out that page (might involve
462 			 *       COW) and see whether the sector is still
463 			 *       referenced afterwards.
464 			 *
465 			 * For the meantime, we'll treat this error
466 			 * incorrectable, although there is a chance that a
467 			 * later scrub will find the bad sector again and that
468 			 * there's no dirty page in memory, then.
469 			 */
470 			ret = -EIO;
471 			goto out;
472 		}
473 		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
474 		ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
475 					fixup->logical, page,
476 					fixup->mirror_num);
477 		unlock_page(page);
478 		corrected = !ret;
479 	} else {
480 		/*
481 		 * we need to get good data first. the general readpage path
482 		 * will call repair_io_failure for us, we just have to make
483 		 * sure we read the bad mirror.
484 		 */
485 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
486 					EXTENT_DAMAGED, GFP_NOFS);
487 		if (ret) {
488 			/* set_extent_bits should give proper error */
489 			WARN_ON(ret > 0);
490 			if (ret > 0)
491 				ret = -EFAULT;
492 			goto out;
493 		}
494 
495 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
496 						btrfs_get_extent,
497 						fixup->mirror_num);
498 		wait_on_page_locked(page);
499 
500 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
501 						end, EXTENT_DAMAGED, 0, NULL);
502 		if (!corrected)
503 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
504 						EXTENT_DAMAGED, GFP_NOFS);
505 	}
506 
507 out:
508 	if (page)
509 		put_page(page);
510 	if (inode)
511 		iput(inode);
512 
513 	if (ret < 0)
514 		return ret;
515 
516 	if (ret == 0 && corrected) {
517 		/*
518 		 * we only need to call readpage for one of the inodes belonging
519 		 * to this extent. so make iterate_extent_inodes stop
520 		 */
521 		return 1;
522 	}
523 
524 	return -EIO;
525 }
526 
527 static void scrub_fixup_nodatasum(struct btrfs_work *work)
528 {
529 	int ret;
530 	struct scrub_fixup_nodatasum *fixup;
531 	struct scrub_dev *sdev;
532 	struct btrfs_trans_handle *trans = NULL;
533 	struct btrfs_fs_info *fs_info;
534 	struct btrfs_path *path;
535 	int uncorrectable = 0;
536 
537 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
538 	sdev = fixup->sdev;
539 	fs_info = fixup->root->fs_info;
540 
541 	path = btrfs_alloc_path();
542 	if (!path) {
543 		spin_lock(&sdev->stat_lock);
544 		++sdev->stat.malloc_errors;
545 		spin_unlock(&sdev->stat_lock);
546 		uncorrectable = 1;
547 		goto out;
548 	}
549 
550 	trans = btrfs_join_transaction(fixup->root);
551 	if (IS_ERR(trans)) {
552 		uncorrectable = 1;
553 		goto out;
554 	}
555 
556 	/*
557 	 * the idea is to trigger a regular read through the standard path. we
558 	 * read a page from the (failed) logical address by specifying the
559 	 * corresponding copynum of the failed sector. thus, that readpage is
560 	 * expected to fail.
561 	 * that is the point where on-the-fly error correction will kick in
562 	 * (once it's finished) and rewrite the failed sector if a good copy
563 	 * can be found.
564 	 */
565 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
566 						path, scrub_fixup_readpage,
567 						fixup);
568 	if (ret < 0) {
569 		uncorrectable = 1;
570 		goto out;
571 	}
572 	WARN_ON(ret != 1);
573 
574 	spin_lock(&sdev->stat_lock);
575 	++sdev->stat.corrected_errors;
576 	spin_unlock(&sdev->stat_lock);
577 
578 out:
579 	if (trans && !IS_ERR(trans))
580 		btrfs_end_transaction(trans, fixup->root);
581 	if (uncorrectable) {
582 		spin_lock(&sdev->stat_lock);
583 		++sdev->stat.uncorrectable_errors;
584 		spin_unlock(&sdev->stat_lock);
585 
586 		printk_ratelimited_in_rcu(KERN_ERR
587 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
588 			(unsigned long long)fixup->logical,
589 			rcu_str_deref(sdev->dev->name));
590 	}
591 
592 	btrfs_free_path(path);
593 	kfree(fixup);
594 
595 	/* see caller why we're pretending to be paused in the scrub counters */
596 	mutex_lock(&fs_info->scrub_lock);
597 	atomic_dec(&fs_info->scrubs_running);
598 	atomic_dec(&fs_info->scrubs_paused);
599 	mutex_unlock(&fs_info->scrub_lock);
600 	atomic_dec(&sdev->fixup_cnt);
601 	wake_up(&fs_info->scrub_pause_wait);
602 	wake_up(&sdev->list_wait);
603 }
604 
605 /*
606  * scrub_handle_errored_block gets called when either verification of the
607  * pages failed or the bio failed to read, e.g. with EIO. In the latter
608  * case, this function handles all pages in the bio, even though only one
609  * may be bad.
610  * The goal of this function is to repair the errored block by using the
611  * contents of one of the mirrors.
612  */
613 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
614 {
615 	struct scrub_dev *sdev = sblock_to_check->sdev;
616 	struct btrfs_fs_info *fs_info;
617 	u64 length;
618 	u64 logical;
619 	u64 generation;
620 	unsigned int failed_mirror_index;
621 	unsigned int is_metadata;
622 	unsigned int have_csum;
623 	u8 *csum;
624 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
625 	struct scrub_block *sblock_bad;
626 	int ret;
627 	int mirror_index;
628 	int page_num;
629 	int success;
630 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
631 				      DEFAULT_RATELIMIT_BURST);
632 
633 	BUG_ON(sblock_to_check->page_count < 1);
634 	fs_info = sdev->dev->dev_root->fs_info;
635 	length = sblock_to_check->page_count * PAGE_SIZE;
636 	logical = sblock_to_check->pagev[0].logical;
637 	generation = sblock_to_check->pagev[0].generation;
638 	BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
639 	failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
640 	is_metadata = !(sblock_to_check->pagev[0].flags &
641 			BTRFS_EXTENT_FLAG_DATA);
642 	have_csum = sblock_to_check->pagev[0].have_csum;
643 	csum = sblock_to_check->pagev[0].csum;
644 
645 	/*
646 	 * read all mirrors one after the other. This includes to
647 	 * re-read the extent or metadata block that failed (that was
648 	 * the cause that this fixup code is called) another time,
649 	 * page by page this time in order to know which pages
650 	 * caused I/O errors and which ones are good (for all mirrors).
651 	 * It is the goal to handle the situation when more than one
652 	 * mirror contains I/O errors, but the errors do not
653 	 * overlap, i.e. the data can be repaired by selecting the
654 	 * pages from those mirrors without I/O error on the
655 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
656 	 * would be that mirror #1 has an I/O error on the first page,
657 	 * the second page is good, and mirror #2 has an I/O error on
658 	 * the second page, but the first page is good.
659 	 * Then the first page of the first mirror can be repaired by
660 	 * taking the first page of the second mirror, and the
661 	 * second page of the second mirror can be repaired by
662 	 * copying the contents of the 2nd page of the 1st mirror.
663 	 * One more note: if the pages of one mirror contain I/O
664 	 * errors, the checksum cannot be verified. In order to get
665 	 * the best data for repairing, the first attempt is to find
666 	 * a mirror without I/O errors and with a validated checksum.
667 	 * Only if this is not possible, the pages are picked from
668 	 * mirrors with I/O errors without considering the checksum.
669 	 * If the latter is the case, at the end, the checksum of the
670 	 * repaired area is verified in order to correctly maintain
671 	 * the statistics.
