xref: /openbmc/linux/fs/btrfs/scrub.c (revision 5f2cf757f9c56255470c23a2a4a5574a34edad4b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "raid56.h"
21 #include "block-group.h"
22 #include "zoned.h"
23 #include "fs.h"
24 #include "accessors.h"
25 #include "file-item.h"
26 #include "scrub.h"
27 
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40 
41 struct scrub_ctx;
42 
43 /*
44  * The following value only influences the performance.
45  *
46  * This determines the batch size for stripe submitted in one go.
47  */
48 #define SCRUB_STRIPES_PER_SCTX	8	/* That would be 8 64K stripe per-device. */
49 
50 /*
51  * The following value times PAGE_SIZE needs to be large enough to match the
52  * largest node/leaf/sector size that shall be supported.
53  */
54 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
55 
56 /* Represent one sector and its needed info to verify the content. */
57 struct scrub_sector_verification {
58 	bool is_metadata;
59 
60 	union {
61 		/*
62 		 * Csum pointer for data csum verification.  Should point to a
63 		 * sector csum inside scrub_stripe::csums.
64 		 *
65 		 * NULL if this data sector has no csum.
66 		 */
67 		u8 *csum;
68 
69 		/*
70 		 * Extra info for metadata verification.  All sectors inside a
71 		 * tree block share the same generation.
72 		 */
73 		u64 generation;
74 	};
75 };
76 
77 enum scrub_stripe_flags {
78 	/* Set when @mirror_num, @dev, @physical and @logical are set. */
79 	SCRUB_STRIPE_FLAG_INITIALIZED,
80 
81 	/* Set when the read-repair is finished. */
82 	SCRUB_STRIPE_FLAG_REPAIR_DONE,
83 
84 	/*
85 	 * Set for data stripes if it's triggered from P/Q stripe.
86 	 * During such scrub, we should not report errors in data stripes, nor
87 	 * update the accounting.
88 	 */
89 	SCRUB_STRIPE_FLAG_NO_REPORT,
90 };
91 
92 #define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
93 
94 /*
95  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
96  */
97 struct scrub_stripe {
98 	struct scrub_ctx *sctx;
99 	struct btrfs_block_group *bg;
100 
101 	struct page *pages[SCRUB_STRIPE_PAGES];
102 	struct scrub_sector_verification *sectors;
103 
104 	struct btrfs_device *dev;
105 	u64 logical;
106 	u64 physical;
107 
108 	u16 mirror_num;
109 
110 	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
111 	u16 nr_sectors;
112 
113 	/*
114 	 * How many data/meta extents are in this stripe.  Only for scrub status
115 	 * reporting purposes.
116 	 */
117 	u16 nr_data_extents;
118 	u16 nr_meta_extents;
119 
120 	atomic_t pending_io;
121 	wait_queue_head_t io_wait;
122 	wait_queue_head_t repair_wait;
123 
124 	/*
125 	 * Indicate the states of the stripe.  Bits are defined in
126 	 * scrub_stripe_flags enum.
127 	 */
128 	unsigned long state;
129 
130 	/* Indicate which sectors are covered by extent items. */
131 	unsigned long extent_sector_bitmap;
132 
133 	/*
134 	 * The errors hit during the initial read of the stripe.
135 	 *
136 	 * Would be utilized for error reporting and repair.
137 	 *
138 	 * The remaining init_nr_* records the number of errors hit, only used
139 	 * by error reporting.
140 	 */
141 	unsigned long init_error_bitmap;
142 	unsigned int init_nr_io_errors;
143 	unsigned int init_nr_csum_errors;
144 	unsigned int init_nr_meta_errors;
145 
146 	/*
147 	 * The following error bitmaps are all for the current status.
148 	 * Every time we submit a new read, these bitmaps may be updated.
149 	 *
150 	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
151 	 *
152 	 * IO and csum errors can happen for both metadata and data.
153 	 */
154 	unsigned long error_bitmap;
155 	unsigned long io_error_bitmap;
156 	unsigned long csum_error_bitmap;
157 	unsigned long meta_error_bitmap;
158 
159 	/* For writeback (repair or replace) error reporting. */
160 	unsigned long write_error_bitmap;
161 
162 	/* Writeback can be concurrent, thus we need to protect the bitmap. */
163 	spinlock_t write_error_lock;
164 
165 	/*
166 	 * Checksum for the whole stripe if this stripe is inside a data block
167 	 * group.
168 	 */
169 	u8 *csums;
170 
171 	struct work_struct work;
172 };
173 
174 struct scrub_ctx {
175 	struct scrub_stripe	stripes[SCRUB_STRIPES_PER_SCTX];
176 	struct scrub_stripe	*raid56_data_stripes;
177 	struct btrfs_fs_info	*fs_info;
178 	int			first_free;
179 	int			cur_stripe;
180 	struct list_head	csum_list;
181 	atomic_t		cancel_req;
182 	int			readonly;
183 	int			sectors_per_bio;
184 
185 	/* State of IO submission throttling affecting the associated device */
186 	ktime_t			throttle_deadline;
187 	u64			throttle_sent;
188 
189 	int			is_dev_replace;
190 	u64			write_pointer;
191 
192 	struct mutex            wr_lock;
193 	struct btrfs_device     *wr_tgtdev;
194 
195 	/*
196 	 * statistics
197 	 */
198 	struct btrfs_scrub_progress stat;
199 	spinlock_t		stat_lock;
200 
201 	/*
202 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
203 	 * decrement bios_in_flight and workers_pending and then do a wakeup
204 	 * on the list_wait wait queue. We must ensure the main scrub task
205 	 * doesn't free the scrub context before or while the workers are
206 	 * doing the wakeup() call.
207 	 */
208 	refcount_t              refs;
209 };
210 
211 struct scrub_warning {
212 	struct btrfs_path	*path;
213 	u64			extent_item_size;
214 	const char		*errstr;
215 	u64			physical;
216 	u64			logical;
217 	struct btrfs_device	*dev;
218 };
219 
220 static void release_scrub_stripe(struct scrub_stripe *stripe)
221 {
222 	if (!stripe)
223 		return;
224 
225 	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
226 		if (stripe->pages[i])
227 			__free_page(stripe->pages[i]);
228 		stripe->pages[i] = NULL;
229 	}
230 	kfree(stripe->sectors);
231 	kfree(stripe->csums);
232 	stripe->sectors = NULL;
233 	stripe->csums = NULL;
234 	stripe->sctx = NULL;
235 	stripe->state = 0;
236 }
237 
238 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
239 			     struct scrub_stripe *stripe)
240 {
241 	int ret;
242 
243 	memset(stripe, 0, sizeof(*stripe));
244 
245 	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
246 	stripe->state = 0;
247 
248 	init_waitqueue_head(&stripe->io_wait);
249 	init_waitqueue_head(&stripe->repair_wait);
250 	atomic_set(&stripe->pending_io, 0);
251 	spin_lock_init(&stripe->write_error_lock);
252 
253 	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
254 	if (ret < 0)
255 		goto error;
256 
257 	stripe->sectors = kcalloc(stripe->nr_sectors,
258 				  sizeof(struct scrub_sector_verification),
259 				  GFP_KERNEL);
260 	if (!stripe->sectors)
261 		goto error;
262 
263 	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
264 				fs_info->csum_size, GFP_KERNEL);
265 	if (!stripe->csums)
266 		goto error;
267 	return 0;
268 error:
269 	release_scrub_stripe(stripe);
270 	return -ENOMEM;
271 }
272 
273 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
274 {
275 	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
276 }
277 
278 static void scrub_put_ctx(struct scrub_ctx *sctx);
279 
280 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
281 {
282 	while (atomic_read(&fs_info->scrub_pause_req)) {
283 		mutex_unlock(&fs_info->scrub_lock);
284 		wait_event(fs_info->scrub_pause_wait,
285 		   atomic_read(&fs_info->scrub_pause_req) == 0);
286 		mutex_lock(&fs_info->scrub_lock);
287 	}
288 }
289 
290 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
291 {
292 	atomic_inc(&fs_info->scrubs_paused);
293 	wake_up(&fs_info->scrub_pause_wait);
294 }
295 
296 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
297 {
298 	mutex_lock(&fs_info->scrub_lock);
299 	__scrub_blocked_if_needed(fs_info);
300 	atomic_dec(&fs_info->scrubs_paused);
301 	mutex_unlock(&fs_info->scrub_lock);
302 
303 	wake_up(&fs_info->scrub_pause_wait);
304 }
305 
306 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
307 {
308 	scrub_pause_on(fs_info);
309 	scrub_pause_off(fs_info);
310 }
311 
312 static void scrub_free_csums(struct scrub_ctx *sctx)
313 {
314 	while (!list_empty(&sctx->csum_list)) {
315 		struct btrfs_ordered_sum *sum;
316 		sum = list_first_entry(&sctx->csum_list,
317 				       struct btrfs_ordered_sum, list);
318 		list_del(&sum->list);
319 		kfree(sum);
320 	}
321 }
322 
323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
324 {
325 	int i;
326 
327 	if (!sctx)
328 		return;
329 
330 	for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++)
331 		release_scrub_stripe(&sctx->stripes[i]);
332 
333 	scrub_free_csums(sctx);
334 	kfree(sctx);
335 }
336 
337 static void scrub_put_ctx(struct scrub_ctx *sctx)
338 {
339 	if (refcount_dec_and_test(&sctx->refs))
340 		scrub_free_ctx(sctx);
341 }
342 
343 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
344 		struct btrfs_fs_info *fs_info, int is_dev_replace)
345 {
346 	struct scrub_ctx *sctx;
347 	int		i;
348 
349 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
350 	if (!sctx)
351 		goto nomem;
352 	refcount_set(&sctx->refs, 1);
353 	sctx->is_dev_replace = is_dev_replace;
354 	sctx->fs_info = fs_info;
355 	INIT_LIST_HEAD(&sctx->csum_list);
356 	for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) {
357 		int ret;
358 
359 		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
360 		if (ret < 0)
361 			goto nomem;
362 		sctx->stripes[i].sctx = sctx;
363 	}
364 	sctx->first_free = 0;
365 	atomic_set(&sctx->cancel_req, 0);
366 
367 	spin_lock_init(&sctx->stat_lock);
368 	sctx->throttle_deadline = 0;
369 
370 	mutex_init(&sctx->wr_lock);
371 	if (is_dev_replace) {
372 		WARN_ON(!fs_info->dev_replace.tgtdev);
373 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
374 	}
375 
376 	return sctx;
377 
378 nomem:
379 	scrub_free_ctx(sctx);
380 	return ERR_PTR(-ENOMEM);
381 }
382 
383 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
384 				     u64 root, void *warn_ctx)
385 {
386 	u32 nlink;
387 	int ret;
388 	int i;
389 	unsigned nofs_flag;
390 	struct extent_buffer *eb;
391 	struct btrfs_inode_item *inode_item;
392 	struct scrub_warning *swarn = warn_ctx;
393 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
394 	struct inode_fs_paths *ipath = NULL;
395 	struct btrfs_root *local_root;
396 	struct btrfs_key key;
397 
398 	local_root = btrfs_get_fs_root(fs_info, root, true);
399 	if (IS_ERR(local_root)) {
400 		ret = PTR_ERR(local_root);
401 		goto err;
402 	}
403 
404 	/*
405 	 * this makes the path point to (inum INODE_ITEM ioff)
406 	 */
407 	key.objectid = inum;
408 	key.type = BTRFS_INODE_ITEM_KEY;
409 	key.offset = 0;
410 
411 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
412 	if (ret) {
413 		btrfs_put_root(local_root);
414 		btrfs_release_path(swarn->path);
415 		goto err;
416 	}
417 
418 	eb = swarn->path->nodes[0];
419 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
420 					struct btrfs_inode_item);
421 	nlink = btrfs_inode_nlink(eb, inode_item);
422 	btrfs_release_path(swarn->path);
423 
424 	/*
425 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
426 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
427 	 * not seem to be strictly necessary.
428 	 */
429 	nofs_flag = memalloc_nofs_save();
430 	ipath = init_ipath(4096, local_root, swarn->path);
431 	memalloc_nofs_restore(nofs_flag);
432 	if (IS_ERR(ipath)) {
433 		btrfs_put_root(local_root);
434 		ret = PTR_ERR(ipath);
435 		ipath = NULL;
436 		goto err;
437 	}
438 	ret = paths_from_inode(inum, ipath);
439 
440 	if (ret < 0)
441 		goto err;
442 
443 	/*
444 	 * we deliberately ignore the bit ipath might have been too small to
445 	 * hold all of the paths here
446 	 */
447 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
448 		btrfs_warn_in_rcu(fs_info,
449 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
450 				  swarn->errstr, swarn->logical,
451 				  btrfs_dev_name(swarn->dev),
452 				  swarn->physical,
453 				  root, inum, offset,
454 				  fs_info->sectorsize, nlink,
455 				  (char *)(unsigned long)ipath->fspath->val[i]);
456 
457 	btrfs_put_root(local_root);
458 	free_ipath(ipath);
459 	return 0;
460 
461 err:
462 	btrfs_warn_in_rcu(fs_info,
463 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
464 			  swarn->errstr, swarn->logical,
465 			  btrfs_dev_name(swarn->dev),
466 			  swarn->physical,
467 			  root, inum, offset, ret);
468 
469 	free_ipath(ipath);
470 	return 0;
471 }
472 
473 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
474 				       bool is_super, u64 logical, u64 physical)
475 {
476 	struct btrfs_fs_info *fs_info = dev->fs_info;
477 	struct btrfs_path *path;
478 	struct btrfs_key found_key;
479 	struct extent_buffer *eb;
480 	struct btrfs_extent_item *ei;
481 	struct scrub_warning swarn;
482 	unsigned long ptr = 0;
483 	u64 flags = 0;
484 	u64 ref_root;
485 	u32 item_size;
486 	u8 ref_level = 0;
487 	int ret;
488 
489 	/* Super block error, no need to search extent tree. */
490 	if (is_super) {
491 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
492 				  errstr, btrfs_dev_name(dev), physical);
493 		return;
494 	}
495 	path = btrfs_alloc_path();
496 	if (!path)
497 		return;
498 
499 	swarn.physical = physical;
500 	swarn.logical = logical;
501 	swarn.errstr = errstr;
502 	swarn.dev = NULL;
503 
504 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
505 				  &flags);
506 	if (ret < 0)
507 		goto out;
508 
509 	swarn.extent_item_size = found_key.offset;
510 
511 	eb = path->nodes[0];
512 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
513 	item_size = btrfs_item_size(eb, path->slots[0]);
514 
515 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
516 		do {
517 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
518 						      item_size, &ref_root,
519 						      &ref_level);
520 			btrfs_warn_in_rcu(fs_info,
521 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
522 				errstr, swarn.logical,
523 				btrfs_dev_name(dev),
524 				swarn.physical,
525 				ref_level ? "node" : "leaf",
526 				ret < 0 ? -1 : ref_level,
527 				ret < 0 ? -1 : ref_root);
528 		} while (ret != 1);
529 		btrfs_release_path(path);
530 	} else {
531 		struct btrfs_backref_walk_ctx ctx = { 0 };
532 
533 		btrfs_release_path(path);
534 
535 		ctx.bytenr = found_key.objectid;
536 		ctx.extent_item_pos = swarn.logical - found_key.objectid;
537 		ctx.fs_info = fs_info;
538 
539 		swarn.path = path;
540 		swarn.dev = dev;
541 
542 		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
543 	}
544 
545 out:
546 	btrfs_free_path(path);
547 }
548 
549 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
550 {
551 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
552 		return 2;
553 	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
554 		return 3;
555 	else
556 		return (int)bioc->num_stripes;
557 }
558 
559 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
560 						 u64 full_stripe_logical,
561 						 int nstripes, int mirror,
562 						 int *stripe_index,
563 						 u64 *stripe_offset)
564 {
565 	int i;
566 
567 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
568 		const int nr_data_stripes = (map_type & BTRFS_BLOCK_GROUP_RAID5) ?
569 					    nstripes - 1 : nstripes - 2;
570 
571 		/* RAID5/6 */
572 		for (i = 0; i < nr_data_stripes; i++) {
573 			const u64 data_stripe_start = full_stripe_logical +
574 						(i * BTRFS_STRIPE_LEN);
575 
576 			if (logical >= data_stripe_start &&
577 			    logical < data_stripe_start + BTRFS_STRIPE_LEN)
578 				break;
579 		}
580 
581 		*stripe_index = i;
582 		*stripe_offset = (logical - full_stripe_logical) &
583 				 BTRFS_STRIPE_LEN_MASK;
584 	} else {
585 		/* The other RAID type */
586 		*stripe_index = mirror;
587 		*stripe_offset = 0;
588 	}
589 }
590 
591 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
592 {
593 	int ret = 0;
594 	u64 length;
595 
596 	if (!btrfs_is_zoned(sctx->fs_info))
597 		return 0;
598 
599 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
600 		return 0;
601 
602 	if (sctx->write_pointer < physical) {
603 		length = physical - sctx->write_pointer;
604 
605 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
606 						sctx->write_pointer, length);
607 		if (!ret)
608 			sctx->write_pointer = physical;
609 	}
610 	return ret;
611 }
612 
613 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
614 {
615 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
616 	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
617 
618 	return stripe->pages[page_index];
619 }
620 
621 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
622 						 int sector_nr)
623 {
624 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
625 
626 	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
627 }
628 
629 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
630 {
631 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
632 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
633 	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
634 	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
635 	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
636 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
637 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
638 	u8 calculated_csum[BTRFS_CSUM_SIZE];
639 	struct btrfs_header *header;
640 
641 	/*
642 	 * Here we don't have a good way to attach the pages (and subpages)
643 	 * to a dummy extent buffer, thus we have to directly grab the members
644 	 * from pages.
645 	 */
646 	header = (struct btrfs_header *)(page_address(first_page) + first_off);
647 	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
648 
649 	if (logical != btrfs_stack_header_bytenr(header)) {
650 		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
651 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
652 		btrfs_warn_rl(fs_info,
653 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
654 			      logical, stripe->mirror_num,
655 			      btrfs_stack_header_bytenr(header), logical);
656 		return;
657 	}
658 	if (memcmp(header->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE) != 0) {
659 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
660 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
661 		btrfs_warn_rl(fs_info,
662 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
663 			      logical, stripe->mirror_num,
664 			      header->fsid, fs_info->fs_devices->fsid);
665 		return;
666 	}
667 	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
668 		   BTRFS_UUID_SIZE) != 0) {
669 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
670 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
671 		btrfs_warn_rl(fs_info,
672 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
673 			      logical, stripe->mirror_num,
674 			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
675 		return;
676 	}
677 
678 	/* Now check tree block csum. */
679 	shash->tfm = fs_info->csum_shash;
680 	crypto_shash_init(shash);
681 	crypto_shash_update(shash, page_address(first_page) + first_off +
682 			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
683 
684 	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
685 		struct page *page = scrub_stripe_get_page(stripe, i);
686 		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
687 
688 		crypto_shash_update(shash, page_address(page) + page_off,
689 				    fs_info->sectorsize);
690 	}
691 
692 	crypto_shash_final(shash, calculated_csum);
693 	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
694 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
695 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
696 		btrfs_warn_rl(fs_info,
697 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
698 			      logical, stripe->mirror_num,
699 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
700 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
701 		return;
702 	}
703 	if (stripe->sectors[sector_nr].generation !=
704 	    btrfs_stack_header_generation(header)) {
705 		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
706 		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
707 		btrfs_warn_rl(fs_info,
708 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
709 			      logical, stripe->mirror_num,
710 			      btrfs_stack_header_generation(header),
711 			      stripe->sectors[sector_nr].generation);
712 		return;
713 	}
714 	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
715 	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
716 	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
717 }
718 
719 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
720 {
721 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
722 	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
723 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
724 	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
725 	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
726 	u8 csum_buf[BTRFS_CSUM_SIZE];
727 	int ret;
728 
729 	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
730 
731 	/* Sector not utilized, skip it. */
732 	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
733 		return;
734 
735 	/* IO error, no need to check. */
736 	if (test_bit(sector_nr, &stripe->io_error_bitmap))
737 		return;
738 
739 	/* Metadata, verify the full tree block. */
740 	if (sector->is_metadata) {
741 		/*
742 		 * Check if the tree block crosses the stripe boudary.  If
743 		 * crossed the boundary, we cannot verify it but only give a
744 		 * warning.
745 		 *
746 		 * This can only happen on a very old filesystem where chunks
747 		 * are not ensured to be stripe aligned.
748 		 */
749 		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
750 			btrfs_warn_rl(fs_info,
751 			"tree block at %llu crosses stripe boundary %llu",
752 				      stripe->logical +
753 				      (sector_nr << fs_info->sectorsize_bits),
754 				      stripe->logical);
755 			return;
756 		}
757 		scrub_verify_one_metadata(stripe, sector_nr);
758 		return;
759 	}
760 
761 	/*
762 	 * Data is easier, we just verify the data csum (if we have it).  For
763 	 * cases without csum, we have no other choice but to trust it.
764 	 */
765 	if (!sector->csum) {
766 		clear_bit(sector_nr, &stripe->error_bitmap);
767 		return;
768 	}
769 
770 	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
771 	if (ret < 0) {
772 		set_bit(sector_nr, &stripe->csum_error_bitmap);
773 		set_bit(sector_nr, &stripe->error_bitmap);
774 	} else {
775 		clear_bit(sector_nr, &stripe->csum_error_bitmap);
776 		clear_bit(sector_nr, &stripe->error_bitmap);
777 	}
778 }
779 
780 /* Verify specified sectors of a stripe. */
781 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
782 {
783 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
784 	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
785 	int sector_nr;
786 
787 	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
788 		scrub_verify_one_sector(stripe, sector_nr);
789 		if (stripe->sectors[sector_nr].is_metadata)
790 			sector_nr += sectors_per_tree - 1;
791 	}
792 }
793 
794 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
795 {
796 	int i;
797 
798 	for (i = 0; i < stripe->nr_sectors; i++) {
799 		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
800 		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
801 			break;
802 	}
803 	ASSERT(i < stripe->nr_sectors);
804 	return i;
805 }
806 
807 /*
808  * Repair read is different to the regular read:
809  *
810  * - Only reads the failed sectors
811  * - May have extra blocksize limits
812  */
813 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
814 {
815 	struct scrub_stripe *stripe = bbio->private;
816 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
817 	struct bio_vec *bvec;
818 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
819 	u32 bio_size = 0;
820 	int i;
821 
822 	ASSERT(sector_nr < stripe->nr_sectors);
823 
824 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
825 		bio_size += bvec->bv_len;
826 
827 	if (bbio->bio.bi_status) {
828 		bitmap_set(&stripe->io_error_bitmap, sector_nr,
829 			   bio_size >> fs_info->sectorsize_bits);
830 		bitmap_set(&stripe->error_bitmap, sector_nr,
831 			   bio_size >> fs_info->sectorsize_bits);
832 	} else {
833 		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
834 			     bio_size >> fs_info->sectorsize_bits);
835 	}
836 	bio_put(&bbio->bio);
837 	if (atomic_dec_and_test(&stripe->pending_io))
838 		wake_up(&stripe->io_wait);
839 }
840 
841 static int calc_next_mirror(int mirror, int num_copies)
842 {
843 	ASSERT(mirror <= num_copies);
844 	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
845 }
846 
847 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
848 					    int mirror, int blocksize, bool wait)
849 {
850 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
851 	struct btrfs_bio *bbio = NULL;
852 	const unsigned long old_error_bitmap = stripe->error_bitmap;
853 	int i;
854 
855 	ASSERT(stripe->mirror_num >= 1);
856 	ASSERT(atomic_read(&stripe->pending_io) == 0);
857 
858 	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
859 		struct page *page;
860 		int pgoff;
861 		int ret;
862 
863 		page = scrub_stripe_get_page(stripe, i);
864 		pgoff = scrub_stripe_get_page_offset(stripe, i);
865 
866 		/* The current sector cannot be merged, submit the bio. */
867 		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
868 			     bbio->bio.bi_iter.bi_size >= blocksize)) {
869 			ASSERT(bbio->bio.bi_iter.bi_size);
870 			atomic_inc(&stripe->pending_io);
871 			btrfs_submit_bio(bbio, mirror);
872 			if (wait)
873 				wait_scrub_stripe_io(stripe);
874 			bbio = NULL;
875 		}
876 
877 		if (!bbio) {
878 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
879 				fs_info, scrub_repair_read_endio, stripe);
880 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
881 				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
882 		}
883 
884 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
885 		ASSERT(ret == fs_info->sectorsize);
886 	}
887 	if (bbio) {
888 		ASSERT(bbio->bio.bi_iter.bi_size);
889 		atomic_inc(&stripe->pending_io);
890 		btrfs_submit_bio(bbio, mirror);
891 		if (wait)
892 			wait_scrub_stripe_io(stripe);
893 	}
894 }
895 
896 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
897 				       struct scrub_stripe *stripe)
898 {
899 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
900 				      DEFAULT_RATELIMIT_BURST);
901 	struct btrfs_fs_info *fs_info = sctx->fs_info;
902 	struct btrfs_device *dev = NULL;
903 	u64 physical = 0;
904 	int nr_data_sectors = 0;
905 	int nr_meta_sectors = 0;
906 	int nr_nodatacsum_sectors = 0;
907 	int nr_repaired_sectors = 0;
908 	int sector_nr;
909 
910 	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
911 		return;
912 
913 	/*
914 	 * Init needed infos for error reporting.