672 	 */
673 
674 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
675 				     sizeof(*sblocks_for_recheck),
676 				     GFP_NOFS);
677 	if (!sblocks_for_recheck) {
678 		spin_lock(&sdev->stat_lock);
679 		sdev->stat.malloc_errors++;
680 		sdev->stat.read_errors++;
681 		sdev->stat.uncorrectable_errors++;
682 		spin_unlock(&sdev->stat_lock);
683 		btrfs_dev_stat_inc_and_print(sdev->dev,
684 					     BTRFS_DEV_STAT_READ_ERRS);
685 		goto out;
686 	}
687 
688 	/* setup the context, map the logical blocks and alloc the pages */
689 	ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
690 					logical, sblocks_for_recheck);
691 	if (ret) {
692 		spin_lock(&sdev->stat_lock);
693 		sdev->stat.read_errors++;
694 		sdev->stat.uncorrectable_errors++;
695 		spin_unlock(&sdev->stat_lock);
696 		btrfs_dev_stat_inc_and_print(sdev->dev,
697 					     BTRFS_DEV_STAT_READ_ERRS);
698 		goto out;
699 	}
700 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
701 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
702 
703 	/* build and submit the bios for the failed mirror, check checksums */
704 	ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
705 				  csum, generation, sdev->csum_size);
706 	if (ret) {
707 		spin_lock(&sdev->stat_lock);
708 		sdev->stat.read_errors++;
709 		sdev->stat.uncorrectable_errors++;
710 		spin_unlock(&sdev->stat_lock);
711 		btrfs_dev_stat_inc_and_print(sdev->dev,
712 					     BTRFS_DEV_STAT_READ_ERRS);
713 		goto out;
714 	}
715 
716 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
717 	    sblock_bad->no_io_error_seen) {
718 		/*
719 		 * the error disappeared after reading page by page, or
720 		 * the area was part of a huge bio and other parts of the
721 		 * bio caused I/O errors, or the block layer merged several
722 		 * read requests into one and the error is caused by a
723 		 * different bio (usually one of the two latter cases is
724 		 * the cause)
725 		 */
726 		spin_lock(&sdev->stat_lock);
727 		sdev->stat.unverified_errors++;
728 		spin_unlock(&sdev->stat_lock);
729 
730 		goto out;
731 	}
732 
733 	if (!sblock_bad->no_io_error_seen) {
734 		spin_lock(&sdev->stat_lock);
735 		sdev->stat.read_errors++;
736 		spin_unlock(&sdev->stat_lock);
737 		if (__ratelimit(&_rs))
738 			scrub_print_warning("i/o error", sblock_to_check);
739 		btrfs_dev_stat_inc_and_print(sdev->dev,
740 					     BTRFS_DEV_STAT_READ_ERRS);
741 	} else if (sblock_bad->checksum_error) {
742 		spin_lock(&sdev->stat_lock);
743 		sdev->stat.csum_errors++;
744 		spin_unlock(&sdev->stat_lock);
745 		if (__ratelimit(&_rs))
746 			scrub_print_warning("checksum error", sblock_to_check);
747 		btrfs_dev_stat_inc_and_print(sdev->dev,
748 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
749 	} else if (sblock_bad->header_error) {
750 		spin_lock(&sdev->stat_lock);
751 		sdev->stat.verify_errors++;
752 		spin_unlock(&sdev->stat_lock);
753 		if (__ratelimit(&_rs))
754 			scrub_print_warning("checksum/header error",
755 					    sblock_to_check);
756 		if (sblock_bad->generation_error)
757 			btrfs_dev_stat_inc_and_print(sdev->dev,
758 				BTRFS_DEV_STAT_GENERATION_ERRS);
759 		else
760 			btrfs_dev_stat_inc_and_print(sdev->dev,
761 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
762 	}
763 
764 	if (sdev->readonly)
765 		goto did_not_correct_error;
766 
767 	if (!is_metadata && !have_csum) {
768 		struct scrub_fixup_nodatasum *fixup_nodatasum;
769 
770 		/*
771 		 * !is_metadata and !have_csum, this means that the data
772 		 * might not be COW'ed, that it might be modified
773 		 * concurrently. The general strategy to work on the
774 		 * commit root does not help in the case when COW is not
775 		 * used.
776 		 */
777 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
778 		if (!fixup_nodatasum)
779 			goto did_not_correct_error;
780 		fixup_nodatasum->sdev = sdev;
781 		fixup_nodatasum->logical = logical;
782 		fixup_nodatasum->root = fs_info->extent_root;
783 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
784 		/*
785 		 * increment scrubs_running to prevent cancel requests from
786 		 * completing as long as a fixup worker is running. we must also
787 		 * increment scrubs_paused to prevent deadlocking on pause
788 		 * requests used for transactions commits (as the worker uses a
789 		 * transaction context). it is safe to regard the fixup worker
790 		 * as paused for all matters practical. effectively, we only
791 		 * avoid cancellation requests from completing.
792 		 */
793 		mutex_lock(&fs_info->scrub_lock);
794 		atomic_inc(&fs_info->scrubs_running);
795 		atomic_inc(&fs_info->scrubs_paused);
796 		mutex_unlock(&fs_info->scrub_lock);
797 		atomic_inc(&sdev->fixup_cnt);
798 		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
799 		btrfs_queue_worker(&fs_info->scrub_workers,
800 				   &fixup_nodatasum->work);
801 		goto out;
802 	}
803 
804 	/*
805 	 * now build and submit the bios for the other mirrors, check
806 	 * checksums
807 	 */
808 	for (mirror_index = 0;
809 	     mirror_index < BTRFS_MAX_MIRRORS &&
810 	     sblocks_for_recheck[mirror_index].page_count > 0;
811 	     mirror_index++) {
812 		if (mirror_index == failed_mirror_index)
813 			continue;
814 
815 		/* build and submit the bios, check checksums */
816 		ret = scrub_recheck_block(fs_info,
817 					  sblocks_for_recheck + mirror_index,
818 					  is_metadata, have_csum, csum,
819 					  generation, sdev->csum_size);
820 		if (ret)
821 			goto did_not_correct_error;
822 	}
823 
824 	/*
825 	 * first try to pick the mirror which is completely without I/O
826 	 * errors and also does not have a checksum error.
827 	 * If one is found, and if a checksum is present, the full block
828 	 * that is known to contain an error is rewritten. Afterwards
829 	 * the block is known to be corrected.
830 	 * If a mirror is found which is completely correct, and no
831 	 * checksum is present, only those pages are rewritten that had
832 	 * an I/O error in the block to be repaired, since it cannot be
833 	 * determined, which copy of the other pages is better (and it
834 	 * could happen otherwise that a correct page would be
835 	 * overwritten by a bad one).
836 	 */
837 	for (mirror_index = 0;
838 	     mirror_index < BTRFS_MAX_MIRRORS &&
839 	     sblocks_for_recheck[mirror_index].page_count > 0;
840 	     mirror_index++) {
841 		struct scrub_block *sblock_other = sblocks_for_recheck +
842 						   mirror_index;
843 
844 		if (!sblock_other->header_error &&
845 		    !sblock_other->checksum_error &&
846 		    sblock_other->no_io_error_seen) {
847 			int force_write = is_metadata || have_csum;
848 
849 			ret = scrub_repair_block_from_good_copy(sblock_bad,
850 								sblock_other,
851 								force_write);
852 			if (0 == ret)
853 				goto corrected_error;
854 		}
855 	}
856 
857 	/*
858 	 * in case of I/O errors in the area that is supposed to be
859 	 * repaired, continue by picking good copies of those pages.
860 	 * Select the good pages from mirrors to rewrite bad pages from
861 	 * the area to fix. Afterwards verify the checksum of the block
862 	 * that is supposed to be repaired. This verification step is
863 	 * only done for the purpose of statistic counting and for the
864 	 * final scrub report, whether errors remain.
865 	 * A perfect algorithm could make use of the checksum and try
866 	 * all possible combinations of pages from the different mirrors
867 	 * until the checksum verification succeeds. For example, when
868 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
869 	 * of mirror #2 is readable but the final checksum test fails,
870 	 * then the 2nd page of mirror #3 could be tried, whether now
871 	 * the final checksum succeedes. But this would be a rare
872 	 * exception and is therefore not implemented. At least it is
873 	 * avoided that the good copy is overwritten.
874 	 * A more useful improvement would be to pick the sectors
875 	 * without I/O error based on sector sizes (512 bytes on legacy
876 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
877 	 * mirror could be repaired by taking 512 byte of a different
878 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
879 	 * area are unreadable.
880 	 */
881 
882 	/* can only fix I/O errors from here on */
883 	if (sblock_bad->no_io_error_seen)
884 		goto did_not_correct_error;
885 
886 	success = 1;
887 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
888 		struct scrub_page *page_bad = sblock_bad->pagev + page_num;
889 
890 		if (!page_bad->io_error)
891 			continue;
892 
893 		for (mirror_index = 0;
894 		     mirror_index < BTRFS_MAX_MIRRORS &&
895 		     sblocks_for_recheck[mirror_index].page_count > 0;
896 		     mirror_index++) {
897 			struct scrub_block *sblock_other = sblocks_for_recheck +
898 							   mirror_index;
899 			struct scrub_page *page_other = sblock_other->pagev +
900 							page_num;
901 
902 			if (!page_other->io_error) {
903 				ret = scrub_repair_page_from_good_copy(
904 					sblock_bad, sblock_other, page_num, 0);
905 				if (0 == ret) {
906 					page_bad->io_error = 0;
907 					break; /* succeeded for this page */
908 				}
909 			}
910 		}
911 
912 		if (page_bad->io_error) {
913 			/* did not find a mirror to copy the page from */
914 			success = 0;
915 		}
916 	}
917 
918 	if (success) {
919 		if (is_metadata || have_csum) {
920 			/*
921 			 * need to verify the checksum now that all
922 			 * sectors on disk are repaired (the write
923 			 * request for data to be repaired is on its way).