915 	 *
916 	 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
917 	 * thus no need for dev/physical, error reporting still needs dev and physical.
918 	 */
919 	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
920 		u64 mapped_len = fs_info->sectorsize;
921 		struct btrfs_io_context *bioc = NULL;
922 		int stripe_index = stripe->mirror_num - 1;
923 		int ret;
924 
925 		/* For scrub, our mirror_num should always start at 1. */
926 		ASSERT(stripe->mirror_num >= 1);
927 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
928 				       stripe->logical, &mapped_len, &bioc);
929 		/*
930 		 * If we failed, dev will be NULL, and later detailed reports
931 		 * will just be skipped.
932 		 */
933 		if (ret < 0)
934 			goto skip;
935 		physical = bioc->stripes[stripe_index].physical;
936 		dev = bioc->stripes[stripe_index].dev;
937 		btrfs_put_bioc(bioc);
938 	}
939 
940 skip:
941 	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
942 		bool repaired = false;
943 
944 		if (stripe->sectors[sector_nr].is_metadata) {
945 			nr_meta_sectors++;
946 		} else {
947 			nr_data_sectors++;
948 			if (!stripe->sectors[sector_nr].csum)
949 				nr_nodatacsum_sectors++;
950 		}
951 
952 		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
953 		    !test_bit(sector_nr, &stripe->error_bitmap)) {
954 			nr_repaired_sectors++;
955 			repaired = true;
956 		}
957 
958 		/* Good sector from the beginning, nothing need to be done. */
959 		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
960 			continue;
961 
962 		/*
963 		 * Report error for the corrupted sectors.  If repaired, just
964 		 * output the message of repaired message.
965 		 */
966 		if (repaired) {
967 			if (dev) {
968 				btrfs_err_rl_in_rcu(fs_info,
969 			"fixed up error at logical %llu on dev %s physical %llu",
970 					    stripe->logical, btrfs_dev_name(dev),
971 					    physical);
972 			} else {
973 				btrfs_err_rl_in_rcu(fs_info,
974 			"fixed up error at logical %llu on mirror %u",
975 					    stripe->logical, stripe->mirror_num);
976 			}
977 			continue;
978 		}
979 
980 		/* The remaining are all for unrepaired. */
981 		if (dev) {
982 			btrfs_err_rl_in_rcu(fs_info,
983 	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
984 					    stripe->logical, btrfs_dev_name(dev),
985 					    physical);
986 		} else {
987 			btrfs_err_rl_in_rcu(fs_info,
988 	"unable to fixup (regular) error at logical %llu on mirror %u",
989 					    stripe->logical, stripe->mirror_num);
990 		}
991 
992 		if (test_bit(sector_nr, &stripe->io_error_bitmap))
993 			if (__ratelimit(&rs) && dev)
994 				scrub_print_common_warning("i/o error", dev, false,
995 						     stripe->logical, physical);
996 		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
997 			if (__ratelimit(&rs) && dev)
998 				scrub_print_common_warning("checksum error", dev, false,
999 						     stripe->logical, physical);
1000 		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
1001 			if (__ratelimit(&rs) && dev)
1002 				scrub_print_common_warning("header error", dev, false,
1003 						     stripe->logical, physical);
1004 	}
1005 
1006 	spin_lock(&sctx->stat_lock);
1007 	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
1008 	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
1009 	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
1010 	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
1011 	sctx->stat.no_csum += nr_nodatacsum_sectors;
1012 	sctx->stat.read_errors += stripe->init_nr_io_errors;
1013 	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
1014 	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
1015 	sctx->stat.uncorrectable_errors +=
1016 		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
1017 	sctx->stat.corrected_errors += nr_repaired_sectors;
1018 	spin_unlock(&sctx->stat_lock);
1019 }
1020 
1021 /*
1022  * The main entrance for all read related scrub work, including:
1023  *
1024  * - Wait for the initial read to finish
1025  * - Verify and locate any bad sectors
1026  * - Go through the remaining mirrors and try to read as large blocksize as
1027  *   possible
1028  * - Go through all mirrors (including the failed mirror) sector-by-sector
1029  *
1030  * Writeback does not happen here, it needs extra synchronization.
1031  */
1032 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1033 {
1034 	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1035 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1036 	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1037 					  stripe->bg->length);
1038 	int mirror;
1039 	int i;
1040 
1041 	ASSERT(stripe->mirror_num > 0);
1042 
1043 	wait_scrub_stripe_io(stripe);
1044 	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1045 	/* Save the initial failed bitmap for later repair and report usage. */
1046 	stripe->init_error_bitmap = stripe->error_bitmap;
1047 	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1048 						  stripe->nr_sectors);
1049 	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1050 						    stripe->nr_sectors);
1051 	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1052 						    stripe->nr_sectors);
1053 
1054 	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1055 		goto out;
1056 
1057 	/*
1058 	 * Try all remaining mirrors.
1059 	 *
1060 	 * Here we still try to read as large block as possible, as this is
1061 	 * faster and we have extra safety nets to rely on.
1062 	 */
1063 	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1064 	     mirror != stripe->mirror_num;
1065 	     mirror = calc_next_mirror(mirror, num_copies)) {
1066 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1067 
1068 		scrub_stripe_submit_repair_read(stripe, mirror,
1069 						BTRFS_STRIPE_LEN, false);
1070 		wait_scrub_stripe_io(stripe);
1071 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1072 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1073 			goto out;
1074 	}
1075 
1076 	/*
1077 	 * Last safety net, try re-checking all mirrors, including the failed
1078 	 * one, sector-by-sector.
1079 	 *
1080 	 * As if one sector failed the drive's internal csum, the whole read
1081 	 * containing the offending sector would be marked as error.
1082 	 * Thus here we do sector-by-sector read.
1083 	 *
1084 	 * This can be slow, thus we only try it as the last resort.
1085 	 */
1086 
1087 	for (i = 0, mirror = stripe->mirror_num;
1088 	     i < num_copies;
1089 	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1090 		const unsigned long old_error_bitmap = stripe->error_bitmap;
1091 
1092 		scrub_stripe_submit_repair_read(stripe, mirror,
1093 						fs_info->sectorsize, true);
1094 		wait_scrub_stripe_io(stripe);
1095 		scrub_verify_one_stripe(stripe, old_error_bitmap);
1096 		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1097 			goto out;
1098 	}
1099 out:
1100 	scrub_stripe_report_errors(stripe->sctx, stripe);
1101 	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1102 	wake_up(&stripe->repair_wait);
1103 }
1104 
1105 static void scrub_read_endio(struct btrfs_bio *bbio)
1106 {
1107 	struct scrub_stripe *stripe = bbio->private;
1108 
1109 	if (bbio->bio.bi_status) {
1110 		bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1111 		bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
1112 	} else {
1113 		bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1114 	}
1115 	bio_put(&bbio->bio);
1116 	if (atomic_dec_and_test(&stripe->pending_io)) {
1117 		wake_up(&stripe->io_wait);
1118 		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1119 		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1120 	}
1121 }
1122 
1123 static void scrub_write_endio(struct btrfs_bio *bbio)
1124 {
1125 	struct scrub_stripe *stripe = bbio->private;
1126 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1127 	struct bio_vec *bvec;
1128 	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1129 	u32 bio_size = 0;
1130 	int i;
1131 
1132 	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1133 		bio_size += bvec->bv_len;
1134 
1135 	if (bbio->bio.bi_status) {
1136 		unsigned long flags;
1137 
1138 		spin_lock_irqsave(&stripe->write_error_lock, flags);
1139 		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1140 			   bio_size >> fs_info->sectorsize_bits);
1141 		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1142 	}
1143 	bio_put(&bbio->bio);
1144 
1145 	if (atomic_dec_and_test(&stripe->pending_io))
1146 		wake_up(&stripe->io_wait);
1147 }
1148 
1149 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1150 				   struct scrub_stripe *stripe,
1151 				   struct btrfs_bio *bbio, bool dev_replace)
1152 {
1153 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1154 	u32 bio_len = bbio->bio.bi_iter.bi_size;
1155 	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1156 		      stripe->logical;
1157 
1158 	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1159 	atomic_inc(&stripe->pending_io);
1160 	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1161 	if (!btrfs_is_zoned(fs_info))
1162 		return;
1163 	/*
1164 	 * For zoned writeback, queue depth must be 1, thus we must wait for
1165 	 * the write to finish before the next write.
1166 	 */
1167 	wait_scrub_stripe_io(stripe);
1168 
1169 	/*
1170 	 * And also need to update the write pointer if write finished
1171 	 * successfully.
1172 	 */
1173 	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1174 		      &stripe->write_error_bitmap))
1175 		sctx->write_pointer += bio_len;
1176 }
1177 
1178 /*
1179  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1180  *
1181  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1182  *
1183  * - Only needs logical bytenr and mirror_num
1184  *   Just like the scrub read path
1185  *
1186  * - Would only result in writes to the specified mirror
1187  *   Unlike the regular writeback path, which would write back to all stripes
1188  *
1189  * - Handle dev-replace and read-repair writeback differently
1190  */
1191 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1192 				unsigned long write_bitmap, bool dev_replace)
1193 {
1194 	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1195 	struct btrfs_bio *bbio = NULL;
1196 	int sector_nr;
1197 
1198 	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1199 		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1200 		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1201 		int ret;
1202 
1203 		/* We should only writeback sectors covered by an extent. */
1204 		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1205 
1206 		/* Cannot merge with previous sector, submit the current one. */
1207 		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1208 			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1209 			bbio = NULL;
1210 		}
1211 		if (!bbio) {
1212 			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1213 					       fs_info, scrub_write_endio, stripe);
1214 			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1215 				(sector_nr << fs_info->sectorsize_bits)) >>
1216 				SECTOR_SHIFT;
1217 		}
1218 		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1219 		ASSERT(ret == fs_info->sectorsize);
1220 	}
1221 	if (bbio)
1222 		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1223 }
1224 
1225 /*
1226  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1227  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1228  */
1229 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1230 				  unsigned int bio_size)
1231 {
1232 	const int time_slice = 1000;
1233 	s64 delta;
1234 	ktime_t now;
1235 	u32 div;
1236 	u64 bwlimit;
1237 
1238 	bwlimit = READ_ONCE(device->scrub_speed_max);
1239 	if (bwlimit == 0)
1240 		return;
1241 
1242 	/*
1243 	 * Slice is divided into intervals when the IO is submitted, adjust by
1244 	 * bwlimit and maximum of 64 intervals.