924 			 * Just be lazy and use scrub_recheck_block()
925 			 * which re-reads the data before the checksum
926 			 * is verified, but most likely the data comes out
927 			 * of the page cache.
928 			 */
929 			ret = scrub_recheck_block(fs_info, sblock_bad,
930 						  is_metadata, have_csum, csum,
931 						  generation, sdev->csum_size);
932 			if (!ret && !sblock_bad->header_error &&
933 			    !sblock_bad->checksum_error &&
934 			    sblock_bad->no_io_error_seen)
935 				goto corrected_error;
936 			else
937 				goto did_not_correct_error;
938 		} else {
939 corrected_error:
940 			spin_lock(&sdev->stat_lock);
941 			sdev->stat.corrected_errors++;
942 			spin_unlock(&sdev->stat_lock);
943 			printk_ratelimited_in_rcu(KERN_ERR
944 				"btrfs: fixed up error at logical %llu on dev %s\n",
945 				(unsigned long long)logical,
946 				rcu_str_deref(sdev->dev->name));
947 		}
948 	} else {
949 did_not_correct_error:
950 		spin_lock(&sdev->stat_lock);
951 		sdev->stat.uncorrectable_errors++;
952 		spin_unlock(&sdev->stat_lock);
953 		printk_ratelimited_in_rcu(KERN_ERR
954 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
955 			(unsigned long long)logical,
956 			rcu_str_deref(sdev->dev->name));
957 	}
958 
959 out:
960 	if (sblocks_for_recheck) {
961 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
962 		     mirror_index++) {
963 			struct scrub_block *sblock = sblocks_for_recheck +
964 						     mirror_index;
965 			int page_index;
966 
967 			for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
968 			     page_index++)
969 				if (sblock->pagev[page_index].page)
970 					__free_page(
971 						sblock->pagev[page_index].page);
972 		}
973 		kfree(sblocks_for_recheck);
974 	}
975 
976 	return 0;
977 }
978 
979 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
980 				     struct btrfs_mapping_tree *map_tree,
981 				     u64 length, u64 logical,
982 				     struct scrub_block *sblocks_for_recheck)
983 {
984 	int page_index;
985 	int mirror_index;
986 	int ret;
987 
988 	/*
989 	 * note: the three members sdev, ref_count and outstanding_pages
990 	 * are not used (and not set) in the blocks that are used for
991 	 * the recheck procedure
992 	 */
993 
994 	page_index = 0;
995 	while (length > 0) {
996 		u64 sublen = min_t(u64, length, PAGE_SIZE);
997 		u64 mapped_length = sublen;
998 		struct btrfs_bio *bbio = NULL;
999 
1000 		/*
1001 		 * with a length of PAGE_SIZE, each returned stripe
1002 		 * represents one mirror
1003 		 */
1004 		ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
1005 				      &bbio, 0);
1006 		if (ret || !bbio || mapped_length < sublen) {
1007 			kfree(bbio);
1008 			return -EIO;
1009 		}
1010 
1011 		BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
1012 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1013 		     mirror_index++) {
1014 			struct scrub_block *sblock;
1015 			struct scrub_page *page;
1016 
1017 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1018 				continue;
1019 
1020 			sblock = sblocks_for_recheck + mirror_index;
1021 			page = sblock->pagev + page_index;
1022 			page->logical = logical;
1023 			page->physical = bbio->stripes[mirror_index].physical;
1024 			/* for missing devices, dev->bdev is NULL */
1025 			page->dev = bbio->stripes[mirror_index].dev;
1026 			page->mirror_num = mirror_index + 1;
1027 			page->page = alloc_page(GFP_NOFS);
1028 			if (!page->page) {
1029 				spin_lock(&sdev->stat_lock);
1030 				sdev->stat.malloc_errors++;
1031 				spin_unlock(&sdev->stat_lock);
1032 				return -ENOMEM;
1033 			}
1034 			sblock->page_count++;
1035 		}
1036 		kfree(bbio);
1037 		length -= sublen;
1038 		logical += sublen;
1039 		page_index++;
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 /*
1046  * this function will check the on disk data for checksum errors, header
1047  * errors and read I/O errors. If any I/O errors happen, the exact pages
1048  * which are errored are marked as being bad. The goal is to enable scrub
1049  * to take those pages that are not errored from all the mirrors so that
1050  * the pages that are errored in the just handled mirror can be repaired.
1051  */
1052 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1053 			       struct scrub_block *sblock, int is_metadata,
1054 			       int have_csum, u8 *csum, u64 generation,
1055 			       u16 csum_size)
1056 {
1057 	int page_num;
1058 
1059 	sblock->no_io_error_seen = 1;
1060 	sblock->header_error = 0;
1061 	sblock->checksum_error = 0;
1062 
1063 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1064 		struct bio *bio;
1065 		int ret;
1066 		struct scrub_page *page = sblock->pagev + page_num;
1067 		DECLARE_COMPLETION_ONSTACK(complete);
1068 
1069 		if (page->dev->bdev == NULL) {
1070 			page->io_error = 1;
1071 			sblock->no_io_error_seen = 0;
1072 			continue;
1073 		}
1074 
1075 		BUG_ON(!page->page);
1076 		bio = bio_alloc(GFP_NOFS, 1);
1077 		if (!bio)
1078 			return -EIO;
1079 		bio->bi_bdev = page->dev->bdev;
1080 		bio->bi_sector = page->physical >> 9;
1081 		bio->bi_end_io = scrub_complete_bio_end_io;
1082 		bio->bi_private = &complete;
1083 
1084 		ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1085 		if (PAGE_SIZE != ret) {
1086 			bio_put(bio);
1087 			return -EIO;
1088 		}
1089 		btrfsic_submit_bio(READ, bio);
1090 
1091 		/* this will also unplug the queue */
1092 		wait_for_completion(&complete);
1093 
1094 		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1095 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1096 			sblock->no_io_error_seen = 0;
1097 		bio_put(bio);
1098 	}
1099 
1100 	if (sblock->no_io_error_seen)
1101 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1102 					     have_csum, csum, generation,
1103 					     csum_size);
1104 
1105 	return 0;
1106 }
1107 
1108 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1109 					 struct scrub_block *sblock,
1110 					 int is_metadata, int have_csum,
1111 					 const u8 *csum, u64 generation,
1112 					 u16 csum_size)
1113 {
1114 	int page_num;
1115 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1116 	u32 crc = ~(u32)0;
1117 	struct btrfs_root *root = fs_info->extent_root;
1118 	void *mapped_buffer;
1119 
1120 	BUG_ON(!sblock->pagev[0].page);
1121 	if (is_metadata) {
1122 		struct btrfs_header *h;
1123 
1124 		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1125 		h = (struct btrfs_header *)mapped_buffer;
1126 
1127 		if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1128 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1129 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1130 			   BTRFS_UUID_SIZE)) {
1131 			sblock->header_error = 1;
1132 		} else if (generation != le64_to_cpu(h->generation)) {
1133 			sblock->header_error = 1;
1134 			sblock->generation_error = 1;
1135 		}
1136 		csum = h->csum;
1137 	} else {
1138 		if (!have_csum)
1139 			return;
1140 
1141 		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1142 	}
1143 
1144 	for (page_num = 0;;) {
1145 		if (page_num == 0 && is_metadata)
1146 			crc = btrfs_csum_data(root,
1147 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1148 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1149 		else
1150 			crc = btrfs_csum_data(root, mapped_buffer, crc,
1151 					      PAGE_SIZE);
1152 
1153 		kunmap_atomic(mapped_buffer);
1154 		page_num++;
1155 		if (page_num >= sblock->page_count)
1156 			break;
1157 		BUG_ON(!sblock->pagev[page_num].page);
1158 
1159 		mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1160 	}
1161 
1162 	btrfs_csum_final(crc, calculated_csum);
1163 	if (memcmp(calculated_csum, csum, csum_size))
1164 		sblock->checksum_error = 1;
1165 }
1166 
1167 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1168 {
1169 	complete((struct completion *)bio->bi_private);
1170 }
1171 
1172 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1173 					     struct scrub_block *sblock_good,
1174 					     int force_write)
1175 {
1176 	int page_num;
1177 	int ret = 0;
1178 
1179 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1180 		int ret_sub;
1181 
1182 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1183 							   sblock_good,
1184 							   page_num,
1185 							   force_write);
1186 		if (ret_sub)
1187 			ret = ret_sub;
1188 	}
1189 
1190 	return ret;
1191 }
1192 
1193 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1194 					    struct scrub_block *sblock_good,
1195 					    int page_num, int force_write)
1196 {
1197 	struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1198 	struct scrub_page *page_good = sblock_good->pagev + page_num;
1199 
1200 	BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1201 	BUG_ON(sblock_good->pagev[page_num].page == NULL);
1202 	if (force_write || sblock_bad->header_error ||
1203 	    sblock_bad->checksum_error || page_bad->io_error) {
1204 		struct bio *bio;
1205 		int ret;
1206 		DECLARE_COMPLETION_ONSTACK(complete);
1207 
1208 		bio = bio_alloc(GFP_NOFS, 1);
1209 		if (!bio)
1210 			return -EIO;
1211 		bio->bi_bdev = page_bad->dev->bdev;
1212 		bio->bi_sector = page_bad->physical >> 9;
1213 		bio->bi_end_io = scrub_complete_bio_end_io;
1214 		bio->bi_private = &complete;
1215 
1216 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1217 		if (PAGE_SIZE != ret) {
1218 			bio_put(bio);
1219 			return -EIO;
1220 		}
1221 		btrfsic_submit_bio(WRITE, bio);
1222 
1223 		/* this will also unplug the queue */
1224 		wait_for_completion(&complete);
1225 		if (!bio_flagged(bio, BIO_UPTODATE)) {
1226 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1227 				BTRFS_DEV_STAT_WRITE_ERRS);
1228 			bio_put(bio);
1229 			return -EIO;
1230 		}
1231 		bio_put(bio);
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 static void scrub_checksum(struct scrub_block *sblock)
1238 {
1239 	u64 flags;
1240 	int ret;
1241 
1242 	BUG_ON(sblock->page_count < 1);
1243 	flags = sblock->pagev[0].flags;
1244 	ret = 0;
1245 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1246 		ret = scrub_checksum_data(sblock);
1247 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1248 		ret = scrub_checksum_tree_block(sblock);
1249 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1250 		(void)scrub_checksum_super(sblock);
1251 	else
1252 		WARN_ON(1);
1253 	if (ret)
1254 		scrub_handle_errored_block(sblock);
1255 }
1256 
1257 static int scrub_checksum_data(struct scrub_block *sblock)
1258 {
1259 	struct scrub_dev *sdev = sblock->sdev;
1260 	u8 csum[BTRFS_CSUM_SIZE];
1261 	u8 *on_disk_csum;
1262 	struct page *page;
1263 	void *buffer;
1264 	u32 crc = ~(u32)0;
1265 	int fail = 0;
1266 	struct btrfs_root *root = sdev->dev->dev_root;
1267 	u64 len;
1268 	int index;
1269 
1270 	BUG_ON(sblock->page_count < 1);
1271 	if (!sblock->pagev[0].have_csum)
1272 		return 0;
1273 
1274 	on_disk_csum = sblock->pagev[0].csum;
1275 	page = sblock->pagev[0].page;
1276 	buffer = kmap_atomic(page);
1277 
1278 	len = sdev->sectorsize;
1279 	index = 0;
1280 	for (;;) {
1281 		u64 l = min_t(u64, len, PAGE_SIZE);
1282 
1283 		crc = btrfs_csum_data(root, buffer, crc, l);
1284 		kunmap_atomic(buffer);
1285 		len -= l;
1286 		if (len == 0)
1287 			break;
1288 		index++;
1289 		BUG_ON(index >= sblock->page_count);
1290 		BUG_ON(!sblock->pagev[index].page);
1291 		page = sblock->pagev[index].page;
1292 		buffer = kmap_atomic(page);
1293 	}
1294 
1295 	btrfs_csum_final(crc, csum);
1296 	if (memcmp(csum, on_disk_csum, sdev->csum_size))
1297 		fail = 1;
1298 
1299 	return fail;
1300 }
1301 
1302 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1303 {
1304 	struct scrub_dev *sdev = sblock->sdev;
1305 	struct btrfs_header *h;
1306 	struct btrfs_root *root = sdev->dev->dev_root;
1307 	struct btrfs_fs_info *fs_info = root->fs_info;
1308 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1309 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1310 	struct page *page;
1311 	void *mapped_buffer;
1312 	u64 mapped_size;
1313 	void *p;
1314 	u32 crc = ~(u32)0;
1315 	int fail = 0;
1316 	int crc_fail = 0;
1317 	u64 len;
1318 	int index;
1319 
1320 	BUG_ON(sblock->page_count < 1);
1321 	page = sblock->pagev[0].page;
1322 	mapped_buffer = kmap_atomic(page);
1323 	h = (struct btrfs_header *)mapped_buffer;
1324 	memcpy(on_disk_csum, h->csum, sdev->csum_size);
1325 
1326 	/*
1327 	 * we don't use the getter functions here, as we
1328 	 * a) don't have an extent buffer and
1329 	 * b) the page is already kmapped
1330 	 */
1331 
1332 	if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1333 		++fail;
1334 
1335 	if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1336 		++fail;
1337 
1338 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1339 		++fail;
1340 
1341 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1342 		   BTRFS_UUID_SIZE))
1343 		++fail;
1344 
1345 	BUG_ON(sdev->nodesize != sdev->leafsize);
1346 	len = sdev->nodesize - BTRFS_CSUM_SIZE;
1347 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1348 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1349 	index = 0;
1350 	for (;;) {
1351 		u64 l = min_t(u64, len, mapped_size);
1352 
1353 		crc = btrfs_csum_data(root, p, crc, l);
1354 		kunmap_atomic(mapped_buffer);
1355 		len -= l;
1356 		if (len == 0)
1357 			break;
1358 		index++;
1359 		BUG_ON(index >= sblock->page_count);
1360 		BUG_ON(!sblock->pagev[index].page);
1361 		page = sblock->pagev[index].page;
1362 		mapped_buffer = kmap_atomic(page);
1363 		mapped_size = PAGE_SIZE;
1364 		p = mapped_buffer;
1365 	}
1366 
1367 	btrfs_csum_final(crc, calculated_csum);
1368 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1369 		++crc_fail;
1370 
1371 	return fail || crc_fail;
1372 }
1373 
1374 static int scrub_checksum_super(struct scrub_block *sblock)
1375 {
1376 	struct btrfs_super_block *s;
1377 	struct scrub_dev *sdev = sblock->sdev;
1378 	struct btrfs_root *root = sdev->dev->dev_root;
1379 	struct btrfs_fs_info *fs_info = root->fs_info;
1380 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1381 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1382 	struct page *page;
1383 	void *mapped_buffer;
1384 	u64 mapped_size;
1385 	void *p;
1386 	u32 crc = ~(u32)0;
1387 	int fail_gen = 0;
1388 	int fail_cor = 0;
1389 	u64 len;
1390 	int index;
1391 
1392 	BUG_ON(sblock->page_count < 1);
1393 	page = sblock->pagev[0].page;
1394 	mapped_buffer = kmap_atomic(page);
1395 	s = (struct btrfs_super_block *)mapped_buffer;
1396 	memcpy(on_disk_csum, s->csum, sdev->csum_size);
1397 
1398 	if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1399 		++fail_cor;
1400 
1401 	if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1402 		++fail_gen;
1403 
1404 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1405 		++fail_cor;
1406 
1407 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1408 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1409 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1410 	index = 0;
1411 	for (;;) {
1412 		u64 l = min_t(u64, len, mapped_size);
1413 
1414 		crc = btrfs_csum_data(root, p, crc, l);
1415 		kunmap_atomic(mapped_buffer);
1416 		len -= l;
1417 		if (len == 0)
1418 			break;
1419 		index++;
1420 		BUG_ON(index >= sblock->page_count);
1421 		BUG_ON(!sblock->pagev[index].page);
1422 		page = sblock->pagev[index].page;
1423 		mapped_buffer = kmap_atomic(page);
1424 		mapped_size = PAGE_SIZE;
1425 		p = mapped_buffer;
1426 	}
1427 
1428 	btrfs_csum_final(crc, calculated_csum);
1429 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1430 		++fail_cor;
1431 
1432 	if (fail_cor + fail_gen) {
1433 		/*
1434 		 * if we find an error in a super block, we just report it.