1245 	 */
1246 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1247 	div = min_t(u32, 64, div);
1248 
1249 	/* Start new epoch, set deadline */
1250 	now = ktime_get();
1251 	if (sctx->throttle_deadline == 0) {
1252 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1253 		sctx->throttle_sent = 0;
1254 	}
1255 
1256 	/* Still in the time to send? */
1257 	if (ktime_before(now, sctx->throttle_deadline)) {
1258 		/* If current bio is within the limit, send it */
1259 		sctx->throttle_sent += bio_size;
1260 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1261 			return;
1262 
1263 		/* We're over the limit, sleep until the rest of the slice */
1264 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1265 	} else {
1266 		/* New request after deadline, start new epoch */
1267 		delta = 0;
1268 	}
1269 
1270 	if (delta) {
1271 		long timeout;
1272 
1273 		timeout = div_u64(delta * HZ, 1000);
1274 		schedule_timeout_interruptible(timeout);
1275 	}
1276 
1277 	/* Next call will start the deadline period */
1278 	sctx->throttle_deadline = 0;
1279 }
1280 
1281 /*
1282  * Given a physical address, this will calculate it's
1283  * logical offset. if this is a parity stripe, it will return
1284  * the most left data stripe's logical offset.
1285  *
1286  * return 0 if it is a data stripe, 1 means parity stripe.
1287  */
1288 static int get_raid56_logic_offset(u64 physical, int num,
1289 				   struct map_lookup *map, u64 *offset,
1290 				   u64 *stripe_start)
1291 {
1292 	int i;
1293 	int j = 0;
1294 	u64 last_offset;
1295 	const int data_stripes = nr_data_stripes(map);
1296 
1297 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1298 	if (stripe_start)
1299 		*stripe_start = last_offset;
1300 
1301 	*offset = last_offset;
1302 	for (i = 0; i < data_stripes; i++) {
1303 		u32 stripe_nr;
1304 		u32 stripe_index;
1305 		u32 rot;
1306 
1307 		*offset = last_offset + (i << BTRFS_STRIPE_LEN_SHIFT);
1308 
1309 		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1310 
1311 		/* Work out the disk rotation on this stripe-set */
1312 		rot = stripe_nr % map->num_stripes;
1313 		stripe_nr /= map->num_stripes;
1314 		/* calculate which stripe this data locates */
1315 		rot += i;
1316 		stripe_index = rot % map->num_stripes;
1317 		if (stripe_index == num)
1318 			return 0;
1319 		if (stripe_index < num)
1320 			j++;
1321 	}
1322 	*offset = last_offset + (j << BTRFS_STRIPE_LEN_SHIFT);
1323 	return 1;
1324 }
1325 
1326 /*
1327  * Return 0 if the extent item range covers any byte of the range.
1328  * Return <0 if the extent item is before @search_start.
1329  * Return >0 if the extent item is after @start_start + @search_len.
1330  */
1331 static int compare_extent_item_range(struct btrfs_path *path,
1332 				     u64 search_start, u64 search_len)
1333 {
1334 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1335 	u64 len;
1336 	struct btrfs_key key;
1337 
1338 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1339 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1340 	       key.type == BTRFS_METADATA_ITEM_KEY);
1341 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1342 		len = fs_info->nodesize;
1343 	else
1344 		len = key.offset;
1345 
1346 	if (key.objectid + len <= search_start)
1347 		return -1;
1348 	if (key.objectid >= search_start + search_len)
1349 		return 1;
1350 	return 0;
1351 }
1352 
1353 /*
1354  * Locate one extent item which covers any byte in range
1355  * [@search_start, @search_start + @search_length)
1356  *
1357  * If the path is not initialized, we will initialize the search by doing
1358  * a btrfs_search_slot().
1359  * If the path is already initialized, we will use the path as the initial
1360  * slot, to avoid duplicated btrfs_search_slot() calls.
1361  *
1362  * NOTE: If an extent item starts before @search_start, we will still
1363  * return the extent item. This is for data extent crossing stripe boundary.
1364  *
1365  * Return 0 if we found such extent item, and @path will point to the extent item.
1366  * Return >0 if no such extent item can be found, and @path will be released.
1367  * Return <0 if hit fatal error, and @path will be released.
1368  */
1369 static int find_first_extent_item(struct btrfs_root *extent_root,
1370 				  struct btrfs_path *path,
1371 				  u64 search_start, u64 search_len)
1372 {
1373 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1374 	struct btrfs_key key;
1375 	int ret;
1376 
1377 	/* Continue using the existing path */
1378 	if (path->nodes[0])
1379 		goto search_forward;
1380 
1381 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1382 		key.type = BTRFS_METADATA_ITEM_KEY;
1383 	else
1384 		key.type = BTRFS_EXTENT_ITEM_KEY;
1385 	key.objectid = search_start;
1386 	key.offset = (u64)-1;
1387 
1388 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1389 	if (ret < 0)
1390 		return ret;
1391 
1392 	ASSERT(ret > 0);
1393 	/*
1394 	 * Here we intentionally pass 0 as @min_objectid, as there could be
1395 	 * an extent item starting before @search_start.
1396 	 */
1397 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1398 	if (ret < 0)
1399 		return ret;
1400 	/*
1401 	 * No matter whether we have found an extent item, the next loop will
1402 	 * properly do every check on the key.
1403 	 */
1404 search_forward:
1405 	while (true) {
1406 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1407 		if (key.objectid >= search_start + search_len)
1408 			break;
1409 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1410 		    key.type != BTRFS_EXTENT_ITEM_KEY)
1411 			goto next;
1412 
1413 		ret = compare_extent_item_range(path, search_start, search_len);
1414 		if (ret == 0)
1415 			return ret;
1416 		if (ret > 0)
1417 			break;
1418 next:
1419 		path->slots[0]++;
1420 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
1421 			ret = btrfs_next_leaf(extent_root, path);
1422 			if (ret) {
1423 				/* Either no more item or fatal error */
1424 				btrfs_release_path(path);
1425 				return ret;
1426 			}
1427 		}
1428 	}
1429 	btrfs_release_path(path);
1430 	return 1;
1431 }
1432 
1433 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1434 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1435 {
1436 	struct btrfs_key key;
1437 	struct btrfs_extent_item *ei;
1438 
1439 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1440 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1441 	       key.type == BTRFS_EXTENT_ITEM_KEY);
1442 	*extent_start_ret = key.objectid;
1443 	if (key.type == BTRFS_METADATA_ITEM_KEY)
1444 		*size_ret = path->nodes[0]->fs_info->nodesize;
1445 	else
1446 		*size_ret = key.offset;
1447 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1448 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1449 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1450 }
1451 
1452 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1453 					u64 physical, u64 physical_end)
1454 {
1455 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1456 	int ret = 0;
1457 
1458 	if (!btrfs_is_zoned(fs_info))
1459 		return 0;
1460 
1461 	mutex_lock(&sctx->wr_lock);
1462 	if (sctx->write_pointer < physical_end) {
1463 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1464 						    physical,
1465 						    sctx->write_pointer);
1466 		if (ret)
1467 			btrfs_err(fs_info,
1468 				  "zoned: failed to recover write pointer");
1469 	}
1470 	mutex_unlock(&sctx->wr_lock);
1471 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1472 
1473 	return ret;
1474 }
1475 
1476 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1477 				 struct scrub_stripe *stripe,
1478 				 u64 extent_start, u64 extent_len,
1479 				 u64 extent_flags, u64 extent_gen)
1480 {
1481 	for (u64 cur_logical = max(stripe->logical, extent_start);
1482 	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1483 			       extent_start + extent_len);
1484 	     cur_logical += fs_info->sectorsize) {
1485 		const int nr_sector = (cur_logical - stripe->logical) >>
1486 				      fs_info->sectorsize_bits;
1487 		struct scrub_sector_verification *sector =
1488 						&stripe->sectors[nr_sector];
1489 
1490 		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1491 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1492 			sector->is_metadata = true;
1493 			sector->generation = extent_gen;
1494 		}
1495 	}
1496 }
1497 
1498 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1499 {
1500 	stripe->extent_sector_bitmap = 0;
1501 	stripe->init_error_bitmap = 0;
1502 	stripe->init_nr_io_errors = 0;
1503 	stripe->init_nr_csum_errors = 0;
1504 	stripe->init_nr_meta_errors = 0;
1505 	stripe->error_bitmap = 0;
1506 	stripe->io_error_bitmap = 0;
1507 	stripe->csum_error_bitmap = 0;
1508 	stripe->meta_error_bitmap = 0;
1509 }
1510 
1511 /*
1512  * Locate one stripe which has at least one extent in its range.
1513  *
1514  * Return 0 if found such stripe, and store its info into @stripe.
1515  * Return >0 if there is no such stripe in the specified range.
1516  * Return <0 for error.
1517  */
1518 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1519 					struct btrfs_device *dev, u64 physical,
1520 					int mirror_num, u64 logical_start,
1521 					u32 logical_len,
1522 					struct scrub_stripe *stripe)
1523 {
1524 	struct btrfs_fs_info *fs_info = bg->fs_info;
1525 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1526 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1527 	const u64 logical_end = logical_start + logical_len;
1528 	struct btrfs_path path = { 0 };
1529 	u64 cur_logical = logical_start;
1530 	u64 stripe_end;
1531 	u64 extent_start;
1532 	u64 extent_len;
1533 	u64 extent_flags;
1534 	u64 extent_gen;
1535 	int ret;
1536 
1537 	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1538 				   stripe->nr_sectors);
1539 	scrub_stripe_reset_bitmaps(stripe);
1540 
1541 	/* The range must be inside the bg. */
1542 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1543 
1544 	path.search_commit_root = 1;
1545 	path.skip_locking = 1;
1546 
1547 	ret = find_first_extent_item(extent_root, &path, logical_start, logical_len);
1548 	/* Either error or not found. */
1549 	if (ret)
1550 		goto out;
1551 	get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen);
1552 	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1553 		stripe->nr_meta_extents++;
1554 	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1555 		stripe->nr_data_extents++;
1556 	cur_logical = max(extent_start, cur_logical);
1557 
1558 	/*
1559 	 * Round down to stripe boundary.
1560 	 *
1561 	 * The extra calculation against bg->start is to handle block groups
1562 	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1563 	 */
1564 	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1565 			  bg->start;
1566 	stripe->physical = physical + stripe->logical - logical_start;
1567 	stripe->dev = dev;
1568 	stripe->bg = bg;
1569 	stripe->mirror_num = mirror_num;
1570 	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1571 
1572 	/* Fill the first extent info into stripe->sectors[] array. */
1573 	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1574 			     extent_flags, extent_gen);
1575 	cur_logical = extent_start + extent_len;
1576 
1577 	/* Fill the extent info for the remaining sectors. */
1578 	while (cur_logical <= stripe_end) {
1579 		ret = find_first_extent_item(extent_root, &path, cur_logical,
1580 					     stripe_end - cur_logical + 1);
1581 		if (ret < 0)
1582 			goto out;
1583 		if (ret > 0) {
1584 			ret = 0;
1585 			break;
1586 		}
1587 		get_extent_info(&path, &extent_start, &extent_len,
1588 				&extent_flags, &extent_gen);
1589 		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1590 			stripe->nr_meta_extents++;
1591 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1592 			stripe->nr_data_extents++;
1593 		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1594 				     extent_flags, extent_gen);
1595 		cur_logical = extent_start + extent_len;
1596 	}
1597 
1598 	/* Now fill the data csum. */
1599 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1600 		int sector_nr;
1601 		unsigned long csum_bitmap = 0;
1602 
1603 		/* Csum space should have already been allocated. */
1604 		ASSERT(stripe->csums);
1605 
1606 		/*
1607 		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1608 		 * should contain at most 16 sectors.