1435 		 * They will get written with the next transaction commit
1436 		 * anyway
1437 		 */
1438 		spin_lock(&sdev->stat_lock);
1439 		++sdev->stat.super_errors;
1440 		spin_unlock(&sdev->stat_lock);
1441 		if (fail_cor)
1442 			btrfs_dev_stat_inc_and_print(sdev->dev,
1443 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1444 		else
1445 			btrfs_dev_stat_inc_and_print(sdev->dev,
1446 				BTRFS_DEV_STAT_GENERATION_ERRS);
1447 	}
1448 
1449 	return fail_cor + fail_gen;
1450 }
1451 
1452 static void scrub_block_get(struct scrub_block *sblock)
1453 {
1454 	atomic_inc(&sblock->ref_count);
1455 }
1456 
1457 static void scrub_block_put(struct scrub_block *sblock)
1458 {
1459 	if (atomic_dec_and_test(&sblock->ref_count)) {
1460 		int i;
1461 
1462 		for (i = 0; i < sblock->page_count; i++)
1463 			if (sblock->pagev[i].page)
1464 				__free_page(sblock->pagev[i].page);
1465 		kfree(sblock);
1466 	}
1467 }
1468 
1469 static void scrub_submit(struct scrub_dev *sdev)
1470 {
1471 	struct scrub_bio *sbio;
1472 
1473 	if (sdev->curr == -1)
1474 		return;
1475 
1476 	sbio = sdev->bios[sdev->curr];
1477 	sdev->curr = -1;
1478 	atomic_inc(&sdev->in_flight);
1479 
1480 	btrfsic_submit_bio(READ, sbio->bio);
1481 }
1482 
1483 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1484 				 struct scrub_page *spage)
1485 {
1486 	struct scrub_block *sblock = spage->sblock;
1487 	struct scrub_bio *sbio;
1488 	int ret;
1489 
1490 again:
1491 	/*
1492 	 * grab a fresh bio or wait for one to become available
1493 	 */
1494 	while (sdev->curr == -1) {
1495 		spin_lock(&sdev->list_lock);
1496 		sdev->curr = sdev->first_free;
1497 		if (sdev->curr != -1) {
1498 			sdev->first_free = sdev->bios[sdev->curr]->next_free;
1499 			sdev->bios[sdev->curr]->next_free = -1;
1500 			sdev->bios[sdev->curr]->page_count = 0;
1501 			spin_unlock(&sdev->list_lock);
1502 		} else {
1503 			spin_unlock(&sdev->list_lock);
1504 			wait_event(sdev->list_wait, sdev->first_free != -1);
1505 		}
1506 	}
1507 	sbio = sdev->bios[sdev->curr];
1508 	if (sbio->page_count == 0) {
1509 		struct bio *bio;
1510 
1511 		sbio->physical = spage->physical;
1512 		sbio->logical = spage->logical;
1513 		bio = sbio->bio;
1514 		if (!bio) {
1515 			bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1516 			if (!bio)
1517 				return -ENOMEM;
1518 			sbio->bio = bio;
1519 		}
1520 
1521 		bio->bi_private = sbio;
1522 		bio->bi_end_io = scrub_bio_end_io;
1523 		bio->bi_bdev = sdev->dev->bdev;
1524 		bio->bi_sector = spage->physical >> 9;
1525 		sbio->err = 0;
1526 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1527 		   spage->physical ||
1528 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1529 		   spage->logical) {
1530 		scrub_submit(sdev);
1531 		goto again;
1532 	}
1533 
1534 	sbio->pagev[sbio->page_count] = spage;
1535 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1536 	if (ret != PAGE_SIZE) {
1537 		if (sbio->page_count < 1) {
1538 			bio_put(sbio->bio);
1539 			sbio->bio = NULL;
1540 			return -EIO;
1541 		}
1542 		scrub_submit(sdev);
1543 		goto again;
1544 	}
1545 
1546 	scrub_block_get(sblock); /* one for the added page */
1547 	atomic_inc(&sblock->outstanding_pages);
1548 	sbio->page_count++;
1549 	if (sbio->page_count == sdev->pages_per_bio)
1550 		scrub_submit(sdev);
1551 
1552 	return 0;
1553 }
1554 
1555 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1556 		       u64 physical, u64 flags, u64 gen, int mirror_num,
1557 		       u8 *csum, int force)
1558 {
1559 	struct scrub_block *sblock;
1560 	int index;
1561 
1562 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1563 	if (!sblock) {
1564 		spin_lock(&sdev->stat_lock);
1565 		sdev->stat.malloc_errors++;
1566 		spin_unlock(&sdev->stat_lock);
1567 		return -ENOMEM;
1568 	}
1569 
1570 	/* one ref inside this function, plus one for each page later on */
1571 	atomic_set(&sblock->ref_count, 1);
1572 	sblock->sdev = sdev;
1573 	sblock->no_io_error_seen = 1;
1574 
1575 	for (index = 0; len > 0; index++) {
1576 		struct scrub_page *spage = sblock->pagev + index;
1577 		u64 l = min_t(u64, len, PAGE_SIZE);
1578 
1579 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1580 		spage->page = alloc_page(GFP_NOFS);
1581 		if (!spage->page) {
1582 			spin_lock(&sdev->stat_lock);
1583 			sdev->stat.malloc_errors++;
1584 			spin_unlock(&sdev->stat_lock);
1585 			while (index > 0) {
1586 				index--;
1587 				__free_page(sblock->pagev[index].page);
1588 			}
1589 			kfree(sblock);
1590 			return -ENOMEM;
1591 		}
1592 		spage->sblock = sblock;
1593 		spage->dev = sdev->dev;
1594 		spage->flags = flags;
1595 		spage->generation = gen;
1596 		spage->logical = logical;
1597 		spage->physical = physical;
1598 		spage->mirror_num = mirror_num;
1599 		if (csum) {
1600 			spage->have_csum = 1;
1601 			memcpy(spage->csum, csum, sdev->csum_size);
1602 		} else {
1603 			spage->have_csum = 0;
1604 		}
1605 		sblock->page_count++;
1606 		len -= l;
1607 		logical += l;
1608 		physical += l;
1609 	}
1610 
1611 	BUG_ON(sblock->page_count == 0);
1612 	for (index = 0; index < sblock->page_count; index++) {
1613 		struct scrub_page *spage = sblock->pagev + index;
1614 		int ret;
1615 
1616 		ret = scrub_add_page_to_bio(sdev, spage);
1617 		if (ret) {
1618 			scrub_block_put(sblock);
1619 			return ret;
1620 		}
1621 	}
1622 
1623 	if (force)
1624 		scrub_submit(sdev);
1625 
1626 	/* last one frees, either here or in bio completion for last page */
1627 	scrub_block_put(sblock);
1628 	return 0;
1629 }
1630 
1631 static void scrub_bio_end_io(struct bio *bio, int err)
1632 {
1633 	struct scrub_bio *sbio = bio->bi_private;
1634 	struct scrub_dev *sdev = sbio->sdev;
1635 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1636 
1637 	sbio->err = err;
1638 	sbio->bio = bio;
1639 
1640 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1641 }
1642 
1643 static void scrub_bio_end_io_worker(struct btrfs_work *work)
1644 {
1645 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1646 	struct scrub_dev *sdev = sbio->sdev;
1647 	int i;
1648 
1649 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1650 	if (sbio->err) {
1651 		for (i = 0; i < sbio->page_count; i++) {
1652 			struct scrub_page *spage = sbio->pagev[i];
1653 
1654 			spage->io_error = 1;
1655 			spage->sblock->no_io_error_seen = 0;
1656 		}
1657 	}
1658 
1659 	/* now complete the scrub_block items that have all pages completed */
1660 	for (i = 0; i < sbio->page_count; i++) {
1661 		struct scrub_page *spage = sbio->pagev[i];
1662 		struct scrub_block *sblock = spage->sblock;
1663 
1664 		if (atomic_dec_and_test(&sblock->outstanding_pages))
1665 			scrub_block_complete(sblock);
1666 		scrub_block_put(sblock);
1667 	}
1668 
1669 	if (sbio->err) {
1670 		/* what is this good for??? */
1671 		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1672 		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1673 		sbio->bio->bi_phys_segments = 0;
1674 		sbio->bio->bi_idx = 0;
1675 
1676 		for (i = 0; i < sbio->page_count; i++) {
1677 			struct bio_vec *bi;
1678 			bi = &sbio->bio->bi_io_vec[i];
1679 			bi->bv_offset = 0;
1680 			bi->bv_len = PAGE_SIZE;
1681 		}
1682 	}
1683 
1684 	bio_put(sbio->bio);
1685 	sbio->bio = NULL;
1686 	spin_lock(&sdev->list_lock);
1687 	sbio->next_free = sdev->first_free;
1688 	sdev->first_free = sbio->index;
1689 	spin_unlock(&sdev->list_lock);
1690 	atomic_dec(&sdev->in_flight);
1691 	wake_up(&sdev->list_wait);
1692 }
1693 
1694 static void scrub_block_complete(struct scrub_block *sblock)
1695 {
1696 	if (!sblock->no_io_error_seen)
1697 		scrub_handle_errored_block(sblock);
1698 	else
1699 		scrub_checksum(sblock);
1700 }
1701 
1702 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1703 			   u8 *csum)
1704 {
1705 	struct btrfs_ordered_sum *sum = NULL;
1706 	int ret = 0;
1707 	unsigned long i;
1708 	unsigned long num_sectors;
1709 
1710 	while (!list_empty(&sdev->csum_list)) {
1711 		sum = list_first_entry(&sdev->csum_list,
1712 				       struct btrfs_ordered_sum, list);
1713 		if (sum->bytenr > logical)
1714 			return 0;
1715 		if (sum->bytenr + sum->len > logical)
1716 			break;
1717 
1718 		++sdev->stat.csum_discards;
1719 		list_del(&sum->list);
1720 		kfree(sum);
1721 		sum = NULL;
1722 	}
1723 	if (!sum)
1724 		return 0;
1725 
1726 	num_sectors = sum->len / sdev->sectorsize;
1727 	for (i = 0; i < num_sectors; ++i) {
1728 		if (sum->sums[i].bytenr == logical) {
1729 			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1730 			ret = 1;
1731 			break;
1732 		}
1733 	}
1734 	if (ret && i == num_sectors - 1) {
1735 		list_del(&sum->list);
1736 		kfree(sum);
1737 	}
1738 	return ret;
1739 }
1740 
1741 /* scrub extent tries to collect up to 64 kB for each bio */
1742 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1743 			u64 physical, u64 flags, u64 gen, int mirror_num)
1744 {
1745 	int ret;
1746 	u8 csum[BTRFS_CSUM_SIZE];
1747 	u32 blocksize;
1748 
1749 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
1750 		blocksize = sdev->sectorsize;
1751 		spin_lock(&sdev->stat_lock);
1752 		sdev->stat.data_extents_scrubbed++;
1753 		sdev->stat.data_bytes_scrubbed += len;
1754 		spin_unlock(&sdev->stat_lock);
1755 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1756 		BUG_ON(sdev->nodesize != sdev->leafsize);
1757 		blocksize = sdev->nodesize;
1758 		spin_lock(&sdev->stat_lock);
1759 		sdev->stat.tree_extents_scrubbed++;
1760 		sdev->stat.tree_bytes_scrubbed += len;
1761 		spin_unlock(&sdev->stat_lock);
1762 	} else {
1763 		blocksize = sdev->sectorsize;
1764 		BUG_ON(1);
1765 	}
1766 
1767 	while (len) {
1768 		u64 l = min_t(u64, len, blocksize);
1769 		int have_csum = 0;
1770 
1771 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
1772 			/* push csums to sbio */
1773 			have_csum = scrub_find_csum(sdev, logical, l, csum);
1774 			if (have_csum == 0)
1775 				++sdev->stat.no_csum;
1776 		}
1777 		ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1778 				  mirror_num, have_csum ? csum : NULL, 0);
1779 		if (ret)
1780 			return ret;
1781 		len -= l;
1782 		logical += l;
1783 		physical += l;
1784 	}
1785 	return 0;
1786 }
1787 
1788 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1789 	struct map_lookup *map, int num, u64 base, u64 length)
1790 {
1791 	struct btrfs_path *path;
1792 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1793 	struct btrfs_root *root = fs_info->extent_root;
1794 	struct btrfs_root *csum_root = fs_info->csum_root;
1795 	struct btrfs_extent_item *extent;
1796 	struct blk_plug plug;
1797 	u64 flags;
1798 	int ret;
1799 	int slot;
1800 	int i;
1801 	u64 nstripes;
1802 	struct extent_buffer *l;
1803 	struct btrfs_key key;
1804 	u64 physical;
1805 	u64 logical;
1806 	u64 generation;
1807 	int mirror_num;
1808 	struct reada_control *reada1;
1809 	struct reada_control *reada2;
1810 	struct btrfs_key key_start;
1811 	struct btrfs_key key_end;
1812 
1813 	u64 increment = map->stripe_len;
1814 	u64 offset;
1815 
1816 	nstripes = length;
1817 	offset = 0;
1818 	do_div(nstripes, map->stripe_len);
1819 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1820 		offset = map->stripe_len * num;
1821 		increment = map->stripe_len * map->num_stripes;
1822 		mirror_num = 1;
1823 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1824 		int factor = map->num_stripes / map->sub_stripes;
1825 		offset = map->stripe_len * (num / map->sub_stripes);
1826 		increment = map->stripe_len * factor;
1827 		mirror_num = num % map->sub_stripes + 1;
1828 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1829 		increment = map->stripe_len;
1830 		mirror_num = num % map->num_stripes + 1;
1831 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1832 		increment = map->stripe_len;
1833 		mirror_num = num % map->num_stripes + 1;
1834 	} else {
1835 		increment = map->stripe_len;
1836 		mirror_num = 1;
1837 	}
1838 
1839 	path = btrfs_alloc_path();
1840 	if (!path)
1841 		return -ENOMEM;
1842 
1843 	/*
1844 	 * work on commit root. The related disk blocks are static as
1845 	 * long as COW is applied. This means, it is save to rewrite
1846 	 * them to repair disk errors without any race conditions
1847 	 */
1848 	path->search_commit_root = 1;
1849 	path->skip_locking = 1;
1850 
1851 	/*
1852 	 * trigger the readahead for extent tree csum tree and wait for
1853 	 * completion. During readahead, the scrub is officially paused
1854 	 * to not hold off transaction commits
1855 	 */
1856 	logical = base + offset;
1857 
1858 	wait_event(sdev->list_wait,
1859 		   atomic_read(&sdev->in_flight) == 0);
1860 	atomic_inc(&fs_info->scrubs_paused);
1861 	wake_up(&fs_info->scrub_pause_wait);
1862 
1863 	/* FIXME it might be better to start readahead at commit root */
1864 	key_start.objectid = logical;
1865 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
1866 	key_start.offset = (u64)0;
1867 	key_end.objectid = base + offset + nstripes * increment;
1868 	key_end.type = BTRFS_EXTENT_ITEM_KEY;
1869 	key_end.offset = (u64)0;
1870 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
1871 
1872 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1873 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
1874 	key_start.offset = logical;
1875 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1876 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
1877 	key_end.offset = base + offset + nstripes * increment;
1878 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1879 
1880 	if (!IS_ERR(reada1))
1881 		btrfs_reada_wait(reada1);
1882 	if (!IS_ERR(reada2))
1883 		btrfs_reada_wait(reada2);
1884 
1885 	mutex_lock(&fs_info->scrub_lock);
1886 	while (atomic_read(&fs_info->scrub_pause_req)) {
1887 		mutex_unlock(&fs_info->scrub_lock);
1888 		wait_event(fs_info->scrub_pause_wait,
1889 		   atomic_read(&fs_info->scrub_pause_req) == 0);
1890 		mutex_lock(&fs_info->scrub_lock);
1891 	}
1892 	atomic_dec(&fs_info->scrubs_paused);
1893 	mutex_unlock(&fs_info->scrub_lock);
1894 	wake_up(&fs_info->scrub_pause_wait);
1895 
1896 	/*
1897 	 * collect all data csums for the stripe to avoid seeking during
1898 	 * the scrub. This might currently (crc32) end up to be about 1MB
1899 	 */
1900 	blk_start_plug(&plug);
1901 
1902 	/*
1903 	 * now find all extents for each stripe and scrub them
1904 	 */
1905 	logical = base + offset;
1906 	physical = map->stripes[num].physical;
1907 	ret = 0;
1908 	for (i = 0; i < nstripes; ++i) {
1909 		/*
1910 		 * canceled?