1609 		 */
1610 		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1611 
1612 		ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical,
1613 						stripe_end, stripe->csums,
1614 						&csum_bitmap, true);
1615 		if (ret < 0)
1616 			goto out;
1617 		if (ret > 0)
1618 			ret = 0;
1619 
1620 		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1621 			stripe->sectors[sector_nr].csum = stripe->csums +
1622 				sector_nr * fs_info->csum_size;
1623 		}
1624 	}
1625 	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1626 out:
1627 	btrfs_release_path(&path);
1628 	return ret;
1629 }
1630 
1631 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1632 {
1633 	scrub_stripe_reset_bitmaps(stripe);
1634 
1635 	stripe->nr_meta_extents = 0;
1636 	stripe->nr_data_extents = 0;
1637 	stripe->state = 0;
1638 
1639 	for (int i = 0; i < stripe->nr_sectors; i++) {
1640 		stripe->sectors[i].is_metadata = false;
1641 		stripe->sectors[i].csum = NULL;
1642 		stripe->sectors[i].generation = 0;
1643 	}
1644 }
1645 
1646 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1647 				      struct scrub_stripe *stripe)
1648 {
1649 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1650 	struct btrfs_bio *bbio;
1651 	int mirror = stripe->mirror_num;
1652 
1653 	ASSERT(stripe->bg);
1654 	ASSERT(stripe->mirror_num > 0);
1655 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1656 
1657 	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1658 			       scrub_read_endio, stripe);
1659 
1660 	/* Read the whole stripe. */
1661 	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1662 	for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
1663 		int ret;
1664 
1665 		ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
1666 		/* We should have allocated enough bio vectors. */
1667 		ASSERT(ret == PAGE_SIZE);
1668 	}
1669 	atomic_inc(&stripe->pending_io);
1670 
1671 	/*
1672 	 * For dev-replace, either user asks to avoid the source dev, or
1673 	 * the device is missing, we try the next mirror instead.
1674 	 */
1675 	if (sctx->is_dev_replace &&
1676 	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1677 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1678 	     !stripe->dev->bdev)) {
1679 		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1680 						  stripe->bg->length);
1681 
1682 		mirror = calc_next_mirror(mirror, num_copies);
1683 	}
1684 	btrfs_submit_bio(bbio, mirror);
1685 }
1686 
1687 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1688 {
1689 	int i;
1690 
1691 	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1692 		if (stripe->sectors[i].is_metadata) {
1693 			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1694 
1695 			btrfs_err(fs_info,
1696 			"stripe %llu has unrepaired metadata sector at %llu",
1697 				  stripe->logical,
1698 				  stripe->logical + (i << fs_info->sectorsize_bits));
1699 			return true;
1700 		}
1701 	}
1702 	return false;
1703 }
1704 
1705 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1706 {
1707 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1708 	struct scrub_stripe *stripe;
1709 	const int nr_stripes = sctx->cur_stripe;
1710 	int ret = 0;
1711 
1712 	if (!nr_stripes)
1713 		return 0;
1714 
1715 	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1716 
1717 	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1718 			      nr_stripes << BTRFS_STRIPE_LEN_SHIFT);
1719 	for (int i = 0; i < nr_stripes; i++) {
1720 		stripe = &sctx->stripes[i];
1721 		scrub_submit_initial_read(sctx, stripe);
1722 	}
1723 
1724 	for (int i = 0; i < nr_stripes; i++) {
1725 		stripe = &sctx->stripes[i];
1726 
1727 		wait_event(stripe->repair_wait,
1728 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1729 	}
1730 
1731 	/*
1732 	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1733 	 * in-place, but queue the bg to be relocated.
1734 	 */
1735 	if (btrfs_is_zoned(fs_info)) {
1736 		for (int i = 0; i < nr_stripes; i++) {
1737 			stripe = &sctx->stripes[i];
1738 
1739 			if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) {
1740 				btrfs_repair_one_zone(fs_info,
1741 						      sctx->stripes[0].bg->start);
1742 				break;
1743 			}
1744 		}
1745 	} else if (!sctx->readonly) {
1746 		for (int i = 0; i < nr_stripes; i++) {
1747 			unsigned long repaired;
1748 
1749 			stripe = &sctx->stripes[i];
1750 
1751 			bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1752 				      &stripe->error_bitmap, stripe->nr_sectors);
1753 			scrub_write_sectors(sctx, stripe, repaired, false);
1754 		}
1755 	}
1756 
1757 	/* Submit for dev-replace. */
1758 	if (sctx->is_dev_replace) {
1759 		/*
1760 		 * For dev-replace, if we know there is something wrong with
1761 		 * metadata, we should immedately abort.
1762 		 */
1763 		for (int i = 0; i < nr_stripes; i++) {
1764 			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1765 				ret = -EIO;
1766 				goto out;
1767 			}
1768 		}
1769 		for (int i = 0; i < nr_stripes; i++) {
1770 			unsigned long good;
1771 
1772 			stripe = &sctx->stripes[i];
1773 
1774 			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1775 
1776 			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1777 				      &stripe->error_bitmap, stripe->nr_sectors);
1778 			scrub_write_sectors(sctx, stripe, good, true);
1779 		}
1780 	}
1781 
1782 	/* Wait for the above writebacks to finish. */
1783 	for (int i = 0; i < nr_stripes; i++) {
1784 		stripe = &sctx->stripes[i];
1785 
1786 		wait_scrub_stripe_io(stripe);
1787 		scrub_reset_stripe(stripe);
1788 	}
1789 out:
1790 	sctx->cur_stripe = 0;
1791 	return ret;
1792 }
1793 
1794 static void raid56_scrub_wait_endio(struct bio *bio)
1795 {
1796 	complete(bio->bi_private);
1797 }
1798 
1799 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1800 			      struct btrfs_device *dev, int mirror_num,
1801 			      u64 logical, u32 length, u64 physical)
1802 {
1803 	struct scrub_stripe *stripe;
1804 	int ret;
1805 
1806 	/* No available slot, submit all stripes and wait for them. */
1807 	if (sctx->cur_stripe >= SCRUB_STRIPES_PER_SCTX) {
1808 		ret = flush_scrub_stripes(sctx);
1809 		if (ret < 0)
1810 			return ret;
1811 	}
1812 
1813 	stripe = &sctx->stripes[sctx->cur_stripe];
1814 
1815 	/* We can queue one stripe using the remaining slot. */
1816 	scrub_reset_stripe(stripe);
1817 	ret = scrub_find_fill_first_stripe(bg, dev, physical, mirror_num,
1818 					   logical, length, stripe);
1819 	/* Either >0 as no more extents or <0 for error. */
1820 	if (ret)
1821 		return ret;
1822 	sctx->cur_stripe++;
1823 	return 0;
1824 }
1825 
1826 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1827 				      struct btrfs_device *scrub_dev,
1828 				      struct btrfs_block_group *bg,
1829 				      struct map_lookup *map,
1830 				      u64 full_stripe_start)
1831 {
1832 	DECLARE_COMPLETION_ONSTACK(io_done);
1833 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1834 	struct btrfs_raid_bio *rbio;
1835 	struct btrfs_io_context *bioc = NULL;
1836 	struct bio *bio;
1837 	struct scrub_stripe *stripe;
1838 	bool all_empty = true;
1839 	const int data_stripes = nr_data_stripes(map);
1840 	unsigned long extent_bitmap = 0;
1841 	u64 length = data_stripes << BTRFS_STRIPE_LEN_SHIFT;
1842 	int ret;
1843 
1844 	ASSERT(sctx->raid56_data_stripes);
1845 
1846 	for (int i = 0; i < data_stripes; i++) {
1847 		int stripe_index;
1848 		int rot;
1849 		u64 physical;
1850 
1851 		stripe = &sctx->raid56_data_stripes[i];
1852 		rot = div_u64(full_stripe_start - bg->start,
1853 			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1854 		stripe_index = (i + rot) % map->num_stripes;
1855 		physical = map->stripes[stripe_index].physical +
1856 			   (rot << BTRFS_STRIPE_LEN_SHIFT);
1857 
1858 		scrub_reset_stripe(stripe);
1859 		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1860 		ret = scrub_find_fill_first_stripe(bg,
1861 				map->stripes[stripe_index].dev, physical, 1,
1862 				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT),
1863 				BTRFS_STRIPE_LEN, stripe);
1864 		if (ret < 0)
1865 			goto out;
1866 		/*
1867 		 * No extent in this data stripe, need to manually mark them
1868 		 * initialized to make later read submission happy.
1869 		 */
1870 		if (ret > 0) {
1871 			stripe->logical = full_stripe_start +
1872 					  (i << BTRFS_STRIPE_LEN_SHIFT);
1873 			stripe->dev = map->stripes[stripe_index].dev;
1874 			stripe->mirror_num = 1;
1875 			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1876 		}
1877 	}
1878 
1879 	/* Check if all data stripes are empty. */
1880 	for (int i = 0; i < data_stripes; i++) {
1881 		stripe = &sctx->raid56_data_stripes[i];
1882 		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1883 			all_empty = false;
1884 			break;
1885 		}
1886 	}
1887 	if (all_empty) {
1888 		ret = 0;
1889 		goto out;
1890 	}
1891 
1892 	for (int i = 0; i < data_stripes; i++) {
1893 		stripe = &sctx->raid56_data_stripes[i];
1894 		scrub_submit_initial_read(sctx, stripe);
1895 	}
1896 	for (int i = 0; i < data_stripes; i++) {
1897 		stripe = &sctx->raid56_data_stripes[i];
1898 
1899 		wait_event(stripe->repair_wait,
1900 			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1901 	}
1902 	/* For now, no zoned support for RAID56. */
1903 	ASSERT(!btrfs_is_zoned(sctx->fs_info));
1904 
1905 	/* Writeback for the repaired sectors. */
1906 	for (int i = 0; i < data_stripes; i++) {
1907 		unsigned long repaired;
1908 
1909 		stripe = &sctx->raid56_data_stripes[i];
1910 
1911 		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1912 			      &stripe->error_bitmap, stripe->nr_sectors);
1913 		scrub_write_sectors(sctx, stripe, repaired, false);
1914 	}
1915 
1916 	/* Wait for the above writebacks to finish. */
1917 	for (int i = 0; i < data_stripes; i++) {
1918 		stripe = &sctx->raid56_data_stripes[i];
1919 
1920 		wait_scrub_stripe_io(stripe);
1921 	}
1922 
1923 	/*
1924 	 * Now all data stripes are properly verified. Check if we have any
1925 	 * unrepaired, if so abort immediately or we could further corrupt the
1926 	 * P/Q stripes.
1927 	 *
1928 	 * During the loop, also populate extent_bitmap.
1929 	 */
1930 	for (int i = 0; i < data_stripes; i++) {
1931 		unsigned long error;
1932 
1933 		stripe = &sctx->raid56_data_stripes[i];
1934 
1935 		/*
1936 		 * We should only check the errors where there is an extent.
1937 		 * As we may hit an empty data stripe while it's missing.
1938 		 */
1939 		bitmap_and(&error, &stripe->error_bitmap,
1940 			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
1941 		if (!bitmap_empty(&error, stripe->nr_sectors)) {
1942 			btrfs_err(fs_info,
1943 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
1944 				  full_stripe_start, i, stripe->nr_sectors,
1945 				  &error);
1946 			ret = -EIO;
1947 			goto out;
1948 		}
1949 		bitmap_or(&extent_bitmap, &extent_bitmap,
1950 			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
1951 	}
1952 
1953 	/* Now we can check and regenerate the P/Q stripe. */
1954 	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
1955 	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
1956 	bio->bi_private = &io_done;
1957 	bio->bi_end_io = raid56_scrub_wait_endio;
1958 
1959 	btrfs_bio_counter_inc_blocked(fs_info);
1960 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
1961 			       &length, &bioc);
1962 	if (ret < 0) {
1963 		btrfs_put_bioc(bioc);
1964 		btrfs_bio_counter_dec(fs_info);
1965 		goto out;
1966 	}
1967 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
1968 				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1969 	btrfs_put_bioc(bioc);
1970 	if (!rbio) {
1971 		ret = -ENOMEM;
1972 		btrfs_bio_counter_dec(fs_info);
1973 		goto out;
1974 	}
1975 	raid56_parity_submit_scrub_rbio(rbio);
1976 	wait_for_completion_io(&io_done);
1977 	ret = blk_status_to_errno(bio->bi_status);
1978 	bio_put(bio);
1979 	btrfs_bio_counter_dec(fs_info);
1980 
1981 out:
1982 	return ret;
1983 }
1984 
1985 /*
1986  * Scrub one range which can only has simple mirror based profile.