1911 		 */
1912 		if (atomic_read(&fs_info->scrub_cancel_req) ||
1913 		    atomic_read(&sdev->cancel_req)) {
1914 			ret = -ECANCELED;
1915 			goto out;
1916 		}
1917 		/*
1918 		 * check to see if we have to pause
1919 		 */
1920 		if (atomic_read(&fs_info->scrub_pause_req)) {
1921 			/* push queued extents */
1922 			scrub_submit(sdev);
1923 			wait_event(sdev->list_wait,
1924 				   atomic_read(&sdev->in_flight) == 0);
1925 			atomic_inc(&fs_info->scrubs_paused);
1926 			wake_up(&fs_info->scrub_pause_wait);
1927 			mutex_lock(&fs_info->scrub_lock);
1928 			while (atomic_read(&fs_info->scrub_pause_req)) {
1929 				mutex_unlock(&fs_info->scrub_lock);
1930 				wait_event(fs_info->scrub_pause_wait,
1931 				   atomic_read(&fs_info->scrub_pause_req) == 0);
1932 				mutex_lock(&fs_info->scrub_lock);
1933 			}
1934 			atomic_dec(&fs_info->scrubs_paused);
1935 			mutex_unlock(&fs_info->scrub_lock);
1936 			wake_up(&fs_info->scrub_pause_wait);
1937 		}
1938 
1939 		ret = btrfs_lookup_csums_range(csum_root, logical,
1940 					       logical + map->stripe_len - 1,
1941 					       &sdev->csum_list, 1);
1942 		if (ret)
1943 			goto out;
1944 
1945 		key.objectid = logical;
1946 		key.type = BTRFS_EXTENT_ITEM_KEY;
1947 		key.offset = (u64)0;
1948 
1949 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1950 		if (ret < 0)
1951 			goto out;
1952 		if (ret > 0) {
1953 			ret = btrfs_previous_item(root, path, 0,
1954 						  BTRFS_EXTENT_ITEM_KEY);
1955 			if (ret < 0)
1956 				goto out;
1957 			if (ret > 0) {
1958 				/* there's no smaller item, so stick with the
1959 				 * larger one */
1960 				btrfs_release_path(path);
1961 				ret = btrfs_search_slot(NULL, root, &key,
1962 							path, 0, 0);
1963 				if (ret < 0)
1964 					goto out;
1965 			}
1966 		}
1967 
1968 		while (1) {
1969 			l = path->nodes[0];
1970 			slot = path->slots[0];
1971 			if (slot >= btrfs_header_nritems(l)) {
1972 				ret = btrfs_next_leaf(root, path);
1973 				if (ret == 0)
1974 					continue;
1975 				if (ret < 0)
1976 					goto out;
1977 
1978 				break;
1979 			}
1980 			btrfs_item_key_to_cpu(l, &key, slot);
1981 
1982 			if (key.objectid + key.offset <= logical)
1983 				goto next;
1984 
1985 			if (key.objectid >= logical + map->stripe_len)
1986 				break;
1987 
1988 			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1989 				goto next;
1990 
1991 			extent = btrfs_item_ptr(l, slot,
1992 						struct btrfs_extent_item);
1993 			flags = btrfs_extent_flags(l, extent);
1994 			generation = btrfs_extent_generation(l, extent);
1995 
1996 			if (key.objectid < logical &&
1997 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1998 				printk(KERN_ERR
1999 				       "btrfs scrub: tree block %llu spanning "
2000 				       "stripes, ignored. logical=%llu\n",
2001 				       (unsigned long long)key.objectid,
2002 				       (unsigned long long)logical);
2003 				goto next;
2004 			}
2005 
2006 			/*
2007 			 * trim extent to this stripe
2008 			 */
2009 			if (key.objectid < logical) {
2010 				key.offset -= logical - key.objectid;
2011 				key.objectid = logical;
2012 			}
2013 			if (key.objectid + key.offset >
2014 			    logical + map->stripe_len) {
2015 				key.offset = logical + map->stripe_len -
2016 					     key.objectid;
2017 			}
2018 
2019 			ret = scrub_extent(sdev, key.objectid, key.offset,
2020 					   key.objectid - logical + physical,
2021 					   flags, generation, mirror_num);
2022 			if (ret)
2023 				goto out;
2024 
2025 next:
2026 			path->slots[0]++;
2027 		}
2028 		btrfs_release_path(path);
2029 		logical += increment;
2030 		physical += map->stripe_len;
2031 		spin_lock(&sdev->stat_lock);
2032 		sdev->stat.last_physical = physical;
2033 		spin_unlock(&sdev->stat_lock);
2034 	}
2035 	/* push queued extents */
2036 	scrub_submit(sdev);
2037 
2038 out:
2039 	blk_finish_plug(&plug);
2040 	btrfs_free_path(path);
2041 	return ret < 0 ? ret : 0;
2042 }
2043 
2044 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2045 	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2046 	u64 dev_offset)
2047 {
2048 	struct btrfs_mapping_tree *map_tree =
2049 		&sdev->dev->dev_root->fs_info->mapping_tree;
2050 	struct map_lookup *map;
2051 	struct extent_map *em;
2052 	int i;
2053 	int ret = -EINVAL;
2054 
2055 	read_lock(&map_tree->map_tree.lock);
2056 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2057 	read_unlock(&map_tree->map_tree.lock);
2058 
2059 	if (!em)
2060 		return -EINVAL;
2061 
2062 	map = (struct map_lookup *)em->bdev;
2063 	if (em->start != chunk_offset)
2064 		goto out;
2065 
2066 	if (em->len < length)
2067 		goto out;
2068 
2069 	for (i = 0; i < map->num_stripes; ++i) {
2070 		if (map->stripes[i].dev == sdev->dev &&
2071 		    map->stripes[i].physical == dev_offset) {
2072 			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2073 			if (ret)
2074 				goto out;
2075 		}
2076 	}
2077 out:
2078 	free_extent_map(em);
2079 
2080 	return ret;
2081 }
2082 
2083 static noinline_for_stack
2084 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2085 {
2086 	struct btrfs_dev_extent *dev_extent = NULL;
2087 	struct btrfs_path *path;
2088 	struct btrfs_root *root = sdev->dev->dev_root;
2089 	struct btrfs_fs_info *fs_info = root->fs_info;
2090 	u64 length;
2091 	u64 chunk_tree;
2092 	u64 chunk_objectid;
2093 	u64 chunk_offset;
2094 	int ret;
2095 	int slot;
2096 	struct extent_buffer *l;
2097 	struct btrfs_key key;
2098 	struct btrfs_key found_key;
2099 	struct btrfs_block_group_cache *cache;
2100 
2101 	path = btrfs_alloc_path();
2102 	if (!path)
2103 		return -ENOMEM;
2104 
2105 	path->reada = 2;
2106 	path->search_commit_root = 1;
2107 	path->skip_locking = 1;
2108 
2109 	key.objectid = sdev->dev->devid;
2110 	key.offset = 0ull;
2111 	key.type = BTRFS_DEV_EXTENT_KEY;
2112 
2113 
2114 	while (1) {
2115 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2116 		if (ret < 0)
2117 			break;
2118 		if (ret > 0) {
2119 			if (path->slots[0] >=
2120 			    btrfs_header_nritems(path->nodes[0])) {
2121 				ret = btrfs_next_leaf(root, path);
2122 				if (ret)
2123 					break;
2124 			}
2125 		}
2126 
2127 		l = path->nodes[0];
2128 		slot = path->slots[0];
2129 
2130 		btrfs_item_key_to_cpu(l, &found_key, slot);
2131 
2132 		if (found_key.objectid != sdev->dev->devid)
2133 			break;
2134 
2135 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2136 			break;
2137 
2138 		if (found_key.offset >= end)
2139 			break;
2140 
2141 		if (found_key.offset < key.offset)
2142 			break;
2143 
2144 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2145 		length = btrfs_dev_extent_length(l, dev_extent);
2146 
2147 		if (found_key.offset + length <= start) {
2148 			key.offset = found_key.offset + length;
2149 			btrfs_release_path(path);
2150 			continue;
2151 		}
2152 
2153 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2154 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2155 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2156 
2157 		/*
2158 		 * get a reference on the corresponding block group to prevent
2159 		 * the chunk from going away while we scrub it
2160 		 */
2161 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2162 		if (!cache) {
2163 			ret = -ENOENT;
2164 			break;
2165 		}
2166 		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2167 				  chunk_offset, length, found_key.offset);
2168 		btrfs_put_block_group(cache);
2169 		if (ret)
2170 			break;
2171 
2172 		key.offset = found_key.offset + length;
2173 		btrfs_release_path(path);
2174 	}
2175 
2176 	btrfs_free_path(path);
2177 
2178 	/*
2179 	 * ret can still be 1 from search_slot or next_leaf,
2180 	 * that's not an error
2181 	 */
2182 	return ret < 0 ? ret : 0;
2183 }
2184 
2185 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2186 {
2187 	int	i;
2188 	u64	bytenr;
2189 	u64	gen;
2190 	int	ret;
2191 	struct btrfs_device *device = sdev->dev;
2192 	struct btrfs_root *root = device->dev_root;
2193 
2194 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2195 		return -EIO;
2196 
2197 	gen = root->fs_info->last_trans_committed;
2198 
2199 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2200 		bytenr = btrfs_sb_offset(i);
2201 		if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2202 			break;
2203 
2204 		ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2205 				     BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2206 		if (ret)
2207 			return ret;
2208 	}
2209 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2210 
2211 	return 0;
2212 }
2213 
2214 /*
2215  * get a reference count on fs_info->scrub_workers. start worker if necessary
2216  */
2217 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2218 {
2219 	struct btrfs_fs_info *fs_info = root->fs_info;
2220 	int ret = 0;
2221 
2222 	mutex_lock(&fs_info->scrub_lock);
2223 	if (fs_info->scrub_workers_refcnt == 0) {
2224 		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2225 			   fs_info->thread_pool_size, &fs_info->generic_worker);
2226 		fs_info->scrub_workers.idle_thresh = 4;
2227 		ret = btrfs_start_workers(&fs_info->scrub_workers);
2228 		if (ret)
2229 			goto out;
2230 	}
2231 	++fs_info->scrub_workers_refcnt;
2232 out:
2233 	mutex_unlock(&fs_info->scrub_lock);
2234 
2235 	return ret;
2236 }
2237 
2238 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2239 {
2240 	struct btrfs_fs_info *fs_info = root->fs_info;
2241 
2242 	mutex_lock(&fs_info->scrub_lock);
2243 	if (--fs_info->scrub_workers_refcnt == 0)
2244 		btrfs_stop_workers(&fs_info->scrub_workers);
2245 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2246 	mutex_unlock(&fs_info->scrub_lock);
2247 }
2248 
2249 
2250 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2251 		    struct btrfs_scrub_progress *progress, int readonly)
2252 {
2253 	struct scrub_dev *sdev;
2254 	struct btrfs_fs_info *fs_info = root->fs_info;
2255 	int ret;
2256 	struct btrfs_device *dev;
2257 
2258 	if (btrfs_fs_closing(root->fs_info))
2259 		return -EINVAL;
2260 
2261 	/*
2262 	 * check some assumptions
2263 	 */
2264 	if (root->nodesize != root->leafsize) {
2265 		printk(KERN_ERR
2266 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2267 		       root->nodesize, root->leafsize);
2268 		return -EINVAL;
2269 	}
2270 
2271 	if (root->nodesize > BTRFS_STRIPE_LEN) {
2272 		/*
2273 		 * in this case scrub is unable to calculate the checksum
2274 		 * the way scrub is implemented. Do not handle this
2275 		 * situation at all because it won't ever happen.
2276 		 */
2277 		printk(KERN_ERR
2278 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2279 		       root->nodesize, BTRFS_STRIPE_LEN);
2280 		return -EINVAL;
2281 	}
2282 
2283 	if (root->sectorsize != PAGE_SIZE) {
2284 		/* not supported for data w/o checksums */
2285 		printk(KERN_ERR
2286 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2287 		       root->sectorsize, (unsigned long long)PAGE_SIZE);
2288 		return -EINVAL;
2289 	}
2290 
2291 	ret = scrub_workers_get(root);
2292 	if (ret)
2293 		return ret;
2294 
2295 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2296 	dev = btrfs_find_device(root, devid, NULL, NULL);
2297 	if (!dev || dev->missing) {
2298 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2299 		scrub_workers_put(root);
2300 		return -ENODEV;
2301 	}
2302 	mutex_lock(&fs_info->scrub_lock);
2303 
2304 	if (!dev->in_fs_metadata) {
2305 		mutex_unlock(&fs_info->scrub_lock);
2306 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2307 		scrub_workers_put(root);
2308 		return -ENODEV;
2309 	}
2310 
2311 	if (dev->scrub_device) {
2312 		mutex_unlock(&fs_info->scrub_lock);
2313 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2314 		scrub_workers_put(root);
2315 		return -EINPROGRESS;
2316 	}
2317 	sdev = scrub_setup_dev(dev);
2318 	if (IS_ERR(sdev)) {
2319 		mutex_unlock(&fs_info->scrub_lock);
2320 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2321 		scrub_workers_put(root);
2322 		return PTR_ERR(sdev);
2323 	}
2324 	sdev->readonly = readonly;
2325 	dev->scrub_device = sdev;
2326 
2327 	atomic_inc(&fs_info->scrubs_running);
2328 	mutex_unlock(&fs_info->scrub_lock);
2329 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2330 
2331 	down_read(&fs_info->scrub_super_lock);
2332 	ret = scrub_supers(sdev);
2333 	up_read(&fs_info->scrub_super_lock);
2334 
2335 	if (!ret)
2336 		ret = scrub_enumerate_chunks(sdev, start, end);
2337 
2338 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2339 	atomic_dec(&fs_info->scrubs_running);
2340 	wake_up(&fs_info->scrub_pause_wait);
2341 
2342 	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2343 
2344 	if (progress)
2345 		memcpy(progress, &sdev->stat, sizeof(*progress));
2346 
2347 	mutex_lock(&fs_info->scrub_lock);
2348 	dev->scrub_device = NULL;
2349 	mutex_unlock(&fs_info->scrub_lock);
2350 
2351 	scrub_free_dev(sdev);
2352 	scrub_workers_put(root);
2353 
2354 	return ret;
2355 }
2356 
2357 void btrfs_scrub_pause(struct btrfs_root *root)
2358 {
2359 	struct btrfs_fs_info *fs_info = root->fs_info;
2360 
2361 	mutex_lock(&fs_info->scrub_lock);
2362 	atomic_inc(&fs_info->scrub_pause_req);
2363 	while (atomic_read(&fs_info->scrubs_paused) !=
2364 	       atomic_read(&fs_info->scrubs_running)) {
2365 		mutex_unlock(&fs_info->scrub_lock);
2366 		wait_event(fs_info->scrub_pause_wait,
2367 			   atomic_read(&fs_info->scrubs_paused) ==
2368 			   atomic_read(&fs_info->scrubs_running));
2369 		mutex_lock(&fs_info->scrub_lock);
2370 	}
2371 	mutex_unlock(&fs_info->scrub_lock);
2372 }
2373 
2374 void btrfs_scrub_continue(struct btrfs_root *root)
2375 {
2376 	struct btrfs_fs_info *fs_info = root->fs_info;
2377 
2378 	atomic_dec(&fs_info->scrub_pause_req);
2379 	wake_up(&fs_info->scrub_pause_wait);
2380 }
2381 
2382 void btrfs_scrub_pause_super(struct btrfs_root *root)
2383 {
2384 	down_write(&root->fs_info->scrub_super_lock);
2385 }
2386 
2387 void btrfs_scrub_continue_super(struct btrfs_root *root)
2388 {
2389 	up_write(&root->fs_info->scrub_super_lock);
2390 }
2391 
2392 int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2393 {
2394 
2395 	mutex_lock(&fs_info->scrub_lock);
2396 	if (!atomic_read(&fs_info->scrubs_running)) {
2397 		mutex_unlock(&fs_info->scrub_lock);
2398 		return -ENOTCONN;
2399 	}
2400 
2401 	atomic_inc(&fs_info->scrub_cancel_req);
2402 	while (atomic_read(&fs_info->scrubs_running)) {
2403 		mutex_unlock(&fs_info->scrub_lock);
2404 		wait_event(fs_info->scrub_pause_wait,
2405 			   atomic_read(&fs_info->scrubs_running) == 0);
2406 		mutex_lock(&fs_info->scrub_lock);
2407 	}
2408 	atomic_dec(&fs_info->scrub_cancel_req);
2409 	mutex_unlock(&fs_info->scrub_lock);
2410 
2411 	return 0;
2412 }
2413 
2414 int btrfs_scrub_cancel(struct btrfs_root *root)
2415 {
2416 	return __btrfs_scrub_cancel(root->fs_info);
2417 }
2418 
2419 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2420 {
2421 	struct btrfs_fs_info *fs_info = root->fs_info;
2422 	struct scrub_dev *sdev;
2423 
2424 	mutex_lock(&fs_info->scrub_lock);
2425 	sdev = dev->scrub_device;
2426 	if (!sdev) {
2427 		mutex_unlock(&fs_info->scrub_lock);
2428 		return -ENOTCONN;
2429 	}
2430 	atomic_inc(&sdev->cancel_req);
2431 	while (dev->scrub_device) {
2432 		mutex_unlock(&fs_info->scrub_lock);
2433 		wait_event(fs_info->scrub_pause_wait,
2434 			   dev->scrub_device == NULL);
2435 		mutex_lock(&fs_info->scrub_lock);
2436 	}
2437 	mutex_unlock(&fs_info->scrub_lock);
2438 
2439 	return 0;
2440 }
2441 
2442 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2443 {
2444 	struct btrfs_fs_info *fs_info = root->fs_info;
2445 	struct btrfs_device *dev;
2446 	int ret;
2447 
2448 	/*
2449 	 * we have to hold the device_list_mutex here so the device
2450 	 * does not go away in cancel_dev. FIXME: find a better solution
2451 	 */
2452 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2453 	dev = btrfs_find_device(root, devid, NULL, NULL);
2454 	if (!dev) {
2455 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2456 		return -ENODEV;
2457 	}
2458 	ret = btrfs_scrub_cancel_dev(root, dev);
2459 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2460 
2461 	return ret;
2462 }
2463 
2464 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2465 			 struct btrfs_scrub_progress *progress)
2466 {
2467 	struct btrfs_device *dev;
2468 	struct scrub_dev *sdev = NULL;
2469 
2470 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2471 	dev = btrfs_find_device(root, devid, NULL, NULL);
2472 	if (dev)
2473 		sdev = dev->scrub_device;
2474 	if (sdev)
2475 		memcpy(progress, &sdev->stat, sizeof(*progress));
2476 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2477 
2478 	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2479 }
2480