1987  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
1988  *  RAID0/RAID10).
1989  *
1990  * Since we may need to handle a subset of block group, we need @logical_start
1991  * and @logical_length parameter.
1992  */
1993 static int scrub_simple_mirror(struct scrub_ctx *sctx,
1994 			       struct btrfs_block_group *bg,
1995 			       struct map_lookup *map,
1996 			       u64 logical_start, u64 logical_length,
1997 			       struct btrfs_device *device,
1998 			       u64 physical, int mirror_num)
1999 {
2000 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2001 	const u64 logical_end = logical_start + logical_length;
2002 	/* An artificial limit, inherit from old scrub behavior */
2003 	struct btrfs_path path = { 0 };
2004 	u64 cur_logical = logical_start;
2005 	int ret;
2006 
2007 	/* The range must be inside the bg */
2008 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2009 
2010 	path.search_commit_root = 1;
2011 	path.skip_locking = 1;
2012 	/* Go through each extent items inside the logical range */
2013 	while (cur_logical < logical_end) {
2014 		u64 cur_physical = physical + cur_logical - logical_start;
2015 
2016 		/* Canceled? */
2017 		if (atomic_read(&fs_info->scrub_cancel_req) ||
2018 		    atomic_read(&sctx->cancel_req)) {
2019 			ret = -ECANCELED;
2020 			break;
2021 		}
2022 		/* Paused? */
2023 		if (atomic_read(&fs_info->scrub_pause_req)) {
2024 			/* Push queued extents */
2025 			scrub_blocked_if_needed(fs_info);
2026 		}
2027 		/* Block group removed? */
2028 		spin_lock(&bg->lock);
2029 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2030 			spin_unlock(&bg->lock);
2031 			ret = 0;
2032 			break;
2033 		}
2034 		spin_unlock(&bg->lock);
2035 
2036 		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2037 					 cur_logical, logical_end - cur_logical,
2038 					 cur_physical);
2039 		if (ret > 0) {
2040 			/* No more extent, just update the accounting */
2041 			sctx->stat.last_physical = physical + logical_length;
2042 			ret = 0;
2043 			break;
2044 		}
2045 		if (ret < 0)
2046 			break;
2047 
2048 		ASSERT(sctx->cur_stripe > 0);
2049 		cur_logical = sctx->stripes[sctx->cur_stripe - 1].logical
2050 			      + BTRFS_STRIPE_LEN;
2051 
2052 		/* Don't hold CPU for too long time */
2053 		cond_resched();
2054 	}
2055 	btrfs_release_path(&path);
2056 	return ret;
2057 }
2058 
2059 /* Calculate the full stripe length for simple stripe based profiles */
2060 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2061 {
2062 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2063 			    BTRFS_BLOCK_GROUP_RAID10));
2064 
2065 	return (map->num_stripes / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT;
2066 }
2067 
2068 /* Get the logical bytenr for the stripe */
2069 static u64 simple_stripe_get_logical(struct map_lookup *map,
2070 				     struct btrfs_block_group *bg,
2071 				     int stripe_index)
2072 {
2073 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2074 			    BTRFS_BLOCK_GROUP_RAID10));
2075 	ASSERT(stripe_index < map->num_stripes);
2076 
2077 	/*
2078 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2079 	 * skip.
2080 	 */
2081 	return ((stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT) +
2082 	       bg->start;
2083 }
2084 
2085 /* Get the mirror number for the stripe */
2086 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2087 {
2088 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2089 			    BTRFS_BLOCK_GROUP_RAID10));
2090 	ASSERT(stripe_index < map->num_stripes);
2091 
2092 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2093 	return stripe_index % map->sub_stripes + 1;
2094 }
2095 
2096 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2097 			       struct btrfs_block_group *bg,
2098 			       struct map_lookup *map,
2099 			       struct btrfs_device *device,
2100 			       int stripe_index)
2101 {
2102 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2103 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2104 	const u64 orig_physical = map->stripes[stripe_index].physical;
2105 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2106 	u64 cur_logical = orig_logical;
2107 	u64 cur_physical = orig_physical;
2108 	int ret = 0;
2109 
2110 	while (cur_logical < bg->start + bg->length) {
2111 		/*
2112 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2113 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2114 		 * this stripe.
2115 		 */
2116 		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2117 					  BTRFS_STRIPE_LEN, device, cur_physical,
2118 					  mirror_num);
2119 		if (ret)
2120 			return ret;
2121 		/* Skip to next stripe which belongs to the target device */
2122 		cur_logical += logical_increment;
2123 		/* For physical offset, we just go to next stripe */
2124 		cur_physical += BTRFS_STRIPE_LEN;
2125 	}
2126 	return ret;
2127 }
2128 
2129 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2130 					   struct btrfs_block_group *bg,
2131 					   struct extent_map *em,
2132 					   struct btrfs_device *scrub_dev,
2133 					   int stripe_index)
2134 {
2135 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2136 	struct map_lookup *map = em->map_lookup;
2137 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2138 	const u64 chunk_logical = bg->start;
2139 	int ret;
2140 	int ret2;
2141 	u64 physical = map->stripes[stripe_index].physical;
2142 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2143 	const u64 physical_end = physical + dev_stripe_len;
2144 	u64 logical;
2145 	u64 logic_end;
2146 	/* The logical increment after finishing one stripe */
2147 	u64 increment;
2148 	/* Offset inside the chunk */
2149 	u64 offset;
2150 	u64 stripe_logical;
2151 	int stop_loop = 0;
2152 
2153 	scrub_blocked_if_needed(fs_info);
2154 
2155 	if (sctx->is_dev_replace &&
2156 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2157 		mutex_lock(&sctx->wr_lock);
2158 		sctx->write_pointer = physical;
2159 		mutex_unlock(&sctx->wr_lock);
2160 	}
2161 
2162 	/* Prepare the extra data stripes used by RAID56. */
2163 	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2164 		ASSERT(sctx->raid56_data_stripes == NULL);
2165 
2166 		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2167 						    sizeof(struct scrub_stripe),
2168 						    GFP_KERNEL);
2169 		if (!sctx->raid56_data_stripes) {
2170 			ret = -ENOMEM;
2171 			goto out;
2172 		}
2173 		for (int i = 0; i < nr_data_stripes(map); i++) {
2174 			ret = init_scrub_stripe(fs_info,
2175 						&sctx->raid56_data_stripes[i]);
2176 			if (ret < 0)
2177 				goto out;
2178 			sctx->raid56_data_stripes[i].bg = bg;
2179 			sctx->raid56_data_stripes[i].sctx = sctx;
2180 		}
2181 	}
2182 	/*
2183 	 * There used to be a big double loop to handle all profiles using the
2184 	 * same routine, which grows larger and more gross over time.
2185 	 *
2186 	 * So here we handle each profile differently, so simpler profiles
2187 	 * have simpler scrubbing function.
2188 	 */
2189 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2190 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2191 		/*
2192 		 * Above check rules out all complex profile, the remaining
2193 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2194 		 * mirrored duplication without stripe.
2195 		 *
2196 		 * Only @physical and @mirror_num needs to calculated using
2197 		 * @stripe_index.
2198 		 */
2199 		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2200 				scrub_dev, map->stripes[stripe_index].physical,
2201 				stripe_index + 1);
2202 		offset = 0;
2203 		goto out;
2204 	}
2205 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2206 		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2207 		offset = (stripe_index / map->sub_stripes) << BTRFS_STRIPE_LEN_SHIFT;
2208 		goto out;
2209 	}
2210 
2211 	/* Only RAID56 goes through the old code */
2212 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2213 	ret = 0;
2214 
2215 	/* Calculate the logical end of the stripe */
2216 	get_raid56_logic_offset(physical_end, stripe_index,
2217 				map, &logic_end, NULL);
2218 	logic_end += chunk_logical;
2219 
2220 	/* Initialize @offset in case we need to go to out: label */
2221 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2222 	increment = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT;
2223 
2224 	/*
2225 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2226 	 * using their physical offset.
2227 	 */
2228 	while (physical < physical_end) {
2229 		ret = get_raid56_logic_offset(physical, stripe_index, map,
2230 					      &logical, &stripe_logical);
2231 		logical += chunk_logical;
2232 		if (ret) {
2233 			/* it is parity strip */
2234 			stripe_logical += chunk_logical;
2235 			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2236 							 map, stripe_logical);
2237 			if (ret)
2238 				goto out;
2239 			goto next;
2240 		}
2241 
2242 		/*
2243 		 * Now we're at a data stripe, scrub each extents in the range.
2244 		 *
2245 		 * At this stage, if we ignore the repair part, inside each data
2246 		 * stripe it is no different than SINGLE profile.
2247 		 * We can reuse scrub_simple_mirror() here, as the repair part
2248 		 * is still based on @mirror_num.
2249 		 */
2250 		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2251 					  scrub_dev, physical, 1);
2252 		if (ret < 0)
2253 			goto out;
2254 next:
2255 		logical += increment;
2256 		physical += BTRFS_STRIPE_LEN;
2257 		spin_lock(&sctx->stat_lock);
2258 		if (stop_loop)
2259 			sctx->stat.last_physical =
2260 				map->stripes[stripe_index].physical + dev_stripe_len;
2261 		else
2262 			sctx->stat.last_physical = physical;
2263 		spin_unlock(&sctx->stat_lock);
2264 		if (stop_loop)
2265 			break;
2266 	}
2267 out:
2268 	ret2 = flush_scrub_stripes(sctx);
2269 	if (!ret2)
2270 		ret = ret2;
2271 	if (sctx->raid56_data_stripes) {
2272 		for (int i = 0; i < nr_data_stripes(map); i++)
2273 			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2274 		kfree(sctx->raid56_data_stripes);
2275 		sctx->raid56_data_stripes = NULL;
2276 	}
2277 
2278 	if (sctx->is_dev_replace && ret >= 0) {
2279 		int ret2;
2280 
2281 		ret2 = sync_write_pointer_for_zoned(sctx,
2282 				chunk_logical + offset,
2283 				map->stripes[stripe_index].physical,
2284 				physical_end);
2285 		if (ret2)
2286 			ret = ret2;
2287 	}
2288 
2289 	return ret < 0 ? ret : 0;
2290 }
2291 
2292 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2293 					  struct btrfs_block_group *bg,
2294 					  struct btrfs_device *scrub_dev,
2295 					  u64 dev_offset,
2296 					  u64 dev_extent_len)
2297 {
2298 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2299 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2300 	struct map_lookup *map;
2301 	struct extent_map *em;
2302 	int i;
2303 	int ret = 0;
2304 
2305 	read_lock(&map_tree->lock);
2306 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2307 	read_unlock(&map_tree->lock);
2308 
2309 	if (!em) {
2310 		/*
2311 		 * Might have been an unused block group deleted by the cleaner
2312 		 * kthread or relocation.
2313 		 */
2314 		spin_lock(&bg->lock);
2315 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2316 			ret = -EINVAL;
2317 		spin_unlock(&bg->lock);
2318 
2319 		return ret;
2320 	}
2321 	if (em->start != bg->start)
2322 		goto out;
2323 	if (em->len < dev_extent_len)
2324 		goto out;
2325 
2326 	map = em->map_lookup;
2327 	for (i = 0; i < map->num_stripes; ++i) {
2328 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2329 		    map->stripes[i].physical == dev_offset) {
2330 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
2331 			if (ret)
2332 				goto out;
2333 		}
2334 	}
2335 out:
2336 	free_extent_map(em);
2337 
2338 	return ret;
2339 }
2340 
2341 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2342 					  struct btrfs_block_group *cache)
2343 {
2344 	struct btrfs_fs_info *fs_info = cache->fs_info;
2345 	struct btrfs_trans_handle *trans;
2346 
2347 	if (!btrfs_is_zoned(fs_info))
2348 		return 0;
2349 
2350 	btrfs_wait_block_group_reservations(cache);
2351 	btrfs_wait_nocow_writers(cache);
2352 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2353 
2354 	trans = btrfs_join_transaction(root);
2355 	if (IS_ERR(trans))
2356 		return PTR_ERR(trans);
2357 	return btrfs_commit_transaction(trans);
2358 }
2359 
2360 static noinline_for_stack
2361 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2362 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
2363 {
2364 	struct btrfs_dev_extent *dev_extent = NULL;
2365 	struct btrfs_path *path;
2366 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2367 	struct btrfs_root *root = fs_info->dev_root;
2368 	u64 chunk_offset;
2369 	int ret = 0;
2370 	int ro_set;
2371 	int slot;
2372 	struct extent_buffer *l;
2373 	struct btrfs_key key;
2374 	struct btrfs_key found_key;
2375 	struct btrfs_block_group *cache;
2376 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2377 
2378 	path = btrfs_alloc_path();
2379 	if (!path)
2380 		return -ENOMEM;
2381 
2382 	path->reada = READA_FORWARD;
2383 	path->search_commit_root = 1;
2384 	path->skip_locking = 1;
2385 
2386 	key.objectid = scrub_dev->devid;
2387 	key.offset = 0ull;
2388 	key.type = BTRFS_DEV_EXTENT_KEY;
2389 
2390 	while (1) {
2391 		u64 dev_extent_len;
2392 
2393 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2394 		if (ret < 0)
2395 			break;
2396 		if (ret > 0) {
2397 			if (path->slots[0] >=
2398 			    btrfs_header_nritems(path->nodes[0])) {
2399 				ret = btrfs_next_leaf(root, path);
2400 				if (ret < 0)
2401 					break;
2402 				if (ret > 0) {
2403 					ret = 0;
2404 					break;
2405 				}
2406 			} else {
2407 				ret = 0;
2408 			}
2409 		}
2410 
2411 		l = path->nodes[0];
2412 		slot = path->slots[0];
2413 
2414 		btrfs_item_key_to_cpu(l, &found_key, slot);
2415 
2416 		if (found_key.objectid != scrub_dev->devid)
2417 			break;
2418 
2419 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2420 			break;
2421 
2422 		if (found_key.offset >= end)
2423 			break;
2424 
2425 		if (found_key.offset < key.offset)
2426 			break;
2427 
2428 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2429 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2430 
2431 		if (found_key.offset + dev_extent_len <= start)
2432 			goto skip;
2433 
2434 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2435 
2436 		/*
2437 		 * get a reference on the corresponding block group to prevent
2438 		 * the chunk from going away while we scrub it
2439 		 */
2440 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2441 
2442 		/* some chunks are removed but not committed to disk yet,
2443 		 * continue scrubbing */
2444 		if (!cache)
2445 			goto skip;
2446 
2447 		ASSERT(cache->start <= chunk_offset);
2448 		/*
2449 		 * We are using the commit root to search for device extents, so
2450 		 * that means we could have found a device extent item from a
2451 		 * block group that was deleted in the current transaction. The
2452 		 * logical start offset of the deleted block group, stored at
2453 		 * @chunk_offset, might be part of the logical address range of
2454 		 * a new block group (which uses different physical extents).
2455 		 * In this case btrfs_lookup_block_group() has returned the new
2456 		 * block group, and its start address is less than @chunk_offset.
2457 		 *
2458 		 * We skip such new block groups, because it's pointless to
2459 		 * process them, as we won't find their extents because we search
2460 		 * for them using the commit root of the extent tree. For a device
2461 		 * replace it's also fine to skip it, we won't miss copying them
2462 		 * to the target device because we have the write duplication
2463 		 * setup through the regular write path (by btrfs_map_block()),
2464 		 * and we have committed a transaction when we started the device
2465 		 * replace, right after setting up the device replace state.
2466 		 */
2467 		if (cache->start < chunk_offset) {
2468 			btrfs_put_block_group(cache);
2469 			goto skip;
2470 		}
2471 
2472 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2473 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2474 				btrfs_put_block_group(cache);
2475 				goto skip;
2476 			}
2477 		}
2478 
2479 		/*
2480 		 * Make sure that while we are scrubbing the corresponding block
2481 		 * group doesn't get its logical address and its device extents
2482 		 * reused for another block group, which can possibly be of a
2483 		 * different type and different profile. We do this to prevent
2484 		 * false error detections and crashes due to bogus attempts to
2485 		 * repair extents.
2486 		 */
2487 		spin_lock(&cache->lock);
2488 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2489 			spin_unlock(&cache->lock);
2490 			btrfs_put_block_group(cache);
2491 			goto skip;
2492 		}
2493 		btrfs_freeze_block_group(cache);
2494 		spin_unlock(&cache->lock);
2495 
2496 		/*
2497 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2498 		 * to avoid deadlock caused by:
2499 		 * btrfs_inc_block_group_ro()
2500 		 * -> btrfs_wait_for_commit()
2501 		 * -> btrfs_commit_transaction()
2502 		 * -> btrfs_scrub_pause()
2503 		 */
2504 		scrub_pause_on(fs_info);
2505 
2506 		/*
2507 		 * Don't do chunk preallocation for scrub.
2508 		 *
2509 		 * This is especially important for SYSTEM bgs, or we can hit
2510 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2511 		 * 1. The only SYSTEM bg is marked RO.
2512 		 *    Since SYSTEM bg is small, that's pretty common.
2513 		 * 2. New SYSTEM bg will be allocated
2514 		 *    Due to regular version will allocate new chunk.
2515 		 * 3. New SYSTEM bg is empty and will get cleaned up
2516 		 *    Before cleanup really happens, it's marked RO again.
2517 		 * 4. Empty SYSTEM bg get scrubbed
2518 		 *    We go back to 2.
2519 		 *
2520 		 * This can easily boost the amount of SYSTEM chunks if cleaner
2521 		 * thread can't be triggered fast enough, and use up all space
2522 		 * of btrfs_super_block::sys_chunk_array
2523 		 *
2524 		 * While for dev replace, we need to try our best to mark block
2525 		 * group RO, to prevent race between:
2526 		 * - Write duplication
2527 		 *   Contains latest data
2528 		 * - Scrub copy
2529 		 *   Contains data from commit tree
2530 		 *
2531 		 * If target block group is not marked RO, nocow writes can
2532 		 * be overwritten by scrub copy, causing data corruption.
2533 		 * So for dev-replace, it's not allowed to continue if a block
2534 		 * group is not RO.
2535 		 */
2536 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2537 		if (!ret && sctx->is_dev_replace) {
2538 			ret = finish_extent_writes_for_zoned(root, cache);
2539 			if (ret) {
2540 				btrfs_dec_block_group_ro(cache);
2541 				scrub_pause_off(fs_info);
2542 				btrfs_put_block_group(cache);
2543 				break;
2544 			}
2545 		}
2546 
2547 		if (ret == 0) {
2548 			ro_set = 1;
2549 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2550 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2551 			/*
2552 			 * btrfs_inc_block_group_ro return -ENOSPC when it
2553 			 * failed in creating new chunk for metadata.
2554 			 * It is not a problem for scrub, because
2555 			 * metadata are always cowed, and our scrub paused
2556 			 * commit_transactions.
2557 			 *
2558 			 * For RAID56 chunks, we have to mark them read-only
2559 			 * for scrub, as later we would use our own cache
2560 			 * out of RAID56 realm.
2561 			 * Thus we want the RAID56 bg to be marked RO to
2562 			 * prevent RMW from screwing up out cache.
2563 			 */
2564 			ro_set = 0;
2565 		} else if (ret == -ETXTBSY) {
2566 			btrfs_warn(fs_info,
2567 		   "skipping scrub of block group %llu due to active swapfile",
2568 				   cache->start);
2569 			scrub_pause_off(fs_info);
2570 			ret = 0;
2571 			goto skip_unfreeze;
2572 		} else {
2573 			btrfs_warn(fs_info,
2574 				   "failed setting block group ro: %d", ret);
2575 			btrfs_unfreeze_block_group(cache);
2576 			btrfs_put_block_group(cache);
2577 			scrub_pause_off(fs_info);
2578 			break;
2579 		}
2580 
2581 		/*
2582 		 * Now the target block is marked RO, wait for nocow writes to
2583 		 * finish before dev-replace.
2584 		 * COW is fine, as COW never overwrites extents in commit tree.
2585 		 */
2586 		if (sctx->is_dev_replace) {
2587 			btrfs_wait_nocow_writers(cache);
2588 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2589 					cache->length);
2590 		}
2591 
2592 		scrub_pause_off(fs_info);
2593 		down_write(&dev_replace->rwsem);
2594 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2595 		dev_replace->cursor_left = found_key.offset;
2596 		dev_replace->item_needs_writeback = 1;
2597 		up_write(&dev_replace->rwsem);
2598 
2599 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2600 				  dev_extent_len);
2601 		if (sctx->is_dev_replace &&
2602 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2603 						      cache, found_key.offset))
2604 			ro_set = 0;
2605 
2606 		down_write(&dev_replace->rwsem);
2607 		dev_replace->cursor_left = dev_replace->cursor_right;
2608 		dev_replace->item_needs_writeback = 1;
2609 		up_write(&dev_replace->rwsem);
2610 
2611 		if (ro_set)
2612 			btrfs_dec_block_group_ro(cache);
2613 
2614 		/*
2615 		 * We might have prevented the cleaner kthread from deleting
2616 		 * this block group if it was already unused because we raced
2617 		 * and set it to RO mode first. So add it back to the unused
2618 		 * list, otherwise it might not ever be deleted unless a manual
2619 		 * balance is triggered or it becomes used and unused again.
2620 		 */
2621 		spin_lock(&cache->lock);
2622 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2623 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2624 			spin_unlock(&cache->lock);
2625 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2626 				btrfs_discard_queue_work(&fs_info->discard_ctl,
2627 							 cache);
2628 			else
2629 				btrfs_mark_bg_unused(cache);
2630 		} else {
2631 			spin_unlock(&cache->lock);
2632 		}
2633 skip_unfreeze:
2634 		btrfs_unfreeze_block_group(cache);
2635 		btrfs_put_block_group(cache);
2636 		if (ret)
2637 			break;
2638 		if (sctx->is_dev_replace &&
2639 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2640 			ret = -EIO;
2641 			break;
2642 		}
2643 		if (sctx->stat.malloc_errors > 0) {
2644 			ret = -ENOMEM;
2645 			break;
2646 		}
2647 skip:
2648 		key.offset = found_key.offset + dev_extent_len;
2649 		btrfs_release_path(path);
2650 	}
2651 
2652 	btrfs_free_path(path);
2653 
2654 	return ret;
2655 }
2656 
2657 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2658 			   struct page *page, u64 physical, u64 generation)
2659 {
2660 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2661 	struct bio_vec bvec;
2662 	struct bio bio;
2663 	struct btrfs_super_block *sb = page_address(page);
2664 	int ret;
2665 
2666 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2667 	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2668 	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2669 	ret = submit_bio_wait(&bio);
2670 	bio_uninit(&bio);
2671 
2672 	if (ret < 0)
2673 		return ret;
2674 	ret = btrfs_check_super_csum(fs_info, sb);
2675 	if (ret != 0) {
2676 		btrfs_err_rl(fs_info,
2677 			"super block at physical %llu devid %llu has bad csum",
2678 			physical, dev->devid);
2679 		return -EIO;
2680 	}
2681 	if (btrfs_super_generation(sb) != generation) {
2682 		btrfs_err_rl(fs_info,
2683 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2684 			     physical, dev->devid,
2685 			     btrfs_super_generation(sb), generation);
2686 		return -EUCLEAN;
2687 	}
2688 
2689 	return btrfs_validate_super(fs_info, sb, -1);
2690 }
2691 
2692 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2693 					   struct btrfs_device *scrub_dev)
2694 {
2695 	int	i;
2696 	u64	bytenr;
2697 	u64	gen;
2698 	int ret = 0;
2699 	struct page *page;
2700 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2701 
2702 	if (BTRFS_FS_ERROR(fs_info))
2703 		return -EROFS;
2704 
2705 	page = alloc_page(GFP_KERNEL);
2706 	if (!page) {
2707 		spin_lock(&sctx->stat_lock);
2708 		sctx->stat.malloc_errors++;
2709 		spin_unlock(&sctx->stat_lock);
2710 		return -ENOMEM;
2711 	}
2712 
2713 	/* Seed devices of a new filesystem has their own generation. */
2714 	if (scrub_dev->fs_devices != fs_info->fs_devices)
2715 		gen = scrub_dev->generation;
2716 	else
2717 		gen = fs_info->last_trans_committed;
2718 
2719 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2720 		bytenr = btrfs_sb_offset(i);
2721 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2722 		    scrub_dev->commit_total_bytes)
2723 			break;
2724 		if (!btrfs_check_super_location(scrub_dev, bytenr))
2725 			continue;
2726 
2727 		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2728 		if (ret) {
2729 			spin_lock(&sctx->stat_lock);
2730 			sctx->stat.super_errors++;
2731 			spin_unlock(&sctx->stat_lock);
2732 		}
2733 	}
2734 	__free_page(page);
2735 	return 0;
2736 }
2737 
2738 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2739 {
2740 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2741 					&fs_info->scrub_lock)) {
2742 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2743 		struct workqueue_struct *scrub_wr_comp =
2744 						fs_info->scrub_wr_completion_workers;
2745 
2746 		fs_info->scrub_workers = NULL;
2747 		fs_info->scrub_wr_completion_workers = NULL;
2748 		mutex_unlock(&fs_info->scrub_lock);
2749 
2750 		if (scrub_workers)
2751 			destroy_workqueue(scrub_workers);
2752 		if (scrub_wr_comp)
2753 			destroy_workqueue(scrub_wr_comp);
2754 	}
2755 }
2756 
2757 /*
2758  * get a reference count on fs_info->scrub_workers. start worker if necessary
2759  */
2760 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2761 						int is_dev_replace)
2762 {
2763 	struct workqueue_struct *scrub_workers = NULL;
2764 	struct workqueue_struct *scrub_wr_comp = NULL;
2765 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2766 	int max_active = fs_info->thread_pool_size;
2767 	int ret = -ENOMEM;
2768 
2769 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2770 		return 0;
2771 
2772 	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
2773 					is_dev_replace ? 1 : max_active);
2774 	if (!scrub_workers)
2775 		goto fail_scrub_workers;
2776 
2777 	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
2778 	if (!scrub_wr_comp)
2779 		goto fail_scrub_wr_completion_workers;
2780 
2781 	mutex_lock(&fs_info->scrub_lock);
2782 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2783 		ASSERT(fs_info->scrub_workers == NULL &&
2784 		       fs_info->scrub_wr_completion_workers == NULL);
2785 		fs_info->scrub_workers = scrub_workers;
2786 		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
2787 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2788 		mutex_unlock(&fs_info->scrub_lock);
2789 		return 0;
2790 	}
2791 	/* Other thread raced in and created the workers for us */
2792 	refcount_inc(&fs_info->scrub_workers_refcnt);
2793 	mutex_unlock(&fs_info->scrub_lock);
2794 
2795 	ret = 0;
2796 
2797 	destroy_workqueue(scrub_wr_comp);
2798 fail_scrub_wr_completion_workers:
2799 	destroy_workqueue(scrub_workers);
2800 fail_scrub_workers:
2801 	return ret;
2802 }
2803 
2804 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2805 		    u64 end, struct btrfs_scrub_progress *progress,
2806 		    int readonly, int is_dev_replace)
2807 {
2808 	struct btrfs_dev_lookup_args args = { .devid = devid };
2809 	struct scrub_ctx *sctx;
2810 	int ret;
2811 	struct btrfs_device *dev;
2812 	unsigned int nofs_flag;
2813 	bool need_commit = false;
2814 
2815 	if (btrfs_fs_closing(fs_info))
2816 		return -EAGAIN;
2817 
2818 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2819 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2820 
2821 	/*
2822 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2823 	 * value (max nodesize / min sectorsize), thus nodesize should always
2824 	 * be fine.
2825 	 */
2826 	ASSERT(fs_info->nodesize <=
2827 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2828 
2829 	/* Allocate outside of device_list_mutex */
2830 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2831 	if (IS_ERR(sctx))
2832 		return PTR_ERR(sctx);
2833 
2834 	ret = scrub_workers_get(fs_info, is_dev_replace);
2835 	if (ret)
2836 		goto out_free_ctx;
2837 
2838 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2839 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2840 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2841 		     !is_dev_replace)) {
2842 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2843 		ret = -ENODEV;
2844 		goto out;
2845 	}
2846 
2847 	if (!is_dev_replace && !readonly &&
2848 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2849 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2850 		btrfs_err_in_rcu(fs_info,
2851 			"scrub on devid %llu: filesystem on %s is not writable",
2852 				 devid, btrfs_dev_name(dev));
2853 		ret = -EROFS;
2854 		goto out;
2855 	}
2856 
2857 	mutex_lock(&fs_info->scrub_lock);
2858 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2859 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2860 		mutex_unlock(&fs_info->scrub_lock);
2861 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2862 		ret = -EIO;
2863 		goto out;
2864 	}
2865 
2866 	down_read(&fs_info->dev_replace.rwsem);
2867 	if (dev->scrub_ctx ||
2868 	    (!is_dev_replace &&
2869 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2870 		up_read(&fs_info->dev_replace.rwsem);
2871 		mutex_unlock(&fs_info->scrub_lock);
2872 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2873 		ret = -EINPROGRESS;
2874 		goto out;
2875 	}
2876 	up_read(&fs_info->dev_replace.rwsem);
2877 
2878 	sctx->readonly = readonly;
2879 	dev->scrub_ctx = sctx;
2880 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2881 
2882 	/*
2883 	 * checking @scrub_pause_req here, we can avoid
2884 	 * race between committing transaction and scrubbing.
2885 	 */
2886 	__scrub_blocked_if_needed(fs_info);
2887 	atomic_inc(&fs_info->scrubs_running);
2888 	mutex_unlock(&fs_info->scrub_lock);
2889 
2890 	/*
2891 	 * In order to avoid deadlock with reclaim when there is a transaction
2892 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2893 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2894 	 * invoked by our callees. The pausing request is done when the
2895 	 * transaction commit starts, and it blocks the transaction until scrub
2896 	 * is paused (done at specific points at scrub_stripe() or right above
2897 	 * before incrementing fs_info->scrubs_running).
2898 	 */
2899 	nofs_flag = memalloc_nofs_save();
2900 	if (!is_dev_replace) {
2901 		u64 old_super_errors;
2902 
2903 		spin_lock(&sctx->stat_lock);
2904 		old_super_errors = sctx->stat.super_errors;
2905 		spin_unlock(&sctx->stat_lock);
2906 
2907 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2908 		/*
2909 		 * by holding device list mutex, we can
2910 		 * kick off writing super in log tree sync.
2911 		 */
2912 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2913 		ret = scrub_supers(sctx, dev);
2914 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2915 
2916 		spin_lock(&sctx->stat_lock);
2917 		/*
2918 		 * Super block errors found, but we can not commit transaction
2919 		 * at current context, since btrfs_commit_transaction() needs
2920 		 * to pause the current running scrub (hold by ourselves).
2921 		 */
2922 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2923 			need_commit = true;
2924 		spin_unlock(&sctx->stat_lock);
2925 	}
2926 
2927 	if (!ret)
2928 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
2929 	memalloc_nofs_restore(nofs_flag);
2930 
2931 	atomic_dec(&fs_info->scrubs_running);
2932 	wake_up(&fs_info->scrub_pause_wait);
2933 
2934 	if (progress)
2935 		memcpy(progress, &sctx->stat, sizeof(*progress));
2936 
2937 	if (!is_dev_replace)
2938 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2939 			ret ? "not finished" : "finished", devid, ret);
2940 
2941 	mutex_lock(&fs_info->scrub_lock);
2942 	dev->scrub_ctx = NULL;
2943 	mutex_unlock(&fs_info->scrub_lock);
2944 
2945 	scrub_workers_put(fs_info);
2946 	scrub_put_ctx(sctx);
2947 
2948 	/*
2949 	 * We found some super block errors before, now try to force a
2950 	 * transaction commit, as scrub has finished.
2951 	 */
2952 	if (need_commit) {
2953 		struct btrfs_trans_handle *trans;
2954 
2955 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
2956 		if (IS_ERR(trans)) {
2957 			ret = PTR_ERR(trans);
2958 			btrfs_err(fs_info,
2959 	"scrub: failed to start transaction to fix super block errors: %d", ret);
2960 			return ret;
2961 		}
2962 		ret = btrfs_commit_transaction(trans);
2963 		if (ret < 0)
2964 			btrfs_err(fs_info,
2965 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
2966 	}
2967 	return ret;
2968 out:
2969 	scrub_workers_put(fs_info);
2970 out_free_ctx:
2971 	scrub_free_ctx(sctx);
2972 
2973 	return ret;
2974 }
2975 
2976 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
2977 {
2978 	mutex_lock(&fs_info->scrub_lock);
2979 	atomic_inc(&fs_info->scrub_pause_req);
2980 	while (atomic_read(&fs_info->scrubs_paused) !=
2981 	       atomic_read(&fs_info->scrubs_running)) {
2982 		mutex_unlock(&fs_info->scrub_lock);
2983 		wait_event(fs_info->scrub_pause_wait,
2984 			   atomic_read(&fs_info->scrubs_paused) ==
2985 			   atomic_read(&fs_info->scrubs_running));
2986 		mutex_lock(&fs_info->scrub_lock);
2987 	}
2988 	mutex_unlock(&fs_info->scrub_lock);
2989 }
2990 
2991 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
2992 {
2993 	atomic_dec(&fs_info->scrub_pause_req);
2994 	wake_up(&fs_info->scrub_pause_wait);
2995 }
2996 
2997 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2998 {
2999 	mutex_lock(&fs_info->scrub_lock);
3000 	if (!atomic_read(&fs_info->scrubs_running)) {
3001 		mutex_unlock(&fs_info->scrub_lock);
3002 		return -ENOTCONN;
3003 	}
3004 
3005 	atomic_inc(&fs_info->scrub_cancel_req);
3006 	while (atomic_read(&fs_info->scrubs_running)) {
3007 		mutex_unlock(&fs_info->scrub_lock);
3008 		wait_event(fs_info->scrub_pause_wait,
3009 			   atomic_read(&fs_info->scrubs_running) == 0);
3010 		mutex_lock(&fs_info->scrub_lock);
3011 	}
3012 	atomic_dec(&fs_info->scrub_cancel_req);
3013 	mutex_unlock(&fs_info->scrub_lock);
3014 
3015 	return 0;
3016 }
3017 
3018 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3019 {
3020 	struct btrfs_fs_info *fs_info = dev->fs_info;
3021 	struct scrub_ctx *sctx;
3022 
3023 	mutex_lock(&fs_info->scrub_lock);
3024 	sctx = dev->scrub_ctx;
3025 	if (!sctx) {
3026 		mutex_unlock(&fs_info->scrub_lock);
3027 		return -ENOTCONN;
3028 	}
3029 	atomic_inc(&sctx->cancel_req);
3030 	while (dev->scrub_ctx) {
3031 		mutex_unlock(&fs_info->scrub_lock);
3032 		wait_event(fs_info->scrub_pause_wait,
3033 			   dev->scrub_ctx == NULL);
3034 		mutex_lock(&fs_info->scrub_lock);
3035 	}
3036 	mutex_unlock(&fs_info->scrub_lock);
3037 
3038 	return 0;
3039 }
3040 
3041 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3042 			 struct btrfs_scrub_progress *progress)
3043 {
3044 	struct btrfs_dev_lookup_args args = { .devid = devid };
3045 	struct btrfs_device *dev;
3046 	struct scrub_ctx *sctx = NULL;
3047 
3048 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3049 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3050 	if (dev)
3051 		sctx = dev->scrub_ctx;
3052 	if (sctx)
3053 		memcpy(progress, &sctx->stat, sizeof(*progress));
3054 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3055 
3056 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3057 }
3058